APPENDIX J SHORELINE GROUNDWATER ATTENUATION MODELING REPORT

SHORELINE GROUNDWATER MODELING ASSESSMENT

Georgia-Pacific West Site

Prepared for: Port of Bellingham

Project No. 070188-001 • May 30, 2012 Final

SHORELINE GROUNDWATER MODELING ASSESSMENT

Georgia-Pacific West Site

Prepared for: Port of Bellingham

Project No. 070188-001 • May 30, 2012 Final

Aspect Consulting, LLC

Joe Morrice, LHG
Associate Hydrogeologist
jmorrice@aspectconsulting.com

Steve J. Germiat

Steve Germiat, LHG, CGWPSenior Associate Hydrogeologist sgermiat@aspectconsulting.com

v:\070188 Port Bellingham\Deliverables\GW to Sediment Modeling Report\Shoreline GW Attenuation Modeling Report - Final.docx

Contents

Intr	oduction1
	Scope and Purpose1
	Report Organization2
Нус	Irogeologic Conditions2
Мо	del Construction and Calibration Methods4
	Numerical Model Codes5
	Caustic Plume Subarea Transect Model Code
	Model Grid and Boundary Conditions6
	Caustic Plume Transect7
	Law-1 Transect
	Hydraulic Property Zones9
	Model Calibration9
	Methods 9 Calibration Results for Caustic Plume Transect
	Calibration Results for Law-1 Transect
Att	enuation Factors13
	Modeled Attenuation Factors13
	Comparison to Empirical Data14
Ref	erences15
Lin	itations16
Lis	t of Tables
1	Initial Model Parameters
2	Model Calibration Results
3	Calibrated Model Parameters
4	Transport Model Results
5	Law-1 Area AFs Derived from Empirical Shoreline Groundwater Quality Data
Lis	t of Figures
1	Port of Bellingham and Adjacent Properties

2

Groundwater Model Transect Location Map

ASPECT CONSULTING

- 3 Fill Unit Groundwater Elevation Contour Map (March 2010)
- 4 Model Construction (Caustic Plume Transect)
- 5 Model Construction (Law-1 Transect Current Sediment Cap)
- 6 Model Construction (Law-1 Transect Future Sediment Cap)
- 7 Schematic of Model Construction for Whatcom Waterway and intertidal Zone (Law-1 Transect)
- 8 Head Calibration at CP-MWB3 (Caustic Plume Transect)
- 9 Head Calibration at CP-MWB1 (Caustic Plume Transect)
- 10 Mean Head Calibration (Caustic Plume Transect)
- 11 Head Range Calibration (Caustic Plume Transect)
- 12 Modeled Hydraulic Head Contours (Caustic Plume Transect)
- 13 Modeled Percent Marine Water Contours (Caustic Plume Transect)
- 14 Head Calibration at Law-1 (Law-1 Transect)
- 15 Head Calibration at CP-MW03 (Law-1 Transect)
- 16 Head Calibration at CP-MW04 (Law-1 Transect)
- 17 Head Calibration at CP-MW05 (Law-1 Transect)
- 18 Mean Head Calibration (Law-1 Transect)
- 19 Head Range Calibration (Law-1 Transect)
- 20 Modeled Hydraulic Head Contours (Law-1 Transect Current Sediment Cap)
- 21 Modeled Percent Marine Water Contours (Law-1 Transect)
- 22 Modeled C/C₀ Contours (Caustic Plume Transect)
- 23 Modeled C/C₀ Contours (Law-1 Transect Current Sediment Cap)
- 24 Modeled C/C₀ Contours (Law-1 Transect Future Sediment Cap)
- 25 Modeled Attenuation Factor Contours (Caustic Plume Transect)
- 26 Modeled Attenuation Factor Contours (Law-1 Transect Current Sediment Cap)
- 27 Modeled Attenuation Factor Contours (Law-1 Transect Future Sediment Cap)

Introduction

This report presents a modeling evaluation of contaminant attenuation along groundwater flow paths in the Fill Unit between a nearshore monitoring well and the sediment bioactive zone at the Port of Bellingham (Port) Georgia-Pacific West Site (Site), located in Bellingham, Washington (Figure 1). The modeling approach is consistent with the memorandum entitled "Modeling Approach to Assess Groundwater Screening Levels Protective of Sediment and Surface Water" (Aspect and Anchor QEA, 2011), which was reviewed and approved by Washington State Department of Ecology (Ecology).

As presented in the modeling approach memorandum and described in detail below, the modeling addresses only groundwater transport of upland contaminants to the sediment bioactive zone. It does not address transport of contaminants caused by flow of groundwater up through contaminated sediment; this mechanism is being addressed in remedial design for the Whatcom Waterway cleanup action.

Scope and Purpose

Numerical modeling of groundwater flow and solute transport was performed to quantify the effect of physical mixing on contaminant concentrations in Fill Unit (upland) groundwater approaching the Whatcom Waterway. Mixing of surface water and groundwater within the nearshore groundwater system can be a significant component of natural attenuation of contaminants in groundwater prior to discharge to marine sediment and water. Because Site groundwater is not a practicable source of potable water (Aspect, 2009), discharge to the marine environment is groundwater's highest beneficial use. Therefore, groundwater screening levels are based on protection of marine water and sediment in the adjacent Whatcom Waterway/Bellingham Bay, and the conditional point of compliance is porewater quality in the bioactive zone (upper 12 centimeters) of sediments. For this evaluation, attenuation of upland groundwater contaminants was modeled between specified upland points and the conditional point of compliance.

Modeling was performed along two 2-dimensional cross sectional transects positioned along groundwater flow paths, at the locations shown on Figure 2. The first transect (Caustic Plume transect) is located in the Caustic Plume subarea of the Site, an area with high pH and elevated dissolved mercury concentrations in groundwater. The second transect (Law-1 transect), located within portions of the Caustic Plume and Confined Nearshore Fill subareas, runs through a former wastewater settling basin that was subsequently filled. Monitoring well Law-1, located north¹ of the former basin and next to the shoreline on this transect, has shown elevated dissolved mercury concentrations. As alluded to in Aspect and Anchor QEA (2011), modeling was not performed for the Acid Plant Area since its nearshore groundwater concentrations are below the most

_

¹ Consistent with previous Site reports, this report contains directional references relative to "Mill north" as established by GP, with the "Mill north" axis approximately 45 degrees west of true north (see direction arrows on Figure 1). In the "Mill north" reference, the Whatcom Waterway is oriented east-west on the north side of the Site.

stringent screening levels based on protection of marine water and sediment, as described in the RI.

The degree of attenuation presented in this report is expressed as an attenuation factor (AF), defined as the ratio of contaminant concentration in groundwater at a monitoring well (or other upland location) to the predicted concentration at the point of discharge to the sediment bioactive zone. The AFs will be used to establish numerical groundwater screening levels at upland locations that are protective of both sediment quality and water quality in the sediment bioactive zone. That step will be conducted as part of the RI/FS. Specifically, the groundwater screening level applied at a shoreline monitoring well will be the porewater concentration in assumed equilibrium with a sediment concentration equal to the sediment quality standard (SQS) multiplied by the model-predicted attenuation factor (Aspect Consulting and Anchor QEA, 2011).

The AFs account only for physical attenuation of contaminants through mixing with surface water within the groundwater system. This physical mixing is independent of any chemical-specific properties; as such the AFs are applicable to all Site contaminants. Additional attenuation processes, such as biodegradation of organic constituents or irreversible precipitation of metals, would result in additional attenuation beyond the AFs, resulting in the application of a conservative AF.

Report Organization

The remainder of this report presents:

- A brief overview of hydrogeologic conditions at the Site relevant to model development;
- Model development and calibration; and
- Development of AFs.

Hydrogeologic Conditions

The Site is located adjacent to surface waters of Whatcom Waterway and Bellingham Bay. Detailed Site geology and hydrogeology are described in the Draft Remedial Investigation Report (RI Report; Aspect Consulting and Anchor QEA, 2010). A brief overview of relevant hydrogeologic conditions is provided below.

The three hydrogeologic units of primary interest at the Site include, from surface down, a Fill Unit consisting of several different types of upland and dredge fill materials, a low-permeability Tidal Flat Aquitard, and a Lower Sand Unit. Beneath the Lower Sand is a fourth unit - an older, low-permeability Glaciomarine Drift unit comprised of stiff silt/clay with occasional sand and gravel lenses.

The Fill Unit contains a shallow unconfined aquifer which is hydraulically separated from the Lower Sand aquifer by the intervening Tidal Flat Aquitard, where present. Water table elevation contours and interpreted groundwater flow directions in the Fill Unit are shown on Figure 3. Groundwater in the Fill Unit discharges to the Whatcom

Waterway or Bellingham Bay. Fill Unit groundwater flow within the Confined Nearshore Fill/Chemfix Area is also influenced by a low-permeability berm constructed along the shoreline to contain the dredge-fill material placed south of it. As part of an Interim Action for the Whatcom Waterway, the intertidal zone north of the berm was capped with a high-permeability sand and gravel mix in 2001. Additional capping of the area is planned as part of Whatcom Waterway cleanup activities. The high permeability sand and gravel cap materials have only minor influence on groundwater flow within and south of the berm; however, as a result of adding the additional cap thickness, a longer groundwater flowpath will be created, which can increase attenuation of contaminant concentrations at the conditional point of compliance.

The Tidal Flat Aquitard underlying the Fill Unit across much of the Site is comprised of stratified, low permeability silt and silty sand, which impedes vertical movement of groundwater between the overlying Fill Unit and the underlying Lower Sand Unit. The Tidal Flat Aquitard is absent in the northeastern portion of the Site, but is continuous in the two areas where groundwater models were constructed for this assessment. Based on water level data collected in Fall 2009 and Spring 2010, groundwater levels are typically 1 to 6 feet higher in the Fill Unit than in the Lower Sand Unit, confirming the effectiveness of the Aquitard as a hydraulic barrier between the upper and lower aquifer units.

The Lower Sand Unit consists of marine sands and is laterally continuous across the Site. The Lower Sand Unit is a confined aquifer and is in direct contact with surface water of Bellingham Bay or the Whatcom Waterway where the Tidal Flat Aquitard pinches out or has been removed by historical dredging activities.

Changes in tidal stage produce changes in groundwater elevations within the Fill Unit and Lower Sand, which are observed in certain wells at the Site. Observed tidal influence in the Fill Unit is limited to nearshore wells, with tide-induced variability in groundwater elevations on the order of 1 foot within about 100 feet of the shoreline, and diminishing to negligible further inland. The low permeability berm in the Confined Nearshore Fill/Chemfix Area significantly mutes tidal response behind the berm, with only minor response observed in well Law-1 despite being located less than 50 feet from the shoreline.

Tidal influence is more prominent in the Lower Sand Unit than in the Fill Unit, with larger tide-induced groundwater level fluctuations extending further inland. The Lower Sand Unit's greater tidal response (tidal efficiency) is primarily due to its being a confined aquifer, while the Fill Unit is unconfined. The tide-induced groundwater level response in the unconfined Fill Unit is the result of water moving in and out of the aquifer at the shoreline as tides rise and fall. Conversely, groundwater level response in a confined aquifer such as the Lower Sand Unit is due largely to propagation of pressure changes (tides) occurring at the interface of the Lower Sand Unit and the Waterway/Log Pond or bay, more so than actual movement of water in and out of the aquifer (e.g., Ferris, 1951; Serfes, 1991).

Model Construction and Calibration Methods

Cross sectional models were developed along two transects – termed the Caustic Plume transect and the Law-1 transect (Figure 2). The transect locations were selected to coincide with the expected shortest groundwater flow paths from contaminant source areas to marine surface water. The Caustic Plume transect is aligned approximately parallel with the local groundwater flow direction, along the inferred predominant groundwater contaminant transport pathway extending from upgradient (southeast) of the center of the caustic plume through wells CP-MWB1 and CP-MWB3 to Bellingham Bay. The groundwater flow direction along this pathway was determined based on groundwater level contours (Figure 3) and is supported by pH and mercury concentration distributions in the Fill Unit groundwater.

The Law-1 transect is aligned north-south through the former wastewater settling basin and the shoreline berm and parallel to the local groundwater flow direction through the berm to the Whatcom Waterway. This transect includes well Law-1, a nearshore monitoring well containing detectable concentrations of dissolved mercury. Although groundwater mounding observed in the area of the former settling basin south of well Law-1 likely results in eastward and westward components of groundwater flow that do not parallel the transect, the orientation of this transect was selected to represent the shortest groundwater flow path from the settling basin, through the berm and well Law-1.

The models constructed along the Law-1 and Caustic Plume transects simulate 2-dimensional groundwater flow and solute transport, assuming uniform hydraulic properties in each unit represented in the model sections. The models simulate transient groundwater flow induced by tidal fluctuations in Whatcom Waterway and Bellingham Bay. Solute transport was simulated with groundwater advection and dispersion, but assuming no chemical reactions (e.g., sorption, degradation). The models are suitable for simulating diffuse groundwater flow and transport and associated physical attenuation, but do not account for significant preferential flow pathways, such as former utility lines. Site investigations have not identified any preferential pathways that would affect flow at these transects; should such pathways be identified at other areas of the Site, model results would need to be revisited to determine if they are applicable to those locations.

A single model was constructed for the Caustic Plume transect (model grid illustrated on Figure 4). As compared to the Law-1 transect discussed below, the geometry of this model was relatively simple, with no significant changes to current conditions anticipated. The Caustic Plume transect consists of three layers representing the upland Fill Unit, Tidal Flat Aquitard, and Lower Sand Unit. Two Fill Unit monitoring wells (CP-MWB3 and CP-MWB1) with continuous water level monitoring data from May 11 to May 14, 2010 (tidal study from the RI Report) are located along this transect and provide calibration points for the flow model.

Two models were constructed for the Law-1 transect, representing current conditions and expected future conditions. The offshore area at the Law-1 transect (Log Pond) was capped with clean sand and gravel to isolate mercury-impacted sediments as a Whatcom Waterway interim action completed in 2001. A thicker sediment cap in the Log Pond offshore from Law-1 is planned as part of the Whatcom Waterway final cleanup action;

the capping is expected to be complete by 2013. The first model for this transect, reflecting current conditions (model grid on Figure 5), was used to calibrate the groundwater flow and transport parameters and assess AFs for current conditions. The second model, reflecting additional capping, was used to predict AFs for long-term future conditions (model grid on Figure 6). The transects for the current- and future-case models are the same: located along an upland groundwater flow path, through the berm, and to the Log Pond. Two Fill Unit monitoring wells (Law-1 and CP-MW03) and two Lower Sand Unit monitoring wells (CP-MW04 and CP-MW05), from which continuous tidal water level monitoring data are available from October 19 to October 22, 2009 (Aspect and Anchor QEA, 2010), are located along the transect.

Numerical Model Codes

Groundwater flow and solute transport was simulated using versions of the finite differences codes MODFLOW (McDonald and Harbaugh 1988) and MT3DMS (Zheng and Wang, 1999), both of which are considered industry standards for groundwater flow and transport modeling. MODFLOW allows for multiple types of boundary conditions and heterogeneous aquifer hydraulic properties that are incorporated into a groundwater flow model by the use of different packages or modules. In MODFLOW, the aquifer area to be modeled is discretized vertically into a series of layers, and horizontally discretized into a series of rows and columns. Within a layer, the resulting three-dimensional rectangular blocks are termed cells. Within each cell, aquifer properties such as hydraulic conductivity and storativity are assigned a constant value. Heterogeneity can be simulated by varying aquifer properties between cells both horizontally and vertically; and groups of cells representing similar aquifer material can be grouped into "zones" of like parameters to represent Site hydrogeologic units.

MT3DMS is a solute mass transport code capable of simulating three-dimensional advection, dispersion, and chemical reactions in groundwater flow, and is designed to be used in conjunction with any block-centered finite-difference modeling code, including MODFLOW. Features such as dispersion and chemical reactions can be turned on or off as the situation requires. Values for the parameters defining the dispersion and, if used, reaction terms in the model can be assigned to different model regions, allowing simulation of heterogeneous physical and chemical conditions.

The models developed along each transect used different USGS-modified versions of these codes best suited to the particular conditions of each model transect, as discussed below.

Caustic Plume Subarea Transect Model Code

The Caustic Plume model was developed using the USGS code SEAWAT 2000 (Langevin et al., 2003) which simulates the variable density flow and solute transport associated with the mixing of saltwater and fresh water. SEAWAT 2000 is a USGS code that couples a version of MODFLOW2000, which has been modified to take into account variable density, with solute transport simulated with MT3DMS. Density is determined from solute concentration (salinity) calculated by the transport model.

Law-1 Area Transect Model Code

Because of the relatively extensive intertidal zone included in the Law-1 transect (extensive low-slope sediment cap), the model code selected for this model needed to account for cyclical drying and rewetting of model cells. The SEAWAT-2000 code is unstable in this situation, and was deemed unsuitable for developing the Law-1 models. Instead, the MODFLOW-2005 code with the Upstream Weighting Package (UPW) utilizing the Newton Solver (NWT) was used. This version of MODFLOW is better able to account for drying and rewetting of model cells in the intertidal zone, while providing a stable solution. A drawback of this code is that it does not explicitly account for variable density flow due to salinity differences. The effect of variable density was accounted for by using equivalent freshwater head boundary conditions along the Whatcom Waterway boundary. This approach is described in more detail in the following section.

Model Grid and Boundary Conditions

Model grids and hydraulic property zones for the Caustic Plume transect model and the current- and future-condition Law-1 transect models are shown on Figures 4, 5, and 6. Each model was discretized and assigned hydraulic property zones based on the hydrogeologic characterization presented in the draft RI (Aspect and Anchor QEA, 2010). The Log Pond cap thickness and extent in the future-condition Law-1 transect model was developed based on remedial design information from Anchor QEA.

The upgradient hydraulic boundary conditions in each model were established using constant, specified heads in the Fill Unit and the Lower Sand Unit while the shoreline boundary condition was established as a transient, specified head representing changes in tidal stage. The hydraulic head specified in the tidal boundary condition was based on a 6-minute interval, continuous tide measurements for Cherry Point reported by the National Oceanic and Atmospheric Association (NOAA, 2011). Tide data were selected to coincide with 3-day periods of continuous groundwater level monitoring from Site wells collected during the RI field program (Aspect Consulting and Anchor QEA, 2010). Tidal groundwater level monitoring data were available for select wells along the Law-1 transect for the period October 19 to 22, 2009, and for wells along the Caustic Plume transect for the period May 11 to May 14, 2010. The tidal range (higher-high to lower-low tide) at Cherry Point for these measurement periods were 10.7 feet and 8.3 feet, respectively. Over the course of a full year, the average range at that station is about 9.0 feet. Therefore, the modeled tide ranges are 119 percent and 92 percent of average.

The transient flow and transport models were run by repeating the three days of tide data for each transect multiple times until only minimal changes in modeled water levels and solute concentrations occurred between each successive three-day period. The purpose of this was to minimize the effect of initial groundwater head and solute concentration conditions applied to the models. Time was discretized into stress periods. For each stress period, the head applied at the tidal boundary condition was assigned based on the tide stage. The stress period length was 6 minutes for the Caustic Plume transect calibration and predictive model runs, or the finest scale at which tide data were available. Based on the lack of significant tidal response at well Law-1, a longer stress period length of 24 minutes was used for this transect's calibration and predictive model runs. Total model

times for the calibration and predictive flow model runs were about 37 days at the Caustic Plume transect and about 133 days at the Law-1 transect.

Since flow is assumed to be predominantly horizontal at depth, the bottom of the model is simulated as a no-flow boundary. Another no-flow boundary truncates horizontal flow in the Lower Sand offshore from the Site. For the Law-1 transect this boundary was located at the approximate location of a groundwater divide assumed to be at the deepest part of Whatcom Waterway. For the Caustic Plume transect, this boundary was located far enough offshore so as to not affect model results.

Initial estimates of the upgradient boundary conditions were based on water level contours and head measurement from monitoring wells reported in the draft RI.

The above general approach was implemented in each of the models. Specific details of grid geometry and boundary conditions unique to each transect are described in the following two sections.

Caustic Plume Transect

The grid for the Caustic Plume transect model is shown on Figure 4. It is made up of three layers. The Fill Unit extends 1,400 feet from the upgradient boundary to the Bellingham Bay boundary, and the Lower Sand extends another 400 feet offshore. The horizontal grid spacing is 10 feet and refines at the shoreline to better simulate transport in the sediment bioactive zone (point of compliance for groundwater discharge to the marine environment).

The tidal boundary condition was selected from predicted tidal stage for the period May 11 to May 14, 2010, coinciding with the period of continuous water level data recorded in wells located along the transect (CP-MWB3 and CP-MWB1). The tidal range (higherhigh to lower-low tide) for this measurement period was 8.3 feet, 92 percent of annual average tidal range. Using a lower than average tidal range will produce a smaller than average AF, resulting in a conservative prediction of AF. Recharge from precipitation was not simulated because this transect is overlain by pavement, and there is no evidence of significant local groundwater recharge (i.e., mounding) in the contoured water level data from this area (Figure 3). Flow within the Fill Unit is primarily horizontal (one-dimensional) and two targets (CP-MWB3 and CP-MWB1) between the two boundary conditions provide a reasonable resolution for calibration.

The Caustic Plume transect model simulates variable density flow with SEAWAT, which calculates head as an equivalent freshwater head, dependent on percent concentration of marine water. A specified salinity concentration was added at the boundary conditions representing Bellingham Bay water [marine water salinity of 25 parts per thousand (ppt); Ecology, 1994] and the upgradient boundary (0 percent marine water).

Law-1 Transect

Flow paths along the Law-1transect are more complex than at the Caustic Plume. Groundwater flows horizontally from the Fill Unit through the shoreline berm (end of the Fill Unit) and then through the Log Pond sediment cap, where groundwater is distributed across a broader intertidal zone before discharging, primarily vertically, to Whatcom Waterway (Log Pond). The more complex flow paths required a more detailed grid geometry (Figures 5 and 6). The grid is divided into seven zones representing the various

geologic units and sediment caps. The Fill Unit and berm extend about 650 feet from the upgradient boundary condition to the capped intertidal zone. The current and future intertidal cap extends an additional 400 feet and the Lower Sand extends an additional 500 feet from the upland edge of the berm to the middle of the Whatcom Waterway (boundary condition at groundwater divide).

The sediment cap was modeled by a thin layer at the surface representing the sediment bioactive zone, overlying two thicker layers representing the remainder of the cap thickness. Due to numerical model convergence problems², the proposed future cap required a thicker top layer than the current cap model in order for the model to converge. Model convergence problems for the future-cap model were overcome by using a model layer as thick as 5 feet adjacent to shoreline, only a fraction of which is saturated at high tide and thinning seaward. As a result, simulated concentrations in the future-condition sediment cap are averaged over a thicker portion of the cap. Because contaminant attenuation increases closer to the mudline, the model-predicted concentrations in the upper layer of the future-condition cap are conservative (i.e., the model overestimates concentrations within the sediment bioactive zone and underestimates the AF).

The tidal boundary condition was selected from predicted tidal stage for the period October 19 to October 22, 2009, coinciding with continuous water level data recorded in wells located along this transect (Fill Unit wells Law-1, CP-MW02, CP-MW03, and Lower Sand wells CP-MW04 and CP-MW05). The tidal range (higher-high to lower-low tide) for this measurement period was 10.7 feet, which is 119 percent of the 9.0-foot average range. Because SEAWAT-2000 could not be applied at this transect, heads specified in the Whatcom Waterway boundary condition were approximated as equivalent freshwater heads. Equivalent freshwater heads are calculated from the density of marine water and height of the water column above the center of the boundary condition cell. A salinity concentration of 25 ppt was used in the equivalent freshwater head computation.

The bottom of the model cells representing the Waterway in the intertidal zone are above the low tide elevation and go dry during each tide cycle, which creates a boundary condition that is difficult to model with MODFLOW. To address the repeated wetting and drying, the Waterway in the intertidal zone was modeled using active model cells rather than directly applied boundary conditions, shown schematically on Figure 7. The active model cells representing the Waterway in the intertidal zone were simulated as a 0.5-foot thick layer directly overlying the intertidal sediments. These cells were assigned a very high hydraulic conductivity and were connected to an applied tidal boundary condition with a cell bottom elevation below the lowest low tide, such that the applied boundary cell would never go dry. Using this approach, the model cells act as an active boundary condition, drying out when the tide falls below the cell bottom elevation and rewetting with a head equal to the specified head of the waterway boundary condition as the tide rises back above the bottom of each cell.

Recharge was applied to the top layer of the model over a portion of this transect (former wastewater settling basin) that is unpaved. Evidence of the effect of recharge on

.

² The laterally extensive intertidal zone resulted in a large number of model cells along the top of the future sediment cap wetting and drying twice daily with the tide changes.

groundwater flow in this area is seen in groundwater mounding near wells Law-5 and CP-MW03 (Figure 3) that was observed in late summer (September 2009) and spring (March 2010) water level measurements. It was necessary to include recharge in the model to simulate the mound. Recharge was initially estimated as 10 percent of the 37 inches of average annual precipitation, but was also a calibration parameter in the model, as described below. The final recharge rate after model calibration was about 35 percent of annual precipitation, or about 13 inches per year.

For the transport model calibration runs, a specified concentration was added at the boundary conditions representing Whatcom Waterway water (100 percent marine water) and the upgradient boundary (0 percent marine water).

Hydraulic Property Zones

The groundwater flow model requires definition of several hydraulic parameters for each material property zone: hydraulic conductivity (K), specific storage (S_s), and specific yield (S_y). The material property zones representing the Fill Unit, Tidal Flat Aquitard, and Lower Sand Unit in each model transect are depicted on Figures 4 through 6. The Law-1 transect includes two additional zones: the lower conductivity berm at the shoreline, and the current and future Log Pond sediment caps.

The transport models require definition of additional parameters. Values for dispersivity (α) and effective porosity (n_e) are applied uniformly throughout each model. The effect of chemical diffusion is negligible compared to dispersion, and diffusion was not explicitly simulated in the model. Conservative (nonreactive) transport was simulated so parameters describing chemical reactions were not required.

Initial estimates of horizontal hydraulic conductivity for the Fill Unit and Lower Sand Units were based on Site-specific slug test data presented in the draft RI Report. Initial estimates of other parameters were based on values commonly reported in the literature. Certain parameter values were then adjusted in model calibration, as described below. The initial estimates are presented in Table 1. Horizontal K values of other units were based on typical values reported in Freeze and Cherry (1979). Vertical K was first assumed to be 10 percent of horizontal K. Literature values were used as initial estimates of α (Zheng and Bennett, 2002), n_e , and storage parameters (Freeze and Cherry, 1979).

Model Calibration

The groundwater flow models were calibrated using an iterative process in which initial estimates for aquifer parameters and the upgradient constant-head boundary cells were adjusted within a reasonable range of uncertainty to produce simulated groundwater elevations that best matched the measured Site data.

Methods

The models were calibrated in two steps. First the groundwater flow component of the models were calibrated to water level data from Site monitoring wells, then the transport component of the models were calibrated to estimated salinity in Site monitoring wells.

Parameters adjusted in the groundwater flow calibration were K, the ratio between horizontal and vertical K (anisotropy), storage parameters (S_s and S_v), recharge (in the

case of the Law-1 transect), and the upgradient constant head boundary elevation. Water levels simulated by the model were compared to water levels measured in Site wells during the tidal monitoring studies.

Once the flow models were reasonably calibrated to water levels, the transport models were calibrated to salinity. The transport models were run until modeled salinity concentrations over successive tide cycles approached steady state conditions. Total model run times before steady state conditions were reached were on the order of 7 years at the Caustic Plume transect and 20 years at the Law-1 transect. Dispersivity was adjusted until the steady state percent concentrations of marine water predicted by the models matched those estimated in Site wells along each transect.

For the Caustic Plume area, there are high concentrations of chloride and dissolved solids resulting from historical releases of sodium chloride brine, therefore, groundwater specific conductance and chloride concentrations were not suitable for estimating percent seawater in Site monitoring wells. Instead, percent marine water concentration at each well was estimated based on measured bromide concentration at the well, a marine water bromide concentration for Bellingham Bay of 45 milligrams per liter (mg/L)³, a concentration of 0 mg/L in ambient groundwater, and assuming simple mixing. Estimated percent marine water concentrations along the Caustic Plume transect were 11 percent at nearshore well CP-MW3B and 0 percent at well CP-MWB1 located roughly 400 feet inland. Estimated percent marine water concentrations along the Law-1 transect were 5 percent at Law-1, and 0 percent at inland Fill Unit well CP-MW03 and Lower Sand wells CP-MW04 and CP-MW05 (CP-MW04 is on both transects; Figures 4 and 5).

Calibration Results for Caustic Plume Transect

Figures 8 and 9 show the transient water level calibration for wells CP-MWB3 and CP-MWB1, respectively. Plots comparing mean head observed at the wells to mean head calculated by the model are presented in Figure 10 and the observed and calculated tidal range (higher-high minus lower-low) for the targets are plotted in Figure 11. Figure 12 shows in cross section modeled water elevations along this transect at high and low tides. Figure 13 shows modeled contours of percent marine water in cross section. Table 2 summarizes the water level and salinity calibration results, and Table 3 summarizes the final calibrated input parameters.

The calibration at CP-MWB3 on the Caustic Plume transect reasonably matches the average water level and the magnitude of tidal variability at this well (Figure 8 and Table 2); however, the timing of the modeled high and low heads show a lag relative to the measured heads. Efforts to improve the calibration by increasing the horizontal K or decreasing S_y reduced the lag between modeled and measured water level changes, but produced much poorer calibration to the average water level and magnitude of the variability, with low modeled average water levels and high modeled variability. The reason for the lag in the model is uncertain, but may be associated with vertical or horizontal heterogeneity in the Fill Unit that is not accounted for in the model. Lacking

_

³ Bromide concentration for Bellingham Bay was estimated based on typical bromide concentration of 65 mg/L in pure seawater with salinity of 35 parts per thousand (ppt) and the lower salinity in freshwater-diluted Bellingham Bay water of about 25 ppt (Hem, 1985 and Ecology, 1994).

direct evidence to support incorporating additional heterogeneity, the results of modeling presented in Table 2 and Figure 8 are considered the best achievable calibration.

Water levels were not measured in lower sand monitoring wells during the May 2010 tidal study, and calibration to tidal response in the lower sand at the Caustic plum transect was not possible. Instead, because the lower sand is assumed to be homogeneous, the hydraulic parameters for the lower sand derived from the Law-1 transect calibration (discussed below) were applied to the lower sand in the caustic plume transect. Water level data in CP-MW04 collected as part of the October 2009 data were also used to guide selection of the upgradient boundary condition in the lower sand. Since the attenuation being simulated at the Caustic Plume transect is the result of mixing within the Fill Unit aquifer, predicted attenuation factors are not affected by flow in the Lower Sand.

The modeled water level at CP-MWB1 is about 0.4 feet lower than the measured water level (Figure 9 and Table 2). This well is located in an area with a steeper hydraulic gradient than the rest of the Fill Unit along this transect (Figure 3), which may reflect heterogeneity in the Fill Unit. Attempts to improve the calibration at CP-MWB1, such as increasing the upgradient boundary condition water level elevation or reducing the hydraulic conductivity of the Fill Unit, resulted in a poorer calibration at well CP-MWB3 and were not considered to improve the overall model calibration. Model calibration would be improved by assigning a zone with lower hydraulic conductivity extending from near CP-MWB1 to the east end of the model. This modification was not performed, but would reduce the modeled groundwater flow rate in the Fill Unit, in turn increasing the modeled AF relative to the model calibration presented in Table 2 and Figures 8 and 9. Based on these observations, the calibration without an additional lower hydraulic conductivity zone will result in conservative estimates of AFs and this calibration was retained for the predictive model runs.

The calibration to salinity at this transect is reasonable (Table 2), matching the salinity at well CP-MWB3. This calibration was achieved using a longitudinal dispersivity of 13 feet. The average groundwater travel time from well CP-MWB3 to the point of discharge at the shoreline can be estimated from the transient transport model as the time required for the modeled concentration at the shoreline to equal half the eventual maximum concentration at the shoreline. Without sorption and retardation the average transport time over the 85 foot distance between CP-MWB3 and the shoreline was 100 days, giving an average groundwater advective velocity of 0.9 feet per day (ft/day).

By comparing the modeled high-tide and low-tide groundwater elevation contours on Figure 12, it is apparent that the inland extent of tide-induced groundwater changes in the Fill Unit is limited to distances about 150 to 200 feet from the shoreline. Most of the tidal variability is limited to upland areas within 50 feet of the shoreline, consistent with the measured tidal study data. The confined Lower Sand has a much lower storage coefficient, and, as expected, tidal variability extends further inland.

Final calibrated input parameters (Table 3) were only slightly changed from the initial estimates. Horizontal K in the Fill Unit was increased from 2.6 to 6 ft/day, well within the range of estimated K for this unit based on slug test results (Aspect, 2010). The calibrated S_{ν} for the unconfined Fill Unit was reduced to 0.01, a reasonable value given

that the nearshore aquifer material likely does not fully drain between successive high and low tides. The upgradient boundary conditions were slightly modified to improve the calibration to mean water levels.

Calibration Results for Law-1 Transect

Figures 14 through 17 show the transient water level calibration for wells Law-1, CP-MW03, CP-MW04, and CP-MW05, respectively. Plots comparing mean head observed at the wells to mean head calculated by the model are presented in Figure 18 and observed and calculated tidal range for the wells are plotted in Figure 19. Figure 20 shows in cross section modeled water levels along this transect for current capped conditions at high and low tides. Figure 21 shows modeled contours of percent marine water in cross section. Table 2 summarizes the water level and salinity calibration results, and Table 3 summarizes the final calibrated input parameters.

The water level calibration to Fill Unit wells Law-1 and CP-MW03 (Figures 14 and 15 and Table 2) reasonably matches the average water levels, with Law-1 modeled at 0.1 feet greater than observed and CP-MW03 essentially equal to the observed. The modeled variability at Law-1 was slightly less than observed, but is considered a reasonable match.

The water level calibration to Lower Sand Unit wells CP-MW04 and CP-MW05 is presented on Figures 16 and 17 and Table 2. The modeled mean water level at CP-MW05 was about 0.3 feet lower than observed and the mean water level at CP-MW04 was about 0.1 feet higher than observed. The magnitude of the tidal variability was about 0.35 feet higher than observed at CP-MW05 and about 0.1 feet lower than observed at CP-MW04. Modeled heads also lag in time behind measured heads at both wells. Attempts to improve calibration to mean water levels and/or the magnitude of the variability resulted in greater lag, while attempts to reduce the lag resulted in poorer calibration to the average and range in water levels. Some of the difficulty in calibrating to these wells is that the Law-1 transect may not be parallel to groundwater flow in the Lower Sand Unit.

Figure 20 shows in cross section modeled water levels along this transect for current capped conditions at high and low tides. Because of the presence of the low-permeability berm at the shoreline and the relatively extensive intertidal sediment cap, the tidal variability does not extend inland past the berm, which is consistent with the measured tidal study data. In the confined Lower Sand Unit, tidal variability extends inland past well CP-MW04. Overall, the current calibration is acceptable for evaluating attenuation of contaminants in the Fill Unit, Berm, and cap between Law-1 and the waterway.

The calibration to salinity at this transect is reasonable (Table 2), matching the salinity at well Law-1. This calibration was achieved using a longitudinal dispersivity of 6.25 feet. The average groundwater travel time from well Law-1 to the point of discharge at the shoreline was 420 days, based on the time required for the modeled concentration at the shoreline to equal half the eventual maximum concentration at the shoreline (measured at the high tide line). Over this approximately 20 foot distance this equates to an average advective velocity of less than 0.05 ft/day.

Attenuation Factors

Attenuation that occurs between a shoreline monitoring well (e.g., Law-1 or CP-MWB3) or other upland location and the point-of-exposure at the sediment bioactive zone is expressed as an AF. The AF is calculated as C_0/C , where C is the concentration at the point-of-exposure and C_0 is the concentration measured at the shoreline monitoring well. For a given concentration at a shoreline monitoring well, the expected concentration at the point-of-exposure assuming only physical attenuation can be calculated as C_0/AF . Conversely, for a given concentration at the point-of-exposure protective of surface water and sediment quality, the concentration at an upland monitoring well that would attenuate to that concentration can be calculated as $C_0 = C \times AF$.

The calibrated groundwater flow and transport models were used to predict attenuation of contaminants in groundwater due to tide-induced physical mixing prior to reaching the sediment bioactive zone. For the Law-1 transect, attenuation was estimated for the current condition and a future sediment cap condition expected to exist by 2013; for the Caustic Plume transect the attenuation was estimated for current conditions only since sediment capping is not planned during the Whatcom Waterway remediation. Modeled attenuation factors were then compared to attenuation factors calculated for the Law-1 area based on mercury concentrations in shoreline well Law-1 and offshore sediment porewater sample locations. The following g presents the modeled AFs, followed by comparison to the empirically derived AFs.

Modeled Attenuation Factors

To determine the AF, additional transport model runs were completed in which a constant concentration of 1 was applied at the location of shoreline monitoring wells Law-1 (Law-1 transect) or CP-MWB3 (Caustic Plume transect), while cells representing surface water were specified to have a constant concentration of 0. The model then predicts C/C₀ for each model cell, which can be inverted to arrive at the AF between Law-1or CP-MWB3 and any downgradient cell.

The Caustic Plume transect model was run as the current condition only, since sediment capping is not planned in this area as part of the Whatcom Waterway cleanup action. Two versions of the Law-1 transect model were run. The first version, reflecting current conditions, was the calibrated model discussed above. The second version, reflecting the future capped condition, includes an additional 4 to 5 feet of intertidal cap thickness based on the current remedial design (Figure 6). The three models were run until modeled concentrations approached steady state conditions.

Figure 25 shows AFs calculated from modeled C/C_0 at the Caustic Plume transect between well CP-MWB3 and Bellingham Bay. Figures 26 and 27 show AFs calculated from modeled C/C_0 at the Law-1 transect for current and future capped conditions, respectively.

Table 4 presents maximum predicted concentrations (as percent of concentration at the shoreline monitoring well) and associated AFs in the sediment bioactive zone for several locations along the Law-1 transect and where the Fill Unit groundwater discharges to surface water at the Caustic Plume transect.

At the Caustic Plume transect, the maximum concentration in the sediment bioactive zone was less than 1 percent of the concentration at shoreline well CP-MW3B. The resulting AF is 180.

Modeled point-of-exposure concentrations and AFs at several locations were determined for the current and future conditions at the Law-1 transect. For both current and future cases, predicted groundwater concentrations are highest at the high tide line where most of the Fill Unit groundwater discharges. The location of the high tide line differs between the current and future capped cases, with the high tide line located at the berm edge for current conditions, and about 60 feet north of the berm under the expected future condition where placement of additional cap will raise the elevation of the intertidal area. Predicted concentrations rapidly decrease further offshore, as groundwater flows through the sediment cap.

For the current cap condition, the maximum concentration in the sediment bioactive zone (at high tide line) is less than 2 percent of the concentration at well Law-1, producing an AF of 76. Moving further offshore within the sediment cap, AFs increase markedly to values exceeding 2,000 (Table 4).

For the future capped condition, the maximum concentration is less 0.2 percent of the concentration at well Law-1, producing an AF of about 630. Calculated AFs for offshore locations range from about 1,400 to tens of thousands (Table 4).

Comparison to Empirical Data

As a check on the modeling results, shoreline well and offshore sediment porewater dissolved mercury data were used to estimate AFs in the Law-1 area under current conditions. Table 5 presents dissolved mercury concentration data from two nearshore monitoring wells (Law-1 and L1-MW01) and four porewater samples collected from the intertidal zone downgradient of the Law-1 area. Dividing the average dissolved mercury concentration at the nearshore wells by the dissolved mercury concentrations in the sediment porewater samples produces empirically-derived AFs ranging from 54 to 290, showing reasonable agreement with the lowest modeled AF for the Law-1 transect (76).

The measured attenuation factors are likely conservative, due to porewater sample collection depths and the presence of mercury-impacted sediment in the porewater sampling depth interval. Specifically:

- The measured AFs (54 to 290) are based on porewater concentrations measured at up to 4.5 feet below mudline, whereas the modeling represents the uppermost 0.4 foot of sediment below mudline. As a result, the wellpoint measurements do not reflect the full groundwater flow path and attenuation that would occur before discharge to the sediment bioactive zone.
- The measured concentrations in the intertidal wellpoints L1-WP1, L1-WP2, and L1-WP3 likely include some dissolved mercury attributable to contaminated sediment that the wellpoints overlie or are screened into. The contaminated sediment source is not accounted for in the shoreline groundwater modeling, which only considers transport of contamination from the upland. If the sediment source was absent, there would be lower concentrations measured in the

wellpoints, and thus greater measured attenuation. Dissolved-phase contamination generated from existing contaminated sediment will be addressed during design of sediment capping as part of the Whatcom Waterway remedial design.

Due to inherent uncertainty in modeling of AFs we propose, for the purposes of the feasibility study, to adjust the model-derived attenuation factors based on the empirically measured AFs. The lowest empirical AF at the Law-1 transect of 54 is about 0.7 times the lowest AF from the model for this transect. Applying this safety factor to the minimum modeled AFs for the current and future conditions at the Law-1 transect (76 and 630) and the current conditions at the Caustic Plume transect (180) results in adjusted AFs of about 50 and 220 for current and future conditions at Law-1, and about 130 for current conditions at the Caustic Plume transect.

The AFs, with appropriate safety factor adjustments, will be incorporated into the RI/FS documents by establishing groundwater screening levels applied at shoreline monitoring wells. As new porewater and groundwater data become available the empirically-derived AFs and suitable safety factors may be revised during the Feasibility Study and/or remedial design phases, subject to Ecology concurrence.

References

- Aspect, 2009, RI/FS Work Plan, Georgia-Pacific West Site, Bellingham, Washington, September 10, 2009, Final.
- Aspect and Anchor QEA, 2010, Remedial Investigation, Georgia-Pacific West Site, Bellingham, Washington, September 29, 2010, Draft.
- Aspect and Anchor QEA, 2011, Modeling Approach to Assess Groundwater Screening Levels Protective of Sediment and Surface Water, Georgia-Pacific West Site, Bellingham, Washington, March 31, 2011.
- Aspect, 2011, Interim Action Pre-Design Investigation Report, Georgia-Pacific West Site, Bellingham, Washington, April 28, 2011.
- Ecology, 1994, Marine Water Column Ambient monitoring Program: Wateryear 1993 Data Report. Publication No. 94-210.
- Ferris, J. G., 1951, Cyclic Fluctuations of Water Level as a Basis for Determining Aquifer Transmissibility, Association Internationale d'Hydrologie Scientifique, Publication No. 33, pp 148-155.
- Freeze, R.A., and Cherry J.A., 1979, Groundwater, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Hem, J.D., 1985, Study and interpretation of the Chemical Characteristics of Natural Water, USGS, 1985.
- Langevin, C. D., W. B. Shoemaker, and W. Guo, 2003, MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model-Documentation of the

- SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT), USGS Open-File Report 03-426.
- MacDonald, M. G. and Harbaugh, A. W., 1988, MODFLOW, A Modular Three Dimensional Finite-Difference Groundwater Flow Model: U.S. Geological Survey Techniques of Water-Resource Investigation, Book 6, Chapter A1, 586p.
- National Oceanic and Atmospheric Administration (NOAA), 2011, Tide Prediction: Cherry Point.
- Niswonger, R. G., and S. Panday, 2011, MODFLOW-NWT, A Newton formulation for MODFLOW-2005, U.S. Geological Survey Techniques and Methods 6-A37, 44p.
- Serfes, M.E., 1991, Determining the Mean Hydraulic Gradient of Ground Water Affected by Tidal Fluctuations, Ground Water, v. 29, No. 4, July-August 1991.
- Zheng, C. and Bennet, G. D., 2002, Applied Contaminant Transport Modeling, Second Edition, John Wiley and Sons, Inc., New York.
- Zheng, C. and Wang, P., 1999, MT3DMS, A Modular Three-Dimensional Multi-species Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems: Documentation and User's Guide, U.S. Army Corps of Engineers, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, SERDP-99-1.

Limitations

Work for this project was performed and this report prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of Port of Bellingham for specific application to the referenced property. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

Table 1 - Initial Model Parameters

070188, GP West Site - Shoreline Groundwater Modeling Bellingham, WA

	Caustic Plume Transect					Law-1 Transect					
				Upgradient	Dispersivity in					Upgradient	
	Kx in	Kz in		BC Elev. in	ft.	Kx in	Kz in		Recharge	BC Elev. in	Dispersivity in ft.
Hydrogeologic zone	ft/day	ft/day	Sy or (Ss) ¹	feet	(Longitudinal)	ft/day	ft/day	Sy or (Ss) ¹	in ft./day	feet	(Longitudinal)
Fill Unit-Sand	2.6	0.26	0.2	12	5	6	0.6	0.01	0.001	11	13
Tidal Flat Aquitard	0.01	0.001	(1E-5)		5	0.06	0.006	(1E-5)			13
Fill Unit-Berm						2	2	0.01/(1E-5)			13
Lower Sand Unit	20	2	(1E-5)	7	5	9	0.9	(1E-5)		6.5	13
Current Sediment Cap						100	10	0.01/(1E-5)			13
Proposed Sediment Cap						100	10	0.01/(1E-5)			13

Notes

Effective porosity is assumed to be 0.2 (unitless)

Kx - Horizontal hydraulic conductivity

Kz - Vertical hydraulic conductivity

Sy - Specific yield (applied to partially saturated model cells, unitless)

Ss - Specific storage (applied to fully saturated model cells, 1/ft.)

BC - Boundary Condition

¹ Specific storage is applied to units that are confined or fully saturated/submerged, specific yield is applied to unconfined units

Table 2 - Model Calibration Results

070188, GP West Site - Shoreline Groundwater Modeling Bellingham, WA

		Mean Hydraulic Head in Feet ¹			Range of Hydraulic Head in Feet ¹			Mean Seawater Concentration ²		
	Well ID	Modeled	Observed ¹	Residual	Modeled	Observed ¹	Residual	Modeled	Observed ³	Residual
Caustic Plume	CP-MWB3	6.28	6.16	-0.11	1.10	1.14	0.04	11%	11%	<1%
	CP-MWB1	8.04	8.44	0.40	0.0007	**	**	<1%	1%	<1%
Law-1 Profile	Law-1	8.58	8.47	-0.11	0.25	0.33	80.0	5%	5%	<1%
	CP-MW03	12.77	12.80	0.03	0.01	**	**	<1%	2%	1%
	CP-MW04	6.81	6.69	-0.12	0.68	0.80	0.12	<1%	N/A	
	CP-MW05	6.25	6.54	0.29	2.24	1.89	-0.35	<1%	N/A	

Notes

N/A - Bromide data not available

¹ Observed Mean and Range of Hydraulic Head taken from tidal monitoring studies from 5/11/2010 to 5/14/2010 (Caustic Plume) and 10/19/2009 to 10/22/2009 (Law-1 Profile) (Aspect, 2010).

² Values are presented as percent seawater

³ Observed Seawater Concentration estimated from measured bromide concentrations using a bromide mixing model and assuming a bromide concentration of 45 mg/L for Seawater in Whatcom Waterway.

^{**} Water levels in wells CP-MWB1 and CP-MW03 varied over the respective tidal studies by about 0.2 feet; however the variability was due to noise or a gradual drift in the data and does not appear to be related to tidal effects.

Table 3 - Calibrated Model Parameters

070188, GP West Site - Shoreline Groundwater Modeling Bellingham, WA

		Caustic Plume Transect					Law-1 Transect				
				Upgradient	Dispersivity in					Upgradient	
	Kx in	Kz in		BC Elev. in	ft.	Kx in	Kz in		Recharge	BC Elev. in	Dispersivity in ft.
Hydrogeologic zone	ft/day	ft/day	Sy or (Ss) ¹	feet	(Longitudinal)	ft/day	ft/day	Sy or (Ss) ¹	in ft./day	feet	(Longitudinal)
Fill Unit-Sand	6	0.6	0.01	11	13	0.3	0.03	0.01	0.003	12.5	6.25
Tidal Flat Aquitard	0.01	0.001	(1E-5)		13	0.01	0.001	(1E-4)			6.25
Fill Unit-Berm						0.05	0.01	0.005/3.75E-5			6.25
Lower Sand Unit	20	2	(1E-4)	8	13	20	2	(1E-4)		7.5	6.25
Current Sediment Cap						100	10	0.01/(1E-4)			6.25
Proposed Sediment Cap						100	10	0.01/(1E-4)			6.25

Notes

Effective porosity is assumed to be 0.2 (unitless)

- Kx Horizontal hydraulic conductivity
- Kz Vertical hydraulic conductivity
- Sy Specific yield (applied to partially saturated model cells, unitless)
- Ss Specific storage (applied to fully saturated model cells, 1/ft.)
- **BC** Boundary Condition

¹ Specific storage is applied to units that are confined or fully saturated/submerged, specific yield is applied to unconfined units

Table 4 - Transport Model Results

070188, GP West Site - Shoreline Groundwater Modeling Bellingham, WA

	Caustic Plume Transect				
Location	Max. Conc.1	Attenuation Factor ²			
MLLW Line	0.57%	1.8E+02			

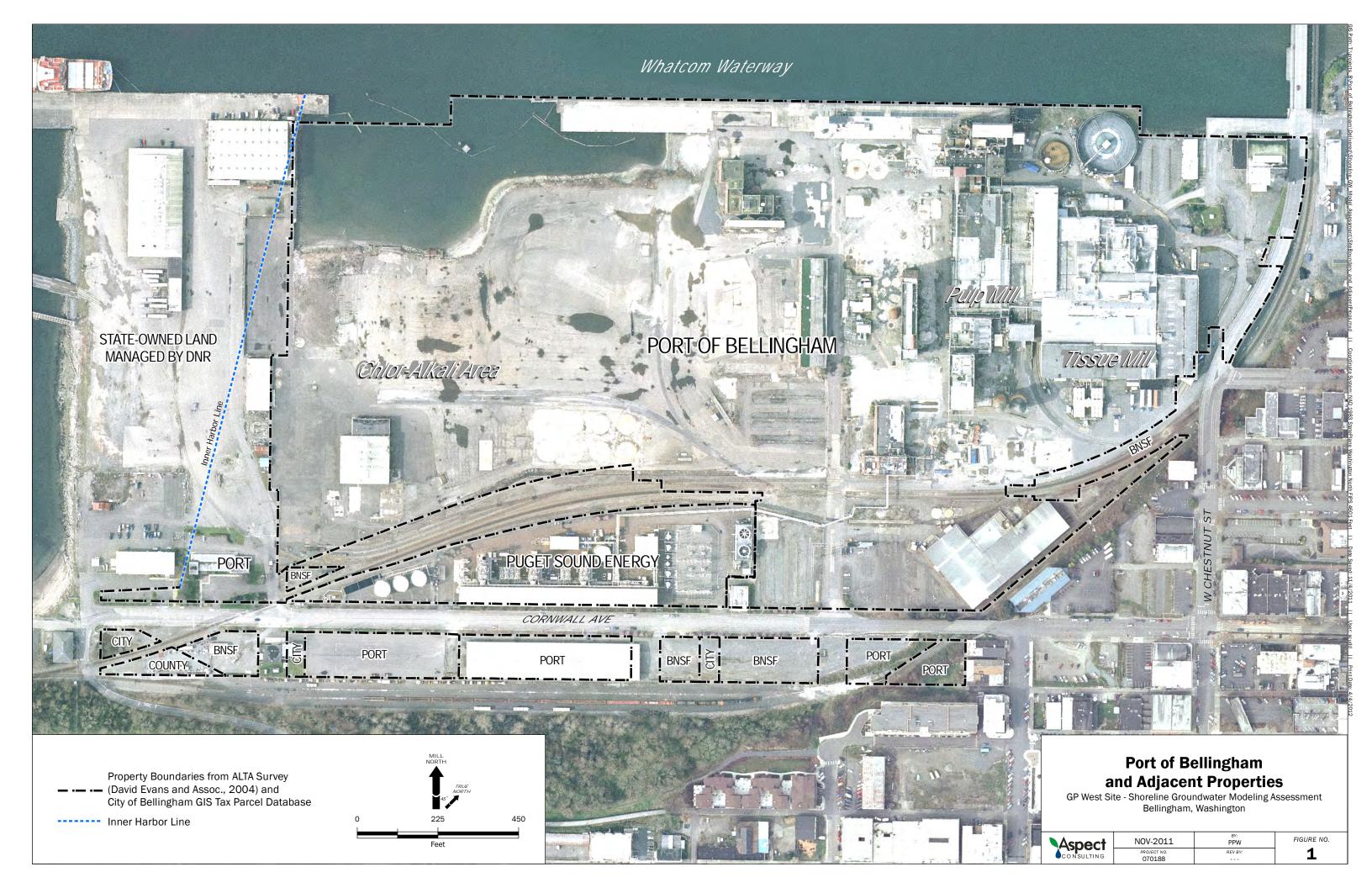
	Law-1 with Curre	ent Sediment Cap	Law-1 with Future Sediment Cap			
Distance Off Shore from Top of Berm in feet	Max. Conc. ¹	Attenuation Factor ²	Max. Conc. ¹	Attenuation Factor ²		
5 ^a	1.3%	7.6E+01	^c	^c		
35	0.026%	3.9E+03	^c	^c		
64 ^b	0.011%	8.8E+03	0.16%	6.3E+02		
94	0.0016%	6.4E+04	0.073%	1.4E+03		
127	0.0018%	5.5E+04	0.028%	3.5E+03		
166	0.051%	2.0E+03	0.014%	7.2E+03		
216	0.011%	9.4E+03	0.010%	9.9E+03		
275	0.00088%	1.1E+05	0.00070%	1.4E+05		

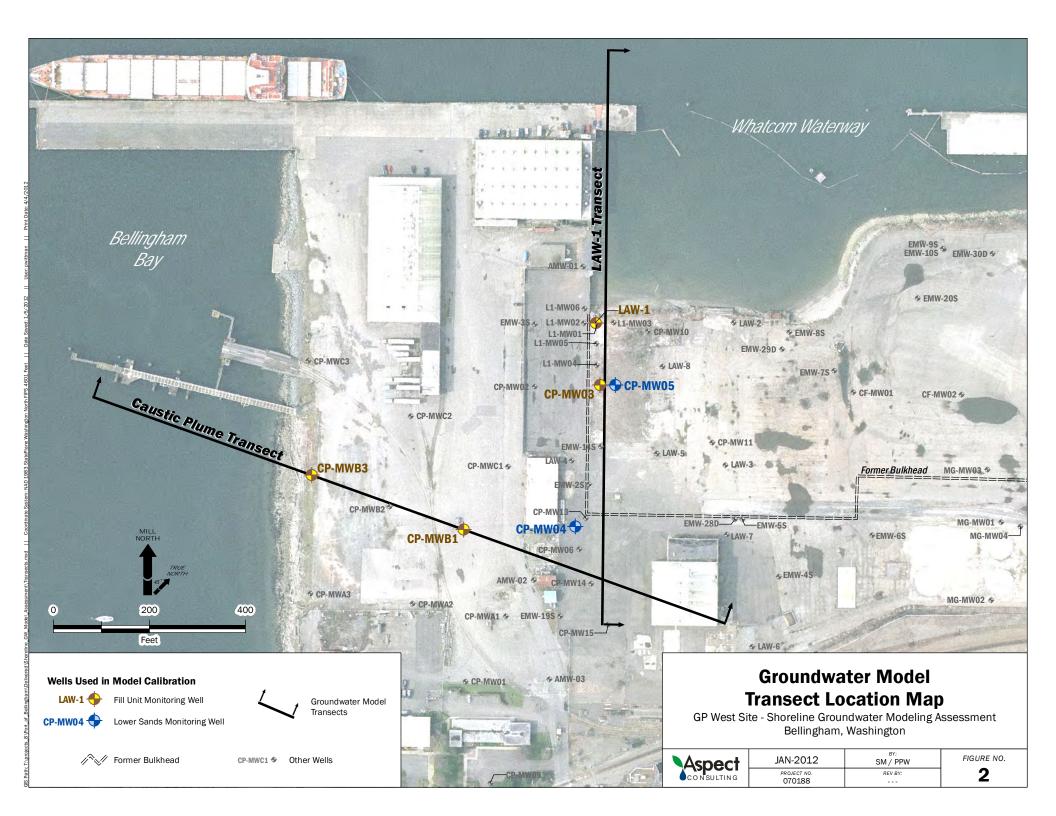
Notes

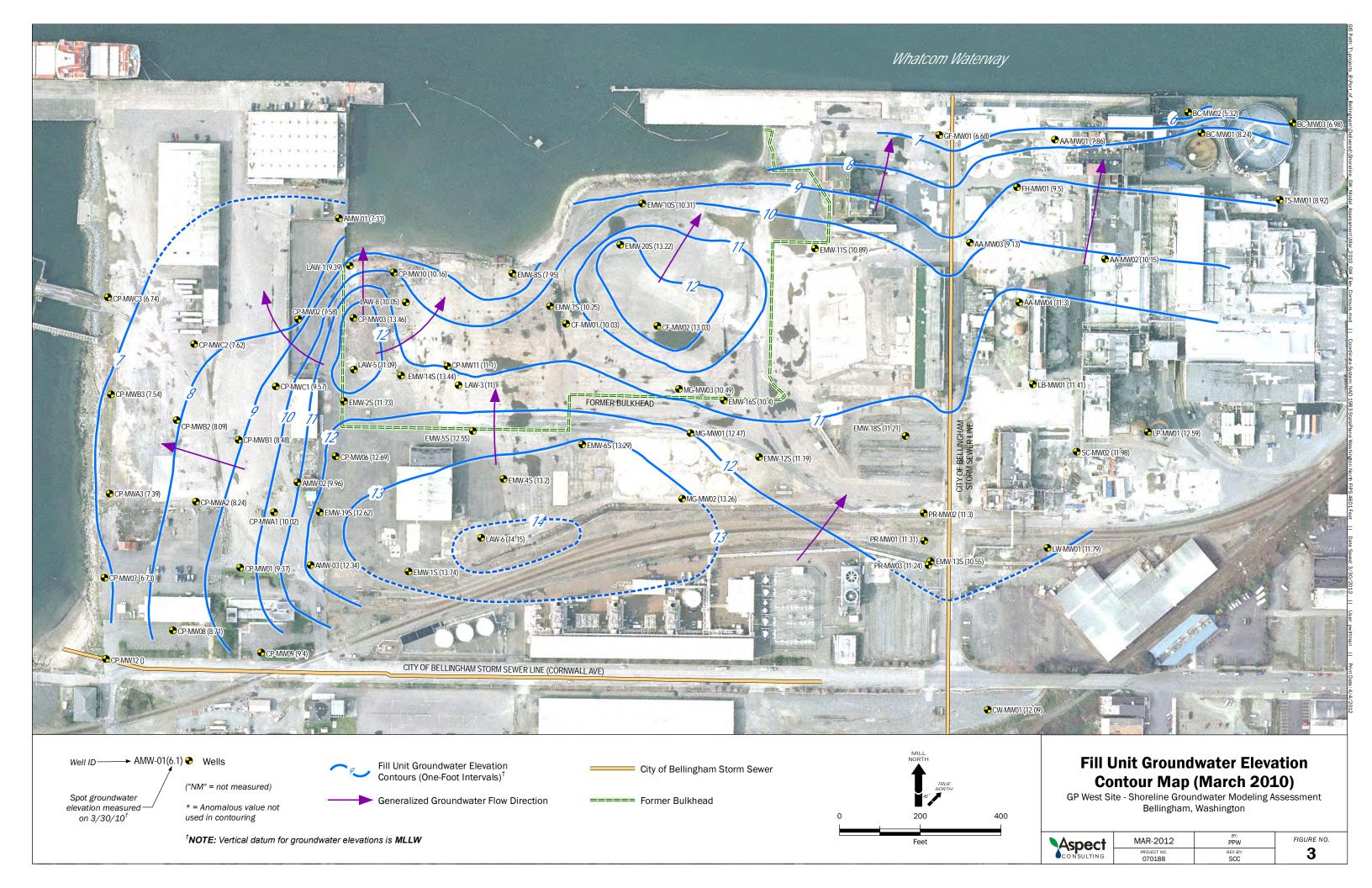
¹ Concentrations are presented as percent of concentration measured at Law-1 (Law-1 transect) and CP-MWB3 (Caustic Plume Transect).

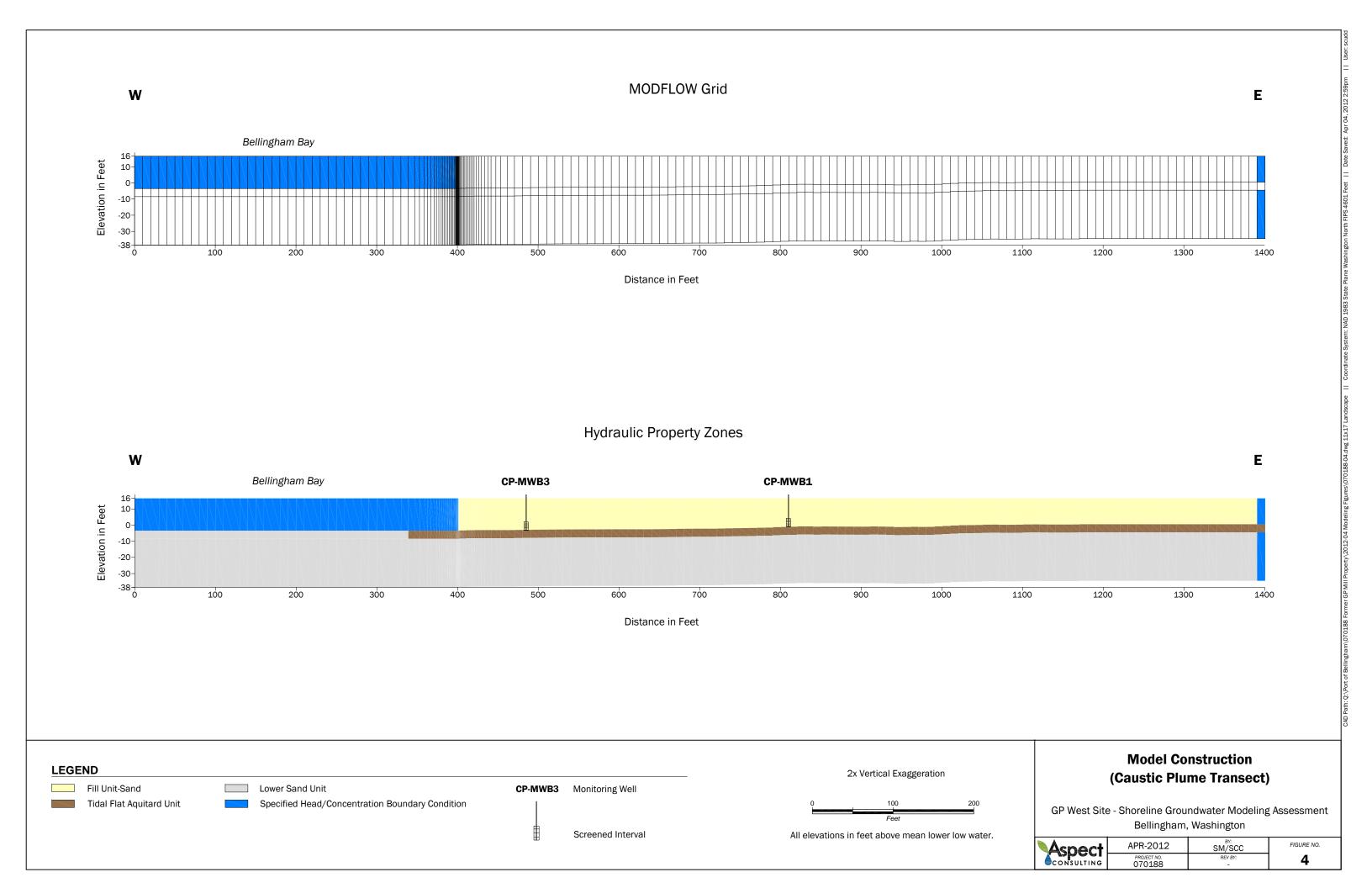
² Attenuation factors are calculated as 1/(Max. concentration in bioactive zone (%)) (refer to text).

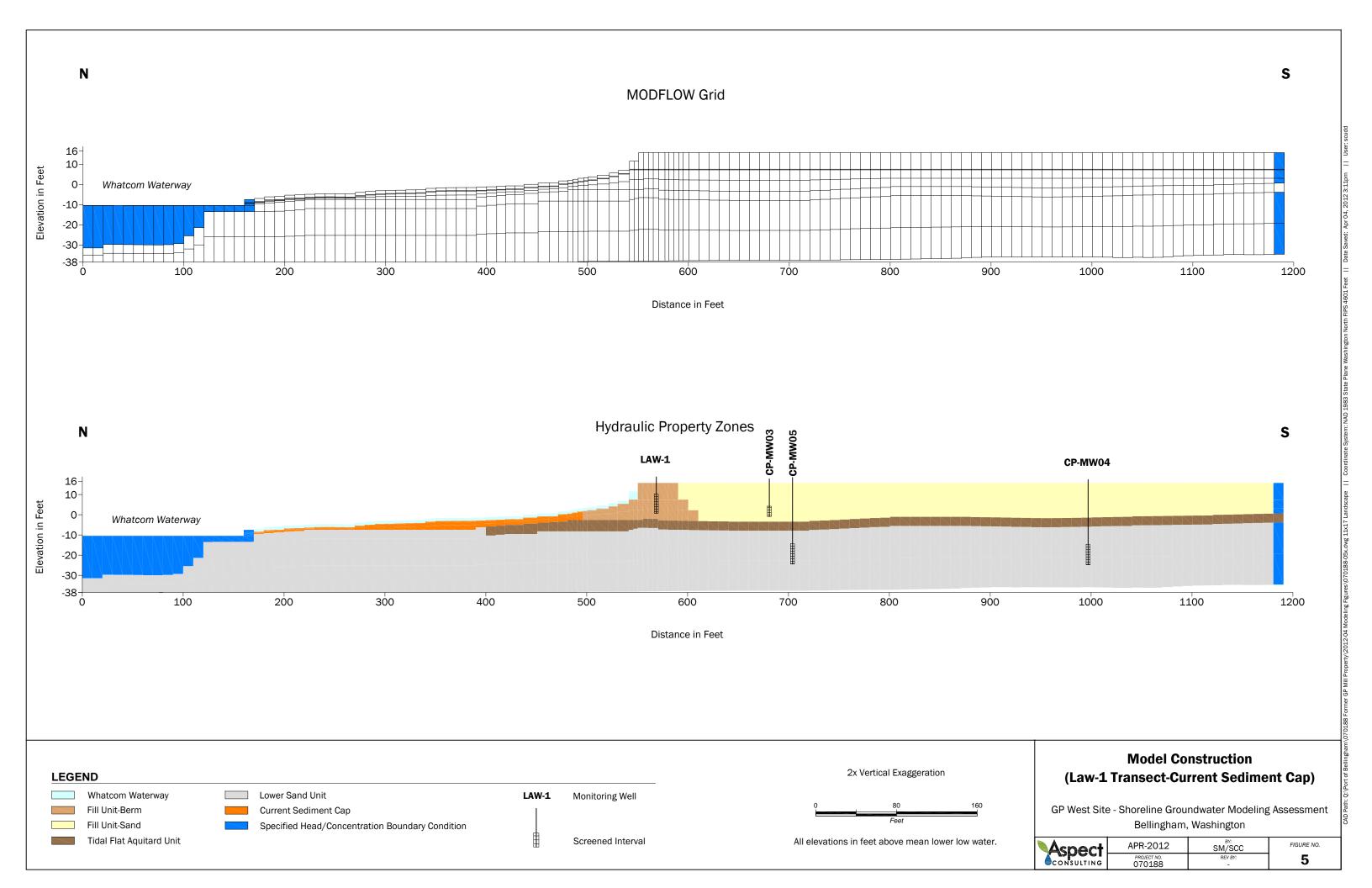
^a Location coincides with high tide under current conditions

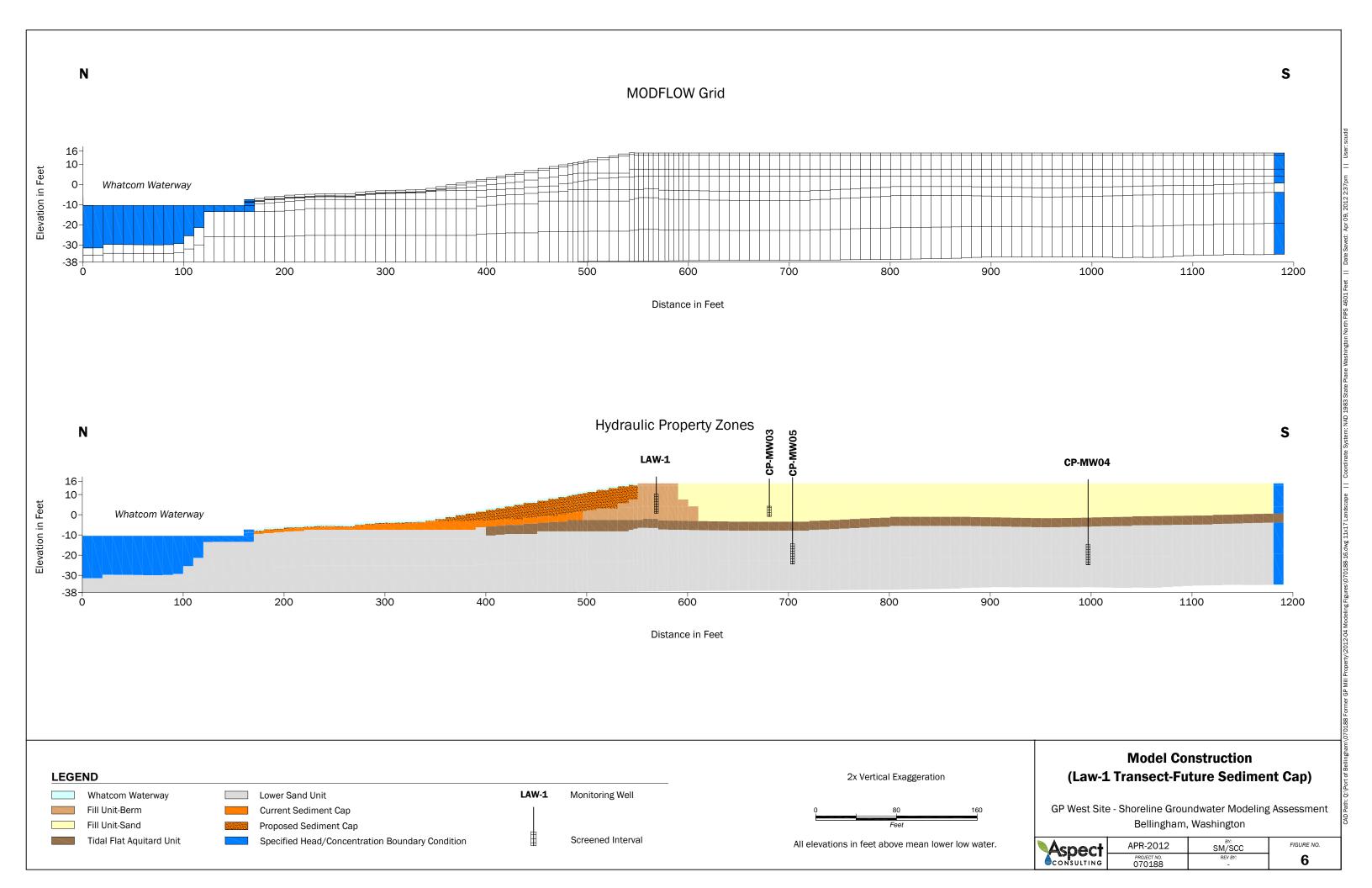

^b Location coincides with high tide under future conditions

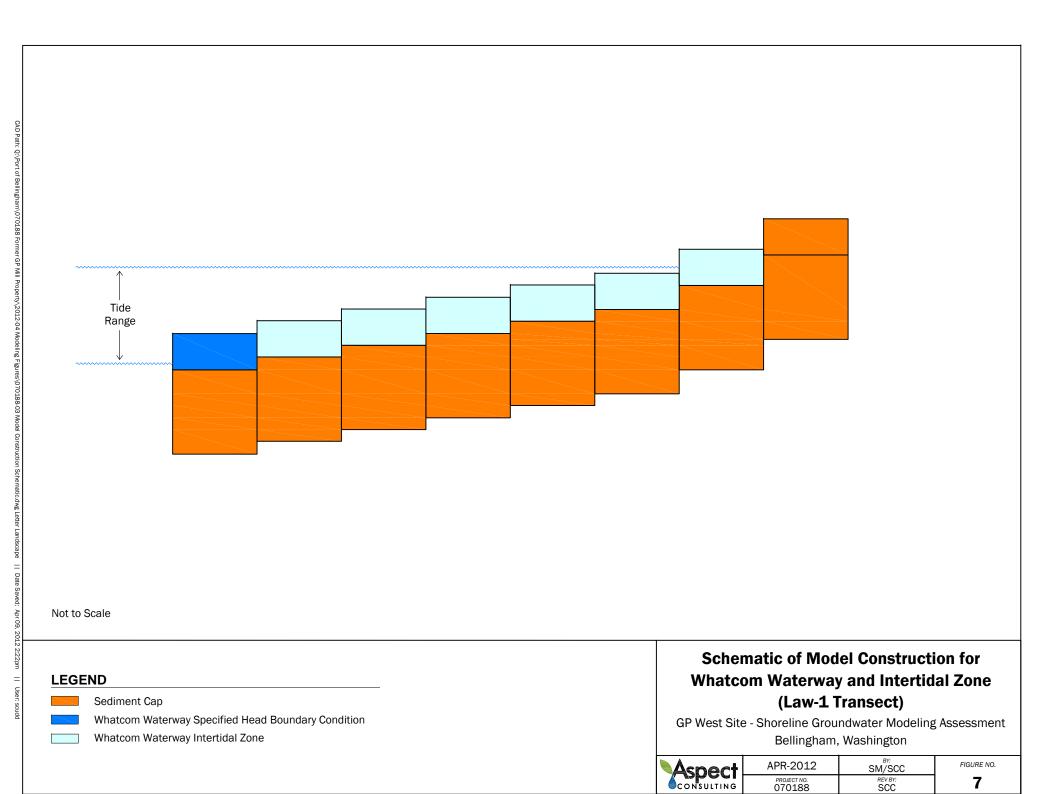

^c Location is above high tide line after future capping

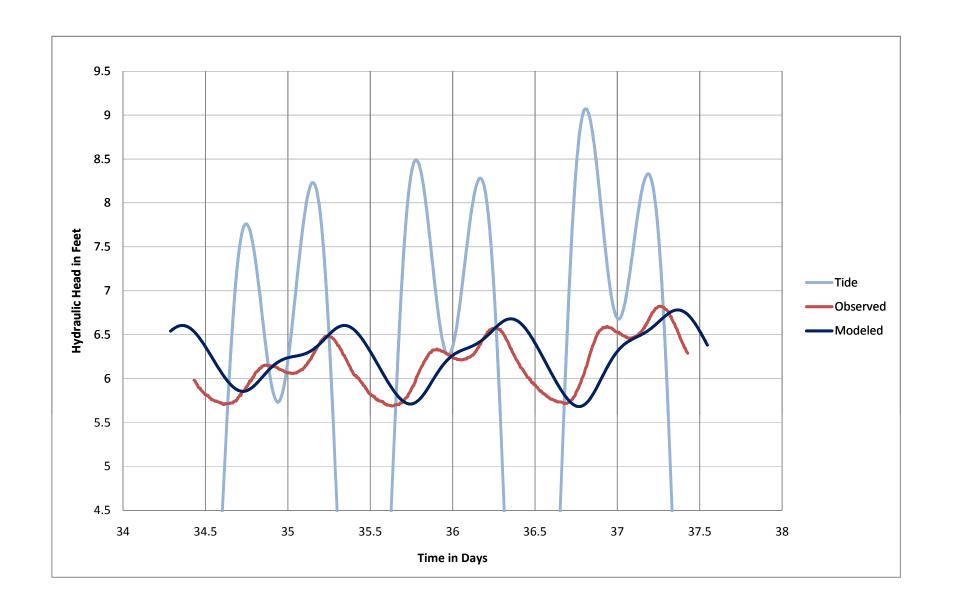

Table 5 - Law-1 Area AFs Derived from Empirical Shoreline Groundwater Quality Data


070188, GP West Site - Shoreline Groundwater Modeling Bellingham, WA


		Group Avg	Empirical Hg
	Avg Dissolved Hg	Dissolved Hg	Concentration
	Concentration	Concentration	Attenuation (upland to
Location	(ug/L)	(ug/L)	intertidal)
Upland Monitoring Wells (RI Data)			
Law-1	18.0	12.7	
L1-MW01	7.5	12.7	
Intertidal Wellpoints			
Wellpoints Screened 1.5 - 4.5 feet below	Mudline (RI Data)		
L1-WP1	0.51		
L1-WP2	0.15	0.24	54
L1-WP3	0.05		
Wellpoint Screened 0.7 - 1.6 feet below N	Audline (Log Pond I	Interim Action	
Monitoring Data, 2001-2005)			
WP-1	0.044	0.044	290







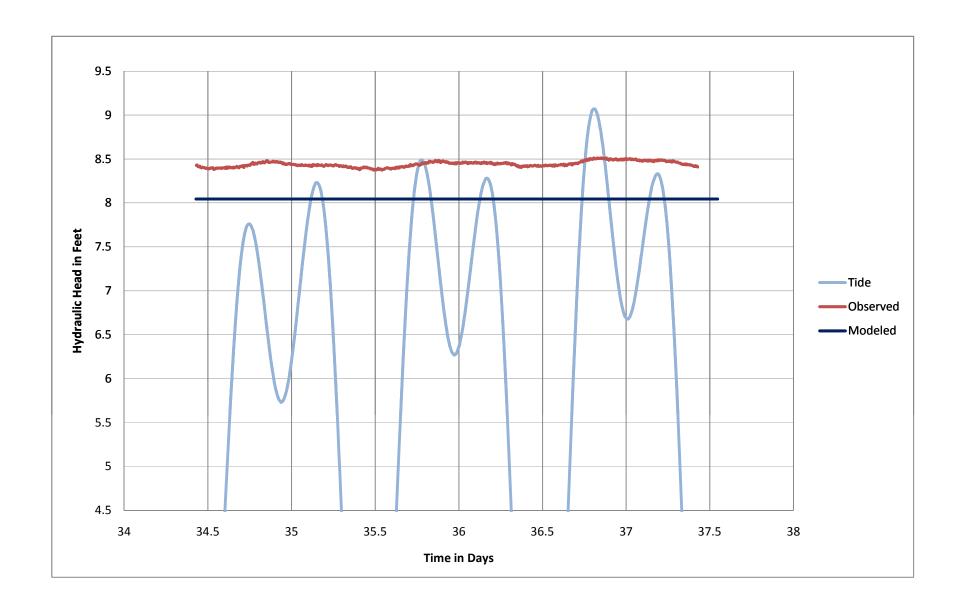


Figure 8 Head Calibration at CP-MWB3 (Caustic Plume Transect)

4/16/2012

GP West Site - Shoreline Groundwater Modeling Bellingham, Washington

Figure 9 Head Calibration at CP-MWB1 (Caustic Plume Transect)

4/16/2012

GP West Site - Shoreline Groundwater Modeling Bellingham, Washington

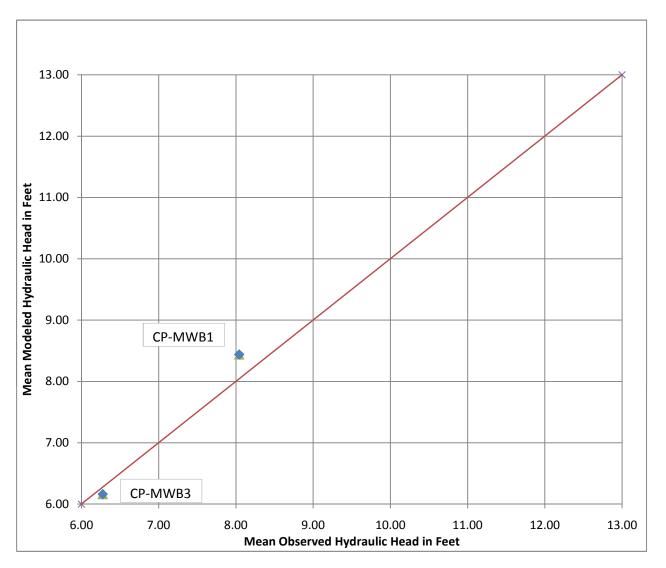
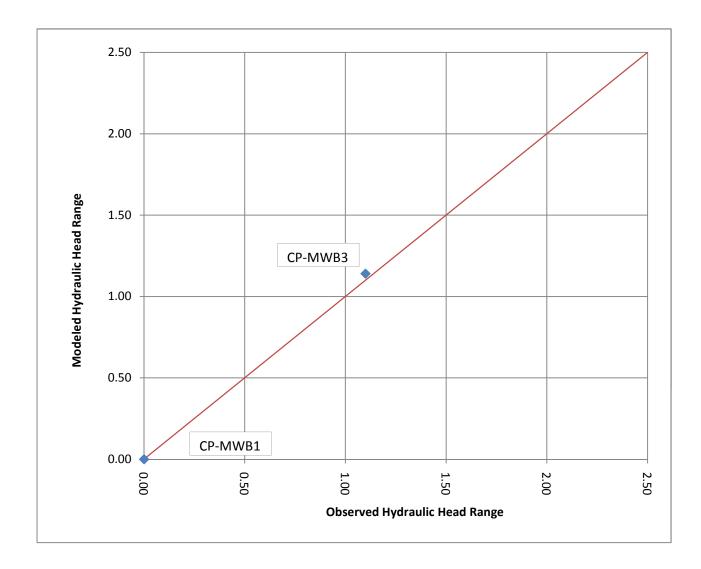
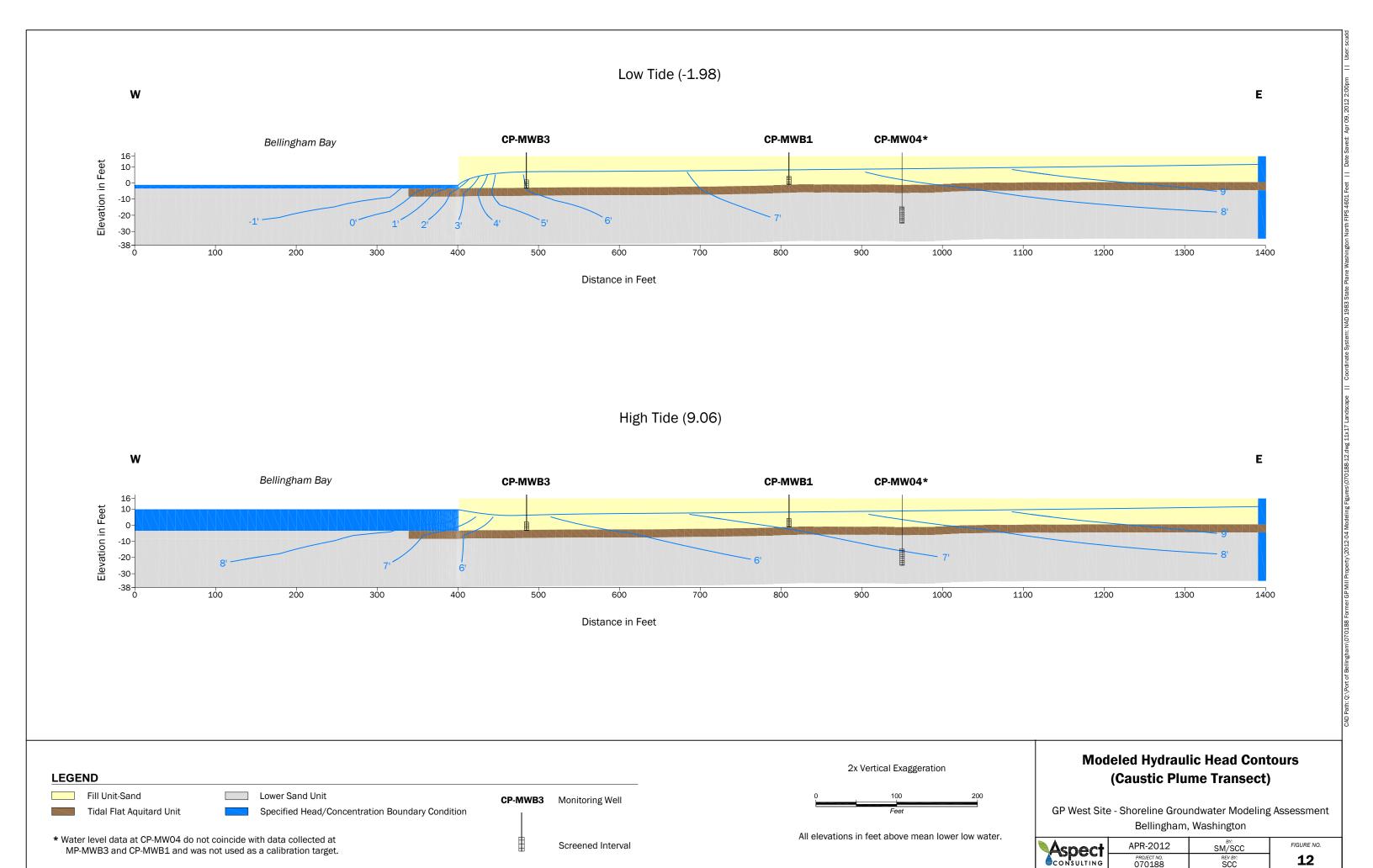


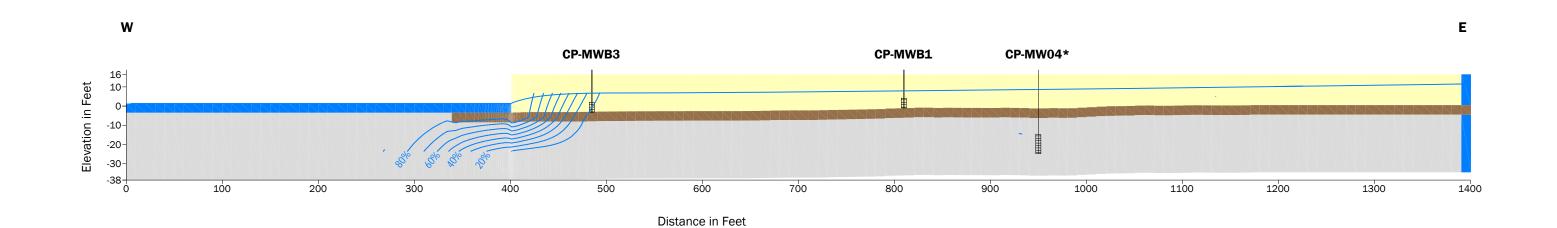
Figure 10 Mean Head Calibration (Caustic Plume Transect)

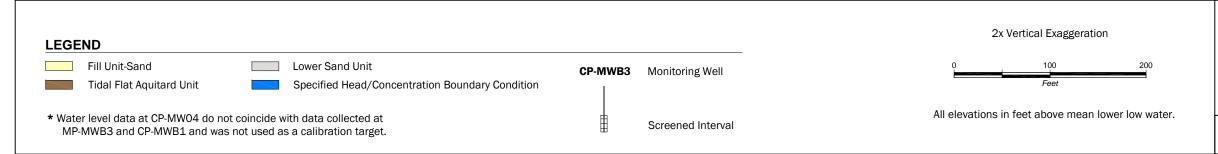
Aspect Consulting

4/16/2012

GP West Site - Shoreline Groundwater Modeling Bellingham, Washington


Figure 11 Head Range Calibration (Caustic Plume Transect)



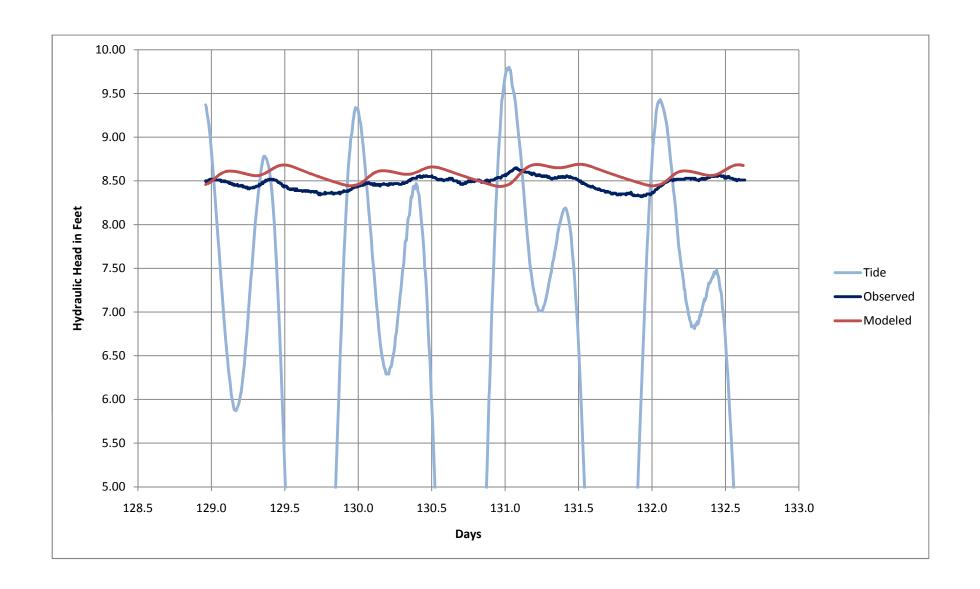
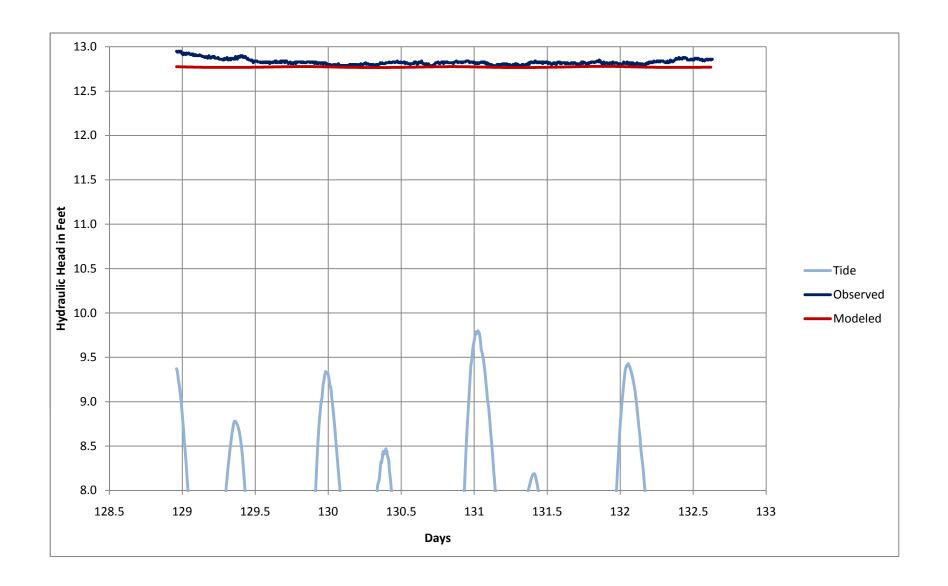
PROJECT NO. 070188

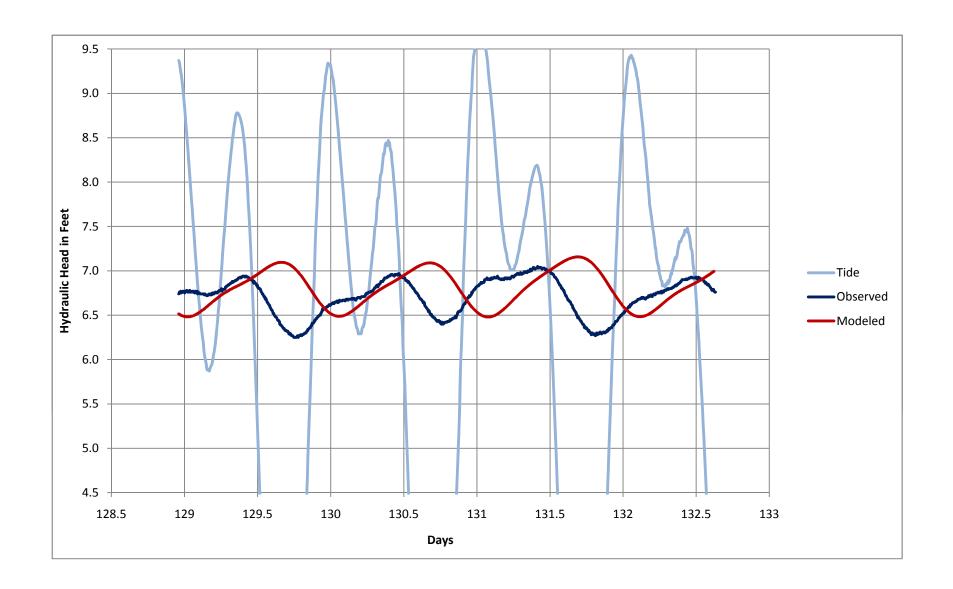
REV BY: SCC

12

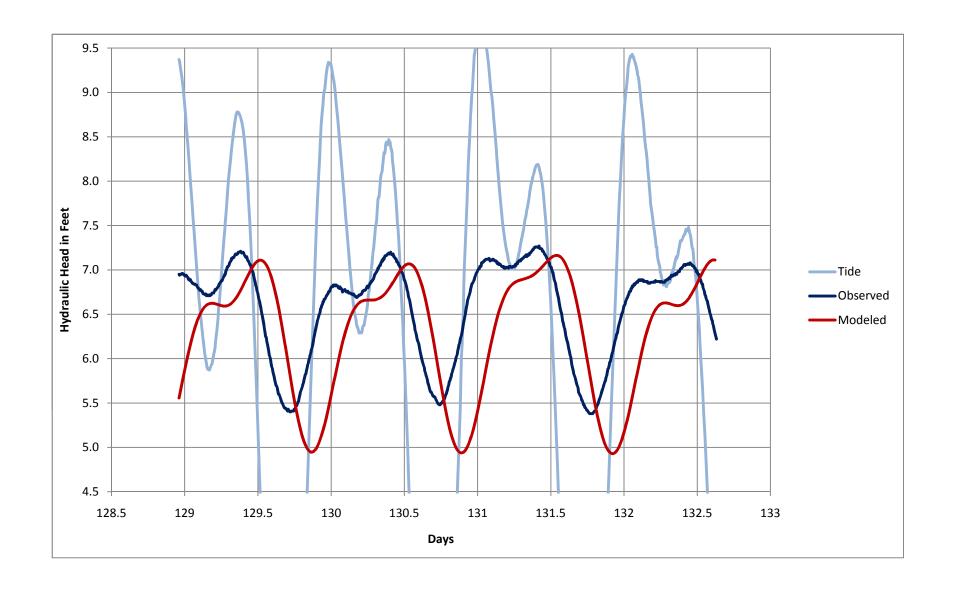
Modeled Percent Marine Water Contours (Caustic Plume Transect)

Aspect	APR-2012	SM/SCC	FIGURE NO.
CONSULTING	PROJECT NO. 070188	REV BY: SCC	13


Figure 14
Head Calibration at Law-1
(Law-1 Transect)

4/16/2012


Figure 15 Head Calibration at CP-MW03 (Law-1 Transect)

4/16/2012

Figure 16 Head Calibration at CP-MW04 (Law-1 Transect)

4/16/2012

Figure 17 Head Calibration at CP-MW05 (Law-1 Transect)

4/16/2012

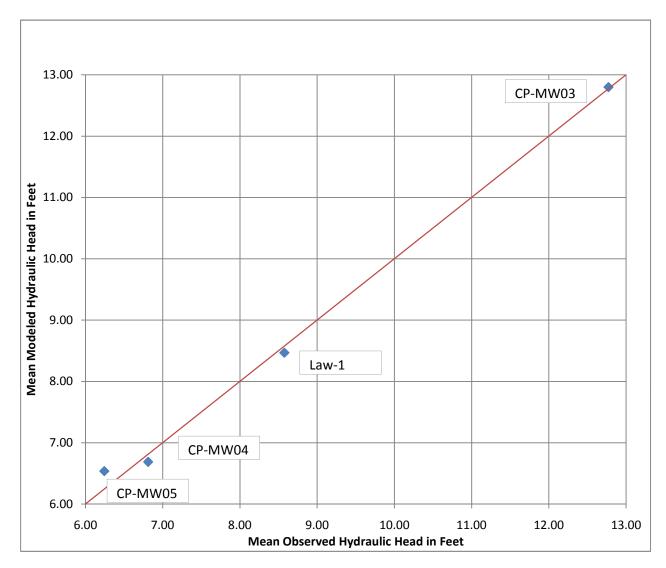
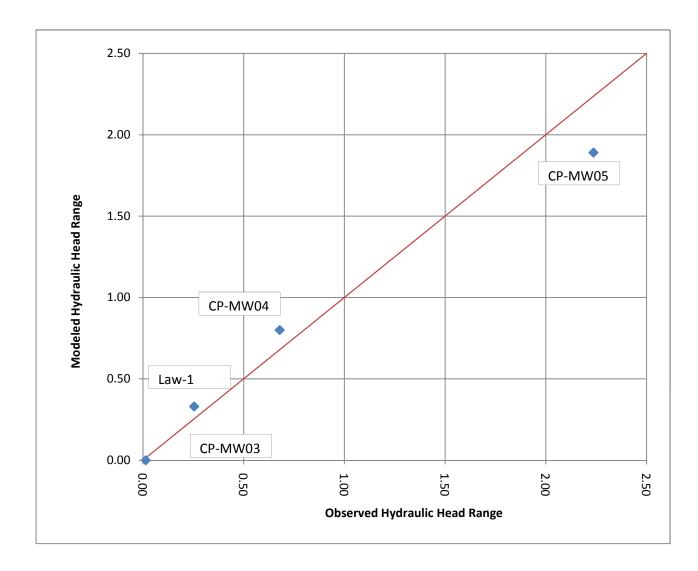
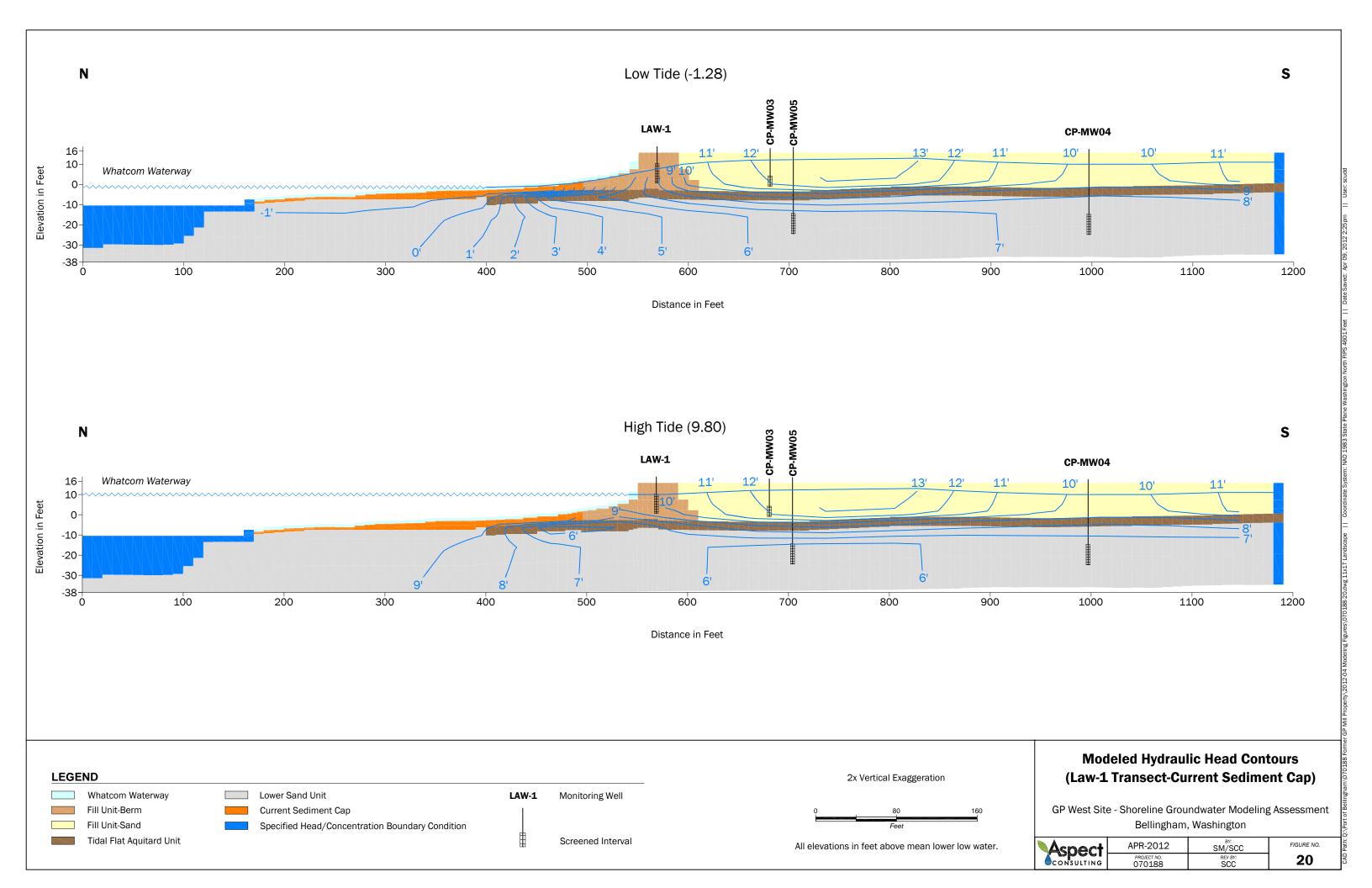
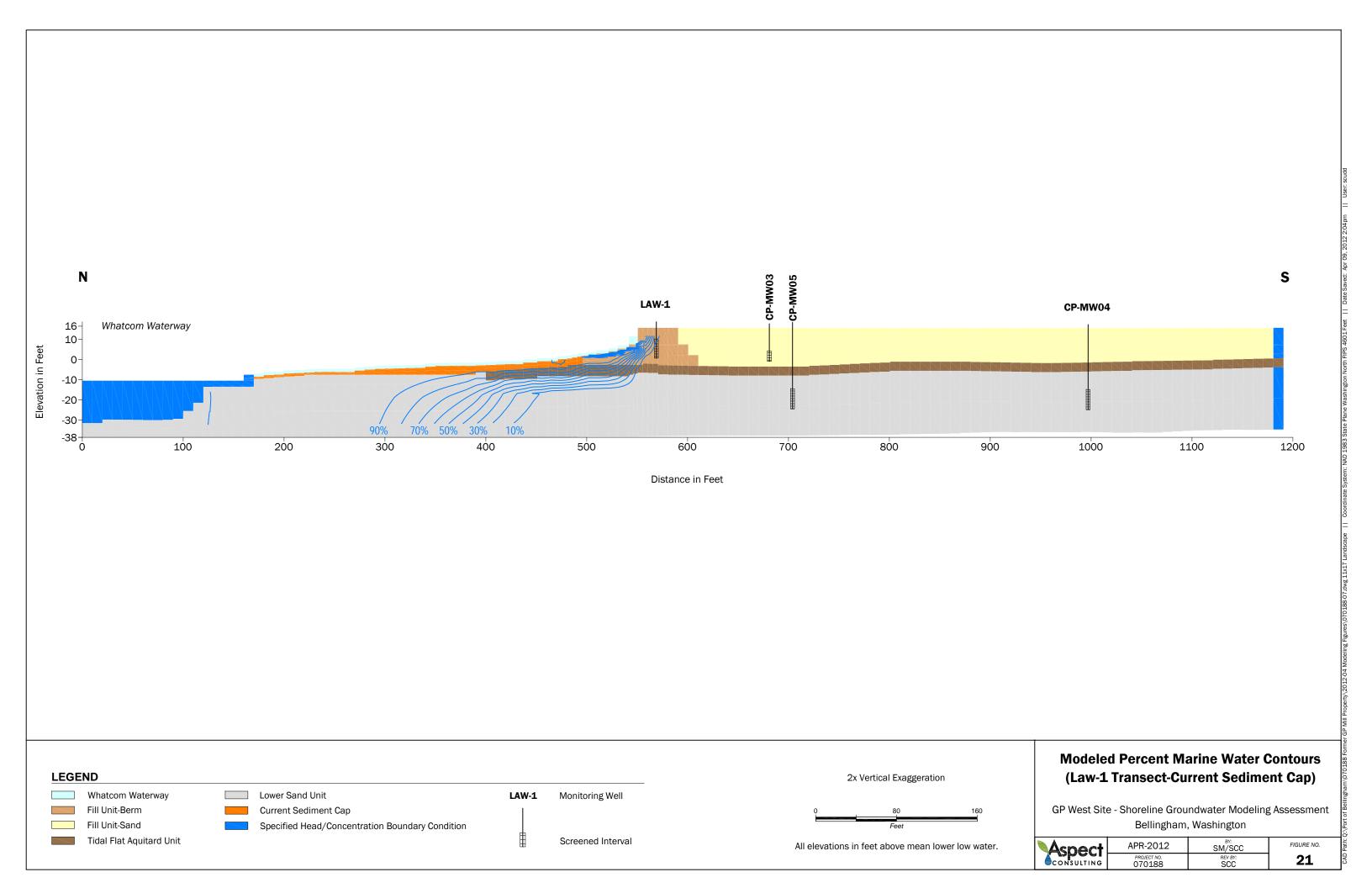
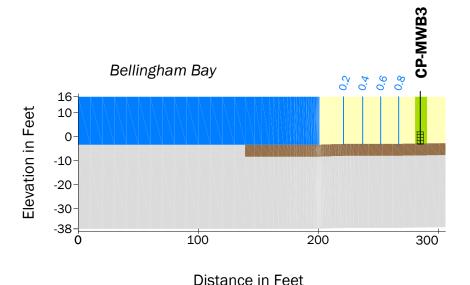
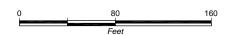


Figure 18
Mean Head Calibration
(Law-1 Transect)

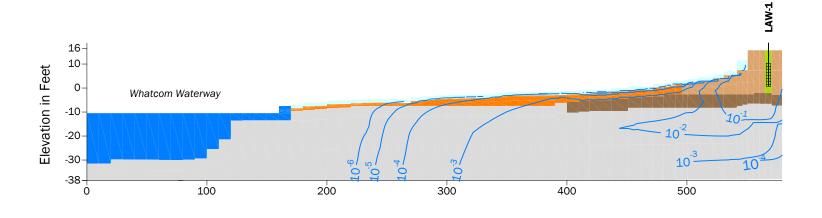





Figure 19
Head Range Calibration
(Law-1 Transect)

4/16/2012



2x Vertical Exaggeration


All elevations in feet above mean lower low water.

Fill Unit-Sand Tidal Flat Aquitard Unit Lower Sand Unit Specified Concentration Boundary Condition Specified Concentration Boundary Condition Specified Concentration Boundary Condition Screened Interval

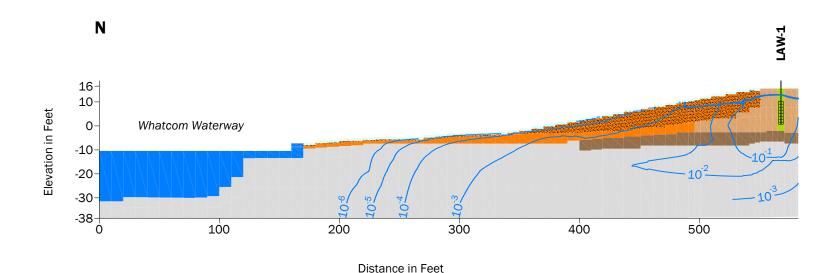
Modeled Contours of C/C_o (Caustic Plume Transect)

Aspect	APR-2012	SM/SCC	FIGURE NO.
CONSULTING	PROJECT NO. 070188	REV BY: SCC	22

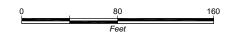
N S

Distance in Feet

2x Vertical Exaggeration



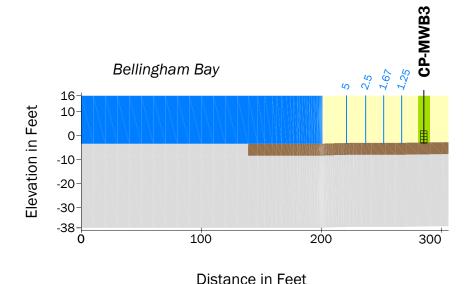
All elevations in feet above mean lower low water.


Whatcom Waterway Current Sediment Cap Fill Unit-Berm Proposed Sediment Cap Specified Head/Concentration Boundary Condition Specified Concentration Boundary Condition Specified Concentration Boundary Condition Specified Concentration Boundary Condition

Modeled Contours of C/C₀ (Law-1 Transect-Current Sediment Cap)

Aspect	APR-2012	SM/SCC	FIGURE NO.
CONSULTING	PROJECT NO. 070188	REV BY: SCC	23

2x Vertical Exaggeration

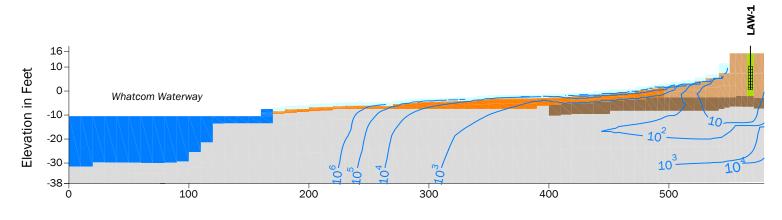

All elevations in feet above mean lower low water.

LEGEND Whatcom Waterway Current Sediment Cap Fill Unit-Berm Fill Unit-Sand Specified Head/Concentration Boundary Condition Specified Concentration Boundary Condition Specified Concentration Boundary Condition Specified Concentration Boundary Condition

Modeled Contours of C/C₀ (Law-1 Transect-Future Sediment Cap)

Aspect	APR-2012	SM/SCC	FIGURE NO.
CONSULTING	PROJECT NO. 070188	REV BY: SCC	24

2x Vertical Exaggeration

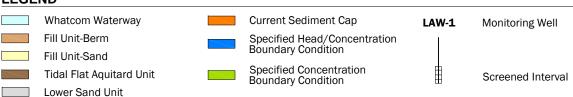

All elevations in feet above mean lower low water.

Fill Unit-Sand Tidal Flat Aquitard Unit Lower Sand Unit Specified Concentration Boundary Condition Specified Concentration Boundary Condition Specified Concentration Boundary Condition Specified Concentration Boundary Condition Screened Interval

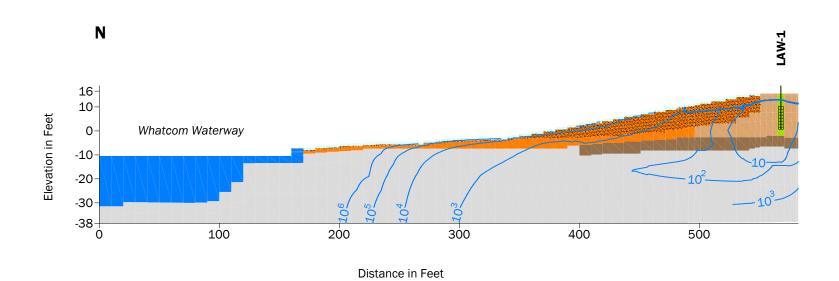
Modeled Attenuation Factor Contours (Caustic Plume Transect)

Aspect	APR-2012	SM/SCC	FIGURE NO. 25
CONSULTING	PROJECT NO. 070188	REV BY: SCC	25

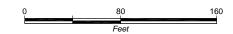
N S


Distance in Feet

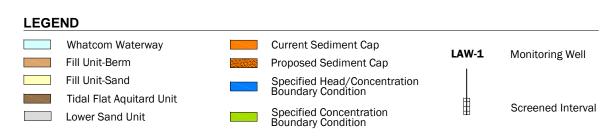
2x Vertical Exaggeration


All elevations in feet above mean lower low water.


LEGEND



Modeled Attenuation Factor Contours (Law-1 Transect-Current Sediment Cap)


Aspect	APR-2012	SM/SCC	FIGURE NO.
CONSULTING	PROJECT NO. 070188	REV BY:	26

All elevations in feet above mean lower low water.

Modeled Attenuation Factor Contours (Law-1 Transect-Future Sediment Cap)

	Aspect	APR-2012	SM/SCC	FIGURE NO.
	CONSULTING	PROJECT NO. 070188	REV BY: -	27

APPENDIX K PROPOSED BEST MANAGEMENT PRACTICES

PROPOSED BEST MANAGEMENT PRACTICES

The following best management practices (BMPs) will be employed during implementation of the Whatcom Waterway Cleanup in Phase 1 site areas. These BMPs incorporate substantive requirements and permit conditions identified by the Washington Department of Fish and Wildlife (WDFW) in its letter dated December 17, 2012 (WDFW 2012), the City of Bellingham (City) in its letter dated February 12, 2013 (City of Bellingham 2013), the National Marine Fisheries Service (NMFS) Endangered Species Act (ESA) concurrence letter for the project dated May 24, 2013 (NMFS 2013), the U.S. Fish and Wildlife Service ESA concurrence letter for the project dated June 26, 2013 (USFWS 2013), and the Nationwide Permit 38, Cleanup of Hazardous and Toxics Waste, issued by the U.S. Army Corps of Engineers (USACE) dated January 15, 2015 (USACE 2015).

The following BMPs will be adhered to during cleanup activities:

Notifications

- The WDFW Area Habitat Biologist, the USACE regulatory lead, the Washington State Department of Ecology (Ecology) regulatory lead, and the City regulatory lead for the project shall be notified of the project start date.
- Notice will be provided to the USACE Bellingham Harbor Operations Manager 10 days prior to commencing work within the federally authorized channel.
- If at any time, as a result of project activities, fish are observed in distress, a fish kill occurs, or water quality problems develop (including equipment leaks or spills), the Washington Military Department's Emergency Management Division shall be immediately contacted at 1-800-258-5990.

In-water Work Timing

 In-water work will be performed consistent with the joint regulatory agencyapproved fish protection work windows for the Project as determined during the permitting approvals for the Project. The agreed to in-water work windows are as follows:

- A. Work below the ordinary high water and mean higher high water lines shall not occur from **March 15** through **July 15** of any year for the protection of migrating juvenile salmonids.
- B. Work below the ordinary high water and mean higher high water lines shall only occur in the dry from **July 16** through **July 31** of any year for the protection of migrating juvenile salmonids.
- **C.** Work below the ordinary high water and mean higher high water lines is allowed in the dry and in-water from **August 1** through **March 14** of any year.
- Additionally, the following in-water work window restrictions also apply to the project:
 - A. No impact pile driving or proofing shall occur from February 16 through March 14.
 - B. Only clean cap, residual management cover, and armor material shall be placed from February 16 through March 14.
 - C. No dredging of contaminated sediments shall occur from February 16 through March 14.

Water Quality

- Turbidity and other water quality parameters will be monitored to ensure construction activities are in compliance with Washington State Surface Water Quality Standards (173-201A WAC) and in accordance with the Water Quality Monitoring Plan (Anchor QEA 2015b).
- Appropriate BMPs will be employed to minimize sediment loss and turbidity generation during dredging. BMPs may include, but are not limited to, the following:
 - Eliminating multiple bites while the bucket is on the seafloor
 - No stockpiling of dredged material below the ordinary high water line and mean higher high water line
 - No seafloor leveling
- Depending on the results of the water quality monitoring program, enhanced BMPs may also be implemented to further control turbidity. Enhanced BMPs may include, but are not limited to, the following:

- Slowing the velocity (i.e., increasing the cycle time) of the ascending loaded clamshell bucket through the water column
- Pausing the dredge bucket near the bottom while descending and near the water line while ascending
- Placing filter material over the barge scuppers to clear return water
- Using surface or near-surface silt curtains during dredging operations
- Each pass of the clamshell dredge bucket shall be complete
- Barges will be managed such that the dredged sediment load does not exceed the
 capacity of the barge. The load will be placed in the barge to maintain an even keel
 and avoid listing.
- All barges handling dredged materials within the site shall have hay bales and/or filter fabric placed over the barge scuppers to help filter suspended sediment from the barge effluent.
- Barges leaving the Whatcom Waterway site will be sealed such that no discharge of water or suspended sediment occurs in the receiving waters.
- No petroleum products or other deleterious materials shall enter surface waters.
- Project activities shall not degrade water quality to the detriment of fish life.
- Water quality monitoring provisions in the Compliance Monitoring and Contingency Response Plan (Anchor QEA 2015a) and the Water Quality Monitoring Plan (Anchor QEA 2015b) will be implemented for the Project.

Spill Prevention

- Dredge vessel personnel will be trained in hazardous material handling and spill
 response and will be equipped with appropriate response tools, including absorbent
 oil booms. If a spill occurs, spill cleanup and containment efforts will begin
 immediately and will take precedence over normal work.
- The U.S. Coast Guard's Bellingham office will be notified immediately if a spill occurs.
- The dredging contractor will inspect fuel hoses, oil or fuel transfer valves, and fittings on a regular basis for drips or leaks in order to prevent spills into the surface water.
- The contractor shall be responsible for the preparation of a Spill, Prevention, Control, and Countermeasure (SPCC) Plan to be used for the duration of the Project. The

SPCC Plan shall be submitted to the Project Engineer prior to the commencement of any construction activities. A copy of the SPCC Plan, and any updates, will be maintained at the work site by the contractor and will include the following:

- The SPCC Plan shall identify construction planning elements and recognize potential spill sources at the work site. The SPCC Plan shall outline responsive actions in the event of a spill or release and shall describe notification and reporting procedures. The SPCC Plan shall outline contractor management elements such as personnel responsibilities, Project site security, site inspections, and training.
- The SPCC Plan will outline what measures shall be taken by the contractor to prevent the release or spread of hazardous materials, either found on site and encountered during construction but not identified in contract documents, or any hazardous materials that the contractor stores, uses, or generates on the construction site during construction activities. These items include, but are not limited to, gasoline, oils, and chemicals. Hazardous materials are defined in Revised Code of Washington (RCW) 70.105.010 under "hazardous substance."
- The contractor shall maintain at the job site the applicable equipment and material designated in the SPCC Plan.

Pile Removal and Disposal

The following pile removal BMPs adapted from U.S. Environmental Protection Agency guidance (USEPA 2007) and Washington Department of Natural Resources (WDNR) (WDNR 2007) will also be employed for pile removal:

- The removal of the creosote-treated piles shall be consistent with conditions issued as part of the Derelict Creosote Pile Removal Project Hydraulic Project Approval (HPA), issued to the WDNR Northwest Region (Control Number 106389 3, Issued August 8, 2007).
- The contractor will initially vibrate piles to break the friction bond between piles and soil.
- To help minimize turbidity, the contractor will engage the vibrator to the minimum extent required to initiate vertical pile movement, and will disengage the vibrator once pile have been mobilized and are moving upward.

- The piles will be removed in a single, slow, and continuous motion to the extent possible.
- Upon removal from the substrate, piles will be moved expeditiously from the water to a barge and then offloaded for disposal or recycling if possible.
- Piles shall be removed slowly and in a direction that is an extension of the longitudinal centerline of each pile to minimize the disturbance of the bed and the suspension of contaminated sediments into the water column.
- Extracted piles shall be placed immediately in a containment basin constructed on the barge or adjacent upland to capture and contain the extracted piles, adhering sediments, and water.
- The extracted piles shall not be shaken, hosed off, left hanging to drip, or made subject to any other action intended to clean or remove adhering material from the pile.
- Holes in the bed resulting from the extraction of the piles shall be covered with clean cap materials consistent with the Project design.
- Every attempt will be made to completely remove the piling in its entirety; however
 pile cutoff will be an acceptable alternative where vibratory extraction or pulling is
 not feasible as described below. In addition, if a pile is broken or breaks during
 vibratory extraction, the contractor will employ the following methods:
 - A chain will be used if practicable to attempt to entirely remove the broken pile.
 - If the entire pile cannot be removed, the pile will be cut at the mudline.
- Pile cutoff will be an acceptable alternative in areas (e.g., Chevron Dock) where removal of the existing piles may result in adverse impact to slope stability.
- If a pile cannot be removed or breaks off at or near the existing substrate, then the pile shall be cut off using a pneumatic underwater or a clamshell bucket as close to the bed as possible without disturbing the bed and a maximum of 12 inches above the bed. Areas where piles are cut off will be capped with Ecology-approved materials to contain the remaining contamination associated with the piles.
- Cut-off pile stubs shall be captured whenever feasible, removed, and deposited in the containment basin constructed on the barge or adjacent upland.
- Sawdust from cutting pile stubs shall be captured whenever feasible, removed, and deposited in the containment basin constructed on the barge or adjacent upland.

- A floating surface boom shall be installed around the pile extraction site to capture floating pile debris. Floating pile debris shall be removed and deposited in a containment basin constructed on the barge or adjacent upland.
- The floating surface boom shall be equipped with absorbent pads to contain any oil sheens. The absorbent pads shall be removed and deposited in the containment basin constructed on the barge or adjacent upland.
- A containment basin shall be constructed on the barge deck or adjacent upland to receive the piles, pile stubs, water, sawdust, and any sediment.
- The containment basin shall be constructed of durable plastic sheeting with sidewalls supported by hay bales or support structure.
- To the extent possible, pile extraction shall be conducted during periods when the water currents are low.
- The piles, pile stubs, sawdust, and absorbent pads from the floating surface boom shall be removed and disposed of in accordance with applicable federal and state regulations.
- The water captured in the containment basin shall be removed and disposed of in accordance with applicable federal and state regulations.
- The containment basin shall be removed and disposed of in accordance with applicable federal and state regulations.
- Extracted piles within the containment basin or disposal container shall be cut to size as required by container and disposal contractors. All sawdust and cuttings shall be contained within the containment basin or disposal container.
- The cut-up piles, sediments, sawdust, water, absorbent pads from the floating surface boom, and plastic from the containment basin shall be packed into a disposal container and transported to an approved upland disposal site.

The use of a boom and the other measures listed above to contain and properly dispose of debris shall also be employed during removal of creosote-treated wooden bulkhead or dock structures. Specific removal methods for these structures will be appropriate to the structure and location (e.g., a backhoe or clamshell may be used rather than a vibratory hammer or chain to remove sections of treated wood from a dock or bulkhead).

Dredging and Cap Placement

- Mechanical dredging equipment shall be used for the dredging treatments.
- Slope dredging will be initiated at the top of the slope and then proceed in the down-slope direction.
- For placement of capping materials and residual cover layers, the following measures will be observed:
 - The placement of material will generally occur starting at lower elevations and working to higher elevations.
 - Set volume, tonnage, lead line measurements, and bathymetry information or similar will be used to confirm adequate coverage during and following material placement.
 - Imported materials will be pre-approved by Ecology and consist of clean, granular material free of roots, organic material, contaminants, and all other deleterious material.

Eelgrass

- The existing eelgrass habitat in the Log Pond area and the Berth 1 area that are susceptible to disturbance by the proposed cleanup treatments shall be buoy marked prior to initiating the cleanup activities in these areas.
- Impacts to the existing eelgrass habitat in the Log Pond area and the Berth 1 area shall be held to the absolute minimum necessary to successfully implement the proposed cleanup treatments.

Stormwater

- A Construction Stormwater General Permit will be obtained for Project construction activities located within the Central Waterfront and GP West upland areas.
- A Stormwater Pollution Prevention Plan will be developed and implemented for the project.

Upland Storage, Stockpiles, and Material Disposal

- The upland staging facilities installed for management of sediment materials dredged from the Whatcom Waterway Phase 1 Areas are intended only for temporary use during the Project. After the Project is completed, these temporary facilities shall be completely removed unless otherwise approved by Ecology and WDFW.
- Contaminated sediments dredged from the Whatcom Waterway Phase 1 Areas shall be disposed of at an Ecology-approved upland disposal site.

Barge Operations

- Construction barges shall be restricted to tide elevations adequate to prevent grounding of the barge.
- Barge anchors shall not be placed in contaminated sediments unless specified by Ecology.
- Whenever feasible, the barge location shall be fixed through the use of methods that do not disturb contaminated sediments (e.g., mooring dolphins, docks, piers, upland structures, and anchoring in non-contaminated areas). Where these methods are not feasible, spuds may be used. The use of walking spuds shall not be permitted.
- Live boating shall be held to an absolute minimum.
- Motorized vessel operation shall be restricted to tidal elevations adequate to prevent prop scour disturbance to the contaminated sediments.
- Minimal propulsion power shall be used when maneuvering barges or other vessels to prevent prop scour disturbance to the contaminated sediments.

Shoreline Modifications

- Excavators operated from the shoreline and used to modify the shoreline shall only be operated from above ordinary high water (OHW).
- Shoreline excavation shall be conducted in the dry to the extent possible.
- Each pass of the excavator bucket shall be complete.
- Under no circumstances shall excavated materials be stockpiled below the OHW line.
- Track excavators used for shoreline excavations shall be routinely inspected and repaired as necessary to prevent the introduction of hydraulic fluid and petroleum products into waters of the state.

- A floating surface boom shall be installed around the timber bulkhead sections and
 piers where creosote-treated timbers shall be removed or cut off to capture floating
 debris. Floating debris shall be removed and deposited at an appropriate upland site.
- The floating surface boom shall be equipped with absorbent pads to contain any oil sheens. The absorbent pads shall be removed and disposed of at an appropriate upland site.
- Manmade shoreline debris shall be appropriately recycled for reuse or shall be disposed of at appropriate upland sites.

Replacement Infrastructure

- Sound attenuation methods are required for the driving or proofing of steel piles with an impact hammer below the OHW line. For impact driving of steel piles that exceed the following criteria, a bubble curtain or other WDFW-approved sound attenuation device shall be used. The specific criteria include sound pressure levels of the following:
 - Greater than or equal to 206 dB (one microPascal squared per second) peak
 - Greater than or equal to 187 dB (one microPascal squared per second)
 accumulated sound exposure level (SEL) for fish greater than or equal to 2 grams
 - Greater than or equal to 183 dB (one microPascal squared per second) SEL for fish less than 2 grams
- A bubble curtain shall be installed and properly functioning around the pile during all impact driving operations. The bubble curtain shall distribute air bubbles around 100 percent of the perimeter of the piles over the full length of the pile in the water column.
- The bubble curtain will be designed according to the Whatcom Waterway Cleanup in Phase I Site Areas Unconfined Bubble Curtain Specification.
- New steel piling, dolphins, and fender piles shall be coated with a rubbing surface, rubbing strip, or rubber energy absorption fenders.

Steel Sheetpile Bulkheads

- The new steel sheetpile bulkheads shall be constructed in the dry to the extent practicable.
- The new steel sheetpile bulkheads will be installed to the extent possible with a
 vibratory hammer. If an impact hammer is required to drive or proof the new steel
 sheetpile bulkheads, then a bubble curtain shall be installed and properly functioning
 around the sheetpile bulkheads.
- Wet concrete used to construct a concrete cap on top of the steel sheetpile bulkheads shall be prevented from entering waters of the state. Forms shall be constructed to prevent leaching of wet concrete. Impervious materials shall be placed over any exposed concrete not lined with the forms that will come in contact with state waters. Forms and impervious materials shall remain in place until the concrete is cured.
- The contractor will be required to collect and manage soil cuttings generated during drilled tie-back anchor installation such that no cuttings are allowed to discharge to the Whatcom Waterway during drilling operations.

Mooring Floats

- Under no circumstances shall the total overwater footprint of the existing ramp and floats be expanded as a result of moving and reconfiguring the structures.
- The floatation for the floats shall be fully enclosed and contained to prevent the
 breakup or loss of the floatation material into the water. If the floatation for the
 existing floats does not fully meet this standard, then the floats shall be updated or
 replaced.
- All treated wood, piles, and lumber to be used for the relocation of the existing ramp
 and float shall meet or exceed the standards established in "Best Management
 Practices For the Use of Treated Wood in Aquatic and Other Sensitive Environments"
 developed by the Western Wood Preservers Institute (http://www.wwpinstitute.org/),
 revised November 2011, and any current amendments.
- All lumber treated with ammoniacal copper zinc arsenate (ACZA) preservative shall be sufficiently cured to minimize leaching into the water or bed.
- Under no circumstances shall creosote-treated piles or lumber be used to replace, modify, or reconfigure the existing ramp and mooring floats.

Maple Street Barge Ramp

- The existing Maple Street Barge Ramp and foundation elements not reused as part of the replacement structure shall be recycled or disposed of appropriately at an upland location.
- To the extent practicable, the removal of the existing barge ramp and the construction of a new barge ramp shall be conducted in the dry.

Cultural and Historic Resources

- If any previously unknown historic, cultural, or archeological remains and artifacts are discovered during construction, the Port will immediately notify the District Engineer of what was found, and to the maximum extent practicable, avoid construction activities that may affect the remains and artifacts until the required coordination has been completed. The USACE District Engineer will initiate the federal, tribal, and state coordination required to determine if the items or remains warrant a recovery effort or if the site is eligible for listing in the National Register of Historic Places.
- Work will immediately stop and notification will be provided to the USACE District
 Engineer within 24 hours if, during the course of conducting authorized work,
 human burials, cultural resources, or historic properties, as identified by the National
 Historic Preservation Act, are discovered.

REFERENCES

- Anchor QEA (Anchor QEA, LLC), 2015a. Compliance Monitoring and Contingency Response Plan. Appendix G, Final Engineering Design Report, Whatcom Waterway Cleanup in Phase 1 Site Areas. Prepared for Port of Bellingham. February 2015.
- Anchor QEA, 2015b. Water Quality Monitoring Plan. Appendix L, Final Engineering Design Report, Whatcom Waterway Cleanup in Phase 1 Site Areas. Prepared for Port of Bellingham. February 2015.
- City of Bellingham, 2013. Letter Regarding Whatcom Waterway Clean Up Phase 1
 Substantive Compliance. Submitted by Steven Sundin of the City of Bellingham
 Planning and Community Development Department to John Hergesheimer, P.E. of the Port of Bellingham. February 12, 2013.
- NMFS (National Marine Fisheries Service), 2013. NMFS Endangered Species Act concurrence letter for the Whatcom Waterway Clean Up in Phase 1 Areas Project. Submitted by William W. Stelle of NMFS to Michelle Walker of the USACE. May 24, 2013.
- USACE (U.S. Army Corps of Engineers), 2015. Nationwide Permit 38 letter authorization for the Whatcom Waterway Clean Up in Phase 1 Areas Project. Submitted by Randel Perry of the USACE to John Hergesheimer of the Port of Bellingham. January 15, 2015.
- USEPA (U.S. Environmental Protection Agency), 2007. Best Management Practices for Pile Removal & Disposal (White Paper). March 2007.
- USFWS (U.S. Fish and Wildlife Service), 2013. USFWS Endangered Species Act concurrence letter for the Whatcom Waterway Clean Up in Phase 1 Areas Project. Submitted by Ken S. Berg of the USFWS to Michelle Walker of the USACE. June 26, 2013.
- WDFW (Washington Department of Fish and Wildlife), 2012. Letter Regarding Model Toxic Control Act Substantive Comments Whatcom Waterway Phase 1 Areas Whatcom Waterway, Tributary to Bellingham Bay, WRIA 01.9000. Submitted by Brian Williams of WDFW to John Hergesheimer, P.E. of the Port of Bellingham. December 17, 2012.
- WDNR (Washington Department of Natural Resources), 2007. Puget Sound Initiative—
 Derelict Creosote Piling Removal Best Management Practices For Pile Removal &
 Disposal. Washington Department of Natural Resources. Control Number 106389 3,
 Issued August 2007.

APPENDIX L WATER QUALITY MONITORING PLAN

TABLE OF CONTENTS

1	WA	TER QUALITY MONITORING PLAN	1
2	WA	TER QUALITY CRITERIA	2
_	2.1	Conventional Criteria	
	2.2	Chemical Criteria	
3		NITORING LOCATIONS AND DEPTHS	
J	3.1	Early Warning Station	
	3.2	Acute and Chronic Compliance Stations	
	3.3	Background Stations	
	3.4	Conventional Monitoring Depths	
	3.5	Chemical Monitoring Locations and Depths	
4		NITORING METHODS AND EQUIPMENT	
4		·	
	4.1	Conventional Monitoring Methods	
	4.2	Chemical Sampling and Analytical Methods	/
5	MO	NITORING FREQUENCY AND SCHEDULE	8
6	COI	NTINGENCY MEASURES AND RESPONSE ACTIONS	9
	6.1	Stop Work Criteria	9
	6.2	Contingency Measures	
	6.3	Water Quality Exceedance at Early Warning Station	
	6.4	Water Quality Exceedance at Compliance Station	
7	QU	ALITY CONTROL	14
0	•	EDENICES	15

List of Tables

List of Figures

Figure L-1 Proposed Water Quality Monitoring Locations

List of Attachments

Attachment 1 Evaluation of Water Quality Impacts During Dredging

LIST OF ACRONYMS AND ABBREVIATIONS

μg/L microgram per liter

BMP best management practice

Dioxin 2,3,7,8-tetrachlorodibenzodioxin

DO dissolved oxygen

DRET dredging elutriate test

Ecology Washington State Department of Ecology
EPA U.S. Environmental Protection Agency

mg/L milligram per liter
ng/L nanogram per liter

NTU nephelometric turbidity unit

Port of Bellingham QC quality control

TSS total suspended solids

USACE U.S. Army Corps of Engineers

WAC Washington Administrative Code

1 WATER QUALITY MONITORING PLAN

This Water Quality Monitoring Plan was developed on behalf of the Port of Bellingham (Port) for use during implementation of the Whatcom Waterway Cleanup in Phase 1 Site Areas (Project). The water quality monitoring will be used during in-water work to assess the contractor's adherence to permit conditions and federal, state, and local regulations pertaining to water quality. The contractor is responsible for providing quality control of its work to meet applicable and relevant water quality criteria. This water quality monitoring program is intended to provide quality assurance that the contractor's operations are in compliance with water quality criteria.

As described in Attachment 1, controlling turbidity and suspended sediments associated with remedial dredging provides control of water quality effects associated with toxic chemicals in the dredged sediment (potentially including mercury, 2,3,7,8-tetrachlorodibenzodioxin [Dioxin], and other metals and organic compounds). The monitoring program has been informed by site-specific dredging elutriate tests (DRETs) conducted as part of the preremedial design investigations (Anchor QEA 2010). The DRETs included evaluation of total and dissolved concentrations of chemicals resulting from suspension of Whatcom Waterway sediments in water collected from the Site. These data indicate that no exceedances of acute water quality criteria are expected within the project area, neither at the 150-foot compliance boundary nor at the point of dredging. Similarly, no exceedances of chronic water quality criteria are expected at the 300-foot compliance boundary provided that acceptable turbidity levels are maintained within the construction zone.

This plan describes both conventional and chemical monitoring to be used to verify compliance with applicable water quality criteria. Contingency measures to be implemented based on the monitoring findings are also described.

2 WATER QUALITY CRITERIA

The waters of Bellingham Bay are designated as excellent quality marine waters by the State of Washington (Washington Administrative Code [WAC] 173-201A). Applicable criteria exist for both conventional and chemical parameters as described in Sections 2.1 and 2.2.

2.1 Conventional Criteria

Turbidity and dissolved oxygen (DO) will be monitored as the primary indicators of water quality. For marine waterbodies classified as excellent, turbidity shall not exceed 5 nephelometric turbidity units (NTU) over background turbidity when the background turbidity is 50 NTU or less, or there shall not be more than a 10% increase in turbidity when the background turbidity is more than 50 NTU. The lowest 1-day minimum for DO in marine waterbodies designated as excellent is 6.0 milligrams per liter (mg/L) [WAC 173-201A-200(1)(d) and (e)].

2.2 Chemical Criteria

Acute and chronic water quality standards established under the Washington State Surface Water Quality Standards [WAC 173-201A-240(3)] are listed in Attachment 1 along with the findings of the reasonable potential analysis. That analysis compared the findings of the DRET evaluation to the water quality criteria to evaluate potential dredging-related chemical concentrations that may occur during Project construction. During Project construction, the acute criteria are to be met at the 150-foot compliance boundary as measured using an exposure period of 1 hour. Chronic criteria are to be met at the 300-foot compliance boundary as measured using an exposure period of 4 days.

Based on the results of DRETs and the reasonable potential analysis presented in Attachment 1, mercury and Dioxin are the chemicals of interest for construction monitoring. For mercury, the acute criterion (1.8 micrograms per liter [μ g/L] dissolved basis) and chronic criterion (0.025 μ g/L total basis) are derived from the Washington State Surface Water Quality Standards [WAC 173-201A-240(3)]. For Dioxin, acute and chronic water quality criteria are not available in the State standards. Therefore, the U.S. Environmental Protection Agency (EPA 1993) was consulted for aquatic life toxicity data for Dioxin. Typically, EPA acute water quality criteria are derived based on LC-50 values obtained from short-term exposure tests. However, EPA-published studies with

LC-50 values are not available for Dioxin for appropriate aquatic species and life stages. A conservative (i.e., more stringent) acute value for Dioxin (0.0001 μ g/L) was estimated using the geometric mean of three no-effects concentrations in 96-hour toxicity tests performed with juvenile coho salmon and rainbow trout. A chronic value for Dioxin (0.00001 μ g/L) was estimated using an acute-chronic ratio of 10 (i.e., an order of magnitude lower concentration). Both the acute and chronic values are based on total Dioxin concentrations rather than dissolved Dioxin concentrations.

3 MONITORING LOCATIONS AND DEPTHS

Water quality monitoring will be performed at points located at specific distances from the respective construction activities, measured using radii of 100 feet (Early Warning Station), 150 feet (Acute Compliance Stations) and 300 feet (Chronic Compliance Stations). Monitoring will also be performed at a reference location located at least 500 feet from the respective construction activities.

Typical water quality monitoring locations are shown in Figure L-1. The actual positions of early warning, compliance, and background stations will be adjusted in the field using the best professional judgment of the monitoring crew. These adjustments will be based on the location of active in-water work, the tidal cycle, and observations of the current. The actual positions will be recorded in the field documentation.

3.1 Early Warning Station

Turbidity and DO measurements at the 100-foot distance serve as an interim indicator of water quality closer to the construction activity but do not trigger any required contingency response action by the contractor. Elevated measurements at the 100-foot distance (Early Warning Station EW-1) might indicate the potential for subsequent exceedance at the compliance boundary and will serve as an early warning to allow modification of the construction operation to potentially avoid water quality exceedances at the compliance boundary.

3.2 Acute and Chronic Compliance Stations

Compliance monitoring will include evaluation of acute water quality criteria at the Acute Compliance Station (AS-1) located 150 feet from the construction activity (see Figure L-1). Chronic water quality monitoring criteria are applicable to the 300-foot Chronic Compliance Station (CS-1).

A confirmed water quality exceedance at either the acute or chronic compliance boundaries will require contingency response action from the contractor to bring its operations back into compliance with water quality criteria. A description of the contingency measures that will be implemented if exceedances are confirmed is provided in Section 6.

3.3 Background Stations

One or more representative Background Stations (BG-1 and, if applicable, BG-2) will be sampled during each monitoring event. Background monitoring stations will be located a minimum of 500 feet from active in-water work in an area unaffected by the active work. The Background Stations may be positioned toward the inner or outer part of the waterway depending on tidal flows (i.e., flood versus ebb tides; Figure L-1).

3.4 Conventional Monitoring Depths

At each station monitored for turbidity and DO, turbidity and DO measurements will be made at three depths in the water column:

- Surface (1 meter below the surface)
- Middle (mid-point of the water column)
- Bottom (1 meter above the mudline)

Water depth will be determined using either a lead line or fathometer at the monitoring location, which will be recorded onto the field data log sheet. DO results in the construction area will be compared directly to the water quality standard. The range of turbidity measurements in the construction area will be compared to the range of turbidity measurements at the background station to determine if the turbidity at the construction site exceeds the background range by more than 5 NTU (if less than 50 NTU background) or more than 10% (if greater than 50 NTU background).

3.5 Chemical Monitoring Locations and Depths

Exceedances of the turbidity criterion at the 150-foot compliance boundary will trigger turbidity monitoring at the 300-foot Chronic Compliance Station and may trigger the need for chemical monitoring. The triggers for chemical monitoring are detailed in Section 6.

3.5.1 Acute Compliance Station

When triggered as described in Section 6 by a confirmed exceedance of turbidity criteria, acute water quality sampling will include collection of water column samples for mercury, Dioxin, and total suspended solids (TSS) at the Acute Compliance Station (AS-1) and the

Background Station(s). At each station, discrete water samples will be collected at surface, middle, and bottom depths, and the three depths will be composited into a single sample for laboratory analysis, composed of equal aliquots from each depth. This results in one composited laboratory analysis for each station during each monitoring event triggered as described in Section 6.4.

3.5.2 Chronic Compliance Station

If turbidity exceedances are confirmed at the Acute Compliance Station, this will trigger turbidity monitoring at the Chronic Compliance Station. If turbidity exceedances are confirmed and persist for at least 4 hours at the Chronic Compliance Station, water quality sampling will also be triggered at the Chronic Compliance Station for potential analysis and comparison to the 4-day chronic water quality criteria as described in Section 6. Chronic sampling includes collection of water column samples for mercury, Dioxin, and TSS at the Chronic Compliance Station (CS-1) and at the Background Stations (BG-1 and BG-2; Figure L-1). As with acute sampling, discrete water samples would be collected at surface, middle, and bottom depths, and the three depths will be composited into a single sample for laboratory analysis, composed of equal aliquots from each depth. In addition, the water samples at the chronic compliance boundary will be composited over time to provide a representative 4-day average concentration for comparison to chronic water quality criteria.

4 MONITORING METHODS AND EQUIPMENT

4.1 Conventional Monitoring Methods

In situ turbidity and DO will be measured with a Hydrolab water quality meter (or equivalent) or turbidometer and DO meter. Continuous in situ profiling tools are preferred to retrieving water samples and measuring parameters on deck. Turbidity and DO data for each monitoring event and respective location will be recorded on a field data sheet, as well as weather and tidal observations.

4.2 Chemical Sampling and Analytical Methods

Water samples for chemical analysis will be collected using a Niskin bottle, van Dorn sampler, or equivalent depth-discrete sampling device. Samples from each water depth (surface, middle, and bottom) will be submitted for compositing at the analytical laboratory. One depth-composited sample from each station will then be analyzed for TSS, mercury, and Dioxin. Table L-1 provides the analytical methods and target detection limits.

Table L-1
Analytical Methods and Detection Limits

Chemical Parameter	Analytical Method	Target Detection Limit
Total Suspended Solids	SM 2540D	1.0 mg/L
Mercury	EPA 7470A	0.02 μg/L
Dioxin	EPA 1613B	0.005 ng/L

Notes:

μg/L = microgram per liter

mg/L = milligram per liter

ng/L = nanogram per liter

5 MONITORING FREQUENCY AND SCHEDULE

The frequency and schedule of the turbidity and DO monitoring during the in-water work is divided into two levels of intensity, as described below:

- Intensive Collection of turbidity and DO measurements every 4 hours during in-water work
- Routine Collection of turbidity and DO measurements twice a day, one time per week

During dredging activities, monitoring will be conducted on an intensive schedule for the first 4 days of in-water work. If no exceedances at the Acute Compliance Station (AS-1) occur during the intensive monitoring, monitoring will be reduced to a routine schedule, unless otherwise directed by the Washington State Department of Ecology (Ecology). In addition, visual inspections will be performed hourly during the course of dredging activities. The occurrence of turbidity or DO exceedances, significant visual turbidity plumes, or a significant change in construction equipment or operations (e.g., dredging, capping, structure removal) will trigger a transition back to intensive monitoring to confirm that no water quality impacts are occurring.

During in-water structure removal activities, monitoring will be conducted on an intensive schedule for 2 days. If no exceedances occur during intensive monitoring, monitoring will be reduced to a routine schedule for the remaining days, unless otherwise directed by Ecology.

During capping and residual management placement, monitoring will be conducted on an intensive schedule for 2 days. If no exceedances occur during intensive monitoring, monitoring will be reduced to a routine schedule for the remaining days, unless otherwise directed by Ecology.

Chemical monitoring will be triggered during dredging based on the findings of turbidity testing. Chemical monitoring may be triggered during either the intensive or routine monitoring periods as described in Section 6.4.

6 CONTINGENCY MEASURES AND RESPONSE ACTIONS

6.1 Stop Work Criteria

The following conditions require a stop work response:

- Evidence of a significant oil sheen
- Evidence of distressed or dying fish
- Confirmed exceedance of water quality criteria at the 150-foot (acute water quality criteria) or 300-foot (chronic water quality criteria) compliance boundary and decision by Ecology to stop work following consultation between the Port and Ecology

If distressed or dying fish are observed, the monitoring crew will report immediately to Ecology's Northwest Regional 24-hour Spill Response Office at (425) 649-7000.

6.2 Contingency Measures

If a turbidity elevation above the water quality standard is confirmed at the early warning boundary or if an exceedance of a water quality standard is confirmed at the compliance boundary, contingency measures will be taken to mitigate the exceedance. For the proposed dredging and related in-water construction work, these measures are largely focused on reducing sediment resuspension and turbidity in the water column.

Possible contingency measures include but are not limited to:

- Operational best management practices (BMPs):
 - Slowing the speed of the dredge bucket through the water column
 - Avoiding overfilling of the bucket
 - Allowing water to drain from the bucket at the surface
 - Not overfilling the dredge scow
 - Avoiding critical tidal or current conditions
- Structural BMPs:
 - Modification of equipment to better control sediment resuspension
 - Installation of a sediment barrier such as a silt curtain

6.3 Water Quality Exceedance at Early Warning Station

If water quality standards for turbidity or DO are exceeded at the 100-foot early warning station, the following sequence of responses will be initiated:

- 1. If an initial exceedance is measured at the 100-foot boundary, the water quality monitoring crew will wait 10 minutes and retake measurements at the station. The water quality monitoring crew will visually assess the station vicinity for potential outside influences, including malfunctioning dredging or capping equipment, non-dredging- or capping-related activities, and/or storm drain discharges.
 - a. If water quality passes the turbidity or DO criteria during the retake measurement, and the exceedance is not confirmed, the water quality monitoring crew will resume the normally scheduled monitoring program.
 - b. If the turbidity or DO criteria exceedance is confirmed (two exceedances in 10 minutes), the contractor will be notified and the contractor will be requested to consider modifying its work activity using BMPs. The contractor will assess the current work methodology to determine if adjustments can be made to correct the problem. Potential contractor BMPs are listed in Section 6.2.
- 2. The water quality monitoring crew will wait at least 30 minutes to 1 hour after contractor BMPs are implemented, and retake measurements at the 100-foot and 150-foot stations.
 - a. If no exceedances are confirmed at the 100-foot station after resampling, the monitoring crew will continue sampling at normal 4-hour increments.
 - b. If water quality exceedances continue, the contractor will be notified that exceedances at the early warning station are still being observed and that additional enhancements to BMPs are warranted. The monitoring crew will continue monitoring the early warning and compliance stations on 1-hour intervals until either the water quality impact dissipates at the early warning boundary, or the impact expands to the compliance boundary. In the latter case, the contingency response procedures described in Section 6.2 will be followed.

6.4 Water Quality Exceedance at Compliance Station

If water quality standards (turbidity or DO; see Section 1.1) are exceeded at the 150-foot compliance station, the following sequence of responses will be initiated.

- 1. If an initial exceedance is measured at the 150-foot boundary, the water quality monitoring crew will wait 10 minutes and retake measurements at the station. The water quality monitoring crew will visually assess the station vicinity for potential outside influences, including malfunctioning dredging or capping equipment, non-dredging or capping related activities, and/or storm drain discharges.
 - a. If water quality passes the turbidity or DO criteria during the retake measurement, and the exceedance is not confirmed, the water quality monitoring crew will resume the normally scheduled monitoring program.
 - b. If the turbidity or DO criteria exceedance is confirmed (two exceedances in 10 minutes), the Port will be alerted and will notify Ecology. Sampling for turbidity and DO will then be initiated at the Chronic Compliance Station. The contractor will also be informed and will be required to implement BMPs to bring its operations back into compliance with water quality criteria.
- 2. In the event of a confirmed water quality exceedance for turbidity or DO at the 150-foot Acute Compliance Station, the contractor shall take appropriate corrective action (beyond those taken to modify the work activity for 100-foot exceedances) as necessary in order to meet turbidity and DO standards and will submit its contingency response action(s) to the Port within 1 hour. The contractor will be required to implement its contingency measures within 1 hour of notification of a confirmed exceedance. The Port will communicate the contractor's contingency response plan to Ecology.
- 3. Following a confirmed turbidity or DO exceedance, the water quality monitoring crew will wait 30 minutes to 1 hour after the contractor has implemented its contingency measures, in order to allow time for the contingency measures to take effect, and then retake water quality measurements at the 150-foot and 300-foot compliance stations.

- a. If no exceedances are confirmed at the 150-foot compliance stations 30 minutes to 1 hour after contingency measures have been implemented, the exceedance will have been controlled. However, the intensive monitoring schedule will be reset and the water quality monitoring crew will continue monitoring at 4-hour intervals.
- b. If follow-up measurements show that water quality criteria continue to be exceeded at the 150-foot compliance boundary even after initial contingency measures have been implemented, the following additional response actions will be triggered for the water quality monitoring and sampling crews:
 - i. Monitoring of turbidity and DO at the 150-foot and 300-foot compliance stations will continue on a 1-hour schedule until the exceedance is resolved or work is stopped. For turbidity exceedances during dredging, water column samples will be collected once per day during dredging from the 150-foot Acute Compliance Station (AS-1) and at the Background Stations (BG-1 and BG-2) and will be submitted for laboratory compositing and analysis for mercury, Dioxin, and TSS.
 - ii. For sustained (i.e., more than 4 hours) turbidity exceedances documented at the 300-foot Chronic Compliance Station, water column samples will be collected from the 300-foot Chronic Compliance Station (CS-1) and at the Background Stations (BG-1 and BG-2) every 24 hours during the period of turbidity exceedance. These samples will be archived for possible future analysis and comparison to chronic water quality criteria.
 - iii. If the turbidity exceedance at the 300-foot boundary persists for more than 24 hours during dredging, 4-day composite water samples will be submitted for chemical analysis from stations CS-1, BG-1, and BG-2). At each station, the sample aliquots will be composited in the laboratory to provide a representative 4-day average concentration with which to evaluate compliance with chronic mercury and Dioxin criteria.
 - iv. Mercury and Dioxin monitoring data will be reviewed upon receipt from the analytical laboratory. These data will be used to confirm that

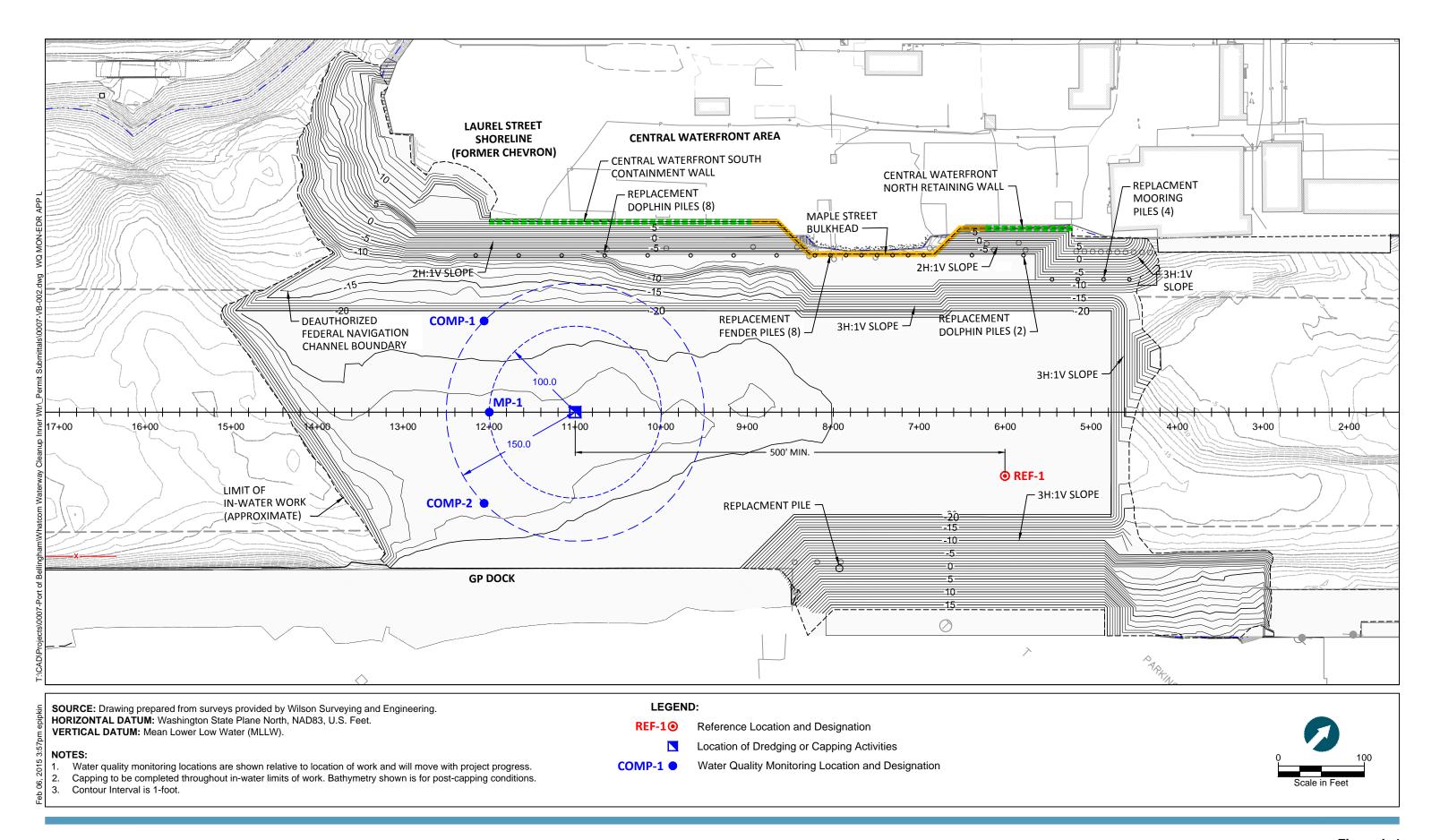
control of turbidity at the Acute Monitoring Station (AS-1) results in compliance with water quality criteria for these compounds as indicated by the DRET data and the reasonable potential analysis (see Attachment 1).

In the event that the contractor's contingency response actions do not achieve compliance with the water quality criteria, the Port shall do the following:

- Immediately take action to curtail the activity causing the turbidity or decrease in DO.
- Report the exceedance to Ecology's Toxic Cleanup Program Site Manager, Lucy McInerney, by phone at (425) 649-7272 or email at lpeb461@ecy.wa.gov.
- Determine, in consultation with Ecology, whether a temporary stoppage of work may be necessary while the problem is being resolved.
- Meet with the contractor and Ecology to discuss the water quality monitoring
 observations, discuss contingency response actions taken by the contractor, and
 identify additional contingency response actions that the contractor could implement
 to comply with the water quality criteria. Ecology could also determine that it is
 appropriate to adjust the dimensions of the compliance boundary for this cleanup
 action.

7 QUALITY CONTROL

The quality control (QC) objective for this water quality monitoring effort is to verify that the data collected are of known and acceptable quality so that the goals of the water quality program can be achieved. Appropriate field QC procedures will be followed. These procedures include performing routine field instrument calibration and following standard instrument operation procedures.


Standard laboratory QC procedures will be followed for any required laboratory analyses. Laboratory duplicate samples, matrix spike/matrix spike duplicate samples, laboratory reference analyses, and other QC requirements appropriate to the methods listed in Section 4 will be performed to assess the accuracy and precision of the analytical measurements.

8 REFERENCES

Anchor QEA (Anchor QEA, LLC), 2010. *Pre-Remedial Design Investigation Data Report.*Whatcom Waterway Site Cleanup. Prepared for Port of Bellingham. August 2010.

EPA (U.S. Environmental Protection Agency), 1993. *Interim Report on Data and Methods for Assessment of 2,3,7,8-tetrachloro-dibenzodioxin Risk to Aquatic Life and Associated Wildlife*. Environmental Research Laboratory, EPA/600/R-93-055.

FIGURES

ATTACHMENT 1 EVALUATION OF WATER QUALITY IMPACTS DURING DREDGING

Attachment 1 Evaluation of Water Quality Impacts During Remedial Construction

	Evaluation of Water Quality Impacts UNIT 1C UNIT 2A/3B			3 During Remedial			CENTRATION				
	OUTER W	ATERWAY	INNER W	ATERWAY		WATERWAY	150-FT. CC	OMPLIANCE		AMBIENT	
	1C-01-VC-U-COMP 2/17/2009 DRET			1-COMP	SITE WATER			NDARY	WATER QUALITY		
			2/10/2009 DRET		1/16/2009 Site Water		Estimated Dredge Plume at 15X		ļ	CRITERIA	
		QEA 2010)		QEA 2010)		QEA 2010)	_	Factor ^[2]			
ANALYTE	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Acute	Chronic	Ref.
Conventionals (mg/L)											<u> </u>
Total Suspended Solids	185		158	2.74	12.4 J		22			.0 mg/L	[a]
Ammonia Metals dissolved (μg/L)	0.733	0.727	3.75	3.74	0.082 J		0.33		6.0	0.9	[b]
Antimony		0.8		0.9		0.5 U		< 0.5			+
Arsenic		2		1.9		1.0 U		< 1	69	36	[c]
Cadmium		0.5 U		0.5 U		0.5 U		< 0.5	42	9.3	[c]
Chromium		1.0 U		1.0 U		1		1			
Copper		3		2		3		3	4.8	3.1	[c]
Lead Mercury		2.0 U 0.1 U		2.0 U 0.1 U		2.0 U 0.1 UP		< 2 < 0.1	210 1.8	8.1	[c]
Nickel		12		5		4		4.5	74	8.2	[c]
Selenium		10		7		5		5.3	290	71	[c]
Silver		0.5 U	-	0.5 U		0.5 U		< 0.5	1.9		[c]
Zinc		10 U		10 U		10 U		< 10	90	81	[c]
Metals total (μg/L)					2 =				<u> </u>	<u> </u>	—
Antimony	0.7		1		0.5 U		< 0.5				+
Arsenic Cadmium	2 0.5 U		2 0.5 U		2 0.5 U		2 < 0.5				+
Chromium	12		12		2		2.7				
Copper	12		13		3		3.7				†
Lead	3		11		2.0 U		< 2.0				
Mercury	0.11		0.13		0.1 UP		< 0.1			0.025	[c]
Nickel	21		17		4		5.1				$\perp \!\!\! \perp \!\!\! \perp$
Selenium	6		8		6		6.1				₩
Silver	0.5 U		0.5 U		0.5 U		< 0.5				┼
Zinc Dioxin (μg/L)	20		30		10 U		< 10				+
2,3,7,8-TCDD	NA	NA	NA	NA	NA	NA	1.0E-8 ^[1]		1.E-04	1.E-05	[d]
Aromatic Hydrocarbons (µg/L)	IVA	INA	INA	IVA	IVA	INA	1.01-0		1.L-04	1.L-03	[u]
1-Methylnaphthalene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1	312	75	[e]
2-Methylnaphthalene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1	300	72	[e]
Acenaphthene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1	233	56	[e]
Acenaphthylene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1	1277	307	[e]
Anthracene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1	87	21	[e]
Benzo(a)anthracene Benzo(a)pyrene	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.4 UP 1.4 UP		< 1 < 1	< 1 < 1	92 4.0	22 0.96	[e]
Benzo(b)fluoranthene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		<1	<1	2.8	0.90	[e]
Benzo(g,h,i)perylene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1	1.8	0.44	[e]
Benzo(k)fluoranthene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1	2.7	0.64	[e]
Chrysene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1	8.3	2	[e]
Dibenzo(a,h)anthracene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1	1.2	0.28	[e]
Fluoranthene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1	30	7.1	[e]
Fluorene Indeno(1,2,3-c,d)pyrene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		<1	<1	162	39	[e]
Naphthalene	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.4 UP 1.4 UP		< 1 < 1	< 1 < 1	1.2 807	0.28 194	[e]
Phenanthrene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		<1	<1	79	194	[e]
Pyrene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1	42	10	[e]
Semi-Volatiles (μg/L)											
1,2,4-Trichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1			<u> </u>
1,2-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1			—
1,3-Dichlorobenzene 1,4-Dichlorobenzene	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.4 UP 1.4 UP		< 1 < 1	< 1 < 1			+
2,4-Dimethylphenol	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP 1.4 UP		<1	<1			+-
2-Methoxyphenol (Guaiacol)	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		<1	<1			+-
2-Methylphenol (o-Cresol)	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1			1
3,4,5-Trichloroguaiacol	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1			
4,5,6-Trichloroguaiacol	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1			igsquare
4,5-Dichloroguaiacol	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1			—
4-Methylphenol (p-Cresol)	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		<1	<10			+
Benzoic acid Benzyl alcohol	10 U 5.0 U	10 U 5.0 U	10 U 5.0 U	10 U 5.0 U	1.4 UP 6.8 UP		< 10 < 5	< 10 < 5			+
Bis(2-ethylhexyl) phthalate	24	1.0 U	1.0 U	1.0 U	1.4 UP		2.3	< 1			
Butylbenzyl phthalate	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	<1			<u> </u>
Dibenzofuran	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1			
Diethyl phthalate	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1			
Dimethyl phthalate	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1			$oxed{oxed}$
Di-n-butyl phthalate	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1			—
. Ili a cotul abtholoto	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	<1			+
Di-n-octyl phthalate	1 0 11	1011	1 ()	1 0 1 1	1 / 110		1				
Hexachlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	<1			+-
	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.4 UP 1.4 UP 1.4 UP		<1 <1 <1	<1 <1 <1			

Attachment 1

Evaluation of Water Quality Impacts During Remedial Construction

	UNIT 1C OUTER WATERWAY 1C-01-VC-U-COMP 2/17/2009		UNIT 2A/3B INNER WATERWAY 2A-3B-01-COMP 2/10/2009		WHATCOM WATERWAY SITE WATER 1/16/2009		MAX. CONCENTRATION 150-FT. COMPLIANCE BOUNDARY Estimated		AMBIENT WATER QUALITY CRITERIA		
		RET	DRET (Anchor QEA 2010)		Site Water (Anchor QEA 2010)		Dredge Plume at 15X Dilution Factor [2]				
		QEA 2010)	•	· · · · · ·	`	` ,					
ANALYTE	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Acute	Chronic	Ref.
Pentachlorophenol	5.0 U	5.0 U	5.0 U	5.0 U	6.8 UP		< 5	< 5			
Phenol	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1			
Tetrachloroguaiacol	1.0 U	1.0 U	1.0 U	1.0 U	1.4 UP		< 1	< 1		-	

References:

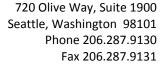
- [a] WAC 173-201A-210(1)(e); Background plus 5 NTU turbidity ~ Background plus 10 mg/L TSS
- [b] EPA 1989 Ambient Water Quality Criteria for Ammonia (Saltwater); T = 10*C, pH = 8.4; Salinity = 30 ppt
- [c] WAC 173-201A-240(3)
- [d] EPA 1993; based on acute toxicity test data for juvenile salmon and rainbow trout; assume acute-chronic ratio $^{\sim}$ 10
- [e] EPA 2003 final chronic values; acute-chronic ratio = 4.16

Notes:

Bold = Detected result

- -- Sample was not submitted for chemical analysis.
- J = Estimated value
- U = Compound analyzed, but not detected above detection limit
- P = Data considered usable; however, hold-times were exceeded.

µg/L = microgram per liter; DRET = dredged elutriate test; EPA = U.S. Environmental Protection Agency; mg/L = milligram per liter; NTU = nephelometric turbidity unit; TSS = total suspended solids; WAC = Washington Administrative Code


- 1. Estimated from range of bulk sediment 2,3,7,8-TCDD concentrations measured in Unit 1C sediments during Pre-Remedial Design Investigations (Anchor QEA 2010).
- 2. Concentrations estimated assuming that dredging-related turbidity is maintained at or below background levels plus 10 mg/L at the acute monitoring station.

 Based on the DRET data, compliance with turbidity criteria requires a minimum dilution factor of at least 15X (158 mg/L divided by 10 mg/L) from the point of dredging.

 The resulting concentration is estimated as the background concentration plus the incremental concentration over background measured in the DRET elutriate divided by 15.

APPENDIX M RESULTS OF ADDITIONAL GEOTECHNICAL AND ENVIRONMENTAL TESTING ALONG THE CENTRAL WATERFRONT SITE

(Appendix M data reports are available on CD from Ecology)

MEMORANDUM

To: Lucille T. McInerney, P.E., Ecology **Date:** February 5, 2013

Brian Sato, P.E., Ecology

From: Tom Wang, P.E., Anchor QEA, LLC Project: 080007-01.02

Cc: John Hergesheimer, Port of Bellingham

Mike Stoner, Port of Bellingham Brian Gouran, Port of Bellingham

Re: Whatcom Waterway Site – Consent Decree No. 07-2-02257-7 – Pre-Remedial

Design Investigation Work Plan Addendum #2

Central Waterfront Site – Agreed Order No. DE3341 – RI/FS Work Plan

Addendum #4

Supplemental Central Waterfront Shoreline Design Investigation Results

Anchor QEA, LLC is currently conducting remedial design and permitting activities in support of the Whatcom Waterway Site Cleanup project. This work is being performed in accordance with the First Amendment to Consent Decree No. 07-2-02257-7, which was filed in Whatcom County Court on August 19, 2011. The design and permitting work is being performed on behalf of the Port of Bellingham and other signatories to the Consent Decree. In addition, ongoing Remedial Investigation/Feasibility Study (RI/FS) activities are being performed at the Central Waterfront site in accordance with Agreed Order No. DE 3441.

PURPOSE AND BACKGROUND

In support of the Whatcom Waterway engineering design, supplemental geotechnical and environmental data needs were identified relating to the partially exposed containment wall and Maple Street bulkhead replacement design along the northern shoreline of the Whatcom Waterway site. The alignment of the proposed wall and bulkhead replacement is presented on Figure 1. The shoreline is located within the cleanup area of the Whatcom Waterway site and includes the southern portion of the Central Waterfront site where the presence of concrete debris and petroleum impacted soils and groundwater has been documented.

A supplemental investigation was performed between October 25 and October 29 to fill identified data needs. Investigation work included seven geoprobe transects perpendicular to the shoreline (20 borings total) and two hollow-stem auger soil borings to collect geotechnical information. Work was performed consistent with the Supplemental Central Waterfront Shoreline Investigation Work Plan Addendum dated October 19, 2012. This memorandum presents the investigation methods and findings of environmental and geotechnical work to support the proposed wall and bulkhead design. In addition to supporting the Whatcom Waterway site engineering design, these investigation results will inform the anticipated revisions to the Central Waterfront RI/FS, which is currently undergoing Ecology review.

INVESTIGATION METHODS AND FINDINGS

The following section describes the soil environmental and geotechnical investigation methodologies and findings. All work was performed in compliance with the site-specific health and safety plan. The investigation locations are presented on Figure 1.

Wall Alignment Survey and Utility Locates

A licensed surveyor, Wilson Engineering LLC (Wilson) surveyed and marked the proposed wall and bulkhead replacement alignment along the shoreline as shown on Figure 1. Permanent survey point markers were installed to allow access to the future wall alignment throughout the design process as needed.

A private locating contractor, Applied Professional Services, Inc., performed a utility locate to identify potential utilities in the investigation areas as well as to inform potential design needs related to utility abandonment or replacement. Findings of the utility locate are shown on Figure 1. The following utilities were identified:

- Electrical: Three electrical lines were identified in the following locations:
 - Along the eastern shoreline
 - A loading ramp to a small utility shed
 - The western area in the boatyard from the shoreline to the utility shed
- Hydraulic: One hydraulic line was identified from the loading ramp to the small utility shed.

- Water: One potable water line in the western area along the shoreline.
- Monitoring wells: Two existing monitoring wells were identified in the eastern area.
- Surface stormwater system features: Visible stormwater system features (e.g., catch basins) were identified and surveyed by Wilson.

Concrete Debris Survey and Soil Analytical Testing

Direct push borings were completed by Geoprobe methodology on October 25 and 26 to delineate the presence or absence of subsurface concrete debris and petroleum and metals contamination along the proposed wall alignment. All temporary borings were advanced to depths of 15 to 20 feet below ground surface (bgs). Final boring locations were determined in the field based on rig access and locations of subsurface utilities. Final sampling locations are shown on Figure 1.

A total of seven transects were completed as shown on Figure 1. Direct push borings at each transect were first attempted approximately 5 feet from the shoreline, if access allowed, along the proposed wall alignment markings. The first boring at each transect where no concrete debris (refusal) was encountered was advanced to 20 feet bgs and continuously logged and sampled at select depth intervals. Soils observed in these borings were logged by the field geologist; boring logs are included in Attachment A. Additional direct push borings were completed in each transect and along the proposed wall alignment to a depth of 15 feet bgs to observe the presence or absence of concrete debris (refusal). Refusal was encountered in only one area at transect CWSI-06 at the first and third attempt (second attempt was logged and sampled). Refusal was encountered at 3 feet bgs and 1.5 feet bgs, respectively.

Soil sampling was performed at multiple depth intervals at each direct push boring location; generally at approximately 3 feet bgs (overburden) and 7 feet bgs (smear zone) with additional deeper samples collected based on field observations. Samples were field screened for sheen, PID readings, and hydrocarbon odors. A total of 16 soil samples were submitted for laboratory analysis including:

- Gasoline range hydrocarbons
- Diesel/motor oil range hydrocarbons (using silica gel cleanup procedures)
- BTEX compounds

• Priority pollutant metals

Soil sampling results are presented in Table 1 and laboratory analytical reports are included in Attachment B. To evaluate potential disposal requirements for soils excavated in conjunction with construction of source control structures, soil analytical results are compared to Model Toxics Control Act (MTCA) Method A criteria for unrestricted site use rather than site-specific screening levels developed as part of the RI/FS. The analytical data will also be analyzed separately as part of the Central Waterfront Site RI/FS. Gasoline range hydrocarbon concentrations detected above the MTCA A cleanup level of 30 mg/kg (with the presence of benzene) were identified at 2 of the 7 sampling areas. CWSI-05 and CWSI-06 both had gasoline range hydrocarbon concentrations greater than 30 mg/kg only at the water table depth within the smear zone between a depth of 8 to 14 feet bgs. Benzene was detected above the MTCA cleanup level of 30 μ g/kg at only one location (CWSI-05), also within the water table smear zone. No soil samples had petroleum concentrations detected above the MTCA Method A cleanup level of 2,000 mg/kg (sum of diesel and motor oil).

Priority pollutant metals were analyzed at all sampling locations except CWSI-03. Arsenic, cadmium, chromium, and lead exceeded applicable MTCA cleanup levels, as defined by Method A and Method B soil cleanup levels, and by natural background concentrations. Arsenic was detected above the MTCA cleanup level (20 mg/kg) at CWSI-02 at a concentration of 25 mg/kg. Cadmium was detected at above the MTCA cleanup level (2.0 mg/kg) at CWSI-05 at a concentration of 11.7 mg/kg. Total chromium concentrations were detected above the MTCA Method A cleanup level applicable to hexavalent chromium (19 mg/kg), but all soil samples were well below the cleanup level applicable for trivalent chromium. The total chromium results at CWSI-01 (57 mg/kg) and CWSI-02 (128 mg/kg) were both above the natural background concentration determined for Puget Sound Region soils (48 mg/kg; Ecology 1994). Lead was detected at three locations (CWSI-02, CWSI-4, and CWSI-06) above the MTCA cleanup level of 250 mg/kg. Lead concentrations ranged between 452 mg/kg to 1,260 mg/kg.

Geotechnical Borings and Testing

The hollow-stem auger soil borings were drilled to an approximate depth of 50 feet bgs. The purposes of the explorations were to investigate the subsurface conditions and obtain soil

samples for laboratory analysis. Two samplers were utilized to obtain soil samples—2-inch outside diameter Standard Penetration Test (SPT) split-spoon sampler and 3-inch outside diameter Shelby tube. A total of 16 samples were obtained from SPT samplers and 6 from Shelby tubes. Geotechnical laboratory tests performed include the following:

- 22 Moisture Content (ASTM D2216)
- 8 Sieve Analysis (ASTM D422)
- 6 Atterberg Limits (ASTM D4318)
- 6 One-dimensional Consolidation (ASTM D4235)
- 6 Undrained Unconsolidated Triaxial Compression (ASTM D2850)

The explorations performed along the Central Waterfront shoreline encountered three distinct soil units—fill, alluvium, and glacial marine drift. At the subsurface locations, the ground surface is approximately +13 feet mean lower low water (MLLW). Groundwater was observed at approximately 6 feet bgs at the time of drilling. Descriptions of the soil units encountered are provided below:

Fill (SP/SM): The unit was observed to consist primarily of loose to medium dense, poorly graded sand with varying silt and gravel. Construction debris such as wood and brick was encountered at various locations between depths of 10 and 17 feet bgs. The SPT N-values ranged from 3 to 24 blows per foot. Thickness of the layer ranged from approximately 17 feet at CWS – B1, near the northeastern region of the shoreline, to 20 feet at CWS – B2, near the middle region of the shoreline.

Alluvium (SM): This unit was observed to consist primarily of medium dense, fine-grained silty sand. The SPT N-values ranged from 13 to 34 blows per foot. Thickness of the layer is approximately 7 feet.

Glacial Marine Drift (CL): This soil unit consists of stiff, silty clay of medium plasticity. The SPT N-values ranged from 3 to 18 blows per foot. Moisture contents ranged from 18% to 31%. Undrained shear strength derived from tri-axial compression tests were found to range from 1,350 to 2,150 psf. The soil borings were terminated in this layer.

The geotechnical laboratory reports are included in Attachment C.

CONCLUSIONS

The results of the geotechnical laboratory analysis were used to update earth pressure recommendations for structural design for the source control structures and Maple Street bulkhead replacement. The soil borings and in situ testing allowed a more refined estimate of elevations of soil unit contacts and physical characteristics of soil properties. In general, the in-situ and laboratory test results confirmed the assumptions originally made for the fill and alluvium, therefore no changes were made to the earth pressures developed for the 60% design. The glacial marine drift (i.e., clay), however, was found to exhibit a higher undrained shear strength than originally assumed prior to the supplemental investigation. This higher undrained shear strength translates to an increase in the passive earth pressures originally developed for the 60% design and ultimately justifies a reduction of materials required for walls and foundation elements.

The results of soil sampling and probing confirmed the presence of petroleum contamination in the eastern portion of the project area. Analytical results will be incorporated into the Central Waterfront RI/FS development. However, based on the comparison of analytical results to MTCA Method A criteria for unrestricted site use, all vadose zone soils (above the water table fluctuation or smear zone) that are excavated in conjunction with implementation of the Whatcom Waterway cleanup can be reused on site as fill. Soils within the smear zone that are excavated in conjunction with source control structure construction will be profiled for off-site disposal. Probing observations generally indicated that concrete debris is not present in the area of the proposed wall, except at location CWSI-06 in near surface soils. Concrete was present at the surface in all probing locations.

Please do not hesitate to contact us with any questions or comments.

Sincerely,

Tom Wang, P.E.

Figure:

Figure 1: Investigation Locations

Attachments:

Attachment A: Boring Logs

Attachment B: Analytical Laboratory and Data Validation Reports

Attachment C: Geotechnical Laboratory Reports

FIGURES

Sampling Locations

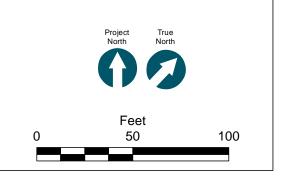
- Hollow-stem Auger Boring
- Soil Logging/Sample Boring
- Debris Probe
- TPH-G Concentration >30 mg/kg

Design Feature

- Proposed Partially-Exposed Containment Wall
- Proposed Maple Street Bulkhead Replacement

Utilities

- Approximate Electrical Locate
- Approximate Hydraulic Locate
- Approximate Water Locate


- Notes:

 1. Proposed wall alignment is approximate and subject to change pending final design.

 2. Utilities were identified prior to subsurface sampling activities and were conducted by a private locating contractor. Utility locate did not include identification of stormwater conveyance due to piping material (e.g. OVC).

 3. Direct push transects were performed in areas that allowed for access based on tenant operations.

 4. Refusal was encountered at one transect (CWSI-06) at two probing locations at depths of 3-feet and 1.5-feet bgs.

TABLES

Table 1
Summary of Chemical Testing Results

Area					East T	ransects			
Location ID	[CW	SI-01		CWSI-02		CWS	SI-03	CWSI-07
Sample ID		CWSI-01-3-5	CWSI-01-11-13	CWSI-02-1-3	CWSI-02-7-8	CWSI-02-12-13	CWSI-03-2-4	CWSI-03-7-9	CWSI-07-2-4
Sample Date	МТСА	10/2	5/2012		10/25/2012		10/25	5/2012	10/26/2012
Depth	Method A/B	3 - 5 ft	11 - 13 ft	1 - 3 ft	7 - 8 ft	12 - 13 ft	2 - 4 ft	7 - 9 ft	2 - 4 ft
Easting	Cleanup	12415	15.069		1241464.667		12412	77.725	1241414.839
Constiuent Northing	Level	6433	26.409		643255.767		64307	79.964	643208.870
Total Petroleum Hydrocarbons (mg/kg)									
Gasoline Range Hydrocarbons	30	10 U	6.4 U	6.5 U	7.6	7 U	9.5 U	8.8 U	7.3 U
Diesel Range Hydrocarbons	2,000	41	95	5.2 U	150	39	100	300	230
Motor Oil Range	2,000	140	120	10 U	280	98	84	410	220
Total Diesel and Motor Oil (U = 1/2)	2,000	181	215	10 U	430	137	184	710	450
Total Diesel and Motor Oil (U = 0)	2,000	181	215	10 U	430	137	184	710	450
BTEX Compounds (µg/kg)									
Benzene	30 (A)	1.2 J	1 U	1.1 J	0.9 J	0.8 J	1.4 U	2.3	2.7
Ethylbenzene	6,000 (A)	1.3 U	1 U	1.2 U	1.2 U	0.6 J	1.4 U	0.6 J	1.2 U
Toluene	7,000 (A)	0.7 J	1 U	1 J	1.2 U	0.6 J	1.6	2.7	2.8
m,p-Xylene	9,000 (A)	1.3 U	1 U	1.2 U	1.2 U	1 U	1.4 U	1.6	1.1 J
o-Xylene	9,000 (A)	1.3 U	1 U	1.2 U	1.2 U	1 U	1.4 U	0.8 J	1.2 U
Priority Pollutant Metals (mg/kg)									
Antimony	3.2 (B)	20 UJ	30 UJ	5 J	60 UJ	30 UJ			6 UJ
Arsenic	20 (A)	20 U	30 U	25	60 U	30 U			11
Beryllium		0.3 U	0.6 U	0.1	1 U	0.6 U			0.2
Cadmium	2.0 (A)	1.4	1 U	0.2 U	2 U	1	-		0.3
Chromium	19 (A)/48	38	57	14.2	128	30			34.1
Copper	2,960 (B)	148	359	41.4	403	209			33 J
Lead	250 (A)	166	110	16	1,260	40			25
Mercury	2.0 (A)	0.06	0.22	0.03 U	0.05	0.02 U			0.04
Nickel	1,600 (B)	39	109	19	160	39			28
Selenium	400 (B)	20 U	30 U	5 U	60 U	30 U			6 U
Silver	400 (B)	0.9 U	2 U	0.3 U	4 U	2 U			0.3 U
Thallium		20 U	30 U	5 U	60 U	30 U			6 U
Zinc	24,000 (B)	347	273	52	250	162			106 J

Table 1
Summary of Chemical Testing Results

Area		West Transects							
Location ID			CWSI-04			CWSI-05		CWS	SI-06
Sample ID		CWSI-04-2-4	CWSI-04-6-8	CWSI-04-13.5-15	CWSI-05-2-4	CWSI-05-7-9	CWSI-05-12-14	CWSI-06-8-10	CWSI-06-12-14
Sample Date	MTCA		10/25/2012			10/26/2012		10/26	/2012
Depth	Method A/B	2 - 4 ft	6 - 8 ft	13.5 - 15 ft	2 - 4 ft	7 - 9 ft	12 - 14 ft	8 - 10 ft	12 - 14 ft
Easting	Cleanup		1241207.421			1241174.122		12411	44.947
Constiuent Northing	Level		643013.658			642980.831		64296	55.046
Total Petroleum Hydrocarbons (mg/kg)									
Gasoline Range Hydrocarbons	30	6.4 U	7.8 U	19	24	7.6 U	160	1,300	62
Diesel Range Hydrocarbons	2,000	67	24	200	69	200	420	1,300	240
Motor Oil Range	2,000	97	37	260	130	250	590	640	330
Total Diesel and Motor Oil (U = 1/2)	2,000	164	61	460	199	450	1,010	1,940	570
Total Diesel and Motor Oil (U = 0)	2,000	164	61	460	199	450	1,010	1,940	570
BTEX Compounds (μg/kg)									
Benzene	30 (A)	1.1 U	1.2 U	17	1.6	1.5 U	63	2.4 U	3
Ethylbenzene	6,000 (A)	1.1 U	1.2 U	1.2 U	1.3 U	1.5 U	7.5	2.4 U	1.8
Toluene	7,000 (A)	1.1 U	0.6 J	1.1 J	1.3 J	1.5 U	11	3.5 U	1.3
m,p-Xylene	9,000 (A)	1.1 U	1.2 U	1.2 U	1.3 U	1.5 U	29	2.4 U	3
o-Xylene	9,000 (A)	1.1 U	1.2 U	1.2 U	1.3 U	1.5 U	5.4	2.4 U	0.5 J
Priority Pollutant Metals (mg/kg)									
Antimony	3.2 (B)	6 UJ	6 UJ	10 UJ	6 UJ	6 UJ	6 UJ	7 UJ	6 UJ
Arsenic	20 (A)	6 U	6 U	10 U	6 U	18	7	9	6 U
Beryllium		0.2	0.1	0.3 U	0.1	0.2	0.1 U	0.1 U	0.1 U
Cadmium	2.0 (A)	0.7	0.3 U	11.7	0.3	0.4	0.3	0.7	0.5
Chromium	19 (A)/48	35.9	37.8	22	27.4	22.7	21.1	29.8	15.8
Copper	2,960 (B)	40.9	34.5	30.3	27.2 J	50.1 J	35.3 J	89.4 J	41.4 J
Lead	250 (A)	30	22	452	23	33	69	145	511
Mercury	2.0 (A)	0.16	0.08	0.2	0.17	0.12	0.09	0.38	0.33
Nickel	1,600 (B)	40	23	17	30	26	18	33	15
Selenium	400 (B)	6 U	6 U	10 U	6 U	6 U	6 U	7 U	6 U
Silver	400 (B)	0.3 U	0.4 U	0.9 U	0.3 U	0.4 U	0.4 U	0.4 U	0.4 U
Thallium		6 U	6 U	10 U	6 U	6 U	6 U	7 U	6 U
Zinc	24,000 (B)	84	48	5,050	73 J	100 J	156 J	202 J	180 J

Notes:

Bold = Detected result

J = Estimated value

U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

ATTACHMENT A BORING LOGS

- POSITION OF SHEETPILE CENTERLINE AS SHOWN ON GROUND AND IN COORDINATION TABLE

CALCULATED SHEETPILE CENTERLINE DETAIL

EXHIBIT

ANCHOR QEA

WHATCOM WATERWAY - PROPOSED SHEETPILE WALL

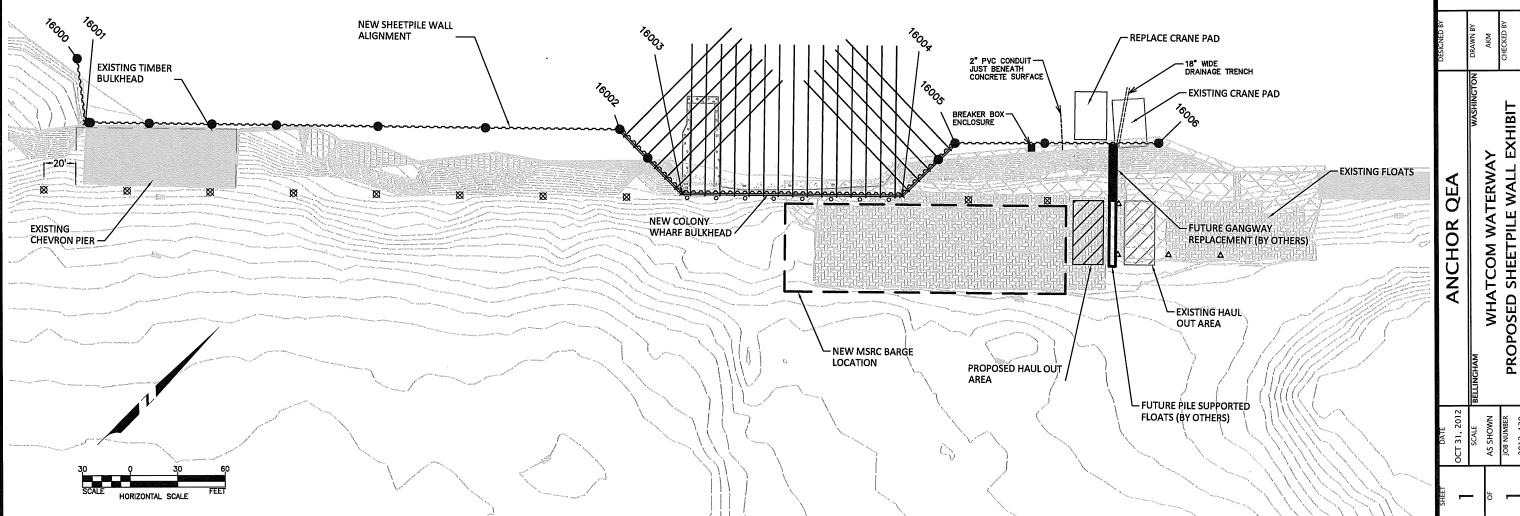
CONTROL NOTES

1. HORIZONTAL DATUM: WASHINGTON STATE PLANE NAD83 LAMBERT CONFORMAL NORTH ZONE GRID, PER THE 1998 ADJUSTMENT, AS DERIVED FROM THE 2005 CITY OF BELLINGHAM GPS DENSIFICATION AND REMONUMENTATION AS RECORDED UNDER AF#2071002449. ALL COORDINATES AND DISTANCES SHOWN ARE IN US SURVEY FEET.

SURVEY NOTES

- 1. THIS EXHIBIT IS INTENDED TO BE A RECORD OF THE POINTS STAKED ON THE GROUND OCTOBER 18, 2012 BY WILSON ENGINEERING.
- 2. THE SHEETPILE ALIGNMENT AS SHOWN, COORDINATED, AND STAKED ON THE GROUND WAS BASED UPON A DWG FILE PROVIDED TO WILSON ENGINEERING BY ANCHOR QEA NAMED "PROPOSED PLAN 9-14-12". THE COORDINATION OF THAT FILE APPEARED TO BE ON THE SAME DATUM (WA STATE PLANE, NORTH ZONE, NAD83) AS THE WILSON ENGINEERING BASEMAP FOR ANCHOR ENVIRONMENTAL TITLED "BELLINGHAM BAY HYDROGRAPHY" AND DATED APRIL 2008. NO ADJUSTMENTS WERE MADE TO THE COORDINATION OF THE QEAPROVIDED DRAWING.

LEGEND


CALCULATED SHEETPILE WALL POINT DERIVED FROM ANCHOR EXTERNAL REFERENCE DWG

STAKED ALIGNMENT POINT (10-18-2012)

CALCULATED SHEETPILE WALL COORDINATES

PER PROPOSED PLAN 9-14-12.DWG, PROVIDED BY ANCHOR QEA

POINT	NORTHING	EASTING	DESCRIPTION
16000	642882.4	1241007.6	END OF SHEETPILE
16001	642857.9	1241039.4	SHEETPILE ANGLE POINT
16002	643092.4	1241280.9	SHEETPILE ANGLE POINT
16003	643091.6	1241336.7	SHEETPILE ANGLE POINT
16004	643187.8	1241435.7	SHEETPILE ANGLE POINT
16005	643234.3	1241436.4	SHEETPILE ANGLE POINT
16006	643324.5	1241527.5	END OF SHEETPILE

Soil Boring Log Sheet 1 of 1 CWS - B1 Location: Bellingham, WA Method: Hollow Stem Auger Project: Whatcom Waterway Cleanup in Phase 1 Areas Northing: 1241468.6436 Project #: 080007-01.02 Easting: 643277.1076 Total Depth (ft): 47.0 Client: Port of Bellingham Horizontal Datum: NAD83 WA SP N Feet Observed GW (bgs): 6.5 (ft, bgs) Ground Surface Elevation (ft): +13 (approx) Vertical Datum: MLLW (feet) Collection Date: 10/29/2012 Contractor: Gregory Drilling Sampler(s): 2in O.D. Split - Spoon Hammer: 140lb / 30in drop 3in O.D. Shelby Tube Logged By: ZLK Hammer Efficiency: 89% Values Greater than 50 **Uncorrected Standard** Level Depth (ft) Samples Penetration Resistance **Soil Description** ab Test (blows per foot) and Water I Samples and descriptions are in recovered depths. Water Content (%) Classification scheme: USCS O 50 10 20 30 40 T 0 Concrete SAND (SP-SM): Medium dense, damp, dark brown, poorly graded SPT-1 WC SAND with silt and gravel (fill) Groundwater observed (11:30) SPT-2 WC, GS SAND (SP-SM): Medium dense, moist, black, poorly graded SAND with silt and gravel (fill) WC, GS SAND (SP-SM): Loose, moist, dark olive gray, poorly graded SAND with silt and gravel (fill) - 20 :\Projects\Port of Bellingham\080007-01 Whatcom WW Cleanup and Marina\Amendment #23\Task17-5up Inv\Boring Logs\Logplot Wood, Solid (actual thickness unknown) WC, GS SAND (SM): Medium dense, moist, gray, silty SAND, non-plastic fines (alluvium) - 25 WC Smooth drilling (driller comment) CLAY (CL): stiff, moist, olive gray, silty CLAY, medium plasticity (glacial WC, AL, UUmarine drift) TX, Consol Shelby tube (push pressure of 400 psi) +30 WC SAA + 35 WC, AL, UU-Shelby tube (push pressure of 250 psi) TX, Consol - 40 WC SAA - 45 WC, AL, UU-Shelby tube (push pressure of 400 psi) TX, Consol Bottom of boring at 47.0 ft. Completed 10/29/2012. - 50 - 55 ⊥ 60

 Water Content (%) conditions may vary 2. Groundwater level was observed at the time and date 720 Olive Way

▲ SPT N-Value

Seattle, WA 98101 (206) 903-9130

Notes: 1. Soil descriptions and stratum lines are interpretive and actual

Soil Boring Log Sheet 1 of 1 CWS - B2 Location: Bellingham, WA Project: Whatcom Waterway Cleanup in Phase 1 Areas Method: Hollow Stem Auger Northing: 1241217.7964 Total Depth (ft): 52.0 Project #: 080007-01.02 Easting: 643039.1484 Client: Port of Bellingham Horizontal Datum: NAD83 WA SP N Feet Observed GW (bgs): 6.0 (ft, bgs) Ground Surface Elevation (ft): +13 (approx) Vertical Datum: MLLW (feet) Collection Date: 10/29/2012 Contractor: Gregory Drilling Sampler(s): 2in O.D. Split - Spoon Hammer: 140lb / 30in drop 3in O.D. Shelby Tube Logged By: ZLK Hammer Efficiency: 89% Values Greater than 50 **Uncorrected Standard Nater Level** Depth (ft) Samples Penetration Resistance **Soil Description** ab Test (blows per foot) and Samples and descriptions are in recovered depths. Water Content (%) Classification scheme: USCS O 20 50 10 30 40 T 0 Concrete SPT-1 WC SAND (SP-SM): Loose, damp, brown, poorly graded SAND with silt (fill) Groundwater observed (14:30) 10 SAND (SM): Loose, moist, very dark gray, silty SAND, non-plastic fines SPT-2 WC, GS Wood fragment at end of sampler 15 WC, GS SAND (SM): Very loose, moist, very dark olive gray, silty SAND with gravel, non-plastic fines (fill) - 20 :\Projects\Port of Bellingham\080007-01 Whatcom WW Cleanup and Marina\Amendment #23\Task17-5up Inv\Boring Logs\Logplot WC, GS SAND (SP): Loose, moist, very dark gray, poorly graded SAND (fill) SAND (SM): Loose, moist, dark gray, silty SAND, non-plastic fines - 25 (alluvium) WC, GS +30 WC, AL, UU-Shelby tube (push pressure of 300 psi) TX, Consol + 35 WC, CLAY (CL): stiff, moist, olive gray, silty CLAY, medium plasticity (glacial marine drift) - 40 WC, AL, UU-Shelby tube (push pressure of 400 psi) TX, Consol SPT-9 WC, SAA - 50 WC, AL, UU-Shelby tube (push pressure of 400 psi) TX, Consol Bottom of boring at 52.0 ft. Completed 10/29/2012. - 55 ⊥ 60

▲ SPT N-Value

720 Olive Way Seattle, WA 98101 (206) 903-9130 Water Content (%)

Notes: 1. Soil descriptions and stratum lines are interpretive and actual conditions may vary

2. Groundwater level was observed at the time and date

				D	irec	ct Push Borings	She	et 1 of 1			
Project	What	com Waterway Cleanup in Phase	1 Areas	Location: Be	llinghan		Method: GeoProbe				
Project	#: 08	0007-01.02		Northing: 64	3326.40	09 Easting: 1241515.069	Total Depth (ft): 20.0				
Client:	Port o	of Bellingham		Horizontal D	atum: N	IAD83 WA SP N Feet	Observed GW (bgs): 8.0				
Collecti	on Da	ite: 10/25/2012		Vertical Datu	ım: MLL	-W (feet)	Ground Surface Elevation (ft): +1				
Contrac	tor: C	Cascade Drilling		Hole Diamet	er: 2 in	ch	Logged By: BH/JA				
Depth (ft)	Water Level	Samples		Lab Test	PID	Soil Des Samples and descriptions a Classification so	are in recovered depths.	Graphic Log			
		CWSI - 01 - 3 - 5	X	BTEX, TPH - G, TPH - DX (w/SGC),	5.5	Concrete (medium dense), slightly moist, dark bro occasional debris	own, poorly graded gravelly SAND,				
	\bigvee			PP Metals		Wood @8 ft - wet		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
15		CWSI - 01 - 11 - 13 CWSI - 01 - 13 - 15		BTEX, TPH - G, TPH - DX (w/SGC), PP Metals Archive	3.8	(medium dense), slightly moist, dark bro occasional organic matter @13 ft - wet, gray, gravelly SAND occasi					
						Bottom of geoprobe at 20.0 ft. Complet	ted 10/25/2012.				

Notes: 1. Soil descriptions and stratum lines are interpretive and actual conditions may vary

 $\label{eq:condition} \textbf{2. Groundwater level was observed at the time of date specified.}$

				D	ired	ct Push Borings	She	et 1 of 1
Project	: What	com Waterway Cleanup in Pha	se 1 Areas	Location: Be	llinghan		Method: GeoProbe	
Project	t #: 08	30007-01.02		Northing: 64	3255.76	67 Easting: 1241464.667	Total Depth (ft): 20.0	
Client:	Port o	of Bellingham		Horizontal D	atum: N	NAD83 WA SP N Feet	Observed GW (bgs): 7.5	
Collect	ion Da	ate: 10/25/2012		Vertical Datu	ım: ML I	LW (feet)	Ground Surface Elevation (ft): +13	3.0 ft
Contra	ctor: C	Cascade Drilling		Hole Diamet	er: 2 in	ch	Logged By: BH/JA	
Depth (ft)	Water Level	Samples		Lab Test	DID	Soil Des Samples and descriptions a Classification so	are in recovered depths.	Graphic Log
		CWSI - 02 - 1 - 3	X	BTEX, TPH - G, TPH - DX (w/SGC), PP Metals		Concrete (medium dense), slightly moist, light to grained gravelly SAND	medium olive gray, fine to course	
5	abla	CWSI - 02 - 7 - 8		BTEX, TPH - G, TPH - DX (w/SGC), PP Metals		@ 5 ft - grades to dark brown to black, g orange/brown brick-like aggregates, sor		
nent #23\ ask1/->up inv\borin		CWSI - 02 - 12 - 13	\boxtimes	BTEX, TPH - G, TPH - DX (w/SGC), PP Metals		wood debris		
Whatcom www.creanup.anu.viai.iia.ya						(medium dense), wet, gray, fine to medi	ium grained, SAND with trace silt	
15 — 15 — 20 — 25 — 25 — 25 — 25 — 25 — 25 — 2						Bottom of geoprobe at 20.0 ft. Complet	red 10/25/2012.	

			D	ired	ct Push Borings	Sh	eet 1 of :
Project: Wha	tcom Waterway Cleanup in Phase	e 1 Areas	Location: Be	llinghan		Method: GeoProbe	
Project #: 0 8	80007-01.02		Northing: 64	3079.96	54 Easting: 1241277.725	Total Depth (ft): 20.0	
Client: Port	of Bellingham		Horizontal D	atum: N	NAD83 WA SP N Feet	Observed GW (bgs): 7.0	
Collection D	ate: 10/25/2012		Vertical Datu	ım: MLI	LW (feet)	Ground Surface Elevation (ft): +:	13.0 ft
Contractor:	Cascade Drilling		Hole Diamet	er: 2 in	ch	Logged By: BH/JA	
Depth (ft) Water Level	Samples		Lab Test	PID	Soil Desc Samples and descriptions a Classification so	re in recovered depths.	Graphic Log
T 0					Concrete		
_	CWSI - 03 - 2 - 4	X	BTEX, TPH - G, TPH - DX (w/SGC)	3.8	(medium dense), slightly moist, light gra SAND	y to brown, well graded gravelly	
5 	GUSL 93 7 9	\bigvee	BTEX, TPH - G, TPH -	4.2	@ 5 to 7 ft - brick fragments		
10	CWSI - 03 - 7 - 9		DX (w/SGC)	4.3	@10 ft - grades to dark grey gravelly SAN	ND	
- - - - 15	CWSI - 03 - 11 - 13	X	Archive	5.1	@ 14 ft - wood debris over a thin layer o @ 14.5 ft - grades to gray to dark gray SA		
-					Bottom of geoprobe at 20.0 ft. Complet	ed 10/25/2012.	

720 Olive Way Seattle, WA 98101 (206) 903-9130 **Notes:** 1. Soil descriptions and stratum lines are interpretive and actual conditions may vary

2. Groundwater level was observed at the time of date specified.

				D	irec	ct Push Borings	Shee	et 1 of 1
Project	: What	com Waterway Cleanup in Phas	e 1 Areas	Location: Be	llinghan		Method: GeoProbe	
Project	#: 08	30007-01.02		Northing: 64	3013.65	58 Easting: 1241207.421	Total Depth (ft): 20.0	
Client:	Port o	of Bellingham		Horizontal D	atum: N	IAD83 WA SP N Feet	Observed GW (bgs): 6.5	
Collect	ion Da	ate: 10/25/2012		Vertical Datu	ım: MLL	-W (feet)	Ground Surface Elevation (ft): +13	3.0 ft
Contra	ctor: C	Cascade Drilling		Hole Diamet	er: 2 in	ch	Logged By: BH/JA	
Depth (ft)	Water Level	Samples		Lab Test	PID	Soil Des Samples and descriptions a Classification so	are in recovered depths.	Graphic Log
T^{o}						Concrete		D:::D:
- - - - - - - 5		CWSI - 04 - 2 - 4	X	BTEX, TPH - G, TPH - DX (w/SGC), PP Metals	12.0	(medium dense), dry to moist, brown ar	nd gray, gravelly SAND	
100dS01\S8001	abla	CWSI - 04 - 6 - 8	X	BTEX, TPH - G, TPH - DX (w/SGC), PP Metals		@5 ft - grades to wet, orange to brown, @6 ft - brick fragments (very dense), moist, light gray to gray, fi silt		
I Marina Amendment #23/1 askd. J-5-up inv/Boring Logs/Logsplot		CWSI - 04 - 13 - 15		BTEX, TPH - G, TPH - DX (w/SGC), PP Metals		@13.5 ft - slight rainbow sheen		
Projects/Port of Bellingham/U80007-01 Whatcom WW Cleanup and Marina/Amendi		CWSI - 04 - 18 - 20	X	Archive	10.3 8.6	@ 18 ft - grades to fine to course graine	d, gravelly SAND and shell fragments	
ects/Port of Bellingnam (vacoovo						Bottom of geoprobe at 20.0 ft. Complet	ted 10/25/2012.	

				D	ired	ct Push Borings	She	et 1 of 1
Projec	t: What	tcom Waterway Cleanup in Phase	1 Areas	Location: Be	llinghan		Method: GeoProbe	
Projec	t #: 08	30007-01.02		Northing: 64	2980.83	31 Easting: 1241174.122	Total Depth (ft): 20.0	
Client	Port	of Bellingham		Horizontal D	atum: N	NAD83 WA SP N Feet	Observed GW (bgs): 7.0	
Collec	tion Da	ate: 10/25/2012		Vertical Datu	ım: ML l	LW (feet)	Ground Surface Elevation (ft): +13	3.0 ft
Contra	actor: (Cascade Drilling		Hole Diamet	er: 2 in	ch	Logged By: BH/JA	
Depth (ft)	Water Level	Samples		Lab Test	PID	Soil Des Samples and descriptions of Classification so	are in recovered depths.	Graphic Log
To						Concrete		0::0:
5		CWSI - 05 - 2 - 4	X	BTEX, TPH - G, TPH - DX (w/SGC), PP Metals	5.1	(medium dense), dark brown to gray, gr	avelly SAND	
g Logs/Logplot	∇	CWSI - 05 - 6 - 8	X	BTEX, TPH - G, TPH - DX (w/SGC), PP Metals	11.6			
:23\Task17-5up Inv\Boring 				BTEX, TPH - G, TPH -	69.2	(@11 ft - moderate petroleum like odor, (medium dense), wet, gray SAND with to		
Marina/Amendment#		CWSI - 05 - 13 - 15	X	DX (w/SGC), PP Metals				
Whatcom ww creanup and		CWSI - 05 - 16 - 18	X	Archive	41.2	(medium dense), wet, gray to dark gray, fragments	SAND with gravel and shell	
Projects/Port of Bellingham/U80007-01 Whatcom WW Cleanup and Marina/Amendment #23/134/13sk1/-sup inv\Boring Logs\Logs\Logs\Logs\Logs\Logs\Logs\Logs\						Bottom of geoprobe at 20.0 ft. Complet	ted 10/25/2012.	

				D	irec	ct Push Borings	She	et 1 of 1
Project	: What	tcom Waterway Cleanup in Phas	e 1 Areas	Location: Be	llinghan	n, WA	Method: GeoProbe	
Project	#: 08	80007-01.02		Northing: 64	2965.04	46 Easting: 1241144.947	Total Depth (ft): 20.0	
Client:	Port o	of Bellingham		Horizontal D	atum: N	NAD83 WA SP N Feet	Observed GW (bgs): 7.0	
Collect	ion Da	ate: 10/25/2012		Vertical Datu	ım: ML L	LW (feet)	Ground Surface Elevation (ft): +1:	3.0 ft
Contra	ctor: C	Cascade Drilling		Hole Diamet	er: 2 in	ch	Logged By: BH/JA	
Depth (ft)	Water Level	Samples		Lab Test	PID	Soil Des Samples and descriptions of Classification so	are in recovered depths.	Graphic Log
T^{o}						Concrete		
- - - - - 5	\sum	CWSI - 06 - 4 - 6		Archive		(medium dense), brown to gray, SAND vand occasional construction debris	vith varying gravel and silt content	
	\square	CWSI - 06 - 8 - 10		BTEX, TPH - G, TPH - DX (w/SGC), PP Metals	202	@ 7 to 8 ft - brick material; soils are mo	ist to wet	
15		CWSI - 06 - 12 - 14		BTEX, TPH - G, TPH - DX (w/SGC), PP Metals	65.7	@11 ft - intermittent silt layers @12 ft - moderate to heavy petroleum l wood fragments	ike odor and sheen, occasional	
		CWSI - 06 - 16 - 18	X	Archive		@16 ft - very light petroleum and H2S o	dor	
10 — 10 — 10 — 15 — 20 — 25 — 25 — 25 — 25 — 25 — 25 — 2						Bottom of geoprobe at 20.0 ft. Complet	ted 10/26/2012.	
25								

				D	ired	ct Push Borings	She	et 1 of 1
Project	: What	tcom Waterway Cleanup in Phase	e 1 Areas	Location: Be	llinghan		Method: GeoProbe	
Project	#: 08	30007-01.02		Northing: 64	3208.87	7 Easting: 1241414.839	Total Depth (ft): 20.0	
Client:	Port o	of Bellingham		Horizontal D	atum: N	NAD83 WA SP N Feet	Observed GW (bgs): 7.0	
Collecti	on Da	ate: 10/25/2012		Vertical Datu	ım: MLI	LW (feet)	Ground Surface Elevation (ft): +1	3.0 ft
Contrac	ctor: (Cascade Drilling		Hole Diamet	er: 2 in	ch	Logged By: BH/JA	
Depth (ft)	Water Level	Samples		Lab Test	PID	Soil Des Samples and descriptions a Classification so	are in recovered depths.	Graphic Log
To						Concrete		
		CWSI - 07 - 2 - 4	V	BTEX, TPH - G, TPH - DX		(medium dense), brown to gray, SAND v and occasional construction debris	vith varying gravel and silt content	
5 5	abla			(w/SGC), PP Metals		@ 3 ft - brick layer (thickness not know	n)	
5 - 10		CWSI - 07 - 7 - 10	\bigvee	Archive		@8ft - loose SAND and GRAVEL		
						@11 ft - intermittent silt layers		
-						@12 ft - moderate to heavy petroleum I wood fragments	ike odor and sheen, occasional	
15								
						(medium dense), wet, dark gray, fine to occasional shell fragments	medium grained SAND with	
10 - 10 - 15 20 - 25						Bottom of geoprobe at 20.0 ft. Complet	ted 10/26/2012.	
25								

ATTACHMENT B ANALYTICAL LABORATORY REPORT AND DATA VALIDATION REPORT

Table of Contents: ARI Job VP40, VP41

Client: Anchor QEA LLC Project: Central Waterfront Shoreline Inves.

	Page From:	Page To:
Inventory Sheet		
Cover Letter		1
Chain of Custody Documentation		_6_
Case Narrative, Data Qualifiers, Control Limits		23
Volatile Analysis	•	
Report and Summary QC Forms	24	65
TPHD Analysis	•	
Report and Summary QC Forms	_66	132
TPHG Analysis		
Report and Summary QC Forms	133	194
Metals Analysis		
Report and Summary QC Forms	195	233
Total Solids		
Report and Summary QC Forms	234	246
METALS RAW DATA	247	441

Signature 3C

November 7, 2012

Ben Howard Anchor QEA 720 Olive Way, Suite 1900 Seattle, WA 98101

RE: Client Project: Central Waterfront Shoreline Investigation

ARI Job Nos.: VP40 & VP41

Dear Cindy:

Please find enclosed the Chain of Custody records (COCs), sample receipt documentation, and the final data package for samples from the project referenced above.

Sample receipt and details regarding these analyses are discussed in the Case Narrative.

An electronic copy of this package will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro
Project Manager
(206) 695-6214
cheronneo@arilabs.com

CHETOTHICOGRAFIIADS:00

www.arilabs.com

cc: eFile VP40 VP41

Enclosures

Chain of Custody Documentation

ARI Job ID: VP40, VP41

Abrio: 00005

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	VVV Turn-around Requested:	Turn-around F	and Requested:			Page:	PA.	-			Anal	Analytical Resources, Incorporated	ted of
ARI Client Company:	OCA		Phone:	53-431		Date: 16	12/52/	Date: 10 /25 /26 12 Present?	7		4611 Tukw	4611 South 134th Place, Suite 100 Tukwila, WA 98168	00
.7	محرا					No. of Coolers:	_	Cooler Temps:	1/1		206-	206-695-6200 206-695-6201 (fax)	(X
Client Project Name:	to Locker		1		,			Ans	Analysis Requested	pei		Notes/Comments	П
1	7		plers:	いたろちらら	\ \ \ \ \								
						X							-
Sample ID		Date	Time	Matrix	No. Containers	∃ 18	-HJT	H&L [m]	m 99 wh				
1-2-40-15MO	-	10/2×/12	しんとい	L'.5	∞	×	ノ	メメ					
8-9-20-1507	8-		4541	4	%	X	×	\ ×	×				
CWS1-04-135-15	35-15		1503	·	&	×	×	×	X				
02-581. 40-1500	62-5.8	د_	1531	→	1				×				
-CWS1 -TB- 01	٥Ì	-	d. 00	->	7	X							
:		Ą											
			/										
			/										
				/									
Comments/Special Instructions		Relinquished by (Signature	W	/	Received by: (Signature)	1	4	Relir (Sign	Relinquished by. (Signature)		Received by (Signature)	d by. ге)	
gel cleanup (50		Printed Name:	Hound	7	Printed Name.	3	5th cot	J	Printed Name		Printed Name	Name.	1
) ii (Company.	क्य		Company.	1		Con	Company.		Company	y	
<u>73 ∶ Q</u>		Date & Time	1619		Date & Time: ///- 25-11	\ \f	1600		Date & Time:		Date & Time	Тт	
	#			44			4	7			40.0	Ė	1

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program for meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or considered agreement between ARI and the Client. signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client:	LYON.	Project Name: (Distra)	1 Wates	front	Shorelin
COC No(s).	(A)	Delivered by Feo-Fx UPS Co	urier Hand Delivi	ered Other	Investi
Assigned ARI Job No	40	Tracking No 7934	3146	1780	NA
Preliminary Examination Phase:					
Were intact, properly signed and d	ated custody seals attached to	the outside of to cooler?		YES	עס יא
Were custody papers included with	the cooler?			YE\$	NO
Were custody papers properly filler	d out (ink, signed, etc.)			YÉS	NO
Temperature of Cooler(s) (°C) (rec	commended 2.0-6.0 °C for cher	mistry) U		O	
If cooler temperature is out of com			Temp Gun ID	# 0114	74407
•	·/	Date 10-26 9 Tim			
Cooler Accepted by					
Log-In Phase:	Complete custody forms a	and attach all shipping documents	;		
Log-III Filase.					
Was a temperature blank included	in the cooler?			YES	(NO')
What kind of packing material w	as used? Butble Wrap	Wet ce Gel Packs Baggies Foan	n Block Paper C	Other:	
Was sufficient ice used (if appropri			NA	MES	NO
Were all bottles sealed in individua	al plastic bags?			YES	(NO)
Did all bottles arrive in good condit	tion (unbroken)?			ES	NO
Were all bottle labels complete and	d legible?			(ES)	NO
Did the number of containers listed	d on COC match with the numb	per of containers received?		(FS)	NO
Did all bottle labels and tags agree	with custody papers?			YE3	NO
Were all bottles used correct for th	e requested analyses?			YES	NO
Do any of the analyses (bottles) re	equire preservation? (attach pre	eservation sheet, excluding VOCs).	(NA)	YES	NO
Were all VOC vials free of air bubb	oles?		NA	YES	NO
Was sufficient amount of sample s	ent in each bottle?			YES	NO
Date VOC Trip Blank was made a	t ARI		NA	10/22/	1/2
Was Sample Split by ARI NA	YES Date/Time	Equipment.		Split by	
	Im	5/2/	_		
Samples Logged by	Date	10/36/12 time.		15	
	** Notify Project Manage	er of discrepancies or concerns **	, -		
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sampl	le ID on COC	;
	7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
Additional Notes, Discrepancies CWS1-TB-01	s, & Resolutions: SM in ZB	Z (WSI-TB-0	ol not	marked	ON TPHC,
By JM Date	. 10/26/12	COC for TPI per ARI Pri	n. 405 10	n)clard	
Small Air Bubbles Peabubble	LARGE Air Bubbles	Small → "sm"		——————————————————————————————————————	
-2m/r 2-4 mm	> 4 mm	Peabubbles → "pb"			
	~ • • •	Large → "Ig"		,	
Nagrados de Augusta de Calendra (Maria Maria Mar		Headspace → "hs"			

0016F 3/2/10 Cooler Receipt Form

Revision 014

nbra: accor

Chain of Custody Record & Laboratory Analysis Request

Company Co	ARI Assigned Number:	Turn-around	Turn-around Requested: 1			Page:		of			Analytical Resources, Incorporated Analytical Chemists and Consultants	porated
Cheer Corner Corn	ARI Client Company: ARI Client Company: ARI Client Company:	1.	Phone: 360-7	33-1311		Date: ;0/2Σ	_	Ice Present?			4611 South 134th Place, Su Tukwila, WA 98168	ite 100
Comparison Com	Client Contact:	-0				No. of Coolers:		Cooler Temps:			206-695-6200 206-695-62	01 (fax)
Control Location Control	l	- (ئـ ا	2			Ana	lysis Requeste	þí	Notes/Comme	nts
Sample ID Date Time Matrix his continues to the first second to th	<u> </u>	Samplers:	ورو اناه	コントゥントロ	() 4	,	-9	(29)				
CMS1-02-1-3	Sample ID	Date	Time	Matrix	No. Containers	KJL8	-H0-T	5 /M)				
CLUSI-02-7-8 1997 8	CW51-02-1-3	11/27/12	╙	1:05	8	×	×	×				
CLUSI-02-12-13 CLUSI-01-3-5 CLUSI-01-11-13 CLUSI-01-18-15 CLUSI-01-18-15 CLUSI-02-12-13 CLUSI-03-2-4 1345 8	8-£-20-15MD	•	1560	•	8	×	×		>			
CLJ 51 - 01 - 3 - 5 CLJ 51 - 01 - 11 - 13 CLJ 51 - 02 - 2 - 4 CLJ 51 - 03 - 2 - 7 CLJ 51 - 04 - 13 - 7 CLJ 51 - 04 - 12 - 7 CLJ 51 - 05 - 7 - 7 CLJ 51 - 03 - 7 CLJ 51 -	CW SI -02-12-13		2460		8	X	×	×	×			
CLJ 51 - 01 - 13 - 15 CLJ 51 - 01 - 13 - 15 CLJ 51 - 02 - 1 - 14 CLJ 51 - 03 - 1 - 14 CLJ 51 - 03 - 1 - 14 CLJ 51 - 03 - 1 - 13 CLJ 51 - 03 - 2 - 14 CLJ 51 - 03 - 11 - 13 CLJ 51 - 03 - 2 - 14 CLJ 51 - 03 - 14 CLJ 51	CHS1-01-3-5		1021		8	×	×	×	×			
CLJ 51 - 01 - 13-15 CLJ 51 - 02 - 2-4 CLJ 51 - 03	CW 51-01-11-13		9021		8	×	X		×			
C い S 1 - 0 3 - 7 - 4	S1-81-01-13-15		2121						X			
Cut S1 - 03 - 11 - 13 1351 8 X X X X A Cut S1 - 03 - 11 - 13 1357 1 X Reinquished by (Signature) X Reinquished by (Signature) Recenved by (Signature)			1345		8	×	×	×				
CW 51-03-11-13 1357 1 1 X A Comments/Special Instructions (signature) A · w 2 X Relinquished by (Signature) Received by (Signature)	p-t-80-15m		1321		8	×	×	X				
Comments/Special Instructions Reinquished by Received by (Signature) Printed Name: Signature Assistance Assi	CW 51-03-11-13		1321	,	1				×			
Comments/Special Instructions Relinquished by Received by Receiv	(WS1 - TB-01	>		>	2	×					-	
TPH-Ox Lit silica Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Company: Company: Company: Company: Date & Time: Printed Name: Prin	Comments/Special Instructions	Relinquished by (Signature)	1	1	Received by (Signature)	l	\langle	Relin	quished by		Received by (Signature)	
Date & Time: Date & Time: Date		Printed Name	N		٦		0	Print	ed Name:		Printed Name:	
Date & Time: Da		Company:			1	\{\frac{1}{2}\}	9	Com	pany:		Company.	
		Date & Time:	(4) 5	_	Date & Time	76.00 ZE.00	301	Date Date	& Time:		Date & Time:	
												,

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client An C	tho r	Project Name	Cent c	<u>u 1</u>	gte for
COC No(s).	(, NA	Delivered by Fed UPS C	ourier Hand De	elivered Other:	
Assigned ARI Job No	VCVI	Tracking No: 75 37	3687	1481	NA
Preliminary Examination Phase:	•				
Were intact, properly signed and	dated custody seals attached to	the outside of to cooler?		YES	(No
Were custody papers included with	th the cooler?	.,		XEST?	NO
Were custody papers properly fille	ed out (ink, signed, etc.)			YE8	NO
Temperature of Cooler(s) (°C) (re	commended 2 0-6.0 °C for cher	mistry) 3.8		-	
If cooler temperature is out of con			Temp Gun	ID# 508	7795
Cooler Accepted by	17			•	
		and attach all shipping documen			
Log-In Phase:	 				·
Was a temperature blank included	d in the cooler?			YES	NO
What kind of packing material v	vas used? Bubole Wrap	Wet Ice Gel Packs Baggies Foa	ım Block Pape	r Other:	
Was sufficient ice used (if approp	riate)?		NA	YES	NO
Were all bottles sealed in individu	al plastic bags?			YES	NO
Did all bottles arrive in good cond	lition (unbroken)?			YES	NO
Were all bottle labels complete ar	nd legible?	······································		E si	NO
Did the number of containers liste	ed on COC match with the numb	per of containers received?		YEX	(10) -
Did all bottle labels and tags agre	e with custody papers?			YES	NO
Were all bottles used correct for t	he requested analyses?			ÆŞ	NO
	. ,	eservation sheet, excluding VOCs).	MA	YES	NO
Were all VOC vials free of air bub			NA	YE8	NO
Was sufficient amount of sample				₩ E S	NO
	_		NA		-25-n
Was Sample Split by ARI	YES Date/Time	Equipment		_ Split by	
Samples Logged by	TS Date	10,21-n_Time	143	٥	
· 55 7		er of discrepancies or concerns *			
Samula ID as Battle					
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sar	nple ID on CO	C
Additional Notes, Discrepancie	s, & Resolutions;			<i>(</i>) <i>(</i>)	- 7-6
MUSI-TB-01 N	of marked on the	only 1) voas	tor	CW3 1-0	3-1 9
BY TOHG LOGGE	right THET PRI	J			
ART PM W	es, & Resolutions; not Marked on COC to TPHG Per blockers				
57 50					
Small Air Bubbles Peabubb 2mm 2-4 mm		Small → "sm"			
• • •	•	Peabubbles → "pb"		1,	
The second secon		Large → "lg"			
		Headspace → "hs"			

0016F 3/2/10

Cooler Receipt Form

Revision 014

UPUS: BBBBE

Case Narrative, Data Qualifiers, Control Limits

ARI Job ID: VP40, VP41

VP40:00007

Case Narrative

Client: Anchor QEA

Project: Central Waterfront Shoreline Investigation

ARI Job Nos.: VP40 & VP41

Sample receipt

Four soil samples and a trip blank were received on October 26, 2012 under ARI job VP40. The cooler temperature measured by IR thermometer following ARI SOP was 4.1°C. One sample was archived upon receipt. For further details regarding sample receipt, please refer to the Cooler Receipt Form.

Nine soil samples and a trip blank were received on October 26, 2012 under ARI job VP41. The cooler temperature measured by IR thermometer following ARI SOP was 3.8°C. Select samples were archived upon receipt. For further details regarding sample receipt, please refer to the Cooler Receipt Form.

BETX by SW8260C

The samples were analyzed within the method recommended holding times.

Initial and continuing calibrations were within method requirements for requested compounds. Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blanks were clean at the reporting limits. The LCS and LCSD percent recoveries were within control limits.

Acid/Silica Cleaned NWTPH-Dx

The samples and associated laboratory QC were extracted and analyzed within the method recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits. The LCS and LCSD percent recoveries were within control limits.

The matrix spike and matrix spike duplicate percent recoveries were within advisory control limits.

Case Narrative VP40 & VP41

Page 1 of 2

NWTPH-Gx

The samples were analyzed within the method recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limit. The LCS and LCSD percent recoveries were within control limits.

Metals by SW6010C/7471A

The samples and associated laboratory QC were digested and analyzed within method recommended holding times.

Copper was present in the method blank at a level that was greater than the reporting limit. All samples had copper detections greater than ten times the level found in the method blank. No corrective action was taken.

The LCS percent recoveries were within control limits.

The matrix spike percent recovery of antimony fell outside the control limits low for sample CWS1-04-2-4. A post digestion spike was performed and the recovery was within control limits. All relevant data have been flagged with an "N" qualifier on the Form V. No further corrective action was taken.

Case Narrative VP40 & VP41

Page 2 of 2

unue mange

Sample ID Cross Reference Report

ARI Job No: VP40 Client: Anchor QEA LLC Project Event: N/A

Project Name: Central Waterfront Shoreline Inves.

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	CWS1-04-2-4	VP40A	12-21289	Soil	10/25/12 14:49	10/26/12 10:00
2.	CWS1-04-6-8	VP40B	12-21290	Soil	10/25/12 14:59	10/26/12 10:00
3.	CWS1-04-13.5-15	VP40C	12-21291	Soil	10/25/12 15:03	10/26/12 10:00
4.	CWS1-04-18.5-20	VP40D	12-21292	Soil	10/25/12 15:31	10/26/12 10:00
5.	CWS1-TB-01	VP40E	12-21293	Water	10/25/12	10/26/12 10:00

Printed 10/26/12 Page 1 of 1

upua aaste

Sample ID Cross Reference Report

ARI Job No: VP41 Client: Anchor QEA LLC Project Event: N/A

Project Name: Central Waterfront Shoreline Inves.

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	CWS1-02-1-3	VP41A	12-21279	Soil	10/25/12 09:32	10/26/12 10:00
2.	CWS1-02-7-8	VP41B	12-21280	Soil	10/25/12 09:37	10/26/12 10:00
3.	CWS1-02-12-13	VP41C	12-21281	Soil	10/25/12 09:42	10/26/12 10:00
4.	CWS1-01-3-5	VP41D	12-21282	Soil	10/25/12 12:01	10/26/12 10:00
5.	CWS1-01-11-13	VP41E	12-21283	Soil	10/25/12 12:06	10/26/12 10:00
6.	CWS1-01-13-15	VP41F	12-21284	Soil	10/25/12 12:12	10/26/12 10:00
7.	CWS1-03-2-4	VP41G	12-21285	Soil	10/25/12 13:45	10/26/12 10:00
8.	CWS1-03-7-9	VP41H	12-21286	Soil	10/25/12 13:51	10/26/12 10:00
9.	CWS1-03-11-13	VP41I	12-21287	Soil	10/25/12 13:57	10/26/12 10:00
10.	CWS1-TB-01	VP41J	12-21288	Water	10/25/12	10/26/12 10:00

Printed 10/26/12 Page 1 of 1

VPUG: GGG11

Data Reporting Qualifiers Effective 2/14/2011

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).

- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

DL ¹ LOD ¹ , LOQ ¹ and Control Limits Summary VOA Analysis of Soil (EPA Method 8260C)						
Analyte	DL ^{1,5} µg/kg	LOD ¹ µg/kg	LOQ ¹ µg/kg	LCS Recovery ^{2,}	Replicate RPD ³	
Dichlorodifluoromethane	0.207	0.5	1.0	67 – 142	≤ 40	
Chloromethane	0.263	0.5	1.0	65 – 129	≤ 40	
Vinyl Chloride	0.235	0.5	1.0	74 – 134	≤ 40	
Bromomethane	0.187	0.5	1.0	40 – 172	≤ 40	
Chloroethane	0.462	0.5	1.0	53 – 154	≤ 40	
Trichlorofluoromethane	0.266	0.5	1.0	57 – 161	≤ 40	
Acrolein*	3.809	25	50.0	60 – 130	≤ 40	
Acetone*	0.482	2.5	5.0	48 – 132	≤ 40	
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.287	1.0	2.0	72 – 142	≤ 40	
1,1-Dichloroethene	0.336	0.5	1.0	73 – 138	≤ 40	
Bromoethane	0.440	1.0	2.0	74 – 132	≤ 40	
lodomethane (Methyl lodide)	0.215	0.5	1.0	34 – 181	≤ 40	
Methylene Chloride	0.635	1.0	2.0	61 – 128	≤ 40	
Carbon Disulfide	0.559	1.0	1.0	72 – 146	≤ 40	
Acrylonitrile	1.026	2.5	5.0	59 – 124	≤ 40	
Methyl-t-butyl ether (MTBE)	0.231	0.5	1.0	68 – 124	≤ 40	
trans-1,2-Dichloroethene	0.266	0.5	1.0	73 – 131	≤ 40	
Vinyl Acetate	0.381	2.5	5.0	54 – 138	≤ 40	
1,1-Dichloroethane	0.203	0.5	1.0	65 – 139	≤ 40	
2-Butanone*	0.513	2.5	5.0	64 – 120	≤ 40	
2,2-Dichloropropane	0.292	0.5	1.0	77 – 137	≤ 40	
cis-1,2-Dichloroethene	0.240	0.5	1.0	75 – 124	≤ 40	
Chloroform	0.234	0.5	1.0	75 – 126	≤ 40	
Bromochloromethane	0.323	0.5	1.0	69 – 133	≤ 40	
1,1,1-Trichloroethane	0.226	0.5	1.0	78 – 133	≤ 40	
1,1-Dichloropropene	0.312	0.5	1.0	80 – 123	≤ 40	
Carbon Tetrachloride	0.213	0.5	1.0	76 – 136	≤ 40	
1,2-Dichloroethane	0.191	0.5	1.0	77 – 120	≤ 40	
Benzene	0.296	0.5	1.0	80 - 120	≤ 40	
Trichloroethene	0.212	0.5	1.0	80 – 120	≤ 40	
1,2-Dichloropropane	0.162	0.5	1.0	74 – 120	≤ 40	
Bromodichloromethane	0.254	0.5	1.0	80 – 122	≤ 40	
Dibromomethane	0.147	0.5	1.0	80 – 120	≤ 40	

Upus aceis

	LOQ ¹ and Co alysis of Soil				
Analyte	DL ^{1,5} µg/kg	LOD ¹ µg/kg	LOQ ¹ µg/kg	LCS Recovery ²	Replicate RPD ³
2-Chloroethyl Vinyl Ether	0.276	2.5	5.0	20 – 157	≤ 40
4-Methyl-2-Pentanone*	0.420	2.5	5.0	70 – 124	≤ 40
cis-1,3-Dichloropropene	0.226	0.5	1.0	80 – 124	≤ 40
Toluene	0.151	0.5	1.0	78 – 120	≤ 40
trans-1,3-Dichloropropene	0.216	0.5	1.0	80 - 126	≤ 40
1,1,2-Trichloroethane	0.286	0.5	1.0	77 – 120	≤ 40
1,2-Dibromoethane (Ethylene Dibromide)	0.176	0.5	1.0	79 – 120	≤ 40
2-Hexanone*	0.439	2.5	5.0	62 – 128	≤ 40
1,3-Dichloropropane	0.209	0.5	1.0	77 – 120	≤ 40
Tetrachloroethene	0.257	0.5	1.0	76 – 131	≤ 40
Dibromochloromethane	0.266	0.5	1.0	77 – 123	≤ 40
Chlorobenzene	0.219	0.5	1.0	80 – 120	≤ 40
1,1,1,2-Tetrachloroethane	0.233	0.5	1.0	80 – 120	≤ 40
Ethyl Benzene	0.202	0.5	1.0	80 – 120	≤ 40
m,p-Xylene	0.392	0.5	1.0	80 – 123	≤ 40
o-Xylene	0.224	0.5	1.0	80 – 120	≤ 40
Styrene	0.138	0.5	1.0	80 – 122	≤ 40
Bromoform	0.297	0.5	1.0	63 – 120	≤ 40
Isopropyl Benzene	0.233	0.5	1.0	77 – 127	≤ 40
1,1,2,2-Tetrachloroethane	0.253	0.5	1.0	71 – 120	≤ 40
1,2,3-Trichloropropane	0.517	1.0	2.0	75 – 120	≤ 40
trans-1,4-Dichloro-2-Butene	0.437	2.5	5.0	62 – 127	≤ 40
n-Propyl Benzene	0.272	0.5	1.0	76 – 126	≤ 40
Bromobenzene	0.153	0.5	1.0	75 – 120	≤ 40
1,3,5-Trimethylbenzene	0.254	0.5	1.0	77 – 126	≤ 40
2-Chlorotoluene	0.300	0.5	1.0	76 – 120	≤ 40
4-Chlorotoluene	0.277	0.5	1.0	75 – 121	≤ 40
t-Butylbenzene	0.306	0.5	1.0	77 – 125	≤ 40
1,2,4-Trimethylbenzene	0.230	0.5	1.0	77 – 125	≤ 40
s-Butylbenzene	0.240	0.5	1.0	77 – 127	≤ 40
4-Isopropyl Toluene	0.236	0.5	1.0	78 – 131	≤ 40
1,3-Dichlorobenzene	0.227	0.5	1.0	76 – 120	≤ 40
1,4-Dichlorobenzene	0.232	0.5	1.0	75 – 120	≤ 40

Version 001 Page 2 of 3 7/30/12

upus aasis

DL ¹ LOD ¹ , LOQ ¹ and Control Limits Summary VOA Analysis of Soil (EPA Method 8260C)						
Analyte	DL ^{1,5} µg/kg	LOD ¹ µg/kg	LOQ ¹ µg/kg	LCS Recovery ^{2,}	Replicate RPD ³	
n-Butylbenzene	0.262	0.5	1.0	75 – 134	≤ 40	
1,2-Dichlorobenzene	0.293	0.5	1.0	77 – 120	≤ 40	
1,2-Dibromo-3-Chloropropane	0.586	2.5	5.0	61 – 128	≤ 40	
1,2,4-Trichlorobenzene	0.332	2.5	5.0	75 – 130	≤ 40	
Hexachloro-1,3-Butadiene	0.410	2.5	5.0	72 – 135	≤ 40	
Naphthalene	0.429	2.5	5.0	71 – 122	≤ 40	
1,2,3-Trichlorobenzene	0.305	2.5	5.0	76 – 122	≤ 40	
Surrogate Standards			MB/LCS	Samples	RPD	
1,2-Dichloroethane-d₄			80 – 122	80 – 149	≤ 40	
1,2-Dichlorobenzene-d₄			80 – 120	80 – 120	≤ 40	
Toluene-d ₈			80 – 120	77 – 120	≤ 40	
4-Bromofluorobenzene			80 – 120	80 – 120	≤ 40	

(1) Detection Limit (DL), Limit of Detection (LOD) and Limit of Quantitation (LOQ) are defined in ARI SOP 1018S

(2) Control limits calculated using all data from 1/1/12 through 5/31/12.

(3) Relative Percent Difference between analytes in replicate analyzes. If Co and Co are the concentrations of the original and duplicate respectively then

 $RPD = \frac{\left|C_O - C_D\right|}{\frac{C_O + C_D}{2}} \times 100$

(4) Highlighted control limits (bold font) are adjusted from the calculated values to reflect that:

a. ARI does not use control limits < 10 for the lower limit or < 100 for the upper limit or

b. Control limits for analyzes with no separate preparation procedure are adjusted to reflect the minimum uncertainty in the calibration of the instrument allowed by the referenced analytical method.

(5) MDL study QD19 - 3/8/10

Version 001 Page 3 of 3 7/30/12

VPHG: 00017

Quality Control Criteria Total Petroleum Hydrocarbons (Diesel & Motor Oil)

Analysis	5	DL ¹	LOD1	LOQ ²	Spike % R	ecovery Cont	trol Limits ³	ppp4
Code	Analyte ⁵	ppm	ppm	ppm	LCS	MB/LCS Surrogate	Sample Surrogate	RPD⁴
HCIWVX	NWTPH-HCID – Water Samples	_	-	0.50 ⁷		-	50-150	≤ 40
HCISVX	NWTPH-HCID - Solid Samples			50 ⁷			50-150	340
Aqueous Sar	nples – No Extract Clean-up – Sepai	atory Funne	l Extraction	- 500 to 1.0	mL			
DIESWI	DRO – NWTPH-Dext (C ₁₂ -C ₂₄)	0.022	0.05	0.1	64-112	50-150	50-150	
AK2WSI	DRO – AK102 (C ₁₀ -C ₂₅)	0.022	0.05	0.1	75-125 ⁶	60-120	50-150	≤ 40
OILWSI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	0.044	0.1	0.2	60 – 130 ⁸	50-150	50-150	340
AK3WSI	RRO – AK103 (C ₂₅ -C ₃₆)	0.030 ⁹	0.1	0.2	60-120 ⁶	60-120	50-150	
Aqueous Sar	nples – With Acid and/or Silica Gel (Clean-up – S	eparatory F	unnel Extra	ction - 500 t	o 1.0 mL		
DIESWI	DRO – NWTPH-Dext (C ₁₂ -C ₂₄)	0.039	0.05	0.1	61-104	50-150	50-150	
AK2WSI	DRO – AK102 (C ₁₀ -C ₂₅)	0.042	0.05	0.1	75-125 ⁶	60-120	50-150	≤ 40
OILWSI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	0.010	0.1	0.2	60 – 130 ⁸	50-150	50-150] = 40
AK3WSI	RRO – AK103 (C ₂₅ -C ₃₆)	0.030 ⁸	0.1	0.2	60-120 ⁶	60-120	50-150	
Solid Matrix	Samples – No Extract Clean-up – Mi	crowave Ext	raction 10	g to 1 mL				
DIESMI	DRO – NWTPH-Dext (C ₁₂ -C ₂₄)	1.35	2.5	5	62-119	50-150	50-150	
DIESMI	DRO – NWTPH-Dext Jet A	2.22 ¹¹	2.5	5	60 – 130 ⁸	50-150	50-150	
AK2SMI	DRO – AK102 (C ₁₀ -C ₂₅)	2.43	2.5	5	75-125 ⁶	60-120	50-150	≤ 40
OILSMI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	2.48	5	10	60 – 130 ⁸	50-150	50-150	
AK3SMI	RRO – AK103 (C ₂₅ -C ₃₆)	0.665 ⁹	5	10	60-120 ⁶	60-120	50-150	
Solid Matrix	Samples – With Acid and/or Silica G	el Clean-up	- Microwave	Extraction	– 10 g to 1 r	nL	-	
DIESMI	DRO – NWTPH-Dext (C ₁₂ -C ₂₄)	1.28	2.5	5	60-108	50-150	50-150	
AK2SMI	DRO – AK102 (C ₁₀ -C ₂₅)	2.06	2.5	5	75-125 ⁶	60-120	50-150	≤ 40
OILSMI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	1.57	5	10	60 – 130 ⁸	50-150	50-150] = 40
AK3SMI	RRO – AK103 (C ₂₅ -C ₃₆)	0.665 ¹⁰	5	10	60-120 ⁶	60-120	50-150	

- (1) DL (Detection Limit) and LOD (Limit of Detection) as defined in ARI SOP 1018S.
- (2) Limit of Quantitation as defined in ARI SOP 1018S. The spike concentration used to determine the DL and the concentration of the lowest standard used to calibrate the GC-FID instrument.
- (3) All surrogate recovery limits are specified in the published methods (AK102, AK103 & NWTPH-Dext). The surrogate standard is o-Terphenyl.
- (4) Acceptance criteria for the relative percent difference (RPD) between analytes in replicate analyzes. If C_O and C_D are the concentrations of the original and duplicate respectively then $RPD = \frac{|C_O C_D|}{\frac{C_O + C_D}{2}} x 100$
- (5) DRO = Diesel Range Organics and RRO = Residual Range Organics as defined in the methods referenced in footnote 3.
- (6) Method specified LCS acceptance limits.
- (7) Method specified reporting limits
- (8) Default LCS control limits pending calculation of historic limits
- (9) MDL study QD55 completed 2/12/10
- (10) MDL study QD35 completed 1/29/10
- (11) LOD Study UI44 completed 2/28/12

Version 002 Page 1 of 1 3/20/12

upua aaas

Quality Control Criteria Gasoline and BTEX

		- 1	1	4	Spike % R	ecovery Con	trol Limits	- 3
Method	Analyte	DL ¹	LOD ¹	LOQ1	LCS	MB/LCS Surrogate	Sample Surrogate	RPD ³
Aqueous Sa	mples 5 mL purge volume (DL, LOD 8	LOQ value	es in µg/L (ppb) for BTE	X and mg/L	(ppm) for gas	ioline
NWTPH-G	Toluene – Naphthalene	0.057	0.125	0.25	80 – 120			
8015B	2-methylpentane – 1,2,4-Trimethylbenzene	0.031	0.125	0.25	80 – 120			
WA-TPH-G	Toluene – nC ₁₂)	0.087	0.125	0.25	80 – 120			≤ 40
AK-101	nC ₆ – nC ₁₂	0.032	0.050	0.10	80 – 120	-]
	Trifluorotoluene (TFT)					80 - 120	80 120	
	Bromobenzene			-		80 - 120	80 – 120	
8021B	Benzene	0.094	0.5	1.0	76 – 120			
8021B	Toluene	0.113	0.5	1.0	77 – 122			1
8021B	Ethylbenzene	0.117	0.5	1.0	68 – 120	_		1
8021B	m/p-Xylene	0.265	1.0	2.0	75 – 120			≤ 40
8021B	o-Xylene	0.136	0.5	1.0	75 – 121]
	Trifluorotoluene (TFT)				_	80 – 120	80 - 120	
	Bromobenzene		_			80 – 120	77 - 120	
Solid Sampl	es - (DL, LOD & LOQ value	s in µg/kg (ppb) for B1	EX and m	g/kg (ppm) fo	r gasoline		
NWTPH-G	Toluene – Naphthalene	1.66	2.5	5	80 – 120			
8015B	2-methylpentane – 1,2,4-Trimethylbenzene	1.57	2.5	5	80 – 120			
WA-TPH-G	Toluene – nC ₁₂)	1.54	2.5	5	80 – 120	-		≤ 40
AK-101	nC ₆ - nC ₁₂	1.84	2.5	5	80 – 127	•		
	Trifluorotoluene (TFT)			-		80 - 120	65-128]
	Bromobenzene					80 - 120	52-149	
8021B	Benzene	4.59	12.5	25	78 – 120			
8021B	Toluene	7.13	12.5	25	80 – 120			1
8021B	Ethylbenzene	4.98	12.5	25	73 – 120			
8021B	m/p-Xylene	11.9	25.0	50	79 – 120			≤ 40
8021B	o-Xylene	6.23	12.5	25	80 – 120]
	Trifluorotoluene (TFT)	-	-			80 - 120	69 – 126	
	Bromobenzene	_				80 - 120	49 – 143]

⁽¹⁾ Detection Limit (DL), Limit of Detection (LOD) and Limit of Quantitation (LOQ) as defined in ARI SOP 1018S.

(4) Default control limits pending sufficient data to calculate historic limits.


UPLA: BABIS

⁽²⁾ Highlighted control limits (bold font) are adjusted from the calculated values as follows:

a) Highlighted control limits (**bold font**) adjusted to demonstrate that ARI does not use control limits < 10 for the lower limit or < 100 for the upper limit.

b) Control limits for analytes with no separate preparation procedure are adjusted to reflect the minimum uncertainty in the calibration of the instrument allowed by the referenced analytical method.

⁽³⁾ Acceptance criteria for the relative percent difference (RPD) between analytes in replicate analyzes. If C_O and C_D are the concentrations of the original and duplicate respectively then $RPD = \frac{|C_O - C_D|}{|C_O + C_D|} x 100$

Quality Control Parameters for Metals Analysis-ICP-OES 200.7/6010C

	Aqu	eous Samp	oles ²	Spike R	ecovery	_	Solids ³	Tissue⁴
Analyte	DL¹ µg/L	LOD¹ µg/L	LOQ¹ µg/L	Matrix Spike	LCS	RPD ⁵	LOQ mg/kg	LOQ mg/kg
Aluminum	7.57	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Antimony	6.28	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Arsenic	3.33	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Barium	1.33	1.5	3.0	75 – 125	80 – 120	≤ 20	0.3	0.06
Beryllium	0.16	0.5	1.0	75 – 125	80 – 120	≤ 20	0.1	0.02
Boron	7.39	10	20	75 – 125	80 – 120	≤ 20	2.0	0.4
Cadmium	0.18	0.5	2.0	75 – 125	80 – 120	≤ 20	0.2	0.04
Calcium	11.27	25	50	75 ~ 125	80 – 120	≤ 20	5.0	1.0
Chromium	1.24	2.5	5.0	75 – 125	80 – 120	≤ 20	0.5	0.1
Cobalt	0.27	1.5	3.0	75 – 125	80 – 120	≤ 20	0.3	0.06
Copper	0.92	1.0	2.0	75 – 125	80 – 120	≤ 20	0.2	0.04
Iron	7.50	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Lead	1.55	10	20	75 – 125	80 – 120	≤ 20	2.0	0.4
Magnesium	9.61	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Manganese	0.28	0.5	1.0	75 – 125	80 – 120	≤ 20	0.1	0.02
Molybdenum	0.79	2.5	5.0	75 – 125	80 – 120	≤ 20	0.5	0.1
Nickel	3.86	5.0	10	75 – 125	80 – 120	≤ 20	1.0	0.2
Potassium	65.70	250	500	75 – 125	80 – 120	≤ 20	50	10
Selenium	4.99	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Silicon	8.17	30	60	75 – 125	80 – 120	≤ 20	(6)	(6)
Silver	0.43	1.5	3.0	75 – 125	80 – 120	≤ 20	0.3	0.06
Sodium	11.35	250	500	75 – 125	80 – 120	≤ 20	50	10
Strontium	0.09	1.0	1.0	75 – 125	80 – 120	≤ 20	0.1	0.02
Thallium	3.10	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Tin	1.41	5.0	10	75 – 125	80 – 120	≤ 20	1.0	0.2
Titanium	2.11	2.5	5.0	75 – 125	80 – 120	≤ 20	0.5	0.01
Vanadium	0.27	1.5	3.0	75 – 125	80 120	≤ 20	0.3	0.06
Zinc	1.45	5.0	10	75 – 125	80 – 120	≤ 20	1.0	0.2

- (1) Detection Limit (DL), Limit of Detection Limit (LOD) and Limit of Quantitation (LOQ) as defined in ARI SOP 1018S
- (2) 50 mL sample and 50 mL final volume
- (3) Solids LOQ based on 100% solids using 1.0 g sample with 100 mL final volume.
- (4) Tissue is reported on an "as received" (wet weight) basis using 2.5 g sample with 50 mL final volume.
- (5) Relative Percent Difference between analytes in replicate analyzes. If Co and Co are the concentrations of the

original and duplicate respectively then
$$RPD = \frac{|C_o - C_D|}{\frac{C_o + C_D}{2}} x 10$$

(6) ARI does not analyze for Silicon in solids or tissue samples

Quality C	Control				Analysis I	CP-MS 20	00.8/60	20A
			eous Samp		Spike R	ecovery		Solids ³
Analyte	Mass	DL¹ µg/L	LOD¹ µg/L	LOQ¹ µg/L	Matrix Spike	LCS	RPD⁴	LOQ ¹ mg/kg
Aluminum	27	1.601	10	20.0	75 – 125	80 – 120	≤ 20	20.0
Antimony	121	0.010	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
	123	0.011	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Arsenic #1	75	0.048	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Arsenic #2	75	0.092	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Barium	135	0.020	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
	137	0.019	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Beryllium	9	0.021	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Cadmium	111	0.010	0.05	0.1	75 – 125	80 – 120	≤ 20	0.1
	114	0.005	0.05	0.1	75 – 125	80 – 120	≤ 20	0.1
Calcium	43	3.983	25	50.0	75 – 125	80 120	≤ 20	50.0
Chromium	52	0.045	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
	53	0.118	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Cobalt	59	0.011	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Copper	63	0.158	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
	65	0.236	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Iron	54	5.753	10	20.0	75 – 125	80 – 120	≤ 20	20.0
	57	3.876	10	20.0	75 – 125	80 – 120	≤ 20	20.0
Lead	208	0.046	0.05	0.1	75 – 125	80 120	≤ 20	0.1
Magnesium	24	0.297	10	20.0	75 – 125	80 – 120	≤ 20	20.0
Manganese	55	0.022	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Molybdenum	98	0.013	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Nickel	60	0.079	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
	62	0.089	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Potassium	39	2.944	10	20.0	75 – 125	80 – 120	≤ 20	20.0
Selenium	82	0.127	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
	78	0.324	0.25	2.0	75 – 125	80 – 120	≤ 20	2.0
Silver	107	0.008	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Sodium	23	2.833	50	100.0	75 – 125	80 – 120	≤ 20	100.0
Thorium ⁵	232	0.013	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Thallium	205	0.004	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Uranium ⁵	238	0.003	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Vanadium	51	0.043	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Zinc	66	0.497	2	4.0	75 – 125	80 – 120	≤ 20	4.0
	67	0.531	2	4.0	75 – 125	80 – 120	≤ 20	4.0
	68	0.524	2	4.0	75 – 125	80 – 120	≤ 20	4.0

- (1) Detection Limit (DL), Limit of Detection Limit (LOD) and Limit of Quantitation (LOQ) as defined in ARI SOP 1018S
- (2) 50 mL sample and 50 mL final volume
- (3) Solids LOQ based on 100% solids using 1.0 g sample with 100 mL final volume.
- (4) Relative Percent Difference between analytes in replicate analyzes. If Co and Co are the concentrations of the

original and duplicate respectively then
$$RPD = \frac{\left|C_O - C_D\right|}{\frac{C_O + C_D}{2}} x 100$$

UPUS BESSI

(5) ARI has no accreditation for these elements.

UDUA AAASS

Quality Co	ontrol Para	ameters fo	or Mercui	ry Analysis ເ	ising CVA	A	
	Aq	Aqueous Samples ²			Spike Recovery		
	DL ¹ µg/L	LOD ¹ µg/L	LOQ ¹ µg/L	Matrix Spike	LCS	RPD ⁵	
Mercury	0.0069	0.05	0.10 ²	75 – 125	80 – 120	≤ 20	
Mercury (low level)	0.0026	0.01	0.02 ²	75 – 125	80 – 120	≤ 20	
	Soil / Sediment Samples			Spike Re	pike Recovery		
	DL ¹ mg/kg	LOD ¹ mg/kg	LOQ ¹ mg/kg	Matrix Spike	LCS	RPD ⁵	
Mercury	0.0021	0.0125	0.025 ³	75 – 125	80 – 120	≤ 20	
	Т	issue Sample	es	Spike Re			
	DL ¹ mg/kg	LOD ¹ mg/kg	LOQ ¹ mg/kg	Matrix Spike	LCS	RPD ⁵	
Mercury	0.0021	0.0125	0.0054	75 – 125	80 – 120	≤ 20	

⁽¹⁾ Detection Limit (DL), Limit of Detection Limit (LOD) and Limit of Quantitation (LOQ) as defined in ARI SOP 1018S (2) 20 mL sample with 20 mL final volume

^{(3) 0.2} g sample with 50 mL final volume assuming 100% dry weight. Soil and sediment are reported on a dry weight basis.

⁽⁴⁾ Tissue LOQ is 0.005 mg/kg as received (wet weight) based on 1 g sample with 50 mL final volume.

⁽⁵⁾ Relative Percent Difference between analytes in replicate analyzes. If C_0 and C_D are the concentrations of the original and duplicate respectively then $RPD = \frac{|C_o - C_b|}{\frac{C_o + C_D}{2}} x_{100}$

Volatile Analysis Report and Summary QC Forms

ARI Job ID: VP40, VP41

Abrio: 0005rt

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260C Sample ID: CWS1-04-2-4

Page 1 of 1 SAMPLE

Lab Sample ID: VP40A QC Report No: VP40-Anchor QEA LLC

LIMS ID: 12-21289 Project: Central Waterfront Shoreline Inves.

Matrix: Soil

Data Release Authorized: ~~ Date Sampled: 10/25/12 Date Received: 10/26/12 Reported: 11/01/12

Sample Amount: 4.53 g-dry-wt Instrument/Analyst: NT5/PAB

Date Analyzed: 10/30/12 14:48 Purge Volume: 5.0 mL Moisture: 17.8%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.1	< 1.1	U
108-88-3	Toluene	1.1	< 1.1	U
100-41-4	Ethylbenzene	1.1	< 1.1	U
179601-23-1	m,p-Xylene	1.1	< 1.1	U
95-47-6	o-Xylene	1.1	< 1.1	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	89.8%
d8-Toluene	97.1%
Bromofluorobenzene	94.5%
d4-1,2-Dichlorobenzene	102%

TERROR BULL

FORM I

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: CWS1-04-6-8 Page 1 of 1 SAMPLE

Lab Sample ID: VP40B LIMS ID: 12-21290

Matrix: Soil

Data Release Authorized: ~~~

Reported: 11/01/12

Instrument/Analyst: NT5/PAB Date Analyzed: 10/30/12 15:11

Date Sampled: 10/25/12 Date Received: 10/26/12

Sample Amount: 4.27 g-dry-wt

QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Purge Volume: 5.0 mL Moisture: 24.1%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.2	< 1.2	
108-88-3	Toluene	1.2	0.6	J
100-41-4	Ethylbenzene	1.2	< 1.2	U
179601-23-1	m,p-Xylene	1.2	< 1.2	U
95-47-6	o-Xvlene	1.2	< 1.2	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	91.2%
d8-Toluene	97.5%
Bromofluorobenzene	97.9%
d4-1,2-Dichlorobenzene	99.3%

UPUS: BESE FORM I

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: CWS1-04-13.5-15 Page 1 of 1 SAMPLE

Lab Sample ID: VP40C QC Report No: VP40-Anchor QEA LLC LIMS ID: 12-21291

Project: Central Waterfront Shoreline Inves.

ANALYTICAL RESOURCES

Matrix: Soil Data Release Authorized: Date Sampled: 10/25/12 Reported: 11/01/12 Date Received: 10/26/12

Instrument/Analyst: NT5/PAB

Sample Amount: 4.02 g-dry-wt Purge Volume: 5.0 mL Moisture: 19.4% Date Analyzed: 10/30/12 15:33

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.2	17	
108-88-3	Toluene	1.2	1.1	J
100-41-4	Ethylbenzene	1.2	< 1.2	U
179601-23-1	m,p-Xylene	1.2	< 1.2	U
95-47-6	o-Xylene	1.2	< 1.2	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	85.8%
d8-Toluene	96.9%
Bromofluorobenzene	97.4%
d4-1,2-Dichlorobenzene	101%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260C Sample ID: CWS1-TB-01

Page 1 of 1 SAMPLE

Lab Sample ID: VP40E LIMS ID: 12-21293

Matrix: Water

Data Release Authorized: \textbf{NW} Reported: 11/01/12

Instrument/Analyst: NT5/PAB Date Analyzed: 10/30/12 15:56 QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

Sample Amount: 5.00 mL Purge Volume: 5.0 mL

CAS Number	Analyte	LOQ	Result	Q
71-43-2	Benzene	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

85.2%
97.4%
100%
97.0%

UPUG: 80826

FORM I

VOA SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

ARI ID	Client ID	Level	DCE	TOL	BFB	DCB	TOT OUT
VP40A	CWS1-04-2-4	Tarr	00 00	07 10	04 50	1000	0
		Low	89.8%	97.1%	94.5%	102%	0
VP40B	CWS1-04-6-8	Low	91.2%	97.5%	97.9%	99.3%	0
MB-103012A	Method Blank	Low	84.0%	97.6%	98.8%	97.6%	0
LCS-103012A	Lab Control	Low	80.1%	97.6%	99.0%	95.6%	0
LCSD-103012A	Lab Control Dup	Low	83.6%	96.8%	100%	96.5%	0
VP40C	CWS1-04-13.5-15	Low	85.8%	96.9%	97.4%	101%	0
		TCS	/MD TTM	rme		OC TIME	T.C

	LCS/MB	LIMITS	QC LI	MITS
SW8260C	Low	Med	Low	Med
(DCE) = d4-1, 2-Dichloroethane	80-122	76-120	80-149	69-120
(TOL) = d8-Toluene	80-120	80-120	77-120	80-120
(BFB) = Bromofluorobenzene	80-120	80-120	80-120	76-128
(DCB) = d4-1, 2-Dichlorobenzene	80-120	80-120	80-120	80-120

Log Number Range: 12-21289 to 12-21291

RESOURCES INCORPORATED

VOA SURROGATE RECOVERY SUMMARY

QC Report No: VP40-Anchor QEA LLC Matrix: Water

Project: Central Waterfront Shoreline Inves.

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-103012A	Method Blank	5	84.0%	97.6%	98.8%	97.6%	0
LCS-103012A	Lab Control	5	80.1%	97.6%	99.0%	95.6%	Ö
LCSD-103012A	Lab Control Dup	5	83.6%	96.8%	100%	96.5%	0
VP40E	CWS1-TB-01	5	85.2%	97.4%	100%	97.0%	0
		LCS	MB LIM	ITS		QC LIMI	rs
SW8260C							
(DCE) = d4-1,	2-Dichloroethane		80-122			80-125	5
(TOL) = d8-Tc	luene		80-120			80-120)
(BFB) = Bromo	fluorobenzene		80-120			80-120)
(DCB) = d4-1,	2-Dichlorobenzene		80-120			80-120)

Prep Method: SW5030B Log Number Range: 12-21293 to 12-21293

upua naana

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Sample ID: CWS1-02-1-3

SAMPLE

Project: Central Waterfront Shoreline Inves.

Lab Sample ID: VP41A

LIMS ID: 12-21279

Matrix: Soil

Data Release Authorized: 9

Instrument/Analyst: NT5/PAB

Date Analyzed: 10/30/12 16:19

Reported: 11/01/12

. *J*

Date Sampled: 10/25/12 Date Received: 10/26/12

Sample Amount: 4.34 g-dry-wt

QC Report No: VP41-Anchor QEA LLC

Purge Volume: 5.0 mL Moisture: 7.4%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.2	1.1	J
108-88-3	Toluene	1.2	1.0	J
100-41-4	Ethylbenzene	1.2	< 1.2	U
179601-23-1	m,p-Xylene	1.2	< 1.2	U
95-47-6	o-Xvlene	1.2	< 1.2	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	90.6%
d8-Toluene	97.5%
Bromofluorobenzene	101%
d4-1,2-Dichlorobenzene	98.8%

TESSS: STON

FORM I

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Lab Sample ID: VP41B

LIMS ID: 12-21280

Matrix: Soil

Data Release Authorized:

Reported: 11/01/12

Instrument/Analyst: NT5/PAB
Date Analyzed: 10/30/12 16:42

Sample ID: CWS1-02-7-8

SAMPLE

QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

Sample Amount: 4.20 g-dry-wt

Purge Volume: 5.0 mL Moisture: 18.4%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.2	0.9	J
108-88-3	Toluene	1.2	< 1.2	U
100-41-4	Ethy1benzene	1.2	< 1.2	U
179601-23-1	m,p-Xylene	1.2	< 1.2	U
95-47-6	o-Xvlene	1.2	< 1.2	Ū

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	90.3%
d8-Toluene	98.3%
Bromofluorobenzene	99.7%
d4-1,2-Dichlorobenzene	97.9%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: CWS1-02-12-13 Page 1 of 1 SAMPLE

Lab Sample ID: VP41C LIMS ID: 12-21281

Matrix: Soil

Data Release Authorized:

Reported: 11/01/12

Instrument/Analyst: NT5/PAB Date Analyzed: 10/30/12 17:04 QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

ANALYTICAL **RESOURCES**

Date Sampled: 10/25/12 Date Received: 10/26/12

Sample Amount: 5.01 g-dry-wt

Purge Volume: 5.0 mL Moisture: 19.7%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.0	0.8	
108-88-3	Toluene	1.0	0.6	J
100-41-4	Ethylbenzene	1.0	0.6	J
179601-23-1	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	87.8%
d8-Toluene	97.5%
Bromofluorobenzene	94.0%
d4-1,2-Dichlorobenzene	105%

FORM I

VOUS: GGG33

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Sample ID: CWS1-01-3-5

SAMPLE

Project: Central Waterfront Shoreline Inves.

Lab Sample ID: VP41D LIMS ID: 12-21282

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT5/PAB

Date Analyzed: 10/30/12 17:27

Reported: 11/01/12

Date Sampled: 10/25/12 Date Received: 10/26/12

Sample Amount: 3.89 g-dry-wt

QC Report No: VP41-Anchor QEA LLC

Purge Volume: 5.0 mL Moisture: 20.7%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.3	1.2	J
108-88-3	Toluene	1.3	0.7	J
100-41-4	Ethylbenzene	1.3	< 1.3	U
179601-23-1	m,p-Xylene	1.3	< 1.3	U
95-47-6	o-Xylene	1.3	< 1.3	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	89.2%
d8-Toluene	97.7%
Bromofluorobenzene	90.4%
d4-1,2-Dichlorobenzene	96.4%

Abra: Gasari

FORM I

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C Page 1 of 1

Sample ID: CWS1-01-11-13

SAMPLE

Project: Central Waterfront Shoreline Inves.

ANALYTICAL RESOURCES

Lab Sample ID: VP41E LIMS ID: 12-21283

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT5/PAB

Date Analyzed: 10/30/12 17:50

Reported: 11/01/12

Date Sampled: 10/25/12 Date Received: 10/26/12

Sample Amount: 4.98 g-dry-wt

QC Report No: VP41-Anchor QEA LLC

Purge Volume: 5.0 mL Moisture: 22.8%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.0	< 1.0	
108-88-3	Toluene	1.0	< 1.0	Ū
100-41-4	Ethylbenzene	1.0	< 1.0	U
179601-23-1	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	91.8%
d8-Toluene	97.3%
Bromofluorobenzene	98.9%
d4-1,2-Dichlorobenzene	98.2%

VPUO:00035

FORM I

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Lab Sample ID: VP41G

Matrix: Soil

Data Release Authorized:

Reported: 11/01/12

LIMS ID: 12-21285

Instrument/Analyst: NT5/PAB
Date Analyzed: 10/30/12 18:13

Sample ID: CWS1-03-2-4 SAMPLE

QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

Sample Amount: 3.66 g-dry-wt

Purge Volume: 5.0 mL Moisture: 11.9%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.4	< 1.4	U
108-88-3	Toluene	1.4	1.6	
100-41-4	Ethylbenzene	1.4	< 1.4	U
179601-23-1	m,p-Xylene	1.4	< 1.4	U
95-47-6	o-Xylene	1.4	< 1.4	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	89.2%
d8-Toluene	97.8%
Bromofluorobenzene	100%
d4-1,2-Dichlorobenzene	99.0%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: CWS1-03-7-9 Page 1 of 1 SAMPLE

Lab Sample ID: VP41H LIMS ID: 12-21286

Matrix: Soil

Data Release Authorized:

Reported: 11/01/12

Instrument/Analyst: NT5/PAB Date Analyzed: 10/30/12 18:35 QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

Sample Amount: 4.32 g-dry-wt

Purge Volume: 5.0 mL Moisture: 28.4%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.2	2.3	
108-88-3	Toluene	1.2	2.7	
100-41-4	Ethylbenzene	1.2	0.6	J
179601-23-1	m,p-Xylene	1.2	1.6	
95-47-6	o-Xylene	1.2	0.8	J

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	88.6%
d8-Toluene	97.1%
Bromofluorobenzene	93.9%
d4-1,2-Dichlorobenzene	101%

VPUA: BABS7 FORM I

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: CWS1-TB-01 Page 1 of 1 SAMPLE

Lab Sample ID: VP41J LIMS ID: 12-21288

Matrix: Water

Data Release Authorized: W

Reported: 11/07/12

Instrument/Analyst: NT5/PAB Date Analyzed: 10/30/12 18:58 QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

Sample Amount: 5.00 mL Purge Volume: 5.0 mL

CAS Number	Analyte	roð	Result	Q
71-43-2	Benzene	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
100-41-4	Ethy1benzene	1.0	< 1.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	84.9%
d8-Toluene	98.1%
Bromofluorobenzene	102%
d4-1,2-Dichlorobenzene	96.9%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

ARI ID	Client ID	Level	DCE	TOL	BFB	DCB	TOT OUT
MB-103012A	Method Blank	Low	84.0%	97.6%	98.8%	97.6%	0
LCS-103012A	Lab Control	Low	80.1%	97.6%	99.0%	95.6%	0
LCSD-103012A	Lab Control Dup	Low	83.6%	96.8%	100%	96.5%	0
VP41A	CWS1-02-1-3	Low	90.6%	97.5%	101%	98.8%	0
VP41B	CWS1-02-7-8	Low	90.3%	98.3%	99.7%	97.9%	0
VP41C	CWS1-02-12-13	Low	87.8%	97.5%	94.0%	105%	0
VP41D	CWS1-01-3-5	Low	89.2%	97.7%	90.4%	96.4%	0
VP41E	CWS1-01-11-13	Low	91.8%	97.3%	98.9%	98.2%	0
VP41G	CWS1-03-2-4	Low	89.2%	97.8%	100%	99.0%	0
VP41H	CWS1-03-7-9	Low	88.6%	97.1%	93.9%	101%	0
		LCS	/MB LIM	ITS		QC LIMI	TS
SW8260C		Low		Med	Lo	₩ 	Med
(DCE) = d4-1,	2-Dichloroethane	80-12	2	76-120	80-1	149	69-120
(TOL) = d8-Toluene		80-12	0 8	30-120	77-	120	80-120
(BFB) = Bromo	fluorobenzene	80-12	0 8	30-120	80-1	120	76-128
(DCB) = d4-1,	2-Dichlorobenzene	80-12	0 8	30-120	80-1	120	80-120

Log Number Range: 12-21279 to 12-21286

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-103012A LCS-103012A LCSD-103012A VP41J	Method Blank Lab Control Lab Control Dup CWS1-TB-01	5 5 5 5	84.0% 80.1% 83.6% 84.9%	97.6% 97.6% 96.8% 98.1%	98.8% 99.0% 100% 102%	97.6% 95.6% 96.5% 96.9%	0 0 0 0
		LCS	S/MB LIM	ITS		QC LIMI	rs
<pre>SW8260C (DCE) = d4-1,2-Dichloroethane (TOL) = d8-Toluene (BFB) = Bromofluorobenzene (DCB) = d4-1,2-Dichlorobenzene</pre>			80-122 80-120 80-120 80-120			80-125 80-126 80-126 80-126))

Prep Method: SW5030B

Log Number Range: 12-21288 to 12-21288

upua aaaua

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: LCS-103012A Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-103012A QC Report No: VP40-Anchor QEA LLC

LIMS ID: 12-21291

Matrix: Soil

Data Release Authorized: WV

Reported: 11/01/12

Instrument/Analyst LCS: NT5/PAB

LCSD: NT5/PAB

Date Analyzed LCS: 10/30/12 11:44

LCSD: 10/30/12 12:07

Project: Central Waterfront Shoreline Inves.

Date Sampled: NA

Date Received: NA

Sample Amount LCS: 5.00 g-dry-wt

LCSD: 5.00 g-dry-wt

Purge Volume LCS: 5.0 mL

LCSD: 5.0 mL

Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	52.4	50.0	105%	53.0	50.0	106%	1.1%
Toluene	51.2	50.0	102%	51.7	50.0	103%	1.0%
Ethylbenzene	54.9	50.0	110%	55.3	50.0	111%	0.7%
m,p-Xylene	112	100	112%	113	100	113%	0.9%
o-Xylene	53.8	50.0	108%	54.4	50.0	109%	1.1%

Reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	80.1%	83.6%
d8-Toluene	97.6%	96.8%
Bromofluorobenzene	99.0%	100%
d4-1,2-Dichlorobenzene	95.6%	96.5%

FORM III UDUA: BORUI

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: LCS-103012A Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-103012A QC Report No: VP40-Anchor QEA LLC

LIMS ID: 12-21293

Matrix: Water

Data Release Authorized: Www

Reported: 11/01/12

Instrument/Analyst LCS: NT5/PAB

LCSD: NT5/PAB

Date Analyzed LCS: 10/30/12 11:44

LCSD: 10/30/12 12:07

Project: Central Waterfront Shoreline Inves.

Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 mL

LCSD: 5.00 mL

Purge Volume LCS: 5.0 mL

LCSD: 5.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	52.4	50.0	105%	53.0	50.0	106%	1.1%
Toluene	51.2	50.0	102%	51.7	50.0	103%	1.0%
Ethylbenzene	54.9	50.0	110%	55.3	50.0	111%	0.7%
m,p-Xylene	112	100	112%	113	100	113%	0.9%
o-Xylene	53.8	50.0	108%	54.4	50.0	109%	1.1%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	80.1%	83.6%
d8-Toluene	97.6%	96.8%
Bromofluorobenzene	99.0%	100%
d4-1,2-Dichlorobenzene	95.6%	96.5%

FORM III UPUR BORLE

4A VOLATILE METHOD BLANK SUMMARY

Method Blank ID.

Lab Name: ANALYTICAL RESOURCES INC

Client: ANCHOR QEA LLC

ARI Job No: VP41

Project: CENTRAL WATERFRONT

Lab File ID: MB1030

Lab Sample ID: MB1030

Date Analyzed: 10/30/12

Time Analyzed: 1229

Instrument ID: NT5

Heated Purge: (Y/N) Y

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS1030	LCS1030	LCS1030	1144
02	LCS1030	LCS1030	LCS1030A	1207
03	CWS1-02-1-3	VP41A	VP41A	1619
04	CWS1-02-7-8	VP41B	VP41B	1642
05	CWS1-02-12-1	VP41C	VP41C	1704
06	CWS1-01-3-5	VP41D	VP41D	1727
07	CWS1-01-11-1	VP41E	VP41E	1750
08	CWS1-03-2-4	VP41G	VP41G	1813
09	CWS1-03-7-9	VP41H	VP41H	1835
10	CWS1-TB-01	VP41J	VP41J	1858
11				
12				
13				
14				
15				
16 17				
18	-			
19				
20				
21				
22				·
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:		

page 1 of 1

FORM IV VOA

OLM3.2M

4A VOLATILE METHOD BLANK SUMMARY

Method Blank ID.

Lab Name: ANALYTICAL RESOURCES INC

Lab File ID: MB1030

ARI Job No: VP40

Date Analyzed: 10/30/12

Instrument ID: NT5

Client: ANCHOR QEA LLC

Project: CENTRAL WATERFRONT

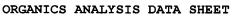
Lab Sample ID: MB1030

Time Analyzed: 1229

Heated Purge: (Y/N) Y

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	T CC1 02 0	======================================	======================================	========
02	LCS1030 LCS1030	LCS1030 LCS1030	LCS1030 LCS1030A	1144 1207
03	CWS1-04-2-4	VP40A	VP40A	1448
04	CWS1-04-6-8	VP40B	VP40B	1511
05	CWS1-04-13.5	VP40C	VP40C	1533
06	CWS1-TB-01	VP40E	VP40E	1556
07				
08				
09 10				
11				
12				
13				
14				
15				
16				
17 18				
19				
20				
21				
22				
23				
24 25				
26				
27				
28				
29				
30				


COMMENTS:		

page 1 of 1

FORM IV VOA

OLM3.2M

VENES: SESHII

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: MB-103012A Page 1 of 1

METHOD BLANK

QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

RESOURCES

INCORPORATED

Lab Sample ID: MB-103012A LIMS ID: 12-21291

Matrix: Soil

Data Release Authorized: ${\it WW}$

Instrument/Analyst: NT5/PAB Date Analyzed: 10/30/12 12:29

Reported: 11/01/12

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt Purge Volume: 5.0 mL

Moisture: NA

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
179601-23-1	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	Ū

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	84.0%
d8-Toluene	97.6%
Bromofluorobenzene	98.8%
d4-1,2-Dichlorobenzene	97.6%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: MB-103012A Page 1 of 1 METHOD BLANK

Lab Sample ID: MB-103012A QC Report No: VP41-Anchor QEA LLC

LIMS ID: 12-21288

Matrix: Water

Data Release Authorized: W

Reported: 11/07/12

Date Sampled: NA Date Received: NA

Project: Central Waterfront Shoreline Inves.

Instrument/Analyst: NT5/PAB Sample Amount: 5.00 mL Date Analyzed: 10/30/12 12:29 Purge Volume: 5.0 mL

CAS Number	Analyte	LOQ	Result	Q
71-43-2	Benzene	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	84.0%
d8-Toluene	97.6%
Bromofluorobenzene	98.8%
d4-1,2-Dichlorobenzene	97.6%

VPUG: 88846 FORM I

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: ANALYTICAL RESOURCES INC Contract: ANCHOR QEA LLC

Lab Code: ARI Case No.: CENTRAL WATERFRONT SDG No.: VP40

Lab File ID: BFB1024A BFB Injection Date: 10/24/12

Instrument ID: NT5 BFB Injection Time: 0905

GC Column: RTXVMS ID: 0.18 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 101.0% of mass 95 4.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	18.9 45.2 100.0 6.5 0.2 (0.3)1 81.9 6.0 (7.3)1 80.2 (97.9)1 5.3 (6.5)2
·	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	==========	=========	=========	========	=======
01	VSTD5	IC1024	0051024	10/24/12	1026
02	VSTD10	IC1024	0101024	10/24/12	1049
03	VSTD50	IC1024	0501024	10/24/12	1112
04	VSTD100	IC1024	1001024	10/24/12	1135
05	VSTD125	IC1024	1251024	10/24/12	1241
06	VSTD1	IC1024	0011024	10/24/12	1343
07	VSTD2	IC1024	0021024	10/24/12	1419
80					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: ANALYTICAL RESOURCES INC Contract: ANCHOR QEA LLC

Lab Code: ARI Case No.: CENTRAL WATERFRONT SDG No.: VP40

Lab File ID: BFB1030 BFB Injection Date: 10/30/12

Instrument ID: NT5 BFB Injection Time: 1009

GC Column: RTXVMS ID: 0.18 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
===== 50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 101.0% of mass 95 4.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	19.3 45.5 100.0 6.3 0.2 (0.2)1 84.2 6.1 (7.3)1 81.2 (96.5)1 5.3 (6.5)2
l	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	========	=========	=======	=======
01	VSTD50	CC1030	CC1030	10/30/12	1044
02	LCS1030	LCS1030	LCS1030	10/30/12	1144
03	LCS1030	LCS1030	LCS1030A	10/30/12	1207
04	MB1030	MB1030	MB1030	10/30/12	1229
05	CWS1-04-2-4	VP40A	VP40A	10/30/12	1448
06	CWS1-04-6-8	VP40B	VP40B	10/30/12	1511
07	CWS1-04-13.5-15	VP40C	VP40C	10/30/12	1533
08	CWS1-TB-01	VP40E	VP40E	10/30/12	1556
09					
10					
11					
12					
13					
14					
15					
16					
17 18					
19					
20					
21					
22					
22					

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: ANALYTICAL RESOURCES INC Contract: ANCHOR QEA LLC

Lab Code: ARI Case No.: CENTRAL WATERFRONT SDG No.: VP41

Lab File ID: BFB1030 BFB Injection Date: 10/30/12

Instrument ID: NT5 BFB Injection Time: 1009

GC Column: RTXVMS ID: 0.18 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 101.0% of mass 95 4.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	19.3 45.5 100.0 6.3 0.2 (0.2)1 84.2 6.1 (7.3)1 81.2 (96.5)1 5.3 (6.5)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	HD3				
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	==========	========	=========	========	=======
01	VSTD50	CC1030	CC1030	10/30/12	1044
02	LCS1030	LCS1030	LCS1030	10/30/12	1144
03	LCS1030	LCS1030	LCS1030A	10/30/12	1207
04	MB1030	MB1030	MB1030	10/30/12	1229
05	CWS1-02-1-3	VP41A	VP41A	10/30/12	1619
06	CWS1-02-7-8	VP41B	VP41B	10/30/12	1642
07	CWS1-02-12-13	VP41C	VP41C	10/30/12	1704
08	CWS1-01-3-5	VP41D	VP41D	10/30/12	1727
09	CWS1-01-11-13	VP41E	VP41E	10/30/12	1750
10	CWS1-03-2-4	VP41G	VP41G	10/30/12	1813
11	CWS1-03-7-9	VP41H	VP41H	10/30/12	1835
12	CWS1-TB-01	VP41J	VP41J	10/30/12	1858
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Calibration Date: 10/24/12

LAB FILE ID: RF1: 0011024 RF2: 0021024 RF5: 0051024

RF10: 0101024 RF50: 0501024

COMPOUND	וידום ו				I
	RF1	RF2	RF5	RF10	RF50
=======================================			======	l .	
Chloromethane	1.444				
Vinyl Chloride	1.234	_			
Bromomethane	0.855				
Chloroethane	0.933				
Trichlorofluoromethane	1.274				
Acrolein	0.177				
112Trichloro122Trifluoroetha			0.913	0.602	0.705
Acetone	0.382				
1,1-Dichloroethene	0.899	0.966			0.758
Bromoethane	0.622		0.728	0.428	0.556
Iodomethane	0.516		0.722	0.465	0.901
Methylene Chloride	0.998		1.076	1.016	0.886
Acrylonitrile	0.357	0.332	0.393	0.381	0.367
Carbon Disulfide	2.919	3.367	3.325	2.170	2.635
Frans-1,2-Dichloroethene	0.955	1.118	1.108	1.052	0.863
Vinvl Acetate	1.515	1.532	1.721	1.699	1.623
l,1-Dichloroethane	1.830	2.142	2.200	2.120	1.749
2-Butanone	0.103	0.099	0.111	0.113	0.108
2,2-Dichloropropane	1.542	1.690	1.767	1.694	1.373
Cis-1,2-Dichloroethene	0.944	1.269	1.162	1.119	0.935
Chloroform	1.681	1.847	1.930	1.894	
Bromochloromethane	0.487	0.520	0.543	0.529	
l,1,1-Trichloroethane	1.477	1.728	1.753	1.688	1.355
l,1-Dichloropropene	0.504	0.547	0.532	0.526	0.424
Carbon Tetrachloride	0.388	0.462	0.454	0.445	
1,2-Dichloroethane	0.429	0.457	0.481	0.473	0.407
Benzene	1.401	1.588	1.596		1.294
[richloroethene	0.349	0.392	0.388	0.374	0.308
1,2-Dichloropropane	0.367	0.431	0.425	0.427	0.362
Bromodichloromethane	0.394	0.450	0.450	0.450	0.396
Dibromomethane	0.169	0.177	0.192	0.190	0.171
2-Chloroethyl Vinyl Ether	0.156	0.149	0.181	0.185	
	0.116	0.127	0.143	0.148	0.144
-Methyl-2-Pentanone Lis 1,3-dichloropropene	0.530		0.594	0.588	
Coluene Coluene	0.997		1.021	1.017	0.823
Trans 1,3-Dichloropropene	0.459		0.508	0.521	0.470
2-Hexanone	0.161		0.182	0.186	0.182
	`	_			· -

FORM VI VOA

upug godsa

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Calibration Date: 10/24/12

LAB FILE ID: RF1: 0011024 RF2: 0021024 RF5: 0051024

RF10: 0101024 RF50: 0501024

					1
COMPOUND	RF1	RF2	RF5	RF10	RF50
=======================================			======		======
1,1,2-Trichloroethane	0.260		1	0.292	
1,3-Dichloropropane	0.366				
Tetrachloroethene	0.280	0.324			0.244
Chlorodibromomethane	0.200				
1,2-Dibromoethane	0.251	0.255			1
Chlorobenzene	0.714	0.819	0.778	0.775	0.646
Ethyl Benzene	1.371	1.474	1.435		1.142
1,1,1,2-Tetrachloroethane	0.213	0.252	0.256	0.256	0.218
m,p-xylene	0.508	0.533	0.535		
o-Xylene	0.443	0.508	0.501	0.503	0.423
Styrene	0.760	0.803	0.827	0.854	0.719
Bromoform	0.236	0.256	0.263	0.283	0.254
1,1,2,2-Tetrachloroethane	0.420	0.464	0.474	0.510	0.448
1,2,3-Trichloropropane	0.132	0.142	0.143	0.150	0.134
Trans-1,4-Dichloro 2-Butene	0.160	0.168	0.172	0.179	0.168
N-Propyl Benzene -	2.672	2.978	2.819	2.897	2.228
Bromobenzene	0.595	0.584	0.548	0.569	0.468
Isopropyl Benzene	2.179	2.410	2.298	2.425	1.890
2-Chloro Toluene	1.596	1.766	1.667	1.744	1.369
4-Chloro Toluene	1.685	1.824	1.733	1.788	1.424
T-Butyl Benzene	1.552	1.743	1.673	1.773	1.380
1,3,5-Trimethyl Benzene	1.802	1.975	1.931	1.975	1.583
1,2,4-Trimethylbenzene	1.796	1.998	1.882	1.961	1.580
S-Butyl Benzene	2.398	2.635	2.482	2.589	2.035
4-Isopropyl Toluene	1.953	2.122	2.032	2.085	1.685
1,3-Dichlorobenzene	1.113	1.142	1.065	1.075	0.877
1,4-Dichlorobenzene	1.170	1.223	1.087	1.097	0.896
N-Butyl Benzene	1.952	2.114	1.975	1.950	1.582
1,2-Dichlorobenzene	1.038	1.091	0.998	1.037	0.848
1,2-Dibromo 3-Chloropropane	0.086	0.075	0.078	0.085	0.082
1,2,4-Trichlorobenzene	0.854	0.800	0.703	0.699	0.618
Hexachloro 1,3-Butadiene	0.482	0.508	0.456	0.435	0.357
Naphthalene	1.945	1.507	1.478	1.545	1.421
1,2,3-Trichlorobenzene	0.790	0.683	0.660	0.647	0.585
Dichlorodifluoromethane	0.760	1.001	1.080		0.850
Methyl tert butyl ether	2.338	2.656	2.911	2.848	2.614
	======	======	======	======	======
	• ———				

FORM VI VOA

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Calibration Date: 10/24/12

LAB FILE ID: RF1: 0011024 RF2: 0021024 RF5: 0051024

RF10: 0101024 RF50: 0501024

COMPOUND	RF1	RF2	RF5	RF10	RF50
	======	======	======	======	======
d4-1,2-Dichloroethane	0.954	0.962	1.003	0.987	0.982
d8-Toluene	1.447		1.440		1.458
4-Bromofluorobenzene	0.554		0.561		0.557
d4-1,2-Dichlorobenzene	0.946		0.952		0.942
Dibromofluoromethane	0.988	1.015	1.029	0.998	1.024

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Calibration Date: 10/24/12

LAB FILE ID: RF100: 1001024 RF125: 1251024

	1	
COMPOUND	RF100	RF125
Chloromethane	1.626	1.715
Vinyl Chloride	1.617	
Bromomethane	0.693	
Chloroethane	0.644	
Trichlorofluoromethane	0.964	
Acrolein	0.196	
112Trichloro122Trifluoroetha		
	0.871	
Acetone	0.254	
1,1-Dichloroethene	0.900	
Bromoethane	0.658	0.682
Iodomethane		
Methylene Chloride	1.011	
Acrylonitrile	0.394	0.381
Carbon Disulfide	3.088	
Trans-1,2-Dichloroethene	1.054	1.133
Vinyl Acetate	1.744	
1,1-Dichloroethane	2.106	
2-Butanone	0.119	0.112
2,2-Dichloropropane	1.717	
Cis-1,2-Dichloroethene	1.109	
Chloroform	1.896	
Bromochloromethane	0.539	
1,1,1-Trichloroethane	1.705	1.811
1,1-Dichloropropene	0.536	0.581
Carbon Tetrachloride	0.460	
1,2-Dichloroethane	0.473	0.468
Benzene	1.562	1.599
Trichloroethene	0.380	0.407
1,2-Dichloropropane	0.437	0.444
Bromodichloromethane	0.471	0.474
Dibromomethane	0.195	0.190
2-Chloroethyl Vinyl Ether	0.206	0.199
4-Methyl-2-Pentanone	0.155	0.142
Cis 1,3-dichloropropene	0.617	0.624
Toluene	0.982	0.982
Trans 1,3-Dichloropropene	0.539	0.534
2-Hexanone	0.192	0.180

FORM VI VOA

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Calibration Date: 10/24/12

LAB FILE ID: RF100: 1001024 RF125: 1251024

COMPOUND	RF100	RF125
=======================================	======	======
1,1,2-Trichloroethane	0.295	0.286
1,3-Dichloropropane	0.417	0.418
Tetrachloroethene	0.300	
Chlorodibromomethane	0.249	
1,2-Dibromoethane	0.284	
Chlorobenzene	0.750	
Ethyl Benzene	1.293	1.155
1,1,1,2-Tetrachloroethane	0.241	
m,p-xylene	0.382	
o-Xylene	0.504	0.502
Styrene	0.754	0.502
Bromoform	0.310	
1,1,2,2-Tetrachloroethane	0.548	
1,2,3-Trichloropropane	0.163	
Trans-1,4-Dichloro 2-Butene	0.168	
N-Propyl Benzene	2.879	
Bromobenzene	0.605	
Isopropyl Benzene	2.491	
2-Chloro Toluene	1.784	
4-Chloro Toluene	1.689	1.692
T-Butyl Benzene	1.842	1.052
1,3,5-Trimethyl Benzene	2.020	2.392
1,2,4-Trimethylbenzene	1.955	2.392
S-Butyl Benzene	2.486	2.676
4-Isopropyl Toluene	2.149	2.070
1,3-Dichlorobenzene	1.005	1.281
1,4-Dichlorobenzene	0.964	1.133
N-Butyl Benzene	2.091	1.133
1,2-Dichlorobenzene	1.036	
1,2-Dibromo 3-Chloropropane	0.095	
1,2,4-Trichlorobenzene	0.095	
Hexachloro 1,3-Butadiene	0.759	
Naphthalene	1.614	
1,2,3-Trichlorobenzene		
	0.690	1.173
Dichlorodifluoromethane	1.110	
Methyl tert butyl ether	2.897	
	======	======
		I

FORM VI VOA

UPER REGEL

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Calibration Date: 10/24/12

LAB FILE ID: RF100: 1001024 RF125: 1251024

COMPOUND	RF100	RF125
d4-1,2-Dichloroethane d8-Toluene 4-Bromofluorobenzene	0.985 1.448 0.562	0.958 1.434 0.553
d4-1,2-Dichlorobenzene	1.032 1.024	1.020

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Calibration Date: 10/24/12

	CURVE	AVE	%RSD
COMPOUND	TYPE	RF	OR R^2
=======================================	=====	l	
Chloromethane	AVRG	1.522	10.2
Vinyl Chloride	AVRG	1.475	
Bromomethane	AVRG	0.772	
Chloroethane	AVRG	0.790	
Trichlorofluoromethane	AVRG	1.151	19.0
Acrolein	LINR		0.9973
112Trichloro122Trifluoroetha	AVRG	0.775	19.6
Acetone	AVRG	0.275	l .
1,1-Dichloroethene	AVRG	0.827	
Bromoethane	AVRG	0.624	16.4
Iodomethane	LINR		0.9920
Methylene Chloride	AVRG	1.015	6.5
Acrylonitrile	AVRG	0.372	6.0
Carbon Disulfide	AVRG	2.917	
Trans-1,2-Dichloroethene	AVRG	1.040	9.5
	AVRG	1.653	5.9
Vinyl Acetate	AVRG	2.053	9.1
2-Butanone	AVRG	0.109	6.1
2,2-Dichloropropane	AVRG	1.664	9.7
Cis-1,2-Dichloroethene	AVRG	1.122	13.0
Chloroform	AVRG	1.827	7.9
Bromochloromethane	AVRG	0.517	6.1
1,1,1-Trichloroethane	AVRG	1.645	10.0
1,1-Dichloropropene	AVRG	0.521	9.4
Carbon Tetrachloride	AVRG	0.438	10.4
1,2-Dichloroethane	AVRG	0.455	6.0
Benzene	AVRG	1.522	8.1
Trichloroethene	AVRG	0.371	8.9
1,2-Dichloropropane	AVRG	0.413	8.2
Bromodichloromethane	AVRG	0.441	7.4
Dibromomethane	AVRG	0.183	5.9
2-Chloroethyl Vinyl Ether	AVRG	0.179	11.6
4-Methyl-2-Pentanone	AVRG	0.139	9.6
Cis 1,3-dichloropropene	AVRG	0.579	
Toluene	AVRG	0.983	7.7
Trans 1,3-Dichloropropene	AVRG	0.501	6.5
2-Hexanone	AVRG	0.178	6.8
- Indicates value outsi	3 - 00	1-1	

<- Indicates value outside QC limits:
 (%RSD < 20% or R^2 > 0.990)

FORM VI VOA

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Calibration Date: 10/24/12

	CURVE	AVE	%RSD
COMPOUND	TYPE	RF	OR R^2
ELECTIONS	=====		
1,1,2-Trichloroethane	AVRG	0.280	5.4
1,3-Dichloropropane	AVRG	0.396	1
Tetrachloroethene	AVRG	0.300	
Chlorodibromomethane	AVRG	0.228	
1,2-Dibromoethane	AVRG	0.266	
Chlorobenzene	AVRG	0.751	
	AVRG	1.330	10.3
Ethyl Benzene		0.233	
1,1,1,2-Tetrachloroethane	AVRG		
m,p-xylene	AVRG	0.487	13.4
o-Xylene	AVRG	0.484	
Styrene	AVRG	0.786	
Bromoform	AVRG	0.267	
1,1,2,2-Tetrachloroethane	AVRG	0.477	9.5
1,2,3-Trichloropropane	AVRG	0.144	7.9
Trans-1,4-Dichloro 2-Butene_	AVRG	0.169	3.5
N-Propyl Benzene	AVRG	2.746	10.0
Bromobenzene	AVRG	0.561	8.9
Isopropyl Benzene	AVRG	2.282	9.7
2-Chloro Toluene	AVRG	1.654	
4-Chloro Toluene	AVRG	1.691	7.6
T-Butyl Benzene	AVRG	1.661	10.2
1,3,5-Trimethyl Benzene	AVRG	1.954	12.5
1,2,4-Trimethylbenzene	AVRG	1.910	10.0
S-Butyl Benzene	AVRG	2.472	8.7
4-Isopropyl Toluene	AVRG	2.004	8.5
1,3-Dichlorobenzene	AVRG	1.080	11.5
1,4-Dichlorobenzene	AVRG	1.081	10.6
N-Butyl Benzene	AVRG	1.944	9.8
1,2-Dichlorobenzene	AVRG	1.008	8.3
1,2-Dibromo 3-Chloropropane	AVRG	0.084	8.3
1,2,4-Trichlorobenzene	AVRG	0.739	11.3
Hexachloro 1,3-Butadiene	AVRG	0.453	11.7
Naphthalene	AVRG	1.585	11.9
1,2,3-Trichlorobenzene	AVRG	0.676	
Dichlorodifluoromethane	AVRG	0.989	
Methyl tert butyl ether	AVRG	2.732	7.7
======================================	=====		1
Z- Indicates value outsid	<u> </u>		

<- Indicates value outside QC limits:
 (%RSD < 20% or R^2 > 0.990)

FORM VI VOA

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Calibration Date: 10/24/12

	CURVE	AVE	%RSD
COMPOUND	TYPE	RF	OR R^2
=======================================	=====	=====	======
d4-1,2-Dichloroethane	AVRG	0.976	1.9
d8-Toluene	AVRG	1.443	0.6
4-Bromofluorobenzene	AVRG	0.557	0.6
d4-1,2-Dichlorobenzene	AVRG	0.966	3.5
Dibromofluoromethane	AVRG	1.014	1.5

<- Indicates value outside QC limits:
 (%RSD < 20% or R^2 > 0.990)

FORM VI VOA

upug ange

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Cont. Calib. Date: 10/30/12

Init. Calib. Date: 10/24/12 Cont. Calib. Time: 1044

	CalAmt	CC Amt	MIN	CURVE	%D or	1
COMPOUND	or ARF		RRF	TYPE	Drift	
=======================================		=====				
Chloromethane		1.4714			-3.3	
Vinyl Chloride		1.4651			-0.6	
Bromomethane		0.6338				
Chloroethane	0.790	0.8382	0.010	AVRG	6.1	
Trichlorofluoromethane		1.3262			15.2	
Acrolein		232.78			-6.9	-
112Trichloro122Trifluoroetha		0.6092			-21.4	< -
Acetone		0.2296			-16.5	1
1,1-Dichloroethene	0.826	0.6306	0.010	AVRG	-23.6	< -
Bromoethane		0.5894			-5.5	
Iodomethane		43.827			-12.3	
Methylene Chloride		0.9721			-4.2	ĺ
Acrylonitrile	0.372	0.3524	0.010	AVRG	-5.3	
Carbon Disulfide	2.917	2.2033	0.010	AVRG	-24.5	
Trans-1,2-Dichloroethene		0.9824			-5.5	
Trinyal Agototo		1.5820			-4.3	1
1,1-Dichloroethane	2.053	1.9635	0.100	AVRG	-4.4	1
2-Putanono		0.0983			-9.8	1
2,2-Dichloropropane		1.5884			-4.5	1
Cis-1,2-Dichloroethene		1.1548			2.9	ł
Chloroform		1.7472			-4.4	1
Bromochloromethane		0.4884			-5.5	1
1,1,1-Trichloroethane		1.5731			-4.4	l
1,1-Dichloropropene		0.5740			10.2	
Carbon Tetrachloride		0.5150			17.6	
1,2-Dichloroethane	0.455	0.5049	0.010	AVRG	11.0	
Benzene	1.522	1.7226	0.010	AVRG	13.2	
Trichloroethene	0.371	0.4204	0.010	AVRG	13.3	
1,2-Dichloropropane		0.4658			12.8	
Bromodichloromethane		0.5134			16.4	
Dibromomethane		0.2044			11.7	
2-Chloroethyl Vinyl Ether		0.2024			13.1	
		0.1594			14.7	
4-Methyl-2-Pentanone Cis 1,3-dichloropropene		0.6612			14.2	
Toluene		1.0749			9.3	
Trans 1,3-Dichloropropene		0.5810			16.0	
2-Hexanone	0.178		0.010		15.7	
- Evenede OC limit of 20% D						

<- Exceeds QC limit of 20% D

^{*} RF less than minimum RF

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Cont. Calib. Date: 10/30/12

Init. Calib. Date: 10/24/12 Cont. Calib. Time: 1044

	CalAmt.	CC Amt	MIN	CURVE	%D or	1
COMPOUND	or ARF		RRF	TYPE	Drift	
=======================================		======				
1,1,2-Trichloroethane		0.3113			11.2	
1,3-Dichloropropane		0.4533				İ
Tetrachloroethene		0.3362			12.1	ì
Chlorodibromomethane		0.2737			20.0	< -
1,2-Dibromoethane		0.2922			9.8	1
Chlorobenzene		0.8470			12.8	
Ethyl Benzene		1.5502			16.6	
1,1,1,2-Tetrachloroethane		0.2937			26.0	< -
m,p-xylene		0.5814			19.4	`
o-Xylene		0.5567			15.2	
Styrene		0.9415			19.8	
Bromoform		0.3277			22.7	< -
1,1,2,2-Tetrachloroethane		0.5024			5.3	
1,2,3-Trichloropropane		0.1572			9.2	
Trans-1,4-Dichloro 2-Butene		0.1916			13.4	
N-Propyl Benzene		3.1039			13.0	
Bromobenzene		0.6119			8.9	
Isopropyl Benzene	2.282	2.5748	0.010	AVRG	12.8	
2-Chloro Toluene		1.8500			11.8	ļ
4-Chloro Toluene		1.9217			13.6	1
T-Butyl Benzene		1.8868			13.7	1
1,3,5-Trimethyl Benzene		2.1640			10.7	
1,2,4-Trimethylbenzene	1.910	2.1310	0.010	AVRG	11.6	
S-Butyl Benzene		2.8270			14.4	
4-Isopropyl Toluene		2.3409			16.8	
1,3-Dichlorobenzene	1.080	1.1799	0.010	AVRG	9.2	
1,4-Dichlorobenzene	1.081	1.1974	0.010	AVRG	10.8	
N-Butyl Benzene	1.944	2.2661	0.010	AVRG	16.6	
1,2-Dichlorobenzene	1.008	1.1131	0.010	AVRG	10.4	
1,2-Dibromo 3-Chloropropane	0.084	0.0942	0.010	AVRG	12.1	
1,2,4-Trichlorobenzene	0.739	0.8250	0.010	AVRG	11.6	
Hexachloro 1,3-Butadiene		0.5121			13.0	
Naphthalene	1.585	1.6848	0.010	AVRG	6.3	-
1,2,3-Trichlorobenzene	0.676	0.7433	0.010	AVRG	10.0	1
Dichlorodifluoromethane	0.989	0.9510			-3.8	
Methyl tert butyl ether	2.732				-5.2	
	=====	=====	=====	=====	=====	
- Freeda OC limit of 20% D						

<- Exceeds QC limit of 20% D

^{*} RF less than minimum RF

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Cont. Calib. Date: 10/30/12

Init. Calib. Date: 10/24/12 Cont. Calib. Time: 1044

		CC Amt			%D or
COMPOUND	or ARF	or RF	RRF	TYPE	Drift
=======================================	=====	=====	=====	=====	=====
d4-1,2-Dichloroethane	0.976	0.8177	0.010	AVRG	-16.2
d8-Toluene		1.4045			-2.7
4-Bromofluorobenzene		0.5528			-0.6
d4-1,2-Dichlorobenzene	0.966	0.9408	0.010	AVRG	-2.6
Dibromofluoromethane	1.014	0.8210	0.010	AVRG	-19.0

Exceeds QC limit of 20% D

^{*} RF less than minimum RF

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Project Run Date: 10/30/12

		IS1(PFB)		IS2 (DFB)		IS3 (CLB)	<u> </u>
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		AKBA #	Κ1 π	AKEA #	Κ1 π	AKEA #	
	ICAL MIDPT	293920	4.68	892488	5.14	1156383	7.62
	UPPER LIMIT	587840	5.18	1784976	5.64	2312766	8.12
	LOWER LIMIT	146960	4.18	446244	4.64	578192	7.12
	HOMEK HIMII	140900	4.10	440244	4.04	3/6192	
	Sample ID					=======	=====
	sampre in						
01	LCS1030	281144	4 60	720705	[14	00.6712	======
-	·-		4.68	728785	5.14	926713	7.62
-	LCS1030	293996	4.68	771703	5.13	989066	7.62
03	MB1030	283552	4.68	735942	5.13	948724	7.62
04	CWS1-04-2-4	259219	4.68	676457	5.14	852470	7.62
05	CWS1-04-6-8	272402	4.68	714787	5.13	926552	7.62
06	CWS1-04-13.5	259707	4.69	662239	5.14	816943	7.62
07	CWS1-TB-01	291259	4.68	762172	5.13	988136	7.62
80							
09							
10							
11					·		
12							
13							
14							
15							
16				 -			
17							
18	-						
19							
20							
21							
22							

IS1 (PFB) = Pentafluorobenzene
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (CLB) = d5-Chlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Ical midpoint

* Values outside of QC limits.

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP40 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Project Run Date: 10/30/12

1.		TC4/DCD\		_				1	<u> </u>
		IS4 (DCB)	ъ.	,,	3.0.03		- D		
		AREA #	RT :	#	AREA	#	RT #	AREA #	RT #
	========	=======	=====	=	=======	==	======	=======	=====
	ICAL MIDPT	634885	9.69						
	UPPER LIMIT	1269770	10.19						
	LOWER LIMIT	317442	9.19						
	=========	========	======	=	=======	==	======		
	Sample ID			- 1				-	
		=======	======	=	=======	==	======		======
01	LCS1030	518650	9.70						
02	LCS1030	558943	9.70	1					
03	MB1030	529698	9.69	ı					
	CWS1-04-2-4	405617	9.69						
	CWS1-04-6-8	486663	9.69			_	-		
	CWS1-04-13.5	394940	9.69		•				
	CWS1-TB-01	560083	9.69					-	
08								·	
09				-					
10				-					
11				-					
12				-				-	
13				-				· 	
14				-				· 	
15				-	-			·	
								-	
16				-				.	
17				_					<u></u>
18									
19				_				.	
20				_					
21				_					
22				_					l

IS4 (DCB) = d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Ical midpoint

* Values outside of QC limits.

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP41 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Project Run Date: 10/30/12

		T 44 (DDD)		TGG (DDD)		T 4 4 4 4 5 1	 (
		IS1(PFB)		IS2 (DFB)		IS3 (CLB)	
	!	AREA #	RT #	AREA #	RT #	AREA #	RT #
	=======================================	=======	======	========	======	=======	======
	ICAL MIDPT	293920	4.68	892488	5.14	1156383	7.62
	UPPER LIMIT	587840	5.18	1784976	5.64	2312766	8.12
	LOWER LIMIT	146960	4.18	446244	4.64	578192	7.12
			======	========	======		
	Sample ID						
	=========	======	======		======	=======	=====
01	LCS1030	281144	4.68	728785	5.14	926713	7.62
02	LCS1030	293996	4.68	771703	5.13	989066	7.62
03	MB1030	283552	4.68	735942	5.13	948724	7.62
04	CWS1-02-1-3	270300	4.68	714760	5.13	932213	7.62
05				·			
	CWS1-02-7-8	286832	4.68	743076	5.13	966241	7.62
06	CWS1-02-12-1	248762	4.69	643835	5.14	799411	7.62
07	CWS1-01-3-5	280567	4.68	723986	5.13	891501	7.62
80	CWS1-01-11-1	262779	4.68	688951	5.14	890828	7.62
09	CWS1-03-2-4	280441	4.68	728272	5.14	951630	7.62
10	CWS1-03-7-9	272294	4.69	711723	5.14	883795	7.62
11	CWS1-TB-01	295739	4.68	774119	5.13	1014738	7.62
12							
13							
14							
15							
16							
17							
18							
19							
							
20							
21							
22							ll

IS1 (PFB) = Pentafluorobenzene
IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CLB) = d5-Chlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Ical midpoint

* Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP41 Project: CENTRAL WATERFRONT

Instrument ID: NT5 Project Run Date: 10/30/12

		IS4 (DCB)			<u> </u>	T	<u> </u>
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	========	=======	======	========	======	========	======
	ICAL MIDPT	634885	9.69				
	UPPER LIMIT	1269770	10.19				
	LOWER LIMIT	317442	9.19				l
	=========	========	======		======	========	======
	Sample ID						
	=======================================	========	======	=======	======	=======	======
01	LCS1030	518650	9.70				
02	LCS1030	558943	9.70				
03	MB1030	529698	9.69				
04	CWS1-02-1-3	530003	9.69				
05	CWS1-02-7-8	521599	9.69				
06	CWS1-02-12-1	365477	9.69				
07	CWS1-01-3-5	399561	9.69				
80	CWS1-01-11-1	469651	9.69				
09	CWS1-03-2-4	530921	9.69				
10	CWS1-03-7-9	404158	9.69				
11	CWS1-TB-01	592309	9.69				
12							
13							
14							
15							
16							
17			<u></u>				
18							
19							
20							
21							
22							

IS4 (DCB) = d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Ical midpoint

* Values outside of QC limits.

TPHD Analysis Report and Summary QC Forms

ARI Job ID: VP40, VP41

Abra: 00000

QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline In

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned

Extraction Method: SW3546

Page 1 of 1

Matrix: Soil

Data Release Authorized: \WW

Reported: 11/05/12

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range/Surrogate	RL	Result
MB-103012 12-21289	Method Blank HC ID:	10/30/12	10/31/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	5.0 10	< 5.0 U < 10 U 86.3%
VP40A 12-21289	CWS1-04-2-4 HC ID: DIESEL/MOTOF	10/30/12 R OIL	10/31/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	6.0 12	67 97 72.2%
VP40B 12-21290	CWS1-04-6-8 HC ID: DIESEL/MOTOF	10/30/12 R OIL	10/31/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	6.2 12	24 37 74.8%
VP40C 12-21291	CWS1-04-13.5-15 HC ID: DIESEL/MOTOF	10/30/12 R OIL	11/01/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	5.8 12	200 260 63.3%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

Data file: /chem3/fid4a.i/20121031b.b/1031a034.d ARI ID: VP40MBS1

Method: /chem3/fid4a.i/20121031b.b/ftphfid4a.m

Instrument: fid4a.i

Client ID:

Injection: 31-OCT-2012 19:57

Operator: JR/VTS
Report Date: 11/03/2012 Dilution Factor: 1

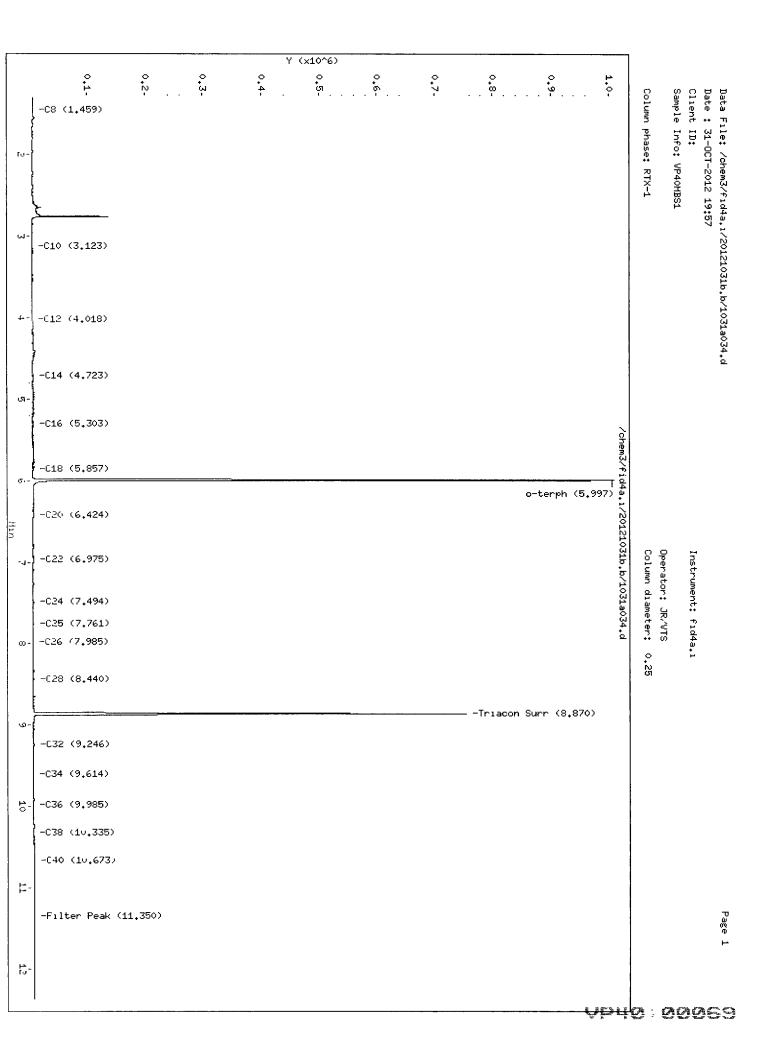
Macro: 31-OCT-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:31-OCT-2012 M.Oil:09-OCT-2012

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	3	Total Area	Conc
Toluene	1.237	0.004	2754	4279	WATPHG		236194	12.75
C8	1.459	-0.003	1044	1634	WATPHD	(C12-C24)	202643	13.60
C10	3.123	0.005	489	446	WATPHM	(C24-C38)	99904	7.60
C12	4.018	-0.013	337	360	AK102	(C10-C25)	230426	13.11
C14	4.723	0.010	1563	2608	AK103	(C25-C36)	80459	8.74
C16	5.303	0.002	1813	2276	OR.DIES	(C10-C28)	254509	14.42
C18	5.857	-0.003	1594	1022				
C20	6.424	0.000	1310	2539	JET-A	(C10-C18)	164386	30.35
C22	6.975	0.000	1191	1384	MIN.OIL	(C24-C38)	99904	7.43
C24	7.494	-0.002	913	1666				
C25	7.761	0.014	971	2060				
C26	7.985	-0.004	752	951				
C28	8.440	-0.006	1127	1788				
C32	9.246	-0.003	1869	2724				
C34	9.614	-0.006	548	788				
Filter Peak	11.350	0.001	1300	1739	BUNKERC	(C10-C38)	326404	35.65
C36	9.985	0.007	688	948				
C38	10.335	0.006	783	354				
C40	10.673	0.001	1148	1593				
o-terph	5.997	-0.001	1003286	760488	1			
Triacon Surr	8.870	-0.003	748851	711533	NAS DIE	S (C10-C24)	226500	12.92

Range Times: NW Diesel(4.031 - 7.495) AK102(3.12 - 7.75) Jet A(3.12 - 5.86) NW M.Oil(7.50 - 10.33) AK103(7.75 - 9.98) OR Diesel(3.12 - 8.45)



Surrogate	Area	Amount	%Rec
o-Terphenyl	760488	38.8	86.3
Triacontane	711533	37.7	83.8

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JetA Min Oil OR Diesel NAS Diesel	19588.1 18864.5 18517.9 14902.8 13149.3 17570.8 9202.1 5416.5 13440.7 17647.1 17529.9	31-OCT-2012 09-OCT-2012 28-SEP-2012 31-OCT-2012 09-OCT-2012 31-OCT-2012 25-SEP-2012 11-AUG-2012 09-MAY-2012 31-OCT-2012
Bunker C	9156.1	24-AUG-2012

1 11/03/12

Data file: /chem3/fid4a.i/20121031b.b/1031a037.d ARI ID: VP40A Method: /chem3/fid4a.i/20121031b.b/ftphfid4a.m Client ID:

Instrument: fid4a.i Injection: 31-OCT-2012 21:02

Operator: JR/VTS

Report Date: 11/03/2012 Dilution Factor: 1

Macro: 31-OCT-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:31-OCT-2012 M.Oil:09-OCT-2012

FID: 4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.233	0.000	======= 6529	4690	======= WATPHG	(Tol-C12)	946320	===== 51.10
C8	1.472	0.009	11405	15851	WATPHD	(C12-C24)	8350261	560.31
C10	3.116	-0.002	47140	35659	WATPHM	(C24-C38)	10641671	809.30
C12	4.029	-0.002	74489	55260	AK102	(C10-C25)	9313026	530.03
C14	4.710	-0.004	85304	69291	AK103	(C25-C36)	9616800	1045.07
C16	5.297	-0.004	87105	76632	OR.DIES	(C10-C28)	12724349	721.04
C18	5.856	-0.004	87142	94415				
C20	6.420	-0.005	116907	127388	JET-A	(C10-C18)	4147162	765.65
C22	6.970	-0.005	130150	151976	MIN.OIL	(C24-C38)	10641671	791.75
C24	7.493	-0.002	132830	149111				
C25	7.743	-0.004	148902	164394	1			
C26	7.987	-0.003	130934	176272				
C28	8.444	-0.003	131660	196151				
C32	9.251	0.002	85542	110094				
C34	9.607	-0.013	63307	61408				
Filter Peak	11.347	-0.002	4124	1447	BUNKERC	(C10-C38)	19542427	2134.36
C36	9.971	-0.007	39919	49108	1			
C38	10.333	0.004	26409	36362				
C40	10.673	0.001	16765	15173				
o-terph	5.997	-0.001	894941	636537				
Triacon Surr	8.870	-0.004	742012	682394	NAS DIES	S (C10-C24)	8900756	507.75

Range Times: NW Diesel(4.031 - 7.495) AK102(3.12 - 7.75) Jet A(3.12 - 5.86)

NW M.Oil(7.50 - 10.33) AK103(7.75 - 9.98) OR Diesel(3.12 - 8.45)

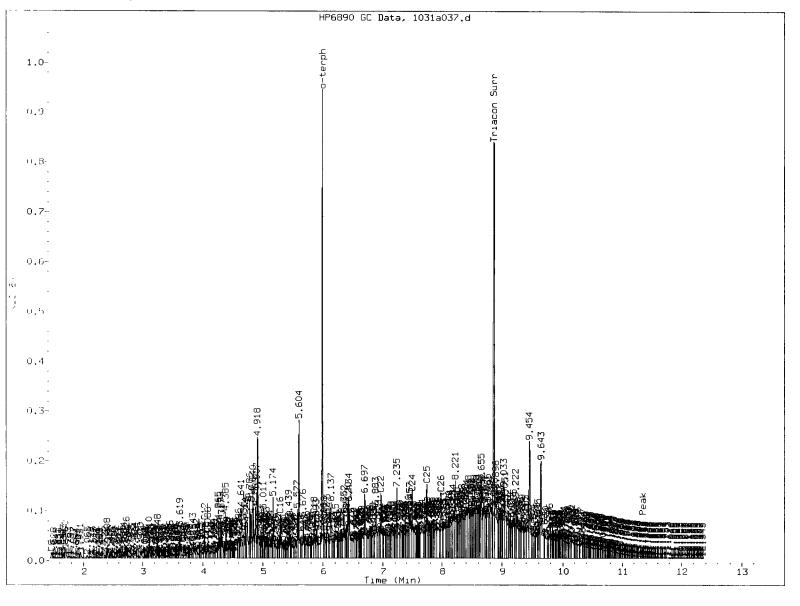
 Surrogate
 Area
 Amount
 %Rec

 o-Terphenyl
 636537
 32.5
 72.2 M

 Triacontane
 682394
 36.2
 80.4 M

M Indicates the peak was manually integrated

Analyte RF Curve Date


o-Terph Surr 19588.1 31-OCT-2012
Triacon Surr 18864.5 09-OCT-2012
Gas 18517.9 28-SEP-2012
Diesel 14902.8 31-OCT-2012
Motor Oil 13149.3 09-OCT-2012
AK102 17570.8 31-OCT-2012
AK103 9202.1 25-SEP-2012
JetA 5416.5 11-AUG-2012
Min Oil 13440.7 09-MAY-2012
OR Diesel 17647.1 31-OCT-2012
NAS Diesel 17529.9 31-OCT-2012
Bunker C 9156.1 24-AUG-2012

pe 11/03/12

FID: 4A SIGNAL

MANUAL INTEGRATION

Baseline correction
 Peak not found
 Skimmed surrogate

Analyst: _

Date: 1/03/12

Data file: /chem3/fid4a.i/20121031b.b/1031a038.d ARI ID: VP40B Method: /chem3/fid4a.i/20121031b.b/ftphfid4a.m Client ID:

Instrument: fid4a.i Injection: 31-OCT-2012 21:23

Operator: JR/VTS

Report Date: 11/03/2012 Dilution Factor: 1

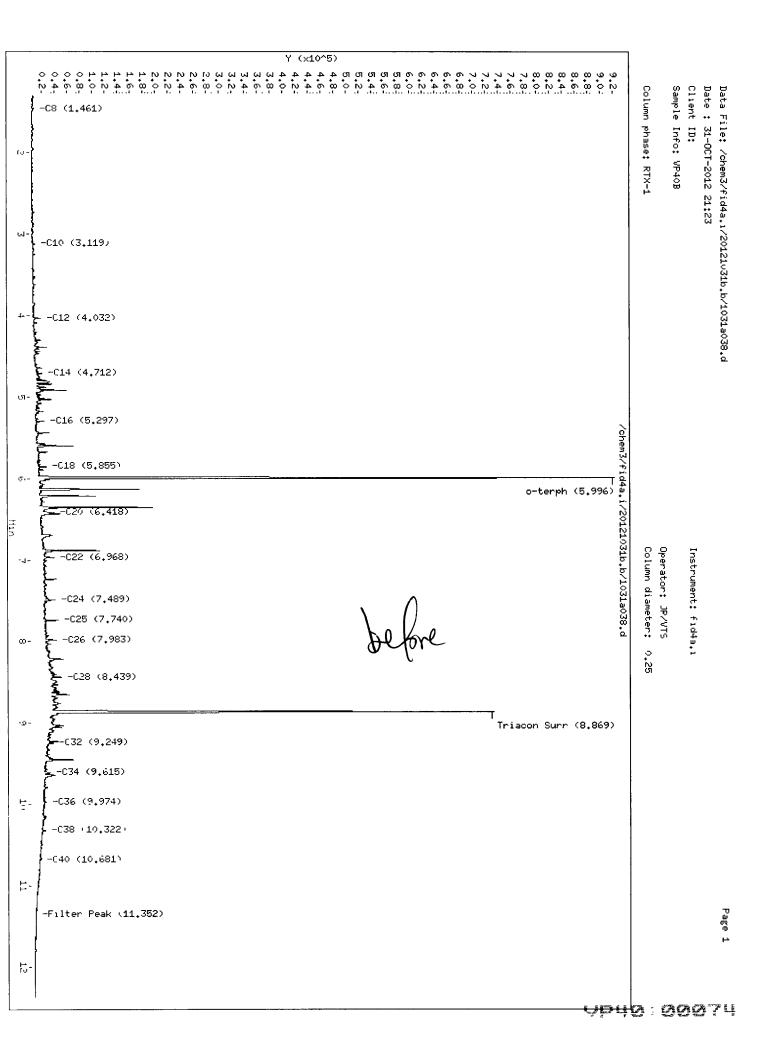
Macro: 31-OCT-2012

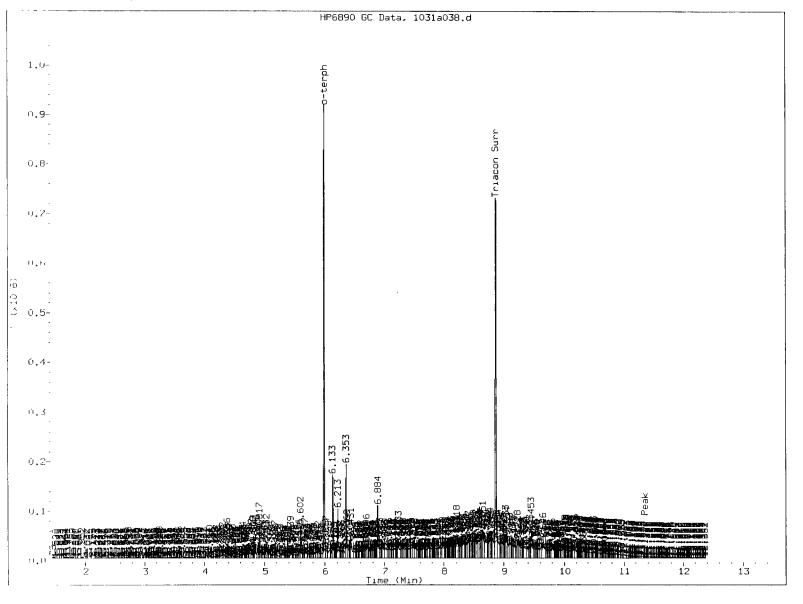
Calibration Dates: Gas:28-SEP-2012 Diesel:31-OCT-2012 M.Oil:09-OCT-2012

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.230	-0.003	4663	6623	WATPHG	(Tol-C12)	230801	12.46
C8	1.461	-0.001	3032	4793	WATPHD	(C12-C24)	2876423	193.01
C10	3.119	0.001	4753	4963	WATPHM	(C24-C38)	3927808	298.71
C12	4.032	0.001	13544	13073	AK102	(C10-C25)	3173699	180.62
C14	4.712	-0.001	16075	16317	AK103	(C25-C36)	3474644	377.59
C16	5.297	-0.003	17906	20022	OR.DIES	(C10-C28)	4315044	244.52
C18	5.855	-0.005	21646	26197				
C20	6.418	-0.006	33177	29376	JET-A	(C10-C18)	1058481	195.42
C22	6.968	-0.006	33860	49543	MIN.OIL	(C24-C38)	3927808	292.23
C24	7.489	-0.006	35220	41571				
C25	7.740	-0.007	40573	51866				
C26	7.983	-0.006	36590	56668				
C28	8.439	-0.007	44051	54721				
C32	9.249	0.001	31418	56229				
C34	9.615	-0.005	25580	50836				
Filter Peak	11.352	0.003	3439	3700	BUNKERC	(C10-C38)	6932376	757.13
C36	9.974	-0.003	20056	32543				
C38	10.322	-0.007	18784	33429				
C40	10.681	0.009	10057	3082				
o-terph	5.996	-0.002	899522	659388				
Triacon Surr	8.869	-0.004	692290	627237	NAS DIES	S (C10-C24)	3004568	171.40

Range Times: NW Diesel(4.031 - 7.495) AK102(3.12 - 7.75) Jet A(3.12 - 5.86)


NW M.Oil(7.50 - 10.33) AK103(7.75 - 9.98) OR Diesel(3.12 - 8.45)


M Indicates the peak was manually integrated

Analyte RF Curve Date

O-Terph Surr 19588.1 31-OCT-2012
Triacon Surr 18864.5 09-OCT-2012
Gas 18517.9 28-SEP-2012
Diesel 14902.8 31-OCT-2012
Motor Oil 13149.3 09-OCT-2012
AK102 17570.8 31-OCT-2012
AK103 9202.1 25-SEP-2012
JetA 5416.5 11-AUG-2012
Min Oil 13440.7 09-MAY-2012
OR Diesel 17647.1 31-OCT-2012
NAS Diesel 17529.9 31-OCT-2012
Bunker C 9156.1 24-AUG-2012

A 11/03/12

MANUAL INTEGRATION

1. Baseline correction

3. Peak not found

Skimmed surrogate

J ----

Date: 1/1/09/12

Data file: /chem3/fid4a.i/20121101.b/1101a013.d ARI ID: VP40C Method: /chem3/fid4a.i/20121101.b/ftphfid4a.m Client ID:

Instrument: fid4a.i Injection: 01-NOV-2012 14:17

Operator: JR/VTS

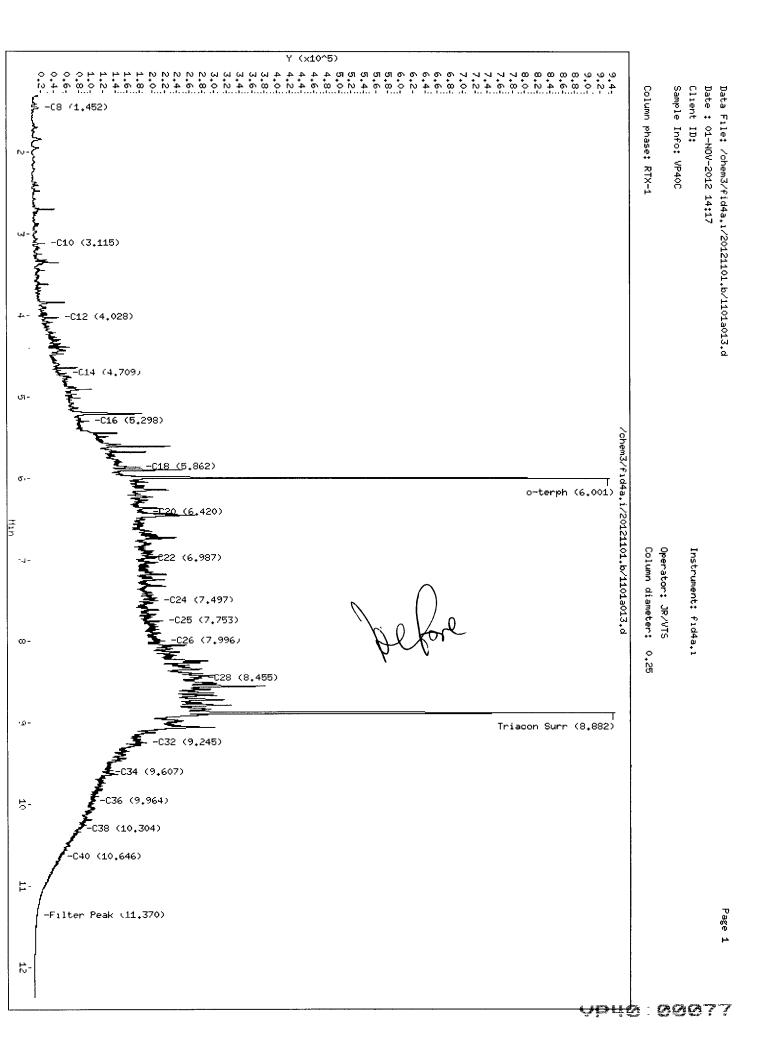
Report Date: 11/03/2012 Dilution Factor: 1

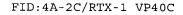
Macro: 01-NOV-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:01-NOV-2012 M.Oil:09-OCT-2012

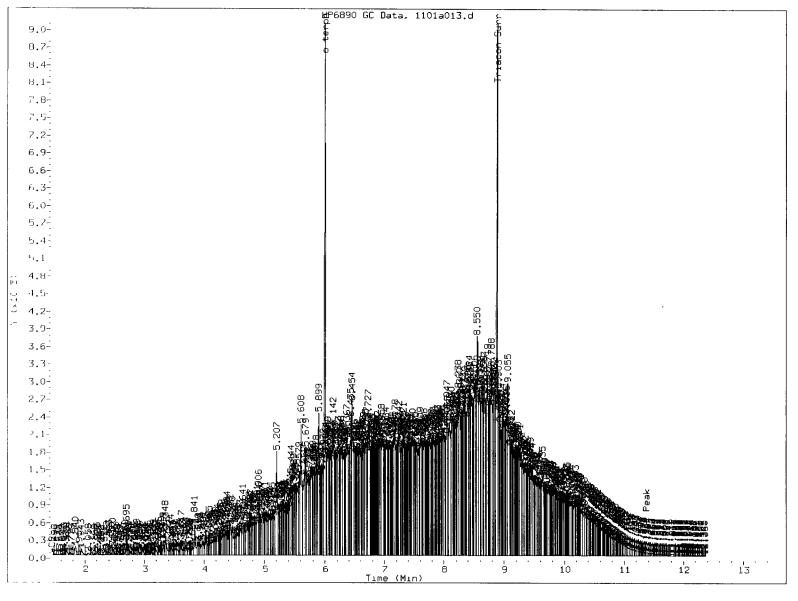
FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.220	-0.008	13800	15458	WATPHG	(Tol-C12)	1092662	59.01
C8	1.452	-0.004	11000	15178	WATPHD	(C12-C24)	25009525	1718.40
C10	3.115	-0.001	20474	15635	WATPHM	(C24-C38)	29010106	2206.21
C12	4.028	-0.002	41875	53601	AK102	(C10-C25)	27346850	1594.66
C14	4.709	-0.003	55517	105733	AK103	(C25-C36)	25878885	2812.29
C16	5.298	-0.003	91492	95069				
C18	5.862	0.001	175047	218627				
C20	6.420	-0.003	185859	147075	JET-A	(C10-C18)	8550253	1578.56
C22	6.987	0.012	183750	95852				
C24	7.497	0.000	202411	274418				
C25	7.753	0.006	211493	334067	1			
C26	7.996	0.008	213337	285869				
C28	8.455	0.010	274322	464075				
C32	9.245	-0.002	183702	238506				
C34	9.607	-0.006	122891	97952				
Filter Peak	11.370	0.004	5567	9576	CREOSOT	(C12-C22)	19286669	9585.21 M
C36	9.964	-0.005	98160	98259				
C38	10.304	-0.010	75999	102567				
C40	10.646	-0.003	43550	28041	ļ			
o-terph	6.001	0.004	759650	548649				
Triacon Surr	8.882	0.007	676481	570577	NAS DIES	G (C10-C24)	25707583	1502.66


Range Times: NW Diesel(4.030 - 7.497) AK102(3.12 - 7.75) Jet A(3.12 - 5.86)


NW M.Oil(7.50 - 10.31) AK103(7.75 - 9.97) OR Diesel(3.12 - 8.45)

Surrogate	Area	Amount	%Rec
o-Terphenyl	548649	28.5	63.3 M
Triacontane	570577	30.2	67.2 M


M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JetA NAS Diesel Creosote	19248.4 18864.5 18517.9 14554.0 13149.3 17149.0 9202.1 5416.5 17108.0 2012.1	01-NOV-2012 09-OCT-2012 28-SEP-2012 01-NOV-2012 09-OCT-2012 01-NOV-2012 25-SEP-2012 11-AUG-2012 01-NOV-2012
CICOBOLE	2012.1	01 110 7 2011

FID:4A SIGNAL

MANUAL INTEGRATION

Baseline correction
 Peak not found
 Skimmed surrogate

Analyst:

Date: ///////

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Client ID	OTER	TOT OUT
-		_
MB-103012	86.3%	0
LCS-103012	88.1%	0
LCSD-103012	88.3%	0
CWS1-04-2-4	72.2%	0
CWS1-04-6-8	74.8%	0
CWS1-04-13.5-15	63.3%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(50-150)

(50-150)

Prep Method: SW3546

Log Number Range: 12-21289 to 12-21291

Project: Central Waterfront Shoreline In

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned QC Report No: VP41-Anchor QEA LLC

Extraction Method: SW3546

Page 1 of 1

Matrix: Soil

Data Release Authorized: \\\\\\\\\\'

Reported: 11/05/12

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range/Surrogate	RL	Result
MB-103012 12-21279	Method Blank HC ID:	10/30/12	10/31/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	5.0 10	< 5.0 U < 10 U 86.3%
VP41A 12-21279	CWS1-02-1-3 HC ID:	10/30/12	10/31/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	5.2 10	< 5.2 U < 10 U 82.7%
VP41B 12-21280	CWS1-02-7-8 HC ID: DIESEL/MOTOR	10/30/12 OIL	11/01/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	5.7 11	150 280 72.8%
VP41C 12-21281	CWS1-02-12-13 HC ID: DIESEL/MOTOR	10/30/12 OIL	11/01/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	5.7 11	39 98 66.9%
VP41D 12-21282	CWS1-01-3-5 HC ID: DIESEL/MOTOR	10/30/12 OIL	11/01/12 FID4A		Diesel Range Motor Oil Range o-Terphenyl	5.7 11	41 140 67.1%
VP41E 12-21283	CWS1-01-11-13 HC ID: DIESEL/MOTOR	10/30/12 OIL	11/01/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	5.8 12	95 120 58.6%
VP41G 12-21285	CWS1-03-2-4 HC ID: DIESEL/MOTOR	10/30/12 OIL	11/01/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	5.6 11	100 84 69.0%
VP41H 12-21286	CWS1-03-7-9 HC ID: DIESEL/MOTOR	10/30/12 OIL	11/01/12 FID4A	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	6.7 13	300 410 72.5%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

FORM I VPUS: 00080

Data file: /chem3/fid4a.i/20121031b.b/1031a040.d ARI ID: VP41A Method: /chem3/fid4a.i/20121031b.b/ftphfid4a.m Client ID:

Instrument: fid4a.i Injection: 31-OCT-2012 22:07

Operator: JR/VTS

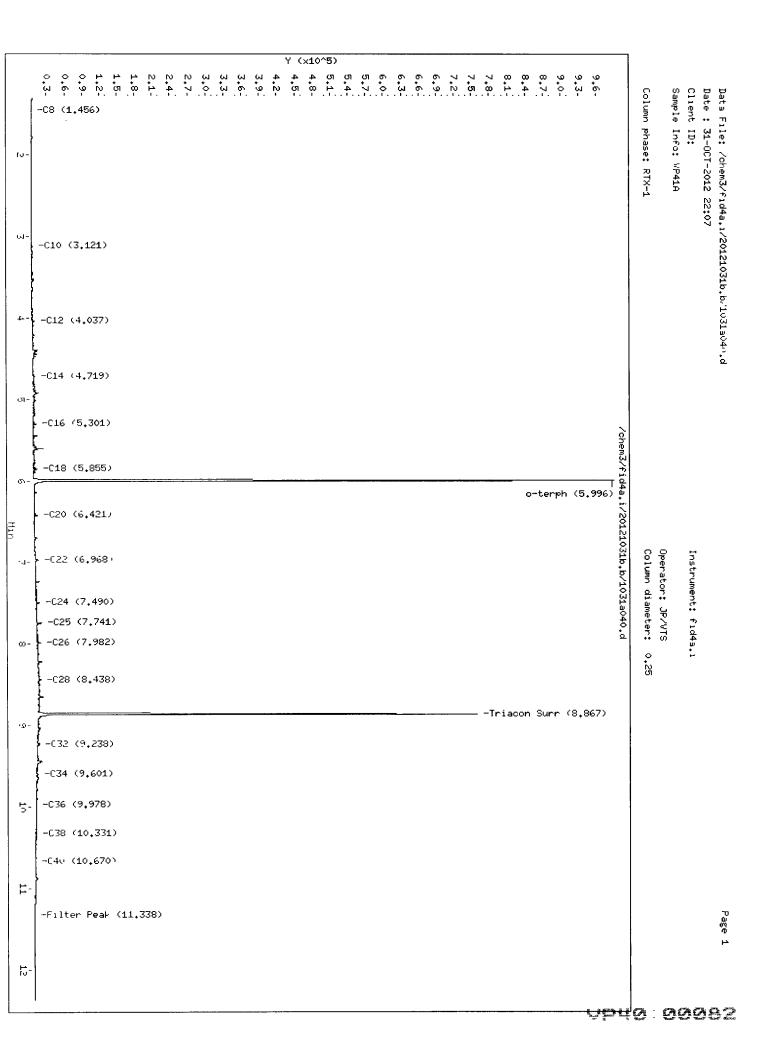
Report Date: 11/03/2012 Dilution Factor: 1

Macro: 31-OCT-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:31-OCT-2012 M.Oil:09-OCT-2012

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.224	-0.009	======================================	5059	WATPHG	(Tol-C12)	======================================	===== 4.66
C8	1.456	-0.006	675	1230	WATPHD	(C12-C24)	697899	46.83
C10	3.121	0.002	1037	1324	WATPHM	(C24-C38)	1211387	92.13
C12	4.037	0.006	5155	4841	AK102	(C10-C25)	797761	45.40
C14	4.719	0.005	4826	8158	AK103	(C25-C36)	1075985	116.93
C16	5.301	0.000	6588	7459	OR.DIES	(C10-C28)	1196354	67.79
C18	5.855	-0.005	7849	5784				
C20	6.421	-0.004	8655	9817	JET-A	(C10-C18)	360002	66.46
C22	6.968	-0.006	9669	16176	MIN.OIL	(C24-C38)	1211387	90.13
C24	7.490	-0.005	12057	14984				
C25	7.741	-0.006	14362	23040				
C26	7.982	-0.007	12847	18767	-			
C28	8.438	-0.008	13677	22499				
C32	9.238	-0.010	10189	22827				
C34	9.601	-0.019	7441	15502				
Filter Peak	11.338	-0.011	2310	5444	BUNKERC	(C10-C38)	1958035	213.85
C36	9.978	0.000	5160	2713				
C38	10.331	0.002	4231	1587				
C40	10.670	-0.002	3692	1877				
o-terph	5.996	-0.001	984459	729196				
Triacon Surr		-0.007	753357 	691331 	NAS DIES	G (C10-C24)	746648	42.59


Range Times: NW Diesel(4.031 - 7.495) AK102(3.12 - 7.75) Jet A(3.12 - 5.86) NW M.Oil(7.50 - 10.33) AK103(7.75 - 9.98) OR Diesel(3.12 - 8.45)

Surrogate	Area	Amount	%Rec
o-Terphenyl	729196	37.2	82.7
Triacontane	691331	36.6	81.4

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JetA Min Oil OR Diesel NAS Diesel	19588.1 18864.5 18517.9 14902.8 13149.3 17570.8 9202.1 5416.5 13440.7 17647.1 17529.9	31-OCT-2012 09-OCT-2012 28-SEP-2012 31-OCT-2012 09-OCT-2012 25-SEP-2012 11-AUG-2012 09-MAY-2012 31-OCT-2012 31-OCT-2012
Bunker C	9156.1	24-AUG-2012

pe 11/33/12

Data file: /chem3/fid4a.i/20121101.b/1101a014.d

ARI ID: VP41B Method: /chem3/fid4a.i/20121101.b/ftphfid4a.m

Client ID:

Instrument: fid4a.i

Injection: 01-NOV-2012 14:39

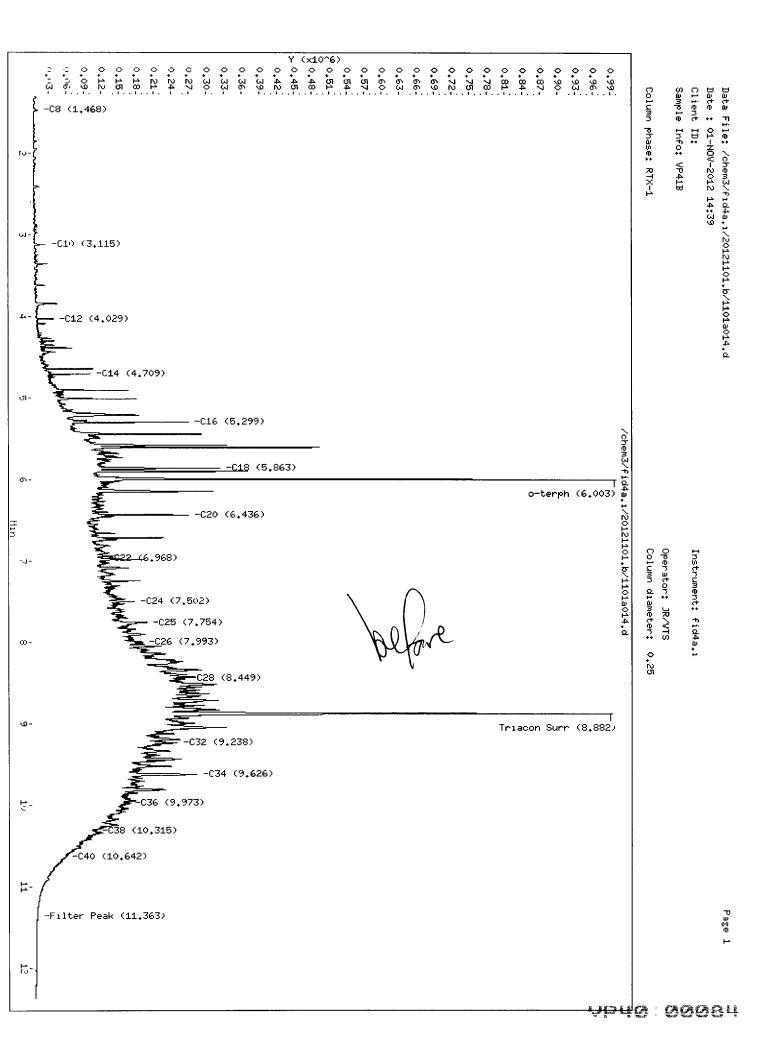
Operator: JR/VTS

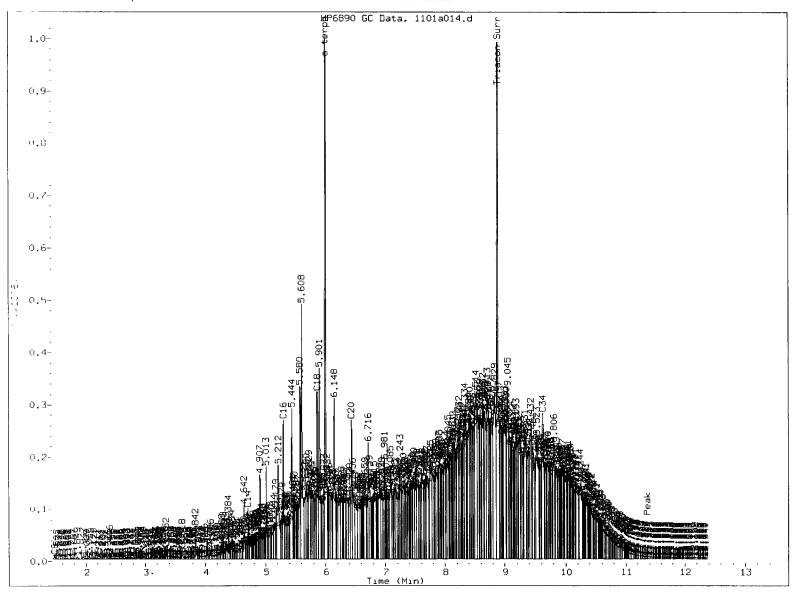
Report Date: 11/03/2012 Dilution Factor: 1

Macro: 01-NOV-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:01-NOV-2012 M.Oil:09-OCT-2012

FID:4A RESULTS


Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
		=======			=======		===========	=====
Toluene	1.226	-0.002	12050	9847	WATPHG	(Tol-C12)	462239	24.96
C 8	1.468	0.012	7262	9097	WATPHD	(C12-C24)	18927497	1300.50
C10	3.115	-0.001	19435	15133	WATPHM	(C24-C38)	31983731 ~	2432.36
C12	4.029	-0.001	33918	26309	AK102	(C10-C25)	20716354	1208.02
C14	4.709	-0.003	96893	64567	AK103	(C25-C36)	28010678	3043.95
C16	5.299	-0.002	265445	219054				
C18	5.863	0.002	319625	377019				
C20	6.436	0.013	2655 97	318625	JET-A	(C10-C18)	7551511	1394.17
C22	6.968	-0.006	117624	103002				
C24	7.502	0.004	171961	231578				
C25	7.754	0.007	193758	471428	1			
C26	7.993	0.005	186985	290249	!			
C28	8.449	0.003	258133	300454	1			
C32	9.238	-0.010	245200	362871				
C34	9.626	0.012	278744	571232				
Filter Peak	11.363	-0.004	4841	4657	CREOSOT	(C12-C22)	14885818	7398.04 M
C36	9.973	0.004	161178	69934	1			
C38	10.315	0.001	105886	68440				
C40	10.642	-0.008	53139	78586				
o-terph	6.003	0.005	852805	630959				
Triacon Surr	8.882	0.007	718136	673513	NAS DIES	G (C10-C24)	19234878	1124.32


Range Times: NW Diesel(4.030 - 7.497) AK102(3.12 - 7.75) Jet A(3.12 - 5.86) NW M.Oil(7.50 - 10.31) AK103(7.75 - 9.97) OR Diesel(3.12 - 8.45)

Surrogate	Area	Amount	%Rec
			
o-Terphenyl	630959	32.8	72.8 M
Triacontane	673513	35.7	79.3 M

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr	19248.4	01-NOV-2012
Triacon Surr	18864.5	09-OCT-2012
Gas	18517.9	28-SEP-2012
Diesel	14554.0	01-NOV-2012
Motor Oil	13149.3	09-OCT-2012
AK102	17149.0	01-NOV-2012
AK103	9202.1	25-SEP-2012
JetA	5416.5	11-AUG-2012
NAS Diesel	17108.0	01-NOV-2012
Creosote	2012.1	01-NOV-2011

MANUAL INTEGRATION

1. Baseline correction
Peak not found
Skimmed surrogate

Analyst:

Date: ///3/12

Data file: /chem3/fid4a.i/20121031b.b/1031a046.d ARI ID: VP41C Method: /chem3/fid4a.i/20121031b.b/ftphfid4a.m Client ID:

Instrument: fid4a.i Injection: 01-NOV-2012 00:17

Operator: JR/VTS

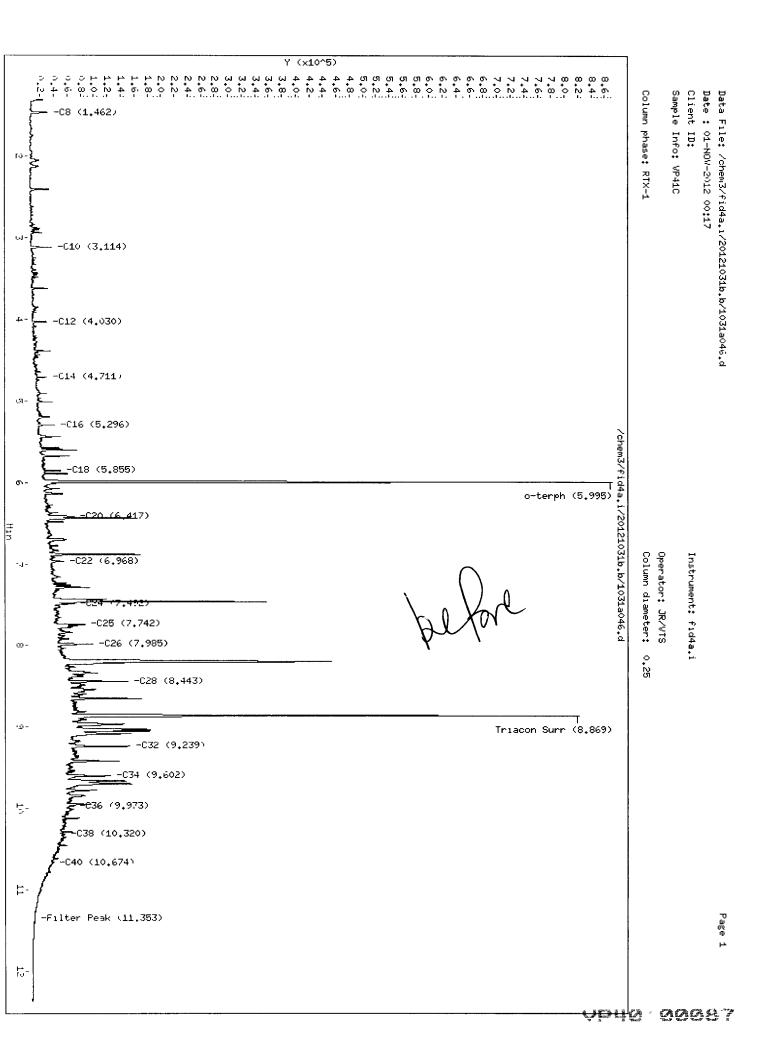
Report Date: 11/03/2012 Dilution Factor: 1

Macro: 31-OCT-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:31-OCT-2012 M.Oil:09-OCT-2012

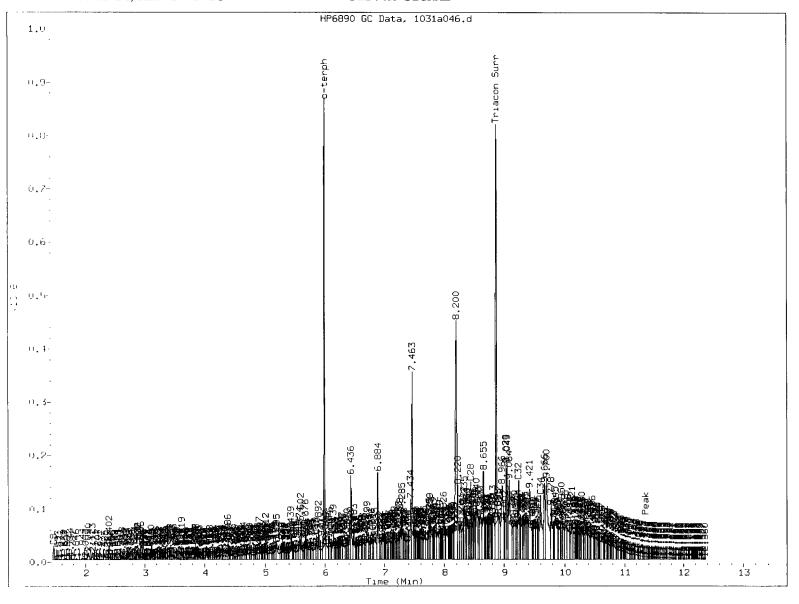
FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.239	0.006	4165	======== 3637	WATPHG	(Tol-C12)	576126	31.11
C8	1.462	-0.001	26793	30613	WATPHD	(C12-C24)	5154425	345.87
C10	3.114	-0.004	32431	21864	WATPHM	(C24-C38)	11373468	864.95
C12	4.030	-0.001	25412	21316	AK102	(C10-C25)	5837752 <i>°</i>	332.24
C14	4.711	-0.003	25339	31722	AK103	(C25-C36)	9962609	1082.65
C16	5.296	-0.004	35708	35559	OR.DIES	(C10-C28)	8973058	508.47
C18	5.855	-0.006	45472	56537				
C20	6.417	-0.008	64823	85860	JET-A	(C10-C18)	1789815	330.44
C22	6.968	-0.006	49572	78097	MIN.OIL	(C24-C38)	11373468	846.20
C24	7.492	-0.004	65207	75755				
C25	7.742	-0.005	81450	81836				
C26	7.985	-0.004	93402	144225				
C28	8.443	-0.003	144800	163367				
C32	9.239	-0.009	147825	183640				
C34	9.602	-0.018	119654	289975				
Filter Peak	11.353	0.004	6082	10842	BUNKERC	(C10-C38)	16815913	1836.58
C36	9.973	-0.004	63460	103744				
C38	10.320	-0.009	50239	60734				
C40	10.674	0.002	33855	52394	1			
o-terph	5.995	-0.002	836625	589544				
Triacon Surr	8.869	-0.005	746762	699641	NAS DIES	G (C10-C24)	5442445	310.47


Range Times: NW Diesel(4.031 - 7.495) AK102(3.12 - 7.75) Jet A(3.12 - 5.86)
NW M.Oil(7.50 - 10.33) AK103(7.75 - 9.98) OR Diesel(3.12 - 8.45)

Surrogate	Area	Amount	%Rec
o-Terphenyl	589544	30.1	66.9 M
Triacontane	699641	37.1	82.4 M

M Indicates the peak was manually integrated


Analyte	RF	Curve Date
o-Terph Surr	19588.1	31-OCT-2012
Triacon Surr	18864.5	09-OCT-2012
Gas	18517.9	28-SEP-2012
Diesel	14902.8	31-OCT-2012
Motor Oil	13149.3	09-OCT-2012
AK102	17570.8	31-OCT-2012
AK103	9202.1	25-SEP-2012
JetA	5416.5	11-AUG-2012
Min Oil	13440.7	09-MAY-2012
OR Diesel	17647.1	31-OCT-2012
NAS Diesel	17529.9	31-OCT-2012
Bunker C	9156.1	24-AUG-2012

N 11/03/12

FID:4A-2C/RTX-1 VP41C

FID:4A SIGNAL

MANUAL INTEGRATION

1. Baseline correction
3. Peak not found
5. Skimmed surrogate

Analyst: _

Date: 11/03/12

Data file: /chem3/fid4a.i/20121031b.b/1031a047.d ARI ID: VP41D Method: /chem3/fid4a.i/20121031b.b/ftphfid4a.m Client ID:

Instrument: fid4a.i Injection: 01-NOV-2012 00:39

Operator: JR/VTS

Report Date: 11/03/2012 Dilution Factor: 1

Macro: 31-OCT-2012

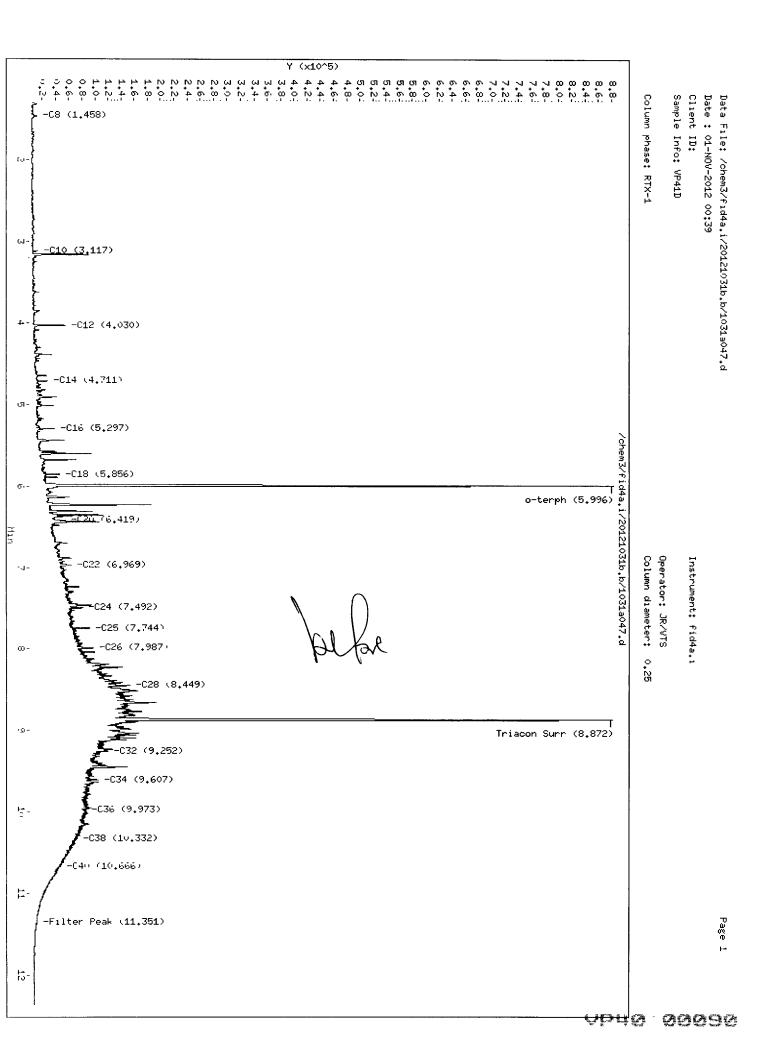
Calibration Dates: Gas:28-SEP-2012 Diesel:31-OCT-2012 M.Oil:09-OCT-2012

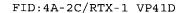
FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.229	-0.004	5374	 7237	======= WATPHG	======== (Tol-C12)	======== 384953	20.79
C8	1.458	-0.004	7905	10021	WATPHD	(C12-C24)	5376460	360.77
C10	3.117	-0.002	9011	7026	WATPHM	(C24-C38)	15915955	1210.41
C12	4.030	-0.001	49501	34593	AK102	(C10-C25)	6147182 🗂	349.85
C14	4.711	-0.003	23271	27908	AK103	(C25-C36)	13997725	1521.15
C16	5.297	-0.004	33404	33242	OR.DIES	(C10-C28)	10260247	581.41
C18	5.856	-0.004	40954	53199	Ì			
C20	6.419	-0.005	50652	47188	JET-A	(C10-C18)	1502578	277.41
C22	6.969	-0.006	58382	69020	MIN.OIL	(C24-C38)	15915955	1184.16
C24	7.492	-0.003	75894	118809				
C25	7.744	-0.003	87639	95292	j			
C26	7.987	-0.002	92911	155545	j			
C28	8.449	0.003	149171	209502				
C32	9.252	0.004	115232	105052				
C34	9.607	-0.013	99928	143834	İ			
Filter Peak	11.351	0.002	7016	4799	BUNKERC	(C10-C38)	21536350	2352.13
C36	9.973	-0.004	81248	78023	İ			
C38	10.332	0.003	67392	44276				
C40	10.666	-0.005	42407	58341	Ì			
o-terph	5.996	-0.002	848476	591463				
Triacon Surr	8.872	-0.002	737508	650092	NAS DIES	G (C10-C24)	5620395	320.62
_			-					

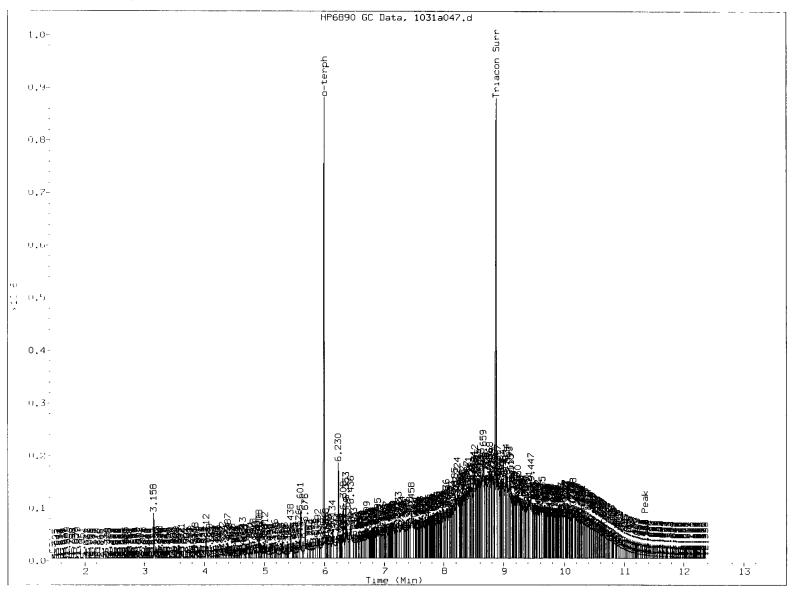
Range Times: NW Diesel(4.031 - 7.495) AK102(3.12 - 7.75) Jet A(3.12 - 5.86) NW M.Oil(7.50 - 10.33) AK103(7.75 - 9.98) OR Diesel(3.12 - 8.45)

 Surrogate
 Area
 Amount
 %Rec


 o-Terphenyl
 591463
 30.2
 67.1 M


 Triacontane
 650092
 34.5
 76.6 M

M Indicates the peak was manually integrated


Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JetA Min Oil OR Diesel NAS Diesel	19588.1 18864.5 18517.9 14902.8 13149.3 17570.8 9202.1 5416.5 13440.7 17647.1 17529.9	31-OCT-2012 09-OCT-2012 28-SEP-2012 31-OCT-2012 09-OCT-2012 25-SEP-2012 11-AUG-2012 09-MAY-2012 31-OCT-2012 31-OCT-2012
Bunker C	9156.1	24-AUG-2012

1 1/03/12

FID:4A SIGNAL

MANUAL INTEGRATION

1. Baseline correction

3. Reak not found

8. Skimmed surrogate

Analyst:

Date: 1/13/12

Data file: /chem3/fid4a.i/20121031b.b/1031a048.d ARI ID: VP41E

Method: /chem3/fid4a.i/20121031b.b/ftphfid4a.m Client ID:

Instrument: fid4a.i
Operator: JR/VTS

Report Date: 11/03/2012 Dilution Factor: 1

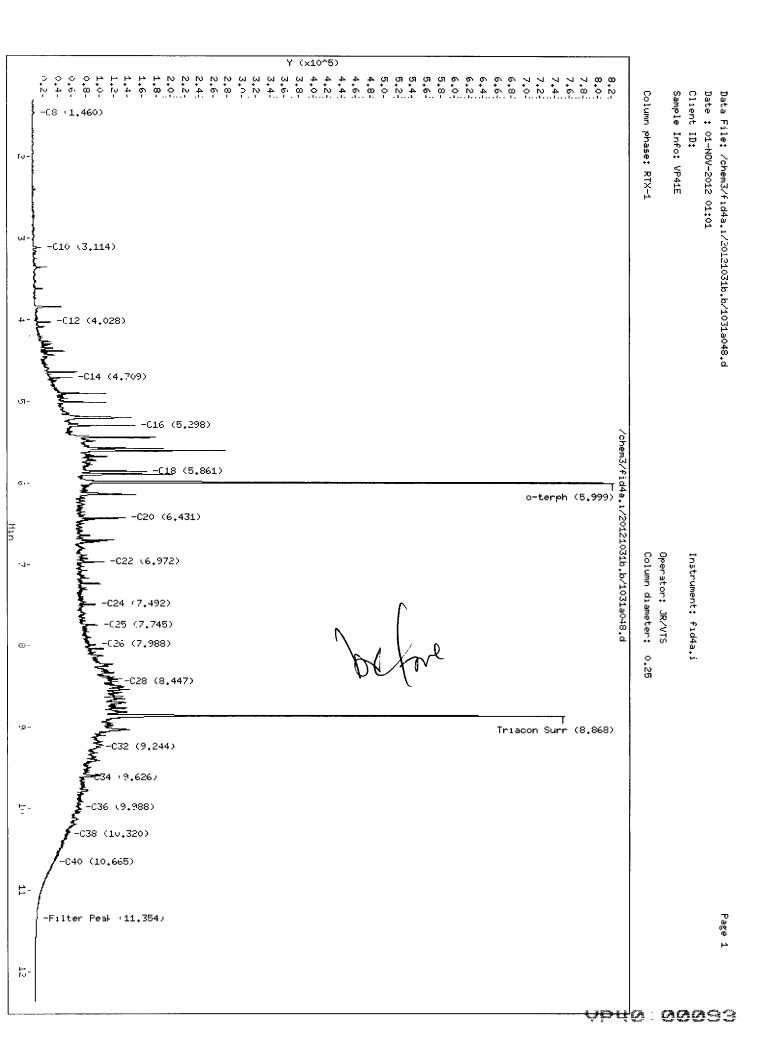
Macro: 31-OCT-2012

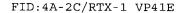
Calibration Dates: Gas:28-SEP-2012 Diesel:31-OCT-2012 M.Oil:09-OCT-2012

FID:4A RESULTS

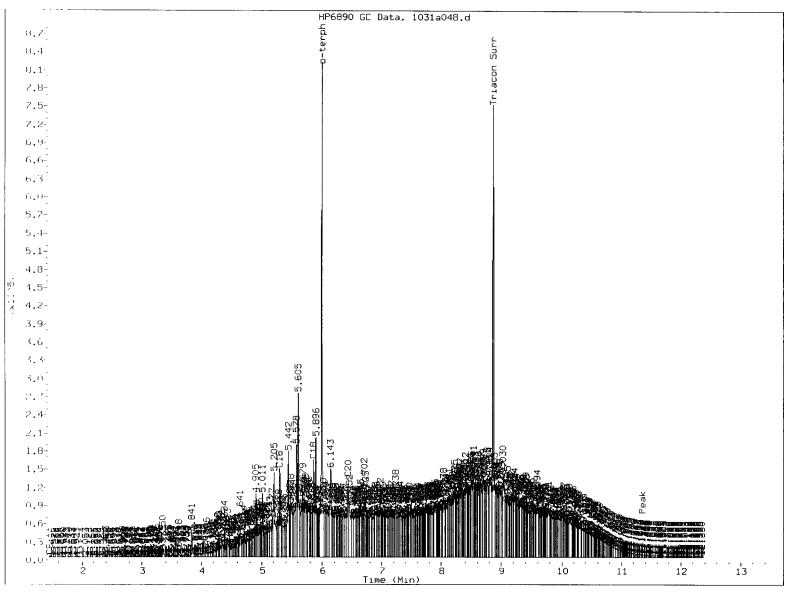
Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
==========	=======	======	=======		=======		========	=====
Toluene	1.219	-0.014	6233	7266	WATPHG	(Tol-C12)	343734	18.56
C8	1.460	-0.002	2277	3293	WATPHD	(C12-C24)	12113858	812.86
C10	3.114	-0.004	12455	9589	WATPHM	(C24-C38)	13898235	1056_96
C12	4.028	-0.003	25872	22620	AK102	(C10-C25)	13010193	740.44
C14	4.709	-0.005	56992	51231	AK103	(C25-C36)	12213733	1327.28
C16	5.298	-0.003	146341	177913	OR.DIES	(C10-C28)	17058013	966.62
C18	5.861	0.000	161787	206241				
C20	6.431	0.007	131285	154204	JET-A	(C10-C18)	5538000	1022.43
C22	6.972	-0.002	101830	113586	MIN.OIL	(C24-C38)	13898235	1034.04
C24	7.492	-0.003	89712	130203				
C25	7.745	-0.002	92291	153032				
C26	7.988	-0.001	89281	159653				
C28	8.447	0.001	121333	117966				
C32	9.244	-0.005	95061	97017				
C34	9.626	0.006	70451	73448				
Filter Peak	11.354	0.005	4973	10427	BUNKERC	(C10-C38)	26268750	2868.99
C36	9.988	0.010	66516	53419				
C38	10.320	-0.009	49402	14315				
C40	10.665	-0.006	29060	42095				
o-terph	5.999	0.001	737380	516151	Ì			
Triacon Surr	8.868	-0.006	632546	530477	NAS DIES	S (C10-C24)	12370515	705.68
-=========	=======	=======	=======		=======			=====

Range Times: NW Diesel(4.031 - 7.495) AK102(3.12 - 7.75) Jet A(3.12 - 5.86) NW M.Oil(7.50 - 10.33) AK103(7.75 - 9.98) OR Diesel(3.12 - 8.45)


Surrogate	Area	Amount	*Rec
o-Terphenyl	516151	26.4	58.6 M
Triacontane	530477	28.1	62.5 M


M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JetA Min Oil OR Diesel	19588.1 18864.5 18517.9 14902.8 13149.3 17570.8 9202.1 5416.5 13440.7 17647.1	31-OCT-2012 09-OCT-2012 28-SEP-2012 31-OCT-2012 09-OCT-2012 31-OCT-2012 25-SEP-2012 11-AUG-2012 09-MAY-2012 31-OCT-2012
NAS Diesel Bunker C	17529.9 9156.1	31-OCT-2012 24-AUG-2012


A 11/03/12

Injection: 01-NOV-2012 01:01

FID:4A SIGNAL

MANUAL INTEGRATION

1. Baseline correction
3. Peak not found
5. Skimmed surrogate

Analyst:

Date: 11 /03/13

Data file: /chem3/fid4a.i/20121031b.b/1031a049.d ARI ID: VP41G Method: /chem3/fid4a.i/20121031b.b/ftphfid4a.m Client ID:

Instrument: fid4a.i Injection: 01-NOV-2012 01:22

Operator: JR/VTS

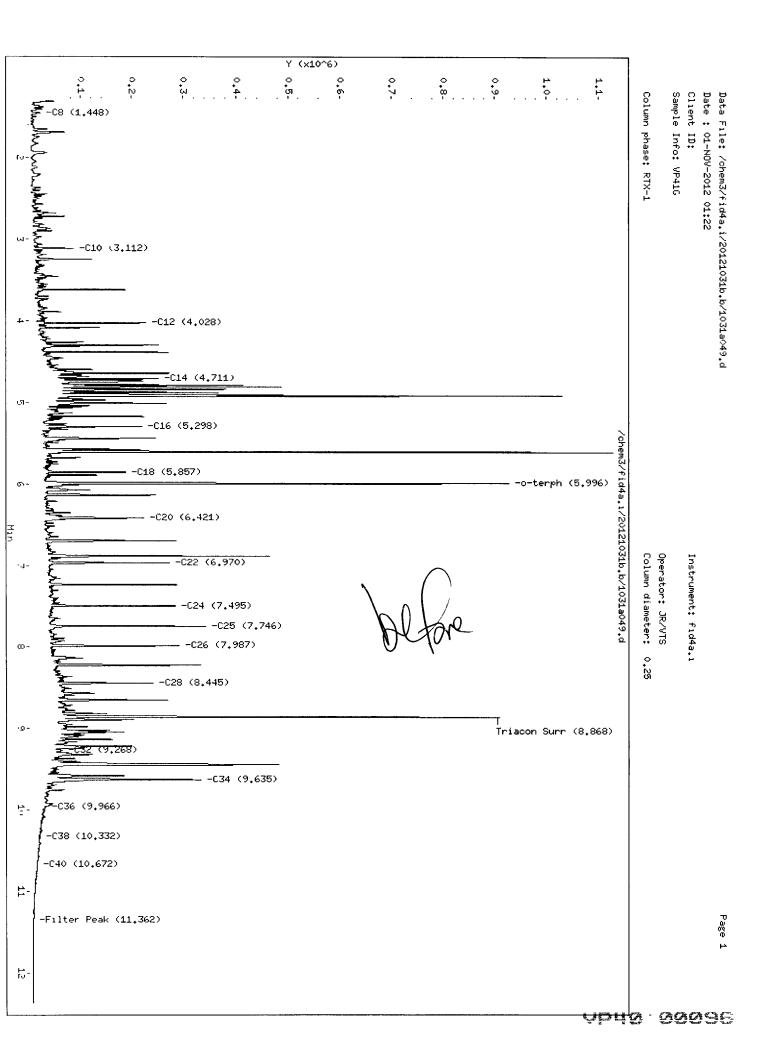
Report Date: 11/03/2012 Dilution Factor: 1

Macro: 31-OCT-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:31-OCT-2012 M.Oil:09-OCT-2012

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.233	0.000	======= 22530	28705	======= WATPHG	(Tol-C12)	======================================	126.14
C8	1.448	-0.014	16150	20052	WATPHD	(C12-C24)	13449009	902.45
C10	3.112	-0.006	80466	60609	WATPHM	(C24-C38)	9883414	751.63
C12	4.028	-0.003	222790	150883	AK102	(C10-C25)	15058071	856.99
C14	4.711	-0.003	246363	174307	AK103	(C25-C36)	9215489	1001.46
C16	5.298	-0.003	215319	173063	OR.DIES	(C10-C28)	17915793	1015.23
C18	5.857	-0.004	183475	153883				
C20	6.421	-0.004	218307	213417	JET-A	(C10-C18)	9771740	1804.07
C22	6.970	-0.004	266918	285294	MIN.OIL	(C24-C38)	9883414	735.34
C24	7.495	0.000	279640	245095				
C25	7.746	-0.001	337641	327219				
C26	7.987	-0.002	286799	310658				
C28	8.445	-0.001	236131	267454]			
C32	9.268	0.019	57633	93166				
C34	9.635	0.015	327512	538162				
Filter Peak	11.362	0.013	2686	3910	BUNKERC	(C10-C38)	24596679	2686.37
C36	9.966	-0.011	25868	26486				
C38	10.332	0.003	14639	12322				
C40	10.672	0.000	9452	7441				
o-terph	5.996	-0.002	873234	608111	[
Triacon Surr	8.868	-0.006	840113	772102	NAS DIES	G (C10-C24)	14713265 ==========	839.33


Range Times: NW Diesel(4.031 - 7.495) AK102(3.12 - 7.75) Jet A(3.12 - 5.86) NW M.Oil(7.50 - 10.33) AK103(7.75 - 9.98) OR Diesel(3.12 - 8.45)

Surrogate	Area	Amount	*Rec
o-Terphenyl	608111	31.0	69.0 M
Triacontane	772102	40.9	91.0 M

M Indicates the peak was manually integrated


Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JetA Min Oil OR Diesel NAS Diesel Bunker C	19588.1 18864.5 18517.9 14902.8 13149.3 17570.8 9202.1 5416.5 13440.7 17647.1 17529.9 9156.1	31-OCT-2012 09-OCT-2012 28-SEP-2012 31-OCT-2012 09-OCT-2012 25-SEP-2012 11-AUG-2012 09-MAY-2012 31-OCT-2012 31-OCT-2012 24-AUG-2012
Daniel C	2230.1	21 1103 2012

A 11/03/12

FID: 4A SIGNAL

MANUAL INTEGRATION

1. Baseline correction
3 Peak not found
5. Skimmed surrogate

Date: 1/03/12

Data file: /chem3/fid4a.i/20121101.b/1101a015.d ARI ID: VP41H Method: /chem3/fid4a.i/20121101.b/ftphfid4a.m Client ID:

Instrument: fid4a.i Injection: 01-NOV-2012 15:01

Operator: JR/VTS

Report Date: 11/03/2012 Dilution Factor: 1

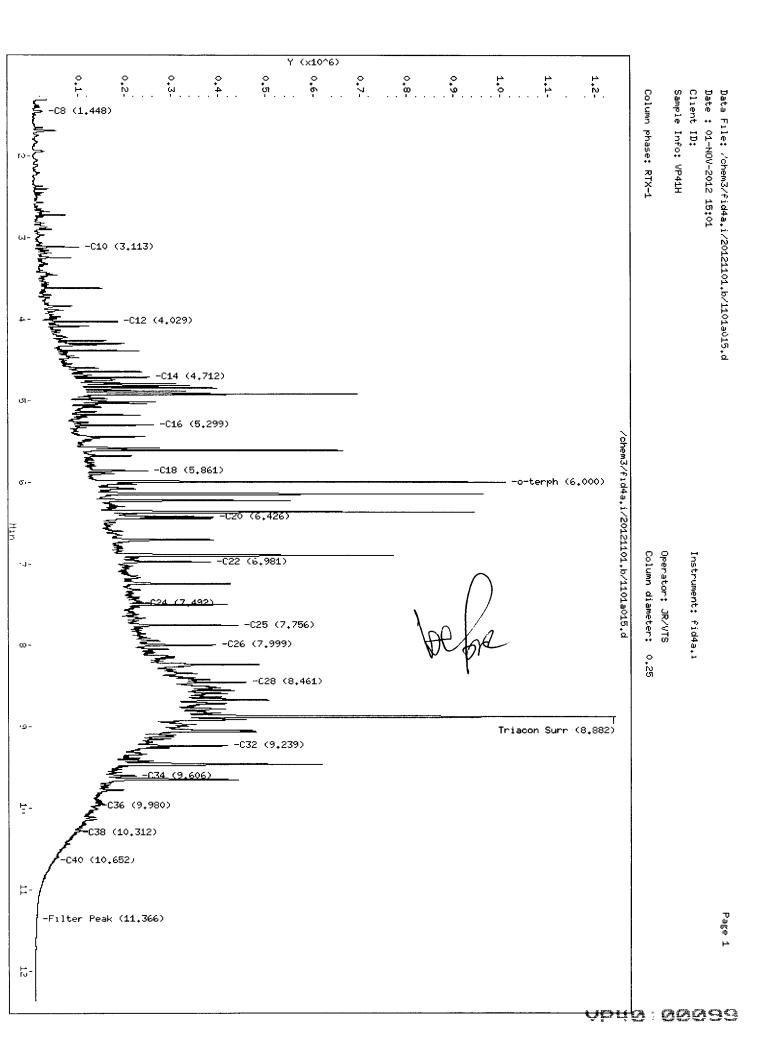
Macro: 01-NOV-2012

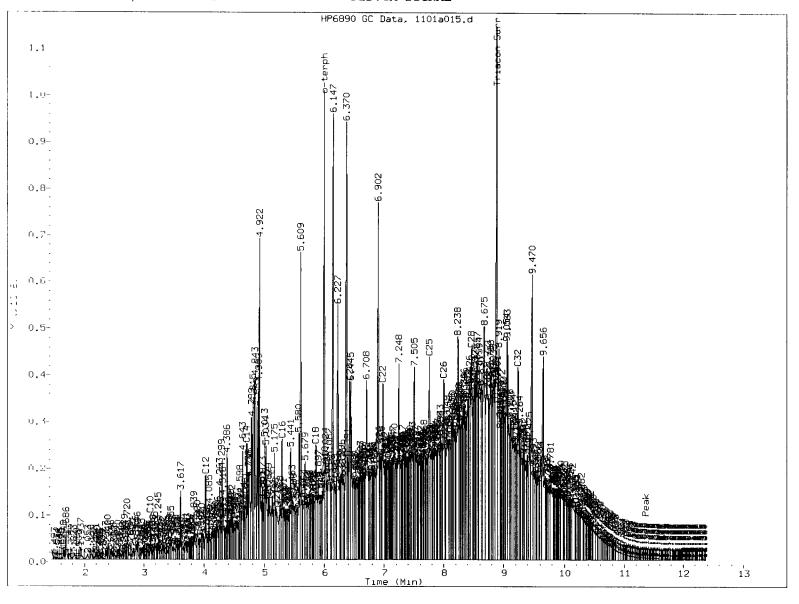
Calibration Dates: Gas:28-SEP-2012 Diesel:01-NOV-2012 M.Oil:09-OCT-2012

FID: 4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	a Conc
Toluene	1.233	0.005	16255	15894	WATPHG	(Tol-C12)	2748965	148.45
C8	1.448	-0.008	19854	27931	WATPHD	(C12-C24)	33155414	2278.10
C10	3.113	-0.002	97157	71187	WATPHM	(C24-C38)	40542221	3083.23
C12	4.029	-0.001	180709	167361	AK102	(C10-C25)	36561419	2131.99
C14	4.712	0.000	248748	215558	AK103	(C25-C36)	37054520	4026.76
C16	5.299	-0.001	257977	251496	1			
C18	5.861	0.001	245400	381396				
C20	6.426	0.003	382756	548337	JET-A	(C10-C18)	14651861	2705.05
C22	6.981	0.006	377600	594493	ĺ			
C24	7.492	-0.005	224294	86307	1			
C25	7.756	0.009	435041	590737				
C26	7.999	0.011	387152	708650				
C28	8.461	0.015	451986	819850				
C32	9.239	-0.009	413002	666207	1			
C34	9.606	-0.007	217196	410011	[
Filter Peak	11.366	-0.001	4830	4777	CREOSOT	(C12-C22)	26599170	13219.42 M
C36	9.980	0.010	130382	35590	1			
C38	10.312	-0.002	89213	50424	Ì			
C40	10.652	0.002	41330	49741	İ			
o-terph	6.000	0.002	839153	628016				
Triacon Surr	8.882	0.007	897630	813683	NAS DIES	G (C10-C24)	34960396	2043.51

Range Times: NW Diesel(4.030 - 7.497) AK102(3.12 - 7.75) Jet A(3.12 - 5.86) NW M.Oil(7.50 - 10.31) AK103(7.75 - 9.97) OR Diesel(3.12 - 8.45)


Surrogate	Area	Amount	%Rec
o-Terphenyl	628016	32.6	72.5 M
Triacontane	813683	43.1	95.9 M


M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JetA NAS Diesel	19248.4 18864.5 18517.9 14554.0 13149.3 17149.0 9202.1 5416.5 17108.0	01-NOV-2012 09-OCT-2012 28-SEP-2012 01-NOV-2012 09-OCT-2012 01-NOV-2012 25-SEP-2012 11-AUG-2012 01-NOV-2012
Creosote	2012.1	01-NOV-2011

LOUG GOOSE

A 11/03/12

MANUAL INTEGRATION

1. Baseline correction
3 Peak not found
6. Skimmed surrogate

Analyst:

Date: ____//03/12

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Client ID	OTER	TOT OUT
MB-103012	86.3%	0
LCS-103012	88.1%	0
LCSD-103012	88.3%	0
CWS1-02-1-3	82.7%	0
CWS1-02-1-3 MS	83.4%	0
CWS1-02-1-3 MSD	81.6%	0
CWS1-02-7-8	72.8%	0
CWS1-02-12-13	66.9%	0
CWS1-01-3-5	67.1%	0
CWS1-01-11-13	58.6%	0
CWS1-03-2-4	69.0%	0
CWS1-03-7-9	72.5%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl (50-150) (50-150)

Prep Method: SW3546

Log Number Range: 12-21279 to 12-21286

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Sample ID: CWS1-02-1-3

MS/MSD

Lab Sample ID: VP41A

LIMS ID: 12-21279

Matrix: Soil

Data Release Authorized: WW

Reported: 11/05/12

Date Extracted MS/MSD: 10/30/12

Date Analyzed MS: 10/31/12 22:29

MSD: 10/31/12 22:51

Instrument/Analyst MS: FID/JGR

MSD: FID/JGR

QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12

Date Received: 10/26/12

Sample Amount MS: 9.99 g-dry-wt

MSD: 9.76 g-dry-wt

Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 1.0

MSD: 1.0

Percent Moisture: 7.9%

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	< 5.2	114	150	76.0%	113	154	73.4%	0.9%

TPHD Surrogate Recovery

MS MSD o-Terphenyl 83.4% 81.6%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

FORM III

UPLG: 20162

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid4a.i/20121031b.b/1031a041.d ARI ID: VP41AMS

Method: /chem3/fid4a.i/20121031b.b/ftphfid4a.m Client ID:

Instrument: fid4a.i Injection: 31-OCT-2012 22:29

Operator: JR/VTS

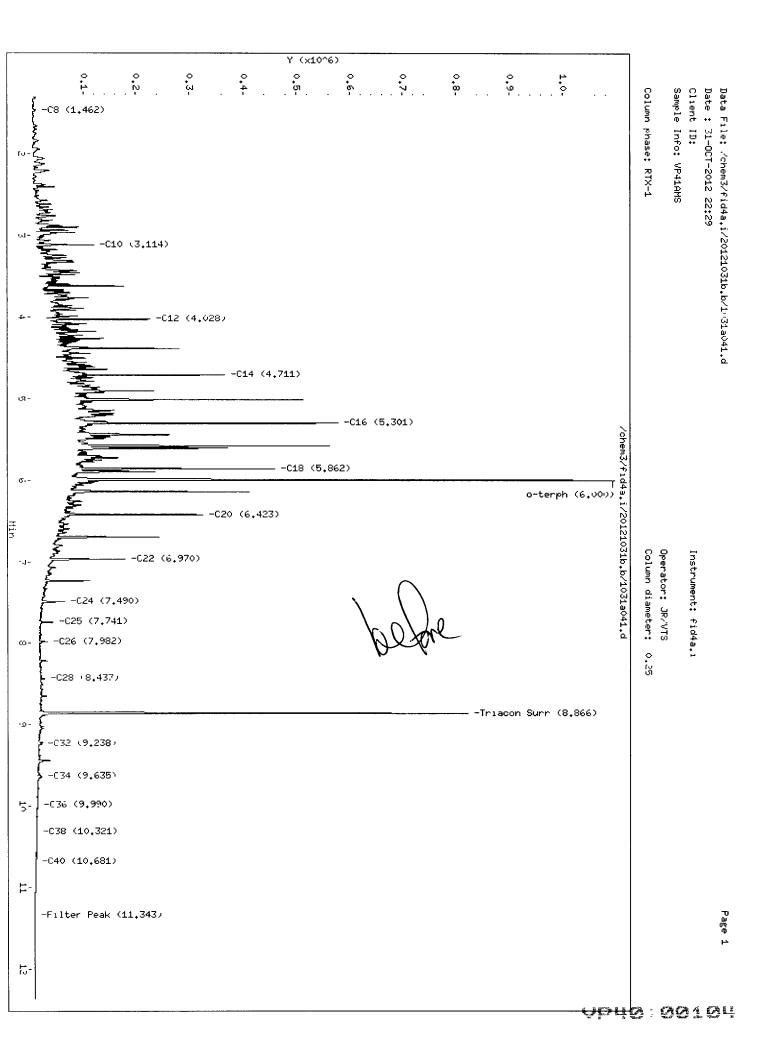
Report Date: 11/03/2012 Dilution Factor: 1

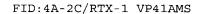
Macro: 31-OCT-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:31-OCT-2012 M.Oil:09-OCT-2012

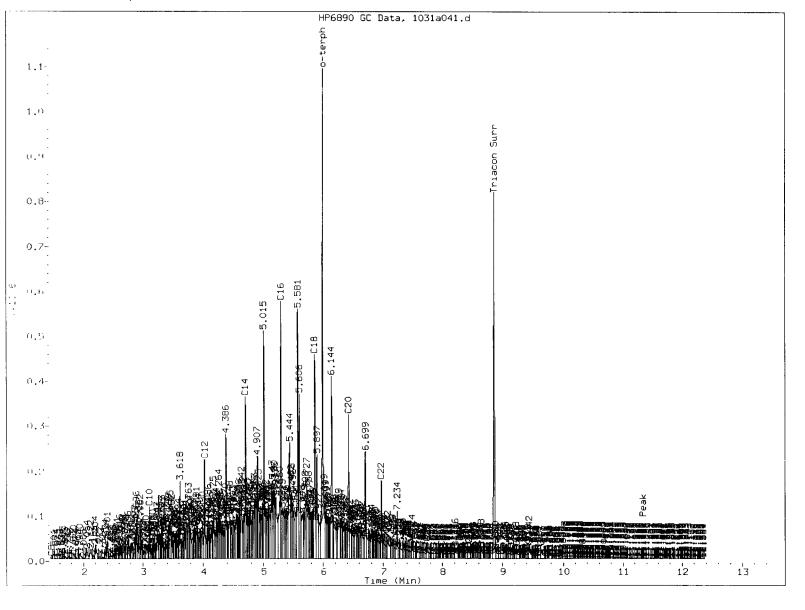
FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.224	-0.010	======================================	7950	======= WATPHG	(Tol-C12)	3752169	202.62
C8	1.462	0.000	5263	7816	WATPHD	(C12-C24)	16908317	1134.57
C10	3.114	-0.005	115706	80509	WATPHM	(C24-C38)	1835349	139.58
C12	4.028	-0.003	220905	188297	AK102	(C10-C25)	19681840 '	1120.14
C14	4.711	-0.003	360667	239276	AK103	(C25-C36)	1596539	173.50
C16	5.301	0.000	573110	425823	OR.DIES	(C10-C28)	20299948	1150.33
C18	5.862	0.001	454600	453941				
C20	6.423	-0.002	321420	312745	JET-A	(C10-C18)	14195561	2620.80
C22	6.970	-0.005	174803	148853	MIN.OIL	(C24-C38)	1835349	136.55
C24	7.490	-0.005	58421	60954				
C25	7.741	-0.006	36728	50913				
C26	7.982	-0.007	26064	31098				
C28	8.437	-0.009	20553	37039				
C32	9.238	-0.010	14479	31022				
C34	9.635	0.015	15427	43437				
Filter Peak	11.343	-0.006	2020	747	BUNKERC	(C10-C38)	21388563	2335.99
C36	9.990	0.012	6883	3107				
C38	10.321	-0.008	5614	3810				
C40	10.681	0.009	4492	5024				
o-terph	6.000	0.002	992243	734897				
Triacon Surr		-0.008	802045	685012	NAS DIES	,	19553214	1115.42


Range Times: NW Diesel(4.031 - 7.495) AK102(3.12 - 7.75) Jet A(3.12 - 5.86) NW M.Oil(7.50 - 10.33) AK103(7.75 - 9.98) OR Diesel(3.12 - 8.45)


Surrogate	Area	Amount	%Rec	
o-Terphenyl	734897	37.5	83.4 M	
Triacontane	685012	36.3	80.7 M	


11/03/12


M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr	19588.1	31-OCT-2012
Triacon Surr	18864.5	09-OCT-2012
Gas	18517.9	28-SEP-2012
Diesel	14902.8	31-OCT-2012
Motor Oil	13149.3	09-OCT-2012
AK102	17570.8	31-OCT-2012
AK103	9202.1	25-SEP-2012
JetA	5416.5	11-AUG-2012
Min Oil	13440.7	09-MAY-2012
OR Diesel	17647.1	31-OCT-2012
NAS Diesel	17529.9	31-OCT-2012
Bunker C	9156.1	24-AUG-2012

MANUAL INTEGRATION

1. Baseline correction

3. Peak not found
5. Skimmed surrogate

Analyst: ___

Date: 11 03 12

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid4a.i/20121031b.b/1031a042.d ARI ID: VP41AMSD

Method: /chem3/fid4a.i/20121031b.b/ftphfid4a.m Client ID:

Instrument: fid4a.i Injection: 31-OCT-2012 22:51

Operator: JR/VTS

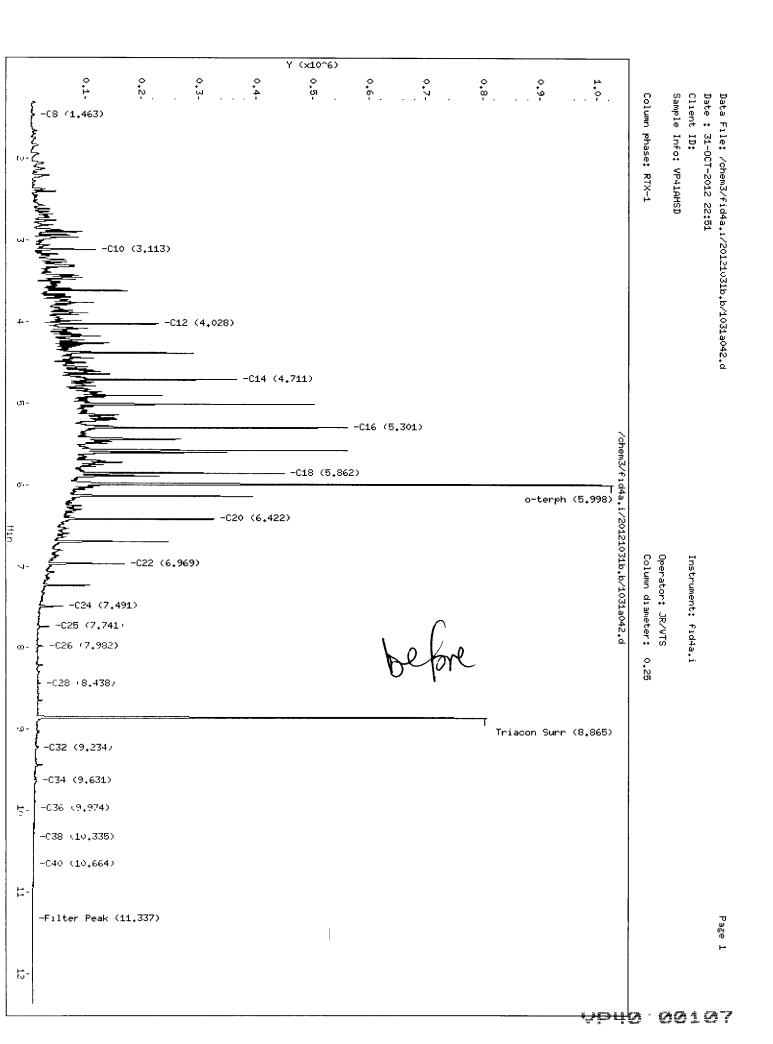
Report Date: 11/03/2012 Dilution Factor: 1

Macro: 31-OCT-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:31-OCT-2012 M.Oil:09-OCT-2012

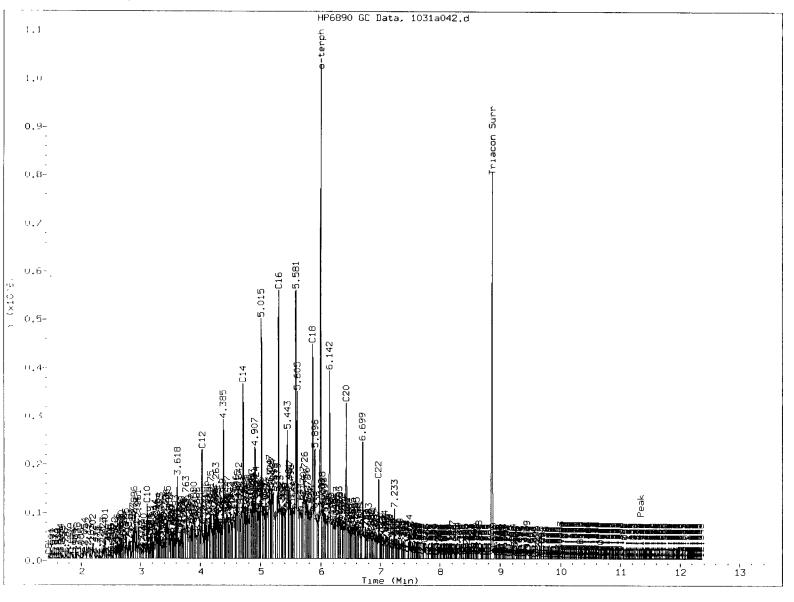
FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc	
Toluene	1.223	-0.010	======== 7203	7551	======= WATPHG	(Tol-C12)	3765215	203.33	
C8	1.463	0.001	5421	7955	WATPHD	(C12-C24)	16449310		۲
C10	3.113	-0.005	113574	82031	WATPHM	(C24-C38)	1427052	108.53	E
C12	4.028	-0.003	225810	189019	AK102	(C10-C25)	19227598	1094.29	
C14	4.711	-0.003	363099	234314	AK103	(C25-C36)	1212343	131.75	
C16	5.301	0.000	556979	441351	OR.DIES	(C10-C28)	19706950	1116.72	
C18	5.862	0.001	444340	411513	Ì				
C20	6.422	-0.002	323031	305399	JET-A	(C10-C18)	14048300	2593.62	
C22	6.969	-0.005	165565	157279	MIN.OIL	(C24-C38)	1427052	106.17	
C24	7.491	-0.005	54837	59486					
C25	7.741	-0.005	31542	47612					
C26	7.982	-0.007	19994	23397					
C28	8.438	-0.008	15595	20756					
C32	9.234	-0.015	10801	19858					
C34	9.631	0.011	9342	15355					
Filter Peak	11.337	-0.012	1684	2685	BUNKERC	(C10-C38)	20533204	2242.57	
C36	9.974	-0.004	5259	2237					
C38	10.335	0.006	4079	2130					
C40	10.664	-0.008	3378	3167					
o-terph	5.998	0.001	924627	718964					
Triacon Surr	8.865	-0.009	788616	677445	NAS DIES	G (C10-C24)	19106152	1089.92	


Range Times: NW Diesel(4.031 - 7.495) AK102(3.12 - 7.75) Jet A(3.12 - 5.86)
NW M.Oil(7.50 - 10.33) AK103(7.75 - 9.98) OR Diesel(3.12 - 8.45)

Surrogate	Area	Amount	%Rec
o-Terphenyl	718964	36.7	81.6 M
Triacontane	677445	35.9	79.8 M

M Indicates the peak was manually integrated


Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102	19588.1 18864.5 18517.9 14902.8 13149.3	31-OCT-2012 09-OCT-2012 28-SEP-2012 31-OCT-2012 09-OCT-2012
AK103 JetA Min Oil OR Diesel NAS Diesel	9202.1 5416.5 13440.7 17647.1 17529.9	25-SEP-2012 11-AUG-2012 09-MAY-2012 31-OCT-2012 31-OCT-2012
Bunker C	9156.1	24-AUG-2012

2 11/03/2

FID: 4A SIGNAL

MANUAL INTEGRATION

1. Baseline correction
3. Peak not found

5. Skimmed surrogate

Analyst: _____

Date: 1/03/12

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Sample ID: LCS-103012

LCS/LCSD

Lab Sample ID: LCS-103012 QC Report No: VP41-Anchor QEA LLC

LIMS ID: 12-21279

Project: Central Waterfront Shoreline Inves.

Matrix: Soil

Data Release Authorized: WW Date Sampled: 10/25/12 Reported: 11/05/12 Date Received: 10/26/12

Date Extracted LCS/LCSD: 10/30/12 Sample Amount LCS: 10.0 g

LCSD: 10.0 g

Date Analyzed LCS: 10/31/12 20:18 Final Extract Volume LCS: 1.0 mL LCSD: 10/31/12 20:40 LCSD: 1.0 mL

LCSD: 10/31/12 20:40 LCSD: 1.0 mL Instrument/Analyst LCS: FID/JGR Dilution Factor LCS: 1.0

LCSD: FID/JGR LCSD: 1.0

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	118	150	78.7%	120	150	80.0%	1.7%

TPHD Surrogate Recovery

LCS LCSD
o-Terphenyl 88.1% 88.3%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

Analytical Resources Inc. TPH Quantitation Report

ARI ID: VP40LCSS1

Injection: 31-OCT-2012 20:18

Client ID:

Data file: /chem3/fid4a.i/20121031b.b/1031a035.d

Method: /chem3/fid4a.i/20121031b.b/ftphfid4a.m

Instrument: fid4a.i

Operator: JR/VTS

Report Date: 11/03/2012 Dilution Factor: 1

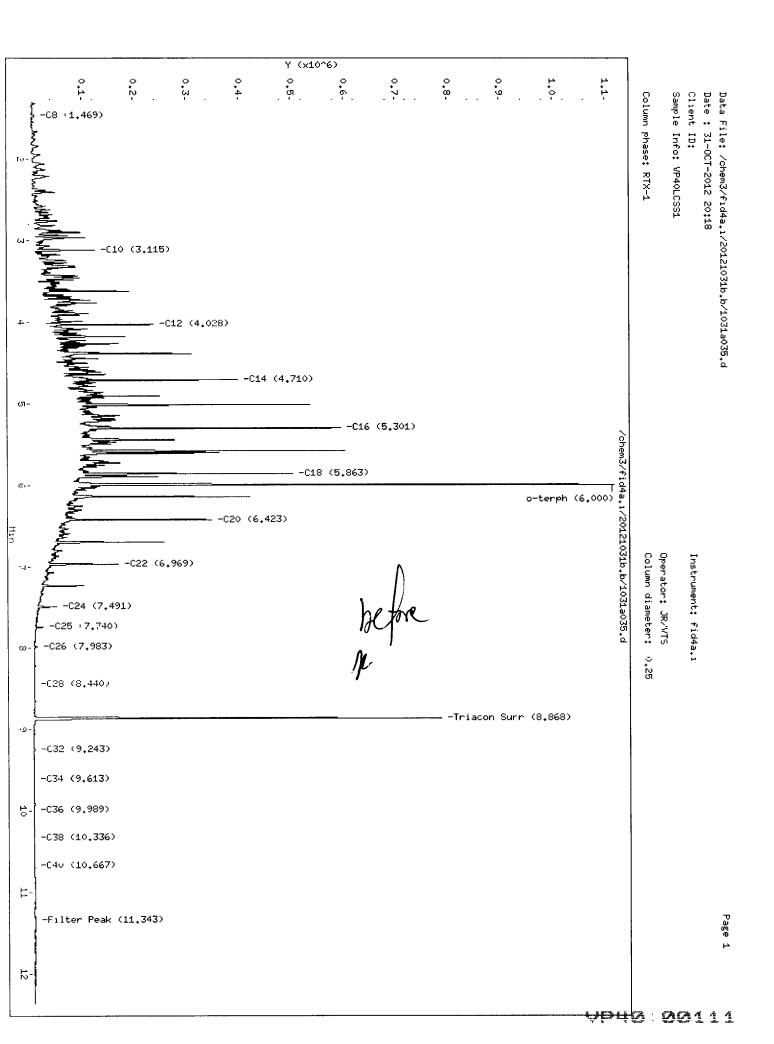
Macro: 31-OCT-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:31-OCT-2012 M.Oil:09-OCT-2012

FID:4A RESULTS

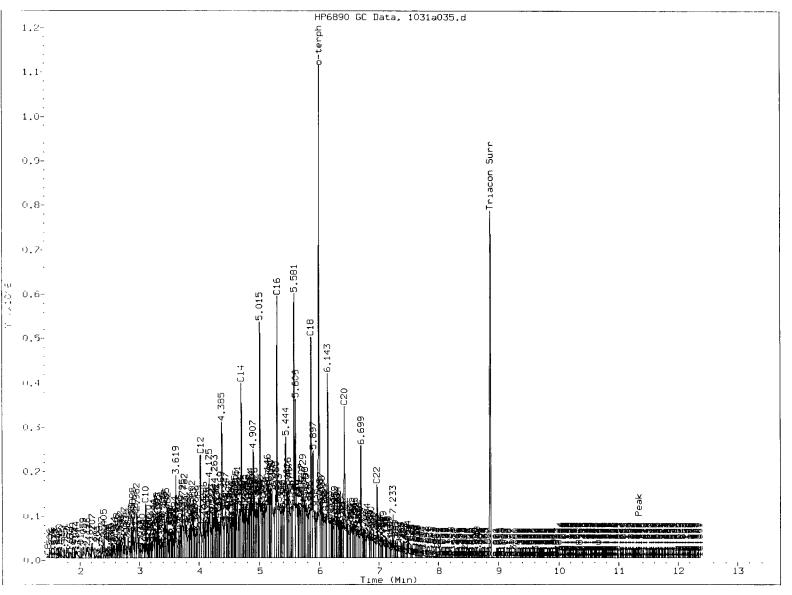
Compound	RT	Shift	Height	Area	Method	J -	Total Area	
Toluene	1.228	-0.005	7437	7468	WATPHG	(Tol-C12)	4184589	225.98 🏒
C8	1.469	0.007	5622	8507	WATPHD	(C12-C24)	17631877	1183.12
C10	3.115	-0.004	122136	90056	WATPHM	(C24-C38)		19.50
C12	4.028	-0.003	232460	204481	AK102	(C10-C25)	20645351	1174.98
C14	4.710	-0.003	394633	260967	AK103	(C25-C36)	178725	19.42
C16	5.301	0.001	589918	479653	OR.DIES	(C10-C28)	20766729	1176.78
C18	5.863	0.002	497493	469105				
C20	6.423	-0.001	342577	372385	JET-A	(C10-C18)	15435344	2849.69
C22	6.969	-0.005	165153	161026	MIN.OIL	(C24-C38)	256455	19.08
C24	7.491	-0.004	43901	55125				
C25	7.740	-0.007	18422	27720				
C26	7.983	-0.006	7613	11022				
C28	8.440	-0.006	2274	3420				
C32	9.243	-0.005	1827	2400				
C34	9.613	-0.007	458	643				
Filter Peak	11.343	-0.006	997	1103	BUNKERC	(C10-C38)	20835049	2275.54
C36	9.989	0.012	476	666				
C38	10.336	0.007	641	828				
C40	10.667	-0.005	854	882				
o-terph	6.000	0.002	1004755	776636				
Triacon Surr	8.868	-0.005	782468	717522	NAS DIES	G (C10-C24)	20578595	1173.92
=======================================	======		=======	========	=======	========		=====

Range Times: NW Diesel(4.031 - 7.495) AK102(3.12 - 7.75) Jet A(3.12 - 5.86) NW M.Oil(7.50 - 10.33) AK103(7.75 - 9.98) OR Diesel(3.12 - 8.45)


Surrogate	Area	Amount	%Rec
o-Terphenyl	776636	39.6	88.1 M
Triacontane	717522	38.0	84.5

M Indicates the peak was manually integrated

Analyte RF Curve Date


O-Terph Surr 19588.1 31-OCT-2012
Triacon Surr 18864.5 09-OCT-2012
Gas 18517.9 28-SEP-2012
Diesel 14902.8 31-OCT-2012
Motor Oil 13149.3 09-OCT-2012
AK102 17570.8 31-OCT-2012
AK103 9202.1 25-SEP-2012
JetA 5416.5 11-AUG-2012
Min Oil 13440.7 09-MAY-2012
OR Diesel 17647.1 31-OCT-2012
NAS Diesel 17529.9 31-OCT-2012
Bunker C 9156.1 24-AUG-2012

N 11/03/12

FID:4A-2C/RTX-1 VP40LCSS1

FID: 4A SIGNAL

MANUAL INTEGRATION

1. Baseline correction

3. Peak not found

). Skimmed surrogate

Analyst: _____

Date: ///03/12

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid4a.i/20121031b.b/1031a036.d ARI ID: VP40LCSDS1

Method: /chem3/fid4a.i/20121031b.b/ftphfid4a.m Client ID:

Instrument: fid4a.i Injection: 31-OCT-2012 20:40

Operator: JR/VTS

Report Date: 11/03/2012 Dilution Factor: 1

Macro: 31-OCT-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:31-OCT-2012 M.Oil:09-OCT-2012

FID: 4A RESULTS

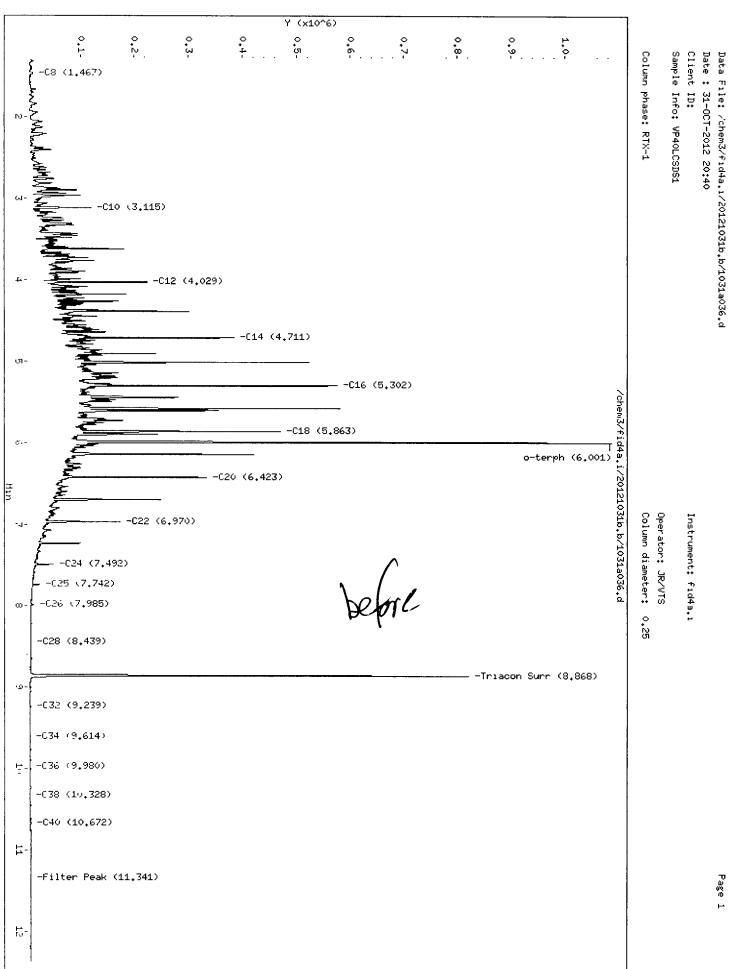
Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.228	-0.006	======================================	8011	WATPHG	(Tol-C12)	4081557	220.41
C8	1.467	0.004	5550	8471	WATPHD	(C12-C24)	17866608	1198.87
C10	3.115	-0.004	114649	88028	WATPHM	(C24-C38)	244367	18.58
C12	4.029	-0.003	220101	199086	AK102	(C10-C25)	20778505	1182.56
C14	4.711	-0.003	380771	253734	AK103	(C25-C36)	178951	19.45
C16	5.302	0.001	572131	459840	OR.DIES	(C10-C28)	20897542	1184.19
C18	5.863	0.002	465364	469223				
C20	6.423	-0.001	330264	314242	JET-A	(C10-C18)	15382279	2839.90
C22	6.970	-0.005	168628	174460	MIN.OIL	(C24-C38)	244367	18.18
C24	7.492	-0.003	44345	56208				
C25	7.742	-0.005	17523	29786				
C26	7.985	-0.004	7464	10230				
C28	8.439	-0.008	2379	3595				
C32	9.239	-0.010	1906	2393				
C34	9.614	-0.007	435	193				
Filter Peak	11.341	-0.008	972	1130	BUNKERC	(C10-C38)	20969373	2290.21
C36	9.980	0.002	499	411				
C38	10.328	-0.001	635	563				
C40	10.672	0.000	1281	2827				
o-terph	6.001	0.003	976175	778664				
Triacon Surr	8.868	-0.006	816790	719355	NAS DIES	G (C10-C24)	20725006	1182.27

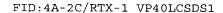
Range Times: NW Diesel(4.031 - 7.495) AK102(3.12 - 7.75) Jet A(3.12 - 5.86)

NW M.Oil(7.50 - 10.33) AK103(7.75 - 9.98) OR Diesel(3.12 - 8.45)

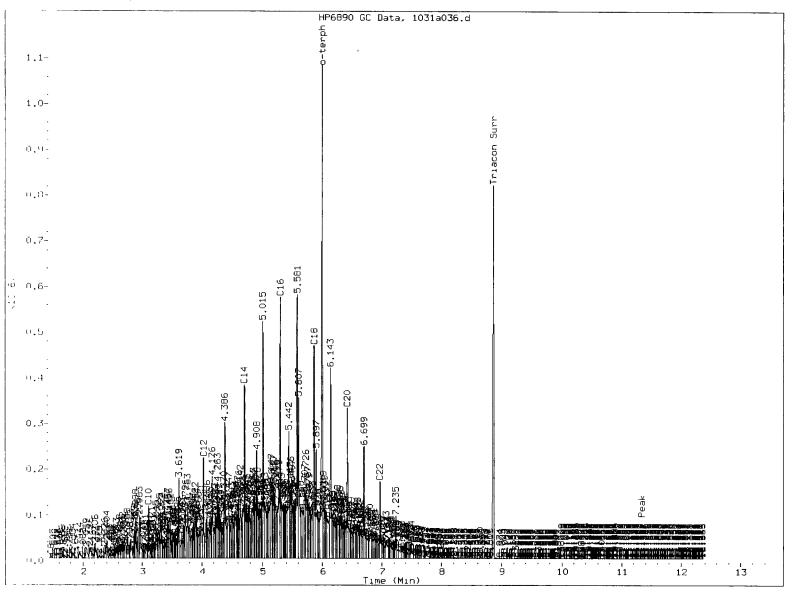
 Surrogate
 Area
 Amount
 %Rec

 o-Terphenyl
 778664
 39.8
 88.3 M


 Triacontane
 719355
 38.1
 84.7


M Indicates the peak was manually integrated

Analyte RF Curve Date


O-Terph Surr 19588.1 31-OCT-2012
Triacon Surr 18864.5 09-OCT-2012
Gas 18517.9 28-SEP-2012
Diesel 14902.8 31-OCT-2012
Motor Oil 13149.3 09-OCT-2012
AK102 17570.8 31-OCT-2012
AK103 9202.1 25-SEP-2012
JetA 5416.5 11-AUG-2012
Min Oil 13440.7 09-MAY-2012
OR Diesel 17647.1 31-OCT-2012
NAS Diesel 17529.9 31-OCT-2012
Bunker C 9156.1 24-AUG-2012

A 11/03/12

FID:4A SIGNAL

MANUAL INTEGRATION

- 1. Baseline correction
- 3. Peak not found

5. Skimmed surrogate

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: VP41

Matrix: Soil Project: Central Waterfront Shoreline Inves.

Date Received: 10/26/12

ARI ID	Client ID	Client Amt	Final Vol	Basis	Prep Date
AKI ID	CITEME ID	Aut	VOI	Dasis	Date
12-21279-103012MB1	Method Blank	10.0 g	1.00 mL	_	10/30/12
12-21279-103012LCS1	Lab Control	10.0 g	1.00 mL	_	10/30/12
12-21279-103012LCSD1	Lab Control Dup	10.0 g	1.00 mL	-	10/30/12
12-21279-VP41A	CWS1-02-1-3	9.68 g	1.00 mL	D	10/30/12
12-21279-VP41AMS	CWS1-02-1-3	9.99 g	1.00 mL	D	10/30/12
12-21279-VP41AMSD	CWS1-02-1-3	9.76 g	1.00 mL	D	10/30/12
12-21280-VP41B	CWS1-02-7-8	8.76 g	1.00 mL	D	10/30/12
12-21281-VP41C	CWS1-02-12-13	8.81 g	1.00 mL	D	10/30/12
12-21282-VP41D	CWS1-01-3-5	8.77 g	1.00 mL	D	10/30/12
12-21283-VP41E	CWS1-01-11-13	8.54 q	1.00 mL	D	10/30/12
12-21285-VP41G	CWS1-03-2-4	$8.95 \overline{q}$	1.00 mL	D	10/30/12
12-21286-VP41H	CWS1-03-7-9	$7.46 \dot{q}$	1.00 mL	D	10/30/12

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: VP40 Project: Central Waterfront Shoreline Inves. Matrix: Soil

Date Received: 10/26/12

ARI ID	Client ID	Client Amt	Final Vol	Basis	Prep Date
12-21289-103012MB1 12-21289-103012LCS1	Method Blank Lab Control	10.0 g 10.0 g	1.00 mL		10/30/12 10/30/12
12-21289-103012LCSD1	Lab Control Dup	10.0 g	1.00 mL	-	10/30/12
12-21289-VP40A	CWS1-04-2-4	8.33 g	1.00 mL	D	10/30/12
12-21290-VP40B	CWS1-04-6-8	8.02 g	1.00 mL	D	10/30/12
12-21291-VP40C	CWS1-04-13.5-15	8.58 g	1.00 mL	D	10/30/12

VP40MBS1

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

SDG No.: VP40 Project No.: CENTRAL WATERFRONT

Date Extracted: 10/30/12 Matrix: SOLID

Date Analyzed: 10/31/12 Instrument ID: FID4A

Time Analyzed: 1957

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
	=========	==========	========
01	VP40LCSS1	VP40LCSS1	10/31/12
02	VP40LCSDS1	VP40LCSDS1	10/31/12
03	CWS1-04-2-4	VP40A	10/31/12
04	CWS1-04-6-8	VP40B	10/31/12
05	CWS1-04-13.5	VP40C	10/31/12
06	CWS1-02-1-3	VP41A	10/31/12
07	CWS1-02-1-3	VP41AMS	10/31/12
80	CWS1-02-1-3	VP41AMSD	10/31/12
09	CWS1-02-7-8	VP41B	10/31/12
10	CWS1-02-12-1	VP41C	11/01/12
11	CWS1-01-3-5	VP41D	11/01/12
12	CWS1-01-11-1	VP41E	11/01/12
13		VP41G	11/01/12
14	CWS1-03-7-9	VP41H	11/01/12
15		VP40C	11/01/12
	CWS1-02-7-8	VP41B	11/01/12
17	CWS1-03-7-9	VP41H	11/01/12
18			
19			
20			
21			
22			
23			
24			
25			
26	****		
27			
28			
29			
30			

6a DIESEL INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA

Instrument: FID4A.I Project: CENTRAL WATERFRONT

Calibration Date: 31-OCT-2012 SDG No.: VP40

Diesel Range	RF1 50	RF2 100	RF3 250	RF4 500	RF5 1000	RF6 2500	Ave RF	%RSD
WA Diesel AK Diesel OR Diesel Cal Diesel	14810 17371 17445 17339	14599 17255 17325 17217	14844 17514 17593 17467	15434 18147 18225 18104	14893 17567 17647 17522	*** *** ***	14903 17571 17647 17530	2.13 1.96 1.97 1.95
o-Terph	18422	19003	19595	20752	20168	***	19588	4.70

<- Indicates %RSD outside limits Surrogate areas are not included in Diesel RF calculation.

Quant Ranges: WA Diesel C12-C24 (4.031-7.495)

AK Diesel C10-C25 (3.118-7.747) OR Diesel C10-C28 (3.118-8.446) Cal Diesel C10-C24 (3.118-7.495)

Calibration Files	Analysis 7	Гime
1031a025.d	31-OCT-2012	
1031a026.d	31-OCT-2012	
1031a027.d	31-OCT-2012	17:22
1031a028.d	31-OCT-2012	
1031a029.d	31-OCT-2012	18:06
1031a030.d	31-OCT-2012	18:28

UDUG: GG115

6a NW MOTOR OIL RANGE INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOE QEA LLC

Instrument: FID4A.I Project: CENTRAL WATERFRONT

Calibration Date: 09-OCT-2012 SDG No.: VP40

Product Range	RF1 100	RF2 250	RF3 500	RF4 1000	RF5 2500	RF6 5000	Ave RF	%RSD
WA M.Oil C24-C38	13319	13271	13023	14002	13089	12192	13149	4.4
Triac Surr	17032	18644	18484	20301	19481	19246	18865	5.9

<- Indicates %RSD outside limits Surrogate areas are not included in Motor Oil RF calculation.

Calibration Files	Analysis Time
1009a027.d	09-OCT-2012 20:56
1009a028.d	09-OCT-2012 21:17
1009a029.d	09-OCT-2012 21:38
1009a030.d	09-OCT-2012 21:59
1009a031.d	09-OCT-2012 22:20
1009a032.d	09-OCT-2012 22:41

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 31-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 31-OCT-2012 SDG No.: VP40

Analysis Time: 19:12 Lab ID: DIESEL#2

Instrument: FID4A.I Lab File Name: 1031a032.d

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24) AK102 (C10-C25) NASDies(C10-C24) Terphenyl	3342855 3938176 3927818 788022	224.3 224.1 224.1 40.2	250 250 250 250 45	-10.3 -10.3 -10.4 -10.6

^{*} Surrogate areas are subtracted from range areas

p1 of 1

FORM VII-Diesel

VPU0:00121

<- Indicates a %D outside QC limits

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 09-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 31-OCT-2012 SDG No.: VP40

Analysis Time: 19:35 Lab ID: MOIL#2

Instrument: FID4A.I Lab File Name: 1031a033.d

M.oil Range	Area*	CalcAmnt	NomAmnt	% D
WAMoil(C24-C38) AK103 (C25-C36) OR MOIL(C28-C40) CRUDE(Tol-C40) n-Triacontane	6190748	470.8	500	-5.8
	5240766	569.5	500	13.9
	5058705	669.8	500	34.0
	7471486	989.2	500	97.8
	795290	42.2	45	-6.3

^{*} Surrogate areas are subtracted from range areas

<- Indicates a %D outside QC limits

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 31-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 31-OCT-2012 SDG No.: VP40

Analysis Time: 23:12 Lab ID: DIESEL#3

Instrument: FID4A.I Lab File Name: 1031a043.d

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24)	3371081	226.2	250	-9.5
AK102 (C10-C25)	3967186	225.8	250	-9.7
NASDies(C10-C24)	3959555	225.9	250	-9.7
Terphenyl	792921	40.5	45	-10.0

^{*} Surrogate areas are subtracted from range areas

p1 of 1

FORM VII-Diesel

upua: aa. 23

<- Indicates a %D outside QC limits

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 09-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 31-OCT-2012 SDG No.: VP40

Analysis Time: 23:34 Lab ID: MOIL#3

Instrument: FID4A.I Lab File Name: 1031a044.d

M.oil Range	Area*	CalcAmnt	NomAmnt	% D
WAMoil(C24-C38) AK103 (C25-C36) OR MOIL(C28-C40) CRUDE(Tol-C40) n-Triacontane	6416421	488.0	500	-2.4
	5434030	590.5	500	18.1
	5263616	696.9	500	39.4
	7652435	1013.2	500	102.6
	813190	43.1	45	-4.2

^{*} Surrogate areas are subtracted from range areas

<- Indicates a %D outside QC limits

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 31-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 01-NOV-2012 SDG No.: VP40

Analysis Time: 02:05 Lab ID: DIESEL#4

Instrument: FID4A.I Lab File Name: 1031a051.d

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24)	3266468	219.2	250	-12.3
AK102 (C10-C25)	3850361	219.1	250	-12.3
NASDies(C10-C24)	3840098	219.1	250	-12.4
Terphenyl	778824	39.8	45	-11.6

^{*} Surrogate areas are subtracted from range areas

p1 of 1

FORM VII-Diesel

UPUM: 00125

<- Indicates a %D outside QC limits

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 09-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 01-NOV-2012 SDG No.: VP40

Analysis Time: 02:27 Lab ID: MOIL#4

Instrument: FID4A.I Lab File Name: 1031a052.d

M.oil Range	Area*	CalcAmnt	NomAmnt	% D
WAMoil(C24-C38) AK103 (C25-C36) OR MOIL(C28-C40) CRUDE(Tol-C40) n-Triacontane	6512937	495.3	500	-0.9
	5484558	596.0	500	19.2
	5348538	708.2	500	41.6
	7810826	1034.2	500	106.8
	811484	43.0	45	-4.4

^{*} Surrogate areas are subtracted from range areas

<- Indicates a %D outside QC limits

DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 01-NOV-2012 Project: CENTRAL WATERFRONT

CCal Date: 01-NOV-2012 SDG No.: VP40

Analysis Time: 13:32 Lab ID: DIESEL#1

Instrument: FID4A.I Lab File Name: 1101a011.d

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24) AK102 (C10-C25) NASDies(C10-C24) Terphenyl	3465127 4089906 4080000 812682	238.1 238.5 238.5 42.2	250 250 250 250 45	-4.8 -4.6 -4.6 -6.2

^{*} Surrogate areas are subtracted from range areas <- Indicates a %D outside QC limits

p1 of 1

FORM VII-Diesel

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 09-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 01-NOV-2012 SDG No.: VP40

Analysis Time: 13:55 Lab ID: MOIL#1

Instrument: FID4A.I Lab File Name: 1101a012.d

M.oil Range	Area*	CalcAmnt	NomAmnt	% D
WAMoil(C24-C38)	6594970	501.5	500	0.3
AK103 (C25-C36)	5594464	608.0	500	21.6
OR MOIL(C28-C40)	5390086	713.7	500	42.7
CRUDE(Tol-C40)	7911912	1047.6	500	109.5
n-Triacontane	856845	45.4	45	0.9

^{*} Surrogate areas are subtracted from range areas

UPUG BR128

<- Indicates a %D outside QC limits

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 01-NOV-2012 Project: CENTRAL WATERFRONT

CCal Date: 01-NOV-2012 SDG No.: VP40

Analysis Time: 15:24 Lab ID: DIESEL#2

Instrument: FID4A.I Lab File Name: 1101a016.d

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24)	3496395	240.2	250	-3.9
AK102 (C10-C25)	4111598	239.8	250	-4.1
NASDies(C10-C24)	4101045	239.7	250	-4.1
Terphenyl	799360	41.5	45	-7.7

^{*} Surrogate areas are subtracted from range areas <- Indicates a %D outside QC limits

p1 of 1

FORM VII-Diesel

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 09-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 01-NOV-2012 SDG No.: VP40

Analysis Time: 15:46 Lab ID: MOIL#2

Instrument: FID4A.I Lab File Name: 1101a017.d

M.oil Range	Area*	CalcAmnt	NomAmnt	% D	
WAMoil(C24-C38) AK103 (C25-C36) OR MOIL(C28-C40) CRUDE(Tol-C40) n-Triacontane	6854036 5784064 5629180 8203734 901798	521.2 628.6 745.3 1086.2 47.8	500 500 500 500 45	4.2 25.7 49.1 117.2 6.2	<-

^{*} Surrogate areas are subtracted from range areas

<- Indicates a %D outside QC limits</p>

8 TPH ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

SDG No.: VP40 Project: CENTRAL WATERFRONT

Instrument ID: FID4A GC Column: RTX-1

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE RT FROM DAILY STANDARD					
	TERPH: 6.0					
	CLIENT	LAB	DATE	TIME	TERPH "	TRIAC
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	=========		=========		======	=======
	ZZZZZ	ZZZZZ	10/31/12	1421	6.00	8.89
	RT	RT	10/31/12	1443	6.00	8.87
03	ZZZZZ	ZZZZZ	10/31/12	1508	6.00	8.88
04	ZZZZZ	ZZZZZ	10/31/12	1530	5.99	8.87
05	ZZZZZ	ZZZZZ	10/31/12	1552	6.00	8.87
06	IB	IB	10/31/12	1615	6.00	8.87
07	DIESEL 50	DIESEL 50	10/31/12	1637	5.99	8.87
80	DIESEL 100	DIESEL 100	10/31/12	1659	5.99	8.87
09	DIESEL 250	DIESEL 250	10/31/12	1722	6.00	8.88
10	DIESEL 500	DIESEL 500	10/31/12	1744	6.01	8.87
11	DIESEL 1000	DIESEL 1000	10/31/12	1806	6.02	8.87
12	DIESEL 2500	DIESEL 2500	10/31/12	1828	6.09*	8.86
13	DIESEL ICV	DIESEL ICV	10/31/12	1850	6.00	8.87
14	DIESEL#2	DIESEL#2	10/31/12	1912	6.00	8.87
15	MOIL#2	MOIL#2	10/31/12	1935	5.99	8.88
16	VP40MBS1	VP40MBS1	10/31/12	1957	6.00	8.87
17	VP40LCSS1	VP40LCSS1	10/31/12	2018	6.00	8.87
18	VP40LCSDS1	VP40LCSDS1	10/31/12	2040	6.00	8.87
19	CWS1-04-2-4	VP40A	10/31/12	2102	6.00	8.87
20	CWS1-04-6-8	VP40B	10/31/12	2123	6.00	8.87
21	CWS1-04-13.5		10/31/12	2145	6.00	8.88
22	CWS1-02-1-3	VP41A	10/31/12	2207	6.00	8.87
23	CWS1-02-1-3	VP41AMS	10/31/12	2229	6.00	8.87
24	CWS1-02-1-3	VP41AMSD	10/31/12	2251	6.00	8.86
25	DIESEL#3	DIESEL#3	10/31/12	2312	6.00	8.86
26	MOIL#3	MOIL#3	10/31/12	2334	5.99	8.87
27	CWS1-02-7-8	VP41B	10/31/12	2356	6.00	8.88
28	CWS1-02-12-1	1	11/01/12	0017	6.00	8.87
29		VP41D	11/01/12	0039	6.00	8.87
30		VP41E	11/01/12	0101	6.00	8.87
31		VP41G	11/01/12	0122	6.00	8.87
32	CWS1-03-7-9	VP41H	11/01/12	0144	6.00	8.88
54	CHDI OJ /-J	1	11,01,12	0111		, 3.33
		ı		I	I	l

QC LIMITS

TERPH = o-terph (+/- 0.05 MINUTES)TRIAC = Triacon Surr (+/- 0.05 MINUTES)

page 1 of 2

FORM VIII TPH

^{*} Values outside of QC limits.

TPH ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC Client: HDR ENGINEERING

SDG No.: VP40 Project: CENTRAL WATERFRONT

Instrument ID: FID4A GC Column: RTX-1

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE RT FROM DAILY STANDARD					
	TERPH: 6.0	1				
	CLIENT	LAB	DATE	TIME	TERPH	TRIAC
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	========	=========	=======	=======	=======	=======
01	DIESEL#4	DIESEL#4	11/01/12	0205	6.00	8.89
02	VP40	MOIL#4	11/01/12	0227	5.99	8.87
03	ZZZZZ	ZZZZZ	11/01/12	0950	6.00	8.89
04	RT	RT	11/01/12	1012	6.00	8.88
05	IB	IB	11/01/12	1034	6.00	8.87
06	DIESEL 50	DIESEL 50	11/01/12	1056	5.99	8.87
07	DIESEL 100	DIESEL 100	11/01/12	1118	5.99	8.87
08	DIESEL 250	DIESEL 250	11/01/12	1141	6.00	8.88
09	DIESEL 500	DIESEL 500	11/01/12	1203	6.01	8.87
10	DIESEL 1000	DIESEL 1000	11/01/12	1225	6.02	8.87
11	DIESEL 2500	DIESEL 2500	11/01/12	1247	6.05	8.86
12	DIESEL ICV	DIESEL ICV	11/01/12	1310	6.00	8.87
13	DIESEL#1	DIESEL#1	11/01/12	1332	6.00	8.87
14	MOIL#1	MOIL#1	11/01/12	1355	5.99	8.88
15	CWS1-04-13.5	VP40C	11/01/12	1417	6.00	8.88
16	CWS1-02-7-8	VP41B	11/01/12	1439	6.00	8.88
17	CWS1-03-7-9	VP41H	11/01/12	1501	6.00	8.88
18	DIESEL#2	DIESEL#2	11/01/12	1524	6.00	8.89
19	MOIL#2	MOIL#2	11/01/12	1546	5.99	8.88

QC LIMITS

TERPH = o-terph (+/- 0.05 MINUTES)
TRIAC = Triacon Surr (+/- 0.05 MINUTES)

* Values outside of QC limits.

TPHG Analysis Report and Summary QC Forms

ARI Job ID: VP40, VP41

VP40:00133

ORGANICS ANALYSIS DATA SHEET

TPHG by Method NWTPHG

Matrix: Soil

QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Event: NA

Date Sampled: 10/25/12 Date Received: 10/26/12

Data Release Authorized: Data Reported: 11/05/12

ARI ID	Client ID	Analysis Date	Basis	Range	Result
MB-103012 12-21289	Method Blank	10/30/12 PID2	Dry	Gasoline HC ID Trifluorotoluene Bromobenzene	< 5.0 U 97.7% 97.8%
VP40A 12-21289	CWS1-04-2-4	10/30/12 PID2	Dry	Gasoline HC ID Trifluorotoluene Bromobenzene	< 6.4 U 96.7% 98.0%
VP40B 12-21290	CWS1-04-6-8	10/30/12 PID2	Dry	Gasoline HC ID Trifluorotoluene Bromobenzene	< 7.8 U 95.2% 96.9%
VP40C 12-21291	CWS1-04-13.5-15	10/30/12 PID2	Dry	Gasoline HC ID Trifluorotoluene Bromobenzene	19 GAS 97.2% 99.4%

Gasoline values reported in mg/kg (ppm)

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

FORM I UDUM: 00134

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid2.i/103012-1.b/1030a006.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a006.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012 BETX Ical Date: 20-OCT-2012 ARI ID: MB1030 Client ID:

Injection Date: 30-OCT-2012 11:44

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

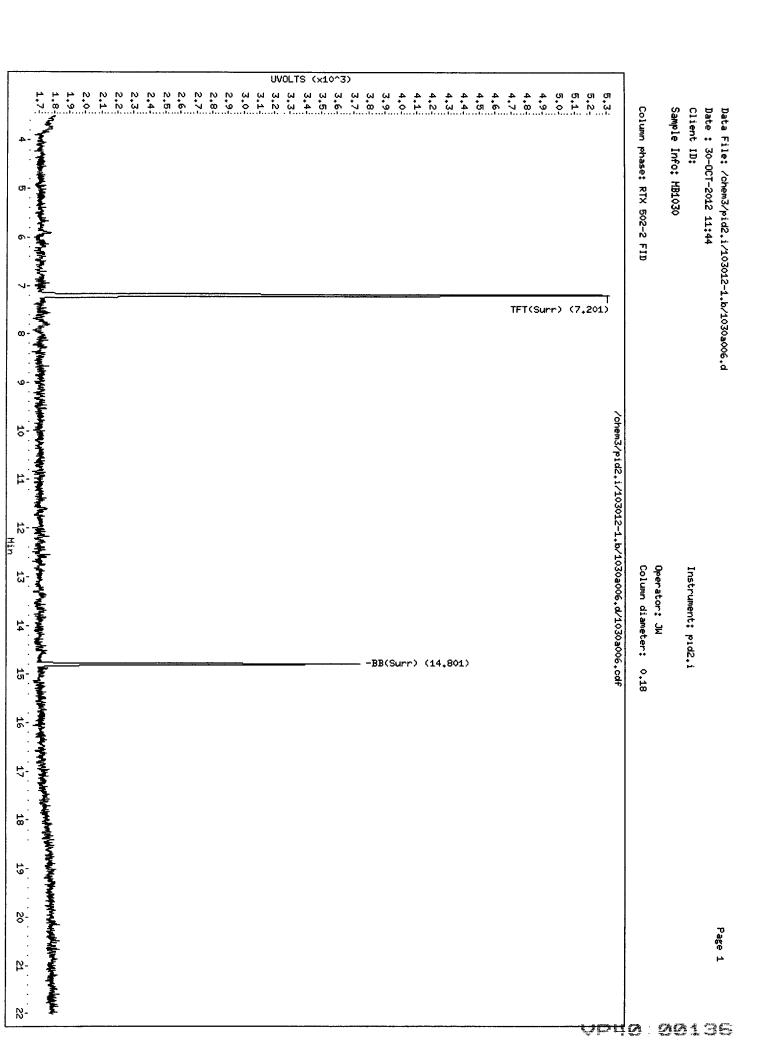
RТ	Shift	Height	Area	%Rec	Compound
7.201	-0.003	3622	45399	97.7	TFT(Surr)
14.801	-0.004	2031	20164	97.8	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.07 to 17.57)	391690	1	0.000
8015C	2MP-TMB	(3.73 to 15.74)	825102	1	0.000
AK101	nC6-nC10	(4.19 to 14.47)	660003	0	0.000
NWTPHG	Tol-Nap	(9.07 to 18.58)	406475	1	0.000 _

- M Indicates manual integration within range
- Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

name marker his are set by dairy his candard


JU 10/3/12

		PID Surrogate	S	
RT	Shift	Response	%Rec	Compound
7.226	-0.003	13475	94.4	TFT(Surr)
14.819	-0.004	18570	92.2	BB(Surr)

SW8021B (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

Data file 1: /chem3/pid2.i/103012-1.b/1030a018.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a018.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012 BETX Ical Date: 20-OCT-2012 ARI ID: VP40A

Client ID: CWS1-04-2-4

Injection Date: 30-OCT-2012 17:47

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound	
7.201	0.009	3583	46273	96.7	TFT (Surr)	_
14.800	0.008	2036	19915	98.0	BB(Surr)	

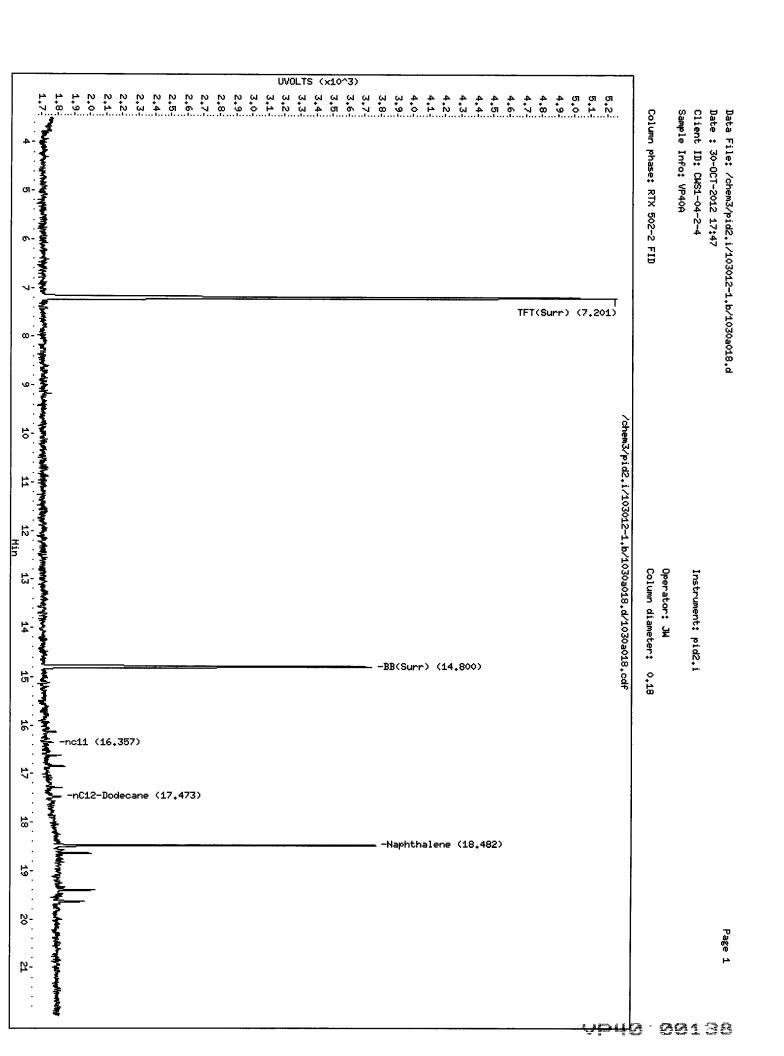
PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.05 to 17.57)	391690	4603	0.012 M
8015C	2MP-TMB	(3.73 to 15.73)	825102	1	0.000
AK101	nC6-nC10	(4.18 to 14.45)	660003	0	0.000
NWTPHG	Tol-Nap	(9.05 to 18.58)	406475	16851	0.041 M

M Indicates manual integration within range

* Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

TW 11/3/12


RT	Shift	PID Surrogate Response	s %Rec	Compound
7.225	-0.003	13051	91.4	TFT (Surr)
14.818	-0.005	18274	90.7	BB(Surr)

SW8021B (PID)

RT	Shift	Response	Amount	Compound	∽
			-		N
ND				Benzene	, -
ND				Toluene	
ND				Ethylbenzene	
ND		- 		M/P-Xylene	
ND				O-Xylene	
ND				MTBE	

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

Data file 1: /chem3/pid2.i/103012-1.b/1030a019.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a019.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012 BETX Ical Date: 20-OCT-2012 ARI ID: VP40B

Client ID: CWS1-04-6-8

Injection Date: 30-OCT-2012 18:15

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound	
7.195	0.003	3528	44106	95.2	TFT(Surr)	
14.797	0.004	2012	21183	96.9	BB(Surr)	•

PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.05 to 17.57)	391690	0	0.000
8015C	2MP-TMB	(3.73 to 15.73)	825102	1	0.000
AK101	nC6-nC10	(4.18 to 14.45)	660003	1	0.000
NWTPHG	Tol-Nap	(9.05 to 18.58)	406475	1784	0.004 M

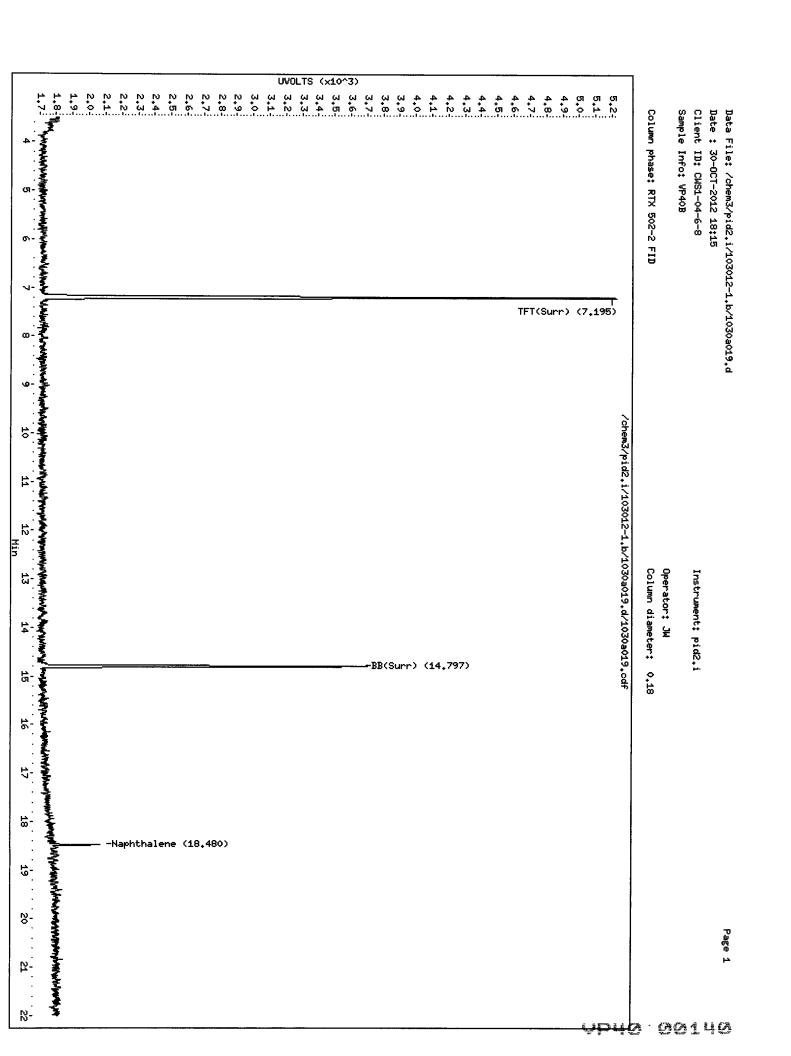
M Indicates manual integration within range

* Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

500 11/3/1~

PID Surrogates							
RT	Shift	Response	%Rec	Compound			
7.220	-0.009	12358	86.6	TFT (Surr)			
14.814	-0.008	17659	87.6	BB (Surr)			

SW8021B (PID)



RT	Shift	Response	Amount	Compound	^ /
					N
ND				Benzene	1/2
ND				Toluene	
ND				Ethylbenzene	
ND				M/P-Xylene	
ND				O-Xylene	
ND				MTBE	

A Indicates Peak Area was used for quantitation instead of Height

SELDO: OPIGO

N Indicates peak was manually integrated

Data file 1: /chem3/pid2.i/103012-1.b/1030a020.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a020.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012

BETX Ical Date: 20-OCT-2012

ARI ID: VP40C

Client ID: CWS1-04-13.5-15

Injection Date: 30-OCT-2012 18:43

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound	
7.195	0.003	3603	47953	97.2	TFT(Surr)	
14.797	0.004	2065	20612	99.4	BB(Surr)	

PETROLEUM HYDROCARBONS (FID)

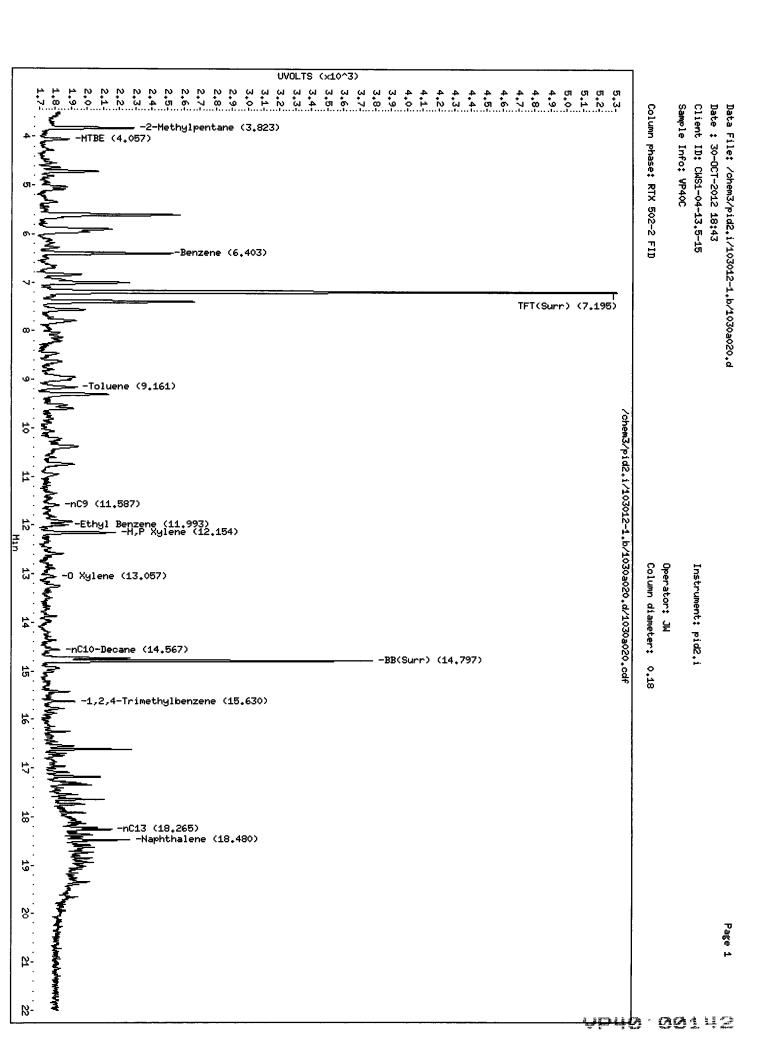
Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.05 to 17.57)	391690	90090	0.230 M
8015C	2MP-TMB	(3.73 to 15.73)	825102	187550	0.227 M
AK101	nC6-nC10	(4.18 to 14.45)	660003	166552	0.252 M
NWTPHG	Tol-Nap	(9.05 to 18.58)	406475	117501	0.289 M

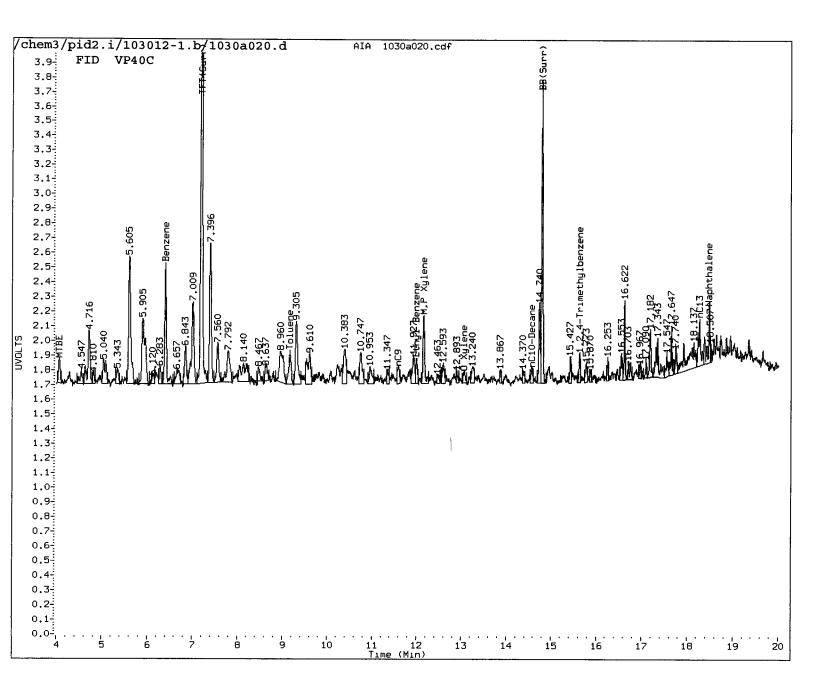
M Indicates manual integration within range

* Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

Range marker RT's are set by daily RT standard

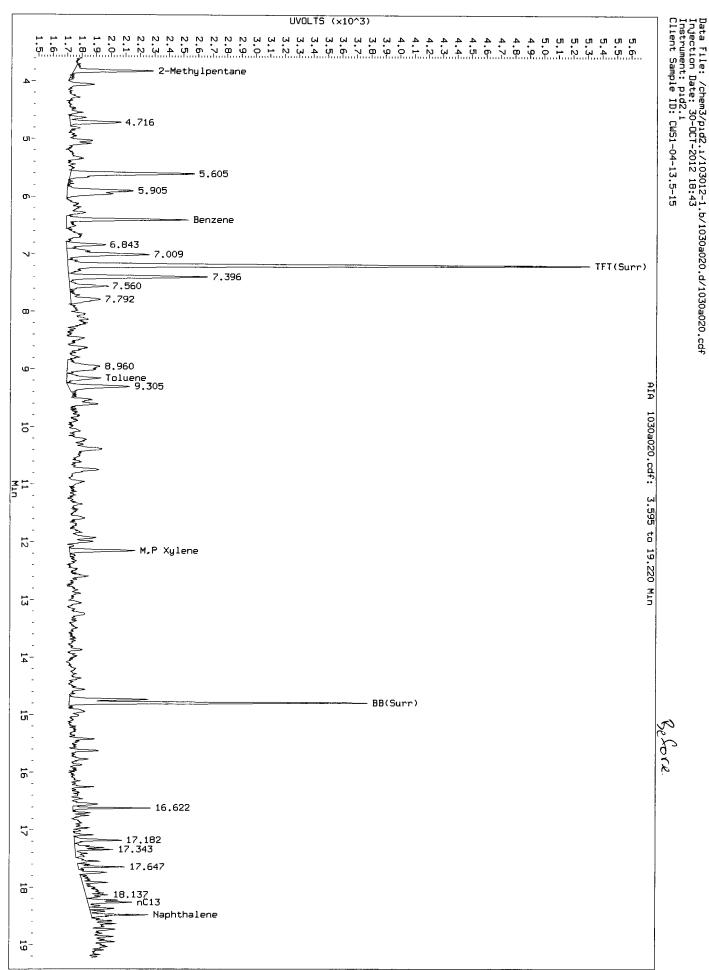
		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
		- -		
7.219	-0.009	12686	88.9	TFT(Surr)
14.813	-0.010	18271	90.7	BB(Surr)


SW8021B (PID)



٠,	Compound	Amount	Response	Shift	RT
73					
1 -	Benzene	4.78	4835	-0.009	6.425
	Toluene	0.88	549	-0.011	9.177
	Ethylbenzene	0.81	439	-0.014	12.015
	M/P-Xylene	2.79	1513	-0.015	12.171
	O-Xylene	0.50	223	-0.016	13.075
	MTBE				ND

A Indicates Peak Area was used for quantitation instead of Height


N Indicates peak was manually integrated

MANUAL INTEGRATION

2. Poor chrong Peak not 4. Totals ca	matography found	
5. Other		
Analyst:	Th Dat	te: 11/3/12

nbria, agariri

ORGANICS ANALYSIS DATA SHEET

TPHG by Method NWTPHG Matrix: Water

QC Report No: VP40-Anchor QEA LLC Project: Central Waterfront Shoreline Inves.

Event: NA

Date Sampled: 10/25/12 Date Received: 10/26/12

Data Release Authorized: \(\) Reported: 11/05/12

Analucie

ARI ID	Client ID	Analysis Date	DL	Range	Result
VP40E	CWS1-TB-01	10/30/12	1.0	Gasoline	< 0.25 U
12-21293		PID2		HC ID	
				Trifluorotoluene	99.4%
				Bromobenzene	95.3%

Gasoline values reported in mg/L (ppm)

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

FORM I UDUA: BO145

Data file 1: /chem3/pid2.i/103012-1.b/1030a013.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a013.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012

BETX Ical Date: 20-OCT-2012

ARI ID: VP40E

Client ID: CWS1-TB-01

Injection Date: 30-OCT-2012 15:27

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound	
7.202	0.010	3685	47268	99.4	TFT(Surr)	
14.804	0.011	1979	20011	95.3	BB (Surr)	

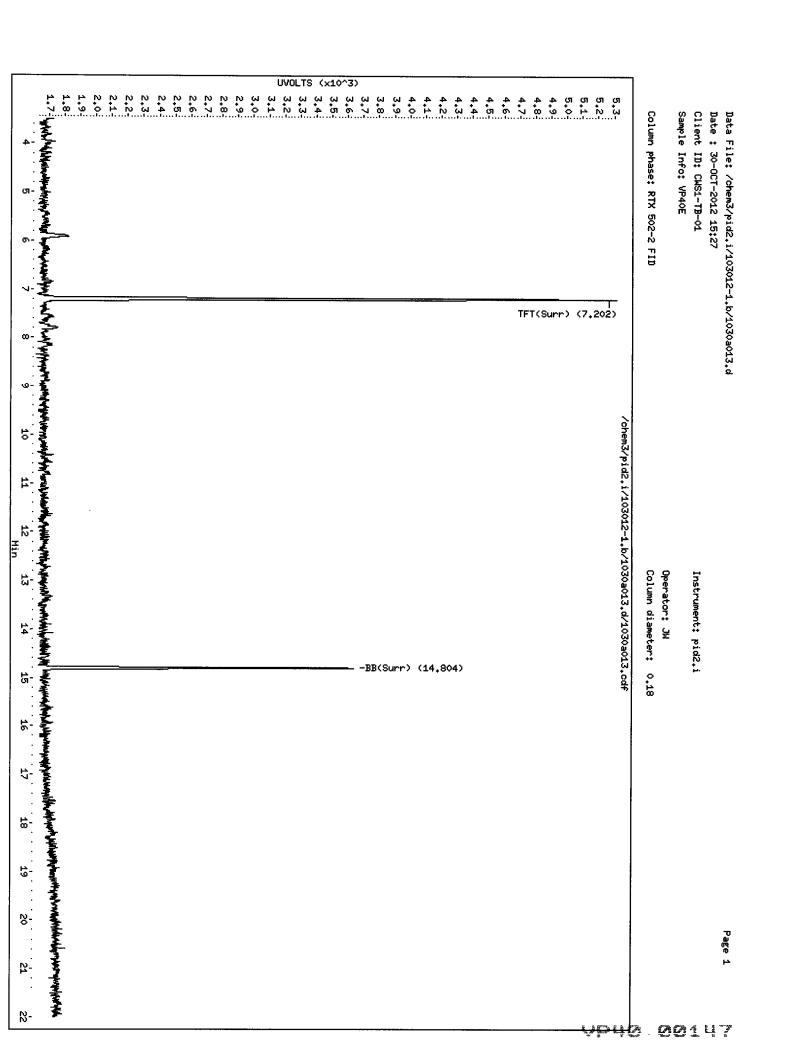
PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG 8015C AK101 NWTPHG	2MP-TMB nC6-nC10	(9.05 to 17.57) (3.73 to 15.73) (4.18 to 14.45) (9.05 to 18.58)	391690 825102 660003 406475	0 1 1 0	0.000 0.000 0.000 0.000

M Indicates manual integration within range

Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

PID Surrogates							
RT	Shift	Response	%Rec	Compound			
7.227	-0.002	13774	96.5	TFT(Surr)			
14.821	-0.001	18278	90.7	BB (Surr)			


SW8021B (PID)

RT	Shift	Response	Amount	Compound	
ND				Benzene	NR
ND				Toluene	\mathcal{P}
ND				Ethylbenzene	
ND				M/P-Xylene	
ND				O-Xylene	
ND				MTBE	

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

VPUE: BOILE

TPHG SOIL SURROGATE RECOVERY SUMMARY

ARI Job: VP40 QC Report No: VP40-Anchor QEA LLC

Matrix: Soil Project: Central Waterfront Shoreline Inves.

Event: NA

Client ID	BFB	TFT	BBZ	TOT OUT
MB-103012	NA	97.7%	97.8%	0
LCS-103012	NA	100%	98.2%	0
LCSD-103012	NA	101%	98.2%	0
CWS1-04-2-4	NA	96.7%	98.0%	0
CWS1-04-6-8	NA	95.2%	96.9%	0
CWS1-04-13.5-15	NA	97.2%	99.4%	0

	LCS/MB LIMITS	QC LIMITS
(TFT) = Trifluorotoluene	(80-120)	(65-128)
(BBZ) = Bromobenzene	(80-120)	(52-149)

Log Number Range: 12-21289 to 12-21291

TPHG WATER SURROGATE RECOVERY SUMMARY

ARI Job: VP40 QC Report No: VP40-Anchor QEA LLC

Matrix: Water Project: Central Waterfront Shoreline Inves.

Event: NA

 Client ID
 TFT
 BBZ
 TOT OUT

 CWS1-TB-01
 99.4%
 95.3%
 0

LCS/MB LIMITS QC LIMITS

(TFT) = Trifluorotoluene (80-120) (80-120) (BBZ) = Bromobenzene (80-120) (80-120)

Log Number Range: 12-21293 to 12-21293

ORGANICS ANALYSIS DATA SHEET

Data Release Authorized: \text{NW}

TPHG by Method NWTPHG

Reported: 11/05/12

Matrix: Soil

QC Report No: VP41-Anchor QEA LLC
Project: Central Waterfront Shoreline Inves.

Event: NA

Date Sampled: 10/25/12 Date Received: 10/26/12

Analucio

ARI ID	Client ID	Analysis Date	Basis	Range	Result
MB-103012 12-21279	Method Blank	10/30/12 PID2	Dry	Gasoline HC ID	< 5.0 U
12 212/3		1102		Trifluorotoluene Bromobenzene	97.7% 97.8%
VP41A 12-21279	CWS1-02-1-3	10/30/12 PID2	Dry	Gasoline HC ID	< 6.5 U
12 212/9		FIDZ		Trifluorotoluene Bromobenzene	92.4% 94.4%
VP41B 12-21280	CWS1-02-7-8	10/30/12 PID2	Dry	Gasoline HC ID Trifluorotoluene Bromobenzene	7.6 GRO 94.1% 97.4%
VP41C 12-21281	CWS1-02-12-13	10/30/12 PID2	Dry	Gasoline HC ID	< 7.0 U
12 21201		1152		Trifluorotoluene Bromobenzene	96.3% 99.6%
VP41D 12-21282	CWS1-01-3-5	10/30/12 PID2	Dry	Gasoline HC ID	< 10 U
12 21202		1152		Trifluorotoluene Bromobenzene	93.5% 96.2%
VP41E 12-21283	CWS1-01-11-13	10/30/12 PID2	Dry	Gasoline HC ID	< 6.4 U
12 21203		FIDZ		Trifluorotoluene Bromobenzene	92.5% 95.1%
VP41G 12-21285	CWS1-03-2-4	10/30/12 PID2	Dry	Gasoline HC ID	< 9.5 U
12 21203		1102		Trifluorotoluene Bromobenzene	93.8% 97.9%
VP41H 12-21286	CWS1-03-7-9	10/30/12 PID2	Dry	Gasoline HC ID	< 8.8 U
12-21200		FIDZ		Trifluorotoluene Bromobenzene	92.2% 96.3%

Gasoline values reported in mg/kg (ppm)

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

FORM I UPUB: BB158

Data file 1: /chem3/pid2.i/103012-1.b/1030a022.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a022.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012

BETX Ical Date: 20-OCT-2012

ARI ID: VP41A

Client ID: CWS1-02-1-3

Injection Date: 30-OCT-2012 19:39

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound	
7.194	0.002	3423	43391	92.4	TFT(Surr)	/
14.794	0.002	1960	20545	94.4	BB (Surr)	

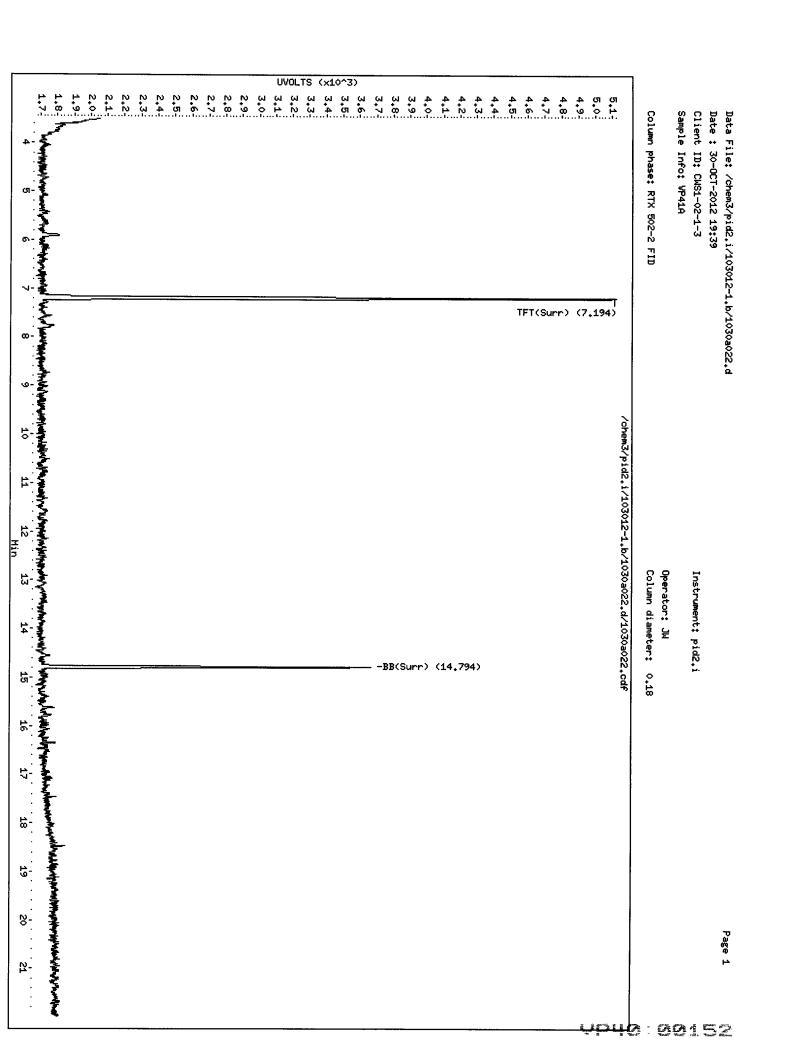
PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.05 to 17.57)	391690	0	0.000
8015C	2MP-TMB	(3.73 to 15.73)	825102	0	0.000
AK101	nC6-nC10	(4.18 to 14.45)	660003	0	0.000
NWTPHG	Tol-Nap	(9.05 to 18.58)	406475	0	0.000

M Indicates manual integration within range

* Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

nbla nbla


PID Surrogates							
RT	Shift	Response	%Rec	Compound			
7.218	-0.011	11912	83.5	TFT(Surr)			
14.812	-0.011	17545	87.1	BB (Surr)			

SW8021B (PID)

RT	Shift	Response	Amount	Compound	
ND				Benzene	NR
ND				Toluene	Ь,
ND				Ethylbenzene	
ND				M/P-Xylene	
ND				O-Xylene	
ND				MTBE	

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

Data file 1: /chem3/pid2.i/103012-1.b/1030a023.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a023.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012

BETX Ical Date: 20-OCT-2012

ARI ID: VP41B

Client ID: CWS1-02-7-8

Injection Date: 30-OCT-2012 20:07

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
7.194	0.002	3488	43616	94.1	TFT (Surr)
14.794	0.002	2023	21112	97.4	BB(Surr) -

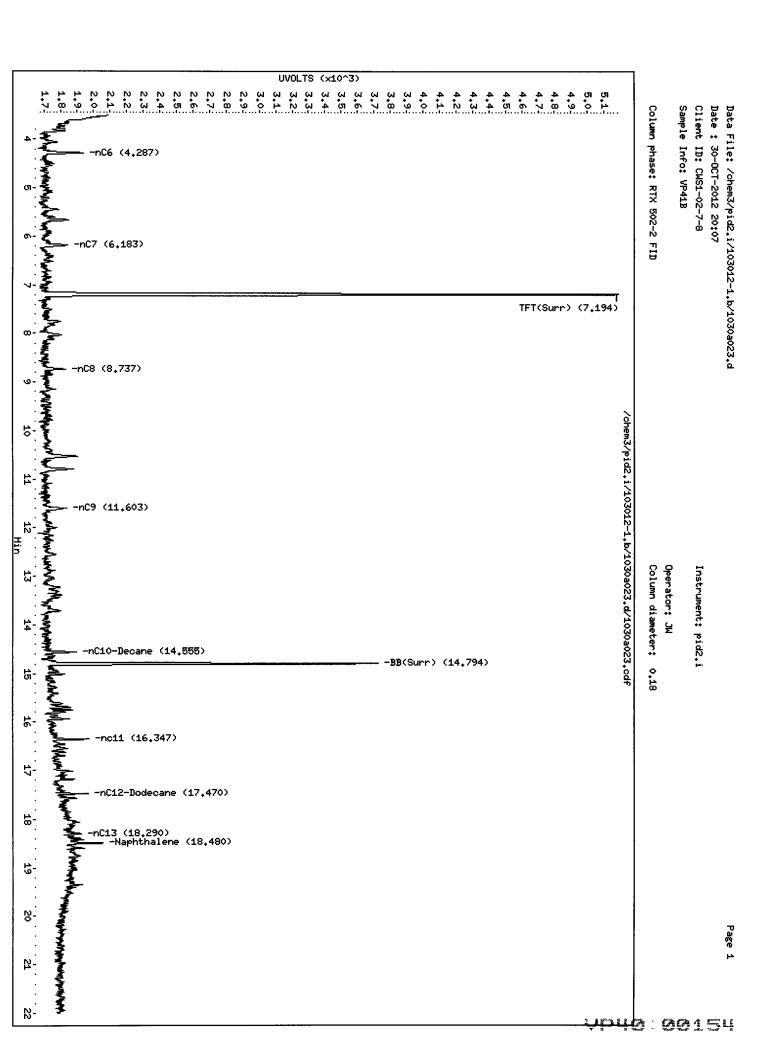
PETROLEUM HYDROCARBONS (FID)

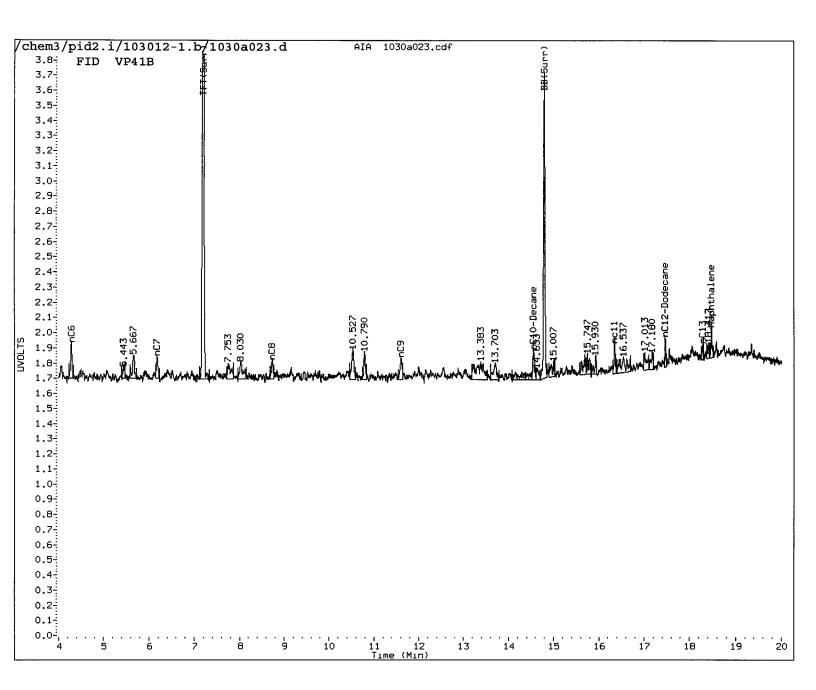
Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.05 to 17.57)	391690	46840	0.120 M
8015C	2MP-TMB	(3.73 to 15.73)	825102	43492	0.053 M
AK101	nC6-nC10	(4.18 to 14.45)	660003	33584	0.051 M
NWTPHG	Tol-Nap	(9.05 to 18.58)	406475	50760	0.125 M /

M Indicates manual integration within range

Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
7.218	-0.011	12101	84.8	TFT(Surr)
14.812	-0.011	17852	88.6	BB(Surr)


SW8021B (PID)



RT	Shift	Response	Amount	Compound	
					NB
6.424	-0.009	176	0.17	Benzene	12.
9.176	-0.013	185	0.30	Toluene	
ND				Ethylbenzene	
ND				M/P-Xylene	
ND				O-Xylene	
ND				MTBE	

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

VDUG: GG1E3

MANUAL INTEGRATION

(1)	Baseline correction Poor chromatography	
	Peak not found	
	Totals calculation	
5.	Other	
Ana	alyst: W	Date: 1/3/12

Data File: /chem3/pid2.i/103012-1.b/1030a023.d/1030a023.cdf Injection Date: 30-DCT-2012 20:07 Instrument: pid2.i Client Sample ID: CW51-02-7-8

Data file 1: /chem3/pid2.i/103012-1.b/1030a024.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a024.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012 BETX Ical Date: 20-OCT-2012 ARI ID: VP41C

Client ID: CWS1-02-12-13

Injection Date: 30-OCT-2012 20:36

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound	
7.195	0.003	3569	46325	96.3	TFT(Surr)	
14.794	0.002	2069	20716	99.6	BB(Surr)	

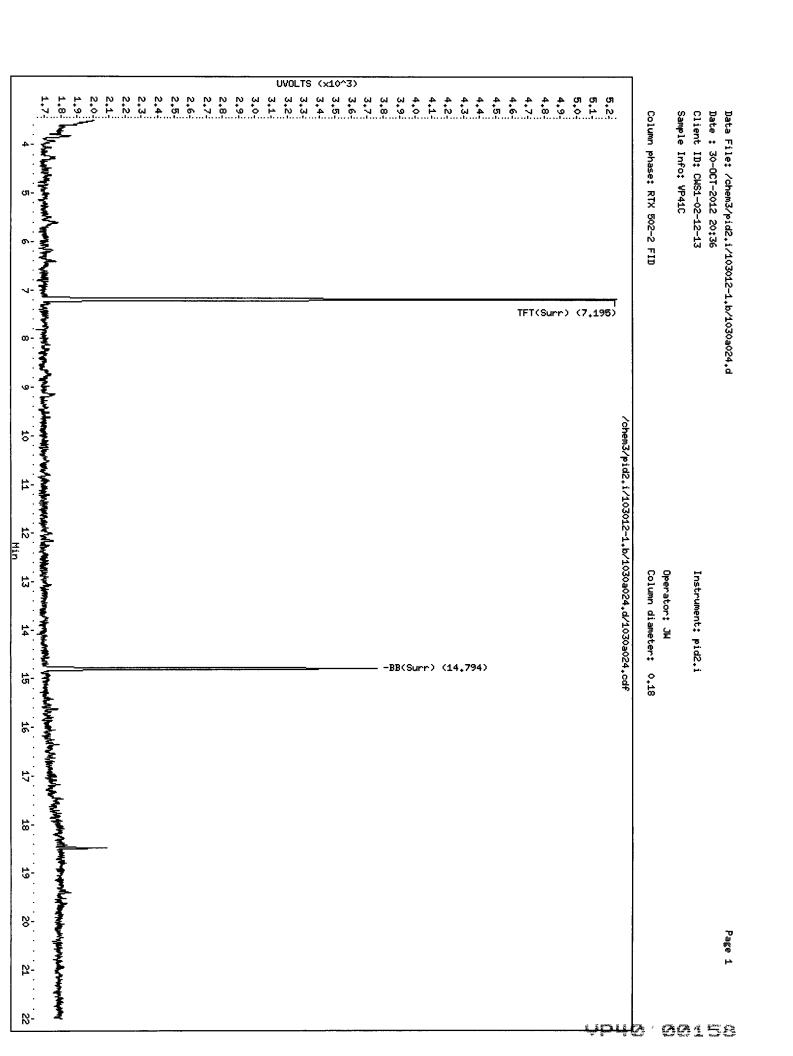
PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.05 to 17.57)	391690	1	0.000
8015C	2MP-TMB	(3.73 to 15.73)	825102	1	0.000
AK101	nC6-nC10	(4.18 to 14.45)	660003	0	0.000
NWTPHG	Tol-Nap	(9.05 to 18.58)	406475	1	0.000 —

M Indicates manual integration within range

Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard 11/3/12

		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
7.219	-0.010	12489	87.5	TFT(Surr)
14.812	-0.011	18325	90.9	BB(Surr)


SW8021B (PID)

RT	Shift	Response	Amount	Compound	
					. 15
6.424	-0.009	335	0.33	Benzene	D,
9.175	-0.013	207	0.33	Toluene	•
ND				Ethylbenzene	
12.175	-0.011	180	0.33	M/P-Xylene	
ND				O-Xylene	
ND				MTBE	

A Indicates Peak Area was used for quantitation instead of Height

N Indicates peak was manually integrated

Data file 1: /chem3/pid2.i/103012-1.b/1030a025.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a025.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012

BETX Ical Date: 20-OCT-2012

ARI ID: VP41D

Client ID: CWS1-01-3-5

Injection Date: 30-OCT-2012 21:04

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound	
7.193	0.001	3466	43494	93.5	TFT(Surr)	
14.793	0.001	1999	21220	96.2	BB(Surr)	

PETROLEUM HYDROCARBONS (FID)

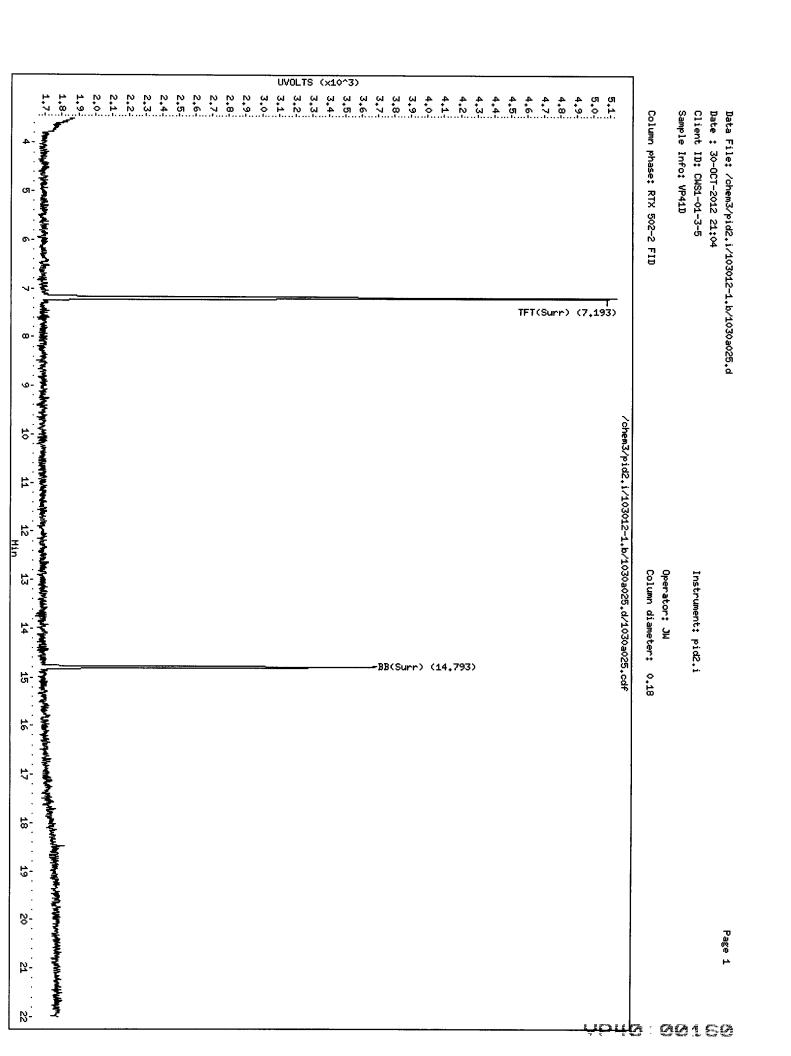
Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.05 to 17.57)	391690	1	0.000
8015C	2MP-TMB	(3.73 to 15.73)	825102	1	0.000
AK101	nC6-nC10	(4.18 to 14.45)	660003	1	0.000
NWTPHG	Tol-Nap	(9.05 to 18.58)	406475	1	0.000

M Indicates manual integration within range

Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

JW 11/3/12

		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
7.217	-0.012	11931	83.6	TFT(Surr)
14.811	-0.012	17736	88.0	BB(Surr)


SW8021B (PID)

RT	Shift	Response	Amount	Compound	
ND				Benzene	
ND				Toluene	1/2
ND				Ethylbenzene	10,
ND				M/P-Xylene	
ND				O-Xylene	
ND				MTBE	

A Indicates Peak Area was used for quantitation instead of Height

N Indicates peak was manually integrated

Data file 1: /chem3/pid2.i/103012-1.b/1030a026.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a026.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012 BETX Ical Date: 20-OCT-2012 ARI ID: VP41E

Client ID: CWS1-01-11-13

Injection Date: 30-OCT-2012 21:32

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
7.192	-0.001	3429	43644	92.5	TFT(Surr)
14.793	0.001	1975	19602	95.1	BB(Surr)

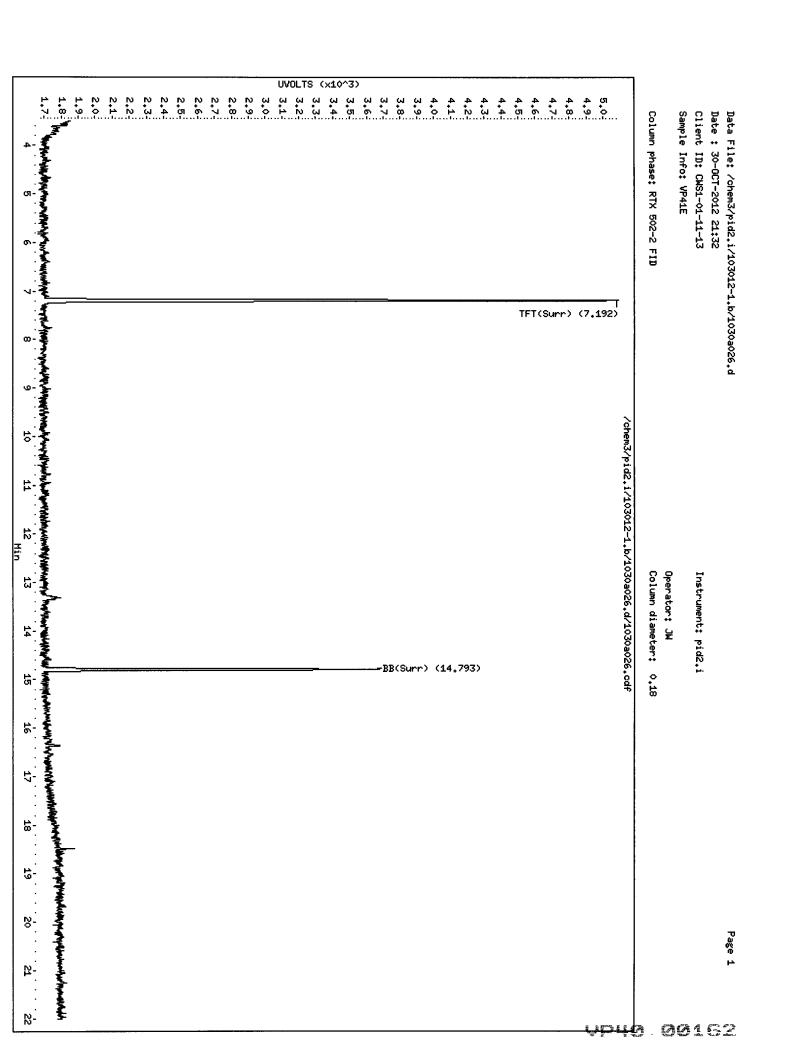
PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.05 to 17.57)	391690	0	0.000
8015C	2MP-TMB	(3.73 to 15.73)	825102	1	0.000
AK101	nC6-nC10	(4.18 to 14.45)	660003	1	0.000
NWTPHG	Tol-Nap	(9.05 to 18.58)	406475	0	0.000

M Indicates manual integration within range

Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

PID Surrogates					
RT	Shift	Response	%Rec	Compound	
7.216	-0.013	11743	82.3	TFT(Surr)	
14.811	-0.012	17571	87.2	BB(Surr)	


SW8021B (PID)

RT	Shift	Response	Amount	Compound	
ND				Benzene	
ND				Toluene	119
ND				Ethylbenzene	10,
ND				M/P-Xylene	
ND		-		O-Xylene	
ND				MTBE	

A Indicates Peak Area was used for quantitation instead of Height

N Indicates peak was manually integrated

Data file 1: /chem3/pid2.i/103012-1.b/1030a027.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a027.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012

BETX Ical Date: 20-OCT-2012

ARI ID: VP41G

Client ID: CWS1-03-2-4

Injection Date: 30-OCT-2012 22:00

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound	
7.191	-0.001	3475	43555	93.8	TFT(Surr)	
14.793	0.000	2034	21041	97.9	BB (Surr)	_

PETROLEUM HYDROCARBONS (FID)

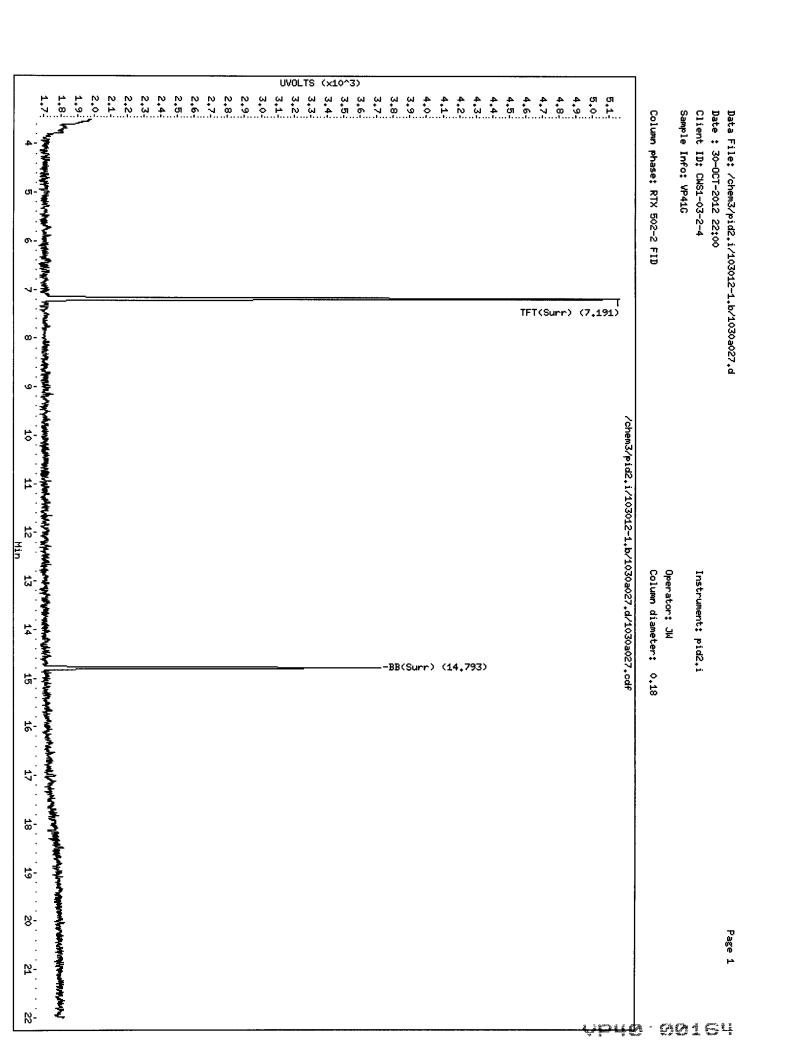
Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.05 to 17.57)	391690	0	0.000
8015C	2MP-TMB	(3.73 to 15.73)	825102	1	0.000
AK101	nC6-nC10	(4.18 to 14.45)	660003	0	0.000
NWTPHG	Tol-Nap	(9.05 to 18.58)	406475	0	0.000 /

M Indicates manual integration within range

Surrogate areas are subtracted from Total Area

Range marker RT's are set by daily RT standard ------ JW 11/3/12

		PID Surrogate	:s	
RT	Shift	Response	%Rec	Compound
7.215	-0.013	11952	83.7	TFT(Surr)
14.810	-0.012	17849	88.6	BB(Surr)


SW8021B (PID)

RT	Shift	Response	Amount	Compound	
ND				Benzene	
ND				Toluene	NR
ND				Ethylbenzene	14,
ND				M/P-Xylene	
ND				O-Xylene	
ND				MTBE	

A Indicates Peak Area was used for quantitation instead of Height

N Indicates peak was manually integrated

Data file 1: /chem3/pid2.i/103012-1.b/1030a028.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a028.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012

BETX Ical Date: 20-OCT-2012

ARI ID: VP41H

Client ID: CWS1-03-7-9

Injection Date: 30-OCT-2012 22:29

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
		-			
7.193	0.001	3418	42994	92.2	TFT(Surr)
14.793	0.001	2000	20021	96 3	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

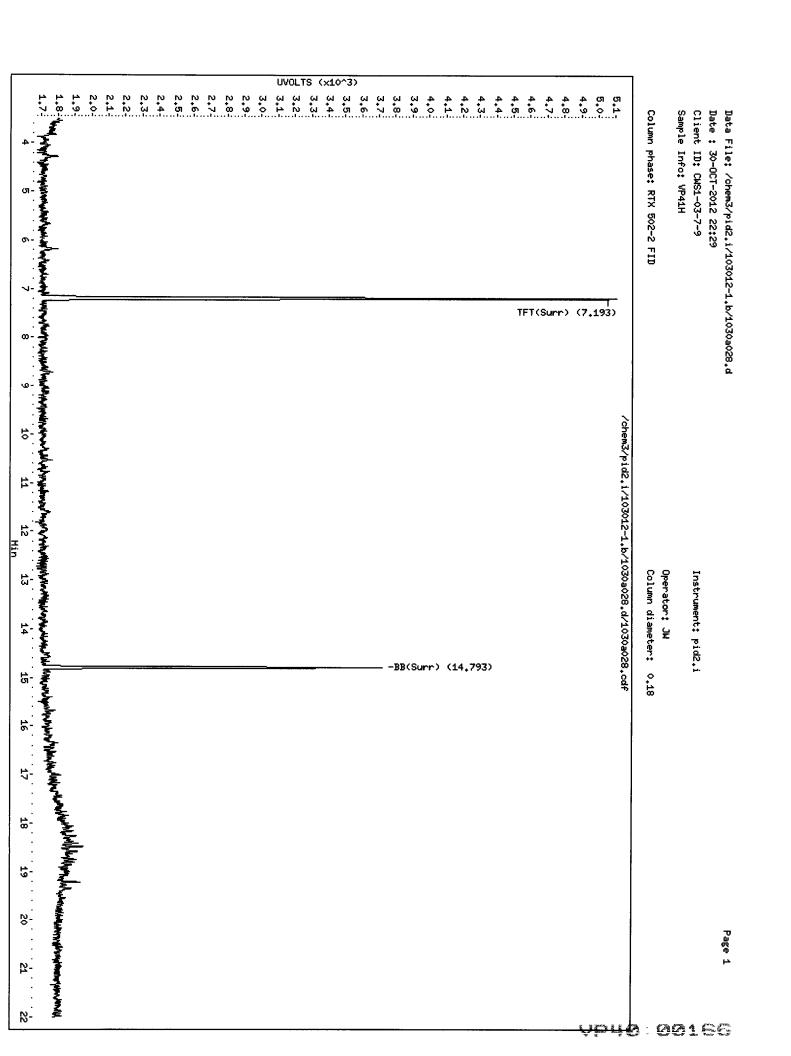
Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.05 to 17.57)	391690	0	0.000
8015C	2MP-TMB	(3.73 to 15.73)	825102	1	0.000
AK101	nC6-nC10	(4.18 to 14.45)	660003	1	0.000
NWTPHG	Tol-Nap	(9.05 to 18.58)	406475	0	0.000 /

M Indicates manual integration within range

Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

JU.	. 1
11	3/2
(,	· / ·

		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
7.217	-0.012	11844	83.0	TFT(Surr)
14.811	-0.012	17827	88.5	BB(Surr)


SW8021B (PID)

RT	Shift	Response	Amount	Compound	
ND				Benzene	
ND				Toluene	
ND				Ethylbenzene	Į,
ND				M/P-Xylene	
ND				O-Xylene	
ND				MTBE	

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

UDUA BAIGE

ORGANICS ANALYSIS DATA SHEET

TPHG by Method NWTPHG

Matrix: Water

QC Report No: VP41-Anchor QEA LLC
Project: Central Waterfront Shoreline Inves.

Event: NA

Date Sampled: 10/25/12 Date Received: 10/26/12

Data Release Authorized: \mathcal{W} Reported: 11/05/12

Analucie

ARI ID	Client ID	Analysis Date	DL	Range	Result
VP41J	CWS1-TB-01	10/30/12	1.0	Gasoline	< 0.25 U
12-21288		PID2		HC ID	
				Trifluorotoluene	98.7%
				Bromobenzene	95.9%

Gasoline values reported in mg/L (ppm)

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Data file 1: /chem3/pid2.i/103012-1.b/1030a014.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a014.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012 BETX Ical Date: 20-OCT-2012

ARI ID: VP41J

Client ID: CWS1-TB-01

Injection Date: 30-OCT-2012 15:55

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

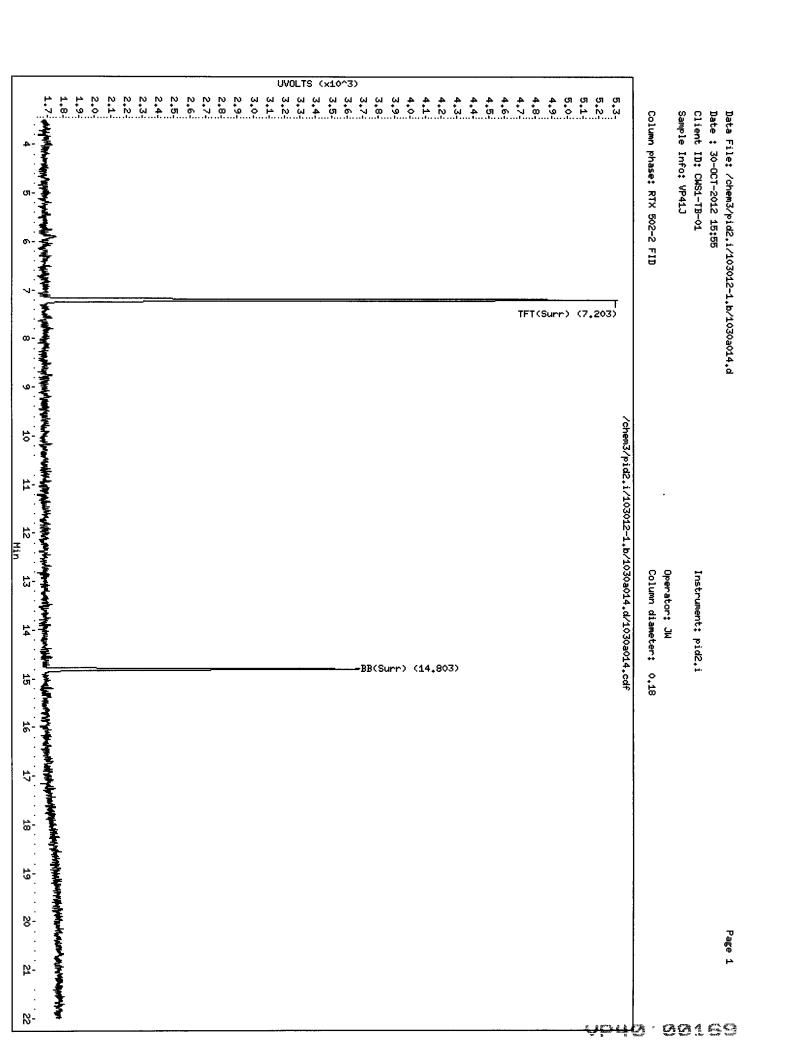
Compound	%Rec	Area	Height	Shift	RT
TFT(Surr)	98.7	47291	3658	0.011	7.203
BB(Surr)	95.9	20313	1993	0.011	14.803

PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.05 to 17.57)	391690	0	0.000
8015C	2MP-TMB	(3.73 to 15.73)	825102	0	0.000
AK101	nC6-nC10	(4.18 to 14.45)	660003	0	0.000
NWTPHG	Tol-Nap	(9.05 to 18.58)	406475	0	0.000

M Indicates manual integration within range

Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard


RT	Shift	Response	%Rec	Compound
7.228	-0.001	13787	96.6	TFT(Surr)
14.821	-0.002	18362	91.1	BB(Surr)

SW8021B (PID)

RT	Shift	Response	Amount	Compound	19/
					ND
ND				Benzene	
ND				Toluene	
ND				Ethylbenzene	
ND				M/P-Xylene	
ND				O-Xylene	
ND				MTBE	

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

TPHG SOIL SURROGATE RECOVERY SUMMARY

ARI Job: VP41 QC Report No: VP41-Anchor QEA LLC

Matrix: Soil Project: Central Waterfront Shoreline Inves.

Event: NA

Client ID	BFB	TFT	BBZ	TOT OUT
MB-103012	NA	97.7%	97.8%	0
LCS-103012	NA	100%	98.2%	0
LCSD-103012	NA	101%	98.2%	0
CWS1-02-1-3	NA	92.4%	94.4%	0
CWS1-02-7-8	NA	94.1%	97.4%	0
CWS1-02-12-13	NA	96.3%	99.6%	0
CWS1-01-3-5	NA	93.5%	96.2%	0
CWS1-01-11-13	NA	92.5%	95.1%	0
CWS1-03-2-4	NA	93.8%	97.9%	0
CWS1-03-7-9	NA	92.2%	96.3%	0

			LCS/MB LIM	ITS QC LIMITS
(TFT)	=	Trifluorotoluene	(80-120)	(65-128)
(BBZ)	=	Bromobenzene	(80-120)	(52-149)

Log Number Range: 12-21279 to 12-21286

TPHG WATER SURROGATE RECOVERY SUMMARY

ARI Job: VP41 Matrix: Water QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Event: NA

Client ID BBZ TOT OUT CWS1-TB-01 98.7% 95.9%

> LCS/MB LIMITS QC LIMITS

(TFT) = Trifluorotoluene (80-120)(80-120)(BBZ) = Bromobenzene (80-120)(80-120)

Log Number Range: 12-21288 to 12-21288

TPHG by Method NWTPHG

Page 1 of 1

Sample ID: LCS-103012

LAB CONTROL SAMPLE

Lab Sample ID: LCS-103012

LIMS ID: 12-21289

Matrix: Soil

Data Release Authorized: \mathcal{W}

Reported: 11/05/12

QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Event: NA Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount LCS: 100 mg-dry-wt LCSD: 100 mg-dry-wt

LCSD: 10/30/12 11:16 Instrument/Analyst LCS: PID2/JLW

Date Analyzed LCS: 10/30/12 10:48

LCSD: PID2/JLW

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Gasoline Range Hydrocarbons	54.8	50.0	110%	53.4	50.0	107%	2.6%

Reported in mg/kg (ppm)

RPD calculated using sample concentrations per SW846.

TPHG Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	100%	101%
Bromobenzene	98.2%	98.2%

UD110:00172

FORM III

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid2.i/103012-1.b/1030a004.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a004.d

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012 BETX Ical Date: 20-OCT-2012 ARI ID: LCS1030

Client ID:

Injection Date: 30-OCT-2012 10:48

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

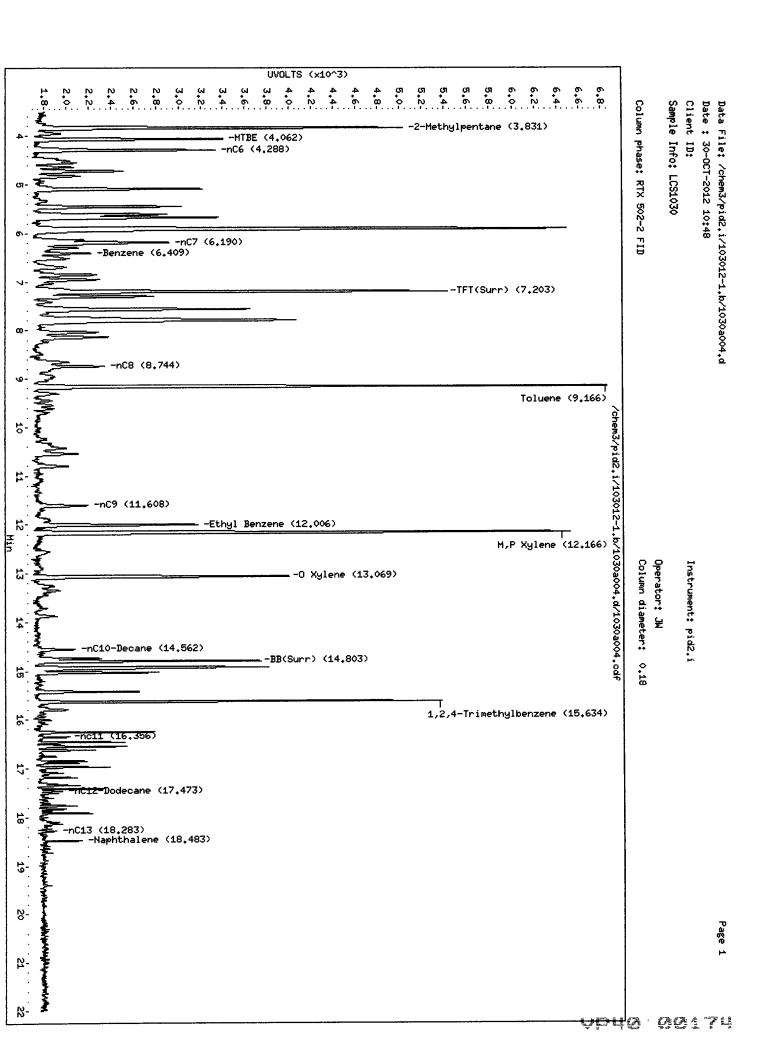
RT	Shift	Height	Area	%Rec	Compound
7.203	-0.002	3714	53565	100.2	TFT(Surr)
14.803	-0.003	2039	21759	98.2	BB(Surr)

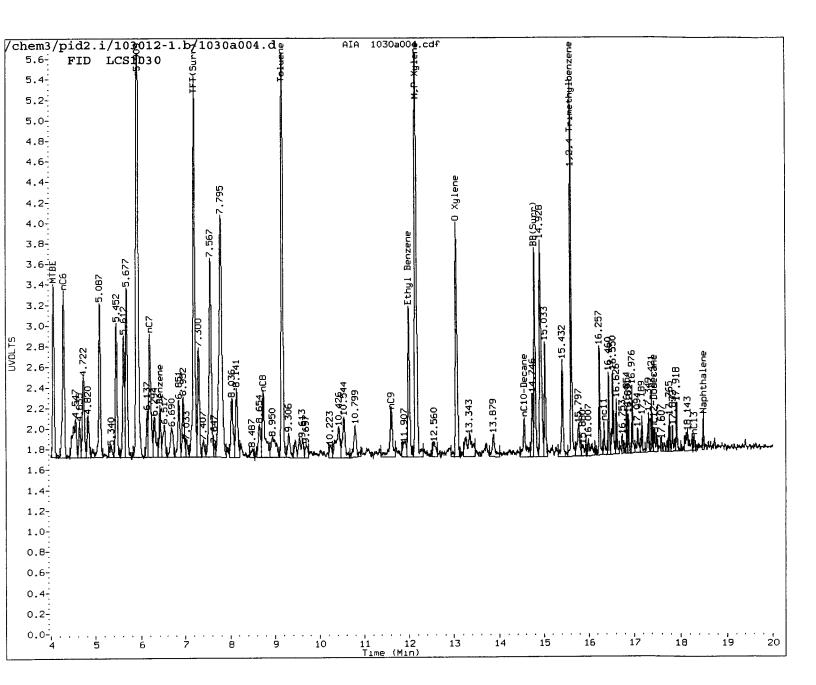
PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.07 to 17.57)	391690	425889	1.087 M
8015C	2MP-TMB	(3.73 to 15.74)	825102	868170	1.052 M
AK101	nC6-nC10	(4.19 to 14.47)	660003	702472	1.064 M
NWTPHG	Tol-Nap	(9.07 to 18.58)	406475	445240	1.095 M 🖊

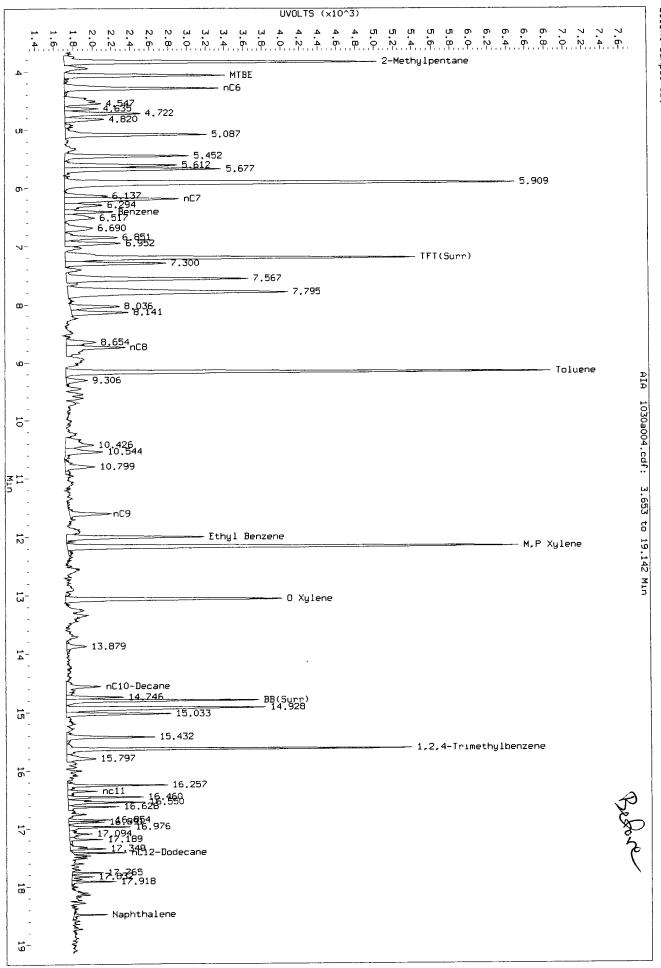
- M Indicates manual integration within range
- * Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

Just 12	-
---------	---


RT	Shift	PID Surrogate Response	%Rec	Compound
7.227	-0.002	14128	99.0	TFT(Surr) BB(Surr)
14.821	-0.002	19330	95.9	


SW8021B (PID)

	Compound	Amount	Response	Shift	RT
	Benzene	3.47	3515	-0.002	6.432
	Toluene	39.60	24834	-0.001	9.187
e 1	Ethylbenzene	9.47	5161	-0.004	12.025
	M/P-Xylene	38.59	20903	0.000	12.186
	O-Xylene	17.62	7867	-0.003	13.088
	MTBE				ND


- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

MANUAL INTEGRATION

G.	Poor chromatography Peak not found Totals calculation		
5.	Other		
Ana	alyst: JW_	Date:	10/31/12

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid2.i/103012-1.b/1030a005.d

Data file 2: /chem3/pid2.i/103012-2.b/1030a005.d Client ID:

Method: /chem3/pid2.i/103012-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012

BETX Ical Date: 20-OCT-2012

Injection Date: 30-OCT-2012 11:16

Matrix: WATER

ARI ID: LCSD1030

Dilution Factor: 1.000

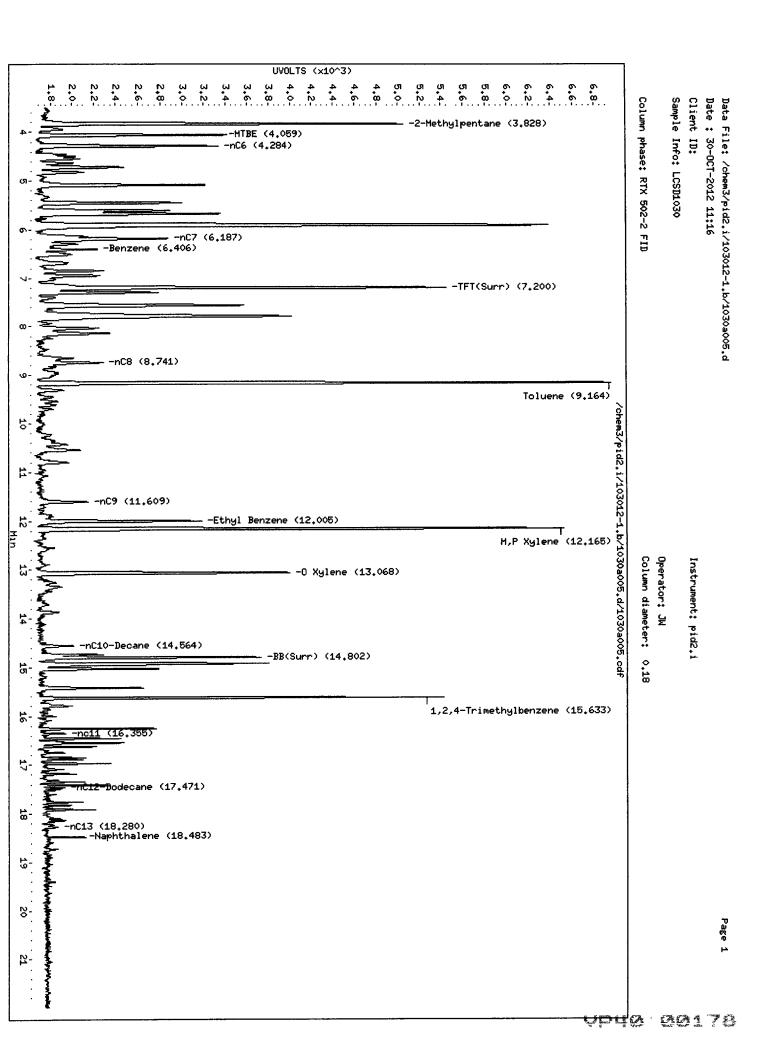
FID Surrogates

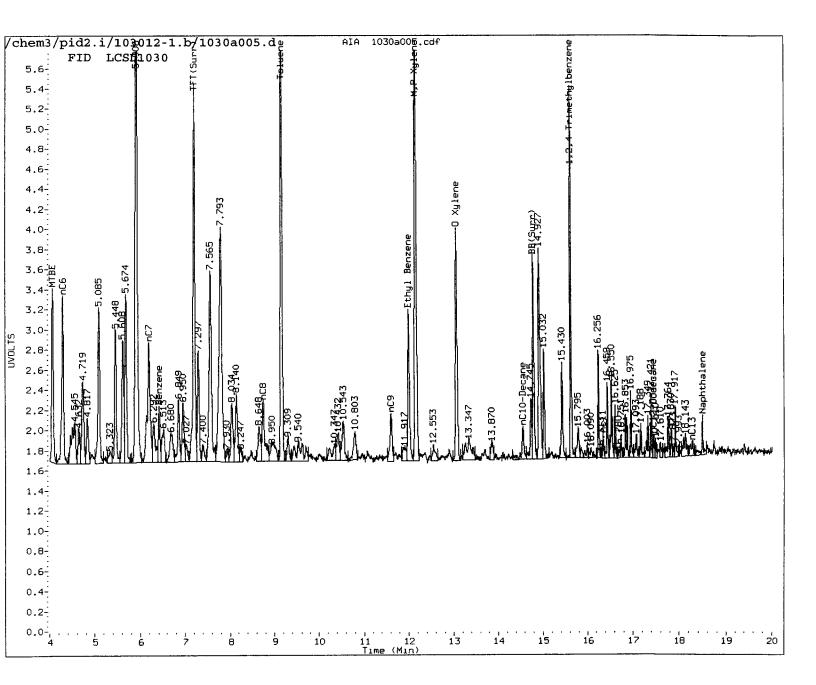
RT	Shift	Height	Area	%Rec	Compound	
7.200	-0.004	3759	54304	101.4	TFT (Surr)	
14.802	-0.003	2040	21523	98.2	BB (Surr)	

PETROLEUM HYDROCARBONS (FID)

Method Range RF Total Area* Amount _____ WATPHG Tol-Cl2 (9.07 to 17.57) 391690 409922 1.047 M 8015C 2MP-TMB (3.73 to 15.74) 825102 873462 1.059 M AK101 nC6-nCl0 (4.19 to 14.47) 660003 709038 1.074 M NWTPHG Tol-Nap (9.07 to 18.58) 406475 433904 1.067 M 1.067 M

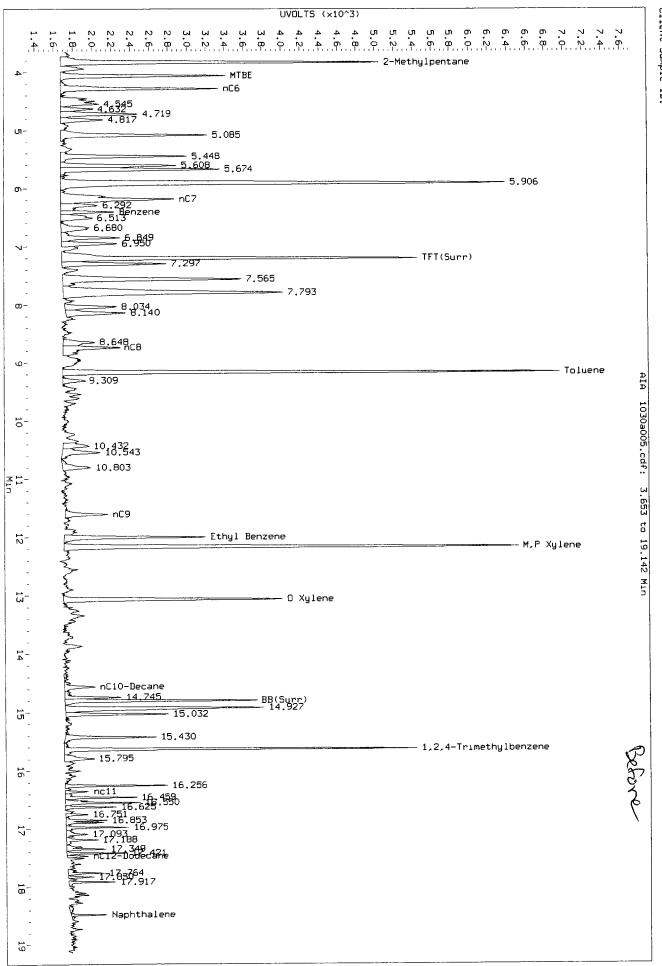
- M Indicates manual integration within range
- Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard


		PID Surrogate	es		
RT	Shift	Response	%Rec	Compound	
7.223	-0.005	14315	100.3	TFT(Surr)	
14.820	-0.003	19540	97.0	BB(Surr)	


SW8021B (PID)

RT	Shift	Response	Amount	Compound
6.429	-0.004	3604	3.56	Benzene
9.185	-0.003	25208	40.20	Toluene
12.023	-0.005	5328	9.78	Ethylbenzene
12.185	-0.001	21339	39.39	M/P-Xylene
13.087	-0.004	8056	18.05	O-Xylene
ND				MTBE

A Indicates Peak Area was used for quantitation instead of Height


N Indicates peak was manually integrated

MANUAL INTEGRATION

3.	Poor ch Peak no	e correction romatography t found calculation		
5.	Other _			
Ana	alyst: _	JU	Date:	10/31/12

MB1030

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

SDG No.: VP40 Project No.: CENTRAL WATERFRONT

Date Analyzed: 10/30/12 Matrix: WATER

Time Analyzed: 1144 Instrument ID: PID2

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
		SAMEDE ID	
01	RT1030+BCAL1	RT1030+BCAL1	10/30/12
02	LCS1030	LCS1030	10/30/12
03	LCSD1030	LCSD1030	10/30/12
04	CWS1-TB-01	VP40E	10/30/12
	CWS1-TB-01	VP41J	10/30/12
06	CWS1-04-2-4	VP40A	10/30/12
07	CWS1-04-6-8	VP40B	10/30/12
08	CWS1-04-13.5	VP40C	10/30/12
09	CWS1-02-1-3	VP41A	10/30/12
10	CWS1-02-7-8	VP41B	10/30/12
11	CWS1-02-12-1	VP41C	10/30/12
12	CWS1-01-3-5	VP41D	10/30/12
13	CWS1-01-11-1	VP41E	10/30/12
14	CWS1-03-2-4	VP41G	10/30/12
15	CWS1-03-7-9	VP41H	10/30/12
16			
17			
18			
19			
20			•
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			·

6a GAS INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: Anchor QEA LLC

Instrument/Det: PID2.I/RTX 502-2 FID Project: Central Waterfront

Calibration Date: 20-OCT-2012 SDG No.: VP40, VP41

 Gas Range 	RF1 0.1	RF2 0.25	RF3 1.0	RF4 2.5	RF5 5.0	RF6 10	Ave RF	%RSD
WA Gas	349235	358515	408820	403377	414816	415379	391690	7.6
AK Gas	609435	644896	690302	653702	669673	692009	660003	4.7
NW Gas	358280	371107	424618	420179	431916	432748	406475	8.1
Cal Gas	759665	795129	850708	808208	826726	847830	814711	4.2
8015Gas	773895	816547	860460	816381	831400	851929	825102	3.7
İ		İi		i				İ

 Surrogates Rel. Rec.	RF1	RF2	RF3	RF4	RF5	RF6	Ave RF	%RSD
TFT(Surr)	40.27273	39.13636	37.61194	36.49000	36.42105	35.21348	37.05508	5.728
BB(Surr)	21.59091 19.50000	22.04545	21.55224	20.44000	20.32331	19.96067	20.77323	4.604

<- Indicates %RSD outside limits

Surrogate areas are not included in RF calculation

Quant Ranges: WA Gas Toluene - nC12

AK Gas nC6 - nC10

NW Gas Toluene - Naphthalene

Cal Gas nC6 - nC12

8015 Gas 2-Methylpentane - 1,2,4-Trimethylbenzene

Calibration Files Analysis Time

1020a011.d	20-OCT-2012 15:02
1020a012.d	20-OCT-2012 15:30
1020a013.d	20-OCT-2012 15:58
1020a014.d	20-OCT-2012 16:26
1020a015.d	20-OCT-2012 16:54
1020a016.d	20-OCT-2012 17:22

upua delez

Nov 03 10:08 2012 cserv3:/chem1/forms/results/p2102012-1/gascal.txt Page 2

Surr			
Calibration	Files	Analysis	Time

1020a003.d	20-OCT-2012	11:17
1020a004.d	20-OCT-2012	11:45
1020a005.d	20-OCT-2012	12:13
1020a006.d	20-OCT-2012	12:42
1020a007.d	20-OCT-2012	13:09
1020a008.d	20-OCT-2012	13:38
1020a009.d	20-OCT-2012	14.06

p1 of 1

FORM VI-GAS

7a GAS CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: Anchor QEA LLC

ICal Date: 20-OCT-2012 Project: Central Waterfront

CCal Date: 30-OCT-2012 SDG No.: VP40

Lab File Name: 1030a003.d Inst/Det: PID2.I/RTX 502-2 FID

Gas Range	Area*	CalcAmnt	NomAmnt	%D
WAGas (Tol-C12)	1008326	2.57	2.50	3.0
AKGas (C6-C10)	1692520	2.56	2.50	2.6
NWGas (Tol-Nap)	1058628	2.60	2.50	4.2
8015C (2MP-TMB)	2088505	2.53	2.50	1.2

^{*} Surrogate areas are subtracted from Total Area

UPUG: 88184

<- Indicates an RPD outside QC limits

7b FID SURROGATE CONTINUING CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: Anchor QEA LLC

ICal Date: 20-OCT-2012 Project: Central Waterfront

CCal Date: 30-OCT-2012 SDG No.: VP40

Lab File Name: 1030a003.d Inst/Det: PID2.I/RTX 502-2 FID

Surrogate	Area	CalcAmnt	NomAmnt	RPD
Trifluorotol Bromoflrbenz	64824 21921	106.2 98.0	100.0	6.2

p1 of 1

FORM VII-Surr

7a GAS CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: Anchor QEA LLC

ICal Date: 20-OCT-2012 Project: Central Waterfront

CCal Date: 30-OCT-2012 SDG No.: VP40

Lab File Name: 1030a012.d Inst/Det: PID2.I/RTX 502-2 FID

Gas Range	Area*	CalcAmnt	NomAmnt	%D
WAGas (Tol-C12)	957742	2.45	2.50	-2.2
AKGas (C6-C10)	1641550	2.49	2.50	-0.5
NWGas (Tol-Nap)	997373	2.45	2.50	-1.9
8015C (2MP-TMB)	2024515	2.45	2.50	-1.9

Surrogate areas are subtracted from Total Area Indicates an RPD outside QC limits

7b FID SURROGATE CONTINUING CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: Anchor QEA LLC

ICal Date: 20-OCT-2012 Project: Central Waterfront

CCal Date: 30-OCT-2012 SDG No.: VP40

Lab File Name: 1030a012.d Inst/Det: PID2.I/RTX 502-2 FID

Surrogate	Area	CalcAmnt	NomAmnt	RPD
Trifluorotol Bromoflrbenz	64129 22177	104.1 101.1	100.0	4.1

p1 of 1

FORM VII-Surr

VP40:00187

7a GAS CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: Anchor QEA LLC

Project: Central Waterfront ICal Date: 20-OCT-2012

CCal Date: 30-OCT-2012 SDG No.: VP40

Lab File Name: 1030a021.d Inst/Det: PID2.I/RTX 502-2 FID

Gas Range	Area*	CalcAmnt	NomAmnt	%D
WAGas (Tol-C12) AKGas (C6-C10) NWGas (Tol-Nap) 8015C (2MP-TMB)	931491 1558791 970256 1931728	2.38 2.36 2.39 2.34	2.50 2.50 2.50 2.50 2.50	-4.9 -5.5 -4.5 -6.4

Surrogate areas are subtracted from Total Area Indicates an RPD outside QC limits

upua aatas

7b FID SURROGATE CONTINUING CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: Anchor QEA LLC

ICal Date: 20-OCT-2012 Project: Central Waterfront

CCal Date: 30-OCT-2012 SDG No.: VP40

Lab File Name: 1030a021.d Inst/Det: PID2.I/RTX 502-2 FID

Surrogate	Area	CalcAmnt	NomAmnt	RPD
Trifluorotol Bromoflrbenz	61545 20854	101.9 96.5	100.0	1.9

p1 of 1

FORM VII-Surr

7a GAS CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: Anchor QEA LLC

ICal Date: 20-OCT-2012 Project: Central Waterfront

CCal Date: 30-OCT-2012 SDG No.: VP40

Lab File Name: 1030a029.d Inst/Det: PID2.I/RTX 502-2 FID

Gas Range	Area*	CalcAmnt	NomAmnt	%D	
WAGas (Tol-C12)	862772	2.20	2.50	-11.9	<-
AKGas (C6-C10)	1383186	2.10	2.50	-16.2	
NWGas (Tol-Nap)	897231	2.21	2.50	-11.7	
8015C (2MP-TMB)	1734810	2.10	2.50	-15.9	

^{*} Surrogate areas are subtracted from Total Area

<- Indicates an RPD outside QC limits

7b FID SURROGATE CONTINUING CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: Anchor QEA LLC

ICal Date: 20-OCT-2012 Project: Central Waterfront

CCal Date: 30-OCT-2012 SDG No.: VP40

Lab File Name: 1030a029.d Inst/Det: PID2.I/RTX 502-2 FID

Surrogate	Area	CalcAmnt	NomAmnt	RPD
Trifluorotol	58627	99. 4	100.0	-0.6
Bromoflrbenz	21107	96.2		-3.8

p1 of 1

FORM VII-Surr

UPLA: ORIGI

8 BETX/GAS ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

SDG No.: VP40 Project: CENTRAL WATERFRONT

Instrument ID: PID2 GC Detector: RTX 502-2 FID

Run Date: 10/30/12

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	METHOD S1: 7.20	SURROGATE RT S2 : 14.7	79		 	
	CLIENT	LAB	DATE	ПТМП	-01	
	SAMPLE NO.	SAMPLE ID		TIME	S1	S2
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01	ZZZZZ	ZZZZZ	10/30/12	0924	======	=======
02	RT1030+BCAL1	RT1030+BCAL1	10/30/12	0952	7.20	14.81
03	CENTRAL WATE	GCAL1	10/30/12	1020	7.20	14.80
04	LCS1030	LCS1030	10/30/12	1048	7.20	14.80
	LCSD1030	LCSD1030	10/30/12	1116	7.20	14.80
	MB1030	MB1030	10/30/12	1144	7.20	14.80
07	ZZZZZ	ZZZZZ	10/30/12	1229	7.20	14.80
08	ZZZZZ	ZZZZZ	10/30/12	1257	7.20	14.80
09	ZZZZZ	ZZZZZ	10/30/12	1325	7.20	14.80
10	ZZZZZ	ZZZZZ	10/30/12	1353	7.20	14.80
11	ZZZZZ	ZZZZZ	10/30/12	1422	7.20	14.80
12	CENTRAL WATE	GCAL2	10/30/12	1459	7.20	14.80
13	CWS1-TB-01	VP40E	10/30/12	1527	7.20	14.80
14	CWS1-TB-01	VP41J	10/30/12	1555	7.20	14.80
15	ZZZZZ	ZZZZZ	10/30/12	1623	7.20	14.80
16	ZZZZZ	ZZZZZ	10/30/12	1651	7.20	14.80
17	ZZZZZ	ZZZZZ	10/30/12	1719	7.20	14.80
18	CWS1-04-2-4	VP40A	10/30/12	1747	7.20	14.80
19	CWS1-04-6-8	VP40B	10/30/12	1815	7.20	14.80
20	CWS1-04-13.5		10/30/12	1843	7.20	14.80
21	CENTRAL WATE		10/30/12	1911	7.20	14.79
22	CWS1-02-1-3	VP41A	10/30/12	1939	7.19	14.79
23	CWS1-02-7-8	VP41B	10/30/12	2007	7.19	14.79
24	CWS1-02-12-1	ı	10/30/12	2036	7.19	14.79
25	CWS1-01-3-5	VP41D	10/30/12	2104	7.19	14.79
26	CWS1-01-11-1	1 – 1	10/30/12	2132	7.19	14.79
27	CWS1-03-2-4	VP41G	10/30/12	2200	7.19	14.79
28	CWS1-03-7-9	VP41H	10/30/12	2229	7.19	14.79
29	CENTRAL WATE	GCAL4	10/30/12	2257	7.20	14.79
30	ZZZZZ	ZZZZZ	10/30/12	2325	7.19	14.79
31	ZZZZZ	ZZZZZ	10/30/12	2354	7.19	14.79
	ZZZZZ	ZZZZZ	10/31/12	0022	7.19	14.79
	' <u> </u>	<u>'</u>			' '	'

S1 = TFT(Surr) QC LIMITS S2 = BB(Surr) (+/- 0.07 MINUTES) (+/- 0.07 MINUTES)

page 1 of 2

^{*} Values outside of QC limits.

8 BETX/GAS ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC

Client: ANCHOR QEA LLC

SDG No.: VP40

Project: CENTRAL WATERFRONT

Instrument ID: PID2

GC Detector: RTX 502-2 FID

Run Date: 10/31/12

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	METHOD S1: 7.20					
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	S1 RT #	S2 RT #
01	ZZZZZ	ZZZZZ	10/31/12	0050	7.19	14.79

S1 = TFT(Surr) S2 = BB(Surr) QC LIMITS
(+/- 0.07 MINUTES)

(+/- 0.07 MINUTES)

* Values outside of QC limits.

Nov 03 10:08 2012 cserv3:/chem1/forms/results/p2102012-1/08.1 Page 1

8 BETX/GAS ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC Client: Anchor QEA LLC

SDG No.: VP40, VP41 Project: Central Waterfront

Instrument ID: PID2 GC Detector: RTX 502-2 FID

Run Date: 10/20/12

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	METHOD					
	S1 : 7.20	'				
	CLIENT	LAB	DATE	TIME	S1	S2
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	========	==========	========	========	=======	======
01		RINSE	10/20/12	1021		
02		RT1020+BCAL1	10/20/12	1049	7.20	14.80
03		BTEX 0.25	10/20/12	1117	7.20	14.80
04		BTEX 0.50	10/20/12	1145	7.20	14.80
05		BTEX 5.0	10/20/12	1213	7.20	14.80
06		BTEX 25	10/20/12	1242	7.19	14.80
07		BTEX 50	10/20/12	1309	7.20	14.80
08		BTEX 100	10/20/12	1338	7.20	14.80
09		BTEX 200	10/20/12	1406	7.20	14.80
10		BTEX ICV	10/20/12	1434	7.20	14.80
11		GAS 0.10	10/20/12	1502	7.20	14.80
12		GAS 0.25	10/20/12	1530	7.20	14.80
13		GAS 1.0	10/20/12	1558	7.20	14.80
14		GAS 2.5	10/20/12	1626	7.20	14.80
15		GAS 5.0	10/20/12	1654	7.20	14.80
16		GAS 10	10/20/12	1722	7.20	14.80
17		GAS ICV	10/20/12	1750	7.20	14.80
İ						

S1 = TFT(Surr) QC LIMITS S2 = BB(Surr) (+/- 0.07 MINUTES) (+/- 0.07 MINUTES)

^{*} Values outside of QC limits.

Metals Analysis Report and Summary QC Forms

ARI Job ID: VP40, VP41

upua:aa195

Cover Page

INORGANIC ANALYSIS DATA PACKAGE

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

 CLIENT ID	ARI ID	ARI LIMS ID REPRE	P

CWS1-02-1-3	VP41A	12-21279	
CWS1-02-7-8	VP41B	12-21280	
CWS1-02-12-13	VP41C	12-21281	
CWS1-01-3-5	VP41D	12-21282	
CWS1-01-11-13	VP41E	12-21283	
CWS1-04-2-4	VP40A	12-21289	
CWS1-04-2-4D	VP40ADUP	12-21289	
CWS1-04-2-4S	VP40ASPK	12-21289	
CWS1-04-6-8	VP40B	12-21290	
PBS	VP40MB1	12-21290	
LCSS	VP40MB1SPK	12-21290	
CWS1-04-13.5-15	VP40C	12-21291	

Yes/No	YES
Yes/No	YES
Yes/No	NO
RELEASE	BY:
s Directo	r
	Yes/No Yes/No RELEASE

COVER PAGE

TOTAL METALS

Page 1 of 1

Lab Sample ID: VP40A

LIMS ID: 12-21289

Matrix: Soil

Data Release Authorized:

Reported: 11/06/12

Percent Total Solids: 82.2%

Sample ID: CWS1-04-2-4 SAMPLE

QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	10/29/12	6010C	11/01/12	7440-36-0	Antimony	6	6	U
3050B	10/29/12	6010C	11/01/12	7440-38-2	Arsenic	6	6	U
3050B	10/29/12	6010C	11/01/12	7440-41-7	Beryllium	0.1	0.2	
3050B	10/29/12	6010C	11/01/12	7440-43-9	Cadmium	0.2	0.7	
3050B	10/29/12	6010C	11/01/12	7440-47-3	Chromium	0.6	35.9	
3050B	10/29/12	6010C	11/01/12	7440-50-8	Copper	0.2	40.9	
3050B	10/29/12	6010C	11/01/12	7439-92-1	Lead	2	30	
CLP	10/29/12	7471A	10/30/12	7439-97-6	Mercury	0.02	0.16	
3050B	10/29/12	6010C	11/01/12	7440-02-0	Nickel	1	40	
3050B	10/29/12	6010C	11/01/12	7782-49-2	Selenium	6	6	U
3050B	10/29/12	6010C	11/01/12	7440-22-4	Silver	0.3	0.3	Ü
3050B	10/29/12	6010C	11/01/12	7440-28-0	Thallium	6	6	U
3050B	10/29/12	6010C	11/01/12	7440-66-6	Zinc	1	84	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: VP40B

LIMS ID: 12-21290

Matrix: Soil

Data Release Authorized:

Reported: 11/06/12

Sample ID: CWS1-04-6-8 SAMPLE

QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

Percent Total Solids: 75.9%

Prep	Prep	Analysis	_					_
Meth	Date	Method	Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	10/29/12	6010C	11/02/12	7440-36-0	Antimony	6	6	U
3050B	10/29/12	6010C	11/02/12	7440-38-2	Arsenic	6	6	U
3050B	10/29/12	6010C	11/02/12	7440-41-7	Beryllium	0.1	0.1	
3050B	10/29/12	6010C	11/02/12	7440-43-9	Cadmium	0.3	0.3	U
3050B	10/29/12	6010C	11/02/12	7440-47-3	Chromium	0.6	37.8	
3050B	10/29/12	6010C	11/02/12	7440-50-8	Copper	0.3	34.5	
3050B	10/29/12	6010C	11/02/12	7439-92-1	Lead	3	22	
CLP	10/29/12	7471A	10/30/12	7439-97-6	Mercury	0.02	0.08	
3050B	10/29/12	6010C	11/02/12	7440-02-0	Nickel	1	23	
3050B	10/29/12	6010C	11/02/12	7782-49-2	Selenium	6	6	U
3050B	10/29/12	6010C	11/02/12	7440-22-4	Silver	0.4	0.4	U
3050B	10/29/12	6010C	11/02/12	7440-28-0	Thallium	6	6	U
3050B	10/29/12	6010C	11/02/12	7440-66-6	Zinc	1	48	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

upua acide

TOTAL METALS

Page 1 of 1

Lab Sample ID: VP40C

LIMS ID: 12-21291

Matrix: Soil

Data Release Authorized Reported: 11/06/12

Percent Total Solids: 80.6%

Sample ID: CWS1-04-13.5-15

SAMPLE

QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	10/29/12	6010C	11/02/12	7440-36-0	Antimony	10	10	U
3050B	10/29/12	6010C	11/02/12	7440-38-2	Arsenic	10	10	Ü
3050B	10/29/12	6010C	11/02/12	7440-41-7	Beryllium	0.3	0.3	Ü
3050B	10/29/12	6010C	11/02/12	7440-43-9	Cadmium	0.6	11.7	
3050B	10/29/12	6010C	11/02/12	7440-47-3	Chromium	1	22	
3050B	10/29/12	6010C	11/02/12	7440-50-8	Copper	0.6	30.3	
3050B	10/29/12	6010C	11/02/12	7439-92-1	Lead	6	452	
CLP	10/29/12	7471A	10/30/12	7439-97-6	Mercury	0.03	0.20	
3050B	10/29/12	6010C	11/02/12	7440-02-0	Nickel	3	17	
3050B	10/29/12	6010C	11/02/12	7782-49-2	Selenium	10	10	U
3050B	10/29/12	6010C	11/02/12	7440-22-4	Silver	0.9	0.9	U
3050B	10/29/12	6010C	11/02/12	7440-28-0	Thallium	10	10	U
3050B	10/29/12	6010C	11/02/12	7440-66-6	Zinc	3	5,050	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

upua aaigo

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: VP41A

LIMS ID: 12-21279

Matrix: Soil

Data Release Authorized:

Reported: 11/06/12

Percent Total Solids: 92.6%

Sample ID: CWS1-02-1-3 SAMPLE

QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	10/29/12	6010C	11/02/12	7440-36-0	Antimony	5	5	
3050B	10/29/12	6010C	11/02/12	7440-38-2	Arsenic	5	25	
3050B	10/29/12	6010C	11/02/12	7440-41-7	Beryllium	0.1	0.1	
3050B	10/29/12	6010C	11/02/12	7440-43-9	Cadmium	0.2	0.2	U
3050B	10/29/12	6010C	11/02/12	7440-47-3	Chromium	0.5	14.2	
3050B	10/29/12	6010C	11/02/12	7440-50-8	Copper	0.2	41.4	
3050B	10/29/12	6010C	11/02/12	7439-92-1	Lead	2	16	
CLP	10/29/12	7471A	10/30/12	7439-97-6	Mercury	0.03	0.03	U
3050B	10/29/12	6010C	11/02/12	7440-02-0	Nickel	1	19	
3050B	10/29/12	6010C	11/02/12	7782-49-2	Selenium	5	5	U
3050B	10/29/12	6010C	11/02/12	7440-22-4	Silver	0.3	0.3	U
3050B	10/29/12	6010C	11/02/12	7440-28-0	Thallium	5	5	U
3050B	10/29/12	6010C	11/02/12	7440-66-6	Zinc	1	52	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

upue: oazos

TOTAL METALS
Page 1 of 1

Lab Sample ID: VP41B

LIMS ID: 12-21280

Matrix: Soil

Data Release Authorized:

Reported: 11/06/12

Percent Total Solids: 81.6%

Sample ID: CWS1-02-7-8

SAMPLE

QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	10/29/12	6010C	11/02/12	7440-36-0	Antimony	60	60	U
3050B	10/29/12	6010C	11/02/12	7440-38-2	Arsenic	60	60	U
3050B	10/29/12	6010C	11/02/12	7440-41-7	Beryllium	1	1	Ū
3050B	10/29/12	6010C	11/02/12	7440-43-9	Cadmium	2	2	U
3050B	10/29/12	6010C	11/02/12	7440-47-3	Chromium	6	128	
3050B	10/29/12	6010C	11/02/12	7440-50-8	Copper	2	403	
3050B	10/29/12	6010C	11/02/12	7439-92-1	Lead	20	1,260	
CLP	10/29/12	7471A	10/30/12	7439-97-6	Mercury	0.03	0.05	
3050B	10/29/12	6010C	11/02/12	7440-02-0	Nickel	10	160	
3050B	10/29/12	6010C	11/02/12	7782-49-2	Selenium	60	60	U
3050B	10/29/12	6010C	11/02/12	7440-22-4	Silver	4	4	U
3050B	10/29/12	6010C	11/02/12	7440-28-0	Thallium	60	60	U
3050B	10/29/12	6010C	11/02/12	7440-66-6	Zinc	10	250	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

upua aasat

TOTAL METALS

Page 1 of 1

Lab Sample ID: VP41C

LIMS ID: 12-21281

Matrix: Soil

Data Release Authorized: Reported: 11/06/12

Percent Total Solids: 80.3%

Sample ID: CWS1-02-12-13

SAMPLE

QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	10/29/12	6010C	11/02/12	7440-36-0	Antimony	30	30	U
3050B	10/29/12	6010C	11/02/12	7440-38-2	Arsenic	30	30	U
3050B	10/29/12	6010C	11/02/12	7440-41-7	Beryllium	0.6	0.6	U
3050B	10/29/12	6010C	11/02/12	7440-43-9	Cadmium	1	1	
3050B	10/29/12	6010C	11/02/12	7440-47-3	Chromium	3	30	
3050B	10/29/12	6010C	11/02/12	7440-50-8	Copper	1	209	
3050B	10/29/12	6010C	11/02/12	7439-92-1	Lead	10	40	
CLP	10/29/12	7471A	10/30/12	7439-97-6	Mercury	0.02	0.02	U
3050B	10/29/12	6010C	11/02/12	7440-02-0	Nickel	6	39	
3050B	10/29/12	6010C	11/02/12	7782-49-2	Selenium	30	30	U
3050B	10/29/12	6010C	11/02/12	7440-22-4	Silver	2	2	U
3050B	10/29/12	6010C	11/02/12	7440-28-0	Thallium	30	30	U
3050B	10/29/12	6010C	11/02/12	7440-66-6	Zinc	6	162	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

UDIG GGDGS

TOTAL METALS
Page 1 of 1

Lab Sample ID: VP41D

LIMS ID: 12-21282

Matrix: Soil
Data Release Authorized:

Reported: 11/06/12

Percent Total Solids: 79.3%

Sample ID: CWS1-01-3-5

SAMPLE

QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	10/29/12	6010C	11/02/12	7440-36-0	Antimony	20	20	U
3050B	10/29/12	6010C	11/02/12	7440-38-2	Arsenic	20	20	U
3050B	10/29/12	6010C	11/02/12	7440-41-7	Beryllium	0.3	0.3	U
3050B	10/29/12	6010C	11/02/12	7440-43-9	Cadmium	0.6	1.4	
3050B	10/29/12	6010C	11/02/12	7440-47-3	Chromium	2	38	
3050B	10/29/12	6010C	11/02/12	7440-50-8	Copper	0.6	148	
3050B	10/29/12	6010C	11/02/12	7439-92-1	Lead	6	166	
CLP	10/29/12	7471A	10/30/12	7439-97-6	Mercury	0.02	0.06	
3050B	10/29/12	6010C	11/02/12	7440-02-0	Nickel	3	39	
3050B	10/29/12	6010C	11/02/12	7782-49-2	Selenium	20	20	U
3050B	10/29/12	6010C	11/02/12	7440-22-4	Silver	0.9	0.9	U
3050B	10/29/12	6010C	11/02/12	7440-28-0	Thallium	20	20	U
3050B	10/29/12	6010C	11/02/12	7440-66-6	Zinc	3	347	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

TOTAL METALS
Page 1 of 1

Lab Sample ID: VP41E

LIMS ID: 12-21283

Matrix: Soil

Data Release Authorized Reported: 11/06/12

Percent Total Solids: 77.2%

Sample ID: CWS1-01-11-13

SAMPLE

QC Report No: VP41-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	10/29/12	6010C	11/02/12	7440-36-0	Antimony	30	30	Ū
3050B	10/29/12	6010C	11/02/12	7440-38-2	Arsenic	30	30	Ū
3050B	10/29/12	6010C	11/02/12	7440-41-7	Beryllium	0.6	0.6	U
3050B	10/29/12	6010C	11/02/12	7440-43-9	Cadmium	1	1	U
3050B	10/29/12	6010C	11/02/12	7440-47-3	Chromium	3	57	
3050B	10/29/12	6010C	11/02/12	7440-50-8	Copper	1	359	
3050B	10/29/12	6010C	11/02/12	7439-92-1	Lead	10	110	
CLP	10/29/12	7471A	10/30/12	7439-97-6	Mercury	0.02	0.22	
3050B	10/29/12	6010C	11/02/12	7440-02-0	Nickel	6	109	
3050B	10/29/12	6010C	11/02/12	7782-49-2	Selenium	30	30	U
3050B	10/29/12	6010C	11/02/12	7440-22-4	Silver	2	2	U
3050B	10/29/12	6010C	11/02/12	7440-28-0	Thallium	30	30	U
3050B	10/29/12	6010C	11/02/12	7440-66-6	Zinc	6	273	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

TOTAL METALS

Page 1 of 1

Lab Sample ID: VP40A

LIMS ID: 12-21289

Matrix: Soil

Data Release Authorized:

Reported: 11/06/12

Sample ID: CWS1-04-2-4 MATRIX SPIKE

QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	8	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Antimony	6010C	6 U	52	232	22.4%	N
Arsenic	6010C	6 U	239	232	103%	
Beryllium	6010C	0.2	58.7	57.9	101%	
Cadmium	6010C	0.7	57.9	57.9	98.8%	
Chromium	6010C	35.9	99.4	57.9	110%	
Copper	6010C	40.9	98.1	57.9	98.8%	
Lead	6010C	30	248	232	94.0%	
Mercury	7471A	0.16	0.47	0.249	124%	
Nickel	6010C	40	89	57.9	84.6%	
Selenium	6010C	6 U	226	232	97.4%	
Silver	6010C	0.3 U	58.5	57.9	101%	
Thallium	6010C	6 U	215	232	92.7%	
Zinc	6010C	84	133	57.9	84.6%	

Reported in mg/kg-dry

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

TOTAL METALS Page 1 of 1

Lab Sample ID: VP40A

LIMS ID: 12-21289

Matrix: Soil

Data Release Authorized:

Reported: 11/06/12

Sample ID: CWS1-04-2-4 DUPLICATE

QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/25/12 Date Received: 10/26/12

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
Antimony	6010C	6 U	6 U	0.0%	+/- 6	L	
Arsenic	6010C	6 U	6 U	0.0%	+/- 6	L	
Beryllium	6010C	0.2	0.2	0.0%	+/- 0.1	L	
Cadmium	6010C	0.7	0.6	15.4%	+/- 0.2	L	
Chromium	6010C	35.9	35.4	1.4%	+/- 20%		
Copper	6010C	40.9	38.5	6.0%	+/- 20%		
Lead	6010C	30	30	0.0%	+/- 20%		
Mercury	7471A	0.16	0.16	0.0%	+/- 20%		
Nickel	6010C	40	34	16.2%	+/- 20%		
Selenium	6010C	6 U	6 U	0.0%	+/- 6	L	
Silver	6010C	0.3 U	0.3 U	0.0%	+/- 0.3	L	
Thallium	6010C	6 U	6 U	0.0%	+/- 6	L	
Zinc	6010C	84	83	1.2%	+/- 20%		

Reported in mg/kg-dry

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

upua:aczas

TOTAL METALS

Page 1 of 1

Lab Sample ID: VP40LCS

LIMS ID: 12-21290

Matrix: Soil

Data Release Authorized:

Reported: 11/06/12

Sample ID: LAB CONTROL

QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	Q
Antimony	6010C	203	200	102%	
Arsenic	6010C	204	200	102%	
Beryllium	6010C	52.0	50.0	104%	
Cadmium	6010C	50.3	50.0	101%	
Chromium	6010C	52.0	50.0	104%	
Copper	6010C	51.2	50.0	102%	
Lead	6010C	202	200	101%	
Mercury	7471A	0.50	0.50	100%	
Nickel	6010C	50	50	100%	
Selenium	6010C	202	200	101%	
Silver	6010C	51.0	50.0	102%	
Thallium	6010C	198	200	99.0%	
Zinc	6010C	49	50	98.0%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: VP40MB

LIMS ID: 12-21290

Matrix: Soil

Data Release Authorized:

Reported: 11/06/12

Percent Total Solids: NA

Sample ID: METHOD BLANK

QC Report No: VP40-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
				<u> </u>	12.027 CG		mg/kg dry	
3050B	10/29/12	6010C	11/02/12	7440-36-0	Antimony	5	5	U
3050B	10/29/12	6010C	11/02/12	7440-38-2	Arsenic	5	5	U
3050B	10/29/12	6010C	11/02/12	7440-41-7	Beryllium	0.1	0.1	U
3050B	10/29/12	6010C	11/02/12	7440-43-9	Cadmium	0.2	0.2	U
3050B	10/29/12	6010C	11/02/12	7440-47-3	Chromium	0.5	0.5	U
3050B	10/29/12	6010C	11/02/12	7440-50-8	Copper	0.2	0.4	
3050B	10/29/12	6010C	11/02/12	7439-92-1	Lead	2	2	U
CLP	10/29/12	7471A	10/30/12	7439-97-6	Mercury	0.02	0.02	U
3050B	10/29/12	6010C	11/02/12	7440-02-0	Nickel	1	1	U
3050B	10/29/12	6010C	11/02/12	7782-49-2	Selenium	5	5	U
3050B	10/29/12	6010C	11/02/12	7440-22-4	Silver	0.3	0.3	U
3050B	10/29/12	6010C	11/02/12	7440-28-0	Thallium	5	5	U
3050B	10/29/12	6010C	11/02/12	7440-66-6	Zinc	1	1	U

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

Calibration Verification

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

ANALYTE	EL	M RU	N ICVTV	ICV	%R	CCVTV	CCV1 %R	CCV2 %R	CCV3 %R	CCV4 %R	CCV5 %R
Antimony	SB	ICP IP110	121 2000.0	2117.98	105.9	2000.0	2074.40 103.7	2104.21 105.2	2092.96 104.6	2089.40 104.5	2086.05 104.3
Arsenic	AS	ICP IP110	121 2000.0	2079.62	104.0	2000.0	2045.55 102.3	2082.01 104.1	2064.50 103.2	2081.01 104.1	2094.79 104.7
Beryllium	BE	ICP IP110	121 1000.0	1023.32	102.3	1000.0	1000.44 100.0	1024.97 102.5	1026.95 102.7	1026.30 102.6	995.93 99.6
Cadmium	CD	ICP IP110	121 1000.0	1023.16	102.3	1000.0	1003.36 100.3	1009.59 101.0	1012.94 101.3	1009.99 101.0	1024.17 102.4
Chromium	CR	ICP IP110	121 1000.0	990.21	99.0	1000.0	971.24 97.1	993.49 99.3	999.70 100.0	1008.32 100.8	1009.16 100.9
Copper	CU	ICP IP110	121 1000.0	1060.80	106.1	1000.0	1038.58 103.9	1054.85 105.5	1061.69 106.2	1049.16 104.9	1062.91 106.3
Lead	PB	ICP IP110	121 2000.0	2055.16	102.8	2000.0	2016.87 100.8	2054.11 102.7	2042.35 102.1	2081.28 104.1	2025.04 101.3
Mercury	HG	CVA HG103	001 8.0	8.09	101.1	4.0	4.11 102.8	4.08 102.0	4.04 101.0		
Nickel	NI	ICP IP110	121 1000.0	1013.93	101.4	1000.0	990.75 99.1	1014.38 101.4	1017.08 101.7	1033.84 103.4	996.56 99.7
Selenium	SE	ICP IP110	121 2000.0	2020.01	101.0	2000.0	1979.39 99.0	2016.19 100.8	1997.13 99.9	2007.83 100.4	2027.82 101.4
Silver	AG	ICP IP110	121 1000.0	1007.56	100.8	1000.0	982.82 98.3	994.25 99.4	991.46 99.1	989.51 99.0	1019.26 101.9
Thallium	\mathtt{TL}	ICP IP110	121 2000.0	2003.89	100.2	2000.0	1969.61 98.5	2000.75 100.0	1990.00 99.5	2000.75 100.0	2017.00 100.9
Zinc	ZN	ICP IP110	121 1000.0	1069.21	106.9	1000.0	1048.58 104.9	1081.20 108.1	1081.96 108.2	1137.71 113.8	1046.52 104.7

A STATE OF THE PARTY OF THE PAR

Calibration Verification

ANALYTICAL RESOURCES INCORPORATED

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

ANALYTE	EL	M	RUN	CCVTV	CCV6 %R	CCV7	₽R	(CCV8	CCV8 %R	CCV8 %R CCV9	CCV8 %R CCV9 %R	CCV8 %R CCV9 %R CCV10	CCV8 %R CCV9 %R CCV10 %R	CCV8 %R CCV9 %R CCV10 %R CCV11	CCV8 %R CCV9 %R CCV10 %R CCV11 %R
Antimony	SB	ICP	IP110121	2000.0	2090.10 104.5	2001.21	100.1					· · · · · · · · · · · · · · · · · · ·				
Arsenic	AS	ICP	IP110121	2000.0	2098.74 104.9	2014.92	100.7									
Beryllium	BE	ICP	IP110121	1000.0	980.07 98.0	966.86	96.7									
Cadmium	CD	ICP	IP110121	1000.0	1014.11 101.4	983.62	98.4									
Chromium	CR	ICP	IP110121	1000.0	999.89 100.0	997.68	99.8									
Copper	CÜ	ICP	IP110121	1000.0	1067.28 106.7	1044.62	104.5									
Lead	PB	ICP	IP110121	2000.0	2041.46 102.1	1975.47	98.8									
Mercury	HG	CVA	HG103001	4.0												
Nickel	NI	ICP	IP110121	1000.0	988.06 98.8	981.77	98.2									
Selenium	SE	ICP	IP110121	2000.0	2021.22 101.1	1932.78	96.6									
Silver	AG	ICP	IP110121	1000.0	1017.02 101.7	991.30	99.1									
Thallium	\mathtt{TL}	ICP	IP110121	2000.0	2027.24 101.4	1948.03	97.4									
Zinc	ZN	ICP	IP110121	1000.0	1031.03 103.1	1031.68	103.2									

Calibration Verification

RESOURCES INCORPORATED

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

ANALYTE	EL	M R	UN ICVT	N ICA	%R	CCVIV	CCV1	%R	CCV2	%R	CCA3	%R	CCV4	%R	CCV5	₽R
Antimony	SB	ICP IP1	10221 2000.	0 2159.75	108.0	2000.0	2127.12	106.4	2108.83	105.4	2088.38	104.4	2042.18	102.1	2046.13	102.3
Arsenic	AS	ICP IP11	10221 2000.	0 2063.24	103.2	2000.0	2031.05	101.6	2018.12	100.9	1995.36	99.8	1958.81	97.9	1968.94	98.4
Beryllium	BE	ICP IP1	10221 1000.	0 998.30	99.8	1000.0	986.84	98.7	990.31	99.0	1012.95	101.3	965.47	96.5	982.01	98.2
Cadmium	CD	ICP IP1	10221 1000.	0 1039.89	104.0	1000.0	1017.61	101.8	1020.03	102.0	1017.33	101.7	1005.66	100.6	1008.08	100.8
Chromium	CR	ICP IP11	10221 1000.	0 1001.07	100.1	1000.0	995.42	99.5	997.93	99.8	1018.96	101.9	966.96	96.7	1003.80	100.4
Copper	CΩ	ICP IP1	10221 1000.	0 1088.60	108.9	1000.0	1064.16	106.4	1072.48	107.2	1066.50	106.7	1048.02	104.8	1058.54	105.9
Lead	PB	ICP IP1	10221 2000.	0 2000.91	100.0	2000.0	1973.59	98.7	1962.96	98.1	1943.06	97.2	1910.75	95.5	1929.10	96.5
Nickel	NI	ICP IP1	10221 1000.	0 986.14	98.6	1000.0	984.90	98.5	984.50	98.5	1015.22	101.5	961.48	96.1	1003.05	100.3
Selenium	SE	ICP IP1	10221 2000.	0 2002.16	100.1	2000.0	1969.78	98.5	1959.13	98.0	1936.40	96.8	1907.35	95.4	1905.89	95.3
Silver	AG	ICP IP1	10221 1000.	0 1004.54	100.5	1000.0	980.27	98.0	979.18	97.9	985.56	98.6	973.84	97.4	975.35	97.5
Thallium	\mathtt{TL}	ICP IP1	10221 2000.	0 2003.77	100.2	2000.0	1970.25	98.5	1958.36	97.9	1939.65	97.0	1898.19	94.9	1905.29	95.3
Zinc	ZN	ICP IP1	10221 1000.	0 1033.47	103.3	1000.0	1038.52	103.9	1039.21	103.9	1088.69	108.9	1022.11	102.2	1072.14	107.2

And the second of the second o

Calibration Verification

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

ANALYTE	EL	M	RUN	CCVTV	CCV6	%R	CCV7	₹R	CCV8	₽R	CCV9	₽R	CCV10	ŧR	CCV11	%R
Antimony	SB	ICP	IP110221	2000.0	2024.86	101.2	1994.40	99.7								
Arsenic	AS	ICP	IP110221	2000.0	1947.66	97.4	1919.60	96.0								
Beryllium	BE	ICP	IP110221	1000.0	970.41	97.0	965.77	96.6								
Cadmium	CD	ICP	IP110221	1000.0	1011.22	101.1	991.46	99.1								
Chromium	CR	ICP	IP110221	1000.0	992.69	99.3	985.11	98.5								
Copper	CU	ICP	IP110221	1000.0	1071.38	107.1	1050.71	105.1								
Lead	PB	ICP	IP110221	2000.0	1912.26	95.6	1885.58	94.3								
Nickel	NI	ICP	IP110221	1000.0	988.76	98.9	990.16	99.0								
Selenium	SE	ICP	IP110221	2000.0	1876.33	93.8	1860.89	93.0								
Silver	AG	ICP	IP110221	1000.0	988.04	98.8	966.52	96.7								
Thallium	TL	ICP	IP110221	2000.0	1888.34	94.4	1861.56	93.1								
Zinc	ZN	ICP	IP110221	1000.0	1048.37	104.8	1054.47	105.4								

CRDL Standard

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

NALYTE	EL	M	RUN	CRA/I 1	V CR-1	₽R	CR-2	%R	CR-3	₹R	CR-4	%R	CR-5	%R	CR-6
ntimony	SB	ICP	IP110121	50.0	50.51	101.0									
rsenic	AS	ICP	IP110121	50.0	52.15	104.3									
eryllium	BE	ICP	IP110121	1.0	1.06	106.0									
admium	CD	ICP	IP110121	2.0	1.89	94.5									
romium	CR	ICP	IP110121	5.0	6.26	125.2									
opper	CU	ICP	IP110121	2.0	1.41	70.5									
ead	PB	ICP	IP110121	20.0	20.28	101.4									
ercury	HG	CVA	HG103001	0.1	0.11	110.0									
ickel	NI	ICP	IP110121	10.0	11.68	116.8									
Selenium	SE	ICP	IP110121	50.0	49.32	98.6									
Silver	AG	ICP	IP110121	3.0	2.99	99.7									
hallium	\mathtt{TL}	ICP	IP110121	50.0	47.17	94.3									
inc	ZN	ICP	IP110121	10.0	9.86	98.6									

CRDL Standard

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

ANALYTE	EL	M	RUN	CRA/I T	V CR-1	₽R	CR-2	%R	CR-3	%R	CR-4	₹R	CR-5	%R	CR-6	%R
Antimony	SB	ICP	IP110221	50.0	50.31	100.6	51.08	102.2								
Arsenic	AS	ICP	IP110221	50.0	49.71	99.4	50.48	101.0								
Beryllium	BE	ICP	IP110221	1.0	1.00	100.0	1.08	108.0								
Cadmium	CD	ICP	IP110221	2.0	1.91	95.5	1.97	98.5								
Chromium	CR	ICP	IP110221	5.0	4.60	92.0	5.51	110.2								
Copper	CU	ICP	IP110221	2.0	1.64	82.0	3.15	157.5								
Lead	PB	ICP	IP110221	20.0	18.17	90.9	19.31	96.6								
Nickel	NI	ICP	IP110221	10.0	9.16	91.6	11.05	110.5								
Selenium	SE	ICP	IP110221	50.0	53.75	107.5	51.58	103.2								
Silver	AG	ICP	IP110221	3.0	2.80	93.3	3.00	100.0								
Thallium	\mathtt{TL}	ICP	IP110221	50.0	49.65	99.3	51.66	103.3								
Zinc	ZN	ICP	IP110221	10.0	10.16	101.6	10.63	106.3								

The second of th

Calibration Blanks

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

ANALYTE	EL	METH	RUN	CRDL	IDL	ICB	С	CCB1	С	CCB2	С	CCB3	С	CCB4	С	CCB5	С
Antimony	SB	ICP	IP110121	60.0	50.0	50.0	ט	50.0	U	50.0	υ	50.0	U	50.0	U	50.0	υ
Arsenic	AS	ICP	IP110121	10.0	50.0	50.0	U	50.0	U	50.0	υ	50.0	U	50.0	U	50.0	U
Beryllium	BE	ICP	IP110121	5.0	1.0	1.0	U	1.0	U	1.0	U	1.0	U	1.0	υ	1.0	υ
Cadmium	CD	ICP	IP110121	5.0	2.0	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	υ
Chromium	CR	ICP	IP110121	10.0	5.0	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Copper	CŪ	ICP	IP110121	25.0	2.0	2.0	U	2.0	U	2.0	U	2.0	U	2.0	υ	2.0	υ
Lead	PB	ICP	IP110121	3.0	20.0	20.0	U	20.0	U	20.0	U	20.0	U	20.0	U	20.0	υ
Mercury	HG	CVA	HG103001	0.2	0.1	0.1	U	0.1	U	0.1	υ	0.1	U				
Nicke1	NI	ICP	IP110121	40.0	10.0	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	υ
Selenium	SE	ICP	IP110121	5.0	50.0	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	υ
Silver	AG	ICP	IP110121	10.0	3.0	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0	υ
Thallium	TL	ICP	IP110121	10.0	50.0	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U
Zinc	ZN	ICP	IP110121	20.0	10.0	10.0	U	10.0	U	10.0	U	10.0	U	16.3	В	10.0	U

Calibration Blanks

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

ANALYTE	EL	METH	RUN	CRDL	IDL	CCB6	С	CCB7	С	CCB8	С	CCB9	С	CCB10	С	CCB11	
Antimony	SB	ICP	IP110121	60.0	50.0	50.0	U	50.0	U								
Arsenic	AS	ICP	IP110121	10.0	50.0	50.0	U	50.0	U								
Beryllium	BE	ICP	IP110121	5.0	1.0	1.0	U	1.0	U								
Cadmium	CD	ICP	IP110121	5.0	2.0	2.0	U	2.0	U								
Chromium	CR	ICP	IP110121	10.0	5.0	5.0	U	5.0	U								
opper	CU	ICP	IP110121	25.0	2.0	2.0	U	2.0	U								
Lead	PB	ICP	IP110121	3.0	20.0	20.0	U	20.0	U								
lercury	HG	CVA	HG103001	0.2	0.1												
licke1	NI	ICP	IP110121	40.0	10.0	10.0	U	10.0	U								
Selenium	SE	ICP	IP110121	5.0	50.0	50.0	U	50.0	U								
Silver	AG	ICP	IP110121	10.0	3.0	3.0	U	3.0	U								
Thallium	TL	ICP	IP110121	10.0	50.0	50.0	U	50.0	U								
Zinc	ZN	ICP	IP110121	20.0	10.0	10.0	U	10.0	U								

Calibration Blanks

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

ANALYTE	EL	METH	RUN	CRDL	IDL	ICB	С	CCB1	С	CCB2	С	CCB3	С	CCB4	С	CCB5	С
Antimony	SB	ICP	IP110221	60.0	50.0	50.0	υ	50.0	U	50.0	U	50.0	U	50.0	Ū	50.0	U
Arsenic	AS	ICP	IP110221	10.0	50.0	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U
Beryllium	BE	ICP	IP110221	5.0	1.0	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Cadmium	CD	ICP	IP110221	5.0	2.0	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
Chromium	CR	ICP	IP110221	10.0	5.0	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Copper	CÜ	ICP	IP110221	25.0	2.0	2.0	υ	2.0	U	2.0	U	2.0	U	2.0	U	2.0	В
Lead	PB	ICP	IP110221	3.0	20.0	20.0	υ	20.0	U	20.0	U	20.0	U	20.0	U	20.0	U
Nickel	NI	ICP	IP110221	40.0	10.0	10.0	υ	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U
Selenium	SE	ICP	IP110221	5.0	50.0	50.0	υ	50.0	U	50.0	υ	50.0	U	50.0	U	50.0	U
Silver	AG	ICP	IP110221	10.0	3.0	3.0	υ	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U
Thallium	TL	ICP	IP110221	10.0	50.0	50.0	U	50.0	U	50.0	υ	50.0	U	50.0	U	50.0	U
Zinc	ZN	ICP	IP110221	20.0	10.0	10.0	υ	10.0	U	10.0	υ	10.0	U	10.0	U	10.0	U

Street British Street Street Street

Calibration Blanks

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

ANALYTE	EL	METH	RUN	CRDL	IDL	CCB6	С	CCB7	С	CCB8	С	CCB9	С	CCB10	С	CCB11	С
Antimony	SB	ICP	IP110221	60.0	50.0	50.0	ט	50.0	ซ								
Arsenic	AS	ICP	IP110221	10.0	50.0	50.0	U	50.0	ซ								
Beryllium	BE	ICP	IP110221	5.0	1.0	1.0	U	1.0	U								
Cadmium	CD	ICP	IP110221	5.0	2.0	2.0	U	2.0	U								
Chromium	CR	ICP	IP110221	10.0	5.0	5.0	U	5.0	ซ								
Copper	CU	ICP	IP110221	25.0	2.0	2.0	U	2.0	U								
Lead	PB	ICP	IP110221	3.0	20.0	20.0	U	20.0	U								
Nickel	NI	ICP	IP110221	40.0	10.0	10.0	U	10.0	U								
Selenium	SE	ICP	IP110221	5.0	50.0	50.0	U	50.0	U								
Silver	AG	ICP	IP110221	10.0	3.0	3.0	U	3.0	U								
Thallium	\mathtt{TL}	ICP	IP110221	10.0	50.0	50.0	U	50.0	U								
Zinc	ZN	ICP	IP110221	20.0	10.0	10.0	U	10.0	U								

ICP Interference Check Sample

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

ICS SOURCE: I.V.

RUNID: IP110121

INSTRUMENT ID: OPTIMA ICP 1

analyte	ICSA TV	ICSAB TV	ICSA1	ICSAB1	₹R	ICSA2	ICSAB2	₹R	ICSA3	ICSAB3	%R
Aluminum	200000	200000	190393.7	192398.2	96.2						
Antimony		1000	23.0	1021.2	102.1						
Arsenic		1000	-2.8	993.5	99.4						
Barium		1000	-1.1	933.2	93.3						
Beryllium		1000	-0.1	994.3	99.4						
Boron			0.2	4.3							
Cadmium		1000	0.9	970.5	97.1						
Calcium	100000	100000	93882.9	94902.2	94.9						,
Chromium		1000	3.9	935.6	93.6						
Cobalt		1000	-0.5	901.2	90.1						
Copper		1000	0.1	1002.8	100.3						
Iron	200000	200000	191186.9	193030.8	96.5						
Lead		1000	6.3	948.6	94.9						
Magnesium	100000	100000	98320.3	99698.5	99.7						
langanese		1000	-0.6	939.3	93.9						
Molybdenum			-6.4	-6.7							
Nickel		1000	3.8	929.3	92.9						
Potassium			-10.2	-19.4							
Selenium		1000	-63.6	926.1	92.6						
Silicon			10.2	51.9							
Silver		1000	-0.9	1000.3	100.0						
Sodium			25.0	80.5							
Strontium			4.0	4.4							
hallium		1000	-11.3	902.0	90.2						
Cin .			15.2	14.5							
Titanium			2.1	2.3							
/anadium		1000	0.2	952.6	95.3						
Zinc		1000	-6.3	896.2	89.6						

ICP Interference Check Sample

ANALYTICAL RESOURCES INCORPORATED

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

ICS SOURCE: I.V.

RUNID: IP110221

INSTRUMENT ID: OPTIMA ICP 1

ANALYTE	ICSA TV	ICSAB TV	ICSA1	ICSAB1	%R	ICSA2	ICSAB2	%R	ICSA3	ICSAB3	%R	
Aluminum	200000	200000	202957.2	201938.1	101.0	194219.6	197107.9	98.6				
Antimony		1000	24.4	1053.1	105.3	20.6	1009.4	100.9				
Arsenic		1000	-5.1	991.7	99.2	-2.1	954.1	95.4				
Barium		1000	-1.5	982.6	98.3	-1.5	972.1	97.2				
Beryllium		1000	0.0	986.2	98.6	-0.1	952.3	95.2				
Boron			-9.8	-3.2		-7.7	-5.9					
Cadmium		1000	1.1	996.9	99.7	1.0	975.2	97.5				
Calcium	100000	100000	97419.9	97438.3	97.4	91977.9	94172.6	94.2				
Chromium		1000	3.4	977.5	97.8	3.0	955.6	95.6				
Cobalt		1000	-0.4	929.3	92.9	-0.6	905.2	90.5				
Copper		1000	0.3	1033.1	103.3	0.1	1031.3	103.1				
Iron	200000	200000	199398.4	198073.4	99.0	189974.1	193400.4	96.7				
Lead		1000	6.4	938.2	93.8	6.6	911.4	91.1				
Magnesium	100000	100000	103039.1	103591.4	103.6	97883.0	100960.6	101.0				
Manganese		1000	-0.8	968.5	96.9	-1.0	947.7	94.8				
Molybdenum			-6.4	-6.8		-5.3	-6.6					
Nickel		1000	4.6	934.6	93.5	4.2	922.9	92.3				
Potassium			7.3	6.2		47.8	42.1					
Selenium		1000	-58.4	931.4	93.1	-50.2	885.7	88.6				
Silicon			9.3	51.0		6.1	45.1					
Silver		1000	-0.2	1005.0	100.5	-0.5	999.6	100.0				
Sodium			35.0	82.3		31.6	88.5					
Strontium			4.2	4.6		4.0	4.4					
Thallium		1000	-9.8	914.4	91.4	-8.8	880.8	88.1				
Tin			14.9	12.5		12.0	12.7					
Titanium			2.4	2.1		2.0	2.8					
Vanadium		1000	-1.7	990.0	99.0	-1.6	983.2	98.3				
Zinc		1000	-5.7	903.2	90.3	-5.7	898.3	89.8				

Post Digest Spike Sample Recovery

CLIENT: Anchor QEA LLC

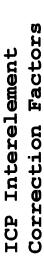
PROJECT: Central Waterfront S

SDG: VP40

ANALYSIS METHOD: ICP

ANALYTE	CLIENT ID	ARI ID	RUNID	SPIKED SAMPLE RESULT C	SAMPLE RESULT C	SPIKE ADDED	MATRIX	%R
Zinc	CWS1-04-2-4A	VP40APOST	IP110121	2425.47	1444.38	1000	Soil	98.1
Antimony	CWS1-04-2-4A	VP40APOST	IP110121	4115.56	100.00 ຫ	4000	Soil	102.9

IDLs and ICP Linear Ranges



CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

ANALYTE	EL	метн	Instrument	WAVELENTH (nm)	GFA BACK- GROUND	CLP CRDL	RL	RL DATE	ICP LINEAR RANGE (ug/L)	ICP LR DATE
Antimony	SB	ICP	OPTIMA ICP 1	206.84		60	50.0	4/1/2012	30000.0	8/2/2012
Arsenic	AS	ICP	OPTIMA ICP 1	188.98		10	50.0	4/1/2012	30000.0	8/2/2012
Beryllium	BE	ICP	OPTIMA ICP 1	313.04		5	1.0	4/1/2012	5000.0	8/2/2012
Cadmium	CD	ICP	OPTIMA ICP 1	228.80		5	2.0	4/1/2012	20000.0	8/2/2012
Chromium	CR	ICP	OPTIMA ICP 1	267.72		10	5.0	4/1/2012	100000.0	8/2/2012
Copper	CU	ICP	OPTIMA ICP 1	324.75		25	2.0	4/1/2012	40000.0	8/2/2012
Lead	PB	ICP	OPTIMA ICP 1	220.35		3	20.0	4/1/2012	300000.0	8/2/2012
Mercury	НG	CVA	CETAC MERCURY	253.70		0.2	0.1	4/1/2012		
Nickel	NI	ICP	OPTIMA ICP 1	231.60		40	10.0	4/1/2012	100000.0	8/2/2012
Selenium	SE	ICP	OPTIMA ICP 1	196.03		5	50.0	4/1/2012	20000.0	8/2/2012
Silver	AG	ICP	OPTIMA ICP 1	328.07		10	3.0	4/1/2012	5000.0	8/2/2012
Thallium	TL	ICP	OPTIMA ICP 1	190.80		10	50.0	4/1/2012	30000.0	8/2/2012
Zinc	ZN	ICP	OPTIMA ICP 1	206.20		20	10.0	4/1/2012	100000.0	8/2/2012

CLIENT: Anchor QEA LLC

ഗ PROJECT: Central Waterfront

SDG: VP40

INSTRUMENT ID: OPTIMA ICP 1

8/1/2012

IEC DATE:

INCORPORATED RESOURCES (ANALYTICAL

0.000000.0 0.0462923 0.1040430 0000000.0 0.000000.0 0.000000.0 0.000000.0 0.0000000 0.0115541 -0.0964768 0.000000.0 0.0726674 0.7040250 0.0051237 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 -0.03301540.0000000 0.000000.0 0.000000.0 0.000000.0 0.1165860 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.8342190 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.0000000 0.000000.0 B 0.0933245 0.000000.0 0.000000.0 0.7289660 0.0000000 15.1857000 1,0591800 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 -0.0341026 -0.0466820 0.7651920 -2.3759900 -1.02168000.000000.0 0.000000.0 -1.0020900 0.000000.0 0.000000.0 0.3674950 0.000000.0 0.2444290 -7.0524000 క్ర 0.000000.0 0.000000.0 0.1563080 0.00000000 -1.1822900 -0.1688060 -0.1702670 -0.3361900 0.000000.0 -1.1866700 0.000000.0 0.000000.0 0.000000.0 0.4183610 0.000000.0 0.000000.0 0.000000.0 6.8157000 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.1134410 0.000000.0 0.000000.0 0.000000.0 ႘ 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 -3.4540100 0.0000000 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 8 0.0000000 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 -0.0214985 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.0223663 4.4431000 0.000000.0 -0.35714000.0490253 0.000000.0 -0.0256242 ð 0.000000.0 000000000 0.000000.0 0.000000.0 0.000000.0 0.000000.0 田田 0.000000.0 0.000000.0 0000000.0 0.00000000 0000000000 0.000000.0 000000000 0.0277924 3341190 0.000000.0 0000000000 0.000000.0 000000000 0.000000.0 000000000 0.000000.0 0.000000.0 0.000000.0 00000000 0.000000.0 000000000 0.000000.0 000000000 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 2.3634000 0.000000.0 -0.3512640 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.000000.0 0.0000000 0.0068205 0.0208471 0.000000.0 0.0000000 0.000000.0 0.000000.0 0.0000000 0.00000.0 0.000000.0 0.000000.0 0000000.0 0.000000.0 겋 WAVELENGTH 292.40 88.98 228.62 273.96 220.35 202.03 589.59 766.49 288.16 190.80 206.20 233.53 313.04 228.80 317.93 267.72 324.75 279.08 257.61 231.60 196.03 328.07 89.93 334.90 Molybdenum Magnesium Beryllium Manganese Potassium Chromium Selenium /anadium Aluminum rhallium Titanium Antimony ANALYTE Arsenic Cadmium Calcium Silicon Nickel Silver Sodium Barium Cobalt Copper Iron Lead Tin

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP40

IEC DATE: 8/1/2012

ANALYTICAL RESOURCES INCORPORATED

INSTRUMENT ID: OPTIMA ICP 1

ANALYTE	WAVELENGTH	в мс	MN	MO	INI	PB	SB	TI	TL	>	ZN
Aluminum	308.22	0.000000.0	0.000000.0	25.3743000	0.00000000	0.0000000	0.000000.0	2.2001400	0.000000.0	15.3248000	0.000000.0
Antimony	206.84	0.0000000	0.000000.0	1,3316900	-0.3291700	0.000000.0	0.000000.0	-1.5094000	0.000000.0	-3.7687600	0.9674010
Arsenic	188.98	0.000000	0.000000.0	3.2754400	0.000000.0	0.000000.0	0.000000.0	-2.1487000	0.000000.0	0.2373010	0.000000.0
Barium	233.53	0.0000000	0.0000000	-0.0676563	0.1487540	0.00000000	0.000000.0	0.000000.0	0.000000.0	0.4251790	0.000000.0
Beryllium	313.04	0.000000	0.000000.0	0.0000000	0.000000.0	0.0000000	0.000000.0	0.0161120	0.000000.0	2.5849600	0.000000.0
Cadmium	228.80	0.000000.0	0.000000.0	0.000000.0	-0.2763290	0.00000000	0.000000.0	0.000000.0	0.000000.0	0.0435241	0.000000.0
Calcium	317.93	0.0000000	0.000000	0.0000000	0.000000.0	0.00000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Chromium	267.72	-0.0282409	0.2350890	0.1566040	0.0000000	0.00000000	0.000000.0	0.0287539	0.000000.0	0.1196170	0.000000.0
Cobalt	228.62	0.000000.0	0.000000	-0.1973550	0.1098840	0.00000000	0.000000.0	1.7517700	0.000000.0	0.000000.0	0.000000.0
Copper	324.75	0.000000.0	0.000000	0.2757360	0.000000.0	0.000000.0	0.000000.0	0.2149870	0.000000.0	0.000000.0	0.000000.0
Iron	273.96	0.000000.0	0.000000	0.000000	0.000000.0	0.00000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Lead	220.35	0.000000.0	0.000000.0	-0.2855620	0.1706620	0.000000.0	0.000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Magnesium	279.08	0.000000.0	0.000000	-2.0298600	0.000000.0	0.00000000	0.000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Manganese	257.61	0.0000000	0.0000000	0.0000000	0.000000.0	-0.2307900	0.000000.0	0.000000.0	0.000000.0	-0.0231031	0.000000.0
Molybdenum	m 202.03	0.0074768	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.1048000
Nickel	231.60	0.0000000	0.0000000	0.000000	0.000000	0.00000000	-0.6505180	0.000000.0	0.5517490	0.000000.0	0.000000.0
Potassium	1 766.49	0.0000000	0.0000000	0.0000000	0.000000.0	0.00000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Selenium	196.03	0.000000.0	0.00000000	0.000000.0	1.3045900	0.000000.0	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Silicon	288.16	-0.1271090	0.0000000	-1.7127900	0.000000.0	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Silver	328.07	0.000000	0.1914050	0.1812780	0.0000000	0.000000.0	0.000000.0	-0.0355721	0.000000.0	-0.2667920	0.000000.0
Sodium	589.59	0.0000000	0.000000.0	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.0000000 227.0360000	0.000000.0	0.0000000 342.7190000	42.7190000
Thallium	190.80	0.000000	1.9622100	-2.1053700	0.0000000	0.000000.0	0.000000.0	1.4997300	0.000000.0	5.6218000	0.000000.0
Tin	189.93	-0.0404347	0.000000.0	0.000000.0	0.000000.0	0.000000.0	-0.4036970	-0.4257350	0.000000.0	0.000000.0	0.000000.0
Titanium	334.90	0.0000000	0.0000000	0.9908490	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Vanadium	292.40	0.000000	-0.1434250	-6.5129600	0.000000.0	0.000000.0	0.000000.0	0.8061690	0.000000.0	0.000000.0	0.000000.0
Zinc	206.20	0.0000000	0.0000000	0.2750230	0.0000000	-0.0830846	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0000000.0

Preparation Log

CLIENT: Anchor QEA LLC ANALYSIS METHOD: ICP

PROJECT: Central Waterfront S ARI PREP CODE: SWC

SDG: VP40 PREPDATE: 10/29/2012

CLIENT ID	ARI ID	MASS (g)	INITIAL VOLUME (mL)	FINAL VOLUME (mL)
CWS1-04-2-4	VP40A	1.047	0.0	50.0
CWS1-04-2-4D	VP40ADUP	1.044	0.0	50.0
CWS1-04-2-4S	VP40ASPK	1.050	0.0	50.0
CWS1-04-6-8	VP40B	1.025	0.0	50.0
CWS1-04-13.5-15	VP40C	1.069	0.0	50.0
PBS	VP40MB1	1.000	0.0	50.0
LCSS	VP40MB1SPK	1.000	0.0	50.0
CWS1-02-1-3	VP41A	1.018	0.0	50.0
CWS1-02-7-8	VP41B	1.047	0.0	50.0
CWS1-02-12-13	VP41C	1.043	0.0	50.0
CWS1-01-3-5	VP41D	1.013	0.0	50.0
CWS1-01-11-13	VP41E	1.030	0.0	50.0

Preparation Log

CLIENT: Anchor QEA LLC ANALYSIS METHOD: CVA

PROJECT: Central Waterfront S ARI PREP CODE: SMM

SDG: VP40 PREPDATE: 10/29/2012

CLIENT ID	ARI ID	MASS (g)	INITIAL VOLUME (mL)	FINAL VOLUME (mL)
CWS1-04-2-4	VP40A	0.246	0.0	50.0
CWS1-04-2-4D	VP40ADUP	0.247	0.0	50.0
CWS1-04-2-4S	VP40ASPK	0.244	0.0	50.0
CWS1-04-6-8	VP40B	0.272	0.0	50.0
CWS1-04-13.5-15	VP40C	0.233	0.0	50.0
PBS	VP40MB1	0.200	0.0	50.0
LCSW	VP40MB1SPK	0.200	0.0	50.0
CWS1-02-1-3	VP41A	0.204	0.0	50.0
CWS1-02-7-8	VP41B	0.244	0.0	50.0
CWS1-02-12-13	VP41C	0.276	0.0	50.0
CWS1-01-3-5	VP41D	0.266	0.0	50.0
CWS1-01-11-13	VP41E	0.295	0.0	50.0

upug gasse

Analysis Run Log

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S INSTRUMENT ID: OPTIMA ICP 1 START DATE: 11/1/2012

SDG: VP40 RUNID: IP110121 METHOD: ICP END DATE: 11/1/2012

SDG: VP40			KONIL) · I	PIIC	121		MEI	HOD:	1	CP					EIV	עו	בעם	IE.		11/	1/2	012		
CLIENT ID	ARI ID	DIL. TIME	%R A	G AL	AS I	B BA F	E CI	A CD	CO CR	CU	FE	HG K	MG	MN MC	AA (NI	PB	SB	se s	SI :	SN T	I TL	υ	v zr	4
S0	S0	1.00 11081		х	x		Х	Х	X	X						Х	X	X	х			X		X	
S2	S2	1.00 11140						х	x	X											.				
S 3	S3	1.00 11180		x	x		x									x	Х		x			X		X	۲
S4	S4	1.00 11224	:															Х			,				
\$ 5	S5	1.00 11265	Ì																						
ZZZZZZ	ZZZZZZ	1.00 11302																							
ZZZZZZ	ZZZZZZ	1.00 11362																							
ZZZZZZ	ZZZZZZ	1.00 11422																			.				
ZZZZZZ	ZZZZZZ	1.00 11482																				1			
ZZZZZZ	ZZZZZZ	1.00 11542																			.				
ZZZZZZ	ZZZZZZ	1.00 12012																			.				
ZZZZZZ	ZZZZZZ	1.00 12073																			.			-	
S0	S0	1.00 12134		x	x		x	Х	x	x						x	X	х	x		.	x		X	۲
ICV	ICV	1.00 12185		x	x		x	х	x	X						x	Х	х	x			x		X	۲
ICB	ICB	1.00 12245		x	x		x	х	x	x			1			x	Х	х	x			x		×	۲
CRI	CRII	1.00 12305		x	x		x	х	x	x						x	х	х	x			x		x	۲
ICSA	ICSAI	1.00 12365		x	x		х	x	x	x						x	x	х	x		.	x		x	۲
ICSAB	ICSABI	1.00 12425		x	x		x	x	x	x						x	Х	х	x			x		X	۲
CCV	CCV1	1.00 12495		x	x		x	x	x	x						x	Х	х	x			x		x	۲
CCB	CCB1	1.00 12555		x	x	ļ	x	х	x	x						x	х	x	x			х		x	۲
ZZZZZZ	VP23MB2	1.00 13030																							
ZZZZZZ	VO93MB	2.00 13090																							
ZZZZZZ	VO93H	2.00 13150	+																						
ZZZZZZ	VP23I	1.00 13202	1																						
ZZZZZZ	VP23J	1.00 13264																							
ZZZZZZ	VP23K	1.00 13324	1																						
ZZZZZZ	VP23L	1.00 13384	,																	ļ					
ZZZZZZ	VP23HDUP	1.00 13444																		İ					
ZZZZZZ	VP23H	1.00 13510																							
ZZZZZZ	VP23HSPK	1.00 13572	1																						
CCV	CCV2	1.00 14032		x	x		x	x	x	x						х	x	x	x			х		×	۲
CCB	CCB2	1.00 14092		x	x		x	x	x	x						х	Х	x	x			x		×	۲
ZZZZZZ	VQ16MB2	1.00 14152																							
ZZZZZZ	VQ25MB	1.00 14212																							
ZZZZZZ	VQ16L	1.00 14272																							

Analysis Run Log

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S INSTRUMENT ID: OPTIMA ICP 1 START DATE: 11/1/2012

SDG: VP40 RUNID: IP110121 METHOD: ICP END DATE: 11/1/2012

CLIENT ID	ARI ID	DIL. TIME	%R 2	AG AL	AS	В	BA	BE	CA C	D (СО	CR	CU	FE	HG	ĸ	MG	MN	MO	NA	NI	PB	SB	SE	SI	SN	TI	TL	U	v	ZN
ZZZZZZ	VQ16KDUP	1.00 14332																													П
ZZZZZZ	VQ16K	1.00 14392																													
ZZZZZZ	VQ16KSPK	1.00 14452																ļ													
ZZZZZZ	VQ25ADUP	1.00 14512																													
ZZZZZZ	VQ25A	1.00 14572				ļ																									
ZZZZZZ	VQ25ASPK	1.00 15032																													
ZZZZZZ	VP23MB2SPK	1.00 15093																													
ccv	CCV3	1.00 15153		x	x			x		x		х	х								x	x	x	x				x			x
CCB	CCB3	1.00 15214		x	x			x		x		х	х			ĺ					x	x	x	x				x			x
PBS	VP40MB1	2.00 15273																							-				1		1 1
CWS1-02-1-3	VP41A	2.00 15333				1																				1	İ			Ì	
CWS1-02-7-8	VP41B	2.00 15392																													
CWS1-02-12-13	VP41C	2.00 15435																												ŀ	1 1
CWS1-01-3-5	VP41D	2.00 15494				ļ																								Ì	
CWS1-01-11-13	VP41E	2.00 15553																	1												
CWS1-04-6-8	VP40B	2.00 16013																													1 1
CWS1-04-13.5-15	VP40C	2.00 16072															Ì														
ZZZZZZ	VQ16MB2SPK	1.00 16131																						Ì							
ZZZZZZ	VQ25MBSPK	1.00 16191																													
ccv	CCV4	1.00 16241		x	x			x		х		х	X								x	x	x	х				x			x
CCB	CCB4	1.00 16301		х	x			х		x		х	х								x	x	x	х				x			x
S0	so	1.00 16374		х	x			х		х		х	х								x	x	x	х				x			x
S3	S 3	1.00 16441		х	x			х													x	x		x				x		ļ	x
CCV	CCV5	1.00 16521		х	x			x		х		х	x	1							x	x	x	x				x			x
CCB	CCB5	1.00 16581		х	x			х		x		х	X								x	x	x	х				x			x
ZZZZZZ	VP44MB	5.00 17041																													
ZZZZZZ	VP51MB1	2.00 17103																												İ	
ZZZZZZ	VP51B	2.00 17163							ļ																						
CWS1-04-2-4D	VP40ADUP	2.00 17222		x	x			х		x		х	x						ŀ		x	x	x	х				x			x
CWS1-04-2-4	VP40A	2.00 17281		x	x			х		x		х	x								x	x	x	x				x			x
CWS1-04-2-4S	VP40ASPK	2.00 17340		x	x	l		x		x		х	х								x	x	x	x				x			x
ZZZZZZ	VP44ADUP	5.00 17391																													
ZZZZZZ	VP44A	5.00 17453																													
ZZZZZZ	VP44ASPK	5.00 17515																													
LCSS	VP40MB1SPK	2.00 17581		x	x			х		x		х	x								x	x	x	x				x			x

Analysis Run Log

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S INSTRUMENT ID:

OPTIMA ICP 1

START DATE: 11/1/2012

SDG: VP40 RUNID: IP110121 METHOD: ICP END DATE: 11/1/2012

CLIENT ID	ARI ID	DIL. TIME	%R	AG F	L A	S B	B	BE	CA	CD	СО	CR	CU	FE	HG	ĸ	MG	MN	MO	NA	NI	PB	SB	SE	SI	SN	TI	TL	U	V	ZN
ccv	CCV6	1.00 18041		x	:	ĸ		X		Х		х	X								Х	X	X	X				X	ŀ		X
CCB	CCB6	1.00 18102		x	:	ĸ		x		х		x	x								х	x	x	x	l			x			x
ZZZZZZ	VP51C	2.00 18162																													}
ZZZZZZ	VP51D	2.00 18220																													
ZZZZZZ	VP51E	2.00 18280																													
ZZZZZZ	VP51F	2.00 18334																													
ZZZZZZ	VP51ADUP	2.00 18393																				ļ									
ZZZZZZ	VP51A	2.00 18454																													
ZZZZZZ	VP51ASPK	2.00 18514																												l	
ZZZZZZ	VP51MB1SPK	2.00 18570																				į								Ì	
ZZZZZZ	VP29N	1.00 19030															-														
CWS1-04-2-4A	VP40APOST	2.00 19093																					x							ŀ	х
CCV	CCV7	1.00 19144		x	:	ĸ		х		х		х	х								х	x	x	x				x			x
CCB	CCB7	1.00 19204		x	:	ĸ		x		x		х	х								х	х	x	х				x			x

Analysis Run Log

ANALYTICAL RESOURCES INCORPORATED

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S INSTRUMENT ID: OPTIMA ICP 1 START DATE: 11/2/2012

SDG: VP40 RUNID: IP110221 METHOD: ICP END DATE: 11/2/2012

CLIENT ID	ARI ID	DIL. TIME	%R	AG AI	AS	В	BA B	E C	A CD	СО	CR	CU	FE	HG	K	MG 1	MIN I	MO N	IA I	NI	PB	SB	SE	SI	SN	TI	TL	U	V ?	ZN
S0	S0	1.00 09223		х	Х		1	ĸ	Х		Х	Х								Х	Х	Х	Х				х		\neg	Х
S2	S2	1.00 09283	1	1					x		x	х																		
S3	S 3	1.00 09322	ĺ	x	x		2	ĸ												X	х		х				x			х
S4	S4	1.00 09370	:																			х							1	
S5	S 5	1.00 09411																												
ZZZZZZ	ZZZZZZ	1.00 09470															1										1			
ZZZZZZ	ZZZZZZ	1.00 09530						1																						
ZZZZZZ	ZZZZZZ	1.00 09590															į													
ZZZZZZ	ZZZZZZ	1.00 10050															1													
ZZZZZZ	ZZZZZZ	1.00 10110																										i		
S0	so	1.00 10280		x	х		2	ĸ	x		x	х								х	х	х	x				x		-	х
ICV	ICV	1.00 10390		х	х		2	ĸ	х		х	x								х	х	х	x				x			х
ICB	ICB	1.00 10451		x	x		2	ĸ	x		x	x				}				х	х	x	x				x			х
CRI	CRII	1.00 10511		х	x		2	ĸ	x		х	x				İ				x	х	х	x				x			х
ICSA	ICSAI	1.00 10571		x	x		,	κ	x		х	x								х	х	x	x				x			х
ICSAB	ICSABI	1.00 11031		x	x		2	ĸ	x		х	x								х	х	x	x				x			х
ccv	CCV1	1.00 11101		х	x		2	ĸ	x		х	x						İ	1	х	х	x	x				x			х
ССВ	CCB1	1.00 11161		x	x		2	ĸ	x		х	x								х	х	x	x				x			х
ZZZZZZ	VP83MB	1.00 11344																												
ZZZZZZ	VP83B	10.00 11404	į							ĺ																		1		
ZZZZZZ	VP83C	10.00 11471						ļ																						
ZZZZZZ	VP83D	10.00 11532	ĺ																											
ZZZZZZ	VP83E	10.00 11595													1	ļ														
ZZZZZZ	VP83B	10.00 12060																												
ZZZZZZ	VP83ADUP	10.00 12122																												
ZZZZZZ	VP83A	10.00 12184																												
ZZZZZZ	VP83ASPK	10.00 12250																										,		
ZZZZZZ	VP83MBSPK	1.00 12312																										ļ		
ccv	CCV2	1.00 12372		x	x)	۲	х		x	х								х	х	x	х				х			х
ССВ	CCB2	1.00 12433		x	x)	۲	x		x	х								х	х	x	x				x			х
PBS	VP40MB1	2.00 12580													ł															
ZZZZZZ	VQ42MB2	1.00 13040													İ															
CWS1-02-1-3	VP41A	2.00 13100	İ	x	x		}	۲	х		x	x								x	х	х	x				x			х
CWS1-02-7-8	VP41B	20.00 13155		x	x		}	۲	x		x	x				- 1				x	х	х	х				x			x
CWS1-02-12-13	VP41C	10.00 13215		x	x			۱,	x		x	x				ŀ				х	х	х	х				x			х

Analysis Run Log

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S INSTRUMENT ID: OPTIMA ICP 1 START DATE: 11/2/2012

SDG: VP40 RUNID: IP110221 METHOD: ICP END DATE: 11/2/2012

CLIENT ID	ARI ID	DIL. TIME	%R AG	AL A	AS I	B BA BI	CAC	Œ	co (CR	CU	FE 1	HG 1	K M	G M	I MC	NA	NI	PB	SB	SE	SI	SN	TI	TL	U	V 2	ZN
CWS1-01-3-5	VP41D	5.00 13275	х		х	7		х		Х	Х							Х	Х	Х	Х				х			Х
CWS1-01-11-13	VP41E	10.00 13335	x		х	>	:	х		x	х							x	x	х	x				х			х
CWS1-04-6-8	VP40B	2.00 13395	x		х	>	:	х		х	х							x	x	x	х				х			x
CWS1-04-13.5-15	VP40C	5.00 13454	x		x) x	:	х		х	х							x	x	x	х				х			x
ZZZZZZ	VQ16MB2SPK	1.00 13514																										
CCV	CCV3	1.00 13574	x		x	\ \ \ \ \ \	:	х		x	х							x	x	х	х				х			x
CCB	CCB3	1.00 14034	x		x	>	:	х		x	х							x	х	х	х				х	- 1		x
ZZZZZZ	VO66MB1	2.00 14094																	1							1		
ZZZZZZ	VP83E	1.00 14154																										
ZZZZZZ	VQ42BDUP	1.00 14214																										
ZZZZZZ	VQ42B	1.00 14274																								1		
ZZZZZZ	VQ42BSPK	1.00 14334			ļ																					1		
ZZZZZZ	VQ42MB2SPK	1.00 14395																										
ZZZZZZ	VO66B	2.00 14455																										
ZZZZZZ	V066C	2.00 14514																										
ZZZZZZ	VO66D	2.00 14573																										
ZZZZZZ	VO66E	2.00 15032															1											
ccv	CCV4	1.00 15091	x		x	\ \ \ \ \ \	:	х		x	x							x	x	х	x				х			х
ССВ	CCB4	1.00 15152	x		x	>		х		x	x							x	х	х	х				х			х
ZZZZZZ	V066F	2.00 15211																							ĺ		ŀ	
ZZZZZZ	V066G	2.00 15270																										
ZZZZZZ	VO66H	2.00 15325																										
ZZZZZZ	V066I	2.00 15384																										
ZZZZZZ	VO66J	2.00 15443																										
ZZZZZZ	V066K	2.00 15502																										
ZZZZZZ	VO66L	2.00 15561																										
ZZZZZZ	VO66M	2.00 16020																										
ZZZZZZ	V066N	2.00 16075																										
ZZZZZZ	VO66REF1	2.00 16135																									Ì	
CCV	CCV5	1.00 16185	x		x) x		х		х	х				İ			x	х	х	x				х		ļ	х
ССВ	CCB5	1.00 16245	x		x	>		х		x	х							x	x	х	х				х			х
ZZZZZZ	ZZZZZZ	10.00 16305																										
ZZZZZZ	V066A	2.00 16365																										
ZZZZZZ	VO66ADUP	2.00 16424																										
ZZZZZZ	VO66ASPK	2.00 16483																		-								

Analysis Run Log

ANALYTICAL RESOURCES INCORPORATED

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

INSTRUMENT ID:

OPTIMA ICP 1

START DATE: 11/2/2012

SDG: VP40

RUNID: IP110221

METHOD: ICP

END DATE: 11/2/2012

CLIENT ID	ARI ID	DIL. TIME	₹R	AG 2	AL A	3 B	BA	BE	CA C	D C	co c	R CT	J FE	HG	ĸ	MG	MN	MO I	NA :	NI	PB	SB	SE	sı	SN	TI	TL	U	v	ZN
ZZZZZZ	ZZZZZZ	2.00 16543		T																									T	Т
ZZZZZZ	VO66MB1SPK	2.00 17003																												
ZZZZZZ	V066F	2.00 17063																												
CRI	CRIF	1.00 17122		x	3	:		х	:	x	2	xاx	:							х	x	x	x				x			x
ICSA	ICSAF	1.00 17223		x	2	:		х	:	x	2	κk	:				ļ			х	x	х	x				x	1		x
ICSAB	ICSABF	1.00 17283		x	2	:		х	:	x	2	x x	:							х	x	х	x				x	ļ		x
ccv	CCV6	1.00 17342		x	3	:		х	:	x	2	x x	:							Х	x	х	х				x			x
CCB	CCB6	1.00 17403		x	2			х	:	x	3	κk								х	х	x	х				x			x
ZZZZZZ	VP23MB2	1.00 17462								Ì																				
PBS	VP40MB1	2.00 17523		x	2	:		х	;	x	3	κk	:							х	x	х	х				x			x
ZZZZZZ	VP23I	1.00 17583																												
ZZZZZZ	VP23J	1.00 18045			- 1								İ																	
ZZZZZZ	VP23K	1.00 18105																												
ZZZZZZ	VP23L	1.00 18165									İ																			
ZZZZZZ	VP23HDUP	1.00 18225																												
ZZZZZZ	VP23H	1.00 18291															l													
ZZZZZZ	VP23HSPK	1.00 18353																												
ZZZZZZ	VP23MB2SPK	1.00 18412																												
CCV	CCV7	1.00 18473		x	>	:		х	2	x	2	x x								х	х	х	х				x			x
CCB	CCB7	1.00 18533		x	2	:		х	;	x	,	ı x								х	х	х	х				x			x

Analysis Run Log

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S INSTRUMENT ID: CETAC MERCURY START DATE: 10/30/2012

SDG: VP40 RUNID: HG103001 METHOD: CVA END DATE: 10/30/2012

CLIENT ID	ARI ID	DIL. TIME	%R	AG 2	AL A	AS E	} E	LA B	E	CA (D C	СО	CR	CU	FE	HG	ĸ	MG	MN	M	N	A N	I P	B S	3B	SE	SI	SN	TI	TL	U	v	ZN
S0	S0	1.00 10382			Т	Т	T		Т	$\overline{}$					Τ	Х	T	Т	1	Т	1	Т		1				Τ	Τ	Т	Τ	Т	Т
S0.1	S0.1	1.00 10400														x								-									
S0.5	S0.5	1.00 10413														x																	
S1	S1	1.00 10431			1											x																	
S2	S2	1.00 10445		1 1												x																İ	
S5	S5	1.00 10462			ľ								ĺ			x																	
S10	S10	1.00 10480					Ì		ł							x			İ														
ICV	AICV	1.00 10520			ľ				ł							x						Ì	ľ										
ICB	ICB	1.00 10533														x											1				-		ĺ
CCV	ACCV1	1.00 10551														х					İ												}
CCB	CCB1	1.00 10565														x																	
CRA	CRA	1.00 10583								ļ			ļ			х																	
PBW	VP40MB1	1.00 11000								-						x								İ									
LCSW	VP40MB1SPK	1.00 11014								Ì						x																	
CWS1-04-2-4	VP40A	1.00 11031							1							x																	
CWS1-04-2-4D	VP40ADUP	1.00 11045														x				İ													
CWS1-04-2-4S	VP40ASPK	1.00 11063														x																	
CWS1-04-6-8	VP40B	1.00 11080								1						x									ĺ		İ						
CWS1-04-13.5-15	VP40C	1.00 11094														x																	
CWS1-02-1-3	VP41A	1.00 11112														x												İ					
CWS1-02-7-8	VP41B	1.00 11130			- 1											x								1								1	
CCV	ACCV2	1.00 11144														х			İ														
CCB	CCB2	1.00 11162									İ					x																	
CWS1-02-12-13	VP41C	1.00 11175														x																	
CWS1-01-3-5	VP41D	1.00 11193										ŀ			ļ	x							ł										
CWS1-01-11-13	VP41E	1.00 11210														x																	
ZZZZZZ	V089MB1	1.00 11224																															
ZZZZZZ	VO89MB1SPK	1.00 11242																						-					İ				
ZZZZZZ	V089A	1.00 11255																													İ		
ZZZZZZ	VO89ADUP	1.00 11273																															
ZZZZZZ	VO89ASPK	1.00 11291														Ì																	
ZZZZZZ	VO89B	1.00 11304										İ																					
ZZZZZZ	V089C	1.00 11322																															
CCV	ACCV3	1.00 11340														x																	
CCB	CCB3	1.00 11354														х																	

Total Solids

ARI Job ID: VP40, VP41

u

UPHO: 00234

Volatiles Total Solids-voats

Data By: Pat Basilio Created: 10/31/12

Worklist: 9412 Analyst: PAB Comments:

Oven ID:				Balance I	D:
Samples In:	Date:_	Tin	ne:	Temp:	Analyst:
Samples Out:	Date:_	Tim	ne:	Temp:	Analyst:
ARI ID	Tare Wt	Wet Wt (g)	Dry Wt (g)	% Solids	3
1. VP40A 12-21289				<u> </u> % 82.23	
2. VP40B 12-21290			·	% 75.91	
3. VP40C 12-21291			·	% 80.56	

Volatiles Total Solids-voats

Data By: Pat Basilio Created: 10/31/12

7. VP41H

12-21286

Worklist: 9413 Analyst: PAB Comments:

Oven ID:		Balance ID:						
Samples In:	Date:	Tim	e:	Temp:	Analyst:			
Samples Out:	Date:	Time	e:	Temp:	Analyst:			
ARI ID		Wet Wt (g)		% Solids				
1. VP41A 12-21279		_		% 92.58				
2. VP41B 12-21280				<u> </u> % 81.58				
3. VP41C 12-21281				% 80.31				
4. VP41D 12-21282				₈ 79.32				
5. VP41E 12-21283		-		% 77.23				
6. VP41G 12-21285				\$ 88.10				

\$ 71.60

0

Extractions Total Solids-extts

Data By: Tarry Hawk Created: 10/30/12

Worklist: 9013 Analyst: RVR Comments:

Auchor

Oven ID:

Balance ID:

Sample	s In:	Date:	Time	•	Temp:	Analyst:
Sample	s Out:	Date:	Time	:	Temp:	Analyst:
<u></u>	ARI ID CLIENT ID	Tare Wt (g)	Wet Wt (g)	Dry Wt (g)	% Solids	рН
1.	VP41A 12-21279 CWS1-02-1-3	1.18	10.87	10.10	92.1	NR
2.	VP41B 12-21280 CWS1-02-7-8	1.16	11.40	9.77	84.1	NR
3.	VP41C 12-21281 CWS1-02-12-3		11.03	9.47	84.2	NR
4.	VP41D 12-21282 CWS1-01-3-5	1.15	11.36	9.43	81.1	NR
5.	VP41E 12-21283 CWS1-01-11-3		10.84	8.79	78.8	NR
6.	VP41G 12-21285 CWS1-03-2-4	1.15	10.59	9.47	88.1	NR
7.	VP41H 12-21286 CWS1-03-7-9	1.13	10.18	7.61	71.6	NR

Analyst: TH Created: 10/30/12 Comments: 015 Balance ID: **B**139298002 Oven ID: Date: 14/30/12 Time: 15:43 Temp: 64 Samples In: Analyst: Time 10.15 Temp: 147° Samples Out: Analyst: ARI ID Tare Wt Wet Wt Dry Wt CLIENT ID (g) (g) (g) % Solids рН 10.87 1118 1. VP41A NR 12-21279 CWS1-02-1-3 11.40 1116 2. VP41B NR 12-21280 CWS1-02-7-8 11.03 3. VP41C NR 12-21281 CWS1-02-12-13 11.36 1,15 4. VP41D NR 12-21282 CWS1-01-3-5 10.84 5. VP41E 1.16 NR 12-21283 CWS1-01-11-13 10.59 1.15 6. VP41G NR 12-21285

Worklist: 9013

NR

Extractions Total Solids-extts

Data By: Tarry Hawk

CWS1-03-2-4

12-21286 CWS1-03-7-9

7. VP41H

1.13

10.18

Worklist ID: 9013

Page: 1

upug gogge

.111 60

Extractions Total Solids-extts

Data By: Tarry Hawk Created: 10/30/12

Worklist: 9012 Analyst: RVR

Comments:

Oven ID:

12-21291

CWS1-04-13.5-15

Balance ID:

NR

Anchor

Date:_____ Time:____ Temp:____ Analyst:____ Samples In: Date: ____ Time: ___ Temp: ___ Analyst: ____ Samples Out: Tare Wt Wet Wt ARI ID Dry Wt CLIENT ID (g) (g) (g) % Solids рН 1. VP40A 1.14 11.81 9.65 79.8 NR 12-21289 CWS1-04-2-4 2. VP40B 1.16 11.35 8.90 76.0 NR 12-21290 CWS1-04-6-8 3. VP40C 1.17 12.20 9.84 78.6

Extractions Total Solids-extts

Data By: Tarry Hawk Created: 10/30/12

Worklist: 9012 Analyst: TH Comments:

Oven ID:

Balance ID: **B139298002**

Samples In:

12 Time: 15:43 Temp: 154 Analyst:

Samples Out:

Z Time: 86.15 Temp: 107

_ Analyst:

ARI ID CLIENT ID Tare Wt (g)

Wet Wt (g)

Dry Wt (g)

% Solids

рН

NR

NR

1. VP40A 12-21289 CWS1-04-2-4

2. VP40B 12-21290 CWS1-04-6-8

11,35

11.81

NR

3. VP40C 12-21291

12.20

CWS1-04-13.5-15

BETX/TPHG Total Solids-betxts Data By: Jonathon L. Walter Created: 10/30/12

Worklist: 8897 Analyst: JLW Comments:

Oven ID:				Balance II):
Samples In:	Date:_	Tim	ie:	Temp:	Analyst:
Samples Out:	Date:_	Tim	ie:	Temp:	Analyst:
ARI ID	Tare Wt (g)	Wet Wt (g)	Dry Wt (g)	% Solids	
1. VP40A 12-21289				* 82.2	
2. VP40B 12-21290				* 75.9	
3. VP40C 12-21291				* 80.6	

Worklist ID: 8897 Page: 1
* - BETX TS Copied From VOA TS
% - BETX TS Copied From Metals TS
\$ - BETX TS Copied From Extraction TS

BETX/TPHG Total Solids-betxts Data By: Jonathon L. Walter Created: 10/30/12

12-21286

Worklist: 8898 Analyst: JLW Comments:

Oven ID:			Balance ID:								
Samples In:	Date:_	Tim	e:	Temp:	_ Analyst:						
Samples Out:	Date:_	Tim	e:	Temp:	Analyst:						
ARI ID	Tare Wt (g)	Wet Wt (g)	Dry Wt (g)	% Solids							
1. VP41A 12-21279				* 92.6							
2. VP41B 12-21280				* 81.6							
3. VP41C 12-21281		-		* 80.3							
4. VP41D 12-21282				* 79.3							
5. VP41E 12-21283		-		* 77.2							
6. VP41G 12-21285				* 88.1							
7. VP41H				* 71.6							

Worklist ID: 8898 Page: 1
* - BETX TS Copied From VOA TS
% - BETX TS Copied From Metals TS

\$ - BETX TS Copied From Extraction TS

Solids Data Entry Report Checked by: MB Date: 10/30/12 Data Analyst: CB

Solids Determination performed on 10/29/12 by NB

JOB	SAMPLE	CLIENTID	TAREWEIGHT	SAMPDISH	DRYWEIGHT	SOLIDS	
VP40	A	CWS1-04-2-4	0.977	10.421	8.743	82.23	_
VP40	B	CWS1-04-6-8	1.001	10.554	8.253	75.91	
VP40	C	CWS1-04-13.5-15	0.968	10.556	8.692	80.56	

VPUA BOOKS

Analytical Resources, Incorporated Analytical Chemists and Consultants

Total Solids Bench Sheet

Laboratory Section METALS

Oven Identification: O	Balance II	D: <u>B116132369</u>
------------------------	------------	----------------------

Samples in Oven: Date: 10-29-12 Time: 1250 Temp: $107^{\circ}C$ Analyst: 1250 Removed from Oven: Date: 1250 Time: 1250 Temp: $107^{\circ}C$ Analyst: 1250

ARI Sample	ID	Tare Weight (g)	Tare + Sample Wet (g)	Tare + Sample Dry (g)	Date & Time Last Weight	Final Weighting >12 hrs ¹
VP40	A	0.977	10.421	8.743	-	1
11	B	1.001	10.554	8-253	_	1
"	C	0.968	10-556	8 672	_	J
VP41	A	1.007	10.645	9,930		Ý
#/	<u>B</u>	0.969	10.043	8.372		1
"	<u> </u>	0.994	10.532	8.654	_	2
11	D	0.997	10.969	8 407	1	7
"	E	0.993	10.068	8.302		7
			,	"		
			NB 10-29-12			

1) Place a check mark in this column if samples have dried > 12 but < 24 hours. When samples have been at 104°C < 12 hours, constant weight must be verified as described in SOP 10023S. Use a 2nd bench sheet for additional weightings.

5050F

Page 05881

Revision 003 11/20/09

Solids Data Entry Report Checked by: $\frac{NB}{Date: 10/30/12}$ Data Analyst: CB

Solids Determination performed on 10/29/12 by NB

JOB	SAMPLE	CLIENTID	TAREWEIGHT	SAMPDISH	DRYWEIGHT	SOLIDS
VP41 VP41 VP41 VP41 VP41	A B C D E	CWS1-02-1-3 CWS1-02-7-8 CWS1-02-12-13 CWS1-01-3-5 CWS1-01-11-13	1.007 0.969 0.994 0.997 0.993	10.645 10.043 10.532 10.969 10.068	9.930 8.372 8.654 8.907 8.002	92.58 81.58 80.31 79.32

Total Solids Bench Sheet

Laboratory Section <u>METALS</u>

Oven Identification:	014	Balance ID:	B116132369
----------------------	-----	-------------	------------

Samples in Oven: Date: 10-29-12 Time: 1250 Temp: $107^{\circ}C$ Analyst: 1250 Removed from Oven: Date: 1250 Time: 1250 Temp: $107^{\circ}C$ Analyst: 1250

ARI Sample		Tare Weight (g)	Tare + Sample Wet (g)	Tare + Sample Dry (g)	Date & Time Last Weight	Final Weighting >12 hrs ¹
VP40	Α	0.977	10.421	8.743	-	1
11	B	1.001	10.554	8-253	_	7
"	C	0.968	10-556	8.692	ĵ	J
VP41	A_	1.007	10.645	9,930		1
ii .	B	0.969	10.043	8.372	_	1
"	C	0.994	10.532	86.654		7
11	D	0.997	10.969	8.907	,	J
"	E	0.993	10,068	8.302		7
			,			
			NB 10-29-12			

1) Place a check mark in this column if samples have dried > 12 but < 24 hours. When samples have been at 104°C < 12 hours, constant weight must be verified as described in SOP 10023S. Use a 2nd bench sheet for additional weightings.

5050F

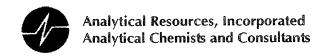
Page 05881

Revision 003 11/20/09

Metals Raw Data Run Logs, Calibrations, and Raw Data

ARI Job ID: VP40, VP41

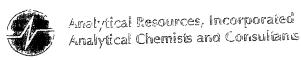
VPHO: 00247



SAMPLE RUN LOG ICP-OES-01 Perkin Elmer OPTIMA 4300 Serial No. - 077N0060101

EC Date: 8-(-/2-	Analysis Date: 11-1-12	Analyst: 44 + 122 Page: of
LR Date: 8-2-12-		

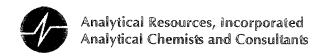
correc	tions made l	<u>Z -1 Z -</u> by analyst unless of	herwise noted.	Dron		
dit abel	Delete Data	ARI San	1	Prep. Code D	ilution	Comments
apei	Data		(D-0			2988-5
			-2			2987-13
			-3			14
			- L j			-15
		8	1 -5			V -16
		22222 I	and it			2986-1
		22222 I	23			Carhigh
		22222 6	27			Cuhigh
		222222 In	S.A.			2986-1 Cahigh Cahigh
		22222				-
		22222 6				
		222222				
			D-0			
·			cV			
	_		CB			
	_		PI			
			CSA			
			CSAB			
						Salas
	_		CVI CCBI			
		/		NW	<u> </u>	cessout - 212
		1	23 MBZ	Secon	2	PE. Sample
	Br.	- VC	93 MB	1500-		IA VI
	- V	/	<u></u>	_	 "	ceport 724
			PB I	LUNC		LCF/6V


upus: aggue

SAMPLE RUN LOG ICP-OES-01 Perkin Elmer OPTIMA 4300 Serial No. - 077N0060101

IEC Date:	Analysis Date: //- 1-12	Analyst: 56-
LR Date:		Page: <u></u> of <u>5</u>

		by analyst unless otherwise noted.	Dron		
Edit Label	Delete Data	ARI Sample ID	Prep. Code	Dilution	Comments
		VP23.T	LIMN		ccs out-RR
	à.	IK		1	1
	20	j			
		HOW			
,	1	14			
		11-02			Ca AL COTT NO ONLY VINCEN
	V	U HOPK	- V	i i	Ca, Mn STL & assorbar &
<u> </u>		CEV2			. A 11 0
					Mn high
	,	Var MBZ	DMN		1
		Va25 MB	1		CaBout RR
		Vaio L			
		Koup		4	
		K			
		V KSOK		C	COROLL IEP SOK
		URZE ARY	WAN	è	CCB-RR
		1 A	1		À
	1	ASOK			0.080 MI ECP-SPK
	1	D12MB75		The second secon	10,050 al ICPSOK
		(CU3			Dioac Al Televier
		cc\$3			
	V	UP40MBI	EXIC-	·Z·	covert RR
	V	VP41 A	¥		1
	V.	1 B			
 				Sil.	



SAMPLE RUN LOG ICP-OES-01 Perkin Elmer OPTIMA 4300 Serial No. - 077M0060101

				∌ @116	The factor a Off Prince and a second
51 - 1	VIII.	Analysis Do	11-1		Analyst: 52
القال الماثدال	·				Page: <u>19</u> 01 9
LR Date			LL 11-1-		
		analyst unless otherwise noted.	Prep.	1 Esser	
Edit	Delete	ARI Sample ID	Code	Dilution	Comments
Label	Data	ANI Sample ID		A.	000 00 00
	3	PHID	500	J	aci out RR
			ę	ę	Ch.
	V	LE			
		VP40 13			
	1	de C			
		Valembra	(DIVIBL		pose it repork V
	19	VOZS MBSAK	WAIN		YORGUM IEP SOK
		acid			Zahigh
		CC34	3		Fa high
		UP 44 MB	LEW	5	(500-0
		(1251 MB)	Site	2 -	370-3
		1 13	(1)	3	(CC43)
		VP40 ADui			,
		î id-			itt

CCJBE

2...

SAMPLE RUN LOG ICP-0ES-01 Perkin Elmer OPTIMA 4300

Serial No. - 077N0060101

IEC Date	e:	Analysis D	ate: // - : •	- 3-	Analyst:	
LR Date	:	4	1		Page: <u>4</u> of <u>5</u>	
All correc	tions made	by analyst unless otherwise noted.	- / /1-1-	172-		
Edit Label	Delete Data	ARI Sample ID	Prep. Code	Dilution	Comments	
		VP51 12040	Sic	- To	En-high 2, RPD	
		i H			CHE	
		X501			C1, 2~ hit Ro-	
		7 m3 150K		Va		
		VP 29 N	TUL	Ý		
		V P40/4105T	Suc	·)	BUTTON TOPSPE COISM TO	
		arie 7			30/00	
_		C4361			Six PK	
	1/	UP83 MB	TWE		Supply RRCLBS	4
		VP 62-1743			,	
		16 B)		
	5	VP63 B			RRMO COBORT	
		1 6			,	
	V'	\ \ \ \ \ D			/	
		lilig 2 its) will		.2	Car high 222	
		jest.			CHI	
		9 73706			,	
		W 11350K	W	<u> </u>		
		00075			to the state of th	
		CCB XX			M. E.C.	
		1981 Mg	TUE			
			,			
		B				
) 	

5075F ICP-OES-01 Daily Run Log Page 08523 1.1

Revision 001 11/30/06

VD10:00251

Nebulizer Parameters: Hg_ReAlign

Back Pressure Flow

231.0 kPa 0.55 L/minΑll

11/1/2012 10:08:55 AM Hg ReAlign... Actual peak offset (nm): 0.001

Drift (nm): -0.001 Slit adjustment: -4

Analysis Begun

Plasma On Time: 11/1/2012 9:01:02 AM Start Time: 11/1/2012 10:12:11 AM

Technique: ICP Continuous Logged In Analyst: metals Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\Administrator\Sample Information\CRISET.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Method Loaded

Method Name: ARIIEC6AN.552AS Method Last Saved: 8/1/2012 1:18:45 PM

IEC File: IEC48.iec MSF File:

Method Description: 12Axial Elements

Analyte	Calibration Equation	Processing	View	Internal Standard	IEC
Ag 328.068	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Al 308.215	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
As 188.979	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
В 249.677	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Ba 233.527	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Be 313.042	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Ca 317.933	Lin Thru O	Peak Area	Radial	ScR 361.383	No
Cd 228.802	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Co 228.616	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Cr 267.716	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Cu 324.752	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Fe 273.955	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
K 766.490	Lin Thru 0	Peak Area	Radial	ScR 361.383	No
Mg 279.077	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Mn 257.610	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Mo 202.031	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Na 589.592	Lin Thru 0	Peak Area	Radial	ScR 361.383	No
Na 330.237	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Ni 231.604	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Pb 220.353	Lin Thru O	Peak Area	Axıal	ScA 357.253	Yes
Sb 206.836	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Se 196.026	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Si 288.158	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Sn 189.927	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Sr 421.552	Lin Thru O	Peak Area	Radial	ScR 361.383	No
Ti 334.903	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Tl 190.801	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
V 292.402	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Zn 206.200	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
ScA 357.253	Lin, Calc Int	Peak Area	Axial	n/a	n/a
ScR 361.383	Lin, Calc Int	Peak Area	Radial	n/a	n/a

Sequence No.: 1

Autosampler Location: 1 Sample ID: Calib Blank 1

Date Collected: 11/1/2012 10:12:18 AM

Data Type: Original

Nebulizer Parameters: Calib Blank 1

Analyte Back Pressure Flow All 231.0 kPa 0.55 L/min

UPUA GAZES

Date: 11/1/2012 11:12:11 AM Method: ARIIEC6AN.552AS 7 Page

15.0 532.1 708.1 7.0 15.0

11/1/2012 10:41:16 AM aligned for analyte Mn 257.610

X viewing position set to 0.0 mm having Peak intensity 479258.8 for Radial viewing

Analysis Begun

Start Time: 11/1/2012 11:08:11 AM Plasma On Time: 11/1/2012 9:01:02 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\Administrator\Sample Information\CRISET.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1 Autosampler Location: 1

Date Collected: 11/1/2012 11:08:11 AM Sample ID: Calib Blank 1

Data Type: Original

Nebulizer Parameters: Calib Blank 1

Back Pressure Flow Analyte

0.55 L/min All 232.0 kPa

Mean Data: Calib Blank 1

Mean Data. Carro	DIGIR +				
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev	. RSD	Conc.	Units
ScA 357.253	2648230.8	6274.23	0.24%	100.0	%
ScR 361.383	211749.5	928.21	0.44%	100.00	ફ
Ag 328.068†	578.9	10.34	1.79%	[0.00]	mg/L
Al 308.215†	22.8	9.13	40.00%	[0.00]	mg/L
As 188.979†	-2.0	2.87	145.68%	[0.00]	mg/L
B 249.677†	-115.0	3.87	3.37%	[0.00]	mg/L
Ba 233.527†	58.7	1.96	3.33%	[0.00]	mg/L
Be 313.042†	541.1	4.77	0.88%	[0.00]	${ m mg/L}$
Ca 317.933†	9.2	14.79	161.48%	[0.00]	mg/L
Cd 228.802†	286.2	3.93	1.37%	[0.00]	mg/L
Co 228.616†	296.3	4.56	1.54%	[0.00]	mg/L
Cr 267.716†	10.4	3.20	30.71%	[0.00]	mg/L
Cu 324.752†	1318.2	26.24	1.99%	[0.00]	mg/L
Fe 273.955†	-32.5	0.53	1.63%	[0.00]	mg/L
K 766.490†	1971.9	52.60	2.67%	[0.00]	mg/L
Mg 279.077†	-152.7	6.27	4.10%	[0.00]	mg/L
Mn 257.610†	-53.6	1.41	2.62%	[0.00]	mg/L
Mo 202.031†	-128.7	5.60	4.35%	[0.00]	mg/L
Na 589.592†	96.4	64.26	66.68%	[0.00]	mg/L
Na 330.237†	33.7	15.41	45.71%	[0.00]	mg/L
Ni 231.604†	30.2	2.18	7.21%	[0.00]	mg/L
Pb 220.353†	252.9	5.72	2.26%	[0.00]	mg/L
Sb 206.836†	123.1	2.23	1.81%	[0.00]	mg/L
Se 196.026t	-100.0	3.30	3.30%	[0.00]	mg/L
Si 288.158†	2.7	4.25	157.51%	[0.00]	mg/L
Sn 189.927†	-11.0	1.61	14.63%	[0.00]	mg/L
Sr 421.552†	670.9	38.89	5.80%	[0.00]	mg/L
Ti 334.903†	-55.8	12.01	21.53%	[0.00]	mg/L
Tl 190.801†	16.8	2.98	17.73%	[0.00]	mg/L
V 292.402†	-37.7	49.87	132.39%	[0.00]	mg/L
Zn 206.200†	-26.4	0.55	2.10%	[0.00]	${ m mg/L}$

Page 8

Sequence No.: 2

Autosampler Location: 2

Sample ID: STD2

Date Collected: 11/1/2012 11:14:09 AM

Data Type: Original

Nebulizer Parameters: STD2

Back Pressure Flow Analyte

All 232.0 kPa 0.55 L/min

Mean Data: STD2

	Mean Corrected				Calib
Analyte	Intensity	$\mathtt{Std}.\mathtt{Dev}.$	RSD	Conc.	Units
ScA 357.253	2664563.2	17175.40	0.64%	100.6	용
ScR 361.383	211917.5	2122.58	1.00%	100.1	8
Ba 233.527†	102780.4	809.43	0.79%	[10]	mg/L
Cd 228.802†	835797.2	8999.04	1.08%	[10]	mg/L
Co 228.616†	843238.6	8292.48	0.98%	[10]	mg/L
Cr 267.716†	45779.8	388.50	0.85%	[10]	mg/L
Cu 324.752†	3131076.1	29662.68	0.95%	[10]	mg/L
Mn 257.610†	404704.2	2919.50	0.72%	[10]	mg/L
V 292.402†	2040014.1	23064.42	1.13%	[10]	mg/L

Date: 11/1/2012 11:20:42 AM

Sequence No.: 3

Autosampler Location: 3

Sample ID: STD3

Date Collected: 11/1/2012 11:18:05 AM

Data Type: Original

Nebulizer Parameters: STD3

Back Pressure Flow Analyte

231.0 kPa 0.55 L/min All

Mean Data: STD3

	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
ScA 357.253	2642226.9	34270.45	1.30%	99.77	ક
ScR 361.383	214112.8	1551.20	0.72%	101.1	ક
Ag 328.068†	298057.6	1029.31	0.35%	[1.0]	mg/L
As 188.979†	23822.1	130.24	0.55%	[10]	mg/L
B 249.677†	21691.1	170.32	0.79%	[10]	mg/L
Be 313.042†	1331298.9	24940.43	1.87%	[5.0]	mg/L
Na 589.592†	406685.7	6334.13	1.56%	[50]	mg/L
Ni 231.604†	22096.5	114.83	0.52%	[10]	mg/L
Pb 220.353†	129252.2	729.20	0.56%	[10]	mg/L
Se 196.026†	19212.4	103.05	0.54%	[10]	mg/L
Sr 421.552†	2892450.2	34499.13	1.19%	[5]	mg/L
Tl 190.801†	36588.5	211.86	0.58%	[10]	mg/L
Zn 206.200†	24347.7	121.56	0.50%	[10]	mg/L

Date: 11/1/2012 11:24:55 AM

Sequence No.: 4

Autosampler Location: 4

Sample ID: STD4

Date Collected: 11/1/2012 11:22:41 AM

Data Type: Original

Nebulizer Parameters: STD4

Analyte Back Pressure Flow

All 231.0 kPa 0.55 L/min

Mean Data: STD4

	Mean Corrected			Calib	,
Analyte	Intensity	Std.Dev.	RSD	Conc. Units	,
ScA 357.253	2698318.1	23463.76	0.87%	101.9 %	
ScR 361.383	211100.1	2142.43	1.01%	99.69 %	
Mo 202.031†	185038.9	902.37	0.49%	[10] mg/L	
Sb 206.836†	36568.0	172.70	0.47%	[10] mg/L	
Si 288.158†	13524.9	76.03	0.56%	[10] mg/L	
Sn 189.927†	65582.6	269.95	0.41%	[10] mg/L	
Ti 334.903†	257016.6	4894.02	1.90%	[10] mg/L	

Sequence No.: 5 Sample ID: STD5

All

Autosampler Location: 5

Date Collected: 11/1/2012 11:26:54 AM

Data Type: Original

Nebulizer Parameters: STD5

Back Pressure Flow Analyte

232.0 kPa 0.55 L/min

Mean Data: STD5				
	Mean Corrected			Calib
Analyte	Intensity	Std.Dev.	RSD	Conc. Units
ScA 357.253	2577494.3	10704.19	0.42%	97.33 %
ScR 361.383	209084.7	1663.91	0.80%	98.74 %
Al 308.215†	45103.6	522.97	1.16%	[30] mg/L
Ca 317.933†	317571.9	1287.82	0.41%	[30] mg/L
Fe 273.955†	122581.6	370.66	0.30%	[100] mg/L
K 766.490†	360299.6	1303.17	0.36%	[100] mg/L
Mg 279.077†	34942.7	378.72	1.08%	[30] mg/L
Na 330.237†	2743.4	24.42	0.89%	[100] mg/L
K 766.490† Mg 279.077†	360299.6 34942.7	1303.17 378.72	0.36% 1.08%	[100] mg/L [30] mg/L

Calibration Summary

Analyte	Stds.	Equation	Intercept	Slope	Curvature	Corr, Coef.	Reslope
Ag 328.068	1	Lin Thru 0	0.0	298100	0.00000	1.000000	
Al 308.215	1	Lin Thru 0	0.0	1503	0.00000	1.000000	
As 188.979	1	Lin Thru 0	0.0	2382	0.0000	1.000000	
В 249.677	1	Lin Thru 0	0.0	2169	0.00000	1.000000	
Ba 233.527	1	Lin Thru 0	0.0	10280	0.00000	1.000000	
Be 313.042	1	Lin Thru 0	0.0	266300	0.00000	1.000000	
Ca 317.933	1	Lin Thru 0	0.0	10590	0.00000	1.000000	
Cd 228.802	1	Lin Thru 0	0.0	83580	0.00000	1.000000	
Co 228.616	1	Lin Thru 0	0.0	84320	0.00000	1.000000	
Cr 267.716	1	Lin Thru 0	0.0	4578	0.0000	1.000000	
Cu 324.752	1	Lin Thru 0	0.0	313100	0.00000	1.000000	
Fe 273.955	1	Lin Thru 0	0.0	1226	0.00000	1.000000	
K 766.490	1	Lin Thru 0	0.0	3603	0.00000	1.000000	
Mg 279.077	1	Lin Thru 0	0.0	1165	0.00000	1.000000	
Mn 257.610	1	Lin Thru 0	0.0	40470	0.00000	1.000000	
Mo 202.031	1	Lin Thru 0	0.0	18500	0.00000	1.000000	
Na 589.592	1	Lin Thru 0	0.0	8134	0.00000	1.000000	
Na 330.237	1	Lin Thru 0	0.0	27.43	0.00000	1.000000	
Ni 231.604	1	Lin Thru 0	0.0	2210	0.00000	1.000000	
Pb 220.353	1	Lin Thru O	0.0	12930	0.00000	1.000000	
Sb 206.836	1	Lin Thru 0	0.0	3657	0.00000	1.000000	
Se 196.026	1	Lin Thru 0	0.0	1921	0.00000	1.000000	
Si 288.158	1	Lin Thru 0	0.0	1352	0.00000	1.000000	
Sn 189.927	1	Lin Thru 0	0.0	6558	0.00000	1.000000	
Sr 421.552	1	Lin Thru 0	0.0	578500	0.00000	1.000000	
Ti 334.903	1	Lin Thru 0	0.0	25700	0.00000	1.000000	
Tl 190.801	1	Lin Thru 0	0.0	3659	0.00000	1.000000	
V 292.402	1	Lin Thru 0	0.0	204000	0.00000	1.000000	
Zn 206.200	1	Lin Thru 0	0.0	2435	0.00000	1.000000	

VDUG: GG257

Analysis Begun

Plasma On Time: 11/1/2012 9:01:02 AM Start Time: 11/1/2012 11:30:21 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\CRISET.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1 Autosampler Location: 7

Date Collected: 11/1/2012 11:30:23 AM

Analyst: EL 727222 E-14-1-12 Data Type: Original Dilution: 1X

Nebulizer Parameters: CV

Back Pressure Flow

231.0 kPa 0.55 L/min All

Mean Data: CV Mean Corrected Calib. Sample Intensity Conc. Units 2650410.4 100.1 % 215502.0 101.8 % Std.Dev. Analyte Conc. Units Std.Dev. RSD 0.25 ScA 357.253 0.25% 215502.0 302649.5 ScR 361.383 0.75 0.74% 1.015 mg/L 0.0022 $1.015~{
m mg/L}$ 0.22% 0.0022 Ag 328.068† $2.002~{
m mg/L}$ 0.0105 Al 308.215† 3073.7 2.002 mg/L0.0105 0.53% 4999.6 As 188.979† 2.098~mg/L0.0019 2.098~mg/L0.0019 0.09% 2155.8 0.9922 mg/L 0.00066 10176.7 0.9897 mg/L 0.00421 0.9922 mg/L 0.00066 0.07% B 249.677† 10176.7 271995.0 0.9897 mg/L 0.00421 Ba 233.527† 0.43% 0.0061 0.0105 0.0049 1.019 mg/L 2.005 mg/L1.019 mg/L 2.005 mg/L 0.0061 0.0105 Be 313.042† 0.60% 21224.9 86019.0 Ca 317.933† 0.53% Cd 228.802† $1.024~{
m mg/L}$ 0.0049 0.00332 0.00291 1.024 mg/L0.0049 0.48% 0.00332 0.34% $0.9820~{
m mg/L}$ Co 228.616† 82972.4 0.9820 mg/L0.30% 4508.0 0.9844~mg/L0.9844~mg/L0.00291 Cr 267.716t 333358.8 0.0009 0.0050 0.071 1.065 mg/L 2.082 mg/L 1.065 mg/L 2.082 mg/L 0.0009 Cu 324.752† 0.09% 0.0050 Fe 273.955† 2552.8 0.24% 73185.1 20.31 mg/L 20.31 mg/L K 766.490† 0.071 0.35% 2.085 mg/L0.0047 0.0047 2.085 mg/L Mg 279.077† 2424.4 0.23% 0.00747 0.9975 mg/L 0.00100 0.9746 mg/L 40350.8 18036.3 417836.7 Mn 257.610† 0.9975 mg/L0.00747 0.75% 0.00100 0.9746 mg/L0.10% Mo 202.031† 51.37 mg/L0.297 0.561 51.37 mg/L 51.50 mg/L 0.297 0.561 Na 589.592† 0.58% 51.50 mg/L 1418.7 2227.5 Na 330.237† 1.09% 0.0037 0.0001 $1.009~{
m mg/L}$ 1.009 mg/L 0.0037 0.37% Ni 231.604† Pb 220.353† 26608.9 2.060 mg/L 2.060 mg/L 0.0001 0.00% 7799.4 Sb 206.836† $2.130~{
m mg/L}$ 0.0026 2.130~mg/L0.0026 0.12% 0.0016 2.033 mg/L 2.033 mg/L 3912.0 Se 196.026t 0.0016 0.08% 2861.0 Si 288.158† 2.122 mg/L 2.122 mg/L 0.0174 0.82% 0.00194 0.9177 mg/L0.00194 Sn 189.927† 6013.0 $0.9177~{
m mg/L}$ 0.21% 589990.9 0.0024 0.24% Sr 421.552† $1.020~{
m mg/L}$ 0.0024 $1.020~{
m mg/L}$ 25679.1 Ti 334.903† 0.9979~mg/L0.00688 $0.9979~{
m mg/L}$ 0.00688 0.69% 0.0020 Tl 190.801† 7396.8 $2.009~{
m mg/L}$ 2.009 mg/L 0.0020 0.10% 204689.7 1.014 mg/L0.0006 0.0025 1.014 mg/L0.0006 0.06% V 292.402† Zn 206.200† 2586.8 1.061 mg/L1.061 mg/L0.0025 0.24%

upus aasse

Sequence No.: 2

Sample ID: CB Analyst: EL Dilution: 1X Autosampler Location: 1

Date Collected: 11/1/2012 11:36:26 AM

Data Type: Original

Nebulizer Parameters: CB

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: CB							
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2710641.2	102.4	8	1.69			1.66%
ScR 361.383	218148.6	103.0	ર	1.61			1.56%
Ag 328.068†	-6.1	-0.00002	mg/L	0.000175	-0.00002	mg/L	0.000175 857.12%
Al 308.215†	-13.7	-0.00912	mg/L	0.005536	-0.00912	mg/L	0.005536 60.70%
As 188.979†	4.9	0.00206	mg/L	0.001108	0.00206	mg/L	0.001108 53.76%
B 249.677†	14.8	0.00681		0.001633	0.00681	mg/L	0.001633 23.98%
Ba 233.527†	4.2	0.00041		0.000392	0.00041	mg/L	0.000392 95.68%
Be 313.042†	49.7	0.00019	mg/L	0.000033	0.00019	mg/L	0.000033 17.80%
Ca 317.933†	11.3	0.00107	mg/L	0.001476	0.00107		0.001476 138.30%
Cd 228.802†	8.1	0.00009	mg/L	0.000060	0.00009	mg/L	0.000060 65.40%
Co 228.616†	5.5	0.00006		0.000044	0.00006	mg/L	0.000044 67.81%
Cr 267.716†	-0.1	-0.00002	mg/L	0.000803	-0.00002	mg/L	0.000803 >999.9%
Cu 324.752†	910.0	<u>0.00291</u>		0.000104	0.00291	mg/L	0.000104 3.59%
Fe 273.955†	0.8	0.00064		0.000752	0.00064	mg/L	0.000752 117.89%
K 766.490†	126.0	0.03498	mg/L	0.019597	0.03498		0.019597 56.02%
Mg 279.077†	-1.7	-0.00146	2.	0.000690	-0.00146		0.000690 47.33%
Mn 257.610†	-1.5	-0.00004	mg/L	0.000132	-0.00004	mg/L	0.000132 361.93%
Mo 202.031†	4.2	0.00023	J .	0.000234	0.00023	mg/L	0.000234 102.83%
Na 589.592†	289.6	0.03561		0.007460	0.03561	mg/L	0.007460 20.95%
Na 330.237†	-2.5	-0.09162		0.274824	-0.09162	mg/L	0.274824 299.95%
Ni 231.604†	-0.2	-0.00008		0.001741	-0.00008		0.001741 >999.9%
Pb 220.353†	1.6	0.00012		0.000631	0.00012	_	0.000631 538.85%
Sb 206.836†	7.9	0.00217		0.000450	0.00217	_	0.000450 20.70%
Se 196.026†	6.5	0.00340		0.000913	0.00340		0.000913 26.88%
Si 288.158†	10.2	0.00751		0.002455	0.00751		0.002455 32.69%
Sn 189.927†	6.2	0.00094		0.000644	0.00094		0.000644 68.16%
Sr 421.552†	-18.7	-0.00003		0.000080	-0.00003	mg/L	0.000080 248.19%
Ti 334.903†	13.0	0.00050		0.000929	0.00050		0.000929 184.06%
Tl 190.801†	5.2	0.00141	_	0.000872	0.00141		0.000872 61.98%
V 292.402†	0.2	0.00000		0.000038	0.00000		0.000038 >999.9%
Zn 206.200†	-0.5	-0.00021	mg/L	0.001050	-0.00021	mg/L	0.001050 499.32%

Sequence No.: 3

Sample ID: CBI Analyst: EL -Dilution: 1X

Autosampler Location: 21

Date Collected: 11/1/2012 11:42:25 AM

Data Type: Original

Nebulizer Parameters: CRI

Analyte Back Pressure Flow All 232.0 kPa 0.55 L/min

| Mean Corrected | Thtensity | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | RSD | 218772.9 | 103.3 % | 1.76 | 1.719 | 828.7 | 0.00278 mg/L | 0.000093 | 0.00278 mg/L | 0.00093 | 3.358 | 76.6 | 0.05080 mg/L | 0.00292 | 0.05333 mg/L | 0.002022 | 0.05333 mg/L | 0.002022 | 3.79% | 43.0 | 0.01981 mg/L | 0.0001746 | 0.01981 mg/L | 0.001746 | 8.81% | 35.1 | 0.00341 mg/L | 0.000286 | 0.00341 mg/L | 0.000286 | 8.39% | 333.4 | 0.00124 mg/L | 0.000729 | 0.00124 mg/L | 0.000725 | 5.79% | 522.3 | 0.04934 mg/L | 0.000729 | 0.00124 mg/L | 0.000729 | 1.48% | 180.8 | 0.00204 mg/L | 0.000072 | 0.00124 mg/L | 0.000072 | 5.79% | 281.6 | 0.00333 mg/L | 0.000053 | 0.00333 mg/L | 0.000053 | 1.60% | 281.6 | 0.00333 mg/L | 0.000053 | 0.00333 mg/L | 0.000053 | 1.60% | 289.7 | 0.00456 mg/L | 0.000155 | 0.00412 mg/L | 0.000015 | 2.78% | 63.1 | 0.05146 mg/L | 0.000155 | 0.00412 mg/L | 0.000155 | 2.78% | 63.1 | 0.05146 mg/L | 0.000157 | 0.05146 mg/L | 0.00015 | 2.78% | 63.1 | 0.05146 mg/L | 0.000157 | 0.05146 mg/L | 0.000152 | 7.78% | 63.1 | 0.05221 mg/L | 0.00115 | 0.00412 mg/L | 0.000157 | 2.78% | 63.1 | 0.05221 mg/L | 0.00157 | 0.05223 mg/L | 0.000157 | 3.12% | 4284.3 | 0.5267 mg/L | 0.000157 | 0.00504 mg/L | 0.000157 | 3.12% | 4284.3 | 0.5267 mg/L | 0.000157 | 0.00504 mg/L | 0.000157 | 3.12% | 4284.3 | 0.5267 mg/L | 0.000157 | 0.00880 | 0.5267 mg/L | 0.000157 | 3.12% | 4284.3 | 0.5267 mg/L | 0.000157 | 0.00880 | 0.5267 mg/L | 0.000157 | 3.12% | 4284.3 | 0.5267 mg/L | 0.000880 | 0.5267 mg/L | 0.000157 | 3.12% | 4284.3 | 0.5267 mg/L | 0.000785 | 0.0987 mg/L | 0.000742 | 0.00890 | 1.65% | 4256.5 | 0.01987 mg/L | 0.000742 | 0.00989 | 0.05337 mg/L | 0.000742 | 0.00890 | 1.65% | 4256.5 | 0.01987 mg/L | 0.000742 | 0.00896 mg/L | 0.000742 | 0.00896 mg/L | 0.000742 | 0.00896 mg/L | 0.000745 | 0.00896 mg/L | 0.000745 | 0.00896 mg/L | 0.000745 | 0.00896 mg/L | 0.000745 | 0.00896 mg/L | 0.000747 | 0.00896 mg/L | 0.000747 | 0.00896 mg/L | 0.000747 | 0.00896 mg/L | 0.0000747 | 0.00896 mg/L | 0.000747 | 0.00896 mg/L | 0.000747 | 0.00896 mg/L | 0.0 Mean Data: CRI Analyte ScA 357.253 ScR 361.383 Aq 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836t Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402† Zn 206.200†

Sample ID: SICSA Analyst: EL Dilution: 1X Autosampler Location: 22

Date Collected: 11/1/2012 11:48:25 AM

Data Type: Original

Nebulizer Parameters: ICSA

Analyte Back Pressure Flow

All 231.0 kPa 0.55 L/min

Mean Data: ICSA Mean Corrected Calib. Sample Intensity Conc. Units
2598827.9 98.13 %
214108.8 101.1 % Std.Dev. Conc. Units Std.Dev. RSD Analvte | Section | Sect 0.404 ScA 357.253 0.41% ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402† Zn 206.200†

VOLO: BG261

Sequence No.: 5 Sample ID: JCSAB Analyst: EL Z 222

Dilution: 1X Contract

Autosampler Location: 23

Date Collected: 11/1/2012 11:54:28 AM

Data Type: Original

Nebulizer Parameters: ICSAB

Analyte

Back Pressure Flow 231.0 kPa 0.55 L/min A11

Mean Data: ICSAB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2619354.8	98.91	엄	0.543				0.55%
ScR 361.383	215966.6	102.0		0.71				0.70%
Ag 328.068†	298306.4	1.006	mg/L	0.0037	1.006	mg/L	0.0037	0.37૬
Al 308.215†	290392.1	193.1	mg/L	0.67	193.1	mg/L	0.67	0.35%
As 188.979†	2370.7	0.9950	mg/L	0.00515	0.9950	mg/L	0.00515	0.52%
B 249.677†	18.2	0.00536	mg/L	0.002743	0.00536	mg/L	0.002743	51.21%
Ba 233.527†	9886.3	0.9525	mg/L	0.00896	0.9525	mg/L	0.00896	0.94%
Be 313.042†	266043.1	0.9967	mg/L	0.00485	0.9967	mg/L	0.00485	0.49%
Ca 317.933†	1005184.8	94.96	mg/L	0.436	94.96	mg/L	0.436	0.46%
Cd 228.802†	81798.0	0.9764	mg/L	0.00467	0.9764	mg/L	0.00467	0.48%
Co 228.616†	76142.4	0.9003	mg/L	0.00303	0.9003	mg/L	0.00303	0.34%
Cr 267.716†	4358.8	0.9520	mg/L	0.01008	0.9520	mg/L	0.01008	1.06%
Cu 324.752†	309647.5	1.005	mg/L	0.0064	1.005	mg/L	0.0064	0.64%
Fe 273.955†	236743.6	193.1	mg/L	0.50	193.1	mg/L	0.50	0.26%
K 766.490†	62.9	0.01746	mg/L	0.016770	0.01746	J .	0.016770	96.03%
Mg 279.077†	116487.6	99.90	mg/L	0.326	99.90		0.326	0.33%
Mn 257.610†	38171.5	0.9421		0.00307	0.9421	mg/L	0.00307	0.33%
Mo 202.031†	-171.6	-0.00665	mg/L	0.000665	-0.00665	mg/L	0.000665	10.00%
Na 589.592†	636.1	0.07820	mg/L	0.002857	0.07820	mg/L	0.002857	3.65%
Na 330.237†	37.5	0.6012	mg/L	0.09047	0.6012	mg/L	0.09047	15.05%
Ni 231.604†	2093.8	0.9479	mg/L	0.00916	0.9479	mg/L	0.00916	0.97%
Pb 220.353†	11516.0	0.9528	mg/L	0.00504	0.9528	mg/L	0.00504	0.53₹
Sb 206.836†	3880.3	1.029	mg/L	0.0037	1.029	mg/L	0.0037	0.36%
Se 196.026†	1798.2	0.9333	mg/L	0.00755	0.9333	mg/L	0.00755	0.81*
Si 288.158†	41.7	0.04709	mg/L	0.004939	0.04709	mg/L	0.004939	10.49%
Sn 189.927†	-50.7	0.01487		0.000493	0.01487	${ m mg/L}$	0.000493	3.31%
Sr 421.552†	2547.8	0.00440	mg/Iccut-	0.000025	0.00440	mg/L	0.000025	0.57%
Ti 334.903†	166.1	0.00159	mg/L	0.000377	0.00159	mg/L	0.000377	23.66%
Tl 190.801†	3350.5	0.9038	mg/L	0.00729	0.9038	mg/L	0.00729	0.81%
V 292.402†	197290.2	0.9556	mg/L	0.00478	0.9556	mg/L	0.00478	0.50%
Zn 206.200†	2221.5	0.9136	mg/L	0.01191	0.9136	mg/L	0.01191	1.30%

Sequence No.: 6

Sample ID: CV Analyst: EL C C (1-) (1-)

Dilution: 1X

Autosampler Location: 7

Date Collected: 11/1/2012 12:01:28 PM

Data Type: Original

Nebulizer Parameters: CV

Back Pressure Flow 232.0 kPa 0.55 L/min Analyte All

Mean Data: CV	ean Data: CV									
	Mean Corrected		Calib.			Sample				
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	R S D		
ScA 357.253	2656598.2	100.3	9	0.40				0.40%		
ScR 361.383	216442.6	102.2	8	0.82				0.80%		
Ag 328.068†	300504.0	1.008	mg/L	0.0020	1.008	mq/L	0.0020	0.20%		
A1 308.215†	3057.4	1.991	mg/L	0.0189	1.991	mq/L	0.0189	0.95%		
As 188.979†	4985.3	2.092		0.0022	2.092	mg/L	0.0022	0.10%		
B 249.677†	2119.8	0.9756	mg/L	0.01082	0.9756	mg/L	0.01082	1.11%		
Ba 233.527†	10148.2	0.9869	mg/L	0.00890	0.9869	mg/L	0.00890	0.90%		
Be 313.042†	271227.1	1.016	mg/L	0.0011	1.016	mg/L	0.0011	0.11%		
Ca 317.933†	21205.4	2.003	mg/L	0.0192	2.003	mg/L	0.0192	0.96%		
Cd 228.802†	85753.8	1.021	mg/L	0.0029	1.021	mg/L	0.0029	0.298		
Co 228.616†	83058.7	0.9830	mg/L	0.00120	0.9830	mg/L	0.00120	0.12%		
Cr 267.716†	4500.0	0.9826	mg/L	0.01150	0.9826	mg/L	0.01150	1.17%		
Cu 324.752†	331138.3	1.058	mg/L	0.0021	1.058	mg/L	0.0021	0.20%		
Fe 273.955†	2560.7	2.088	mg/L	0.0192	2.088	mg/L	0.0192	0.92%		
K 766.490†	72337.4	20.08	mg/L	0.090	20.08	mg/L	0.090	0.45%		
Mg 279.077†	2427.8	2.088		0.0185	2.088	mg/L	0.0185	0.89%		
Mn 257.610†	40233.7	0.9946		0.00053	0.9946	mg/L	0.00053	0.05%		
Mo 202.031†	17992.8	0.9722	mg/L	0.00146	0.9722	mg/L	0.00146	0.15%		
Na 589.592†	413052.2	50.78	mg/L	0.233	50.78	mg/L	0.233	0.46%		
Na 330.237†	1406.2	51.04	mg/L	0.428	51.04	mg/L	0.428	0.847		
Ni 231.604†	2221.8	1.006		0.0111	1.006	mg/L	0.0111	1.115		
Pb 220.353†	26633.0	2.062	2.	0.0046	2.062	mg/L	0.0046	0.22%		
Sb 206.836†	7767.8	2.122	-	0.0048	2.122		0.0048	0.23%		
Se 196.026†	3901.5	2.028	mg/L	0.0046	2.028	mg/L	0.0046	0.23%		
Si 288.158†	2849.8	2.114		0.0163	2.114		0.0163	0.77%		
Sn 189.927†	6008.5	0.9170		0.00114	0.9170	mg/L	0.00114	0.12%		
Sr 421.552†	586064.5	1.013		0.0041	1.013	mg/L	0.0041	0.41%		
Ti 334.903†	25474.1	0.9899		0.00107	0.9899		0.00107	0.11%		
Tl 190.801†	7382.1	2.005		0.0059	2.005		0.0059	0.29%		
V 292.402†	203645.0	1.009		0.0079	1.009		0.0079	0.78%		
Zn 206.200†	2601.2	1.067	mg/L	0.0067	1.067	mg/L	0.0067	0.63%		

Sequence No.: 7

Sample ID: CB 7224 Analyst: EL 7224 Dilution: 1X Dilution: 1X

Autosampler Location: 1

Date Collected: 11/1/2012 12:07:31 PM

Data Type: Original

Nebulizer Parameters: CB

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min All

						- 		
Mean Data: CB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2694565.4	101.7	olo Olo	0.18				0.18%
ScR 361.383	215850.0	101.9		1.82				1.78%
Ag 328.068†	39.8	0.00013		0.000096	0.00013	mg/L	0.000096	71.60%
Al 308.215†	-3.7	-0.00248	mg/L	0.013676	-0.00248	mg/L	0.013676	552.19%
As 188.979†	2.2	0.00093	mg/L	0.000661	0.00093	mg/L	0.000661	70.95%
B 249.677†	2.1	0.00099	mg/L	0.002246	0.00099	mg/L	0.002246	227.07%
Ba 233.527†	9.2	0.00089	mg/L	0.000438	0.00089		0.000438	49.10%
Be 313.042†	65.6	0.00025	mg/L	0.000105	0.00025		0.000105	42.67%
Ca 317.933†	-21.1	-0.00200	mg/L	0.001141	-0.00200	mg/L	0.001141	57.21%
Cd 228.802†	27.9	0.00033	mg/L	0.000048	0.00033	mg/L	0.000048	14.40%
Co 228.616†	18.7	0.00022	mg/L	0.000086	0.00022		0.000086	38.59%
Cr 267.716†	2.2	0.00048	mg/L	0.000628	0.00048		0.000628	130.11%
Cu 324.752†	631.1	0.00202	_mg/L	0.000062	0.00202		0.000062	3.09%
Fe 273.955†	2.6	0.00211	mg/L	0.000969	0.00211	mg/L	0.000969	45.91%
K 766.490†	157.0	0.04356	mg/L	0.005952	0.04356	mg/L	0.005952	13.66%
Mg 279.077†	-2.5	-0.00214	mg/L	0.005591	-0.00214	mg/L	0.005591	261.87%
Mn 257.610†	-3.0	-0.00007	mg/L	0.000061	-0.00007	mg/L	0.000061	84.13%
Mo 202.031†	2.0	0.00011	mg/L	0.000114	0.00011		0.000114	106.42*
Na 589.592†	233.7	0.02873	mg/L	0.005703	0.02873		0.005703	19.85%
Na 330.237†	1.0	0.03659	mg/L	0.229724	0.03659	mg/L	0.229724	
Ni 231.604†	2.0	0.00092	mg/L	0.002309	0.00092		0.002309 2	251.58%
Pb 220.353†	12.1	0.00093	mg/L	0.000297	0.00093		0.000297	31.88%
Sb 206.836†	10.1	0.00276	mg/L	0.001332	0.00276		0.001332	48.20%
Se 196.026†	8.9	0.00462	mg/L	0.001553	0.00462		0.001553	33.64%
Si 288.158†	8.2	0.00609	mg/L	0.002276	0.00609		0.002276	37.36%
Sn 189.927†	6.7	0.00102	mg/L	0.000144	0.00102		0.000144	14.09%
Sr 421.552†	-18.8	-0.00003		0.000076	-0.00003		0.000076 2	
Ti 334.903†	-1.3	-0.00005		0.000612	-0.00005		0.000612	
Tl 190.801†	9.4	0.00256		0.002534	0.00256		0.002534	98.89%
V 292.402†	-29.6	-0.00014		0.000063	-0.00014		0.000063	44.72%
Zn 206.200†	2.6	0.00107		0.000400	0.00107	J -	0.000400	37.51%
			_			٠.		

Analysis Begun

Start Time: 11/1/2012 12:13:39 PM Plasma On Time: 11/1/2012 9:01:02 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\CRISET.sif Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1

Sample ID: Calib Blank 1 Date Collected: 11/1/2012 12:13:42 PM

Data Type: Original

Nebulizer Parameters: Calib Blank 1

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min 232.0 kPa Al1

Mean Data: Calib Blank 1

	Mean Corrected				Calib
Analyte	Intensity	Std.Dev		Conc.	Units
ScA 357.253	2710131.8	20389.97	0.75%	102.3	8
ScR 361.383	216445.5	1416.51	0.65%	102.2	용
Ag 328.068†	580.4	11.89	2.05%	[0.00]	mg/L
Al 308.215†	28.0	9.82	35.04%	[0.00]	mg/L
As 188.979†	1.3	2.05	154.00%	[0.00]	mg/L
B 249.677†	-122.2	2.15	1.76%	[0.00]	${ m mg/L}$
Ba 233.527†	64.0	1.53	2.40%	[0.00]	mg/L
Be 313.042†	612.7	25.08	4.09%	[0.00]	mg/L
Ca 317.933†	-10.2	13.51	132.96%	[0.00]	${ m mg/L}$
Cd 228.802†	301.2	5.36	1.78%	[0.00]	mg/L
Co 228.616†	310.7	4.38	1.41%	[0.00]	mg/L
Cr 267.716†	4.2	3.23	76.27%	[0.00]	mg/L
Cu 324.752†	1762.9	27.67	1.57%	[0.00]	mg/L
Fe 273.955†	-31.3	1.94	6.19%	[0.00]	mg/L
K 766.490†	2075.2	51.81	2.50%	[0.00]	${ m mg/L}$
Mg 279.077†	-154.7	0.52	0.34%	[0.00]	mg/L
Mn 257.610†	-63.9	6.51	10.19%	[0.00]	mg/L
Mo 202.031†	-128.2	3.52	2.75%	[0.00]	mg/L
Na 589.592†	129.0	25.26	19.58%	[0.00]	mg/L
Na 330.237†	47.0	13.68	29.12%	[0.00]	mg/L
Ni 231.604†	29.0	2.93	10.12%	[0.00]	mg/L
Pb 220.353†	259.1	5.92	2.29%	[0.00]	mg/L
Sb 206.836†	128.9	3.48	2,70%	[0.00]	mg/L
Se 196.026†	-94.7	2.87	3.03%	[0.00]	mg/L
Si 288.158†	2.1	3.94	192.21%	[0.00]	mg/L
Sn 189.927†	-8.2	2.93	35.52%	[0.00]	mg/L
Sr 421.552†	630.8	12.46	1.97%	[0.00]	mg/L
Ti 334.903†	-75.1	32.85	43.71%	[0.00]	mg/L
Tl 190.801†	21.9	5.73	26.18%	[0.00]	mg/L
V 292.402†	-43.2	34.92	80.77%	[0.00]	mg/L
Zn 206.200†	-27.2	1.05	3.86%	[0.00]	mg/L

Analysis Begun

Start Time: 11/1/2012 12:18:49 PM Plasma On Time: 11/1/2012 9:01:02 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\CRISET.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1 Autosampler Location: 7

Sample ID: TCV Date Collected: 11/1/2012 12:18:52 PM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: CV

Analyte Back Pressure Flow

All 232.0 kPa 0.55 L/min

Mean Corrected
Intensity
Conc. Units
99.43 % Mean Data: CV Calib. Sample Std.Dev. Conc. Units Analyte Std.Dev. RSD 0.349 ScA 357.253 0.35% 217033.1 300317.2 ScR 361.383 102.5 % 0.89 0.86% 0.0038 $1.008\ {
m mg/L}$ $1.008~{
m mg/L}$ 0.0038 Ag 328.068† 9.385 1.992 mg/L 2.080 mg/L 3058.1 4956.8 0.0211 0.0139 1.992 mg/L 2.080 mg/L 0.0211 0.0139 Al 308.215† 1.06% As 188.979† 0.67% 0.9862 mg/L 2142.8 0.00445 0.9862 mg/L 0.00445 B 249.677† 0.45% 10177.1 0.9898 mg/L0.9898 mg/LBa 233.527† 0.00944 0.00944 0.95 % 273164.2 $1.023 \, \text{mg/L}$ 0.0015 $1.023 \, \text{mg/L}$ Be 313.042† 0.0015 0.14% 21369.6 2.019~mg/L2.019 mg/LCa 317.933+ 0.0173 0.0173 0.85% 1.023 mg/L 85915.7 Cd 228.802† 0.0016 $1.023~{
m mg/L}$ 0.0016 0.16% 1.025 mg/L 0.9849 mg/L 0.0016 0.00072 0.00729 0.0016 0.00072 0.00729 83218.6 0.9849~mg/LCo 228.616† 0.07% 0.9902 mg/L 0.9902 mg/L Cr 267.716† 4534.8 0.74% 0.0019 0.0207 0.0019 1.061 mg/L Cu 324.752† 332156.8 $1.061~{
m mg/L}$ 0.18% Fe 273.955† 2571.2 2.097 mg/L2.097 mg/L0.0207 0.99% 72078.9 0.063 0.0223 20.01 mg/L 0.063 0.0223 K 766.490† 20.01~mg/L0.31% Mg 279.077† 2.096 mg/L 2.096 mg/L 2437.8 1.07% 0.00050 0.00050 0.9975 mg/L40347.9 0.9975~mg/LMn 257.610† 0.05% 0.9689 mg/L 17932.6 0.00600 0.9689 mg/L 0.00600 Mo 202.031† 0.62% 0.087 Na 589.592† 413480.9 50.84 mg/L 50.84 mg/L 0.087 0.17% 1396.9 Na 330.237† 50.70 mg/L0.327 50.70 mg/L0.327 0.65 ર $1.014~{
m mg/L}$ 0.0082 1.014 mg/L 0.0082 Ni 231.604† 2239.3 0.81% 2.055 mg/L 2.118 mg/L 2.020 mg/L $2.055~\mathrm{mg/L}$ 0.0121 0.0121 Pb 220.353t 26542.9 0.59% Sb 206.836† 3886.4 7754.7 2.118 mg/L0.0145 0.0145 0.68% 2.020 mg/L 0.0150 0.0150 Se 196.026t 0 74% 0.0150 0.0250 0.00549 2.118 mg/L 0.0250 2.118 mg/L Si 288.158† 2855.2 1.18% 0.9135 mg/L Sn 189.927† 5985.3 0.9135 mg/L0.00549 0.60% 1.018 mg/L 0.0059 Sr 421.552† 588852.4 $1.018~{
m mg/L}$ 0.0059 0.58% 0.00354 25617.3 0.9955~mg/L0.00354 0.9955 mg/LTi 334.903+ 0.36% Tl 190.801† 7377.6 2.004 mg/L0.0163 2.004 mg/L0.0163 0.81% 1.013~mg/L0.0015 $1.013~\mathrm{mg/L}$ 0.0015 V 292.402† 204495.3 0.14% 2606.4 $1.069~{
m mg/L}$ Zn 206.200† 1.069 mg/L0.0120 0.0120 1.12%

Sequence No.: 2

Autosampler Location: 1 Sample ID & CB

Date Collected: 11/1/2012 12:24:55 PM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: CB

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min 232.0 kPa All

Mean Data: CB	Mean Data: CB								
	Mean Corrected		Calib.			Sample			
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD		
ScA 357.253	2710476.7	102.4	8	1.50			1.46 €		
ScR 361.383	213769.7	101.0	%	1.02			1.01%		
Ag 328.068†	-5.2	-0.00002	mg/L	0.000054	-0.00002	mg/L	0.000054 307.41%		
Al 308.215†	2.7	0.00178	mg/L	0.004150	0.00178	mg/L	0.004150 233.57%		
As 188.979†	-0.1	-0.00006	mg/L	0.001428	-0.00006	mg/L	0.001428 >999.9%		
в 249.677†	7.8	0.00359	mg/L	0.002171	0.00359	mg/L	0.002171 60.52%		
Ba 233.527†	-3.7	-0.00036	mg/L	0.000185	-0.00036	mg/L	0.000185 51.10%		
Be 313.042†	9.3	0.00004	mg/L	0.000039	0.00004	J .	0.000039 109.87%		
Ca 317.933†	27.9	0.00263	mg/L	0.000219	0.00263	mg/L	0.000219 8.30%		
Cd 228.802†	-2.2	-0.00003	mg/L	0.000109	-0.00003	mg/L	0.000109 418.91%		
Co 228.616†	-1.9	-0.00002	mg/L	0.000146	-0.00002	mg/L	0.000146 615.62%		
Cr 267.716†	5.9	0.00129	mg/L	0.000264	0.00129	mg/L	0.000264 20.42%		
Cu 324.752†	-18.2	-0.00006	mg/L	0.000094	-0.00006		0.000094 161.72%		
Fe 273.955†	-0.3	-0.00024	mg/L	0.000892	-0.00024	J .	0.000892 365.82%		
K 766.490†	75.1	0.02085	mg/L	0.016415	0.02085	mg/L	0.016415 78.73%		
Mg 279.077†	-1.5	-0.00126	mg/L	0.003255	-0.00126	J .	0.003255 258.72%		
Mn 257.610†	3.9	0.00010	mg/L	0.000047	0.00010		0.000047 48.63%		
Mo 202.031†	-2.2	-0.00012	_	0.000190	-0.00012		0.000190 157.32%		
Na 589.592†	190.1	0.02338	mg/L	0.004610	0.02338	_	0.004610 19.72%		
Na 330.237†	-2.1	-0.07805	mg/L	0.366111	-0.07805	J .	0.366111 469.10%		
Ni 231.604†	0.7	0.00031	${ m mg/L}$	0.000943	0.00031		0.000943 301.15%		
Pb 220.353†	1.4	0.00011	mg/L	0.001022	0.00011	J .	0.001022 942.77%		
sb 206.836†	-0.2	-0.00006	_	0.001422	-0.00006	_	0.001422 >999.9%		
Se 196.026†	-1.8	-0.00093		0.001506	-0.00093	J .	0.001506 161.60%		
Si 288.158†	8.2	0.00607		0.004564	0.00607	_	0.004564 75.23%		
Sn 189.927†	9.4	0.00143	${ m mg/L}$	0.000152	0.00143	J .	0.000152 10.59%		
Sr 421.552†	32.5	0.00006	J.	0.000107	0.00006	J .	0.000107 191.39%		
Ti 334.903†	18.4	0.00071	_	0.000746	0.00071		0.000746 104.46%		
Tl 190.801†	1.5	0.00040		0.001247	0.00040		0.001247 308.30%		
V 292.402†	-25.3	-0.00012	_	0.000101	-0.00012	J .	0.000101 87.12%		
Zn 206.200†	0.7	0.00028	mg/L	0.000324	0.00028	mg/L	0.000324 117.54%		

Autosampler Location: 21 Sequence No.: 3

Date Collected: 11/1/2012 12:30:53 PM Sample ID: CRI

Data Type: Original

Dilution: 1X

Nebulizer Parameters: CRI

Analyte

Back Pressure Flow
232.0 kPa 0.55 L/min All

								
Mean Data: CRI						_		
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2725519.0	102.9		0.76				0.74%
ScR 361.383	217319.7	102.6		1.29				1.26%
Ag 328.068†	890.0	0.00299	J .	0.000084	0.00299		0.000084	2.82%
Al 308.215†	79.9	0.05294	J .	0.007970	0.05294	٥.	0.007970	15.05%
As 188.979†	124.2	0.05215	J .	0.000501	0.05215	J .	0.000501	0.96%
B 249.677†	47.8	0.02202	٥.	0.000503	0.02202	٠.	0.000503	2.28%
Ba 233.527†	30.4	0.00295	J .	0.000201	0.00295		0.000201	6.83%
Be 313.042†	285.3	0.00106	J .	0.000020	0.00106	J .	0.000020	1.90%
Ca 317.933†	557.6	0.05267	_	0.002177	0.05267	J .	0.002177	4.13%
Cd 228.802†	168.3	0.00189		0.000034	0.00189	J .	0.000034	1.78%
Co 228.616†	267.8	0.00316	mg/L	0.000027	0.00316	_	0.000027	0.86%
Cr 267.716†	28.7	0. <u>00626</u>		0.000279	0.00626	J .	0.000279	4.46%
Cu 324.752†	440.1	0.00141		0.000015	0.00141	_	0.000015	1.09%
Fe 273.955†	65.9	0.05379	mg/L	0.000359	0.05379	_	0.000359	0.67%
K 766.490†	1844.9	0.5120	mg/L	0.00390	0.5120	_	0.00390	0.76%
Mg 279.077+	62.5	0.05363	mg/L	0.004148	0.05363	_	0.004148	7.73%
Mn 257.610†	44.4	0.00110	mg/L	0.000078	0.00110	_	0.000078	7.08%
Mo 202.031†	89.8	0.00485	mg/L	0.000366	0.00485	J .	0.000366	7.55%
Na 589.592†	4234.0	0.5205	mg/L	0.00758	0.5205	_	0.00758	1.46%
Na 330.237†	15.2	0.5507	mg/L	0.72771	0.5507	_	0.72771	
Ni 231.604†	25.8	0.01168	mg/L	0.002131	0.01168		0.002131	18.25%
Pb 220.353†	261.8	0.02028	mg/L	0.000880	0.02028		0.000880	4.34%
Sb 206.836†	184.7	0.05051	mg/L	0.000839	0.05051	J .	0.000839	1.66%
Se 196.026†	94.8	0.04932	mg/L	0.000055	0.04932	_	0.000055	0.11%
Si 288.158†	118.8	0.08790	.mg/L	0.000496	0.08790	_	0.000496	0.56₺
Sn 189.927†	60.1	0.00917	L_gg/L	0.000205	0.00917	_	0.000205	2.24%
Sr 421.552†	625.8	0.00108	mg/L	0.000056	0.00108	mg/L	0.000056	5.19%
Ti 334.903†	137.5	0.00534	mg/L	0.000386	0.00534	J .	0.000386	7.22%
Tl 190.801†	172.7	0.04717	mg/L	0.001569	0.04717	J .	0.001569	3.33%
V 292.402†	635.8	0.00318	mg/L	0.000085	0.00318	_	0.000085	2.66%
Zn 206.200†	24.0	0.00986	mg/L	0.000699	0.00986	mg/L	0.000699	7.09%

unua aasse

Sequence No.: 4 Autosampler Location: 22

Sample ID: ICSA Date Collected: 11/1/2012 12:36:53 PM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: ICSA

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min All

Mean Data: ICSA								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2657159.0	100.3	ક	1.66				1.65%
ScR 361.383	220195.9	104.0	용	1.21				1.16%
Ag 328.068†	-1831.9	-0.00089	mg/L	0.000127	-0.00089	mg/L	0.000127	14.19%
Al 308.215†	286248.3	190.4	mg/L	2.56	190.4	mg/L	2.56	1.35%
As 188.979†	-6.9	-0.00284	mg/L	0.002083	-0.00284	mg/L	0.002083	73.24 %
B 249.677†	0.4	0.00016	mg/L	0.003970	0.00016	mg/L	0.003970	>999.9%
Ba 233.527†	79.3	-0.00115	mg/L	0.000112	-0.00115	mg/L	0.000112	9.75%
Be 313.042†	-22.9	-0.00013	mg/L	0.000016	-0.00013	mg/L	0.000016	11.89%
Ca 317.933†	993818.7	93.88	mg/L	1.189	93.88	mg/L	1.189	1.27%
Cd 228.802†	76.5	0.00092	mg/L	0.000094	0.00092	mg/L	0.000094	10.15%
Co 228.616†	143.3	-0.00053	mg/L	0.000029	-0.00053	mg/L	0.000029	5.59%
Cr 267.716†	17.7	0.00386	mg/L	0.000585	0.00386		0.000585	15.15%
Cu 324.752†	-4977.9	0.00009	mg/L	0.000397	0.00009		0.000397	442.99%
Fe 273.955†	234359.9	191.2	mg/L	3.38	191.2	mg/L	3.38	1.77%
K 766.490†	-36.8	-0.01022	mg/L	0.026871	-0.01022		0.026871	262.90%
Mg 279.077†	114646.6	98.32	mg/L	1.301	98.32	mg/L	1.301	1.32%
Mn 257.610†	30.6	-0.00055	mg/L	0.000109	-0.00055	mg/L	0.000109	19.67%
Mo 202.031†	-170.2	-0.00643		0.000759	-0.00643	mg/L	0.000759	11.80 ધ
Na 589.592†	203.6	0.02503	mg/L	0.008479	0.02503	mg/L	0.008479	33.87%
Na 330.237†	5.6	-0.2091	mg/L	0.49364	-0.2091	mg/L	0.49364	236.04%
Ni 231.604†	8.2	0.00375	mg/L	0.002062	0.00375	mg/L	0.002062	54.93%
Pb 220.353†	-693.9	0.00630	mg/L	0.001606	0.00630	mg/L	0.001606	25.49%
Sb 206.836†	150.0	0.02301		0.002754	0.02301	mg/L	0.002754	11.97%
Se 196.026†	-122.2	-0.06362	mg/L	0.004118	-0.06362	mg/L	0.004118	6.47%
Si 288.158†	-2.1	0.01022	mg/L	0.007194	0.01022	mg/L	0.007194	70.38%
Sn 189.927†	-47.0	0.01518	mg/L ,	0.000403	0.01518	mg/L	0.000403	2.65%
Sr 421.552†	2286.6	0.00395	mg/Lecrit	0.000068	0.00395	mg/L	0.000068	1.72%
Ti 334.903†	171.8	0.00209	mg/L	0.000240	0.00209		0.000240	11.47%
Tl 190.801†	-41.1	-0.01134		0.001447	-0.01134		0.001447	12.76%
V 292.402†	3752.7	0.00019		0.000375	0.00019		0.000375	
Zn 206.200†	-20.3	-0.00635		0.001039	-0.00635	2 .	0.001039	16.38%

Sequence No.: 5 Sample ID: ICSAB Autosampler Location: 23

Date Collected: 11/1/2012 12:42:56 PM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: ICSAB

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min All

Mean Data: ICSAB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
ScA 357.253	2618195.3	98.87	ફ	0.287				0.29%
ScR 361.383	217326.8	102.6		0.56				0.55%
Ag 328.068†	296557.3	1.000		0.0016	1.000	mg/L	0.0016	0.16%
Al 308.215†	289283.6	192.4		0.12	192.4	mg/L	0.12	0.06%
As 188.979†	2367.1	0.9935		0.00367	0.9935	mg/L	0.00367	0.37%
B 249.677†	15.9	0.00432	mg/L	0.003038	0.00432	mg/L	0.003038	70.37 ર
Ba 233.527†	9687.5	0.9332	mg/L	0.00057	0.9332	mg/L	0.00057	0.06%
Be 313.042†	265418.8	0.9943		0.00242	0.9943	mg/L	0.00242	0.24%
Ca 317.933†	1004608.9	94.90	mg/L	0.097	94.90		0.097	0.10%
Cd 228.802†	81303.6	0.9705	mg/L	0.00073	0.9705	mg/L	0.00073	0.08%
Co 228.616†	76215.7	0.9012	J.	0.00146	0.9012	mg/L	0.00146	0.16%
Cr 267.716†	4283.7	0.9356		0.00194	0.9356	mg/L	0.00194	0.21%
Cu 324.752†	308817.9	1.003		0.0022	1.003	mg/L	0.0022	0.22%
Fe 273.955†	236621.3	193.0		0.70	193.0		0.70	0.36%
K 766.490†	-69.7	-0.01936		0.011128	-0.01936	mg/L	0.011128	57.49%
Mg 279.077†	116250.7	99.70		0.030	99.70	mg/L	0.030	0.03%
Mn 257.610†	38058.1	0.9393		0.00053	0.9393	mg/L	0.00053	0.06%
Mo 202.031†	-173.1	-0.00674		0.000336	-0.00674		0.000336	4.98%
Na 589.592†	654.9	0.08051		0.007693	0.08051	mg/L	0.007693	9.55%
Na 330.237†	18.8	-0.07506	mg/L	0.238557	-0.07506	mg/L	0.238557	317.80%
Ni 231.604†	2052.8	0.9293	mg/L	0.00135	0.9293	mg/L	0.00135	0.15%
Pb 220.353†	11466.1	0.9486	J .	0.00376	0.9486	mg/L	0.00376	0.40%
Sb 206.836†	3850.0	1.021		0.0018	1.021	mg/L	0.0018	0.17%
Se 196.026†	1784.3	0.9261		0.01374	0.9261	mg/L	0.01374	1.48%
Sí 288.158†	48.3	0.05188		0.008149	0.05188	mg/L	0.008149	15.71%
Sn 189.927†	-52.8	0.01454	mg/L	0.000536	0.01454	mg/L	0.000536	3.69%
Sr 421.552†	2562.9		mg/K. ∟rut.	0.000047	0.00443	mg/L	0.000047	1.06%
Ti 334.903†	185.0	0.00233	mg/L	0.000505	0.00233	mg/L	0.000505	21.64%
Tl 190.801†	3344.0	0.9020	mg/L	0.00290	0.9020		0.00290	0.32%
V 292.402†	196687.8	0.9526		0.00356	0.9526		0.00356	0.37%
Zn 206.200†	2179.3	0.8962	mg/L	0.00109	0.8962		0.00109	0.12%

Date: 11/1/2012 12:53:51 PM

Sequence No.: 6 Sample ID: CV

Autosampler Location: 7 Date Collected: 11/1/2012 12:49:56 PM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: CV

Analyte

Back Pressure Flow 233.0 kPa 0.55 L/min A11

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2708409.2	102.3	8	1.70				1.66%
ScR 361.383	220178.2	104.0		0.91				0.87%
Ag 328.068†	292942.4	0.9828	mg/L	0.00982	0.9828	mg/L	0.00982	1.00%
Al 308.215†	3005.0	1.957	mg/L	0.0330	1.957		0.0330	1.69%
As 188.979†	4875.6	2.046		0.0392	2.046	mg/L	0.0392	1.92%
B 249.677†	2098.6	0.9658	mg/L	0.01170	0.9658		0.01170	1.21%
Ba 233.527†	9952.8	0.9679		0.01482	0.9679	mg/L	0.01482	1.53%
Be 313.042†	267057.5	1.000	mg/L	0.0049	1.000		0.0049	0.49%
Ca 317.933†	20920.5	1.976	mg/L	0.0332	1.976		0.0332	1.68%
Cd 228.802†	84254.7	1.003	mg/L	0.0131	1.003		0.0131	1.30%
Co 228.616†	81756.6	0.9676		0.00961	0.9676	mg/L	0.00961	0.99%
Cr 267.716†	4448.0	0.9712		0.01511	0.9712		0.01511	1.56%
Cu 324.752†	325197.8	1.039	mg/L	0.0101	1.039		0.0101	0.97%
Fe 273.955†	2531.3	2.064		0.0369	2.064		0.0369	1.79%
K 766.490†	71255.1	19.78	mg/L	0.093	19.78	mq/L	0.093	0.47%
Mg 279.077†	2391.9	2.057	mg/L	0.0318	2.057	mq/L	0.0318	1.55%
Mn 257.610†	39489.9	0.9763		0.00438	0.9763	mg/L	0.00438	0.45%
Mo 202.031†	17564.7	0.9491	mg/L	0.01948	0.9491		0.01948	2.05%
Na 589.592†	405073.1	49.80	mg/L	0.287	49.80		0.287	0.58%
Na 330.237†	1365.5	49.56	mg/L	1.034	49.56		1.034	2.09%
Ni 231.604†	2188.1	0.9907	mg/L	0.01499	0.9907		0.01499	1.51%
Pb 220.353†	26048.2	2.017	mg/L	0.0387	2.017		0.0387	1.92%
Sb 206.836†	7595.3	2.074	mg/L	0.0432	2.074	mq/L	0.0432	2.085
Se 196.026†	3808.3	1.979	mg/L	0.0389	1.979		0.0389	1.97%
Si 288.158†	2809.2	2.084	mg/L	0.0258	2.084		0.0258	1.24%
Sn 189.927†	5859.4	(0.8943	mg/L	0.01827	0.8943		0.01827	2.04%
Sr 421.552†	579908.0	1.002	mg/L	0.0084	1.002		0.0084	0.84%
Ti 334.903†	25069.9	0.9742		0.00551	0.9742		0.00551	0.57%
T1 190.801†	7251.3	1.970	mg/L	0.0357	1.970		0.0357	1.81%
V 292.402†	200645.3	0.9943		0.00972	0.9943		0.00972	0.98%
Zn 206.200†	2556.1	1.049		0.0177	1.049	J .	0.0177	1.69%
					-	J .	'	

Sequence No.: 7 Sample ID: CB

Autosampler Location: 1

Date Collected: 11/1/2012 12:55:59 PM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: CB

Analyte

Back Pressure Flow 233.0 kPa 0.55 L/min 233.0 kPa All

Mean Data: CB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2709170.9	102.3	8	0.31				0.31%
ScR 361.383	212994.3	100.6	શ્રુ	0.98				0.98%
Ag 328.068†	13.4	0.00005	mg/L	0.000037	0.00005	mg/L	0.000037 8	32.70%
Al 308.215†	5.1	0.00338	mg/L	0.014044	0.00338	mg/L	0.014044 41	15.57%
As 188.979†	0.8	0.00035		0.000428	0.00035		0.000428 12	22.88%
B 249.677†	8.6	0.00395	mg/L	0.001308	0.00395	mg/L	0.001308 3	33.13%
Ba 233.527†	-1.5	-0.00015	mg/L	0.000656	-0.00015	mg/L	0.000656 44	43.22%
Be 313.042†	7.4	0.00003	mg/L	0.000023	0.00003	mg/L	0.000023 8	34.23%
Ca 317.933†	-2.2	-0.00021	mg/L	0.000908	-0.00021	mg/L	0.000908 43	31.73%
Cd 228.802†	17.3	0.00021	mg/L	0.000034	0.00021	mg/L	0,000034 1	16.35%
Co 228.616†	-1.4	-0.00002	mg/L	0.000115	-0.00002	mg/L	0.000115 64	44.11%
Cr 267.716†	6.5	0.00142	mg/L	0.001127	0.00142	mg/L	0.001127	79.40%
Cu 324.752†	54.2	0.00017	mg/L	0.000272	0.00017	mg/L	0.000272 15	57.17%
Fe 273.955†	5.6	0.00459	mg/L	0.001521	0.00459	mg/L	0.001521 3	33.16%
K 766.490†	185.6	0.05152	mg/L	0.015556	0.05152	mg/L	0.015556 3	30.20%
Mg 279.077†	-6.0	-0.00519	mg/L	0.001857	-0.00519	mg/L	0.001857 3	35.78%
Mn 257.610†	3.1	0.00008	mg/L	0.000041	0.00008	mg/L	0.000041 5	53.85%
Mo 202.031†	0.7	0.00004	mg/L	0.000121	0.00004	mg/L	0.000121 31	10.92%
Na 589.592†	217.2	0.02670	mg/L	0.005712	0.02670		0.005712 2	21.39%
Na 330.237†	9.1	0.3317	mg/L	0.16164	0.3317	mg/L	0.16164 4	48.73%
Ni 231.604†	2.2	0.00099	mg/L	0.000294	0.00099	mg/L	0.000294 2	29.65%
Pb 220.353†	6.7	0.00052	mg/L	0.000389	0.00052	mg/L	0.000389	74.22%
Sb 206.836†	0.5	0.00013	mg/L	0.000671	0.00013	mg/L	0.000671 51	19.96%
Se 196.026†	2.3	0.00119	mg/L	0.003186	0.00119	mg/L	0.003186 26	56.70%
Si 288.158†	3.3	0.00245	mg/L	0.002866	0.00245	mg/L	0.002866 11	16.74%
Sn 189.927†	9.5	0.00144	mg/L	0.000349	0.00144	mg/L	0.000349 2	24.18%
Sr 421.552†	99.2	0.00017	mg/L	0.000070	0.00017	mg/L	0.000070 4	40.98%
Ti 334.903†	14.5	0.00056	mg/L	0.000930	0.00056	mg/L	0.000930 16	65.45%
Tl 190.801†	5.0	0.00137	mg/L	0.000484	0.00137	mg/L	0.000484 3	35.18%
V 292.402†	34.9	0.00018	mg/L	0.000174	0.00018	mg/L	0.000174	96.61%
Zn 206,200†	2.3	0.00094	mg/L	0.000837	0.00094	mg/L	0.000837 8	38.76%

Analysis Begun

Start Time: 11/1/2012 1:03:05 PM Plasma On Time: 11/1/2012 9:01:02 AM

Technique: ICP Continuous Logged In Analyst: metals Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\1101.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1

Autosampler Location: 24 Date Collected: 11/1/2012 1:03:07 PM

Analyst: EL

Zn 206.200†

Sample ID: VP23 MB2 WMM Dilution: 1X

Data Type: Original

Nebulizer Parameters: VP23 MB2 WMN

Back Pressure Flow Analyte

All 232.0 kPa 0.55 L/min

Mean Data: VP23 MB2 WMN Calib. Mean Corrected Sample Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Analvte 104.6 % ScA 357.253 2770538.4 0.85 0.81% 104.8 % ScR 361.383 1.28 222018.1 1.22% Ag 328.068† -31.4 -0.00011 mg/L0.000162 -0.00011 mg/L0.000162 153.14% -0.00256 mg/L-0.00256 mg/L0.009660 0.009660 378.06% Al 308.215† -3.8 As 188.979† 0.1 $0.00003 \, \text{mg/L}$ 0.001240 0.00003 mg/L 0.001240 >999.9% B 249.677† 2.2 0.00103 mg/L 0.000611 0.00103 mg/L 0.000611 59.198 -1.3 -0.00012 mg/L0.000415 338.65% -0.00012 mg/L0.000415 Ba 233.527† -0.00005 mg/LBe 313.042t -12.8 -0.00005 mg/L0.000068 0.000068 140.82% 0.002809 0.002809 93.24% 31.9 $0.00301 \, \text{mg/L}$ $0.00301 \, \text{mg/L}$ Ca 317,933† -5.1 -0.00006 mg/L0.000064 -0.00006 mg/L 0.000064 104.09% Cd 228.802† -0.00016 mg/L -13.1 0.000053 -0.00016 mg/L0.000053 33.95% Co 228.616† Cr 267.716† 0.00049 mg/L 0.000718 $0.00049 \, \text{mg/L}$ 2.2 0.000718 147.27% Cu 324.752† -620.9 -0.00198 mg/L0.000018 -0.00198 mg/L0.000018 0.93 ક Fe 273.955† -2.5 -0.00206 mg/L0.001831 -0.00206 mg/L0.001831 88.70% K 766.490† -59.8 -0.01661 mg/L0.027527 -0.01661 mg/L 0.027527 165.78% Mg 279.077† 0.00141 mg/L 0.003382 0.00141 mg/L 1.6 0.003382 239.50% Mn 257.610† -4.9 -0.00012 mg/L0.000063 -0.00012 mg/L0.000063 51.74% Mo 202.031† 2.6 0.00014 mg/L 0.000046 0.00014 mg/L 0.000046 32.76% 0.004269 81.51% Na 589.592† -42.6 -0.00524 mg/L-0.00524 mg/L0.004269 0.1863 mg/L0.1863~mg/LNa 330.237† 5.1 0.79704 0.79704 427.76% -3.8 -0.00170 mg/L0.001926 -0.00170 mg/L0.001926 113.15% Ni 231.604† -0.00047 mg/LPb 220.353† -6.1 0.000317 -0.00047 mg/L0.000317 67.12% 0.000339 Sb 206.836† -9.8 -0.00268 mg/L-0.00268 mg/L 0.000339 12.67% Se 196.026t 9.7 0.00506 mg/L 0.003410 0.00506 mg/L 0.003410 67.35% Si 288.158† 1.6 0.00116 mg/L 0.001951 0.00116 mg/L0.001951 168.06% Sn 189.927† 5.4 $0.00082 \, \text{mg/L}$ 0.000525 $0.00082 \, \text{mg/L}$ 0.000525 64.17% Sr 421.552† 68.7 0.00012 mg/L0.000070 0.00012 mg/L0.000070 58.60% Ti 334.903† 5.6 0.00022 mg/L 0.000666 0.00022 mg/L 0.000666 304.54% Tl 190.801† -5.1 -0.00139 mg/L0.000819 -0.00139 mg/L0.000819 58.82% V 292.402† 33.4 0.00017 mg/L 0.000124 0.00017 mg/L0.000124 73.93%

0.000388

 $0.00029 \, \text{mg/L}$

0.7

0.000388 131.59%

0.00029~mg/L

Sequence No.: 2

Sample ID: VO93 MB SWC

Analyst: EL Dilution: 2X

Autosampler Location: 25

Date Collected: 11/1/2012 1:09:07 PM

Data Type: Original

Nebulizer Parameters: VO93 MB SWC

Analyte

Back PressureFlow232.0 kPa0.55 L/min All

Mean Data: VO93								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2700243.4	102.0		0.65				0.64
ScR 361.383	214834.4	101.5		1.26				1.24
Ag 328.068†	-11.0	-0.00004		0.000298	-0.00007	mg/L	0.000596 8	05.30
Al 308.215†	4.7	0.00309		0.012153	0.00618	mg/L	0.024305 3	92.989
As 188.979†	-0.2	-0.00007	mg/L	0.001269	-0.00014	mg/L	0.002537 >	999.99
B 249.677†	2.3	0.00106		0.001329	0.00213	mg/L	0.002657 1	24.83
Ba 233.527†	-2.8	-0.00028	mg/L	0.000083	-0.00055	mg/L	0.000165	30.059
Be 313.042†	0.0	0.00000	mg/L	0.000074	0.00000	mg/L	0.000147 >	999.99
Ca 317.933†	168.2	0.01589	mg/L	0.000971	0.03178	mg/L	0.001942	6.11
Cd 228.802†	0.4	0.00001	mg/L	0.000097	0.00001	mg/L	0.000193 >	999.99
Co 228.616†	2.7	0.00003	mg/L	0.000109	0.00006	mg/L	0.000218 3	72.999
Cr 267.716†	6.0	0.00132	mg/L	0.000465	0.00264	mg/L	0.000930	35.179
Cu 324.752†	-182.1	-0.00058	mg/L	0.000206	-0.00116	mg/L	0.000412	35.459
Fe 273.955†	5.1	0.00420	mg/L	0.001272	0.00840	mg/L	0.002544	30.30
K 766.490†	15.7	0.00434	mg/L	0.018420	0.00869	mg/L	0.036840 4	24.039
Mg 279.077†	1.7	0.00145	mg/L	0.001517	0.00290	mg/L	0.003033 1	04.559
Mn 257.610†	-2.9	-0.00007	mg/L	0.000038	-0.00014	mg/L	0.000076	52.989
Mo 202.031†	-1.5	-0.00008	mg/L	0.000263	-0.00016	mg/L	0.000526 3	22.659
Na 589.592†	70.2	0.00863	mg/L	0.003335	0.01727	mg/L	0.006669	38.629
Na 330.237†	-1.4	-0.05001	mg/L	0.188603	-0.1000	mg/L	0.37721 3	77.129
Ni 231.604†	2.5	0.00112	mg/L	0.002581	0.00224	mq/L	0.005161 2	30.679
Pb 220.353†	8.8	0.00069	mg/L	0.000895	0.00137		0.001790 1	30.309
Sb 206.836†	2.5	0.00067	mg/L	0.000390	0.00133		0,000779	58,479
Se 196.026†	-1.2	-0.00065	mg/L	0.002293	-0.00130		0.004586 3	53.56
Si 288.158†	15.6	0.01150	mg/L	0.001618	0.02301		0.003236	14.07%
Sn 189.927†	1.2	0.00019	mg/L	0.000521	0.00038		0.001041 2	75.509
Sr 421.552†	75.1	0.00013	mg/L	0.000079	0.00026			60.699
Ti 334.903†	32.9	0.00128		0.000267	0.00256			20.91
Tl 190.801†	-7.4	-0.00201	mg/L	0.000062	-0.00403		0.000123	3.06
V 292.402†	12.5	0.00007		0.000118	0.00014	_	0.000237 1	
Zn 206.200†	4.1	0.00168		0.000537	0.00335	J .		32.07

Sequence No.: 3

Sample ID: VO93 H SWC

Analyst: EL
Dilution: 2X

Autosampler Location: 26

Date Collected: 11/1/2012 1:15:07 PM

Data Type: Original

Nebulizer Parameters: VO93 H SWC

Back Pressure Flow
232.0 kPa 0.55 L/min All

Mean Data: V093	H SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2635107.2	99.50	લ	0.120				0.12%
ScR 361.383	216212.0	102.1	Qi Qi	1.86				1.82%
Ag 328.068†	104093.8	0.3501	mg/L	0.00014	0.7001	mg/L	0.00027	0.04%
Al 308.215†	239495.3	159.2	mg/L	2.10	318.4		4.21	1.32%
As 188.979†	1210.3	0.5066	mg/L	0.00019	1.013	mg/L	0.0004	0.04%
B 249.677†	2743.7	1.260	mg/L	0.0235	2.519		0.0470	1.87%
Ba 233.527†	59805.7	5.815	mg/L	0.0937	11.63	mg/L	0.187	1.61%
Be 313.042†	452628.3	1.694	mg/L	0.0221	3.388	mg/L	0.0441	1.30%
Ca 317.933†	364621.2	34.44	mg/L	0.425	68.89	mg/L	0.850	1.23%
Cd 228.802†	178185.6	2.131	mg/L	0.0065	4.262	mg/L	0.0129	0.30%
Co 228.616†	215110.8	2.547	mg/L	0.0037	5.093	mg/L	0.0074	0.15%
Cr 267.716†	5374.0	1.173	mg/L	0.0213	2.345	mg/L	0.0427	1.82%
Cu 324.752†	452081.6	1.449		0.0016	2.897		0.0032	0.11%
Fe 273.955†	67954.6	55.44		0.733	110.9	mg/L	1.47	1.32%
K 766.490†	93693.5	26.00		0.343	52.01	mg/L	0.686	1.32%
Mg 279.077†	53907.3	46.26	mg/L	0.764	92.52	mg/L	1.528	1.65%
Mn 257.610†	203274.9	5.023		0.0639	10.05	mg/L	0.128	1.27%
Mo 202.031†	27928.6	1.512		0.0015	3.023	mg/L	0.0031	0.10%
Na 589.592†	23576.0	2.899	mg/L	0.0419	5.797	mg/L	0.0839	1.45%
Na 330.237†	103.3	2.246	mg/L	0.4867	4.492	mg/L	0.9734	21.67%
Ni 231.604†	7246.2	3.279	mg/L	0.0492	6.558	mg/L	0.0985	1.50%
Pb 220.353†	41536.5	3.268	mg/L	0.0035	6.536	mg/L	0.0070	0.11%
Sb 206.836†	1281.9	0.3443	mg/L	0.00173	0.6886	mg/L	0.00345	0.50%
Se 196.026†	2837.0	1.468	mg/L	0.0119	2.935	mg/L	0.0238	0.81%
Si 288.158†	6512.2	4.832		0.0498	9.664	mg/L	0.0995	1.03%
Sn 189.927†	4758.8	0.7344		0.00122	1.469	mg/L	0.0024	0.17%
Sr 421.552†	1277222.7	2.208	mg/L	0.0276	4.416	mg/L	0.0551	1.25%
Ti 334.903†	26093.1	1.012	mg/L	0.0131	2.024	mg/L	0.0263	1.30%
Tl 190.801†	7300.1	1.962		0.0014	3.925		0.0027	0.075
V 292.402†	453615.9	2.234	mg/L	0.0080	4.468	mg/L	0.0161	Ս.36%
Zn 206.200†	10035.0	4.121	mg/L	0.0580	8.242		0.1160	1.41%

Date: 11/1/2012 1:24:46 PM

Sequence No.: 4

Sample ID: VP23 I WMN Analyst: EL

Dilution: 1X

Autosampler Location: 27

Date Collected: 11/1/2012 1:20:28 PM

Data Type: Original

Nebulizer Parameters: VP23 I WMN

Analyte

BackPressureFlow232.0kPa0.55L/min All 232.0 kPa

Mean Data: VP23 I	WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2727351.4	103.0	e e	1.43				1.39%
ScR 361.383	222034.4	104.9	용	2.06				1.968
Ag 328.068†	111.3	-0.00057	mg/L	0.000199	-0.00057	mg/L	0.000199	34.73%
Al 308.215†	8.6	0.00558	mg/L	0.004007	0.00558		0.004007	71.86%
As 188.979†	4.4	0.00182	mg/L	0.000775	0.00182	mg/L	0.000775	42.46%
В 249.677†	73.0	0.03366	mg/L	0.001580	0.03366	mg/L	0.001580	4.69%
Ba 233.527†	356.8	0.03471	mg/L	0.001092	0.03471	mg/L	0.001092	3.15%
Be 313.042†	-9.6	-0.00004	mg/L	0.000030	-0.00004	mg/L	0.000030	72.54%
Ca 317.933†	867513.6	81.95	mg/L	1.569	81.95	mg/L	1.569	1.91%
Cd 228.802†	-3.8	-0.00005	mg/L	0.000008	-0.00005	mg/L	0.000008	16.98₺
Co 228.616†	-7.2	-0.00011		0.000067	-0.00011	mg/L	0.000067	61.42%
Cr 267.716†	20.9	0.00455	mg/L	0.000433	0.00455	mg/L	0.000433	9.53%
Cu 324.752†	-93.1	-0.00030	mg/L	0.000140	-0.00030	mg/L	0.000140	47.25%
Fe 273.955†	61.2	0.04991	mg/L	0.002541	0.04991	mg/L	0.002541	5.09%
K 766.490†	13229.1	3.672	mg/L	0.1049	3.672	mg/L	0.1049	2.86%
Mg 279.077†	57019.6	48.95	mg/L	1.242	48.95	mg/L	1.242	2.54%
Mn 257.610†	3357.1	0.08295	mg/L	0.001565	0.08295	mg/L	0.001565	1.89%
Mo 202.031†	72.2	0.00331	mg/L	0.000094	0.00331	mg/L	0.000094	2.84%
Na 589.592†	154811.8	19.03	mg/L	0.366	19.03	mg/L	0.366	1.92%
Na 330.237†	545.4	19.52	mg/L	0.839	19.52	mg/L	0.839	4.30%
Ni 231.604†	18.7	0.00846		0.001707	0.00846	mg/L	0.001707	20.16%
Pb 220.353†	-32.5	-0.00040		0.000367	-0.00040	mg/L	0.000367	90.829
Sb 206.836†	-10.1	-0.00289	mg/L	0.001517	-0.00289	mg/L	0.001517	52.599
Se 196.026†	20.3	0.01052	mg/L	0.002963	0.01052	mg/L	0.002963	28.17
Si 288.158†	23588.1	17.45	mg/L	0.367	17.45	mg/L	0.367	2.10%
Sn 189.927†	-29.9	0.01406	mg/L	0.000966	0.01406	mg/L	0.000966	6.87%
Sr 421.552†	275600.3	0.4764	mg/L	0.00966	0.4764	mg/L	0.00966	2.03%
Ti 334.903†	162.3	0.00229	mg/L	0.000330	0.00229		0.000330	14.39%
Tl 190.801†	-15.0	-0.00421	mg/L	0.001190	-0.00421	mg/L	0.001190	28.30%
V 292.402†	386.5	0.00195	mg/L	0.000144	0.00195	mg/L	0.000144	7.38%
Zn 206.200†	-1.9	0.00098	mg/L	0.000875	0.00098		0.000875	88.82%

VP10:00279

Sequence No.: 5

Sample ID: VP23 J WMN Analyst: EL Dilution: 1X

Autosampler Location: 28

Date Collected: 11/1/2012 1:26:45 PM

Data Type: Original

Nebulizer Parameters: VP23 J WMN

Back Pressure Flow 7.55 L/min All

Mean Data: VP23 J	WMN								
	Mean Corrected		Calib				Sample		
Analyte	Intensity		Units		${ t Std.Dev.}$	Conc.	Units	Std.Dev.	
ScA 357.253	2710038.9	102.3			0.16				0.16₺
ScR 361.383	216247.8	102.1			0.89				0.87%
Ag 328.068†	42.1	-0.00007			0.000027	-0.00007	2	0.000027	36.18%
A1 308.215†	21.0	0.01392	_		0.007200	0.01392		0.007200	51.72%
As 188.979†	1.5	0.00063	${ m mg/L}$		0.000897	0.00063		0.000897	142.82%
в 249.677†	63.1	0.02908	mg/L		0.002565	0.02908		0.002565	8.82%
Ba 233.527†	108.7	0.01057	mg/L		0.000395	0.01057	mg/L	0.000395	3.74%
Be 313.042†	-9.9	-0.00004	mg/L		0.000073	-0.00004	${ m mg/L}$	0.000073	
Ca 317.933†	197983.1	18.70	${ m mg/L}$		0.119	18.70		0.119	0.63%
Cd 228.802†	1.8	0.00002	mg/L		0.000058	0.00002	${ m mg/L}$	0.000058	286.26%
Co 228.616†	-13.6	-0.00017	mg/L		0.000061	-0.00017	mg/L	0.000061	36.04%
Cr 267.716†	13.4	0.00292	mg/L		0.000492	0.00292	mg/L	0.000492	16.84%
Cu 324.752†	132.9	0.00043	mg/L		0.000133	0.00043	${ m mg/L}$	0.000133	30.73%
Fe 273.955†	129.7	0.1058	mg/L		0.00175	0.1058	mg/L	0.00175	1.65%
K 766.490†	13691.6	3.800	mg/L		0.0112	3.800	mg/L	0.0112	0.29%
Mg 279.077†	11954.0	10.26	mg/L		0.054	10.26	mg/L	0.054	0.53%
Mn 257.610†	1143.6	0.02826	mg/L		0.000292	0.02826		0.000292	1.03%
Mo 202.031†	25.7	0.00126	mg/L		0.000097	0.00126	mg/L	0.000097	7.69%
Na 589.592†	65928.6	8.106	mg/L		0.0182	8.106	mg/L	0.0182	0.228
Na 330.237†	229.3	8.274	mg/L		0.3330	8.274	mg/L	0.3330	4.03%
Ni 231.604†	4.0	0.00182	mg/L		0.001039	0.00182	mg/L	0.001039	57.16%
Pb 220.353†	-2.9	0.00026	mg/L		0.000449	0.00026	mg/L	0.000449	170.51%
Sb 206.836†	-2.0	-0.00062	mg/L		0.000769	-0.00062	mg/L	0.000769	124.87%
Se 196.026†	0.3	0.00018	mg/L		0.002850	0.00018	mg/L	0.002850	>999.9%
Si 288.158†	11803.4	8.728	mg/L		0.0467	8.728	mg/L	0.0467	0.54%
Sn 189.927†	-7.3	0.00312	mg/L		0.000492	0.00312	mg/L	0.000492	15.79%
Sr 421.552†	64819.5	0.1120	mg/L	,	0.00035	0.1120	mg/L	0.00035	0.31%
Ti 334.903†	46.6	0.00089	mg/L		0.000997	0.00089	mg/L	0.000997	111.49%
Tl 190.801†	-8.7	-0.00241	mq/L		0.000779	-0.00241		0.000779	32.25%
V 292.402†	134.9	0.00068	mg/L		0.000043	0.00068	mg/L	0.000043	6.27%
Zn 206.200†	2.3	0.00135	_		0.001122	0.00135	mg/L	0.001122	83.33%

Sequence No.: 6

Sample ID: VP23 K WMN Analyst: EL Dilution: 1X

Autosampler Location: 29

Date Collected: 11/1/2012 1:32:46 PM

Data Type: Original

Nebulizer Parameters: VP23 K WMN

Back Pressure Flow 233.0 kPa 0.55 L/min All

							·	
Mean Data: VP23								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
ScA 357.253	2772180.8	104.7	ક	0.24				0.23%
ScR 361.383	222752.7	105.2		0.40				0.38%
Ag 328.068†	3.3	-0.00020	mg/L	0.000169	-0.00020	mg/L	0.000169	85.00%
Al 308.215†	31.7	0.02103		0.004518	0.02103		0.004518	21.49%
As 188.979†	2.8	0.00116	mg/L	0.001433	0.00116		0.001433	
B 249.677†	62.2	0.02866	mg/L	0.000958	0.02866	mg/L	0.000958	3.34%
Ba 233.527†	108.3	0.01052	mg/L	0.000262	0.01052		0.000262	2.49%
Be 313.042†	-39.4	-0.00015	mg/L	0.000021	-0.00015		0.000021	13.84%
Ca 317.933†	193450.0	18.27	mg/L	0.055	18.27		0.055	0.30%
Cd 228.802†	0.6	0.00000	mg/L	0.000100	0.00000		0.000100	
Co 228.616†	-19.9	-0.00025	mg/L	0.000052	-0.00025		0.000052	20.75%
Cr 267.716†	7.7	0.00167	mg/L	0.000762	0.00167		0.000762	45.67%
Cu 324.752†	119.3	0.00040	mg/L	0.000115	0.00040		0.000115	28.76%
Fe 273.955†	285.7	0.2331	mg/L	0.00392	0.2331		0.00392	1.68%
K 766.490†	13058.7	3.624	mg/L	0.0207	3.624		0.0207	0.57%
Mg 279.077†	11649.4	10.00	mg/L	0.035	10.00		0.035	0.35%
Mn 257.610†	1981.1	0.04895	mg/L	0.000086	0.04895		0.000086	0.17%
Mo 202.031†	29.2	0.00146	mg/L	0.000116	0.00146		0.000116	7.99%
Na 589.592†	65356.6	8.035	mg/L	0.0322	8.035		0.0322	0.40%
Na 330.237†	209.8	7.568	mg/L	0.5029	7.568	mg/L	0.5029	6.64%
Ni 231.604†	1.8	0.00082	mg/L	0.002427	0.00082		0.002427	297.38%
Pb 220.353†	-13.2	-0.00055		0.000052	-0.00055		0.000052	9.46%
Sb 206.836†	-9.4	-0.00263	mg/L	0.000748	-0.00263		0.000748	28.48%
Se 196.026†	8.6	0.00448	mg/L	0.002978	0.00448		0.002978	66.46%
Si 288.158†	11467.1	8.480	mg/L	0.0216	8.480		0.0216	0.26%
Sn 189.927†	-10.9	0.00246	mg/L	0.000214	0.00246		0.000214	8.67%
Sr 421.552†	63893.7	0.1104	mg/L	0.00079	0.1104		0.00079	0.72%
Ti 334.903†	100.8	0.00302	mg/L	0.000877	0.00302		0.000877	28.99%
Tl 190.801†	-5.4	-0.00155		0.000543	-0.00155		0.000543	35.00%
V 292.402†	152.6	0.00075	mg/L	0.000138	0.00075		0.000138	18.38%
Zn 206.200†	0.9	0.00078	mg/L	0.001089	0.00078		0.001089	
						- ·		

Sequence No.: 7

Sample ID: VP23 L WMN
Analyst: EL
Dilution: 1X

Autosampler Location: 30

Date Collected: 11/1/2012 1:38:46 PM

Data Type: Original

Nebulizer Parameters: VP23 L WMN

Analyte

Back Pressure Flow 233.0 kPa 0.55 L/min All

Mean Data: VP23	L WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	R S D
ScA 357.253	2806852.2	106.0	ક્	1.06				1.00%
ScR 361.383	230013.5	108.6		0.02				0.02%
Ag 328.068†	92.0	-0.00051	mg/L	0.000054	-0.00051	mg/L	0.000054	10.63%
Al 308.215†	-2.2	-0.00157	mg/L	0.004435	-0.00157	mg/L	0.004435	282.64%
As 188.979†	0.9	0.00039	mg/L	0.001288	0.00039	mg/L	0.001288	327.99%
B 249.677†	56.7	0.02612	mg/L	0.003342	0.02612	mq/L	0.003342	12.80%
Ba 233.527†	153.0	0.01488	mg/L	0.000128	0.01488	mg/L	0.000128	0.86%
Be 313.042†	-71.4	-0.00027	mg/L	0.000007	-0.00027		0.000007	2.49%
Ca 317.933†	605894.5	57.24	mg/L	0.247	57.24		0.247	0.43%
Cd 228.802†	-16.0	-0.00019	mg/L	0.000058	-0.00019		0.000058	30.49%
Co 228.616†	-0.1	-0.00001	mg/L	0.000057	-0.00001		0.000057	416.75%
Cr 267.716†	19.9	0.00414	mg/L	0.000705	0.00414		0.000705	17.01%
Cu 324.752†	-599.3	-0.00192	mg/L	0.000232	-0.00192		0.000232	12.11%
Fe 273.955t	7.9	0.00643	mg/L	0.001001	0.00643		0.001001	15.56*
K 766.490†	11312.7	3.140	mg/L	0.0190	3.140		0.0190	0.60%
Mg 279.077t	45886.3	39.40	mg/L	0.157	39.40		0.157	0.40%
Mn 257.610†	35911.7	0.8874	mg/L	0.00294	0.8874	mg/L	0.00294	0.33%
Mo 202.031†	45.0	0.00195	mg/L	0.000153	0.00195	mg/L	0.000153	7.85%
Na 589.592†	93637.8	11.51	mg/L	0.028	11.51		0.028	0.24%
Na 330.237†	312.9	11.05	mg/L	0.200	11.05		0.200	1,81%
Ni 231.604†	20.4	0.00923		0.001505	0.00923	mq/L	0.001505	16.31%
Pb 220.353†	-29.0	-0.00077	mg/L	0.000955	-0.00077		0.000955	124.18%
Sb 206.836†	-20.5	-0.00574	mg/L	0.000108	-0.00574	mg/L	0.000108	1.87%
Se 196.026†	16.7	0.00867	mg/L	0.003385	0.00867		0.003385	39.06%
Si 288.158†	27594.0	20.41	mg/L	0.047	20.41		0.047	0.23%
Sn 189.927†	-30.2	0.00853	mg/L	0.000310	0.00853		0.000310	3.63%
Sr 421.552†	149777.3	0.2589		0.00016	0.2589		0.00016	0.06%
Ti 334.903†	109.2	0.00144	mg/L	0.000437	0.00144		0.000437	30.34%
Tl 190.801†	-13.7	-0.00485	mg/L	0.001300	-0.00485		0.001300	26.83%
V 292.402†	63.9	0.00048		0.000152	0.00048		0.000152	31.54%
Zn 206.200†	672.5	0.2774	mg/L	0.00298	0.2774	mg/L	0.00298	1.07%

Method: ARIIEC6AN.552AS Date: 11/1/2012 1:49:08 PM

Sequence No.: 8

Sample ID: VP23 HDNP WMN

Analyst: EL Dilution: 1X

Autosampler Location: 31

Date Collected: 11/1/2012 1:44:48 PM

Data Type: Original

Nebulizer Parameters: VP23 HDUP WMN

Analyte

Back Pressure Flow 233.0 kPa 0.55 L/min All

Mean Data: VP23 H	DIID WAN							
Mean Data: VP23 ni	Mean Corrected		Calib.			Sample		
3-01		Cono	Units	Std.Dev.	Conc.	-	C+4 D	D.C.D.
Analyte ScA 357.253	Intensity 2750343.3	103.9		0.44	cone.	Units	Std.Dev.	RS D 0.42%
ScR 361.383	225642.1	106.6		0.44				0.428
Ag 328.068†	324.0	-0.00057		0.000050	-0.00057	m~/T	0.000050	8.84%
Ag 328.0661 Al 308.215†	8.5	0.00557	-	0.012554	0.00557		0.000030	
As 188.979†	3.6	0.00337		0.012534	0.00337	J .	0.012334	39.35%
B 249.677†	134.2			0.001632		_		
· ·	412.8	0.06186		0.001632	0.06186	_	0.001632	2.64% 2.37%
Ba 233.527†		0.04016			0.04016	-	0.000951	- · -
Be 313.042†	-43.5	-0.00017		0.000085	-0.00017	_	0.000085	51.01%
Ca 317.933†	683694.8	64.59		0.273	64.59		0.273	0.42%
Cd 228.802†	366.1	0.00438		0.001371	0.00438	J .	0.001371	31.31%
Co 228.616†	328.2	0.00387		0.001721	0.00387	2	0.001721	44.49%
Cr 267.716†	19.9	0.00327		0.000305	0.00327	J .	0.000305	9.31%
Cu 324.752†	2.1	0.00001	_	0.000025	0.00001		0.000025	
Fe_273.955†	81.7	0.06668	_	0.002371	0.06668		0.002371	3.56%
K 766.490†	12111.7	3.362	_	0.0444	3.362	_	0.0444	1.32%
Mg 279.077†	24146.4	20.73	_	0.345	20.73		0.345	1.66%
Mn 257.610†	195582.1	4.833		0.0249	4.833	J .	0.0249	0.52%
Mo 202.031†	53.9	0.00266		0.000798	0.00266	J .	0.000798	30.01%
Na 589.592†	100823.3	12.40		0.097	12.40		0.097	0.78%
Na 330.237†	344.3	12.27		0.299	12.27	_	0.299	2.44%
Ni 231.604†	18.6	0.00840		0.001975	0.00840	J .	0.001975	23.51%
Pb 220.353†	-46.2	-0.00191		0.001602	-0.00191	mg/L	0.001602	83.83%
Sb 206.836†	-12.9	-0.00365		0.004398	-0.00365	J .	0.004398	120.57%
Se 196.026†	23.0	0.01197		0.003010	0.01197		0.003010	25.15%
Si 288.158†	12743.7	9.425		0.1357	9.425		0.1357	1.44%
Sn 189.927†	-30.6	0.00957	mg/L	0.002199	0.00957	mg/L	0.002199	22.97%
Sr 421.552†	266731.5	0.4611	${\tt mg/L}$	0.00314	0.4611	mg/L	0.00314	0.68%
Ti 334.903†	139.8	0.00227	mg/L	0.000945	0.00227	mg/L	0.000945	41.66%
Tl 190.801†	4.0	-0.00486	mg/L	0.001906	-0.00486	mg/L	0.001906	39.24%
V 292.402†	260.8	0.00202	mg/L	0.000160	0.00202	mg/L	0.000160	7.94%
Zn 206.200†	-5.7	-0.00097	mg/L	0.000660	-0.00097	mg/L	0.000660	68.19%

VPLG G0220

Sequence No.: 9

Sample ID: VP23 H\WMN

Analyst: EL Dilution: 1X

Autosampler Location: 32

Date Collected: 11/1/2012 1:51:07 PM

Data Type: Original

Nebulizer Parameters: VP23 H WMN

Back Pressure Flow 233.0 kPa 0.55 L/min All

Mean Data: VP23 H								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units		SD
ScA 357.253	2774664.4	104.8		0.27				26ક
ScR 361.383	224541.3	106.0		0.50				475
Ag 328.068†	322.9	-0.00056		0.000218	-0.00056		0.000218 38.	
Al 308.215†	0.3	0.00011	_	0.005769	0.00011	2.	0.005769 >999	
As 188.979†	5.0	0.00210		0.000090	0.00210	-		27%
B 249.677†	137.5	0.06338	${ m mg/L}$	0.002929	0.06338	mg/L		62%
Ba 233.527†	406.5	0.03954	${ m mg/L}$	0.000472	0.03954		* * * * * * * * * * * * * * * * * * * *	19%
Be 313.042†	-27.1	-0.00011	${ m mg/L}$	0.000029	-0.00011	mg/L	0.000029 27.	"
Ca 317.933†	678687.7	64.11	${ m mg/L}$	0.191	64.11	J .		30₺
Cd 228.802†	396.4	0.00474	${ m mg/L}$	0.000847	0.00474	٠.	0.000847 17.	
Co 228.616†	361.2	0.00426	${ m mg/L}$	0.000848	0.00426	mg/L	0.000848 19.	
Cr 267.716†	15.3	0.00228	${ m mg/L}$	0.000410	0.00228	mg/L	0.000410 17.	
Cu 324.752†	-16.6	-0.00005		0.000098	-0.00005		0.000098 203.	
Fe 273.955†	82.5	0.06733	mg/L	0.001399	0.06733	mg/L	0.001399 2.	980
K 766.490†	12129.6	3.367	mg/L	0.0131	3.367	mg/L		39%
Mg 279.077†	23914.5	20.53	${ m mg/L}$	0.169	20.53	mg/L		82%
Mn 257.610†	193727.3	4.787	${ m mg/L}$	0.0082	4.787	mg/L	*	178
Mo 202.031†	55.0	0.00272	mg/L	0.000362	0.00272	mg/L	0.000362 13.	
Na 589.592†	100590.5	12.37	mg/L	0.011	12.37	mg/L		09%
Na 330.237†	340.1	12.11	${ m mg/L}$	0.345	12.11	mg/L		85%
Ni 231.604†	17.1	0.00772	${ m mg/L}$	0.001913	0.00772	mg/L	0.001913 24.	
Pb 220.353†	-34.6	-0.00103	mg/L	0.002080	-0.00103	mg/L	0.002080 201.	92%
Sb 206.836†	-12.1	-0.00343	mg/L	0.002675	-0.00343	mg/L	0.002675 78.	04%
Se 196.026†	17.1	0.00888	mg/L	0.005607	0.00888	mg/L	0.005607 63.	
Si 288.158†	12667.9	9.369	${ m mg/L}$	0.0622	9.369	mg/L		66%
Sn 189.927†	-31.4	0.00936	mg/L	0.000734	0.00936	mg/L	0.000734 7.	85%
Sr 421.552†	265878.2	0.4596	mg/L	0.00182	0.4596	mg/L	0.00182 0.	40%
Ti 334.903†	128.5	0.00185	mg/L	0.000528	0.00185		0.000528 28.	
Tl 190.801†	5.5	-0.00440	mg/L	0.001968	-0.00440	mg/L	0.001968 44.	
V 292.402†	266.7	0.00203	mg/L	0.000137	0.00203	mg/L	0.000137 6.	75%
Zn 206.200†	-7.7	-0.00180	mg/L	0.000780	-0.00180	mg/L	0.000780 43.	30%

Sequence No.: 10

Sample ID: VP23 HSPK WMN

Analyst: EL Dilution: 1X

Autosampler Location: 33

Date Collected: 11/1/2012 1:57:26 PM

Data Type: Original

Nebulizer Parameters: VP23 HSPK WMN

Analyte

Back Pressure Flow
232.0 kPa 0.55 L/min A11

Mean Data: VP23 HS	SPK WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2635164.5	99.51	용	0.345				0.35%
ScR 361.383	217338.5	102.6	8	0.36				0.36%
Ag 328.068†	153375.1	0.5129	${ m mg/L}$	0.00830	0.5129		0.00830	1.62%
Al 308.215†	3531.7	2.340	mg/L	0.0058	2.340	mg/L	0.0058	0.25%
As 188.979†	6105.6	2.563	${ m mg/L}$	0.0056	2.563	mg/L	0.0056	0.22%
B 249.677†	143.6	0.06436		0.003024	0.06436	mg/L	0.003024	4.70%
Ba 233.527†	23474.6	2.284	mg/L	0.0127	2.284	mg/L	0.0127	0.56%
Be 313.042†	163922.0	0.6141	mg/L	0.00438	0.6141	mg/L	0.00438	0.71%
Ca 317.933†	820259.3	77.49	mg/L	0.584	77.49	mg/L	0.584	0.75%
Cd 228.802†	50725.2	0.6009	_	0.00415	0.6009		0.00415	0.69%
Co 228.616†	47000.4	0.5565	_	0.00293	0.5565	mg/L	0.00293	0.53%
Cr 267.716†	2708.9	0.5905		0.00175	0.5905	mg/L	0.00175	0.30%
Cu 324.752†	170199.1	0.5440		0.00212	0.5440	mg/L	0.00212	0.39%
Fe 273.955†	3062.2	2.498	mg/L	0.0108	2.498	mg/L	0.0108	0.43%
K 766.490†	55379.8	15.37	${ m mg/L}$	0.111	15.37	mg/L	0.111	0.73%
Mg 279.077†	38274.1	32.86		0.196	32.86	mg/L	0.196	0.60%
Mn 257.610†	220595.2	5.451		0.0320	5.451	mg/L	0.0320	0.59%
Mo 202.031†	52.5	0.00237		0.000293	0.00237	mg/L	0.000293	12.379
Na 589.592†	198325.1	24.38		0.117	24.38	mg/L	0.117	0.48%
Na 330.237†	677.9	24.15	${ m mg/L}$	0.151	24.15	mg/L	0.151	0.63%
Ni 231.604†	1261.5	0.5701	J .	0.00511	0.5701	mg/L	0.00511	0.90%
Pb 220.353†	30272.3	2.345		0.0172	2.345		0.0172	0.73%
Sb 206.836†	25.9	-0.00181		0.001502	-0.00181		0.001502	82.86%
Se 196.026†	5412.3	2.815		0.0066	2.815	mg/L	0.0066	0.24%
Si 288.158†	12987.3	9.609		0.0488	9.609	mg/L	0.0488	0.51%
Sn 189.927†	-38.3	0.01145		0.000623	0.01145	mg/L	0.000623	5.44%
Sr 421.552†	617771.3	1.068		0.0065	1.068		0.0065	0.61%
Ti 334.903†	153.1	0.00201		0.000475	0.00201	mg/L	0.000475	23.57%
Tl 190.801†	8700.2	2.365		0.0043	2.365	mg/L	0.0043	0.18%
V 292.402†	120465.7	0.5953		0.00337	0.5953	mg/L	0.00337	0.57%
Zn 206.200†	1397.0	0.5752	mg/L	0.00458	0.5752	mg/L	0.00458	0.80%

Sequence No.: 11 Sample ID: CV 2

Analyst: EL

Dilution: 1X

Autosampler Location: 7

Date Collected: 11/1/2012 2:03:23 PM

Data Type: Original

Nebulizer Parameters: CV

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min All

Mean Data: CV
 Mean Corrected
 Calib.
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 2650925.8
 100.1 %
 1.28
 1.28
 1.28
 0.21
 0.21%

 216601.7
 102.3 %
 0.21
 0.9943 mg/L
 0.00305
 0.31%
 | Intensity | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | RSD | 2650925.8 | 100.1 % | 1.28 | 0.21 | 0.21 | 296350.4 | 0.9943 mg/L | 0.00305 | 0.9943 mg/L | 0.00305 | 0.31 | 0.3065.1 | 1.997 mg/L | 0.0102 | 1.997 mg/L | 0.0102 | 0.51 | 0.00305 | 0.31 | 0.00305 | 0.9868 mg/L | 0.0227 | 1.09 | 0.00305 | 0.9868 mg/L | 0.00227 | 1.09 | 0.00305 | 0.9868 mg/L | 0.00227 | 1.09 | 0.00305 | 0.9886 mg/L | 0.00227 | 1.09 | 0.00305 | 0.9886 mg/L | 0.00569 | 0.9868 mg/L | 0.00569 | 0.58 | 0.00415 | 0.004 Analyte ScA 357.253 ScR 361.383 Ag 328.068† Aĺ 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402† Zn 206.200†

Date: 11/1/2012 2:13:25 PM

Sequence No.: 12 Autosampler Location: 1

Sample ID: CB Z Date Collected: 11/1/2012 2:09:25 PM Data Type: Original

Analyst: EL Dilution: 1X

Nebulizer Parameters: CB

Analyte

Back Pressure Flow
232.0 kPa 0.55 L/min All

Mean Data: CB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2689324.6	101.6	8	0.87				0.86%
ScR 361.383	212401.5	100.3		1.43				1.43%
Ag 328.068†	33.0	0.00011		0.000037	0.00011		0.000037	33.58%
Al 308.215†	12.0	0.00795		0.009365	0.00795	mg/L	0.009365	117.76%
As 188.979†	2.2	0.00092	mg/L	0.000625	0.00092	mg/L	0.000625	67.61%
B 249.677†	9.8	0.00451		0.002343	0.00451	mg/L	0.002343	51.928
Ba 233.527†	0.1	0.00001	mg/L	0.000264	0.00001	mg/L	0.000264	>999.98
Be 313.042†	-21.7	-0.00008	mg/L	0.000045	-0.00008	mg/L	0.000045	55.61%
Ca 317.933†	8.9	0.00084	mg/L	0.000415	0.00084	mg/L	0.000415	49.55%
Cd 228.802†	18.4	0.00022	mg/L	0.000096	0.00022	mg/L	0.000096	43.95%
Co 228.616†	-0.7	-0.00001	mg/L	0.000089	-0.00001	mg/L	0.000089	987.38%
Cr 267.716†	3.0	0.00065	mg/L	0.001065	0.00065	mg/L	0.001065	163.51%
Cu 324.752†	205.4	0.00066	mg/L	0.000257	0.00066	mq/L	0.000257	39.16%
Fe 273.955†	7.8	0.00635	mg/L	0.003360	0.00635	mg/L	0.003360	52.90%
K 766.490†	127.9	0.03550	mg/L	0.013027	0.03550	mq/L	0.013027	36.70%
Mg 279.077†	-6.9	-0.00596	mg/L	0.005053	-0.00596	mq/L	0.005053	84.74%
Mn 257.610†	44.5	0.00110	mg/L	0.000092	0.00110	mg/L	0.000092	8.36%
Mo 202.031†	0.8	0.00005	mg/L	0.000301	0.00005	mg/L	0.000301	660.29%
Na 589.592†	328.0	0.04033		0.005586	0.04033	mg/L	0.005586	13.85%
Na 330.237†	5.9	0.2154	mq/L	0.44131	0.2154	mg/L	0.44131	204.89%
Ni 231.604†	1.7	0.00077	mg/L	0.001226	0.00077		0.001226	159.06
Pb 220.353†	8.2	0.00064		0.000380	0.00064		0.000380	59.49%
Sb 206.836†	2.6	0.00071	mg/L	0.001209	0.00071		0.001209	170.70%
Se 196.026†	1.5	0.00080		0.004432	0.00080	mg/L	0.004432	556.20%
Si 288.158†	10.3	0.00763	mg/L	0.002751	0.00763		0.002751	36.06%
Sn 189.927†	8.8	0.00134	mq/L	0.000355	0.00134		0.000355	26.56%
Sr 421.552†	71.6	0.00012		0.000073	0.00012	J .	0.000073	58.80%
Ti 334.903†	14.3	0.00056		0.000994	0.00056		0.000994	
Tl 190.801†	1.3	0.00036		0.001438	0.00036		0.001438	
V 292.402†	7.7	0.00004		0.000141	0.00004		0.000141	
Zn 206.200†	3.5	0.00142		0.001396	0.00142	٠.	0.001396	98.58%

UPUG: 00284

Sequence No.: 13 Autosampler Location: 34

Sample ID: VQ16 MB2 DMN Date Collected: 11/1/2012 2:15:23 PM

Analyst: EL Data Type: Original

Dilution: 1X

Nebulizer Parameters: VQ16 MB2 DMN

Analyte

Back Pressure Flow
233.0 kPa 0.55 L/min All

Mean Data: VQ16 M	B2 DMN						
_	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2760897.2	104.3	%	0.18			0.17%
ScR 361.383	217469.8	102.7	g S	1.03			1.00%
Ag 328.068†	-39.2	-0.00013	mg/L	0.000072	-0.00013	mg/L	0.000072 54.55%
Al 308.215†	2.2	0.00147	mg/L	0.002001	0.00147	mg/L	0.002001 136.24%
As 188.979†	1.2	0.00052	mg/L	0.002686	0.00052	mg/L	0.002686 518.12%
B 249.677†	4.5	0.00209	mg/L	0.001348	0.00209	mg/L	0.001348 64.41%
Ba 233.527†	1.8	0.00017	mg/L	0.000332	0.00017	mq/L	0.000332 190.01%
Be 313.042†	-0.4	0.00000	mg/L	0.000082	0.00000	mg/L	0.000082 >999.9%
Ca 317.933†	43.2	0.00408	mg/L	0.001575	0.00408	mg/L	0.001575 38.60%
Cd 228.802†	-1.7	-0.00002	mg/L	0.000041	-0.00002	mg/L	0.000041 191.96%
Co 228.616†	-16.1	-0.00019	mg/L	0.000015	-0.00019	mg/L	0.000015 7.63%
Cr 267.716†	7.0	0.00153	mg/L	0.000842	0.00153	mg/L	0.000842 55.07%
Cu 324.752†	-562.4	-0.00180	mg/L	0.000103	-0.00180		0.000103 5.71%
Fe 273.955†	-4.2	-0.00340	mg/L	0.000956	-0.00340	mg/L	0.000956 28.14%
K 766.490†	14.7	0.00409	mg/L	0.010904	0.00409	mg/L	0.010904 266.86%
Mg 279.077†	4.8	0.00408	mg/L	0.005385	0.00408	mg/L	0.005385 131.92%
Mn 257.610†	4.2	0.00010	mg/L	0.000048	0.00010	mg/L	0.000048 45.68%
Mo 202.031†	3.8	0.00020	mg/L	0.000329	0.00020	mg/L	0.000329 161.79%
Na 589.592†	17.5	0.00215	mg/L	0.006770	0.00215	mg/L	0.006770 314.97%
Na 330.237†	6.0	0.2169	mg/L	0.42708	0.2169	mg/L	0.42708 196.93%
Ni 231.604†	0.8	0.00038	mg/L	0.001895	0.00038	mg/L	0.001895 497.39%
Pb 220.353†	-8.2	-0.00063	mg/L	0.000161	-0.00063	mg/L	0.000161 25.69%
Sb 206.836†	-8.4	-0.00233	mg/L	0.001919	-0.00233	mg/L	0.001919 82.36%
Se 196.026†	6.3	0.00327	mg/L	0.002898	0.00327	mg/L	0.002898 88.73%
Sı 288.158†	1.9	0.00143	mg/L	0.003804	0.00143	mg/L	0.003804 265.11%
Sn 189.927†	-1.7	-0.00026	mg/L	0.000342	-0.00026		0.000342 129.64%
Sr 421.552†	63.5	0.00011	mg/L	0.000071	0.00011		0.000071 64.32%
Ti 334.903†	6.6	0.00026	mg/L	0.000700	0.00026		0.000700 273.81%
Tl 190.801†	-4.6	-0.00126		0.000939	-0.00126		0.000939 74.38%
V 292.402†	25.4	0.00014	mg/L	0.000241	0.00014		0.000241 176.46%
Zn 206.200†	1.3	0.00055	mg/L	0.000674	0.00055	mg/L	0.000674 122.97%

upua aose

Autosampler Location: 35

Sample ID: VQ25 MB DMN (1-2-12)
Analyst: EL Date Collected: 11/1/2012 2:21:25 PM

Analyst: EL Dilution: 1X

Data Type: Original

Nebulizer Parameters: VQ25 MB DMN

Analyte

Back Pressure Flow
232.0 kPa 0.55 L/min All 232.0 kPa

Mean Data: VQ25 MB	DMN						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev. RSD
ScA 357.253	2756433.2	104.1	%	1.07			1.03%
ScR 361.383	221786.7	104.7		1.15			1.09%
Ag 328.068†	- 31.5	-0.00011		0.000012	-0.00011		0.000012 11.42%
Al 308.215†	-11.5	-0.00768		0.002358	-0.00768	J .	0.002358 30.72%
As 188.979†	2.6	0.00110	mg/L	0.001476	0.00110	٥.	0.001476 133.77%
В 249.677†	3.4	0.00156	_	0.000780	0.00156		0.000780 49.88%
Ba 233.527†	-0.8	-0.00008	mg/L	0.000420	-0.00008		0.000420 532.78%
Be 313.042†	-27.7	-0.00010		0.000007	-0.00010	_	0.000007 6.62%
Ca 317.933†	26.7	0.00252	mg/L	0.001379	0.00252		0.001379 54.72%
Cd 228.802†	2.8	0.00003	_	0.000060	0.00003		0.000060 188.96%
Co 228.616†	-12.5	-0.00015		0.000056	-0.00015	_	0.000056 37.59%
Cr 267.716†	6.3	0.00137	mg/L	0.001081	0.00137	J .	0.001081 78.84%
Cu 324.752†	-711.3	-0.00227	_	0.000161	-0.00227		0.000161 7.08%
Fe 273.955†	-3.5	-0.00288	mg/L	0.002869	-0.00288	_	0.002869 99.64%
к 766.490†	0.6	0.00016	mg/L	0.012221	0.00016	_	0.012221 >999.9%
Mg 279.077†	-0.2	-0.00017		0.003513	-0.00017	٥.	0.003513 >999.9%
Mn 257.610†	0.4	0.00001	mg/L	0.000051	0.00001		0.000051 582.56%
Mo 202.031†	0.7	0.00004	mg/L	0.000118	0.00004	_	0.000118 331.50%
Na 589.592†	2.6	0.00032	mg/L	0.001819	0.00032		0.001819 572.33%
Na 330.237†	-8.1	-0.2945	mg/L	0.09545	-0.2945	_	0.09545 32.42%
Ni 231.604†	1.4	0.00065	mg/L	0.002468	0.00065	٠.	0.002468 378.22%
Pb 220.353†	-3.9	-0.00030	mg/L	0.000609	-0.00030		0.000609 202.49%
Sb 206.836†	-11.9	-0.00329	mg/L	0.000544	-0.00329		0.000544 16.52
Se 196.026†	1.5	0.00081	mg/L	0.001997	0.00081	~ .	0.001997 248.06%
Si 288.158†	0.3	0.00026		0.001067	0.00026		0.001067 418.49%
Sn 189.927†	-4.1	-0.00062	mg/L	0.000334	-0.00062	_	0.000334 53.86%
Sr 421.552†	81.0	0.00014	mg/L	0.000092	0.00014	_	0.000092 65.79%
Ti 334.903†	31.3	0.00122	${\tt mg/L}$	0.000954	0.00122		0.000954 78.34%
Tl 190.801†	-6.3	-0.00172	${\tt mg/L}$	0.000224	-0.00172		0.000224 13.04%
V 292.402†	9.9	0.00006	${\tt mg/L}$	0.000051	0.00006		0.000051 87.70%
Zn 206.200†	1.3	0.00052	mg/L	0.000771	0.00052	mg/L	0.000771 147.55%

Autosampler Location: 36 Sequence No.: 15

Date Collected: 11/1/2012 2:27:27 PM Sample ID: VQ16 L DMN

Analyst: EL Dilution: 1X

Data Type: Original

Nebulizer Parameters: VQ16 L DMN

Analyte

Back Pressure Flow
232.0 kPa 0.55 L/min All

Mean Data: VQ16 L	D MN							
~	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	${\tt Std.Dev.}$	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2750494.9	103.9	ક	0.59				0.57%
ScR 361.383	222597.2	105.1	용	0.70				0.66%
Aq 328.068†	-54.8	-0.00030	mg/L	0.000071	-0.00030	mg/L	0.000071	24.10%
Aĺ 308.215†	173.9	0.1155	mg/L	0.00518	0.1155	mg/L	0.00518	4.49%
As 188.979†	5.6	0.00233	mg/L	0.000246	0.00233	mg/L	0.000246	10.59%
B 249.677†	90.7	0.04184	${\sf mg/L}$	0.001204	0.04184	mg/L	0.001204	2.88%
Ba 233.527†	61.9	0.00603	${ m mg/L}$	0.000069	0.00603	mg/L	0.000069	1.14%
Be 313.042†	-14.2	-0.00006	mg/L	0.000060	-0.00006	mg/L	0.000060	
Ca 317.933†	102052.4	9.641	mg/L	0.0517	9.641	mg/L	0.0517	0.54%
Cd 228.802†	-0.8	-0.00002	mg/L	0.000062	-0.00002	mg/L		408.03%
Co 228.616†	-7.0	-0.00009	mg/L	0.000025	-0.00009	_	0.000025	28.79%
Cr 267.716†	11.8	0.00258	${ m mg/L}$	0.000713	0.00258		0.000713	27.63%
Cu 324.752†	1180.8	0.00377	mg/L	0.000147	0.00377	J .	0.000147	3.90%
Fe 273.955†	47.7	0.03895	${ m mg/L}$	0.002319	0.03895	_	0.002319	5.95%
K 766.490†	5155.5	1.431	mg/L	0.0079	1.431	mg/L	0.0079	0.55%
Mg 279.077†	1450.7	1.245	${ m mg/L}$	0.0115	1.245	mg/L	0.0115	0.93%
Mn 257.610†	574.6	0.01420	${ m mg/L}$	0.000174	0.01420	mg/L	0.000174	1.23%
Mo 202.031†	74.8	0.00403	${ m mg/L}$	0.000049	0.00403	~	0.000049	1.22%
Na 589.592†	67066.9	8.246	${ m mg/L}$	0.0216	8.246	_	0.0216	0.26%
Na 330.237†	226.2	8.199	${\tt mg/L}$	0.5477	8.199		0.5477	6.68%
Ni 231.604†	-1.0	-0.00045	${ t mg/L}$	0.000963	-0.00045			214.96%
Pb 220.353†	-10.9	-0.00056	${ m mg/L}$	0.000249	-0.00056	mg/L	0.000249	44.66%
Sb 206.836†	-5.1	-0.00145	mg/L	0.000449	-0.00145	-	0.000449	31.00%
Se 196.026†	1.8	0.00094	mg/L	0.000985	0.00094	2		104.92%
Si 288.158†	1888.9	1.397	${ m mg/L}$	0.0103	1.397	${ t mg/L}$	0.0103	0.74%
Sn 189.927†	-7.7	0.00091	mg/L	0.000820	0.00091	_	0.000820	90.44%
Sr 421.552†	24699.1	0.04270	mg/L	0.000086	0.04270	mg/L	0.000086	0.20%
Ti 334.903†	62.8	0.00197	mg/L	0.000366	0.00197	٠.	0.000366	18.61%
Tl 190.801†	-8.9	-0.00245	mg/L	0.000664	-0.00245	_	0.000664	27.05%
V 292.402†	306.4	0.00154	mg/L	0.000080	0.00154	٠.	0.000080	5.18%
Zn 206.200†	24.5	0.01026	mg/L	0.000410	0.01026	mg/L	0.000410	4.00%

Autosampler Location: 37

Sequence No.: 16

Date Collected: 11/1/2012 2:33:27 PM Sample ID: VQ16 KDUP DMN

Analyst: EL Data Type: Original

Dilution: 1X

Nebulizer Parameters: VQ16 KDUP DMN

Back Pressure Flow
233.0 kPa 0.55 L/min Analyte 233.0 kPa All

Mean Data: VQ16 KI						_		
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2771757.6	104.7		0.50				0.48%
ScR 361.383	219340.3	103.6		1.36				1.31%
Ag 328.068†	-31.4	-0.00022		0.000100	-0.00022		0.000100	45.04%
Al 308.215†	129.5	0.08610	J .	0.005275	0.08610		0.005275	6.13%
As 188.979†	3.1	0.00129		0.000832	0.00129		0.000832	64.35%
B 249.677†	273.6	0.1261		0.00431	0.1261	_	0.00431	3.42%
Ba 233.527†	57.2	0.00557	mg/L	0.000552	0.00557	J .	0.000552	9.92%
Be 313.042†	-30.5	-0.00012	mg/L	0.000033	-0.00012	mg/L	0.000033	28.61%
Ca 317.933†	106904.9	10.10		0.021	10.10		0.021	0.21%
Cd 228.802†	-2.3	-0.00003	mg/L	0.000028	-0.00003	mg/L	0.000028	91.81%
Co 228.616†	-13.7	-0.00017	_	0.000053	-0.00017		0.000053	31.63%
Cr 267.716†	12.0	0.00262	mg/L	0.000721	0.00262	mg/L	0.000721	27.48%
Cu 324.752†	343.0	0.00110	${ m mg/L}$	0.000011	0.00110	mg/L	0.000011	0.99%
Fe 273.955†	39.5	0.03225	mg/L	0.000855	0.03225	mg/L	0.000855	2.65%
K 766.490†	3216.8	0.8928	${ m mg/L}$	0.00953	0.8928	-	0.00953	1.07%
Mg 279.077†	925.7	0.7947	${\tt mg/L}$	0.00533	0.7947	J .	0.00533	0.67%
Mn 257.610†	582.5	0.01439	${ t mg/L}$	0.000255	0.01439	mg/L	0.000255	1.77%
Mo 202.031†	29.1	0.00156	${ m mg/L}$	0.000072	0.00156	mg/L	0.000072	4.63%
Na 589.592†	35183.0	4.326	${ t mg/L}$	0.0201	4.326	mg/L	0.0201	0.47%
Na 330.237†	116.3	4.195	mg/L	0.0378	4.195	mg/L	0.0378	0.90%
Ni 231.604†	3.8	0.00173	mg/L	0.001148	0.00173	mg/L	0.001148	66.27%
Pb 220.353†	-13.6	-0.00076	mg/L	0.000295	-0.00076	mg/L	0.000295	38.60%
Sb 206.836†	-7.5	-0.00212	mg/L	0.001301	-0.00212	mg/L	0.001301	61.29%
Se 196.026†	3.9	0.00201	mg/L	0.001810	0.00201	mg/L	0.001810	90.25%
Si 288.158†	1190.4	0.8802	mg/L	0.00808	0.8802	mg/L	0.00808	0.92%
Sn 189.927†	-9.8	0.00067	mg/L	0.000836	0.00067	mg/L	0.000836	124.13%
Sr 421.552†	21618.3	0.03737	mg/L	0.000239	0.03737	mg/L	0.000239	0.64%
Ti 334.903†	61.2	0.00189	mg/L	0.000189	0.00189	mg/L	0.000189	10.05%
Tl 190.801†	-8.9	-0.00246	mg/L	0.001222	-0.00246	mg/L	0.001222	49.70%
V 292.402†	123.7	0.00063	mg/L	0.000116	0.00063	mg/L	0.000116	18.43%
Zn 206.200†	10.8	0.00467	mg/L	0.000445	0.00467	mg/L	0.000445	9.54%

upug: gazaa

Autosampler Location: 38 Sequence No.: 17

Date Collected: 11/1/2012 2:39:27 PM Sample ID: VQ16 K DMN

Data Type: Original Analyst: EL Dilution: 1X

Nebulizer Parameters: VQ16 K DMN

Analyte

Back Pressure Flow
233.0 kPa 0.55 L/min All

Mean Data: VQ16 K							
	Mean Corrected	_	Calib.		_	Sample	I DAD
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2767994.0	104.5		0.22			0.21%
ScR 361.383	218541.0	103.2		0.79		/	0.77%
Ag 328.068†	-17.4	-0.00018		0.000308	-0.00018		0.000308 175.25%
Al 308.215†	120.4	0.08005		0.011998	0.08005		0.011998 14.99%
As 188.979†	0.0	0.00001		0.002183	0.00001	_	0.002183 >999.9%
В 249.677†	280.8	0.1295		0.00109	0.1295	_	0.00109 0.84%
Ba 233.527†	54.6	0.00531		0.000214	0.00531	J .	0.000214 4.03%
Be 313.042+	-3.9	-0.00002	${ m mg/L}$	0.000028	-0.00002	2.	0.000028 168.47%
Ca 317.933†	107773.3	10.18	${ m mg/L}$	0.023	10.18	mg/L	0.023 0.22 €
Cd 228.802†	1.4	0.00002	${ m mg/L}$	0.000053	0.00002		0.000053 309.32%
Co 228.616†	-14.9	-0.00018	${ m mg/L}$	0.000096	-0.00018	mg/L	0.000096 52.51%
Cr 267.716†	9.3	0.00204	mg/L	0.000826	0.00204	${ m mg/L}$	0.000826 40.56%
Cu 324.752†	364.0	0.00116	${\tt mg/L}$	0.000090	0.00116	mg/L	0.000090 7.69%
Fe 273.955†	40.0	0.03260	mg/L	0.001116	0.03260	${ m mg/L}$	0.001116 3.42%
K 766.490†	3210.2	0.8910	mg/L	0.01864	0.8910	mg/L	0.01864 2.09%
Mg 279.077†	933.1	0.8011	mg/L	0.00775	0.8011	mg/L	0.00775 0.97%
Mn 257.610†	582.6	0.01440	mg/L	0.000144	0.01440	mg/L	0.000144 1.00%
Mo 202.031†	27.8	0.00150	mg/L	0.000229	0.00150	mg/L	0.000229 15.33%
Na 589.592†	35476.9	4.362	mg/L	0.0138	4.362	mg/L	0.0138 0.32%
Na 330.237†	106.4	3.832	mg/L	0.4855	3.832	mg/L	0.4855 12.67%
Ni 231.604†	1.9	0.00085	mg/L	0.001162	0.00085	mg/L	0.001162 136.12%
Pb 220.353†	-17.7	-0.00108	mg/L	0.000155	-0.00108	mg/L	0.000155 14.42%
Sb 206.836†	-11.4	-0.00316	mg/L	0.000816	-0.00316	mg/L	0.000816 25.82%
Se 196.026†	5.1	0.00264	mg/L	0.000933	0.00264	mg/L	0.000933 35.39%
Si 288.158†	1197.7	0.8856	mg/L	0.00717	0.8856	mg/L	0.00717 0.81 ^{\(\dagger)}
Sn 189.927†	-10.2	0.00064	mg/L	0.000139	0.00064	mg/L	0.000139 21.79%
Sr 421.552†	21664.7	0.03745	mg/L	0.000089	0.03745	mg/L	0.000089
Ti 334.903†	56.3	0.00169	mg/L	0.000924	0.00169	mg/L	0.000924 54.73%
Tl 190.801†	-8.3	-0.00229	mg/L	0.001667	-0.00229	mg/L	0.001667 72.81%
V 292,402†	131.8	0.00067		0.000134	0.00067	mg/L	0.000134 20.20%
Zn 206.200†	12.9	0.00552	mg/L	0.001063	0.00552	mg/L	0.001063 19.26%

Sequence No.: 18

Autosampler Location: 39

Sample ID: VQ16 KSPK DMN Date Collected: 11/1/2012 2:45:27 PM Analyst: EL Data Type: Original

Dilution: 1X

Nebulizer Parameters: VQ16 KSPK DMN

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: VQ16 KSPK DMN
 Mean Corrected
 Calib.
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.

 253
 2707834.1
 102.3 %
 0.25

 383
 220594.4
 104.2 %
 0.17
 | Mean Corrected | Calib. | Std.Dev. | Conc. | Units | Std.Dev. | Conc. | Units | Conc. | Units | Std.Dev. | Conc. | Units | Units | U Analyte RSD ScA 357.253 ScR 361.383 Ag 328.068† Aī 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077†
Mn 257.610†
Mo 202.031†
Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402† Zn 206.200†

Date: 11/1/2012 2:55:30 PM

Sequence No.: 19

Sample ID: VQ25 ADUP WMN

Analyst: EL Dilution: 1X

Autosampler Location: 40

Date Collected: 11/1/2012 2:51:29 PM

Data Type: Original

Nebulizer Parameters: VQ25 ADUP WMN

Analyte

Back Pressure Flow
233.0 kPa 0.55 L/min All

Mean Data: VQ25 A	DUP WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	-	Std.Dev	. RSD
ScA 357.253	2712569.6	102.4	ક્ર	0.51				0.50%
ScR 361.383	219916.7	103.9	용	0.86				0.83%
Ag 328.068†	11.3	-0.00025	mg/L	0.000133	-0.00025	mg/L	0.000133	53.72%
Al 308.215†	12.5	0.00807	mg/L	0.005340	0.00807	mg/L	0.005340	66.13%
As 188.979†	1.5	0.00062	mg/L	0.001041	0.00062	mg/L	0.001041	167.77%
B 249.677†	20.2	0.00932	mg/L	0.001143	0.00932	mg/L	0.001143	12.26%
Ba 233.527†	156.7	0.01524	mg/L	0.000255	0.01524	mg/L	0.000255	1.67%
Be 313.042†	-13.9	-0.00008	mg/L	0.000039	-0.00008	mg/L	0.000039	49.50%
Ca 317.933†	268479.4	25.36	mg/L	0.055	25.36		0.055	0.22%
Cd 228.802†	-9.4	-0.00011	mg/L	0.000039	-0.00011	mg/L	0.000039	33.76%
Co 228.616†	-21.3	-0.00026	${\tt mg/L}$	0.000025	-0.00026		0.000025	9.76%
Cr 267.716†	2.7	0.00060	mg/L	0.000355	0.00060	mg/L	0.000355	59.48%
Cu 324.752†	10.0	0.00003	mg/L	0.000189	0.00003	mg/L	0.000189	553.25%
Fe 273.955t	48.1	0.03920	mg/L	0.000774	0.03920	mg/L	0.000774	1.98%
K 766.490†	10618.6	2.947	${\tt mg/L}$	0.0098	2.947	mg/L	0.0098	0.33%
Mg 279.077†	7793.7	6.691	mg/L	0.0134	6.691	mg/L	0.0134	0.20%
Mn 257.610†	204.5	0.00505		0.000132	0.00505		0.000132	2.61%
Mo 202.031†	33.8	0.00175	mg/L	0.000046	0.00175	${\tt mg/L}$	0.000046	2.61%
Na 589.592†	32180.0	3.956	${ m mg/L}$	0.0129	3.956	mg/L	0.0129	0.33%
Na 330.237†	103.5	3.656		0.1842	3.656	mg/L	0.1842	5.04%
Ni 231.604†	0.6	0.00027		0.001420	0.00027	${ m mg/L}$	0.001420	516.69%
Pb 220.353†	-15.7	-0.00056	mg/L	0.000763	-0.00056	2.	0.000763	135.37%
Sb 206.836†	-1.9	-0.00050	_	0.002160	-0.00050		0.002160	433.06%
Se 196.026†	4.2	0.00219	_	0.001777	0.00219	mg/L	0.001777	81.11%
Si 288.158†	36245.3	26.80		0.061	26.80		0.061	0.23%
Sn 189.927†	-17.7	0.00286		0.000723	0.00286		0.000723	25.30%
Sr 421.552†	52182.3	0.09020		0.000092	0.09020		0.000092	0.10%
Ti 334.903†	45.0	0.00051		0.000351	0.00051		0.000351	69.18%
Tl 190.801†	-14.2	-0.00393		0.001154	-0.00393		0.001154	29.38%
V 292.402†	2102.7	0.01032		0.000266	0.01032	J .	0.000266	2.57%
Zn 206.200†	39.7	0.01685	mg/L	0.000844	0.01685	mg/L	0.000844	5.01%

Sequence No.: 20 Autosampler Location: 41

Sample ID: VQ25 A WMN

Analyst: EL Dilution: 1X

Date Collected: 11/1/2012 2:57:29 PM

Data Type: Original

Nebulizer Parameters: VQ25 A WMN

Analyte

Back Pressure Flow
233.0 kPa 0.55 L/min All 233.0 kPa

Mean Data: VQ25 A	WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	. RSD
ScA 357.253	2762488.3	104.3	8	0.82				0.78%
ScR 361.383	219338.5	103.6	F	1.39				1.34%
Ag 328.068†	-28.2	-0.00038	${\tt mg/L}$	0.000191	-0.00038	mg/L	0.000191	50.43%
Al 308.215†	-5.9	-0.00410	mg/L	0.009052	-0.00410	mg/L	0.009052	220.62%
As 188.979†	0.0	0.00000	mg/L	0.002468	0.00000	mg/L	0.002468	>999.9%
B 249.677†	22.6	0.01044	${ m mg/L}$	0.001974	0.01044	mg/L	0.001974	18.91%
Ba 233.527†	159.4	0.01550	${ m mg/L}$	0.000214	0.01550	mg/L	0.000214	1.38%
Be 313.042†	-19.8	-0.00010	mg/L	0.000105	-0.00010	mg/L	0.000105	104.28%
Ca 317.933†	267511.1	25.27		0.062	25.27	mg/L	0.062	0.25%
Cd 228.802†	-12.9	-0.00015		0.000044	-0.00015	mg/L	0.000044	28.87%
Co 228.616†	-27.7	-0.00034		0.000069	-0.00034	mg/L	0.000069	20.55%
Cr 267.716†	4.5	0.00098		0.000462	0.00098	mg/L	0.000462	47.16%
Cu 324.752†	-175.2	-0.00056		0.000053	-0.00056		0.000053	9.51%
Fe 273.955†	47.8	0.03901		0.000641	0.03901	mg/L	0.000641	1.64%
K 766.490†	10553.7	2.929		0.0297	2.929	mg/L	0.0297	1.01%
Mg 279.077†	7757.7	6.660		0.0239	6.660	mg/L	0.0239	0.36%
Mn 257.610†	201.7	0.00498		0.000093	0.00498	mg/L	0.000093	1.86%
Mo 202.031†	32.6	0.00168	_	0.000363	0.00168	mg/L	0.000363	21.62%
Na 589.592†	32005.6	3.935	_	0.0032	3.935	mg/L	0.0032	0.08%
Na 330.237†	106.0	3.744		0.3277	3.744	mg/L	0.3277	8.75%
Ni 231.604†	6.9	0.00313		0.000762	0.00313		0.000762	24.31%
Pb 220.353†	-9.0	-0.00005		0.000204	-0.00005	mg/L	0.000204	394.52%
Sb 206.836†	-11.1	-0.00303		0.000999	-0.00303		0.000999	32.94%
Se 196.026†	5.1	0.00266	J .	0.003286	0.00266	mg/L	0.003286	123.38%
Si 288.158†	36130.3	26.71	_	0.089	26.71	mg/L	0.089	0.33%
Sn 189.927†	-22.5	0.00211	2.	0.000809	0.00211	mg/L	0.000809	38.31%
Sr 421.552†	51867.9	0.08966		0.000601	0.08966	mg/L	0.000601	0.67%
Ti 334.903†	46.7	0.00058		0.001063	0.00058	mg/L	0.001063	184.52%
Tl 190.801†	-13.8	-0.00382		0.000789	-0.00382		0.000789	20.67%
V 292.402†	2057.1	0.01010	J .	0.000151	0.01010	_	0.000151	1.50%
Zn 206.200†	41.4	0.01753	mg/L	0.000273	0.01753	mg/L	0.000273	1.56%

Sequence No.: 21

Sample ID: VQ25 ASPK WMN

Analyst: EL Dilution: 1X

Autosampler Location: 42

Date Collected: 11/1/2012 3:03:29 PM

Data Type: Original

Nebulizer Parameters: VQ25 ASPK WMN

Analyte

Back Pressure Flow
233.0 kPa 0.55 L/min All

Mean Data: VQ25	ASPK WMN							
-	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2695063.5	101.8	્ર	0.30				0.29%
ScR 361.383	219888.4	103.8	용	0.68				0 65%
Ag 328.068†	160513.6	0.5382	mg/L	0.00673	0.5382	mg/L	0.00673	1.25%
Al 308.215†	3406.7	2.257	mg/L	0.0122	2.257	mg/L	0.0122	0.54%
As 188.979†	5686.9	2.387	mg/L	0.0135	2.387	mg/L	0.0135	0.57%
B 249.677†	21.7	0.00817	mg/L	0.001534	0.00817	mg/L	0.001534	18.78%
Ba 233.527†	23264.2	2.263	mg/L	0.0040	2.263	mg/L	0.0040	0.18%
Be 313.042†	159233.6	0.5966	mg/L	0.00090	0.5966	mg/L	0.00090	0.15%
Ca 317.933†	385478.9	36.41	mg/L	0.062	36.41	mg/L	0.062	0.17%
Cd 228.802†	49463.7	0.5862	mg/L	0.00574	0.5862	mg/L	0.00574	0.98%
Co 228.616†	46336.1	0.5487	mg/L	0.00469	0.5487	mg/L	0.00469	0.85%
Cr 267.716†	2623.6	0.5730	mg/L	0.00328	0.5730	mg/L	0.00328	0.57%
Cu 324.752†	175320.8	0.5604	mg/L	0.00367	0.5604	mg/L	0.00367	0.66%
Fe 273.955†	2934.2	2.393	mg/L	0.0149	2.393	mg/L	0.0149	0.62%
K 766.490†	52458.2	14.56	mg/L	0.098	14.56	mg/L	0.098	0.68%
Mg 279.077†	21493.9	18.45	mg/L	0.017	18.45	mg/L	0.017	0.09%
Mn 257.610†	23042.0	0.5699	mg/L	0.00108	0.5699	mg/L	0.00108	0.19₹
Mo 202.031†	41.5	0.00195	mg/L	0.000062	0.00195	mg/L	0.000062	3.20%
Na 589.592†	125552.4	15.44	mg/L	0.036	15.44	mg/L	0.036	0.23%
Na 330.237†	424.0	15.06	mg/L	0.164	15.06	mg/L	0.164	1.09%
Ni 231.604†	1232.0	0.5568	mg/L	0.00217	0.5568	mg/L	0.00217	0.39%
Pb 220.353†	30115.1	2.332	mg/L	0.0163	2.332	mg/L	0.0163	0.70%
Sb 206.836†	19.9	-0.00314	mg/L	0.001241	-0.00314	mg/L	0.001241	39.51%
Se 196.026†	4980.7	2.591	mg/L	0.0165	2.591	mg/L	0.0165	∪.64೪
Si 288.158†	35875.2	26.53	mg/L	0.060	26.53	mg/L	0.060	0.23%
Sn 189.927†	-30.1	0.00361	mg/L	0.000563	0.00361	mg/L	0.000563	15.60%
Sr 421.552†	394144.7	0.6813	mg/L	0.00136	0.6813	mg/L	0.00136	0.20%
Ti 334.903†	83.5	0.00133	mg/L	0.000291	0.00133	mg/L	0.000291	21.91%
Tl 190.801†	8557.0	2.332	mg/L	0.0133	2.332	mg/L	0.0133	0.57%
V 292.402†	117215.2	0.5785	mg/L	0.00476	0.5785	mg/L	0.00476	0.82%
Zn 206.200†	1460.5	0.6004	mg/L	0.00575	0.6004	mg/L	0.00575	0.96%

Cecos: Duqu

Sequence No.: 22

Sample ID: VP23 MB2SPK WMN

Analyst: EL Dilution: 1X

Mn 257.610† Mo 202.031† Na 589.592† Na 330.237†

Zn 206.200†

Autosampler Location: 43

Date Collected: 11/1/2012 3:09:33 PM

Data Type: Original

Nebulizer Parameters: VP23 MB2SPK WMN

Analyte

Back Pressure Flow

0.55 L/min233.0 kPa

Mean Data: VP23 M			Calib.			Sample		
31	Mean Corrected Intensity	Conc	Units	Std.Dev.	Conc.	-	Std.Dev.	RSD
Analyte	_			0.67	conc.	OHICS	Scu.Dev.	0.66%
ScA 357.253	2687766.0	101.5						
ScR 361.383	217065.8	102.5		0.84				0.82%
Ag 328.068†	161488.7	0.5418	mg/L	0.00601	0.5418	mg/L	0.00601	1.11%
Aĺ 308.215†	3451.3	2.287	mg/L	0.0150	2.287	mg/L	0.0150	0.65%
As 188.979†	5587.7	2.345	mg/L	0.0256	2.345	mg/L	0.0256	1.09%
B 249.677†	3.5	-0.00027	mg/L	0.001332	-0.00027	mg/L	0.001332	491.37%
Ba 233.527†	23329.8	2.270	mg/L	0.0078	2.270	mg/L	0.0078	0.34%
Be 313.042†	161593.6	0.6054	mg/L	0.00217	0.6054	mg/L	0.00217	0.36%
Ca 317.933†	124267.4	11.74	mg/L	0.032	11.74	mg/L	0.032	0.27%
Cd 228.802†	49996.6	0.5927	mg/L	0.00358	0.5927	mg/L	0.00358	0.60%
Co 228.616†	47520.7	0.5627	mg/L	0.00270	0.5627	mg/L	0.00270	0.48%
Cr 267.716†	2668.7	0.5828	${ m mg/L}$	0.00613	0.5828	mg/L	0.00613	1.05%
Cu 324.752†	174810.5	0.5587	mg/L	0.00314	0.5587	mg/L	0.00314	0.56%
Fe 273.955†	2928.8	2.389	mg/L	0.0247	2.389	mg/L	0.0247	1.03%
K 766.490†	43054.8	11.95	mg/L	0.059	11.95	mg/L	0.059	0.49%
Mg 279.077†	13934.8	11.96	${\tt mg/L}$	0.122	11.96	mg/L	0.122	1.02%
Mn 257.610†	23081.7	0.5709	mg/L	0.00156	0.5709	mg/L	0.00156	0.27%

Sequence No.: 23 Sample ID: CV 3 Analyst: EL Dilution: 1X

Autosampler Location: 7

Date Collected: 11/1/2012 3:15:36 PM

Data Type: Original

Nebulizer Parameters: CV

Analyte Back Pressure Flow All 233.0 kPa 0.55 L/min

Mean Data: CV						_		
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2652436.1	100.2		0.48				0.48%
ScR 361.383	213720.7	100.9		0.11				0.10%
Ag 328.068†	295516.5	0.9915	mg/L	0.00520	0.9915	_	0.00520	0.52%
Al 308.215†	3088.0	2.012	mg/L	0.0031	2.012	J.	0.0031	0.16%
As 188.979†	4920.7	2.064	mg/L	0.0146	2.064		0.0146	0.71%
В 249.677†	2158.7	0.9935	mg/L	0.00334	0.9935		0.00334	0.34%
Ba 233.527†	10217.3	0.9937	mg/L	0.00307	0.9937		0.00307	0.31%
Be 313.042†	274128.4	1.027	mg/L	0.0063	1.027		0.0063	0.61%
Ca 317.933†	21533.9	2.034	mg/L	0.0068	2.034	mg/L	0.0068	0.34%
Cd 228.802†	85058.9	1.013	mg/L	0.0017	1.013	mg/L	0.0017	0.16%
Co 228.616†	83267.5	0.9855	mg/L	0.00287	0.9855	mg/L	0.00287	0.29%
Cr 267.716†	4578.3	0.9997	mg/L	0.00325	0.9997	mg/L	0.00325	0.32%
Cu 324.752†	332434.0	1.062	mg/L	0.0029	1.062	mg/L	0.0029	0.28%
Fe 273.955†	2611.8	2.130	mg/L	0.0092	2.130	mg/L	0.0092	0.43%
K 766.490†	73698.9	20.45	mg/L	0.039	20.45	mg/L	0.039	0.19%
Mg 279.077†	2442.8	2.101	mg/L	0.0081	2.101	mg/L	0.0081	0.38%
Mn 257.610†	40357.2	0.9977	mg/L	0.00425	0.9977	mg/L	0.00425	0.43%
Mo 202.031†	17722.7	0.9576	mg/L	0.00509	0.9576	mg/L	0.00509	0.53%
Na 589.592†	414251.3	50.93	mg/L	0.177	50.93	mg/L	0.177	0.35%
Na 330.237†	1401.6	50.87	mg/L	0.052	50.87	mg/L	0.052	0.10%
Ni 231.604†	2246.3	1.017	mg/L	0.0017	1.017	mg/L	0.0017	0.16%
Pb 220.353†	26377.0	2.042	mg/L	0.0146	2.042	mg/L	0.0146	0.72%
Sb 206.836†	7664.3	2.093	mg/L	0.0151	2.093	mg/L	0.0151	0.72%
Se 196.026†	3842.5	1.997	mg/L	0.0107	1.997	mg/L	0.0107	0.53>
Si 288.158†	2920.4	2.166	mg/L	0.0064	2.166	mg/L	0.0064	0.30%
Sn 189.927†	5943.8	0.9072	mg/L	0.00465	0.9072	mg/L	0.00465	0.51%
Sr 421.552†	604317.9	1.045	mg/L	0.0014	1.045	mg/L	0.0014	0.13%
Ti 334.903†	25676.7	0.9978	mg/L	0.00333	0.9978	mg/L	0.00333	0.33%
Tl 190.801†	7326.8	1.990	mg/L	0.0131	1.990	mg/L	0.0131	0.66%
V 292.402†	203816.8	1.010	mg/L	0.0043	1.010	mg/L	0.0043	0.42%
Zn 206.200†	2637.5	1.082	mg/L	0.0063	1.082	mg/L	0.0063	0.59%
			-					

Sequence No.: 24 Sample ID: CB 3 Analyst: EL

Dilution: 1X

Autosampler Location: 1 Date Collected: 11/1/2012 3:21:41 PM

Data Type: Original

Nebulizer Parameters: CB

Back Pressure Flow 232.0 kPa 0.55 L/min Analyte

All

Mean Data: CB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2641997.0	99.76	용	0.272				0.27%
ScR 361.383	209711.4	99.04	용	0.617				0.62%
Ag 328.068†	40.4	0.00014	mg/L	0.000117	0.00014	mg/L	0.000117	85.98%
Al 308.215†	5.9	0.00392	mg/L	0.004763	0.00392	mg/L	0.004763 1	21.50%
As 188.979†	3.6	0.00152	mg/L	0.001565	0.00152	mg/L	0.001565 1	03.01%
B 249.677†	4.0	0.00183	mg/L	0.002697	0.00183	mg/L	0.002697 1	47.02%
Ba 233.527†	0.6	0.00005	mg/L	0.000256	0.00005	mg/L	0.000256 4	72.42%
Be 313.042†	2.8	0.00001	mg/L	0.000043	0.00001	mg/L	0.000043 4	31.22%
Ca 317.933†	13.2	0.00124	mg/L	0.000491	0.00124	mg/L	0.000491	39.52%
Cd 228.802†	11.7	0.00014	mg/L	0.000051	0.00014	mg/L	0.000051	36.93%
Co 228.616†	8.7	0.00010	mg/L	0.000024	0.00010	mg/L	0.000024	22.98%
Cr 267.716†	7.3	0.00159	mg/L	0.000351	0.00159	mg/L	0.000351	22.11%
Cu 324.752†	378.0	0.00121	mg/L	0.000081	0.00121	mg/L	0.000081	6.72%
Fe 273.955†	4.4	0.00360	mg/L	0.001547	0.00360	mg/L	0.001547	42.93%
K 766.490†	170.4	0.04730	mg/L	0.015301	0.04730	mg/L	0.015301	32.35%
Mg 279.077†	-1.1	-0.00092	mg/L	0.001887	-0.00092	mg/L	0.001887 2	04.51%
Mn 257.610†	22.4	0.00055	mg/L	0.000116	0.00055	mg/L	0.000116	20.90%
Mo 202.031†	-5.5	-0.00030	mg/L	0.000058	-0.00030	mg/L	0.000058	19.40%
Na 589.592†	260.4	0.03201	mg/L	0.006854	0.03201	mg/L	0.006854	21.41%
Na 330.237†	9.6	0.3488	mg/L	0.37818	0.3488	mg/L	0.37818 1	08.43%
Ni 231.604†	0.7	0.00030	mg/L	0.002784	0.00030	${ m mg/L}$	0.002784 9	42.65%
Pb 220.353†	19.1	0.00148	mg/L	0.000472	0.00148	mg/L	0.000472	31.90%
Sb 206.836†	-4.7	-0.00130	mg/L	0.001476	-0.00130	mg/L	0.001476 1	13.50%
Se 196.026†	-0.6	-0.00032	mg/L	0.001361	-0.00032	mg/L	0.001361 4	27.19%
Si 288.158†	9.0	0.00662	mg/L	0.002411	0.00662	mg/L	0.002411	36.42%
Sn 189.927†	5.9	0.00090	mg/L	0.000236	0.00090	mg/L	0.000236	26.27€
Sr 421.552†	86.3	0.00015	mg/L	0.000066	0.00015	mg/L	0.000066	44.24 %
Ti 334.903†	4.9	0.00019	mg/L	0.000246	0.00019	mg/L	0.000246 1	29.02%
Tl 190.801†	4.9	0.00133	mg/L	0.000646	0.00133	mg/L	0.000646	48.49%
V 292.402†	38.6	0.00020		0.000115	0.00020	mg/L	0.000115	57.90%
Zn 206.200†	-0.4	-0.00016	mg/L	0.001037	-0.00016	mg/L	0.001037 6	63.26%

Sequence No.: 25

Sample ID: VP40 MB1 SWC

Analyst: EL
Dilution: 2X

Autosampler Location: 44

Date Collected: 11/1/2012 3:27:39 PM

Data Type: Original

Nebulizer Parameters: VP40 MB1 SWC

Analyte

Back Pressure Flow
233.0 kPa 0.55 L/min All

Mean Data: VP40 N	Æ1 SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2673523.7	101.0	용	0.24				0.24%
ScR 361.383	213796.1	101.0	9	0.51				0.51%
Ag 328.068†	18.6	0.00006	mg/L	0.000044	0.00013	mg/L	0.000089	70.92%
Al 308.215†	14.2	0.00943	mg/L	0.012522	0.01887	mg/L	0.025044	132.73%
As 188.979†	2.6	0.00111	mg/L	0.002511	0.00222	mg/L	0.005021	225.88%
B 249.677†	2.5	0.00117	mg/L	0.001627	0.00235	mg/L	0.003255	138.77%
Ba 233.527†	2.3	0.00023	mg/L	0.000295	0.00045	mg/L	0.000589	129.80%
Be 313.042†	2.6	0.00001	mg/L	0.000045	0.00002	mg/L	0.000090	508.04*
Ca 317.933†	143.1	0.01352	mg/L	0.001231	0.02703	mg/L	0.002462	9.11%
Cd 228.802†	6.3	0.00007	mg/L	0.000029	0.00015	mg/L	0.000058	39.34%
Co 228.616†	-0.8	-0.00001	mg/L	0.000099	-0.00002	mg/L	0.000197	859.58%
Cr 267.716†	3.2	0.00069	mg/L	0.000682	0.00138	mg/L	0.001363	98.90%
Cu 324.752†	1507.2	0.00 <u>481</u>	_mg/L	0.000060	0.00963	mg/L	0.000120	1.25%
Fe 273.955†	13.7	0.01118	mg/L	0.003154	0.02236	mg/L	0.006308	28.21%
K 766.490†	76.9	0.02133	mg/L	0.003425	0.04267	mg/L	0.006850	16.05%
Mg 279.077†	1.0	0.00081	mg/L	0.006400	0.00162	mg/L	0,012801	790.48%
Mn 257.610†	23.5	0.00058	mg/L	0.000164	0.00116	mg/L	0.000328	28,25%
Mo 202.031†	-2.2	-0.00012	mg/L	0.000066	-0.00023	mg/L	0.000133	56.71%
Na 589.592†	94.3	0.01160	mg/L	0.007923	0.02319	mg/L	0.015846	68.32%
Na 330.237†	-8.0	-0.2952	mg/L	0.44613	-0.5904	mg/L	0.89227	151.125
Ni 231.604†	-0.1	-0.00006	mg/L	0.000440	-0.00011	mg/L	0.000879	787.70%
Pb 220.353†	15.2	0.00118	mg/L	0.000342	0.00236	mg/L	0.000684	29.03%
Sb 206.836†	2.5	0.00067	mg/L	0.000509	0.00134	mg/L	0.001018	75.86%
Se 196.026†	6.1	0.00316	mg/L	0.000767	0.00631	mg/L	0.001533	24.28%
Si 288.158†	17.5	0.01291	mg/L	0.003762	0.02582	mg/L	0.007525	29.14 %
Sn 189.927†	-3.5	-0.00053	mg/L	0.000368	-0.00106	mg/L	0.000737	69.57%
Sr 421.552†	94.4	0.00016	mg/L	0.000027	0.00033	mg/L	0.000053	16.40%
Ti 334.903†	34.0	0.00132		0.000560	0.00264	mg/L	0.001119	42.35%
Tl 190.801†	-9.8	-0.00268	mg/L	0.000797	-0.00536	mg/L	0.001594	29.71%
V 292.402†	59.7	0.00029	mg/L	0.000128	0.00059	mg/L	0.000257	43.57%
Zn 206.200†	23.5	0.00963	mg/L	0.000490	0.01927	mg/L	0.000981	5.09%

upua aaser

Date: 11/1/2012 3:37:30 PM

Sequence No.: 26

Sample ID: VP41 A SWC

Analyst: EL Dilution: 2X

Autosampler Location: 45

Date Collected: 11/1/2012 3:33:39 PM

Data Type: Original

Nebulizer Parameters: VP41 A SWC

Analyte

Back Pressure Flow
233.0 kPa 0.55 L/min All

Mean Data: VP41 A	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2616861.3	98.82	ક	0.368				0.37%
ScR 361.383	215629.0	101.8	ક	0.94				0.92%
Ag 328.068†	- 1255.1	-0.00043	mg/L	0.000095	-0.00086	mg/L	0.000191	22.098
Al 308.215†	161726.6	107.5	mg/L	0.16	215.1	mg/L	0.32	0.15%
As 188.979†	529.0	0.2376	mg/L	0.00091	0.4751	mg/L	0.00181	9.38%
B 249.677†	56.0	0.02558	mg/L	0.004553	0.05116	mg/L	0.009107	17.80%
Ba 233.527†	3771.6	0.3591	mg/L	0.00288	0.7182	mg/L	0.00575	0.80%
Be 313.042†	590.2	0.00114	mg/L	0.000053	0.00228	mg/L	0.000107	4.68%
Ca 317.933†	1429603.0	135.1	mg/L	0.29	270.1	mg/L	0.58	0.21%
Cd 228.802†	178.2	0.00163	mg/L	0.000052	0.00327	mg/L	0.000105	3.21%
Co 228.616†	7058.5	0.06885	mg/L	0.000428	0.1377	mg/L	0.00086	0.62%
Cr 267.716†	620.2	0.1346	mg/L	0.00056	0.2692	mg/L	0.00113	0.42%
Cu 324.752†	115204.4	0.3797	mg/L	0.00083	0.7594	mg/L	0.00166	0.22%
Fe 273.955†	204107.4	166.5	mg/L	0.47	333.0	mg/L	0.95	0.28%
K 766.490†	28170.8	7.819	${ m mg/L}$	0.0429	15.64	mg/L	0.086	0.55%
Mg 279.077†	65333.1	56.00	mg/L	0.100	112.0	mg/L	0.20	0.18%
Mn 257.610†	113741.4	2.810	${ m mg/L}$	0.0028	5.620	mg/L	0.0056	0.10%
Mo 202.031†	433.7	0.02496	${ m mg/L}$	0.000152	0.04991	mg/L	0.000305	0.61%
Na 589.592†	31384.1	3.859	mg/L	0.0138	7.717	mg/L	0.0275	0.36%
Na 330.237†	94.0	4.088	mg/L	0.1395	8.175	mg/L	0.2791	3.41%
Ni 231.604†	410.6	0.1859	mg/L	0.00234	0.3717	mg/L	0.00469	1.26 %
Pb 220.353†	1596.9	0.1566	mg/L	0.00020	0.3132	mg/L	0.00041	0.13%
Sb 206.836†	213.6	0.05074		0.002067	0.1015	mg/L	0.00413	4.078
Se 196.026†	-75.9	-0.03998	mg/L	0.007237	-0.07996	mg/L	0.014473	18.10%
Si 288.158†	3937.0	. 2.918		0.0250	5.836		0.0501	0.86%
Sn 189.927†	-9.9	0.03127	${ m mg/L}$	0.000638	0.06253	mg/L	0.001277	2.04%
Sr 421.552†	210392.9	0.3637	${\tt mg/L}$	0.00113	0.7274	mg/L	0.00225	0.31%
Ti 334.903†	187800.1	7.300		0.0049	14.60	mg/L	0.010	0.07%
Tl 190.801†	23.9	-0.00596	mg/L	0.002253	-0.01192	mg/L	0.004506	37.80%
V 292.402†	75504.8	0.3496	mg/L	0.00075	0.6992	mg/L	0.00149	0.21%
Zn 206.200†	1214.9	0.5018	mg/L	0.00219	1.004	mg/L	0.0044	0.44%

UDUA: 60298

Sequence No.: 27

Sample ID: VP41 B SWC

Analyst: EL Dilution: 2X

Autosampler Location: 46

Date Collected: 11/1/2012 3:39:29 PM

Data Type: Original

Nebulizer Parameters: VP41 B SWC

Analyte

Back Pressure Flow
233.0 kPa 0.55 L/min All

Mean Data: VP41 E	· ·							
	Mean Corrected		Calıb	•		Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2461674.4	92.96		0.443				0.48%
ScR 361.383	203648.1	96.17		0.972				1.01%
Ag 328.068†	-19471.8	-0.00698	_	0.002458	-0.01396		0.004915	35.22ક
Al 308.215†	110517.0	73.49	_	0.128	147.0	_	0.26	0.17૬
As 188.979†	969.4	0.4127		0.00740	0.8254		0.01480	1.79%
B 249.677†	702.1	0.3229	_	0.01440	0.6457		0.02880	4.46%
Ba 233.527†	4652.3	0.3621	J .	0.00681	0.7241		0.01362	1.88%
Be 313.042†	367.8	0.00035	${\tt mg/L}$	0.000068	0.00071	mg/L	0.000136	19.24%
Ca 317.933†	2512008.0	237.3	mg/L	0.15	474.6	mg/L	0.30	0.06%
Cd 228.802†	972.1	0.01099	mg/L	0.000231	0.02198	mg/L	0.000462	2.10%
Co 228.616†	18702.0	0.1931	mg/L	0.00289	0.3861	mg/L	0.00578	1.50%
Cr 267.716†	4855.3	1.056	mg/L	0.0129	2.113	mg/L	0.0259	1.23%
Cu 324.752†	1031611.6	3.457	mg/L	0.0065	6.914	mg/L	0.0129	0.19%
Fe 273.955†	2390948.9	1950	mg/L	2.1	3901	mg/L	4.3	0.11%
K 766.490†	14803.2	4.109	mg/L	0.0276	8.217	mg/L	0.0552	0.67%
Mq 279.077†	148847.5	126.7	mg/L	0.04	253.4	mg/L	0.07	0.03%
Mn 257.610†	747759.1	18,48	mg/L	0.016	36.96	mg/L	0.033	0.09%
Mo 202.031†	3412.4	0.1842	mg/L	0.00209	0.3684	mg/L	0.00419	1.148
Na 589.592†	183028.9	22.50	mg/L	0.072	45.01	mg/L	0.145	0.32%
Na 330.237†	585.6	20.20	mg/L	0.639	40.40	mg/L	1.277	3.16%
Ni 231.604†	2884.0	1.305	mg/L	0.0110	2.611	mg/L	0.0219	0.84%
Pb 220.353†	132916.3	10.22	mq/L	0.046	20.44		0.092	0.45%
Sb 206.836†	926.3	0.05860	mg/L	0.010510	0.1172	mg/L	0.02102	17.94%
Se 196.026†	-528.9	-0.2785	mg/L	0.00987	-0.5571	mg/L	0.01974	3.54%
Si 288.158†	4684.8	3.481		0.0609	6.961		0.1218	1.75%
Sn 189.927†	1779.3	0.3261	mg/L	0.00121	0.6523		0.00242	0.37%
Sr 421.552†	643054.0	1.112		0.0020	2.223		0.0040	0.18%
Ti 334.903†	87539.0	3.394		0.0047	6.788	_	0.0094	0.14%
Tl 190.801t	-454.0	-0.1532		0.00397	-0.3065	J .	0.00794	2.59%
V 292.402†	76828.6	0.1994		0.00301	0.3988	J .	0.00601	1.51%
Zn 206.200†	4914.3	2.023	_	0.0302	4.047	J .	0.0603	1.49%
	131110		5. —			5. —		

Sequence No.: 28

Sample ID: VP41 C SWC

Analyst: EL Dilution: 2X

Autosampler Location: 47

Date Collected: 11/1/2012 3:43:56 PM

Data Type: Original

Nebulizer Parameters: VP41 C SWC

Analyte All

Back Pressure Flow 233.0 kPa 0.55 L/min

Mean Data: VP41 C			G-141					
	Mean Corrected	_	Calib.	a	_	Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2618281.4	98.87		0.451				0.46%
ScR 361.383	208394.8	98.42		1.076	0 00006	/~	0 000416	1.098
Ag 328.068†	-6937.2	-0.00048		0.000208	-0.00096	J	0.000416	43.34%
Al 308.215†	44270.5	29.44		0.102	58.89		0.205	0.35%
As 188.979†	226.4	0.09486		0.004379	0.1897		0.00876	4.62%
B 249.677†	152.3	0.06999		0.002217	0.1400		0.00443	3.17%
Ba 233.527†	908.0	0.05364	2	0.000711	0.1073		0.00142	1.33%
Be 313.042†	118.9	0.00020	_	0.000012	0.00040	_	0.000023	5.87%
Ca 317.933†	642912.0	60.73	_	0.088	121.5	mg/L	0.18	0.14%
Cd 228.802†	970.5	0.01147		0.000187	0.02293	mg/L	0.000373	1.63%
Co 228.616†	6033.2	0.06267	mg/L	0.000467	0.1253	mg/L	0.00093	0.74%
Cr 267.716†	1171.0	0.2544	mg/L	0.00344	0.5087	mg/L	0.00689	1.35%
Cu 324.752†	540015.7	1.787	mg/L	0.0016	3.574	mg/L	0.0033	0.09%
Fe 273.955†	917135.7	748.2	mg/L	5.02	1496	mg/L	10.0	0.67%
К 766.490т	5779.9	1.604	mg/L	0.0243	3.208	mg/L	0.0486	1.51%
Mg 279.077†	25982.1	21.88	mg/L	0.217	43.76		0.434	0.99%
Mn 257.610†	260967.3	6.448	mg/L	0.0215	12.90	mq/L	0.043	0.33%
Mo 202.031†	1193.0	0.06477	mg/L	0.001019	0.1295	mg/L	0.00204	1.57%
Na 589.592†	86518.3	10.64	mg/L	0.062	21.27	ma/L	0.124	0.58%
Na 330.237†	288.9	9.759		0.1713	19.52	ma/L	0.343	1.76%
Ni 231.604†	736.7	0.3335	ma/L	0.00368	0.6669	J .	0.00736	1.10%
Pb 220.353†	4993.7	0.3607		0.00172	0.7215	J · _	0.00344	0.48%
Sb 206.836†	249.0	-0.00557		0,002502	-0.01113	_	0.005004	44.96%
Se 196.026t	-196.1	-0.1029	J .	0.00528	-0.2058	J .	0.01056	5.13%
Si 288.158†	4550.8	3.368		0.0325	6.736		0.0649	0.96%
Sn 189.927†	537.9	0.09552		0.000676	0.1910		0.00135	0.71%
Sr 421.552†	369507.7	0.6387		0.00559	1.277		0.0112	0.88%
Ti 334.903†	2848.7	0.1077	_	0.00079	0.2155	- ·	0.00157	0.73%
Tl 190.801†	-149.5	-0.04980		0.002203	-0.09959	J .	0.004406	4.42%
V 292.402†	19509.1	0.02748	J .	0.002203	0.05495	J .	0.004408	1.80%
Zn 206.200†	3369.5	1.385	J	0.000490	2.770	J .	0.000991	1.21%

Date: 11/1/2012 3:53:39 PM

Sequence No.: 29

Autosampler Location: 48 Sample ID: VP41 D SWC

Analyst: EL
Dilution: 2X

Date Collected: 11/1/2012 3:49:48 PM

Data Type: Original

Nebulizer Parameters: VP41 D SWC

Analyte

Back Pressure Flow
233.0 kPa 0.55 L/min All

Mean Data: VP41 D	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2724288.1	102.9		0.47				0.46%
ScR 361.383	219704.1	103.8		0.35				0.33%
Ag 328.068†	-2484.8	0.00079	${ m mg/L}$	0.000074	0.00158	mg/L	0.000147	9.32%
Al 308.215†	129968.2	86.43	${ m mg/L}$	0.232	172.9	mg/L	0.46	0.27%
As 188.979†	166.6	0.07674	mg/L	0.001534	0.1535	mg/L	0.00307	2.00%
B 249.677†	136.8	0.06277	${ m mg/L}$	0.001305	0.1255	mg/L	0.00261	2.08%
Ba 233.527†	6422.6	0.6098	mg/L	0.00313	1.220	mg/L	0.0063	0.51%
Be 313.042†	662.2	0.00174	${\tt mg/L}$	0.000023	0.00349	mg/L	0.000047	1.34 €
Ca 317.933†	584705.6	55.24	mg/L	0.072	110.5	mg/L	0.14	0.13%
Cd 228.802†	987.6	0.01172	mg/L	0.000132	0.02344	mg/L	0.000264	1.12%
Co 228.616†	5879.4	0.05990	mg/L	0.000444	0.1198	mg/L	0.00089	0.74%
Cr 267.716†	1424.4	0.3098	mg/L	0.00172	0.6196	mg/L	0.00344	0.56%
Cu 324.752†	367622.8	1.200	mg/L	0.0010	2.400	mg/L	0.0020	0.08%
Fe 273.955†	394672.4	322.0	mg/L	1.39	643.9	mg/L	2.78	0.43%
K 766.490†	25611.5	7.108	mg/L	0.0217	14.22	mg/L	0.043	0.31%
Mg 279.077†	35781.1	30.54	mg/L	0.156	61.07	mg/L	0.311	0.51%
Mn 257.610†	224480.5	5.547	mg/L	0.0174	11.09	mg/L	0.035	0.31%
Mo 202.031†	579.9	0.03271	mg/L	0.000294	0.06541	mg/L	0.000589	0.90%
Na 589.592†	128343.7	15.78	mg/L	0.040	31.56	mg/L	0.079	0.25%
Na 330.237†	437.5	15.25	mg/L	0.192	30.50	mg/L	0.383	1.26%
Ni 231.604†	711.4	0.3220	mg/L	0.00371	0.6440	mg/L	0.00742	1.15%
Pb 220.353†	17672.6	1.383	mg/L	0.0072	2.766	mg/L	0.0143	0.52%
Sb 206.836†	164.0	0.01485	mg/L	0.000770	0.02969	mg/L	0.001540	5.19%
Se 196.026†	-107.5	-0.05675	mg/L	0.002957	-0.1135	mg/L	0.00591	5.21%
Si 288.158†	7355.3	5.442	mg/L	0.0374	10.88	mg/L	0.075	0.69*
Sn 189.927†	535.4	0.09536	mg/L	0.000510	0.1907		0.00102	0.53%
Sr 421.552†	220178.2	0.3806	mg/L	0.00114	0.7612		0.00227	0.30%
Ti 334.903†	86275.3	3.354		0.0056	6.708		0.0113	0.17%
Tl 190.801†	-31.1	-0.02017	mg/L	0.002525	-0.04033		0.005050	12.52%
V 292.402†	54474.2	0.2368	mg/L	0.00036	0.4735	mg/L	0.00072	0.15%
Zn 206.200†	7160.7	2.942	mg/L	0.0228	5.884	mg/L	0.0456	0.77%

VOUG: GO361

Sequence No.: 30

Sample ID: VP41 E SWC *

Analyst: EL Dilution: 2X

Autosampler Location: 49

Date Collected: 11/1/2012 3:55:39 PM

Data Type: Original

Nebulizer Parameters: VP41 E SWC

Analyte

Back Pressure Flow
233.0 kPa 0.55 L/min All

Analyte ScA 357.253 2	In Corrected Intensity 671460.5	Conc.	Calib.			Sample		
ScA 357.253 2	671460.5		77 L					
			Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScR 361.383	010101	100.9	8	0.76				0.75%
201 002.000	219481.5	103.7	8	1.67				1.61%
Ag 328.068†	-7280.6	0.00007	mg/L	0.000708	0.00015	mg/L	0.001416	974.30%
Al 308.215†	43935.8	29.22	mg/L	0.396	58.43	mq/L	0.792	1.36%
As 188.979†	393.4	0.1678	mg/L	0.00129	0.3356	mg/L	0.00258	0.77%
B 249.677†	43.0	0.01937	mg/L	0.003254	0.03874	mq/L	0.006509	16.80%
Ba 233.527†	1293.2	0.08977	mg/L	0.000679	0.1795	mg/L	0.00136	0.76%
Be 313.042†	194.5	0.00025	mg/L	0.000058	0.00051		0.000116	22.80%
Ca 317.933†	203350.2	19.21	mg/L	0.255	38.42	mg/L	0.510	1.33%
Cd 228.802†	707.7	0.00829	mg/L	0.000220	0.01658	mg/L	0.000440	2.65%
Co 228.616†	10637.7	0.1144	mg/L	0.00180	0.2289		0.00361	1.58%
Cr 267.716†	2039.8	0.4444	mg/L	0.00597	0.8888	mg/L	0.01193	1.34%
Cu 324.752†	858212.8	2.805	mg/L	0.0033	5.611	mg/L	0.0065	0.12%
Fe 273.955†	950250.6	775.2	mg/L	11.85	1550	mg/L	23.7	1.53%
K 766.490†	9065.9	2.516	mg/L	0.0435	5.032		0.0870	1.73%
Mg 279.077†	26180.5	22.04	mg/L	0.318	44.07	mg/L	0.637	1.45%
Mn 257.610†	203581.8	5.030	mg/L	0.0657	10.06	mg/L	0.131	1.31%
Mo 202.031†	1364.3	0.07399	mg/L	0.001352	0.1480	mg/L	0.00270	1.83%
Na 589.592†	81254.8	9.990	mg/L	0.1458	19.98	mg/L	0.292	1.46%
Na 330.237†	262.9	8.975	mg/L	0.0604	17.95	mg/L	0.121	0.67%
Ni 231.604†	1870.1	0.8464	mg/L	0.00971	1.693	mg/L	0.0194	1.15%
Pb 220.353†	11896.4	0.8917	mg/L	0.01127	1.783	mg/L	0.0225	1.26%
Sb 206.836†	502.5	0.06722	mg/L	0.003482	0.1344	mg/L	0.00696	5.18%
Se 196.026†	-202.2	-0.1074	mg/L	0.00524	-0.2147	mg/L	0.01048	4.88%
Si 288.158†	4771.0	3.531	mg/L	0.0464	7.062	mg/L	0.0928	1.31%
Sn 189.927†	4749.4	0.7294	mg/L	0.00884	1.459	-	0.0177	1.21%
Sr 421.552†	97133.3	0.1679	mg/L	0.00258	0.3358	mg/L	0.00516	1.54%
Ti 334.903†	39028.4	1.517		0.0202	3.035		0.0404	1.33%
Tl 190.801†	-158.0	-0.05245	mg/L	0.001683	-0.1049	mg/L	0.00337	3.21%
V 292.402†	35709.3	0.1043	mg/L	0.00127	0.2086		0.00254	1.22%
Zn 206.200†	5279.5	2.168	mg/L	0.0287	4.337		0.0574	1.32%

Date: 11/1/2012 4:05:24 PM

Sequence No.: 31

Sample ID: VP40 B SWC (

Analyst: EL Dilution: 2X

Autosampler Location: 50

Date Collected: 11/1/2012 4:01:34 PM

Data Type: Original

Nebulizer Parameters: VP40 B SWC

Analyte

Back Pressure Flow 233.0 kPa 0.55 L/min All

Mean Data: VP40 B	SWC							
	Mean Corrected		Calıb.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2695509.7	101.8	ફ	0.73				0.71%
ScR 361.383	219257.6	103.5	8	1.87				1.81%
Ag 328.068†	-1696.8	0.00011	J .	0.000135	0.00021	mg/L	0.000270	126.45%
Al 308.215†	122316.2	81.34		0.699	162.7	mg/L	1.40	0.86%
As 188.979†	92.2	0.04752	${ m mg/L}$	0.001493	0.09504	mg/L	0.002986	3.14%
B 249.677†	104.8	0.04802	${ m mg/L}$	0.002398	0.09603	mg/L	0.004796	4.99%
Ba 233.527†	2409.9	0.2254	mg/L	0.00533	0.4508		0.01067	2.37%
Be 313.042†	562.0	0.00123	${ m mg/L}$	0.000059	0.00246	mg/L	0.000119	4.83%
Ca 317.933†	413650.5	39.08	${ m mg/L}$	0.253	78.15	mg/L	0.506	0.65%
Cd 228.802†	157.8	0.00183	mg/L	0.000045	0.00365	mg/L	0.000090	2.46%
Co 228.616†	5252.6	0.05250		0.000658	0.1050	mg/L	0.00132	1.25%
Cr 267.716†	1350.0	0.2943	mg/L	0.00785	0.5887	mg/L	0.01571	2.67%
Cu 324.752†	78482.6	0.2655	mg/L	0.00118	0.5310	mg/L	0.00235	0.44%
Fe 273.955†	235923.5	192.5		1.26	384.9	mg/L	2.52	0.65%
K 766.490†	20274.5	5.627	mg/L	0.0652	11.25	mg/L	0.130	1.16%
Mg 279.077†	49118.5	42.06	mg/L	0.271	84.12	mg/L	0.542	0.64%
Mn 257.610†	72715.8	1.796		0.0134	3.593	mg/L	0.0269	0.75%
Mo 202.031†	248.5	0.01456		0.000331	0.02911	mg/L	0.000663	2.28%
Na 589.592†	140388.6	17.26	mg/L	0.195	34.52	mg/L	0.390	1.13%
Na 330.237†	455.0	17.11	mg/L	0.126	34.23	mg/L	0.252	0.74%
Ni 231.604†	403.6	0.1827		0.00636	0.3653	mg/L	0.01271	3.48 %
Pb 220.353†	2059.9	0.1800	mg/L	0.00149	0.3599	mg/L	0.00298	0.839
Sb 206.836†	90.5	0.00761	mg/L	0.001276	0.01522		0.002553	16.77%
Se 196.026†	-62.6	-0.03307	٠.	0.001640	-0.06613	mg/L	0.003281	4.96%
Si 288.158†	4901.8	3.630		0.0768	7.259	mg/L	0.1536	2.12%
Sn 189.927†	36.4	0.01645	${ m mg/L}$	0.000863	0.03290	mg/L	0.001726	5.25%
Sr 421.552†	125765.7	0.2174	mg/L	0.00177	0.4348	mg/L	0.00355	0.82%
Ti 334.903†	109826.4	4.271		0.0338	8.542		0.0675	0.79%
Tl 190.801†	-13.0	-0.01165		0.000322	-0.02330	mg/L	0.000644	2.76%
V 292.402†	63975.2	0.2941		0.00096	0.5882		0.00191	0.32%
Zn 206.200†	942.2	0.3876	mg/L	0.00934	0.7752	mg/L	0.01868	2.41%

upum mama

Sequence No.: 32

Sample ID: VP40 C SWC

Analyst: EL Nilution: 2X Dilution: 2X

Autosampler Location: 51

Date Collected: 11/1/2012 4:07:24 PM

Data Type: Original

Nebulizer Parameters: VP40 C SWC

Analyte

Back Pressure Flow
233.0 kPa 0.55 L/min All

	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2685212.2	101.4	ક	0.35				0.35
ScR 361.383	216164.4	102.1	ę	0.08				0.089
Ag 328.068†	-1973.4	0.00157	mg/L	0.000101	0.00313	mg/L	0.000202	6.439
Al 308.215†	95162.5	63.28	mg/L	0.075	126.6		0.15	0.129
As 188.979†	127.6	0.06285	mg/L	0.000742	0.1257	mq/L	0.00148	1.189
B 249.677†	117.8	0.05409	mg/L	0.003404	0.1082	mg/L	0.00681	6.299
Ba 233.527†	13012.3	1.253	mg/L	0.0028	2.507	mg/L	0.0055	0.229
Be 313.042†	340.7	0.00062	mg/L	0.000045	0.00124	mg/L	0.000090	7.23
Ca 317.933†	639106.7	60.37	mg/L	0.034	120.7	mq/L	0.07	0.069
Cd 228.802†	8346.7	0.09976	mg/L	0.000563	0.1995	mg/L	0.00113	0.569
Co 228.616†	3948.0	0.03548	mg/L	0.000324	0.07096	mg/L	0.000648	0.91
Cr 267.716†	832.0	0.1811	mg/L	0.00022	0.3623		0.00045	0.129
Cu 324.752†	74815.3	0.2605	mg/L	0.00019	0.5210		0.00037	0.079
Fe 273.955†	334887.8	273.2	mg/L	0.66	546.4		1.32	0.249
K 766.490†	18079.7	5.018		0.0171	10.04		0.034	0.349
Mg 279.077†	53777.8	46.02	mg/L	0.050	92.03	mg/L	0.101	0.119
Mn 257.610†	76541.7	1.892		0.0020	3.784	mg/L	0.0041	0.119
Mo 202.031†	169.3	0.00987	mg/L	0.000165	0.01974	mg/L	0.000330	1.679
Na 589.592†	57588.8	7.080	mg/L	0.0126	14.16	mg/L	0.025	0.189
Na 330.237†	562.7	4.150	mg/L	0.6053	8.300		1.2106	14.599
Ni 231.604†	325.3	0.1472	mg/L	0.00241	0.2945		0.00482	1.649
Pb 220.353†	51699.6	4.011		0.0043	8.021		0.0086	0.119
Sb 206.836†	94.5	0.01201	mg/L	0.001134	0.02403	mg/L	0.002267	9.43
Se 196.026†	-96.8	-0.05078		0.004467	-0.1016	mg/L	0.00893	8.809
Si 288.158†	4529.8	3.355	mg/L	0.0148	6.711	mg/L	0.0296	0.449
Sn 189.927†	5040.3	0.7841		0.00453	1.568		0.0091	0.589
Sr 421.552†	245049.1	0.4236	mg/L	0.00254	0.8472		0.00509	0.609
Ti 334.903†	113745.9	4.423		0.0055	8.845		0.0110	0.129
rl 190.801†	-18.2	-0.01280	mg/L	0.001566	-0.02560		0.003131	12.239
V 292.402†	46465.3	0.1997		0.00029	0.3993	mg/L	0.00058	0.15%
Zn 206.200†	108725.1	44.66	ma/L	0.065	89.31	ma/L	0.129	0.149

Sequence No.: 33

Sample ID: VQ16 MB2SPK DMN,

Analyst: EL Dilution: 1X

All

115

Autosampler Location: 52

Date Collected: 11/1/2012 4:13:13 PM

Data Type: Orıginal

Nebulizer Parameters: VQ16 MB2SPK DMN

Analyte Back Pressure Flow

233.0 kPa 0.55 L/min

Mean Data: VQ16 M	1B2SPK DMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	R S D
ScA 357.253	2795176.3	105.5	ક	0.44				0.42%
ScR 361.383	220436.4	104.1	g _e	0.75				0.72%
Ag 328.068†	157306.9	0.5278	mg/L	0.00261	0.5278	mg/L	0.00261	0.49%
Al 308.215†	3351.3	2.221	mg/L	0.0136	2.221	mg/L	0.0136	0.61%
As 188.979†	5385.1	2,260	mg/L	0.0122	2.260	mg/L	0.0122	0.54%
B 249.677†	-0.1	-0.00186	mg/L	0.000958	-0.00186	mg/L	0.000958	51.44%
Ba 233.527†	22282.6	2.168	mg/L	0.0056	2.168	mg/L	0.0056	0.26%
Be 313.042†	154019.3	0.5770	mg/L	0.00223	0.5770	mg/L	0.00223	0.39%
Ca 317.933†	120432.4	11.38	mg/L	0.050	11.38	mg/L	0.050	0.44%
Cd 228.802†	48026.7	0.5694	mg/L	0.00458	0.5694	mg/L	0.00458	0.80%
Co 228.616†	45854.2	0.5430	mg/L	0.00386	0.5430	mg/L	0.00386	0.71%
Cr 267.716†	2604.3	0.5688	${ m mg/L}$	0.00265	0.5688	mg/L	0.00265	0.47%
Cu 324.752†	166170.3	0.5311	mg/L	0.00369	0.5311	mg/L	0.00369	0.70%
Fe 273.955†	2873.3	2.343	mg/L	0.0020	2.343	mg/L	0.0020	0.08%
K 766.490†	41684.7	11.57	mg/L	0.027	11.57	mg/L	0.027	0.24%
Mg 279.077†	13505.7	11.60	mg/L	0.013	11.60	mg/L	0.013	0.11%
Mn 257.610†	21912.5	0.5420		0.00148	0.5420	mg/L	0.00148	0.27%
Mo 202.031†	13.1	0.00050		0.000335	0.00050	mg/L	0.000335	66.63₹
Na 589.592†	92591.4	11.38	mg/L	0.057	11.38	mg/L	0.057	0.50%
Na 330.237†	310.9	11.06	mg/L	0.256	11.06	mg/L	0.256	2.31%
Ni 231.604†	1256.9	0.5680	mg/L	0.00276	0.5680	mg/L	0.00276	0.49%
Pb 220.353†	29946.5	2.318	mg/L	0.0190	2.318		0.0190	0.82%
Sb 206.836†	16.9	-0.00398	${ m mg/L}$	0.000801	-0.00398	mg/L	0.000801	20.15%
Se 196.026†	4627.0	2.407		0.0068	2.407	mg/L	0.0068	0.28%
Si 288.158†	2.3	0.00564		0.004394	0.00564	mg/L	0.004394	77.88%
Sn 189.927†	-15.7	0.00031	${ m mg/L}$	0.000261	0.00031	mg/L	0.000261	83.76%
Sr 421.552†	331542.4	0.5731	mg/L	0.00117	0.5731		0.00117	0.20%
Ti 334.903†	37.6	0.00077		0.000165	0.00077	mg/L	0.000165	21.38%
Tl 190.801†	8453.3	2.303	${ m mg/L}$	0.0101	2.303	mg/L	0.0101	0.44%
V 292.402†	112096.1	0.5534	mg/L	0.00393	0.5534	mg/L	0.00393	0.71%
Zn 206.200†	1436.8	0.5901	mg/L	0.00037	0.5901	mg/L	0.00037	0.06%

Sequence No.: 34

Autosampler Location: 53 Sample ID: VQ25 MBSPK WMN

Analyst: EL

Dilution: 1X

Date Collected: 11/1/2012 4:19:16 PM

Data Type: Original

Nebulizer Parameters: VQ25 MBSPK WMN

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: VQ25 M	BSPK WMN							
	Mean Corrected		Calib.			Sample	€	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2793957.6	105.5	ક	0.37				0.35%
ScR 361.383	223763.9	105.7	8	0.69				0.65%
Ag 328.068†	162560.5	0.5454	mg/L	0.00358	0.5454	mg/L	0.00358	0.66%
A1 308.215†	3392.9	2.248	${ m mg/L}$	0.0237	2.248	mg/L	0.0237	1.05%
As 188.979†	5537.2	2.324	${ m mg/L}$	0.0085	2.324	mg/L	0.0085	0.36%
B 249.677†	-4.1	-0.00376	${ m mg/L}$	0.002424	-0.00376	mg/L	0.002424	64.42%
Ba 233.527†	22775.6	2.216	mg/L	0.0205	2.216	${ m mg/L}$	0.0205	0.92%
Be 313.042†	157967.1	0.5918	${ m mg/L}$	0.00243	0.5918	mg/L	0.00243	0.41%
Ca 317.933†	123291.6	11.65	${ m mg/L}$	0.051	11.65	mg/L	0.051	0.44%
Cd 228.802†	49754.0	0.5899	${ m mg/L}$	0.00519	0.5899	mg/L	0.00519	0.88%
Co 228.616†	47554.5	0.5631	${ m mg/L}$	0.00496	0.5631	mg/L	0.00496	0.88%
Cr 267.716†	2656.6	0.5802	${ m mg/L}$	0.00589	0.5802		0.00589	1.01%
Cu 324.752†	171945.1	0.5496	${ m mg/L}$	0.00412	0.5496	mg/L	0.00412	0.75%
Fe 273.955†	2923.8	2.385	${ m mg/L}$	0.0154	2.385	mg/L	0.0154	0.64%
K 766.490†	42319.4	11.75	${ m mg/L}$	0.005	11.75	${ m mg/L}$	0.005	0.04%
Mg 279.077†	13823.9	11.87	${ m mg/L}$	0.107	11.87	${ m mg/L}$	0.107	0.90%
Mn 257.610†	22402.8	0.5541	${ m mg/L}$	0.00482	0.5541	mg/L	0.00482	0.87%
Mo 202.031†	11.3	0.00040	${ m mg/L}$	0.000151	0.00040	mg/L	0.000151	37.90%
Na 589.592†	93827.2	11.54	${ m mg/L}$	0.016	11.54	${ m mg/L}$	0.016	0.14%
Na 330.237†	314.3	11.18	${ m mg/L}$	0.323 '	11.18	${ m mg/L}$	0.323	2.89%
Ni 231.604†	1284.1	0.5803	${ m mg/L}$	0.00694	0.5803	${ m mg/L}$	0.00694	1.20%
Pb 220.353†	31008.3	2.401	${ m mg/L}$	0.0213	2.401	J .	0.0213	0.89%
sb 206.836†	15.4	-0.00451	${ m mg/L}$	0.001405	-0.00451		0.001405	31.18%
Se 196.026†	4756.6	2.474	${ m mg/L}$	0.0085	2.474	mg/L	0.0085	0.34%
Si 288.158†	-0.2	0.00384	mg/L	0.004367	0.00384	mg/L	0.004367	113.80%
Sn 189.927†	-16.1	0.00032	mg/L	0.000475	0.00032	mg/L	0.000475	150.82%
Sr 421.552†	339592.3	0.5870	mg/L	0.00031	0.5870	mg/L	0.00031	0.05%
Ti 334.903†	28.7	0.00041	mg/L	0.000332	0.00041	mg/L	0.000332	81.56%
T1 190.801†	8707.9	2.373	${ m mg/L}$	0.0046	2.373	mg/L	0.0046	0.20%
V 292.402†	116010.2	0.5727	mg/L	0.00497	0.5727	${ m mg/L}$	0.00497	0.87%
Zn 206.200†	1462.2	0.6006	${ m mg/L}$	0.00509	0.6006	mg/L	0.00509	0.85%

Analysis Begun

Start Time: 11/1/2012 4:24:13 PM Plasma On Time: 11/1/2012 9:01:02 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\1101.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1 Autosampler Location: 7

Sample ID: CV 4 Date Collected: 11/1/2012 4:24:16 PM

Analyst: EL Data Type: Original

Dilution: 1X

Nebulizer Parameters: CV

Analyte Back Pressure Flow

All 233.0 kPa 0.55 L/min

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2696116.0	101.8		0.19				0.19%
ScR 361.383	215776.9	101.9		0.68				0.66%
Ag 328.068†	294934.7	0.9895	٠.	0.00301	0.9895	J .	0.00301	0.30%
Al 308.215†	3079.6	2.007	_	0.0047	2.007	J .	0.0047	0.23%
As 188.979†	4960.1	2.081	J .	0.0085	2.081	_	0.0085	0.41%
B 249.677†	2141.7	0.9856	mg/L	0.00775	0.9856	mg/L	0.00775	0.79%
Ba 233.527†	10340.0	1.006	mg/L	0.0057	1.006	mg/L	0.0057	0.57%
Be 313.042†	273952.4	1.026	mg/L	0.0017	1.026	mg/L	0.0017	0.17%
Ca 317.933†	21850.7	2.064	mg/L	0.0117	2.064	mg/L	0.0117	0.57%
Cd 228.802†	84815.5	1.010	mg/L	0.0019	1.010	mg/L	0.0019	0.19%
Co 228.616†	83729.9	0.9910	mg/L	0.00159	0.9910	mg/L	0.00159	0.16%
Cr 267.716†	4617.7	1.008	mg/L	0.0051	1.008	mg/L	0.0051	0.51%
Cu 324.752†	328506.8	1.049		0.0009	1.049	mg/L	0.0009	0.09%
Fe 273.955†	2660.9	2.170	mg/L	0.0129	2.170	mg/L	0.0129	0.60%
K 766.490†	74033.2	20.55	mg/L	0.056	20.55	mg/L	0.056	0.27 ಕ
Mg 279.077†	2476.8	2.130	mg/L	0.0139	2.130	mg/L	0.0139	0.65%
Mn 257.610†	40593.5	1.004	mg/L	0.0008	1.004	mg/L	0.0008	0.08%
Mo 202.031†	17682.3	0.9554	mg/L	0.00392	0.9554	mg/L	0.00392	0.41%
Na 589.592†	410712.4	50.50	mg/L	0.125	50.50	mg/L	0.125	0.25%
Na 330.237†	1386.0	50.28	mg/L	0.233	50.28	mg/L	0.233	0.46%
Ni 231.604†	2283.3	1.034	mg/L	0.0086	1.034	mg/L	0.0086	0.83%
Pb 220.353†	26879.8	2.081	mg/L	0.0094	2.081	mg/L	0.0094	0.45%
Sb 206.836†	7651.6	2.089	mg/L	0.0082	2.089	mg/L	0.0082	0.39%
Se 196.026†	3863.1	2.008	mg/L	0.0091	2.008	mg/L	0.0091	0.45%
Si 288.158†	2922.5	2.167	mg/L	0.0099	2.167	mg/L	0.0099	0.46%
Sn 189.927†	5983.6	0.9132	mg/L	0.00424	0.9132	mg/L	0.00424	0.46%
Sr 421.552†	606331.3	1.048	mg/L	0.0020	1.048	mg/L	0.0020	0.19%
Ti 334.903†	25672.7	0.9976	mg/L	0.00102	0.9976	mg/L	0.00102	0.10%
Tl 190.801†	7366.3	2.001		0.0064	2.001	mg/L	0.0064	0.32%
V 292.402†	203480.9	1008	mg/L	0.0037	1.008	mg/L	0.0037	0.37%
Zn 206.200†	2773.2	1.138	jng/L	0.0078	1.138	mg/L	0.0078	0.69%

Sequence No.: 2 Sample ID: CB & Analyst: EL

Dilution: 1X

A11

Autosampler Location: 1

Date Collected: 11/1/2012 4:30:18 PM

Data Type: Original

Nebulizer Parameters: CB

Analyte

Back Pressure Flow 233.0 kPa 0.55 L/min

Mean Data: CB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2745444.6	103.7	ક	0.69				0.67%
ScR 361.383	211900.8	100.1	લ	0.89				0.89%
Ag 328.068†	97.5	0.00033	mg/L	0.000015	0.00033	mq/L	0.000015	4.71%
A1 308.215†	3.3	0.00220	mg/L	0.003726	0.00220	mg/L	0.003726	169.01%
As 188.979†	0.5	0.00021		0.000415	0.00021	mg/L	0.000415	201.09%
B 249.677†	-1.4	-0.00064	mg/L	0.000423	-0.00064		0.000423	66.29%
Ba 233.527†	-0.7	-0.00007	mg/L	0.000326	-0.00007	mg/L	0.000326	492.92₹
Be 313.042†	38.0	0.00014	mg/L	0.000028	0.00014	mg/L	0.000028	19.28%
Ca 317.933†	19.5	0.00184	mg/L	0.000740	0.00184	mg/L	0.000740	40.25%
Cd 228.802†	15.7	0.00019	mg/L	0.000097	0.00019	mg/L	0.000097	51.36%
Co 228.616†	10.2	0.00012	mg/L	0.000108	0.00012	mg/L	0.000108	89.52%
Cr 267.716†	1.6	0.00034	mg/L	0.001895	0.00034	mg/L	0.001895	552.01%
Cu 324.752†	317.4	0.00102	mg/L	0.000182	0.00102	mg/L	0.000182	17.93%
Fe 273.955†	22.8	0.01858	mg/L	0.001814	0.01858	mg/L	0.001814	9.77%
K 766.490†	299.8	0.08321		0.011592	0.08321	mg/L	0.011592	13.93%
Mg 279.077†	-12.9	-0.01109	mg/L	0.001236	-0.01109	mg/L	0.001236	11.15%
Mn 257.610†	23.8	0.00059	mg/L	0.000049	0.00059	mg/L	0.000049	8.33%
Mo 202.031†	-8.2	-0.00044	mg/L	0.000260	-0.00044	mg/L	0.000260	58.54%
Na 589.592†	275.2	0.03383	mg/L	0.003847	0.03383	mg/L	0.003847	11.37%
Na 330.237†	7.4	0.2626	mg/L	0.51393	0.2626		0.51393	195.72%
Ni 231.604†	3.5	0.00157	mg/L	0.002350	0.00157	mg/L	0.002350	149.41%
Pb 220.353†	22.5	0.00174	mg/L	0.000351	0.00174	mg/L	0.000351	20.15%
Sb 206.836†	0.2	0.00006	mg/L	0.000904	0.00006	mg/L	0.000904	>999.9%
Se 196.026†	-2.4	-0.00125	mg/L	0.004492	-0.00125	mg/L	0.004492	360.54%
Si 288.158†	6.1	0.00453	mg/L	0.003544	0.00453		0.003544	78.20%
Sn 189.927†	2.8	0.00043	mg/L	0.000592	0.00043		0.000592	138.91%
Sr 421.552†	124.0	0.00021		0.000063	0.00021		0.000063	29.26%
Ti 334.903†	3.5	0.00014		0.000945	0.00014		0.000945	
T1 190.801†	4.6	0.00125		0.000828	0.00125	J .	0.000828	66.23%
V 292.402†	13.3	0.00006		0.000105	0.00006		0.000105	
Zn 206.200†	39.7	0.01631	mg/L	0.001689	0.01631		0.001689	10.36%

UPUS:00308

Analysis Begun

Start Time: 11/1/2012 4:37:40 PM Plasma On Time: 11/1/2012 9:01:02 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\1101.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1

Sample ID: Calib Blank 1 Date Collected: 11/1/2012 4:37:42 PM

Data Type: Original

Nebulizer Parameters: Calib Blank 1

 Analyte
 Back Pressure
 Flow

 All
 233.0 kPa
 0.55 L/min

All 233.0 kPa 0.55 L/min

Mean Data: Calib Blank 1

Mean Data. Carro	Diank I				
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	. RSD	Conc.	Units
ScA 357.253	2743025.2	29392.22	1.07%	103.6	9
ScR 361.383	216784.2	2230.23	1.03%	102.4	ક
Ag 328.068†	646.9	24.09	3.72%	[0.00]	mg/L
Al 308.215†	42.3	13.46	31.85%	[0.00]	mg/L
As 188.979†	3.2	1.64	51.33%	[0.00]	mg/L
B 249.677†	-126.9	8.24	6.49%	[0.00]	mg/L
Ba 233.527†	70.1	3.56	5.07%	[0.00]	mg/L
Be 313.042†	635.4	16.83	2.65%	[0.00]	mg/L
Ca 317.933†	-1.5	9.24	634.50%	[0.00]	mg/L
Cd 228.802†	311.3	8.41	2.70%	[0.00]	mg/L
Co 228.616†	319.0	9.02	2.83%	[0.00]	mg/L
Cr 267.716†	8.9	0.36	3.97%	[0.00]	mg/L
Cu 324.752†	1864.5	28.52	1.53%	[0.00]	mg/L
Fe 273.955†	-11.6	2.54	21.83%	[0.00]	mg/L
K 766.490†	2249.0	24.15	1.07%	[0.00]	mg/L
Mg 279.077†	-169.5	7.35	4.34%	[0.00]	mg/L
Mn 257.610†	-45.8	6.79	14.82%	[0.00]	mg/L
Mo 202.031†	-133.4	2.41	1.81%	[0.00]	mg/L
Na 589.592†	203.0	5.29	2.61%	[0.00]	mg/L
Na 330.237†	43.9	7.47	17.02%	[0.00]	mg/L
Ni 231.604†	30.7	3.00	9.78%	[0.00]	mg/L
Pb 220.353†	284.8	2.96	1.04%	[0.00]	mg/L
Sb 206.836†	123.5	3.01	2.44%	[0.00]	mg/L
Se 196.026†	-98.3	1.40	1.43%	[0.00]	mg/L
Si 288.158†	4.6	1.86	40.29%	[0.00]	mg/L
Sn 189.927†	-8.6	7.65	88.73%	[0.00]	mg/L
Sr 421.552†	736.2	33.60	4.56%	[0.00]	mg/L
Ti 334.903†	-44.9	6.40	14.25%	[0.00]	mg/L
Tl 190.801†	17.5	3.57	20.32%	[0.00]	mg/L
V 292.402†	-13.3	23.46	176.14%	[0.00]	mg/L
Zn 206.200†	-8.3	2.00	24.13%	[0.00]	mg/L

Sequence No.: 2 Sample ID: STD3

All

Date Collected: 11/1/2012 4:44:13 PM

Data Type: Original

Nebulizer Parameters: STD3

Analyte

Back Pressure Flow
233.0 kPa 0.55 L/min

	Mean Corrected				Cali
Analyte	Intensity	Std.Dev.	RSD	Conc.	Unit
ScA 357.253	2706785.4	10235.05	0.38%	102.2	ક
ScR 361.383	210301.8	1635.71	0.78%	99.32	ુ
Ag 328.068†	292246.5	537.41	0.18%	[1.0]	mg/L
As 188.979†	23574.7	173.29	0.74%		mg/L
B 249.677†	21810.3	69.78	0.32%	[10]	mg/L
Be 313.042†	1379288.3	7495.92	0.54%	[5.0]	mg/L
Na 589.592†	413710.4	554.80	0.13%	[50]	mg/L
Ni 231.604†	22835.0	55.33	0.24%	[10]	mg/L
Pb 220.353†	132246.6	216.73	0.16%	[10]	mg/L
Se 196.026t	18880.0	80.49	0.43%	[10]	mg/L
Sr 421.552†	3035653.2	42484.90	1.40%	[5]	mg/L
Tl 190.801†	36287.7	201.09	0.55%	[10]	mg/L
Zn 206.200†	25537.0	70.16	0.27%		mg/L

Analysis Begun

Start Time: 11/1/2012 4:52:12 PM Plasma On Time: 11/1/2012 9:01:02 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\1101.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1 Autosampler Location: 7

Sample ID: CV 5 Date Collected: 11/1/2012 4:52:15 PM

Analyst: EL Data Type: Original

Dilution: 1X

Nebulizer Parameters: CV

AnalyteBack Pressure

Flow
233.0 kPa
0.55 L/min

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2661489.5	100.5		0.91				0.90%
ScR 361.383	212234.8	100.2		0.26				0.26%
Ag 328.068†	297879.8	1.019		0.0038	1.019		0.0038	0.38%
Al 308.215†	3081.5	2.008	mg/L	0.0032	2.008	mg/L	0.0032	0.16%
As 188.979†	4941.0	2.095	mg/L	0.0126	2.095	mg/L	0.0126	0.60%
B 249.677†	2190.8	1.003	mg/L	0.0043	1.003	mg/L	0.0043	0.43%
Ba 233.527†	10337.0	1.005	mg/L	0.0015	1.005	mg/L	0.0015	0.15%
Be 313.042†	275463.4	0.9959	mg/L	0.00319	0.9959	mg/L	0.00319	0.32%
Ca 317.933†	21803.8	2.060	mg/L	0.0038	2.060	mg/L	0.0038	0.19%
Cd 228.802†	86004.2	1.024	mg/L	0.0016	1.024	mg/L	0.0016	0.15%
Co 228.616†	84378.7	0.9986	mg/L	0.00231	0.9986	mg/L	0.00231	0.23%
Cr 267.716†	4621.6	1.009	mg/L	0.0012	1.009	mg/L	0.0012	0.12%
Cu 324.752†	332812.7	1.063	mg/L	0.0015	1.063	mg/L	0.0015	0.14%
Fe 273.955†	2622.5	2.138	mg/L	0.0035	2.138	mg/L	0.0035	0.16%
K 766.490†	74438.7	20.66	mg/L	0.092	20.66	mg/L	0.092	0.45%
Mg 279.077†	2491.7	2.143	mg/L	0.0043	2.143	mg/L	0.0043	0.20%
Mn 257.610†	40808.4	1.009	mg/L	0.0010	1.009	mg/L	0.0010	0.10%
Mo 202.031†	17691.6	0.9559	mg/L	0.00654	0.9559	mg/L	0.00654	0.68%
Na 589.592†	416283.2	50.31	mg/L	0.128	50.31	mg/L	0.128	0.26%
Na 330.237†	1405.3	51.02	mg/L	0.185	51.02	mg/L	0.185	0.36%
Ni 231.604†	2274.5	0.9966	mg/L	0.00105	0.9966	mg/L	0.00105	0.11%
Pb 220.353†	26758.8	2.025	mg/L	0.0132	2.025	mg/L	0.0132	0.65%
Sb 206.836†	7639.5	2.086	mg/L	0.0152	2.086	mg/L	0.0152	0.73%
Se 196.026†	3833.9	2.028	mg/L	0.0058	2.028	mg/L	0.0058	0.28%
Si 288.158†	2923.9	2.169	mg/L	0.0058	2.169	mg/L	0.0058	0.27%
Sn 189.927†	5932.9	0.9055	mg/L	0.00426	0.9055	mg/L	0.00426	0.47%
Sr 421.552†	609822.9	1.004	mg/L	0.0037	1.004	mg/L	0.0037	0.37%
Ti 334.903†	25894.4	1.006	mg/L	0.0003	1.006	mg/L	0.0003	0.03%
T1 190.801†	7365.2	2.017	mg/L	0.0144	2.017	mg/L	0.0144	0.72%
V 292.402†	207018.9	1.026	mg/L	0.0006	1.026		0.0006	0.06%
Zn 206.200†	2675.8	1.047	mg/L	0.0024	1.047	mg/L	0.0024	0.23%

VOUS BREET

Date: 11/1/2012 5:02:19 PM

Sequence No.: 2 Sample ID: CB 5 Analyst: EL Dilution: 1X

Autosampler Location: 1

Date Collected: 11/1/2012 4:58:18 PM

Data Type: Original

Nebulizer Parameters: CB

Analyte All

Back Pressure Flow 233.0 kPa 0.55 L/min

Mean Data: CB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2729381.8	103.1	ક	0.48				0.47%
ScR 361.383	209067.3	98.73	8	0.546				0.55શ
Ag 328.068†	5.1	0.00002	mg/L	0.000119	0.00002	mg/L	0.000119	689.21%
A1 308.215†	-8.1	-0.00538	mg/L	0.008457	-0.00538	mg/L	0.008457	157.10%
As 188.979†	0.6	0.00024	mg/L	0.001393	0.00024	mg/L	0.001393	589.17%
B 249.677†	23.7	0.01087	mg/L	0.001487	0.01087	mg/L	0.001487	13.67%
Ba 233.527†	-0.7	-0.00007	mg/L	0.000353	-0.00007	mg/L	0.000353	513.08%
Be 313.042†	36.7	0.00013	mg/L	0.000082	0.00013	mg/L	0.000082	61.23%
Ca 317.933†	-12.4	-0.00118	mg/L	0.002023	-0.00118	mg/L	0.002023	172.02%
Cd 228.802†	-8.2	-0.00010	mg/L	0.000062	-0.00010	mg/L	0.000062	63.37%
Co 228.616†	-5.9	-0.00007	mg/L	0.000081	-0.00007	mg/L	0.000081	119.13%
Cr 267.716†	-1.9	-0.00042		0.000592	-0.00042	mg/L	0.000592	140.53%
Cu 324.752†	-107.7	-0.00034	mg/L	0.000060	-0.00034	mg/L	0.000060	17.36%
Fe 273.955†	-4.4	-0.00359	mg/L	0.001541	-0.00359	mg/L	0.001541	42.93%
K 766.490†	111.3	0.03089	mg/L	0.011186	0.03089	mg/L	0.011186	36.21%
Mg 279.077†	-0.0	-0.00001	mg/L	0.005506	-0.00001	mg/L	0.005506	>999.9%
Mn 257.610†	-1.9	-0.00005	mg/L	0.000073	-0.00005	mg/L	0.000073	157.18%
Mo 202.031†	-1.5	-0.00008	mg/L	0.000167	-0.00008	mg/L	0.000167	205.84%
Na 589.592†	268.7	0.03247	mg/L	0.011815	0.03247	mg/L	0.011815	36.38%
Na 330.237†	6.8	0.2477		0.39726	0.2477		0.39726	160.37%
Ni 231.604†	-0.5	-0.00022	mg/L	0.001586	-0.00022	mg/L	0.001586	706.91%
Pb 220.353†	-3.5	-0.00027	mg/L	0.000581	-0.00027	mg/L	0.000581	217.08%
Sb 206.836†	6.2	0.00171	mg/L	0.001166	0.00171	mg/L	0.001166	68.05%
Se 196.026†	-1.3	-0.00069	${\tt mg/L}$	0.002159	-0.00069	mg/L	0.002159	313.76%
Si 288.158†	5.5	0.00408	mg/L	0.002777	0.00408	mg/L	0.002777	68.02%
Sn 189.927†	1.3	0.00020	${\tt mg/L}$	0.000392	0.00020	mg/L	0.000392	195.56%
Sr 421.552†	-46.4	-0.00008	mg/L	0.000154	-0.00008	mg/L	0.000154	202.25%
Ti 334.903†	-23.9	-0.00093	mg/L	0.001104	-0.00093	mg/L	0.001104	118.55%
Tl 190.801†	2.1	0.00057	${ m mg/L}$	0.000610	0.00057	mg/L	0.000610	107.25%
V 292.402†	-17.8	-0.00009	mg/L	0.000071	-0.00009	mg/L	0.000071	79.85%
Zn 206.200†	-11.7	-0.00458	${ m mg/L}$	0.000598	-0.00458	mg/L	0.000598	13.06%

UPUS SOSIS

Date: 11/1/2012 5:08:38 PM

Sequence No.: 3

Autosampler Location: 54

Sample ID: VP44 MB LEN Date Collected: 11/1/2012 5:04:17 PM Analyst: EL

Dilution: 5X

Tl 190.801† V 292.402† Zn 206.200†

Data Type: Original

Nebulizer Parameters: VP44 MB LEN

Analyte Back Pressure Flow

All 232.0 kPa 0.55 L/min

| Mean Corrected | Intensity | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | RSD | Conc. Units | Std.Dev. | Conc. Units Mean Data: VP44 MB LEN Analvte ScA 357.253 ScR 361.383 Aq 328.068† Aĺ 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903†

UPHO: BAB13

Sequence No.: 4

Sample ID: VP51 MB1 SWC Analyst: EL

Dilution: 2X

Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402† Zn 206.200† Autosampler Location: 55

Date Collected: 11/1/2012 5:10:37 PM

Data Type: Original

Nebulizer Parameters: VP51 MB1 SWC

Analyte Back Pressure Flow

A11 233.0 kPa 0.55 L/min

Mean Data: VP51 MB1 SWC Mean Corrected Calib. Sample Analyte ScA 357.253 ScR 361.383

| SWC | Mean Corrected | Calib. | Std.Dev. | Conc. Units | Std.Dev. | RSD | 0.578 | 209433.3 | 102.8 % | 0.59 | 1.022 | 1.038 | 1.038 Ag 328.068† AÍ 308.215† As 188.979t B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077t Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158†

Sequence No.: 5

Sample ID: VP51 B SWC

Analyst: EL Dilution: 2X Autosampler Location: 56

Date Collected: 11/1/2012 5:16:38 PM

Data Type: Original

Nebulizer Parameters: VP51 B SWC

 Analyte
 Back Pressure
 Flow

 All
 232.0 kPa
 0.55 L/min

Mean Data: VP51 B	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2658066.8	100.4	ુ	0.43				0.43%
ScR 361.383	215088.5	101.6		0.13				0.12%
Ag 328.068†	-970.5	0.00092	mg/L	0.000080	0.00183	mg/L	0.000160	8.74%
Al 308.215†	173647.4	115.5	mg/L	0.22	231.0	mg/L	0.43	0.19%
As 188.979†	70.6	0.04374	mg/L	0.000860	0.08748	mg/L	0.001719	1.97%
B 249.677†	66.0	0.02992	mg/L	0.000515	0.05983		0.001031	1.72%
Ba 233.527†	3416.1	0.3249	mg/L	0.00146	0.6498	mg/L	0.00292	0.45%
Be 313.042†	661.1	0.00132	mg/L	0.000032	0.00264	mq/L	0.000065	2.46%
Ca 317.933†	751462.1	70.99	mg/L	0.097	142.0	mg/L	0.19	0.14%
Cd 228.802†	225.2	0.00267	mg/L	0.000086	0.00534	mg/L	0.000173	3.23%
Co 228.616†	6629.1	0.06523	mg/L	0.000546	0.1305	mq/L	0.00109	0.84%
Cr 267.716†	1118.2	0.2435	mg/L	0.00091	0.4869	mg/L	0.00182	0.37%
Cu 324.752†	71983.3	0.2412	mg/L	0.00062	0.4823	mg/L	0.00124	0.26%
Fe 273.955†	193203.2	157.6	mg/L	1.08	315.2	mg/L	2.16	0.68%
K 766.490†	33470.9	9.290	mg/L	0.0462	18.58	mg/L	0.092	0.50%
Mg 279.077†	67162.4	57.57	mg/L	0.094	115.1	mg/L	0.19	0.16%
Mn 257.610†	104157.5	2.573	mg/L	0.0053	5.146	mg/L	0.0105	0.20%
Mo 202.031†	0.2	0.00166	mg/L	0.000299	0.00332	mg/L	0.000599	18.04%
Na 589.592†	53585.7	6.476	mg/L	0.0184	12.95		0.037	0.28%
Na 330.237†	168.7	6.881		0.2290	13.76	mg/L	0.458	3.33%
Ni 231.604†	606.4	0.2656	mg/L	0.00068	0.5311	mg/L	0.00136	0.26%
Pb 220.353†	2261.3	0.2060	mg/L	0.00122	0.4120	mg/L	0.00244	0.59%
Sb 206.836†	98.1	0.01720	mg/L	0.000159	0.03440	mg/L	0.000318	0.92%
Se 196.026†	-65.9	-0.03556	mg/L	0.005170	-0.07113	mg/L	0.010341	14.54%
Si 288.158†	1400.5	1.043	${ m mg/L}$	0.0057	2.085	mg/L	0.0113	0.54%
Sn 189.927†	134.5	0.03941		0.001035	0.07882	mg/L	0.002070	2.63%
Sr 421.552†	163186.7	0.2688	mg/L	0.00142	0.5376	mg/L	0.00284	0.53%
Ti 334.903†	167778.6	6.524	mg/L	0.0020	13.05	mg/L	0.004	0.03%
Tl 190.801†	22.1	-0.00545	mg/L	0.000764	-0.01090		0.001529	14.03%
V 292.402†	76753.6	0.3578	${ m mg/L}$	0.00092	0.7157	mg/L	0.00184	0.26%
Zn 206.200†	1658.5	0.6508	mg/L	0.00457	1.302	mg/L	0.0091	0.70%

Sequence No.: 6

Autosampler Location: 57 Sample ID: VP40 ADUP SWC

Analyst: EL

Dilution: 2X

Date Collected: 11/1/2012 5:22:28 PM

Data Type: Original

Nebulizer Parameters: VP40 ADUP SWC

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VP40 A	Mean Data: VP40 ADUP SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev.	R S D
ScA 357.253	2638891.2	99.65		0.165				0.17%
ScR 361.383	211185.2	99.73	ક	0.746				0.75%
Ag 328.068†	-1298.5	0.00107	mg/L	0.000192	0.00214		0.000385	17.98%
Al 308.215†	185479.3	123.3	${ m mg/L}$	0.03	246.7		0.06	0.03%
As 188.979†	66.9	0.04406	mg/L	0.001185	0.08813		0.002371	2.69%
B 249.677†	123.6	0.05628	${ m mg/L}$	0.001929	0.1126		0.00386	3.43%
Ba 233.527†	7066.6	0.6783	${ m mg/L}$	0.00445	1.357		0.0089	0.66%
Be 313.042†	762.0	0.00153	${ m mg/L}$	0.000056	0.00306	mg/L	0.000112	3.66%
Ca 317.933†	734548.9	69.39	${ m mg/L}$	0.142	138.8	mg/L	0.28	0.21%
Cd 228.802†	456.4	0.00545	${ m mg/L}$	0.000112	0.01089	mg/L	0.000223	2.05%
Co 228.616†	7232.5	0.07021	mg/L	0.000944	0.1404	J .	0.00189	1.34%
Cr 267.716†	1396.1	0.3041	${ m mg/L}$	0.00246	0.6082	mg/L	0.00492	0.81%
Cu 324.752†	99160.4	0.3308	${ m mg/L}$	0.00045	0.6616	${\tt mg/L}$	0.00091	0.14%
Fe 273.955†	238760.2	194.8	${\tt mg/L}$	0.29	389.6	mg/L	0.58	0.15%
K 766.490†	44778.0	12.43	${ m mg/L}$	0.022	24.86	mg/L	0.043	0.17%
Mg 279.077†	86316.1	74.00	mg/L	0.107	148.0	mg/L	0.21	0.14%
Mn 257.610†	107452.2	2.654	${ m mg/L}$	0.0040	5.309		0.0079	0.15%
Mo 202.031†	35.1	0.00350	${ m mg/L}$	0.000180	0.00700	mg/L	0.000360	5.15%
Na 589.592†	96363.2	11.65	${ m mg/L}$	0.018	23.29	${ m mg/L}$	0.036	0.15%
Na 330.237†	303.3	11.96	${ m mg/L}$	0.246	23.91	mg/L	0.492	2.06%
Ni 231.604†	665.3	0.2914	mg/L	0.00195	0.5827	${ m mg/L}$	0.00389	0.67%
Pb 220.353†	2944.1	0.2586	${ m mg/L}$	0.00223	0.5172	mg/L	0.00446	0.86%
Sb 206.836†	98.9	0.01396	mg/L	0.002395	0.02792	mg/L	0.004790	17.15%
Se 196.026†	-83.9	-0.04517	${ m mg/L}$	0.000882	-0.09033	${ m mg/L}$	0.001765	1.95%
Si 288.158†	4034.1	2.992	${\tt mg/L}$	0.0079	5.984	mg/L	0.0158	0.26%
Sn 189.927†	52.4	0.02727	mg/L	0.000548	0.05455	mg/L	0.001096	2.01%
Sr 421.552†	216813.2	0.3571	mg/L	0.00127	0.7142	mg/L	0.00253	0.35%
Ti 334.903†	191541.0	7.449	mg/L	0.0103	14.90	mg/L	0.021	0.14%
Tl 190.801†	19.6	-0.00741	mg/L	0.001663	-0.01482	mg/L	0.003326	22.45%
V 292.402†	87646.9	0.4074	mg/L	0.00007	0.8148	mg/L	0.00015	0.029
Zn 206.200†	1823.2	0.7152	mg/L	0.00609	1.430	mg/L	0.0122	0.85%

Sequence No.: 7

Autosampler Location: 58

Sample ID: VP40 A SWC

Date Collected: 11/1/2012 5:28:16 PM

Analyst: EL Dilution: 2X Data Type: Original

Nebulizer Parameters: VP40 A SWC

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VP40 A	Mean Data: VP40 A SWC							
	Mean Corrected		Calib.			Sample	1	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2684604.0	101.4		0.28				0.27%
ScR 361.383	215255.5	101.7		0.38				0.38%
Ag 328.068†	-1353.2	0.00099	mg/L	0.000182	0.00198	mg/L	0.000364	18.33%
Al 308.215†	185090.1	123.1	J .	0.12	246.2	mg/L	0.23	0.10%
As 188.979†	67.4	0.04244		0.000500	0.08487	mg/L	0.001000	1.18%
В 249.677†	121.7	0.05543	mg/L	0.003441	0.1109	mg/L	0.00688	6.21%
Ba 233.527†	7413.0	0.7119	mg/L	0.00498	1.424	mg/L	0.0100	0.70%
Be 313.042†	774.0	0.00158	mg/L	0.000050	0.00316	mg/L	0.000100	3.17%
Ca 317.933†	681299.4	64.36	${ m mg/L}$	0.062	128.7	mg/L	0.12	0.10%
Cd 228.802+	491.3	0.00588	mg/L	0.000038	0.01175	mg/L	0.000076	0.64%
Co 228.616†	7259.8	0.07199	mg/L	0.000477	0.1440	${ t mg/L}$	0.00095	0.66%
Cr 267.716†	1420.2	0.3094	${ m mg/L}$	0.00191	0.6188	mg/L	0.00382	0.62%
Cu 324.752†	105585.6	0.3518	mg/L	0.00050	0.7036	mg/L	0.00099	0.14%
Fe 273.955†	242118.2	197.5	${ m mg/L}$	0.37	395.0	${ t mg/L}$	0.75	0.19%
K 766.490†	48802.1	13.54	${ m mg/L}$	0.038	27.09	mg/L	0.076	0.28%
Mg 279.077†	94421.7	80.95	${ m mg/L}$	0.059	161.9	${ t mg/L}$	0.12	0.07%
Mn 257.610†	109312.9	2.700	${ m mg/L}$	0.0024	5.401	mg/L	0.0048	0.09%
Mo 202.031†	40.6	0.00370	${ m mg/L}$	0.000332	0.00740	mg/L	0.000665	8.98%
Na 589.592†	99182.5	11.99	mg/L	0.030	23.97	${ t mg/L}$	0.059	0.25%
Na 330.237†	324.1	12.56	${ m mg/L}$	0.205	25.13	mg/L	0.411	1.63%
Ni 231.604†	783.7	0.3432	mg/L	0.00263	0.6864	mg/L	0.00525	0.77%
Pb 220.353†	2920.9	0.2565	mg/L	0.00147	0.5129	mg/L	0.00294	0.57%
Sb 206.836†	101.9	0.01348	${ m mg/L}$	0.001774	0.02696	${ m mg/L}$	0.003548	13.16%
Se 196.026†	-80.8	-0.04364	${ m mg/L}$	0.002226	-0.08727	mg/L	0.004453	5.10%
Si 288.158†	4763.9	3.532	mg/L	0.0161	7.065	${ m mg/L}$	0.0323	0.46%
Sn 189.927†	74.5	0.02943		0.000315	0.05886		0.000629	1.07%
Sr 421.552†	203403.8	0.3350	mg/L	0.00144	0.6700	mg/L	0.00288	0.43%
Ti 334.903†	169504.4	6.592	mg/L	0.0033	13.18		0.007	0.05%
Tl 190.801†	9.0	-0.00960	mg/L	0.002834	-0.01920	mg/L	0.005667	29.52%
V 292.402†	88284.7	0.4110	mg/L	0.00044	0.8220	mg/L	0.00088	0.11%
Zn 206.200†	1841.3	0.7222	mg/L	0.00310	1.444	mg/L	0.0062	0.43%

UDUG: GOS17

Sequence No.: 8

Sample ID: VP40 ASPK SWC

Analyst: EL Dilution: 2X Autosampler Location: 59

Date Collected: 11/1/2012 5:34:05 PM

Data Type: Original

Nebulizer Parameters: VP40 ASPK SWC

All

Analyte Back Pressure Flow

232.0 kPa 0.55 L/min

ASPK SWC

Mean Corrected

Intensity

2647957.2

99.99 %

100.6 %

5047 mg/L Mean Data: VP40 ASPK SWC Sample Std.Dev. Conc. Units Std.Dev. RSD Analyte

| Mean Corrected | Calib. | Std.Dev. | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | RSD | CA 357.253 | 2647957.2 | 99.99 % | 0.374 | 0.378 | ScR 361.383 | 212990.8 | 100.6 % | 0.594 | 0.00228 | 1.009 mg/L | 0.0046 | 0.45% | Al 308.2151 | 189449.4 | 126.0 mg/L | 0.00228 | 1.009 mg/L | 0.041 | 0.168 | As 188.9791 | 4824.3 | 2.060 mg/L | 0.0377 | 4.120 mg/L | 0.0037 | 2.29% | Ba 233.5277 | 26945.3 | 2.613 mg/L | 0.01534 | 0.1139 mg/L | 0.00307 | 2.29% | Ba 233.5277 | 26945.3 | 2.613 mg/L | 0.00132 | 5.226 mg/L | 0.0264 | 0.51% | Ba 318.9793 | 4.204 | 3.908.2151 | 4.009.0 mg/L | 0.5070 mg/L | 0.00980 | 1.014 mg/L | 0.0080 | 0.088 | Ca 317.9331 | 891998.0 | 84.26 mg/L | 0.0966 | 1.68.5 mg/L | 0.01840 | 1.84% | Co 228.6161 | 45628.4 | 0.5267 mg/L | 0.00960 | 1.68.5 mg/L | 0.0197 | 1.87% | Cr 267.7161 | 3932.2 | 0.8580 mg/L | 0.00056 | 1.716 mg/L | 0.0101 | 0.599 | Cr 267.7161 | 3932.2 | 0.8580 mg/L | 0.00056 | 1.716 mg/L | 0.0011 | 0.599 | Cr 267.7167 | 3932.2 | 0.8580 mg/L | 0.0056 | 1.716 mg/L | 0.0011 | 0.599 | Cr 267.7167 | 3932.2 | 0.8580 mg/L | 0.0056 | 1.716 mg/L | 0.0011 | 0.66% | Fe 273.9557 | 217606.4 | 177.5 mg/L | 0.31 | 355.0 mg/L | 0.0225 | 0.518 | Mg 279.0777 | 94492.8 | 810.3 mg/L | 0.0063 | 162.1 mg/L | 0.013 | 0.08% | Mn 257.6107 | 130456.2 | 3.223 mg/L | 0.0056 | 6.446 mg/L | 0.133 | 0.08% | Mn 257.6107 | 130456.2 | 3.223 mg/L | 0.0056 | 6.446 mg/L | 0.013 | 0.78% | Mn 257.6107 | 130456.2 | 3.223 mg/L | 0.0056 | 6.446 mg/L | 0.013 | 0.78% | Mn 257.6107 | 130456.2 | 3.223 mg/L | 0.0036 | 6.446 mg/L | 0.013 | 0.78% | Mn 257.6107 | 130456.2 | 3.223 mg/L | 0.0036 | 6.446 mg/L | 0.0013 | 0.78% | Mn 257.6107 | 130456.2 | 3.223 mg/L | 0.0036 | 6.446 mg/L | 0.0013 | 0.78% | Mn 257.6107 | 130456.2 | 3.223 mg/L | 0.0036 | 6.446 mg/L | 0.0036 | 3.008 | Mn 257.6107 | 130456.2 | 3.223 mg/L | 0.0036 | 6.446 mg/L | 0.0036 | 3.008 | Mn 257.6107 | 130456.2 | 3.223 mg/L | 0.0036 | 6.446 mg/L | 0.0036 | 3.008 | Mn 257.6107 | 130456.2 | 3.223 mg/L | 0.0036 | 6.446 mg/L | 0.0036 | 3.008 | 3.006 mg/L | 0.0026 | 3.0

VPUG: GGG18

Sequence No.: 9

Autosampler Location: 60

Sample ID: VP44 ADUP LEN Date Collected: 11/1/2012 5:39:11 PM Analyst: EL

Dilution: 5X

Zn 206.200†

All

Data Type: Original

Nebulizer Parameters: VP44 ADUP LEN

Analyte Back Pressure Flow

232.0 kPa 0.55 L/min

Mean Data: VP44 ADUP LEN Mean Corrected Calib. Sample Analyte

| ADUP LEN | Mean Corrected | Calib. | Std.Dev. | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | RSD | 0.718 | 203330.4 | 96.02 % | 0.652 | 0.652 | 0.688 | 134.8 | 0.00046 mg/L | 0.000197 | 0.00231 mg/L | 0.000987 | 42.77% | 459.0 | 0.3053 mg/L | 0.001216 | 0.01700 mg/L | 0.002093 | 1.50% | 8.0 | 0.00340 mg/L | 0.001216 | 0.01700 mg/L | 0.006080 | 35.76% | 119.1 | 0.05461 mg/L | 0.001343 | 0.2730 mg/L | 0.00672 | 2.46% | 3541.4 | 0.3445 mg/L | 0.00141 | 1.723 mg/L | 0.0001672 | 2.46% | 3541.4 | 0.3045 mg/L | 0.00017 | 9.202 mg/L | 0.00017 | 0.41% | 19481.9 | 1.840 mg/L | 0.00017 | 9.202 mg/L | 0.00087 | 0.09% | 485.8 | 0.00581 mg/L | 0.000102 | 0.02903 mg/L | 0.000511 | 1.76% | 170.5 | 0.00188 mg/L | 0.000102 | 0.02903 mg/L | 0.000521 | 5.55% | 15.0 | 0.00325 mg/L | 0.001005 | 0.01626 mg/L | 0.000522 | 5.55% | 15.0 | 0.00325 mg/L | 0.001005 | 0.01626 mg/L | 0.000522 | 5.55% | 1281.1 | 1.045 mg/L | 0.0001089 | 0.1034 mg/L | 0.00052 | 30.88% | 6448.3 | 0.02068 mg/L | 0.000189 | 0.1034 mg/L | 0.00952 | 0.92% | 1281.1 | 1.045 mg/L | 0.0033 | 5.225 mg/L | 0.0166 | 0.32% | 1227.1 | 1.053 mg/L | 0.0091 | 0.546% | 2947.5 | 0.07284 mg/L | 0.0097 | 0.0257 | 7.100 mg/L | 0.1285 | 1.81% | 1.227.1 | 1.053 mg/L | 0.00017 | 0.0087 | 0.0085 | 0.92% | 1.00039 | 0.3642 mg/L | 0.00158 | 0.0545 | 0.92 | 0.00059 | 0.92% | 1.00059 | 0.9259 | 0.9259 | 0.9259 | 0.9259 | 0.9259 | 0.9259 | 0.9259 | 0.9 ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267./10. Cu 324.752† 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402†

UPUR BRE19

Date: 11/1/2012 5:49:52 PM

Sequence No.: 10 Autosampler Location: 61

Sample ID: VP44 A LEN Date Collected: 11/1/2012 5:45:31 PM

Analyst: EL Dilution: 5X Data Type: Original

Nebulizer Parameters: VP44 A LEN

Mean Data: VP44 A	LEN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2594742.4	97.98	8	0.092				0.09%
ScR 361.383	205102.5	96.86		1.130				1.17%
Ag 328.068†	-30.6	-0.00011	${ m mg/L}$	0.000056	-0.00054	mg/L	0.000280	51.48%
Al 308.215†	285.7	0.1900		0.00514	0.9500	mg/L	0.02572	2.71%
As 188.979†	1.9	0.00082	${ m mg/L}$	0.001128	0.00409	mg/L	0.005642	138.06%
В 249.677†	114.1	0.05231		0.002505	0.2615	mg/L	0.01252	4.79%
Ba 233.527†	3486.9	0.3392		0.00319	1.696	mg/L	0.0160	0.94%
Be 313.042†	-14.7	-0.00005	mg/L	0.000033	-0.00027	mg/L	0.000165	61.21%
Ca 317.933†	18528.2	1.750	${ m mg/L}$	0.0135	8.752	mg/L	0.0677	0.77%
Cd 228.802†	441.9	0.00529		0.000115	0.02643	mg/L	0.000576	2.18%
Co 228.616†	128.1	0.00139		0.000130	0.00696	mg/L	0.000652	9.37%
Cr 267.716†	11.6	0.00251		0.000909	0.01253	mg/L	0.004547	36.28%
Cu 324.752†	6014.7	0.01928	_	0.000123	0.09641	${\tt mg/L}$	0.000616	0.64%
Fe 273.955†	1063.9	0.8679		0.00987	4.339	mg/L	0.0494	1.14%
K 766.490†	4504.0	1.250		0.0249	6.250	mg/L	0.1245	1.99%
Mg 279.077†	1131.6	0.9710		0.01197	4.855		0.0599	1.23%
Mn 257.610†	2800.8	0.06921		0.000589	0.3461	mg/L	0.00295	0.85%
Mo 202.031†	-6.3	-0.00035		0.000032	-0.00175	mg/L	0.000159	9.08%
Na 589.592†	2068766.2	250.0	_	2.64		${\tt mg/L}$	13.2	1.06%
Na 330.237†	7121.7	259.5	_	1.57		mg/L	7.8	0.60%
Ni 231.604†	11.7	0.00514		0.001530	0.02571		0.007648	29.74%
Pb 220.353†	360.6	0.02732		0.000145	0.1366		0.00072	0.53%
Sb 206.836†	13.1	0.00344		0.000355	0.01718		0.001775	10.33%
Se 196.026†	-1.7	-0.00092	_	0.001209	-0.00460		0.006045	
Si 288.158†	182.2	0.1349		0.00136	0.6744	_	0.00681	1.01%
Sn 189.927†	-3.4	-0.00012		0.000244	-0.00060			201.95%
Sr 421.552†	15740.4	0.02593		0.000410	0.1296		0.00205	1.58%
Ti 334.903†	35.8	0.00131	_	0.000284	0.00654		0.001419	21.71%
Tl 190.801†	-0.5	-0.00024	_	0.000667	-0.00119			279.87%
V 292.402†	41.4	0.00015	_	0.000172	0.00073	J .	0.000861	
Zn 206.200†	857.5	0.3358	mg/L	0.00407	1.679	mg/L	0.0203	1.21%

Data Type: Original

Autosampler Location: 62 Sequence No.: 11 Date Collected: 11/1/2012 5:51:51 PM Sample ID: VP44 ASPK LEN

Analyst: EL

Dilution: 5X

All

Nebulizer Parameters: VP44 ASPK LEN

Analyte Back Pressure Flow 232.0 kPa 0.55 L/min

| Mean Data: VF44 ASPK LEN | Mean Corrected | Calib. | Sample | Sca 357.253 | 2563572.3 | 96.80 % | 0.501 | Sca 357.253 | 2563572.3 | 96.80 % | 0.501 | Sca 357.253 | 2563572.3 | 96.80 % | 0.501 | Sca 361.383 | 201802.1 | 95.30 % | 1.083 | 1.083 | 1.148 | Ag 328.068† | 60079.5 | 0.2056 mg/L | 0.00224 | 1.028 mg/L | 0.0112 | 1.09% | Al 308.215† | 1532.9 | 1.016 mg/L | 0.00112 | 5.082 mg/L | 0.0559 | 1.10% | As 188.979† | 2025.0 | 0.8589 mg/L | 0.00325† | 0.2667 mg/L | 0.01625 | 6.058 | Ba 233.527† | 11775.6 | 1.146 mg/L | 0.0123 | 5.728 mg/L | 0.01625 | 6.058 | Ba 233.527† | 11775.6 | 1.146 mg/L | 0.00325† | 0.2667 mg/L | 0.01625 | 6.058 | Ba 233.527† | 1777.2 | 0.2067 mg/L | 0.00106 | 1.034 mg/L | 0.0063 | 0.518 | Ca 228.802† | 18074.6 | 0.2143 mg/L | 0.00200 | 0.273 | 29.86 mg/L | 0.0063 | 0.518 | Ca 228.802† | 18074.6 | 0.2143 mg/L | 0.00260 | 1.071 mg/L | 0.0130 | 1.218 | Ca 228.802† | 18074.6 | 0.2143 mg/L | 0.00260 | 1.071 mg/L | 0.0130 | 1.218 | Ca 227.716f | 976.6 | 0.2133 mg/L | 0.00201 | 0.9930 mg/L | 0.01031 | 1.018 | Ca 267.716f | 976.6 | 0.2133 mg/L | 0.00223 | 1.770 mg/L | 0.01177 | 1.668 | Ca 224.955† | 73169.3 | 0.2339 mg/L | 0.00223 | 1.770 mg/L | 0.0117 | 1.668 | K 766.490† | 19752.9 | 5.482 mg/L | 0.0533 | 27.41 mg/L | 0.0697 | 1.048 | K 766.490† | 19752.9 | 5.482 mg/L | 0.0533 | 27.41 mg/L | 0.067 | 0.0897 | 1.048 | K 766.490† | 19825.0 | 0.2677 mg/L | 0.05033 | 27.41 mg/L | 0.067 | 0.374 | 1.78 | Mn 257.610† | 10825.0 | 0.2677 mg/L | 0.00036 | 0.00078 mg/L | 0.00151 | 1.138 | Mn 257.610† | 10825.0 | 0.2677 mg/L | 0.00036 | 0.00078 mg/L | 0.0016 | 0.00260 | 0.0038 | 0.358 | Na 589.592† | 2113740.1 | 255.5 mg/L | 3.15 | 1277 mg/L | 0.000280 | 35.858 | Na 589.592† | 2113740.1 | 255.5 mg/L | 3.15 | 1277 mg/L | 0.000280 | 35.858 | Na 589.592† | 2113740.1 | 255.5 mg/L | 3.15 | 1277 mg/L | 0.000280 | 35.858 | Na 589.592† | 2113740.1 | 255.5 mg/L | 0.00036 | 0.00078 mg/L | 0.0016 | 0.0083 | 1.388 | Mn 250.2078 mg/L | 0.00260 | 0.0485 mg/L | 0.00260 | 0.0485 mg/L | 0.00161 | 0.0897 | 0.0161 | 1.088 | Mean Data: VP44 ASPK LEN Mean Corrected Sample

Date: 11/1/2012 6:02:18 PM

Sequence No.: 12

12 Autosampler Location: 63

Sample ID: VP40 MB1SPK SWC Analyst: EL

Dilution: 2X

All

Date Collected: 11/1/2012 5:58:14 PM

Data Type: Original

Nebulizer Parameters: VP40 MB1SPK SWC

Analyte Back Pressure Flow

232.0 kPa 0.55 L/min

Mean Data: VP40 M	B1SPK SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	$\mathtt{Std.Dev}$.	RSD
ScA 357.253	2726608.3	103.0		0.46				0.45%
ScR 361.383	211568.0	99.91		0.386				0.39%
Ag 328.068†	148988.8	0.5098	_	0.00775	1.020		0.0155	1.52원
Al 308.215†	3071.9	2.036	${ m mg/L}$	0.0097	4.071	${ m mg/L}$	0.0194	0.48원
As 188.979†	4802.0	2.037	_	0.0204	4.074		0.0409	1.00%
B 249.677†	2.6	-0.00046	mg/L	0.002848	-0.00091	mg/L	0.005696	624.04%
Ba 233.527†	20837.9	2.027	${ m mg/L}$	0.0016	4.054	mg/L	0.0032	0.08%
Be 313.042†	143849.8	0.5202	${ t mg/L}$	0.00084	1.040	mg/L	0.0017	0.16%
Ca 317.933†	111366.8	10.52	${ t mg/L}$	0.015	21.04	mg/L	0.030	0.14%
Cd 228.802†	42410.4	0.5027	${\tt mg/L}$	0.00761	1.005	mg/L	0.0152	1.51%
Co 228.616†	42019.6	0.4976	${ m mg/L}$	0.00800	0.9951	mg/L	0.01599	1.61%
Cr 267.716†	2382.8	0.5204	mg/L	0.00220	1.041	mg/L	0.0044	0.42%
Cu 324.752†	160205.8	0.5120	${ m mg/L}$	0.00705	1.024	mg/L	0.0141	1.38%
Fe 273.955†	2638.4	2.152	mg/L	0.0083	4.304	mg/L	0.0167	0.39%
K 766.490†	37979.7	10.54	${ m mg/L}$	0.031	21.08	mg/L	0.062	0.29%
Mg 279.077†	12490.0	10.72	mg/L	0.055	21.45		0.109	0.51%
Mn 257.610†	20612.7	0.5098		0.00116	1.020	mg/L	0.0023	0.23%
Mo 202.031†	10.8	0.00040	mg/L	0.000138	0.00080	mg/L	0.000275	34.57%
Na 589.592†	88211.5	10.66	${ m mg/L}$	0.035	21.32	mg/L	0.070	0.33%
Na 330.237†	303.6	10.83	mg/L	0.140	21.67	mg/L	0.281	1.30%
Ni 231.604†	1148.4	0.5034	mg/L	0.00473	1.007	mg/L	0.0095	0.94₹
Pb 220.353†	26734.7	2.023		0.0343	4.046	mg/L	0.0686	1.70%
Sb 206.836†	7455.0	2.031	${ m mg/L}$	0.0187	4.062	mg/L	0.0375	0.92%
Se 196.026†	3820.6	2.022	mg/L	0.0189	4.044	mg/L	0.0379	0.94%
Si 288.158†	5.0	0.00719	${ m mg/L}$	0.000516	0.01438	mg/L	0.001032	7.18%
Sn 189.927†	-18.7	-0.00035	${ m mg/L}$	0.000574	-0.00070	mg/L	0.001148	163.72%
Sr 421.552†	310705.8	0.5118	mg/L	0.00098	1.024	mg/L	0.0020	0.19%
Ti 334.903†	65.7	0.00192	mg/L	0.000341	0.00383	mg/L	0.000683	17.81%
Tl 190.801†	7222.8	1.984		0.0183	3.968	mg/L	0.0367	0.92%
V 292.402†	102775.5	0.5074	mg/L	0.00849	1.015	mg/L	0.0170	1.67%
Zn 206.200†	1260.0	0.4929	mg/L	0.00188	0.9859	mg/L	0.00376	0.38%

The second secon

Sequence No.: 13 Autosampler Location: 7
Sample ID: CV(- Date Collected: 11/1/2012 6:04:18 PM

Analyst: EL Data Type: Original

Dilution: 1X

Nebulizer Parameters: CV

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2640784.6	99.72		0.976				0.98%
ScR 361.383	211288.2	99.78	ફ	0.478				0.48%
Ag 328.068†	297223.8	1.017	J.	0.0022	1.017	mg/L	0.0022	0.22%
Al 308.215†	3079.3	2.006		0.0161	2.006	mg/L	0.0161	0.80%
As 188.979†	4950.4	2.099		0.0234	2.099	mg/L	0.0234	1.11%
B 249.677†	2131.6	0.9756		0.00754	0.9756	mg/L	0.00754	0.77%
Ba 233.527†	10227.6	0.9947	mg/L	0.00520	0.9947	mg/L	0.00520	0.52ક
Be 313.042†	271088.6	0.9801	mg/L	0.00604	0.9801	mg/L	0.00604	0.62%
Ca 317.933†	21564.3	2.037	mg/L	0.0112	2.037	mg/L	0.0112	0.55%
Cd 228.802†	85164.6	1.014	mg/L	0.0032	1.014		0.0032	0.31%
Co 228.616†	84248.4	0.9971	mg/L	0.00092	0.9971	mg/L	0.00092	0.09%
Cr 267.716†	4579.1	0.9999	mg/L	0.00664	0.9999	mg/L	0.00664	0.66%
Cu 324.752†	334182.7	1.067	mg/L	0.0017	1.067	mg/L	0.0017	0.16%
Fe 273.955†	2602.5	2.122	mg/L	0.0144	2.122	mg/L	0.0144	0.68%
K 766.490†	74275.3	20.61	mg/L	0.112	20.61	mg/L	0.112	0.54%
Mg 279.077†	2467.7	2.122	mg/L	0.0151	2.122	mg/L	0.0151	0.71%
Mn 257.610†	40161.4	0.9929		0.00496	0.9929	mg/L	0.00496	0.50%
Mo 202.031†	17718.4	0.9574	mg/L	0.00920	0.9574	mg/L	0.00920	0.96%
Na 589.592†	415009.9	50.16	mg/L	0.335	50.16	mg/L	0.335	0.67%
Na 330.237†	1392.0	50.54	mg/L	0.108	50.54	mg/L	0.108	0.21%
Ni 231.604†	2255.1	0.9881	mg/L	0.00672	0.9881	mg/L	0.00672	0.68%
Pb 220.353†	26976.2	2.041	mg/L	0.0201	2.041	mg/L	0.0201	0.99%
Sb 206.836†	7653.5	2.090	mg/L	0.0238	2.090	mg/L	0.0238	1.14%
Se 196.026†	3821.3	2.021	mg/L	0.0205	2.021	mg/L	0.0205	1.02%
Si 288.158†	2935.9	2.177	mg/L	0.0183	2.177		0.0183	0.84%
Sn 189.927†	5943.9	0.9072	mg/L	0.00945	0.9072	mg/L	0.00945	1.04%
Sr 421.552†	603523.2	0.9941	mg/L	0.00153	0.9941	mg/L	0.00153	0.15%
Ti 334.903†	25549.2	0.9928	mg/L	0.00609	0.9928	mg/L	0.00609	0.61%
Tl 190.801†	7402.2	2.027		0.0189	2.027	mg/L	0.0189	0.93%
V 292.402†	207588.3	1.029	mg/L	0.0046	1.029	mg/L	0.0046	0.45%
Zn 206.200†	2636.2	1.031	mg/L	0.0067	1.031	mg/L	0.0067	0.65%

Date: 11/1/2012 6:14:22 PM

Sample ID: CB Analyst: EL Dilution: 1X

Autosampler Location: 1

Date Collected: 11/1/2012 6:10:22 PM

Data Type: Original

Nebulizer Parameters: CB

Analyte Back Pressure

Back Pressure Flow 231.0 kPa 0.55 L/min All

Mean Data: CB

ucena aucu

Autosampler Location: 64 Sample ID: VP51 C SWC

Analyst: EL Dilution: 2X

Sn 189.927t Sr 421.552† Ti 334.903† Tl 190.801† V 292.402† Zn 206.200†

Date Collected: 11/1/2012 6:16:20 PM

Data Type: Original

Nebulizer Parameters: VP51 C SWC

Analyte Back Pressure Flow 232.0 kPa 0.55 L/min

| Mean Corrected | Calib. | Std.Dev. | Conc. Units | Std.Dev. | RSD | 0.667 | 0.358 | 0.667 | 0.358 | 0.667 | 0.358 | 0.667 | 0.358 | 0.667 | 0.358 | 0.667 | 0.358 | 0.667 | 0.358 | 0.667 | 0.358 | 0.367 | 0.358 | 0.367 | 0.358 | 0.367 | 0.358 | 0.367 | 0.368 | 0.358 | 0.367 | 0.368 | 0.358 | 0.367 | 0.368 | 0.358 | 0.367 | 0.368 | 0.358 | 0.368 | Mean Data: VP51 C SWC Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836t Se 196.026† Si 288.158†

Sequence No.: 16

Autosampler Location: 65

Sample ID: VP51 D SWC

Date Collected: 11/1/2012 6:22:08 PM

Analyst: EL Data Type: Original Dilution: 2X

Nebulizer Parameters: VP51 D SWC

 Analyte
 Back
 Pressure
 Flow

 All
 231.0 kPa
 0.55 L/min

Mean Data: VP51 D	Mean Data: VP51 D SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2710276.8	102.3	olo	0.21				0.20%
ScR 361.383	212110.4	100.2	ક	0.57				0.57%
Ag 328.068†	-1580.1	0.00037		0.000176	0.00074	mg/L	0.000352	47.56%
Al 308.215†	121414.3	80.74	mg/L	0.184	161.5	mg/L	0.37	0.23%
As 188.979†	114.1	0.05908	${\tt mg/L}$	0.001732	0.1182	mg/L	0.00346	2.93%
B 249.677†	64.6	0.02942	mg/L	0.001261	0.05884		0.002522	4.29%
Ba 233.527†	3619.8	0.3425	mg/L	0.00125	0.6849	mg/L	0.00250	0.37%
Be 313.042†	375.6	0.00043	mg/L	0.000021	0.00086	mg/L	0.000042	4.89%
Ca 317.933†	847954.0	80.10	${\tt mg/L}$	0.074	160.2	mg/L	0.15	0.09%
Cd 228.802†	245.3	0.00284	J .	0.000071	0.00568	mg/L	0.000142	2.49%
Co 228.616†	4805.6	0.04556	${\tt mg/L}$	0.000351	0.09111	mg/L	0.000701	0.77%
Cr 267.716†	817.4	0.1779	mg/L	0.00075	0.3558	mg/L	0.00150	0.42%
Cu 324.752†	88186.0	0.2974	mg/L	0.00084	0.5949	mg/L	0.00168	0.28%
Fe 273.955†	253447.5	206.8	mg/L	1.21	413.5	mg/L	2.42	0.59%
K 766.490†	14048.7	3.899	mg/L	0.0067	7.798	mg/L	0.0134	0.17%
Mg 279.077†	76533.0	65.59	mg/L	0.160	131.2	mg/L	0.32	0.24%
Mn 257.610†	85255.9	2.106	${ t mg/L}$	0.0049	4.212	mg/L	0.0097	0.23ક
Mo 202.031†	402.8	0.02261	mg/L	0.000228	0.04521	mg/L	0.000456	1.01%
Na 589.592†	21699.6	2.623	${ t mg/L}$	0.0049	5.245	mg/L	0.0098	0.19%
Na 330.237†	79.4	3.047	${ t mg/L}$	0.0485	6.094	mg/L	0.0970	1.59%
Ni 231.604†	340.7	0.1492	mg/L	0.00286	0.2984	mg/L	0.00572	1.92%
Pb 220.353†	7372.7	0.5779	mg/L	0.00387	1.156	mg/L	0.0077	0.67%
Sb 206.836†	63.5	0.00688	${ t mg/L}$	0.000622	0.01377	mg/L	0.001244	9.04%
Se 196.026†	-64.3	-0.03443	mg/L	0.000487	-0.06886	mg/L	0.000973	1.41%
Si 288.158†	1295.8	0.9662	${ m mg/L}$	0.00365	1.932	mg/L	0.0073	0.38%
Sn 189.927†	2625.8	0.4209	mg/L	0.00246	0.8418		0.00492	0.58%
Sr 421.552†	278398.4	0.4585	mg/L	0.00268	0.9171	mg/L	0.00536	0.58%
Ti 334.903†	130877.3	5.088	mg/L	0.0109	10.18	mg/L	0.022	0.21%
Tl 190.801†		-0.01231		0.000158	-0.02462		0.000316	1.28%
V 292.402†	67073.3	0.3065	mg/L	0.00072	0.6130	mg/L	0.00145	0.24%
Zn 206.200†	3358.6	1.317	mg/L	0.0052	2.634	mg/L	0.0105	0.40%

Sequence No.: 17

o.: 17 Autosampler Location: 66 VP51 E SWC Date Collected: 11/1/2012 6:28:00 PM

Sample ID: VP51 E SWC Date Collected: 11/1
Analyst: EL Data Type: Original

Dilution: 2X

Nebulizer Parameters: VP51 E SWC

AnalyteBack Pressure Flow

All 231.0 kPa 0.55 L/min

Mean Data: VP51 E	SWC							
	Mean Corrected		Calib.			Sample	;	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2693088.7	101.7		2.05				2.01%
ScR 361.383	208827.3	98.62		2.462				2.50%
Ag 328.068†	-1399.2	0.00162	٠.	0.000210	0.00324		0.000421	12.97%
Al 308.215†	101916.7	67.77	_	0.744	135.5		1.49	1.10₹
As 188.979†	116.0	0.05881	_	0.003099	0.1176		0.00620	5.27%
B 249.677†	149.2	0.06821	_	0.001573	0.1364	J .	0.00315	2.31%
Ba 233.527†	8054.4	0.7739	${ m mg/L}$	0.01951	1.548		0.0390	2.52%
Be 313.042†	370.6	0.00067	${ m mg/L}$	0.000074	0.00134		0.000147	10.97%
Ca 317.933†	364055.3	34.39	_	0.230	68.78	J .	0.459	0.67ક
Cd 228.802†	412.4	0.00486	${ m mg/L}$	0.000217	0.00972	J .	0.000434	4.46%
Co 228.616†	4907.3	0.04746	mg/L	0.001344	0.09493	mg/L	0.002687	2.83%
Cr 267.716†	919.3	0.2003		0.00677	0.4006		0.01354	3.38%
Cu 324.752†	183261.8	0.6014		0.00470	1.203		0.0094	0.78%
Fe 273.955†	255650.6	208.6	mg/L	2.05	417.1		4.10	0.98%
K 766.490†	23817.9	6.611		0.1087	13.22	mg/L	0.217	1.64%
Mg 279.077†	56855.1	48.69	mg/L	0.352	97.39	${\tt mg/L}$	0.703	0.72%
Mn 257.610†	64495.2	1.593	${ m mg/L}$	0.0145	3.187	mg/L	0.0290	0.91%
Mo 202.031†	486.6	0.02707	${\tt mg/L}$	0.000849	0.05414	${ m mg/L}$	0.001697	3.13%
Na 589.592†	168457.3	20.36	mg/L	0.270	40.72	mg/L	0.540	1.33%
Na 330.237†	547.1	20.18	${ m mg/L}$	0.751	40.37	${ m mg/L}$	1.502	3.72%
Ni 231.604†	502.4	0.2200	mg/L	0.00511	0.4400	${ m mg/L}$	0.01021	2.32%
Pb 220.353†	12726.6	0.9767	mg/L	0.02234	1.953	${\tt mg/L}$	0.0447	2.29%
Sb 206.836†	88.4	0.00806		0.000353	0.01612		0.000706	4.38%
Se 196.026†	-57.5	-0.03103	${ m mg/L}$	0.003561	-0.06206		0.007122	11.48%
Si 288.158†	1023.8	0.7631	${ m mg/L}$	0.02034	1.526	${\tt mg/L}$	0.0407	2.67%
Sn 189.927†	413.7	0.07326	${\sf mg/L}$	0.001057	0.1465	mg/L	0.00211	1.44%
Sr 421.552†	141494.1	0.2331	mg/L	0.00302	0.4661	mg/L	0.00603	1.29%
Ti 334.903†	118086.4	4.593		0.0435	9.185		0.0869	0.95%
Tl 190.801†	-20.2	-0.01327		0.001394	-0.02654	mg/L	0.002788	10.51%
V 292.402†	47192.7	0.2094	mg/L	0.00183	0.4188	${\tt mg/L}$	0.00366	0.88%
Zn 206.200†	3475.4	1.362	mg/L	0.0349	2.723	mg/L	0.0697	2.56%

Sequence No.: 18

Sample ID: VP51 F SWC

Analyst: EL Dilution: 2X Autosampler Location: 67

Date Collected: 11/1/2012 6:33:48 PM

Data Type: Original

Nebulizer Parameters: VP51 F SWC

Back Pressure Flow
231.0 kPa 0.55 L/min Analyte

All

Mean Data: VP51 F SWC								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	R S D
ScA 357.253	2732249.3	103.2	ક	0.08				0.08%
ScR 361.383	210861.4	99.58	ક	0.480				0.48%
Ag 328.068†	-948.0	0.00213	mg/L	0.000276	0.00425	mg/L	0.000553	13.00%
Al 308.215†	75557.0	50.25	mg/L	0.111	100.5	mg/L	0.22	0.22%
As 188.979†	92 . 5	0.04499	mg/L	0.001081	0.08997	mg/L	0.002161	2.40%
B 249.677†	46.0	0.02099	mg/L	0.000731	0.04198	mg/L	0.001461	3.48%
Ba 233.527†	2109.0	0.1970	mg/L	0.00075	0.3940	mg/L	0.00151	0.38%
Be 313.042†	276.1	0.00051	mg/L	0.000046	0.00103	mg/L	0.000093	9.07%
Ca 317.933†	279599.7	26.41	mg/L	0.037	52.83	${ m mg/L}$	0.073	0.14%
Cd 228.802†	350.5	0.00412	mg/L	0.000148	0.00825	${\tt mg/L}$	0.000296	3.59%
Co 228.616†	3193.4	0.03089	mg/L	0.000093	0.06178	${ m mg/L}$	0.000185	0.30%
Cr 267.716†	589.7	0.1284	mg/L	0.00091	0.2569		0.00181	0.71%
Cu 324.752†	100715.4	0.3355	${\tt mg/L}$	0.00026	0.6710	mg/L	0.00053	0.08%
Fe 273.955†	214718.7	175.2	mg/L	0.58	350.3	${\tt mg/L}$	1.16	0.33%
K 766.490†	16285.9	4.520	mg/L	0.0281	9.040	mg/L	0.0561	0.62%
Mg 279.077†	35489.8	30.37	mg/L	0.046	60.74	mg/L	0.092	0.15%
Mn 257.610†	53040.0	1.311	${ m mg/L}$	0.0024	2.622	mg/L	0.0048	0.18%
Mo 202.031†	694.4	0.03818	mg/L	0.000237	0.07635	${ m mg/L}$	0.000473	0.62%
Na 589.592†	45293.3	5.474	mg/L	0.0231	10.95	mg/L	0.046	0.42%
Na 330.237†	157.4	5.622	${ m mg/L}$	0.3267	11.24	mg/L	0.653	5.81%
Ni 231.604†	279.3	0.1223	mg/L	0.00141	0.2446	mg/L	0.00281	1.15%
Pb 220.353†	54628.1	4.141	${ t mg/L}$	0.0240	8.281	mg/L	0.0480	0.58%
Sb 206.836†	-27.5	0.01676	mg/L	0.001195	0.03352		0.002390	7.13%
Se 196.026†	-50.8	-0.02720	mg/L	0.004551	-0.05439	${ m mg/L}$	0.009103	16.73₹
Si 288.158†	1289.3	0.9572	mg/L	0.00283	1.914	${\tt mg/L}$	0.0057	0.30%
Sn 189.927†	21939.4	3.353	${ m mg/L}$	0.0164	6.705	mg/L	0.0329	0.49%
Sr 421.552†	111923.2	0.1843	mg/L	0.00069	0.3687	mg/L	0.00137	0.37%
Ti 334.903†	71687.9	2.788	mg/L	0.0055	5.576		0.0110	0.20%
Tl 190.801†	-14.4	-0.00919	mg/L	0.001733	-0.01838		0.003466	18.85%
V 292.402†	34982.4	0.1538	mg/L	0.00053	0.3075	mg/L	0.00105	0.34%
Zn 206.200†	3717.5	1.457	mg/L	0.0055	2.913	mg/L	0.0109	0.38%

Sequence No.: 19

Sample ID: VP51 ADUP SWC

Analyst: EL Dilution: 2X Autosampler Location: 68

Date Collected: 11/1/2012 6:39:35 PM

Data Type: Original

Nebulizer Parameters: VP51 ADUP SWC

Analyte

Back Pressure Flow
231.0 kPa 0.55 L/min All

Mean Data: VP51	ADUP SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2654476.2	100.2		0.48				0.48 %
ScR 361.383	207293.3	97.90		1.693				1.73%
Ag 328.068†	-1173.1	-0.00095		0.000255	-0.00190	mg/L	0.000509	26.76%
Al 308.215†	188786.5	125.5	mg/L	0.73	251.1	mg/L	1.46	0.58%
As 188.979†	230.1	0.1111	${ m mg/L}$	0.00121	0.2222		0.00242	1.09%
B 249.677†	209.2	0.09555	${ m mg/L}$	0.001783	0.1911	mg/L	0.00357	1.87%
Ba 233.527†	6417.4	0.6162	mg/L	0.01069	1.232	mg/L	0.0214	1.73%
Be 313.042†	706.8	0.00149	mg/L	0.000088	0.00298	mg/L	0.000176	5.90%
Ca 317.933†	2229796.0	210.6	mg/L	2.55	421.3	mg/L	5.09	1.21%
Cd 228.802†	254.9	0.00287	mg/L	0.000111	0.00575	mg/L	0.000223	3.88%
Co 228.616†	6411.9	0.06254	mg/L	0.000726	0.1251	mg/L	0.00145	1.16%
Cr 267.716†	1581.9	0.3447	mg/L	0.00696	0.6894	mg/L	0.01393	2.02%
Cu 324.752†	81865.5	0.2739	mg/L	0.00058	0.5479	mg/L	0.00116	0.21%
Fe 273.955†	210492.2	171.7	mg/L	1.31	343.4	mg/L	2.62	0.76%
K 766.490†	42948.3	11.92	mg/L	0.108	23.84	mg/L	0.216	0.91 ધ
Mg 279.077†	95169.2	81.61	mg/L	0.337	163.2	mg/L	0.67	0.41%
Mn 257.610†	114745.8	2.835	mg/L	0.0125	5.669	mg/L	0.0250	0.44%
Mo 202.031†	-50.2	-0.00116	mg/L	0.000058	-0.00232	mg/L	0.000117	5.05%
Na 589.592†	144433.8	17.46	mg/L	0.101	34.91	mg/L	0.201	0.58ક
Na 330.237†	505.3	18.26	mg/L	0.315	36.53	mg/L	0.629	1.72%
Ni 231.604†	646.9	0.2833	mg/L	0.00683	0.5666	mg/L	0.01365	2.41%
Pb 220.353†	2875.9	0.2591	mg/L	0.00295	0.5182		0.00590	1.14%
Sb 206.836†	113.4	0.01776	mg/L	0.002045	0.03553	mg/L	0.004090	11.51%
Se 196.026†	-70.1	-0.03787	mg/L	0.001184	-0.07574	mg/L	0.002367	3.13%
Si 288.158†	1201.6	0.8986	mg/L	0.02003	1.797		0.0401	2.23%
Sn 189.927†	45.5	0.05611	mg/L	0.000290	0.1122		0.00058	0.52%
Sr 421.552†	351902.2	0.5796	mg/L	0.00642	1.159		0.0128	1.11%
Ti 334.903†	165660.7	6.435	mg/L	0.0682	12.87		0.136	1.06%
Tl 190.801†	11.2	-0.00872	mg/L	0.001710	-0.01744		0.003419	19.60%
V 292.402†	76508.7	0.3561	mg/L	0.00226	0.7122		0.00452	0.64%
Zn 206.200†	3351.7	1.317		0.0221	2.634	_	0.0441	1.68%

Sequence No.: 20

Sample ID: VP51 A SWC

Analyst: EL Dilution: 2X Autosampler Location: 69

Date Collected: 11/1/2012 6:45:42 PM

Data Type: Original

Nebulizer Parameters: VP51 A SWC

Analyte Back Pressure Flow All 230.0 kPa 0.55 L/min

Mean Data: VP51 A	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2697139.7	101.8	8	0.37				0.37%
ScR 361.383	211186.3	99.73		0.185				0.19%
Ag 328.068†	-1248.0	-0.00081	${ m mg/L}$	0.000297	-0.00161	mg/L	0.000594	36.92%
Al 308.215†	185629.1	123.4	mg/L	0.20	246.9	mg/L	0.40	0.16%
As 188.979†	200.5	0.09837		0.003175	0.1967	mg/L	0.00635	3.23%
B 249.677†	201.1	0.09182	mg/L	0.001519	0.1836	mg/L	0.00304	1.65%
Ba 233.527†	6132.9	0.5882	mg/L	0.00293	1.176	mg/L	0.0059	0.50%
Be 313.042†	806.3	0.00170	${ m mg/L}$	0.000056	0.00339	mg/L	0.000112	3.31%
Ca 317.933†	2041312.9	192.8	${ m mg/L}$	0.19	385.7	mg/L	0.37	0.10%
Cd 228.802†	211.0	0.00236	mg/L	0.000009	0.00472	mg/L	0.000018	0.37%
Co 228.616†	6869.4	0.06807	mg/L	0.000414	0.1361	mg/L	0.00083	0.61%
Cr 267.716†	1356.8	0.2955	mg/L	0.00146	0.5910	mg/L	0.00292	0.49%
Cu 324.752†	85443.5	0.2859		0.00029	0.5718	mg/L	0.00058	0.10%
Fe 273.955†	218166.4	178.0	${ t mg/L}$	0.55	356.0	mg/L	1.10	0.31%
K 766.490†	38489.2	10.68	${ m mg/L}$	0.027	21.37	mg/L	0.054	0.25%
Mg 279.077†	91968.5	78.86	J.	0.103	157.7	mg/L	0.21	0.13%
Mn 257.610†	118684.3	2.932	mg/L	0.0044	5.864	mg/L	0.0087	0.15%
Mo 202.031†	-51.5	-0.00123	${\tt mg/L}$	0.000392	-0.00247	mg/L	0.000784	31.75%
Na 589.592†	123569.2	14.93	${\tt mg/L}$	0.037	29.87		0.074	0.25%
Na 330.237†	422.6	15.46		0.177	30.91	mg/L	0.355	1.15%
Ni 231.604†	554.9	0.2430		0.00541	0.4861	mg/L	0.01082	2.23%
Pb 220.353†	2316.8	0.2152	mg/L	0.00183	0.4304		0.00367	0.85%
Sb 206.836†	99.5	0.01449		0.002726	0.02898	mg/L	0.005452	18.81%
Se 196.026†	-65.9	-0.03551	${ t mg/L}$	0.004962	-0.07103	mg/L	0.009924	13.97%
Si 288.158†	1204.6	0.9004	${ t mg/L}$	0.00309	1.801	mg/L	0.0062	0.34%
Sn 189.927†	14.8	0.04754	${ m mg/L}$	0.000514	0.09507	mg/L	0.001029	1.08%
Sr 421.552†	348016.8	0.5732	mg/L	0.00210	1.146	mg/L	0.0042	0.37%
Ti 334.903†	163214.4	6.341		0.0099	12.68	mg/L	0.020	0.16%
Tl 190.801†	18.7	-0.00697	mg/L	0.002439	-0.01394		0.004878	35.00%
V 292.402†	88669.5	0.4149		0.00104	0.8298	mg/L	0.00207	0.25%
Zn 206.200†	2346.4	0.9228	mg/L	0.00428	1.846	mg/L	0.0086	0.46%

Date: 11/1/2012 6:55:02 PM

Sequence No.: 21 Sample ID: VP51 ASPK SWC Autosampler Location: 70

Analyst: EL

Dilution: 2X

Date Collected: 11/1/2012 6:51:49 PM

Data Type: Original

Nebulizer Parameters: VP51 ASPK SWC

Analyte Back Pressure Flow All 230.0 kPa 0.55 L/min

Mean Data: VP51 A	SPK SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2646528.1	99.94	ક્ષ	0.689				0.69%
ScR 361.383	211171.2	99.73	ક	0.385				0.39%
Ag 328.068†	146751.9	0.5064	mg/L	0.00225	1.013	mg/L	0.0045	0.44%
Al 308.215†	260602.3	173.3	mg/L	1.74	346.6	mg/L	3.47	1.00%
As 188.979†	4864.3	2.082	mg/L	0.0159	4.164	mg/L	0.0318	0.76%
B 249.677†	290.8	0.1313	mg/L	0.00108	0.2626	mg/L	0.00216	0.82%
Ba 233.527†	28245.2	2.737	mg/L	0.0218	5.474	mg/L	0.0435	0.80%
Be 313.042†	137355.3	0.4951	mg/L	0.00496	0.9903	mg/L	0.00991	1.00%
Ca 317.933†	2922552.7	276.1	mg/L	2.69	552.2	mg/L	5.38	0.97%
Cd 228.802†	41681.0	0.4939	mg/L	0.00380	0.9879	mg/L	0.00761	0.77%
Co 228.616†	47515.0	0.5441	${ m mg/L}$	0.00347	1.088	mg/L	0.0069	0.64%
Cr 267.716†	4198.9	0.9158	${ m mg/L}$	0.00687	1.832	mg/L	0.0137	0.75%
Cu 324.752†	281783.6	0.9169		0.00220	1.834	mg/L	0.0044	0.24%
Fe 273.955†	284756.8	232.3	${ m mg/L}$	2.97	464.6	mg/L	5.95	1.28%
K 766.490†	95427.6	26.49	${ m mg/L}$	0.321	52.97	mg/L	0.642	1.21%
Mg 279.077†	135742.7	116.4	${ m mg/L}$	1.22	232.8	mg/L	2.44	1.05%
Mn 257.610†	192232.8	4.749	${ m mg/L}$	0.0481	9.499	mg/L	0.0961	1.01%
Mo 202.031†	-86.8	-0.00268	${ m mg/L}$	0.000550	-0.00536	mg/L	0.001099	20.52%
Na 589.592†	257907.2	31.17	${ m mg/L}$	0.300	62.34	mg/L	0.600	0.96%
Na 330.237†	871.9	31.67	${ m mg/L}$	0.269	63.35	mg/L	0.539	0.85%
Ni 231.604†	1892.3	0.8283	${ m mg/L}$	0.00493	1.657	mg/L	0.0099	0.60%
Pb 220.353†	27314.5	2.123	${\tt mg/L}$	0.0190	4.246	mg/L	0.0379	0.89%
Sb 206.836†	1605.0	0.4150	${ m mg/L}$	0.00214	0.8300	mg/L	0.00427	0.51%
Se 196.026†	3512.2	1.858	${ m mg/L}$	0.0101	3.716	mg/L	0.0203	0.54%
Si 288.158†	2319.4	1.731	${ m mg/L}$	0.0153	3.463	mg/L	0.0306	0.88%
Sn 189.927†	6.4	0.06583	${ m mg/L}$	0.000855	0.1317	mg/L	0.00171	1.30 ₺
Sr 421.552†	770174.1	1.269	${ m mg/L}$	0.0101	2.537	mg/L	0.0202	0.80%
Ti 334.903†	230233.9	8.944		0.0789	17.89	mg/L	0.158	0.88%
Tl 190.801†	6421.4	1.747	_	0.0166	3.493	${ m mg/L}$	0.0333	0.95%
V 292.402†	208508.7	0.9996		0.00722	1.999	mg/L	0.0144	0.72%
Zn 206.200†	4424.0	1.738	mg/L	0.0156	3.475	mg/L	0.0312	0.90%

UPUS: 00331

Date: 11/1/2012 7:01:05 PM

Sequence No.: 22

Autosampler Location: 71
SPK SWC Date Collected: 11/1/2012 6:57:01 PM

Sample ID: VP51 MB1SPK SWC Date Collected: 11/1/20 Analyst: EL Data Type: Original

Dilution: 2X

Nebulizer Parameters: VP51 MB1SPK SWC

Analyte Back Pressure Flow

All 230.0 kPa 0.55 L/min

Mean Data: VP51 MB1SPK SWC

Mean Data: VP51 M	Mean Data: VP51 MB1SPK SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2813773.0	106.3	용	1.39				1.31%
ScR 361.383	211697.4	99.98	8	0.159				0.16%
Ag 328.068†	143240.2	0.4901	${\tt mg/L}$	0.00807	0.9803	mg/L	0.01613	1.65%
Al 308.215†	3106.0	2.058	mg/L	0.0043	4.117	mg/L	0.0087	0.21%
As 188.979†	4568.0	1.938	mg/L	0.0186	3.875	J .	0.0372	0.96%
B 249.677†	-1.0	-0.00205	${\tt mg/L}$	0.001343	-0.00411	mg/L	0.002686	65.35%
Ba 233.527†	20112.3	1.957	mg/L	0.0080	3.913	mg/L	0.0160	0.41%
Be 313.042†	137629.9	0.4977	mg/L	0.00140	0.9953	mg/L	0.00281	0.28%
Ca 317.933†	108207.1	10.22	mg/L	0.037	20.44		0.075	0.37%
Cd 228.802†	40455.6	0.4795	mg/L	0.00947	0.9590	mg/L	0.01894	1.97%
Co 228.616†	40248.7	0.4766	mg/L	0.00924	0.9532	mg/L	0.01848	1.94%
Cr 267.716†	2334.5	0.5098	mg/L	0.00242	1.020	mg/L	0.0048	0.48%
Cu 324.752†	153674.7	0.4912	mg/L	0.00818	0.9824	mg/L	0.01637	1.67%
Fe 273.955†	2735.7	2.231	mg/L	0.0084	4.463	mg/L	0.0167	0.37%
K 766.490†	37302.2	10.35	mg/L	0.025	20.71	mg/L	0.050	0.24 ધ
Mg 279.077†	12216.7	10.49	mg/L	0.030	20.98	mg/L	0.060	0.29%
Mn 257.610†	19789.3	0.4894		0.00129	0.9789		0.00258	0.26%
Mo 202.031†	17.5	0.00077	mg/L	0.000172	0.00153	mg/L	0.000344	22.47%
Na 589.592†	82696.1	9.994	mg/L	0.0280	19.99	mg/L	0.056	0.28%
Na 330.237†	279.0	9.938		0.1568	19.88	mg/L	0.314	1.58%
Ni 231.604†	1119.2	0.4906	${\tt mg/L}$	0.00329	0.9811	mg/L	0.00658	0.67%
Pb 220.353†	25690.6	1.944	mg/L	0.0362	3.888	mg/L	0.0725	1.86%
Sb 206.836†	7058.7	1.923	${ m mg/L}$	0.0197	3.845	mg/L	0.0394	1.03%
Se 196.026†	3629.0	1.921	${\tt mg/L}$	0.0236	3.842	mg/L	0.0472	1.23%
Si 288.158†	10.4	0.01107	${ m mg/L}$	0.002990	0.02213	mg/L	0.005981	27.02%
Sn 189.927†	-12.8	0.00047		0.000269	0.00094	mg/L	0.000539	57.18%
Sr 421.552†	303492.1	0.4999	mg/L	0.00136	0.9998	mg/L	0.00272	0.27%
Ti 334.903†	99.8	0.00326	${ m mg/L}$	0.000202	0.00652	mg/L	0.000403	6.18 દે
Tl 190.801†	6931.7	1.904	_	0.0206	3.808		0.0412	1.08%
V 292.402†	98971.1	0.4886	_	0.00885	0.9773		0.01770	1.81%
Zn 206.200†	1250.9	0.4894	mg/L	0.00241	0.9788	mg/L	0.00483	0.49%

Sequence No.: 23 Autosampler Location: 72

Sample ID: VP29 N TWC Date Collected: 11/1/2012 7:03:04 PM

Analyst: EL Data Type: Original Dilution: 1X

Nebulizer Parameters: VP29 N TWC

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: VP29 N	TWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	${\tt Std.Dev.}$	RSD
ScA 357.253	2599950.7	98.18	ક	0.500				0.51%
ScR 361.383	209341.2	98.86	8	0.266				0.27%
Ag 328.068†	249.5	-0.00062	${ m mg/L}$	0.000191	-0.00062	mg/L	0.000191 3	30.95%
A1 308.215†	1.4	0.00083	${\tt mg/L}$	0.004670	0.00083	mg/L	0.004670 56	50.22%
As 188.979†	7.4	0.00313	${\tt mg/L}$	0.001395	0.00313	mg/L	0.001395 4	14.56%
B 249.677†	553.4	0.2537		0.00217	0.2537	mg/L	0.00217	0.85%
Ba 233.527†	760.6	0.07399	${ m mg/L}$	0.000316	0.07399	mg/L	0.000316	0.43%
Be 313.042†	-19.0	-0.00008	${ m mg/L}$	0.000027	-0.00008	mg/L	0.000027 3	85.78%
Ca 317.933†	1290382.0	121.9	${ m mg/L}$	0.25	121.9	${\tt mg/L}$	0.25	0.20%
Cd 228.802†	-9.5	-0.00012	${\tt mg/L}$	0.000330	-0.00012	mg/L	0.000330 27	72.42%
Co 228.616†	-30.3	-0.00041	${ m mg/L}$	0.000426	-0.00041	mg/L	0.000426 10)5.23%
Cr 267.716†	24.0	0.00513	${\tt mg/L}$	0.001155	0.00513	${ m mg/L}$	0.001155 2	22.53%
Cu 324.752†	81.3	0.00028	${ m mg/L}$	0.000125	0.00028	${ m mg/L}$	0.000125 4	15.04%
Fe 273.955†	332.8	0.2715		0.00209	0.2715	mg/L	0.00209	0.77%
K 766.490†	62313.5	17.29		0.017	17.29		0.017	0.10%
Mg 279.077†	57151.4	49.07	${\tt mg/L}$	0.203	49.07	mg/L	0.203	0.41%
Mn 257.610†	20081.1	0.4962	${\tt mg/L}$	0.00188	0.4962	mg/L	0.00188	0.38%
Mo 202.031†	33.6	0.00122		0.000728	0.00122		0.000728 5	59.89%
Na 589.592†	2402279.7	290.3	${ m mg/L}$	0.53	290.3	mg/L	0.53	0.18%
Na 330.237†	8290.9	301.7	${ m mg/L}$	1.26	301.7	mg/L	1.26	0.42%
Ni 231.604†	2.7	0.00120	${\tt mg/L}$	0.000728	0.00120	mg/L	0.000728 6	50.56%
Pb 220.353†	-49.3	-0.00061	${\tt mg/L}$	0.001995	-0.00061	mg/L	0.001995 32	28.70%
Sb 206.836†	-5.4	-0.00166	${ m mg/L}$	0.005215	-0.00166		0.005215 31	.3.41%
Se 196.026†	19.6	0.01038	${ t mg/L}$	0.005779	0.01038	mg/L	0.005779 5	55.69%
Si 288.158†	15470.3	11.44	${ m mg/L}$	0.037	11.44	mg/L	0.037	0.32%
Sn 189.927†	-51.1	0.01933	mg/L	0.001390	0.01933	${\tt mg/L}$	0.001390	7.19%
Sr 421.552†	401417.1	0.6612	${\tt mg/L}$	0.00243	0.6612	mg/L	0.00243	0.37%
Ti 334.903†	275.0	0.00472	${\tt mg/L}$	0.000684	0.00472	mg/L	0.000684 1	.4.50%
T1 190.801†	-2.5	-0.00131	${\tt mg/L}$	0.001770	-0.00131	${\tt mg/L}$	0.001770 13	34.90%
V 292.402†	560.4	0.00283	mg/L	0.000085	0.00283	mg/L	0.000085	3.02%
Zn 206.200†	-32.4	-0.01009	mg/L	0.001399	-0.01009	mg/L	0.001399 1	.3.87%

Date: 11/1/2012 7:12:43 PM

Sequence No.: 24

Sample ID: VP40 APOST SWC

Analyst: EL

Dilution: 2X

Autosampler Location: 73

Date Collected: 11/1/2012 7:09:30 PM

Data Type: Original

Nebulizer Parameters: VP40 APOST SWC

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

. TIDAO ADOSTE STIC

Mean Data: VP40	APOST SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2739927.9	103.5	90	0.62				0.60%
ScR 361.383	214376.5	101.2		0.32				0.32%
Ag 328.068†	151312.3	0.5233		0.00285	1.047	mg/L	0.0057	0.54%
A1 308.215†	184327.2	122.6	mg/L	0.35	245.1	mg/L	0.69	0.28%
As 188.979†	5157.4	2.201		0.0237	4.402	mg/L	0.0475	1.08%
В 249.677†	111.2	0.04897		0.004490	0.09793	mg/L	0.008979	9.17%
Ba 233.527†	29162.6	2.828	${\tt mg/L}$	0.0044	5.656	mg/L	0.0088	0.16%
Be 313.042†	151252.2	0.5457	J.	0.00183	1.091		0.0037	0.34%
Ca 317.933†	782827.9	73.95	J .	0.270	147.9	mg/L	0.54	0.36%
Cd 228.802†	44315.7	0.5252		0.00501	1.050	mg/L	0.0100	0.95%
Co 228.616†	48856.6	0.5648		0.00376	1.130	mg/L	0.0075	0.67%
Cr 267.716†	3902.9	0.8516	J .	0.00177	1.703	_	0.0035	0.21%
Cu 324.752†	273176.7	0.8873		0.00127	1.775		0.0025	0.14%
Fe 273.955†	241667.0	197.1		0.09	394.3		0.17	0.04%
K 766.490†	89074.7	24.72	_ ·	0.095	49.44		0.191	0.39%
Mg 279.077†	104779.5	89.85		0.300	179.7		0.60	0.33%
Mn 257.610†	126920.5	3.136	-	0.0102	6.272		0.0204	0.33%
Mo 202.031†	48.1	0.00388	J .	0.000515	0.00777		0.001030	13.26%
Na 589.592†	189420.4	22.89		0.088	45.79	2	0.175	0.38%
Na 330.237†	605.5	22.56		0.118	45.12	J .	0.236	0.52%
Ni 231.604†	1945.3	0.8524	_	0.00088	1.705	_	0.0018	0.10%
Pb 220.353†	29489.0	2.266		0.0181	4.532	_	0.0362	0.80%
Sb 206.836†	7607.3	2.058	_	0.0133	4.116		0.0267	0.65%
Se 196.026†	3975.1	2.103	J.	0.0153	4.206		0.0305	0.73%
Sı 288.158†	5401.3	4.007	2.	0.0043	8.014	J .	0.0086	0.11%
Sn 189.927†	59.5	0.02934		0.000315	0.05869		0.000630	1.07%
Sr 421.552†	536070.2	0.8830		0.00144	1.766		0.0029	0.16%
Ti 334.903†	165896.9	6.451	_	0.0185	12.90		0.037	0.29%
Tl 190.801†	7383.5	2.016	_	0.0074	4.033		0.0149	0.37%
V 292.402†	195347.9	0.9399	_	0.00201	1.880		0.0040	0.21%
Zn 206.200†	3095.3	1.213	mg/L	0.0026	2.425	mg/L	0.0052	0.21%

UPLA: AGGE

Date: 11/1/2012 7:18:37 PM

Sequence No.: 25 Sample ID: CV Analyst: EL Dilution: 1X

Autosampler Location: 7

Date Collected: 11/1/2012 7:14:42 PM

Data Type: Original

Nebulizer Parameters: CV

Analyte Back Pressure Flow
All 230.0 kPa 0.55 L/min

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2706570.5	102.2	િક	0.73				0.71%
ScR 361.383	210587.7	99.45	ક	0.850				0.85%
Ag 328.068†	289705.3	0.9913		0.00610	0.9913	mg/L	0.00610	0.62%
Al 308.215†	3055.8	1.992	mg/L	0.0114	1.992	mg/L	0.0114	0.57%
As 188.979†	4752.6	2.015	mg/L	0.0121	2.015	mg/L	0.0121	0.60%
в 249.677†	2112.9	0.9670	mg/L	0.00616	0.9670	mg/L	0.00616	0.64%
Ba 233.527†	10169.4	0.9890	mg/L	0.00320	0.9890	mg/L	0.00320	0.32%
Be 313.042†	267430.8	0.9669	mg/L	0.00127	0.9669	mg/L	0.00127	0.13%
Ca 317.933†	21379.3	2.020	mg/L	0.0081	2.020	mg/L	0.0081	0.40%
Cd 228.802†	82599.0	0.9836	mg/L	0.00074	0.9836	mg/L	0.00074	0.07%
Co 228.616†	82333.2	0.9744	${\tt mg/L}$	0.00077	0.9744	mg/L	0.00077	0.08%
Cr 267.716†	4569.0	0.9977	mg/L	0.00517	0.9977	mg/L	0.00517	0.52%
Cu 324.752†	327083.3	1.045	mg/L	0.0020	1.045	mg/L	0.0020	0.19%
Fe 273.955†	2612.8	2.131	mg/L	0.0056	2.131	mg/L	0.0056	0.26%
K 766.490†	74309.0	20.62	mg/L	0.115	20.62	mg/L	0.115	0.56%
Mg 279.077†	2442.5	2.100	mg/L	0.0051	2.100	mg/L	0.0051	0.24%
Mn 257.610†	39795.3	0.9838	mg/L	0.00148	0.9838	mg/L	0.00148	0.15%
Mo 202.031†	17006.6	0.9189	mg/L	0.00635	0.9189	mg/L	0.00635	0.69%
Na 589.592†	412221.2	49.82	mg/L	0.202	49.82	mg/L	0.202	0.41%
Na 330.237†	1371.4	49.78	mg/L	0.348	49.78	mg/L	0.348	0.70%
Ni 231.604†	2240.8	0.9818	mg/L	0.00510	0.9818	mg/L	0.00510	0.52%
Pb 220.353†	26103.4	1.975	mg/L	0.0116	1.975	mg/L	0.0116	0.59%
Sb 206.836†	7330.4	2.001	mg/L	0.0111	2.001	mg/L	0.0111	0.56%
Se 196.026†	3654.3	1.933	mg/L	0.0121	1.933	mg/L	0.0121	0.62%
Si 288.158†	2947.4	2.186	mg/L	0.0164	2.186	mg/L	0.0164	0.75%
Sn 189.927†	5697.7	0.8696	mg/L	0.00512	0.8696	mg/L	0.00512	0.59%
Sr 421.552†	604546.6	0.9957	mg/L	0.00488	0.9957	mg/L	0.00488	0.49%
Ti 334.903†	25329.2	0.9843	mg/L	0.00173	0.9843	mg/L	0.00173	0.18%
Tl 190.801†	7114.0	1.948	mg/L	0.0107	1.948	mg/L	0.0107	0.55%
V 292.402†	202975.2	1.006	mg/L	0.0023	1.006	mg/L	0.0023	0.23%
Zn 206.200†	2637.8	1.032	mg/L	0.0048	1.032	mg/L	0.0048	0.47%

Date: 11/1/2012 7:24:46 PM

Sequence No.: 26 Sample ID: CB ~ Analyst: EL Dilution: 1X

Autosampler Location: 1

Date Collected: 11/1/2012 7:20:45 PM

Data Type: Original

Nebulizer Parameters: CB

Analyte All

Back Pressure

230.0 kPa

Flow 0.55 L/min

Mean Data: CB							
	Mean Corrected		Calíb.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2763890.4	104.4	ક	0.46			0.449
ScR 361.383	207420.2	97.96	ક	0.641			0.65%
Ag 328.068†	68.3	0.00023	mg/L	0.000304	0.00023	mg/L	0.000304 129.94%
Al 308.215†	3.0	0.00202	mg/L	0.014149	0.00202	mg/L	0.014149 699.39%
As 188.979†	6.2	0.00265	mg/L	0.001626	0.00265	mg/L	0.001626 61.46%
В 249.677†	4.7	0.00215	mg/L	0.002603	0.00215	mg/L	0.002603 121.02%
Ba 233.527†	-3.9	-0.00038	mg/L	0.000513	-0.00038	mg/L	0.000513 136.06%
Be 313.042†	1.5	0.00001	mg/L	0.000036	0.00001	mg/L	0.000036 639.48%
Ca 317.933†	-5.2	-0.00049	mg/L	0.001583	-0.00049	mg/L	0.001583 323.64%
Cd 228.802†	13.9	0.00016	mg/L	0.000067	0.00016	mg/L	0.000067 41.73%
Co 228.616†	-5.7	-0.00007	mg/L	0.000126	-0.00007	mg/L	0.000126 187.32%
Cr 267.716†	2.2	0.00048	mg/L	0.000717	0.00048	mg/L	0.000717 150.44%
Cu 324.752†	-99.2	-0.00032	mg/L	0.000123	-0.00032	mg/L	0.000123 38.75%
Fe 273.955†	0.2	0.00015		0.001357	0.00015	mg/L	0.001357 886.75%
K 766.490†	206.0	0.05718	mg/L	0.015851	0.05718	mg/L	0.015851 27.72%
Mg 279.077†	-4.6	-0.00395	mg/L	0.003705	-0.00395	mg/L	0.003705 93.76%
Mn 257.610†	6.6	0.00016	mg/L	0.000150	0.00016	mg/L	0.000150 91.36%
Mo 202.031†	3.5	0.00019	mg/L	0.000255	0.00019	mg/L	0.000255 134.89%
Na 589.592†	759.6	0.09181	mg/L	0.009034	0.09181	mg/L	0.009034 9.84%
Na 330.237†	15.0	0.5496	mg/L	0.46305	0.5496	mg/L	0.46305 84.25%
Ni 231.604†	2.1	0.00094	mg/L	0.001802	0.00094	mg/L	0.001802 191.74%
Pb 220.353†	-7.7	-0.00058	mg/L	0.000685	-0.00058	mg/L	0.000685 117.87%
sb 206.836†	5.6	0.00153	mg/L	0.001152	0.00153	mg/L	0.001152 75.10%
Se 196.026†	6.5	0.00344	mg/L	0.000409	0.00344		0.000409 11.90%
Si 288.158†	3.8	0.00282	mg/L	0.000930	0.00282	mg/L	0.000930 32.95%
Sn 189.927†	5.7	0.00088	mg/L	0.000324	0.00088	mg/L	0.000324 37.04%
Sr 421.552†	65.3	0.00011	mg/L	0.000027	0.00011	mg/L	0.000027 24.66%
Ti 334.903†	-1.4	-0.00005	mg/L	0.000480	-0.00005	mg/L	0.000480 873.21%
Tl 190.801†	9.9	0.00274	mg/L	0.001649	0.00274	mg/L	0.001649 60.21 %
V 292.402†	-22.1	-0.00010	mg/L	0.000210	-0.00010	mg/L	0.000210 201.84%
Zn 206.200†	-18.1	-0.00709	mg/L	0.000703	-0.00709	mg/L	0.000703 9.92રે

IEC Date: 8-1-17	Analysis Date:	Analyst: 20
LR Date: 8-2-12	()	Page: of
All corrections made by analyst unless	otherwise noted / 11 4 212	,

Edit	Delete	by analyst unless otherwise noted	Prep.		
Label	Data	ARI Sample ID	Code	Dilution	Comments
<u>-</u>		577-0			2988-5
		- Z			2987-13
		- 3			\ -14
		1			-15
		V -5			-14 -15
		771727 Jev			2986-1
	1	22222 ICB			- Cye
	1	272772 CRI			
	İ	222222 ICH			
		221122JCSAB			
		STD-0	·		
		ICV			
		IC B			
		CPI			
		ICEA			
		ICSAB			
		CCUI			
		CCBI			
		UP33 MB	The		Caligh - A.N.
	v'	13		10	Analytes was, - FR
		(1		1	
		D			> 9 C X \
	v .				-VP83BTIZCXIN
		V A Dust	/		

IEC Date:	Analysis Date: 11-2-12-	Analyst:
LR Date:		Page: \rightarrow of 5

		by analyst unless otherwise noted.	D	,. <u></u>		
Edit Label	Delete Data	ARI Sample ID	Prep. Code	Dilution	Comments	
		UP83 A				
			Thic-	,		
		H50K		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	Ca, Ma, Na STE	
		ASPK MBSPK	V	2	·	
		CCUZ				
		CCB2			Sych DK 3/2/2	
	V	UP40 MB(Suc	7	Cu 2n high - 122	
		VQ42 MBZ			- Company	
		VP41 A	sic	2		
		1 B		20		
		C		10		
		D		5		
		VE		10		
		1:P40 B		2		
		V C	V	5		
		VOLL MBZSPK	Dan		(1.080 N 2015)k	
		CC U 3				
		(CB3				
		U066 MB1	5WC-	2-	CRICUL BZ	
		UP83 E	TW			
		V&42BDap			Cur high & PRD-OK-low les	vel
		1 B	4		Car high 9. FPD oktow les	
		BSPK		ì	10,080M TOPEN SORNING ZN	UK.
		W MBZSPK		ř.	Schnoby, 2nosing	. (
		V.066 B	SUC	2	CRI aut	
	<u> </u>		1 ->		1-4 600	

seess siqu

IEC Date	e:	Analysis I	Date: <u>//-</u>	2-/2-	Analyst: Page: of
		by analyst unless otherwise noted.	9/ 11	6-12-	
Edit Label	Delete Data	ARI Sample ID	Prep. Code	Dilution	Comments
		1066 C	51x-	2	CFF out RR
	V	D		\	
	<i>\</i>	E			V
		CCV4			
		CCV4 CCB4			
		Ville F	SUC	2.	Noin, - RK CFE -RR
		G			
		14			
		T			
		J			
		K			En Noisy
		L			
		n			
	-	λ'			
	V	V Ref 1	<u> </u>	1	V
		cev5			
		CLB5			Ch lingh CFIRR
	1/2	recentificat	5000	10	CFERR
	1	I A			
		Avep			
		A A A A A A A A A A A A A A A A A A A	4		
	2	22222 - ADOS	_ _		
		MAISUK			/ , , , , , , , , , , , , , , , , , , ,
	<u> </u>	L V F			V

IEC Date:		Analysis Date: 11-2-17	Analyst: 5.2-
LR Date:			Page: 4 of 5
All corrections ma	de by analyst unless oth	nerwise noted.	/

dit ibel	Delete Data	ARI Sample ID	Prep. Code	Dilution	Comments
	Dutu	CFI	Joue	Bilation	
		ICSA			Cuhigh
		ICSAB			
		CC 16			Salow
		CCB6			100
	· L	UPZ3 MBZ	www		000 20
		VP40 MB1	Six	2	SCRINGS PR
		UP23 I	(JANN)		Cr. 11101 /t./C.
		V/2) I	1		
		(<			
					/ 2 00
	V	110.0			Scrrosy RR
	·/	Hay			*
		T CALL			1 Ca Mac
1		HSPK 122 OK			owond Icopple Carlos I ma high 1. Rose & Sin low
		1 M325pk			Mg high hoe &
		<u>CCJ7</u>			<u>Inlow</u>
		CCB7			Endoka
V		VRZS MB	wra		
		UPIN31	7636.		
	\rightarrow	10-5 10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
		VRZ5 Ally	CAN		1 16134-1ff
		1 (1)			
	V	ASPK	4		Ca Fe, k, Mn, No high & Roc.
		CIENTURISOR	TWC	4	/

5075F ICP-OES-01 Daily Run Log

Revision 001 11/30/06

Metals Data Review Checklist

Method: /ICP/ICP-MS GFA CVA

Analysis Date: 11-2-12

cPtima i	Analyst	Peer H. It's	Comment
Lagbook			
Analyst, Date, Method info		-/	
Sample ID's	1	2000	
Standard/QC solution ID's recorded		/	
Prep codes	1	./	
Dilution factors	1	/	
Crossouts/Corrections/Deletions		/	
Calibration:			
Blank & Standard intensities		U.	
Standard deviations	V		
Curve fit			
Calibration Wentication:			
ICV/CCV	/	/	Seelog
ICB/CCB		i/	Seejas
Samples			
RSD's & SD's			
Internal Standards	1	V	See los
Carry-over			0
Method QC:			
CRI/CRA	V	i/	Sec-log
ICSA/ICSAB			Seelai
Post Spikes/Serial Dilutions			g
Analytic Spikes			
Matrix OC			
SRM/LCS		<u> </u>	
Matrix Spikes			See / erg
Matrix Duplicates			Sax lec
Method Blanks			See fox - AN.
Data Distribution:			Y
Requested elements/isotope identified			
Correct samples identified for distribution			
Raw data match distributed data	/		
Data filename correct			
Necessary Analysts Notes and CAF's			AIN. UP40

Metals Data Review 5073F

Revision 1 4/02/01

upua: aagui

Nebulizer Parameters: Hg_ReAlign

Back Pressure Flow
230.0 kPa 0.55 L/min 230.0 kPa All

11/2/2012 9:12:08 AM Hg ReAlign... Actual peak offset (nm): -0.000

Drift (nm): 0.000 Slit adjustment: 0

Analysis Begun

Plasma On Time: 11/2/2012 8:20:38 AM Start Time: 11/2/2012 9:22:24 AM

Technique: ICP Continuous Logged In Analyst: metals Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\CRISET.sif

Batch ID:

Results Data Set: PE121102

Results Library: C:\pe\metals\Results\Results.mdb

Method Name: ARIIEC6AN.552AS Method Last Saved: 8/1/2012 1:18:45 PM

IEC File: IEC48.iec MSF File:

Method Description: 12Axial Elements

Analyte	Calibration Equation	Processing	View	Internal Standard	IEC
Aq 328.068	Lin Thru 0	Peak Area	Axıal	ScA 357.253	Yes
Al 308.215	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
As 188.979	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
B 249.677	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Ba 233.527	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Be 313.042	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Ca 317.933	Lin Thru O	Peak Area	Radial	ScR 361.383	No
Cd 228.802	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Co 228.616	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Cr 267.716	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Cu 324,752	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Fe 273.955	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
K 766.490	Lin Thru O	Peak Area	Radial	ScR 361.383	No
Mg 279.077	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Mn 257.610	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Mo 202.031	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Na 589.592	Lin Thru O	Peak Area	Radial	ScR 361.383	No
Na 330.237	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Ni 231.604	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Pb 220.353	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Sb 206.836	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Se 196.026	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Si 288.158	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Sn 189.927	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Sr 421.552	Lin Thru 0	Peak Area	Radial	ScR 361.383	No
Ti 334.903	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Tl 190.801	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
V 292.402	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Zn 206.200	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
ScA 357.253	Lin, Calc Int	Peak Area	Axial	n/a	n/a
ScR 361.383	Lin, Calc Int	Peak Area	Radial	n/a	n/a

Sequence No.: 1

Date Collected: 11/2/2012 9:22:31 AM Sample ID: Calib Blank 1

Data Type: Original

Autosampler Location: 1

Nebulizer Parameters: Calib Blank 1

Analyte

Back Pressure Flow 230.0 kPa 0.55 L/min All 230.0 kPa

unia: actain

Mean Data: Calib	Blank 1				
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	. RSD	Conc.	Unıts
ScA 357.253	2554494.8	29157.72	1.14%	100.0	8
ScR 361.383	193619.1	2064.73	1.07%	100.0	
Ag 328.068†	732.6	39.36	5.37%	[0.00]	mg/L
Al 308.215†	27.3	8.65	31.68%	[0.00]	mg/L
As 188.979†	2.3	2.22	96.17%	[0.00]	${ m mg/L}$
B 249.677†	-126.7	4.37	3.45%	[0.00]	${ t mg/L}$
Ba 233.527†	63.9	5.75	8.99%	[0.00]	${ m mg/L}$
Be 313.042†	614.4	13.57	2.21%	[0.00]	mg/L
Ca 317.933†	9.5	21.80	230.63%	[0.00]	${\tt mg/L}$
Cd 228.802†	297.2	0.65	0.22%	[0.00]	mg/L
Co 228.616†	337.6	3.00	0.89%	[0.00]	mg/L
Cr 267.716†	9.2	4.66	50.35%	[0.00]	mg/L
Cu 324.752†	1561.1	43.45	2.78%	[0.00]	mg/L
Fe 273.955†	-21.6	3.18	14.75%	[0.00]	mg/L
K 766.490†	2311.7	99.84	4.32%	[0.00]	mg/L
Mg 279.077†	-159.3	5.40	3.39%	[0.00]	mg/L
Mn 257.610†	-60.3	3.56	5.90%	[0.00]	mg/L
Mo 202.031†	-136.0	2.09	1.54%	[0.00]	mg/L
Na 589.592†	1406.7	188.06	13.37%	[0.00]	mg/L
Na 330.237†	50.5	2.06	4.08%	[0.00]	mg/L
Ni 231.604†	33.7	7.19	21.35%	[0.00]	mg/L
Pb 220.353†	282.8	9.80	3.47%	[0.00]	mg/L
Sb 206.836†	124.9	3.08	2.47%	[0.00]	mg/L
Se 196.026†	-103.5	3.28	3.17%	[0.00]	mg/L
Si 288.158†	24.7	5.27	21.34%	[0.00]	mg/L
Sn 189.927†	-10.3	1.56	15.07%	[0.00]	mg/L
Sr 421.552†	787.5	15.12	1.92%	[0.00]	mg/L
Ti 334.903†	-71.5	14.51	20.30%	[0.00]	mg/L
Tl 190.801†	14.5	0.83	5.71%	[0.00]	mg/L
V 292.402†	0.7	18.36	>999.9%	[0.00]	mg/L
Zn 206.200†	-27.9	2.04	7.31%	[0.00]	mg/L

Siess: Surv

Sequence No.: 2

Autosampler Location: 2

Sample ID: STD2

Mn 257.610†

V 292.402†

Date Collected: 11/2/2012 9:28:31 AM

Data Type: Original

Nebulizer Parameters: STD2

Flow Back Pressure Analyte

A11 232.0 kPa 0.55 L/min

371797.5

Mean Data: STD2 Calib Mean Corrected Intensity Std.Dev. RSD 2654972.8 13247.62 0.50% 204667.5 1153.89 0.56% 95574 9 326.20 0.34% Conc. Units Analyte ScA 357.253 ScR 361.383 2654972.8 105.7 % 95574.9 326.20 0.34% [10] mg/L Ba 233.527†

Cd 228.802† 800879.4 3542.86 0.44% [10] mg/L [10] mg/L [10] mg/L [10] mg/L 979.85 0.12% 99.10 0.23% 833800.8 Co 228.616† 99.10 0.23% 7177.39 0.23% 42945.7 Cr 267.716† Cu 324.752† 3125112.2

844.29 0.23% [10] mg/L 2049940.6 6926.06 0.34% [10] mg/L

Sequence No.: 3 Sample ID: STD3

Autosampler Location: 3

Date Collected: 11/2/2012 9:32:25 AM

Data Type: Original

Nebulizer Parameters: STD3

Analyte

Back Pressure Flow 231.0 kPa 0.55 L/min 231.0 kPa All

Mean Data: STD3	Mean Corrected				Calib	
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units	
ScA 357.253	2594791.6	10405.35	0.40%	101.6	%	
ScR 361.383	205116.1	1429.27	0.70%	105.9	8	
Ag 328.068†	299448.3	393.42	0.13%	[1.0]	mg/L	
As 188.979†	23318.0	135.89	0.58%	[10]	mg/L	
B 249.677†	20385.9	108.23	0.53%	[10]	mg/L	
Be 313.042†	1296908.2	14341.89	1.11%	[5.0]	mg/L	
Na 589.592†	403936.6	3432.01	0.85%	[50]	mg/L	
Ni 231.604†	21408.6	38.58	0.18%	[10]	mg/L	
Pb 220.353†	131058.8	329.08	0.25%	[10]	mg/L	
Se 196,026†	18351.5	147.96	0.81%	[10]	mg/L	
sr 421.552t	2987575.5	11425.40	0.38%	[5]	mg/L	
Tl 190.801t	35646.3	237.34	0.67%	[10]	mg/L	
Zn 206.200†	24443.0	83.77	0.34%	[10]	mg/L	

Sequence No.: 4 Autosampler Location: 4

Date Collected: 11/2/2012 9:37:02 AM Sample ID: STD4

Data Type: Original

Nebulizer Parameters: STD4

Analyte

Back Pressure Flow 9.55 L/min 231.0 kPa All

Mean Data: STD4

	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
ScA 357.253	2686353.4	12510.36	0.47%	105.2	ક
ScR 361.383	208940.3	3030.70	1.45%	107.9	8
Mo 202.031†	170096.5	1096.53	0.64%	[10]	mg/L
Sb 206.836†	33815.6	117.25	0.35%	[10]	mg/L
Si 288.158†	13087.6	84.22	0.64%	[10]	mg/L
Sn 189.927†	61272.4	310.01	0.51%	[10]	mg/L
Ti 334.903†	240784.2	6226.51	2.59%	[10]	mg/L

Sequence No.: 5 Autosampler Location: 5

Date Collected: 11/2/2012 9:41:17 AM Sample ID: STD5

Data Type: Original

Nebulizer Parameters: STD5

Analyte

Back Pressure Flow 231.0 kPa 0.55 L/min 231.0 kPa All

Mean Data: STD5

Analy	rte	

	Mean Corrected			Calib
Analyte	Intensity	Std.Dev.	RSD	Conc. Units
ScA 357.253	2573922.8	6054.98	0.24%	100.8 %
ScR 361.383	203394.0	1319.08	0.65%	105.0 %
Al 308.215†	42131.0	94.90	0.23%	[30] mg/L
Ca 317.933†	310012.4	258.52	0.08%	[30] mg/L
Fe 273.955†	117653.1	166.32	0.14%	[100] mg/L
K 766.490†	352762.9	1905.48	0.54%	[100] mg/L
Mg 279.077†	32759.3	64.21	0.20%	[30] mg/L
Na 330.237†	2501.9	16.69	0.67%	[100] mg/L

Calibration Summary

Analyte	Stds.	Equation	Intercept	Slope	Curvature	Corr. Coef.	Reslope
Ag 328.068	1	Lin Thru 0	0.0	299400	0.00000	1.000000	_
Al 308.215	1	Lin Thru 0	0.0	1404	0.00000	1.000000	
As 188.979	1	Lin Thru 0	0.0	2332	0.00000	1.000000	
В 249.677	1	Lın Thru O	0.0	2039	0.00000	1.000000	
Ba 233.527	1	Lin Thru 0	0.0	9557	0.00000	1.000000	
Be 313.042	1	Lin Thru 0	0.0	259400	0.00000	1.000000	
Ca 317.933	1	Lin Thru 0	0.0	10330	0.00000	1.000000	
Cd 228.802	1	Lin Thru 0	0.0	80090	0.00000	1.000000	
Co 228.616	1	Lin Thru 0	0.0	83380	0.00000	1.000000	
Cr 267.716	1	Lin Thru 0	0.0	4295	0.00000	1.000000	
Cu 324.752	1	Lin Thru 0	0.0	312500	0.00000	1.000000	
Fe 273.955	1	Lin Thru 0	0.0	1177	0.00000	1.000000	
K 766.490	1	Lin Thru 0	0.0	3528	0.00000	1.000000	
Mg 279.077	1	Lin Thru 0	0.0	1092	0.00000	1.000000	
Mn 257.610	1	Lin Thru 0	0.0	37180	0.00000	1.000000	
Mo 202.031	1	Lin Thru 0	0.0	17010	0.00000	1.000000	
Na 589.592	1	Lin Thru 0	0.0	8079	0.00000	1.000000	
Na 330.237	1	Lin Thru 0	0.0	25.02	0.00000	1.000000	
Ni 231.604	1	Lin Thru 0	0.0	2141	0.00000	1.000000	
Pb 220.353	1	Lin Thru 0	0.0	13110	0.00000	1.000000	
Sb 206.836	1	Lin Thru 0	0.0	3382	0.00000	1.000000	
Se 196.026	1	Lin Thru 0	0.0	1835	0.00000	1.000000	
Si 288.158	1	Lin Thru 0	0.0	1309	0.00000	1.000000	
Sn 189.927	1	Lin Thru 0	0.0	6127	0.00000	1.000000	
Sr 421.552	1	Lin Thru 0	0.0	597500	0.00000	1.000000	
Ti 334.903	1	Lin Thru 0	0.0	24080	0.00000	1.000000	
Tl 190.801	1	Lin Thru 0	0.0	3565	0.00000	1.000000	
V 292.402	1	Lin Thru 0	0.0	205000	0.00000	1.000000	
Zn 206.200	1	Lin Thru 0	0.0	2444	0.00000	1.000000	

Analysis Begun

Plasma On Time: 11/2/2012 8:20:38 AM Start Time: 11/2/2012 9:47:02 AM

Technique: ICP Continuous Logged In Analyst: metals Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\CRISET.sif

Batch ID:

Results Data Set: PE121102

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1

Autosampler Location: 7

Analyst: EL 777777

Date Collected: 11/2/2012 9:47:04 AM

Data Type: Original

Dilution: 1X Ex 11572

Nebulizer Parameters: CV Back Pressure Flow

Analyte 231.0 kPa 0.55 L/min All

| Mean Corrected | Intensity | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | RSD | 0.73 | 0.73% | 0.73% | 0.18% | 304026.0 | 1.015 mg/L | 0.0043 | 1.015 mg/L | 0.0043 | 0.42% | 0.28% | 0.73 | 0.29% | 0.49% | 0.2980.9 | 2.078 mg/L | 0.0090 | 2.078 mg/L | 0.0090 | 0.43% | 0.0030 | 0.9944 mg/L | 0.00251 | 2.116 mg/L | 0.00251 | 1.015 mg/L | 0.00588 | 0.9944 mg/L | 0.00588 | 0.59% | 0.221 | 0.00588 | 0.9944 mg/L | 0.00588 | 0.59% | 0.00586 | 0.59% | 0.0058 | 0.0059 | Mean Data: CV Analyte ScA 357.253 ScR 361.383 Ag 328.068† A1 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616+ Cr 267.716† Cu 324.752† Cu 324.701 Fe 273.955† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† T1 190.801† V 292.402† Zn 206.200†

Autosampler Location: 1 Sequence No.: 2

Sample ID TCB Analyst: EL 777772 Date Collected: 11/2/2012 9:53:07 AM Data Type: Original

Dilution: 1X GUISIL

Nebulizer Parameters: CB

Back Pressure Flow 0.55 L/min Analyte

All

Mean Data: CB							
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2636880.4	103.2	ક	0.22			0.21%
ScR 361.383	204648.0	105.7	8	0.42			0.40%
Ag 328.068†	-43.8	-0.00015	mg/L	0.000109	-0.00015	mg/L	0.000109 74.31원
A1 308.215†	-13.7	-0.00979	mg/L	0.013845	-0.00979	mg/L	0.013845 141.49%
As 188.979†	-0.6	-0.00025	mg/L	0.002610	-0.00025	mg/L	0.002610 >999.9%
B 249.677†	23.1	0.01133	mg/L	0.001032	0.01133	mg/L	0.001032 9.11%
Ba 233.527†	3.3	0.00035	mg/L	0.000465	0.00035	mg/L	0.000465 134.55%
Be 313.042†	-26.3	-0.00010	mg/L	0.000056	-0.00010	mg/L	0.000056 55.38%
Ca 317.933†	-17.0	-0.00165	mg/L	0.002501	-0.00165	2	0.002501 151.64%
Cd 228.802†	4.3	0.00005	mg/L	0.000049	0.00005	mg/L	0.000049 91.01%
Co 228.616†	-17.5	-0.00021	mg/L	0.000065	-0.00021	mg/L	0.000065 30.90%
Cr 267.716†	3.8	0.00088	mg/L	0.001669	0.00088	_	0.001669 190.38%
Cu 324.752†	896.7	0.00287	mg/L	0.000175	0.00287	_	0.000175 6.10%
Fe 273.955†	2.3	0.00195	mg/L	0.001847	0.00195	mg/L	0.001847 94.71%
K 766.490†	85.1	0.02413	mg/L	0.005135	0.02413	_	0.005135 21.28%
Mg 279.077†	0.9	0.00081	${ m mg/L}$	0.005390	0.00081	_	0.005390 661.44%
Mn 257.610†	22.0	0.00059	mg/L	0.000056	0.00059		0.000056 9.40%
Mo 202.031†	12.7	0.00075	mg/L	0.000345	0.00075	_	0.000345 46.15%
Na 589.592†	6.5	0.00080	mg/L	0.007122	0.00080	_	0.007122 888.27%
Na 330.237†	5.3	0.2110		0.18188	0.2110	_	0.18188 86.20%
Ni 231.604†	-0.6	-0.00026	mg/L	0.002638	-0.00026	J .	0.002638 >999.9%
Pb 220.353†	-8.9	-0.00068	_	0.000518	-0.00068	J .	0.000518 75.82%
Sb 206.836†	3.0	0.00087	_	0.002243	0.00087		0.002243 257.36%
Se 196.026†	3.4	0.00184	mg/L	0.000163	0.00184	_	0.000163 8.88%
Si 288.158†	-13.2	-0.01010		0.004797	-0.01010		0.004797 47.50%
Sn 189.927†	5.4	0.00088		0.000445	0.00088	_	0.000445 50.79%
Sr 421.552†	-42.6	-0.00007	mg/L	0.000088	-0.00007	J .	0.000088 123.30%
Ti 334.903†	10.7	0.00044	${ m mg/L}$	0.000457	0.00044		0.000457 102.68%
T1 190.801†	1.2	0.00033	-	0.000327	0.00033		0.000327 98.56%
V 292.402†	-11.8	-0.00005	_	0.000204	-0.00005	_	0.000204 424.47
Zn 206.200†	4.4	0.00180	mg/L	0.000770	0.00180	mg/L	0.000770 42.66%

Date: 11/2/2012 10:03:06 AM

Sequence No.: 3 Autosampler Location: 21

Date Collected: 11/2/2012 9:59:05 AM
Data Type: Original

Sample ID: CRI Analyst: EL 222222 Dilution: 1X Gu 115-R

Nebulizer Parameters: CRI

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: CRI								
	Mean Corrected		Calib.			Sample	_	
Analyte	Intensity	Conc.		Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2693612.8	105.4		0.48				0.46%
ScR 361.383	207326.7	107.1	-	0.56				0.53%
Ag 328.068†	765.0	0.00256		0.000277	0.00256		0.000277	10.84%
Al 308.215†	70.4	0.04988		0.005699	0.04988	J .	0.005699	11.43%
As 188.979†	122.0	0.05230	J.	0.002212	0.05230	2.	0.002212	4.23%
B 249.677†	58.5	0.02868	_	0.002295	0.02868	J .	0.002295	8.00%
Ba 233.527†	27.4	0.00286		0.000802	0.00286		0.000802	28.07%
Be 313.042†	231.8	0.00089	J .	0.000042	0.00089	J .	0.000042	4.77%
Ca 317.933†	675.5	0.06537	_	0.000956	0.06537	J .	0.000956	1.46%
Cd 228.802†	176.0	0.00208	J .	0.000045	0.00208	_	0.000045	2.16%
Co 228.616†	259.7	0.00310		0.000066	0.00310		0.000066	2.12%
Cr 267.716†	19.4	0.00452	_	0.000744	0.00452	J .	0.000744	16.47%
Cu 324.752†	1272.6	0.00407	J .	0.000054	0.00407		0.000054	1.33%
Fe 273.955†	63.2	0.05373	mg/L	0.002994	0.05373	mg/L	0.002994	5.57%
K 766.490†	1892.1	0.5364	mg/L	0.00673	0.5364		0.00673	1.26%
Mg 279.077†	62.9	0.05759	mg/L	0.004054	0.05759	mg/L	0.004054	7.04%
Mn 257.610†	54.5	0.00147	mg/L	0.000153	0.00147	mg/L	0.000153	10.39%
Mo 202.031†	102.8	0.0 <u>0604</u>	mg/L	0.000184	0.00604	mg/L	0.000184	3.05 ₺
Na 589.592†	3854.6	0.4771	mg/L	0.00670	0.4771	mg/L	0.00670	1.41€
Na 330.237†	11.0	0.4345	mg/L	0.27979	0.4345	mg/L	0.27979	64.39%
Ni 231.604†	20.5	0.00959	mg/L	0.002438	0.00959	mg/L	0.002438	25.44%
Pb 220.353†	244.2	0.01866	mg/L	0.000359	0.01866	mg/L	0.000359	1.92%
Sb 206.836+	176.7	0.05231	mg/L	0.002032	0.05231	mg/L	0.002032	3.89%
Se 196.026†	103.4	0.05630	mg/L	0.004343	0.05630	mg/L	0.004343	7.71%
Si 288.158†	93.5	0.07150	mg/L	0.002944	0.07150	mg/L	0.002944	4.12%
Sn 189.927†	58.3	0.00952	mg/L	0.000647	0.00952	mg/L	0.000647	6.79%
Sr 421.552†	598.9	0.00100	mg/L	0.000054	0.00100	mg/L	0.000054	5.40%
Ti 334.903†	133.6	0.00554	mg/L	0.000090	0.00554	mg/L	0.000090	1.63%
Tl 190.801†	178.9	0.05015	mg/L	0.000938	0.05015	mg/L	0.000938	1.87%
V 292.402†	640.4	0.00318	mg/L	0.000119	0.00318	mg/L	0.000119	3.74%
Zn 206.200†	29.3	0.01196	mg/L	0.001380	0.01196	mg/L	0.001380	11.54%

Autosampler Location: 22 Sequence No.: 4

Sample ID: ICSA 22 Analyst: EL 277722 Dilution: 1X QL (5) Date Collected: 11/2/2012 10:05:05 AM

Data Type: Original 91115-12

Nebulizer Parameters: ICSA

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: ICSA								
Mean Data. 100A	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2542003.9	99.51	90	0.213				0.21 %
ScR 361.383	199757.0	103.2	ક	1.20				1.16%
Ag 328.068†	-1923.6	-0.00096	mg/L	0.000173	-0.00096	mg/L	0.000173	17.99%
Al 308.215†	285527.0	203.3		0.85	203.3	mg/L	0.85	0.42%
As 188.979†	-5.4	-0.00228	mg/L	0.003965	-0.00228	mg/L	0.003965	
B 249.677†	-4.7	-0.00234	mg/L	0.003257	-0.00234	mg/L	0.003257	
Ba 233.527†	75.9	-0.00127	mg/L	0.000534	-0.00127	mg/L	0.000534	41.91%
Be 313.042†	-6.0	-0.00007	mg/L	0.000005	-0.00007	mg/L	0.000005	7.28%
Ca 317.933†	1007171.6	97.46	mg/L	0.115	97.46	mg/L	0.115	0.12%
Cd 228.802†	87.2	0.00109	mg/L	0.000041	0.00109	mg/L	0.000041	3.73%
Co 228.616†	136.4	-0.00068	mg/L	0.000156	-0.00068	mg/L	0.000156	22.91%
Cr 267.716†	15.6	0.00363	mg/L	0.001123	0.00363	mg/L	0.001123	30.89%
Cu 324.752†	-4484.6	0.00227	mg/L	0.000280	0.00227	_	0.000280	12.31%
Fe 273.955†	233901.7	198.8	mg/L	1.04	198.8	-	1.04	0.52%
к 766.490†	-2.0	-0.00058	mg/L	0.019048	-0.00058		0.019048	
Mg 279.077†	112449.2	102.9	mg/L	2.18	102.9	_	2.18	2.12%
Mn 257.610†	43.5	-0.00023	mg/L	0.000145	-0.00023	,	0.000145	62.98%
Mo 202.031†	-153.0	-0.00602	mg/L	0.000325	-0.00602	_	0.000325	5.41%
Na 589,592†	-211.1	-0.02613	mg/L	0.005144	-0.02613	-	0.005144	19.68%
Na 330.237†	21.6	0.4347	mg/L	0.54486	0.4347	-	0.54486	
Ni 231.604†	8.5	0.00400	mg/L	0.000608	0.00400	_	0.000608	15.19%
Pb 220.353†	-773.4	0.00524	mg/L	0.000262	0.00524	_	0.000262	5.00%
Sb 206.836†	157.3	0.02778	mg/L	0.002421	0.02778	_	0.002421	8.71%
Se 196,026†	-102.1	-0.05565	mg/L	0.001513	-0.05565		0.001513	2.72%
Si 288.158†	-14.3	0.00140	${ m mg/L}$	0.004466	0.00140	-	0.004466	
Sn 189.927†	-51.4	0.01483	mg/L	0.000670	0.01483		0.000670	4.51%
Sr 421.552†	2458.2	0.00411	mg/L	0.000136	0.00411	_	0.000136	3.31%
Ti 334.903†	181.8	0.00278	${ m mg/L}$	0.000561	0.00278		0.000561	20.18%
Tl 190.801†	-36.8	-0.01043	mg/L	0.001961	-0.01043	J .	0.001961	18.79%
V 292.402†	3553.3	-0.00159	mg/L	0.000357	-0.00159	-	0.000357	22.38%
Zn 206.200†	-19.1	-0.00574	${ m mg/L}$	0.000533	-0.00574	mg/L	0.000533	9.28%

Sequence No.: 5

Sample ID: JCSAB Analyst: EL 777277 Dilution: 1X Dilution: 1X

Autosampler Location: 23

Date Collected: 11/2/2012 10:11:08 AM

Data Type: Original

Nebulizer Parameters: ICSAB

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: ICSAB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2570405.2	100.6	ફ	0.99				0.99%
ScR 361.383	206838.9	106.8	ક	1.96				1.83%
Ag 328.068†	293805.4	0.9865	mg/L	0.00215	0.9865		0.00215	0.229
Aĺ 308.215†	276101.8	196.6	mg/L	1.91	196.6	_	1.91	0.97%
As 188.979†	2293.1	0.9833	mg/L	0.01134	0.9833	_	0.01134	1.15%
B 249.677†	12.5	0.00313	${ m mg/L}$	0.003813	0.00313	٠.	0.003813	
Ba 233.527†	9147.0	0.9477	${ m mg/L}$	0.01765	0.9477	J .	0.01765	1.86%
Be 313.042†	250950.9	0.9650	mg/L	0.00839	0.9650	_	0.00839	0.87%
Ca 317.933†	981430.7	94.97	mg/L	0.814	94.97	_	0.814	0.86%
Cd 228.802†	78684.5	0.9803	${\tt mg/L}$	0.00339	0.9803	_	0.00339	0.35%
Co 228.616†	75615.9	0.9042	${ m mg/L}$	0.00129	0.9042	_	0.00129	0.14%
Cr 267.716†	4057.4	0.9446	mg/L	0.01493	0.9446	_	0.01493	1.58%
Cu 324.752†	311186.1	1.012	${ m mg/L}$	0.0013	1.012	_	0.0013	0.13%
Fe 273.955†	227345.4	193.2	${ m mg/L}$	2.21	193.2	_	2.21	1.14%
K 766.490†	-102.9	-0.02918	${ m mg/L}$	0.005555	-0.02918		0.005555	19.04%
Mg 279.077†	110545.4	101.1	${ m mg/L}$	0.81	101.1	_	0.81	0.80%
Mn 257.610†	35192.3	0.9454	_	0.00933	0.9454	-	0.00933	0.99%
Mo 202.031†	-154.3	-0.00639	${ t mg/L}$	0.000196	-0.00639		0.000196	3.07%
Na 589.592†	123.9	0.01533	mg/L	0.003736	0.01533	_	0.003736	24.36%
Na 330.237†	37.3	0.7407	mg/L	0.18610	0.7407	_	0.18610	25.13%
Ni 231.604†	1928.5	0.9011	${ m mg/L}$	0.01688	0.9011	_	0.01688	1.87%
Pb 220.353†	11313.8	0.9263	mg/L	0.00925	0.9263	_	0.00925	1.00%
Sb 206.836†	3647.0	1.047	${ m mg/L}$	0.0123	1.047	-	0.0123	1.17%
Se 196.026†	1696.5	0.9219	${ m mg/L}$	0.00842	0.9219		0.00842	0.91%
Si 288.158†	25.7	0.03607	mg/L	0.005148	0.03607	_	0.005148	14.27%
Sn 189.927†	-60.0	0.01285	mg/L	0.000256	0.01285	_	0.000256	1.99%
Sr 421.552†	2608.0	0.00436	${ t mg/L}$	0.000117	0.00436	-	0.000117	2.68%
Ti 334.903†	173.2	0.00232	mg/L	0.000277	0.00232	_	0.000277	11.94%
Tl 190.801†	3255.0	0.9011	mg/L	0.01013	0.9011	_	0.01013	1.12%
V 292.402†	201302.3	0.9704	mg/L	0.00020	0.9704	-	0.00020	0.02%
Zn 206.200†	2126.4	0.8711	mg/L	0.01537	0.8711	mg/L	0.01537	1.76%

Analysis Begun

Plasma On Time: 11/2/2012 8:20:38 AM Start Time: 11/2/2012 10:28:05 AM

Technique: ICP Continuous Logged In Analyst: metals Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\CRISET.sif

Batch ID:

Results Data Set: PE121102

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1

Sample ID: Calib Blank 1 Date Collected: 11/2/2012 10:28:08 AM

Data Type: Original

Nebulizer Parameters: Calib Blank 1

Back Pressure Analyte

Flow 0.55 L/min 231.0 kPa All

Mean Data: Calib Blank 1

	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.		Conc.	Units
ScA 357.253	2614306.9	18448.97	0.71%	102.3	용
ScR 361.383	199400.6	601.47	0.30%	103.0	용
Ag 328.068†	634.3	12.43	1.96%	[0.00]	mg/L
Al 308.215†	25.9	12.53	48.32%	[0.00]	mg/L
As 188.979†	1.0	1.78	172.35%	[0.00]	mg/L
B 249.677†	-119.6	3.91	3.27%	[0.00]	${ m mg/L}$
Ba 233.527†	66.0	2.37	3.60%	[0.00]	mg/L
Be 313.042†	590.8	11.95	2.02%	[0.00]	mg/L
Ca 317.933†	12.3		214.07%	[0.00]	mg/L
Cd 228.802†	302.0	2.51	0.83%	[0.00]	mg/L
Co 228.616†	325.4	6.40	1.97%	[0.00]	${ m mg/L}$
Cr 267.716†	9.6	2.94	30.58%	[0.00]	${ m mg/L}$
Cu 324.752†	1780.3	22.83	1.28%	[0.00]	mg/L
Fe 273.955†	-17.4	2.69	15.47%	[0.00]	${\tt mg/L}$
K 766.490†	2288.7	70.60	3.08%	[0.00]	${ m mg/L}$
Mg 279.077†	-160.3	6.95	4.34%	[0.00]	mg/L
Mn 257.610†	-47.6	3.67	7.71%	[0.00]	${ m mg/L}$
Mo 202.031†	-131.3	3.57	2.72%	[0.00]	${ m mg/L}$
Na 589.592†	588.9	27.83	4.73%	[0.00]	${ m mg/L}$
Na 330.237†	50.8	16.99	33.47%	[0.00]	mg/L
Ni 231.604†	30.7	5.87	19.14%	[0.00]	${ m mg/L}$
Pb 220.353†	278.1	12.50	4.49%	[0.00]	mg/L
Sb 206.836†	125.6	2.41	1.91%	[0.00]	${ m mg/L}$
Se 196.026†	-98.5	2.02	2.05%	[0.00]	mg/L
Si 288.158†	6.1	3.97	64.81%	[0.00]	mg/L
Sn 189.927†	-10.2	2.50	24.49%	[0.00]	mg/L
Sr 421.552†	775.2	37.91	4.89%	[0.00]	mg/L
Ti 334.903†	-68.8	15.16	22.02%	[0.00]	mg/L
Tl 190.801†	12.4	3.74	30.04%	[0.00]	${ m mg/L}$
V 292.402†	1.1	31.70	>999.9%	[0.00]	${ m mg/L}$
Zn 206.200†	-27.0	1.60	5.91%	[0.00]	mg/L

Start Time: 11/2/2012 10:39:07 AM Plasma On Time: 11/2/2012 8:20:38 AN

Technique: ICP Continuous Logged In Analyst: metals Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\CRISET.sif

Batch ID:

Results Data Set: PE121102

Results Library: C:\pe\metals\Results\Results.mdb

Autosampler Location: 7

Sequence No.: 1

Sample ID: TCV Date Collected: 11/2/2012 10:39:09 AM

Analyst: EL Data Type: Original

Dilution: 1X

Nebulizer Parameters: CV

Back Pressure Analyte

Flow 0.55 L/min All 231.0 kPa

Mean Data: CV								
_	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2595292.4	101.6	용	0.38				0.38%
ScR 361.383	202605.3	104.6	용	0.08				0.08%
Ag 328.068†	300811.1	1.005	mg/L	0.0028	1.005	mg/L	0.0028	0.28%
AĨ 308.215†	2964.9	2.068	mg/L	0.0125	2.068	mg/L	0.0125	0.60%
As 188.979†	4813.7	2.063	mg/L	0.0117	2.063	mg/L	0.0117	0.57%
B 249.677†	1994.5	0.9766	mg/L	0.00159	0.9766	mg/L	0.00159	0.16₹
Ba 233.527†	9641.4	1.008	mg/L	0.0035	1.008	mg/L	0.0035	0.35%
Be 313.042†	259637.0	0.9983	mg/L	0.00284	0.9983	mg/L	0.00284	0.28%
Ca 317.933†	20870.5	2.020	mg/L	0.0111	2.020	mg/L	0.0111	0.55%
Cd 228.802†	83664.2	1.040	mg/L	0.0039	1.040	mg/L	0.0039	0.38%
Co 228.616†	84155.6	1.007	mg/L	0.0009	1.007	mg/L	0.0009	0.09%
Cr 267.716†	4300.8	1.001	mg/L	0.0040	1.001	mg/L	0.0040	0.40원
Cu 324.752†	340215.7	1.089	mg/L	0.0013	1.089	mg/L	0.0013	0.12₹
Fe 273.955t	2486.6	2.113	mg/L	0.0069	2.113	mg/L	0.0069	0.32%
K 766.490†	74063.4	21.00	mg/L	0.052	21.00	mg/L	0.052	0.25%
Mg 279.077†	2324.5	2.132	mg/L	0.0057	2.132	mg/L	0.0057	0.27%
Mn 257.610†	37721.5	1.015	mg/L	0.0005	1.015	mg/L	0.0005	0.05%
Mo 202.031†	16953.0	0.9965	mg/L	0.00485	0.9965	mg/L	0.00485	0.49%
Na 589.592†	414113.7	51.26	mg/L	0.090	51.26	mg/L	0.090	0.18%
Na 330.237†	1326.2	52.81	mg/L	0.263	52.81	mg/L	0.263	0.50%
Ni 231.604†	2110.0	0.9861	mg/L	0.00219	0.9861	mg/L	0.00219	0.22%
Pb 220.353†	26202.5	2.001	mg/L	0.0079	2.001	mg/L	0.0079	0.39 €
Sb 206.836†	7311.4	2.160	mg/L	0.0059	2.160	mg/L	0.0059	0.27%
Se 196.026†	3679.4	2.002	mg/L	0.0036	2.002	mg/L	0.0036	0.18%
Si 288.158†	2817.2	2.159	mg/L	0.0106	2.159	mg/L	0.0106	0.49%
Sn 189.927†	5752.6	0.9397	mg/L	0.00405	0.9397	mg/L	0.00405	0.43%
Sr 421.552†	621412.3	1.040	mg/L	0.0018	1.040	mg/L	0.0018	0.18%
Ti 334.903†	24983.9	1.036	mg/L	0.0013	1.036	mg/L	0.0013	0.13%
T1 190.801†	7188.2	2.004	mg/L	0.0085	2.004	mg/L	0.0085	0.42%
V 292.402†	211498.9	1.043	mg/L	0.0009	1.043	${ m mg/L}$	0.0009	0.09%
Zn 206.200†	2529.3	1.033	mg/L	0.0037	1.033	mg/L	0.0037	0.36%

Page 2

Sequence No.: 2 Sample ID: CB Analyst: EL Dilution: 1X Autosampler Location: 1
Date Collected: 11/2/2012 10:45:13 AM

Data Type: Original

Nebulizer Parameters: CB

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: CB							
	Mean Corrected		Calib.			Sample	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2701153.0	105.7		0.49			0.46%
ScR 361.383	205441.8	106.1		0.32			0.30%
Ag 328.068†	8.0	0.00003	-	0.000056	0.00003		0.000056 212.34%
Al 308.215†	7.5	0.00535	_	0.005558	0.00535	_	0.005558 103.88%
As 188.979†	2.3	0.00099		0.001598	0.00099	٥.	0.001598 160.769
B 249.677†	9.9	0.00484		0.001089	0.00484	J .	0.001089 22.48%
Ba 233.527†	-7.6	-0.00080	mg/L	0.000245	-0.00080	J	0.000245 30.71%
Be 313.042†	-7.3	-0.00003	_	0.000035	-0.00003	-	0.000035 123.26%
Ca 317.933†	2.1	0.00020	mg/L	0.000191	0.00020	_	0.000191 95.86%
Cd 228.802†	-8.3	-0.00011	mg/L	0.000062	-0.00011	J .	0.000062 58.07%
Co 228.616†	-13.6	-0.00016	mg/L	0.000080	-0.00016	mg/L	0.000080 48.98%
Cr 267.716†	-3.0	-0.00069	mg/L	0.000951	-0.00069	_	0.000951 137.56%
Cu 324.752†	-63.6	-0.00020	mg/L	0.000128	-0.00020	J.	0.000128 62.96%
Fe 273.955†	-1.1	-0.00096	mg/L	0.001963	-0.00096	mg/L	0.001963 205.23%
K 766.490†	42.1	0.01195	mg/L	0.008132	0.01195	J.	0.008132 68.07%
Mg 279.077†	3.0	0.00277	mg/L	0.005845	0.00277		0.005845 211.15%
Mn 257.610†	1.0	0.00003	mg/L	0.000079	0.00003	mg/L	0.000079 294.08%
Mo 202.031†	7.2	0.00042	mg/L	0.000162	0.00042	mg/L	0.000162 38.41%
Na 589.592†	288.0	0.03565	mg/L	0.005949	0.03565	mg/L	0.005949 16.69%
Na 330.237†	-0.9	-0.03563	mg/L	0.083915	-0.03563	mg/L	0.083915 235.49%
Ni 231.604†	-2.8	-0.00132	mg/L	0.000678	-0.00132	mg/L	0.000678 51.31%
Pb 220.353†	-5.9	-0.00045	mg/L	0.000237	-0.00045	mg/L	0.000237 53.20%
Sb 206.836†	-1.1	-0.00029	mg/L	0.001463	-0.00029	mg/L	0.001463 497.59%
Se 196.026†	12.4	0.00676	mg/L	0.000157	0.00676	mg/L	0.000157 2.32%
Si 288.158†	2.2	0.00164	mg/L	0.002235	0.00164	mg/L	0.002235 136.03%
Sn 189.927†	5.8	0.00094	mg/L	0.000331	0.00094	mg/L	0.000331 35.10%
Sr 421.552†	-7.4	-0.00001	mg/L	0.000028	-0.00001	mg/L	0.000028 225.93%
Ti 334.903†	9.2	0.00038	mg/L	0.000368	0.00038	mg/L	0.000368 96.26%
Tl 190.801†	3.5	0.00098		0.001377	0.00098	mg/L	0.001377 140.11%
V 292.402†	-7.3	-0.00004	J .	0.000161	-0.00004	mg/L	0.000161 416.13%
Zn 206.200†	1.7	0.00071		0.000272	0.00071		0.000272 38.57%
211 200.2001		0.000.2	.5, -			-	

Sequence No.: 3 Sample ID: CRI Analyst: EL Dilution: 1X Autosampler Location: 21
Date Collected: 11/2/2012 10:51:11 AM

Data Type: Original

Nebulizer Parameters: CRI

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: CRI								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2715329.2	106.3	ક	0.96				0.91%
ScR 361.383	204059.2	105.4	ક	0.03				0.03%
Ag 328.068†	838.8	0.00280	mg/L	0.000217	0.00280	mg/L	0.000217	7.74%
Al 308.215†	85.0	0.06032	mg/L	0.008544	0.06032	mg/L	0.008544	14.16%
As 188.979†	115.9	0.04971	mg/L	0.001654	0.04971	mg/L	0.001654	3.33%
B 249.677†	44.4	0.02175	mg/L	0.001257	0.02175	mg/L	0.001257	5.78%
Ba 233.527†	21.8	0.00228	mg/L	0.000254	0.00228	mg/L	0.000254	11.15%
Be 313.042†	260.5	0.00100	mg/L	0.000079	0.00100	mg/L	0.000079	7.92%
Ca 317.933†	516.7	0.05000	mg/L	0.002276	0.05000	mg/L	0.002276	4.55%
Cd 228.802†	161.9	0.00191	mg/L	0.000174	0.00191	mg/L	0.000174	9.14 ક
Co 228.616†	260.3	0.00311	mg/L	0.000027	0.00311	mg/L	0.000027	0.86%
Cr 267.716†	19.8	0.00460	mg/L	0.000439	0.00460	mg/L	0.000439	9.54%
Cu 324.752†	512.1	0.00164	mg/L	0.000187	0.00164	mg/L	0.000187	11.39%
Fe 273.955†	57.4	0.04875	mg/L	0.002464	0.04875	mg/L	0.002464	5.05%
к 766.490†	1859.2	0.5270	mg/L	0.01632	0.5270	mg/L	0.01632	3.10%
Mg 279.077†	62.9	0.05756	mg/L	0.003455	0.05756	mg/L	0.003455	6.00%
Mn 257.610†	34.5	0.00093	mg/L	0.000069	0.00093	mg/L	0.000069	7.42%
Mo 202.031†	92.9	0.00546	mg/L	0.000380	0.00546	mg/L	0.000380	6.97%
Na 589.592†	4172.2	0.5164	mg/L	0.00405	0.5164	mg/L	0.00405	0.78%
Na 330.237†	18.5	0.7350	mg/L	0.13688	0.7350	J .	0.13688	18.62%
Ni 231.604†	19.6	0.00916	mg/L	0.000929	0.00916		0.000929	10.14 ៦
Pb 220.353†	237.8	0.01817	mg/L	0.000718	0.01817	mg/L	0.000718	3.95%
Sb 206.836†	170.0	0.05031	mg/L	0.001479	0.05031		0.001479	2.94%
Se 196.026†	98.7	0.05375	2 '	0.000787	0.05375	mg/L	0.000787	1.46%
Si 288.158†	107.5	0.08220		0.001530	0.08220		0.001530	1.86%
Sn 189.927†	56.3	0.00921	2	0.000779	0.00921	_	0.000779	8.45%
Sr 421.552†	603.8	0.00101		0.000056	0.00101	mg/L	0.000056	5.52%
Ti 334.903†	147.9	0.00613		0.000801	0.00613	_	0.000801	13.05%
Tl 190.801†	177.1	0.04965	٠.	0.000101	0.04965		0.000101	0.20%
V 292.402†	612.9	0.00304	2	0.000222	0.00304	J .	0.000222	7.30%
Zn 206.200†	24.9	0.01016	mg/L	0.000614	0.01016	mg/L	0.000614	6.04%

VP40:00356

Autosampler Location: 22 Sequence No.: 4

Date Collected: 11/2/2012 10:57:11 AM Sample ID: ICSA Data Type: Original

Analyst: EL Dilution: 1X

Nebulizer Parameters: ICSA

Analyte

Back Pressure Flow 231.0 kPa 0.55 L/min All

Mean Data: ICSA								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2522799.3	98.76	ક	0.149				0.15%
ScR 361.383	199705.4	103.1	8	0.67				0.65%
Ag 328.068†	-1696.3	-0.00018	mg/L	0.000204	-0.00018	_	0.000204	
Aĺ 308.215†	285026.4	203.0	mg/L	0.63	203.0	-	0.63	0.31%
As 188.979†	-12.1	-0.00513	mg/L	0.001756	-0.00513	_	0.001756	34.21%
B 249.677†	-20.0	-0.00983	mg/L	0.002292	-0.00983	-	0.002292	23.32%
Ba 233.527†	74.4	-0.00145	mg/L	0.000088	-0.00145		0.000088	6.09%
Be 313.042†	10.7	0.00000	mg/L	0.000012	0.00000	-	0.000012	
Ca 317.933†	1006712.7	97.42	mg/L	0.173	97.42	_	0.173	0.18%
Cd 228.802†	84.1	0.00106	mg/L	0.000050	0.00106	J.	0.000050	4.73%
Co 228.616†	163.8	-0.00036	${ t mg/L}$	0.000135	-0.00036	_	0.000135	37.81%
Cr 267.716†	14.4	0.00335	${ t mg/L}$	0.000731	0.00335	_	0.000731	21.78%
Cu 324.752†	-5102.7	0.00035	mg/L	0.000102	0.00035	_	0.000102	29.36%
Fe 273.955†	234598.5	199.4	mg/L	0.84	199.4	_	0.84	0.42%
K 766.490†	25.9	0.00735	mg/L	0.014262	0.00735	_	0.014262	
Mg 279.077+	112640.6	103.0	mg/L	0.30	103.0	J .	0.30	0.29%
Mn 257.610†	22.6	-0.00079	_	0.000140	-0.00079	-	0.000140	17.79%
Mo 202.031†	-159.4	-0.00640		0.000368	-0.00640	_	0.000368	5.75%
Na 589.592†	283.1	0.03504	,	0.005627	0.03504	J .	0.005627	16.06%
Na 330.237†	7.3	-0.1356	_	0.23090	-0.1356	_		170.27%
Ni 231.604†	9.7	0.00457	mg/L	0.001304	0.00457	-	0.001304	28.53%
Pb 220.353†	-755.8	0.00642	J.	0.000408	0.00642	_	0.000408	6.35%
Sb 206.836†	146.0	0.02439	_	0.002625	0.02439	J .	0.002625	10.76%
Se 196.026†	-107.1	-0.05836		0.002548	-0.05836	_	0.002548	4.37%
Si 288.158†	-4.0	0.00932		0.004506	0.00932	_	0.004506	
Sn 189.927†	-50.9	0.01490		0.000748	0.01490	_	0.000748	5.02%
Sr 421.552†	2507.7	0.00420	_mg/Lcant	0.000074	0.00420	_	0.000074	1.76%
Ti 334.903†	172.8	0.00241		0.000264	0.00241	_	0.000264	10.94%
Tl 190.801†	-34.6	-0.00982		0.002465	-0.00982	_	0.002465	25.098
V 292.402†	3544.8	-0.00170	-	0.000429	-0.00170	2 '	0.000429	25.27%
Zn 206.200†	-19.0	-0.00568	mg/L	0.001160	-0.00568	mg/L	0.001160	20.41%

Sequence No.: 5

Sample ID: ICSAB

Analyst: Eh

Autosampler Location: 23

Date Collected: 11/2/2012 11:03:14 AM

Data Type: Original

Analyst: EL Dilution: 1X

Nebulizer Parameters: ICSAB

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: ICSAB								
	Mean Corrected		Calib.		_	Sample		202
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2555830.7	100.1		0.80				0.80%
ScR 361.383	200066.6	103.3		0.59	1 005	/-	0 0071	0.57%
Ag 328.068†	299290.6	1.005	_	0.0071	1.005	_	0.0071	0.71%
Al 308.215†	283616.4	201.9	٠.	0.36	201.9	_	0.36	0.18%
As 188.979†	2312.8	0.9917		0.01232	0.9917		0.01232	1.24%
B 249.677†	-0.2	-0.00323	-	0.001762	-0.00323	_	0.001762	54.62%
Ba 233.527†	9483.0	0.9826	-	0.00560	0.9826	_	0.00560	0.57%
Be 313.042†	256470.7	0.9862	-	0.00293	0.9862	_	0.00293	0.30%
Ca 317.933†	1006902.2	97.44	-	0.265	97.44	_	0.265	0.27%
Cd 228.802†	80017.2	0.9969	${ t mg/L}$	0.00523	0.9969	_	0.00523	0.53%
Co 228.616†	77706.5	0.9293	mg/L	0.00095	0.9293	٥.	0.00095	0.10%
Cr 267.716†	4198.4	0.9775	mg/L	0.00537	0.9775		0.00537	0.55₺
Cu 324.752†	317565.2	1.033	mg/L	0.0012	1.033		0.0012	0.12%
Fe 273.955†	233040.5	198.1		0.38	198.1	-	0.38	0.19%
к 766.490†	21.9	0.00620	mg/L	0.001919	0.00620	_	0.001919	30.97%
Mg 279.077†	113240.5	103.6	mg/L	0.35	103.6	mg/L	0.35	0.34%
Mn 257.610†	36049.6	0.9685	mg/L	0.00329	0.9685	-	0.00329	0.34%
Mo 202.031†	-162.9	-0.00682	mg/L	0.000566	-0.00682	_	0.000566	8.30%
Na 589.592†	664.9	0.08230	mg/L	0.004357	0.08230	_	0.004357	5.29%
Na 330.237†	30.0	0.4239	mg/L	0.15638	0.4239	mg/L	0.15638	36.89%
Ni 231.604†	2000.2	0.9346	mg/L	0.00924	0.9346	mg/L	0.00924	0.99%
Pb 220.353†	11447.6	0.9382	mg/L	0.00934	0.9382	mg/L	0.00934	1.00%
Sb 206.836†	3672.0	1.053	mg/L	0.0113	1.053	mg/L	0.0113	1.08%
Se 196.026†	1714.1	0.9314	mg/L	0.00788	0.9314	mg/L	0.00788	0.85%
Si 288.158†	44.7	0.05096	mg/L	0.005371	0.05096	mg/L	0.005371	10.54%
Sn 189.927†	-65.9	0.01247	mg/L	0.000445	0.01247	mg/L	0.000445	3.57%
Sr 421.552†	2740.5	0.00459	mg/Icout	0.000027	0.00459	mg/L	0.000027	0.60%
Ti 334.903†	170.9	0.00210		0.000148	0.00210	mg/L	0.000148	7.04%
T1 190.801†	3303.5	0.9144	mq/L	0.00635	0.9144	mg/L	0.00635	0.69%
V 292.402†	205361.8	0.9900	mg/L	0.00094	0.9900	mg/L	0.00094	0.10%
Zn 206.200†	2204.7	0.9032	mg/L	0.00447	0.9032	mg/L	0.00447	0.49%

Sequence No.: 6

Sample ID: CVi

Analyst: EL

Dilution: 1X

Autosampler Location: 7

Date Collected: 11/2/2012 11:10:15 AM

Data Type: Original

Nebulizer Parameters: CV

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2628079.8	102.9	લ	0.59				0.57%
ScR 361.383	205929.1	106.4	olo Olo	0.23				0.22%
Ag 328.068†	293546.5	0.9803	mg/L	0.00117	0.9803	mg/L	0.00117	0.12%
Al 308.215†	2934.0	2.047	mg/L	0.0048	2.047	mg/L	0.0048	0.24%
As 188.979†	4738.7	2.031	mg/L	0.0155	2.031	mg/L	0.0155	0.76%
B 249.677†	1974.0	0.9666	mg/L	0.00434	0.9666	mg/L	0.00434	0.45%
Ba 233.527†	9578.9	1.002	mg/L	0.0012	1.002	mg/L	0.0012	0.12%
Be 313.042†	256649.3	0.9868	mg/L	0.00098	0.9868	mg/L	0.00098	0.10%
Ca 317.933†	20732.8	2.006	mg/L	0.0042	2.006	mg/L	0.0042	0.21%
Cd 228.802†	81874.0	1.018	mg/L	0.0036	1.018	mg/L	0.0036	0.35%
Co 228.616†	82250.9	0.9844	mg/L	0.00209	0.9844		0.00209	0.21%
Cr 267.716†	4276.5	0.9954	mg/L	0.00291	0.9954	mg/L	0.00291	0.29%
Cu 324.752†	332575.3	1.064	mg/L	0.0015	1.064	mg/L	0.0015	0.14%
Fe 273.955†	2480.0	2.107	mg/L	0.0078	2.107	mg/L	0.0078	0.37%
К 766.490†	72718.0	20.61	mg/L	0.048	20.61	mg/L	0.048	0.23%
Mg 279.077†	2319.9	2.128	mg/L	0.0078	2.128	mg/L	0.0078	0.37%
Mn 257.610†	37217.9	1.001	mg/L	0.0014	1.001	mg/L	0.0014	0.14%
Mo 202.031†	16648.8	0.9786	mg/L	0.00841	0.9786	mg/L	0.00841	0.86%
Na 589.592†	405906.5	50.24	mg/L	0.047	50.24		0.047	0.09%
Na 330.237†	1298.6	51.70	mg/L	0.070	51.70		0.070	0.13%
Ni 231.604†	2107.4	0.9849	mg/L	0.00210	0.9849	_	0.00210	0.21%
Pb 220.353†	25844.3	1.974	mg/L	0.0155	1.974	mg/L	0.0155	0.79%
Sb 206.836†	7201.6	2.127	mg/L	0.0149	2.127		0.0149	0.70%
Se 196.026†	3620.0	1.970	mg/L	0.0136	1.970	_	0.0136	0.69%
Si 288.158†	2799.3	2.146	mg/L	0.0076	2.146	_	0.0076	0.35%
Sn 189.927†	5671.8	0.9265	mg/L	0.00525	0.9265		0.00525	0.57%
Sr 421.552†	610837.7	1.022	mg/L	0.0043	1.022	mg/L	0.0043	0.42%
Ti 334.903†	24553.5	1.018	mg/L	0.0012	1.018	_	0.0012	0.11%
Tl 190.801†	7067.8	1.970	mg/L	0.0162	1.970	_	0.0162	0.82%
V 292.402†	207228.3	1.022	mg/L	0.0043	1.022		0.0043	0.42%
Zn 206.200†	2541.6	1.039	mg/L	0.0018	1.039	mg/L	0.0018	0.17%

UDUA: AASE

Sequence No.: 7 Sample ID: CB

Autosampler Location: 1 Date Collected: 11/2/2012 11:16:17 AM

Analyst: EL Data Type: Original Dilution: 1X

Nebulizer Parameters: CB

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min All

Mean Data: CB							
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2686417.9	105.2	8	0.77			0.74%
ScR 361.383	203375.1	105.0	9	0.49			0.47%
Ag 328.068†	144.6	0.00048		0.000078	0.00048	${ m mg/L}$	0.000078 16.22%
Al 308.215†	14.9	0.01062	mg/L	0.012302	0.01062	mg/L	0.012302 115.81%
As 188.979†	1.1	0.00047	mg/L	0.001434	0.00047	mg/L	0.001434 305.79%
в 249.677†	4.0	0.00197	mg/L	0.002173	0.00197	mg/L	0.002173 110.04%
Ba 233.527†	-6.7	-0.00070	mg/L	0.000086	-0.00070		0.000086 12.37%
Be 313.042†	3.9	0.00002	mg/L	0.000111	0.00002	mg/L	0.000111 739.92%
Ca 317.933†	-18.5	-0.00179	mg/L	0.000916	-0.00179	mg/L	0.000916 51.25%
Cd 228.802†	7.4	0.00009		0.000009	0.00009	mg/L	0.000009 9.89%
Co 228.616†	-3.6	-0.00004	mg/L	0.000055	-0.00004	mg/L	0.000055 124.39%
Cr 267.716†	-1.1	-0.00027	mg/L	0.000542	-0.00027	mg/L	0.000542 202.78%
Cu 324.752†	26.0	0.00008	mg/L	0.000011	0.00008	mg/L	0.000011 12.85%
Fe 273.955†	-0.4	-0.00033	mg/L	0.001492	-0.00033	${ m mg/L}$	0.001492 451.66%
K 766.490†	82.5	0.02340	mg/L	0.016561	0.02340	mg/L	0.016561 70.78%
Mg 279.077†	0.8	0.00071	mg/L	0.000691	0.00071	-	0.000691 97.35%
Mn 257.610†	6.2	0.00017	mg/L	0.000095	0.00017	mg/L	0.000095 57.52%
Mo 202.031†	6.2	0.00036	mg/L	0.000142	0.00036	mg/L	0.000142 39.07%
Na 589.592†	177.9	0.02202	mg/L	0.005662	0.02202	mg/L	0.005662 25.71%
Na 330.237†	16.6	0.6629	mg/L	0.20443	0.6629		0.20443 30.84%
Ni 231.604†	-3.1	-0.00144	mg/L	0.001299	-0.00144	J.	0.001299 90.32%
Pb 220.353†	-15.4	-0.00118	mg/L	0.000412	-0.00118	J.	0.000412 35.04%
Sb 206.836†	-1.3	-0.00038	mg/L	0.001043	-0.00038	mg/L	0.001043 275.66%
Se 196.026†	8.2	0.00446	mg/L	0.001044	0.00446		0.001044 23.40%
Si 288.158†	2.2	0.00169		0.003589	0.00169	mg/L	0.003589 212.36%
Sn 189.927†	6.5	0.00107	mg/L	0.000391	0.00107	mg/L	0.000391 36.68%
Sr 421.552†	6.6	0.00001	mg/L	0.000077	0.00001	mg/L	0.000077 701.95%
Tı 334.903†	18.9	0.00079		0.000418	0.00079	_	0.000418 53.19%
Tl 190.801†	4.6	0.00129	-	0.000469	0.00129	2.	0.000469 36.42%
V 292.402†	14.5	0.00007	J.	0.000172	0.00007	J .	0.000172 245.07%
Zn 206.200†	3.7	0.00152	mg/L	0.000268	0.00152	mg/L	0.000268 17.60%

Analysis Begun

Start Time: 11/2/2012 11:34:44 AM Plasma On Time: 11/2/2012 8:20:38 AW

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\1102.sif

Batch TD:

Results Data Set: PE121102

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1

Autosampler Location: 24

Sample ID: VP83 MB TWC Analyst: EL

Date Collected: 11/2/2012 11:34:46 AM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: VP83 MB TWC

Flow Analyte Back Pressure

All 232.0 kPa 0.55 L/min

Mean Data: VP83 MB	TWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2643319.8	103.5	8	1.04				1.00%
ScR 361.383	201565.9	104.1		1.43				1.37%
Ag 328.068†	-26.9	-0.00009	_	0.000051	-0.00009	mg/L	0.000051	54.62%
Al 308.215†	161.5	0.1150		0.00751	0.1150	_	0.00751	6.53%
As 188.979†	1.4	0.00062		0.001991	0.00062	mg/L	0.001991	322.14%
B 249.677†	25.6	0.01257		0.002129	0.01257	mg/L	0.002129	16.94%
Ba 233.527†	-2.2	-0.00023		0.000464	-0.00023		0.000464	
Be 313.042†	10.7	0.00004	${ m mg/L}$	0.000052	0.00004	mg/L	0.000052	127.27%
Ca 317.933†	2654.2	0.2568	${ t mg/L}$	0.00054	0.2568	mg/L	0.00054	0.21%
Cd 228.802†	-0.1	0.00000	${ m mg/L}$	0.000113	0.00000	mg/L	0.000113	>999.9%
Co 228.616†	-9.0	-0.00011	${ m mg/L}$	0.000045	-0.00011	mg/L	0.000045	42.42%
Cr 267.716†	0.3	0.00007	٠.	0.000614	0.00007	J .	0.000614	
Cu 324.752†	-93.9	-0.00030	J .	0.000127	-0.00030	J.	0.000127	42.27⊱
Fe 273.955†	0.5	0.00041	${ m mg/L}$	0.001883	0.00041	mg/L	0.001883	460.89%
K 766.490†	64.2	0.01821		0.017682	0.01821	mg/L	0.017682	97.09%
Mg 279.077†	3.9	0.00358		0.004661	0.00358	mg/L	0.004661	130.11%
Mn 257.610†	0.4	0.00001	${ m mg/L}$	0.000027	0.00001	mg/L	0.000027	254.56%
Mo 202.031†	4.4	0.00026	J .	0.000383	0.00026		0.000383	
Na 589.592†	-125.9	-0.01558	${ m mg/L}$	0.002673	-0.01558	mg/L	0.002673	17.16%
Na 330.237†	8.3	0.3287		0.30594	0.3287	mg/L	0.30594	93.09%
Ni 231.604†	-2.0	-0.00092	${ m mg/L}$	0.000547	-0.00092	mg/L	0.000547	59.29%
Pb 220.353†	-2.5	-0.00015		0.000395	-0.00015	J .	0.000395	
Sb 206.836†	-6.3	-0.00187	_	0.001026	-0.00187		0.001026	54.99%
Se 196.026†	8.0	0.00439	J .	0.001079	0.00439	2.	0.001079	24.61%
Si 288.158†	7.4	0.00569	J .	0.000926	0.00569		0.000926	16.28%
Sn 189.927†	0.6	0.00015	J .	0.000154	0.00015	_	0.000154	
Sr 421.552†	842.8	0.00141	_	0.000038	0.00141	_	0.000038	2.73%
Ti 334.903†	-4.9	-0.00021		0.000766	-0.00021	_	0.000766	
Tl 190.801†	1.5	0.00043		0.001235	0.00043		0.001235	
V 292.402†	40.9	0.00020		0.000043	0.00020	2 '	0.000043	21.43%
Zn 206.200†	4.0	0.00163	mg/L	0.001068	0.00163	mg/L	0.001068	65.53%

UDUA: GARGI

Page 2

Sequence No.: 2

Sample ID: VP83 B TWC Analyst: EL Dilution: 10X Autosampler Location: 25
Date Collected: 11/2/2012 11:40:46 AM

Data Type: Original

Nebulizer Parameters: VP83 B TWC

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VP83	B TWC							
	Mean Corrected	l	Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2431072.7	95.17	&	0.663				0.70%
ScR 361.383	195687.8	101.1	8	1.05				1.04%
Ag 328.068†	105.3	0.00014	mg/L	0.000077	0.00144	mg/L	0.000772	53.59%
Al 308.215†	15.3	0.01085	mg/L	0.008211	0.1085	mg/L	0.08211	75.67%
As 188.979†	2.8	0.00118	mg/L	0.000173	0.01179	mg/L	0.001733	14.69%
в 249.677†	325.8	0.1598	mg/L	0.00675	1.598	${\tt mg/L}$	0.0675	4.23%
Ba 233.527†	101.0	0.01056	mg/L	0.000911	0.1056	mg/L	0.00911	8.63%
Be 313.042†	-6.2	-0.00002	mg/L	0.000032	-0.00022	${\tt mg/L}$	0.000316	143.20%
Ca 317.933†	156417.4	15.14	mg/L	0.768	151.4	mg/L	7.68	5.08%
Cd 228.802†	8.4	0.00010	mg/L	0.000077	0.00103	mg/L	0.000766	74.15%
Co 228.616†	42.1	0.00050	J .	0.000075	0.00495		0.000749	15.13%
Cr 267.716†	14.1	0.00322	mg/L	0.000669	0.03218		0.006691	20.79%
Cu 324.752†	70.7	0.00025	mg/L	0.000076	0.00254	mg/L	0.000755	29.69%
Fe 273.955†	405.6	0.3448	mg/L	0.01657	3.448	mg/L	0.1657	4.81%
K 766.490†	53605.5	15.20	mg/L	0.563	152.0	${\tt mg/L}$	5.63	3.71%
Mg 279.077†	48114.2	44.06	mg/L	2.136	440.6	_	21.36	4.85%
Mn 257.610†	9029.8	0.2429	_	0.01156	2.429		0.1156	4.76%
Mo 202.031†	25.8	0.00098	mg/L	0.000186	0.00980	J .	0.001864	19.02%
Na 589.592†	2861524.9	354.2	${ t mg/L}$	13.03	3542	_	130.3	3.68%
Na 330.237†	9362.2	374.1	-	17.88	3741	J .	178.8	4.78%
Ni 231.604†	5.6	0.00264	mg/L	0.002178	0.02640	_	0.021780	82.49%
Pb 220.353†	0.8	0.00044	mg/L	0.000505	0.00442	_		114.25%
Sb 206.836†	3.6	0.00093	_	0.000914	0.00926	_	0.009135	98.60%
Se 196.026†	2.9	0.00156	J .	0.003884	0.01555	J .	0.038845	
Si 288.158†	786.4	0.6062	J .	0.02796	6.062		0.2796	4.61%
Sn 189.927†	-15.7	0.00172	mg/L	0.000702	0.01718		0.007024	40.88%
Sr 421.552†	174707.5	0.2924	_	0.01129	2.924		0.1129	3.86%
Ti 334.903†	38.5	0.00086	-	0.000999	0.00855	_		116.87%
Tl 190.801†	-6.3	-0.00208	J .	0.000443	-0.02078	_	0.004434	21.33%
V 292.402†	-134.8	-0.00063		0.000166	-0.00625	J .	0.001659	26.53%
Zn 206.200†	-1.3	-0.00020	mg/L	0.001272	-0.00201	mg/L	0.012722	632.94%

VP48:00362

Sequence No.: 3

Sample ID: VP83 C TWC

Analyst: EL Dilution: 10X

Zn 206.200†

Autosampler Location: 26 Date Collected: 11/2/2012 11:47:10 AM

Data Type: Original

Nebulizer Parameters: VP83 C TWC

Analyte Back Pressure Flow 232.0 kPa 0.55 L/min All

Mean Data: VP83 C TWC Mean Corrected Calib.

Intensity Conc. Units Sample Std.Dev. Conc. Units Std.Dev. RSD Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228,802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† T1 190.801† V 292.402†

Sequence No.: 4 Autosampler Location: 27

Sample ID: VP83 D TWC Date Collected: 11/2/2012 11:53:29 AM

Analyst: EL Dilution: 10X

Data Type: Original

Nebulizer Parameters: VP83 D TWC

Back Pressure Flow 232.0 kPa 0.55 L/min Analyte All

Mean Data: VP83 D	TWC							
	Mean Corrected		Calib.			Sample	•	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD	
ScA 357.253	2521117.8	98.69	8	0.849			0.86%	ś
ScR 361.383	199446.1	103.0		0.36			0.35%	
Ag 328.068†	39.3	-0.00003	mg/L	0.000171	-0.00033		0.001707 512.44%	
Al 308.215†	1.4	0.00097	mg/L	0.011131	0.00972	mg/L	0.111307 >999.9%	÷
As 188.979†	2.1	0.00089	mg/L	0.000472	0.00890		0.004720 53.06%	;
в 249.677†	226.7	0.1112	_	0.00180	1.112		0.0180 1.62%	
Ba 233.527†	117.3	0.01226		0.000373	0.1226		0.00373 3.04%	
Be 313.042†	-9.5	-0.00004	mg/L	0.000038	-0.00036	mg/L	0.000380 106.83%	Ė
Ca 317.933†	120126.5	11.62	mg/L	0.119	116.2		1.19 1.03%	
Cd 228.802†	-6.7	-0.00008	mg/L	0.000131	-0.00085		0.001315 154.95%	5
Co 228.616†	7.0	0.00007	٠.	0.000210	0.00074	J.	0.002101 282.45%	
Cr 267.716†	11.4	0.00262	2	0.000951	0.02616		0.009515 36.37%	
Cu 324.752†	-99.7	-0.00029	_	0.000141	-0.00295	_	0.001407 47.70%	
Fe 273.955†	349.2	0.2968	_	0.00191	2.968	_	0.0191 0.64%	
K 766.490†	35269.3	9.998	_	0.0325	99.98		0.325 0.33*	
Mg 279.077†	33348.2	30.54	-	0.285	305.4		2.85 0.93%	
Mn 257.610†	8102.4	0.2179	_	0.00181	2.179	-	0.0181 0.83%	
Mo 202.031†	25.8	0.00114		0.000649	0.01144		0.006487 56.68%	
Na 589.592†	1954834.8	242.0	_	0.34		mg/L	3.4 0.14%	_
Na 330.237†	6456.4	258.0		1.27		${ m mg/L}$	12.7 0.49%	
Ni 231.604†	2.8	0.00133	_	0.002088	0.01326	_	0.020885 157.48%	
Pb 220.353†	-11.5	-0.00059	_	0.001400	-0.00585	J .	0.014003 239.22%	
Sb 206.836†	-5.4	-0.00170	_	0.000623	-0.01695	J .	0.006233 36.77%	
Se 196.026†	15.2	0.00830	_	0.002675	0.08299		0.026754 32.24%	
Si 288.158†	659.3	0.5074	_	0.00210	5.074	_	0.0210 0.41%	
Sn 189.927†	-10.5	0.00149		0.000210	0.01494	_	0.002099 14.05%	
Sr 421.552†	124158.0	0.2078		0.00044	2.078		0.0044 0.21%	
Ti 334.903†	32.3	0.00077		0.001047	0.00771		0.010469 135.80%	
Tl 190.801†	-6.4	-0.00206	_	0.000622	-0.02058		0.006216 30.21%	
V 292.402†	-98.9	-0.00045	_	0.000072	-0.00454	-	0.000724 15.95%	
Zn 206.200†	-0.2	0.00017	mg/L	0.000937	0.00169	mg/L	0.009367 552.68%	í

ypue:eesu

Sequence No.: 5 Autosampler Location: 28

Sample ID: VP83 E TWC Date Collected: 11/2/2012 11:59:53 AM Data Type: Original

Analyst: EL Dilution: 10X

Nebulizer Parameters: VP83 E TWC

Analyte Back Pressure

Flow 0.55 L/min All 232.0 kPa

Mean Data: VP83 E	TWC						
	Mean Corrected		Calıb.			Sample	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2677117.6	104.8		0.32			0.31%
ScR 361.383	200191.8	103.4		1.07			1.03%
Ag 328.068†	-2.8	-0.00001		0.000178	-0.00010		0.001784 >999.9%
Al 308.215†	23.6	0.01680		0.010099	0.1680		0.10099 60.09%
As 188.979†	5.0	0.00214		0.000789	0.02144	J .	0.007891 36.80%
B 249.677†	4.2	0.00206	J .	0.001137	0.02062	J .	0.011371 55.15%
Ba 233.527†	-7.3	-0.00076	J .	0.000331	-0.00759	J .	0.003308 43.57%
Be 313.042†	-26.0	-0.00010		0.000002	-0.00100	٠.	0.000017 1.73%
Ca 317.933†	402.9	0.03899	J .	0.000347	0.3899	J .	0.00347 0.89%
Cd 228.802†	-10.4	-0.00013	2.	0.000091	-0.00135		0.000910 67.63%
Co 228.616†	-1.4	-0.00002	_ ·	0.000146	-0.00016	_	0.001458 921.52%
Cr 267.716†	0.4	0.00009		0.000490	0.00085	_	0.004900 574.02%
Cu 324.752†	-204.5	-0.00065		0.000062	-0.00655	2	0.000618 9.44%
Fe 273.955t	-2.0	-0.00173	mg/L	0.001898	-0.01732	2 '	0.018980 109.60%
K 766.490†	109.1	0.03094	mg/L	0.015129	0.3094	mg/L	0.15129 48.90%
Mg 279.077†	5.9	0.00543	mg/L	0.003960	0.05426	mg/L	0.039599 72.98%
Mn 257.610†	8.2	0.00022	mg/L	0.000079	0.00221	mg/L	0.000789 35.69%
Mo 202.031†	9.6	0.00056	mg/L	0.000139	0.00562	mg/L	0.001392 24.76%
Na 589.592†	3456.0	0.4278	mg/L	0.01747	4.278	mg/L	0.1747 4.08%
Na 330.237†	16.9	0.6747	mg/L	0.06733	6.747	mg/L	0,6733 9.98%
Ni 231.604†	-1.6	-0.00073	mg/L	0.002177	-0.00729	mg/L	0.021775 298.90%
Pb 220.353†	-18.9	-0.00143	mg/L	0.000312	-0.01434	mg/L	0.003120 21.75%
Sb 206.836†	-7.5	-0.00222	mg/L	0.001741	-0.02218	mg/L	0.017412 78.52%
Se 196.026†	4.3	0.00236	mg/L	0.000641	0.02357	mg/L	0.006409 27.19%
Si 288.158†	6.4	0.00486	mg/L	0.001882	0.04856	mg/L	0.018824 38.76%
Sn 189.927†	3.3	0.00055	mg/L	0.000099	0.00545	mg/L	0.000987 18.11%
Sr 421.552†	137.9	0.00023	mg/L	0.000019	0.00231	mg/L	0.000194 8.41%
Ti 334.903†	-0.5	-0.00002	mg/L	0.000326	-0.00022	mg/L	0.003256 >999.9%
Tl 190.801†	1.7	0.00049	mg/L	0.001114	0.00486	mg/L	0.011135 228.99%
V 292.402†	9.8	0.00005	mg/L	0.000106	0.00051	mg/L	0.001058 205.83%
Zn 206.200†	-0.7	-0.00030	mg/L	0.000988	-0.00300	mg/L	0.009882 329.38%

Analysis Begun

Start Time: 11/2/2012 12:06:01 PM Plasma On Time: 11/2/2012 8:20:38 AM

Logged In Analyst: metals

Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\1102.sif

Batch ID:

Results Data Set: PE121102

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1 Autosampler Location: 29

Sample ID: VP83 B TWC Date Collected: 11/2/2012 12:06:03 PM

Analyst: EL Data Type: Original

Dilution: 10X

Nebulizer Parameters: VP83 B TWC

Analyte Back Pressure Flow

All 232.0 kPa 0.55 L/min

Mean Data: VP83 B	TWC						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2442092.8	95.60		0.281			0.29%
ScR 361.383	194928.6	100.7		1.09			1.08%
Ag 328.068†	-0.4	-0.00021	_	0.000028	-0.00207	_	0.000281 13.56%
Al 308.215†	17.9	0.01274	_	0.001689	0.1274	_	0.01689 13.26%
As 188.979†	1.6	0.00068		0.001197	0.00675	2.	0.011970 177.21%
B 249.677†	321.6	0.1577	${\tt mg/L}$	0.00270	1.577		0.0270 1.71%
Ba 233.527†	94.9	0.00991	${ t mg/L}$	0.000427	0.09915	_	0.004273 4.31%
Be 313.042†	-2.3	-0.00001	${ m mg/L}$	0.000083	-0.00007	2	0.000829 >999.9%
Ca 317.933†	155425.5	15.04	${\tt mg/L}$	0.134	150.4	-	1.34 0.89%
Cd 228.802†	6.8	0.00008	${\tt mg/L}$	0.000132	0.00084	-	0.001320 158.00%
Co 228.616†	41.5	0.00049	${\tt mg/L}$	0.000164	0.00489	_	0.001640 33.55%
Cr 267.716†	14.4	0.00330	mg/L	0.001040	0.03304	_	0.010397 31.47%
Cu 324.752†	-25.2	-0.00005	${\tt mg/L}$	0.000153	-0.00053	J .	0.001525 288.04%
Fe 273.955†	399.9	0.3399	mg/L	0.00606	3.399	_	0.0606 1.78%
K 766.490†	52664.2	14.93	mg/L	0.188	149.3		1.88 1.26%
Mg 279.077†	47746.2	43.72	mg/L	0.350	437.2	mg/L	3.50 0.80%
Mn 257.610†	8942.9	0.2405	mg/L	0.00203	2.405	mg/L	0.0203 0.84%
Mo 202.031†	32.6	0.00138	${\tt mg/L}$	0.000194	0.01381	mg/L	0.001944 14.08%
Na 589.592†	2805661.4	347.3	mg/L	3.61	3473	mg/L	36.1 1.04%
Na 330.237†	9337.5	373.1	mg/L	2.89		${\tt mg/L}$	28.9 0.77%
Ni 231.604†	5.6	0.00259	mg/L	0.004069	0.02594	mg/L	0.040686 156.88%
Pb 220.353†	-6.2	-0.00009	mg/L	0.000060	-0.00090	mg/L	0.000601 67.14%
Sb 206.836†	-4.8	-0.00156	mg/L	0.001122	-0.01556		0.011221 72.10%
Se 196.026†	16.6	0.00902	mg/L	0.001300	0.09021	mg/L	0.012999 14.41%
Si 288.158†	793.2	0.6114	mg/L	0.00937	6.114	mg/L	0.0937 1.53%
Sn 189.927†	-12.4	0.00222	mg/L	0.000457	0.02224	${ m mg/L}$	0.004568 20.54%
Sr 421.552†	170879.6	0.2860	mg/L	0.00374	2.860	mg/L	0.0374 1.31%
Ti 334.903†	28.6	0.00045	mg/L	0.000321	0.00449	mg/L	0.003208 71.48%
Tl 190.801†	-6.5	-0.00211	mg/L	0.001372	-0.02112	mg/L	0.013722 64.96%
V 292.402†	-133.0	-0.00061	mg/L	0.000141	-0.00614	mg/L	0.001411 22.98%
Zn 206.200†	-1.1	-0.00013	mg/L	0.000596	-0.00128	${\tt mg/L}$	0.005961 465.80%
,			-				

Sequence No.: 2

Sample ID: VP83 ADUP TWC

Analyst: EL Dilution: 10X Autosampler Location: 30

Date Collected: 11/2/2012 12:12:27 PM

Data Type: Original

Nebulizer Parameters: VP83 ADUP TWC

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VP83	ADUP TWC							
	Mean Corrected		Calib.			Sample		202
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2594578.8	101.6		0.64				0.63%
ScR 361.383	199835.3	103.2		0.12			0 000010	0.12%
Ag 328.068†	-27.1	-0.00015	_	0.000091	-0.00151	_	0.000913	60.32%
Al 308.215†	10.2	0.00726	${ m mg/L}$	0.003832	0.07257	J.	0.038323	52.80₺
As 188.979†	-1.1	-0.00046	${ m mg/L}$	0.000716	-0.00456	_	0.007158	
B 249.677†	100.0	0.04907	${ m mg/L}$	0.003470	0.4907	J .	0.03470	7.07%
Ba 233.527†	42.2	0.00442	${ m mg/L}$	0.000545	0.04420	_	0.005449	12.33%
Be 313.042†	-17.6	-0.00007	${\tt mg/L}$	0.000016	-0.00069		0.000157	22.91%
Ca 317.933†	47473.9	4.594	mg/L	0.0385	45.94	_	0.385	0.84%
Cd 228.802†	0.5	0.00001	mg/L	0.000071	0.00008	2.		936.16%
Co 228,616†	20.0	0.00024	mg/L	0.000071	0.00238	2.	0.000712	29.95%
Cr 267.716†	4.9	0.00112	mg/L	0.000808	0.01120	_	0.008075	72.13%
Cu 324.752†	-228.5	-0.00073	mg/L	0.000173	-0.00732	mg/L	0.001727	23.61%
Fe 273.955†	-2.2	-0.00187	mg/L	0.001694	-0.01875	mg/L	0.016942	90.37%
K 766.490†	12743.3	3.612	mg/L	0.0125	36.12	${\tt mg/L}$	0.125	0.35%
Mg 279.077†	9945.5	9.108	mg/L	0.0547	91.08	mg/L	0.547	0.60%
Mn 257.610†	1624.3	0.04369	mg/L	0.000347	0.4369	mg/L	0.00347	0.79%
Mo 202.031†	16.7	0.00087	mg/L	0.000351	0.00873	mg/L	0.003506	40.18%
Na 589.592†	658609.5	81.52	mg/L	0.019	815.2	mg/L	0.19	0.02%
Na 330.237†	2120.4	84.73	mg/L	0.911	847.3	_	9.11	1.08%
Ni 231.604†	2.0	0.00091	mg/L	0.002224	0.00912	mg/L		243.90%
Pb 220.353†	-12.4	-0.00082	mg/L	0.000431	-0.00820	mg/L	0.004306	52.49%
sb 206.836†	-5.0	-0.00152	mg/L	0.002060	-0.01522	mg/L	0.020599	
Se 196.026†	7.8	0.00427	mg/L	0.003392	0.04274	mg/L	0.033922	79.37%
Si 288.158†	597.8	0.4579	mg/L	0.00510	4.579	mg/L	0.0510	1.11%
Sn 189.927†	-5.2	0.00036	mg/L	0.000149	0.00355	mg/L	0.001495	42.09%
Sr 421.552†	39637.9	0.06634	_	0.000215	0.6634	mg/L	0.00215	0.32%
Ti 334.903†	15.6	0.00042	J .	0.000399	0.00422	mg/L	0.003986	94.41%
Tl 190.801†	-1.6	-0.00052	_	0.000689	-0.00517	mg/L	0.006886	
V 292.402†	76.1	0.00039	_	0.000015	0.00390	mg/L	0.000154	3.95%
Zn 206.200†	-0.9	-0.00027		0.001201	-0.00270	mg/L	0.012006	445.00%
ZII ZUU.ZUUI	0.5	0,0002,	5. —			-		

Sequence No.: 3

Sample ID: VP83 A TWC

Analyst: EL Dilution: 10X Autosampler Location: 31

Date Collected: 11/2/2012 12:18:45 PM

Data Type: Original

Nebulizer Parameters: VP83 A TWC

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VP83 A	TWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Unıts	Std.Dev.	RSD
ScA 357.253	2623870.9	102.7		0.70				0.68%
ScR 361.383	204381.5	105.6		0.87				0.82%
Ag 328.068†	-34.5	-0.00017	-	0.000065	-0.00174	~ .	0.000648	37.29%
Al 308.215†	-3.6	-0.00262	mg/L	0.006592	-0.02618	_	0.065921	
As 188.979†	3.4	0.00147	_	0.000158	0.01465	_	0.001582	10.80%
B 249.677†	98.5	0.04830	_	0.002790	0.4830		0.02790	5.78%
Ba 233.527†	38.0	0.00397	mg/L	0.000402	0.03971	${ m mg/L}$	0.004022	10.13%
Be 313.042†	-28.8	-0.00011	mg/L	0.000015	-0.00112	~	0.000153	13.62%
Ca 317.933†	45903.1	4.442	mg/L	0.0635	44.42	_	0.635	1.43%
Cd 228.802†	-7.0	-0.00009	${ m mg/L}$	0.000047	-0.00091	_	0.000467	51.60%
Co 228.616†	14.8	0.00017	mg/L	0.000043	0.00175	mg/L	0.000427	24.44%
Cr 267.716†	3.3	0.00075	mg/L	0.001555	0.00749	mg/L	0.015546	
Cu 324.752†	-309.7	-0.00099	mg/L	0.000095	-0.00992	mg/L	0.000947	9.55%
Fe 273.955†	-0.3	-0.00024	mg/L	0.000466	-0.00237	mg/L	0.004662	
к 766.490†	12233.6	3.468	mg/L	0.0181	34.68	mg/L	0.181	0.52%
Mg 279.077†	9599.7	8.791	mg/L	0.0869	87.91		0.869	0.99%
Mn 257.610†	1574.8	0.04235	mg/L	0.000421	0.4235	mg/L	0.00421	0.99%
Mo 202.031†	20.5	0.00110	mg/L	0.000190	0.01099	mg/L	0.001902	17.31%
Na 589.592†	636338.2	78.77	mg/L	0.095	787.7	mg/L	0.95	0.12%
Na 330.237†	2045.6	81.74	mg/L	1.266	817.4	mg/L	12.66	1.55%
Ni 231.604†	3.2	0.00150	mg/L	0.000250	0.01499	mg/L	0.002495	16.64%
Pb 220.353†	-11.8	-0.00079	mg/L	0.000689	-0.00786	mg/L	0.006893	87.73%
Sb 206.836t	-7.1	-0.00211	mg/L	0.000881	-0.02111	mg/L	0.008809	41.72%
Se 196.026t	11.0	0.00597	mg/L	0.003869	0.05967	mg/L	0.038689	64.84%
Si 288.158†	554.6	0.4248	mg/L	0.00563	4.248	mg/L	0.0563	1.32%
Sn 189.927†	-3.1	0.00065	mg/L	0.000322	0.00654	mg/L	0.003221	49.23%
Sr 421.552†	38497.7	0.06443	mg/L	0.000243	0.6443	mg/L	0.00243	0.38%
Ti 334.903†	27.2	0.00091	mg/L	0.000937	0.00909	mg/L	0.009368	103.04%
Tl 190.801†	-1.8	-0.00055	mg/L	0.002067	-0.00551	mg/L	0.020670	375.00ે
V 292.402†	79.0	0.00040	~ .	0.000083	0.00402	mg/L	0.000835	20.77%
Zn 206.200†	0.5	0.00032		0.000789	0.00316	mg/L	0.007890	249.78%
211 200.2001	*		_					

Sequence No.: 4

Autosampler Location: 32 Sample ID: VP83 ASPK TWC

Analvst: EL Dilution: 10X

Zn 206.200†

Date Collected: 11/2/2012 12:25:03 PM

Data Type: Original

Nebulizer Parameters: VP83 ASPK TWC

Analyte Back Pressure Flow

232.0 kPa 0.55 L/min All

| Mean Corrected | Calib. | Sample | Std.Dev. | Conc. | Units | Std.Dev. | Conc. | Units | Std.Dev. | RSD | 0.73% | 202756.0 | 104.7 % | 0.64 | 0.61% | 15343.4 | 0.05118 mg/L | 0.000217 | 0.5118 mg/L | 0.000217 | 0.42% | 0.61% | 15343.4 | 0.05118 mg/L | 0.00037 | 2.141 mg/L | 0.00037 | 0.17% | 507.0 | 0.2141 mg/L | 0.00037 | 2.141 mg/L | 0.00037 | 0.17% | 507.0 | 0.2174 mg/L | 0.00099 | 2.174 mg/L | 0.0099 | 0.46% | 102.3 | 0.05003 mg/L | 0.001923 | 0.5003 mg/L | 0.001923 | 0.5003 mg/L | 0.001923 | 0.5003 mg/L | 0.001923 | 3.84% | 2007.4 | 0.2100 mg/L | 0.00030 | 2.100 mg/L | 0.0030 | 0.14% | 13628.4 | 0.05240 mg/L | 0.00030 | 2.100 mg/L | 0.0030 | 0.14% | 13628.4 | 0.05240 mg/L | 0.000360 | 0.5240 mg/L | 0.0955 | 1.69% | 4298.1 | 0.05137 mg/L | 0.000262 | 0.5316 mg/L | 0.00262 | 0.49% | 4289.4 | 0.05137 mg/L | 0.000381 | 0.5137 mg/L | 0.00262 | 0.49% | 4289.4 | 0.05137 mg/L | 0.000381 | 0.5137 mg/L | 0.00262 | 0.49% | 4289.4 | 0.05137 mg/L | 0.000381 | 0.5137 mg/L | 0.00381 | 0.5137 mg/L | 0.00381 | 0.5137 mg/L | 0.00381 | 0.5137 mg/L | 0.00381 | 0.5308 mg/L | 0.01313 | 2.47% | 17390.8 | 0.0569 mg/L | 0.0001313 | 0.5308 mg/L | 0.01313 | 2.47% | 17390.8 | 0.0569 mg/L | 0.000262 | 0.5569 mg/L | 0.00422 | 0.76% | 252.1 | 0.2142 mg/L | 0.00027 | 2.142 mg/L | 0.0027 | 0.97% | 16215.5 | 4.597 mg/L | 0.00207 | 2.142 mg/L | 0.00207 | 0.97% | 16215.5 | 4.597 mg/L | 0.00207 | 2.142 mg/L | 0.00207 | 0.97% | 16215.5 | 4.597 mg/L | 0.00034 | 0.9583 mg/L | 0.0034 | 0.35% | 17.5 | 0.00090 mg/L | 0.00097 | 0.00888 mg/L | 0.00334 | 0.35% | 17.5 | 0.00090 mg/L | 0.00097 | 0.00888 mg/L | 0.00034 | 0.35% | 17.5 | 0.00090 mg/L | 0.00097 | 0.00888 mg/L | 0.00034 | 0.35% | 17.5 | 0.00090 mg/L | 0.00097 | 0.00888 mg/L | 0.00034 | 0.35% | 17.5 | 0.00090 mg/L | 0.00097 | 0.00888 mg/L | 0.00097 | 0.00888 mg/L | 0.00097 | 0.00888 mg/L | 0.00097 | 0.00888 mg/L | 0.00097 | 0.00888 mg/L | 0.00097 | 0.00888 mg/L | 0.00097 | 0.00888 mg/L | 0.00097 | 0.00888 mg/L | 0.00097 | 0.00888 mg/L | 0.00097 | 0.00888 mg/L | 0.00097 | 0.00888 mg/L | 0.00 Mean Data: VP83 ASPK TWC Mean Corrected Sample Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402†

Sequence No.: 5 Autosampler Location: 33

Sample ID: VP83 MBSPK TWC Date Collected: 11/2/2012 12:31:22 PM

Analyst: EL Dilution: 1X Data Type: Original

Nebulizer Parameters: VP83 MBSPK TWC

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VP83 M	BSPK TWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2631915.4	103.0		0.21				0.20₹
ScR 361.383	203129.1	104.9		0.06				0.06%
Ag 328.068†	151876.4	0.5072		0.00369	0.5072	_	0.00369	0.73%
Al 308.215†	3137.2	2.226	mg/L	0.0062	2.226		0.0062	0.28%
As 188.979†	4730.8	2.029	_	0.0029	2.029	٠.	0.0029	0.14%
в 249.677†	27.5	0.01181		0.000221	0.01181	J .	0.000221	1.87%
Ba 233.527†	19480.8	2.038		0.0067	2.038	_	0.0067	0.33%
Be 313.042†	137497.0	0.5287	_	0.00177	0.5287		0.00177	0.33%
Ca 317.933†	109834.8	10.63	mg/L	0.032	10.63	J .	0.032	0.30%
Cd 228.802†	42210.1	0.5223	${\sf mg/L}$	0.00205	0.5223		0.00205	0.39%
Co 228.616†	42220.0	0.5056	mg/L	0.00342	0.5056	٠.	0.00342	0.68%
Cr 267.716†	2248.1	0.5234	mg/L	0.00226	0.5234	_	0.00226	0.43%
Cu 324.752†	166256.9	0.5324	mg/L	0.00262	0.5324		0.00262	0.49%
Fe 273.955†	2534.5	2.154	mg/L	0.0059	2.154		0.0059	0.27%
к 766.490†	38066.2	10.79	mg/L	0.025	10.79	J .	0.025	0.23%
Mg 279.077†	11795.3	10.80	${\tt mg/L}$	0.032	10.80	_ ·	0.032	0.30%
Mn 257.610†	19073.6	0.5135	mg/L	0.00147	0.5135		0.00147	0.29%
Mo 202.031†	16.9	0.00081	mg/L	0.000066	0.00081	_	0.000066	8.20%
Na 589.592†	87059.1	10.78	mg/L	0.003	10.78	_	0.003	0.03%
Na 330.237†	281.6	11.02	mg/L	0.238	11.02		0.238	2.16%
Ni 231.604†	1080.9	0.5042	mg/L	0.00354	0.5042		0.00354	0.70%
Pb 220.353†	26332.0	2.011	mg/L	0.0132	2.011		0.0132	0.66%
Sb 206.836†	14.6	-0.00349	mg/L	0.002084	-0.00349	mg/L	0.002084	59.70%
Se 196.026†	3705.7	2.018	mg/L	0.0014	2.018		0.0014	0.07%
Si 288.158†	7.5	0.00937	mg/L	0.003571	0.00937		0.003571	38.13%
Sn 189.927†	-8.3	0.00117	mg/L	0.000196	0.00117	_	0.000196	16.65%
Sr 421.552†	316440.8	0.5296	mg/L	0.00151	0.5296	mg/L	0.00151	0.28%
Ti 334.903†	15.8	0.00001	mg/L	0.000514	0.00001	mg/L	0.000514	
Tl 190.801†	7066.2	1.976	mg/L	0.0033	1.976	mg/L	0.0033	0.17%
V 292.402†	107166.2	0.5264	mg/L	0.00204	0.5264	mg/L	0.00204	0.39%
Zn 206.200†	1236.0	0.5057	mg/L	0.00200	0.5057	mg/L	0.00200	0.40%

Sequence No.: 6 Sample ID: CV 2. Analyst: EL Dilution: 1X

Autosampler Location: 7

Date Collected: 11/2/2012 12:37:27 PM

Data Type: Original

Nebulizer Parameters: CV

Analyte All

Back Pressure Flow 232.0 kPa 0.55 L/min

ScA 357.253 2597963.1 101.7 % 0.52 ScR 361.383 202606.2 104.6 % 0.43 Ag 328.068† 293219.4 0.9792 mg/L 0.00391 0.9792 mg/L 0.0 Al 308.215† 2936.5 2.048 mg/L 0.0083 2.048 mg/L 0 As 188.979† 4708.4 2.018 mg/L 0.0227 2.018 mg/L 0 B 249.677† 1987.8 0.9734 mg/L 0.00397 0.9734 mg/L 0.0 Ba 233.527† 9624.4 1.007 mg/L 0.0027 1.007 mg/L 0 Be 313.042† 257552.9 0.9903 mg/L 0.00129 0.9903 mg/L 0.0 Ca 317.933† 20719.8 2.005 mg/L 0.0042 2.005 mg/L 0	00391 C 000391 C .0083 C .0227 1 00397 C .0027 C 00129 C	RSD 0.51% 0.42% 0.40% 0.40% 1.13% 0.41% 0.27% 0.13%
ScA 357.253 2597963.1 101.7 % 0.52 ScR 361.383 202606.2 104.6 % 0.43 Ag 328.068† 293219.4 0.9792 mg/L 0.00391 0.9792 mg/L 0.0 Al 308.215† 2936.5 2.048 mg/L 0.0083 2.048 mg/L 0 As 188.979† 4708.4 2.018 mg/L 0.0227 2.018 mg/L 0 B 249.677† 1987.8 0.9734 mg/L 0.00397 0.9734 mg/L 0.0 Ba 233.527† 9624.4 1.007 mg/L 0.0027 1.007 mg/L 0 Be 313.042† 257552.9 0.9903 mg/L 0.00129 0.9903 mg/L 0.0 Ca 317.933† 20719.8 2.005 mg/L 0.0042 2.005 mg/L 0	00391 C 000391 C .0083 C .0227 1 00397 C .0027 C 00129 C	0.51% 0.42% 0.40% 0.40% 1.13% 0.41% 0.27% 0.13%
ScA 357.253 2597963.1 101.7 % 0.52 ScR 361.383 202606.2 104.6 % 0.43 Ag 328.068† 293219.4 0.9792 mg/L 0.00391 0.9792 mg/L 0.0 Al 308.215† 2936.5 2.048 mg/L 0.0083 2.048 mg/L 0 As 188.979† 4708.4 2.018 mg/L 0.0227 2.018 mg/L 0 B 249.677† 1987.8 0.9734 mg/L 0.00397 0.9734 mg/L 0.0 Ba 233.527† 9624.4 1.007 mg/L 0.0027 1.007 mg/L 0 Be 313.042† 257552.9 0.9903 mg/L 0.00129 0.9903 mg/L 0.0 Ca 317.933† 20719.8 2.005 mg/L 0.0042 2.005 mg/L 0	00391 C 0083 C .0083 C .0227 1 00397 C .0027 C 00129 C	0.42% 0.40% 0.40% 1.13% 0.41% 0.27% 0.13%
Ag 328.068† 293219.4 0.9792 mg/L 0.00391 0.9792 mg/L 0.0 Al 308.215† 2936.5 2.048 mg/L 0.0083 2.048 mg/L 0 As 188.979† 4708.4 2.018 mg/L 0.0227 2.018 mg/L 0 B 249.677† 1987.8 0.9734 mg/L 0.00397 0.9734 mg/L 0.0 Ba 233.527† 9624.4 1.007 mg/L 0.0027 1.007 mg/L 0 Be 313.042† 257552.9 0.9903 mg/L 0.00129 0.9903 mg/L 0.0 Ca 317.933† 20719.8 2.005 mg/L 0.0042 2.005 mg/L 0	00391 C .0083 C .0227 1 00397 C .0027 C 00129 C	0.40% 0.40% 1.13% 0.41% 0.27% 0.13%
A1 308.215† 2936.5 2.048 mg/L 0.0083 2.048 mg/L 0 As 188.979† 4708.4 2.018 mg/L 0.0227 2.018 mg/L 0 B 249.677† 1987.8 0.9734 mg/L 0.00397 0.9734 mg/L 0.0 Ba 233.527† 9624.4 1.007 mg/L 0.0027 1.007 mg/L 0 Be 313.042† 257552.9 0.9903 mg/L 0.00129 0.9903 mg/L 0.0 Ca 317.933† 20719.8 2.005 mg/L 0.0042 2.005 mg/L 0	.0083 C .0227 1 00397 C .0027 C 00129 C	0.40% 1.13% 0.41% 0.27% 0.13%
A1 308.215† 2936.5 2.048 mg/L 0.0083 2.048 mg/L 0 As 188.979† 4708.4 2.018 mg/L 0.0227 2.018 mg/L 0 B 249.677† 1987.8 0.9734 mg/L 0.00397 0.9734 mg/L 0.0 Ba 233.527† 9624.4 1.007 mg/L 0.0027 1.007 mg/L 0 Be 313.042† 257552.9 0.9903 mg/L 0.00129 0.9903 mg/L 0.0 Ca 317.933† 20719.8 2.005 mg/L 0.0042 2.005 mg/L 0	.0227 1 00397 0 .0027 0 00129 0	1.13% 0.41% 0.27% 0.13%
B 249.677† 1987.8 0.9734 mg/L 0.00397 0.9734 mg/L 0.0 Ba 233.527† 9624.4 1.007 mg/L 0.0027 1.007 mg/L 0 Be 313.042† 257552.9 0.9903 mg/L 0.00129 0.9903 mg/L 0.0 Ca 317.933† 20719.8 2.005 mg/L 0.0042 2.005 mg/L 0	00397 0 .0027 0 00129 0 .0042 0	0.41% 0.27% 0.13%
Ba 233.527† 9624.4 1.007 mg/L 0.0027 1.007 mg/L 0 Be 313.042† 257552.9 0.9903 mg/L 0.00129 0.9903 mg/L 0.0 Ca 317.933† 20719.8 2.005 mg/L 0.0042 2.005 mg/L 0	.0027 C 00129 C .0042 C	0.27% 0.13%
Be 313.042† 257552.9 0.9903 mg/L 0.00129 0.9903 mg/L 0.0 Ca 317.933† 20719.8 2.005 mg/L 0.0042 2.005 mg/L 0	00129 C	0.13%
Ca 317.933† 20719.8 2.005 mg/L 0.0042 2.005 mg/L 0	.0042	
Ca 317.933† 20719.8 2.005 mg/L 0.0042 2.005 mg/L 0		0 219
Cd 228.802t 82065.1 1.020 mg/L 0.0030 1.020 mg/L 0	0000	U. ZI6
	.0030 0	0.30%
Co 228.616† 82580.2 0.9884 mg/L 0.00188 0.9884 mg/L 0.1		0.19%
	00260	0.26%
Cu 324.752† 335176.0 1.072 mg/L 0.0005 1.072 mg/L 0		0.05%
	.0060 0	0.29%
	0.091	0.44%
Mg 279.077† 2310.8 2.120 mg/L 0.0046 2.120 mg/L 0	0.0046	0.22%
		0.18%
	01044	1.07%
		0.37%
Na 330.237† 1316.9 52.44 mg/L 0.273 52.44 mg/L		0.52%
Ni 231.604† 2106.6 0.9845 mg/L 0.00535 0.9845 mg/L 0.	00535	0.54%
	0.0215	1.10%
	0.0229 1	1.08%
	0.0236 1	1.21%
	0.0080	0.37%
	01220	1.33ક
	0.0038 (0.37%
	0.0025 (0.25%
	0.0206	1.05%
	0.0038	0.37%
	0.0054	0.52%

Sequence No.: 7 Sample ID: CB 2 Analyst: EL Dilution: 1X

Autosampler Location: 1

Date Collected: 11/2/2012 12:43:30 PM

Data Type: Original

Nebulizer Parameters: CB

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: CB			~ 7 ' 1			a		
	Mean Corrected	_	Calib.		_	Sample	a	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2646454.2	103.6		1.01				0.98%
ScR 361.383	200390.7	103.5		0.23	0 00006	/-	0 000000	0.228
Ag 328.068†	76.5	0.00026	_	0.000082	0.00026	_	0.000082	32.17%
Al 308.215†	7.2	0.00512	J .	0.010762	0.00512		0.010762	
As 188.979†	3.6	0.00154	J.	0.000635	0.00154	_	0.000635	41.148
B 249.677†	5.2	0.00257	J .	0.000599	0.00257		0.000599	23.28%
Ba 233.527†	-5.2	-0.00055	_	0.000494	-0.00055	_	0.000494	90.66%
Be 313.042†	7.3	0.00003	2	0.000053	0.00003		0.000053	
Ca 317.933†	-26.7	-0.00258	_	0.000886	-0.00258	J .	0.000886	34.318
Cd 228.802†	-0.2	-0.00001	J .	0.000051	-0.00001	J .	0.000051	
Co 228.616†	-2.5	-0.00003	mg/L	0.000061	-0.00003	_	0.000061	
Cr 267.716†	-4.2	-0.00097	mg/L	0.001173	-0.00097	J .	0.001173	
Cu 324.752†	-163.3	-0.00052	mg/L	0.000157	-0.00052	J.	0.000157	30.098
Fe 273.955†	-3.4	-0.00287	mg/L	0.000567	-0.00287	_	0.000567	19.73
K 766.490†	114.8	0.03254	mg/L	0.011289	0.03254	J .	0.011289	34.698
Mg 279.077†	-5.9	-0.00541	mg/L	0.006724	-0.00541	mg/L	0.006724	
Mn 257.610†	-1.1	-0.00003	mg/L	0.000062	-0.00003	mg/L	0.000062	212.439
Mo 202.031†	4.6	0.00027	mg/L	0.000323	0.00027	mg/L	0.000323	
Na 589.592†	1203.8	0.1490	mg/L	0.00997	0.1490	mg/L	0.00997	6.699
Na 330.237†	2.2	0.08628	mg/L	0.102277	0.08628	mg/L	0.102277	118.549
Ni 231.604†	2.7	0.00125	mg/L	0.000258	0.00125	mg/L	0.000258	20.609
Pb 220.353†	-14.7	-0.00112	mg/L	0.000231	-0.00112	mg/L	0.000231	20.609
Sb 206.836†	-4.6	-0.00132	mg/L	0.002590	-0.00132	mg/L	0.002590	196.50%
Se 196.026†	12.6	0.00684	mg/L	0.002487	0.00684	mg/L	0.002487	36.37
Si 288.158†	1.9	0.00142	mg/L	0.007071	0.00142	mg/L	0.007071	497.739
Sn 189.927†	7.0	0.00114	mg/L	0.000655	0.00114	mg/L	0.000655	57.589
Sr 421.552†	4.9	0.00001	mg/L	0.000034	0.00001	mg/L	0.000034	418.289
Ti 334.903†	-2.6	-0.00011	_	0.000514	-0.00011	mg/L	0.000514	473.889
Tl 190.801†	2.7	0.00075	_	0.001735	0.00075	mg/L	0.001735	231.929
V 292.402†	-2.0	-0.00002	_	0.000177	-0.00002	_	0.000177	>999.99
Zn 206.200†	-1.7	-0.00070		0.000790	-0.00070		0.000790	112.77

Analysis Begun

Plasma On Time: 11/2/2012 8:20:38 AM Start Time: 11/2/2012 12:58:00 PM

Technique: ICP Continuous Logged In Analyst: metals Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\1102.sif

Batch ID:

Results Data Set: PE121102

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1

Autosampler Location: 34 Date Collected: 11/2/2012 12:58:03 PM

Sample ID: VP40 MB1 SWÇ

Analyst: EL Dilution: 2X Data Type: Original

Nebulizer Parameters: VP40 MB1 SWC

Flow Back Pressure Analyte

0.55 L/min232.0 kPa

All

Mean Data: VP40 M	B1 SWC						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2626979.4	102.8		0.30			0.29%
ScR 361.383	199584.0	103.1		1.07			1.03%
Ag 328.068†	-21.9	-0.00007	_	0.000172	-0.00015	_	0.000344 234.47%
Al 308.215†	8.2	0.00581	_	0.012706	0.01161	٥.	0.025411 218.82%
As 188.979†	2.1	0.00091	J .	0.000756	0.00182	_	0.001512 83.26%
B 249.677†	4.6	0.00227	_	0.000397	0.00453	J .	0.000793 17.50%
Ba 233.527†	1.2	0.00012		0.000337	0.00024		0.000674 277.03%
Be 313.042†	-6.9	-0.00003	mg/L	0.000039	-0.00005	_	0.000077 145.28%
Ca 317.933†	151.7	0.01468	mg/L	0.001157	0.02935	_	0.002314 7.88%
Cd 228.802†	-3.0	-0.00004	_	0.000077	-0.00008	_	0.000154 196.76%
Co 228.616†	-3.1	-0.00004	mg/L	0.000118	-0.00008	-	0.000236 311.74%
Cr 267.716†	2.2	0.00051	mg/L	0.000894	0.00101		0.001788 176.54%
Cu 324.752†	989.5	0.00317	mg/L	0.000035	0.00633	J .	0.000069 1.10%
Fe 273.955t	2.2	0.00188	mg/L	0.000460	0.00376	-	0.000920 24.47%
K 766.490†	97.3	0.02758	mg/L	0.017446	0.05516	_	0.034893 63.26%
Mg 279.077†	9.2	0.00842	mg/L	0.005322	0.01684	_	0.010643 63.19%
Mn 257.610†	-2.4	-0.00006	mg/L	0.000106	-0.00013	_	0.000212 163.38%
Mo 202.031†	3.5	0.00021		0.000360	0.00041	_	0.000719 174.13%
Na 589.592†	574.1	0.07107	mg/L	0.003783	0.1421	- ·	0.00757 5.32%
Na 330.237†	2.1	0.07199	mg/L	0.416146	0.1440	_	0.83229 578.04%
Ni 231.604†	1.5	0.00071	${ m mg/L}$	0.000903	0.00142	_	0.001807 127.57%
Pb 220.353†	-2.8	-0.00021	${ m mg/L}$	0.000392	-0.00043	_	0.000784 183.89%
Sb 206.836†	-4.8	-0.00142	mg/L	0.001599	-0.00284	-	0.003198 112.61%
Se 196.026†	10.0	0.00543	${ m mg/L}$	0.001784	0.01087		0.003568 32.83%
Si 288.158†	2.8	0.00212	${ m mg/L}$	0.002128	0.00424		0.004256 100.33%
Sn 189.927†	-0.7	-0.00011	${ m mg/L}$	0.000658	-0.00022	_	0.001316 599.16%
Sr 421.552†	35.5	0.00006	mg/L	0.000030	0.00012	٠.	0.000060 50.90%
Ti 334.903†	1.4	0.00006	mg/L	0.000089	0.00012	-	0.000179 155.19%
Tl 190.801†	-2.6	-0.00073	mg/L	0.000363	-0.00145	-	0.000726 50.00%
V 292.402†	-10.0	-0.00004	_	0.000089	-0.00009	-	0.000179 200.67%
Zn 206.200†	65.8	0.02691		0.000565	0.05382	mg/L	0.001130 2.10%

Sequence No.: 2

Autosampler Location: 35 Sample ID: VQ42 MB2 DMN

Analyst: EL Dilution: 1X Date Collected: 11/2/2012 1:04:04 PM

Data Type: Original

Nebulizer Parameters: VQ42 MB2 DMN

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VQ42 ME	32 DMN						
Medii Data. Veil in	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Unıts	Std.Dev. RSD
ScA 357.253	2651875.7	103.8	8	0.36			0.35%
ScR 361.383	205292.8	106.0	96	0.38			0.36%
Ag 328.068†	-56.2	-0.00019	mg/L	0.000131	-0.00019		0.000131 69.36%
Aĺ 308.215†	-2.5	-0.00179	mg/L	0.009673	-0.00179	J .	0.009673 540.17%
As 188.979†	4.1	0.00177	mg/L	0.001486	0.00177	2 .	0.001486 83.82%
B 249.677†	2.6	0.00126	mg/L	0.001607	0.00126	_	0.001607 127.65%
Ba 233.527†	-7.2	-0.00075	mg/L	0.000422	-0.00075	_	0.000422 56.45%
Be 313.042†	-8.4	-0.00003	mg/L	0.000005	-0.00003	_	0.000005 15.09%
Ca 317.933†	-15.9	-0.00154	mg/L	0.000457	-0.00154	_	0.000457 29.66%
Cd 228.802†	-5.8	-0.00008	mg/L	0.000058	-0.00008	_	0.000058 76.01%
Co 228.616†	-8.5	-0.00010	mg/L	0.000030	-0.00010	_	0.000030 29.39%
Cr 267.716†	0.8	0.00019	mg/L	0.000646	0.00019	_	0.000646 347.98%
Cu 324.752†	-470.9	-0.00151	mg/L	0.000034	-0.00151	-	0.000034 2.29%
Fe 273.955†	-16.5	-0.01402	mg/L	0.002366	-0.01402	_	0.002366 16.88%
K 766.490†	-16.5	-0.00469	mg/L	0.007524	-0.00469	_	0.007524 160.42%
Mg 279.077†	5.2	0.00475	mg/L	0.004145	0.00475	_	0.004145 87.20%
Mn 257.610†	-15.5	-0.00042	mg/L	0.000045	-0.00042	-	0.000045 10.81%
Mo 202.031†	4.0	0.00024	mg/L	0.000067	0.00024	J .	0.000067 28.32%
Na 589.592†	74.5	0.00922	_ ·	0.011018	0.00922	_	0.011018 119.53%
Na 330.237†	-1.0	-0.03957	mg/L	0.452445	-0.03957	-	0.452445 >999.9%
Ni 231.604†	-3.9	-0.00181	mg/L	0.000372	-0.00181	_	0.000372 20.55%
Pb 220.353†	-22.8	-0.00174	mg/L	0.000670	-0.00174		0.000670 38.49%
Sb 206.836†	-12.0	-0.00357	mg/L	0.000571	-0.00357		0.000571 16.01%
Se 196.026†	12.2	0.00665	mg/L	0.005235	0.00665	2.	0.005235 78.66%
Si 288.158†	-4.4	-0.00337	mg/L	0.004652	-0.00337	-	0.004652 138.20%
Sn 189.927†	-1.8	-0.00029	mg/L	0.000456	-0.00029	_	0.000456 157.75%
Sr 421.552†	-36.5	-0.00006		0.000134	-0.00006	_	0.000134 218.879
Ti 334.903†	3.5	0.00014	mg/L	0.000808	0.00014	_	0.000808 564.44%
Tl 190.801†	-0.9	-0.00025	-	0.000614	-0.00025		0.000614 248.54%
V 292.402†	-12.7	-0.00006		0.000294	-0.00006	_	0.000294 503.22%
Zn 206.200†	0.2	0.00007	${ m mg/L}$	0.000392	0.00007	mg/L	0.000392 537.67%

Sequence No.: 3

Autosampler Location: 36 Sample ID: VP41 A SWC

Analyst: EL Dilution: 2X Date Collected: 11/2/2012 1:10:06 PM

Data Type: Original

Nebulizer Parameters: VP41 A SWC

Back Pressure Flow 232.0 kPa 0.55 L/min Analyte

All

Mean Data: VP41 A								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2586656.0	101.3		0.23				0.23%
ScR 361.383	202685.5	104.7		0.54				0.51%
Ag 328.068†	-1242.7	-0.00040		0.000443	-0.00080			110.82%
Al 308.215†	153108.6	109.0		0.29	218.0		0.58	0.27%
As 188.979†	517.1	0.2378	_	0.00119	0.4757	_	0.00237	0.50%
В 249.677†	49.0	0.02378		0.001530	0.04756	٥.	0.003060	6.43%
Ba 233.527†	3578.9	0.3667	${ t mg/L}$	0.00477	0.7333		0.00953	1.30%
Be 313.042†	555.9	0.00105	${ m mg/L}$	0.000054	0.00210	J .	0.000107	5.10%
Ca 317.933†	1369973.1	132.6	${ m mg/L}$	0.38	265.1	mg/L	0.76	0.29%
Cd 228.802†	157.9	0.00147	${ m mg/L}$	0.000029	0.00294	mg/L	0.000058	1.95%
Co 228.616†	6918.3	0.06764	${ m mg/L}$	0.000497	0.1353	${ m mg/L}$	0.00099	0.73%
Cr 267.716†	579.8	0.1341	${ m mg/L}$	0.00236	0.2683		0.00471	1.76%
Cu 324.752†	118204.0	0.3897		0.00108	0.7795	${ m mg/L}$	0.00216	0.28%
Fe 273.955†	193493.9	164.5	mg/L	0.42	328.9	${ m mg/L}$	0.84	0.25%
K 766.490†	28297.6	8.022		0.0394	16.04	${ t mg/L}$	0.079	0.49%
Mg 279.077†	61153.8	55.91	mg/L	0.170	111.8	mg/L	0.34	0.30%
Mn 257.610†	104558.9	2.812	mg/L	0.0045	5.623	${\tt mg/L}$	0.0089	0.16%
Mo 202.031†	443.9	0.02765	${ m mg/L}$	0.000246	0.05529	mg/L	0.000493	0.89%
Na 589.592†	32114.3	3.975	${ m mg/L}$	0.0204	7.950	${ t mg/L}$	0.0408	0.51%
Na 330.237†	99.7	4.717	${ m mg/L}$	0.1245	9.433	mg/L	0.2491	2.64%
Ni 231.604†	386.1	0.1804	mg/L	0.00282	0.3608	mg/L	0.00564	1.56%
Pb 220.353†	1538.8	0.1510	mg/L	0.00106	0.3020	mg/L	0.00212	0.70%
sb 206.836t	196.8	0.05108	mg/L	0.001924	0.1022	mg/L	0.00385	3.77%
Se 196.026†	-71.2	-0.03928	mg/L	0.003266	-0.07856	mg/L	0.006532	8.32%
Si 288.158†	5065.4	3.877	mg/L	0.0396	7.755	mg/L	0.0792	1.02%
Sn 189.927†	-15.6	0.02980	mg/L	0.000802	0.05961	mg/L	0.001603	2.69%
Sr 421.552†	212823.9	0.3562	mg/L	0.00130	0.7124	mg/L	0.00259	0.36%
Ti 334.903†	182828.2	7.586	mg/L	0.0136	15.17	mg/L	0.027	0.18%
Tl 190.801†	26.7	-0.00530		0.001433	-0.01060	mg/L	0.002866	27.02%
V 292.402†	76834.8	0.3543	mg/L	0.00208	0.7085	mg/L	0.00415	0.59%
Zn 206.200†	1199.5	0.4935	_	0.00461	0.9870	mg/L	0.00922	0.93%

Date: 11/2/2012 1:19:58 PM

Sequence No.: 4

Autosampler Location: 37 Date Collected: 11/2/2012 1:15:55 PM

Sample ID: VP41 B SWC Analyst: EL

Data Type: Original

Dilution: 20X

Nebulizer Parameters: VP41 B SWC

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VP41 B	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2683404.8	105.0		0.63				0.60%
ScR 361.383	204911.7	105.8		1.25				1.18է
Ag 328.068†	-1830.1	0.00019		0.000170	0.00376		0.003394	90.27%
Al 308.215†	10374.2	7.385	_	0.0907	147.7		1.81	1.23%
As 188.979†	92.6	0.04033	${ m mg/L}$	0.000405	0.8066	mg/L	0.00811	1.01%
B 249.677†	54.9	0.02683	${ m mg/L}$	0.001096	0.5366	mg/L	0.02192	4.08 €
Ba 233.527†	447.8	0.03710	${ m mg/L}$	0.000629	0.7420	${ m mg/L}$	0.01257	1.69૬
Be 313.042†	6.2	-0.00008	mg/L	0.000027	-0.00153	mg/L	0.000549	35.88%
Ca 317.933†	253485.6	24.53	${ m mg/L}$	0.149	490.6	mg/L	2.98	0.61%
Cd 228.802†	100.0	0.00119	${ m mg/L}$	0.000049	0.02377	mg/L	0.000982	4.13%
Co 228.616†	2068.4	0.02173		0.000230	0.4346		0.00461	1.06%
Cr 267.716†	473.1	0.1097	${ m mg/L}$	0.00121	2.194	${\tt mg/L}$	0.0241	1.10%
Cu 324.752†	102054.3	0.3440	mg/L	0.00016	6.881	mg/L	0.0033	0.05%
Fe 273.955†	247154.0	210.1	${ m mg/L}$	1.16	4201	${ m mg/L}$	23.1	0.55%
K 766.490†	1445.9	0.4099	${ m mg/L}$	0.01720	8.198	mg/L	0.3440	4.20%
Mg 279.077†	14686.7	13.33	mg/L	0.073	266.6	mg/L	1.47	0.55%
Mn 257.610†	73010.0	1.964	${ m mg/L}$	0.0123	39.28	mg/L	0.246	0.63*
Mo 202.031†	347.1	0.02038	mg/L	0.001320	0.4076	mg/L	0.02639	6.47%
Na 589.592†	18227.0	2.256	mg/L	0.0218	45.12	${ m mg/L}$	0.435	0.96%
Na 330.237†	59.1	2.241	mg/L	0.0711	44.81	mg/L	1.421	3.17≩
Ni 231.604†	294.6	0.1376		0.00307	2.753	mg/L	0.0614	2.23%
Pb 220.353†	14226.3	1.078	mg/L	0.0018	21.57	mg/L	0.036	0.17%
Sb 206.836†	78.3	0.00221	mg/L	0.001673	0.04417	mg/L	0.033470	75.78%
Se 196.026†	-43.0	-0.02376	mg/L	0.003723	-0.4752	mg/L	0.07446	15.67%
Si 288.158†	709.3	0.5437	mg/L	0.00798	10.87	mg/L	0.160	1.47%
Sn 189.927†	166.8	0.03290	mg/L	0.000069	0.6580	mg/L	0.00139	0.21%
Sr 421.552†	65029.7	0.1088	mg/L	0.00042	2.177	mg/L	0.0084	0.39%
Ti 334.903†	8600.3	0.3559	mg/L	0.00325	7.119	mg/L	0.0651	0.91%
Tl 190.801†	-35.5	-0.01306	mg/L	0.001517	-0.2611	mg/L	0.03035	11.62%
V 292.402†	7507.7	0.01752	mg/L	0.000464	0.3504	mg/L	0.00927	2.65%
Zn 206.200†	524.9	0.2153	mg/L	0.00224	4.305	mg/L	0.0448	1.04%

VPUA: 00376

Sequence No.: 5

Sample ID: VP41 C SWC

Analyst: EL Dilution: 10X Autosampler Location: 38

Date Collected: 11/2/2012 1:21:57 PM

Data Type: Original

Nebulizer Parameters: VP41 C SWC

Analyte Back Pressure Flow All 232.0 kPa 0.55 L/min

Mean Data: VP41 C	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2602671.9	101.9	જ	0.70				0.69%
ScR 361.383	197018.7	101.8	ક્ષ	0.52				0.51%
Aq 328.068†	-1331.5	0.00007	mg/L	0.000137	0.00075	mg/L	0.001366	
AÍ 308.215†	8173.5	5.819	mg/L	0.0367	58.19	mg/L	0.367	0.63 ર
As 188.979†	43.5	0.01862	mg/L	0.000566	0.1862	mg/L	0.00566	3.04%
B 249.677†	16.2	0.00790	${ m mg/L}$	0.000697	0.07904	mg/L	0.006973	8.82 🕏
Ba 233.527†	168.5	0.01075	${ m mg/L}$	0.000298	0.1075	mg/L	0.00298	2.77%
Be 313.042†	22.9	0.00004	mg/L	0.000029	0.00041	mg/L	0.000291	70.36%
Ca 317.933†	122620.1	11.87	mg/L	0.060	118.7	mg/L	0.60	0.51%
Cd 228.802†	181.9	0.00224	${ m mg/L}$	0.000029	0.02243	mg/L	0.000287	1.28%
Co 228.616†	1226.9	0.01295	mg/L	0.000202	0.1295	mg/L	0.00202	1.56%
Cr 267.716†	219.8	0.05090	mg/L	0.000842	0.5090	mg/L	0.00842	1.65%
Cu 324.752†	105801.0	0.3510	mg/L	0.00237	3.510	mg/L	0.0237	0.68%
Fe 273.955†	174640.1	148.4	mg/L	0.55	1484	mg/L	5.5	0.37%
K 766.490†	1164.4	0.3301	${ m mg/L}$	0.00891	3.301	mg/L	0.0891	2.70%
Mg 279.077†	4897.5	4.400	${ m mg/L}$	0.0185	44.00	mg/L	0.185	0.42%
Mn 257.610†	48181.9	1.296	mg/L	0.0059	12.96	mg/L	0.059	0.45%
Mo 202.031†	221.6	0.01309	mg/L	0.000208	0.1309	mg/L	0.00208	1.59%
Na 589.592†	17109.5	2.118	mg/L	0.0202	21.18	mg/L	0.202	0.95%
Na 330.237†	59.4	2.223	mg/L	0.1815	22.23	mg/L	1.815	8.17૬
Ni 231.604†	138.4	0.06468	mg/L	0.003067	0.6468	mg/L	0.03067	4.74%
Pb 220.353†	966.9	0.06869	mg/L	0.001097	0.6869	mg/L	0.01097	1.60%
Sb 206.836†	41.3	-0.00242	mg/L	0.000640	-0.02418	mg/L	0.006404	26.48%
Se 196.026†	-41.4	-0.02271	mg/L	0.002888	-0.2271		0.02888	12.72%
Si 288.158†	1072.4	0.8200	mg/L	0.01063	8.200	mg/L	0.1063	1.30%
Sn 189.927†	99.6	0.01890	mg/L	0.000305	0.1890	mg/L	0.00305	1.61%
Sr 421.552†	72903.4	0.1220	mg/L	0.00048	1.220	mg/L	0.0048	0.39%
Ti 334.903†	546.0	0.02207	mg/L	0.000054	0.2207	mg/L	0.00054	0.25%
Tl 190.801†	-21.7	-0.00789	mg/L	0.001854	-0.07889	${ m mg/L}$	0.018536	23.50 ધ
V 292.402†	3691.3	0.00449	mg/L	0.000131	0.04491	mg/L	0.001308	2.91 ₺
Zn 206.200†	661.8	0.2710	mg/L	0.00107	2.710	mg/L	0.0107	0.39%

Sequence No.: 6

Sample ID: VP41 D SWC

Analyst: EL Dilution: 5X Autosampler Location: 39

Date Collected: 11/2/2012 1:27:57 PM

Data Type: Original

Nebulizer Parameters: VP41 D SWC

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VP41 D	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2721036.2	106.5	ક	0.62				0.58%
ScR 361.383	210688.9	108.8	9	0.09				0.08%
Aq 328.068t	-1011.0	0.00020	mg/L	0.000043	0.00099	_	0.000216	21.89%
A1 308.215†	48733.3	34.70	mg/L	0.181	173.5	J .	0.90	0.52%
As 188.979†	61.2	0.02902	mg/L	0.001737	0.1451		0.00869	5.99%
B 249.677t	48.3	0.02360	mg/L	0.001182	0.1180	${ m mg/L}$	0.00591	5.01%
Ba 233.527†	2369.7	0.2420	mg/L	0.00101	1.210	J .	0.0051	0.42%
Be 313.042†	212.3	0.00052	mg/L	0.000023	0.00261		0.000117	4.50%
Ca 317.933†	220538.6	21.34	mg/L	0.108	106.7		0.54	0.51%
Cd 228.802†	368.7	0.00457	mg/L	0.000043	0.02284	mg/L	0.000217	0.95%
Co 228.616†	2335.5	0.02407	mg/L	0.000154	0.1203	mg/L	0.00077	0.64%
Cr 267.716†	519.9	0.1205	mg/L	0.00062	0.6026	${ m mg/L}$	0.00311	0.52%
Cu 324.752†	145869.4	0.4769	mg/L	0.00063	2.385	${ t mg/L}$	0.0032	0.13%
Fe 273.955†	148484.1	126.2	mg/L	0.64	631.0	mg/L	3.21	0.51%
K 766.490†	10084.8	2.859	mg/L	0.0164	14.29	${ m mg/L}$	0.082	0.57%
Mg 279.077†	13289.8	12.10	${ m mg/L}$	0.059	60.49	${ m mg/L}$	0.294	0.49%
Mn 257.610†	82581.8	2.221	mg/L	0.0144	11.11	mg/L	0.072	0.65%
Mo 202.031†	232.7	0.01423	mg/L	0.000239	0.07116	mg/L	0.001196	1.68%
Na 589.592†	51295.2	6.349	mg/L	0.0421	31.75	${ m mg/L}$	0.210	0.66%
Na 330.237†	168.3	6.479	mg/L	0.1182	32.39	mg/L	0.591	1.82%
Ni 231.604†	266.1	0.1243	mg/L	0.00181	0.6216	mg/L	0.00905	1.46%
Pb 220.353†	6904.2	0.5332	mg/L	0.00342	2.666	mg/L	0.0171	0.64%
Sb 206.836†	49.0	0.00283	mg/L	0.001919	0.01417		0.009595	67.70%
Se 196.026t	-31.4	-0.01744	mg/L	0.002247	-0.08721	mg/L	0.011236	12.88%
Si 288.158t	3539.0	2.706	mg/L	0.0115	13.53	mg/L	0.057	0.42%
Sn 189.927†	200.6	0.03807	mg/L	0.000631	0.1903	mg/L	0.00315	1.66%
Sr 421.552†	87562.6	0.1465		0.00100	0.7327	mg/L	0.00502	0.69%
Ti 334.903†	32900.1	1.365		0.0103	6.826	mg/L	0.0514	0.75%
T1 190.801t	-5.1	-0.00613	_	0.002941	-0.03064	mg/L	0.014705	47.99%
V 292.402†	21805.5	0.09447	J .	0.000036	0.4723	mg/L	0.00018	0.04%
Zn 206.200†	2723.5	1.115	J .	0.0092	5.573	mg/L	0.0459	0.82%
211 200.2001	2,20.0		- 5			-		

Autosampler Location: 40 Sequence No.: 7

Sample ID: VP41 E SWC

Analyst: EL Dilution: 10X Date Collected: 11/2/2012 1:33:57 PM

Data Type: Original

Nebulizer Parameters: VP41 E SWC

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VP41 E SWC Calib

	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	$\mathtt{Std.Dev.}$	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2666359.1	104.4	ક	0.55				0.53%
ScR 361.383	204294.9	105.5		0.89				0.84%
Ag 328.068†	-1529.4	-0.00005	mg/L	0.000020	-0.00045	_	0.000204	45.05%
Al 308.215†	8479.5	6.036	mg/L	0.0478	60.36	J .	0.478	0.79%
As 188.979†	73.4	0.03204	mg/L	0.002242	0.3204		0.02242	7.00%
в 249.677†	0.7	0.00025		0.001697	0.00247	-		686.54%
Ba 233.527†	244.4	0.01812	mg/L	0.000430	0.1812	_	0.00430	2.37%
Be 313.042†	18.8	-0.00002	mg/L	0.000030	-0.00024	J .		123.21%
Ca 317.933†	40242.1	3.894	mg/L	0.0117	38.94	mg/L	0.117	0.30%
Cd 228.802†	136.2	0.00167		0.000016	0.01670	mg/L	0.000156	0.93%
Co 228.616†	2197.0	0.02391	mg/L	0.000079	0.2391	_	0.00079	0.33%
Cr 267.716†	390.1	0.09058	mg/L	0.000719	0.9058	_	0.00719	0.79%
Cu 324.752†	174311.2	0.5711	mg/L	0.00859	5.711	mg/L	0.0859	1.50%
Fe 273.955†	188506.4	160.2	mg/L	0.60	1602	${ m mg/L}$	6.0	0.37%
K 766.490†	1880.9	0.5332	${ m mg/L}$	0.00994	5.332	mg/L	0.0994	1.86%
Mg 279.077†	5048.5	4.532	mg/L	0.0264	45.32	mg/L	0.264	0.58%
Mn 257.610†	39160.5	1.053	mg/L	0.0017	10.53	mg/L	0.017	0.16%
Mo 202.0314	258.6	0.01526	mg/L	0.000252	0.1526	mg/L	0.00252	1.65%
Na 589.592†	16763.3	2.075	mg/L	0.0075	20.75		0.075	0.36%
Na 330.237†	53.7	2.029	mg/L	0.1180	20.29	mg/L	1.180	5.82%
Ni 231.604†	371.8	0.1737	mg/L	0.00154	1.737	mg/L	0.0154	0.89%
Pb 220.353†	2355.1	0.1738	mg/L	0.00073	1.738	mg/L	0.0073	0.42%
Sb 206.836†	87.4	0.01137	${ m mg/L}$	0.001072	0.1137	_	0.01072	9.43%
Se 196.026†	-35.9	-0.02001	${ m mg/L}$	0.000789	-0.2001	mg/L	0.00789	3.95%
Si 288.158†	1147.2	0.8773	mg/L	0.00392	8.773	mg/L	0.0392	0.45%
Sn 189.927†	922.9	0.1517	mg/L	0.00079	1.517	mg/L	0.0079	0.52%
Sr 421.552†	20007.1	0.03348	mg/L	0.000124	0.3348	mg/L	0.00124	0.37%
Ti 334.903†	7730.5	0.3208	mg/L	0.00006	3.208	mg/L	0.0006	0.02%
T1 190.801†	-24.7	-0.00888	mg/L	0.000920	-0.08875		0.009198	10.36%
V 292.402†	7235.5	0.02067	mg/L	0.000616	0.2067	mg/L	0.00616	2.98%
Zn 206.200†	1061.5	0.4343	mg/L	0.00329	4.343	mg/L	0.0329	0.76%

Sequence No.: 8

Sample ID: VP40 B SWC

Analyst: EL Dilution: 2X Autosampler Location: 41

Date Collected: 11/2/2012 1:39:57 PM

Data Type: Original

Nebulizer Parameters: VP40 B SWC

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: VP40 B	SWC							
	Mean Corrected		Calib.			Sample	•	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2585957.6	101.2	8	0.13				0.13%
ScR 361.383	201445.7	104.0	g g	0.19				0.18%
Ag 328.068†	-1745.0	-0.00010	mg/L	0.000151	-0.00020	mg/L	0.000303	148.83%
Al 308.215†	118346.5	84.26	mg/L	0.163	168.5	mg/L	0.33	0.19%
As 188.979†	90.6	0.04818	mg/L	0.000723	0.09635	mg/L	0.001447	1.50%
B 249.677†	95.3	0.04647	mg/L	0.001201	0.09295	mg/L	0.002403	2.59%
Ba 233.527†	2295.4	0.2312	mg/L	0.00088	0.4625	mg/L	0.00176	0.38%
Be 313.042†	528.3	0.00114	mg/L	0.000012	0.00228	mg/L	0.000025	1.09%
Ca 317.933†	399105.1	38.62	mg/L	0.022	77.24	٠.	0.043	0.06%
Cd 228.802†	141.4	0.00170	mg/L	0.000031	0.00340	${ m mg/L}$	0.000062	1.82%
Co 228.616†	5247.8	0.05277	mg/L	0.000336	0.1055	_	0.00067	0.64%
Cr 267.716†	1266.1	0.2942	${ m mg/L}$	0.00174	0.5885	_	0.00347	0.59%
Cu 324.752†	79299.1	0.2683	${ m mg/L}$	0.00040	0.5366	_	0.00080	0.15%
Fe 273.955†	223474.9	189.9	mg/L	0.05	379.9	mg/L	0.11	0.03%
K 766.490†	20628.5	5.848	mg/L	0.0113	11.70	mg/L	0.023	0.19%
Mg 279.077†	46150.6	42.16	mg/L	0.011	84.31	mg/L	0.022	0.03%
Mn 257.610†	67864.4	1.825	mg/L	0.0039	3.650	_	0.0078	0.21%
Mo 202.031†	241.2	0.01537	mg/L	0.000253	0.03073		0.000506	1.65%
Na 589.592†	143576.3	17.77	mg/L	0.063	35.54	mg/L	0.127	0.36%
Na 330.237†	442.0	18.25	mg/L	0.061	36.50	mg/L	0.122	0.33%
Ni 231.604†	376.2	0.1757	${ m mg/L}$	0.00207	0.3514	mg/L	0.00415	1.18%
Pb 220.353†	1953.5	0.1708	${ m mg/L}$	0.00108	0.3416	${ m mg/L}$	0.00216	0.63%
Sb 206.836†	81.0	0.00734	mg/L	0.001202	0.01468		0.002404	16.38%
Se 196.026†	-59.5	-0.03289	${ m mg/L}$	0.008442	-0.06578		0.016885	25.67%
Si 288.158†	6062.2	4.637	${ m mg/L}$	0.0152	9.275		0.0303	0.33%
Sn 189.927†	31.9	0.01610	mg/L	0.000520	0.03220	${ m mg/L}$	0.001041	3.23%
Sr 421.552†	129496.2	0.2167	${ m mg/L}$	0.00073	0.4334	mg/L	0.00145	0.34%
Ti 334.903†	108424.3	4.501	mg/L	0.0053	9.002	_	0.0106	0.12%
Tl 190.801†	-3.0	-0.00922	${ m mg/L}$	0.001340	-0.01844	.	0.002679	14.53%
V 292.402†	65523.4	0.3002	mg/L	0.00077	0.6004		0.00154	0.26%
Zn 206.200†	903.1	0.3701	mg/L	0.00113	0.7401	mg/L	0.00226	0.30%

upua aaaaa

Sequence No.: 9

Autosampler Location: 42

Sample ID: VP40 C SWC Analyst: EL

Date Collected: 11/2/2012 1:45:44 PM Data Type: Original

Dilution: 5X

Nebulizer Parameters: VP40 C SWC

Back Pressure Flow

Analyte 232.0 kPa 0.55 L/min All

Mean Data: VP40 C						0 1 -		
	Mean Corrected	_	Calib.	al I D	G	Sample Units	Std.Dev.	RSD
Analyte	Intensity		Units	Std.Dev. 0.13	Cone.	Units	sta.bev.	เกร ีย 0.13ะ
ScA 357.253	2634390.1	103.1		0.13				0.60%
ScR 361.383	200397.1	103.5			0 00060	~ /T	0.001020	
Ag 328.068†	-942.5	0.00012	J .	0.000204	0.00060	-	0.001020	0.14%
Al 308.215†	36736.1	26.15	_	0.036	130.8	_		4.22%
As 188.979†	45.1	0.02321	_	0.000978	0.1161	J .	0.00489	
B 249.677†	43.6	0.02131		0.001361	0.1066	J .	0.00680	6.38%
Ba 233.527†	5008.3	0.5189		0.00463	2.595	_	0.0232	0.89%
Be 313.042†	121.3	0.00020		0.000045	0.00100	J .	0.000225	22.52%
Ca 317.933†	247565.7	23.96	_	0.085	119.8	_	0.42	0.35%
Cd 228.802†	3230.0	0.04030	${ m mg/L}$	0.000232	0.2015	_	0.00116	0.57%
Co 228.616†	1583.1	0.01432	${ m mg/L}$	0.000144	0.07158	J .	0.000718	1.00%
Cr 267.716†	319.7	0.07419	${ m mg/L}$	0.001234	0.3709	_	0.00617	1.66%
Cu 324.752†	29917.6	0.1043		0.00038	0.5215	_	0.00192	0.37 %
Fe 273.955†	128274.1	109.0	mg/L	0.65	545.1	_	3.23	0.59%
K 766.490†	7397.0	2.097	mg/L	0.0024	10.48	_	0.012	0.11%
Mg 279.077†	20408.7	18.63	${ m mg/L}$	0.040	93.14	mg/L	0.202	0.22%
Mn 257.610†	28847.9	0.7761	mg/L	0.00069	3.880	mg/L	0.0034	0.09%
Mo 202.031†	83.3	0.00520	mg/L	0.000353	0.02601	mg/L	0.001767	6.79%
Na 589.592†	23685.1	2,932	mg/L	0.0124	14.66	mg/L	0.062	0.42%
Na 330.237†	232.6	2.940		0.5567	14.70	mg/L	2.783	18.93%
Ni 231.604†	127.0	0.05931	mg/L	0.003360	0.2966	mg/L	0.01680	5.67%
Pb 220.353†	20359.5	1.558	mg/L	0.0067	7.790	mg/L	0.0336	0.43%
Sb 206.836†	30.7	0.00372	mg/L	0.000464	0.01858	mg/L	0.002318	12.48%
Se 196.026†	-29.2	-0.01604	mq/L	0.002012	-0.08018	mg/L	0.010062	12.55%
Si 288.158†	2264.5	1.733	mg/L	0.0145	8.664	mg/L	0.0727	0.84 %
Sn 189.927†	1918.6	0.3194	mg/L	0.00038	1.597	mg/L	0.0019	0.126
Sr 421.552†	101080.4	0.1692	ma/L	0.00038	0.8458	mg/L	0.00189	0.22%
Ti 334.903†	44429.0	1.844		0.0011	9.220	mg/L	0.0057	0.06%
T1 190.801†	-3.5	-0.00421	-	0.001602	-0.02106	mg/L	0.008011	38.03%
V 292.402†	18880.7	0.08084	_	0.000215	0.4042	mg/L	0.00108	0.27%
Zn 206,200†	42541.5	17.40	٠.	0.067	87.02	_	0.336	0.39%
211 200.2001	12311.3	1,.10	9 ,			٥.		

Sequence No.: 10

Sample ID: VQ16 MB2SPK DMN

Analyst: EL Dilution: 1X

Autosampler Location: 43
Date Collected: 11/2/2012 1:51:44 PM

Data Type: Original

Nebulizer Parameters: VQ16 MB2SPK DMN

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VQ16 ME	B2SPK DMN							
	Mean Corrected		Calib.			Sample	_	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2655214.2	103.9		0.40				0.39%
ScR 361.383	218876.4	113.0		4.78				4.23%
Ag 328.068†	160455.5	0.5358		0.00282	0.5358	_	0.00282	0.53%
A1 308.215†	3030.6	2.149	_	0.1016	2.149	_	0.1016	4.73%
As 188.979†	5204.3	2.232		0.0154	2.232	_	0.0154	0.69%
B 249.677†	13.1	0.00461	_	0.004627	0.00461	J.		100.40%
Ba 233.527†	19754.1	2.067	${ m mg/L}$	0.0968	2.067	J.	0.0968	4.68%
Be 313.042†	135784.6	0.5220	mg/L	0.03127	0.5220		0.03127	5.99%
Ca 317.933†	107762.3	10.43	mg/L	0.637	10.43	٠.	0.637	6.10 ધ
Cd 228.802†	47304.9	0.5854	mg/L	0.00428	0.5854	J .	0.00428	0.73%
Co 228.616†	45715.4	0.5475	mg/L	0.00382	0.5475	J .	0.00382	0.70%
Cr 267.716†	2275.2	0.5297	${ m mg/L}$	0.02472	0.5297		0.02472	4.67%
Cu 324.752†	172811.8	0.5534	mg/L	0.00147	0.5534	_	0.00147	0.27%
Fe 273.955†	2535.3	2.154	mg/L	0.1013	2.154		0.1013	4.70%
к 766.490†	39321.0	11.15	${\tt mg/L}$	0.688	11.15	mg/L	0.688	6.17%
Mg 279.077†	11911.8	10.91		0.501	10.91	mg/L	0.501	4.60%
Mn 257.610†	19165.6	0.5160		0.02319	0.5160		0.02319	4.50%
Mo 202.031†	25.6	0.00131	mg/L	0.000252	0.00131	mg/L	0.000252	19.16%
Na 589.592†	87800.7	10.87	mg/L	0.596	10.87	mg/L	0.596	5.49%
Na 330.237†	274.1	10.71	mg/L	0.718	10.71	mg/L	0.718	6.71%
Ni 231.604†	1103.7	0.5148	mg/L	0.02292	0.5148	mg/L	0.02292	4.45%
Pb 220.353†	29048.6	2.218	mg/L	0.0080	2.218	mg/L	0.0080	0.36%
Sb 206.836†	12.9	-0.00390	mg/L	0.001845	-0.00390	${\tt mg/L}$	0.001845	47.26%
Se 196.026†	4391.4	2.391	mg/L	0.0167	2.391	mg/L	0.0167	0.70%
Si 288.158†	-6.0	-0.00077	mg/L	0.004894	-0.00077	mg/L	0.004894	638.28%
Sn 189.927†	-12.8	0.00039	mg/L	0.000385	0.00039	mg/L	0.000385	98.42%
Sr 421.552†	318525.5	0.5331	mg/L	0.03027	0.5331	mg/L	0.03027	5.68%
Ti 334.903†	47.0	0.00132	mg/L	0.000091	0.00132	mg/L	0.000091	6.91%
T1 190.801†	8149.1	2.279	mg/L	0.0135	2.279	mg/L	0.0135	0.59%
V 292.402†	116014.6	0.5696	mg/L	0.00052	0.5696	mg/L	0.00052	0.09%
Zn 206.200†	1294.1	0.5295	mg/L	0.02541	0.5295	${\tt mg/L}$	0.02541	4.80%

UPUG: 00382

Sequence No.: 11 Sample ID: CV 3, Analyst: EL Dilution: 1X

All

Autosampler Location: 7 Date Collected: 11/2/2012 1:57:46 PM

Data Type: Original

Nebulizer Parameters: CV

Analyte

Back PressureFlow232.0 kPa0.55 L/min

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2569152.7	100.6		0.80				0.80%
ScR 361.383	196404.7	101.4		1.31				1.29%
Ag 328.068†	295130.7	0.9856		0.00432	0.9856		0.00432	0.44%
Al 308.215†	2998.7	2.093	_	0.0346	2.093		0.0346	1.65%
As 188.979†	4655.3	1.995	J .	0.0185	1.995	J .	0.0185	0.93%
в 249.677†	2030.7	0.9944		0.01458	0.9944	J .	0.01458	1.47%
Ba 233.527†	9912.3	1.037		0.0158	1.037	2 '	0.0158	1.52%
Be 313.042†	263422.6	1.013	J .	0.0081	1.013	_	0.0081	0.80%
Ca 317.933†	21363.1	2.067	mg/L	0.0352	2.067	_	0.0352	1.70%
Cd 228.802†	81843.9	1.017		0.0057	1.017	٥.	0.0057	0.56%
Co 228.616†	81880.8	0.9799	mg/L	0.00352	0.9799		0.00352	0.36%
Cr 267.716†	4377.6	1.019	mg/L	0.0156	1.019	_	0.0156	1.53%
Cu 324.752†	333307.4	1.066	mg/L	0.0041	1.066	_	0.0041	0.38%
Fe 273.955†	2523.8	2.144	mg/L	0.0336	2.144	_	0.0336	1.57%
K 766.490†	75362.7	21.36	mg/L	0.059	21.36	-	0.059	0.28%
Mg 279.077†	2386.2	2.189	mg/L	0.0398	2.189	_	0.0398	1.82∜
Mn 257.610†	38343.9	1.032	J .	0.0067	1.032	_	0.0067	0.65%
Mo 202.031†	16387.5	0.9632		0.00705	0.9632	J .	0.00705	0.73%
Na 589.592†	422448.8	52.29	mg/L	0.258	52.29		0.258	0.49%
Na 330.237†	1343.9	53.50	mg/L	0.956	53.50	-	0.956	1.79%
Ni 231.604†	2172.3	1.015	mg/L	0.0132	1.015	${\tt mg/L}$	0.0132	1.30₺
Pb 220.353†	25443.5	1.943	mg/L	0.0141	1.943	J .	0.0141	0.73%
Sb 206.836†	7072.6	2.088	mg/L	0.0150	2.088	_	0.0150	0.72%
Se 196.026†	3558.8	1.936	mg/L	0.0127	1.936	2	0.0127	0.65%
Si 288.158†	2841.3	2.178	mg/L	0.0270	2.178	_	0.0270	1.24%
Sn 189.927†	5587.0	0.9127	mg/L	0.00564	0.9127	_	0.00564	0.62%
Sr 421.552†	622564.1	1.042	mg/L	0.0085	1.042	mg/L	0.0085	0.82%
Ti 334.903†	25194.9	1.045	mg/L	0.0061	1.045	mg/L	0.0061	0.59%
Tl 190.801†	6958.9	1.940	mg/L	0.0135	1.940	_	0.0135	0.70%
V 292,402†	207034.6	1.021	mg/L	0.0049	1.021	mg/L	0.0049	0.48%
Zn 206.200†	2664.3	1.089	mg/L	0.0152	1.089	mg/L	0.0152	1.39%

Upua magas

Sequence No.: 12 Sample ID: CB 2, Analyst: EL

Dilution: 1X

Autosampler Location: 1
Date Collected: 11/2/2012 2:03:48 PM

Data Type: Original

Nebulizer Parameters: CB

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: CB							
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2687108.3	105.2	ક	1.28			1.21%
ScR 361.383	202932.6	104.8	⁹	1.09			1.04%
Ag 328.068†	70.5	0.00024	mg/L	0.000166	0.00024	_	0.000166 70.45%
Aĺ 308.215†	14.7	0.01044		0.005436	0.01044		0.005436 52.05%
As 188.979†	2.8	0.00122	mg/L	0.001724	0.00122	_	0.001724 141.67%
в 249.6 7 7†	12.1	0.00592	mg/L	0.001915	0.00592	_	0.001915 32.37%
Ba 233.527†	-3.1	-0.00032	mg/L	0.000405	-0.00032	~	0.000405 125.23%
Be 313.042†	4.5	0.00002	mg/L	0.000083	0.00002	_	0.000083 467.96%
Ca 317.933†	-18.7	-0.00181	mg/L	0.001137	-0.00181		0.001137 62.89%
Cd 228.802†	-3.7	-0.00005	mg/L	0.000107	-0.00005		0.000107 216.58%
Co 228.616†	-14.9	-0.00018		0.000139	-0.00018	J.	0.000139 77.41%
Cr 267.716†	0.1	0.00003	mg/L	0.000200	0.00003		0.000200 584.24%
Cu 324.752†	-166.8	-0.00053	mg/L	0.000082	-0.00053	-	0.000082 15.29%
Fe 273.955†	1.9	0.00163	~	0.001952	0.00163		0.001952 119.67%
K 766.490†	62.7	0.01777		0.006531	0.01777	J.	0.006531 36.76%
Mg 279.077†	8.2	0.00751	_	0.006457	0.00751	J .	0.006457 85.93%
Mn 257.610†	-1.3	-0.00004	J .	0.000027	-0.00004	J .	0.000027 75.49%
Mo 202.031†	7.5	0.00044	2	0.000259	0.00044		0.000259 58.35%
Na 589.592†	232.4	0.02877	_	0.006660	0.02877		0.006660 23.15%
Na 330.237†	-4.6	-0.1863	mg/L	0.56629	-0.1863		0.56629 303.91%
Ni 231.604†	-1.3	-0.00059	mg/L	0.000871	-0.00059		0.000871 148.42%
Pb 220.353†	-23.4	-0.00178		0.000417	-0.00178	_	0.000417 23.40%
Sb 206.836†	-4.5	-0.00132		0.000906	-0.00132		0.000906 68.88%
Se 196.026†	9.5	0.00520		0.000315	0.00520		0.000315 6.07%
Si 288.158†	4.1	0.00314	-	0.002479	0.00314	~	0.002479 78.90%
Sn 189.927†	5.3	0.00087	mg/L	0.000719	0.00087	J .	0.000719 82.79%
Sr 421.552†	-7.6	-0.00001	J.	0.000076	-0.00001	-	0.000076 593.56%
Ti 334.903†	14.4	0.00060	_	0.000198	0.00060	_	0.000198 33.10%
Tl 190.801†	1.2	0.00033	_	0.000656	0.00033	_	0.000656 200.37%
V 292.402†	-30.3	-0.00015		0.000086	-0.00015	J .	0.000086 58.70%
Zn 206.200†	17.3	0.00708	mg/L	0.000702	0.00708	mg/L	0.000702 9.91%

Sequence No.: 13

Sample ID: VO66 MB1 SWC

Analyst: EL

Dilution: 2X

Autosampler Location: 44

Date Collected: 11/2/2012 2:09:46 PM

Data Type: Original

Nebulizer Parameters: VO66 MB1 SWC

Analyte Back Pressu 232.0 kPa

Back Pressure Flow
232.0 kPa 0.55 L/min

Mean Data: V066 MB	31 SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2665306.7	104.3		0.55				0.52 ?
ScR 361.383	201331.4	104.0		0.55				0.53%
Ag 328.068†	67.7	0.00023		0.000037	0.00045	-	0.000073	16.20%
Al 308.215†	27.5	0.01956		0.013852	0.03912	_	0.027705	70.82%
As 188.979†	0.1	0.00003		0.001584	0.00005	_		>999.9%
B 249.677†	-1.3	-0.00063		0.000174	-0.00126		0.000348	27.56%
Ba 233.527†	-5.0	-0.00052	mg/L	0.000224	-0.00104		0.000449	43.03%
Be 313.042†	15.2	0.00006	_ ·	0.000027	0.00012	_	0.000054	46.37%
Ca 317.933†	132.8	0.01285	_	0.000798	0.02570		0.001596	6.21%
Cd 228.802†	-1.7	-0.00002	mg/L	0.000064	-0.00004	٥.	0.000128 2	
Co 228.616†	-5.2	-0.00006	mg/L	0.000068	-0.00013	_	0.000136	
Cr 267.716t	-1.0	-0.00024	mg/L	0.000427	-0.00047	٥.	0.000853	
Cu 324.752†	-242.4	-0.00078	mg/L	0.000210	-0.00155	_	0.000419	27.02%
Fe 273.955t	6.4	0.00541	mg/L	0.000518	0.01082	J .	0.001036	9.57%
к 766.490†	78.0	0.02212	mg/L	0.017482	0.04424	_	0.034963	79.02%
Mg 279.077†	0.5	0.00049	mg/L	0.009017	0.00098	_	0.018035	
Mn 257.610†	3.3	0.00009	mg/L	0.000074	0.00018	J .	0.000148	82.61%
Mo 202.031†	7.9	0.00046	mg/L	0.000379	0.00093	J .	0.000759	81.68%
Na 589.592†	242.1	0.02997	mg/L	0.009749	0.05993	mg/L	0.019498	32.53%
Na 330.237†	-3.3	-0.1332	mg/L	0.37659	-0.2663	mg/L		282.80%
Ni 231.604†	1.7	0.00081	mg/L	0.001465	0.00162	mg/L	0.002930	
Pb 220.353†	-11.5	-0.00087	mg/L	0.000064	-0.00175	mg/L	0.000128	7.32%
Sb 206.836†	1.1	0.00032	mg/L	0.000277	0.00063	mg/L	0.000554	87.48%
Se 196.026†	11.0	0.00602	mg/L	0.002354	0.01204	mg/L	0.004709	39.11%
Si 288,158†	3.5	0.00267	mg/L	0.003301	0.00535	mg/L	0.006602	123.44%
Sn 189.927†	-0.8	-0.00012	mg/L	0.000836	-0.00024	mg/L	0.001671	
Sr 421.552†	-9.2	-0.00002	mg/L	0.000044	-0.00003	mg/L	0.000087	282.25%
Ti 334.903†	19.9	0.00083	mg/L	0.000440	0.00165	mg/L	0.000880	53.25%
Tl 190.801†	1.5	0.00043	mg/L	0.000238	0.00085	mg/L	0.000477	56.03%
V 292.402†	17.7	0.00009	mg/L	0.000118	0.00017	mg/L	0.000235	
Zn 206.200†	14.8	0.00606	mg/L	0.000231	0.01213	mg/L	0.000462	3.81%

Sequence No.: 14

Autosampler Location: 45

Sample ID: VP83 E TWC

Date Collected: 11/2/2012 2:15:46 PM

Analyst: EL Dilution: 1X Data Type: Original

Nebulizer Parameters: VP83 E TWC

Back Pressure Flow 0.55 L/min Analyte Back Pressure All

Mean Data: VP83 E TWC Sample Std.Dev. Conc. Units Std.Dev. RSD Analyte 0.59% 0.62 0.77 ScA 357.253

 Analyte
 Intensity
 Conc. Units
 Std. Dev.
 Conc. Units
 Std. Dev.
 RSD

 ScA 357.253
 2692317.3
 105.4 %
 0.62
 0.77
 0.73%

 Ag 328.068†
 -6.7
 -0.00003 mg/L
 0.00032
 -0.00003 mg/L
 0.00021 lip. 38%

 Al 308.215†
 171.6
 0.1222 mg/L
 0.00023
 0.1222 mg/L
 0.002179 po.00024 mg/L
 0.002179 po.00024 mg/L
 0.002179 po.00024 mg/L
 0.002179 po.00024 mg/L
 0.002179 po.00024 mg/L
 0.002179 po.00024 mg/L
 0.002179 po.00024 mg/L
 0.000714 po.00024 mg/L
 0.000714 po.00024 mg/L
 0.0002179 po.00034 mg/L
 0.000714 po.00034 mg/L
 0.000714 po.00034 mg/L
 0.000714 po.00034 mg/L
 0.000714 po.00034 mg/L
 0.000714 po.00034 mg/L
 0.000714 po.00034 mg/L
 0.000714 po.00034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L
 0.000034 mg/L

UPUB: BB386

Data Type: Original

Sequence No.: 15 Autosampler Location: 46

Sample ID: VQ42 BDUP DMN Date Collected: 11/2/2012 2:21:46 PM

Analyst: EL Dilution: 1X

Nebulizer Parameters: VQ42 BDUP DMN

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: VQ42 BI	DUP DMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units		RSD
ScA 357.253	2691675.1	105.4		1.49				.41%
ScR 361.383	212401.2	109.7		8.07				.35%
Ag 328.068†	16.6	0.00000		0.000145	0.00000		0.000145 >99	
Al 308.215†	82.5	0.05867	- ·	0.006615	0.05867			.28€
As 188.979†	6.8	0.00292	_	0.001535	0.00292			.54%
B 249.677†	132.8	0.06516	${ m mg/L}$	0.001308	0.06516	mg/L		.01%
Ba 233.527†	98.3	0.01028	${ m mg/L}$	0.001198	0.01028	J .		.65%
Be 313.042†	-43.3	-0.00017		0.000173	-0.00017	٠.		.11%
Ca 317.933†	49458.1	4.786	mg/L	0.3664	4.786	mg/L	0.3664 7	.66%
Cd 228.802†	7.8	0.00009	${ m mg/L}$	0.000070	0.00009	mg/L	0.000070 76	.97%
Co 228.616†	46.1	0.00054	${ m mg/L}$	0.000077	0.00054			.30%
Cr 267.716†	2.5	0.00057	mg/L	0.000458	0.00057	mg/L		.52%
Cu 324.752†	1014.4	0.00326	mg/L	0.000268	0.00326	mg/L		. 23%
Fe 273.955†	246.7	0.2096	${ m mg/L}$	0.01415	0.2096	mg/L		.75%
K 766.490†	12711.7	3.603	${ m mg/L}$	0.3352	3.603	mg/L		.30%
Mg 279.077†	659.6	0.6040	${\tt mg/L}$	0.03518	0.6040		0.03518 5	.83%
Mn 257.610†	794.1	0.02136	${ m mg/L}$	0.001527	0.02136		0.001527 7	.15%
Mo 202.031†	31.5	0.00184	${\tt mg/L}$	0.000282	0.00184	mg/L		.30%
Na 589.592†	41922.6	5.189	mg/L	0.3926	5.189	mg/L	0.3926 7	.57%
Na 330.237†	130.6	5.171	mg/L	0.6701	5.171	mg/L	0.6701 12	.96%
Ni 231.604†	4.1	0.00189	mg/L	0.002765	0.00189	mg/L	0.002765 146	.08%
Pb 220.353†	-16.3	-0.00111	${ m mg/L}$	0.000333	-0.00111		0.000333 29	.95%
Sb 206.836†	-9.7	-0.00290	mg/L	0.001061	-0.00290	mg/L	0.001061 36	.57≩
Se 196.026†	14.1	0.00769	mg/L	0.001309	0.00769	mg/L	0.001309 17	.01%
Si 288.158†	472.0	0.3607	${ m mg/L}$	0.02899	0.3607	mg/L		. () 4 %
Sn 189.927†	-3.8	0.00042	mg/L	0.000393	0.00042	mg/L	0.000393 93	.77%
Sr 421.552†	16025.6	0.02682	mg/L	0.002160	0.02682	mg/L	0.002160 8	.06%
Ti 334.903†	79.0	0.00304	mg/L	0.000646	0.00304	mg/L	0.000646 21	.24%
Tl 190.801†	1.5	0.00038	mg/L	0.000329	0.00038	mg/L	0.000329 87	.67%
V 292.402†	105.1	0.00051	mg/L	0.000072	0.00051	mg/L	0.000072 14	.19%
Zn 206.200†	181.3	0.07428	mg/L	0.005051	0.07428	mg/L	0.005051 6	.80%

Sequence No.: 16

Autosampler Location: 47 Sample ID: VQ42 B DMN

Analyst: EL Dilution: 1X Date Collected: 11/2/2012 2:27:47 PM

Data Type: Original

Nebulizer Parameters: VQ42 B DMN

Analyte Back Pressure Flow All 233.0 kPa 0.55 L/min

Mean Data: VQ42 B	DMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2861406.3	112.0		9.47				8.45%
ScR 361.383	215917.6	111.5		2.19				1.96%
Ag 328.068†	-53.9	-0.00023	_	0.000212	-0.00023	_	0.000212	91.92%
Al 308.215†	81.5	0.05800	J .	0.002108	0.05800	J .	0.002108	3 . 63 ધ
As 188.979†	3.9	0.00168		0.000489	0.00168		0.000489	29.02%
B 249.677†	131.6	0.06455	mg/L	0.000602	0.06455	_	0.000602	0.93%
Ba 233.527†	95.3	0.00996	mg/L	0.000805	0.00996	J.	0.000805	8.08%
Be 313.042†	-46.5	-0.00018	${ m mg/L}$	0.000073	-0.00018	_	0.000073	40.22%
Ca 317.933†	48318.6	4.676	mg/L	0.0659	4.676		0.0659	1.41%
Cd 228.802†	-10.9	-0.00014	mg/L	0.000274	-0.00014	J .	0.000274	
Co 228.616†	18.0	0.00021	mg/L	0.000285	0.00021	mg/L	0.000285	
Cr 267.716†	3.6	0.00083	mg/L	0.000696	0.00083	mg/L	0.000696	83.53%
Cu 324.752†	817.1	0.00263	mg/L	0.000782	0.00263	mg/L	0.000782	29.74%
Fe 273.955†	245.1	0.2083	mg/L	0.00462	0.2083	mg/L	0.00462	2.22%
K 766.490†	12376.7	3.509	mg/L	0.0474	3.509	${ m mg/L}$	0.0474	1.35%
Mg 279.077†	647.4	0.5928	mg/L	0.01046	0.5928	mg/L	0.01046	1.76%
Mn 257.610†	773.0	0.02079	mg/L	0.000506	0.02079	mg/L	0.000506	2.44%
Mo 202.031†	29.4	0.00172	mg/L	0.000341	0.00172	mg/L	0.000341	19.81%
Na 589.592†	40818.0	5.053	mg/L	0.0649	5.053	mg/L	0.0649	1.29%
Na 330.237†	134.5	5.329	mg/L	0.2195	5.329	mg/L	0.2195	4.12%
Ni 231.604†	5.1	0.00236	mg/L	0.002671	0.00236	mg/L	0.002671	
Pb 220.353†	-24.3	-0.00172	mg/L	0.002038	-0.00172	mg/L	0.002038	118.19%
Sb 206.836†	-16.0	-0.00475	mg/L	0.003538	-0.00475	${ m mg/L}$	0.003538	74.42%
Se 196.026†	18.6	0.01014	mg/L	0.004654	0.01014	mg/L	0.004654	45.88%
Si 288.158†	461.0	0.3523	mg/L	0.01020	0.3523	mg/L	0.01020	2.89%
Sn 189.927†	-2.7	0.00057	mg/L	0.000960	0.00057	mg/L	0.000960	
Sr 421.552†	15642.5	0.02618	mg/L	0.000338	0.02618	mg/L	0.000338	1.29%
Ti 334.903†	71.8	0.00275	mg/L	0.000676	0.00275	mg/L	0.000676	24.58%
Tl 190.801†	-0.9	-0.00029	mg/L	0.000417	-0.00029	mg/L	0.000417	
V 292.402†	126.7	0.00061	mg/L	0.000176	0.00061	mg/L	0.000176	28.65%
Zn 206.200†	176.7	0.07241	mg/L	0.002510	0.07241	mg/L	0.002510	3.47%

upua: acase

Sequence No.: 17

Autosampler Location: 48 Date Collected: 11/2/2012 2:33:48 PM Sample ID: VQ42 BSPK DMN Data Type: Original

Analyst: EL Dilution: 1X

Nebulizer Parameters: VQ42 BSPK DMN

Back Pressure Flow
233.0 kPa 0.55 L/min Analyte All

Mean Data: VQ42	Mean Data: VQ42 BSPK DMN								
	Mean Corrected		Calib.			\mathtt{Sample}			
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD	
ScA 357.253	2602208.6	101.9	ક	0.65				0.64 %	
ScR 361.383	218991.5	113.1		10.74				9.49%	
Ag 328.068†	157219.4	0.5250	mg/L	0.00468	0.5250		0.00468	0.89%	
Al 308.215†	3102.7	2.200	mg/L	0.2149	2.200		0.2149	9.77 દ	
As 188.979†	5201.7	2.231	J .	0.0232	2.231	J .	0.0232	1.04%	
B 249.677†	127.6	0.06074	mg/L	0.001366	0.06074		0.001366	2.25%	
Ba 233.527†	19870.6	2.079	mg/L	0.2047	2.079		0.2047	9.85%	
Be 313.042†	136032.5	0.5230	mg/L	0.05647	0.5230		0.05647	10.80%	
Ca 317.933†	153283.8	14.83	mg/L	1.580	14.83	_	1.580	10.65%	
Cd 228.802†	48146.9	0.5960	mg/L	0.00686	0.5960	${\tt mg/L}$	0.00686	1.15%	
Co 228.616†	46855.9	0.5612	mg/L	0.00621	0.5612		0.00621	1.11%	
Cr 267.716†	2281.2	0.5311	mg/L	0.05247	0.5311		0.05247	9.88%	
Cu 324.752†	188305.0	0.6030	mg/L	0.00582	0.6030	mg/L	0.00582	0.97%	
Fe 273.955†	2762.5	2.348	mg/L	0.2297	2.348	mg/L	0.2297	9.79%	
K 766.490†	50662.0	14.36	mg/L	1.506	14.36	${ m mg/L}$	1.506	10.49₺	
Mg 279.077†	12523.3	11.47	mg/L	1.123	11.47	mg/L	1.123	9.79%	
Mn 257.610†	19814.6	0.5335	mg/L	0.05217	0.5335	mg/L	0.05217	9.787	
Mo 202.031†	39.5	0.00212	mg/L	0.000121	0.00212		0.000121	5.70%	
Na 589.592†	125776.8	15.57	mg/L	1.620	15.57		1.620	10.40%	
Na 330.237†	394.4	15.47		1.913	15.47		1.913	12.36%	
Ni 231.604†	1074.9	0.5013	mg/L	0.05077	0.5013	mg/L	0.05077	10.13%	
Pb 220.353†	29579.2	2.258	mg/L	0.0220	2.258	mg/L	0.0220	0.97%	
Sb 206.836†	17.7	-0.00251	mg/L	0.001138	-0.00251	mg/L	0.001138	45.42%	
Se 196.026†	4327.3	2.357	mg/L	0.0228	2.357	mg/L	0.0228	0.97%	
Si 288.158†	550.6	0.4247	mg/L	0.04007	0.4247	mg/L	0.04007	9.43%	
Sn 189.927†	-12.9	0.00132	mg/L	0.000492	0.00132	${\tt mg/L}$	0.000492	37.19%	
Sr 421.552†	332305.4	0.5561	mg/L	0.05708	0.5561	mg/L	0.05708	10.26%	
Ti 334.903†	94.2	0.00306	mg/L	0.000440	0.00306	mg/L	0.000440	14.40%	
Tl 190.801†	8100.7	2.265	mg/L	0.0236	2.265	mg/L	0.0236	1.04%	
V 292.402†	118079.2	0.5797	mg/L	0.00562	0.5797	mg/L	0.00562	0.97%	
Zn 206.200†	1479.5	0.6054	mg/L	0.05795	0.6054	mg/L	0.05795	9.57%	

vous some

Sequence No.: 18

Dilution: 1X

Tl 190.801† V 292.402† Zn 206.200†

Sample ID: VQ42 MB2SPK DMN

Analyst: EL

Autosampler Location: 49 Date Collected: 11/2/2012 2:39:52 PM

Data Type: Original

Nebulizer Parameters: VQ42 MB2SPK DMN

Back Pressure Flow Analyte 233.0 kPa 0.55 L/min A11

Mean Data: VQ42 MB2SPK DMN 1: VQ42 MB2SPK DMN

Mean Corrected	Calib.		
Intensity	Conc. Units	Std.Dev.	
53	2659306.2	104.1 %	0.96
83	219960.6	113.6 %	6.94

Sequence No.: 19

Sample ID: VO66 B SWC

Analyst: EL Dilution: 2X

Autosampler Location: 50

Date Collected: 11/2/2012 2:45:56 PM

Data Type: Original

Nebulizer Parameters: V066 B SWC

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: VO66 B SWC									
	Mean Corrected		Calib.			Sample	:		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD	
ScA 357.253	2621885.5	102.6	96	0.74				0.72%	
ScR 361.383	195546.5	101.0	ક	1.01				1.00%	
Ag 328.068†	-726.1	0.00315	${ m mg/L}$	0.000610	0.00631	mg/L	0.001221	19.36%	
Al 308.215†	222062.7	158.1	mg/L	1.14	316.2	mg/L	2.27	0.72%	
As 188.979†	127.8	0.07101	mg/L	0.001578	0.1420		0.00316	2.22%	
B 249.677†	249.0	0.1219	mg/L	0.00346	0.2437	mg/L	0.00691	2.84%	
Ba 233.527†	4833.7	0.4972	${ m mg/L}$	0.00684	0.9944	${ m mg/L}$	0.01367	1.38%	
Be 313.042†	1162.9	0.00327	${ m mg/L}$	0.000291	0.00653	mg/L	0.000583	8.92%	
Ca 317.933†	405936.6	39.28	${ m mg/L}$	0.156	78.57		0.312	0.40%	
Cd 228.802†	298.0	0.00361		0.000205	0.00721	mg/L	0.000410	5.69%	
Co 228.616†	5717.2	0.05291	${ m mg/L}$	0.000311	0.1058	mg/L	0.00062	0.59%	
Cr 267.716†	776.1	0.1801	mg/L	0.00197	0.3601	_	0.00394	1.09%	
Cu 324.752†	77374.4	0.2605	${ m mg/L}$	0.00338	0.5209	mg/L	0.00676	1.30%	
Fe 273.955†	213007.3	181.0	${ m mg/L}$	1.58	362.1	mg/L	3.16	0.87%	
K 766.490†	68140.6	19.32	${ m mg/L}$	0.145	38.63		0.291	0.75%	
Mg 279.077†	53673.8	49.05	${ m mg/L}$	0.217	98.10	_	0.435	0.44%	
Mn 257.610†	65744.6	1.767	mg/L	0.0120	3.534		0.0241	0.68%	
Mo 202.031†	-54.9	-0.00058	${ m mg/L}$	0.000380	-0.00116		0.000760	65.73%	
Na 589.592†	530787.0	65.70	mg/L	0.513	131.4		1.03	0.78%	
Na 330.237†	1670.7	67.87	${\tt mg/L}$	0.966	135.7	_	1.93	1.42%	
Ni 231.604†	309.6	0.1446	${ m mg/L}$	0.00285	0.2893	mg/L	0.00570	1.97%	
Pb 220.353†	1351.6	0.1510	${ m mg/L}$	0.00247	0.3020	_	0.00493	1.63%	
Sb 206.836†	93.3	0.01836	${ m mg/L}$	0.000949	0.03671	mg/L	0.001898	5.17%	
Se 196.026†	-82.0	-0.04508	mg/L	0.003295	-0.09016		0.006591	7.31₺	
Si 288.158†	10597.1	8.103	${ m mg/L}$	0.0588	16.21		0.118	0.73%	
Sn 189.927†	17.5	0.01520	${\tt mg/L}$	0.000781	0.03040	_	0.001562	5.14%	
Sr 421.552†	349625.0	0.5851	${ m mg/L}$	0.00313	1.170	${ m mg/L}$	0.0063	0.537	
Ti 334.903†	183979.5	7.639	mg/L	0.0449	15.28	_	0.090	0.59%	
T1 190.801†	20.8	-0.00588	mg/L	0.003058	-0.01176		0.006116	52.01%	
V 292.402†	86662.0	0.4006	mg/L	0.00642	0.8012		0.01284	1.60 ધ	
Zn 206.200†	1594.9	0.6532	mg/L	0.00887	1.306	mg/L	0.0177	1.36%	

Date: 11/2/2012 2:55:37 PM

Sequence No.: 20 Sample ID: VO66 C SWC Autosampler Location: 51

Date Collected: 11/2/2012 2:51:47 PM

Data Type: Original

Analyst: EL Dilution: 2X Jak

Nebulizer Parameters: V066 C SWC

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: V066 (
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2628494.6	102.9	-	0.17				0.16%
ScR 361.383	207045.7	106.9	ક	0.87				0.81%
Ag 328.068†	-1284.5	0.00085	mg/L	0.000093	0.00170		0.000186	10.99%
Al 308.215†	193856.2	138.0	mg/L	0.73	276.0	mg/L	1.46	0.53%
As 188.979†	87.7	0.05266	mg/L	0.001757	0.1053	mg/L	0.00351	3.34 ધ
в 249.677†	250.7	0.1227	mg/L	0.00541	0.2454		0.01083	4.41%
Ba 233.527†	3675.9	0.3767	mg/L	0.00328	0.7534	mg/L	0.00657	0.87%
Be 313.042†	688.1	0.00149	mg/L	0.000039	0.00299	mg/L	0.000079	2.64%
Ca 317.933†	381148.2	36.88	mg/L	0.167	73.77		0.335	0.45%
Cd 228.802†	166.8	0.00200	mg/L	0.000065	0.00401	mg/L	0.000131	3.26∜
Co 228.616†	5433.9	0.05067	mg/L	0.000114	0.1013	mg/L	0.00023	0.23%
Cr 267.716†	676.2	0.1568	mg/L	0.00275	0.3137		0.00550	1.75%
Cu 324.752†	67233.1	0.2270	mg/L	0.00005	0.4540	mg/L	0.00010	0.02%
Fe 273.955†	196618.7	167.1	mg/L	0.64	334.2	mg/L	1.29	0.39%
K 766.490†	58962.9	16.71	mg/L	0.041	33.43	mg/L	0.083	0.25%
Mg 279.077†	49230.2	44.99	mg/L	0.228	89.98	mg/L	0.457	0.51%
Mn 257.610†	62399.4	1.677	mg/L	0.0079	3.355	mg/L	0.0158	0.47%
Mo 202.031†	-48.6	-0.00057	mg/L	0.000441	-0.00114	mg/L	0.000883	77.18%
Na 589.592†	491863.7	60.88	mg/L	0.271	121.8	mg/L	0.54	0.44%
Na 330.237†	1534.8	62.40	mg/L	0.370	124.8	mg/L	0.74	0.59%
Ni 231.604†	264.9	0.1238	mg/L	0.00270	0.2475	mg/L	0.00539	2.18%
Pb 220.353†	799.6	0.1024	mg/L	0.00090	0.2049	mg/L	0.00179	0.87%
Sb 206.836†	77.4	0.01555	mg/L	0.001750	0.03110	mg/L	0.003499	11.25%
Se 196.026†	-65.4	-0.03599	mg/L	0.004728	-0.07198	mg/L	0.009456	13.14%
Si 288.158†	5073.3	3.882	mg/L	0.0273	7.764	mg/L	0.0546	0.70%
Sn 189.927†	479.4	0.08978		0.000734	0.1796		0.00147	0.82%
Sr 421.552†	306155.7	0.5124	mg/L	0.00384	1.025	mg/L	0.0077	0.75%
Ti 334.903†	170818.5	7.092	_	0.0377	14.18		0.075	0.53%
Tl 190.801†	13.9	-0.00709		0.001239	-0.01417		0.002478	17.49%
V 292.402†	82836.5	0.3836	J .	0.00089	0.7671		0.00178	0.23%
Zn 206.200†	1210.1	0.4958		0.00460	0.9915	mg/L	0.00919	0.93%
			٠.			٠.		

upua aages

Sequence No.: 21

Sample ID: VO66 D SWC

Analyst: E£ Dilution: 2X M

Autosampler Location: 52 Date Collected: 11/2/2012 2:57:36 PM

Data Type: Original

Nebulizer Parameters: VO66 D SWC

Analyte

Back Pressure Flow 233.0 kPa 0.55 L/min All

Mean Data: V066	D SWC Mean Corrected		Calib.			Sample		
		Cono	Units	Std.Dev.	Cong	Units	Std.Dev.	RSD
Analyte	Intensity 2660434.0	104.1		1.15	cone.	OHITCS	Sca.Dev.	1.10
ScA 357.253	207908.9	104.1		0.66				0.62
ScR 361.383		0.00225		0.000213	0.00450	ma /T	0.000425	9.44
Ag 328.068†	-1077.1 242155.3	172.4	_	0.000213	344.8	J.	0.67	0.20
Al 308.215†		0.06007	J .	0.002207	0.1201		0.00441	3.67
As 188.979†	99.2			0.002207	0.1201	J .	0.00556	2.23
B 249.677†	254.4	0.1245	J .				0.00330	1.17
Ba 233.527†	4757.4	0.4888	J .	0.00571	0.9776		0.000079	2.10
Be 313.042†	819.9	0.00188	_	0.000039	0.00376		0.000079	0.06
Ca 317.933†	417925.6	40.44		0.023	80.89			3.12
Cd 228.802†	278.9	0.00339	_	0.000106	0.00678		0.000211	2.39
Co 228.616†	6027.5	0.05548	J 1	0.001329	0.1110	_	0.00266	
Cr 267.716†	726.6	0.1685	J .	0.00176	0.3370	_	0.00353	1.05
Cu 324.752†	86317.8	0.2896	_	0.00098	0.5792		0.00195	0.34
Fe 273.955†	222992.8	189.5	_	0.21	379.1	_ ·	0.42	0.11
K 766.490†	73115.8	20.73	mg/L	0.095	41.45	_	0.189	0.46
Mg 279.077†	55429.0	50.65	mg/L	0.083	101.3	mg/L	0.17	0.16
Mn 257.610†	70212.1	1.887	mg/L	0.0025	3.775	mg/L	0.0050	0.13
Mo 202.031†	-58.8	-0.00053	mg/L	0.000425	-0.00107	mg/L	0.000850	79.74
Na 589.592†	534221.1	66.13	mg/L	0.133	132.3	mg/L	0.27	0.20
Na 330.237†	1673.2	68.10	mg/L	0.848	136.2	mg/L	1.70	1.25
Ni 231.604†	271.4	0.1268	mg/L	0.00271	0.2536	mg/L	0.00542	2.14
Pb 220.353†	1706.9	0.1827	mg/L	0.00198	0.3654	mg/L	0.00396	1.08
Sb 206.836†	96.2	0.01950	mg/L	0.002397	0.03901	mg/L	0.004794	12.29
Se 196.026†	-87.5	-0.04802	mq/L	0.003448	-0.09603	mg/L	0.006896	7.18
Si 288.158†	7979.2	6.103	mg/L	0.0565	12.21	mg/L	0.113	0.93
Sn 189.927†	28.2	0.01746	ma/L	0.000620	0.03492	mg/L	0.001241	3.55
Sr 421.552†	374566.5	0.6269	J .	0.00057	1.254		0.0011	0.09
Ti 334.903†	198535.9	8.243	_	0.0149	16.49	J.	0.030	0.18
Tl 190.801†	22.3	-0.00628	_	0.000663	-0.01257	_	0.001327	10.56
V 292.402†	91240.5	0.4216	J .	0.00252	0.8431		0.00505	0.60
Zn 206.200†	1512.3	0.4210	_	0.00820	1.239		0.0164	1.32

Data Type: Original

Sequence No.: 22 Autosampler Location: 53

Sample ID: VO66 E SWC Date Collected: 11/2/2012 3:03:27 PM

Analyst: EL Analyst: EL Dilution: 2X

Nebulizer Parameters: VO66 E SWC

Analyte

Back PressureFlow233.0 kPa0.55 L/min All

Mean Data: VO66 E SWC								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2643319.8	103.5	용	0.73				0.71%
ScR 361.383	203511.3	105.1	용	0.72				0.68%
Ag 328.068†	-1434.5	0.00044	${ m mg/L}$	0.000379	0.00089	mg/L	0.000757	85.56%
Al 308.215†	197335.7	140.5		0.25	281.0	mg/L	0.50	0.18%
As 188.979†	82.9	0.05042	mg/L	0.002728	0.1008	${\tt mg/L}$	0.00546	5.41%
в 249.677†	261.9	0.1282	${\tt mg/L}$	0.00127	0.2564	mg/L	0.00255	0.99%
Ba 233.527†	3995.1	0.4099	${ m mg/L}$	0.00322	0.8198	${ t mg/L}$	0.00644	0.79%
Be 313.042†	723.5	0.00162	${ m mg/L}$	0.000002	0.00323	${ m mg/L}$	0.000004	0.13%
Ca 317.933†	375488.8	36.34	${ m mg/L}$	0.124	72.67	mg/L	0.249	0.34%
Cd 228.802†	168.4	0.00203	${ m mg/L}$	0.000040	0.00406	٠.	0.000079	1.96%
Co 228.616†	5564.9	0.05236		0.000519	0.1047	J.	0.00104	0.99%
Cr 267.716†	672.3	0.1559	mg/L	0.00146	0.3118	mg/L	0.00293	0.94%
Cu 324.752†	69546.2	0.2347	mg/L	0.00037	0.4695	mg/L	0.00074	0.16%
Fe 273.955†	200890.2	170.7	${ m mg/L}$	0.30	341.5	_	0.59	0.17%
K 766.490†	60517.5	17.16	mg/L	0.022	34.31	${ m mg/L}$	0.044	0.13%
Mg 279.077†	50143.9	45.82	${\tt mg/L}$	0.121	91.65	${ m mg/L}$	0.242	0.26%
Mn 257.610†	68040.4	1.829		0.0045	3.658	_	0.0090	0.25%
Mo 202.031†	-49.3	-0.00057	${\tt mg/L}$	0.000077	-0.00115	2.	0.000154	13.41%
Na 589.592†	523159.4	64.76	${ m mg/L}$	0.082	129.5	_	0.16	0.13%
Na 330.237†	1639.6	66.57		0.408	133.1		0.82	0.61%
Ni 231.604†	270.1	0.1262	_	0.00060	0.2523	٥.	0.00121	0.48%
Pb 220.353†	564.1	0.08513	${\tt mg/L}$	0.000362	0.1703	mg/L	0.00072	0.43૬
Sb 206.836†	88.9	0.01760	${\tt mg/L}$	0.002423	0.03521	_	0.004846	13.76%
Se 196.026†	-76.9	-0.04223	J.	0.001330	-0.08445		0.002659	3.15%
Si 288.158†	10756.4	8.224		0.0255	16.45	_	0.051	0.31%
Sn 189.927†	-12.7	0.00934	${ t mg/L}$	0.000778	0.01868	mg/L	0.001555	8.32%
Sr 421.552†	310288.6	0.5193	${ m mg/L}$	0.00303	1.039	${ m mg/L}$	0.0061	0.58%
Ti 334.903†	168479.9	6.995	${\tt mg/L}$	0.0221	13.99		0.044	0.32%
Tl 190.801†	19.3	-0.00569		0.001020	-0.01138	_	0.002040	17.93%
V 292.402†	84117.9	0.3896	_	0.00097	0.7791		0.00195	0.25%
Zn 206.200†	1191.4	0.4881	mg/L	0.00564	0.9762	mg/L	0.01129	1.16%

Sequence No.: 23 Sample ID: CV

Autosampler Location: 7 Date Collected: 11/2/2012 3:09:17 PM

Data Type: Original

Analyst: EL Dilution: 1X

All

Nebulizer Parameters: CV

Analyte

Back Pressure Flow 233.0 kPa 0.55 L/min

			- 					
Mean Data: CV	_							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2639541.5	103.3		0.50				0.48%
ScR 361.383	206574.8	106.7		0.83				0.78%
Ag 328.068†	291620.3	0.9738		0.00276	0.9738	-	0.00276	0.28%
Al 308.215†	2856.6	1.993	_	0.0224	1.993	J.	0.0224	1.12%
As 188.979†	4570.0	1.959	_	0.0066	1.959	J .	0.0066	0.34%
B 249.677†	1937.4	0.9487	mg/L	0.00637	0.9487		0.00637	0.67%
Ba 233.527†	9413.8	0.9845	mg/L	0.00905	0.9845	- ·	0.00905	0.92%
Be 313.042†	251095.9	0.9655	mg/L	0.00749	0.9655		0.00749	0.78%
Ca 317.933†	20143.4	1.949	mg/L	0.0198	1.949	mg/L	0.0198	1.01%
Cd 228.802†	80903.0	1.006	mg/L	0.0029	1.006	mg/L	0.0029	0.29%
Co 228.616†	80666.0	0.9655	mg/L	0.00168	0.9655	mg/L	0.00168	0.17%
Cr 267.716†	4154.2	0.9670	mg/L	0.00613	0.9670	mg/L	0.00613	0.63%
Cu 324.752†	327532.3	1.048	mg/L	0.0005	1.048	mg/L	0.0005	0.04%
Fe 273.955†	2390.0	2.031	mg/L	0.0183	2.031	mg/L	0.0183	0.90%
K 766.490†	72882.2	20.66	mg/L	0.137	20.66	mg/L	0.137	0.66%
Mg 279.077†	2252.7	2.066	mg/L	0.0211	2.066	mg/L	0.0211	1.02%
Mn 257.610†	36765.1	0.9893	mg/L	0.00708	0.9893	mg/L	0.00708	0.72%
Mo 202.031†	16014.7	0.9413	mg/L	0.00299	0.9413	mg/L	0.00299	0.32%
Na 589.592†	408344.6	50.55	mg/L	0.338	50.55	mg/L	0.338	0.67%
Na 330.237†	1291.0	51.40	mg/L	0.522	51.40	mg/L	0.522	1.02%
Ni 231.604†	2057.3	0.9615	mg/L	0.00824	0.9615	mg/L	0.00824	0.86%
Pb 220,353†	25021.5	1.911	mg/L	0.0050	1.911	mg/L	0.0050	0.26%
Sb 206.836†	6913.7	2.042	mg/L	0.0079	2.042	mg/L	0.0079	0.38%
Se 196.026†	3505.3	1.907	mg/L	0.0010	1.907	mg/L	0.0010	0.05%
Si 288.158†	2705.6	2.074	mq/L	0.0231	2.074	mg/L	0.0231	1.11%
Sn 189.927†	5532.3	0.9037		0.00313	0.9037	mg/L	0.00313	0.35%
Sr 421.552†	597919.5	1.001		0.0085	1.001	mg/L	0.0085	0.85%
Ti 334.903†	24192.0	1.004		0.0068	1.004		0.0068	0.68%
Tl 190.801†	6810.2	1.898		0.0059	1.898		0.0059	0.31%
V 292.402†	203485.4	1.003	_	0.0037	1.003	J .	0.0037	0.36%
Zn 206.200†	2501.4	1.022	_	0.0111	1.022		0.0111	1.09%
211 200.2001	2002.		· 5 · —			J .		

Method: ARIIEC6AN.552AS

Data Type: Original

Autosampler Location: 1 Sequence No.: 24

Sample ID: CB Date Collected: 11/2/2012 3:15:20 PM

Analyst: EL Dilution: 1X

Nebulizer Parameters: CB

Analyte

Back Pressure Flow 233.0 kPa 0.55 L/min All

Mean Data: CB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev.	
ScA 357.253	2668092.1	104.4	ફ	1.12				1.07%
ScR 361.383	203969.9	105.3	8	0.28				0.27%
Ag 328.068†	109.5	0.00037	mg/L	0.000312	0.00037	mg/L	0.000312	85.48%
Al 308.215†	10.7	0.00759	mg/L	0.012354	0.00759	mg/L	0.012354	162.88%
As 188.979†	2.6	0.00113	mg/L	0.001082	0.00113	mg/L	0.001082	95.9 9 %
в 249.677†	7.4	0.00364	mg/L	0.000374	0.00364	mg/L	0.000374	10.28%
Ba 233.527†	-6.2	-0.00065	mg/L	0.000321	-0.00065	mg/L	0.000321	49.35%
Be 313.042†	-1.2	0.00000	mg/L	0.000028	0.00000	mg/L	0.000028	631.00%
Ca 317.933†	-23.5	-0.00227	mg/L	0.002276	-0.00227	mg/L	0.002276	100.21%
Cd 228.802†	-6.3	-0.00008	mg/L	0.000041	-0.00008	mg/L	0.000041	50.22%
Co 228.616†	-1.0	-0.00001	mg/L	0.000045	-0.00001	mg/L	0.000045	363.08%
Cr 267.716†	-5.4	-0.00126	mg/L	0.000577	-0.00126	mg/L	0.000577	45.60%
Cu 324.752†	-92.5	-0.00030	mg/L	0.000074	-0.00030	mg/L	0.000074	25.04%
Fe 273.955†	-1.9	-0.00159	mg/L	0.001194	-0.00159	mg/L	0.001194	74.92%
K 766.490†	149.3	0.04232	mg/L	0.006279	0.04232	mg/L	0.006279	14.84%
Mg 279.077†	-1.9	-0.00173	mg/L	0.006622	-0.00173	mg/L	0.006622	383.69%
Mn 257.610†	-1.9	-0.00005	mg/L	0.000031	-0.00005	mg/L	0.000031	59.43%
Mo 202.031†	6.8	0.00040	mg/L	0.000257	0.00040	mg/L	0.000257	64.48%
Na 589.592†	388.9	0.04814	mg/L	0.008565	0.04814	mg/L	0.008565	17.79%
Na 330.237†	0.3	0.01232	mg/L	0.237011	0.01232	mg/L	0.237011	>999.9%
Ni 231.604†	0.6	0.00029	mg/L	0.001928	0.00029	mg/L	0.001928	670.99%
Pb 220.353†	-12.7	-0.00097	mg/L	0.000486	-0.00097	mg/L	0.000486	50.11%
Sb 206.836†	-7.8	-0.00226	mg/L	0.000863	-0.00226	mg/L	0.000863	38.13%
Se 196.026†	8.2	0.00447	mg/L	0.004013	0.00447	mg/L	0.004013	89.83%
Si 288.158†	-0.6	-0.00048	mg/L	0.002837	-0.00048	mg/L	0.002837	596.68%
Sn 189.927†	2.5	0.00040	mg/L	0.000392	0.00040	mg/L	0.000392	97.75%
Sr 421.552†	7.0	0.00001	mg/L	0.000051	0.00001	mg/L	0.000051	440.19%
Ti 334.903†	7.2	0.00030	mg/L	0.000332	0.00030		0.000332	
Tl 190.801†	2.1	0.00058	mg/L	0.001990	0.00058	mg/L	0.001990	342.08%
V 292.402†	-11.8	-0.00006	mg/L	0.000054	-0.00006	mg/L	0.000054	83.18%
Zn 206.200†	0.8	0.00034	mg/L	0.000319	0.00034	mg/L	0.000319	95.10%

Sequence No.: 25

Sample ID: VO66 F SWC

Analyst: EL Dilution: 2X Autosampler Location: 54

Date Collected: 11/2/2012 3:21:18 PM

Data Type: Original

Nebulizer Parameters: VO66 F SWC

Analyte Back Pressure

Flow 0.55 L/min All 233.0 kPa

Mean Data: V066 F SWC								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	R S D
ScA 357.253	2609825.7	102.2	olo Olo	0.44				0.43%
ScR 361.383	203502.2	105.1	Q ₀	0.71				0.68%
Ag 328.068†	-1312.3	0.00074	mg/L	0.000312	0.00147	mg/L	0.000625	42.37%
Al 308.215†	190890.6	135.9	mg/L	6.14	271.8	mg/L	12.29	4.52%
As 188.979†	101.5	0.05738	${\tt mg/L}$	0.000844	0.1148	mg/L	0.00169	1.47%
B 249.677†	204.6	0.1001	mg/L	0.00530	0.2001	mg/L	0.01060	5.29%
Ba 233.527†	4293.1	0.4413	${\tt mg/L}$	0.02391	0.8826	mg/L	0.04782	5.42%
Be 313.042†	726.6	0.00159	mg/L	0.000158	0.00318	mg/L	0.000317	9.97%
Ca 317.933†	351604.1	34.02	mg/L	1.489	68.05	mg/L	2.978	4.38%
Cd 228.802†	217.2	0.00262	mg/L	0.000074	0.00524	mg/L	0.000147	2.81%
Co 228.616†	6043.9	0.05897	${ m mg/L}$	0.000349	0.1179	mg/L	0.00070	0.59%
Cr 267.716†	687.0	0.1594	${ m mg/L}$	0.00925	0.3187	mg/L	0.01850	5.80%
Cu 324.752†	74006.0	0.2488	${ m mg/L}$	0.00122	0.4976	mg/L	0.00245	0.498
Fe 273.955†	195569.6	166.2	mg/L	7.27	332.5	mg/L	14.53	4.37%
K 766.490†	57327.5	16.25	mg/L	0.786	32.50	mg/L	1.573	4.84%
Mg 279.077†	48835.2	44.63	${ m mg/L}$	1.942	89.25	mg/L	3.885	4.35%
Mn 257.610†	63805.6	1.715	mg/L	0.0754	3.430		0.1508	4.39%
Mo 202.031†	-46.6	-0.00050	mg/L	0.000215	-0.00100	_	0.000429	42.90%
Na 589.592†	475247.8	58.83	${ m mg/L}$	2.606	117.7	_	5.21	4.43%
Na 330.237†	1505.3	61.12	${ m mg/L}$	3.113	122.2	_	6.23	5.09%
Ni 231.604†	294.4	0.1375	${ m mg/L}$	0.00534	0.2751	-	0.01069	3.89%
Pb 220.353†	892.2	0.1087	mg/L	0.00213	0.2174	_	0.00425	1.96%
Sb 206.836†	89.6	0.01773	_	0.001721	0.03546	_	0.003442	9.71%
Se 196.026†	-68.4	-0.03761	mg/L	0.003894	-0.07522	_	0.007788	10.35€
Si 288.158†	9137.8	6.988	${ m mg/L}$	0.3919	13.98	2	0.784	5.61 ই
Sn 189.927†	5.2	0.01157	mg/L	0.000372	0.02314	-	0.000744	3.22€
Sr 421.552†	294590.6	0.4930	${ m mg/L}$	0.02317	0.9861	mg/L	0.04635	4.70%
Ti 334.903†	157241.2	6.529	mg/L	0.2919	13.06	-	0.584	4.47%
Tl 190.801†	17.4	-0.00578	_	0.001317	-0.01155	_	0.002634	22.80%
V 292.402†	87754.8	0.4081	_	0.00138	0.8163	J .	0.00275	0.34%
Zn 206.200†	1234.1	0.5055	mg/L	0.02894	1.011	mg/L	0.0579	5.73%

Sequence No.: 26

Sample ID: VO66 G SWC Analyst: EL

Dilution: 2X

Autosampler Location: 55

Date Collected: 11/2/2012 3:27:08 PM

Data Type: Original

Nebulizer Parameters: VO66 G SWC

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: V066 G	Mean Data: V066 G SWC								
	Mean Corrected		Calib.			Sample			
Analyte	Intensity		Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev.	RSD	
ScA 357.253	2572571.6	100.7	용	0.59				0.59%	
ScR 361.383	200032.4	103.3	ક	1.21				1.17%	
Ag 328.068†	-1377.0	0.00059	mg/L	0.000199	0.00118	_	0.000398	33.67%	
Al 308.215†	197347.0	140.5		0.27	281.0	_	0.53	0.19%	
As 188.979†	90.2	0.05365	mg/L	0.000980	0.1073	${\tt mg/L}$	0.00196	1.83%	
В 249.677†	254.8	0.1247	mg/L	0.00386	0.2495		0.00771	3.09%	
Ba 233.527†	3932.3	0.4035	mg/L	0.00487	0.8069		0.00973	1.21%	
Be 313.042†	713.2	0.00158	mg/L	0.000055	0.00317	mg/L	0.000110	3.48%	
Ca 317.933†	370053.2	35.81	mg/L	0.041	71.62	mg/L	0.082	0.11%	
Cd 228.802†	174.7	0.00210	mg/L	0.000068	0.00420	_	0.000136	3.24%	
Co 228.616†	5580.1	0.05247	mg/L	0.000600	0.1049		0.00120	1.14%	
Cr 267.716†	696.5	0.1616		0.00138	0.3231		0.00277	0.86%	
Cu 324.752†	70054.0	0.2362	mg/L	0.00025	0.4723	mg/L	0.00050	0.11%	
Fe 273.955†	198302.7	168.5	mg/L	0.54	337.1	mg/L	1.08	0.32%	
K 766.490†	61290.3	17.37	mg/L	0.051	34.75	_	0.103	0.30%	
Mg 279.077†	49906.3	45.61	mg/L	0.038	91.21	mg/L	0.075	0.08%	
Mn 257.610†	63682.0	1.712		0.0028	3.424		0.0056	0.16%	
Mo 202.031†	27.4	0.00394		0.000498	0.00788	${\tt mg/L}$	0.000997	12.65%	
Na 589.592†	500143.2	61.91	mg/L	0.184	123.8	mg/L	0.37	0.30%	
Na 330.237†	1556.9	63.28	mg/L	0.993	126.6	${ t mg/L}$	1.99	1.57%	
Ni 231.604†	289.3	0.1351	mg/L	0.00442	0.2703	mg/L	0.00885	3.27%	
Pb 220.353†	718.3	0.09700	mg/L	0.001278	0.1940	mg/L	0.00256	1.32%	
Sb 206.836†	86.8	0.01713	mg/L	0.001154	0.03426	mg/L	0.002307	6.74%	
Se 196.026†	-72.3	-0.03976	mg/L	0.001796	-0.07952	${\tt mg/L}$	0.003592	4.52%	
Si 288.158†	9374.9	7.169	mg/L	0.0401	14.34	${ m mg/L}$	0.080	0.56%	
Sn 189.927+	-10.0	0.00967	mg/L	0.000520	0.01934	mg/L	0.001041	5.38%	
Sr 421.552†	310900.7	0.5203	mg/L	0.00268	1.041	mg/L	0.0054	0.52%	
Ti 334.903†	169898.9	7.054	mg/L	0.0094	14.11	${ m mg/L}$	0.019	0.13%	
Tl 190.801†	20.9	-0.00516	${\tt mg/L}$	0.002137	-0.01032	mg/L	0.004274	41.43%	
V 292.402†	83460.0	0.3866	mg/L	0.00081	0.7731	${ m mg/L}$	0.00162	0.21%	
Zn 206.200†	1207.7	0.4947	mg/L	0.00676	0.9894	mg/L	0.01352	1.37%	

upus aages

Sequence No.: 27 Autosampler Location: 56

Date Collected: 11/2/2012 3:32:58 PM Sample ID: VO66 H SWC Data Type: Original

Analyst: EL Dilution: 2X

All

Nebulizer Parameters: VO66 H SWC

Back PressureFlow233.0 kPa0.55 L/min Analyte

Mean Data: V066 H	Mean Data: V066 H SWC								
	Mean Corrected		Calib.			Sample			
Analyte	Intensity		Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev.		
ScA 357.253	2657613.6	104.0		0.51				0.49%	
ScR 361.383	206117.0	106.5		1.16				1.09%	
Ag 328.068†	-992.4	0.00202	mg/L	0.000179	0.00405	_	0.000357	8.82%	
A1 308.215†	205669.7	146.4		0.27	292.9		0.54	0.18%	
As 188.979†	107.7	0.06127	J .	0.001718	0.1225	_	0.00344	2.80%	
B 249.677†	264.1	0.1293		0.00223	0.2586	J .	0.00445	1.72 ધ	
Ba 233.527†	4252.2	0.4367	mg/L	0.00609	0.8734	mg/L	0.01218	1.39%	
Be 313.042†	705.2	0.00155	${ m mg/L}$	0.000070	0.00310	mg/L	0.000140	4.52%	
Ca 317.933†	375142.0	36.30	${ m mg/L}$	0.098	72.61		0.196	0.27%	
Cd 228.802†	250.7	0.00303		0.000111	0.00606		0.000221	3.66%	
Co 228.616†	5505.0	0.05143	${ m mg/L}$	0.000170	0.1029		0.00034	0.33%	
Cr 267.716†	674.0	0.1563		0.00334	0.3127		0.00668	2.14%	
Cu 324.752†	78464.1	0.2634		0.00017	0.5269		0.00035	0.07%	
Fe 273.955†	203667.5	173.1	${ m mg/L}$	0.81	346.2	mg/L	1.62	0.47%	
K 766.490†	64326.3	18.23	${ m mg/L}$	0.024	36.47	mg/L	0.048	0.13%	
Mg 279.077†	49554.3	45.28	${\tt mg/L}$	0.108	90.56	_	0.217	0.24%	
Mn 257.610†	63324.3	1.702		0.0030	3.404	_	0.0060	0.18%	
Mo 202.031†	-45.2	-0.00020	${ m mg/L}$	0.000451	-0.00041		0.000901		
Na 589.592†	506300.7	62.67	mg/L	0.160	125.3		0.32	0.25%	
Na 330.237†	1570.9	63.81	mg/L	0.853	127.6	mg/L	1.71	1.34%	
Ni 231.604†	261.0	0.1219	mg/L	0.00187	0.2439	mg/L	0.00373	1.53%	
Pb 220.353†	1293.6	0.1427	mg/L	0.00028	0.2855	mg/L	0.00056	0.20%	
Sb 206.836†	85.0	0.01641	${ m mg/L}$	0.001689	0.03282	mg/L	0.003378	10.29%	
Se 196.026†	-76.7	-0.04211	mg/L	0.003116	-0.08423	mg/L	0.006232	7.40₺	
Si 288.158†	8251.8	6.311	mg/L	0.0923	12.62	mg/L	0.185	1.46%	
Sn 189.927†	27.9	0.01597	mg/L	0.000892	0.03194	mg/L	0.001784	5.59%	
Sr 421.552†	328565.0	0.5499	mg/L	0.00210	1.100	mg/L	0.0042	0.38%	
Tı 334.903†	170933.2	7.097	mg/L	0.0062	14.19	mg/L	0.012	0.09%	
T1 190.801†	15.2	-0.00677	mg/L	0.001141	-0.01353	J .	0.002281	16.86%	
V 292.402†	83500.0	0.3862	mg/L	0.00030	0.7724	mg/L	0.00060	980.0	
Zn 206.200†	1400.9	0.5738	${ m mg/L}$	0.00640	1.148	mg/L	0.0128	1.12%	

UDUO: 00399

Sequence No.: 28 Sample ID: V066 I SWC

Analyst: EL Dilution: 2X

Autosampler Location: 57
Date Collected: 11/2/2012 3:38:48 PM

Data Type: Original

Nebulizer Parameters: VO66 I SWC

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: V066 I	SWC							
	Mean Corrected		Calib.			Sample	_	
Analyte	Intensity		Units	$\mathtt{Std.Dev.}$	Conc.	Units	Std.Dev.	
ScA 357.253	2585036.2	101.2		0.65				0.64%
ScR 361.383	200970.4	103.8		1.06				1.02%
Ag 328.068†	-1349.2	0.00006	mg/L	0.000234	0.00012	_	0.000468	
Al 308.215†	175402.3	124.9	${ m mg/L}$	1.16	249.8	_	2.32	0.93%
As 188.979†	67.4	0.04340	${ m mg/L}$	0.001063	0.08680	J .	0.002127	2.45%
в 249.677†	160.0	0.07826	${\tt mg/L}$	0.003500	0.1565	J.	0.00700	4.47%
Ba 233.527†	4114.0	0.4233	mg/L	0.00448	0.8466	2.	0.00897	1.06%
Be 313.042†	603.9	0.00123	mg/L	0.000038	0.00247	_	0.000076	3.09%
Ca 317.933†	389109.2	37.65	mg/L	0.436	75.31	J .	0.872	1.16%
Cd 228.802†	135.6	0.00163	mg/L	0.000166	0.00327		0.000332	10.14%
Co 228.616†	5361.9	0.05047	mg/L	0.000509	0.1009		0.00102	1.01%
Cr 267.716†	613.6	0.1422	mg/L	0.00162	0.2845		0.00323	1.14%
Cu 324.752†	49758.2	0.1698	mg/L	0.00043	0.3397	mg/L	0.00086	0.25%
Fe 273.955†	177846.9	151.2	mg/L	1.05	302.3	J .	2,09	0.69%
K 766.490†	46060.8	13.06	${ m mg/L}$	0.117	26.11		0.234	0.90%
Mg 279.077†	43611.8	39.85	mg/L	0.423	79.70	mg/L	0.847	1.06%
Mn 257.610†	66011.6	1.775	mg/L	0.0184	3.549	mg/L	0.0368	1.04%
Mo 202.031†	-42.2	-0.00041	mg/L	0.000148	-0.00081	mg/L	0.000297	36.57%
Na 589.592†	409807.2	50.73	mg/L	0.452	101.5	mg/L	0.90	0.89%
Na 330.237†	1263.4	51.53	mg/L	0.615	103.1		1.23	1.19%
Ni 231.604†	261.4	0.1221	mg/L	0.00258	0.2442	mg/L	0.00516	2.11%
Pb 220.353†	269.4	0.05817	mg/L	0.000242	0.1163	mg/L	0.00048	0.42%
Sb 206.836†	75.2	0.01527	mg/L	0.001090	0.03055	mg/L	0.002181	7.14%
Se 196.026†	-74.0	-0.04065	mg/L	0.006585	-0.08130	mg/L	0.013170	16.20%
Si 288.158†	6049.5	4.627	mg/L	0.0473	9.254	mg/L	0.0946	1.02%
Sn 189.927t	-26.9	0.00709	mg/L	0.000892	0.01418	mg/L	0.001784	12.59%
Sr 421.552†	288477.7	0.4828	mg/L	0.00365	0.9656	mg/L	0.00730	0.76%
Ti 334.903†	164128.7	6.815	mg/L	0.0702	13.63	mg/L	0.140	1.03%
T1 190.801†	28.5	-0.00273	_	0.002396	-0.00546	mg/L	0.004792	87.85%
V 292.402†	78012.5	0.3617	_	0.00189	0.7234	mg/L	0.00378	0.52%
Zn 206.200†	979.0	0.4012	mg/L	0.00530	0.8024	mg/L	0.01060	1.32%

Date: 11/2/2012 3:48:30 PM

Sequence No.: 29 Autosampler Location: 58

Sample ID: V066 J SWC Date Collected: 11/2/2012 3:44:39 PM
Analyst: EL Data Type: Original

Analyst: EL Dilution: 2X

·/ · · ·

Nebulizer Parameters: VO66 J SWC

Analyte Back Pressure Flow All 233.0 kPa 0.55 L/min

Mean Data: VO66 J	Mean Data: VO66 J SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2610668.9	102.2	ક	0.41				0.40%
ScR 361.383	202205.7	104.4		0.79				0.75%
Ag 328.068†	-1296.7	0.00042	${ m mg/L}$	0.000029	0.00083		0.000058	6.99%
Al 308.215†	177808.7	126.6		0.12	253.2		0.24	0.09%
As 188.979†	94.6	0.05465		0.001658	0.1093		0.00332	3.03%
B 249.677†	237.7	0.1163	mg/L	0.00074	0.2327	${ m mg/L}$	0.00149	0.64%
Ba 233.527†	4189.8	0.4309	mg/L	0.00527	0.8617	mg/L	0.01053	1.22%
Be 313.042†	644.6	0.00140	mg/L	0.000074	0.00280	mg/L	0.000147	5.26%
Ca 317.933†	411513.1	39.82	mg/L	0.052	79.64		0.105	0.13%
Cd 228.802†	147.2	0.00175	mg/L	0.000041	0.00350	mg/L	0.000082	2.35%
Co 228.616†	5303.3	0.05002	mg/L	0.000130	0.1000	${\tt mg/L}$	0.00026	0.26%
Cr 267.716†	626.8	0.1453	${\tt mg/L}$	0.00126	0.2906	mg/L	0.00251	0.86%
Cu 324.752†	61728.6	0.2088	mg/L	0.00092	0.4177	mg/L	0.00183	0.44%
Fe 273.955†	186710.1	158.7	mg/L	0.74	317.4	mg/L	1.47	0.46%
K 766.490†	51177.7	14.51	mg/L	0.051	29.02	mg/L	0.102	0.35%
Mg 279.077t	45621.6	41.69	mg/L	0.094	83.38	mg/L	0.188	0.23%
Mn 257.610†	72973.8	1.962	mg/L	0.0037	3.924	mg/L	0.0074	0.19%
Mo 202.031†	-24.4	0.00065	mg/L	0.000155	0.00131	mg/L	0.000310	23.67%
Na 589.592†	467449.5	57.86	mg/L	0.062	115.7	${ m mg/L}$	0.12	0.11%
Na 330.237†	1454.4	59.10	mg/L	0.684	118.2	mg/L	1.37	1.16%
Ni 231.604†	260.3	0.1216	mg/L	0.00177	0.2432	mg/L	0.00354	1.45%
Pb 220.353†	547.7	0.07967	mg/L	0.000366	0.1593	mg/L	0.00073	0.46%
Sb 206.836†	75.5	0.01438	mg/L	0.003210	0.02876	mg/L	0.006419	22.32%
Se 196.026†	-66.9	-0.03676	mg/L	0.001844	-0.07352	mg/L	0.003689	5.02%
Si 288.158†	8949.3	6.843	mg/L	0.0881	13.69	mg/L	0.176	1.29%
Sn 189.927†	-6.5	0.01085	mg/L	0.000736	0.02169	mg/L	0.001472	6.78%
Sr 421.552†	313331.6	0.5244	mg/L	0.00094	1.049	mg/L	0.0019	0.18%
Ti 334.903†	159434.6	6.619	mg/L	0.0102	13.24	mg/L	0.020	0.15%
Tl 190.801†	20.3	-0.00505	mg/L	0.002799	-0.01011	mg/L	0.005598	55.39%
V 292.402†	77498.3	0.3587	mg/L	0.00160	0.7174	mg/L	0.00321	0.45%
Zn 206.200†	1089.1	0.4463	mg/L	0.00494	0.8926	${ m mg/L}$	0.00989	1.11%

Date: 11/2/2012 3:54:20 PM Page 30 Method: ARIIEC6AN.552AS

Sequence No.: 30 Sample ID: VO66 K SWC

Analyst: EL Dilution: 2X Autosampler Location: 59

Date Collected: 11/2/2012 3:50:29 PM

Data Type: Original

Nebulizer Parameters: V066 K SWC

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: V066 K	Mean Data: V066 K SWC								
	Mean Corrected		Calib.			Sample	€		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD	
ScA 357.253	2609601.0	102.2	8	0.17				0.17%	
ScR 361.383	205376.0	106.1	ક	3.70				3.49%	
Ag 328.068†	-883.3	0.00236	mg/L	0.000126	0.00472	mg/L	0.000253	5.35%	
Al 308.215†	212505.9	151.3	mg/L	5.13	302.6	${ m mg/L}$	10.25	3.39%	
As 188.979†	96.5	0.05716	mg/L	0.000799	0.1143	mg/L	0.00160	1.40%	
B 249.677†	234.3	0.1146	mg/L	0.00278	0.2293		0.00555	2.42%	
Ba 233.527†	4785.6	0.4924	${ m mg/L}$	0.01569	0.9849	mg/L	0.03137	3.19%	
Be 313.042†	715.7	0.00155		0.000149	0.00311	${ m mg/L}$	0.000297	9.57%	
Ca 317.933†	399980.4	38.71	mg/L	1.249	77.41	${ m mg/L}$	2.497	3.23%	
Cd 228.802†	310.1	0.00378	${ m mg/L}$	0.000082	0.00757		0.000164	2.17%	
Co 228.616†	5907.8	0.05566	mg/L	0.000537	0.1113	mg/L	0.00107	0.97%	
Cr 267.716†	738.0	0.1711	mg/L	0.00531	0.3423	${ m mg/L}$	0.01062	3.10%	
Cu 324.752†	80248.4	0.2692	${ m mg/L}$	0.00021	0.5384	mg/L	0.00042	0.08%	
Fe 273.955†	205720.1	174.9	${ m mg/L}$	5.93	349.7		11.86	3.39%	
K 766.490†	59653.5	16.91	_	0.667	33.82	mg/L	1.334	3.95૬	
Mg 279.077†	50185.7	45.86		1.579	91.72	mg/L	3.159	3.44%	
Mn 257.610†	77159.1	2.074		0.0696	4.149		0.1392	3.36%	
Mo 202.031†	-47.6	-0.00025		0.000490	-0.00050		0.000979		
Na 589.592†	475943.1	58.91	_	2.036	117.8	_	4.07	3.46%	
Na 330.237†	1462.4	59.53	mg/L	1.936	119.1	mg/L	3.87	3.25%	
Ni 231.604†	284.0	0.1327	_	0.00482	0.2654	_	0.00963	3.63%	
Pb 220.353†	1909.4	0.1914		0.00118	0.3829	_	0.00236	0.62%	
Sb 206.836†	90.7	0.01812	_	0.001792	0.03624	_	0.003584	9.89%	
Se 196.026†	-78.6	-0.04317	2.	0.002214	-0.08634		0.004429	5.13%	
Si 288.158†	8724.9	6.672		0.1999	13.34		0.400	3.00%	
Sn 189.927†	39.7	0.01855	_	0.001596	0.03711		0.003192	8.60%	
Sr 421.552†	338409.5	0.5664	mg/L	0.01953	1.133	_	0.0391	3.45%	
Ti 334.903†	178704.7	7.420	_	0.2512	14.84		0.502	3.38%	
Tl 190.801†	29.9	-0.00351	_	0.003037	-0.00701		0.006073	86.61%	
V 292.402†	86206.6	0.3991		0.00181	0.7983		0.00362	0.45₺	
Zn 206.200†	1404.9	0.5755	mg/L	0.01756	1.151	mg/L	0.0351	3.05%	

Autosampler Location: 60 Sequence No.: 31

Date Collected: 11/2/2012 3:56:19 PM Sample ID: VO66 L SWC Data Type: Original

Analyst: EL Dilution: 2X

Zn 206.200†

Nebulizer Parameters: VO66 L SWC

Back Pressure Flow

233.0 kPa 0.55 L/min All

Mean Data: V066 L SWC Mean Corrected Calib. Sample Intensity Conc. Units Std.Dev. ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† 0.5807 mg/L 376.5 mg/L 37.22 mg/L 97.51 mg/L 4.711 mg/L -0.00230 mg/L 125.8 mg/L 0.014 0.14 0.118 0.088 0.000497 21.588 0.14 0.118 0.12 0.898 0.00473 1.90 0.1988 0.368 Cr 267.716† 717.5 86529.5 221508.9 Cu 324.752† Fe 273.955† 86529.5 0.2904 mg/L 0.00053 0.5807 mg/L 221508.9 188.3 mg/L 0.98 376.5 mg/L 65652.9 18.61 mg/L 0.036 37.22 mg/L 53357.0 48.76 mg/L 0.232 97.51 mg/L 87614.9 2.355 mg/L 0.0084 4.711 mg/L -69.3 -0.00115 mg/L 0.000248 -0.00230 mg/L 508040.0 62.89 mg/L 0.071 125.8 mg/L 1562.3 63.55 mg/L 0.562 127.1 mg/L 0.562 127.1 mg/L 0.00236 0.3385 mg/L K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† 1562.3 63.55 mg/L 0.562 127.1 mg/L 0.89% 0.1192 mg/L 0.00236 0.2385 mg/L 0.00473 1.98% 0.2230 mg/L 0.00103 0.4459 mg/L 0.00206 0.46% 0.02244 mg/L 0.000318 0.04488 mg/L 0.000636 1.42% -0.04815 mg/L 0.003740 -0.09630 mg/L 0.007479 7.77% 5.877 mg/L 0.0339 11.75 mg/L 0.068 0.58% 0.01803 mg/L 0.000647 0.03607 mg/L 0.001294 3.59% 0.6303 mg/L 0.00266 1.261 mg/L 0.0053 0.42% 7.660 mg/L 0.00213 15.32 mg/L 0.0043 0.28% -0.00614 mg/L 0.001450 -0.01228 mg/L 0.0043 0.28% Na 330.237† 255.2 0.1192 mg/L
2239.4 0.2230 mg/L
108.0 0.02244 mg/L
-87.8 -0.04815 mg/L
7684.2 5.877 mg/L
32.5 0.01803 mg/L
376617.3 0.6303 mg/L
184486.5 7.660 mg/L Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† 376617.3 0.6303 mg/L 0.00266 1.261 mg/L 184486.5 7.660 mg/L 0.00213 15.32 mg/L 23.0 -0.00614 mg/L 0.000450 -0.01228 mg/L 90815.5 0.4201 mg/L 0.00120 0.8403 mg/L 1489.7 0.6102 mg/L 0.00296 1.220 mg/L Sr 421.552† 0.043 0.200 0.000899 7.32* 0.00240 0.29* 0.0059 0.49* Ti 334.903† Tl 190.801† V 292.402†

Date: 11/2/2012 4:06:00 PM

Sequence No.: 32 Autosampler Location: 61

Sample ID: VO66 M SWC Date Collected: 11/2/2012 4:02:09 PM Data Type: Original

Analyst: EL Dilution: 2X

Nebulizer Parameters: V066 M SWC

Analyte Back Pressure

Flow
0.55 L/min All 233.0 kPa

Mean Data: VO66 M SWC								
	Mean Corrected		Calib.			Sample	:	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2651909.5	103.8	બ	0.23				0.22€
ScR 361.383	206794.5	106.8	⁹ 6	0.38				0.36%
Ag 328.068†	-1345.3	0.00061	mg/L	0.000269	0.00122	mg/L	0.000538	43.97%
Al 308.215†	179711.2	127.9	mg/L	0.39	255.9	mg/L	0.77	0.30%
As 188.979†	108.2	0.05954		0.003242	0.1191	mg/L	0.00648	5.45%
B 249.677†	233.4	0.1143		0.00330	0.2285	mg/L	0.00660	2.89%
Ba 233.527†	3802.2	0.3900	${ m mg/L}$	0.00138	0.7799	mg/L	0.00277	0.36%
Be 313.042†	668.9	0.00148		0.000033	0.00295	${\tt mg/L}$	0.000066	2.23%
Ca 317.933†	347194.6	33.60		0.026	67.20	${ m mg/L}$	0.052	0.08%
Cd 228.802†	175.2	0.00209	mg/L	0.000104	0.00418	J.	0.000208	4.97%
Co 228.616†	5316.8	0.05086		0.000116	0.1017	mg/L	0.00023	0.23%
Cr 267.716†	677.5	0.1572	_	0.00058	0.3143	mg/L	0.00117	0.37%
Cu 324.752†	69467.3	0.2344		0.00056	0.4687	mg/L	0.00112	0.24%
Fe 273.955†	195542.1	166.2		0.31	332.4	mg/L	0.61	0.18%
K 766.490†	57559.5	16.32		0.057	32.63		0.114	0.35%
Mg 279.077†	49685.4	45.41	_	0.089	90.81		0.178	0.20%
Mn 257.610†	63050.6	1.695	٠.	0.0057	3.390		0.0113	0.33%
Mo 202.031†	-33.0	0.00013	J .	0.000147	0.00026		0.000293	114.31%
Na 589.592†	492689.3	60.99		0.073	122.0		0.15	0.12%
Na 330.237†	1521.6	61.71		0.318	123.4	_	0.64	0.52%
Ni 231.604†	277.0	0.1294		0.00148	0.2588	_	0.00297	1.15%
Pb 220.353†	751.3	0.09516		0.000072	0.1903		0.00014	0.08%
sb 206.836†	78.8	0.01398	J .	0.002180	0.02796	J .	0.004360	15.59%
Se 196.026†	-65.8	-0.03618		0.003372	-0.07236		0.006744	9.32%
Si 288.158†	9124.5	6.978		0.0148	13.96		0.030	0.21%
Sn 189.927†	0.0	0.01053		0.000426	0.02105	_	0.000853	4.05%
Sr 421.552†	295214.1	0.4941		0.00123	0.9881		0.00245	0.25%
Ti 334.903†	149064.8	6.189	_	0.0186	12.38		0.037	0.30%
Tl 190.801†	16.3	-0.00551	_	0.001042	-0.01102	2	0.002084	18.91%
V 292.402†	79592.9	0.3686	_	0.00132	0.7372	٠.	0.00265	0.36%
Zn 206.200†	1185.8	0.4857	mg/L	0.00040	0.9714	mg/L	0.00079	0.08%

Data Type: Original

Sequence No.: 33 Autosampler Location: 62

Sample ID: VO66 N SWC Date Collected: 11/2/2012 4:07:59 PM

Analyst: EL Dilution: 2X

Nebulizer Parameters: VO66 N SWC

Analyte

BackPressureFlow233.0kPa0.55L/min All

Mean Data: V066 N	Mean Data: V066 N SWC									
	Mean Corrected		Calib.			Sample)			
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD		
ScA 357.253	2592220.4	101.5	ક	0.41				0.40%		
ScR 361.383	205689.7	106.2	ક	0.65				0.61%		
Ag 328.068†	15490.4	0.05905	mg/L	0.000177	0.1181	mg/L	0.00035	0.30%		
Al 308.215†	169443.2	120.6		0.20	241.3	mg/L	0.40	0.16%		
As 188.979†	401.3	0.1774	mg/L	0.00198	0.3548	mg/L	0.00397	1.12%		
B 249.677†	355.8	0.1734	mg/L	0.00390	0.3468	mg/L	0.00781	2.25%		
Ba 233.527†	12003.8	1.244	${ m mg/L}$	0.0087	2.488	mg/L	0.0174	0.70%		
Be 313.042†	1907.4	0.00617	mg/L	0.000036	0.01233	mg/L	0.000072	0.59%		
Ca 317.933†	677279.4	65.54	mg/L	0.052	131.1	mg/L	0.10	0.08%		
Cd 228.802†	6767.4	0.08423		0.000024	0.1685	mg/L	0.00005	0.03%		
Co 228.616†	8419.5	0.09157	${ m mg/L}$	0.000251	0.1831	mg/L	0.00050	0.27%		
Cr 267.716†	8234.2	1.916	mg/L	0.0126	3.833	mg/L	0.0253	0.66%		
Cu 324.752†	1139453.6	3.667	${ m mg/L}$	0.0056	7.333	mg/L	0.0112	0.159		
Fe 273.955†	301044.1	255.9		0.15	511.7		0.30	0.06%		
K 766.490†	101049.2	28.65		0.037	57.29	mg/L	0.074	0.13%		
Mg 279.077†	82002.6	74.95	${ m mg/L}$	0.078	149.9	mg/L	0.16	0.10%		
Mn 257.610†	119265.3	3.208		0.0026	6.415	mg/L	0.0051	0.08%		
Mo 202.031†	381.9	0.02381	mg/L	0.000387	0.04763	mg/L	0.000774	1.62%		
Na 589.592†	739751.5	91.57	${ m mg/L}$	0.150	183.1	mg/L	0.30	0.16%		
Na 330.237†	2358.4	92.54	${ m mg/L}$	0.597	185.1		1.19	0.65%		
Ni 231.604†	1300.5	0.6075	${ m mg/L}$	0.00362	1.215	mg/L	0.0072	0.60%		
Pb 220.353†	37344.3	2.882	${ m mg/L}$	0.0103	5.764	mg/L	0.0205	0.36%		
sb 206.836†	209.9	0.00999	${ m mg/L}$	0.001400	0.01998	mg/L	0.002799	14.01%		
Se 196.026†	-62.8	-0.03573		0.006769	-0.07147	mg/L	0.013539	18.94%		
Si 288.158†	9444.4	7.227	mg/L	0.0480	14.45	mg/L	0.096	0.66%		
Sn 189.927†	2005.6	0.3443	mg/L	0.00157	0.6887	mg/L	0.00314	0.46%		
Sr 421.552†	340045.3	0.5691	mg/L	0.00240	1.138	mg/L	0.0048	0.42%		
Ti 334.903†	82931.3	3.441	mg/L	0.0015	6.881	mg/L	0.0030	0.04%		
Tl 190.801†	-10.2	-0.01327	mg/L	0.002453	-0.02655	mg/L	0.004906	18.48%		
V 292.402†	89791.9	0.4250	mg/L	0.00101	0.8501	mg/L	0.00203	0.24%		
Zn 206.200†	13580.1	5.556	mg/L	0.0393	11.11	mg/L	0.079	0.71%		

Sequence No.: 34

Sample ID: VO66 REF1 SWC

Analyst: EL

Dilution: 2X

Autosampler Location: 63

Date Collected: 11/2/2012 4:13:56 PM

Data Type: Original

Nebulizer Parameters: VO66 REF1 SWC

Back Pressure Flow 233.0 kPa 0.55 L/min Analyte All

Mean Data: V066 REF1 SWC									
	Mean Corrected		Calib.			Sample			
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD	
ScA 357.253	2589533.1	101.4	ક	0.13				0.13%	
ScR 361.383	200251.5	103.4	ક્	0.30				0.29%	
Ag 328.068†	329294.6	1.103	${ m mg/L}$	0.0044	2.207		0.0088	0.40%	
Al 308.215†	130585.9	92.96	${ m mg/L}$	0.362	185.9		0.72	0.39%	
As 188.979†	3140.5	1.350	mg/L	0.0044	2.700		0.0089	0.33%	
B 249.677†	2255.0	1.104	${ m mg/L}$	0.0123	2.209	mg/L	0.0247	1.12%	
Ba 233.527†	32194.8	3.361	mg/L	0.0438	6.723	mg/L	0.0877	1.30%	
Be 313.042†	240228.3	0.9239	mg/L	0.00391	1.848	mg/L	0.0078	0.42%	
Ca 317.933†	430070.4	41.62	mg/L	0.202	83.24	mg/L	0.405	0.49%	
Cd 228.802†	59133.7	0.7352	mg/L	0.00123	1.470	mg/L	0.0025	0.17%	
Co 228.616†	61830.6	0.7351	mg/L	0.00168	1.470	mg/L	0.0034	0.23%	
Cr 267.716†	3199.2	0.7437	mg/L	0.00876	1.487	mg/L	0.0175	1.18%	
Cu 324.752†	227653.8	0.7402	mg/L	0.00086	1.480	mg/L	0.0017	0.12%	
Fe 273.955†	172426.7	146.6	mg/L	0.46	293.1	mg/L	0.91	0.31%	
K 766.490†	135873.4	38.52	mg/L	0.158	77.03	mg/L	0.316	0.41%	
Mg 279.077†	31674.1	28.93	mg/L	0.389	57.85	mg/L	0.779	1.35%	
Mn 257.610†	175212.8	4.712	mg/L	0.0223	9.425	mg/L	0.0445	0.47%	
Mo 202.031†	7179.2	0.4235	mg/L	0.00150	0.8470	mg/L	0.00301	0.35%	
Na 589.592†	49932.9	6.181	mg/L	0.0238	12.36	mg/L	0.048	0.38%	
Na 330.237†	164.7	6.114	mg/L	0.2794	12.23	mg/L	0.559	4.57%	
Ni 231.604†	1217.5	0.5685	mg/L	0.00725	1.137	mg/L	0.0145	1.28%	
Pb 220.353†	16623.9	1.296	mg/L	0.0036	2.592	mg/L	0.0071	0.27%	
Sb 206.836†	1622.0	0.4770	mg/L	0.00222	0.9540	mg/L	0.00443	0.46%	
Se 196.026†	2990.3	1.628	mg/L	0.0088	3.256	mg/L	0.0176	0.54%	
Si 288.158†	9612.8	7.353	mg/L	0.0773	14.71	mg/L	0.155	1.05%	
Sn 189.927†	9928.1	1.631	mg/L	0.0067	3.261	mg/L	0.0133	0.41%	
Sr 421.552†	350814.1	0.5871	mg/L	0.00259	1.174	mg/L	0.0052	0.44%	
Ti 334.903†	50628.2	2.100	mg/L	0.0107	4.200	mg/L	0.0213	0.51%	
Tl 190.801†	4785.6	1.326		0.0064	2.652	mg/L	0.0127	0.48%	
V 292.402†	175352.8	0.8478	mg/L	0.00149	1.696	mg/L	0.0030	0.18%	
Zn 206.200†	4496.7	1.840	mg/L	0.0243	3.680	mg/L	0.0487	1.32%	

Analysis Begun

Start Time: 11/2/2012 4:18:48 PM Plasma On Time: 11/2/2012 8:20:38 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\1102.sif

Batch ID:

Dilution: 1X

Results Data Set: PE121102

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1 Autosampler Location: 7

Sample ID: CV 5 Date Collected: 11/2/2012 4:18:50 PM

Analyst: EL Data Type: Original

Nebulizer Parameters: CV

Analyte Back Pressure Flow

All 232.0 kPa 0.55 L/min

Mean Data: CV Sample Mean Corrected Calib. Intensity Conc. Units Std.Dev. Conc. Units RSD Std.Dev. Analyte ScA 357.253 ScR 361.383 Aq 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† 2.012 mg/L 1.008 mg/L 20794.9 81098.3 Ca 317.933† Cd 228.802† 0.9699 mg/L 0.00623 0.64% 81043.8 Co 228,616t 1.004 mg/L 1.059 mg/L 2.110 mg/L 0.0069 0.0063 0.69% Cr 267.716t 330817.2 2484.0 75277.8 0.59% Cu 324.752† 0.53%
0.266 1.25%
0.266 1.25%
0.0218 1.02%
1.012 mg/L 0.0134 1.32%
0.9440 mg/L 0.00602 0.64%
51.62 mg/L 0.496 0.96%
52.36 mg/L 0.459 0.0113 0.53% Fe 273.955† K 766.490† 2326.3 37613.4 16059.9 417002.5 Mg 279.077† Mn 257.610† Mo 202.031† 0.496 0.458 51.62 mg/L 52.36 mg/L Na 589.592† 52.36 mg/L 0.458
1.003 mg/L 0.0058
1.929 mg/L 0.0139
2.046 mg/L 0.0129
1.906 mg/L 0.0125
2.150 mg/L 0.0069
0.9040 mg/L 0.00791
1.024 mg/L 0.0113
1.022 mg/L 0.0122 Na 330.237† 1315.5 1.003 mg/L Ni 231.604† 2146.3 0.72% 25260.9 1.929 mg/L 0.0139 Pb 220.353† 2.046 mg/L 0.0129 0.0125 0.0069 0.63% 6929.2 Sb 206.836† 1.906 mg/L 2.150 mg/L 0.9040 mg/L 1.906 mg/L 2.150 mg/L 0.9040 mg/L 0.66% 3502.8 Se 196.026† 0.0125 0.0069 0.00791 2804.7 5533.5 0.32% Si 288.158† 0.87% Sn 189.927† 0.0113 0.0122 611696.0 1.024 mg/L 1.022 mg/L 1.10% Sr 421.552† 24638.4 6836.0 1.20% Ti 334.903† 0.0149 6836.0 1.905 mg/L 0.0149 206060.3 1.016 mg/L 0.0078 2623.8 1.072 mg/L 0.0084 1.905 mg/L 1.016 mg/L 1.072 mg/L 0.78% T1 190.801† 206060.3 0.0078 0.76% V 292.402† 0.0084 0.78% Zn 206.200†

Sequence No.: 2 Sample ID: CB 7 Analyst: EL

Mean Data: CB

Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† T1 190.801† V 292.402† Zn 206.200†

Dilution: 1X

Autosampler Location: 1 Date Collected: 11/2/2012 4:24:53 PM

Data Type: Original

Nebulizer Parameters: CB

Back Pressure Flow Analyte 232.0 kPa 0.55 L/min All

Mean Corrected Calib.
Intensity Conc. Units Calib. Sample | Thtensity | Conc. Units | 1.83 | 1. Std.Dev. Conc. Units Std.Dev. RSD Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† -4.6 10.6 395.5 13.1 Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836†

Sequence No.: 3

Autosampler Location: 64 Date Collected: 11/2/2012 4:30:51 PM

Sample ID: WOSG A-L SWC 72 Analyst: EL 277777 Dilution: 10X

Data Type: Original

Nebulizer Parameters: VO66 A-L SWC

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min All 232.0 kPa

A HOT.

Mean Data: V066 A	A-L SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2612097.9	102.3	g S	0.60				0.58%
ScR 361.383	197603.2	102.1	ક	0.58				0.57%
Ag 328.068†	-265.1	0.00020	mg/L	0.000174	0.00204	mg/L	0.001737	85.21%
Al 308.215†	40565.5	28.88	mg/L	0.128	288.8	mg/L	1.28	0.44%
As 188.979†	19.6	0.01147	mg/L	0.001303	0.1147	mg/L	0.01303	11.36%
B 249.677†	52.9	0.02589	mg/L	0.002261	0.2589	mg/L	0.02261	8.73%
Ba 233.527†	794.8	0.08149	mg/L	0.000410	0.8149	mg/L	0.00410	0.50%
Be 313.042†	138.8	0.00030	mg/L	0.000017	0.00296	mg/L	0.000169	5.70%
Ca 317.933†	74728.5	7.231	mg/L	0.0360	72.31	mg/L	0.360	0.50%
Cd 228.802†	34.1	0.00041	mg/L	0.000106	0.00408	mg/L	0.001064	26.06%
Co 228.616†	1166.0	0.01103	mg/L	0.000203	0.1103	mg/L	0.00203	1.84%
Cr 267.716†	146.0	0.03388	mg/L	0.000988	0.3388	mg/L	0.00988	2.92%
Cu 324.752†	15600.4	0.05244	mg/L	0.000261	0.5244	mg/L	0.00261	0.50%
Fe 273.955†	41478.7	35.26	mg/L	0.236	352.6	mg/L	2.36	0.67%
K 766.490†	13406.6	3.800	mg/L	0.0182	38.00	${\tt mg/L}$	0.182	0.48%
Mg 279.077†	10554.1	9.645	${\tt mg/L}$	0.0517	96.45	mg/L	0.517	0.54%
Mn 257.610†	12806.6	0.3443	${\tt mg/L}$	0.00216	3.443	J .	0.0216	0.63%
Mo 202.031†	4.8	0.00076	mg/L	0.000219	0.00756	mg/L	0.002186	28.93%
Na 589.592†	107761.3	13.34	mg/L	0.066	133.4	mg/L	0.66	0.49%
Na 330.237†	355.7	14.43	${ m mg/L}$	0.419	144.3	mg/L	4.19	2.91%
Ni 231.604†	61.1	0.02852	mg/L	0.001919	0.2852	mg/L	0.01919	6.73%
Pb 220.353†	169.5	0.02157	${\tt mg/L}$	0.000362	0.2157	mg/L	0.00362	1.68%
Sb 206.836†	11.2	0.00149	mg/L	0.002075	0.01487	mg/L	0.020752	139.57%
Se 196.026†	-3.8	-0.00212	mg/L	0.002100	-0.02124	mg/L	0.020999	98.84%
Si 288.158†	2008.3	1.536	mg/L	0.0114	15.36	mg/L	0.114	0.74%
Sn 189.927†	0.0	0.00230	mg/L	0.000416	0.02304	mg/L	0.004162	18.06%
Sr 421.552†	63393.2	0.1061	mg/L	0.00045	1.061	mg/L	0.0045	0.42%
Ti 334.903†	34630.2	1.438	mg/L	0.0088	14.38	mg/L	0.088	0.61%
Tl 190.801†	6.7	-0.00037	mg/L	0.000705	-0.00366		0.007045	
V 292.402†	17092.7	0.07911	mg/L	0.000610	0.7911	mg/L	0.00610	0.77%
Zn 206.200†	264.8	0.1085	mg/L	0.00068	1.085	mg/L	0.0068	0.62%

Sequence No.: 4

Sample ID: VO66 A SWC

Analyst: EL Dilution: 2X Autosampler Location: 65

Date Collected: 11/2/2012 4:36:54 PM

Data Type: Original

Nebulizer Parameters: VO66 A SWC

Analyte

BackPressureFlow231.0kPa0.55L/min All

Mean Data: V066 A	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2544472.4	99.61	임	0.589				0.59%
ScR 361.383	195912.3	101.2	용	0.99				0.97₺
Ag 328.068†	-1301.5	0.00090	mg/L	0.000207	0.00180	mg/L	0.000413	22.99%
Al 308.215†	199138.6	141.8	mg/L	0.28	283.6	mg/L	0.57	0.20%
As 188.979†	84.5	0.05116	mg/L	0.001315	0.1023	mg/L	0.00263	2.57%
B 249.677†	247.2	0.1210	mg/L	0.00134	0.2420	mg/L	0.00268	1.11%
Ba 233.527†	3895.5	0.3995	mg/L	0.00249	0.7991	mg/L	0.00497	0.62%
Be 313.042†	729.6	0.00165	mg/L	0.000042	0.00329	mg/L	0.000084	2.56%
Ca 317.933†	361984.0	35.03	mg/L	0.096	70.06	mg/L	0.192	0.27%
Cd 228.802†	196.4	0.00238	mg/L	0.000039	0.00476	mg/L	0.000079	1.66%
Co 228.616†	5541.4	0.05202	mg/L	0.000509	0.1040		0.00102	0.98%
Cr 267.716†	722.6	0.1677	${ m mg/L}$	0.00166	0.3353		0.00331	0.99%
Cu 324.752†	75692.8	0.2543		0.00047	0.5086	mg/L	0.00094	0.18%
Fe 273.955†	199601.5	169.7	mg/L	0.33	339.3	mg/L	0.66	0.19%
K 766.490†	64166.8	18.19	mg/L	0.130	36.38	mg/L	0.261	0.72%
Mg 279.077†	50764.4	46.39	mg/L	0.122	92.78	mg/L	0.245	0.26%
Mn 257.610†	61613.7	1.656	mg/L	0.0028	3.312	mg/L	0.0056	0.17%
Mo 202.031†	-29.2	0.00063	mg/L	0.000057	0.00125	mg/L	0.000115	9.19%
Na 589.592†	517335.3	64.04	mg/L	0.219	128.1	mg/L	0.44	0.34%
Na 330.237†	1599.3	64.96	mg/L	0.461	129.9		0.92	0.71%
Ni 231.604†	296.9	0.1387		0.00418	0.2774	mg/L	0.00837	3.02%
Pb 220.353†	852.5	0.1076	mg/L	0.00071	0.2152	mg/L	0.00143	0.66%
Sb 206.836†	78.2	0.01439	_	0.002048	0.02879	mg/L	0.004097	14.239
Se 196.026†	-76.9	-0.04225	mg/L	0.003073	-0.08450	mg/L	0.006146	7.27%
Si 288.158†	9810.8	7.502		0.0635	15.00		0.127	0.85%
Sn 189.927†	8.3	0.01251	mg/L	0.000274	0.02502	mg/L	0.000547	2.19%
Sr 421.552†	308655.8	0.5166	mg/L	0.00282	1.033	mg/L	0.0056	0.55*
Ti 334.903†	169497.0	7.038	mg/L	0.0145	14.08	${ m mg/L}$	0.029	0.21%
Tl 190.801†	18.6	-0.00571	${ t mg/L}$	0.000584	-0.01141		0.001168	10.24%
V 292.402†	83509.2	0.3867	${ m mg/L}$	0.00144	0.7734	mg/L	0.00288	0.37%
Zn 206.200†	1287.2	0.5272	mg/L	0.00525	1.054	mg/L	0.0105	1.00%

Sequence No.: 5

Sample ID: VO66 ADUP SWC

Analyst: EL Dilution: 2X Autosampler Location: 66 Date Collected: 11/2/2012 4:42:46 PM

Data Type: Original

Nebulizer Parameters: VO66 ADUP SWC

Analyte

Back PressureFlow232.0 kPa0.55 L/min All

Mean Data: VO66 ADUP SWC									
	Mean Corrected		Calib.			Sample			
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Unıts	Std.Dev.	RSD	
ScA 357.253	2611697.8	102.2	%	0.60				0.58%	
ScR 361.383	199653.8	103.1	ફ	0.61				0.59%	
Ag 328.068†	-1252.7	0.00098	${ m mg/L}$	0.000169	0.00196		0.000337	17.19%	
Al 308.215†	188429.4	134.2	mg/L	0.14	268.3	${ m mg/L}$	0.28	0.10%	
As 188.979†	90.0	0.05235	${ m mg/L}$	0.001122	0.1047	-	0.00224	2.14%	
B 249.677†	232.6	0.1138	${ m mg/L}$	0.00286	0.2276	mg/L	0.00571	2.51%	
Ba 233.527†	3785.5	0.3882	${ m mg/L}$	0.00063	0.7763	mg/L	0.00127	0.16%	
Be 313.042†	701.7	0.00159	${ m mg/L}$	0.000017	0.00318	_	0.000034	1.05%	
Ca 317.933†	351177.7	33.98	mg/L	0.069	67.97	_	0.138	0.20%	
Cd 228.802†	186.4	0.00225	${ m mg/L}$	0.000090	0.00450		0.000180	4.01%	
Co 228.616†	5314.7	0.05031	${ t mg/L}$	0.000473	0.1006		0.00095	0.94%	
Cr 267.716†	708.7	0.1644	${ m mg/L}$	0.00098	0.3289	J .	0.00197	0.60%	
Cu 324.752†	72716.2	0.2448	${ m mg/L}$	0.00210	0.4895	mg/L	0.00420	0.86%	
Fe 273.955†	197037.8	167.5	${ m mg/L}$	0.84	334.9		1.67	0.50%	
K 766.490†	61499.8	17.43		0.116	34.87	_	0.233	0.67%	
Mg 279.077†	50212.3	45.89	${ m mg/L}$	0.060	91.78	_	0.120	0.13%	
Mn 257.610†	60833.7	1.635	${ m mg/L}$	0.0003	3.271	_	0.0007	0.02%	
Mo 202.031†	-19.4	0.00105	mg/L	0.000198	0.00210		0.000396	18.83%	
Na 589.592†	509664.4	63.09	${ m mg/L}$	0.069	126.2		0.14	0.11%	
Na 330.237†	1583.4	64.22	${ m mg/L}$	0.129	128.4	_	0.26	0.20%	
Ni 231.604†	291.2	0.1360	${ m mg/L}$	0.00192	0.2721	_	0.00384	1.419	
Pb 220.353†	825.9	0.1030	mg/L	0.00032	0.2060	-	0.00063	0.31%	
Sb 206.836†	85.2	0.01597	${ m mg/L}$	0.000965	0.03194		0.001929	6.04%	
Se 196.026†	-71.5	-0.03933	${ m mg/L}$	0.003008	-0.07865		0.006017	7.65%	
Si 288.158†	8600.8	6.577	${ m mg/L}$	0.0180	13.15	_	0.036	0.27%	
Sn 189.927†	12.2	0.01271	${ m mg/L}$	0.000698	0.02542	_	0.001396	5.49%	
Sr 421.552†	299245.2	0.5008	mg/L	0.00320	1.002	_	0.0064	0.64%	
Ti 334.903†	156027.7	6.478	${ m mg/L}$	0.0034	12.96	_	0.007	0.05%	
Tl 190.801†	14.4	-0.00626		0.001322	-0.01251	J .	0.002645	21.13%	
V 292.402†	80178.0	0.3711	mg/L	0.00371	0.7423	_	0.00741	1.00%	
Zn 206.200†	1254.0	0.5136	${ m mg/L}$	0.00226	1.027	mg/L	0.0045	0.44%	

Sequence No.: 6

Sample ID: VO66 ASPK SWC

Analyst: EL

Dilution: 2X

Autosampler Location: 67

Date Collected: 11/2/2012 4:48:36 PM

Data Type: Original

Nebulizer Parameters: V066 ASPK SWC

Analyte Back Pressure

sure Flow 0.55 L/min All 231.0 kPa

Mean Data: VO66 A	Mean Data: VO66 ASPK SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2563826.1	100.4		1.45				1.44%
ScR 361.383	197830.9	102.2	용	0.24				0.24%
Ag 328.068†	144702.9	0.4884	mg/L	0.00180	0.9768		0.00360	0.37%
Al 308.215†	202775 .7	144.4	${ t mg/L}$	0.07	288.7	mg/L	0.14	0.05%
As 188.979†	4453.8	1.925	mg/L	0.0395	3.849	mg/L	0.0790	2.05%
B 249.677†	257.5	0.1245	mg/L	0.00178	0.2491	mg/L	0.00355	1.43%
Ba 233.527†	22564.8	2.353	mg/L	0.0093	4.705	mg/L	0.0187	0.40%
Be 313.042†	129085.0	0.4953	mg/L	0.00167	0.9906	mg/L	0.00333	0.34%
Ca 317.933†	467709.6	45.26	${\tt mg/L}$	0.133	90.52	mg/L	0.267	0.29%
Cd 228.802†	40320.0	0.4990	mg/L	0.00160	0.9980	mg/L	0.00319	0.32%
Co 228.616†	43926.3	0.5119		0.00090	1.024	mg/L	0.0018	0.18%
Cr 267.716†	2788.1	0.6485		0.00199	1.297		0.0040	0.31%
Cu 324.752†	237450.7	0.7721	mg/L	0.00114	1.544	mg/L	0.0023	0.15%
Fe 273.955†	199034.0	169.2	mg/L	0.28	338.3	mg/L	0.57	0.179
K 766.490†	99967.1	28.34	${\tt mg/L}$	0.017	56.68	mg/L	0.035	0.06৯
Mg 279.077†	61151.4	55.91	mg/L	0.049	111.8	mg/L	0.10	0.09%
Mn 257.610†	78219.1	2.103	mg/L	0.0008	4.207	mg/L	0.0016	0.04%
Mo 202.031†	-25.6	0.00068	mg/L	0.000203	0.00137	mg/L	0.000407	29.79%
Na 589.592†	586419.0	72.59	${ t mg/L}$	0.057	145.2	mg/L	0.11	0.08%
Na 330.237†	1812.9	73.25	mg/L	0.351	146.5	mg/L	0.70	0.48%
Ni 231.604†	1307.4	0.6103	mg/L	0.00220	1.221	mg/L	0.0044	0.36%
Pb 220.353†	24180.3	1.889	mg/L	0.0407	3.778	mg/L	0.0814	2.15%
Sb 206.836†	1132.7	0.3191	mg/L	0.00675	0.6381	mg/L	0.01351	2.12%
Se 196.026†	3354.7	1.826	mg/L	0.0424	3.653	mg/L	0.0848	2.329
Si 288.158†	8462.4	6.475		0.0365	12.95	mg/L	0.073	0.56%
Sn 189.927†	1.9	0.01384	mg/L	0.000469	0.02767	mg/L	0.000938	3.39%
Sr 421.552†	617088.1	1.033	mg/L	0.0015	2.066	mg/L	0.0030	0.15%
Ti 334.903†	166638.9	6.918	mg/L	0.0025	13.84	mg/L	0.005	0.04%
Tl 190.801†	6183.0	1.718	mg/L	0.0374	3.436	mg/L	0.0748	2.18%
V 292.402†	179498.4	0.8586	mg/L	0.00170	1.717	mg/L	0.0034	0.20%
Zn 206.200†	2419.5	0.9904	mg/L	0.00315	1.981	${\tt mg/L}$	0.0063	0.32%

Cong. God. 5

Sequence No.: 7

Sample ID: 1066 APOST SWC Analyst: EL 727727 Dilution: 2X CLU5-12

Autosampler Location: 68

Date Collected: 11/2/2012 4:54:34 PM

Data Type: Original

Nebulizer Parameters: VO66 APOST SWC

Analyte Back Pressure Flow

All 232.0 kPa 0.55 L/min

Mean Data: VO66	APOST SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	R S D
ScA 357.253	2607430.2	102.1	ક	0.43				0.42%
ScR 361.383	200468.6	103.5	읭	0.22				0.21%
Ag 328.068†	148992.0	0.5026	mg/L	0.00234	1.005	mg/L	0.0047	0.47%
A1 308.215†	194544.6	138.5	mg/L	0.23	277.0	mg/L	0.45	0.16%
As 188.979†	4891.2	2.112	mg/L	0.0074	4.224		0.0148	0.35%
B 249.677†	244.4	0.1179	mg/L	0.00062	0.2359	mg/L	0.00123	0.52%
Ba 233.527†	24080.2	2.511	mg/L	0.0164	5.023	mg/L	0.0328	0.65%
Be 313.042†	137496.2	0.5276	mg/L	0.00085	1.055	mg/L	0.0017	0.16%
Ca 317.933†	458442.3	44.36	mg/L	0.080	88.73	mg/L	0.159	0.18%
Cd 228.802†	43448.2	0.5376	mg/L	0.00080	1.075	mg/L	0.0016	0.15%
Co 228.616†	46924.8	0.5481	mg/L	0.00119	1.096	mg/L	0.0024	0.22%
Cr 267.716†	2966.4	0.6900	mg/L	0.00455	1.380	mg/L	0.0091	0.66%
Cu 324.752†	248730.9	0.8079	mg/L	0.00173	1.616	mg/L	0.0035	0.21%
Fe 273.955†	194046.8	164.9	mg/L	0.12	329.9	mg/L	0.25	0.07%
K 766.490†	102550.7	29.07	mg/L	0.091	58.14		0.181	0.31%
Mg 279.077†	60739.9	55.53	mg/L	0.066	111.1		0.13	0.12%
Mn 257.610†	78449.8	2.110		0.0036	4.219	mg/L	0.0072	0.17%
Mo 202.031†	-21.0	0.00083	mg/L	0.000468	0.00165	mg/L	0.000936	56.62%
Na 589.592†	583410.5	72.22	mg/L	0.227	144.4	mg/L	0.45	0.31%
Na 330.237†	1801.2	72.75	mg/L	0.200	145.5	mg/L	0.40	0.27%
Ni 231.604†	1382.9	0.6464	mg/L	0.00533	1.293	mg/L	0.0107	0.82%
Pb 220.353†	26384.2	2.056	mg/L	0.0056	4.111	mg/L	0.0113	0.27%
Sb 206.836†	6696.9	1.964		0.0034	3.928	mg/L	0.0069	0.17%
Se 196.026†	3748.5	2.041	mg/L	0.0034	4.082	mg/L	0.0069	0.17%
Si 288.158†	9469.2	7.244	mg/L	0.0270	14.49	mg/L	0.054	0.37%
Sn 189.927†	-1.6	0.01300		0.000674	0.02601	mg/L	0.001348	5.18%
Sr 421.552†	625534.9	1.047	mg/L	0.0039	2.094	mg/L	0.0078	0.37%
Ti 334.903†	162723.4	6.756		0.0094	13.51	mq/L	0.019	0.14%
Tl 190.801†	6934.2	1.928		0.0058	3.856		0.0115	0.30%
V 292.402†	189100.6	0.9063	mg/L	0.00275	1.813		0.0055	0.30%
Zn 206.200†	2497.3	1.022		0.0063	2.044	mg/L	0.0127	0.62%
						-		

Date: 11/2/2012 5:04:36 PM

Data Type: Original

Sequence No.: 8

Autosampler Location: 69 Date Collected: 11/2/2012 5:00:32 PM Sample ID: VO66 MB1SPK SWC

Analyst: EL Dilution: 2X

Nebulizer Parameters: VO66 MB1SPK SWC

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min A11

Mean Data: V066	MB1SPK SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2552139.9	99.91	ક્ષ	0.515				0.52%
ScR 361.383	193130.9	99.75	ક	0.697				0.70%
Ag 328.068†	153448.3	0.5124	mg/L	0.00464	1.025	mg/L	0.0093	0.91%
A1 308.215†	2996.2	2.126	mg/L	0.0156	4.251	mg/L	0.0312	0.73₺
As 188.979†	4625.4	1.984	mg/L	0.0115	3.967	mg/L	0.0230	0.58%
B 249.677†	0.9	-0.00121	mg/L	0.001184	-0.00241	mg/L	0.002367	98.23%
Ba 233.527†	19666.8	2.057	mg/L	0.0146	4.115	mg/L	0.0292	0.71%
Be 313.042†	135031.6	0.5192	mg/L	0.00059	1.038	mg/L	0.0012	0.11%
Ca 317.933†	105944.2	10.25	mg/L	0.010	20.50	mg/L	0.020	0.10%
Cd 228.802†	42170.0	0.5219	mg/L	0.00265	1.044	mg/L	0.0053	0.51%
Co 228.616†	41962.3	0.5025	mg/L	0.00248	1.005	mg/L	0.0050	0.49%
Cr 267.716†	2246.5	0.5230	mg/L	0.00557	1.046	mg/L	0.0111	1.07%
Cu 324.752†	167076.4	0.5350	mg/L	0.00157	1.070	mg/L	0.0031	0.29%
Fe 273.955†	2514.9	2.137	mg/L	0.0162	4.274	mg/L	0.0325	0.76%
K 766.490†	39235.9	11.12	mg/L	0.005	22.24	mg/L	0.009	0.04%
Mg 279.077†	11755.0	10.76	mg/L	0.077	21.53	mg/L	0.154	0.71%
Mn 257.610†	19121.5	0.5148	mg/L	0.00346	1.030	mg/L	0.0069	0.67%
Mo 202.031†	19.5	0.00096	mg/L	0.000039	0.00192	mg/L	0.000078	4.04 %
Na 589.592†	87466.4	10.83	mg/L	0.009	21.65	mg/L	0.019	0.09%
Na 330.237†	275.0	10.75	mg/L	0.259	21.50	mg/L	0.517	2.41?
Ni 231.604+	1091.1	0.5101	mg/L	0.00520	1.020	mg/L	0.0104	1.02 %
Pb 220.353†	26145.8	1.996	mg/L	0.0112	3.993	mg/L	0.0224	0.56%
Sb 206.836†	7025.9	2.070	mg/L	0.0039	4.140	mg/L	0.0077	0.19%
Se 196.026†	3637.6	1.981	mg/L	0.0047	3.961	mg/L	0.0095	0.24%
Si 288.158†	2.7	0.00567	mg/L	0.003080	0.01133	mg/L	0.006159	54.34 %
Sn 189.927†	-17.5	-0.00041	mg/L	0.000516	-0.00082	mg/L	0.001032	125.32%
Sr 421.552†	316220.2	0.5292	mg/L	0.00176	1.058	mg/L	0.0035	0.33%
Ti 334.903†	51.7	0.00152	${\tt mg/L}$	0.000263	0.00304	mg/L	0.000525	17.29%
Tl 190.801†	6993.1	1.955	mg/L	0.0055	3.911	mg/L	0.0111	0.28%
V 292.402†	106635.9	0.5238	mg/L	0.00141	1.048		0.0028	0.27%
Zn 206.200†	1258.6	0.5144	mg/L	0.00432	1.029	mg/L	0.0086	0.84%

upua: anu u

Sequence No.: 9

A11

Sample ID: VO66 F SWC

Analyst: EL Dilution: 2X

Autosampler Location: 70

Date Collected: 11/2/2012 5:06:35 PM

Data Type: Original

Nebulizer Parameters: VO66 F SWC

Analyte Back H

Back Pressure Flow 232.0 kPa 0.55 L/min

Mean Data: VO66 F SWC

	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.		Std.Dev.	RSD
ScA 357.253	2602156.9	101.9	용	0.31				0.30%
ScR 361.383	198528.5	102.5	ફ	1.32				1,29%
Ag 328.068†	-1238.5	0.00125	mg/L	0.000230	0.00249	mg/L	0.000460	18.46%
A1 308.215†	201117.8	143.2		0.46	286.4	mg/L	0.91	0.32%
As 188.979†	91.3	0.05370	mg/L	0.000474	0.1074		0.00095	0.88%
B 249.677†	210.4	0.1029	mg/L	0.00120	0.2058	mg/L	0.00241	1.17%
Ba 233.527†	4478.4	0.4603	mg/L	0.00612	0.9206	mg/L	0.01223	1.33%
Be 313.042†	765.9	0.00177	${ m mg/L}$	0.000113	0.00355	mg/L	0.000227	6.39%
Ca 317.933†	366518.5	35.47		0.126	70.94	mg/L	0.252	0.35%
Cd 228.802†	212.5	0.00257		0.000068	0.00515	mg/L	0.000136	2.64%
Co 228.616†	5818.8	0.05558	mg/L	0.000214	0.1112	mg/L	0.00043	0.39%
Cr 267.716†	716.1	0.1661		0.00187	0.3322	mg/L	0.00373	1.12%
Cu 324.752†	71605.1	0.2417	${ m mg/L}$	0.00049	0.4835	mg/L	0.00098	0.20%
Fe 273.955†	205851.4	175.0	${ m mg/L}$	0.40	349.9	mg/L	0.79	0.23%
K 766.490†	60781.8	17.23	${ m mg/L}$	0.136	34.46	mg/L	0.271	0.79%
Mg 279.077†	51271.2	46.85	mg/L	0.101	93.71	mg/L	0.203	0.22%
Mn 257.610†	67034.3	1.802		0.0065	3.604	mg/L	0.0130	0.36%
Mo 202.031†	-37.3	0.00017		0.000064	0.00034		0.000129	37.40%
Na 589.592†	502392.3	62.19		0.409	124.4	mg/L	0.82	0.66%
Na 330.237†	1538.9	62.51	${\tt mg/L}$	1.187	125.0	mg/L	2.37	1.90%
Ni 231.604†	299.3	0.1398	mg/L	0.00180	0.2796	mg/L	0.00360	1.29%
Pb 220.353†	847.5	0.1075	J .	0.00059	0.2150	mg/L	0.00118	0.55%
Sb 206.836†	94.2	0.01847		0.001996	0.03694	mg/L	0.003992	10.80%
Se 196.026†	-60.5	-0.03334		0.005617	-0.06668	mg/L	0.011234	16.85%
Si 288.158†	10447.2	7.988		0.0085	15.98	mg/L	0.017	0.11%
Sn 189.927†	2.1	0.01154		0.001035	0.02308	mg/L	0.002070	8.97%
Sr 421.552†	309927.1	0.5187		0.00188	1.037	mg/L	0.0038	0.36%
Ti 334.903†	165224.0	6.860		0.0211	13.72	mg/L	0.042	0.31%
T1 190.801†	20.1	-0.00535		0.002387	-0.01069		0.004775	44.66%
V 292.402†	84667.2	0.3920	mg/L	0.00106	0.7840		0.00212	0.27%
Zn 206.200†	1283.1	0.5256	mg/L	0.00742	1.051		0.0148	1.41%

Sequence No.: 10 Autosampler Location: 21

Sample ID: CRI Date Collected: 11/2/2012 5:12:26 PM Data Type: Original

Analyst: EL Dilution: 1X

Nebulizer Parameters: CRI

Analyte

Back Pressure Flow 231.0 kPa 0.55 L/min All

Mean Data: CRI								
	Mean Corrected		Calib.			Sample		
Analytė	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2585490.4	101.2	8	0.39				0.39%
ScR 361.383	191869.5	99.10		2.116				2.13%
Ag 328.068†	896.9	0.00300	mg/L	0.000087	0.00300	mg/L	0.000087	2.91%
Al 308.215†	94.3	0.06696	mg/L	0.010958	0.06696	mg/L	0.010958	16.37%
As 188.979†	117.7	0.05048	mg/L	0.001786	0.05048	mg/L	0.001786	3.54%
B 249.677†	36.1	0.01771	mg/L	0.003112	0.01771	mg/L	0.003112	17.57%
Ba 233.527†	27.8	0.00290	mg/L	0.000353	0.00290	mg/L	0.000353	12.18%
Be 313.042†	283.1	0.00108	mg/L	0.000088	0.00108	mg/L	0.000088	8.14%
Ca 317.933†	548.5	0.05307	mg/L	0.001513	0.05307	mg/L	0.001513	2.85%
Cd 228.802†	167.2	0.00197	mg/L	0.000042	0.00197	mg/L	0.000042	2.14%
Co 228.616†	289.4	0.00346	mg/L	0.000049	0.00346	mg/L	0.000049	1.42%
Cr 267.716†	23.7	0.00551		0.001097	0.00551	mg/L	0.001097	19.90%
Cu 324.752†	984.3	0.00315	> mg/L	0.000086	0.00315	mg/L	0.000086	2.74%
Fe 273.955†	58.0	0.04929	mg/L	0.000799	0.04929	mg/L	0.000799	1.62%
K 766.490†	2295.7	0.6508	mg/L	0.04395	0.6508	mg/L	0.04395	6.75%
Mg 279.077†	56.1	0.05134	mg/L	0.003302	0.05134	mg/L	0.003302	6.43%
Mn 257.610†	32.2	0.00087	mg/L	0.000107	0.00087	mg/L	0.000107	12.36%
Mo 202.031†	90.1	0.00530	mg/L	0.000220	0.00530	mg/L	0.000220	4.15%
Na 589.592†	4905.2	0.6072	mg/L	0.01394	0.6072	mg/L	0.01394	2.30%
Na 330.237†	21.2	0.8430	mg/L	0.29265	0.8430	mg/L	0.29265	34.72%
Ni 231.604†	23.6	0.01105		0.000462	0.01105	mg/L	0.000462	4.18%
Pb 220.353†	252.7	0.01931	mg/L	0.000489	0.01931	mg/L	0.000489	2.53%
Sb 206.836†	172.7	0.05108	mg/L	0.000611	0.05108	mg/L	0.000611	1.20%
Se 196.026†	94.7	0.05158	mg/L	0.001571	0.05158	mg/L	0.001571	3.05%
Si 288.158†	117.0	0.0 <u>8940</u>		0.000140	0.08940	mg/L	0.000140	0.16%
Sn 189.927†	55.7	0.00910	mg/L	0.000029	0.00910	mg/L	0.000029	0.31%
Sr 421.552†	621.4	0.00104	mg/L	0.000141	0.00104	mg/L	0.000141	13.52%
Ti 334.903†	133.9	0.00555	mg/L	0.001210	0.00555	mg/L	0.001210	21.79%
Tl 190.801†	184.3	0.05166	mg/L	0.001589	0.05166	mg/L	0.001589	3.08 ે
V 292.402†	639.9	0.00318	mg/L	0.000150	0.00318	mg/L	0.000150	4.73%
Zn 206.200†	26.0	0.01063	mg/L	0.000347	0.01063	mg/L	0.000347	3.27%

UDUS: ORUIS

Sequence No.: 11 Autosampler Location: 22

Sample ID: ICSA Date Collected: 11/2/2012 5:22:36 PM Analyst: EL Data Type: Original

Dilution: 1X

Nebulizer Parameters: ICSA

Analyte

Back Pressure Flow 231.0 kPa 0.55 L/min All

Mean Data: ICSA								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev	. RSD
ScA 357.253	2521838.7	98.72	9	0.749				0.76%
ScR 361.383	195932.4	101.2		0.48				0.47%
Ag 328.068†	-1728.3	-0.00054	J .	0.000315	-0.00054	mg/L	0.000315	58.46%
Al 308.215†	272755.6	194.2		0.26	194.2	mg/L	0.26	0.13ક
As 188.979†	- 5.0	-0.00209		0.001380	-0.00209	mg/L	0.001380	66.10%
B 249.677†	-15.7	-0.00772	mg/L	0.000871	-0.00772	mg/L	0.000871	11.28%
Ba 233.527†	69.6	-0.00152	mg/L	0.000444	-0.00152	mg/L	0.000444	29.21%
Be 313.042†	-10.1	-0.00008	mg/L	0.000002	-0.00008	mg/L	0.000002	2.93%
Ca 317.933†	950476.8	91.98	mg/L	0.057	91.98		0.057	0.06%
Cd 228.802†	76.5	0.00096	mg/L	0.000060	0.00096	mg/L	0.000060	6.20%
Co 228.616†	137.3	-0.00056	mg/L	0.000066	-0.00056	mg/L	0.000066	11.71%
Cr 267.716†	13.0	0.00304	mg/L	0.000293	0.00304	mg/L	0.000293	9.64%
Cu 324.752†	-4928.8	0.00011	mg/L	0.000051	0.00011	mg/L	0.000051	44.19%
Fe 273.955†	223510.5	190.0		0.09	190.0	mg/L	0.09	0.05%
K 766.490†	168.6	0.04780	mg/L	0.006801	0.04780	mg/L	0.006801	14.23%
Mg 279.077+	107004.4	97.88	mg/L	0.657	97.88		0.657	0.67%
Mn 257.610†	13.3	-0.00098	mg/L	0.000146	-0.00098	mg/L	0.000146	14.93%
Mo 202.031†	-138.8	-0.00531	mg/L	0.000350	-0.00531	mg/L	0.000350	6.59%
Na 589.592†	255.2	0.03159	mg/L	0.002129	0.03159	mg/L	0.002129	6.743
Na 330.237†	15.5	0.2142	mg/L	0.49807	0.2142	mg/L	0.49807	232.52%
Ni 231.604†	8.9	0.00418	mg/L	0.000169	0.00418	mg/L	0.000169	4.05%
Pb 220.353†	-717.9	0.00657	mg/L	0.000163	0.00657	mg/L	0.000163	2.488
Sb 206.836†	130.3	0.02061	mg/L	0.002800	0.02061	mg/L	0.002800	13.58%
Se 196.026†	-92.2	-0.05023	mg/L	0.001994	-0.05023	mg/L	0.001994	3.97%
Si 288.158†	-7.4	0.00609	mg/L	0.003092	0.00609	mg/L	0.003092	50.74%
Sn 189.927†	-60.8	0.01 <u>200</u>	mg/L .	0.000693	0.01200	mg/L	0.000693	5.77%
Sr 421.552†	2405.4	0.00403	mg/&	0.000086	0.00403	mg/L	0.000086	2.13%
Ti 334.903†	157.0	0.00202	mg/L	0.000553	0.00202	mg/L	0.000553	27.42%
Tl 190.801†	-31.1	-0.00884	mg/L	0.002426	-0.00884	mg/L	0.002426	27.45%
V 292.402†	3371.1	-0.00164	mg/L	0.000277	-0.00164	mg/L	0.000277	16.85%
Zn 206.200†	-18.8	-0.00572	mg/L	0.000340	-0.00572	mg/L	0.000340	5.95%

UPUD: 00H17

Data Type: Original

Date: 11/2/2012 5:32:29 PM

Sequence No.: 12 Autosampler Location: 23

Sample ID: ICSAB Date Collected: 11/2/2012 5:28:39 PM

Analyst: EL Dilution: 1X

Nebulizer Parameters: ICSAB

Analyte

Back PressureFlow231.0 kPa0.55 L/min All

Mean Data: ICSAB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2492888.7	97.59	8	0.644				0.66%
ScR 361.383	197266.2	101.9	િ	3.57				3.51%
Ag 328.068†	297723.9	0.9996	mg/L	0.00427	0.9996	${\tt mg/L}$	0.00427	0.43%
Al 308.215†	276832.8	197.1	mg/L	7.61	197.1	mg/L	7.61	3.86%
As 188.979†	2225.0	0.9541	mg/L	0.00869	0.9541	mg/L	0.00869	0.91%
в 249.677†	-5.8	-0.00587	mg/L	0.005936	-0.00587	mg/L	0.005936	101.17%
Ba 233.527†	9380.0	0.9721	mg/L	0.03340	0.9721	mg/L	0.03340	3.44 €
Be 313.042†	247670.5	0.9523	mg/L	0.03588	0.9523	mg/L	0.03588	3.77%
Ca 317.933†	973155.3	94.17	mg/L	3.607	94.17	mg/L	3.607	3.83%
Cd 228.802+	78276.0	0.9752	mg/L	0.00141	0.9752	mg/L	0.00141	0.14%
Co 228.616†	75700.3	0.9052	mg/L	0.00242	0.9052	mg/L	0.00242	0.27%
Cr 267.716†	4104.5	0.9556	mg/L	0.03285	0.9556	mg/L	0.03285	3.44%
Cu 324.752†	317141.9	1.031	mg/L	0.0013	1.031	mg/L	0.0013	0.13%
Fe 273.955†	227542.6	193.4	mg/L	6.97	193.4	mg/L	6.97	3.61%
K 766.490†	148.7	0.04214	mg/L	0.015839	0.04214	mg/L	0.015839	37.58%
Mg 279.077†	110364.9	101.0	mg/L	3.87	101.0	mg/L	3.87	3.83%
Mn 257.610†	35277.3	0.9477	mg/L	0.03245	0.9477	mg/L	0.03245	3.42%
Mo 202.031†	-157.7	-0.00658	mg/L	0.000457	-0.00658	mg/L	0.000457	6.94 કે
Na 589.592†	715.0	0.08851	mg/L	0.016200	0.08851	mg/L	0.016200	18.30%
Na 330.237†	28.5	0.3821	mg/L	0.03110	0.3821	mg/L	0.03110	8.149
Ni 231.604†	1975.3	0.9229	mg/L	0.03481	0.9229	mg/L	0.03481	3.77%
Pb 220.353†	11117.2	0.9114	mg/L	0.01067	0.9114	mg/L	0.01067	1.17%
Sb 206.836†	3521.5	1.009		0.0086	1.009	mg/L	0.0086	0.85%
Se 196.026†	1630.3	0.8857	mg/L	0.00747	0.8857	mg/L	0.00747	0.84%
Si 288.158†	37.6	0.04513	mg/L	0.007126	0.04513	mg/L	0.007126	15.79%
Sn 189.927†	-59.7	0.01273	mg/L	0.001046	0.01273	mg/L	0.001046	8.22%
Sr 421.552†	2652.3	0.00444	mg/Eout	0.000169	0.00444	mg/L	0.000169	3.82%
Ti 334.903†	183.0	0.00277	mg/L	0.000462	0.00277	mg/L	0.000462	16.72%
Tl 190.801†	3183.0	0.8808	mg/L	0.00720	0.8808	mg/L	0.00720	0.82%
V 292.402†	203912.9	0.9832	mg/L	0.00066	0.9832		0.00066	0.07%
Zn 206.200†	2193.0	0.8983	mg/L	0.03215	0.8983	mg/L	0.03215	3.58%

UP464 BALLA

Date: 11/2/2012 5:38:22 PM

Sequence No.: 13 Autosampler Location: 7

Analyst: EL Data Type: Original Dilution: 1X

Nebulizer Parameters: CV

Analyte Back Pressure Flow All 232.0 kPa 0.55 L/min

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2567385.5	100.5	ક	0.83				0.83%
ScR 361.383	192544.3	99.44	용	1.062				1.07%
Ag 328.068†	295868.4	0.9880		0.00465	0.9880	mg/L	0.00465	0.47%
Al 308.215†	2941.4	2.053		0.0338	2.053	mg/L	0.0338	1.64%
As 188.979†	4543.9	1.948		0.0182	1.948	mg/L	0.0182	0.94%
В 249.677†	1973.0	0.9661	mg/L	0.00874	0.9661	${ m mg/L}$	0.00874	0.90%
Ba 233.527†	9693.2	1.014		0.0125	1.014	${\tt mg/L}$	0.0125	1.24%
Be 313.042†	252394.6	0.9704		0.00188	0.9704	mg/L	0.00188	0.19%
Ca 317.933†	20451.2	1.979	mg/L	0.0229	1.979	mg/L	0.0229	1.16%
Cd 228.802†	81346.3	1.011	J .	0.0013	1.011	J .	0.0013	0.13%
Co 228.616†	81680.7	0.9776	J .	0.00225	0.9776		0.00225	0.23%
Cr 267.716†	4264.7	0.9927		0.01223	0.9927		0.01223	1.23%
Cu 324.752†	334831.8	1.071		0.0004	1.071		0.0004	0.04%
Fe 273.955†	2446.5	2.079		0.0185	2.079	mg/L	0.0185	0.89%
K 766.490†	75827.6	21.50		0.060	21.50		0.060	0.28%
Mg 279.077†	2288.7	2.099	-	0.0247	2.099	٥.	0.0247	1.18₹
Mn 257.610†	37451.7	1.008		0.0021	1.008		0.0021	0.21%
Mo 202.031†	15912.1	0.9353		0.00890	0.9353		0.00890	0.95%
Na 589.592†	422063.1	52.24		0.109	52.24		0.109	0.21%
Na 330.237†	1311.5	52.21		0.902	52.21		0.902	1.73%
Ni 231.604†	2115.7	0.9888		0.01564	0.9888	٠.	0.01564	1.58%
Pb 220.353†	25040.6	1.912	_	0.0204	1.912	J .	0.0204	1.07%
Sb 206.836†	6857.0	2.025	J .	0.0219	2.025		0.0219	1.08%
Se 196.026†	3448.5	1.876		0.0211	1.876		0.0211	1.12%
Si 288.158†	2797.2	2.144		0.0181	2.144	J .	0.0181	0.85%
Sn 189.927†	5435.5	0.8880		0.01073	0.8880		0.01073	1.21%
Sr 421.552†	610835.3	1.022		0.0027	1.022	J .	0.0027	0.26%
Ti 334.903†	24537.8	1.018	_	0.0026	1.018	_	0.0026	0.26%
Tl 190.801†	6776.0	1.888		0.0189	1.888		0.0189	1.00%
V 292.402†	208839.8	1.030		0.0026	1.030	J .	0.0026	0.25%
Zn 206.200†	2565.6	1.048	mg/L	0.0140	1.048	mg/L	0.0140	1.34%

UPUG: DBUIS

Sequence No.: 14 Sample ID: CB, Analyst: Ei

Dilution: 1X

Autosampler Location: 1 Date Collected: 11/2/2012 5:40:30 PM

Data Type: Original

Nebulizer Parameters: CB

Analyte

BackPressureFlow231.0kPa0.55L/min A11

 Mean Corrected
 Calib.
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 2637877.6
 103.3 %
 0.76
 0.74%

 192683.3
 99.52 %
 0.910
 0.00051
 mg/L
 0.000165

 22.2
 0.01577 mg/L
 0.006428
 0.01577 mg/L
 0.006428 40.77%
 0.001621
 0.001621
 0.001621
 0.001621
 0.001621
 342.80%

 0.9
 0.00046 mg/L
 0.001705
 0.00047 mg/L
 0.001705 369.81%
 0.001705 369.81%
 0.001705 369.81%
 0.001705 369.81%
 0.001705 369.81%
 0.001705 369.81%
 0.001705 369.81%
 0.001705 369.81%
 0.000357 116.73%
 0.00031 mg/L
 0.000357 116.73%
 0.00031 mg/L
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 0.000357 116.73%
 < Mean Data: CB Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031t Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† T1 190.801† V 292.402† Zn 206.200†

Autosampler Location: 71 Sequence No.: 15

Sample ID: VP23 MB2 WMN Date Collected: 11/2/2012 5:46:29 PM

Analyst: EL
Dilution: 1X

Data Type: Original

Nebulizer Parameters: VP23 MB2 WMN

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min All

Mean Data: VP23 M	Mean Data: VP23 MB2 WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev. RSD	
ScA 357.253	2612546.6	102.3		0.17			0.17%	
ScR 361.383	222433.7	114.9		17.73			15.44%	
Ag 328.068†	-35.1	-0.00012	J .	0.000089	-0.00012	2.	0.000089 75.58%	
Al 308.215†	0.8	0.00055	mg/L	0.008622	0.00055	mg/L	0.008622 >999.9%	
As 188.979†	3.5	0.00152		0.001357	0.00152		0.001357 89.46%	
B 249.677†	8.2	0.00404	mg/L	0.008710	0.00404	mg/L	0.008710 215.58%	
Ba 233.527†	-10.4	-0.00109	mg/L	0.001051	-0.00109	mg/L	0.001051 96.74%	
Be 313.042†	-50.8	-0.00020	mg/L	0.000329	-0.00020	mg/L	0.000329 167.98%	
Ca 317.933†	-5.0	-0.00049	mg/L	0.001462	-0.00049	mg/L	0.001462 299.71%	
Cd 228.802†	1.1	0.00001	mg/L	0.000018	0.00001	mg/L	0.000018 192.86%	
Co 228.616†	-10.3	-0.00012	mg/L	0.000045	-0.00012	mg/L	0.000045 36.27%	
Cr 267.716†	-1.4	-0.00034	mg/L	0.000717	-0.00034	mg/L	0.000717 213.11%	
Cu 324.752†	-401.5	-0.00129	mg/L	0.000110	-0.00129	mg/L	0.000110 8.56%	
Fe 273.955†	-8.9	-0.00754	mg/L	0.003364	-0.00754	mg/L	0.003364 44.62%	
K 766.490†	-100.1	-0.02838	mg/L	0.078126	-0.02838	mg/L	0.078126 275.24%	
Mg 279.077†	17.3	0.01587	mg/L	0.018383	0.01587	mg/L	0.018383 115.84%	
Mn 257.610†	-12.7	-0.00034	mg/L	0.000259	-0.00034	mg/L	0.000259 75.58%	
Mo 202.031†	7.7	0.00045	mg/L	0.000188	0.00045	mg/L	0.000188 41.56%	
Na 589.592†	-272.6	-0.03374	mg/L	0.006139	-0.03374	mg/L	0.006139 18.20%	
Na 330.237†	-9.5	-0.3801	mg/L	0.64685	-0.3801	mg/L	0.64685 170.16%	
Ni 231.604†	-3.3	-0.00154	mg/L	0.003001	-0.00154	mg/L	0.003001 194.98%	
Pb 220.353†	-22.2	-0.00169	mg/L	0.000738	-0.00169	mg/L	0.000738 43.62%	
Sb 206.836†	-5.8	-0.00171	mg/L	0.000734	-0.00171	mg/L	0.000734 43.00%	
Se 196.026†	12.0	0.00657	mg/L	0.000916	0.00657	mg/L	0.000916 13.96%	
Si 288.158†	-6.7	-0.00513	mg/L	0.001114	-0.00513	mg/L	0.001114 21.70%	
Sn 189.927†	-3.7	-0.00060	mg/L	0.000435	-0.00060	mg/L	0.000435 72.00%	
Sr 421.552†	-66.4	-0.00011	mg/L	0.000178	-0.00011	mg/L	0.000178 160.59%	
Ti 334.903†	18.4	0.00076	mg/L	0.000493	0.00076	mg/L	0.000493 64.57%	
Tl 190.801†	1.2	0.00034		0.001767	0.00034	mg/L	0.001767 514.83%	
V 292.402†	14.1	0.00007		0.000154	0.00007	mg/L	0.000154 224.41%	
Zn 206.200†	1.2	0.00051		0.001714	0.00051		0.001714 335.21%	

Sequence No.: 16 Autosampler Location: 72

Sample ID: VP40 MB1 SWC Date Collected: 11/2/2012 5:52:30 PM Data Type: Original

Analyst: EL Dilution: 2X

Nebulizer Parameters: VP40 MB1 SWC

Analyte

Back PressureFlow231.0 kPa0.55 L/min All

Mean Data: VP40 M	Mean Data: VP40 MB1 SWC								
	Mean Corrected		Calıb.			Sample			
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	-	Std.Dev. RSD		
ScA 357.253	2546120.9	99.67	용	2.206			2.21%		
ScR 361.383	182546.1	94.28	96	1.374			1.46%		
Ag 328.068†	57.2	0.00019	mg/L	0.000037	0.00038	mg/L	0.000074 19.47%		
A1 308.215†	21.2	0.01511	mg/L	0.004892	0.03021	mg/L	0.009784 32.38%		
As 188.979†	1.4	0.00060	mg/L	0.000746	0.00120	mg/L	0.001493 124.57%		
B 249.677†	-11.3	-0.00553	mg/L	0.001275	-0.01106	mg/L	0.002551 23.07%		
Ba 233.527†	3.0	0.00031	mg/L	0.000410	0.00062	mg/L	0.000821 132.99%		
Be 313.042†	54.5	0.00021	mg/L	0.000065	0.00042	mg/L	0.000129 30.75%		
Ca 317.933†	125.8	0.01217	mg/L	0.001106	0.02434	mg/L	0.002213 9.09%		
Cd 228.802†	-0.0	0.00000		0.000105	0.00000	mg/L	0.000210 >999.9%		
Co 228.616†	6.1	0.00007		0.000096	0.00014	mg/L	0.000192 133.08%		
Cr 267.716†	-1.4	-0.00033		0.000523	-0.00066		0.001046 157.41%		
Cu 324.752†	1393.8	0.00446		0.000169	0.00892	mg/L	0.000338 3.79%		
Fe 273.955†	-0.6	-0.00048	mg/L	0.000493	-0.00095	mg/L	0.000986 103.29%		
K 766.490†	323.0	0.09157	mg/L	0.003440	0.1831		0.00688 3.76%		
Mg 279.077†	-12.8	-0.01176		0.002317	-0.02353	mg/L	0.004634 19.70%		
Mn 257.610†	-14.0	-0.00038	mg/L	0.000086	-0.00075	mg/L	0.000173 22.94%		
Mo 202.031†	3.2	0.00019		0.000164	0.00038	mg/L	0.000329 86.57%		
Na 589.592†	60.8	0.00753	${\tt mg/L}$	0.008665	0.01505	mg/L	0.017329 115.11등		
Na 330.237†	23.4	0.9302		0.18778	1.860	mg/L	0.3756 20.19%		
Ni 231.604†	5.5	0.00256		0.001408	0.00513		0.002817 54.92%		
Pb 220.353†	-2.1	-0.00016		0.000456	-0.00033		0.000912 279.98%		
Sb 206.836†	-8.3	-0.00245	J .	0.000388	-0.00490	mg/L	0.000776 15.85%		
Se 196.026†	3.7	0.00202	mg/L	0.002239	0.00405	mg/L	0.004478 110.62%		
Si 288.158†	8.2	0.00623		0.003173	0.01245	mg/L	0.006347 50.96%		
Sn 189.927†	2.6	0.00043		0.000673	0.00086	mg/L	0.001347 156.28%		
Sr 421.552†	98.7	0.00017		0.000026	0.00033		0.000053 15.97%		
Ti 334.903†	9.4	0.00039		0.000480	0.00078	mg/L	0.000960 123.84%		
Tl 190.801†	1.8	0.00051		0.001536	0.00102	J .	0.003072 302.50%		
V 292.402†	18.7	0.00009		0.000121	0.00018	mg/L	0.000242 135.07%		
Zn 206.200†	21.8	0.00892	mg/L	0.000137	0.01784	mg/L	0.000273 1.53%		

Sequence No.: 17 Autosampler Location: 73

Sample ID: VP23 I WMN Date Collected: 11/2/2012 5:58:32 PM Analyst: EL Data Type: Original

Dilution: 1X

Nebulizer Parameters: VP23 I WMN

Analyte

BackPressureFlow231.0kPa0.55L/min All

Mean Data: VP23 I	WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2575584.7	100.8	ક્ષ	1.01				1.00%
ScR 361.383	201547.6	104.1	ક	1.74				1.67%
Ag 328.068†	85.3	-0.00063		0.000118	-0.00063	mg/L	0.000118	18.60%
Al 308.215†	13.1	0.00917	${\tt mg/L}$	0.005691	0.00917	mg/L	0.005691	62.09%
As 188.979†	5.8	0.00247		0.001951	0.00247	mg/L	0.001951	78.98%
в 249.677†	58.3	0.02860		0.001409	0.02860	mg/L	0.001409	4.92%
Ba 233.527†	325.3	0.03404	${ m mg/L}$	0.001180	0.03404	mg/L	0.001180	3.47%
Be 313.042†	-1.7	-0.00001	J .	0.000101	-0.00001	mg/L	0.000101	893.78%
Ca 317.933†	820206.3	79.37		0.962	79.37		0.962	1.21%
Cd 228.802†	-14.3	-0.00018	J.	0.000027	-0.00018		0.000027	14.95%
Co 228.616†	-11.7	-0.00016		0.000083	-0.00016	mg/L	0.000083	50.86%
Cr 267.716†	15.6	0.00360		0.000534	0.00360		0.000534	14.82%
Cu 324.752†	-7.6	-0.00002		0.000062	-0.00002		0.000062	254.49%
Fe 273.955†	38.6	0.03283		0.001796	0.03283	mg/L	0.001796	5.47%
K 766.490†	13605.8	3.857		0.0889	3.857		0.0889	2.31%
Mg 279.077†	52818.2	48.37		0.707	48.37		0.707	1.46%
Mn 257.610†	3096.7	0.08329		0.000882	0.08329		0.000882	1.06%
Mo 202.031†	57.7	0.00280		0.000284	0.00280		0.000284	10.14%
Na 589.592†	155094.2	19.20	_	0.251	19.20		0.251	1.31%
Na 330.237†	486.9	19.11		0.410	19.11		0.410	2.15%
Ni 231.604†	12.0	0.00561	J .	0.002795	0.00561		0.002795	49.86%
Pb 220.353†	-49.2	-0.00172		0.000484	-0.00172		0.000484	28.25%
Sb 206.836†	-18.3	-0.00557		0.000450	-0.00557	J .	0.000450	8.07%
Se 196.026†	26.0	0.01413		0.001051	0.01413		0.001051	7.44%
Si 288.158†	22551.7	17.24		0.264	17.24		0.264	1.53%
Sn 189.927†	-50.2	0.00986		0.000730	0.00986		0.000730	7.40%
Sr 421.552†	277099.9	0.4638		0.00900	0.4638		0.00900	1.94 કે
Ti 334.903†	159.6	0.00273		0.000281	0.00273		0.000281	10.28%
Tl 190.801†	-12.9	-0.00374		0.001145	-0.00374	J .	0.001145	30.65%
V 292.402†	383.1	0.00191		0.000226	0.00191	J .	0.000226	11.79%
Zn 206.200†	-3.8	0.00015	mg/L	0.000458	0.00015	mg/L	0.000458	303.60%

upua aaupa

Sequence No.: 18 Autosampler Location: 74

Sample ID: VP23 J WMN Date Collected: 11/2/2012 6:04:50 PM Data Type: Original

Analyst: EL Dilution: 1X

All

Nebulizer Parameters: VP23 J WMN

Back Pressure Flow 231.0 kPa 0.55 L/min Analyte

Mean Data: VP23 J	WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2639731.7	103.3		1.96				1.90%
ScR 361.383	205846.7	106.3	g _o	1.41				1.33%
Ag 328.068†	-1.0	-0.00020	mg/L	0.000141	-0.00020	mg/L	0.000141	69.15ક
Al 308.215†	28.5	0.02025	mg/L	0.014778	0.02025	mg/L	0.014778	72.98₹
As 188.979†	4.7	0.00200	mg/L	0.002036	0.00200	mg/L	0.002036	101.89%
B 249.677†	58.3	0.02861	mg/L	0.000718	0.02861	mg/L	0.000718	2.51%
Ba 233.527†	91.8	0.00961	mg/L	0.000478	0.00961		0.000478	4.97%
Be 313.042†	-21.0	-0.00008	mg/L	0.000056	-0.00008	mg/L	0.000056	67.66%
Ca 317.933†	179874.4	17.41	mg/L	0.385	17.41	mg/L	0.385	2.21%
Cd 228.802†	-13.9	-0.00018	mg/L	0.000021	-0.00018	mg/L	0.000021	11.91%
Co 228.616†	-14.3	-0.00018	mg/L	0.000157	-0.00018	mg/L	0.000157	87.57%
Cr 267.716†	2.1	0.00049	mg/L	0.000642	0.00049	mg/L	0.000642	132.06%
Cu 324.752†	257.0	0.00083	${ m mg/L}$	0.000141	0.00083	mg/L	0.000141	17.02%
Fe 273.955†	99.5	0.08455	mg/L	0.002983	0.08455	mg/L	0.002983	3.53%
K 766.490†	13249.2	3.756	${ m mg/L}$	0.0906	3.756	mg/L	0.0906	2.41%
Mg 279.077†	10699.4	9.798	mg/L	0.2155	9.798	mg/L	0.2155	2.20%
Mn 257.610†	988.5	0.02659	mg/L	0.000382	0.02659	${ m mg/L}$	0.000382	1.44 %
Mo 202.031†	36.1	0.00200	mg/L	0.000236	0.00200	mg/L	0.000236	11.81%
Na 589.592†	63099.8	7.811	mg/L	0.1607	7.811	mg/L	0.1607	2.06%
Na 330.237†	194.5	7.697	mg/L	0.8053	7.697	mg/L	0.8053	10.46%
Ni 231.604†	-0.9	-0.00043	mg/L	0.001192	-0.00043	mg/L	0.001192	276.30%
Pb 220.353†	-38.4	-0.00248	mg/L	0.000896	-0.00248	mg/L	0.000896	36.16%
Sb 206.836†	-13.3	-0.00399		0.000751	-0.00399	mg/L	0.000751	18.82%
Se 196.026†	11.5	0.00627		0.004322	0.00627	mg/L	0.004322	68.97%
Si 288.158†	10774.9	8.234	mg/L	0.1848	8.234	mg/L	0.1848	2.24%
Sn 189.927†	-21.4	0.00044	mg/L	0.000275	0.00044	mg/L	0.000275	62.11%
Sr 421.552†	62792.2	0.1051		0.00216	0.1051	mg/L	0.00216	2.05%
Ti 334.903†	61.8	0.00171		0.000484	0.00171	mg/L	0.000484	28.31%
T1 190.801†	0.5	0.00011	mg/L	0.000684	0.00011	mg/L	0.000684	618.90 €
V 292.402†	115.8	0.00057	mg/L	0.000032	0.00057	mg/L	0.000032	5.65%
Zn 206.200†	1.1	0.00084	mg/L	0.000533	0.00084	mg/L	0.000533	63.25%

Sequence No.: 19 Autosampler Location: 75

Sample ID: VP23 K WMN Date Collected: 11/2/2012 6:10:51 PM Data Type: Original

Analyst: EL Dilution: 1X

Nebulizer Parameters: VP23 K WMN

Analyte

Back Pressure Flow 230.0 kPa 0.55 L/min All

Mean Data: VP23 K	WMN							
	Mean Corrected		Calib.			Sample	}	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2578054.2	100.9	용	2.74				2.72%
ScR 361.383	196528.3	101.5	용	1.94				1.91%
Ag 328.068†	-67.2	-0.00043	mg/L	0.000125	-0.00043	mq/L	0.000125	29.09%
Al 308.215†	46.3	0.03289	mg/L	0.010580	0.03289	mg/L	0.010580	32.17%
As 188.979†	3.0	0.00130	mg/L	0.001642	0.00130		0.001642	126.60%
B 249.677†	48.9	0.02398	mg/L	0.001913	0.02398	mg/L	0.001913	7.98%
Ba 233.527†	101.1	0.01057	mg/L	0.000493	0.01057	mg/L	0.000493	4.66%
Be 313.042†	4.6	0.00002	mg/L	0.000064	0.00002		0.000064	404.98%
Ca 317.933†	184613.7	17.87	mg/L	0.303	17.87	mg/L	0.303	1.70%
Cd 228.802†	-9.5	-0.00012	mg/L	0.000040	-0.00012	mg/L	0.000040	32.82%
Co 228.616†	-6.1	-0.00008	mg/L	0.000101	-0.00008	mg/L	0.000101	120.71%
Cr 267.716†	7.9	0.00184		0.000903	0.00184	mg/L	0.000903	49.15%
Cu 324.752†	390.9	0.00127		0.000284	0.00127	mg/L	0.000284	22.44%
Fe 273.955†	250.8	0.2132	mg/L	0.00406	0.2132	mg/L	0.00406	1.91%
K 766.490†	13745.4	3.896	mg/L	0.0994	3.896	mg/L	0.0994	2.55%
Mg 279.077†	10909.4	9.990	mg/L	0.1746	9.990	mg/L	0.1746	1.75%
Mn 257.610†	1807.5	0.04861	mg/L	0.000998	0.04861	mg/L	0.000998	2.05%
Mo 202.031†	27.9	0.00152		0.000267	0.00152	mg/L	0.000267	17.55%
Na 589.592†	66658.8	8.251	mg/L	0.1589	8.251	mg/L	0.1589	1.93%
Na 330.237†	207.9	8.230	mg/L	0.1882	8.230	mg/L	0.1882	2.29%
Ni 231.604†	2.0	0.00093	mg/L	0.001628	0.00093	mg/L	0.001628	175.32%
Pb 220.353†	-29.1	-0.00176	mg/L	0.001073	-0.00176	mg/L	0.001073	60.99%
Sb 206.836†	-10.4	-0.00316	mg/L	0.000925	-0.00316	mg/L	0.000925	29.244
Se 196.026†	8.7	0.00474	mg/L	0.002384	0.00474	mg/L	0.002384	50.27%
Si 288.158†	11183.3	8.546	mg/L	0.1320	8.546	mg/L	0.1320	1.55%
Sn 189.927†	-13.7	0.00180	mg/L	0.000361	0.00180	mg/L	0.000361	20.06%
Sr 421.552†	65218.4	0.1091	mg/L	0.00235	0.1091	mg/L	0.00235	2.16%
Ti 334.903†	66.9	0.00190	mg/L	0.000226	0.00190	mg/L	0.000226	11.91%
Tl 190.801†	0.3	0.00003	mg/L	0.000977	0.00003		0.000977	>999.9%
V 292.402†	159.0	0.00078	mg/L	0.000143	0.00078	mg/L	0.000143	18.25%
Zn 206.200†	2.9	0.00156	mg/L	0.001013	0.00156	mg/L	0.001013	65.05%

Sequence No.: 20

Sample ID: VP23 L WMN

Analyst: EL Dilution: 1X

Autosampler Location: 76 Date Collected: 11/2/2012 6:16:53 PM

Data Type: Original

Nebulizer Parameters: VP23 L WMN

Analyte

Back Pressure Flow 231.0 kPa 0.55 L/min All

Mean Data: VP23 L	WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2605053.7	102.0	ક	0.98				0.96%
ScR 361.383	221721.6	114.5	ક	12.79				11.17%
Ag 328.068†	27.4	-0.00062		0.000135	-0.00062		0.000135	21.82%
Al 308.215†	-2.6	-0.00195	mg/L	0.005213	-0.00195	mg/L	0.005213	266.91%
As 188.979†	-0.7	-0.00029	mg/L	0.002291	-0.00029	mg/L	0.002291	801.82%
B 249.677†	53.1	0.02605	mg/L	0.004350	0.02605	mg/L	0.004350	16.70%
Ba 233.527†	119.4	0.01249	mg/L	0.002048	0.01249	mg/L	0.002048	16.40%
Be 313.042†	-72.9	-0.00028	mg/L	0.000211	-0.00028	mg/L	0.000211	74.80%
Ca 317.933†	506244.5	48.99	mg/L	5.734	48.99	mg/L	5.734	11.70%
Cd 228.802†	-28.8	-0.00036	mg/L	0.000023	-0.00036	mg/L	0.000023	6.56%
Co 228.616†	9.4	0.00010	mg/L	0.000009	0.00010	mg/L	0.000009	8.478
Cr 267.716†	8.9	0.00189	mg/L	0.001160	0.00189	mg/L	0.001160	61.35%
Cu 324.752†	-399.0	-0.00128	mg/L	0.000163	-0.00128	mg/L	0.000163	12.74%
Fe 273.955†	-5.6	-0.00474	mg/L	0.004586	-0.00474	mg/L	0.004586	96.80%
K 766.490†	10423.1	2.955	mg/L	0.4281	2.955	mg/L	0.4281	14.49%
Mg 279.077†	37748.2	34.57	mg/L	4.022	34.57	mg/L	4.022	11.64%
Mn 257.610†	29276.1	0.7874	mg/L	0.09248	0.7874	mg/L	0.09248	11.74%
Mo 202.031†	48.7	0.00244	mg/L	0.000125	0.00244	mg/L	0.000125	`5.13°s
Na 589.592†	85073.2	10.53	mg/L	1.244	10.53	mg/L	1.244	11.81%
Na 330.237†	266.1	10.33	mg/L	1.363	10.33	mg/L	1.363	13.19%
Ni 231.604†	14.3	0.00667	mg/L	0.003645	0.00667	mg/L	0.003645	54.68%
Pb 220.353†	-51.0	-0.00263	mg/L	0.000384	-0.00263	mg/L	0.000384	14.57%
Sb 206.836†	-20.5	-0.00617	mg/L	0.002010	-0.00617	mg/L	0.002010	32.55%
Se 196.026†	26.3	0.01429	mg/L	0.004522	0.01429		0.004522	31.64%
Si 288.158†	23827.8	18.21	mg/L	2.131	18.21	mg/L	2.131	11.70%
Sn 189.927†	-39.8	0.00477	mg/L	0.000308	0.00477	mg/L	0.000308	6.45%
Sr 421.552†	136272.5	0.2281	mg/L	0.02721	0.2281	mg/L	0.02721	11.93%
Ti 334.903†	107.6	0.00206		0.000631	0.00206		0.000631	30.61%
Tl 190.801†	-12.9	-0.00458	mg/L	0.000242	-0.00458	mg/L	0.000242	5.29%
V 292.402†	51.5	0.00039	mg/L	0.000305	0.00039	mg/L	0.000305	77.98%
Zn 206.200†	586.6	0.2410	mg/L	0.02671	0.2410	mg/L	0.02671	11.08%

Date: 11/2/2012 6:27:15 PM

Sequence No.: 21

Sample ID: VP23 HDUP WMN

Analyst: EL Dilution: 1X Autosampler Location: 77

Date Collected: 11/2/2012 6:22:55 PM

Data Type: Original

Nebulizer Parameters: VP23 HDUP WMN

Analyte Back Pressure Flow

All 0.55 L/min 231.0 kPa

Mean Data: VP23 HD	TIP WIMN						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	-	Std.Dev. RSD
ScA 357.253	2588192.0	101.3		0.22			0.22%
ScR 361.383	210681.9	108.8	8	9.78			8.99%
Ag 328.068†	285.7	-0.00058	mg/L	0.000158	-0.00058	mg/L	0.000158 27.01%
Al 308.215†	7.4	0.00520	mg/L	0.006890	0.00520		0.006890 132.54%
As 188.979†	4.0	0.00170	mg/L	0.001414	0.00170		0.001414 83.20%
в 249.677†	124.9	0.06127		0.002567	0.06127		0.002567 4.19%
Ba 233.527†	363.1	0.03799	mg/L	0.003883	0.03799		0.003883 10.22%
Be 313.042†	-34.8	-0.00014	mg/L	0.000216	-0.00014		0.000216 157.05%
Ca 317.933†	608411.3	58.88	mg/L	5.790	58.88	mg/L	5.790 9.83%
Cd 228.802†	423.6	0.00529	mg/L	0.000028	0.00529	mg/L	0.000028 0.53%
Co 228.616†	407.8	0.00487	mg/L	0.000109	0.00487	mg/L	0.000109 2.25%
Cr 267.716†	7.4	0.00073	mg/L	0.001309	0.00073	mg/L	0.001309 178.75%
Cu 324.752†	197.9	0.00064	mg/L	0.000186	0.00064	mg/L	0.000186 29.19%
Fe 273.955†	53.8	0.04574		0.003505	0.04574	mg/L	0.003505 <u>7.66</u> %
K 766.490†	11887.9	3.370	mg/L	0.4022	3.370	mg/L	0.4022 11.94%
Mg 279.077†	21249.2	19.46	mg/L	1.755	19.46	mg/L	1.755 9. <u>02</u> %
Mn 257.610†	168872.0	4.542	mg/L	0.4500	4.542	mg/L	0.4500 9 <u>.91</u> %
Mo 202.031†	50.7	0.00274	mg/L	0.000194	0.00274	mg/L	0.000194 7.089
Na 589.592†	97016.5	12.01	mg/L	1.179	12.01	mg/L	1.179 9.82%
Na 330.237†	312.1	12.22	mg/L	1.394	12.22		1.394 11.42%
Ni 231.604†	10.0	0.00468		0.003573	0.00468	mg/L	0.003573 76.32%
Pb 220.353†	-44.0	-0.00185	mg/L	0.000678	-0.00185	mg/L	0.000678 36.67%
Sb 206.836†	-9.1	-0.00279	mg/L	0.000398	-0.00279	mg/L	0.000398 14.29%
Se 196.026†	20.8	0.01133		0.001720	0.01133	mg/L	0.001720 15.18%
Si 288.158†	11715.4	8.954		0.8270	8.954		0.8270 9.24%
Sn 189.927†	-41.8	0.00618		0.001216	0.00618	mg/L	0.001216 19.66%
Sr 421.552†	256360.0	0.4290		0.04098	0.4290	mg/L	0.04098 9.55%
Ti 334.903†	120.5	0.00211		0.000207	0.00211		0.000207 9.78%
Tl 190.801†	16.4	-0.00100		0.002268	-0.00100		0.002268 226.47%
V 292.402†	247.2	0.00189		0.000137	0.00189		0.000137 7.26%
Zn 206.200†	-4.7	-0.00064	mg/L	0.002287	-0.00064	mg/L	0.002287 356.71%

Sequence No.: 22 Autosampler Location: 78

Date Collected: 11/2/2012 6:29:15 PM Sample ID: VP23 H WMN Data Type: Original

Analyst: EL Dilution: 1X

Nebulizer Parameters: VP23 H WMN

Analyte

Back Pressure Flow 231.0 kPa 0.55 L/min All

Mean Data: VP23 H	WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2534216.4	99.21	8	1.096				1.10%
ScR 361.383	194419.4	100.4	8	1.05				1.04%
Ag 328.068†	385.7	-0.00041	mg/L	0.000217	-0.00041	mg/L	0.000217	53.29%
Al 308.215†	19.6	0.01384	mg/L	0.003577	0.01384	mg/L	0.003577	25.85%
As 188.979†	6.4	0.00277	mg/L	0.001498	0.00277	mg/L	0.001498	54.12%
B 249.677†	125.4	0.06148	mg/L	0.001604	0.06148	mg/L	0.001604	2.61%
Ba 233.527†	412.0	0.04310	mg/L	0.000990	0.04310	mg/L	0.000990	2.30%
Be 313.042†	7.7	0.00003	mg/L	0.000033	0.00003	mg/L	0.000033	123.94%
Ca 317.933†	670523.7	64.89	mg/L	0.649	64.89	mg/L	0.649	1.00%
Cd 228.802†	446.5	0.00557	mg/L	0.000074	0.00557	mg/L	0.000074	1.33%
Co 228.616†	426.5	0.00509	mg/L	0.000151	0.00509	mg/L	0.000151	2.96%
Cr 267.716†	12.0	0.00170	mg/L	0.000692	0.00170	mg/L	0.000692	40.67%
Cu 324.752†	239.5	0.00077		0.000107	0.00077	mg/L	0.000107	13.84%
Fe 273.955†	60.2	0.05120	mg/L	0.001368	0.05120	mg/L	0.001368	2.67%
K 766.490†	13011.0	3.688	mg/L	0.0141	3.688	${ m mg/L}$	0.0141	0.38%
Mg 279.077†	23231.0	21.27	mg/L	0.263	21.27	${ m mg/L}$	0.263	1.23%
Mn 257.610†	186244.5	5.009	mg/L	0.0402	5.009	${ m mg/L}$	0.0402	0.80%
Mo 202.031†	45.1	0.00239	mg/L	0.000428	0.00239	2	0.000428	17.88%
Na 589.592†	105195.6	13.02	${ m mg/L}$	0.071	13.02	mg/L	0.071	0.55%
Na 330.237†	347.8	13.61	mg/L	0.250	13.61	mg/L	0.250	1.83%
Ni 231.604†	18.9	0.00881	mg/L	0.000345	0.00881	mg/L	0.000345	3.92ર
Pb 220.353†	-39.8	-0.00137	${ m mg/L}$	0.000450	-0.00137	mg/L	0.000450	32.87%
Sb 206.836†	-0.5	-0.00028	mg/L	0.001230	-0.00028	J .		
Se 196.026†	15.1	0.00820	${ m mg/L}$	0.004279	0.00820	mg/L	0.004279	52.16%
Si 288.158†	12802.6	9.785	mg/L	0.0722	9.785	mg/L	0.0722	0.74%
Sn 189.927†	-43.7	0.00719	${ m mg/L}$	0.000447	0.00719	mg/L	0.000447	6.22%
Sr 421.552†	282455.5	0.4727	mg/L	0.00435	0.4727	J .	0.00435	0.92%
Ti 334.903†	126.4	0.00207	mg/L	0.000414	0.00207		0.000414	20.02%
Tl 190.801†	13.1	-0.00250		0.000352	-0.00250		0.000352	14.07%
V 292.402†	249.5	0.00197	${ m mg/L}$	0.000188	0.00197	٠,	0.000188	9.56%
Zn 206.200†	-9.9	-0.00267	mg/L	0.000569	-0.00267	mg/L	0.000569	21.32%

upum:mauga

Date: 11/2/2012 6:39:29 PM

Sequence No.: 23

Autosampler Location: 79

Sample ID: VP23 HSPK WMN

Date Collected: 11/2/2012 6:35:34 PM

0.5678 mg/L

Analyst: EL Dilution: 1X

V 292.402† Zn 206.200† Data Type: Original

Nebulizer Parameters: VP23 HSPK WMN

Analyte

Back Pressure Flow 9.55 L/min All

1384.6

0.5678 mg/L

Mean Data: VP23 H	SPK WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2531380.1	99.10		0.182				0.18%
ScR 361.383	192474.3	99.41		0.505				0.51%
Ag 328.068†	148667.7	0.4948		0.00632	0.4948		0.00632	1.28%
Al 308.215†	3376.6	2.395	mg/L	0.0126	2.395	mg/L	0.0126	0.52%
As 188.979†	5486.7	2.353	mg/L	0.0125	2.353	mg/L	0.0125	0.53%
В 249.677†	128.0	0.06098	mg/L	0.003128	0.06098	mg/L	0.003128	5.13%
Ba 233.527†	22561.0	2.360	mg/L	0.0121	2,360		0.0121	0.51%
Be 313.042†	152275.4	0.5855	mg/L	0.00264	0.5855	mg/L	0.00264	0.45€
Ca 317.933†	791804.7	76.62	mg/L	0.333	76.62	mg/L	0.333	0.44%
Cd 228.802†	48197.0	0.5963	mg/L	0.00066	0.5963	mg/L	0.00066	0.11%
Co 228.616†	45587.0	0.5459	mg/L	0.00093	0.5459	mg/L	0.00093	0.17%
Cr 267.716†	2553.5	0.5934	mg/L	0.00441	0.5934	mg/L	0.00441	0.74%
Cu 324.752†	171572.5	0.5494		0.00125	0.5494	mg/L	0.00125	0.23%
Fe 273.955†	2915.2	2.477	mg/L	0.0130	2.477	mg/L	0.0130	0.52%
K 766.490†	57650.0	16.34	${ m mg/L}$	0.085	16.34	mg/L	0.085	0.52%
Mg 279.077†	36244.1	33.19	mg/L	0.147	33.19	mg/L	0.147	0.44%
Mn 257.610†	207011.6	5.568	mg/L	0.0237	5.568	mg/L	0.0237	0.43%
Mo 202.031†	50.9	0.00253	mg/L	0.000466	0.00253	mg/L	0.000466	18.47%
Na 589.592†	202727.6	25.09	mg/L	0.053	25.09	mg/L	0.053	0.21%
Na 330.237†	647.2	25.31	mg/L	0.366	25.31	mg/L	0.366	1.45%
Ni 231.604†	1200.2	0.5599	mg/L	0.00472	0.5599	mg/L	0.00472	0.84%
Pb 220.353†	28302.3	2.163	mg/L	0.0150	2.163	mg/L	0.0150	0.69%
Sb 206.836†	15.3	-0.00442	mg/L	0.001485	-0.00442	mg/L	0.001485	33.61%
Se 196.026†	4577.0	2.492	mg/L	0.0222	2.492	mg/L	0.0222	0.89%
Si 288.158†	12752.0	9.750	mg/L	0.0505	9.750	mg/L	0.0505	0.52%
Sn 189.927†	-50.0	0.00895	mg/L	0.000471	0.00895	mg/L	0.000471	5.27%
Sr 421.552†	634676.9	1.062	mg/L	0.0067	1.062	mg/L	0.0067	0.63%
Ti 334.903†	151.1	0.00238	mg/L	0.000327	0.00238	mg/L	0.000327	13.77%
Tl 190.801+	8000.5	2.231	mg/L	0.0166	2.231	mg/L	0.0166	0.75%
V 292.402†	122368.7	0.6018		0.00151	0.6018		0.00151	0.25%
Zn 206.200†	1384.6	0.5678	ma/L	0.00130	0.5678	ma/L	0.00130	0.23%

0.00130

0.25% 0.23%

0.00130

Sequence No.: 24

Autosampler Location: 80

Sample ID: VP23 MB2SPK WMN

Date Collected: 11/2/2012 6:41:29 PM Data Type: Original

Analyst: EL Dilution: 1X

Nebulizer Parameters: VP23 MB2SPK WMN

Back Pressure Analyte

Flow
0.55 L/min All 231.0 kPa

Mean Data: VP23	MB2SPK WMN							
	Mean Corrected	l C	alib.			Sample	:	
Analyte	Intensity	Conc. U	nits	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2588972.2	101.3 %		0.50				0.49%
ScR 361.383	195722.5	101.1 %		1.20				1.18%
Ag 328.068†	101947.5	0.3404 m	g/L	0.00646	0.3404	mg/L	0.00646	1.90%
Al 308.215†	3341.4	2.370 m	g/L	0.0264	2.370	mg/L	0.0264	1.11%
As 188.979†	5231.3	2.243 m	g/L	0.0218	2.243	mg/L	0.0218	0.97%
B 249.677†	-0.9	-0.00230 m	g/L	0.001125	-0.00230	mg/L	0.001125	49.00%
Ba 233.527†	22202.9	2.323 m	g/L	0.0257	2.323	mg/L	0.0257	1.11%
Be 313.042†	150462.9	0.5786 m	g/L	0.00052	0.5786	mg/L	0.00052	0.09%
Ca 317.933†	120159.6	11.63 m	g/L	0.023	11.63	mg/L	0.023	0.20%
Cd 228.802†	48145.7	0.5959 m	g/L	0.00610	0.5959	mg/L	0.00610	1.028
Co 228.616†	46937.1	0.5621 m	g/L	0.00759	0.5621	mg/L	0.00759	1.35%
Cr 267.716†	2550.5	0.5938 m	g/L	0.00581	0.5938	mg/L	0.00581	0.98%
Cu 324.752†	177660.2	0.5689 m	g/L	0.00741	0.5689	mg/L	0.00741	1.30%
Fe 273.955†	2818.1	2.395 m	g/L	0.0258	2.395	mg/L	0.0258	1.089
K 766.490†	44607.9	12-65, m		0.031	12.65	mg/L	0.031	0.24%
Mg 279.077†	13293.7	12.17 m	g/L	0.130	12.17	mg/L	0.130	1.079
Mn 257.610†	21360.9	0.5751 m	g/L	0.00609	0.5751	mg/L	0.00609	1.069
Mo 202.031†	18.3	0.00086 m	g/L	0.000152	0.00086	mg/L	0.000152	17.70%
Na 589.592†	98310.6	12.17 m	g/L	0.029	12.17	mg/L	0.029	0.249
Na 330.237†	311.5	12.17 m	g/L	0.051	12.17	${ m mg/L}$	0.051	0.42
Ni 231.604†	1244.3	0.5804 m	g/L	0.00589	0.5804	${ m mg/L}$	0.00589	1.01%
Pb 220.353†	29629.9	2.262 m	g/L	0.0317	2.262	mg/L	0.0317	1.40%
Sb 206.836†	13.3	-0.00498 m	g/L	0.000960	-0.00498	mg/L	0.000960	19.26%
Se 196.026†	4398.8	2.395 m	g/L	0.0192	2.395	mg/L	0.0192	0.809
Si 288.158†	-1.9	0.00265 m	g/L	0.000305	0.00265	mg/L	0.000305	11.51%
Sn 189.927†	-12.8	0.00067 m	g/L	0.000776	0.00067	mg/L	0.000776	115.398
Sr 421.552†	354012.0	0.5925 m	g/L	0.00223	0.5925	mg/L	0.00223	0.38%
Ti 334.903†	38.7	0.00089 m		0.000235	0.00089	mg/L	0.000235	26.278
T1 190.801†	8202.0	2.294 m	g/L	0.0216	2.294	mg/L	0.0216	0.94
V 292.402†	119940.6	0.5892 m		0.00898	0.5892	mg/L	0.00898	1.52%
Zn 206,200†	1461.2	0.5978 m	g/L	0.00755	0.5978	mg/L	0.00755	1.26%

Sequence No.: 25 Autosampler Location: 7 Date Collected: 11/2/2012 6:47:33 PM

Sample ID: CV Data Type: Original Analyst: EL Dilution: 1X

Nebulizer Parameters: CV

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min A11

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2600835.1	101.8	용	0.20				0.20%
ScR 361.383	198073.3	102.3	8	0.73				0.717
Ag 328.068†	289426.0	0.9665	mg/L	0.00413	0.9665	mg/L	0.00413	0.439
Al 308.215†	2879.8	2.010	mg/L	0.0173	2.010		0.0173	0.86%
As 188.979†	4478.4	1.920	mg/L	0.0044	1.920	mg/L	0.0044	0.23%
B 249.677†	1956.2	0.9579	mg/L	0.01281	0.9579	mg/L	0.01281	1.34 %
Ba 233.527†	9636.4	1.008	mg/L	0.0100	1.008	mg/L	0.0100	0.99%
Be 313.042†	251174.5	0.9658	mg/L	0.00049	0.9658		0.00049	0.05%
Ca 317.933†	20391.9	1.973	mg/L	0.0224	1.973	mg/L	0.0224	1.13%
Cd 228.802†	79758.1	0.9915	mg/L	0.00440	0.9915	mg/L	0.00440	0.44%
Co 228.616†	80127.3	0.9590	mg/L	0.00268	0.9590	mg/L	0.00268	0.28%
Cr 267.716†	4232.2	0.9851	mg/L	0.01176	0.9851	mg/L	0.01176	1.19%
Cu 324.752†	328371.3	1.051	mg/L	0.0009	1.051	mg/L	0.0009	0.09%
Fe 273.955†	2435.4	2.069	mg/L	0.0229	2.069	mg/L	0.0229	1.11%
K 766.490†	74399.4	21.09	mg/L	0.072	21.09	_	0.072	0.34%
Mg 279.077†	2289.8	2.100	mg/L	0.0136	2.100	J.	0.0136	0.65%
Mn 257.610†	37157.3	0.9998	_	0.00217	0.9998	_	0.00217	0.229
Mo 202.031†	15612.3	0.9177	~	0.00089	0.9177	_	0.00089	0.10%
Na 589.592†	411888.3	50.98	mg/L	0.237	50.98		0.237	0.47%
Na 330.237†	1288.8	51.30	_	0.617	51.30	_	0.617	1.20%
Ni 231.604†	2118.7	0.9902	mg/L	0.00994	0.9902	mg/L	0.00994	1.00%
Pb 220.353†	24691.1	1.886	mg/L	0.0029	1.886	mg/L	0.0029	0.15%
Sb 206.836†	6754.3	1.994	_	0.0042	1.994		0.0042	0.21%
Se 196.026†	3420.1	1.861	-	0.0031	1.861	_	0.0031	0.17%
Si 288.158†	2758.4	2.114		0.0173	2.114		0.0173	0.82%
Sn 189.927†	5372.8	0,8777		0.00213	0.8777	J .	0.00213	0.24%
Sr 421.552†	606335.0	1.015		0.0031	1.015	_	0.0031	0.31%
Ti 334.903†	24239.3	1.005		0.0024	1.005	~	0.0024	0.24%
Tl 190.801†	6679.7	1.862	_	0.0041	1.862	J.	0.0041	0.22%
V 292.402†	204239.8	1.007	_	0.0019	1.007		0.0019	0.19%
Zn 206.200†	2580.5	1.054	mg/L	0.0122	1.054	mg/L	0.0122	1.15 ₹

Sequence No.: 26 Autosampler Location: 1

Sample ID: CB 7 Date Collected: 11/2/2012 6:53:37 PM

Analyst: EL Data Type: Original Dilution: 1X

Nebulizer Parameters: CB

Analyte Back Pressure Flow

All 233.0 kPa 0.55 L/min

Analyte	Mean Corrected							
Analyte	IIGGII GOLLEGGEGG		Calib.			Sample		
raiding co	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	. RSD
ScA 357.253	2642190.4	103.4	olo Olo	0.46				0.419
ScR 361.383	193868.4	100.1	엉	0.81				0.81%
Ag 328.068†	118.9	0.00040	mg/L	0.000136	0.00040	mg/L	0.000136	34.36%
Al 308.215†	-1.6	-0.00112	mg/L	0.010653	-0.00112	mg/L	0.010653	953.22%
As 188.979†	5.7	0.00243	mg/L	0.000579	0.00243	mg/L	0.000579	23.79%
B 249.677†	4.0	0.00194	mg/L	0.001517	0.00194	mg/L	0.001517	78.20%
Ba 233.527†	-7.0	-0.00073	mg/L	0.000288	-0.00073	mg/L	0.000288	39.60%
Be 313.042†	26.5	0.00010	mg/L	0.000055	0.00010	mg/L	0.000055	54.26%
Ca 317.933†	-10.8	-0.00104	mg/L	0.001961	-0.00104	mg/L	0.001961	188.14%
Cd 228.802†	-3.8	-0.00005	mg/L	0.000084	-0.00005	mg/L	0.000084	155.21%
Co 228.616†	2.8	0.00003	mg/L	0.000094	0.00003	mg/L	0.000094	281.49%
Cr 267.716†	-0.6	-0.00014	mg/L	0.000461	-0.00014	mg/L	0.000461	320.20%
Cu 324.752†	276.8	0.00089	mg/L	0.000047	0.00089	mg/L	0.000047	5.26%
Fe 273.955†	-7.2	-0.00616	mg/L	0.002293	-0.00616		0.002293	37.21%
K 766.490†	253.8	0.07193	mg/L	0.010300	0.07193	mg/L	0.010300	14.32%
Mg 279.077†	-5.1	-0.00469	mg/L	0.003011	-0.00469	mg/L	0.003011	64.17%
Mn 257.610†	3.7	0.00010	mg/L	0.000022	0.00010	mg/L	0.000022	22.30%
Mo 202.031†	5.9	0.00035	mg/L	0.000153	0.00035	mq/L	0.000153	44.219
Na 589.592†	292.4	0.03619	mg/L	0.008531	0.03619	mq/L	0.008531	23.57%
Na 330.237†	3.6	0.1455	mg/L	0.16253	0.1455	mq/L	0.16253	111.70%
Ni 231.604†	-2.7	-0.00124	mg/L	0.002510	-0.00124	mg/L	0.002510	202.05%
Pb 220.353†	-4.4	-0.00034	mq/L	0.000301	-0.00034	mq/L	0.000301	89.18%
Sb 206.836†	-8.4	-0.00249		0.000378	-0.00249	mq/L	0.000378	15.22%
Se 196.026†	7.3	0.00398	mg/L	0.001877	0.00398		0.001877	47.16%
Si 288.158†	-0.8	-0.00063		0.001538	-0.00063	mg/L	0.001538	242.80%
Sn 189.927†	5.0	0.00081		0.000411	0.00081	mg/L	0.000411	50.41%
Sr 421.552†	-27.6	-0.00005		0.000035	-0.00005	mg/L	0.000035	75.96%
Ti 334.903†	5.7	0.00024		0.000247	0.00024		0.000247	
Tl 190.801†	2.6	0.00074	-	0.000518	0.00074	J .	0.000518	70.278
V 292.402†	5.0	0.00003	_	0.000083	0.00003		0.000083	
Zn 206.200†	1.7	0.00070	J .	0.000749	0.00070		0.000749	

End plag

Mercury Analysis Log

Analyst: _____

Date: 10-30-10-Page: ______ of _____

Instrument: _ 4 5 miles

	ARI Sample ID	Prep Code	Dilution	QC Data (ppb)	Comments
Sito	ن ن و	Sim	ix		
17	0.1				
17	<u>6</u> 5	Ì			
31	1,0				
§ 1	.9.9	,			
27	5,0				
),	10.0				
JAJ				ଓ.୦୩	Bancel YUB-101
ILE				-0.03	1
ceti				٠١.١١	%8:103 J
COBI				· 0.52	1
CBA				5	
4840	iiB'			o.oo	
j)	MBISIX			2,09	968-101 /
{} }	В			0.64	
l)	ADE	7.00		0.66	BPD - 3.57 /
j).	HSPK			1.66	%R: 124
35	В				
11	c				
1690	P				
11	E)				
CEXD.				4.0%	968-102 √
CBA				~O.00	4
J 57 6 11	C				
şι	Ð				
ÇĬ	E				
KOOV	MEI			ල,න	✓
1)	meisa			3.93	968 c pc 1
17	A			0.15	
1)	40x3	4		0.15	-{

Chemical/Reag	ent ID:
---------------	---------

10% SnCl₂: _ ₹ 7.2379

Standard ID:

Standard: <u>2987-12</u>

ICV/CCV: 56 16

5026F

Page 08764

Revision 4 1/26/01

GELNO: OLICO

Mercury Analysis Log

Analyst:	00
	- 7 - 2 - 1

Date: 10-30-12

Instrument: ________

Page: <u>2</u> of <u>3</u>

AF Samp	રા le ID	Prep Code		Dilut	ion	QC Data (ppb)	Comments	
	DK.	S.W.	6)	17		1.19	30K=10H	1
,1 8				}				
11 6								
0.13						4.04	96R:131	√
(s.8)						~9.00		1
	Ø							
11	E							
ce. V-1						4.03	9/0K-101	À
206-1	1					. ₂ , 3 ³	END CU'	1
	Y B Q					~g.50		J.
11 15	BEPK.					2.01	<i>ने</i> ऽसः । ।	4
<u>†1</u>	(D							
	NBi	V				g.50		-/
2, 8.	1815FK	ľ				3.00	958、101	j ,
lí	A		Δ			0.21		
'n	ADUP					<u>3,30</u>		j
11	AT-PK					1.28	% % 353	}
الخنفت						A,05	%R:101	1
CCB)		V				-521		
970 3	7.0	-1943	TT.	\				
1). \							
	5.5							
17.00	, Ό				COLLINE			
ι' .)	2.0				1			
	5.0				THE THE		Millary	
11	5. ⇔		A STATE OF THE STA				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ICV'						; 2:	15 grade \$ 8=95	!
ICE			1			, o >3		;
cc. vil		1	1			4 00	You ist	;
(G)		,	1		1/2	- 5 Di		, t

Cher	nical/	Read	ent	ID.

10% SnCl₂: _ かどうろうろ

Standard ID:
Standard: AST-12Comp

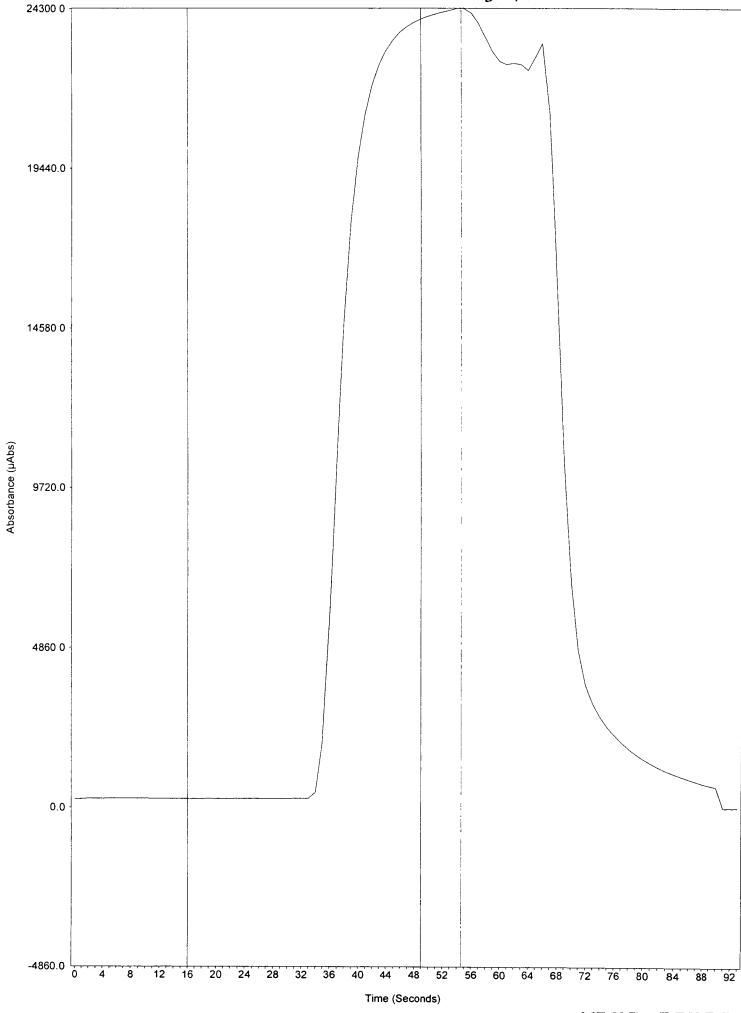
2001-11 (Tem)

ICV/CCV: ___________

5026F

Page 08765

Revision 4 1/26/01



Metals Data Review Checklist

Method: ICP ICP-MS GFA CVA

Analysis Date: 10-30-12

Coptook		Analyst	Peer	Comment
Analyst, Date, Method info Sample ID's Standard/QC solution ID's recorded Prep codes Dilution factors Crossouts/Corrections/Deletions Blank & Standard intensities Standard deviations Curve fit V/ Calibration / Filensous ICV/CCV ICB/CCB V/ ICB/CCB V/ Sampler CRI/CRA Internal Standards Carry-over Mathod Of CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix Spikes Matrix Duplicates Method Blanks Method Blanks Data Blattibitation Requested elements/isotope identified V/ V/ V/ V/ V/ V/ V/ V/ V/ V/ V/ V/ V/		10-30 DW	A 10-31	
Sample ID's Standard/QC solution ID's recorded Prep codes Dilution factors Crossouts/Corrections/Deletions Blank & Standard intensities Standard deviations Curve fit Calibration Verification ICV/CCV ICB/CCB RSD's & SD's Internal Standards Carry-over Method GC Matrix Spikes Matrix Spikes Matrix Duplicates Method Blanks Data das scribettics V V V V V V V V V V V V V				
Standard/QC solution ID's recorded Prep codes Dilution factors Crossouts/Corrections/Deletions J Salibrarion Blank & Standard intensities Standard deviations Curve fit J Calibration Varilsasion ICV/CCV ICB/CCB BRSD's & SD's Internal Standards Carry-over Method GC CRI/CRA J ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix Spikes Matrix Spikes Matrix Duplicates Method Blanks Data Ablist light ion Requested elements/isotope identified		٧	/	
Prep codes Dilution factors Crossouts/Corrections/Deletions Standard deviations Blank & Standard intensities Standard deviations Curve fit Calibrations ICV/CCV ICB/CCB ICB/CCB J Samples RSD's & SD's Internal Standards Carry-over Method CC CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified		✓	/	
Dilution factors Crossouts/Corrections/Deletions Calibration Blank & Standard intensities Standard deviations Curve fit Calibration Verification ICV/CCV ICB/CCB Samples RSD's & SD's Internal Standards Carry-over Method CC CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix QC SRM/LCS Matrix Duplicates Method Blanks Data Pistribetion Requested elements/isotope identified		J	/	
Crossouts/Corrections/Deletions Blank & Standard intensities Standard deviations Curve fit Calibration Varification ICV/CCV ICB/CCB Samples RSD's & SD's Internal Standards Carry-over Method CC CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix Spikes Matrix Duplicates Method Blanks Date Pistribution Requested elements/isotope identified		J	1	
Blank & Standard Intensities Standard deviations Curve fit Calibration Verification ICV/CCV ICB/CCB Samples RSD's & SD's Internal Standards Carry-over Method QC CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix Spikes Matrix Duplicates Method Blanks Data Distributions Requested elements/isotope identified		1		
Blank & Standard Intensities Standard deviations Curve fit Calibration VerHeation ICV/CCV ICB/CCB ICB/CCB Samples RSD's & SD's Internal Standards Carry-over Mathod OC CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix QC SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified V V V V V V V V V V V V V	Crossouts/Corrections/Deletions	1	/	
Standard deviations Curve fit Calibration / eritications ICV/CCV ICB/CCB Samples: RSD's & SD's Internal Standards Carry-over Method QC CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix QC: SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified V // // // // // // // // //	Calibration: 1, 2			
Curve fit Calibration Verification ICV/CCV ICB/CCB Samples RSD's & SD's Internal Standards Carry-over Method QC CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix Spikes Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified	Blank & Standard intensities	√	V	
Calibration Verification ICV/CCV ICB/CCB Samples RSD's & SD's Internal Standards Carry-over Method QC CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix GC SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Data Distribution: Requested elements/isotope identified	Standard deviations	4	~	
ICV/CCV ICB/CCB Samples RSD's & SD's Internal Standards Carry-over Method QC CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix QC SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified V V V V V V V V V V V V V	Curve fit	1	/	
ICB/CCB Samples RSD's & SD's Internal Standards Carry-over Method @C CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix Expikes Matrix Spikes Matrix Duplicates Method Blanks Data Distribation Requested elements/isotope identified	Calibration Verification:			
RSD's & SD's Internal Standards Carry-over Method QC CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix QC SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified	ICV/CCV	✓	V	
RSD's & SD's Internal Standards Carry-over Method QC CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix QC SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified	ICB/CCB	4	7	
Internal Standards Carry-over Method QC CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix QC SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified	Samples:			
Internal Standards Carry-over Method QC CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix QC SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified	RSD's & SD's	1	V	
CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix GC SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Date Distribution Requested elements/isotope identified Control of the first test of the	Internal Standards	مـ		
CRI/CRA ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix QC SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified	Carry-over			
ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix GC SRM/LCS SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified One of the standard desired for the standard stan	Method QC:			
ICSA/ICSAB Post Spikes/Serial Dilutions Analytic Spikes Matrix QC SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified One of the state o	CRI/CRA	J		
Analytic Spikes Matrix QC* SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Pata Distribution Requested elements/isotope identified	ICSA/ICSAB	-		
Analytic Spikes Matrix QC SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified	Post Spikes/Serial Dilutions			
SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Date Distribution Requested elements/isotope identified				
SRM/LCS Matrix Spikes Matrix Duplicates Method Blanks Data Distribution Requested elements/isotope identified				
Matrix Spikes Matrix Duplicates Method Blanks Pata Distribution Requested elements/isotope identified		./		
Matrix Duplicates Method Blanks Data Distribution: Requested elements/isotope identified Output Distribution:		 		
Method Blanks Deta Distribution Requested elements/isotope identified		 		
Requested elements/isotope identified Requested elements/isotope identified		J		
Requested elements/isotope identified Requested elements/isotope identified	Darta Distratorion:			
		4		
	Correct samples identified for distribution	1	/	
Raw data match distributed data		 	 	
Data filename correct		 	-	
Necessary Analysts Notes and CAF a			'	

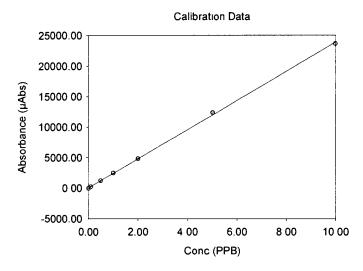
JIG 1000 0 10/00/2012, 10:00 AHI

20,4~ ストルノ トーー

1,0-31-12

Page 1

Analyst Date Started Worksheet Comment


Tuesday, October 30, 2012, 10:34:21 ARI 10ppb CALIB

Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. µAbs	Dilution	Flags	
Std Tube 6	30-Oct-2012, 10.34	10.00	0.45	23900.00	1.00		

Information about this calibration could not be retrieved from the Master File.

Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. μAbs	Dilution	Flags
Calibration Zero	30-Oct-2012, 10:38	0.00	6.60	-15.50	1.00	
Standard #1	30-Oct-2012, 10:40	0.10	0.98	245 00	1.00	
Standard #2	30-Oct-2012, 10:41	0.50	0.86	1200.00	1.00	
Standard #3	30-Oct-2012, 10.43	1.00	0.44	2460.00	1 00	$\geq mm$
Standard #4	30-Oct-2012, 10:44	2.00	0.48	4830 00	1.00	
Standard #5	30-Oct-2012, 10:46	5 00	0 56	12400.00	1.00	
Standard #6	30-Oct-2012, 10:48	10.00	0.52	23700.00	1.00	

Int.	0.000
Slope	2392.762
Correlation	0.99973

Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. μAbs	Dilution	Flags	
ICV	30-Oct-2012, 10.52	8.09	0.54	19400.00	1.00		Bry's CLP
ICB	30-Oct-2012, 10:53	-0.03	1.28	-75 30	1 00		53
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. µAbs	Dilution	Flags	
QC Standard	30-Oct-2012, 10 ⁻ 55	4.11	0.42	9830 00	1.00		
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. µAbs	Dilution	Flags	
QC Blank	30-Oct-2012, 10:56	-0.02	4.97	-38.10	1.00		
Samula ID	Analysis Time	Conc (DDD)	W DCD	A.mAha	Dilution	F1	
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. µAbs	Dilution	Flags	
CRA	30-Oct-2012, 10:58	0.11	1.37	264.00	1.00		
VP40 MB1 SMM	30-Oct-2012, 11:00	-0.00	45.90	-2 87	1.00		
VP40 MB1SPK SMM	30-Oct-2012, 11:01	2.02	0.51	4820.00	1.00		
VP40 A SMM	30-Oct-2012, 11:03	0.64	0.41	1530.00	1 00		
VP40 ADUP SMM	30-Oct-2012, 11 04	0.66	0.31	1590.00	1.00		
VP40 ASPK SMM	30-Oct-2012, 11:06	1.88	0.39	4500.00	1.00		
VP40 B SMM	30-Oct-2012, 11:08	0.34	0.63	821.00	1.00		
VP40 C SMM	30-Oct-2012, 11.09	0.74	0.52	1770 00	1.00		
VP41 A SMM	30-Oct-2012, 11:11	0.09	1.01	205.00	1.00		
VP41 B SMM	30-Oct-2012, 11:13	0.20	0.21	485.00	1 00		
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. μAbs	Dilution	Flags	
QC Standard	30-Oct-2012, 11:14	4.08	0.46	9770.00	1.00		

Analyst Date Started Worksheet Comment

Tuesday, October 30, 2012, 11:16:21 ARI 10ppb CALIB

Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. µAbs	Dilution	Flags	
		2				ı iayə	
QC Blank	30-Oct-2012, 11:16	-0 00	22.00	-9.66	1.00		
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. μAbs	Dilution	Flags	
VP41 C SMM	30-Oct-2012, 11:17	0.04	2.32	93.80	1.00		
VP41 D SMM	30-Oct-2012, 11:19	0.26	0.34	622 00	1.00		
VP41 E SMM	30-Oct-2012, 11.21	1.00	0.65	2400.00	1.00		
VO89 MB1 SMM	30-Oct-2012, 11:22	0.00	44.60	2.91	1.00		
VO89 MB1SPK SMM	30-Oct-2012, 11:24	2.00		4800.00			
	· ·		0.66		1.00		
VO89 A SMM	30-Oct-2012, 11:25	0.15	0 63	351.00	1.00		
VO89 ADUP SMM	30-Oct-2012, 11:27	0.15	0.70	358.00	1.00		
VO89 ASPK SMM	30-Oct-2012, 11:29	1.19	0.67	2840.00	1 00		
VO89 B SMM	30-Oct-2012, 11:30	0.12	0.66	279.00	1.00		
VO89 C SMM	30-Oct-2012, 11:32	0.10	1.06	247.00	1.00		
Sample ID	Analysis Time	Conc (PPB)	%R S D	Avg. μAbs	Dilution	Flags	
QC Standard	30-Oct-2012, 11:34	4.04	0.74	9670.00	1 00		
	·						
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. μAbs	Dilution	Flags	
QC Blank	30-Oct-2012, 11:35	-0.00	21.30	-6.50	1.00		
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. μAbs	Dilution	Flags	
		•				i iugo	
VO89 D SMM	30-Qct-2012, 11:37	0.08	0.97	179 00	1.00		
VO89 E SMM	30-Oct 2012, 11·39	0.09	0.59	227 00	1.00		
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. μAbs	Dilution	Flags	
QC Standard	30-Oct-2012, 11\40	4.03 ⁻	0 63	9630 00	1.00		
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. µAbs	Dilution	Flags	
QC Blank	30-Oct-2012, 11 ⁻ 42	-0.00	32.10	-9.00	1 00		END CLP
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. μAbs	Dilution	Flags	
VP00 MB2 SMM	30-Oct-2012, 11:44	0.00	58.70	-3.23	1.00		
VP00 MB2SPK SMM	30-Oct-2012, 11:45	2.01	0.46	4800.00	1.00		
VP00 D SMM	30-Oct-2012, 11:47	0.15	1.01	369.00	1.00		
VP64 MB1 SMM	30-Oct-2012, 11.48	0.00	189.00	0.85	1.00		
VP64 MB1SPK SMM	30-Oct-2012, 11:50	2,02	0.49	4830.00	1 00		
VP64 A SMM	30-Oct-2012, 11:52	0.21	0.60	511.00	1.00		
VP64 ADUP SMM	30-Oct-2012, 11:53	0.20	0 50	471 00	1 00		
VP64 ASPK SMM	30-Oct-2012, 11:55	1.28	0.65	3060.00	1.00		
Sample ID	Analysis Time	Conc (PPB)	*RSD	Avg. μAbs	Dilution	Flags	
QC Standard	30-Oct-2012, 11:56	4.05	0,49	9680 00	1.00		
Sample ID	Analysis Time	Conc (PPB)	%RSD	∖Avg. μAbs	Dilution	Flags	
QC Blank	30-Oct-2012, 11:58	-0.01	24.40	-13.40	1.00	1 , :	
QC DIGITA	30-061-2012, 11.30	-0.01	24.40	-13.40		Killow	

Analyst Date Created: Worksheet

Thursday, July 13, 2000 ARI 10ppb CALIB

Comment

30 Sip Duration (Sec.): 60 Rinse Duration (Sec.): Read Delay: 49 Integration Time/Replicate: 1.40 # of Replicates: 4 1 # of Repeats: **Baseline Correction Enabled:** True **Baseline Point 1 Start Time:** 10 Baseline Point 1 End Time: 16 2-Point Baseline Corr. Enabled: False

Baseline Point 2 Start Time: Baseline Point 2 End Time:

Gas Flow (ml/min):

Reslope Standard:

180

True

Calibration Algorithm: Recalibration Frequency: Reslope Frequency:

Linear, Zero Intercept 0

Calibration Standard #1 Conc.: 0.10 PPB 0.50 PPB Calibration Standard #2 Conc.: Calibration Standard #3 Conc.: 1.00 PPB 2.00 PPB Calibration Standard #4 Conc.: Calibration Standard #5 Conc.:

5.00 PPB 10.00 PPB Calibration Standard #6 Conc.: QC Enabled: True

QC-RSD Enabled: **Limit Condition & Error Action:**

If %RSD > 5.0%, if µAbs. > 1500, Flag and Continue

QC-Std Enabled:

Limit Condition & Error Action:

If outside 80% .. 120%, Stop

QC-Blank Enabled:

Limit Condition & Error Action:

If outside -100 .. 100, Stop

VPUM DAUGE

Mercury Standard Prep Log

Digested 20.0 mL

Instrument: CETAC

Date: 10-26-12

Bath Temp: 90°C

Analyst.

Standard ID	Stock D	Volume Added (mL)	Final Volume (mL)	Standard Conc. (μg/L)	Number Made
STD0		0.00	100.0	0.0	i
STD1	2987-11	0.01		0.1	}
STD2		9.05		0.5	,
STD3		0.10		1.0	i
STD4		0.20		2.0	1
STD5		0.50		5,0	1
STD6		1.00		10.0	1
CRA	·V	0.01		0.1	1
ICB/CCB		0.00		0.0	i
ICV/LCS	56-18	0.16		800	1
CCV		0.08	100.0	4.0	

Chemical/Reagent ID:

HNO3: <u>17628</u>

H2SO4: 17677

5% K₂S₂O₈: <u>MP235i</u>

5% KMnO4: MP2376

Prep Code: SMM
Analyst: NB

Instrument: <u>CETAC</u>

Date: 10-2 6-12

Date: 10-26-12

Bath Temp: 93°C

End Time: 1355

Standard ID	Stock ID	Volume Added (mL)	Final Volume (mL)	Standard Conc. (μg/L)	Number Made
STD0		0.00	50.0	0.0	3
STD1	2987-12	0.01		0.1	2
STD2		0.05		0.5	2
STD3		0.10		1.0	2
STD4		0.20		2.0	2
STD5		0.50		5.0	2
STD6		1.00		10.0	2
CRA	1	0.01		0.1	1
ICB/CCB		0.00		0.0	3
ICV/LCS	56-18	0.08	1	8.0	2
CCV		0.04	50.0	4.0	3

Chemical/Reagent ID:

HNO3: 17628

H2SO4: 17677

HCI: _____

5% K2S2O8: MP2375

5% KMnO4: MP2376

Page 01875

Revision 006 11/7/08

5008F

Analytical Resources, Incorporated Analytical Chemists and Consultants

Mercury Digestion Log

Prep Code: <u>SMM</u>		Matrix: SOIL
Analyst:		Date: 10-29-12
Bath Temp: 92°C	Start Time: <u>1342</u>	End Time:

ARI Sample ID	Sample Bottle #	pH<2	Initial Weight (g) Volume (mL)	Final Volume (mL)	# KMnO ₄ Aliquots	CLP	Comments
VP40 A	7	_	0.246	50.0	11-06	7ES	7
" ADUP	7		0.247		l		
" ASPK	1	~	0.244				
" B	7		0.272		1		
" C	7	~	0.233		١		
" MBI							-Batch
" MBISPK					ĺ		
VP41 A	7	-	0.204		11-06		
* B	7	_	0.244		î		
" C	7		0.276		1		
" D	7		0.266	1	(
" F	7	_	0.295	50.0		1	
			-				
			N8 10	-29-12			

Chemical/Reagent ID:

HNO3: <u>T7628</u>	H2SO4: 17677	HCI:	
5% K ₂ S ₂ O ₈ : <u>MP2375</u>	5% KMnO4: MP2376	Digest Tube Lot:	1205258

5037F

Page 12567

Revision 007 6/18/09

Upua: aauut

Table of Contents: ARI Job VP51

Client: Anchor QEA LLC Project: Central Waterfront Shoreline Inves.

	Page From:	Page To:
Inventory Sheet		
Cover Letter	1	
Chain of Custody Documentation	2	_5
Case Narrative, Data Qualifiers, Control Limits	6	
Volatile Analysis		
Report and Summary QC Forms	_20_	60
TPHD Analysis		
Report and Summary QC Forms	61	107
TPHG Analysis		
Report and Summary QC Forms	108	151
Metals Analysis		
Report and Summary QC Forms	152	180
Total Solids		
Report and Summary QC Forms	181	187
METALS RAW DATA	188	317

BC Signature

November 12, 2012

Ben Howard Anchor QEA 720 Olive Way, Suite 1900 Seattle, WA 98101

RE: Client Project: Central Waterfront Shoreline Investigation

ARI Job Nos.: VP51

Dear Cindy:

Please find enclosed the Chain of Custody records (COCs), sample receipt documentation, and the final data package for samples from the project referenced above.

Sample receipt and details regarding these analyses are discussed in the Case Narrative.

An electronic copy of this package will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro
Project Manager
(206) 695-6214

cheronneo@arilabs.com

www.arilabs.com

cc: eFile VP51

Enclosures

Chain of Custody Documentation

ARI Job ID: VP51

VP51:00002

Chain of Custody Record & Laboratory Analysis Request

Client Company.		Standard	7			-		2		Analyti	Analytical Resources, incorporated Analytical Chemists and Consultants	
Archer DEA		Phone: 360-733-431	33-431		Date:	Date: (6) 26/2012	lce Present?	t?		4611 S Tukwil	4611 South 134th Place, Suite 100 Tukwila, WA 98168	
ر. د					No. of Coolers:	•	Cooler Temps:			206-69	206-695-6200 206-695-6201 (fax)	
Client Project Name:	1 1		4	1,7,1,7		•	, i	Analysis Requested	equested		Notes/Comments	
Central Watertant Shoreline truckshopton(CDS)	T 5 hore	34 34	STACKS	V(CWS)			(57				
Client Project #:	Samplers:	8H SA		,	×	-9-	XQ- (295	lats	<i>عر</i> نم			
Sample ID	Date	Time	Matrix	No. Containers	BTE	HOL	HOT (W)	m 99	15 1A			
GWSI - 07 - 2-4	10/26/2012	838	7.95	8	R	×	×	×				
CWST - OT - 7- 10	10/26/2012	0842	_	1					×			
CUS1-05-2-4	`	0938		8	×	×	×	×				
F-50-15MO		0945		8	×	×	×	×				
H-21-50-15M2		1260		8	×	×	≻	×				
81-91-50-15MD		1560		ļ					×			
9-6-90-15M2		1102		1					×			
CWS1-06-8-10		HOIL		8	×	×	×	X				
CWS1-06-12-14		1111		8	×	×	X	×				
81-91-99-15MD	→	7211	1	1					×			
Comments/Special Instructions	Relinquished by:	1	1	Received by: (Signature)			1	Relinquished by: (Signature)	:k	Received by (Signature)	۸.	
or clease (chr)	Printed Name.	Ben Herard		Printed Name.	12/2/		Str. cole	Printed Name		Printed Name	ле.	
	Company	Company Archar OFA		Сотрапу:	AKZ			Company:		Company:		
	Date & Time:	7 / 13	0250	Date & Time	2	-	7 191	Date & Time		Date & Time	Φ	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with standing any provision to the contrary in any contract, purchase order or cossioned agreement between ARI and the Client.

retention schedules have been established by work-order or contract.

s Request
nalysis
ry Ai
Laboratory
જ
/ Record &
hain of Custody
hain of

	Analytical Resources, Incorporated Analytical Chemists and Consultants	4611 South 134th Place, Suite 100 Tukwila, WA 98168	206-695-6200 206-695-6201 (fax)	Notes/Comments										Received by (Signature)	Printed Name	Company:	Date & Time
	7	Ice Present? Y	Cooler Temps:	Analysis Requested									<i></i>	Relinquished by (Signature)	Printed Name.	Company	Date & Time
	Page: 2 of	Date: Date: Por Price Price					(418 -H)T	x ×				_					
Chain of Custody Record & Laboratory Analysis Request	Turn-around Requested: \	Phone:		1	part shoreline tracstiff the	Ø	Date Time Matrix No Containers	2 stavi acei milioto					,		Printed Name:	Company. Company.	Date & Time: Date & Time Date & Time CO 26 26 CO CO CO CO CO CO CO C
Chain of Custody Record	ARI Assigned Number: UPS\	ARI Client Company:	Client Contact:	-	Central Waterfact		Sample ID	CWS1-T8-02	/					Comments/Special Instructions			

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or contract agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client	1chor	Project Name Centre	al wa	ter fro	n+
COC No(s):		Delivered by Fed(Ex UPS Cou			
Assigned ARI Job No.	\ /	Tracking No <u>79 39 40</u>		_	
Preliminary Examination Phase:		.,	A		IVA
Were intact, properly signed and o	tated custody seals attached to t	the outside of to cooler?	YI	ES	NO.
Were custody papers included wit	•				•
,			_	5 9	NO
Were custody papers properly fille			Y		NO
		iistry) 2. Z		Sto G	
If cooler temperature is out of com	•	<i>1</i> .	Temp Gun ID#:		77951
Cooler Accepted by		_Date:	»		
	Complete custody forms a	nd attach all shipping documents			
Log-In Phase:					. — — —
Was a temperature blank included				YES	NO
What kind of packing material w	as used? Bubble Wrap	Wetlee Gel Packs Baggies Foam	Block Paper Oth	her:	
Was sufficient ice used (if appropr	nate)?		NA	YES	NO
Were all bottles sealed in individu	al plastic bags?			YE\$	NO
Did all bottles arrive in good condi	tion (unbroken)?			YE}3	NO
Were all bottle labels complete an	d legible?			Y Ę Ş	NO
Did the number of containers liste	d on COC match with the number	er of containers received?		YES .	(O) T
Did all bottle labels and tags agree	e with custody papers?			Ý 🕞	NO
Were all bottles used correct for the	ne requested analyses?			YES	NO
Do any of the analyses (bottles) re	equire preservation? (attach pres	servation sheet, excluding VOCs)	MA	YES	NO
Were all VOC vials free of air bub	oles?		NA	YES	NO
Was sufficient amount of sample s	sent in each bottle?			YES	NO
Date VOC Trip Blank was made a	it ARI		(NA)	-	
Was Sample Split by ARI NA	YES Date/Time	Equipment		Split by	
Samples Logged by:	TS Date.	10-77-R Time:	1045		
, 00 ,		of discrepancies or concerns **			
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample	ID on COC	:
Additional Notes, Discrepancies	s & Resolutions				
Additional Notes, Discrepancies	s, a resolutions.	w 51-06-8-1	16- 4	V065	
		•	1	voas nd 5	
11 -			*	,	
By Dat Small Air Bubbles Peabubble		Small → "sm"		·	
-2mm 2-4 mm	>4 mm	Peabubbles > "pb"			
		Large → "lg"			
REAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPE		Headspace → "hs"			
· · · · · · · · · · · · · · · · · · ·					ı

0016F 3/2/10 Cooler Receipt Form

Revision 014

uper acces

Case Narrative, Data Qualifiers, Control Limits

ARI Job ID: VP51

VP51:00006

Case Narrative

Client: Anchor QEA

Project: Central Waterfront Shoreline Investigation

ARI Job No.: VP51

Sample receipt

Ten soil samples and a trip blank were received on October 27, 2012 under ARI job VP51. The cooler temperature measured by IR thermometer following ARI SOP was 2.2°C. Select samples were archived upon receipt. For further details regarding sample receipt, please refer to the Cooler Receipt Form.

BETX by SW8260C

The samples were analyzed within the method recommended holding times.

Initial and continuing calibrations were within method requirements for requested compounds.

The internal standard area of d4-1,4-Dichlorobenzene fell outside the control limits low for sample **CWSI-06-08-10**. The sample was re-analyzed and all internal standard areas were within control limits. No further corrective action was taken.

The surrogate percent recoveries Bromofluorobenzene and d4-1,2-Dichlorobenzene were outside the control limits high for sample **CWSI-06-8-10**. The sample was re-analyzed and surrogate percent recoveries were within control limits. No further corrective action was taken.

The method blanks were clean at the reporting limits. The LCS and LCSD percent recoveries were within control limits.

Acid/Silica Cleaned NWTPH-Dx

The samples and associated laboratory QC were extracted and analyzed within the method recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits. The LCS percent recovery was within control limits.

Case Narrative VP51 Page 1 of 2

The matrix spike and matrix spike duplicate percent recoveries were within advisory control limits.

NWTPH-Gx

The samples were analyzed within the method recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limit. The LCS and LCSD percent recoveries were within control limits.

Metals by SW6010C/7471A

The samples and associated laboratory QC were digested and analyzed within method recommended holding times.

The fourth continuing calibration verification (CCV) on 11/1/12 was outside the control limits high for zinc. No sample results were associated with this CCV. No corrective action was taken.

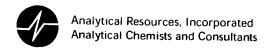
The method blanks were clean at the reporting limits. The LCS percent recoveries were within control limits.

The matrix spike percent recoveries of antimony, copper, and zinc were outside the control limits for sample CWSI-07-2-4. Post digestion spikes were performed and recoveries were within control limits. All relevant data have been flagged with an "N" qualifier on the Form V. No further corrective action was taken.

The duplicate RPD of zinc was outside the control limit for sample **CWSI-07-2-4**. All relevant data have been flagged with a "*" qualifier on the Form VI. No further corrective action was taken.

Case Narrative VP51 Page 2 of 2

Sample ID Cross Reference Report


ARI Job No: VP51 Client: Anchor QEA LLC Project Event: N/A

Project Name: Central Waterfront Shoreline Inves.

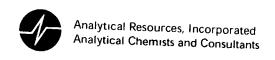
	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	CWSI-07-2-4	VP51A	12-21314	Soil	10/26/12 08:38	10/27/12 10:13
2.	CWSI-05-2-4	VP51B	12-21315	Soil	10/26/12 09:38	10/27/12 10:13
3.	CWSI-05-7-9	VP51C	12-21316	Soil	10/26/12 09:45	10/27/12 10:13
4.	CWSI-05-12-14	VP51D	12-21317	Soil	10/26/12 09:51	10/27/12 10:13
5.	CWSI-06-8-10	VP51E	12-21318	Soil	10/26/12 11:04	10/27/12 10:13
6.	CWSI-06-12-14	VP51F	12-21319	Soil	10/26/12 11:11	10/27/12 10:13
7.	CWSI-07-7-10	VP51G	12-21320	Soil	10/26/12 08:42	10/27/12 10:13
8.	CWSI-05-16-18	VP51H	12-21321	Soil	10/26/12 09:57	10/27/12 10:13
9.	CWSI-06-4-6	VP51I	12-21322	Soil	10/26/12 11:02	10/27/12 10:13
10.	CWSI-06-16-18	VP51J	12-21323	Soil	10/26/12 11:22	10/27/12 10:13
11.	CWSI-TB-02	VP51K	12-21324	Water	10/26/12	10/27/12 10:13

Printed 10/27/12 Page 1 of 1

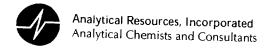
upei dadas

Data Reporting Qualifiers

Effective 2/14/2011


Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD


Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).

Page 1 of 3

- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

Bromodichloromethane

Dibromomethane

VOA Analy				DC)	
Analyte	DL ^{1,5} µg/kg	LOD ¹ µg/kg	LOQ ¹ µg/kg	Recovery ^{2,}	Replicate RPD ³
Dichlorodifluoromethane	0.207	0.5	1.0	67 – 142	≤ 40
Chloromethane	0.263	0.5	1.0	65 – 129	≤ 40
Vinyl Chloride	0.235	0.5	1.0	74 – 134	≤ 40
Bromomethane	0.187	0.5	1.0	40 – 172	≤ 40
Chloroethane	0.462	0.5	1.0	53 – 154	≤ 40
Trichlorofluoromethane	0.266	0.5	1.0	57 – 161	≤ 40
Acrolein*	3.809	25	50.0	60 – 130	≤ 40
Acetone*	0.482	2.5	5.0	48 – 132	≤ 40
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.287	1.0	2.0	72 – 142	≤ 40
1,1-Dichloroethene	0.336	0.5	1.0	73 – 138	≤ 40
Bromoethane	0.440	1.0	2.0	74 – 132	≤ 40
lodomethane (Methyl lodide)	0.215	0.5	1.0	34 – 181	≤ 40
Methylene Chloride	0.635	1.0	2.0	61 – 128	≤ 40
Carbon Disulfide	0.559	· 1.0	1.0	72 – 146	≤ 40
Acrylonitrile	1.026	2.5	5.0	59 – 124	≤ 40
Methyl-t-butyl ether (MTBE)	0.231	0.5	1.0	68 – 124	≤ 40
trans-1,2-Dichloroethene	0.266	0.5	1.0	73 – 131	≤ 40
Vinyl Acetate	0.381	2.5	5.0	54 – 138	≤ 40
1,1-Dichloroethane	0.203	0.5	1.0	65 – 139	≤ 40
2-Butanone*	0.513	2.5	5.0	64 – 120	≤ 40
2,2-Dichloropropane	0.292	0.5	1.0	77 – 137	≤ 40
cis-1,2-Dichloroethene	0.240	0.5	1.0	75 – 124	≤ 40
Chloroform	0.234	0.5	1.0	75 – 126	≤ 40
Bromochloromethane	0.323	0.5	1.0	69 – 133	≤ 40
1,1,1-Trichloroethane	0.226	0.5	1.0	78 – 133	≤ 40
1,1-Dichloropropene	0.312	0.5	1.0	80 – 123	≤ 40
Carbon Tetrachloride	0.213	0.5	1.0	76 – 136	≤ 40
1,2-Dichloroethane	0.191	0.5	1.0	77 – 120	≤ 40
Benzene	0.296	0.5	1.0	80 – 120	≤ 40
Trichloroethene	0.212	0.5	1.0	80 – 120	≤ 40
1,2-Dichloropropane	0.162	0.5	1.0	74 – 120	≤ 40
Promodiableromethone	0.254	0.5	1.0	90 122	< 40

0.5

0.5

0.254

0.147

uper agais

≤ 40

≤ 40

80 - 122

80 - **120**

1.0

1.0

•	LOQ ¹ and Coalysis of Soil			•	
Analyte	DL ^{1,5} µg/kg	LOD ¹ µg/kg	LOQ ¹ µg/kg	LCS Recovery ^{2,}	Replicate RPD ³
2-Chloroethyl Vinyl Ether	0.276	2.5	5.0	20 – 157	≤ 40
4-Methyl-2-Pentanone*	0.420	2.5	5.0	70 – 124	≤ 40
cis-1,3-Dichloropropene	0.226	0.5	1.0	80 – 124	≤ 40
Toluene	0.151	0.5	1.0	78 – 120	≤ 40
trans-1,3-Dichloropropene	0.216	0.5	1.0	80 – 126	≤ 40
1,1,2-Trichloroethane	0.286	0.5	1.0	77 – 120	≤ 40
1,2-Dibromoethane (Ethylene Dibromide)	0.176	0.5	1.0	79 – 120	≤ 40
2-Hexanone*	0.439	2.5	5.0	62 – 128	≤ 40
1,3-Dichloropropane	0.209	0.5	1.0	77 – 120	≤ 40
Tetrachloroethene	0.257	0.5	1.0	76 – 131	≤ 40
Dibromochloromethane	0.266	0.5	1.0	77 – 123	≤ 40
Chlorobenzene	0.219	0.5	1.0	80 – 120	≤ 40
1,1,1,2-Tetrachloroethane	0.233	0.5	1.0	80 – 120	≤ 40
Ethyl Benzene	0.202	0.5	1.0	80 – 120	≤ 40
m,p-Xylene	0.392	0.5	1.0	80 – 123	≤ 40
o-Xylene	0.224	0.5	1.0	80 – 120	≤ 40
Styrene	0.138	0.5	1.0	80 – 122	≤ 40
Bromoform	0.297	0.5	1.0	63 – 120	≤ 40
Isopropyl Benzene	0.233	0.5	1.0	77 – 127	≤ 40
1,1,2,2-Tetrachloroethane	0.253	0.5	1.0	71 – 120	≤ 40
1,2,3-Trichloropropane	0.517	1.0	2.0	75 – 120	≤ 40
trans-1,4-Dichloro-2-Butene	0.437	2.5	5.0	62 – 127	≤ 40
n-Propyl Benzene	0.272	0.5	1.0	76 – 126	≤ 40
Bromobenzene	0.153	0.5	1.0	75 – 120	≤ 40
1,3,5-Trimethylbenzene	0.254	0.5	1.0	77 – 126	≤ 40
2-Chlorotoluene	0.300	0.5	1.0	76 – 120	≤ 40
4-Chlorotoluene	0.277	0.5	1.0	75 – 121	≤ 40
t-Butylbenzene	0.306	0.5	1.0	77 – 125	≤ 40
1,2,4-Trimethylbenzene	0.230	0.5	1.0	77 – 125	≤ 40
s-Butylbenzene	0.240	0.5	1.0	77 – 127	≤ 40
4-Isopropyl Toluene	0.236	0.5	1.0	78 – 131	≤ 40
1,3-Dichlorobenzene	0.227	0.5	1.0	76 – 120	≤ 40
1,4-Dichlorobenzene	0.232	0.5	1.0	75 – 120	≤ 40

Version 001 Page 2 of 3 7/30/12

	LOQ ¹ and C lysis of Soil				
Analyte	DL ^{1,5} µg/kg	LOD ¹ µg/kg	LOQ ¹ µg/kg	LCS Recovery ^{2,}	Replicate RPD ³
n-Butylbenzene	0.262	0.5	1.0	75 – 134	≤ 40
1,2-Dichlorobenzene	0.293	0.5	1.0	77 – 120	≤ 40
1,2-Dibromo-3-Chloropropane	0.586	2.5	5.0	61 128	≤ 40
1,2,4-Trichlorobenzene	0.332	2.5	5.0	75 – 130	≤ 40
Hexachloro-1,3-Butadiene	0.410	2.5	5.0	72 – 135	≤ 40
Naphthalene	0.429	2.5	5.0	71 – 122	≤ 40
1,2,3-Trichlorobenzene	0.305	2.5	5.0	76 – 122	≤ 40
Surrogate Standards			MB/LCS	Samples	RPD
1,2-Dichloroethane-d₄			80 – 122	80 – 149	≤ 40
1,2-Dichlorobenzene-d ₄			80 – 120	80 – 120	≤ 40
Toluene-d ₈			80 – 120	77 – 120	≤ 40
4-Bromofluorobenzene			80 – 120	80 – 120	≤ 40

- (1) Detection Limit (DL), Limit of Detection (LOD) and Limit of Quantitation (LOQ) are defined in ARI SOP 1018S
- (2) Control limits calculated using all data from 1/1/12 through 5/31/12.
- (3) Relative Percent Difference between analytes in replicate analyzes. If Co and Co are the concentrations of the original and duplicate respectively then $RPD = \frac{|C_o - C_D|}{|C_o + C_D|} \times 100$

- (4) Highlighted control limits (bold font) are adjusted from the calculated values to reflect that:
 - a. ARI does not use control limits < 10 for the lower limit or < 100 for the upper limit or
 - b. Control limits for analyzes with no separate preparation procedure are adjusted to reflect the minimum uncertainty in the calibration of the instrument allowed by the referenced analytical method.
- (5) MDL study QD19 3/8/10

VP51:00015

Quality Control Criteria Total Petroleum Hydrocarbons (Diesel & Motor Oil)

Analysis Code	Analyte⁵	DL ¹ ppm	LOD ¹ ppm	LOQ ² ppm	Spike % Recovery Control Limits ³			RPD⁴				
					LCS	MB/LCS Surrogate	Sample Surrogate	RPD				
HCIWVX	NWTPH-HCID – Water Samples		-	0.50 ⁷			50-150	≤ 40				
HCISVX	NWTPH-HCID - Solid Samples			50 ⁷			50-150					
Aqueous Samples - No Extract Clean-up - Separatory Funnel Extraction - 500 to 1.0 mL												
DIESWI	DRO – NWTPH-Dext (C ₁₂ -C ₂₄)	0.022	0.05	0.1	64-112	50-150	50-150	≤ 40				
AK2WSI	DRO – AK102 (C ₁₀ -C ₂₅)	0.022	0.05	0.1	75-125 ⁶	60-120	50-150					
OILWSI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	0.044	0.1	0.2	60 – 130 ⁸	50-150	50-150					
AK3WSI	RRO – AK103 (C ₂₅ -C ₃₆)	0.030 ⁹	0.1	0.2	60-120 ⁶	60-120	50-150					
Aqueous Samples – With Acid and/or Silica Gel Clean-up – Separatory Funnel Extraction – 500 to 1.0 mL												
DIESWI	DRO – NWTPH-Dext (C ₁₂ -C ₂₄)	0.039	0.05	0.1	61-104	50-150	50-150					
AK2WSI	DRO – AK102 (C ₁₀ -C ₂₅)	0.042	0.05	0.1	75-125 ⁶	60-120	50-150	≤ 40				
OILWSI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	0.010	0.1	0.2	60 – 130 ⁸	50-150	50-150					
AK3WSI	RRO – AK103 (C ₂₅ -C ₃₆)	0.030 ⁸	0.1	0.2	60-120 ⁶	60-120	50-150					
Solid Matrix S	Samples – No Extract Clean-up – Mic	rowave Ext	raction - 10	g to 1 mL								
DIESMI	DRO – NWTPH-Dext (C ₁₂ -C ₂₄)	1.35	2.5	5	62-119	50-150	50-150	≤ 40				
DIESMI	DRO – NWTPH-Dext Jet A	2.22 ¹¹	2.5	5	60 – 130 ⁸	50-150	50-150					
AK2SMI	DRO - AK102 (C ₁₀ -C ₂₅)	2.43	2.5	5	75-125 ⁶	60-120	50-150					
OILSMI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	2.48	5	10	60 – 130 ⁸	50-150	50-150					
AK3SMI	RRO – AK103 (C ₂₅ -C ₃₆)	0.665 ⁹	5	10	60-120 ⁶	60-120	50-150					
Solid Matrix S	Samples - With Acid and/or Silica G	el Clean-up	- Microwave	Extraction	– 10 g to 1 r	nL						
DIESMI	DRO NWTPH-Dext (C ₁₂ -C ₂₄)	1.28	2.5	5	60-108	50-150	50-150	≤ 40				
AK2SMI	DRO – AK102 (C ₁₀ -C ₂₅)	2.06	2.5	5	75-125 ⁶	60-120	50-150					
OILSMI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	1.57	5	10	60 – 130 ⁸	50-150	50-150					
AK3SMI	RRO – AK103 (C ₂₅ -C ₃₆)	0.665 ¹⁰	5	10	60-120 ⁶	60-120	50-150					

- (1) DL (Detection Limit) and LOD (Limit of Detection) as defined in ARI SOP 1018S.
- (2) Limit of Quantitation as defined in ARI SOP 1018S. The spike concentration used to determine the DL and the concentration of the lowest standard used to calibrate the GC-FID instrument.
- (3) All surrogate recovery limits are specified in the published methods (AK102, AK103 & NWTPH-Dext). The surrogate standard is o-Terphenyl.
- (4) Acceptance criteria for the relative percent difference (RPD) between analytes in replicate analyzes. If C_0 and C_D are the concentrations of the original and duplicate respectively then $RPD = \frac{|C_o C_D|}{C_o + C_D} x 100$
- (5) DRO = Diesel Range Organics and RRO = Residual Range Organics as defined in the methods referenced in footnote 3.
- (6) Method specified LCS acceptance limits.
- (7) Method specified reporting limits
- (8) Default LCS control limits pending calculation of historic limits
- (9) MDL study QD55 completed 2/12/10
- (10) MDL study QD35 completed 1/29/10
- (11) LOD Study UI44 completed 2/28/12

Quality Control Criteria Gasoline and BTEX

Method	Analyte	DL ¹	LOD ¹	LOQ ¹	Spike % F			
					LCS	MB/LCS Surrogate	Sample Surrogate	RPD ³
Aqueous Sa	mples 5 mL purge volume (DL, LOD 8	LOQ valu	es in µg/L ((ppb) for BTE	X and mg/L	(ppm) for gas	soline
NWTPH-G	Toluene – Naphthalene	0.057	0.125	0.25	80 – 120	-		. ≤ 40
8015B	2-methylpentane – 1,2,4-Trimethylbenzene	0.031	0.125	0.25	80 – 120			
WA-TPH-G	Toluene – nC ₁₂)	0.087	0.125	0.25	80 – 120			
AK-101	nC ₆ – nC ₁₂	0.032	0.050	0.10	80 – 120			
	Trifluorotoluene (TFT)					80 - 120	80 120	
	Bromobenzene					80 - 120	80 – 120	
8021B	Benzene	0.094	0.5	1.0	76 – 120			≤ 40
8021B	Toluene	0.113	0.5	1.0	77 – 122			
8021B	Ethylbenzene	0.117	0.5	1.0	68 – 120			
8021B	m/p-Xylene	0.265	1.0	2.0	75 – 120			
8021B	o-Xylene	0.136	0.5	1.0	75 – 121			
	Trifluorotoluene (TFT)		-			80 – 120	80 - 120	
	Bromobenzene		-			80 – 120	77 - 120	
Solid Sampl	es - (DL, LOD & LOQ value	s in µg/kg ((ppb) for B	TEX and m	g/kg (ppm) fo	r gasoline		
NWTPH-G	Toluene – Naphthalene	1.66	2.5	5	80 – 120	_		≤ 40
8015B	2-methylpentane – 1,2,4-Trimethylbenzene	1.57	2.5	5	80 – 120			
WA-TPH-G	Toluene – nC ₁₂)	1.54	2.5	5	80 – 120			
AK-101	nC ₆ - nC ₁₂	1.84	2.5	5	80 – 127	-		
	Trifluorotoluene (TFT)					80 - 120	65-128	
	Bromobenzene					80 - 120	52-149	
8021B	Benzene	4.59	12.5	25	78 – 120			
8021B	Toluene	7.13	12.5	25	80 – 120			
8021B	Ethylbenzene	4.98	12.5	25	73 – 120			
8021B	m/p-Xylene	11.9	25.0	50	79 – 120			≤ 40
8021B	o-Xylene	6.23	12.5	25	80 – 120			
	Trifluorotoluene (TFT)					80 - 120	69 – 126	
	Bromobenzene					80 - 120	49 – 143	

⁽¹⁾ Detection Limit (DL), Limit of Detection (LOD) and Limit of Quantitation (LOQ) as defined in ARI SOP 1018S.

(3) Acceptance criteria for the relative percent difference (RPD) between analytes in replicate analyzes. If C_O and C_D are the concentrations of the original and duplicate respectively then $RPD = \frac{|C_O - C_D|}{\frac{C_O + C_D}{2}} x 100$

(4) Default control limits pending sufficient data to calculate historic limits.

⁽²⁾ Highlighted control limits (bold font) are adjusted from the calculated values as follows:

a) Highlighted control limits (**bold font**) adjusted to demonstrate that ARI does not use control limits < 10 for the lower limit or < 100 for the upper limit.

b) Control limits for analytes with no separate preparation procedure are adjusted to reflect the minimum uncertainty in the calibration of the instrument allowed by the referenced analytical method.

Quality Control Parameters for Metals Analysis-ICP-OES 200.7/6010C

	Aqu	eous Samp	oles²	Spike R	ecovery	_	Solids ³	Tissue ⁴
Analyte	DL¹ µg/L	LOD¹ µg/L	LOQ ¹ µg/L	Matrix Spike	LCS	RPD ⁵	LOQ mg/kg	LOQ mg/kg
Aluminum	7.57	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Antimony	6.28	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Arsenic	3.33	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Barium	1.33	1.5	3.0	75 – 125	80 – 120	≤ 20	0.3	0.06
Beryllium	0.16	0.5	1.0	75 – 125	80 – 120	≤ 20	0.1	0.02
Boron	7.39	10	20	75 – 125	80 – 120	≤ 20	2.0	0.4
Cadmium	0.18	0.5	2.0	75 – 125	80 – 120	≤ 20	0.2	0.04
Calcium	11.27	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Chromium	1.24	2.5	5.0	75 – 125	80 – 120	≤ 20	0.5	0.1
Cobalt	0.27	1.5	3.0	75 – 125	80 – 120	≤ 20	0.3	0.06
Copper	0.92	1.0	2.0	75 – 125	80 – 120	≤ 20	0.2	0.04
Iron	7.50	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Lead	1.55	10	20	75 – 125	80 120	≤ 20	2.0	0.4
Magnesium	9.61	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Manganese	0.28	0.5	1.0	75 – 125	80 – 120	≤ 20	0.1	0.02
Molybdenum	0.79	2.5	5.0	75 – 125	80 – 120	≤ 20	0.5	0.1
Nickel	3.86	5.0	10	75 – 125	80 – 120	≤ 20	1.0	0.2
Potassium	65.70	250	500	75 – 125	80 – 120	≤ 20	50	10
Selenium	4.99	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Silicon	8.17	30	60	75 – 125	80 – 120	≤ 20	(6)	(6)
Silver	0.43	1.5	3.0	75 – 125	80 – 120	≤ 20	0.3	0.06
Sodium	11.35	250	500	75 – 125	80 – 120	≤ 20	50	10
Strontium	0.09	1.0	1.0	75 – 125	80 – 120	≤ 20	0.1	0.02
Thallium	3.10	25	50	75 – 125	80 – 120	≤ 20	5.0	1.0
Tîn	1.41	5.0	10	75 – 125	80 – 120	≤ 20	1.0	0.2
Titanium	2.11	2.5	5.0	75 – 125	80 – 120	≤ 20	0.5	0.01
Vanadium	0.27	1.5	3.0	75 – 125	80 – 120	≤ 20	0.3	0.06
Zinc	1.45	5.0	10	75 – 125	80 – 120	≤ 20	1.0	0.2

- (1) Detection Limit (DL), Limit of Detection Limit (LOD) and Limit of Quantitation (LOQ) as defined in ARI SOP 1018S
- (2) 50 mL sample and 50 mL final volume
- (3) Solids LOQ based on 100% solids using 1.0 g sample with 100 mL final volume.
- (4) Tissue is reported on an "as received" (wet weight) basis using 2.5 g sample with 50 mL final volume.
- (5) Relative Percent Difference between analytes in replicate analyzes. If Co and Co are the concentrations of the

original and duplicate respectively then
$$RPD = \frac{|C_o - C_D|}{\frac{C_o + C_D}{2}} x100$$

(6) ARI does not analyze for Silicon in solids or tissue samples

Quality Co	ontrol Para	ameters fo	or Mercu	ry Analysis ι	ısing CVA	A
	Aq	ueous Sampl	es²	Spike Recovery		
	DL ¹ µg/L	LOD ¹ µg/L	LOQ ¹ µg/L	Matrix Spike	LCS	RPD ⁵
Mercury	0.0069	0.05	0.10 ²	75 – 125	80 – 120	≤ 20
Mercury (low level)	0.0026	0.01	0.02 ²	75 – 125	80 – 120	≤ 20
	Soil /	Sediment Sa	mples	Spike Recovery		_
	DL ¹ mg/kg	LOD ¹ mg/kg	LOQ ¹ mg/kg	Matrix Spike	LCS	RPD ⁵
Mercury	0.0021	0.0125	0.025 ³	75 – 125	80 – 120	≤ 20
-	Т	issue Sample	es	Spike Recovery		_
	DL ¹ mg/kg	LOD ¹ mg/kg	LOQ ¹ mg/kg	Matrix Spike	LCS	RPD ⁵
Mercury	0.0021	0.0125	0.0054	75 – 125	80 – 120	≤ 20

⁽¹⁾ Detection Limit (DL), Limit of Detection Limit (LOD) and Limit of Quantitation (LOQ) as defined in ARI SOP 1018S (2) 20 mL sample with 20 mL final volume

Version 001 Page 1 of 1 10/6/11

^{(3) 0.2} g sample with 50 mL final volume assuming 100% dry weight. Soil and sediment are reported on a dry weight basis.

⁽⁴⁾ Tissue LOQ is 0.005 mg/kg as received (wet weight) based on 1 g sample with 50 mL final volume.

⁽⁵⁾ Relative Percent Difference between analytes in replicate analyzes. If Co and Co are the concentrations of the original and duplicate respectively then $RPD = \frac{|C_o - C_D|}{\frac{C_o + C_D}{2}} x100$

Volatile Analysis Report and Summary QC Forms

ARI Job ID: VP51

UP51:00020

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: CWSI-07-2-4 Page 1 of 1 SAMPLE

Lab Sample ID: VP51A LIMS ID: 12-21314

Matrix: Soil

Data Release Authorized: 18

Reported: 11/08/12

Instrument/Analyst: NT5/PAB Date Analyzed: 11/02/12 17:03 QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/26/12 Date Received: 10/27/12

Sample Amount: 4.30 g-dry-wt

Purge Volume: 5.0 mL Moisture: 20.4%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.2	2.7	
108-88-3	Toluene	1.2	2.8	
100-41-4	Ethylbenzene	1.2	< 1.2	U
179601-23-1	m,p-Xylene	1.2	1.1	J
95-47-6	o-Xylene	1.2	< 1.2	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	110%
d8-Toluene	101%
Bromofluorobenzene	97.1%
d4-1,2-Dichlorobenzene	90.5%

UP51:20021 FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Sample ID: CWSI-05-2-4

SAMPLE

Project: Central Waterfront Shoreline Inves.

Lab Sample ID: VP51B LIMS ID: 12-21315

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT5/PAB

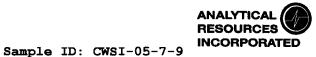
Date Analyzed: 11/02/12 17:26

Reported: 11/08/12

Date Sampled: 10/26/12 Date Received: 10/27/12

Sample Amount: 3.82 g-dry-wt

QC Report No: VP51-Anchor QEA LLC


Purge Volume: 5.0 mL Moisture: 16.5%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.3	1.6	
108-88-3	Toluene	1.3	1.3	J
100-41-4	Ethylbenzene	1.3	< 1.3	Ū
179601-23-1	m,p-Xylene	1.3	< 1.3	Ū
95-47-6	o-Xylene	1.3	< 1.3	Ū

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	112%
d8-Toluene	101%
Bromofluorobenzene	100%
d4-1,2-Dichlorobenzene	91.8%

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Lab Sample ID: VP51C LIMS ID: 12-21316

Matrix: Soil

Data Release Authorized: ν

Reported: 11/08/12

Instrument/Analyst: NT5/PAB
Date Analyzed: 11/02/12 17:49

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

SAMPLE

Date Sampled: 10/26/12 Date Received: 10/27/12

Sample Amount: 3.31 g-dry-wt

Purge Volume: 5.0 mL Moisture: 24.0%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.5	< 1.5	U
108-88-3	Toluene	1.5	< 1.5	Ū
100-41-4	Ethylbenzene	1.5	< 1.5	U
179601-23-1	m,p-Xylene	1.5	< 1.5	U
95-47-6	o-Xylene	1.5	< 1.5	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	112%
d8-Toluene	100%
Bromofluorobenzene	96.7%
d4-1.2-Dichlorobenzene	91.4%

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

RESOURCES INCORPORATED Sample ID: CWSI-05-12-14

Project: Central Waterfront Shoreline Inves.

SAMPLE

ANALYTICAL

Lab Sample ID: VP51D LIMS ID: 12-21317

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT5/PAB

Date Analyzed: 11/02/12 18:12

Reported: 11/08/12

Date Sampled: 10/26/12

Date Received: 10/27/12

Sample Amount: 4.12 g-dry-wt

QC Report No: VP51-Anchor QEA LLC

Purge Volume: 5.0 mL Moisture: 19.1%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.2	63	
108-88-3	Toluene	1.2	11	
100-41-4	Ethylbenzene	1.2	7.5	
179601-23-1	m,p-Xylene	1.2	29	
95-47-6	o-Xylene	1.2	5.4	

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	111%
d8-Toluene	112%
Bromofluorobenzene	97.2%
d4-1,2-Dichlorobenzene	91.2%

FORM I UPS1 00024

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Sample ID: CWSI-06-8-10

Project: Central Waterfront Shoreline Inves.

SAMPLE

ANALYTICAL RESOURCES

INCORPORATED

Lab Sample ID: VP51E LIMS ID: 12-21318

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT5/PAB

Date Analyzed: 11/02/12 18:34

Reported: 11/08/12

Date Sampled: 10/26/12

Date Received: 10/27/12

QC Report No: VP51-Anchor QEA LLC

Sample Amount: 2.04 g-dry-wt
Purge Volume: 5.0 mL
 Moisture: 38.6%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	2.4	< 2.4	
108-88-3	Toluene	3.5	< 3.5	Y
100-41-4	Ethylbenzene	2.4	< 2.4	U
179601-23-1	m,p-Xylene	2.4	< 2.4	Ü
95-47-6	o-Xylene	2.4	< 2.4	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	102%
d8-Toluene	101%
Bromofluorobenzene	150%
d4-1,2-Dichlorobenzene	149%

UP51:00025

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

ANALYTICAL RESOURCES INCORPORATED

Sample ID: CWSI-06-8-10

Project: Central Waterfront Shoreline Inves.

REANALYSIS

Lab Sample ID: VP51E LIMS ID: 12-21318

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT5/PAB

Date Analyzed: 11/05/12 16:54

Reported: 11/08/12

Date Sampled: 10/26/12
Date Received: 10/27/12

Sample Amount: 37.1 mg-dry-wt

QC Report No: VP51-Anchor QEA LLC

Purge Volume: 5.0 mL Moisture: 38.6%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	140	< 140	U
108-88-3	Toluene	140	< 140	Ū
100-41-4	Ethylbenzene	140	< 140	Ū
179601-23-1	m,p-Xylene	140	< 140	Ū
95-47-6	o-Xvlene	140	< 140	гт

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	99.1%
d8-Toluene	100%
Bromofluorobenzene	103%
d4-1,2-Dichlorobenzene	90.0%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

VP51:00026

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Sample ID: CWSI-06-12-14

SAMPLE

ANALYTICAL RESOURCES

INCORPORATED

Lab Sample ID: VP51F LIMS ID: 12-21319

Matrix: Soil

Data Release Authorized://

Reported: 11/08/12

Instrument/Analyst: NT5/PAB
Date Analyzed: 11/02/12 18:57

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/26/12 Date Received: 10/27/12

Sample Amount: 4.44 g-dry-wt

Purge Volume: 5.0 mL Moisture: 20.3%

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1,1	3.0	
108-88-3	Toluene	1.1	1.3	М
100-41-4	Ethylbenzene	1.1	1.8	
179601-23-1	m,p-Xylene	1.1	3.0	
95-47-6	o-Xylene	1.1	0.5	J

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	121%
d8-Toluene	119%
Bromofluorobenzene	104%
d4-1,2-Dichlorobenzene	89.1%

YP51 00027

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Lab Sample ID: VP51K LIMS ID: 12-21324

Matrix: Water

Data Release Authorized: Reported: 11/08/12

Instrument/Analyst: NT5/PAB Date Analyzed: 11/02/12 16:41 Sample ID: CWSI-TB-02 SAMPLE

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/26/12 Date Received: 10/27/12

Sample Amount: 5.00 mL Purge Volume: 5.0 mL

CAS Number	Analyte	TOÖ	Result	Q
71-43-2	Benzene	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	Ū
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	Ú

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	102%
d8-Toluene	100%
Bromofluorobenzene	101%
d4-1,2-Dichlorobenzene	88.8%

VP51:00028 FORM I

VOA SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

ARI ID	Client ID	Level	DCE	TOL	BFB	DCB	TOT OUT
VP51A	CWSI-07-2-4	Torr	110%	101%	97.1%	90.5%	0
·		Low	-				0
VP51B	CWSI-05-2-4	Low	112%	101%	100%	91.8%	0
VP51C	CWSI-05-7-9	Low	112%	100%	96.7%	91.4%	0
VP51D	CWSI-05-12-14	Low	111%	112%	97.2%	91.2%	0
MB-110512A	Method Blank	Med	98.8%	101%	99.3%	89.7%	0
LCS-110512A	Lab Control	Med	98.5%	99.5%	100%	90.2%	0
LCSD-110512A	Lab Control Dup	Med	96.3%	99.9%	99.5%	88.7%	0
VP51E	CWSI-06-8-10	Low	102%	101%	150%*	149%*	2
VP51ERE	CWSI-06-8-10	Med	99.1%	100%	103%	90.0%	0
MB-110212A	Method Blank	Low	101%	101%	99.5%	89.0%	0
LCS-110212A	Lab Control	Low	100%	100%	101%	88.8%	0
LCSD-110212A	Lab Control Dup	Low	101%	100%	99.5%	89.4%	0
VP51F	CWSI-06-12-14	Low	121%	119%	104%	89.1%	0
		LCS	/MB LIM	ITS		QC LIMIT	:s

	TCS/WB	LIMITS	QC LI	MITS
SW8260C	Low	Med	Low	Med
(DCE) = d4-1, 2-Dichloroethane	80-122	76-120	80-149	69-120
(TOL) = d8-Toluene	80-120	80-120	77-120	80-120
(BFB) = Bromofluorobenzene	80-120	80-120	80-120	76-128
(DCB) = d4-1, 2-Dichlorobenzene	80-120	80-120	80-120	80-120

Log Number Range: 12-21314 to 12-21319

ANALYTICAL RESOURCES INCORPORATED

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-110212A LCS-110212A LCSD-110212A VP51K	Method Blank Lab Control Lab Control Dup CWSI-TB-02	5 5 5 5	101% 100% 101% 102%	101% 100% 100% 100%	99.5% 101% 99.5% 101%	89.0% 88.8% 89.4% 88.8%	0 0 0
		LCS	/MB LIMI	TS		QC LIMIT	rs .
SW8260C							
(DCE) = d4-1, 2-Dichloroethane		80-122			80-125		
(TOL) = d8-Toluene		80-120		80-120			
(BFB) = Bromofluorobenzene		80-120		80-120			
(DCB) = $d4-1, 2-Dichlorobenzene$		80-120		80-120			

Prep Method: SW5030B

Log Number Range: 12-21324 to 12-21324

ves: soce

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: LCS-110212A Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-110212A

LIMS ID: 12-21319

Matrix: Soil

Data Release Authorized:

Reported: 11/08/12

Instrument/Analyst LCS: NT5/PAB

LCSD: NT5/PAB

Date Analyzed LCS: 11/02/12 14:01

LCSD: 11/02/12 14:24

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 g-dry-wt

LCSD: 5.00 g-dry-wt

Purge Volume LCS: 5.0 mL

LCSD: 5.0 mL

Moisture: NA

Analyte	LCS	Spike Added-LC	LCS S Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	49.3	50.0	98.6%	52.8	50.0	106%	6.9%
Toluene	48.3	50.0	96.6%	51.9	50.0	104%	7.2%
Ethylbenzene	51.6	50.0	103%	55.4	50.0	111%	7.1%
m,p-Xylene	109	100	109%	118	100	118%	7.9%
o-Xylene	50.2	50.0	100%	53.6	50.0	107%	6.6%

Reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	100%	101%
d8-Toluene	100%	100%
Bromofluorobenzene	101%	99.5%
d4-1,2-Dichlorobenzene	88.8%	89.4%

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: LCS-110212A Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-110212A

LIMS ID: 12-21324 Matrix: Water

Data Release Authorized: /

Reported: 11/08/12

Instrument/Analyst LCS: NT5/PAB

LCSD: NT5/PAB

Date Analyzed LCS: 11/02/12 14:01

LCSD: 11/02/12 14:24

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 mL

LCSD: 5.00 mL

Purge Volume LCS: 5.0 mL

LCSD: 5.0 mL

Analyte	LCS	Spike Added-LC	LCS S Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	49.3	50.0	98.6%	52.8	50.0	106%	6.9%
Toluene	48.3	50.0	96.6%	51.9	50.0	104%	7.2%
Ethylbenzene	51.6	50.0	103%	55.4	50.0	111%	7.1%
m,p-Xylene	109	100	109%	118	100	118%	7.9%
o-Xylene	50.2	50.0	100%	53.6	50.0	107%	6.6%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	100%	101%
d8-Toluene	100%	100%
Bromofluorobenzene	101%	99.5%
d4-1,2-Dichlorobenzene	88.8%	89.4%

FORM III upsi oness

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: LCS-110512A Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-110512A

LIMS ID: 12-21318

Matrix: Soil

Data Release Authorized:

Reported: 11/08/12

Instrument/Analyst LCS: NT5/PAB

LCSD: NT5/PAB

Date Analyzed LCS: 11/05/12 13:06

LCSD: 11/05/12 14:36

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: NA Date Received: NA

Sample Amount LCS: 100 mg-dry-wt

LCSD: 100 mg-dry-wt

Purge Volume LCS: 5.0 mL LCSD: 5.0 mL

Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	2470	2500	98.8%	2480	2500	99.2%	0.4%
Toluene	2420	2500	96.8%	2440	2500	97.6%	0.8%
Ethylbenzene	2580	2500	103%	2620	2500	105%	1.5%
m,p-Xylene	5480	5000	110%	5580	5000	112%	1.8%
o-Xylene	2540	2500	102%	2550	2500	102%	0.4%

Reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	98.5%	96.3%
d8-Toluene	99.5%	99.9%
Bromofluorobenzene	100%	99.5%
d4-1,2-Dichlorobenzene	90.2%	88.7%

FORM III uper magas

4A VOLATILE METHOD BLANK SUMMARY

Method Blank ID.

Lab Name: ANALYTICAL RESOURCES INC

Client: ANCHOR QEA LLC

ARI Job No: VP51

Project: CENTRAL WATERFRONT SHOR

Lab File ID: MB1102

Lab Sample ID: MB1102

Date Analyzed: 11/02/12

Time Analyzed: 1447

Instrument ID: NT5

Heated Purge: (Y/N) Y

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	==========	==========	========	========
01	LCS1102	LCS1102	LCS1102A	1401
02	LCS1102	LCS1102	LCS1102B	1424
03	CWSI-TB-02	VP51K	VP51K	1641
04	CWSI-07-2-4	VP51A	VP51A	1703
05	CWSI-05-2-4	VP51B	VP51B	1726
06	CWSI-05-7-9	VP51C	VP51C	1749
07	CWSI-05-12-1	VP51D	VP51D	1812
08	CWSI-06-8-10	VP51E	VP51E	1834
09	CWSI-06-12-1	VP51F	VP51F	1857
10				
11				
12				
13			-·· ·· ·· ··	
14				
15			· ————————————————————————————————————	
16				
17				
18 19				
20				
21				
22		<u></u>		
23				
24				
25	 			
26				
27				
28		 -		
29				
30				
20		·	l	

COMMENTS:			

page 1 of 1

FORM IV VOA

OLM3.2M

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Sample ID: MB-110212A METHOD BLANK

Lab Sample ID: MB-110212A

LIMS ID: 12-21324

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT5/PAB

Date Analyzed: 11/02/12 14:47

Reported: 11/08/12

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 mL Purge Volume: 5.0 mL

CAS Number	Analyte	LOQ	Result	Q
71-43-2	Benzene	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	101%
d8-Toluene	101%
Bromofluorobenzene	99.5%
d4-1,2-Dichlorobenzene	89.0%

Volatiles by Purge & Trap GC/MS-Method SW8260C Sample ID: MB-110212A

Page 1 of 1 METHOD BLANK

Lab Sample ID: MB-110212A

LIMS ID: 12-21319

Matrix: Soil

Data Release Authorized:

Reported: 11/08/12

Instrument/Analyst: NT5/PAB

Date Analyzed: 11/02/12 14:47

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

ANALYTICAL RESOURCES

INCORPORATED

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt

Purge Volume: 5.0 mL Moisture: NA

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	1.0	< 1.0	
108-88-3	Toluene	1.0	< 1.0	Ü
100-41-4	Ethylbenzene	1.0	< 1.0	Ū
179601-23-1	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xvlene	1.0	< 1.0	Ū

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	101%
d8-Toluene	101%
Bromofluorobenzene	99.5%
d4-1,2-Dichlorobenzene	89.0%

ypsi oggs

4A VOLATILE METHOD BLANK SUMMARY

Method Blank ID.

MB1105	

Lab Name: ANALYTICAL RESOURCES INC

Client: ANCHOR QEA LLC

ARI Job No: VP51

Project: CENTRAL WATERFRONT SHOR

Lab File ID: MB1105M

Lab Sample ID: MB1105

Date Analyzed: 11/05/12

Time Analyzed: 1608

Instrument ID: NT5

Heated Purge: (Y/N) Y

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB		LAI	3	TIME
SAMPLE NO.			ID	FILE		ANALYZED
	===	======		======	=====	========
		LCS1105		LCS1105	5 A	1306
				LCS1105	5B	1436
CWSI-06-8-10		VP51E		VP51E2		1654
					·· · · · · · · · · · · · · · · · · · ·	
						
	i			-		
						
					.	
		========= LCS1105 LCS1105	LCS1105 LCS1105 LCS1105 LCS1105	LCS1105 LCS1105 LCS1105 LCS1105	LCS1105 LCS1105 LCS1105 LCS1109	LCS1105 LCS1105 LCS1105B LCS1105 LCS1105 LCS1105B

COMMENTS:			
	 		

page 1 of 1

FORM IV VOA

OLM3.2M

upst dons?

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Sample ID: MB-110512A METHOD BLANK

Lab Sample ID: MB-110512A

LIMS ID: 12-21318

Matrix: Soil

Data Release Authorized:

Reported: 11/08/12

Instrument/Analyst: NT5/PAB

Date Analyzed: 11/05/12 16:08

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

ANALYTICAL RESOURCES

INCORPORATED

Date Sampled: NA
Date Received: NA

Sample Amount: 100 mg-dry-wt

Purge Volume: 5.0 mL Moisture: NA

CAS Number	Analyte	RL	Result	Q
71-43-2	Benzene	50	< 50	
108-88-3	Toluene	50	< 50	U
100-41-4	Ethylbenzene	50	< 50	U
179601-23-1	m,p-Xylene	50	< 50	U
95-47-6	o-Xylene	50	< 50	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	98.8%
d8-Toluene	101%
Bromofluorobenzene	99.3%
d4-1,2-Dichlorobenzene	89.7%

FORM I UP51:00038

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: ANALYTICAL RESOURCES INC Contract: ANCHOR QEA LLC

Lab Code: ARI Case No.: CENTRAL WATERFRONT SHORELINE SDG No.: VP51

Lab File ID: BFB11021 BFB Injection Date: 11/02/12

Instrument ID: NT5 BFB Injection Time: 0822

GC Column: RTXVMS ID: 0.18 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 101.0% of mass 95 4.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	20.2 45.9 100.0 6.5 0.4 (0.5)1 76.8 5.6 (7.3)1 74.4 (96.8)1 5.2 (7.0)2
·	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	========	========	========	=======
01	VSTD1	IC1102	0011102	11/02/12	0915
02	VSTD2	IC1102	0021102	11/02/12	0938
03	VSTD5	IC1102	0051102	11/02/12	1001
04	VSTD10	IC1102	0101102	11/02/12	1023
05	VSTD50	IC1102	0501102	11/02/12	1046
06	VSTD100	IC1102	1001102	11/02/12	1109
07	VSTD125	IC1102	1251102	11/02/12	1132
08	VSTD150	IC1102	1501102	11/02/12	1221
09			II.		
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: ANALYTICAL RESOURCES INC Contract: ANCHOR QEA LLC

Lab Code: ARI Case No.: CENTRAL WATERFRONT SHORELINE SDG No.: VP51

Lab File ID: BFB11021 BFB Injection Date: 11/02/12

Instrument ID: NT5 BFB Injection Time: 0822

GC Column: RTXVMS ID: 0.18 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
===== 50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 101.0% of mass 95 4.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	20.2 45.9 100.0 6.5 0.4 (0.5)1 76.8 5.6 (7.3)1 74.4 (96.8)1 5.2 (7.0)2
'	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	========	=========	========	=========
01	VSTD50	CC1102	CC1102	11/02/12	1338
02	LCS1102	LCS1102	LCS1102A	11/02/12	1401
03	LCS1102	LCS1102	LCS1102B	11/02/12	1424
04	MB1102	MB1102	MB1102	11/02/12	1447
05	CWSI-TB-02	VP51K	VP51K	11/02/12	1641
06	CWSI-07-2-4	VP51A	VP51A	11/02/12	1703
07	CWSI-05-2-4	VP51B	VP51B	11/02/12	1726
80	CWSI-05-7-9	VP51C	VP51C	11/02/12	1749
09	CWSI-05-12-14	VP51D	VP51D	11/02/12	1812
10	CWSI-06-8-10	VP51E	VP51E	11/02/12	1834
11	CWSI-06-12-14	VP51F	VP51F	11/02/12	1857
12					
13					
14					
15					
16					
17					
18					
19					
20					
21	 	<u> </u>			
22					

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: ANALYTICAL RESOURCES INC Contract: ANCHOR QEA LLC

Lab Code: ARI Case No.: CENTRAL WATERFRONT SHORELINE SDG No.: VP51

Lab File ID: BFB1105 BFB Injection Date: 11/05/12

Instrument ID: NT5 BFB Injection Time: 1128

GC Column: RTXVMS ID: 0.18 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 101.0% of mass 95 4.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	19.8 46.0 100.0 6.7 0.0 (0.0)1 76.8 5.4 (7.1)1 75.3 (98.0)1 5.2 (6.9)2
I	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
0.1	====================================	=========		========	========
01	VSTD50	CC1105	CC1105	11/05/12	1203
02	LCS1105	LCS1105	LCS1105A	11/05/12	1306
03	LCS1105	LCS1105	LCS1105B	11/05/12	1436
04	MB1105	MB1105	MB1105M	11/05/12	1608
05	CWSI-06-8-10	VP51E	VP51E2	11/05/12	1654
06					
07					
08 09					
10					
11		·			
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELINE

Instrument ID: NT5 Calibration Date: 11/02/12

LAB FILE ID: RF1: 0011102 RF2: 0021102 RF5: 0051102

RF10: 0101102 RF50: 0501102

Vinyl Chloride 1.176 1.211 1 Bromomethane 0.567 0.610 0 Chloroethane 0.810 0.695 0 Trichlorofluoromethane 1.107 0.975 0 Acrolein 0.146 0.158 0 112Trichloro122Trifluoroetha 0.775 0.762 0 Acetone 0.294 0.246 0 1,1-Dichloroethene 0.748 0.801 0 Bromoethane 0.535 0.563 0 Iodomethane 0.556 0.539 0	.264 1.1 .263 1.2 .554 0.5 .519 0.6 .804 0.9 .158 0.1 .784 0.7 .227 0.2 .799 0.5 .558 0.5 .519 0.5	== ===================================
Chloromethane	.264 1.1 .263 1.2 .554 0.5 .519 0.6 .804 0.9 .158 0.1 .784 0.7 .227 0.2 .799 0.5 .558 0.5 .519 0.5	67 1.096 78 1.130 42 0.428 38 0.473 58 0.679 66 0.156 62 0.638 21 0.206 31 0.689 74 0.489 40 0.686
Vinyl Chloride 1.176 1.211 1 Bromomethane 0.567 0.610 0 Chloroethane 0.810 0.695 0 Trichlorofluoromethane 1.107 0.975 0 Acrolein 0.146 0.158 0 112Trichloro122Trifluoroetha 0.775 0.762 0 Acetone 0.294 0.246 0 1,1-Dichloroethene 0.748 0.801 0 Bromoethane 0.535 0.563 0 Iodomethane 0.556 0.539 0	.263 1.2 .554 0.5 .519 0.6 .804 0.9 .158 0.1 .784 0.7 .227 0.2 .799 0.5 .558 0.5 .519 0.5	78 1.130 42 0.428 38 0.473 58 0.679 66 0.156 62 0.638 21 0.206 31 0.689 74 0.489 40 0.686
Bromomethane 0.567 0.610 0 Chloroethane 0.810 0.695 0 Trichlorofluoromethane 1.107 0.975 0 Acrolein 0.146 0.158 0 112Trichloro122Trifluoroetha 0.775 0.762 0 Acetone 0.294 0.246 0 1,1-Dichloroethene 0.748 0.801 0 Bromoethane 0.535 0.563 0 Iodomethane 0.556 0.539 0	.554 0.5 .519 0.6 .804 0.9 .158 0.1 .784 0.7 .227 0.2 .799 0.5 .558 0.5 .519 0.5	42 0.428 38 0.473 58 0.679 66 0.156 62 0.638 21 0.206 31 0.689 74 0.489 40 0.686
Chloroethane 0.810 0.695 0 Trichlorofluoromethane 1.107 0.975 0 Acrolein 0.146 0.158 0 112Trichloro122Trifluoroetha 0.775 0.762 0 Acetone 0.294 0.246 0 1,1-Dichloroethene 0.748 0.801 0 Bromoethane 0.535 0.563 0 Iodomethane 0.556 0.539 0	.519 0.6 .804 0.9 .158 0.1 .784 0.7 .227 0.2 .799 0.5 .558 0.5 .519 0.5	38 0.473 58 0.679 66 0.156 62 0.638 21 0.206 31 0.689 74 0.489 40 0.686
Trichlorofluoromethane 1.107 0.975 0 Acrolein 0.146 0.158 0 112Trichloro122Trifluoroetha 0.775 0.762 0 Acetone 0.294 0.246 0 1,1-Dichloroethene 0.748 0.801 0 Bromoethane 0.535 0.563 0 Iodomethane 0.556 0.539 0	.804 0.9 .158 0.1 .784 0.7 .227 0.2 .799 0.5 .558 0.5 .519 0.5	58 0.679 66 0.156 62 0.638 21 0.206 31 0.689 74 0.489 40 0.686
Acrolein 0.146 0.158 0 112Trichloro122Trifluoroetha 0.775 0.762 0 Acetone 0.294 0.246 0 1,1-Dichloroethene 0.748 0.801 0 Bromoethane 0.535 0.563 0 Iodomethane 0.556 0.539 0	.158 0.1 .784 0.7 .227 0.2 .799 0.5 .558 0.5 .519 0.5 .912 0.9	66 0.156 62 0.638 21 0.206 31 0.689 74 0.489 40 0.686
112Trichloro122Trifluoroetha	.784 0.7 .227 0.2 .799 0.5 .558 0.5 .519 0.5 .912 0.9	62 0.638 21 0.206 31 0.689 74 0.489 40 0.686
Acetone 0.294 0.246 0 1,1-Dichloroethene 0.748 0.801 0 Bromoethane 0.535 0.563 0 Iodomethane 0.556 0.539 0	.227 0.2 .799 0.5 .558 0.5 .519 0.5 .912 0.9	21 0.206 31 0.689 74 0.489 40 0.686
1,1-Dichloroethene 0.748 0.801 0 Bromoethane 0.535 0.563 0 Iodomethane 0.556 0.539 0	.799 0.5 .558 0.5 .519 0.5 .912 0.9	31 0.689 74 0.489 40 0.686
Bromoethane	.558 0.5 .519 0.5 .912 0.9	74 0.489 40 0.686
Bromoethane	.519 0.5 .912 0.9	40 0.686
	.912 0.9	
Methylene Chloride		
	21/1 0 2	35 0.783
	.314 0.3	35 0.311
Carbon Disulfide 3.102 2.975 2	.792 1.7	29 2.411
	.887 0.9	34 0.779
	.389 1.4	91 1.339
	.773 1.8	76 1.558
2-Butanone 0.083 0.092 0	.087 0.0	93 0.090
	.419 1.4	65 1.224
	.943 0.9	
	.586 1.6	32 1.404
Bromochloromethane 0.428 0.433 0	.436 0.4	
	.392 1.4	
1,1-Dichloropropene 0.516 0.522 0	.525 0.5	
Carbon Tetrachloride 0.454 0.466 0	.440 0.4	
	.458 0.4	1
	.590 1.6	
	.364 0.3	
	.412 0.4	
	.455 0.4	
	.188 0.1	
	.165 0.1	
4-Methyl-2-Pentanone 0.115 0.138 0	.140 0.1	
	.588 0.6	E .
Toluene	.018 1.0	
	.509 0.5	
2-Hexanone 0.157 0.176 0	.179 0.1	84 0.185
		1

FORM VI VOA

UDS1:000U2

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELINE

Instrument ID: NT5 Calibration Date: 11/02/12

LAB FILE ID: RF1: 0011102 RF2: 0021102 RF5: 0051102

RF10: 0101102 RF50: 0501102

	T			<u> </u>	
COMPOUND	RF1	RF2	RF5	RF10	RF50
=======================================	======	======			======
1,1,2-Trichloroethane	0.282			0.287	
1,3-Dichloropropane	0.383	0.395		0.417	0.387
Tetrachloroethene	0.324	0.321	0.308	0.312	0.262
Chlorodibromomethane	0.222	0.242	0.238	0.248	0.231
1,2-Dibromoethane	0.235	0.254	0.272	0.268	0.252
Chlorobenzene	0.794	0.791	0.787	0.804	0.692
Ethyl Benzene	1.417	1.423	1.417	1.470	1.238
1,1,1,2-Tetrachloroethane	0.249	0.256	0.257	0.272	0.238
m,p-xylene	0.525	0.534	0.523	0.544	0.463
o-Xylene	0.502	0.491	0.494	0.516	0.453
Styrene	0.775	0.799	0.823	0.859	0.769
Bromoform	0.264	0.285	0.277	0.287	0.277
1,1,2,2-Tetrachloroethane	0.457	0.477	0.465	0.483	0.458
1,2,3-Trichloropropane	0.129	0.137	0.135	0.146	0.137
Trans-1,4-Dichloro 2-Butene	0.157	0.163	0.171	0.169	0.169
N-Propyl Benzene	2.836	2.779	2.751	2.866	2.411
Bromobenzene	0.551	0.556	0.547	0.563	0.498
Isopropyl Benzene	2.238	2.242	2.229	2.350	2.023
2-Chloro Toluene	1.771	1.657	1.628	1.697	1.472
4-Chloro Toluene	1.771	1.689	1.691	1.764	1.525
T-Butyl Benzene	1.637	1.626	1.645	1.726	1.498
1,3,5-Trimethyl Benzene	1.886	1.842	1.883	1.946	1.712
1,2,4-Trimethylbenzene	1.892	1.850	1.875	1.964	1.699
S-Butyl Benzene	2.523	2.536	2.464	2.583	2.210
4-Isopropyl Toluene	2.011	1.987	2.007	2.093	1.830
1,3-Dichlorobenzene	1.151	1.082	1.049	1.084	0.954
1,4-Dichlorobenzene	1.229	1.140	1.098	1.110	0.969
N-Butyl Benzene	2.007		1.951	2.049	1.732
1,2-Dichlorobenzene	1.062	1.032	1.012	1.033	0.914
1,2-Dibromo 3-Chloropropane	0.079	0.086	0.086	0.084	0.085
1,2,4-Trichlorobenzene	0.864	0.750	0.732	0.754	0.682
Hexachloro 1,3-Butadiene	0.504	0.468	0.471	0.479	0.404
Naphthalene	1.624	1.522	1.513	1.561	1.526
1,2,3-Trichlorobenzene	0.772	0.690	0.684	0.697	0.642
Dichlorodifluoromethane	0.771	0.765	0.779	0.816	0.742
Methyl tert butyl ether	2.235	2.321	2.318	2.492	2.226
	======	======	======	======	======

Lab Name: ANALYTICAL RESOURCES INC

Client: ANCHOR QEA LLC

ARI Job No: VP51

Project: CENTRAL WATERFRONT SHORELINE

Instrument ID: NT5

Calibration Date: 11/02/12

LAB FILE ID: RF1: 0011102 RF2: 0021102 RF5: 0051102

RF10: 0101102 RF50: 0501102

COMPOUND	RF1	RF2	RF5	RF10	RF50
d4-1,2-Dichloroethaned8-Toluened4-Bromofluorobenzened4-1,2-DichlorobenzeneDibromofluoromethane	0.777 1.410 0.556 0.950 0.803	1.418 0.556	0.794 1.406 0.562 0.925 0.808	1.401 0.559	0.795 1.408 0.560 0.940 0.814

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELINE

Instrument ID: NT5 Calibration Date: 11/02/12

LAB FILE ID: RF100: 1001102 RF125: 1251102 RF150: 1501102

COMPOUND
Chloromethane
Chloromethane 1.222 1.228 1.4 Vinyl Chloride 1.311 1.328 1.4 Bromomethane 0.489 0.512 0.5 Chloroethane 0.743 0.755 0.8 Trichlorofluoromethane 1.129 1.187 Acrolein 0.171 0.112 112Trichloro122Trifluoroetha 0.486 0.503 Acetone 0.218 0.216 0.1 1,1-Dichloroethene 0.545 0.341 0.4 Bromoethane 0.503 0.516 0.6 Methylene Chloride 0.891 0.900 0.7 Acrylonitrile 0.347 0.355 0.3 Carbon Disulfide 1.703 1.7703 Trans-1,2-Dichloroethene 0.928 0.946 1.0 Vinyl Acetate 1.541 1.596 1.5 1,1-Dichloroethane 1.867 1.909 2.0 2-Butanone 0.096 0.100 0.0 2,2-Dichloropropane 1.459 1.466 1.6 Chloroform 1.610 1.645 1.7
Vinyl Chloride 1.311 1.328 1.4 Bromomethane 0.489 0.512 0.5 Chloroethane 0.743 0.755 0.8 Trichlorofluoromethane 1.129 1.187 Acrolein 0.171 0.112 112Trichloro122Trifluoroetha 0.486 0.503 0.6 Acetone 0.218 0.216 0.1 1,1-Dichloroethene 0.522 0.544 0.6 Bromoethane 0.545 0.341 0.4 Iodomethane 0.503 0.516 0.6 Methylene Chloride 0.891 0.900 0.7 Acrylonitrile 0.347 0.355 0.3 Carbon Disulfide 1.703 1.50 0.6 Trans-1,2-Dichloroethene 0.928 0.946 1.0 Vinyl Acetate 1.541 1.596 1.5 1,1-Dichloropethane 1.459 1.466 1.6 Cis-1,2-Dichloroethene 0.976 1.001 1.1 Chloroform 1.610 1.645 1.7 Bromochloromethane 1.450
Bromomethane
Chloroethane 0.743 0.755 0.8 Trichlorofluoromethane 1.129 1.187 Acrolein 0.171 0.112 112Trichloro122Trifluoroetha 0.486 0.503 0.6 Acetone 0.218 0.216 0.1 1,1-Dichloroethene 0.522 0.544 0.6 Bromoethane 0.545 0.341 0.4 Iodomethane 0.503 0.516 0.6 Methylene Chloride 0.891 0.900 0.7 Acrylonitrile 0.347 0.355 0.3 Carbon Disulfide 1.703 1.703 Trans-1,2-Dichloroethene 0.928 0.946 1.0 Vinyl Acetate 1.541 1.596 1.5 1,1-Dichloroethane 1.867 1.909 2.0 2-Butanone 0.096 0.100 0.0 2,2-Dichloropropane 0.976 1.001 1.1 Chloroform 1.610 1.645 1.7 Bromochloromethane 1.450 1.487 1.6 1,1-Dichloropropene 0.535 0.546
Trichlorofluoromethane
Acrolein
112Trichloro122Trifluoroetha 0.486 0.503 0.6 Acetone
Acetone 0.218 0.216 0.1 1,1-Dichloroethene 0.522 0.544 0.6 Bromoethane 0.545 0.341 0.4 Iodomethane 0.503 0.516 0.6 Methylene Chloride 0.891 0.900 0.7 Acrylonitrile 0.347 0.355 0.3 Carbon Disulfide 1.703 1.703 1.0 Trans-1,2-Dichloroethene 0.928 0.946 1.0 Vinyl Acetate 1.541 1.596 1.5 1,1-Dichloroethane 1.867 1.909 2.0 2-Butanone 0.096 0.100 0.0 2,2-Dichloropropane 1.459 1.466 1.6 Cis-1,2-Dichloroethene 0.976 1.001 1.1 Chloroform 1.610 1.645 1.7 Bromochloromethane 1.450 1.487 1.6 1,1-Trichloroethane 0.535 0.546 0.6 Carbon Tetrachloride 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Be
1,1-Dichloroethene 0.522 0.544 0.6 Bromoethane 0.545 0.341 0.4 Iodomethane 0.503 0.516 0.6 Methylene Chloride 0.891 0.900 0.7 Acrylonitrile 0.347 0.355 0.3 Carbon Disulfide 1.703 1.703 Trans-1,2-Dichloroethene 0.928 0.946 1.0 Vinyl Acetate 1.541 1.596 1.5 1,1-Dichloroethane 1.867 1.909 2.0 2-Butanone 0.096 0.100 0.0 2,2-Dichloropropane 1.459 1.466 1.6 Cis-1,2-Dichloroethene 0.976 1.001 1.1 Chloroform 1.610 1.645 1.7 Bromochloromethane 1.450 1.487 1.6 1,1-Trichloroethane 1.450 1.487 1.6 1,2-Dichloroethane 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
Bromoethane
Iodomethane
Methylene Chloride 0.891 0.900 0.7 Acrylonitrile 0.347 0.355 0.3 Carbon Disulfide 1.703 1.703 Trans-1,2-Dichloroethene 0.928 0.946 1.0 Vinyl Acetate 1.541 1.596 1.5 1,1-Dichloroethane 1.867 1.909 2.0 2-Butanone 0.096 0.100 0.0 2,2-Dichloropropane 1.459 1.466 1.6 Cis-1,2-Dichloroethene 0.976 1.001 1.1 Chloroform 1.610 1.645 1.7 Bromochloromethane 1.450 1.487 1.6 1,1-Trichloroethane 1.450 1.487 1.6 1,2-Dichloroethane 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
Acrylonitrile
Trans-1,2-Dichloroethene 0.928 0.946 1.0 Vinyl Acetate 1.541 1.596 1.5 1,1-Dichloroethane 1.867 1.909 2.0 2-Butanone 0.096 0.100 0.0 2,2-Dichloropropane 1.459 1.466 1.6 Cis-1,2-Dichloroethene 0.976 1.001 1.1 Chloroform 1.610 1.645 1.7 Bromochloromethane 0.456 0.468 0.4 1,1-Trichloroethane 1.450 1.487 1.6 1,1-Dichloropropene 0.535 0.546 0.6 Carbon Tetrachloride 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
Vinyl Acetate 1.541 1.596 1.5 1,1-Dichloroethane 1.867 1.909 2.0 2-Butanone 0.096 0.100 0.0 2,2-Dichloropropane 1.459 1.466 1.6 Cis-1,2-Dichloroethene 0.976 1.001 1.1 Chloroform 1.610 1.645 1.7 Bromochloromethane 0.456 0.468 0.4 1,1-Trichloroethane 1.450 1.487 1.6 1,1-Dichloropropene 0.535 0.546 0.6 Carbon Tetrachloride 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
Vinyl Acetate 1.541 1.596 1.5 1,1-Dichloroethane 1.867 1.909 2.0 2-Butanone 0.096 0.100 0.0 2,2-Dichloropropane 1.459 1.466 1.6 Cis-1,2-Dichloroethene 0.976 1.001 1.1 Chloroform 1.610 1.645 1.7 Bromochloromethane 0.456 0.468 0.4 1,1-Trichloroethane 1.450 1.487 1.6 1,1-Dichloropropene 0.535 0.546 0.6 Carbon Tetrachloride 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
2-Butanone 0.096 0.100 0.0 2,2-Dichloropropane 1.459 1.466 1.6 Cis-1,2-Dichloroethene 0.976 1.001 1.1 Chloroform 1.610 1.645 1.7 Bromochloromethane 0.456 0.468 0.4 1,1-Trichloroethane 1.450 1.487 1.6 1,1-Dichloropropene 0.535 0.546 0.6 Carbon Tetrachloride 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
2-Butanone 0.096 0.100 0.0 2,2-Dichloropropane 1.459 1.466 1.6 Cis-1,2-Dichloroethene 0.976 1.001 1.1 Chloroform 1.610 1.645 1.7 Bromochloromethane 0.456 0.468 0.4 1,1-Trichloroethane 1.450 1.487 1.6 1,1-Dichloropropene 0.535 0.546 0.6 Carbon Tetrachloride 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
Cis-1,2-Dichloroethene 0.976 1.001 1.1 Chloroform 1.610 1.645 1.7 Bromochloromethane 0.456 0.468 0.4 1,1-Trichloroethane 1.450 1.487 1.6 1,1-Dichloropropene 0.535 0.546 0.6 Carbon Tetrachloride 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
Chloroform 1.610 1.645 1.7 Bromochloromethane 0.456 0.468 0.4 1,1-Trichloroethane 1.450 1.487 1.6 1,1-Dichloropropene 0.535 0.546 0.6 Carbon Tetrachloride 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
Bromochloromethane 0.456 0.468 0.4 1,1,1-Trichloroethane 1.450 1.487 1.6 1,1-Dichloropropene 0.535 0.546 0.6 Carbon Tetrachloride 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
1,1,1-Trichloroethane 1.450 1.487 1.6 1,1-Dichloropropene 0.535 0.546 0.6 Carbon Tetrachloride 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
1,1-Dichloropropene 0.535 0.546 0.6 Carbon Tetrachloride 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
Carbon Tetrachloride 0.472 0.480 0.5 1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
1,2-Dichloroethane 0.472 0.477 0.4 Benzene 1.576 1.588 1.6
Benzene 1.576 1.588 1.6
Trichloroethene 0 386 0 393 0 4
1,2-Dichloropropane 0.438 0.447 0.4
Bromodichloromethane 0.478 0.485 0.5
Dibromomethane
2-Chloroethyl Vinyl Ether 0.193 0.201 0.1
4-Methyl-2-Pentanone0.152 0.156 0.1
Cis 1,3-dichloropropene 0.625 0.633 0.6
Toluene 0.992 0.996 1.0
Trans 1,3-Dichloropropene 0.545 0.554 0.5
2-Hexanone 0.191 0.198 0.1

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELINE

Instrument ID: NT5 Calibration Date: 11/02/12

LAB FILE ID: RF100: 1001102 RF125: 1251102 RF150: 1501102

	T		
COMPOUND	RF100	RF125	RF150
=======================================	======	======	======
1,1,2-Trichloroethane	0.296	0.303	0.297
1,3-Dichloropropane	0.427		0.437
Tetrachloroethene	0.310	0.315	
Chlorodibromomethane	0.259		
1,2-Dibromoethane	0.284		0.280
Chlorobenzene	0.777		
Ethyl Benzene	1.371		
1,1,1,2-Tetrachloroethane	0.264		
m,p-xylene	0.428	l .	
o-Xylene	0.515	l .	0.525
Styrene	0.819	l .	
Bromoform	0.308	0.396	0.385
1,1,2,2-Tetrachloroethane	0.501		
1,2,3-Trichloropropane	0.150		0.204
Trans-1,4-Dichloro 2-Butene	0.169	0.148	0.100
N-Propyl Benzene	2.761	3.593	0.100
Bromobenzene	0.578		
Isopropyl Benzene	2.367		
2-Chloro Toluene	1.706	2.252	
4-Chloro Toluene	1.690	1.714	1.846
T-Butyl Benzene	1.757	2.313	1.010
1,3,5-Trimethyl Benzene	1.951	2.259	2.232
1,2,4-Trimethylbenzene	1.916	2.088	
S-Butyl Benzene	2.474	2.499	2.631
4-Isopropyl Toluene	2.080	2.528	2.031
1,3-Dichlorobenzene	1.024	1.094	1.374
1,4-Dichlorobenzene	1.015		î .
N-Butyl Benzene	2.008	2.617	1.270
1,2-Dichlorobenzene	1.007	1.310	
1,2-Dibromo 3-Chloropropane	0.091	0.131	
1,2,4-Trichlorobenzene	0.753	1.030	
Hexachloro 1,3-Butadiene	0.753		
Naphthalene	1.658		
1,2,3-Trichlorobenzene	0.704		
Dichlorodifluoromethane	0.704		0.980
Methyl tert butyl ether	2.522		2.553
methyl tert butyl ether		2.601	
	l		

FORM VI VOA

upsi oddus

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELINE

Instrument ID: NT5 Calibration Date: 11/02/12

LAB FILE ID: RF100: 1001102 RF125: 1251102 RF150: 1501102

COMPOUND	RF100	RF125	RF150
d4-1,2-Dichloroethaned8-Toluened-Bromofluorobenzened4-1,2-DichlorobenzeneDibromofluoromethane	0.790	0.800	0.772
	1.412	1.398	1.395
	0.561	0.560	0.551
	0.951	1.235	1.489
	0.813	0.815	0.815

FORM VI VOA

UPEA : MAGE?

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELINE

Instrument ID: NT5 Calibration Date: 11/02/12

	CITITITE	7.77	%DCD
COMPOUND	CURVE TYPE		%RSD
COMPOUND			OR R ²
Chloromethane	AVRG	1.228	
	1		
Vinyl Chloride Bromomethane	AVRG	1.272	
	AVRG	0.533	
Chloroethane	AVRG	0.684	
Trichlorofluoromethane	AVRG	0.977	
Acrolein_	AVRG	0.152	12.7
112Trichloro122Trifluoroetha	AVRG	0.668	
Acetone	AVRG	0.226	
1,1-Dichloroethene	AVRG	0.663	
Bromoethane	AVRG	0.501	
Iodomethane	AVRG	0.562	
Methylene Chloride	AVRG	0.877	9.9
Acrylonitrile	AVRG	0.324	
Carbon Disulfide	20RDR		0.9930
Trans-1,2-Dichloroethene	AVRG	0.910	8.0
Vinyl Acetate	AVRG	1.452	7.2
Vinyl Acetate	AVRG	1.821	7.8
z bacanone	AVRG	0.092	5.8
2,2-Dichloropropane	AVRG	1.441	8.5
Cis-1,2-Dichloroethene	AVRG	0.978	7.8
Chloroform	AVRG	1.576	6.6
Bromochloromethane	AVRG	0.444	5.4
1,1,1-Trichloroethane	AVRG	1.418	8.2
1,1-Dichloropropene	AVRG	0.531	8.7
Carbon Tetrachloride	AVRG	0.463	8.4
1,2-Dichloroethane	AVRG	0.462	4.1
Benzene	AVRG	1.573	5.6
Trichloroethene	AVRG	0.379	8.0
1,2-Dichloropropane	AVRG	0.425	6.3
Bromodichloromethane	AVRG	0.464	5.6
Dibromomethane	AVRG	0.187	6.7
2-Chloroethyl Vinyl Ether	AVRG	0.173	12.3
4-Methyl-2-Pentanone	AVRG	0.141	8.6
Cis 1,3-dichloropropene	AVRG	0.598	6.5
Toluene	AVRG	1.007	6.4
Trans 1,3-Dichloropropene	AVRG	0.521	5.8
2-Hexanone	AVRG	0.181	6.6
	11410	0.101	ا ۵۰۰
Indicator value outrie	1 - 00- 1	 	

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELINE

Instrument ID: NT5 Calibration Date: 11/02/12

	CURVE	AVE	&DGD
COMPOUND	TYPE	RF	%RSD OR R^2
COMPOOND	11120		I .
1,1,2-Trichloroethane	AVRG	0.285	b .
1,3-Dichloropropane	AVRG	0.203	
Tetrachloroethene	AVRG	0.315	
Chlorodibromomethane	AVRG	0.247	
1,2-Dibromoethane	AVRG	0.247	
Chlorobenzene	AVRG	0.785	
Ethyl Benzene	AVRG	1.372	
1,1,1,2-Tetrachloroethane	AVRG	0.253	5.0
m,p-xylene	AVRG	0.480	
o-Xylene	AVRG	0.502	
Styrene	AVRG	0.746	
Bromoform	AVRG	0.310	
1,1,2,2-Tetrachloroethane	AVRG	0.504	
1,2,3-Trichloropropane	AVRG	0.155	
Trans-1,4-Dichloro 2-Butene	AVRG	0.156	1
N-Propyl Benzene	AVRG	2.857	
Bromobenzene	AVRG	0.584	
Isopropyl Benzene	AVRG	2.372	
2-Chloro Toluene	AVRG	1.740	
4-Chloro Toluene	AVRG	1.712	
T-Butyl Benzene	AVRG	1.743	
1,3,5-Trimethyl Benzene	AVRG	1.964	
1,2,4-Trimethylbenzene	AVRG	1.919	
S-Butyl Benzene	AVRG	2.490	
4-Isopropyl Toluene	AVRG	2.076	
1,3-Dichlorobenzene	AVRG	1.102	
1,4-Dichlorobenzene	AVRG	1.110	
N-Butyl Benzene	AVRG	2.048	
1,2-Dichlorobenzene	AVRG	1.053	
1,2-Dibromo 3-Chloropropane	AVRG	0.092	
1,2,4-Trichlorobenzene	AVRG	0.795	
Hexachloro 1,3-Butadiene	AVRG	0.490	
Naphthalene	AVRG	1.675	
1,2,3-Trichlorobenzene	AVRG	0.738	
Dichlorodifluoromethane	AVRG	0.827	
Methyl tert butyl ether	AVRG	2.408	- 1
			======
- Indigatog value outgi	\ 		

FORM VI VOA

VDG1:000U9

Lab Name: ANALYTICAL RESOURCES INC

Client: ANCHOR QEA LLC

ARI Job No: VP51

Project: CENTRAL WATERFRONT SHORELINE

Instrument ID: NT5

Calibration Date: 11/02/12

COMPOUND	CURVE	AVE	%RSD
	TYPE	RF	OR R^2
4-Bromofluorobenzene d4-1,2-Dichlorobenzene	AVRG AVRG AVRG AVRG AVRG AVRG	0.790 1.406 0.558 1.044 0.812	1.4 0.5 0.7 19.9 0.6

FORM VI VOA

ups: sosse

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELIN

Instrument ID: NT5 Cont. Calib. Date: 11/02/12

Init. Calib. Date: 11/02/12 Cont. Calib. Time: 1338

· · · · · · · · · · · · · · · · · · ·	CalAmt	CC Amt	MIN	CURVE	%D or	
COMPOUND	or ARF	or RF	RRF	TYPE	Drift	
=======================================	=====	=====	=====	=====	=====	
Chloromethane	1.228	1.2951	0.100	AVRG	5.5	l
Vinyl Chloride	1.272	1.3513	0.010	AVRG	6.2	
Bromomethane	0.533	0.5485	0.010	AVRG	2.9	
Chloroethane	0.684	0.7836	0.010	AVRG	14.6	ļ
Trichlorofluoromethane	0.977	1.2473	0.010	AVRG	27.7	<
Acrolein	0.152	0.1530	0.010	AVRG	0.6	
112Trichloro122Trifluoroetha		0.6141			-8.1	
Acetone	0.226	0.2111	0.010	AVRG	-6.6	1
1,1-Dichloroethene	0.663	0.6421	0.010	AVRG	-3.2	l
Bromoethane	0.501	0.4708	0.010	AVRG	-6.0	İ
Iodomethane	0.562	0.5570	0.010	AVRG	-0.9	l
Methylene Chloride	0.877	0.8828	0.010	AVRG	0.7	l
Acrylonitrile	0.324	0.3111	0.010	AVRG	-4.0	İ
Carbon Disulfide	50.000	48.361	0.010	20RDR	-3.3	l
Trans-1,2-Dichloroethene	0.910	0.9265	0.010	AVRG	1.8	
Vinyl Acetate	1.452	1.5149	0.010	AVRG	4.3	İ
1,1-Dichloroethane		1.8174			-0.2	İ
2-Butanone		0.0941			2.3	İ
2,2-Dichloropropane	1.441	1.5144	0.010	AVRG	5.1	İ
Cis-1,2-Dichloroethene		0.9874			1.0	İ
Chloroform		1.6105			2.2	
Bromochloromethane	0.444	0.4483	0.010	AVRG	1.0	1
1,1,1-Trichloroethane		1.4682			3.5	İ
1,1-Dichloropropene	0.531	0.5559	0.010	AVRG	4.7	
Carbon Tetrachloride	0.463	0.4810	0.010	AVRG	3.9	
1,2-Dichloroethane		0.4614			-0.1	ł
Benzene		1.6188			2.9	l
Trichloroethene	0.379	0.3963	0.010	AVRG	4.6	ĺ
1,2-Dichloropropane	0.425	0.4340	0.010	AVRG	2.1	
Bromodichloromethane		0.4713			1.6	
Dibromomethane		0.1897			2.0	
2-Chloroethyl Vinyl Ether		0.1792			3.6	
4-Methyl-2-Pentanone		0.1459			3.5	ĺ
4-Methyl-2-Pentanone Cis 1,3-dichloropropene		0.6211			3.9	
TOTUETIE		1.0236			1.6	ĺ
Trans 1,3-Dichloropropene		0.5369			3.0	i
2-Hexanone	0 100	0.1891	0.010	אזתכי	3.9	i

<- Exceeds QC limit of 20% D
* RF less than minimum RF</pre>

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELIN

Cont. Calib. Date: 11/02/12 Instrument ID: NT5

Init. Calib. Date: 11/02/12 Cont. Calib. Time: 1338

	CalAmt	CC Amt	MIN	CURVE	%D or
COMPOUND	or ARF		RRF	TYPE	Drift
		ľ	=====	=====	=====
1,1,2-Trichloroethane	0.286	0.2897	0.010	AVRG	1.3
1,3-Dichloropropane	1	0.4180		AVRG	1.7
Tetrachloroethene		0.3292			4.5
Chlorodibromomethane		0.2504			1.4
1,2-Dibromoethane		0.2714			1.6
Chlorobenzene		0.8047			2.5
Ethyl Benzene		1.4793			7.8
1,1,1,2-Tetrachloroethane		0.2699			6.7
m,p-xylene		0.5543			15.5
o-Xylene		0.5284			5.2
Styrene		0.8898			19.3
Bromoform		0.2950			-4.8
1,1,2,2-Tetrachloroethane		0.4878			-3.2
1,2,3-Trichloropropane		0.1427			-7.9
Trans-1,4-Dichloro 2-Butene		0.1711			9.7
N-Propyl Benzene		2.9916			4.7
Bromobenzene		0.5733			-1.8
Isopropyl Benzene		2.4846			4.7
2-Chloro Toluene		1.7737			1.9
4-Chloro Toluene		1.8535			8.3
T-Butyl Benzene		1.8106			3.9
1,3,5-Trimethyl Benzene		2.0750		AVRG	5.6
1,2,4-Trimethylbenzene		2.0480			6.7
S-Butyl Benzene		2.7346			9.8
4-Isopropyl Toluene		2.2716		AVRG	9.4
1,3-Dichlorobenzene		1.1331			2.8
1,4-Dichlorobenzene	1.110	1.1555			4.1
N-Butyl Benzene		2.2338		1	9.1
1,2-Dichlorobenzene	1.053	1.0450	0.010	AVRG	-0.8
1,2-Dibromo 3-Chloropropane	0.092	0.0870			-5.4
1,2,4-Trichlorobenzene		0.8207			3.2
Hexachloro 1,3-Butadiene		0.5054			3.1
Naphthalene		1.6180			-3.3
1,2,3-Trichlorobenzene		0.7297			-1.1
Dichlorodifluoromethane		0.9137			10.5
Methyl tert butyl ether		2.3913			-0.7
=======================================	=====	=====		=====	=====
Evacoda OC limit of 20% D					

⁻ Exceeds QC limit of 20% D
* RF less than minimum RF

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

Project: CENTRAL WATERFRONT SHORELIN ARI Job No: VP51

Cont. Calib. Date: 11/02/12 Instrument ID: NT5

Init. Calib. Date: 11/02/12 Cont. Calib. Time: 1338

	CalAmt	CC Amt	MIN	CURVE	%D or
COMPOUND	or ARF	or RF	RRF	TYPE	Drift
	======	=====	=====	=====	=====
d4-1,2-Dichloroethane	0.791	0.7890	0.010	AVRG	-0.2
d8-Toluene	1.406	1.4118	0.010	AVRG	0.4
4-Bromofluorobenzene	0.558	0.5582	0.010	AVRG	0.0
d4-1,2-Dichlorobenzene	1.045	0.9320	0.010	AVRG	-10.8
Dibromofluoromethane	0.812	0.8173	0.010	AVRG	0.6

<- Exceeds QC limit of 20% D
* RF less than minimum RF</pre>

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELIN

Instrument ID: NT5 Cont. Calib. Date: 11/05/12

Init. Calib. Date: 11/02/12 Cont. Calib. Time: 1203

	CalAmt	CC Amt	MIN	CURVE	%D or	
COMPOUND		or RF	RRF	TYPE	Drift	
=======================================						
Chloromethane		1.1867		AVRG	-3.4	
Vinyl Chloride		1.2592			-1.0	
Bromomethane		0.2137			-59.9	< -
Chloroethane		0.7482			9.4	
Trichlorofluoromethane		1.0667			9.2	
Acrolein		0.1531			0.7	İ
112Trichloro122Trifluoroetha	0.668	0.7647	0.010	AVRG	14.5	
Acetone	0.226	0.2014			-10.9	
1,1-Dichloroethene	0.663	0.7951	0.010	AVRG	19.9	
Bromoethane	0.501	0.5723	0.010	AVRG	14.2	
Iodomethane		0.6641		AVRG	18.2	
Methylene Chloride	0.877	0.9829	0.010	AVRG	12.1	
Acrylonitrile	0.324	0.3182	0.010	AVRG	-1.8	
Carbon Disulfide	50.000	71.760	0.010	20RDR	43.5	< -
Trans-1,2-Dichloroethene		0.8927			-1.9	
Vinyl Acetate	1.452	1.4587	0.010	AVRG	0.5	
1,1-Dichloroethane	1.821	1.8237	0.100	AVRG	0.1	
2-Butanone	0.092	0.0895	0.010	AVRG	-2.7	
2,2-Dichloropropane		1.4804			2.7	ļ
Cis-1,2-Dichloroethene		1.0534			7.7	
Chloroform		1.5865			0.7	
Bromochloromethane		0.4352			-2.0	
1,1,1-Trichloroethane		1.4607			3.0	
1,1-Dichloropropene		0.5475		AVRG	3.1	
Carbon Tetrachloride	0.463	0.4840	0.010	AVRG	4.5	
1,2-Dichloroethane		0.4475			-3.1	
Benzene		1.5994			1.7	
Trichloroethene		0.3827		AVRG	1.0	
1,2-Dichloropropane		0.4325			1.8	
Bromodichloromethane		0.4638			-0.0	İ
Dibromomethane		0.1860			0.0	İ
2-Chloroethyl Vinyl Ether		0.1812			4.7	İ
4-Methyl-2-Pentanone Cis 1,3-dichloropropene		0.1444			2.4	
Cis 1,3-dichloropropene		0.6115			2.2	
Toluene		1.0041			-0.3	ĺ
Trans 1,3-Dichloropropene		0.5325			2.2	
2-Hexanone	0.182	0.1860	0.010	AVRG	2.2	
- Fyceeds OC limit of 20% D		l				l

<- Exceeds QC limit of 20% D

^{*} RF less than minimum RF

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

Project: CENTRAL WATERFRONT SHORELIN ARI Job No: VP51

Instrument ID: NT5 Cont. Calib. Date: 11/05/12

Init. Calib. Date: 11/02/12 Cont. Calib. Time: 1203

	CalAmt	CC Amt	MIN	CURVE	%D or
COMPOUND	or ARF		RRF	TYPE	Drift
=======================================		======	=====	1	=====
1,1,2-Trichloroethane		0.2838	0.010		-0.8
1,3-Dichloropropane	II.	0.4106			-0.1
Tetrachloroethene		0.3195			1.4
Chlorodibromomethane	0.247				1.3
1,2-Dibromoethane		0.2664		4	-0.2
Chlorobenzene		0.7848			-0.0
Ethyl Benzene		1.4547		AVRG	6.0
1,1,1,2-Tetrachloroethane		0.2700			6.7
m,p-xylene		0.5412		1	12.8
o-Xylene		0.5189			3.4
Styrene	1	0.8640			15.8
Bromoform		0.3033			-2.2
1,1,2,2-Tetrachloroethane		0.4808			-4.6
1,2,3-Trichloropropane		0.1403			-9.5
Trans-1, 4-Dichloro 2-Butene		0.1764		1	13.1
N-Propyl Benzene		2.8601			0.1
Bromobenzene		0.5610			-3.9
Isopropyl Benzene		2.4042		1	1.4
2-Chloro Toluene		1.7025			-2.2
4-Chloro Toluene		1.7679		1	3.3
T-Butyl Benzene		1.7542			0.6
1,3,5-Trimethyl Benzene		1.9872			1.2
1,2,4-Trimethylbenzene		1.9648			2.4
S-Butyl Benzene		2.6119		AVRG	4.9
4-Isopropyl Toluene		2.1704			4.5
1,3-Dichlorobenzene		1.0815			-1.9
1,4-Dichlorobenzene		1.0957			-1.3
N-Butyl Benzene		2.0742			1.3
1,2-Dichlorobenzene		1.0051			-4.5
1,2-Dibromo 3-Chloropropane		0.0858			-6.7
1,2,4-Trichlorobenzene		0.7550			-5.0
Hexachloro 1,3-Butadiene		0.4676			-4.6
Naphthalene		1.5699			-6.2
1,2,3-Trichlorobenzene		0.6822			-7.6
Dichlorodifluoromethane		0.8284			0.2
Methyl tert butyl ether	ľ	2.3148			-3.9
	=====	=====	=====	1	
- Evenede OC limit of 20% D		'			

<- Exceeds QC limit of 20% D
* RF less than minimum RF</pre>

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELIN

Instrument ID: NT5 Cont. Calib. Date: 11/05/12

Init. Calib. Date: 11/02/12 Cont. Calib. Time: 1203

		CC Amt		CURVE	
COMPOUND	or ARF	or RF	RRF	TYPE	Drift
=======================================	=====	=====	=====	=====	=====
d4-1,2-Dichloroethane	0.791	0.7611	0.010	AVRG	-3.8
d8-Toluene	1.406	1.4122	0.010	AVRG	0.4
4-Bromofluorobenzene	0.558	0.5573	0.010	AVRG	-0.1
d4-1,2-Dichlorobenzene	1.045	0.9325	0.010	AVRG	-10.8
Dibromofluoromethane	0.812	0.8111	0.010	AVRG	-0.1

<- Exceeds QC limit of 20% D

^{*} RF less than minimum RF

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELINE

Ical Midpoint ID: 0101102 Ical Date: 11/02/12

Instrument ID: NT5 Project Run Date: 11/02/12

1		T01 (DDD)		TGC (DED)		T.G. (GT D)	
		IS1(PFB)		IS2 (DFB)		IS3 (CLB)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	========	=======	======	========	======	=======	======
	ICAL MIDPT	293734	4.68	765758	5.13	983387	7.62
	UPPER LIMIT	587468	5.18	1531516	5.63	1966774	8.12
	LOWER LIMIT	146867	4.18	382879	4.63	491694	7.12
	Sample ID						
	bampie ib					i	
	T GG1 1 0 0	204207		========	======		======
01	LCS1102	294287	4.68	765414	5.14	984714	7.62
02	LCS1102	283938	4.68	739193	5.14	952999	7.62
03	MB1102	278856	4.68	726018	5.14	940927	7.62
04	CWSI-TB-02	284847	4.68	748516	5.14	973688	7.62
05	CWSI-07-2-4	256827	4.68	673256	5.13	873312	7.62
06	CWSI-05-2-4	278684	4.68	730508	5.14	962640	7.62
07	CWSI-05-7-9	280409	4.68	739585	5.13	950969	7.62
08	CWSI-05-12-1	281448	4.69	729804	5.14	832262	7.62
09	CWSI-06-8-10	276926	4.68	668827	5.14	683580	7.63
10	CWSI-06-12-1	287718	4.68	754573	5.14	901804	7.62
11	CND1 - 00 - 12 - 1	207710	4.00	754575	2.14	301004	/.62
12							
	i				·		
13							
14							
15		· · · · · · · · · · · · · · · · · · ·					
16							
17							
18							
19							
20							
21					[
22							
22		l <u></u>					

IS1 (PFB) = Pentafluorobenzene IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CLB) = d5-Chlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Ical midpoint

* Values outside of QC limits.

page 1 of 2

FORM VIII VOA

OLM3.2M

UDS 1 DOGS 7

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELINE

Ical Midpoint ID: 0101102 Ical Date: 11/02/12

Instrument ID: NT5 Project Run Date: 11/02/12

		TC4 (DCD)					I
		IS4 (DCB)	- Der 11	3553 11	, ne		
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	========	======	========	======	========	======
	ICAL MIDPT	562086	9.69				
	UPPER LIMIT	1124172	10.19				
	LOWER LIMIT	281043	9.19				
	=======	=======	======	========	======	========	======
	Sample ID				İ		
	=========	========	======	========	======	========	======
01		569213	9.69				
02	LCS1102	537023	9.69				
03	MB1102	533296	9.69				
04	CWSI-TB-02	561472	9.69				
05	CWSI-07-2-4	450160	9.69				
06	CWSI-05-2-4	527283	9.69				
07	CWSI-05-7-9	483414	9.69				
08	CWSI-05-12-1	322661	9.69				
09	CWSI-06-8-10	78415*	9.72				
10	CWSI-06-12-1	525896	9.69				
11		32333	5.05				
12							
13							
14							
15							
16							
17							
18							
	<u></u>						
19							
20							
21							
22					l		

IS4 (DCB) = d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Ical midpoint

* Values outside of QC limits.

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELINE

Ical Midpoint ID: 0101102 Ical Date: 11/02/12

Instrument ID: NT5 Project Run Date: 11/05/12

		IS1 (PFB)		IS2 (DFB)		IS3 (CLB)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	========	========	======	========	======	========	======
	ICAL MIDPT	293734	4.68	765758	5.13	983387	7.62
	UPPER LIMIT	587468	5.18	1531516	5.63	1966774	8.12
	LOWER LIMIT						
	LOWER LIMIT	146867	4.18	382879	4.63	491694	7.12
:	=======	=======	======	========	======	========	=====
	Sample ID						
	========	=======	======	========	======	========	======
01	LCS1105	295485	4.68	763457	5.13	973464	7.62
02	LCS1105	299921	4.68	773381	5.13	991464	7.62
03	MB1105	286649	4.68	740082	5.13	955513	7.62
04	CWSI-06-8-10	284710	4.68	748582	5.14	967066	7.62
05	CM31-00-8-10	204/10	4.00	740502	2.14	90/000	7.62
06							
							
07							
80							
09							
10							
11		-					
12							
13	· · · · · · · · · · · · · · · · · · ·						
14	-						
15							
16							
17							
18							
19							
20					·		
21							
22							
22	i		l				

IS1 (PFB) = Pentafluorobenzene IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CLB) = d5-Chlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = -0.50 minutes of internal standard RT from Ical midpoint

* Values outside of QC limits.

page 1 of 2

FORM VIII VOA

OLM3.2M

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

ARI Job No: VP51 Project: CENTRAL WATERFRONT SHORELINE

Ical Midpoint ID: 0101102 Ical Date: 11/02/12

Instrument ID: NT5 Project Run Date: 11/05/12

	· · · · · · · · · · · · · · · · · · ·				1		
		IS4 (DCB)		1			
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	========	======	=======	======	========	======
	ICAL MIDPT	562086	9.69				
	UPPER LIMIT	1124172	10.19				
	LOWER LIMIT	281043	9.19				
	=========						
	Sample ID						
	_						
0.1	======================================		======	=======	======	========	======
	LCS1105	550396	9.69				
02	LCS1105	572171	9.70				
03	MB1105	528209	9.69				
04	CWSI-06-8-10	544595	9.69				
05							
06							
07							
08							
09							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21		·					
22							
			!		l		l

IS4 (DCB) = d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Ical midpoint

* Values outside of QC limits.

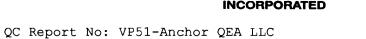
TPHD Analysis Report and Summary QC Forms

ARI Job ID: VP51

UP51:00061

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned


Extraction Method: SW3546

Page 1 of 1

Matrix: Soil

Data Release Authorized: // Reported: 11/07/12

Reported: 11/07/12

Project: Central Waterfront Shoreline In

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range/Surrogate	RL	Result
VP51A 12-21314	CWSI-07-2-4 HC ID: DIESEL/MOTOR	11/02/12 OIL	11/05/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	6.0 12	230 220 101%
MB-110212 12-21315	Method Blank HC ID:	11/02/12	11/05/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	5.0 10	< 5.0 U < 10 U 95.3%
VP51B 12-21315	CWSI-05-2-4 HC ID: DRO/MOTOR OI	11/02/12 L	11/05/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	5.7 11	69 130 84.0%
VP51C 12-21316	CWSI-05-7-9 HC ID: DIESEL/MOTOR	11/02/12 OIL	11/05/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	5.9 12	200 250 78.1%
VP51D 12-21317	CWSI-05-12-14 HC ID: DRO/RRO	11/02/12	11/06/12 FID4A	1.00 5.0	Diesel Range Motor Oil Range o-Terphenyl	29 58	420 590 84.4%
VP51E 12-21318	CWSI-06-8-10 HC ID: DRO/RRO	11/02/12	11/06/12 FID4A	1.00 10	Diesel Range Motor Oil Range o-Terphenyl	76 150	1300 640 71.8%
VP51F 12-21319	CWSI-06-12-14 HC ID: DRO/RRO	11/02/12	11/05/12 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	5.5 11	240 330 85.8%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

> FORM I

ARI ID: VP51MBS1

Client ID: VP51MBS1

Injection: 05-NOV-2012 16:58

Data file: /chem3/fid4a.i/20121105.b/1105a007.d

Method: /chem3/fid4a.i/20121105.b/ftphfid4a.m
Instrument: fid4a.i

Operator: JR/VTS

Report Date: 11/07/2012 Dilution Factor: 1

Macro: 01-NOV-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:01-NOV-2012 M.Oil:09-OCT-2012

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
=	======	======	========	========	=======	========	=============	====
Toluene	1.225	0.003	4242	4708	WATPHG	(Tol-C12)	102341	5.53
C8	1.471	0.006	679	1052	WATPHD	(C12-C24)	311845	21.43
C10	3.119	0.005	664	727	WATPHM	(C24-C38)	156731	11 92
C12	4.018	-0.010	623	766	AK102	(C10-C25)	350561	20.44
C14	4.707	-0.003	1114	584	AK103	(C25-C36)	131909	14.33
C16	5.301	0.003	3532	6624	1			
C18	5.853	-0.005	2211	1609				
C20	6.421	0.000	1738	2982	JET-A	(C10-C18)	240465	44.40
C22	6.972	0.002	1533	1423				
C24	7.490	-0.003	1117	2787	ĺ			
C25	7.756	0.012	1428	3729	1			
C26	7.982	-0.003	1061	2489				
C28	8.441	-0.002	1834	1676				
C32	9.245	-0.014	1964	3529	1			
C34	9.657	0.018	754	473	1			
Filter Peak	11.361	-0.001	1445	1401	CREOSOT	(C12-C22)	282576	140.44 M
C36	10.027	0.023	1031	2502				
C38	10.357	-0.003	1005	1276	[
C40	10.710	0.002	1317	3924				
o-terph	5.993	-0.002	1116390	825758				
Triacon Surr	8.866 	-0.011	862186	801248	1	G (C10-C24)	344457	20.13

Range Times: NW Diesel(4.028 - 7.493) AK102(3.11 - 7.74) Jet A(3.11 - 5.86) NW M.Oil(7.49 - 10.36) AK103(7.74 - 10.00) OR Diesel(3.11 - 8.44)

Surrogate	Area	Amount	%Rec
o-Terphenyl	825758	42.9	95.3
Triacontane	801248	42.5	94.4

M Indicates the peak was manually integrated

Analyte	RF	Curve Date					
o-Terph Surr	19248.4	01-NOV-2012					
Triacon Surr	18864.5	09-OCT-2012					
Gas	18517.9	28-SEP-2012					
Diesel	14554.0	01-NOV-2012					
Motor Oil	13149.3	09-OCT-2012					
AK102	17149.0	01-NOV-2012					
AK103	9202.1	25-SEP-2012					
JetA	5416.5	11-AUG-2012					
NAS Diesel	17108.0	01-NOV-2012					
Creosote	2012.1	01-NOV-2011					

VP51:00063

1 11/06/12 2 11/07/12

	• •					Υ (×10^6>	 					1			
	t	\$. 2 .		4	٠ • ق • ت	•	 	. •9	1.0-		1 1 1	<u> </u>	٥	C1.	Dat Dat
.	-cs	(1,471)											lumn	dilo to	Client	Data Fı Date :
													Column phase: RTX-1	1	ID:	Data File: /chem3/fid4a.1/20121105.b/1105a007.d Date : ^5-NOV-2012 16:58
η-	•												70	THEO. PROTEINST	ID: VP51MBS1	/che
													Ĩ×-Ľ	E	MBS1	9m3/f
	\$													Ė	2	104a 16÷5
ω-		(3,119)														8 +1/2
	} 010	(3,11)														0121:
																105.
		// AID														o, 11¢
£	-012	(4,018))5a\(
	})7.d
	-C14	(4,707)														
и -																
	-C16	(5,301)										>				
												chem;				
თ-	-C18	(5,853)						 				/chem3/fid4a. ☐3				
										o-terpl	h (5.9	93 \$				
M1N	-C20	(6,421)										/201				
		(6,972)										i/20121105.b/1105a007.d	Ω.	₽	<u>-</u>	
7 .	-022	(6,9/2)										p. (5	olumr	erat	ıstrı	
	-C24	(7,490)										1105;	Column diameter:	Operator: JR/VTS	Instrument: fid4a.ı	
	 -C25	(7,756)										30 07.	mete	ž	÷+ 	
ω-	-C26	(7,982)										Ω		3	d4 a.	
		(8,441)											0.25		-	
	}	(0,441)											1			
- ی								 	— -Tria	icon Surr	(8,8	66)				
	-C32	(9,245)														
	074	(0 (53)														
	ŀ	(9,657)														
10-	-C36	(10,027))													
	-C38	(10,357))													
	-040	(10,710))													
#-																
	-Filt	ter Peak	(11,361)	>												70
																Page 1
13-																
10																
L								 			F 5	A house	2 - 1	ZÇ		

Data file: /chem3/fid4a.i/20121105.b/1105a009.d ARI ID: VP51A

Method: /chem3/fid4a.i/20121105.b/ftphfid4a.m Client ID: CWSI-07-2-4

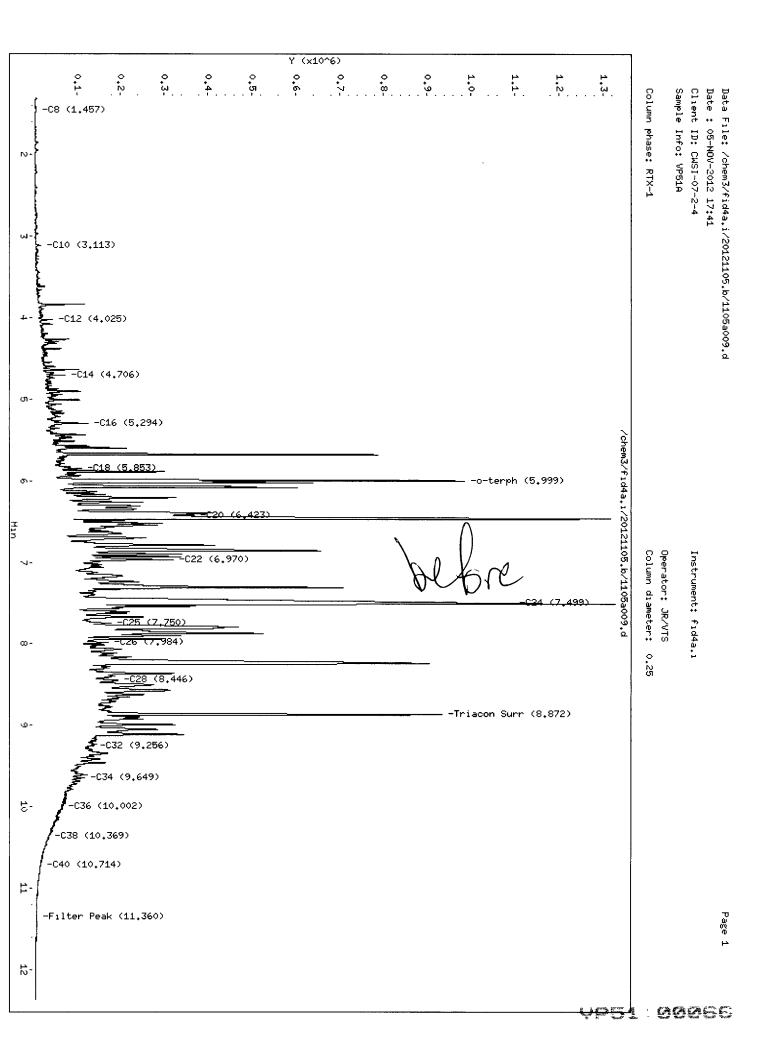
Instrument: fid4a.i Injection: 05-NOV-2012 17:41

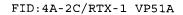
Operator: JR/VTS

Report Date: 11/07/2012 Dilution Factor: 1

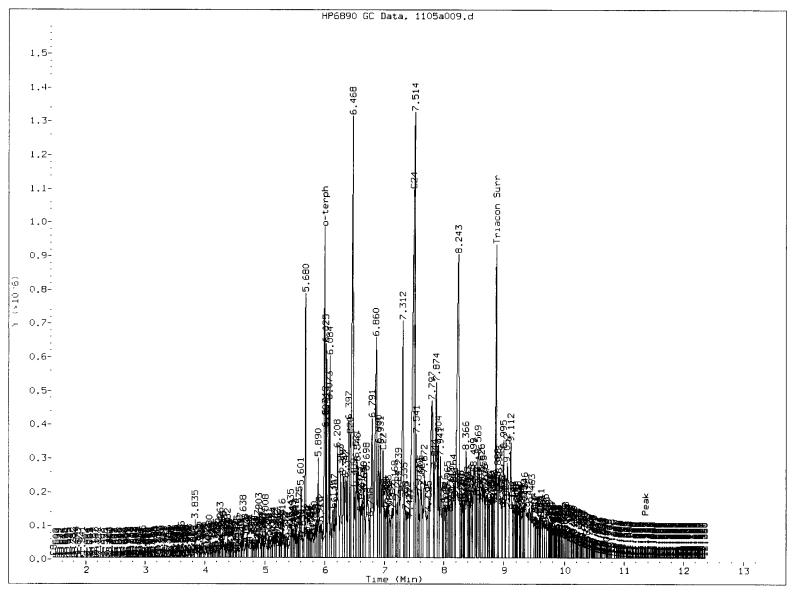
Macro: 01-NOV-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:01-NOV-2012 M.Oil:09-OCT-2012


FID:4A RESULTS


Compound	RT	Shift	Height	Area	Method	Range	Total Area	a Conc
-=	=======					==========	=========	=====
Toluene	1.224	0.002	24985	19487	WATPHG	(Tol-C12)	683625	36.92
C8	1.457	-0.007	3027	4742	WATPHD	(C12-C24)	27532064	1891.72
C10	3.113	0.000	13370	11203	WATPHM	(C24-C38)	24532547	1865.70
C12	4.025	-0.002	39263	42794	AK102	(C10-C25)	29452598	1717.45
C14	4.706	-0.004	69520	57140	AK103	(C25-C36)	22268847	2419.98
C16	5.294	-0.005	122296	153126	İ			
C18	5.853	-0.005	107300	117611				
C20	6.423	0.003	365353	283774	JET-A	(C10-C18)	5885605	1086.61
C22	6.970	0.000	318290	510408	İ			
C24	7.499	0.006	1093058	2338430	İ			
C25	7.750	0.006	175568	219329	ĺ			
C26	7.984	-0.001	168043	254449	İ			
C28	8.446	0.003	191905	259602	İ			
C32	9.256	-0.003	134472	121307	İ			
C34	9.649	0.010	112678	210567	İ			
Filter Peak	11.360	-0.002	4081	2853	CREOSOT	(C12-C22)	19125427	9505.07 M
İ					•			
C36	10.002	-0.002	62543	59816				
C38	10.369	0.010	30919	10921	İ			
C40	10.714	0.006	13035	16179	İ			
o-terph	5.999	0.004	916907	876848	İ			
Triacon Surr	8.872	-0.005	762976	701503	NAS DIES	G (C10-C24)	28054088	1639.82
==========							==========	=====

Range Times: NW Diesel(4.028 - 7.493) AK102(3.11 - 7.74) Jet A(3.11 - 5.86) NW M.Oil(7.49 - 10.36) AK103(7.74 - 10.00) OR Diesel(3.11 - 8.44)


Surrogate	Area	Amount	%Rec
o-Terphenyl	 876848	45.6	101.2 M
Triacontane	701503	37.2	82.6 M

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas	19248.4 18864.5 18517.9	01-NOV-2012 09-OCT-2012 28-SEP-2012
Diesel	14554.0	01-NOV-2012
Motor Oil AK102	13149.3 17149.0	09-OCT-2012 01-NOV-2012
AK103	9202.1	25-SEP-2012
JetA	5416.5	11-AUG-2012
NAS Diesel	17108.0	01-NOV-2012
Creosote	2012.1	01-NOV-2011

FID:4A SIGNAL

MANUAL INTEGRATION

1. Baseline correction

3. Peak not found

. Skimmed surrogate

Analyst:

n

Date: 1107/12

ARI ID: VP51B

Data file: /chem3/fid4a.i/20121105.b/1105a010.d

Method: /chem3/fid4a.i/20121105.b/ftphfid4a.m Client ID: CWSI-05-2-4

Instrument: fid4a.i Injection: 05-NOV-2012 18:02

Operator: JR/VTS

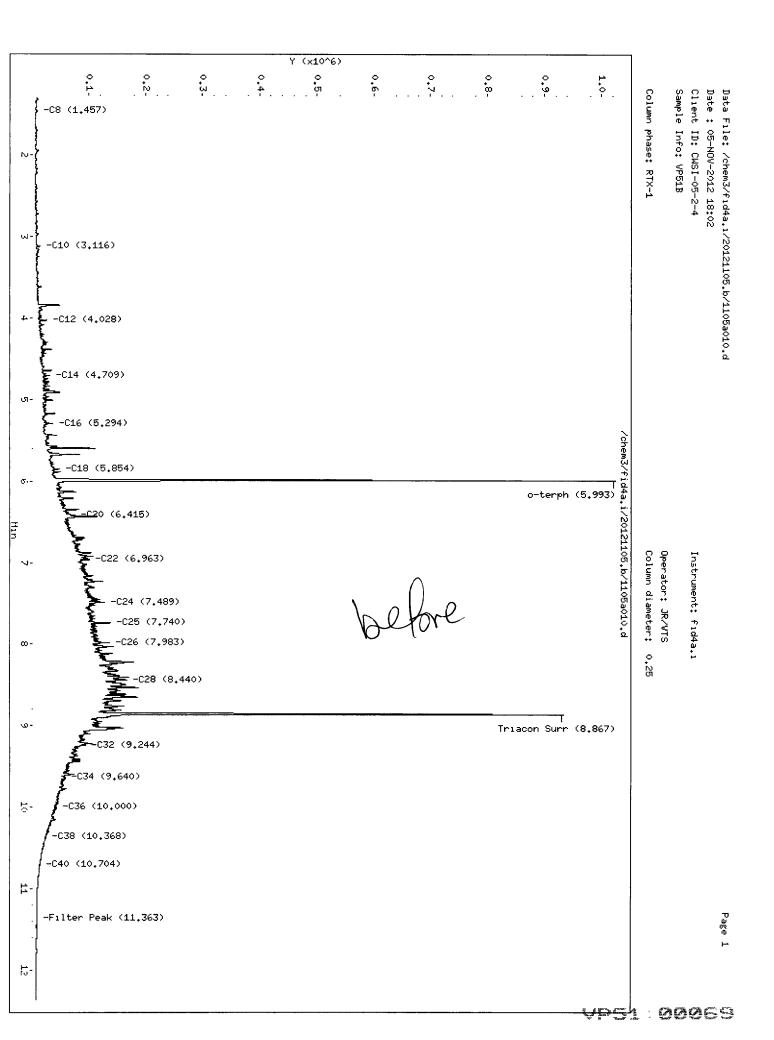
Report Date: 11/07/2012 Dilution Factor: 1

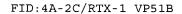
Macro: 01-NOV-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:01-NOV-2012 M.Oil:09-OCT-2012

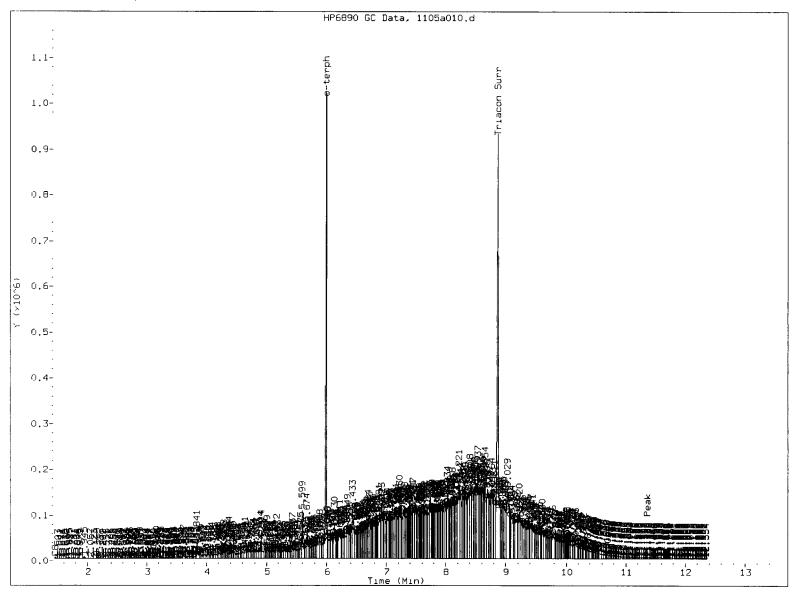
FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
========	=======	======	=======	========	=======		==========	====
Toluene	1.224	0.002	38862	31320	WATPHG	(Tol-C12)	478792	25.86
C8	1.457	-0.008	3369	5391	WATPHD	(C12-C24)	8831200	606.79
C10	3.116	0.002	8221	8622	WATPHM	(C24-C38)	15040056	1143.79
C12	4.028	0.000	20081	24118	AK102	(C10-C25)	9997847	583.00
C14	4.709	-0.002	25871	29176	AK103	(C25-C36)	13658356	1484.27
C16	5.294	-0.005	30719	43725				
C18	5.854	-0.004	42965	71263				
C20	6.415	-0.006	70197	78752	JET-A	(C10-C18)	2403480	443.73
C22	6.963	-0.007	95887	113145				
C24	7.489	-0.004	122660	216959				
C25	7.740	-0.004	133530	211597				
C26	7.983	-0.002	132380	248684				
C28	8.440	-0.002	162672	272938				
C32	9.244	-0.016	89688	148789				
C34	9.640	0.001	53284	102875				
Filter Peak	11.363	0.000	2982	2275	CREOSOT	(C12-C22)	5958110	2961.10 M
C36	10.000	-0.004	37864	14581				
C38	10.368	0.008	18975	13738	1			
C40	10.704	-0.004	8140	11338	1			
o-terph	5.993	-0.002	974585	727224				
Triacon Suri	r 8.867	-0.010	817724	808950	NAS DIES	G (C10-C24)	9139951	534.25
==========		======	=======	:=======	=======	========	==========	====


Range Times: NW Diesel(4.028 - 7.493) AK102(3.11 - 7.74) Jet A(3.11 - 5.86) NW M.Oil(7.49 - 10.36) AK103(7.74 - 10.00) OR Diesel(3.11 - 8.44)


Surrogate	Area	Amount	%Rec
o-Terphenyl	727224	37.8	84.0 M
Triacontane	808950	42.9	95.3 M

M Indicates the peak was manually integrated


Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JetA NAS Diesel	19248.4 18864.5 18517.9 14554.0 13149.3 17149.0 9202.1 5416.5 17108.0	01-NOV-2012 09-OCT-2012 28-SEP-2012 01-NOV-2012 09-OCT-2012 01-NOV-2012 25-SEP-2012 11-AUG-2012 01-NOV-2012
Creosote	2012.1	01-NOV-2011

DE-11/07/12

FID:4A SIGNAL

MANUAL INTEGRATION

1. Baseline correction
3 Peak not found
5 Skimmed surrogate

Date: 1/07/12

Data file: /chem3/fid4a.i/20121105.b/1105a013.d

ARI ID: VP51C Method: /chem3/fid4a.i/20121105.b/ftphfid4a.m Client ID: CWSI-05-7-9

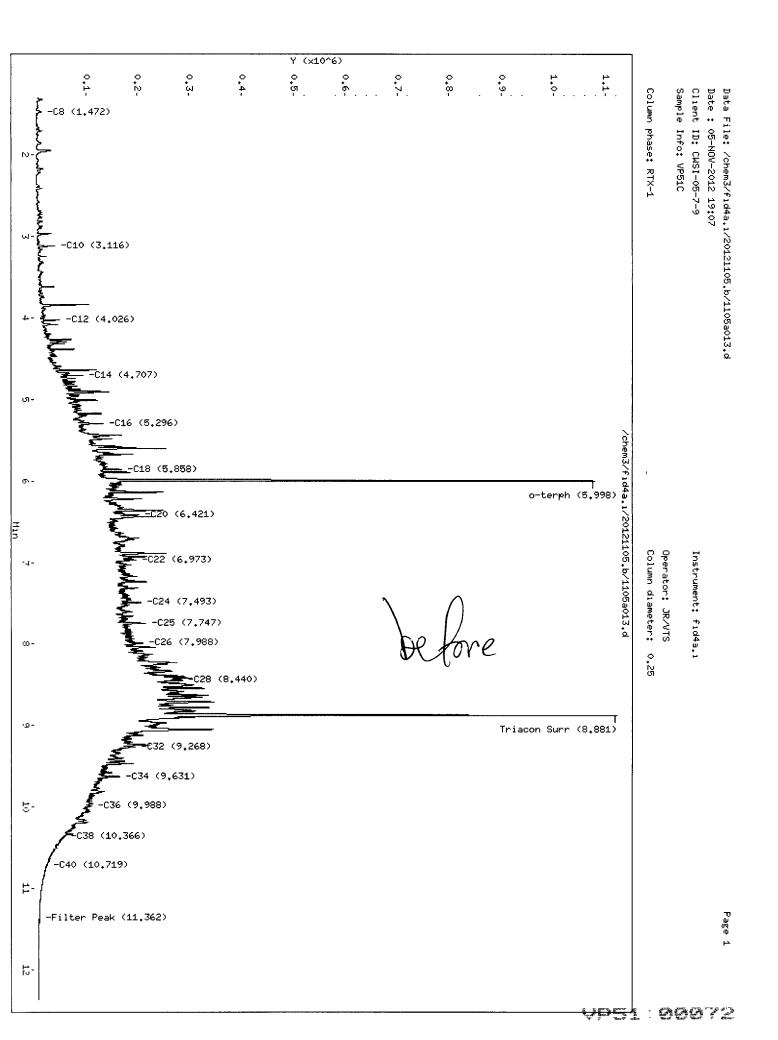
Instrument: fid4a.i Injection: 05-NOV-2012 19:07

Operator: JR/VTS

Report Date: 11/07/2012 Dilution Factor: 1

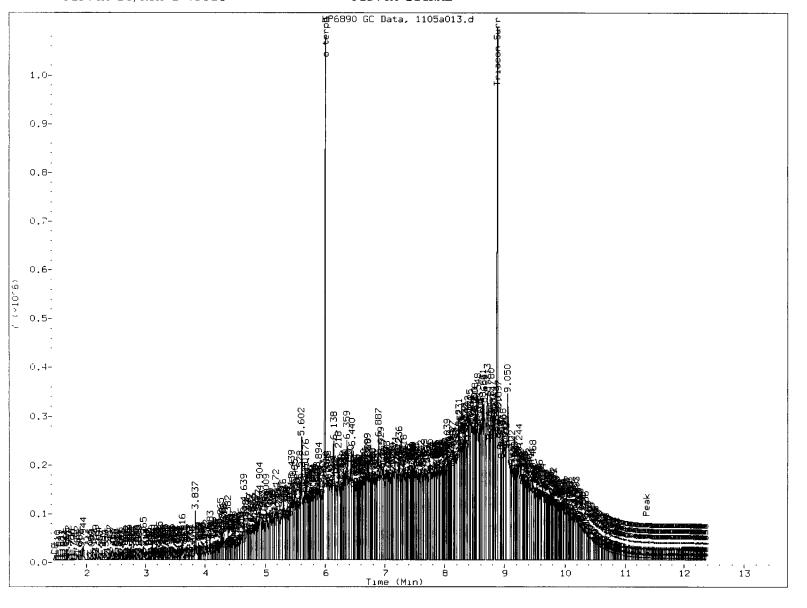
Macro: 01-NOV-2012

Calibration Dates: Gas: 28-SEP-2012 Diesel: 01-NOV-2012 M.Oil: 09-OCT-2012


FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.232	0.010	======== 41419	32804	======= WATPHG	======================================	984677	==== 53.17
C8	1.472	0.007	8763	13146	WATPHD	(C12-C24)		1655 <u>.2</u> 3
C10	3.116	0.003	35227	28106	!	(C24-C38)		2095.29
C12	4.026	-0.001	45632	45569	!	(C10-C25)	26269569	
C14	4.707	-0.004	90463	78356	AK103	(C25-C36)		2668.85
C16	5.296	-0.003	130021	235572				
C18	5.858	0.000	164632	260878	1			
C20	6.421	0.000	199072	316479	JET-A	(C10-C18)	8852787	1634.41
C22	6.973	0.003	192432	218659				
C24	7.493	0.000	202869	305667	1			
C25	7.747	0.003	212004	308114	Ì			
C26	7.988	0.003	207000	138563	1			
C28	8.440	-0.002	280728	393304				
C32	9.268	0.009	191116	360141				
C34	9.631	-0.008	161811	341970				
Filter Peak	11.362	0.000	5051	8518	CREOSOT	(C12-C22)	18704389	9295.82 M
C36	9.988	-0.016	107078	214795	1			
C38	10.366	0.007	53483	78268				
C40	10.719	0.011	20264	10935				
o-terph	5.998	0.003	915015	676515				
Triacon Surr		0.004	849631	723558	NAS DIES	(C10-C24)	24676761	1442.41

Range Times: NW Diesel(4.028 - 7.493) AK102(3.11 - 7.74) Jet A(3.11 - 5.86) NW M.Oil(7.49 - 10.36) AK103(7.74 - 10.00) OR Diesel(3.11 - 8.44)


Surrogate	Area	Amount	%Rec
o-Terphenyl	676515	35.1	78.1 M
Triacontane	723558	38.4	85.2 M

Analyte	RF	Curve Date
o-Terph Surr	19248.4	01-NOV-2012
-	17240.4	01 110 0 2012
Triacon Surr	18864.5	09-OCT-2012
Gas	18517.9	28-SEP-2012
Diesel	14554.0	01-NOV-2012
Motor Oil	13149.3	09-OCT-2012
AK102	17149.0	01-NOV-2012
AK103	9202.1	25-SEP-2012
JetA	5416.5	11-AUG-2012
NAS Diesel	17108.0	01-NOV-2012
Creosote	2012.1	01-NOV-2011

FID:4A SIGNAL

MANUAL INTEGRATION

- 1. Baseline correction
- 3. Peak not found
- 5. \$kimmed surrogate

Analyst: ________

Date: 11 07/12

Data file: /chem3/fid4a.i/20121106.b/1106a006.d

Method: /chem3/fid4a.i/20121105.b/ftphfid4a.m

Instrument: fid4a.i Operator: JR/VTS

Macro: 01-NOV-2012

Report Date: 11/07/2012

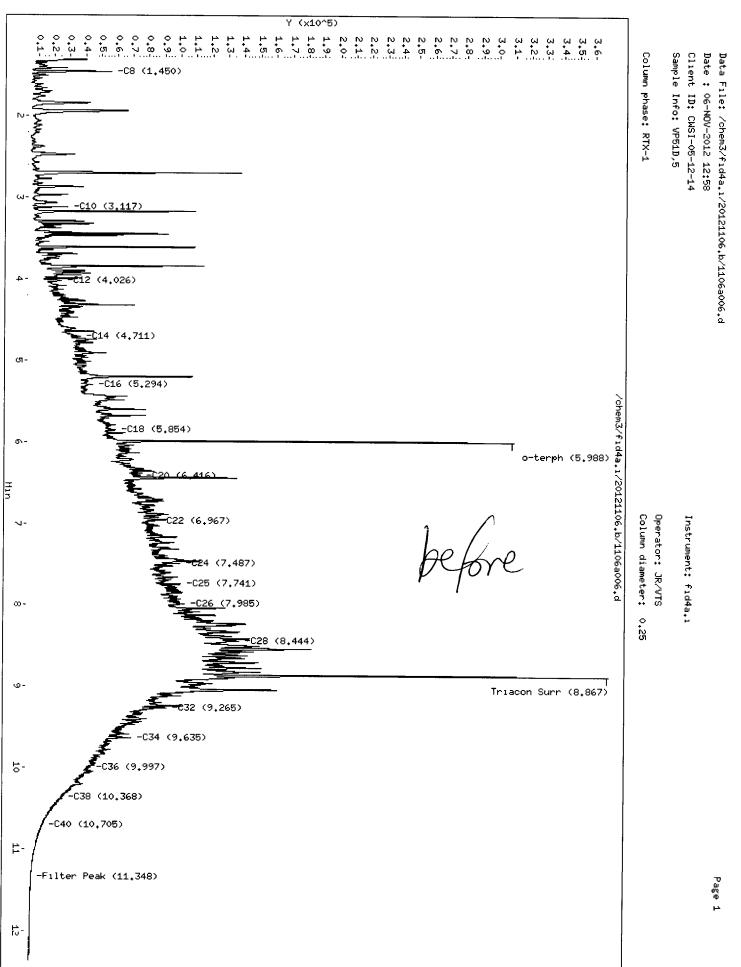
ARI ID: VP51D

Dilution Factor: 5

Client ID: CWSI-05-12-14

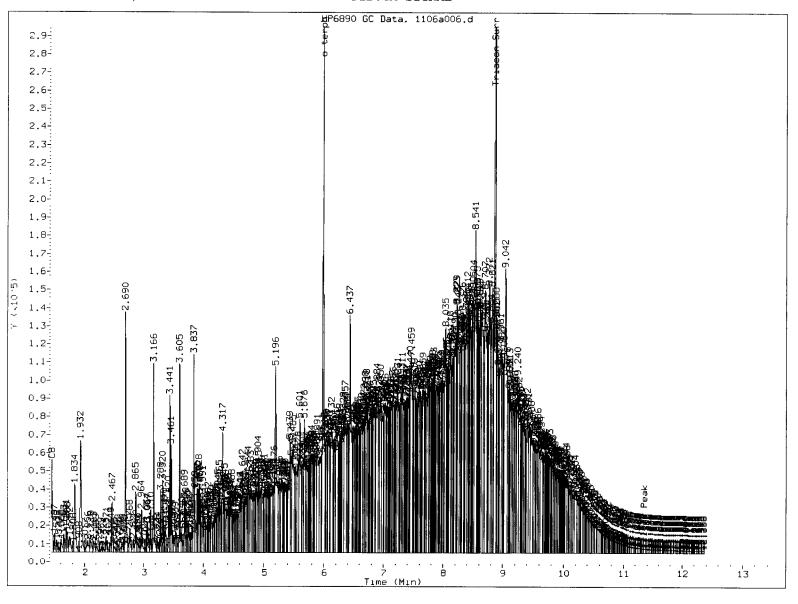
Injection: 06-NOV-2012 12:58

Calibration Dates: Gas:28-SEP-2012 Diesel:01-NOV-2012 M.Oil:09-OCT-2012


FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
========	=======	=======	=======	========	======	========	==========	=====
Toluene	1.218	-0.004	37470	39865	WATPHG	(Tol-C12)	1720781	92.93
C8	1.450	-0.014	50845	45390	WATPHD	(C12-C24)	10654445	732.06
C10	3.117	0.003	23195	16145	WATPHM	(C24-C38)	13343480	1014.77
C12	4.026	-0.002	19716	26625	AK102	(C10-C25)	12279092	716.02
C14	4.711	0.000	31617	40036	AK103	(C25-C36)	12048589	1309.33
C16	5.294	-0.005	40009	58044	İ			
C18	5.854	-0.004	54639	83434				
C20	6.416	-0.005	70024	47459	JET-A	(C10-C18)	4679466	863.93
C22	6.967	-0.003	79472	142582	İ			
C24	7.487	-0.005	95258	112562	ĺ			
C25	7.741	-0.003	95773	154843	İ			
C26	7.985	-0.001	98109	75826	İ			
C28	8.444	0.002	132892	190486	İ			
C32	9.265	0.006	87301	146290	Ì			
C34	9.635	-0.004	65530	124357	İ			
Filter Peak	11.348	-0.015	2559	4747	CREOSOT	(C12-C22)	8145033	4047.97 M
C36	9.997	-0.007	39543	40529	1			
C38	10.368	0.008	22045	7329				
C40	10.705	-0.003	10079	14205				
o-terph	5.988	-0.007	246000	146343	İ			
Triacon Surr	8.867	-0.010	245792	178112	NAS DIES	(C10-C24)	11551627	675.22
=========	======	=======	=======	========	=======	========	==========	====

Range Times: NW Diesel(4.028 - 7.493) AK102(3.11 - 7.74) Jet A(3.11 - 5.86) NW M.Oil(7.49 - 10.36) AK103(7.74 - 10.00) OR Diesel(3.11 - 8.44)


Surrogate	Area	Amount	%Rec	
o-Terphenyl	146343	7.6	84.5 M	
Triacontane	178112	9.4	104.9 M	

Analyte	RF	Curve Date
o-Terph Surr	19248.4	01-NOV-2012
Triacon Surr	18864.5	09-OCT-2012
Gas	18517.9	28-SEP-2012
Diesel	14554.0	01-NOV-2012
Motor Oil	13149.3	09-OCT-2012
AK102	17149.0	01-NOV-2012
AK103	9202.1	25-SEP-2012
JetA	5416.5	11-AUG-2012
NAS Diesel	17108.0	01-NOV-2012
Creosote	2012.1	01-NOV-2011

FID:4A-2C/RTX-1 VP51D

FID:4A SIGNAL

MANUAL INTEGRATION

Baseline correction
 Peak not found
 Skimmed surrogate

Analyst:

Date: ///07//2

Data file: /chem3/fid4a.i/20121106.b/1106a007.d

Method: /chem3/fid4a.i/20121105.b/ftphfid4a.m Client ID: CWSI-06-8-10

Instrument: fid4a.i

ARI ID: VP51E

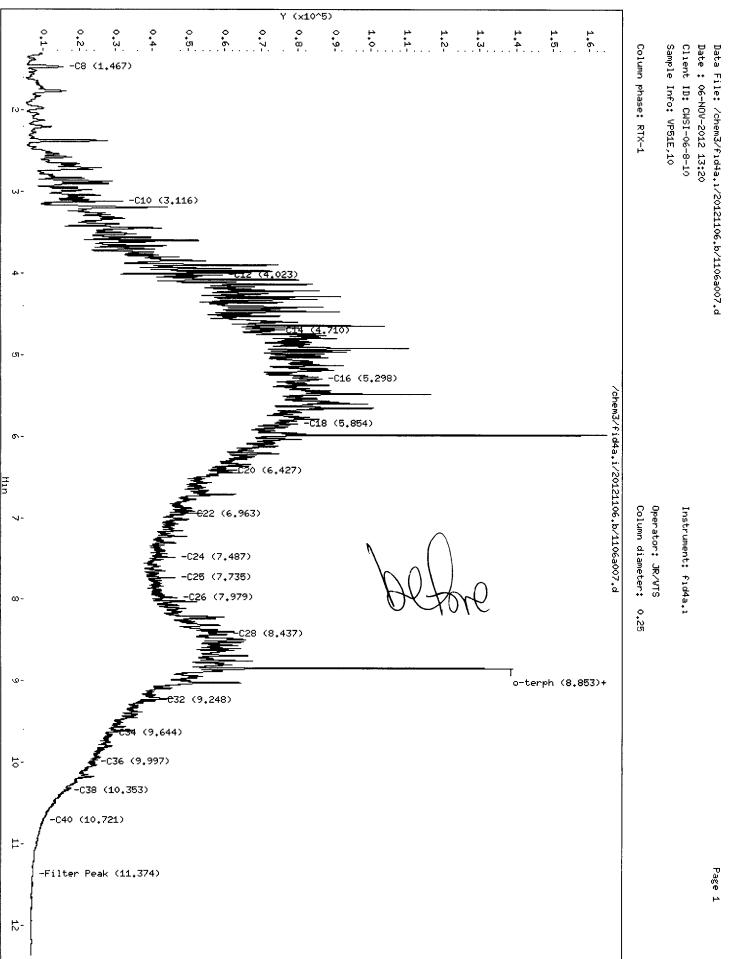
Injection: 06-NOV-2012 13:20

Operator: JR/VTS

Report Date: 11/07/2012 Dilution Factor: 10

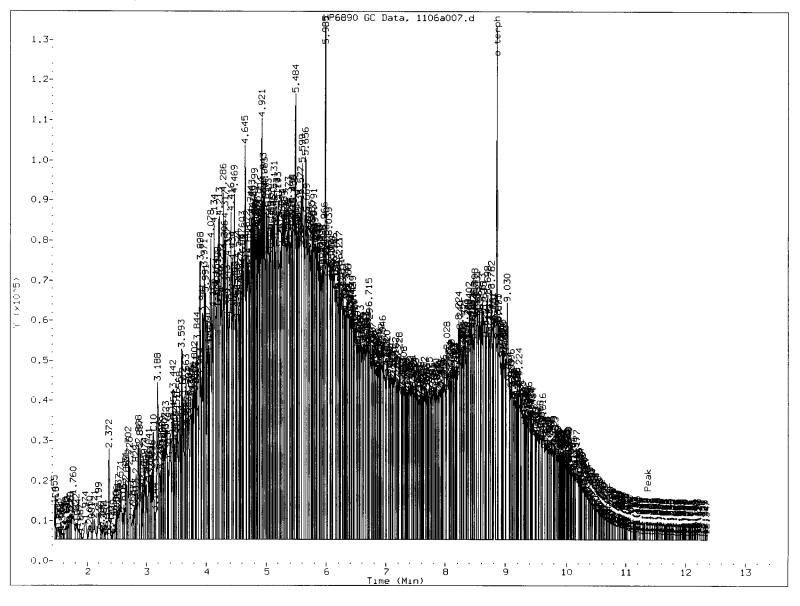
Macro: 01-NOV-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:01-NOV-2012 M.Oil:09-OCT-2012


FID:4A RESULTS


Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
=========	======	=======	========	=======	=======	=========	==========	=====
Toluene	1.221	0.000	3319	2452	WATPHG	(Tol-C12)	2204280	119.04
C8	1.467	0.003	10050	9937	WATPHD	(C12-C24)	12261364	842.47
C10	3.116	0.003	26650	26120	WATPHM	(C24-C38)	5573427	423.86
C12	4.023	-0.005	53895	65205	AK102	(C10-C25)	14183437	827.07
C14	4.710	0.000	68209	60542	AK103	(C25-C36)	5022743	545.83
C16	5.298	-0.001	81211	103882				
C18	5.854	-0.003	74537	100480	1			
C20	6.427	0.007	55183	56067	JET-A	(C10-C18)	9334055	1723.27
C22	6.963	-0.007	43737	89119	1			
C24	7.487	-0.005	41080	51077				
C25	7.735	-0.008	41098	53477				
C26	7.979	-0.006	41747	78928				
C28	8.437	-0.006	55452	93224	1			
C32	9.248	-0.012	35696	45437				
C34	9.644	0.005	22495	5768				
Filter Peak	11.374	0.012	1858	2726	CREOSOT	(C12-C22)	11097053	5515.08 M
C36	9.997	-0.006	18856	22782				
C38	10.353	-0.007	11371	18805				
C40	10.721	0.014	4789	4319				
o-terph	8.853	2.858	85629	62219	1			
Triacon Surr	8.853	-0.023	85629	62219	NAS DIES	(C10-C24)	13910318	813.09

Range Times: NW Diesel(4.028 - 7.493) AK102(3.11 - 7.74) Jet A(3.11 - 5.86) NW M.Oil(7.49 - 10.36) AK103(7.74 - 10.00) OR Diesel(3.11 - 8.44)


Surrogate	Area	Amount	%Rec
o-Terphenyl	62219	3.2	71.8 M
Triacontane	62219	3.3	73.3 M

Analyte	RF	Curve Date
o-Terph Surr	19248.4	01-NOV-2012
Triacon Surr	18864.5	09-OCT-2012
Gas	18517.9	28-SEP-2012
Diesel	14554.0	01-NOV-2012
Motor Oil	13149.3	09-OCT-2012
AK102	17149.0	01-NOV-2012
AK103	9202.1	25-SEP-2012
JetA	5416.5	11-AUG-2012
NAS Diesel	17108.0	01-NOV-2012
Creosote	2012.1	01-NOV-2011

FID:4A SIGNAL

MANUAL INTEGRATION

1. Baseline correction
3. Peak not found
5. Skimmed surrogate

Analyst:

ARI ID: VP51F

Data file: /chem3/fid4a.i/20121105.b/1105a016.d

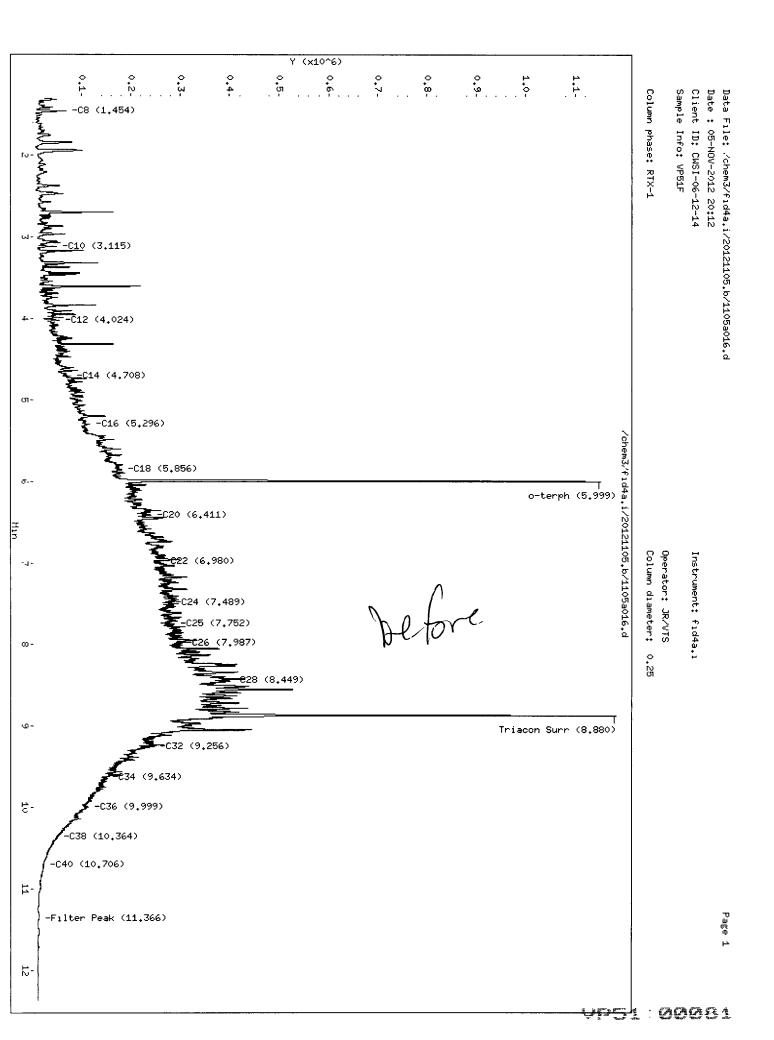
Method: /chem3/fid4a.i/20121105.b/ftphfid4a.m Client ID: CWSI-06-12-14
Instrument: fid4a.i Injection: 05-NOV-2012 20:12

Operator: JR/VTS

Report Date: 11/07/2012 Dilution Factor: 1

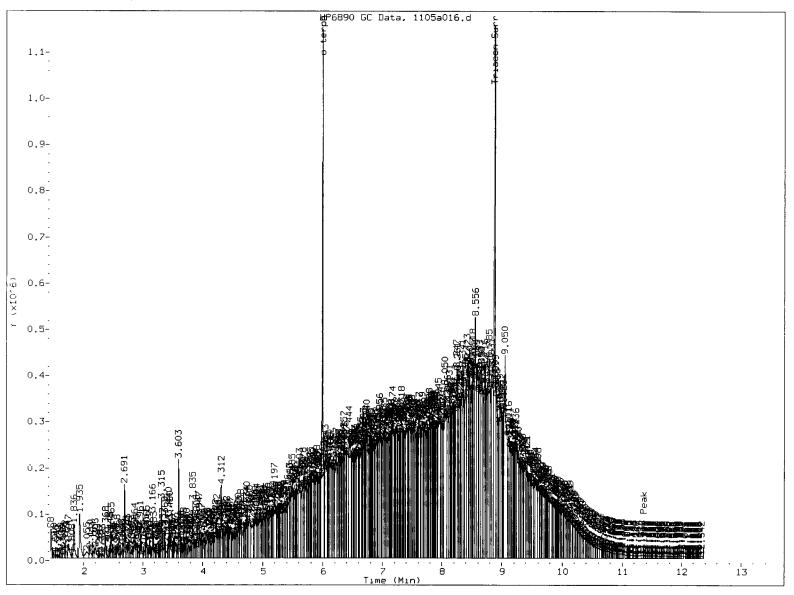
Macro: 01-NOV-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:01-NOV-2012 M.Oil:09-OCT-2012


FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.223	0.001	75149	40399	======= WATPHG	(Tol-C12)	3477122	===== 187.77
C8	1.454	-0.011	61562	64054	WATPHD	(C12-C24)	32270659	2217.31
C10	3.115	0.002	40503	32815	WATPHM	(C24-C38)	38984770 _	2964.79
C12	4.024	-0.004	47766	61620	AK102	(C10-C25)	35967905	2097.38
C14	4.708	-0.002	71114	75594	AK103	(C25-C36)	35741292	3884.05
C16	5.296	-0.002	109946	119907				
C18	5.856	-0.001	175275	250956				
C20	6.411	-0.009	234038	394481	JET-A	(C10-C18)	11437828	2111.67
C22	6.980	0.010	249990	202208				
C24	7.489	-0.004	272833	80158				
C25	7.752	0.008	283259	254414				
C26	7.987	0.002	294508	383100				
C28	8.449	0.007	390893	204714				
C32	9.256	-0.003	240703	410124				
C34	9.634	-0.005	144905	85974				
Filter Peak	11.366	0.004	5644	5924	CREOSOT	(C12-C22)	23990500	11922.94 M
C36	9.999	-0.004	106752	136816				
C38	10.364	0.005	43777	68703	İ			
C40	10.706	-0.002	15229	14990	Ì			
o-terph	5.999	0.004	965024	743195	İ			
Triacon Sur	r 8.880	0.004	814220	735275	NAS DIES	G (C10-C24)	33980210	1986.22
=========	=======	=======	=======				=======================================	====

Range Times: NW Diesel(4.028 - 7.493) AK102(3.11 - 7.74) Jet A(3.11 - 5.86) NW M.Oil(7.49 - 10.36) AK103(7.74 - 10.00) OR Diesel(3.11 - 8.44)


Surrogate	Area	Amount	%Rec	
o-Terphenyl	743195	38.6	85.8 M	
Triacontane	735275	39.0	86.6 M	

Analyte	RF	Curve Date		
o-Terph Surr Triacon Surr Gas	19248.4 18864.5 18517.9	01-NOV-2012 09-OCT-2012 28-SEP-2012		
Diesel	14554.0	01-NOV-2012		
Motor Oil	13149.3	09-OCT-2012		
AK102	17149.0	01-NOV-2012		
AK103	9202.1	25-SEP-2012		
JetA	5416.5	11-AUG-2012		
NAS Diesel	17108.0	01-NOV-2012		
Creosote	2012.1	01-NOV-2011		

FID:4A-2C/RTX-1 VP51F

FID:4A SIGNAL

MANUAL INTEGRATION

1. Baseline correction

3. Peak not found

Skimmed surrogate

Analyst:

Date: 1/107/12

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Client ID	OTER	TOT OUT
CWSI-07-2-4	101%	0
MB-110212	95.3%	0
LCS-110212	95.7%	0
CWSI-05-2-4	84.0%	0
CWSI-05-2-4 MS	75.1%	0
CWSI-05-2-4 MSD	83.5%	0
CWSI-05-7-9	78.1%	0
CWSI-05-12-14	84.4%	0
CWSI-06-8-10	71.8%	0
CWSI-06-12-14	85.8%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(50-150)

(50-150)

Prep Method: SW3546

Log Number Range: 12-21314 to 12-21319

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Matrix: Soil

Lab Sample ID: VP51B

LIMS ID: 12-21315

Reported: 11/07/12

Sample ID: CWSI-05-2-4 MS/MSD

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/26/12 Date Received: 10/27/12

Sample Amount MS: 8.78 g-dry-wt

MSD: 8.49 g-dry-wt

Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 1.0

MSD: 1.0

Percent Moisture: 18.7%

Date Extracted MS/MSD: 11/02/12

Data Release Authorized:

Date Analyzed MS: 11/05/12 18:24

MSD: 11/05/12 18:46

Instrument/Analyst MS: FID/JGR

MSD: FID/JGR

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	69	173	171	60.8%	187	177	66.7%	7.8%

TPHD Surrogate Recovery

o-Terphenyl 75.1% 83.5%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

Data file: /chem3/fid4a.i/20121105.b/1105a011.d

ARI ID: VP51BMS Method: /chem3/fid4a.i/20121105.b/ftphfid4a.m Client ID: CWSI-05-2-4 MS

Instrument: fid4a.i Injection: 05-NOV-2012 18:24

Operator: JR/VTS

Report Date: 11/07/2012 Dilution Factor: 1

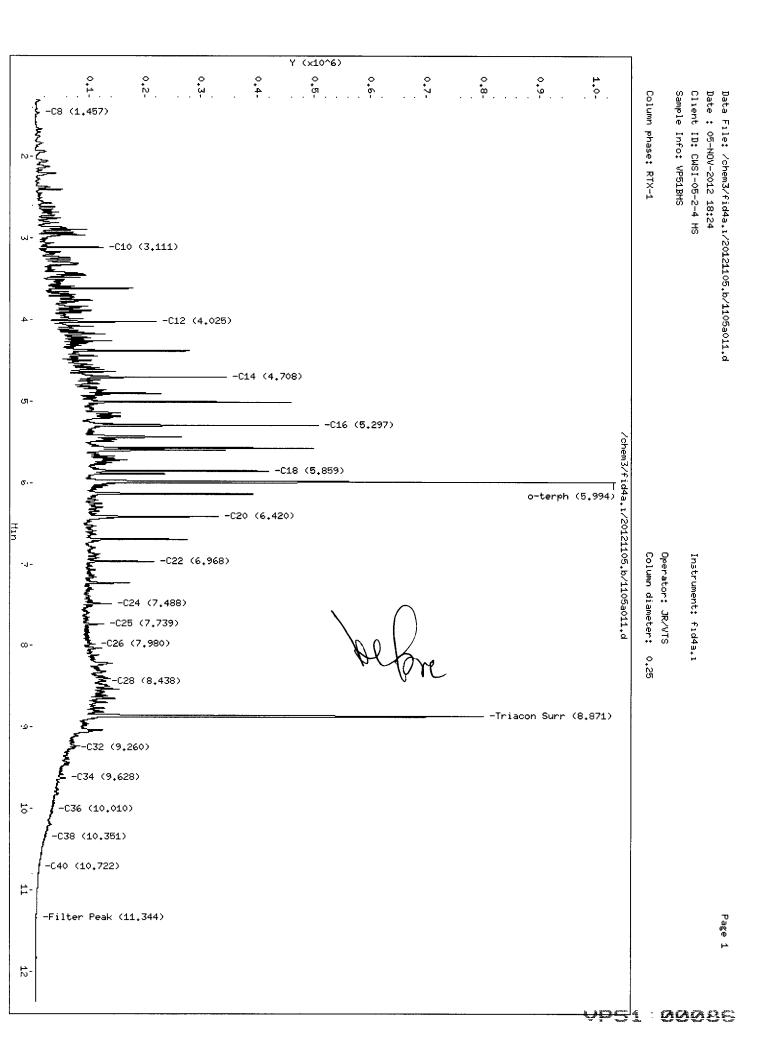
Macro: 01-NOV-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:01-NOV-2012 M.Oil:09-OCT-2012

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.224	0.002	35317	25306	WATPHG	(Tol-C12)	3975170	214.67
C8	1.457	-0.008	7192	10424	WATPHD	(C12-C24)	22124647	1520.18
C10	3.111	-0.003	121116	84236	WATPHM	(C24-C38)	12331937	-937.84
C12	4.025	-0.002	216399	193074	AK102	(C10-C25)	25688692	1497.97
C14	4.708	-0.003	341055	237732	AK103	(C25-C36)	11064573	1202.40
C16	5.297	-0.001	503787	436965	1			
C18	5.859	0.001	415485	432976				
C20	6.420	-0.001	326367	329607	JET-A	(C10-C18)	14887551	2748.56
C22	6.968	-0.002	213346	240035	İ			
C24	7.488	-0.004	136229	214798	İ			
C25	7.739	-0.004	122438	170927	ĺ			
C26	7.980	-0.005	106412	177274				
C28	8.438	-0.004	126203	228046	İ			
C32	9.260	0.000	70181	135697				
C34	9.628	-0.011	53297	72136	İ			
Filter Peak	11.344	-0.018	2593	7129	CREOSOT	(C12-C22)	19191237	9537.78 M
C36	10.010	0.006	30351	19567				
C38	10.351	-0.009	19138	27448				
C40	10.722	0.014	7379	4067	ĺ			
o-terph	5.994	-0.001	904445	650253	İ			
Triacon Surr	8.871	-0.006	691479	656003	NAS DIES	G (C10-C24)	24883588	1454.50
	=======		=======	=======	=======	========	=======================================	====

Range Times: NW Diesel(4.028 - 7.493) AK102(3.11 - 7.74) Jet A(3.11 - 5.86) NW M.Oil(7.49 - 10.36) AK103(7.74 - 10.00) OR Diesel(3.11 - 8.44)


Surrogate	Area	Amount	%Rec
o-Terphenyl	650253	33.8	75.1 M
Triacontane	656003	34.8	77.3 M

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	19248.4 18864.5	01-NOV-2012 09-OCT-2012
Gas	18517.9	28-SEP-2012
Diesel	14554.0	01-NOV-2012
Motor Oil	13149.3	09-OCT-2012
AK102	17149.0	01-NOV-2012
AK103	9202.1	25-SEP-2012
JetA	5416.5	11-AUG-2012
NAS Diesel	17108.0	01-NOV-2012
Creosote	2012.1	01-NOV-2011

VPS1: BOBES

p 11/04/2

MANUAL INTEGRATION

1. Baseline correction

3. Peak not found
5. Skimmed surrogate

Analyst: ______

Date: ///07/12

Data file: /chem3/fid4a.i/20121105.b/1105a012.d ARI ID: VP51BMSD

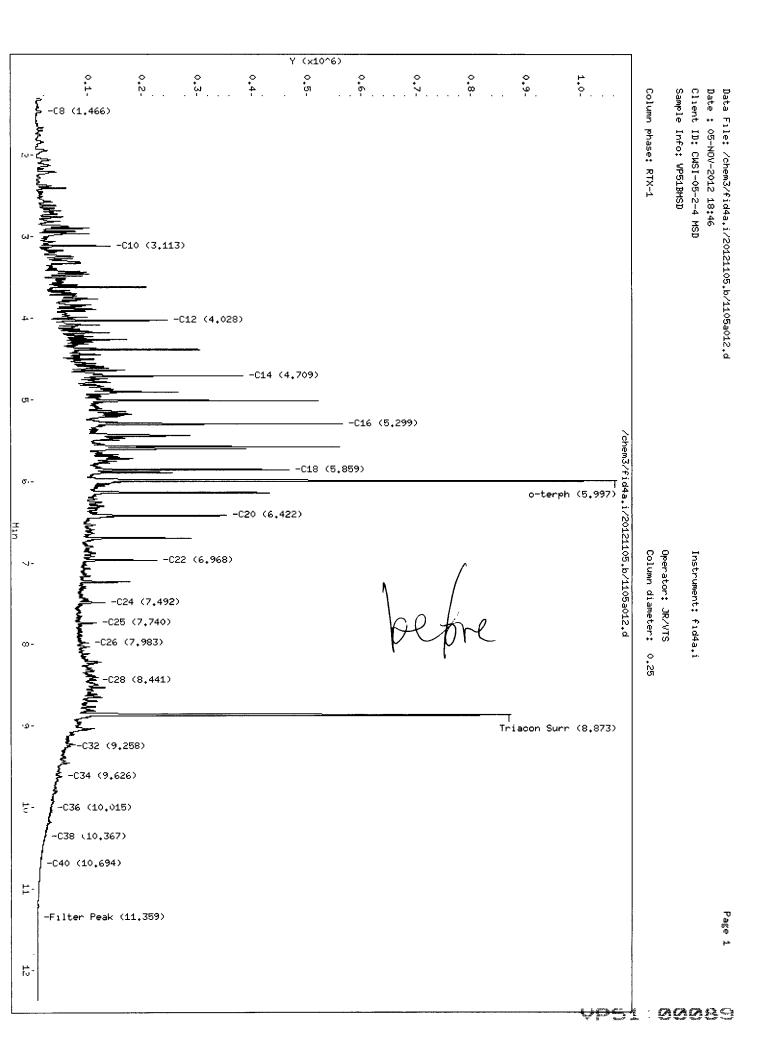
Method: /chem3/fid4a.i/20121105.b/ftphfid4a.m Client ID: CWSI-05-2-4 MSD Instrument: fid4a.i Injection: 05-NOV-2012 18:46

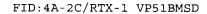
Operator: JR/VTS

Report Date: 11/07/2012 Dilution Factor: 1

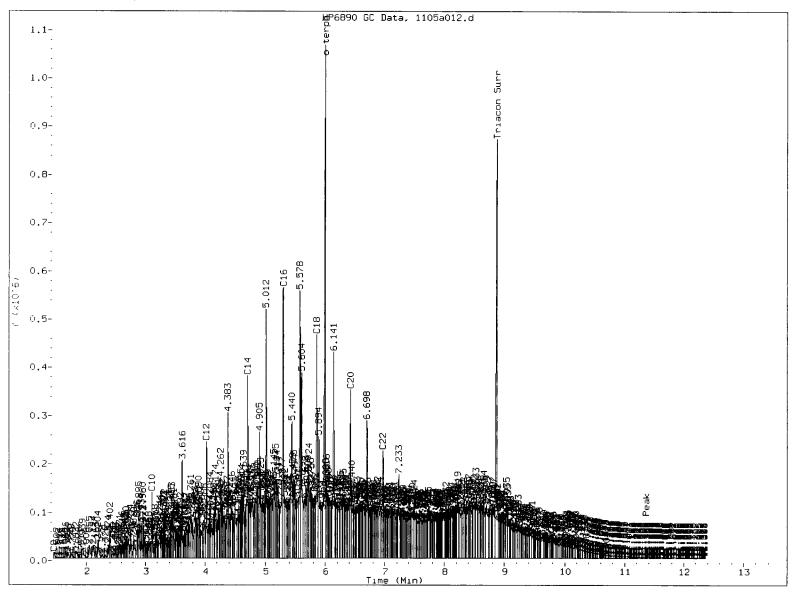
Macro: 01-NOV-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:01-NOV-2012 M.Oil:09-OCT-2012


FID:4A RESULTS


Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
Toluene	1.224	0.002	33056	27442	WATPHG	(Tol-C12)	4363940	235.66
C8	1.466	0.001	11524	15770	WATPHD	(C12-C24)	23110875	<u>1587.94</u>
C10	3.113	-0.001	136086	97223	WATPHM	(C24-C38)	10601986	806.28
C12	4.028	0.000	241099	213283	AK102	(C10-C25)	26865403	1566.59
C14	4.709	-0.001	378545	258977	AK103	(C25-C36)	9456306	1027.63
C16	5.299	0.000	560978	477831				
C18	5.859	0.001	462274	486959				
C20	6.422	0.001	349267	324360	JET-A	(C10-C18)	16330301	3014.92
C22	6.968	-0.002	222263	215777				
C24	7.492	-0.001	125582	197965				
C25	7.740	-0.004	110719	132167				
C26	7.983	-0.002	95769	221026				
C28	8.441	-0.002	110398	170873				
C32	9.258	-0.002	63037	109250				
C34	9.626	-0.013	46739	112820	-			
Filter Peak	11.359	-0.003	2245	1281	CREOSOT	(C12-C22)	20407058	10142.02 M
C36	10.015	0.011	26230	14432				
C38	10.367	0.007	15477	15266				
C40	10.694	-0.013	7198	10398				
o-terph	5.997	0.002	923852	723448				
Triacon Surr	8.873	-0.004	780012	740186	NAS DIES	(C10-C24)	26125891	1527.12
	======		=======		=======	========	==========	

Range Times: NW Diesel(4.028 - 7.493) AK102(3.11 - 7.74) Jet A(3.11 - 5.86) NW M.Oil(7.49 - 10.36) AK103(7.74 - 10.00) OR Diesel(3.11 - 8.44)


Surrogate	Area	Amount	%Rec
o-Terphenyl	723448	37.6	83.5 M
Triacontane	740186	39.2	87.2 M

Analyte	RF	Curve Date
o-Terph Surr	19248.4	01-NOV-2012
Triacon Surr	18864.5	09-OCT-2012
Gas	18517.9	28-SEP-2012
Diesel	14554.0	01-NOV-2012
Motor Oil	13149.3	09-OCT-2012
AK102	17149.0	01-NOV-2012
AK103	9202.1	25-SEP-2012
JetA	5416.5	11-AUG-2012
NAS Diesel	17108.0	01-NOV-2012
Creosote	2012.1	01-NOV-2011

FID: 4A SIGNAL

MANUAL INTEGRATION

1. Baseline correction

3. Peak not found
5. Skimmed surrogate

Analyst:

Date / 07/12

ORGANICS ANALYSIS DATA SHEET
NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Lab Sample ID: LCS-110212

LIMS ID: 12-21315

Matrix: Soil

Data Release Authorized: >

Reported: 11/07/12

Date Extracted: 11/02/12
Date Analyzed: 11/05/12 17:19
Instrument/Analyst: FID/JGR

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Sample ID: LCS-110212

LAB CONTROL

Date Sampled: 10/26/12 Date Received: 10/27/12

Sample Amount: 10.0 g Final Extract Volume: 1.0 mL Dilution Factor: 1.0

Range	Lab Control	Spike Added	Recovery
Diesel	126	150	84.0%

o-Terphenyl 95.7%

Results reported in mg/kg

Analytical Resources Inc. TPH Quantitation Report

ARI ID: VP51LCSS1

Client ID: VP51LCSS1

Injection: 05-NOV-2012 17:19

Data file: /chem3/fid4a.i/20121105.b/1105a008.d

Method: /chem3/fid4a.i/20121105.b/ftphfid4a.m

Instrument: fid4a.i
Operator: JR/VTS

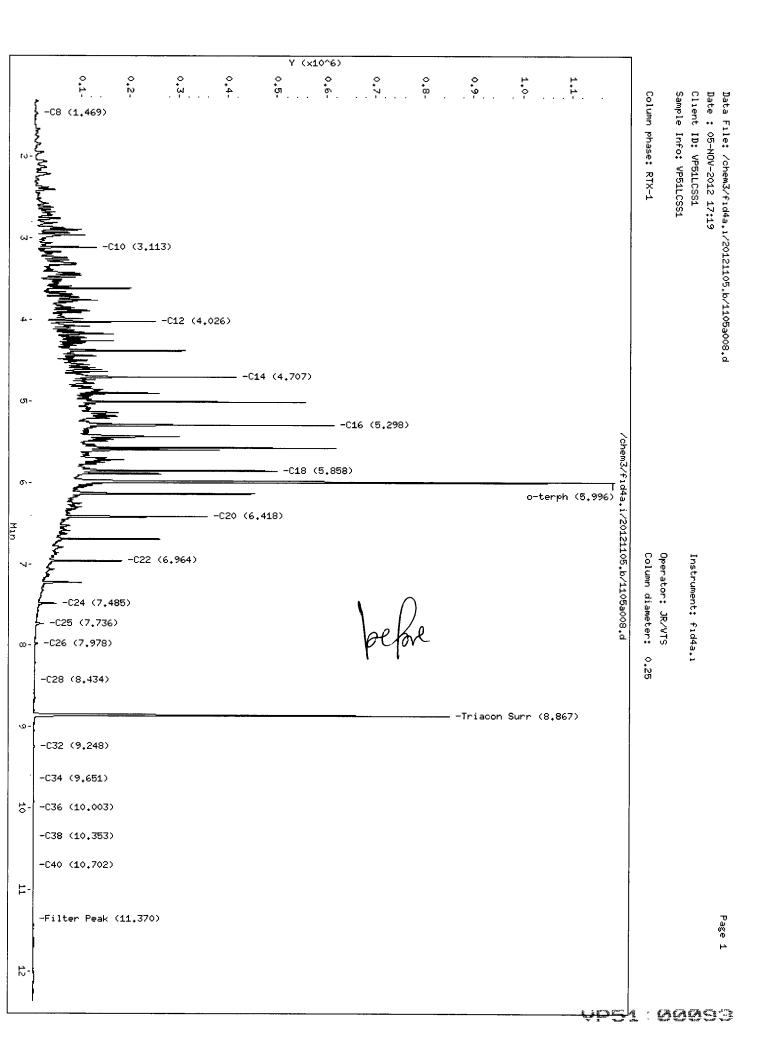
Report Date: 11/07/2012 Dilution Factor: 1

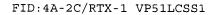
Macro: 01-NOV-2012

Calibration Dates: Gas:28-SEP-2012 Diesel:01-NOV-2012 M.Oil:09-OCT-2012

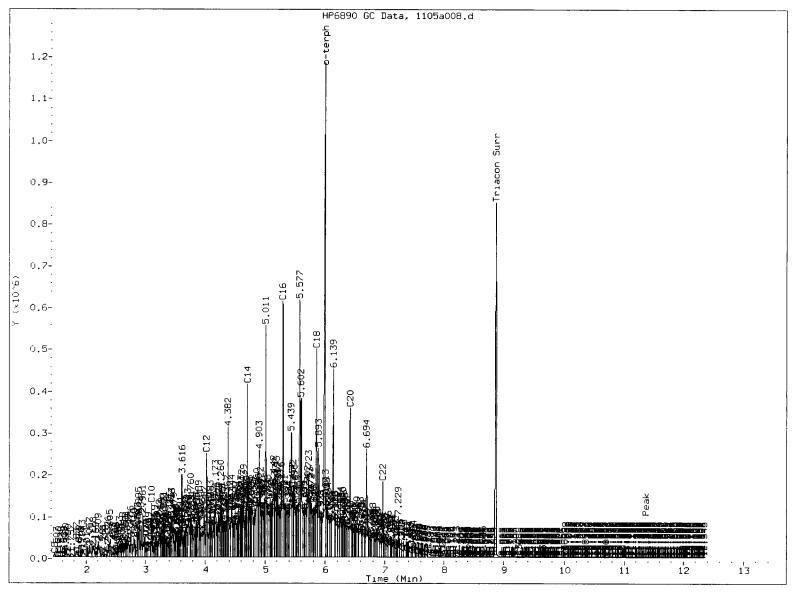
FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc
========	=======	=======	========	========	=======	=========	==========	=====
Toluene	1.233	0.011	6426	8264	WATPHG	(Tol-C12)	4274364	230.82
C8	1.469	0.005	5533	8356	WATPHD	(C12-C24)	18376839	1262.67
C10	3.113	-0.001	125967	91815	WATPHM	(C24-C38)	251662	19.14
C12	4.026	-0.002	247487	208219	AK102	(C10-C25)	21441676	1250.32
C14	4.707	-0.003	412149	266689	AK103	(C25-C36)	187150	20.34
C16	5.298	0.000	611211	503927				
C18	5.858	0.000	496357	477063				
C20	6.418	-0.002	355971	395111	JET-A	(C10-C18)	15858403	2927.80
C22	6.964	-0.006	180009	157387				
C24	7.485	-0.007	45059	46176				
C25	7.736	-0.008	19364	28026	1			
C26	7.978	-0.007	8069	13233				
C28	8.434	-0.008	2503	2444	1			
C32	9.248	-0.011	1737	3313	1			
C34	9.651	0.012	407	249				
Filter Peak	11.370	0.008	954	757	CREOSOT	(C12-C22)	17728047	8810.59 M
C36	10.003	-0.001	456	424				
C38	10.353	-0.006	513	313				
C40	10.702	-0.005	855	1946	1			
o-terph	5.996	0.001	1066569	829116	İ			
Triacon Surr	8.867	-0.009	848067	822440	NAS DIES	(C10-C24)	21387863	1250.17


Range Times: NW Diesel(4.028 - 7.493) AK102(3.11 - 7.74) Jet A(3.11 - 5.86) NW M.Oil(7.49 - 10.36) AK103(7.74 - 10.00) OR Diesel(3.11 - 8.44)


Surrogate	Area	Amount	%Rec
o-Terphenyl	829116	43.1	95.7 M
Triacontane	822440	43.6	96.9

M Indicates the peak was manually integrated


Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JetA NAS Diesel Creosote	19248.4 18864.5 18517.9 14554.0 13149.3 17149.0 9202.1 5416.5 17108.0 2012.1	01-NOV-2012 09-OCT-2012 28-SEP-2012 01-NOV-2012 09-OCT-2012 01-NOV-2012 25-SEP-2012 11-AUG-2012 01-NOV-2011
CICOBOCC	2012.1	OI NOV ZOII

11/06/12 M1/07/11

FID:4A SIGNAL

MANUAL INTEGRATION

1. Baseline correction
3 Peak not found
5. Skimmed surrogate

Analyst: ___

Date: 1/07/N

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: VP51
Project: Central Waterfront Shoreline Inves. Matrix: Soil

Date Received: 10/27/12

ARI ID	Client ID	Client Amt	Final Vol	Basis	Prep Date
	OTICHE ID	71111.0	*01	Dasis	Dace
12-21314-VP51A	CWSI-07-2-4	8.29 g	1.00 mL	D	11/02/12
12-21315-110212MB1	Method Blank	10.0 g	1.00 mL	_	11/02/12
12-21315-110212LCS1	Lab Control	10.0 g	1.00 mL	-	11/02/12
12-21315-VP51B	CWSI-05-2-4	8.81 g	1.00 mL	D	11/02/12
12-21315-VP51BMS	CWSI-05-2-4	8.78 g	1.00 mL	D	11/02/12
12-21315-VP51BMSD	CWSI-05-2-4	8.49 g	1.00 mL	D	11/02/12
12-21316-VP51C	CWSI-05-7-9	8.42 g	1.00 mL	D	11/02/12
12-21317-VP51D	CWSI-05-12-14	8.63 g	1.00 mL	D	11/02/12
12-21318-VP51E	CWSI-06-8-10	6.59 q	1.00 mL	D	11/02/12
12-21319-VP51F	CWSI-06-12-14	9.06 a	1.00 mL	D	11/02/12

4 TPH METHOD BLANK SUMMARY

VP51MBS1

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA

SDG No.: VP51 Project No.: CENTRAL WATERFRONT

Date Extracted: 11/02/12 Matrix: SOLID

Time Analyzed: 1658

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
	==========	=== == =======	=======
01	VP51LCSS1	VP51LCSS1	11/05/12
02	CWSI-07-2-4	VP51A	11/05/12
03	CWSI-05-2-4	VP51B	11/05/12
04	CWSI-05-2-4	VP51BMS	11/05/12
05	CWSI-05-2-4	VP51BMSD	11/05/12
06	CWSI-05-7-9	VP51C	11/05/12
07	CWSI-05-12-1	VP51D	11/05/12
08	CWSI-06-8-10	VP51E	11/05/12
09	CWSI-06-12-1	VP51F	11/05/12
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22 23			
23 24			
25			
26	^		
20			

page 1 of 1

FORM IV TPH

uped annec

6a DIESEL INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA

Instrument: FID4A.I Project: CENTRAL WATERFRONT

Calibration Date: 01-NOV-2012 SDG No.: VP51

Diesel Range	RF1 50	RF2 100	RF3 250	RF4 500	RF5 1000	RF6 2500	Ave RF	₹RSD
WA Diesel AK Diesel OR Diesel Cal Diesel	14835 17417 17505 17377	14667 17332 17411 17286	14497 17061 17139 17020	14275 16807 16890 16768	14357 16947 17028 16913	14695 17333 17414 17284	14554 17149 17231 17108	1.5 1.4 1.4 1.4
o-Terph	18978	19305	19172	19105	19228	19702	19248	1.3

<- Indicates %RSD outside limits Surrogate areas are not included in Diesel RF calculation.

Quant Ranges :

WA Diesel C12-C24 (4.030-7.497)
AK Diesel C10-C25 (3.115-7.747)
OR Diesel C10-C28 (3.115-8.446)
Cal Diesel C10-C24 (3.115-7.497)

Calibration Files	es Analysis Time			
1101a004.d	01-NOV-2012	10:56		
1101a005.d	01-NOV-2012			
1101a006.d	01-NOV-2012	11:41		
1101a007.d	01-NOV-2012	12:03		
1101a008.d	01-NOV-2012	12:25		
1101a009 d	01-NOV-2012	12.47		

6a DIESEL INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA

Instrument: FID4A.I Project: CENTRAL WATERFRONT

Calibration Date: 09-OCT-2012 SDG No.: VP51

Diesel Range	RF1 50	RF2 100	RF3 250	RF4 500	RF5 1000	RF6 2500	Ave RF	%RSD
WA Diesel AK Diesel OR Diesel Cal Diesel	14743 17121 17380 17073	14970 17406 17516 17357	15029 17777 17857 17737	15131 17971 18051 17938	15112 17971 18057 17925	14318 17038 17112 16999	14884 17547 17662 17505	2.1 2.4 2.2 2.4
o-Terph	17312	18709	19255	19961	19309	18483	18838	4.8

<- Indicates %RSD outside limits
Surrogate areas are not included in Diesel RF calculation.</pre>

Quant Ranges: WA Diesel C12-C24 (4.074-7.548)

AK Diesel C10-C25 (3.170-7.798)
OR Diesel C10-C28 (3.170-8.498)
Cal Diesel C10-C24 (3.170-7.548)

Calibration Files Analysis Time

_			
	1009a020.d	09-OCT-2012	18:27
	1009a021.d	09-OCT-2012	18:49
	1009a022.d	09-OCT-2012	19:10
	1009a023.d	09-OCT-2012	19:31
	1009a024.d	09-OCT-2012	19:52
	1009a025.d	09-OCT-2012	20:13

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA

ICal Date: 01-NOV-2012 Project: CENTRAL WATERFRONT

CCal Date: 05-NOV-2012 SDG No.: VP51

Analysis Time: 15:50 Lab ID: DIESEL#1

Instrument: FID4A.I Lab File Name: 1105a004.d

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24)	3430223	235.7	250	-5.7
AK102 (C10-C25)	4020077	234.4	250	-6.2
NASDies(C10-C24)	4011286	234.5	250	-6.2
Terphenyl	805875	41.9	45	-7.0

^{*} Surrogate areas are subtracted from range areas <- Indicates a %D outside QC limits

p1 of 1

FORM VII-Diesel

00000

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA

ICal Date: 09-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 05-NOV-2012 SDG No.: VP51

Analysis Time: 16:12 Lab ID: MOIL#1

Instrument: FID4A.I Lab File Name: 1105a005.d

M.oil Range	Area*	CalcAmnt	NomAmnt	% D
WAMoil(C24-C38)	6003702	456.6	500	-8.7
AK103 (C25-C36)	5275774	573.3	500	14.7
OR MOIL(C28-C40)	4553195	602.9	500	20.6
CRUDE(Tol-C40)	6960264	921.6	500	84.3
n-Triacontane	811913	43.0	45	-4.4

^{*} Surrogate areas are subtracted from range areas

<- Indicates a %D outside QC limits

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA

ICal Date: 01-NOV-2012 Project: CENTRAL WATERFRONT

CCal Date: 05-NOV-2012 SDG No.: VP51

Analysis Time: 20:33 Lab ID: DIESEL#2

Instrument: FID4A.I Lab File Name: 1105a017.d

Diesel Range Area*		CalcAmnt	NomAmnt	% D	
WADies(C12-C24)	3489930	239.8	250	-4.1	
AK102 (C10-C25)	4093014	238.7	250	-4.5	
NASDies(C10-C24)	4082224	238.6	250	-4.6	
Terphenyl	827702	43.0	45	-4.4	

^{*} Surrogate areas are subtracted from range areas

<- Indicates a %D outside QC limits

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA

ICal Date: 09-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 05-NOV-2012 SDG No.: VP51

Analysis Time: 20:55 Lab ID: MOIL#2

Instrument: FID4A.I Lab File Name: 1105a018.d

M.oil Range Area*		CalcAmnt	NomAmnt	% D	
WAMoil(C24-C38) AK103 (C25-C36) OR MOIL(C28-C40) CRUDE(Tol-C40) n-Triacontane	6277257	477.4	500	-4.5	
	5529176	600.9	500	20.2	
	4763898	630.7	500	26.1	
	7277668	963.6	500	92.7	
	855681	45.4	45	0.8	

^{*} Surrogate areas are subtracted from range areas

<- Indicates a %D outside QC limits

DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA

ICal Date: 01-NOV-2012 Project: CENTRAL WATERFRONT

CCal Date: 06-NOV-2012 SDG No.: VP51

Analysis Time: 12:13 Lab ID: DIESEL#1

Instrument: FID4A.I Lab File Name: 1106a004.d

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24)	3206474	220.3	250	-11.9
AK102 (C10-C25)	3759438	219.2	250	-12.3
NASDies(C10-C24)	3750088	219.2	250	-12.3
Terphenyl	749099	38.9	45	-13.5

Surrogate areas are subtracted from range areas Indicates a %D outside QC limits

p1 of 1

FORM VII-Diesel

1904 00103

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA

ICal Date: 09-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 06-NOV-2012 SDG No.: VP51

Analysis Time: 12:35 Lab ID: MOIL#1

Instrument: FID4A.I Lab File Name: 1106a005.d

M.oil Range	M.oil Range Area*		NomAmnt	% D
WAMoil(C24-C38)	5992486	455.7	500	-8.9
AK103 (C25-C36)	5309098	576.9	500	15.4
OR MOIL(C28-C40)	4481214	593.3	500	18.7
CRUDE(Tol-C40)	6949182	920.1	500	84.0
n-Triacontane	819157	43.4	45	-3.5

^{*} Surrogate areas are subtracted from range areas

<- Indicates a %D outside QC limits

DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA

ICal Date: 01-NOV-2012 Project: CENTRAL WATERFRONT

CCal Date: 06-NOV-2012 SDG No.: VP51

Analysis Time: 13:42 Lab ID: DIESEL#2

Instrument: FID4A.I Lab File Name: 1106a008.d

Diesel Range Area*		CalcAmnt	NomAmnt	% D	
WADies(C12-C24) AK102 (C10-C25) NASDies(C10-C24) Terphenyl	3295884 3828006 3817746 742617	226.5 223.2 223.2 38.6	250 250 250 250 45	-9.4 -10.7 -10.7 -14.3	

Surrogate areas are subtracted from range areas Indicates a %D outside QC limits

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA

ICal Date: 09-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 06-NOV-2012 SDG No.: VP51

Analysis Time: 14:05 Lab ID: MOIL#2

Instrument: FID4A.I Lab File Name: 1106a009.d

M.oil Range	Range Area*		NomAmnt	% D	
WAMoil(C24-C38) AK103 (C25-C36) OR MOIL(C28-C40) CRUDE(Tol-C40) n-Triacontane	5902048 5241246 4416184 6872211 821851	448.8 569.6 584.7 909.9 43.6	500 500 500 500 45	-10.2 13.9 16.9 82.0	

^{*} Surrogate areas are subtracted from range areas

<- Indicates a %D outside QC limits

TPH ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA

SDG No.: VP51 Project: CENTRAL WATERFRONT

Instrument ID: FID4A GC Column: RTX-1

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE F TERPH: 6.0	 				
	CLIENT	LAB	DATE	TIME	TERPH	TRIAC
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01	======= RT	RT	11/05/12	1506		=======
02	IB	IB	11/05/12 11/05/12	1506	6.00	8.88
03	DIESEL#1	DIESEL#1	11/05/12	1528 1550	5.99 5.99	8.87
04	MOIL#1	MOIL#1	11/05/12	1612	5.99	8.86 8.87
05	ZZZZZ	ZZZZZ	11/05/12	1636	6.00	8.87
06	VP51MBS1	VP51MBS1	11/05/12	1658	5.99	8.87
07	VP51LCSS1	VP51LCSS1	11/05/12	1719	6.00	8.87
08	CWSI-07-2-4	VP51A	11/05/12	1741	6.00	8.87
09	CWSI-05-2-4	VP51B	11/05/12	1802	5.99	8.87
10	CWSI-05-2-4	VP51BMS	11/05/12	1824	5.99	8.87
11	CWSI-05-2-4	VP51BMSD	11/05/12	1846	6.00	8.87
12	CWSI-05-7-9	VP51C	11/05/12	1907	6.00	8.88
13	CWSI-05-12-1	VP51D	11/05/12	1929	6.01	8.90
14	CWSI-06-8-10	VP51E	11/05/12	1950	6.01	8.89
15	CWSI-06-12-1	VP51F	11/05/12	2012	6.00	8.88
16	DIESEL#2	DIESEL#2	11/05/12	2033	5.99	8.89
17	MOIL#2	MOIL#2	11/05/12	2055	5.99	8.87
18	RT	RT	11/06/12	1129	6.00	8.88
19	IB	IB	11/06/12	1151	6.00	8.87
20	DIESEL#1	DIESEL#1	11/06/12	1213	5.99	8.86
21	MOIL#1	MOIL#1	11/06/12	1235	5.99	8.87
22	CWSI-05-12-1		11/06/12	1258	5.99	8.89
23	CWSI-06-8-10		11/06/12	1320	5.99	8.87
24	DIESEL#2	DIESEL#2	11/06/12	1342	6.00	8.86
25	MOIL#2	MOIL#2	11/06/12	1405	5.99	8.87

 $\begin{array}{lll} & & & & & & & & \\ \text{TERPH} = \text{o-terph} & & & & & \\ \text{TRIAC} = \text{Triacon Surr} & & & & & \\ & & & & & & \\ \end{array}$

page 1 of 1

FORM VIII TPH

^{*} Values outside of QC limits.

TPHG Analysis Report and Summary QC Forms

ARI Job ID: VP51

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Matrix: Soil

Data Release Authorized: //S Reported: 11/07/12

QC Report No: VP51-Anchor QEA LLC Project: Central Waterfront Shoreline Inves.

Event: NA
Date Sampled: 10/26/12
Date Received: 10/27/12

ARI ID	Client ID	Analysis Date	Basis	Range	Result
MB-103112 12-21314	Method Blank	10/31/12 PID2	Dry	Gasoline HC ID	< 5.0 U
10 21011		1152		Trifluorotoluene Bromobenzene	97.5% 96.7%
VP51A 12-21314	CWSI-07-2-4	10/31/12 PID2	Dry	Gasoline HC ID	< 7.3 U
12 21011		1152		Trifluorotoluene Bromobenzene	91.6% 93.5%
VP51B 12-21315	CWSI-05-2-4	10/31/12 PID2	Dry	Gasoline HC ID Trifluorotoluene Bromobenzene	24 GRO 98.4% 98.7%
VP51C 12-21316	CWSI-05-7-9	10/31/12 PID2	Dry	Gasoline HC ID Trifluorotoluene Bromobenzene	< 7.6 U 96.1% 97.3%
VP51D 12-21317	CWSI-05-12-14	10/31/12 PID2	Dry	Gasoline HC ID Trifluorotoluene Bromobenzene	160 GRO 104% 99.4%
VP51E 12-21318	CWSI-06-8-10	10/31/12 PID2	Dry	Gasoline HC ID Trifluorotoluene Bromobenzene	1300 GRO 96.3% 80.2%
VP51F 12-21319	CWSI-06-12-14	10/31/12 PID2	Dry	Gasoline HC ID Trifluorotoluene Bromobenzene	62 GRO 96.2% 100%

N--1----

Gasoline values reported in mg/kg (ppm)

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

FORM I UDEA AGAMA

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Matrix: Water

Data Release Authorized:

Reported: 11/07/12

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Event: NA

Date Sampled: 10/26/12 Date Received: 10/27/12

ARI ID	Client ID	Analysis Date	DL	Range	Result
VP51K 12-21324	CWSI-TB-02	10/31/12 PID2	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 0.25 U 98.8% 95.7%

Gasoline values reported in mg/L (ppm)

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid2.i/103112-1.b/1031a006.d Data file 2: /chem3/pid2.i/103112-2.b/1031a006.d

Method: /chem3/pid2.i/103112-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012 BETX Ical Date: 20-OCT-2012 ARI ID: MB1031 Client ID:

Injection Date: 31-OCT-2012 12:03

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound	
7.203	-0.003	3614	46537	97.5	TFT (Surr)	
14.803	-0.005	2009	20957	96.7	BB (Surr)	

PETROLEUM HYDROCARBONS (FID)

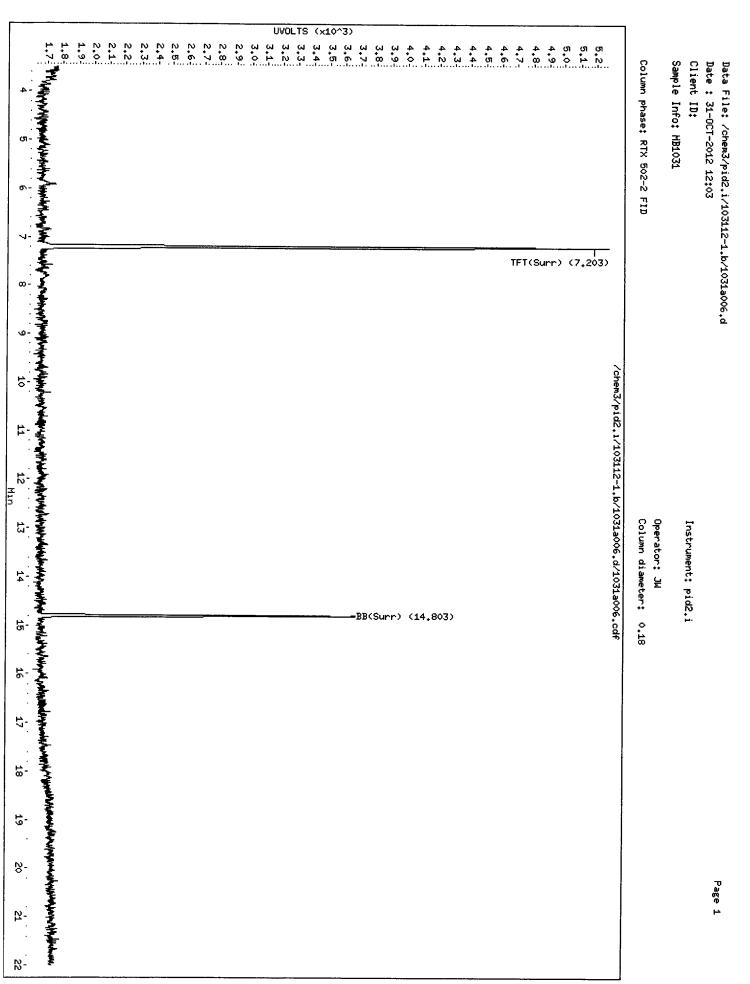
Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.07 to 17.58)	391690	1	0.000
8015C	2MP-TMB	(3.74 to 15.74)	825102	1	0.000
AK101	nC6-nC10	(4.19 to 14.47)	660003	0	0.000
NWTPHG	Tol-Nap	(9.07 to 18.59)	406475	1	0.000 /

M Indicates manual integration within range

Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

range marker ki's are set by daily ki standard

JW 11/12


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
7.228	-0.004	13215	92.6	TFT(Surr)
14.821	-0.005	18200	90.3	BB(Surr)

SW8021B (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTRE

A Indicates Peak Area was used for quantitation instead of Height

N Indicates peak was manually integrated

Analytical Resources Inc. BETX/Gas Quantitation Report

16 11/7/m

Data file 1: /chem3/pid2.i/103112-1.b/1031a013.d

Data file 2: /chem3/pid2.i/103112-2.b/1031a013.d

Method: /chem3/pid2.i/103112-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012 BETX Ical Date: 20-OCT-2012 ARI ID: VP51A

Client ID: CWSI-07-2-4

Injection Date: 31-OCT-2012 15:20

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

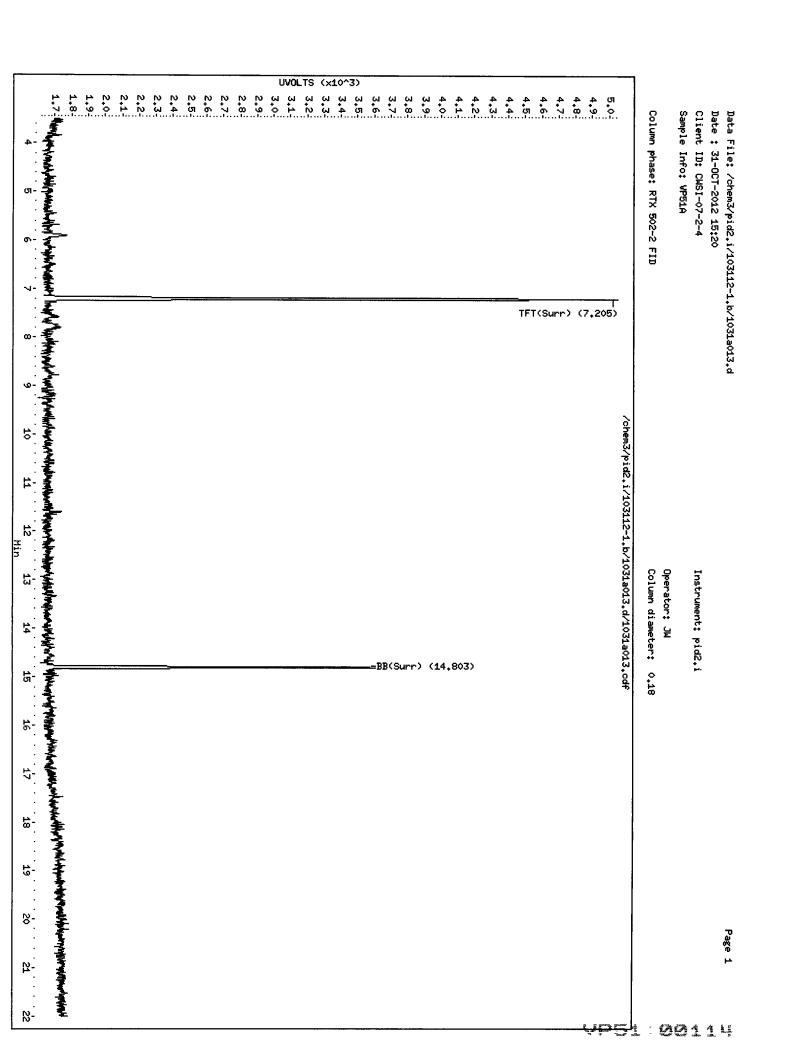
RT	Shift	Height	Area	%Rec	Compound
7.205	-0.001	3393	43490	91.6	TFT(Surr)
14.803	-0.005	1943	18859	93.5	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.07 to 17.58)	391690	0	0.000
8015C	2MP-TMB	(3.74 to 15.74)	825102	0	0.000
AK101	nC6-nC10	(4.19 to 14.47)	660003	0	0.000
NWTPHG	Tol-Nap	(9.07 to 18.59)	406475	0	0.000

- M Indicates manual integration within range
- * Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

RT	Shift	PID Surrogate Response	%Rec	Compound
7.231	-0.001	12704	89.0	TFT(Surr)
14.821	-0.004	17407	86.4	BB (Surr)


SW8021B (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

UD51:00113

KC.

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid2.i/103112-1.b/1031a014.d

Data file 2: /chem3/pid2.i/103112-2.b/1031a014.d

Method: /chem3/pid2.i/103112-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012 BETX Ical Date: 20-OCT-2012 ARI ID: VP51B

Client ID: CWSI-05-2-4

Injection Date: 31-OCT-2012 15:48

Matrix: SOIL

Dilution Factor: 1.000

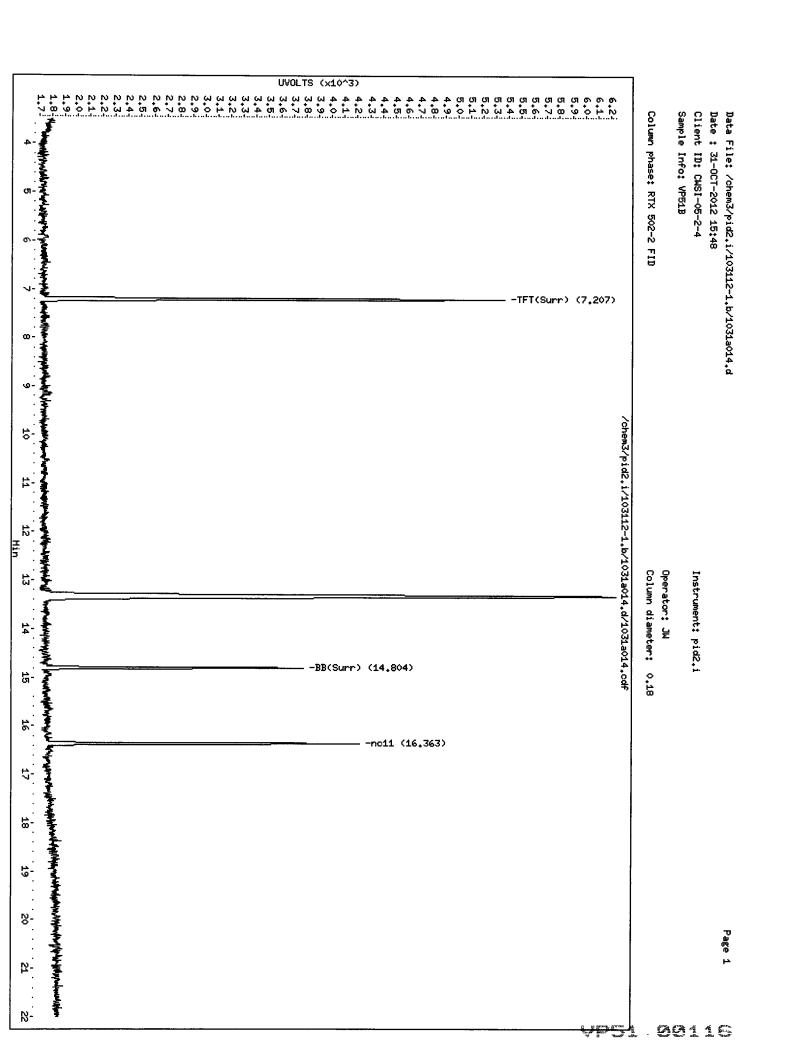
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
7.207	0.000	3648	45608	98.4	TFT(Surr)
14.804	-0.004	2050	21186	98.7	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG		(9.07 to 17.58)	391690	119668	0.306
8015C		(3.74 to 15.74)	825102	94318	0.114
AK101		(4.19 to 14.47)	660003	94317	0.143
NWTPHG		(9.07 to 18.59)	406475	119668	0.294 GRS

- M Indicates manual integration within range
- Surrogate areas are subtracted from Total Area
 Range marker RT's are set by daily RT standard



RT	Shift	Response	%Rec	Compound
7.231	0.000	13477	94.4	TFT(Surr)
14.822	-0.004	18953	94.1	BB(Surr)

SW8021B (PID)

RT	Shift	Response	Amount	Compound
ND		 -		Benzene
9.186	-0.005	174	0.28	Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

MC litylin

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid2.i/103112-1.b/1031a015.d

Data file 2: /chem3/pid2.i/103112-2.b/1031a015.d

Method: /chem3/pid2.i/103112-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012

BETX Ical Date: 20-OCT-2012

ARI ID: VP51C

Client ID: CWSI-05-7-9

Injection Date: 31-OCT-2012 16:16

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

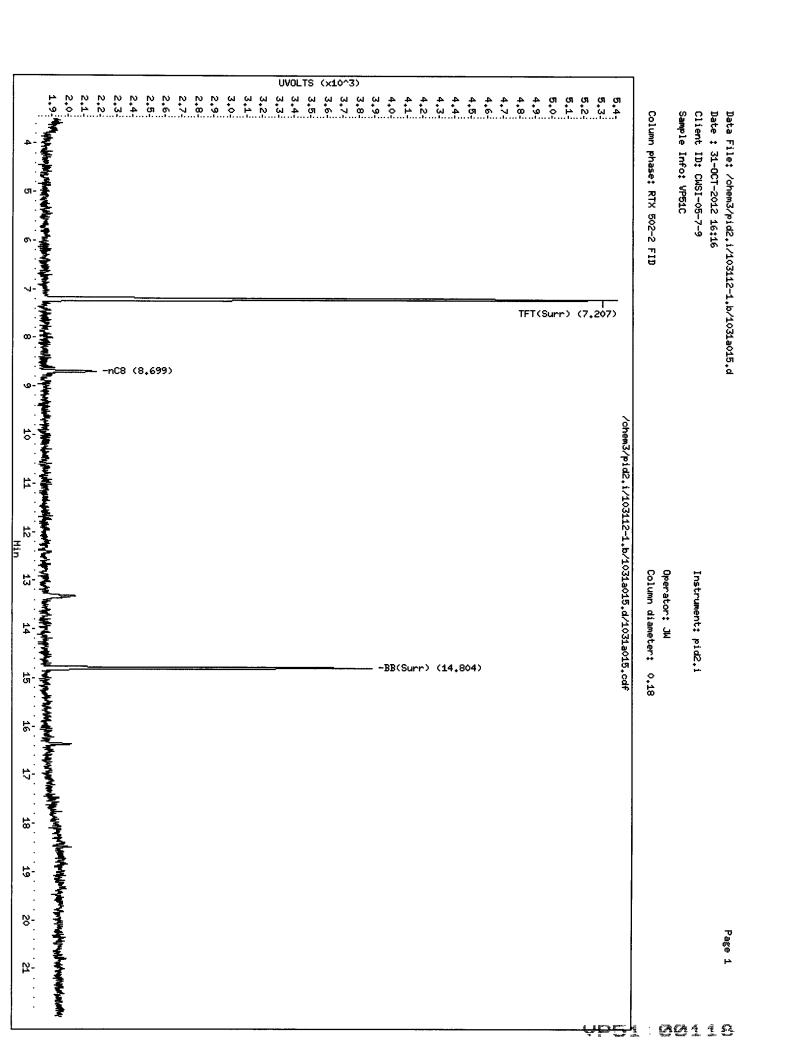
RT	Shift	Height	Area	%Rec	Compound
7.207	0.000	3561	44535	96.1	TFT(Surr)
14.804	-0.004	2021	20965	97.3	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.07 to 17.58)	391690	4994	0.013
8015C	2MP-TMB	(3.74 to 15.74)	825102	10684	0.013
AK101	nC6-nC10	(4.19 to 14.47)	660003	10684	0.016
NWTPHG	Tol-Nap	(9.07 to 18.59)	406475	4994	0.012

M Indicates manual integration within range

Surrogate areas are subtracted from Total Area
 Range marker RT's are set by daily RT standard



PID Surrogates						
RT	Shift	Response	%Rec	Compound		
7.231	0.000	13400	93.9	TFT (Surr)		
14.822	-0.004	18373	91.2	BB(Surr)		

SW8021B (PID)

RT	Shift	Response	Amount	Compound
		-		
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

Analytical Resources Inc. BETX/Gas Quantitation Report

While

Data file 1: /chem3/pid2.i/103112-1.b/1031a016.d

Data file 2: /chem3/pid2.i/103112-2.b/1031a016.d

Method: /chem3/pid2.i/103112-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012 BETX Ical Date: 20-OCT-2012 ARI ID: VP51D

Client ID: CWSI-05-12-14

Injection Date: 31-OCT-2012 16:44

Matrix: SOIL

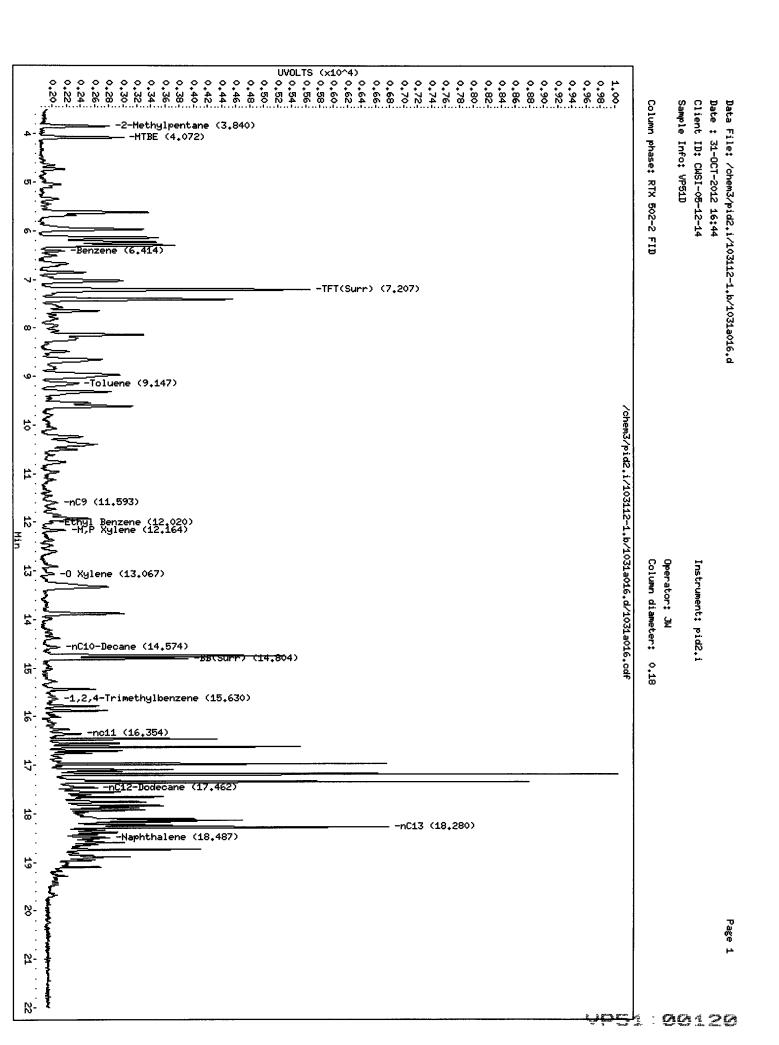
Dilution Factor: 1.000

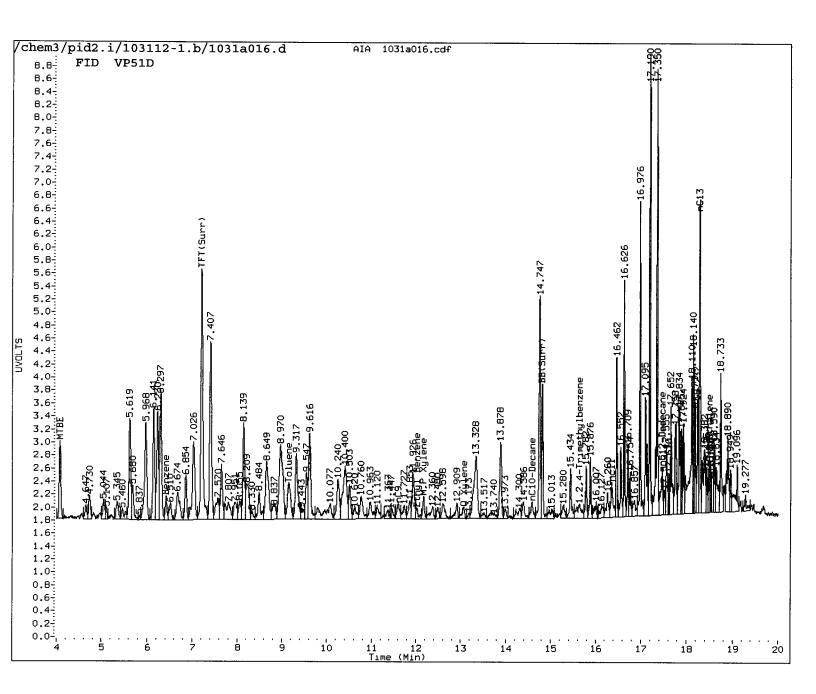
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
7.207	0.000	3853	61383	104.0	TFT(Surr)
14.804	-0.004	2065	22312	99.4	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.07 to 17.58)	391690	662226	1.691 M
8015C	2MP-TMB	(3.74 to 15.74)	825102	785131	0.952 M
AK101	nC6-nC10	(4.19 to 14.47)	660003	688882	1.044 M
NWTPHG	Tol-Nap	(9.07 to 18.59)	406475	916961	1.044 M 2.256 MGR


- M Indicates manual integration within range
- Surrogate areas are subtracted from Total Area
 Range marker RT's are set by daily RT standard


		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
7.231	0.000	14218	99.6	TFT(Surr)
14.822	-0.004	20254	100.5	BB(Surr)

SW8021B (PID)

RT	Shift	Response	Amount	Compound
6.437	-0.001	2221	2.19	Benzene
9.175	-0.016	1296	2.07	Toluene
ND				Ethylbenzene
12.181	-0.009	1269	2.34	M/P-Xylene
13.081	-0.014	431	0.97	O-Xylene
4.097	-0.017	426	1.11	MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

MANUAL INTEGRATION

Baseline correction
Poor chromatography
Peak not found
Totals calculation

Analyst: 10 Date: U/7/2

Analytical Resources Inc. BETX/Gas Quantitation Report

Maly

Data file 1: /chem3/pid2.i/103112-1.b/1031a017.d

Data file 2: /chem3/pid2.i/103112-2.b/1031a017.d

Method: /chem3/pid2.i/103112-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012

BETX Ical Date: 20-OCT-2012

ARI ID: VP51E

Client ID: CWSI-06-8-10

Injection Date: 31-OCT-2012 17:12

Matrix: SOIL

Dilution Factor: 1.000

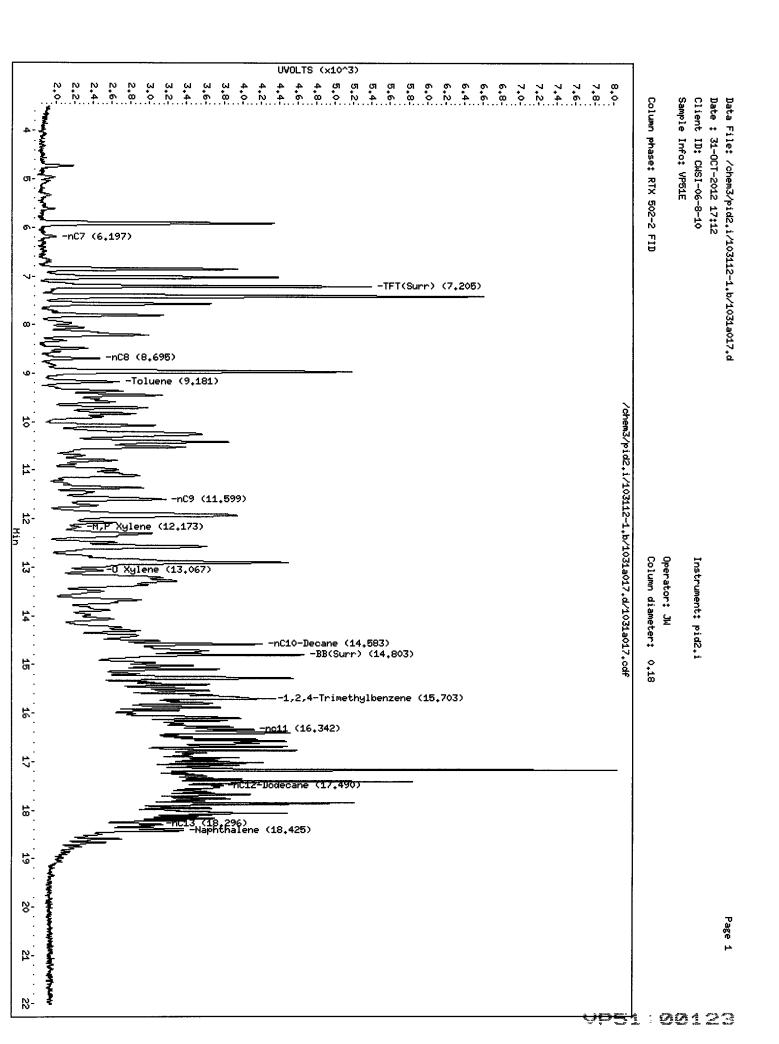
FID Surrogates

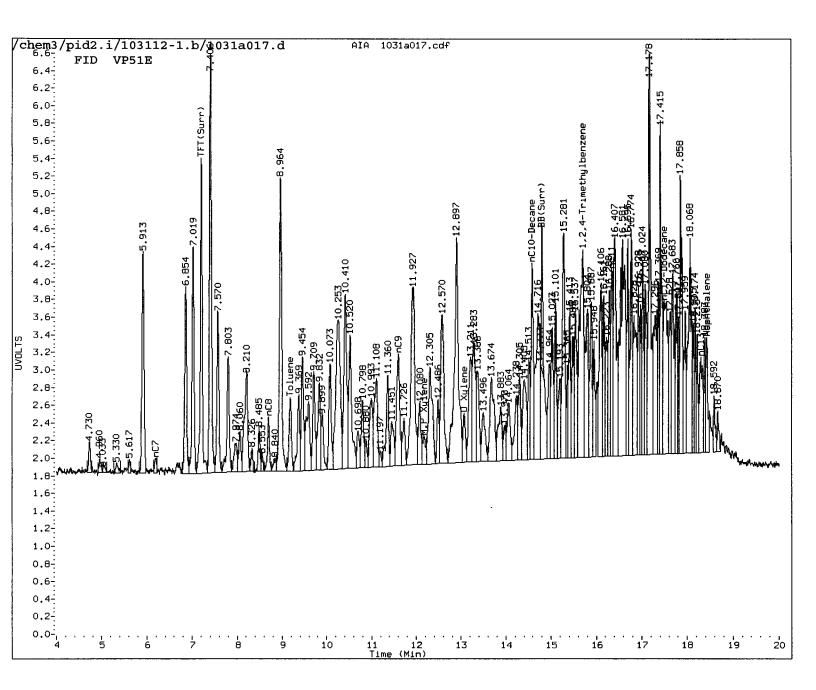
RT	Shift	Height	Area	%Rec	Compound
7.205	-0.001	3569	54509	96.3	TFT(Surr)
14.803	0.000	1666	14972	80.2	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.07 to 17.57)	391690	2301346	5.875 M
8015C	2MP-TMB	(3.74 to 15.74)	825102	1806581	2.190 M
AK101	nC6-nC10	(4.19 to 14.46)	660003	1347299	2.041 M
NWTPHG	Tol-Nap	(9.07 to 18.58)	406475	2656832	6.536 M 6/20

- M Indicates manual integration within range
- Surrogate areas are subtracted from Total Area
 Range marker RT's are set by daily RT standard




RT	Shift	Response	%Rec	Compound
7.230	-0.002	13928	97.6	TFT(Surr)
14.822	-0.003	22934	113.8	BB(Surr)

SW8021B (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
9.200	0.009	1515	2.42	Toluene
ND				Ethylbenzene
12.192	0.002	771	1.42	M/P-Xylene
13.086	-0.008	1297	2.91	O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

MANUAL INTEGRATION

Baseline correction Poor chromatography

4. Totals	calculation	
5. Other		
Analyst:	71	Date: 11/7/42

11/7/12

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid2.i/103112-1.b/1031a018.d

Data file 2: /chem3/pid2.i/103112-2.b/1031a018.d

Method: /chem3/pid2.i/103112-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012

BETX Ical Date: 20-OCT-2012

ARI ID: VP51F

Client ID: CWSI-06-12-14

Injection Date: 31-OCT-2012 17:40

Matrix: SOIL

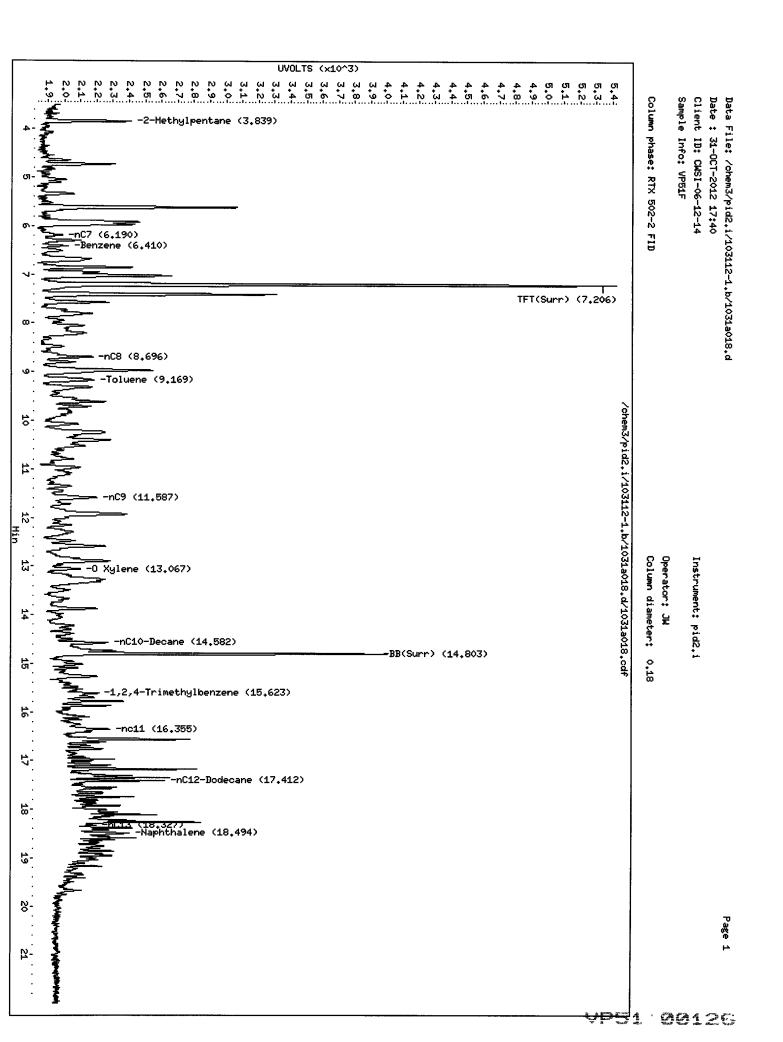
Dilution Factor: 1.000

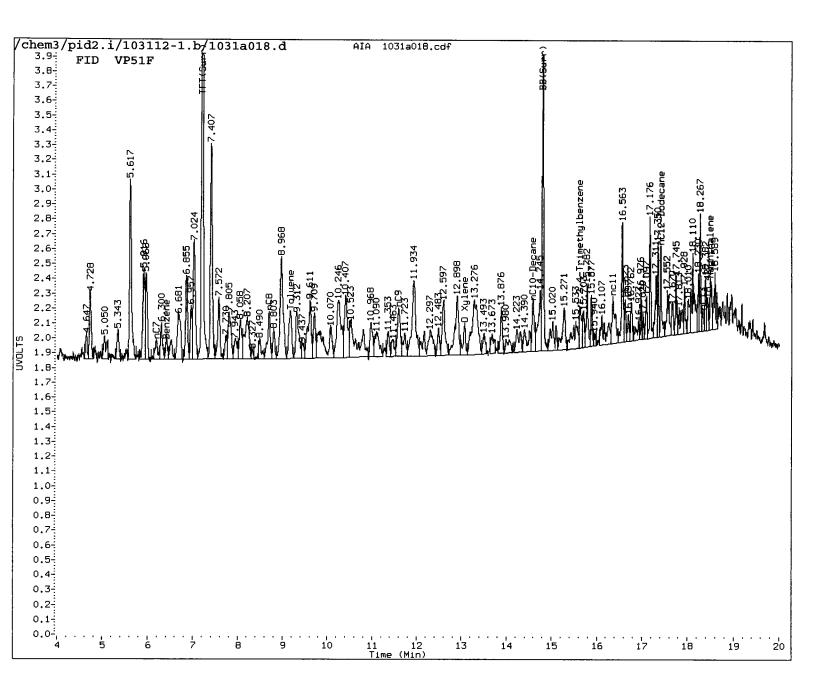
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
		- -			
7.206	-0.001	3564	49087	96.2	TFT(Surr)
14.803	-0.005	2088	23018	100.5	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG 8015C AK101 NWTPHG	2MP-TMB nC6-nC10	(9.07 to 17.58) (3.74 to 15.74) (4.19 to 14.47) (9.07 to 18.59)	391690 825102 660003 406475	335264 443861 391540 385994	0.856 M 0.538 M 0.593 M 0.950 M


- M Indicates manual integration within range
- Surrogate areas are subtracted from Total Area
 Range marker RT's are set by daily RT standard


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
7.230	-0.001	13665	95.7	TFT(Surr)
14.821	-0.005	19159	95.1	BB (Surr)

SW8021B (PID)

RT	Shift	Response	Amount	Compound
6.437	-0.001	1012	1.00	Benzene
9.187	-0.004	744	1.19	Toluene
12.023	-0.009	435	0.80	Ethylbenzene
12.180	-0.009	518	0.96	M/P-Xylene
13.080	-0.014	447	1.00	O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

MANUAL INTEGRATION

(correctio	
	2.	Poor	chro	omatograph	y
	3.)	Peak	not	found	
•	\checkmark	Total	s ca	lculation	

Analyst: Date: U/J/n

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid2.i/103112-1.b/1031a007.d

Data file 2: /chem3/pid2.i/103112-2.b/1031a007.d

Method: /chem3/pid2.i/103112-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012

BETX Ical Date: 20-OCT-2012

ARI ID: VP51K

Client ID: CWSI-TB-02

Injection Date: 31-OCT-2012 12:32

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

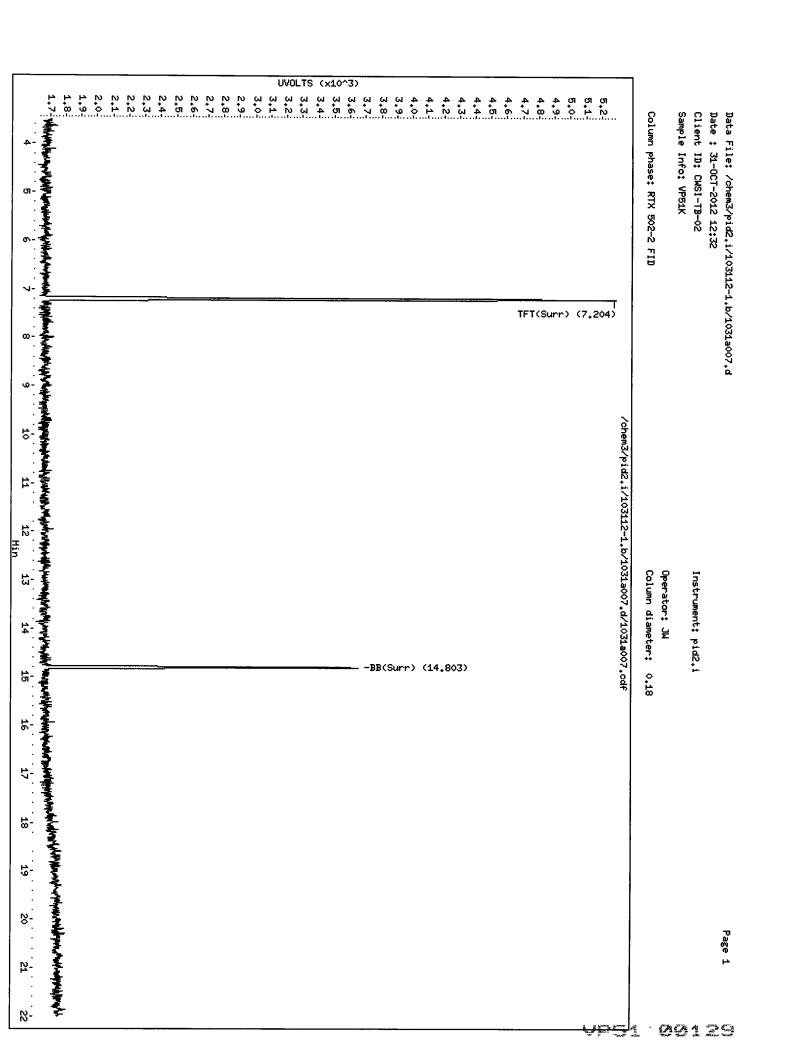
RT	Shift	Height	Area	%Rec	Compound
7.204	-0.003	3660	45506	98.8	TFT(Surr)
14.803	-0.005	1989	20476	95.7	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.07 to 17.58)	391690	0	0.000
8015C	2MP-TMB	(3.74 to 15.74)	825102	1	0.000
AK101	nC6-nC10	(4.19 to 14.47)	660003	1	0.000
NWTPHG	Tol-Nap	(9.07 to 18.59)	406475	0	0.000

M Indicates manual integration within range

Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard



RT	Shift	Response	%Rec	Compound
7.229	-0.002	13399	93.9	TFT(Surr)
14.822	-0.004	17660	87.6	BB(Surr)

SW8021B (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated

TPHG SOIL SURROGATE RECOVERY SUMMARY

ARI Job: VP51 Matrix: Soil

QC Report No: VP51-Anchor QEA LLC Project: Central Waterfront Shoreline Inves.

Event: NA

Client ID	BFB	TFT	BBZ	TOT OUT
MB-103112	NA	97.5%	96.7%	0
LCS-103112	NA	99.5%	96.8%	0
LCSD-103112	NA	98.9%	98.4%	0
CWSI-07-2-4	NA	91.6%	93.5%	0
CWSI-05-2-4	NA	98.4%	98.7%	0
CWSI-05-7-9	NA	96.1%	97.3%	0
CWSI-05-12-14	NA	104%	99.4%	0
CWSI-06-8-10	NA	96.3%	80.2%	0
CWSI-06-12-14	NA	96.2%	100%	0

LCS/MB LIMITS QC LIMITS

(TFT) = Trifluorotoluene (80-120) (65-128) (BBZ) = Bromobenzene (80-120) (52-149)

Log Number Range: 12-21314 to 12-21319

TPHG WATER SURROGATE RECOVERY SUMMARY

ARI Job: VP51 QC Report No: VP51-Anchor QEA LLC

Matrix: Water Project: Central Waterfront Shoreline Inves.

Event: NA

 Client ID
 TFT
 BBZ
 TOT OUT

 CWSI-TB-02
 98.8%
 95.7%
 0

LCS/MB LIMITS QC LIMITS

(TFT) = Trifluorotoluene (80-120) (80-120) (80-120) (80-120)

Log Number Range: 12-21324 to 12-21324

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: LCS-103112

LIMS ID: 12-21314

Matrix: Soil

Data Release Authorized:

Reported: 11/07/12

Date Analyzed LCS: 10/31/12 11:07

LCSD: 10/31/12 11:35 Instrument/Analyst LCS: PID2/JLW

LCSD: PID2/JLW

Sample ID: LCS-103112

LAB CONTROL SAMPLE

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Event: NA
Date Sampled: NA
Date Received: NA

Purge Volume: 5.0 mL

Sample Amount LCS: 100 mg-dry-wt

LCSD: 100 mg-dry-wt

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Gasoline Range Hydrocarbons	52.8	50.0	106%	51.5	50.0	103%	2.5%
	Report	ed in mg/	kg (ppm)				

RPD calculated using sample concentrations per SW846.

TPHG Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	99.5%	98.9%
Bromobenzene	96.8%	98.4%

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid2.i/103112-1.b/1031a004.d Data file 2: /chem3/pid2.i/103112-2.b/1031a004.d

Method: /chem3/pid2.i/103112-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012 BETX Ical Date: 20-OCT-2012 ARI ID: LCS1031 Client ID:

Injection Date: 31-OCT-2012 11:07

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

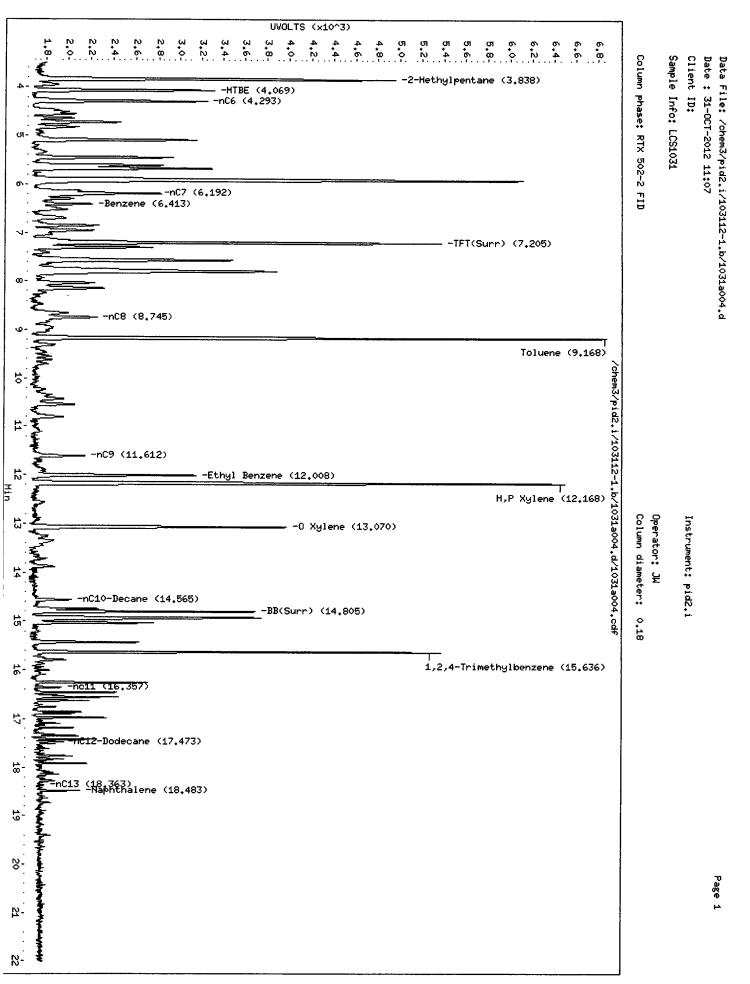
RT	Shift	Height	Area	%Rec	Compound
7.205	-0.002	3688	52666	99.5	TFT(Surr)
14.805	-0.004	2010	21000	96.8	BB (Surr)

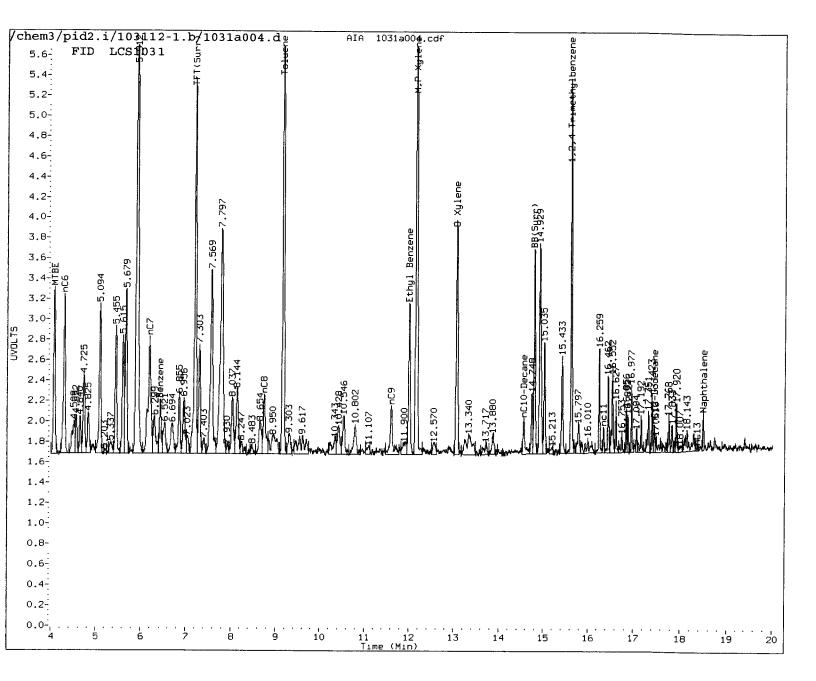
PETROLEUM HYDROCARBONS (FID)

Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.07 to 17.58)	391690	410068	1.047 M
8015C	2MP-TMB	(3.74 to 15.74)	825102	846020	1.025 M
AK101	nC6-nC10	(4.19 to 14.47)	660003	681503	1.033 M
NWTPHG	Tol-Nap	(9.07 to 18.59)	406475	429559	1.057 M

- M Indicates manual integration within range
- * Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

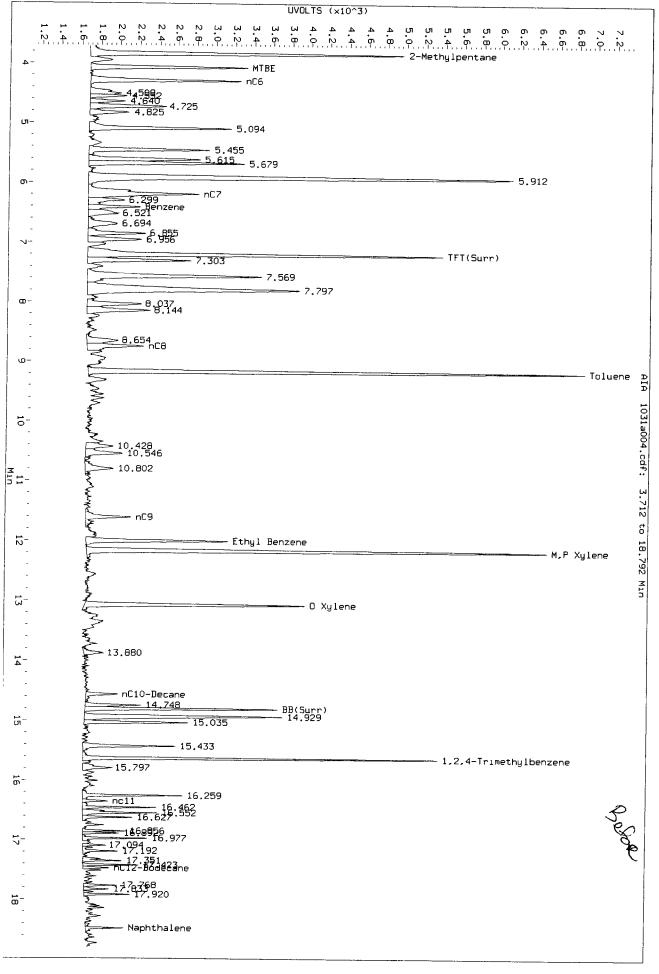
		PID Surrogate	s		
RT	Shift	Response	%Rec	Compound	
7.230	-0.001	13732	96.2	TFT(Surr)	-
14.822	-0.003	18864	93.6	BB(Surr)	


SW8021B (PID)



RT	Shift	Response	Amount	Compound	
6.436	-0.002	3487	3.45	Benzene	
9.189	-0.002	24177	38.56	Toluene	
12.026	-0.005	5115	9.39	Ethylbenzene	_
12.188	-0.002	20800	38.40	M/P-Xylene	
13.090	-0.004	7805	17.48	O-Xylene	
ND				MTBE	

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak was manually integrated


703 totille

MANUAL INTEGRATION

2		ne correc hromatogra ot found			
_		calculat	ion		
5.	Other				
Ana	alyst:	50	_	Date:	11/1/12

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid2.i/103112-1.b/1031a005.d Data file 2: /chem3/pid2.i/103112-2.b/1031a005.d

Method: /chem3/pid2.i/103112-2.b/PIDB.m

Instrument: pid2.i

Gas Ical Date: 20-OCT-2012

BETX Ical Date: 20-0CT-2012

ARI ID: LCSD1031

Client ID:

Injection Date: 31-OCT-2012 11:35

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
		-			
7.206	0.000	3666	52549	98.9	TFT(Surr)
14.805	-0.003	2044	20948	98.4	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

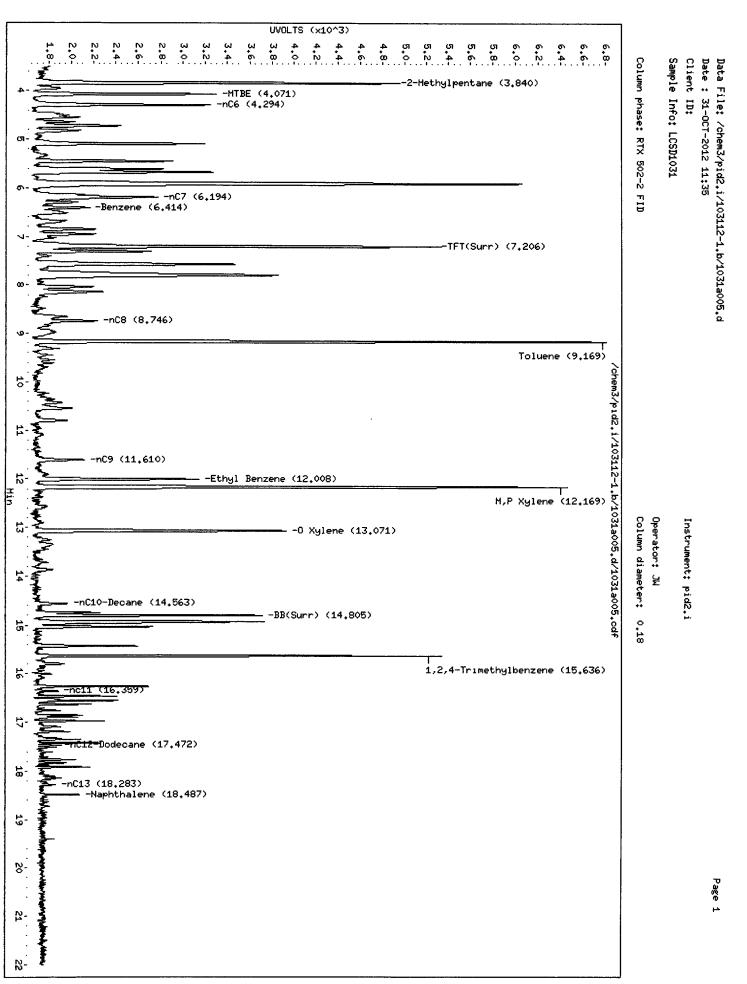
Method	Range		RF	Total Area*	Amount
WATPHG	Tol-C12	(9.07 to 17.58)	391690	401632	1.025 M
8015C	2MP-TMB	(3.74 to 15.74)	825102	831369	1.008 M
AK101	nC6-nC10	(4.19 to 14.47)	660003	671651	1.018 M
NWTPHG	Tol-Nap	(9.07 to 18.59)	406475	418846	1.030 M

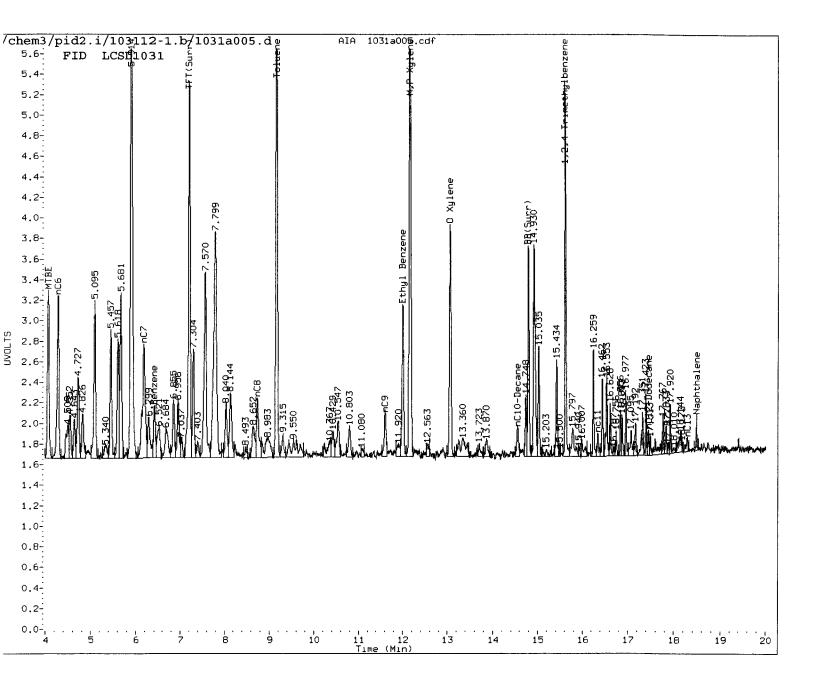
M Indicates manual integration within range

Surrogate areas are subtracted from Total Area Range marker RT's are set by daily RT standard

5W 11/1/12

PID Surrogates						
RT	Shift	Response	%Rec	Compound		
7.230	-0.001	13708	96.0	TFT(Surr)		
14.823	-0.003	18770	93.2	BB(Surr)		

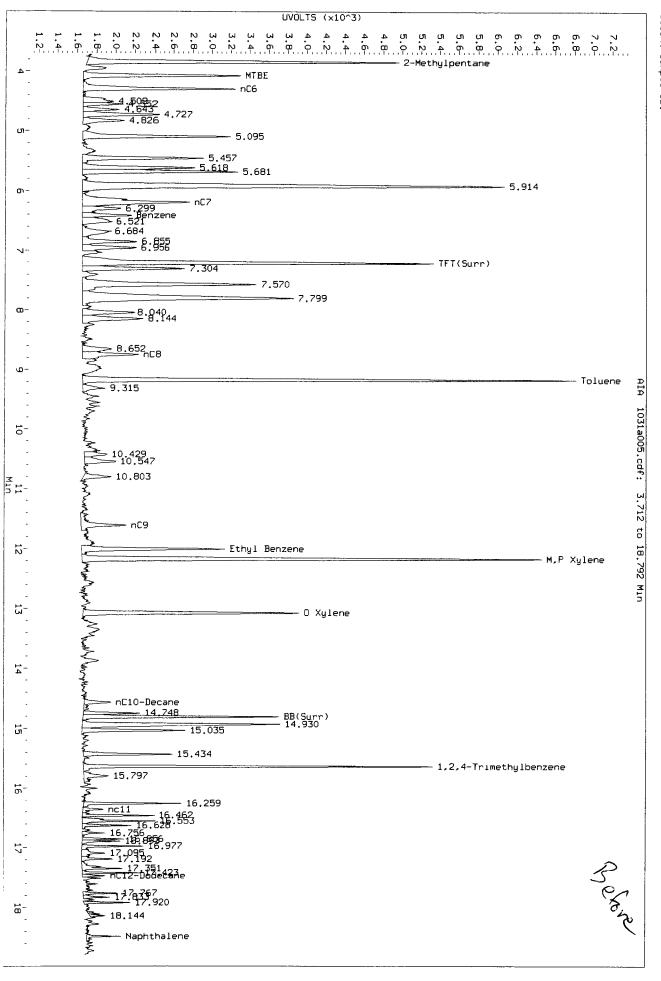

SW8021B (PID)



	Compound	Amount	Response	Shift	RT
	Benzene	3.50	3541	-0.001	6.437
	Toluene	38.60	24205	-0.001	9.190
. /	Ethylbenzene	9.32	5078	-0.005	12.027
	M/P-Xylene	37.74	20444	-0.001	12.189
	O-Xylene	17.24	7694	-0.004	13.090
	MTBE				ND

- 1 Indicates Peak Area was used for quantitation instead of Height
- Indicates peak was manually integrated

uper actor



MANUAL INTEGRATION

Baseline correction

-	Poor chro	omatography found			
4.	Totals c	alculation			
5.	Other				
Ana	alvst:	AT)	Date:	11/1/12	

BETX/GAS METHOD BLANK SUMMARY

BLANK NO.

MB1031

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

SDG No.: VP51 Project No.: CENTRAL WATERFRONT

Date Analyzed : 10/31/12 Matrix: SOIL

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
	=========	=======================================	========
01	LCS1031	LCS1031	10/31/12
02	LCSD1031	LCSD1031	10/31/12
03	CWSI-TB-02	VP51K	10/31/12
04	CWSI-07-2-4	VP51A	10/31/12
05	CWSI-05-2-4	VP51B	10/31/12
06	CWSI-05-7-9	VP51C	10/31/12
07	CWSI-05-12-1	VP51D	10/31/12
80	CWSI-06-8-10	VP51E	10/31/12
09	CWSI-06-12-1	VP51F	10/31/12
10 11			
12			
13			
14			
15			
16			
17		-	
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			

6a GAS INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: Anchor QEA LLC

Instrument/Det: PID2.I/RTX 502-2 FID Project: Central Waterfront

Calibration Date: 20-OCT-2012 SDG No.: VP51

Gas Range	RF1 0.1	RF2 0.25	RF3 1.0	RF4 2.5	RF5 5.0	RF6 10	Ave RF	%RSD
WA Gas	349235	358515	408820	403377	414816	415379	391690	7.6
AK Gas NW Gas	609435 358280	644896 371107	690302 424618	653702 420179	669673 431916		660003 406475	4.7 8.1
Cal Gas 8015Gas	759665 773895	795129 816547	850708 860460	808208 816381	826726 831400	847830 851929	814711 825102	4.2 3.7

 Surrogates Rel. Rec.	 RF1 	RF2	RF3	RF4	RF5	RF6	Ave RF	%RSD
TFT(Surr)	40.27273	39.13636	37.61194	36.49000	36.42105	35.21348	37.05508	5.728
BB(Surr)	21.59091	22.04545	21.55224	20.44000	20.32331	19.96067	20.77323	4.604

<- Indicates %RSD outside limits

Surrogate areas are not included in RF calculation

Quant Ranges: WA Gas Toluene - nC12

AK Gas nC6 - nC10

NW Gas Toluene - Naphthalene

Cal Gas nC6 - nC12

8015 Gas 2-Methylpentane - 1,2,4-Trimethylbenzene

Calibration Files Analysis Time

1020a011.d	20-OCT-2012 15:02
1020a012.d	20-OCT-2012 15:30
1020a013.d	20-OCT-2012 15:58
1020a014.d	20-OCT-2012 16:26
1020a015.d	20-OCT-2012 16:54
1020a016.d	20-OCT-2012 17:22

Nov 05 10:20 2012 cserv3:/chem1/forms/results/p2102012-1/gascal.txt Page 2

Surr			
Calibration	Files	Analysis	Time

1020a003.d	20-OCT-2012	11:17
1020a004.d	20-OCT-2012	11:45
1020a005.d	20-OCT-2012	12:13
1020a006.d	20-OCT-2012	12:42
1020a007.d	20-OCT-2012	13:09
1020a008.d	20-OCT-2012	13:38
1020a009.d	20-OCT-2012	14:06

p1 of 1

FORM VI-GAS

7a GAS CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 20-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 31-OCT-2012 SDG No.: VP51

Lab File Name: 1031a003.d Inst/Det: PID2.I/RTX 502-2 FID

Gas Range	Area*	CalcAmnt	NomAmnt	%D
WAGas (Tol-C12)	976277	2.49	2.50	-0.3
AKGas (C6-C10)	1630947	2.47	2.50	-1.2
NWGas (Tol-Nap)	1021578	2.51	2.50	0.5
8015C (2MP-TMB)	2016194	2.44	2.50	-2.3

Surrogate areas are subtracted from Total Area Indicates an RPD outside QC limits

7b FID SURROGATE CONTINUING CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 20-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 31-OCT-2012 SDG No.: VP51

Lab File Name: 1031a003.d Inst/Det: PID2.I/RTX 502-2 FID

Surrogate	Area	CalcAmnt	NomAmnt	RPD
Trifluorotol Bromoflrbenz	64433 21772	103.8 98.3	100.0	3.8

p1 of 1

FORM VII-Surr

UPS1: BOILE

7a GAS CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 20-OCT-2012 Project: CENTRA WATERFRONT

CCal Date: 31-OCT-2012 SDG No.: VP51

Lab File Name: 1031a012.d Inst/Det: PID2.I/RTX 502-2 FID

Gas Range	Area*	CalcAmnt	NomAmnt	%D
WAGas (Tol-C12)	927630	2.37	2.50	-5.3
AKGas (C6-C10)	1575696	2.39	2.50	-4.5
NWGas (Tol-Nap)	969830	2.39	2.50	-4.6
8015C (2MP-TMB)	1946829	2.36	2.50	-5.6

Surrogate areas are subtracted from Total Area Indicates an RPD outside QC limits

7b FID SURROGATE CONTINUING CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 20-OCT-2012 Project: CENTRA WATERFRONT

CCal Date: 31-OCT-2012 SDG No.: VP51

Lab File Name: 1031a012.d Inst/Det: PID2.I/RTX 502-2 FID

Surrogate	Area	CalcAmnt	NomAmnt	RPD
Trifluorotol	62093	99.6	100.0	-0.4
Bromoflrbenz	20892	96.4		-3.6

p1 of 1

FORM VII-Surr

7a GAS CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 20-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 31-OCT-2012 SDG No.: VQ51

Lab File Name: 1031a022.d Inst/Det: PID2.I/RTX 502-2 FID

Gas Range	Area*	CalcAmnt	NomAmnt	%D
WAGas (Tol-C12)	937814	2.39	2.50	-4.2
AKGas (C6-C10)	1528604	2.32	2.50	-7.4
NWGas (Tol-Nap)	984534	2.42	2.50	-3.1
8015C (2MP-TMB)	1894932	2.30	2.50	-8.1

Surrogate areas are subtracted from Total Area Indicates an RPD outside QC limits

7b FID SURROGATE CONTINUING CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: ANCHOR QEA LLC

ICal Date: 20-OCT-2012 Project: CENTRAL WATERFRONT

CCal Date: 31-OCT-2012 SDG No.: VQ51

Lab File Name: 1031a022.d Inst/Det: PID2.I/RTX 502-2 FID

Surrogate	Area	CalcAmnt	NomAmnt	RPD
Trifluorotol	60298	98.7	100.0	-1.3
Bromoflrbenz	21547	96.9		-3.1

p1 of 1

FORM VII-Surr

Nov 05 10:21 2012 cserv3:/chem1/forms/results/p2102012-1/08.1 Page 1

8 BETX/GAS ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC Client: Anchor QEA LLC

SDG No.: VP51 Project: Central Waterfront

Instrument ID: PID2 GC Detector: RTX 502-2 FID

Run Date: 10/20/12

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	METHOD S1: 7.20	1				
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	S1 RT #	S2 RT #
	SAMPLE NO.	SAMPLE ID	ANALIZED	ANALIZED		
01		RINSE	10/20/12	1021		
02		RT1020+BCAL1	10/20/12	1049	7.20	14.80
03		BTEX 0.25	10/20/12	1117	7.20	14.80
04		BTEX 0.50	10/20/12	1145	7.20	14.80
05		BTEX 5.0	10/20/12	1213	7.20	14.80
06		BTEX 25	10/20/12	1242	7.19	14.80
07		BTEX 50	10/20/12	1309	7.20	14.80
08		BTEX 100	10/20/12	1338	7.20	14.80
09		BTEX 200	10/20/12	1406	7.20	14.80
10		BTEX ICV	10/20/12	1434	7.20	14.80
11		GAS 0.10	10/20/12	1502	7.20	14.80
12		GAS 0.25	10/20/12	1530	7.20	14.80
13		GAS 1.0	10/20/12	1558	7.20	14.80
14		GAS 2.5	10/20/12	1626	7.20	14.80
15	ē	GAS 5.0	10/20/12	1654	7.20	14.80
16		GAS 10	10/20/12	1722	7.20	14.80
17		GAS ICV	10/20/12	1750	7.20	14.80
						ı l

 $\begin{array}{rcl} & & & & & & & & \\ S1 & = & TFT(Surr) & & & & & \\ S2 & = & BB(Surr) & & & & & \\ & & & & & & \\ \end{array} \begin{array}{c} QC \text{ LIMITS} \\ (+/- \text{ 0.07 MINUTES}) \\ (+/- \text{ 0.07 MINUTES}) \end{array}$

^{*} Values outside of QC limits.

8 BETX/GAS ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC Client: ANCHOR QEA LLC

SDG No.: VP51 Project: CENTRAL WATERFRONT

Instrument ID: PID2 GC Detector: RTX 502-2 FID

Run Date: 10/31/12

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	METHOD	SURROGATE RT			1	
	S1 : 7.20	S2 : 14.8		•		
	CT T DYTE		5.2 = 5			
	CLIENT	LAB	DATE	TIME	S1	S2
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01	====================================	====================================	10/31/12	0943	_======	======
02	RT1031+BCAL1	RT1031+BCAL1	10/31/12	1011	7.21	14.81
03	CENTRAL WATE	GCAL1	10/31/12	1011	7.21	14.81
04	LCS1031	LCS1031	10/31/12	1107	7.20	14.80
05	LCSD1031	LCSD1031	10/31/12	1135	7.21	14.80
06	MB1031	MB1031	10/31/12	1203	7.20	14.80
07	CWSI-TB-02	VP51K	10/31/12	1232	7.20	14.80
08	ZZZZZ	ZZZZZ	10/31/12	1300	7.20	14.80
09	ZZZZZ	ZZZZZ	10/31/12	1328	7.20	14.80
10	ZZZZZ	ZZZZZ	10/31/12	1356	7.20	14.80
11	ZZZZZ	ZZZZZ	10/31/12	1424	7.20	14.80
12	CENTRA WATER		10/31/12	1452	7.21	14.80
13	CWSI-07-2-4	VP51A	10/31/12	1520	7.21	14.80
14	CWSI-05-2-4	VP51B	10/31/12	1548	7.21	14.80
15	CWSI-05-7-9	VP51C	10/31/12	1616	7.21	14.80
16	CWSI-05-12-1		10/31/12	1644	7.21	14.80
17	CWSI-06-8-10		10/31/12	1712	7.21	14.80
18	CWSI-06-12-1	VP51E VP51F	10/31/12	1740	7.21	14.80
19	ZZZZZ	ZZZZZ	10/31/12	1809	7.20	14.80
20	ZZZZZ	ZZZZZ	10/31/12	1837	7.20	14.80
21	ZZZZZ	ZZZZZ	10/31/12	1905	7.20	14.80
22	CENTRAL WATE	GCAL3	10/31/12	1933	7.20	14.80
44	CHAIRM MAIL	CALIS	10/31/12	1933	7.20	14.00
	l				·	

S1 = TFT(Surr) QC LIMITS S2 = BB(Surr) (+/- 0.07 MINUTES) (+/- 0.07 MINUTES)

^{*} Values outside of QC limits.

Metals Analysis Report and Summary QC Forms

ARI Job ID: VP51

Cover Page

INORGANIC ANALYSIS DATA PACKAGE

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51

CLIENT ID	ARI ID	ARI LIMS ID REPREP	
CWSI-07-2-4	VP51A	12-21314	
CWSI-07-2-4D	VP51ADUP	12-21314	
CWSI-07-2-4S	VP51ASPK	12-21314	
CWSI-05-2-4	VP51B	12-21315	
PBS	VP51MB1	12-21315	
LCSS	VP51MB1SPK	12-21315	
CWSI-05-7-9	VP51C	12-21316	
CWSI-05-12-14	VP51D	12-21317	
CWSI-06-8-10	VP51E	12-21318	
CWSI-06-12-14	VP51F	12-21319	

Were ICP interelement corrections applied ?	Yes/No	YES
Were ICP background corrections applied ? If yes - were raw data generated before	Yes/No	YES
application of background corrections ?	Yes/No	NO
Comments:		
THIS DATA PACKAGE HAS BEEN REVIEWED AND AUTHORIZED FOR	R RELEASE	BY:
Signature: Name: Jay Kuhn Date: Title: Inorganic		r
bacc. O IMPI	DITECTO	-

COVER PAGE

TOTAL METALS

Page 1 of 1

Lab Sample ID: VP51A

LIMS ID: 12-21314

Matrix: Soil

Data Release Authorized: Reported: 11/06/12

Percent Total Solids: 79.6%

Sample ID: CWSI-07-2-4

SAMPLE

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/26/12 Date Received: 10/27/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	10/30/12	6010C	11/01/12	7440-36-0	Antimony	6	6	Ü
3050B	10/30/12	6010C	11/01/12	7440-38-2	Arsenic	6	11	
3050B	10/30/12	6010C	11/01/12	7440-41-7	Beryllium	0.1	0.2	
3050B	10/30/12	6010C	11/01/12	7440-43-9	Cadmium	0.2	0.3	
3050B	10/30/12	6010C	11/01/12	7440-47-3	Chromium	0.6	34.1	
3050B	10/30/12	6010C	11/01/12	7440-50-8	Copper	0.2	33.0	
3050B	10/30/12	6010C	11/01/12	7439-92-1	Lead	2	25	
CLP	10/30/12	7471A	11/02/12	7439-97-6	Mercury	0.03	0.04	
3050B	10/30/12	6010C	11/01/12	7440-02-0	Nickel	1	28	
3050B	10/30/12	6010C	11/01/12	7782-49-2	Selenium	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-22-4	Silver	0.3	0.3	U
3050B	10/30/12	6010C	11/01/12	7440-28-0	Thallium	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-66-6	Zinc	1	106	

TOTAL METALS Sample ID: CWSI-05-2-4 Page 1 of 1 SAMPLE

Lab Sample ID: VP51B

LIMS ID: 12-21315

Matrix: Soil

Data Release Authorized Reported: 11/06/12

Percent Total Solids: 83.5%

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/26/12 Date Received: 10/27/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
	.				<u>-</u>			
3050B	10/30/12	6010C	11/01/12	7440-36-0	Antimony	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-38-2	Arsenic	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-41-7	Beryllium	0.1	0.1	
3050B	10/30/12	6010C	11/01/12	7440-43-9	Cadmium	0.2	0.3	
3050B	10/30/12	6010C	11/01/12	7440-47-3	Chromium	0.6	27.4	
3050B	10/30/12	6010C	11/01/12	7440-50-8	Copper	0.2	27.2	
3050B	10/30/12	6010C	11/01/12	7439-92-1	Lead	2	23	
CLP	10/30/12	7471A	11/02/12	7439-97-6	Mercury	0.02	0.17	
3050B	10/30/12	6010C	11/01/12	7440-02-0	Nickel	1	30	
3050B	10/30/12	6010C	11/01/12	7782-49-2	Selenium	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-22-4	Silver	0.3	0.3	U
3050B	10/30/12	6010C	11/01/12	7440-28-0	Thallium	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-66-6	Zinc	1	73	

TOTAL METALS
Page 1 of 1

Lab Sample ID: VP51C

LIMS ID: 12-21316

Matrix: Soil

Data Release Authorized (// Reported: 11/06/12

Percent Total Solids: 76.0%

Sample ID: CWSI-05-7-9 SAMPLE

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/26/12 Date Received: 10/27/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	10/30/12	6010C	11/01/12	7440-36-0	Antimony	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-38-2	Arsenic	6	18	
3050B	10/30/12	6010C	11/01/12	7440-41-7	Beryllium	0.1	0.2	
3050B	10/30/12	6010C	11/01/12	7440-43-9	Cadmium	0.3	0.4	
3050B	10/30/12	6010C	11/01/12	7440-47-3	Chromium	0.6	22.7	
3050B	10/30/12	6010C	11/01/12	7440-50-8	Copper	0.3	50.1	
3050B	10/30/12	6010C	11/01/12	7439-92-1	Lead	3	33	
CLP	10/30/12	7471A	11/02/12	7439-97-6	Mercury	0.03	0.12	
3050B	10/30/12	6010C	11/01/12	7440-02-0	Nickel	1	26	
3050B	10/30/12	6010C	11/01/12	7782-49-2	Selenium	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-22-4	Silver	0.4	0.4	U
3050B	10/30/12	6010C	11/01/12	7440-28-0	Thallium	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-66-6	Zinc	1	100	

TOTAL METALS

Page 1 of 1

Lab Sample ID: VP51D

LIMS ID: 12-21317

Matrix: Soil

Data Release Authorized Reported: 11/06/12

Percent Total Solids: 80.9%

Sample ID: CWSI-05-12-14

SAMPLE

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/26/12 Date Received: 10/27/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	10/30/12	6010C	11/01/12	7440-36-0	Antimony	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-38-2	Arsenic	6	7	
3050B	10/30/12	6010C	11/01/12	7440-41-7	Beryllium	0.1	0.1	U
3050B	10/30/12	6010C	11/01/12	7440-43-9	Cadmium	0.2	0.3	
3050B	10/30/12	6010C	11/01/12	7440-47-3	Chromium	0.6	21.1	
3050B	10/30/12	6010C	11/01/12	7440-50-8	Copper	0.2	35.3	
3050B	10/30/12	6010C	11/01/12	7439-92-1	Lead	2	69	
CLP	10/30/12	7471A	11/02/12	7439-97-6	Mercury	0.03	0.09	
3050B	10/30/12	6010C	11/01/12	7440-02-0	Nickel	1	18	
3050B	10/30/12	6010C	11/01/12	7782-49-2	Selenium	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-22-4	Silver	0.4	0.4	U
3050B	10/30/12	6010C	11/01/12	7440-28-0	Thallium	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-66-6	Zinc	1	156	

TOTAL METALS

Page 1 of 1

Lab Sample ID: VP51E

LIMS ID: 12-21318

Matrix: Soil
Data Release Authorized:
Reported: 11/06/12

Percent Total Solids: 61.4%

Sample ID: CWSI-06-8-10

SAMPLE

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/26/12 Date Received: 10/27/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
							<u> </u>	
3050B	10/30/12	6010C	11/01/12	7440-36-0	Antimony	7	7	U
3050B	10/30/12	6010C	11/01/12	7440-38-2	Arsenic	7	9	
3050B	10/30/12	6010C	11/01/12	7440-41-7	Beryllium	0.1	0.1	U
3050B	10/30/12	6010C	11/01/12	7440-43-9	Cadmium	0.3	0.7	
3050B	10/30/12	6010C	11/01/12	7440-47-3	Chromium	0.7	29.8	
3050B	10/30/12	6010C	11/01/12	7440-50-8	Copper	0.3	89.4	
3050B	10/30/12	6010C	11/01/12	7439-92-1	Lead	3	145	
CLP	10/30/12	7471A	11/02/12	7439-97-6	Mercury	0.03	0.38	
3050B	10/30/12	6010C	11/01/12	7440-02-0	Nickel	1	33	
3050B	10/30/12	6010C	11/01/12	7782-49-2	Selenium	7	7	U
3050B	10/30/12	6010C	11/01/12	7440-22-4	Silver	0.4	0.4	U
3050B	10/30/12	6010C	11/01/12	7440-28-0	Thallium	7	7	U
3050B	10/30/12	6010C	11/01/12	7440-66-6	Zinc	1	202	

TOTAL METALS

Page 1 of 1

Lab Sample ID: VP51F

LIMS ID: 12-21319

Matrix: Soil

Data Release Authorized: Reported: 11/06/12

Percent Total Solids: 79.7%

Sample ID: CWSI-06-12-14

SAMPLE

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/26/12 Date Received: 10/27/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
20505	10/00/10	60100	11 /01 /10	7440 26 0				
3050B	10/30/12	6010C	11/01/12	7440-36-0	Antimony	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-38-2	Arsenic	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-41-7	Beryllium	0.1	0.1	U
3050B	10/30/12	6010C	11/01/12	7440-43-9	Cadmium	0.2	0.5	
3050B	10/30/12	6010C	11/01/12	7440-47-3	Chromium	0.6	15.8	
3050B	10/30/12	6010C	11/01/12	7440-50-8	Copper	0.2	41.4	
3050B	10/30/12	6010C	11/01/12	7439-92-1	Lead	2	511	
CLP	10/30/12	7471A	11/02/12	7439-97-6	Mercury	0.02	0.33	
3050B	10/30/12	6010C	11/01/12	7440-02-0	Nickel	1	15	
3050B	10/30/12	6010C	11/01/12	7782-49-2	Selenium	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-22-4	Silver	0.4	0.4	U
3050B	10/30/12	6010C	11/01/12	7440-28-0	Thallium	6	6	U
3050B	10/30/12	6010C	11/01/12	7440-66-6	Zinc	1	180	

TOTAL METALS

Page 1 of 1

Lab Sample ID: VP51A

LIMS ID: 12-21314

Matrix: Soil

Data Release Authorized Reported: 11/06/12

Sample ID: CWSI-07-2-4 MATRIX SPIKE

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/26/12 Date Received: 10/27/12

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	*	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Antimony	6010C	6 U	48	232	20.7%	N
Arsenic	6010C	11	241	232	99.1%	
Beryllium	6010C	0.2	57.4	57.9	98.8%	
Cadmium	6010C	0.3	57.2	57.9	98.3%	
Chromium	6010C	34.1	106	57.9	124%	
Copper	6010C	33.0	106	57.9	126%	N
Lead	6010C	25	246	232	95.3%	
Mercury	7471A	0.04	0.36	0.291	110%	
Nickel	6010C	28	96	57.9	117%	
Selenium	6010C	6 U	215	232	92.7%	
Silver	6010C	0.3 U	58.7	57.9	101%	
Thallium	6010C	6 U	202	232	87.1%	
Zinc	6010C	106	201	57.9	164%	N

Reported in mg/kg-dry

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

UP51:00160

TOTAL METALS

Page 1 of 1

Lab Sample ID: VP51A

LIMS ID: 12-21314 Matrix: Soil

Data Release Authorized:

Reported: 11/06/12

Sample ID: CWSI-07-2-4
DUPLICATE

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: 10/26/12 Date Received: 10/27/12

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control	
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
Antimony	6010C	6 U	6 U	0.0%	+/- 6	L
Arsenic	6010C	11	13	16.7%	+/- 6	L
Beryllium	6010C	0.2	0.2	0.0%	+/- 0.1	L
Cadmium	6010C	0.3	0.3	0.0%	+/- 0.2	L
Chromium	6010C	34.1	39.8	15.4%	+/- 20%	
Copper	6010C	33.0	31.6	4.3%	+/- 20%	
Lead	6010C	25	30	18.2%	+/- 20%	
Mercury	7471A	0.04	0.05	22.2%	+/- 0.03	L
Nickel	6010C	28	33	16.4%	+/- 20%	
Selenium	6010C	6 U	6 U	0.0%	+/- 6	L
Silver	6010C	0.3 U	0.3 U	0.0%	+/- 0.3	L
Thallium	6010C	6 U	6 U	0.0%	+/- 6	L
Zinc	6010C	106	152	35.7%	+/- 20%	*

Reported in mg/kg-dry

^{*-}Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

INORGANICS ANALYSIS DATA SHEET

TOTAL METALS

Page 1 of 1

Lab Sample ID: VP51LCS

LIMS ID: 12-21315

Matrix: Soil

Data Release Authorized:

Reported: 11/06/12

Sample ID: LAB CONTROL

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	- 8	_
Analyte	Method	Found	Added	Recovery	Q
Antimony	6010C	192	200	96.0%	
Arsenic	6010C	194	200	97.0%	
Beryllium	6010C	49.8	50.0	99.6%	
Cadmium	6010C	48.0	50.0	96.0%	
Chromium	6010C	51.0	50.0	102%	
Copper	6010C	49.1	50.0	98.2%	
Lead	6010C	194	200	97.0%	
Mercury	7471A	0.50	0.50	100%	
Nickel	6010C	49	50	98.0%	
Selenium	6010C	192	200	96.0%	
Silver	6010C	49.0	50.0	98.0%	
Thallium	6010C	190	200	95.0%	
Zinc	6010C	49	50	98.0%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

INORGANICS ANALYSIS DATA SHEET

TOTAL METALS

Page 1 of 1

Lab Sample ID: VP51MB

LIMS ID: 12-21315

Matrix: Soil

Data Release Authorized

Reported: 11/06/12

Percent Total Solids: NA

Sample ID: METHOD BLANK

QC Report No: VP51-Anchor QEA LLC

Project: Central Waterfront Shoreline Inves.

Date Sampled: NA Date Received: NA

Prep	Prep	Analysis	_		3 1	T.00	/1 _ 3	•
Meth	Date	Method	Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	10/30/12	6010C	11/01/12	7440-36-0	Antimony	5	5	U
3050B	10/30/12	6010C	11/01/12	7440-38-2	Arsenic	5	5	U
3050B	10/30/12	6010C	11/01/12	7440-41-7	Beryllium	0.1	0.1	U
3050B	10/30/12	6010C	11/01/12	7440-43-9	Cadmium	0.2	0.2	U
3050B	10/30/12	6010C	11/01/12	7440-47-3	Chromium	0.5	0.5	U
3050B	10/30/12	6010C	11/01/12	7440-50-8	Copper	0.2	0.2	U
3050B	10/30/12	6010C	11/01/12	7439-92-1	Lead	2	2	U
CLP	10/30/12	7471A	11/02/12	7439-97-6	Mercury	0.02	0.02	U
3050B	10/30/12	6010C	11/01/12	7440-02-0	Nickel	1	1	U
3050B	10/30/12	6010C	11/01/12	7782-49-2	Selenium	5	5	Ü
3050B	10/30/12	6010C	11/01/12	7440-22-4	Silver	0.3	0.3	Ü
3050B	10/30/12	6010C	11/01/12	7440-28-0	Thallium	5	5	U
3050B	10/30/12	6010C	11/01/12	7440-66-6	Zinc	1	1	U

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

Calibration Verification

UNITS: ug/L

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51

ANALYTE	EL	M RUN	ICVTV	ICV	%R	CCVTV	CCV1 %R	CCV2 %R	CCV3 %R	CCV4 %R	CCV5 %R
Antimony	SB	ICP IP110121	2000.0	2117.98	105.9	2000.0	2074.40 103.7	2104.21 105.2	2092.96 104.6	2089.40 104.5	2086.05 104.3
Arsenic	AS	ICP IP110121	2000.0	2079.62	104.0	2000.0	2045.55 102.3	2082.01 104.1	2064.50 103.2	2081.01 104.1	2094.79 104.7
Beryllium	BE	ICP IP110121	1000.0	1023.32	102.3	1000.0	1000.44 100.0	1024.97 102.5	1026.95 102.7	1026.30 102.6	995.93 99.6
Cadmium	CD	ICP IP110121	1000.0	1023.16	102.3	1000.0	1003.36 100.3	1009.59 101.0	1012.94 101.3	1009.99 101.0	1024.17 102.4
Chromium	CR	ICP IP110121	1000.0	990.21	99.0	1000.0	971.24 97.1	993.49 99.3	999.70 100.0	1008.32 100.8	1009.16 100.9
Copper	CU	ICP IP110121	1000.0	1060.80	106.1	1000.0	1038.58 103.9	1054.85 105.5	1061.69 106.2	1049.16 104.9	1062.91 106.3
Lead	PB	ICP IP110121	2000.0	2055.16	102.8	2000.0	2016.87 100.8	2054.11 102.7	2042.35 102.1	2081.28 104.1	2025.04 101.3
Mercury	HG	CVA HG110201	8.0	7.95	99.4	4.0	4.06 101.5	4.03 100.8	4.01 100.3		
Nicke1	NI	ICP IP110121	1000.0	1013.93	101.4	1000.0	990.75 99.1	1014.38 101.4	1017.08 101.7	1033.84 103.4	996.56 99.7
Selenium	SE	ICP IP110121	2000.0	2020.01	101.0	2000.0	1979.39 99.0	2016.19 100.8	1997.13 99.9	2007.83 100.4	2027.82 101.4
Silver	AG	ICP IP110121	1000.0	1007.56	100.8	1000.0	982.82 98.3	994.25 99.4	991.46 99.1	989.51 99.0	1019.26 101.9
Thallium	TL	ICP IP110121	2000.0	2003.89	100.2	2000.0	1969.61 98.5	2000.75 100.0	1990.00 99.5	2000.75 100.0	2017.00 100.9
Zinc	ZN	ICP IP110121	1000.0	1069.21	106.9	1000.0	1048.58 104.9	1081.20 108.1	1081.96 108.2	1137.71 113.8	1046.52 104.7

Calibration Verification

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51

UNITS: ug/L

ANALYTE	EL	M	RUN	CCVTV	CCV6 %R	CCV7 %	R CCV	%R	CCV9	%R	CCV10	₽R	CCV11	₽R
Antimony	SB	ICP	IP110121	2000.0	2090.10 104.5	2001.21 10 0	. 1 1927.49	96.4	1881.82	94.1				
Arsenic	AS	ICP	IP110121	2000.0	2098.74 104.9	2014.92 100	1961.68	98.1	1916.46	95.8				
Beryllium	BE	ICP	IP110121	1000.0	980.07 98.0	966.86 9 6	5.7 960.71	96.1	944.45	94.4				
Cadmium	CD	ICP	IP110121	1000.0	1014.11 101.4	983.62 98	963.01	96.3	947.02	94.7				
Chromium	CR	ICP	IP110121	1000.0	999.89 100.0	997.68 9 9	971.4	97.1	942.45	94.2				
Copper	CU	ICP	IP110121	1000.0	1067.28 106.7	1044.62 104	1.5 1040.82	104.1	1034.33	103.4				
Lead	PB	ICP	IP110121	2000.0	2041.46 102.1	1975.47 98	1.8 1924.9	96.2	1874.48	93.7				
Mercury	HG	CVA	HG110201	4.0										
Nickel	NI	ICP	IP110121	1000.0	988.06 98.8	981.77 98	940.2	94.0	914.65	91.5				
Selenium	SE	ICP	IP110121	2000.0	2021.22 101.1	1932.78 9 6	5. 6 1876.28	93.8	1827.48	91.4				
Silver	AG	ICP	IP110121	1000.0	1017.02 101.7	991.30 9 9	980.1	98.0	980.93	98.1				
Thallium	\mathtt{TL}	ICP	IP110121	2000.0	2027.24 101.4	1948.03 9 7	.4 1892.93	94.6	1851.18	92.6				
Zinc	ZN	ICP	IP110121	1000.0	1031.03 103.1	1031.68 10 3	976.12	97.6	958.81	95.9				

CRDL Standard

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51

UNITS:ug/L

ANALYTE	EL	M	RUN	CRA/I	TV	CR-1	%R	CR-2	%R	CR-3	%R	CR-4	%R	CR-5	₽R	CR-6	
Antimony	SB	ICP	IP110121	50	.0	50.51	101.0										
Arsenic	AS	ICP	IP110121	50	.0	52.15	104.3										
Beryllium	BE	ICP	IP110121	1	.0	1.06	106.0										
Cadmium	CD	ICP	IP110121	2	.0	1.89	94.5										
Chromium	CR	ICP	IP110121	5	0.0	6.26	125.2										
Copper	CU	ICP	IP110121	2	.0	1.41	70.5										
Lead	PB	ICP	IP110121	20	.0	20.28	101.4										
Mercury	HG	CVA	HG110201	C	.1	0.10	100.0										
Nickel	NI	ICP	IP110121	10	.0	11.68	116.8										
Selenium	SE	ICP	IP110121	50	.0	49.32	98.6										
Silver	AG	ICP	IP110121	3	.0	2.99	99.7										
Thallium	\mathtt{TL}	ICP	IP110121	50	.0	47.17	94.3										
Zinc	ZN	ICP	IP110121	10	.0	9.86	98.6										

The state of the s

Calibration Blanks

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51

UNITS:ug/L

ANALYTE	EL	METH	RUN	CRDL	IDL	ICB	С	CCB1	С	CCB2	С	CCB3	C	CCB4	С	CCB5	С
Antimony	SB	ICP	IP110121	60.0	50.0	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U
Arsenic	AS	ICP	IP110121	10.0	50.0	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U
Beryllium	BE	ICP	IP110121	5.0	1.0	1.0	U	1.0	U	1.0	υ	1.0	U	1.0	υ	1.0	U
Cadmium	CD	ICP	IP110121	5.0	2.0	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
Chromium	CR	ICP	IP110121	10.0	5.0	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Copper	CU	ICP	IP110121	25.0	2.0	2.0	U	2.0	U	2.0	υ	2.0	U	2.0	U	2.0	U
Lead	PB	ICP	IP110121	3.0	20.0	20.0	U	20.0	U	20.0	U	20.0	U	20.0	U	20.0	U
Mercury	НG	CVA	HG110201	0.2	0.1	0.1	U	0.1	U	0.1	U	0.1	U				
Nickel	NI	ICP	IP110121	40.0	10.0	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U
Selenium	SE	ICP	IP110121	5.0	50.0	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U
Silver	AG	ICP	IP110121	10.0	3.0	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U
Thallium	TL	ICP	IP110121	10.0	50.0	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U
Zinc	ZN	ICP	IP110121	20.0	10.0	10.0	U	10.0	U	10.0	U	10.0	U	16.3	В	10.0	U

Calibration Blanks

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51

UNITS:ug/L

ANALYTE	EL	METH	RUN	CRDL	IDL	CCB6	С	CCB7	С	CCB8	С	CCB9	С	CCB10	С	CCB11	С
Antimony	SB	ICP	IP110121	60.0	50.0	50.0	U	50.0	U	50.0	U	50.0	U			•	
Arsenic	AS	ICP	IP110121	10.0	50.0	50.0	U	50.0	U	50.0	υ	50.0	U				
Beryllium	BE	ICP	IP110121	5.0	1.0	1.0	U	1.0	U	1.0	U	1.0	U				
Cadmium	CD	ICP	IP110121	5.0	2.0	2.0	U	2.0	U	2.0	U	2.0	U				
Chromium	CR	ICP	IP110121	10.0	5.0	5.0	U	5.0	U	5.0	U	5.0	U				
Copper	CU	ICP	IP110121	25.0	2.0	2.0	U	2.0	U	2.0	U	2.0	U				
Lead	PB	ICP	IP110121	3.0	20.0	20.0	U	20.0	U	20.0	U	20.0	U				
Mercury	HG	CVA	HG110201	0.2	0.1												
Nickel	NI	ICP	IP110121	40.0	10.0	10.0	U	10.0	U	10.0	U	10.0	U				
Selenium	SE	ICP	IP110121	5.0	50.0	50.0	U	50.0	U	50.0	U	50.0	U				
Silver	AG	ICP	IP110121	10.0	3.0	3.0	U	3.0	U	3.0	U	3.0	U				
Thallium	TL	ICP	IP110121	10.0	50.0	50.0	U	50.0	U	50.0	U	50.0	U				
Zinc	ZN	ICP	IP110121	20.0	10.0	10.0	U	10.0	U	10.0	U	10.0	U				

ICP Interference Check Sample

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51

ICS SOURCE: I.V.

RUNID: IP110121

INSTRUMENT ID: OPTIMA ICP 1

UNITS: ug/L

Antimony Arsenic Barium Beryllium Boron Cadmium Calcium 10000 Chromium Cobalt Copper 1000 Lead Magnesium Nickel Potassium Selenium Silicon Silver Sodium Strontium Thallium 1000 100	200000 190393.7 1000 23.0 1000 -2.8 1000 -1.1	192398.2 1021.2 1				
Arsenic 1000 Barium 1000 Beryllium 1000 Boron Cadmium 10000 Chromium 10000 Chromium 10000 Copper 10000 Iron 200000 200000 Lead 10000 Magnesium 100000 1000000 Manganese 10000 Molybdenum Nickel 10000 Potassium Selenium 10000 Silicon Silver 10000 Sodium Strontium Thallium 10000 Tin	1000 -2.8	1021.2 1				
Barium 1000 Beryllium 1000 Boron 10000 Cadmium 10000 Chromium 10000 Cobalt 1000 Copper 1000 Iron 200000 200000 Lead 1000 Magnesium 10000 Manganese 1000 Molybdenum Nickel 1000 Potassium 20000 Selenium 1000 Silicon 1000 Sodium 1000 Strontium 1000 Tin 1000			L02.1			
Beryllium Boron Cadmium Calcium Colcium Cobalt Copper Iron 200000 Lead Magnesium Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Thallium Tin	1000 -1.1	993.5	99.4			
Boron Cadmium 10000 Calcium 100000 Chromium 10000 Cobalt 10000 Iron 200000 200000 Lead 10000 Magnesium 100000 100000 Manganese 10000 Molybdenum Nickel 10000 Potassium Selenium 10000 Silicon Silver 10000 Sodium Strontium Thallium 10000 Tino 100000		933.2	93.3			
Cadmium 10000 Calcium 100000 Chromium 1000 Cobalt 1000 Copper 1000 Iron 200000 200000 Lead 1000 Magnesium 10000 10000 Manganese 1000 Molybdenum 1000 Nickel 1000 Potassium 1000 Selenium 1000 Silicon 1000 Sodium 1000 Strontium 1000 Tin 1000	1000 -0.1	994.3	99.4			
Calcium 100000 1000000 Chromium 10000 100000 Cobalt 10000 100000 Iron 2000000 2000000 Lead 10000 Magnesium 100000 1000000 Manganese 10000 Molybdenum Nickel 10000 Potassium Selenium 10000 Silver 10000 Sodium Strontium Thallium 10000 Tin	0.2	4.3				
Chromium 10000 Cobalt 10000 Copper 10000 Iron 200000 2000000 Lead 10000 Magnesium 100000 1000000 Manganese 10000 Molybdenum Nickel 10000 Potassium Selenium 10000 Silver 10000 Sodium Strontium Thallium 10000 Tin	1000 0.9	970.5	97.1			
Cobalt 1000 Copper 1000 Iron 200000 200000 Lead 1000 10000 Magnesium 10000 10000 Molybdenum Nickel 1000 Potassium Selenium 1000 Silicon Silver 1000 Sodium Strontium Thallium 1000 Tin 1000	100000 93882.9	94902.2	94.9			
Copper 1000 Iron 200000 200000 Lead 10000 100000 Magnesium 10000 10000 Molybdenum Nickel 1000 Potassium Selenium 1000 Silicon Silicon Sodium Strontium Thallium 1000 Tin 1000	1000 3.9	935.6	93.6			
Iron 200000 200000 Lead 1000 Magnesium 100000 100000 Manganese 1000 Molybdenum 1000 Potassium Selenium 1000 Silicon Silicon Sodium Strontium Thallium 1000 Tin 1000	1000 -0.5	901.2	90.1			
Lead 10000 Magnesium 100000 Manganese 10000 Molybdenum 1000 Nickel 1000 Potassium 1000 Selenium 1000 Silicon 1000 Sodium 1000 Strontium 1000 Tin 1000	1000 0.1	1002.8 1	100.3			
Magnesium 100000 Manganese 10000 Molybdenum 1000 Nickel 1000 Potassium 1000 Selenium 1000 Silicon 1000 Sodium Strontium Thallium 1000 Tin 1000	200000 191186.9	193030.8	96.5			
Manganese 1000 Molybdenum Nickel 1000 Potassium Selenium 1000 Silicon Silver 1000 Sodium Strontium Thallium 1000	1000 6.3	948.6	94.9			
Molybdenum Nickel 1000 Potassium Selenium 1000 Silicon Silver 1000 Sodium Strontium Thallium 1000	100000 98320.3	99698.5	99.7			
Nickel 1000 Potassium Selenium 1000 Silicon Silver 1000 Sodium Strontium Thallium 1000 Tin	1000 -0.6	939.3	93.9			
Potassium Selenium 1000 Silicon Silver 1000 Sodium Strontium Thallium 1000 Tin	-6.4	-6.7				
Selenium 1000 Silicon Silver 1000 Sodium Strontium Thallium 1000 Tin	1000 3.8	929.3	92.9			
Silicon Silver 1000 Sodium Strontium Thallium 1000	-10.2	-19.4				
Silver 1000 Sodium Strontium Thallium 1000 Tin	1000 -63.6	926.1	92.6			
Sodium Strontium Thallium 1000	10.2	51.9				
Strontium Thallium 1000	1000 -0.9	1000.3 1	L00.0			
Thallium 1000	25.0	80.5				
Tin	4.0	4.4				
	1000 -11.3	902.0	90.2			
	15.2	14.5				
Titanium	2.1	2.3				
Vanadium 1000	1000 0.2	952.6	95.3			
Zinc 1000	1000 -6.3	896.2	89.6			

Post Digest Spike Sample Recovery

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51

ANALYSIS METHOD: ICP

UNITS:ug/L

ANALYTE	CLIENT ID	ARI ID	RUNID	SPIKED SAMPLE RESULT C	SAMPLE RESULT C	SPIKE Added	MATRIX	%R_
Zinc	CWSI-07-2-4A	VP51APOST	IP110121	2682.44	1845.52	1000	Soil	83.7
Antimony	CWSI-07-2-4A	VP51APOST	IP110121	3851.88	100.00 u	4000	Soil	96.3
Copper	CWSI-07-2-4A	VP51APOST	IP110121	1685.42	571.80	1000	Soil	111.4

IDLs and ICP Linear Ranges

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51 UNITS: ug/L

ANALYTE	EL	метн	Instrument	WAVELENTH (nm)	GFA BACK- GROUND	CLP CRDL	RL	RL DATE	ICP LINEAR RANGE (ug/L)	ICP LR DATE
Antimony	SB	ICP	OPTIMA ICP 1	206.84		60	50.0	4/1/2012	30000.0	8/2/2012
Arsenic	AS	ICP	OPTIMA ICP 1	188.98		10	50.0	4/1/2012	30000.0	8/2/2012
Beryllium	BE	ICP	OPTIMA ICP 1	313.04		5	1.0	4/1/2012	5000.0	8/2/2012
Cadmium	CD	ICP	OPTIMA ICP 1	228.80		5	2.0	4/1/2012	20000.0	8/2/2012
Chromium	CR	ICP	OPTIMA ICP 1	267.72		10	5.0	4/1/2012	100000.0	8/2/2012
Copper	CU	ICP	OPTIMA ICP 1	324.75		25	2.0	4/1/2012	40000.0	8/2/2012
Lead	PB	ICP	OPTIMA ICP 1	220.35		3	20.0	4/1/2012	300000.0	8/2/2012
Mercury	HG	CVA	CETAC MERCURY	253.70		0.2	0.1	4/1/2012		
Nickel	NI	ICP	OPTIMA ICP 1	231.60		40	10.0	4/1/2012	100000.0	8/2/2012
Selenium	SE	ICP	OPTIMA ICP 1	196.03		5	50.0	4/1/2012	20000.0	8/2/2012
Silver	AG	ICP	OPTIMA ICP 1	328.07		10	3.0	4/1/2012	5000.0	8/2/2012
Thallium	TL	ICP	OPTIMA ICP 1	190.80		10	50.0	4/1/2012	30000.0	8/2/2012
Zinc	ZN	ICP	OPTIMA ICP 1	206.20		20	10.0	4/1/2012	100000.0	8/2/2012

FORM X/XII

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51

8/1/2012

IEC DATE:

ANALYTICAL RESOURCES INCORPORATED

INSTRUMENT ID: OPTIMA ICP 1

	MAN BLENGING	₹	AS	BA	BE	క	8	8	¥5	B3	
Aluminum	308.22	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.00000000	0.0000000	0.000000.0	0.000000.0
Antimony	206.84	0.000000.0	0.000000.0	0.00000000	0.000000.0	0.00000000	0.000000.0	0.000000.0	15.1857000	0.000000.0	0.1040430
Arsenic	188.98	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.00000000	0.000000.0	-1.1822900	1.0591800	0.000000.0	0.000000.0
Barium	233.53	0.000000.0	0.00000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	-0.1688060	0.000000.0	0.000000.0	0.0462923
Beryllium	313.04	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.00000000	0.000000.0	0.000000.0	0.00000000	0.0000000	0.000000.0
Cadmium	228.80	0.000000.0	2.3634000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.1134410	0.000000.0	0.000000.0	0.000000.0
Calcium	317.93	0.000000.0	0.0000000	0.00000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000	0.000000.0	0.000000.0
Chromium	267.72	0.000000.0	0.000000.0	0.0277924	0.000000.0	0.000000.0	0.000000.0	-0.1702670	0.000000	0.000000.0	0.0000000
Cobalt	228.62	0.000000.0	0.000000.0	0.3341190	0.000000.0	0.000000.0	0.000000.0	0.000000.0	-0.0341026	0.000000.0	0.0115541
Copper	324.75	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	-0.3361900	-0.0466820	0.000000.0	-0.0964768
Iron	273.96	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.7651920	0.000000.0	0.000000.0
Lead	220.35	-0.3512640	0.000000.0	0.000000.0	0.000000.0	-0.0256242	0.000000.0	0.1563080	-2.3759900	0.8342190	0.0726674
Magnesium	279.08	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.000000.0	0.000000.0	-1.1866700	-1.0216800	0.000000.0	0.7040250
Manganese	257.61	0.0068205	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.0051237
Molybdenum	m 202.03	-0.0208471	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.0933245	0.000000.0	0.000000.0
Nickel	231.60	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Potassium	766.49	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Selenium	196.03	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.4183610	0.000000.0	0.000000.0	0.000000.0
Silicon	288.16	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	-3.4540100	0.000000.0	-1.0020900	0.000000.0	0.000000.0
Silver	328.07	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.0223663	0.000000.0	0.000000.0	0.0000000	0.000000.0	-0.0330154
Sodium	589.59	0.000000.0	0.000000.0	0.000000.0	0.000000.0	4.4431000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Thallium	190.80	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	6.8157000	0.3674950	0.000000.0	0.000000.0
Tin	189.93	0.000000.0	0.000000.0	0.000000.0	0.000000.0	-0.3571400	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Titanium	334.90	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.0490253	0.000000.0	0.000000.0	0.2444290	0.000000.0	0.000000.0
Vanadium	292.40	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	-7.0524000	0.000000.0	0.1165860
Zinc	206.20	0.000000.0	0.000000.0	0.00000000	0.000000.0	-0.0214985	0.000000.0	0.00000000	0.7289660	0.000000.0	0.000000.0

FORM XI

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51

INSTRUMENT ID: OPTIMA ICP 1

8/1/2012

IEC DATE:

ANALYTE	WAVELENGTH	MG	MN	OM.	IN	PB	SB	TI	TL	٥	ZN
Aluminum	308.22	0.000000.0	0.000000.0	25.3743000	0.000000.0	0.000000.0	0.000000.0	2.2001400	0.000000.0	15.3248000	0.000000.0
Antimony	206.84	0.0000000	0.000000.0	1.3316900	-0.3291700	0.000000.0	0.000000.0	-1.5094000	0.000000.0	-3.7687600	0.9674010
Arsenic	188.98	0.000000.0	0.000000.0	3.2754400	0.000000.0	0.000000.0	0.000000.0	-2.1487000	0.000000.0	0.2373010	0.000000.0
Barium	233.53	0.000000	0.000000.0	-0.0676563	0.1487540	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.4251790	0.000000.0
Beryllium	313.04	0.000000	0.0000000	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.0161120	0.000000.0	2.5849600	0.000000.0
Cadmium	228.80	0.000000	0.000000.0	0.0000000	-0.2763290	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.0435241	0.000000.0
Calcium	317.93	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Chromium	267.72	-0.0282409	0.2350890	0.1566040	0.000000.0	0.000000.0	0.000000.0	0.0287539	0.000000.0	0.1196170	0.000000.0
Cobalt	228.62	0.000000.0	0.000000.0	-0.1973550	0.1098840	0.000000.0	0.000000.0	1.7517700	0.000000.0	0.000000.0	0.000000.0
Copper	324.75	0.000000.0	0.000000.0	0.2757360	0.000000.0	0.000000.0	0.000000.0	0.2149870	0.000000.0	0.000000.0	0000000.0
Iron	273.96	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.00000000	0.000000.0	0.000000.0	0.000000.0
Lead	220.35	0.0000000	0.000000.0	-0.2855620	0.1706620	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Magnesium	279.08	0.000000.0	0.000000.0	-2.0298600	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Manganese	257.61	0.000000.0	0.000000.0	0.000000.0	0.000000.0	-0.2307900	0.000000.0	0.000000.0	0.000000.0	-0.0231031	0000000.0
Molybdenum	m 202.03	0.0074768	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.1048000
Nicke1	231.60	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.000000.0	-0.6505180	0.000000.0	0.5517490	0.000000.0	0.000000.0
Potassium	766.49	0.0000000	0.0000000	0.00000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Selenium	196.03	0.0000000	0.000000.0	0.000000.0	1.3045900	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Silicon	288.16	-0.1271090	0.000000.0	-1.7127900	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Silver	328.07	0.000000	0.1914050	0.1812780	0.000000.0	0.00000000	0.000000.0	-0.0355721	0.000000.0	-0.2667920	0.000000.0
Sodium	589.59	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.000000.0	0.0000000	227.0360000	0.000000.0	0.0000000 342.7190000	42.7190000
Thallium	190.80	0.0000000	1.9622100	-2.1053700	0.000000.0	0.000000.0	0.000000.0	1.4997300	0.000000.0	5.6218000	0.000000.0
Tin	189.93	-0.0404347	0.000000.0	0.0000000	0.000000.0	0.000000.0	-0.4036970	-0.4257350	0.000000.0	0.000000.0	0.000000.0
Titanium	334.90	0.000000.0	0.000000.0	0.9908490	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Vanadium	292.40	0.0000000 -0.143425	-0.1434250	-6.5129600	0.000000.0	0.000000.0	0.000000.0	0.8061690	0.000000.0	0.000000.0	0.000000.0
Zinc	206.20	0.000000.0	0.000000.0	0.2750230	0.000000.0	-0.0830846	0.000000.0	0.00000000	0.000000.0	0.000000.0	0.000000.0

Preparation Log

CLIENT: Anchor QEA LLC ANALYSIS METHOD: ICP

PROJECT: Central Waterfront S ARI PREP CODE: SWC

SDG: VP51 PREPDATE: 10/30/2012

CLIENT ID	ARI ID	MASS (g)	INITIAL VOLUME (ml)	FINAL VOLUME (mL)
CWSI-07-2-4	VP51A	1.089	0.0	50.0
CWSI-07-2-4D	VP51ADUP	1.088	0.0	50.0
CWSI-07-2-4S	VP51ASPK	1.085	0.0	50.0
CWSI-05-2-4	VP51B	1.064	0.0	50.0
CWSI-05-7-9	VP51C	1.042	0.0	50.0
CWSI-05-12-14	VP51D	1.041	0.0	50.0
CWSI-06-8-10	VP51E	1.096	0.0	50.0
CWSI-06-12-14	VP51F	1.017	0.0	50.0
PBS	VP51MB1	1.000	0.0	50.0
LCSS	VP51MB1SPK	1.000	0.0	50.0

UDE1 GRITH

Preparation Log

CLIENT: Anchor QEA LLC ANALYSIS METHOD: CVA

PROJECT: Central Waterfront S ARI PREP CODE: SMM

SDG: VP51 PREPDATE: 10/30/2012

CLIENT ID	ARI ID	MASS (g)	INITIAL VOLUME (ml)	FINAL VOLUME (mL)
CWSI-07-2-4	VP51A	0.215	0.0	50.0
CWSI-07-2-4D	VP51ADUP	0.215	0.0	50.0
CWSI-07-2-4S	VP51ASPK	0.216	0.0	50.0
CWSI-05-2-4	VP51B	0.271	0.0	50.0
CWSI-05-7-9	VP51C	0.222	0.0	50.0
CWSI-05-12-14	VP51D	0.235	0.0	50.0
CWSI-06-8-10	VP51E	0.273	0.0	50.0
CWSI-06-12-14	VP51F	0.272	0.0	50.0
PBS	VP51MB1	0.200	0.0	50.0
LCSW	VP51MB1SPK	0.200	0.0	50.0

UP54 : 001 75

××

××

×× × × × × ××

×× × ×

××

××

××

××

1.00 13324 1.00 13384 1.00 13444 1.00 13510 1.00 13572 1.00 14032 1.00 14092 1.00 14152 1.00 14212 1.00 14272

1.00 13264

Analysis Run Log

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51

INSTRUMENT ID:

1.00 11140 1.00 11180

1.00 11081

DIL. TIME

H

CLIENT ID

1.00 11265

1.00 11302

ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ

ZZZZZZ ZZZZZZ

1.00 11224

S4

1.00 11362 1.00 11422 1.00 12012

1.00 12073 1.00 12134 1.00 12185

22222

ZZZZZZ ZZZZZZ

> ZZZZZZ ZZZZZZ

ZZZZZZ ZZZZZZ ZZZZZZ

1.00 11482 1.00 11542 1.00 12245 1.00 12305 1.00 12365 1.00 12425 1.00 12495 1.00 12555 1.00 13030 2.00 13090 2.00 13150 1.00 13202

ICSABI

ICSAB ICSA

ICSAI

CRII

CRI

ICV ICB

ICV ICB

SO

VP23MB2

22222 ZZZZZZ

CCB

CCV

CCB1

CCV1

V093MB V093H VP23I VP23J VP23K

> ZZZZZZ ZZZZZZ ZZZZZZ 22222 ZZZZZZ ZZZZZZ ZZZZZZ

OPTIMA ICP 1

START DATE:

11/1/2012

	ZN	×	>	۲				×	×	×	×	×	×	×	×			
. 01	>																	
013	Þ																 	
11/1/2012	뒱	×	>	4				×	×	×	×	×	×	×	×			
/1	I						 											
11	25	L																
	SI	L																
DATE:	SE	×	>	4				×	×	×	×	×	×	×	×			
DA	SB	×		×	;			×	×	×	×	×	×	×	×			
END	23	×	>	۲				×	×	×	×	×	×	×	×			
뎚	H	×	>	٤				×	×	×	×	×	×	×	×			
1	2	L				 												
	Q X	L				 				****						 		
	MIN MIO NA NI PB					,												
	SE SE															 		
	ĸ																	
	HG																	
ICP	CO FE						 										 	
ĭ		×	×					×	×	×	×	×	×	×	×		 	
	క్ర	×	×				 	×	×	×	×	×	×	×	×			
HC	ន																	
METHOD:	8	×	×					×	×	×	×	×	×	×	×			
_	5																	
	H	×	>	4				×	×	×	×	×	×	×	×			
21	Ħ																	
01	ф	_																
IP110121	AL AS	×	>	4			 	×	×	×	×	×	×	×	×			
	Į.																 	
D	AG.	×	×	•			 	×	×	×	×	×	×	×	×		 	
RUNID:	8																	
RI	æ																	
		ı																

ZZZZZZ

VP23HSPK

ccv2 CCB2 VQ16MB2

ZZZZZZ ZZZZZZ

CCB

CCV

VQ25MB

VQ16L

ZZZZZZ

VP23HDUP

VP23H

VP23L

INCORPORATED RESOURCES (ANALYTICAL /

Analysis Run Log

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51 CLIENT ID

RUNID: IP110121 INSTRUMENT ID:

8

ð

HE

A

Ø

AG AL AS

%R

DIL.

1.00 14452 1.00 14512 1.00 14572

VQ16KSPK 7Q25ADUP

7<u>0</u>16K

ZZZZZZ 222222 22222 ZZZZZZ ZZZZZZ ZZZZZZ

ZZZZZZ

1.00 14392

1.00 14332

VQ16KDUP

OPTIMA ICP 1

METHOD: ICP

11/1/2012 DATE: END MO NA NI PB R MG MN BG CO CR CU FE

S S SB

SN TI

Z

>

Þ Ħ ××

 \times \times

 \times

× ×

××

××

××

××

××

2.00 15553 2.00 16013 2.00 16072

ZZZZZZ ZZZZZZ 1.00 16131 1.00 16191 1.00 16241 1.00 16301

VQ16MB2SPK

ZZZZZZ

ZZZZZZ

ZZZZZZ

CCV

CCB

20

VQ25MBSPK

CCV4 CCB4

2.00 15494

1.00 15093 1.00 15153 1.00 15214 2.00 15273 2.00 15333 2.00 15392 2.00 15435

VP23MB2SPK

VP40MB1

ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ 22222

CCB

CCV

CCB3

CCV3

VP41A VP41B VP41C VP41D VP41E VP40B VP40C

VQ25ASPK

VQ25A

1.00 15032

× ×

× ×

 \times \times \times \times \times

 \times \times \times \times \times

 \times \times \times \times

× ×

××

× ×

 \times \times \times

1.00 16581

5.00 17041

1.00 16521

×

×

×

× \times \times ×

× \times \times

× ×

 \times \times

 \times \times \times \times \times

×

1.00 16374 1.00 16441

SO 23

 \times \times \times \times \times

 \times \times

 \times \times

 \times \times

××

 \times \times

××

××

××

××

××

××

××

××

2.00 17103 2.00 17163 2.00 17222

VP51MB1

VP51B

CWSI-05-2-4

ZZZZZZ 22222

VP44MB

ZZZZZZ

CCB5

CCV5

CCV CCB 2.00 17340

5.00 17391

JP44ADUP VP40ASPK

2.00 17281

VP40ADUP

VP40A

5.00 17453 5.00 17515

2.00 17581

VP40MB1SPK

ZZZZZZ

ZZZZZZ

VP44ASPK

VP44A

ZZZZZZ

ZZZZZZ

11/1/2012

START DATE:

UP51 00177

ZZZZZZ

Analysis Run Log

QEA LLC CLIENT: Anchor Central Waterfront S PROJECT:

SDG: VP51

START

DATE:

Z

>

Þ

×××××××××

11/1/2012 11/1/2012 Ħ SN TI SI DATE: SE SB END 图 H ş Ş MG MN ĸ ĦĠ Ä METHOD: ICP OPTIMA ICP 1 B క 8 ð 置 ā RUNID: IP110121 INSTRUMENT ID: Д AS Ä AG 8R

××××××××× ×× \times \times \times \times \times \times \times \times \times \times \times × × × × × × × ×× × \times \times \times \times ×× \times \times \times \times \times \times \times \times × × × × ×× × × × × × × × ×× \times \times \times \times \times \times \times ×× ××××××××× × × \times \times \times × × ×× \times \times \times \times \times \times \times \times \times 2.00 18220 2.00 18280 2.00 18393 2.00 18570 1.00 19030 2.00 19093 1.00 19144 2.00 20035 2.00 20100 1.00 18041 1.00 18102 2.00 18162 2.00 18334 2.00 18454 2.00 18514 1.00 19204 1.00 19264 1.00 19324 2.00 19384 1.00 19444 1.00 19511 1.00 19573 2.00 20162 1.00 20222 DIL. VP51MB1SPK VP92MBSPK VP40APOST VP51ADUP **VP51ASPK** VP92ADUP VP92ASPK H VP83MB VP92MB VP51F VP83D VP51D VP51E VP51A VP92B VP83B VP83C VP92A VP51C VP29N CCB7 CCV7 CCB6 CCV8 CCV6 CWSI-05-12-14 CWSI-06-12-14 CWSI-06-8-10 CWSI-07-2-4D CWSI-07-2-4S CWSI-07-2-4 CWSI-05-7-9 CLIENT ID ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ LCSS CCB CC CCV CCB CCV

××

×× ×× ×× ×× ×× ×× ×× ×× ×× 1.00 20282 1.00 20343 1.00 21175 1.00 20402 1.00 20462 1.00 20523 1.00 20583 1.00 21043 1.00 21111 1.00 21240 1.00 21301

××

VP83MBSPK VP81MBSPK

ZZZZZZ

VP83ASPK

VP83ADUP

VP83E

VP83A

VP81MB

ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ

CCB

CCB8

VP81A VP81B

Analysis Run Log

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51 CLIENT ID

RUNID: IP110121 INSTRUMENT ID:

O.	>			
01,	Þ			
/2	Ţ		×	×
/1	II			
11	NS NS			
	SI			
TE	S	L	×	×
	SB	×		×
Š	PB			×
딥	N		×	×
	Ä			
	Ş			
	Ž			
	Ä			
	ĸ			
	ĦĞ			
CP	五			
ĭ	8	×	×	×
Ö	క్ర		×	×
J.HC	8			
MEJ	8		×	×
	5			
	田民		×	×
21	Ħ			
101	æ	<u> </u>		
P11	AS		×	×
	¥			
0	AG		×	×
RUNI	8. R			
	RUNID: IP110121 METHOD: ICP END DATE: 11/1/2012	IP110121 METHOD: ICP END DATE: 11/1/2012 AL AS B BA BE CA CD CO CR CU FE HG K MG MN MO NA NI PB SB SE SI SN TI TL U	IP110121 METHOD: ICP END DATE: 11/1/2012 AL AS B BA BE CA CD CO CR CU FE HG K MG MN NO NA NI PB SB SE SI SN TI TL U	IP110121 METHOD: ICP

V ZN

 \times \times \times

1.00 21413 2.00 21361 DIL. TIME

VP51APOST

CWSI-07-2-4A

CC CCB

CCV9 CCB9

ARI ID

Analysis Run Log

CLIENT: Anchor QEA LLC

PROJECT: Central Waterfront S

SDG: VP51

RUNID: HG110201 INSTRUMENT ID:

TIME

DIL.

ARI ID

CLIENT ID

CETAC MERCURY METHOD: CVA FR AG AL AS B BA BE CA CD CO CR CUFE HG K MG MN MO NA NI PB SB SE SI SN TI TL U V ZN

START DATE:

11/2/2012

END DATE: 11/2/2012

××××××××××××××××××××××××××××××××××××××	< ×
1094 11125 111174 111174 11174 11174 11177 11177 11177 11177 11177 11177 11177 11177 11177 11177 11177 11177 11177 11177 11177 117	114
1.00 11094 1.00 111125 1.00 111135 1.00 111131 1.00 111393 1.00 11391 1.00 11391 1.00 11391 1.00 11391 1.00 11391 1.00 11391 1.00 11454 1.00 11453 1.00 11533 1.00 11533 1.00 11533 1.00 11533 1.00 11533 1.00 11533 1.00 11533 1.00 11533 1.00 11533 1.00 11533 1.00 11533 1.00 11533 1.00 11533	1.00 12114 1.00 12114
	.0.1
K K	
1.1.SP 1.1.SP 1.1.SP 1.1.SP	
\$0.1 \$0.5 \$1.2 \$2.5 \$2.5 \$2.5 \$2.6 \$2.6 \$2.7 \$2.7 \$2.7 \$2.7 \$2.7 \$2.7 \$2.7 \$2.7	, m
\$0.1 \$0.5 \$0.1 \$0.5 \$1 \$2 \$2 \$2 \$3 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10	CCB3
	-
1	
-2-4 -2-4 -12-12-	
S0 S0.1 S0.5 S1 S2 S5 S10 ICW ICW ICW ICWSI - 07 - 2 - 4 CWSI - 07 - 2 - 4 CWSI - 07 - 2 - 4 CWSI - 07 - 2 - 4 CWSI - 07 - 2 - 4 CWSI - 05 - 12 - 14 CWSI - 06 - 12 - 14 ZZZZZZ ZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ	
	CCB
S0.1 S0.1 S0.5 S1.2 S2.3 S2.3 S2.3 S2.3 S2.3 S2.3 S2.3 S2	1 (

FORM XIV

Total Solids

ARI Job ID: VP51

VP51:00181

Volatiles Total Solids-voats

Data By: Pat Basilio Created: 11/5/12

6. VP51F

12-21319

Worklist: 1272 Analyst: PAB Comments:

Oven	ID:	Balance	e ID:

Samples In: Date:_____ Time:____ Temp:___ Analyst:____ Samples Out: Date:_____ Time:____ Temp:____ Analyst:____ Tare Wt Wet Wt Dry Wt ARI ID (g) (g) (g) % Solids * 79.60 1. VP51A 12-21314 2. VP51B 12-21315 3. VP51C * 76.00 12-21316 4. VP51D * 80.90 12-21317 5. VP51E * 61.40 12-21318

_____* 79.70

Worklist ID: 1272 Page: 1
* - VOA TS Copied From BETX TS
% - VOA TS Copied From Metals TS
\$ - VOA TS Copied From Extraction TS

BETX/TPHG Total Solids-betxts Data By: Jonathon L. Walter Created: 11/3/12

12-21319

Worklist: 766 Analyst: JLW Comments:

Oven ID:				Balance	ID:	
Samples In:	Date:_	Tim	ne:	Temp:	Analyst:	_
Samples Out:	Date:_	Tim	ne:	Temp:	Analyst:	_
ARI ID	Tare Wt (g)	Wet Wt (g)	Dry Wt (g)	% Solid	s	
1. VP51A 12-21314				<u> </u> % 79.6		
2. VP51B 12-21315		-		<u></u> % 83.5		
3. VP51C 12-21316				% 76.0		
4. VP51D 12-21317				<u></u> % 80.9		
5. VP51E 12-21318		_		<u></u> % 61.4		
6. VP51F				% 79.7		

Worklist ID: 766 Page: 1
* - BETX TS Copied From VOA TS
% - BETX TS Copied From Metals TS
\$ - BETX TS Copied From Extraction TS

Extractions Total Solids-extts

CWSI-06-12-14

Data By: Tarry Hawk Created: 11/ 2/12

Worklist: 562
Analyst: RVR
Comments:

NR

Cheronne

Balance ID: Oven ID: Date: ____ Time: ___ Temp: ___ Analyst: Samples In: Date:_____ Time:____ Temp:___ Analyst:____ Samples Out: ARI ID ARI ID Tare Wt Wet Wt Dry Wt CLIENT ID (g) (g) (g) % Solids Hq 1. VP51A 1.16 12.09 9.94 80.3 NR 12-21314 CWSI-07-2-4 2. VP51B 1.17 11.02 9.18 81.3 12-21315 NR CWSI-05-2-4 3. VP51C 1.16 10.81 8.84 79.6 NR 12-21316 CWSI-05-7-9 4. VP51D 1.17 10.54 8.70 80.4 NR 12-21317 CWSI-05-12-14 5. VP51E 1.17 11.18 7.29 61.1 NR 12-21318 CWSI-06-8-10

6. VP51F 1.14 11.56 9.78 82.9 12-21319

Created: 11/ 2/12 Comments: RIZ Oven ID: Balance ID: **B1392 9800**2 Date: $\frac{1}{2/12}$ Time: $\frac{16.07}{16.07}$ Temp: $\frac{104}{104}$ Analyst: $\frac{7}{104}$ Samples In: Date:11/05/12 Time: 06'15 Temp: 109 Samples Out: Analyst: Tare Wt Wet Wt Dry Wt ARI ID CLIENT ID (g) (g) % Solids рН (g) 12.09 116 1. VP51A NR 12-21314 CWSI-07-2-4 1.17 11.02 2. VP51B NR 12-21315 CWSI-05-2-4 10.81 1,16 3. VP51C NR 12-21316 CWSI-05-7-9 10.54 Lit 4. VP51D ΝR 12-21317 CWSI-05-12-14 11.18 1.17 5. VP51E NR 12-21318 CWSI-06-8-10 11.56 6. VP51F

Worklist: 562

NR

Analyst: TH

Extractions Total Solids-extts

Data By: Tarry Hawk

12-21319 CWSI-06-12-14

> Worklist ID: 562 Page: 1

> > UDE1

Solids Data Entry Report Date: 10/31/12 Checked by: $\frac{10}{2}$ Date: $\frac{10}{2}$

Solids Determination performed on 10/30/12 by NB

JOB	SAMPLE	CLIENTID	TAREWEIGHT	SAMPDISH	DRYWEIGHT	SOLIDS
VP51	A	CWSI-07-2-4	0.992	10.897	8.873	79.57
VP51	В	CWSI-05-2-4	0.991	10.183	8.663	83.46
VP51	C	CWSI-05-7-9	0.997	10.162	7.966	76.04
VP51	D	CWSI-05-12-14	0.978	10.512	8.688	80.87
VP51	E	CWSI-06-8-10	0.994	10.274	6.687	61.35
VP51	F	CWSI-06-12-14	1.018	10.734	8.764	79.72

Analytical Resources, Incorporated Analytical Chemists and Consultants

Total Solids Bench Sheet

Laboratory Section METALS

Oven Identification: 014	Balance ID:	B116132369
--------------------------	-------------	------------

Samples in Oven: Date: 10-30-12 Time: 1220 Temp: 109°C Analyst: 18

Removed from Oven: Date: 10-31-12 Time: 0145 Temp: 10-1-2 Analyst: (3)

	ARI Sample	· ID	Tare Weight (g)	Tare + Sample Wet (g)	Tare + Sample Dry (g)	Date & Time Last Weight	Final Weighting >12 hrs ¹
	VP5i	A	0.992	10.897	4,873	,	j
T	i/	B	C.991	10.183	7.66 }	, , , , , , , , , , , , , , , , , , , ,	<u> </u>
r	l;	, <u>-</u>	0.997	10.162	7-166		
r	l)	D	0.978	10.512	8.088		1
r	И	E	0.994	10.274	6.687		i
	1.	F	1.018	10.734	50.764	¥a.	,
1							
T							
Ī							
				NB 10-30-12			
					ļ		
Ī							
						1	
						-	\
į.							
;							2 1 104°C < 12

1) Place a check mark in this column if samples have dried > 12 but < 24 hours. When samples have been at 104°C < 12 hours, constant weight must be verified as described in SOP 10023S. Use a 2nd bench sheet for additional weightings.

5050F

Page 05883

Revision 003 11/20/09

Metals Raw Data Run Logs, Calibrations, and Raw Data

ARI Job ID: VP51

uper: cores

5049F

Corrective Actions Inorganic Analyses

Criteria Flagged:		ARI Job No.:	UP51
Unacceptable Blank:	,	Date of Event:	11-1-12
Unacceptable Duplicate:		Client ID:	Anchor
Unacceptable Spike:		Method/Element:	ICP
Unacceptable Reference:		Prep Code:	SWC
VP51	nmended Corrective Action A Dup Zn high 1 in Sample = 0.92 ppn	2 RPD	
	15pk-See attelea	l - Post-spik.	e Olc
Samples Affected:			
Corrective Action Taken			
	Send	DD 11/5	/12
	Λ.I.	h /	, (-
Analyst Initials: Date:	11-2-12	Supervisor: Date:	
	11-0-1-		

upsi paise

Revision 007 6/11/10

DUPLICATION: DUPP BKGD SPIKE RECOVERY: BKGD VOLUME 1.08 1.089 1.00 1	אין אין פא פאן אין אין אין אין אין אין אין אין אין א					-			
Full	DUPLICATION	:NC			SPIKE REC	OVERY:			
Mail		DUP	BKGD		The second secon	SPIKE	BKGD		
MAP WAT 1,088 1,088 1,089 SAMP WAT 1,086 1,089 EMENT DUP % RPD ELEMENT SPIKE BKGD SPKD CONC mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 0.0111 0.09837 12.28 2.082 0 0.5 mg/L mg/L As 2.082 0 0.5 0 0.5 mg/L mg/L As 2.082 0 0.5 0 0.5 0 0.5 0 0 0.5 0 0.5 0 0.5 0	VOLUME	100	100		VOLUME	100	100		
EMENT DUP BKGD % RPD ELEMENT SPIKE BKGD SPKPD CONC mg/L 0 #DIV/IOI Ag 0.5064 0.5 </td <td>SAMP WT</td> <td>1.088</td> <td>1.089</td> <td></td> <td>SAMP WT</td> <td>1.085</td> <td>1.0890</td> <td></td> <td></td>	SAMP WT	1.088	1.089		SAMP WT	1.085	1.0890		
March Marc	TIATERIT	2	00/10	6	F14141	ראומט	000		70010
1.07		100	DNGD	0 1 2 2 8		SPINE ma''	שטעם	SPAD CONC	۸ ۲ ۲ ۲
0.111 0.09837 12.25 As 2.082 0 2 #INVOID AI B 0.04951 0.0017 0.5 #INVOID Ca 0.4951 0.0028 0.5 0.00287 0.00236 19.59 Cd 0.4951 0.0017 0.5 #INVOID Ca 0.4939 0.00236 0.5 0.2739 0.2855 15.46 Cr 0.9169 0.2859 0.50 #INVOID Fe 0.9169 0.2859 0.50 #INVOID MA 0.9169 0.2859 0.50 #INVOID MA 0.9169 0.2955 0.5 #INVOID MA 0.9169 0.2955 0.5 #INVOID MA 0.9169 0.2955 0.5 #INVOID MA 0.9169 0.2955 0.5 #INVOID MA 0.9169 0.2955 0.5 #INVOID MA 0.9169 0.2959 0.50 #INVOID MA 0.9169 0.2959 0.50 #INVOID MA 0.9169 0.2959 0.50 #INVOID MA 0.9169 0.2959 0.50 #INVOID MA 0.9169 0.2959 0.50 #INVOID NA 0.9169 0.2959 0.50 #INVOID SE 1.860 Pb 2.123 0.2152 2 #INVOID SE 1.860 Pb 2.123 0.2152 2 #INVOID SE 1.860 PB 2.123 0.2152 2 #INVOID SE 1.858 0.5 #INVOID SE 1.858 0.5 #INVOID SE 1.858 0.5 #INVOID SI 1.747 0 0.5 #INVOID NA 0.9228 35.29 2 #INVOID NA 0.9228 0.55	~ <		-	10/7/10#	ν ν	IIIIJ/L			0.707
0.1111 0.09837 #DIVIOI As 2.082 0 2 #DIVIOI Ba 0.4951 0.05 2 #DIVIOI Ba 0.4951 0.0017 0.5 #DIVIOI Ba 0.4951 0.0017 0.5 #DIVIOI Ca 0.4939 0.00236 0.5 #DIVIOI Co 0.9158 0.2955 0.5 #DIVIOI Co 0.9158 0.2955 0.5 #DIVIOI Fe 0.9169 0.2959 0.50 #DIVIOI Mo 0.9169 0.2959 0.50 #DIVIOI Mo 0.9169 0.2959 0.50 #DIVIOI Mo 0.9169 0.2959 0.50 #DIVIOI Mo 0.9169 0.2959 0.50 #DIVIOI Mo 0.9283 0.243 0.50 #DIVIOI Sh 0.415 0.243 0.5 #DIVIOI Sh 0.415 0.243 0.5	S - S	0	0	#01/\/0!	B -	0.5004	Σ		5.101
0.1111 0.09837 12.25 As 2.082 0 2 0.00149 0.0017 13.07 Be 0.4951 0.0017 0.5 0.00287 0.00286 19.59 Cd 0.4939 0.00236 0.5 0.02739 0.2855 19.59 Cd 0.9169 0.2855 0.5 4DIV/01 Fe C 0.9169 0.2855 0.5 4DIV/01 Fe 0.9169 0.2859 0.50 4DIV/01 Fe 0.9169 0.2859 0.50 4DIV/01 Fe 0.9169 0.2859 0.50 4DIV/01 Mo Mo 0.9169 0.2859 0.50 4DIV/01 Mo Mo 0.9169 0.2859 0.50 4DIV/01 Mo Mo 0.9169 0.2859 0.50 4DIV/01 Mo Mo 0.9169 0.2859 0.50 4DIV/01 Mo 4DIV/01 No 0.9169 0.2859 0	E .			#DIV/0i	A				0.0
#DIV/OI BB 0.4951 0.05 0.00149 0.0017 #J0V/OI BB 0.4951 0.0017 0.5 0.00287 0.00286 19.59 Cd 0.4939 0.00236 0.5 0.00287 0.00236 19.59 Cd 0.4939 0.00236 0.5 0.2739 0.2855 15.46 Cr 0.9158 0.2855 0.5 #DIV/OI K #DIV/OI K K 0.5 0.5 #DIV/OI MG #DIV/OI MG 0.5 0.5 0.5 #DIV/OI MG MD 0.2415 0.5 0.5 0.5 #DIV/OI MG MD 0.2415 0.5 0.5 0.5 #DIV/OI Sb 0.2415 0.5 0.5 0.5 0.5 #DIV/OI Sb 0.2415 0.5 0.5 0.5 0.5 #DIV/OI Sb 0.2415 0.5 0.5 0.5 0.5	As	0.1111	0.09837	12.25	As	2.082	0		1.40
Mathematical Control	В			#DIV/0i	8			0.5	0.0
0.00149 0.0017 13.07 Be 0.4951 0.0017 0.5 0.00287 0.00286 19.59 Cd 0.4939 0.00236 0.5 0.00287 0.00286 19.59 Cd 0.9158 0.055 0.5 0.0247 0.2865 4.20 Cu 0.9169 0.2859 0.5 4DIV/01 Fe 0.9169 0.2859 0.50 0.5 4DIV/01 K K 10 10 4DIV/01 Mo 0.9169 0.2859 0.50 4DIV/01 Mo 0.98 0.2859 0.05 4DIV/01 Mo 0.8283 0.243 0.5 4DIV/01 Sb 0.415 0 0 5 4DIV/01 Sb 0.415 0 0 6 4DIV/01 Sb 0.415 0 0 0 7 4DIV/01 Si 0.415 0 0 0 0 8	Ва			#DIV/0i	Ba			2	0.0
Mathematical Cartesian	Be	0.00149	0.0017	13.07	Be	0.4951	0.0017	0.5	98.7
0.00287 0.00236 19.59 Cd 0.4939 0.00236 0.5 0.3447 0.2955 15.46 Cr 0.9158 0.2955 0.5 0.2739 0.2859 4.20 Cu 0.9169 0.2859 0.50 0.2739 0.2859 4.20 Cu 0.9169 0.2859 0.50 MDIV/01 K K 10 10 #DIV/02 Mn 10 10 #DIV/01 Mn 0.8283 0.243 0.5 #DIV/02 Na 0.8283 0.243 0.5 #DIV/03 Na 0.8283 0.243 0.5 #DIV/04 Na 0.8283 0.243 0.5 #DIV/04 Na 0.8283 0.243 0.5 #DIV/04 Sb 0.415 0 2 #DIV/04 Sh 1.858 0 2 #DIV/04 Sh 1.858 0 2 #DIV/04 Sh <t< td=""><td>Ca</td><td></td><td></td><td>#DIV/0i</td><td>Sa</td><td></td><td></td><td>10</td><td>0.0</td></t<>	Ca			#DIV/0i	Sa			10	0.0
0.3447 0.2955 15.46 Cr 0.9158 0.2955 0.5 0.2739 0.2859 4.20 Cu 0.9169 0.2859 0.50 0.2739 0.2859 4.20 Cu 0.9169 0.2859 0.50 #DIV/OI Fe 0.9169 0.2859 0.50 #DIV/OI Mo 10 10 #DIV/OI NA 0.8283 0.243 0.5 #DIV/OI NA 0.8283 0.243 0.5 #DIV/OI NA 0.8283 0.243 0.5 #DIV/OI NA 0.8283 0.243 0.5 #DIV/OI Se 1.858 0 2 #DIV/OI Se 1.858 0 2 #DIV/OI Si 1.747 0 0.5 #DIV/OI Ti 1.747 0 0.5 #DIV/OI V 0 0 0.5 #DIV/OI V 0 0 0.5	PS	0.00287	0.00236	19.59	8	0.4939	0.00236	0.5	98.3
0.3447 0.2955 15.46 Cr 0.9158 0.2955 0.55 0.2739 0.2859 4.20 Cu 0.9169 0.2859 0.50 #DIV/OI Fe 0.9169 0.2859 0.50 2 #DIV/OI K M 10 10 #DIV/OI MA 0.8283 0.243 10 #DIV/OI Na 0.8283 0.243 0.5 #DIV/OI Na 0.8283 0.243 0.5 #DIV/OI Sb 0.415 0.5 #DIV/OI Sb 0.415 0.5 #DIV/OI Sc 1.860 2 #DIV/OI Sc 1.886 0 #DIV/OI Sc 1.886 0 #DIV/OI Sc 1.886 0 #DIV/OI Sc 1.886 0 #DIV/OI Sc 1.886 0 #DIV/OI Sc 1.747 0 #DIV/OI V	ය			#DIV/0i	ပိ			0.5	0.0
0.2739 0.2859 4.20 Cu 0.9169 0.2859 0.50 #DIV/0! Fe 0.9169 0.2859 0.50 #DIV/0! K 10 #DIV/0! Mn 10 #DIV/0! Mn 0.5 #DIV/0! Mn 0.5 #DIV/0! Na 0.5 #DIV/0! Na 0.8283 0.243 0.5 #DIV/0! Na 0.8283 0.243 0.5 #DIV/0! Na 0.8283 0.243 0.5 #DIV/0! Sb 0.415 0.5 2 #DIV/0! Sb 0.415 0.5 1 #DIV/0! Sc 1.858 0 2 #DIV/0! Sr 1.858 0 0 #DIV/0! Sr 1.858 0 0 #DIV/0! Sr 1.858 0 0 #DIV/0! Sr 1.858 0 0 #DIV/0!	ర	0.3447	0.2955	15.46	ప	0.9158	0.2955	0.5	124.3
#DIV/OI Fe To To To To To To To T	Cu	0.2739	0.2859	4.20	n _O	0.9169	0.2859		126.4
4 DIV/OI K 10 6 ABDIV/OI Min 10 10 ABDIV/OI Min 0.55 10 C.2833 0.243 15.41 Ni 0.8283 0.243 0.55 10 C.2591 0.2152 18.60 Pb 2.123 0.2152 2 10 C.2591 0.2152 18.60 Pb 2.123 0.2152 2 10 DIV/OI Sb 0.415 0.2152 2 10 DIV/OI Sb 0.415 0.2 2 2 DIV/OI Si 1.0 2 3 DIV/OI Si 1.0 0.5 4 DIV/OI Sr 0.5 0.5 5 DIV/OI Sr 0.5 0.5 4 DIV/OI Sr 0.5 0.5 5 DIV/OI Ti 1.747 0.5 6 DIV/OI V 0.5 0.5 7 DIV/OI Ti 0.5 0.5 8 DIV/OI Ti 0.5 0.5 <t< td=""><td>Fe</td><td></td><td></td><td>#DIV/0i</td><td>Fe</td><td></td><td></td><td>2</td><td>0.0</td></t<>	Fe			#DIV/0i	Fe			2	0.0
#DIV/0! Mg 10 #DIV/0! Mn 0.5 #DIV/0! Mo 0.5 #DIV/0! Na 0.243 #DIV/0! Na 0.243 0.2591 0.2152 18.60 Pb 2.123 0 #DIV/0! Sb 0.415 0 #DIV/0! Se 1.858 0 2 #DIV/0! Si 10 10 #DIV/0! Sr 0 0 2 #DIV/0! Si 0.5 0 0 #DIV/0! Sr 0.5 0 0 #DIV/0! Sr 0.5 0 0 #DIV/0! Sr 0.5 0 0 #DIV/0! Ti 1.747 0 0 #DIV/0! Ti 0 0 0 #DIV/0! Ti 0 0 0 #DIV/0! Ti 0 0 #DIV/0! V	¥			#DIV/0i	¥			10	0.0
#DIV/0! Mn 0.5 0.2833 0.243 15.41 Ni 0.8283 0.243 0.5 0.2833 0.243 15.41 Ni 0.8283 0.243 0.5 0.2591 0.2152 18.60 Pb 2.123 0.2152 2 0 4 DIV/0! Se 1.858 0 2 0 4 DIV/0! Si 10 2 0 0.5 0 0 0 4 DIV/0! Sr 17 1.747 0 0.5 0<	Mg			#DIV/0i	Mg			10	0.0
Mo Mo 0.55 0.2833 0.243 15.41 Ni 0.8283 0.243 10 0.2591 0.2152 18.60 Pb 2.123 0.2152 2 0 4DIV/0! Sb 0.415 0.5 2 0 4DIV/0! Si 10 2 4DIV/0! Sr 0.5 0.5 4DIV/0! Ti 1.747 0 2 5 4DIV/0! Ti 0.5 0 0 4DIV/0! Ti 1.747 0 2 0 5 4DIV/0! Ti 0.9228 0.55 0 0	Mn			#DIV/0i	M			0.5	0.0
0.2833 0.243 15.41 Ni 0.8283 0.243 10 0.2591 0.2152 18.60 Pb 2.123 0.2152 2 0 0.2591 0.2152 18.60 Pb 2.123 0.2152 2 0 0 4DIV/0! Se 1.858 0 2 0 4DIV/0! Si 10 0.5 4DIV/0! Sr 0.5 0.5 4DIV/0! Ti 1.747 0 2 5 4DIV/0! Ti 0.55 2 6 4DIV/0! Ti 1.747 0 2 7 4DIV/0! V 0.55 0.55 0.55	Mo			#DIV/0i	Mo			0.5	0.0
0.2833 0.243 15.41 Ni 0.8283 0.243 0.55 0.2591 0.2152 18.60 Pb 2.123 0.2152 2 0 0 #DIV/0! Se 1.858 0 2 4 MDIV/0! Si 10 2 0 2 5 MDIV/0! Sr 0.5 0.5 0 0 6 MDIV/0! Ti 1.747 0 0.5 0 7 MDIV/0! Ti 1.747 0 0.5 0 8 MDIV/0! Ti 1.747 0 0.5 0 1.317 0.9228 35.29 Zn 1.738 0.9228 0.5	Na			#DIV/0i	Na			10	0.0
0.2591 0.2152 18.60 Pb 2.123 0.2152 2 0 0 #DIV/0! Sb 0.415 0 2 0 0 #DIV/0! Si 0 2 0 #DIV/0! Sr 0.5 0 #DIV/0! Ti 0.5 0 #DIV/0! Ti 0 2 4 #DIV/0! Ti 1.747 0 2 4 #DIV/0! V V 0.55 2 5 Ti 1.747 0 0.55 6 #DIV/0! V 0 0.55 7 Ti 1.774 0 0.55	Z	0.2833	0.243	15.41	Z	0.8283	0.243		117.2
0 #DIV/0! Sb 0.415 0 2 0 0 #DIV/0! Se 1.858 0 2 4 #DIV/0! Si 10 10 5 #DIV/0! Sr 0.55 0.55 4 #DIV/0! Ti 0.5 0.5 5 #DIV/0! Ti 1.747 0 2 6 #DIV/0! V 0 2 0.55 7 #DIV/0! V 0 0.55 0.55	Pb	0.2591	0.2152	18.60	P ₀	2.123	0.2152		95.4
March Marc	Sb	0	0	#DIV/0i	Sb	0.415	0	2	20.8
#DIV/0 Si 10 10 10 10 10 10 10 10	Se	0	0	#DIV/0i	Se	1.858	0	2	92.9
#DIV/0 Sr 0.55 #DIV/0 Sr 0.5228 0.55 #DIV/0 Ti 2	Si			#DIV/0i	Si			10	0.0
#DIV/0 Sr 0.5 #DIV/0 Ti 2 2 #DIV/0 Ti 1.747 0 2 #DIV/0 V 0.9228 0.5	Sn			#DIV/0i	Sn			0.5	0.0
#DIV/0 Ti	Sr			#DIV/0i	જ			0.5	0.0
0 0 #DIV/0! Ti 1.747 0 2 #DIV/0! V 0.9228 35.29 Zn 1.738 0.9228 0.5	Τi			#DIV/0i	i=			2	0.0
1.317 0.9228 35.29 Zn 1.738 0.9228 0.5	F	0	0	#DIV/0i	F	1.747	0	2	87.4
1.317 0.9228 35.29 Zn 1.738 0.9228 0.5	>			#DIV/0i	>			0.5	0.0
	Zn	1.317	0.9228	35.29	Zn	1.738	0.9228	0.5	163.7

Analytical Resources, Incorporated Analytical Chemists and Consultants

SPIKING LOG

50.0

Sample ID VP51 ASPK MBISPK

Final Volume (Hg): 50.0 Final Volume

ICP-MS #2

ICP-MS #1

GFA

ICP No GFA

ICP Routine

Spike Solution:

Standard No.: 2977-9

名びつ

Prepcode:

10-30-12

Date:

Analyst:

ICP-MS Miperals	Element	Prepcode	Analysis	Stock Conc.	Stock Added	Std No.
25	Нg	SMX	CVA		0.05 2908-7	2908-7
	Hg MBSPK	SMM	CVA	1.0	0.10	0.10 2908-7
200	හි	Side	ICP	2000	0.10 2941-4	2941-4
	S		GFA	100		
	80		ICP	200		
200	Mo		ICP	200		
	Si		ICP	10000		
	S		ICP	200		
	ï		ICP	2000		
_						

25 25 25

As Ва Be

2

200 **7**

As Ва æ

200

200

 \vdash 0 \lor \checkmark

25

¥

2.0

ප 7

Ag

<u>.</u>

Vol Added (mL):

₹

200

200

₹

S

25 25 25 25

2.0

ટ 7

ပ္ပ ပ္ပ

000

1000

ပ္ပ ၓ ပိ ပ် ಪ e.

22

ς γ

ပိ

ပ်

20

8 7

S

20

ਹੋ æ

<u> </u>	
	Additional Elements:
-	Additiono

200

Std. No .			
Stock Added			
Stock Conc.			
Analysis			
Prepcode			
Element			
	 _	1	_

25

25

ട ₽ Š

1000

1000

29

ಜ 7 2000

Z

5

20

z -

ğ

¥

1000 900

1000

¥

1000

Σg 둘 Š

200

200

 \cup \circ z \circ \square

2

50 **7**

Std.	2					-	Y
Stock							
Stock	2000						
Analysis							
Prepcode Analysis							
Flement							
500	200		500				

25

8 25

Se

2

200

F

8

20

က်

%

9 Se F ⊃

8 8

7

Z

20 8

>

25 25

ź

8 S

	M. J. W. W. W.	
25	80	
>	Zn	

25

Digestion Log

Analyst:				Date:	10-30	0-12	Time:	48
Matrix: SOI	<u></u>	Block ID:	#2	Bloc	k Tem	o: <u>95°C</u>	Thermom	eter: <u>MP30</u>
ARI Sample ID	Btl #	pH<2	Prep Code: Initial Wt (g) Vol (mL)	Fi	nal (mL)	Prep Code: Initial Wt (g) Vol (mL)	Final Vol (mL)	Comments
VP5i A	7	_	1.089	50	. O			
" ADUP	7	_	1.088					
" ASPK	7		1.085					
" B	7	_	1.064					
" C	7		1.042					·
" D	7		1.041					
" E	7	_	1.096					
" F	7	_	1.017					
" MBI	_	-	•		1.			
" MBISPK				50	ن ،			
		/						
			/					
			^	13 10	-30-12			
			•					
								

Chemical/Reagent ID:

HNO₃: MP2371/17834 HCI: 17676 H₂O₂: 17845 Tube Lot #: 1205258

5061F

Page 22734

Version 005 1/10/12

corporated Consultants

Mercury Digestion Log

Prep Code:SMM		Matrix: _SOIL
Analyst:		Date: 10-30-12
Bath Temp: <u>92°C</u>	Start Time: <u>1307</u>	End Time: _/337

	·						155 Y
ARI Sample ID	Sample Bottle #	pH<2	Initial Weight (g) Volume (mL)	Final Volume (mL)	# KMnO ₄ Aliquots	CLP	Comments
VPSI A	7	-	0.215	50.0	11-09	YES	
" ADUP	7		0.215				
" ASPK	7	~	0.216				
" B	7	-	0.271				
" C	7	-	0.222		1		
" D	7	_	0.235		1		
" E	7	,	0.273		1		
" F	7	_	0.272		1		
" MBi		-	-		1		
" MBISPK		_		50.0	1		
						-	
		/					
			NB 10-30	-12			
A1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							

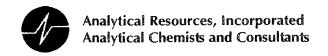
Chemical/Reagent ID:	
UNO . 57/20	· ・ ・

H₂SO₄: 176 7 7 HCI:

5% K2S2O8: MP2375 5% KMnO₄: <u>MP2376</u> Digest Tube Lot: <u>1205258</u>

5037F

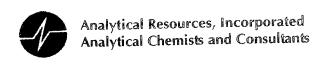
Page 12569


Revision 007 6/18/09

SAMPLE RUN LOG ICP-OES-01 Perkin Elmer OPTIMA 4300 Serial No. - 077N0060101

	300.000	سر بر سخانه ا
EC Date: <u>\$^-(-) }-</u>	Analysis Date: 11-1-12-	Analyst: Htt
B Data: 8-7-17-		Page: of

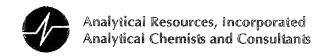
LR Date: \$\frac{\text{F}^2 - 12}{\text{All corrections made by enalyst unless otherwise noted.}}\$ Fight Data ARI Sample ID Code Dilution Comments			2 -12			Page:of
Edit Data ARI Sample ID Code Dilution Comments STD-C 2988-5 2987-13 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -	LR Date	:	- 16-			
Data ARI Sample 115 Code State			y analyst unless ouler wise notes.	Prep.		Comments
510-0 2788-5 2587-13 -1 -1 -1 -1 -15 -15 -15 -15			ARI Sample ID	Code	Dilution	
2987-13 -3 -4 -4 -15 -16 2986-1 -15 -16 2986-1 2988-1 2016	<u>Luso.</u>		GTD-O			2988-5
						6
-4 -15 7-16						1
22222 ICB Cu high 22222 ICBA Cu high ICBA			-3			
22222 ICB Cu high 22222 ICBA Cu high ICBA			- Lj			-15
22222 JGAB 22222 GGV			0/ -5			V-16
22222 JGAB 22222 GEV			77777 Tel			2986-1
22222 JGAB 22222 GGV		1	TC2			Carlish
22222 JOSAB 22222 COVI TCV TCB CRI TCSAB CCVI CCBI VCG3 MB Six 7 PE. Sample		2	71111 (50)			Carpiel
72222 JOSAB 722222 POVI 722222 POVI 7TO-0 TCV TCB CRI JCSAB CCVI CCBI VCG3 MB Six 7 PE. Sample		7	22222 CFI			Collins of the collin
22222 CCB			22222 JOBA		_	Cuhifh
TCB TCB TCSA TCSAB		7	22222 JOSAB			
TCB TCB TCSA TCSAB		2	ZZZZZ CCVI			
ICB CRI ICSA ICSAB CCVI CCGI VCG3 MB Sicc 2 PE. Sample						
ICB CRI ICSA ICSAB CCVI CCBI VCG3 MB Sicc 2 PE. Sample			510-0			
CRI TCSA ICSAB CCVI CCGI VCG3 MB2 IVMN CCB, Sample						
CRI ICSA ICSAB CCVI CCGI VP 23 MB2 IVMV CCB out - 24 VCG3 MB Sicc 2 PE. Sample						
ICSA ICSAB CCVI CCBI VCG3 MB2 IVMW CCBout - 24 VCG3 MB Six V PE. Sample						
ICSAB CCVI CCGI VP23 MB2 IVMV CCB-out - 24 VCG3 MB Six 2 PE. Sample	ļ					
CCVI CCBI VP 23 mB2 IVMV ccBout - 242 VCG3 mB Sicc 2 PE. Sample						
CCBI I P 23 MB2 IJMV CCB-out - 24 VCG3 MB Six 7 PE. Sample						SINOL
VOG3 MB2 WMW CCBount -292 VOG3 MB Six 7 PE. Sample						
VOG3 MB Six 2 PE. Sample				ism	λ)	cessont-2it
N N				i		
		- Burn				in u
1 and 1 and		V	/			CEBOURICE
VIP33 I WAN CCBOUTICE			1 1123 I	1/4:14	MAT	1 CENTER 1-5



SAMPLE RUN LOG ICP-OES-01 Perkin Elmer OPTIMA 4300 Serial No. - 077N0060101

IEC Date:	Analysis Date: _//- 1-12	Analyst: 56-
LR Date:		Page: <u></u> of <u>5</u>

		by analyst unless otherwise noted.			
Edit Label	Delete Data	ARI Sample ID	Prep. Code	Dilution	Comments
Label	Juli				
		VP23.T	WWW		CCB out-RR
		K		3	5
					
	9	<u> </u>			
		LIDIN		s	
1	1				
	'				
	V	U HOOK	<u> </u>		Ca Mn STL V Owenlas
		Cenz			<u> </u>
		CENT			A 13 8
	-				Mn high
		Var MBZ	DMN		,
			9		CCBOUT RR
	V	V@25 MB	-		C2130M 121
		Valo L			
		Kay			
		14			
		V KSPK			CORPUL TER SOK
		(1) 7 (1)	0 0000		CCB-PR
		V&Z5 ADW	LOMA	<u>'</u>	CCB - ICIC
		1 /			
	./	Ad			to sen it to peak
	1	1 ASPK		 	10,050 al ICPSPK
		VP23MB251		ļ	10,080 al ICPSOK V
		CC 13			
		CCB3			a
	V	UP40MB1	5236-	2.	coo out RR
	V	VP41 A	i		
	i	B			
	+ /			a .	
	1 4			SI /	


The second second

SAMPLE RUN LOG ICP-OES-01 Perkin Elmer OPTIMA 4300 Serial No. - 077N0060101

n <u>eesti</u> kk h and a	Analysis Date: 11-1-12	Analyst: 2
IEC Date:	Allalysis bate.	
LR Date:	α	Page: <u>23</u> of <u>5</u>

Edit abel	Delete Data	ARI Sample ID	Prep. Code	Dilution	Comments
		VP41D	500	2	cci out RR
		VE			Î.
		UP40 13			
		W C			
		Valembis	koma		pose in Tep-spic V
	l F	VOIS MBSOK	WAIN	1	VORSUM JEPSPK
		cevy			Zahigh En high
		CC34			Fa high
		CCB4 VP44 MB	LEN	5	(5000
		(P51 MB)	5150	2-	1370-3
		1 3		11	(0.00)
		VP40 ADus)	and the same of th	
		Î H			Sh low
		A-Spla	- 4	راد ا	Solow
		WPHY A Dul	LEN	15	y'
		A			
		1 A Spe	1		
		VP40 NBISPI	c 5wc	. 2-	~
-					
		CC 5 56			
		UP57 C.	Side	2	
		<u></u>			

SAMPLE RUN LOG ICP-OES-01 Perkin Elmer OPTIMA 4300

Serial No. - 077N0060101

IEC Dat	e:	Analysis Da	ate: _ <i>/</i> -	-772-	Analyst:	
LR Date	·		<i>;</i>		Page: 1 of 5	
All correc	tions made b	y analyst unless otherwise noted.	1 / 11-10	-17,		
Edit Label	Delete Data	ARI Sample ID	Prep. Code	Dilution	Comments	
· · · · · · · · · · · · · · · · · · ·		VP51 A Dup	Sic	- Oj-	En-Ligh XRPD	
			1	,	CAP	
		ASOK	27.	,	· Ch. Zahih Ross	
		# # # # # # # # # # # # # # # # # # #) a		
		VP29 N	TLIL	•		
		VP40APOST	Luic-	<i>}</i> 0	GOOD of TOP-AL C. DIGHT Sin	
		CCV E7			30100	
		C4369			Sp. Pk.	
	1 ₂	(P83 m3	TIJE		Co high PRC4Ba	
		VP 52 1943			701	
		<u> </u>		,), p.or		
	3/	VP63 B			RRAID COBORT	
	27,000	j C				
	y'	J D			1	
		617-92 its bull		2	Co high Esti	
				i	Cili	
		1 19716			, i	
		V NBSOK	1/	<u> </u>		
		(1267)			and an all and a second	
		CCBAT			il Co.	
		VISI NB	TIJC			
-			į.			
		13				
	i	18	1 1 1		1	

SAMPLE RUN LOG ICP-OES-01 Perkin Elmer OPTIMA 4300 Serial No. - 077N0060101

IEC Date):	Analysis Da	nte: <u>//- (</u>	-12	Analyst: Page:5 of5
LR Date:	:	Analysis Da	γ)		Page: of
All correct	tions made	by analyst unless otherwise noted. [11-1	-12	
Edit Label	Delete Data	ARI Sample ID	Prep.	Dilution	Comments
		VP83 ADup	TWE	ي	RR XIO CCBOUT
	/	A			
	√	Aspk			Ca, rig, Na 37LV
		V MBSPIL			Na high 100000 Ectsol
		VP81 MBSPK	V		1051 APOST GX 0.016415
		CCV 8 9			Mosnlow End DKG
		CB89			End Pks
			<u> </u>	<u> </u>	
	 				
		4			
		11-12			
		\			

5075F ICP-OES-01 Daily Run Log Page 08524

Revision 001 11/30/06

upsi aarga

Metals Data Review Checklist

Method: CP ICP-MS GFA CVA

Analysis Date: 11-1-12

Mine. 1	Analyst	Peer # 11-6-12	Comment
ogbook:			
Analyst, Date, Method info		/	
Sample ID's	/	/	
Standard/QC solution ID's recorded		/	
Prep codes	i.e.	/	
Dilution factors	1	_	
Crossouts/Corrections/Deletions		_	
Calibration:			
Blank & Standard intensities			
Standard deviations		-	
Curve fit		/	
Galibration Verification:			
ICV/CCV			Sex 15
ICB/CCB			Soular
Samples			
RSD's & SD's	(A 18 0 18 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Internal Standards		i	
Carry-over			Sec. 140
Method QC			
CRI/CRA			See log
ICSA/ICSAB		-	Saula:
Post Spikes/Serial Dilutions		/	(300)
Analytic Spikes	-		
Matrix QC:			
SRM/LCS			30. > 3
Matrix Spikes			Section CAFUP4
Matrix Duplicates			Size og CAF VPS
Method Blanks			Sec. 155 -ANTEL
Bata Distribution			
Requested elements/isotope identified			
Correct samples identified for distribution	n ./	1/	
Raw data match distributed data			
Data filename correct		+/-	
Necessary Analysis Notes and CAF's	S. T	 	VP40,0751

Metals Data Review 5073F

Revision 1 4/02/01

UDE1:00199

Nebulizer Parameters: Hg_ReAlign

Back Pressure Flow Analyte

All 0.55 L/min231.0 kPa

11/1/2012 10:08:55 AM Hg ReAlign... Actual peak offset (nm): 0.001

Drift (nm): -0.001 Slit adjustment: -4

Analysis Begun

Plasma On Time: 11/1/2012 9:01:02 AM Start Time: 11/1/2012 10:12:11 AM

Technique: ICP Continuous Logged In Analyst: metals Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\Administrator\Sample Information\CRISET.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Method Loaded

Method Name: ARIIEC6AN.552AS Method Last Saved: 8/1/2012 1:18:45 PM

IEC File: IEC48.iec MSF File:

Method Description: 12Axial Elements

Analyte	Calibration Equation	Processing	View	Internal Standard	IEC
Ag 328.068	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Al 308.215	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
As 188.979	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
В 249.677	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Ba 233.527	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Be 313.042	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Ca 317.933	Lin Thru 0	Peak Area	Radial	ScR 361.383	No
Cd 228.802	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Co 228.616	Lin Thru 0	Peak Area	Axıal	ScA 357.253	Yes
Cr 267.716	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Cu 324.752	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Fe 273.955	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
K 766.490	Lin Thru 0	Peak Area	Radial	ScR 361.383	No
Mg 279.077	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Mn 257.610	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Mo 202.031	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Na 589.592	Lin Thru 0	Peak Area	Radial	ScR 361.383	No
Na 330.237	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Ni 231.604	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Pb 220.353	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
Sb 206.836	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Se 196.026	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Si 288.158	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Sn 189.927	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Sr 421.552	Lin Thru 0	Peak Area	Radial	ScR 361.383	No
Ti 334.903	Lin Thru O	Peak Area	Radial	ScR 361.383	Yes
Tl 190.801	Lin Thru O	Peak Area	Axial	ScA 357.253	Yes
V 292.402	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Zn 206.200	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
ScA 357.253	Lin, Calc Int	Peak Area	Axial	n/a	n/a
ScR 361.383	Lin, Calc Int	Peak Area	Radial	n/a	n/a

Sequence No.: 1

Date Collected: 11/1/2012 10:12:18 AM Sample ID: Calib Blank 1

Data Type: Original

Autosampler Location: 1

Nebulizer Parameters: Calib Blank 1

Back Pressure Flow Analyte **A**11 231.0 kPa 0.55 L/min

Method: ARIIEC6AN.552AS Page 7 Date: 11/1/2012 11:12:11 AM

6.5 15.0 532.1 7.0 15.0 708.1

11/1/2012 10:41:16 AM aligned for analyte Mn 257.610

x viewing position set to 0.0 mm having Peak intensity 479258.8 for Radial viewing

Analysis Begun

Start Time: 11/1/2012 11:08:11 AM Plasma On Time: 11/1/2012 9:01:02 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\Administrator\Sample Information\CRISET.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1 Autosampler Location: 1

Sample ID: Calib Blank 1 Date Collected: 11/1/2012 11:08:11 AM

Data Type: Original

Nebulizer Parameters: Calib Blank 1

 Analyte
 Back Pressure
 Flow

 All
 232.0 kPa
 0.55 L/min

Mean Data: Calib Blank 1

	Mean Corrected				Calib
Analyte	Intensity	Std.Dev	. RSD	Conc.	Units
ScA 357.253	2648230.8	6274.23	0.24%	100.0	g _o
ScR 361.383	211749.5	928.21	0.44%	100.00	ક
Ag 328.068†	578.9	10.34	1.79%	[0.00]	mg/L
Al 308.215†	22.8	9.13	40.00%	[0.00]	mg/L
As 188.979†	-2.0	2.87	145.68%	[0.00]	mg/L
B 249.677†	-115.0	3.87	3.37%	[0.00]	mg/L
Ba 233.527†	58.7	1.96	3.33%	[0.00]	mg/L
Be 313.042†	541.1	4.77	0.88%	[0.00]	mg/L
Ca 317.933†	9.2	14.79	161.48%	[0.00]	mg/L
Cd 228.802†	286.2	3.93	1.37%	[0.00]	mg/L
Co 228.616†	296.3	4.56	1.54%	[0.00]	mg/L
Cr 267.716†	10.4	3.20	30.71%	[0.00]	mg/L
Cu 324.752†	1318.2	26.24	1.99%	[0.00]	mg/L
Fe 273.955†	-32.5	0.53	1.63%	[0.00]	mg/L
K 766.490†	1971.9	52.60	2.67%	[0.00]	mg/L
Mg 279.077†	-152.7	6.27	4.10%	[0.00]	mg/L
Mn 257.610†	-53.6	1.41	2.62%	[0.00]	mg/L
Mo 202.031†	-128.7	5.60	4.35%	[0.00]	mg/L
Na 589.592†	96.4	64.26	66.68%	[0.00]	mg/L
Na 330.237†	33.7	15.41	45.71%	[0.00]	mg/L
Ni 231.604†	30.2	2.18	7.21%	[0.00]	mg/L
Pb 220.353†	252.9	5.72	2.26%	[0.00]	mg/L
Sb 206.836†	123.1	2.23	1.81%	[0.00]	mg/L
Se 196.026†	-100.0	3.30	3.30%	[0.00]	mg/L
Si 288.158†	2.7	4.25	157.51%	[0.00]	
Sn 189.927†	-11.0	1.61	14.63%	[0.00]	
Sr 421.552†	670.9	38.89	5.80%	[0.00]	mg/L
Ti 334.903†	-55.8	12.01	21.53%	[0.00]	mg/L
Tl 190.801†	16.8	2.98	17.73%	[0.00]	mg/L
V 292.402†	-37.7	49.87	132.39%	[0.00]	mg/L
Zn 206.200†	-26.4	0.55	2.10%	[0.00]	mg/L

upsa aaraa

Sequence No.: 2 Sample ID: STD2 Autosampler Location: 2

Sequence No.: 2

Autosampler Education

Date Collected: 11/1/2012 11:14:09 AM

Data Type: Original

Nebulizer Parameters: STD2

Analyte Back Pressure Flow

All 232.0 kPa 0.55 L/min

Mean Data: STD2

	Mean Corrected			Calib
Analyte	Intensity	Std.Dev.	RSD	Conc. Units
ScA 357.253	2664563.2	17175.40	0.64%	100.6 ક
ScR 361.383	211917.5	2122.58	1.00%	100.1 %
Ba 233.527†	102780.4	809.43	0.79%	[10] mg/L
Cd 228.802†	835797.2	8999.04	1.08%	[10] mg/L
Co 228.616†	843238.6	8292.48	0.98%	[10] mg/L
Cr 267.716†	45779.8	388.50	0.85%	[10] mg/L
Cu 324.752†	3131076.1	29662.68	0.95%	[10] mg/L
Mn 257.610†	404704.2	2919.50	0.72%	[10] mg/L
V 292.402†	2040014.1	23064.42	1.13%	[10] mg/L

Sequence No.: 3

Autosampler Location: 3

Sample ID: STD3

Date Collected: 11/1/2012 11:18:05 AM

Data Type: Original

Nebulizer Parameters: STD3

Back Pressure Flow Analyte

231.0 kPa 0.55 L/min All

Mean Data: STD3

Mean Data: STD3					
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
ScA 357.253	2642226.9	34270.45	1.30%	99.77	ક
ScR 361.383	214112.8	1551.20	0.72%	101.1	ક્ર
Ag 328.068†	298057.6	1029.31	0.35%	[1.0]	mg/L
As 188.979†	23822.1	130.24	0.55%	[10]	mg/L
B 249.677†	21691.1	170.32	0.79%	[10]	mg/L
Be 313.042†	1331298.9	24940.43	1.87%	[5.0]	mg/L
Na 589.592†	406685.7	6334.13	1.56%	[50]	mg/L
Ni 231.604†	22096.5	114.83	0.52%	[10]	mg/L
Pb 220.353†	129252.2	729.20	0.56%	[10]	mg/L
Se 196.026†	19212.4	103.05	0.54%	[10]	mg/L
Sr 421.552†	2892450.2	34499.13	1.19%	[5]	mg/L
Tl 190.801†	36588.5	211.86	0.58%	[10]	mg/L
Zn 206.200†	24347.7	121.56	0.50%	[10]	mg/L

Date: 11/1/2012 11:24:55 AM

Sequence No.: 4

Autosampler Location: 4

Sample ID: STD4

Date Collected: 11/1/2012 11:22:41 AM

Data Type: Original

Nebulizer Parameters: STD4

Analyte

Back PressureFlow231.0 kPa0.55 L/min All

Mean Data: STD4

	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
ScA 357.253	2698318.1	23463.76	0.87%	101.9	ક
ScR 361.383	211100.1	2142.43	1.01%	99.69	ે
Mo 202.031†	185038.9	902.37	0.49%	[10]	mg/L
Sb 206.836†	36568.0	172.70	0.47%	[10]	mg/L
Si 288.158†	13524.9	76.03	0.56%	[10]	mg/L
Sn 189.927†	65582.6	269.95	0.41%	[10]	mg/L
Ti 334.903†	257016.6	4894.02	1.90%	[10]	mg/L

upei gozal

Sequence No.: 5 Sample ID: STD5

Autosampler Location: 5

Date Collected: 11/1/2012 11:26:54 AM

Data Type: Original

Nebulizer Parameters: STD5

Back Pressure Flow Analyte

232.0 kPa 0.55 L/min A11

Mean Data: STD5					
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
ScA 357.253	2577494.3	10704.19	0.42%	97.33	ક
ScR 361.383	209084.7	1663.91	0.80%	98.74	용
A1 308.215†	45103.6	522.97	1.16%	[30]	mg/L
Ca 317.933†	317571.9	1287.82	0.41%	[30]	${ m mg/L}$
Fe 273.955†	122581.6	370.66	0.30%	[100]	mg/L
к 766.490†	360299.6	1303.17	0.36%	[100]	mg/L
Mg 279.077†	34942.7	378.72	1.08%	[30]	mg/L
Na 330.237†	2743.4	24.42	0.89%	[100]	${ m mg/L}$

Calibration Summary

Analyte	Stds.	Equation	Intercept	Slope	Curvature	Corr, Coef.	Reslope
Ag 328.068	1	Lin Thru 0	0.0	298100	0.00000	1.000000	
Aĺ 308.215	1	Lin Thru 0	0.0	1503	0.00000	1.000000	
As 188.979	1	Lin Thru 0	0.0	2382	0.00000	1.000000	
В 249.677	1	Lin Thru 0	0.0	2169	0.00000	1.000000	
Ba 233.527	1	Lin Thru 0	0.0	10280	0.00000	1.000000	
Be 313.042	1	Lin Thru 0	0.0	266300	0.00000	1.000000	
Ca 317.933	1	Lin Thru 0	0.0	10590	0.00000	1.000000	
Cd 228.802	1	Lin Thru 0	0.0	83580	0.00000	1.000000	
Co 228.616	1	Lin Thru 0	0.0	84320	0.00000	1.000000	
a. 067 716	1	Ti- Mb see	0 0	1570	0 00000	1 000000	

Cr 267.716 Cu 324.752 Fe 273.955 K 766.490 Mg 279.077 1 Lin Thru 0
1 Lin Thru 0
1 Lin Thru 0
1 Lin Thru 0
1 Lin Thru 0
1 Lin Thru 0
1 Lin Thru 0 Mn 257.610 Mo 202.031 1 Lin Thru 0

 0.0
 84320
 0.00000
 1.000000

 0.0
 4578
 0.00000
 1.000000

 0.0
 313100
 0.00000
 1.000000

 0.0
 1226
 0.00000
 1.000000

 0.0
 3603
 0.00000
 1.000000

 0.0
 40470
 0.00000
 1.000000

 0.0
 48500
 0.00000
 1.000000

 0.0
 8134
 0.00000
 1.000000

 0.0
 27.43
 0.00000
 1.000000

 0.0
 2210
 0.00000
 1.000000

 0.0
 12930
 0.00000
 1.000000

 0.0
 1921
 0.00000
 1.000000

 0.0
 1352
 0.00000
 1.000000

 0.0
 578500
 0.00000
 1.000000

 0.0
 25700
 0.00000
 1.000000

 0.0
 2435
 0.00000
 1.000000
 Na 589.592 Na 330.237 Ni 231.604 Pb 220.353 Sb 206.836 1 Lin Thru 0 1 Lin Thru 0 1 Lin Thru 0 1 Lin Thru 0 1 Lin Thru 0 1 Lin Thru 0 Se 196.026 1 Lin Thru 0 Si 288.158 Sn 189.927 Sr 421.552 Ti 334.903

1 Lin Thru 0 1 Lin Thru 0 1 Lin Thru 0 1 Lin Thru 0 Tl 190.801 V 292.402 1 Lin Thru 0 1 Lin Thru 0

Zn 206.200

Start Time: 11/1/2012 11:30:21 AM Plasma On Time: 11/1/2012 9:01:02 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\CRISET.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Autosampler Location: 7

Date Collected: 11/1/2012 11:30:23 AM

Analyst: EL 722222 E-14-12 Data Type: Original Dilution: 1X

_____ Nebulizer Parameters: CV

FlowAnalyte Back Pressure

231.0 kPa 0.55 L/minA11

Mean Data: CV Mean Corrected Calib. Sample Intensity Conc. Units 2650410.4 100.1 % 215502.0 101.8 % Std.Dev. Conc. Units Std.Dev. RSD Analyte 0.25 ScA 357.253 0.25% 215502.0 ScR 361.383 0.75 0.74% 302649.5 Ag 328.068† 1.015 mg/L0.0022 $1.015~{
m mg/L}$ 0.0022 0.22% 3073.7 2.002 mg/L0.0105 2.002 mg/L0.0105 0.53% A1 308.215†

 4999.6
 2.098 mg/L
 0.0019

 2155.8
 0.9922 mg/L
 0.00066

 10176.7
 0.9897 mg/L
 0.00421

 71995.0
 1.019 mg/L
 0.0061

 21224.9
 2.005 mg/L
 0.0105

 $2.098~{
m mg/L}$ As 188.979† 4999.6 0.0019 0.0980.9922 mg/L 0.9897 mg/L 0.00066 B 249.677† 0.07% 10176.7 Ba 233.527† 0.43% 1.019 mg/L 2.005 mg/L 271995.0 0.0061 0.0105 Be 313.042† 0.60% 21224.9 86019.0 0.0105 0.0049 0.9820 mg/L 0.00332 0.9844 mg/L 0.00291 1.065 mg/L 0.0000 2.082 mg/L Ca 317.933† 0.53% 1.024 mg/L 0.0049 0.9820 mg/L 0.00332 0.9844 mg/L 0.00291 1.065 mg/L 0.0009 2.082 mg/L 0.0050 20.31 mg/L Cd 228,802† 82972.4 Co 228.616† 0.34% Cr 267.716† 4508.0 0.30% 333358.8 Cu 324.752† 0.09% Fe 273.955† 0.24% 2552.8 2552.0 73185.1 20.31 mg/L 0.071 K 766.490† 0.071 20.31 mg/L0.35% 2.085 mg/L 0.9975 mg/L 0.9746 m~/ Mg 279.077† 2424.4 0.0047 0.0047 0.99/5 mg/L 0.00747 0.9746 mg/L 0.00100 51.37 mg/L 0.297 51.50 mg/L 0.561 1.009 mg/T 0.0047 2.085 mg/L0.23% 0.9746 mg/L 0.9746 mg/L 51.37 mg/L 51.50 mg/L 1.009 m~' 40350.8 0.9975 mg/L 0.00747 Mn 257.610† 0.75% 0.00100 Mo 202.031† 18036.3 0.10% 417836.7 0.297 0.561 Na 589.592† 0.58% 1418.7 2227.5 Na 330.237† 1.09% Ni 231.604† 0.0037 $1.009~{
m mg/L}$ 0.37€ Pb 220.353† 26608.9 $2.060~{
m mg/L}$ 0.0001 $2.060~{
m mg/L}$ 0.0001 0.00% 2.130 mg/L 0.0026 0.0026 0.0016 0.0174 7799.4 2.130~mg/L0.12% Sb 206.836† 3912.0 2861.0 6013.0 2.033 mg/L 2.122 mg/L 0.9177 mg/L 0.0016 0.0174 2.033 mg/L 2.122 mg/L Se 196.026† 0.08% Si 288.158† 0.82% 0.0174 0.00194 0.9177 mg/L Sn 189.927† 0.00194 0.21% 1.020 mg/L 589990.9 Sr 421.552† 0.0024 $1.020 \, \text{mg/L}$ 0.0024 0.24% 25679.1 Ti 334.903† 0.9979 mg/L0.00688 $0.9979 \, \text{mg/L}$ 0.00688 0.69% 0.0020 0.0020 7396.8 0.10% Tl 190.801† 2.009 mg/L 2.009 mg/L 204689.7 1.014 mg/L 0.0006 1.061 mg/L 0.0025 1.014 mg/L 1.061 mg/L 0.0006 0.0025 V 292.402† 0.06% Zn 206.200† 2586.8 0.24%

Sequence No.: 2

Sample ID CB Analyst: EL Z Autosampler Location: 1

Date Collected: 11/1/2012 11:36:26 AM

Data Type: Original

Nebulizer Parameters: CB

Analyte Back Pressure Flow All 231.0 kPa 0.55 L/min

Mean Data: CB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2710641.2	102.4	ક	1.69				1.66%
ScR 361.383	218148.6	103.0	ક	1.61				1.56%
Ag 328.068†	-6.1	-0.00002	mg/L	0.000175	-0.00002		0.000175 8	
Al 308.215†	-13.7	-0.00912	mg/L	0.005536	-0.00912		0.005536	60.70%
As 188.979†	4.9	0.00206	${\tt mg/L}$	0.001108	0.00206	mg/L	0.001108	53.76%
В 249.677†	14.8	0.00681	mg/L	0.001633	0.00681	mg/L	0.001633	23.98%
Ba 233.527†	4.2	0.00041	mg/L	0.000392	0.00041	J .	0.000392	95.68%
Be 313.042†	49.7	0.00019	mg/L	0.000033	0.00019	mg/L	0.000033	17.80%
Ca 317.933†	11.3	0.00107	mg/L	0.001476	0.00107	J .	0.001476	138.30%
Cd 228.802†	8.1	0.00009		0.000060	0.00009	mg/L	0.000060	65.40%
Co 228.616†	5.5	0.00006	${ m mg/L}$	0.000044	0.00006		0.000044	67.81%
Cr 267.716†	-0.1	-0.00002		0.000803	-0.00002		0.000803	
Cu 324.752†	910.0	0.00291	mg/L	0.000104	0.00291	mg/L	0.000104	3.59%
Fe 273.955†	0.8	0.00064	${ m mg/L}$	0.000752	0.00064	mg/L	0.000752	
K 766.490†	126.0	0.03498	mg/L	0.019597	0.03498	mg/L	0.019597	56.02%
Mg 279.077†	-1.7	-0.00146		0.000690	-0.00146	mg/L	0.000690	47.33%
Mn 257.610†	-1.5	-0.00004	mg/L	0.000132	-0.00004	_	0.000132	
Mo 202.031†	4.2	0.00023	${ m mg/L}$	0.000234	0.00023	_	0.000234	
Na 589.592†	289.6	0.03561	_	0.007460	0.03561		0.007460	20.95%
Na 330.237†	-2.5	-0.09162	mg/L	0.274824	-0.09162	J .	0.274824	
Ni 231.604†	-0.2	-0.00008	mg/L	0.001741	-0.00008		0.001741	
Pb 220.353†	1.6	0.00012	mg/L	0.000631	0.00012	mg/L	0.000631	
Sb 206.836†	7.9	0.00217	mg/L	0.000450	0.00217	J .	0.000450	20.70%
Se 196.026†	6.5	0.00340	${ m mg/L}$	0.000913	0.00340	J .	0.000913	26.88%
Si 288.158†	10.2	0.00751	mg/L	0.002455	0.00751	mg/L	0.002455	32.69%
Sn 189.927†	6.2	0.00094	mg/L	0.000644	0.00094	mg/L	0.000644	68.16%
Sr 421.552†	-18.7	-0.00003	${ m mg/L}$	0.000080	-0.00003	_	0.000080	
Ti 334.903†	13.0	0.00050	mg/L	0.000929	0.00050	_	0.000929	
T1 190.801†	5.2	0.00141	mg/L	0.000872	0.00141	mg/L	0.000872	61.98%
V 292.402†	0.2	0.00000	mg/L	0.000038	0.00000	_	0.000038	
Zn 206.200†	-0.5	-0.00021	mg/L	0.001050	-0.00021	mg/L	0.001050	499.32%

Sequence No.: 3

Autosampler Location: 21

Sample ID: CRI
Analyst: EL
Dilution: 1X

Date Collected: 11/1/2012 11:42:25 AM

Data Type: Original

Nebulizer Parameters: CRI

Analyte Back Pressure Flow

All 232.0 kPa 0.55 L/min

Mean Data: CRI Mean Corrected Calib. Sample Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402† Zn 206.200†

Sequence No.: 4

Sample ID: TESA
Analyst: EL
Dilution: 1X

Autosampler Location: 22

Date Collected: 11/1/2012 11:48:25 AM

Data Type: Original

Nebulizer Parameters: ICSA

Analyte Back

Back Pressure Flow

All 231.0 kPa 0.55 L/min

Mean Data: ICSA								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev	
ScA 357.253	2598827.9	98.13	olo Olo	0.404				0.41 %
ScR 361.383	214108.8	101.1		0.50				0.50%
Ag 328.068†	-1906.2	-0.00113	mg/L	0.000369	-0.00113		0.000369	32.49%
Al 308.215†	290694.1	193.4	J .	0.34	193.4	2.	0.34	0.18%
As 188.979†	1.9	0.00083	mg/L	0.001011	0.00083	mg/L	0.001011	
B 249.677†	-3.2	-0.00150	mg/L	0.005242	-0.00150		0.005242	
Ba 233.527†	85.0	-0.00061	mg/L	0.000475	-0.00061	mg/L	0.000475	78.23%
Be 313.042†	44.2	0.00012	mg/L	0.000006	0.00012	mg/L	0.000006	5.15%
Ca 317.933†	996683.5	94.15	mg/L	0.148	94.15	mg/L	0.148	0.16%
Cd 228.802†	93.4	0.00112	mg/L	0.000050	0.00112	mg/L	0.000050	4.52%
Co 228.616†	159.0	-0.00034	mg/L	0.000160	-0.00034	mg/L	0.000160	46.53ક
Cr 267.716†	16.5	0.00360	mg/L	0.000272	0.00360	mg/L	0.000272	7.57%
Cu 324.752†	-4278.4	0.00235		0.000081	0.00235	mg/L	0.000081	3.42%
Fe 273.955t	234803.7	191.5	mg/L	0.36	191.5		0.36	0.199
K 766.490†	44.5	0.01236	mg/L	0.008620	0.01236	mg/L	0.008620	69.76%
Mg 279.077†	113893.0	97.67	mg/L	0.615	97.67	mg/L	0.615	0.63%
Mn 257.610†	25.5	-0.00070	mg/L	0.000351	-0.00070	mg/L	0.000351	50.10%
Mo 202.031†	-180.1	-0.00690	mg/L	0.000337	-0.00690	mg/L	0.000337	4.89%
Na 589.592†	128.3	0.01578	mg/L	0.004234	0.01578	mg/L	0.004234	26.83%
Na 330.237†	32.3	0.7653	mg/L	0.48184	0.7653	mg/L	0.48184	62.96%
Ni 231.604†	9.6	0.00438	mg/L	0.001851	0.00438	mg/L	0.001851	42.23%
Pb 220.353†	-693.5	0.00736	mg/L	0.000717	0.00736	mg/L	0.000717	9.75%
Sb 206.836†	171.7	0.02892	mg/L	0.000657	0.02892	mg/L	0.000657	2.27%
Se 196.026†	-120.6	-0.06277	_mg/L	0.002931	-0.06277	mg/L	0.002931	4.67%
Si 288.158†	-0.6	0.01131	mg/L	0.005210	0.01131	mg/L	0.005210	46.07%
Sn 189.927†	-44.3	0.01563	_mg/L	0.001515	0.01563	mg/L	0.001515	9.70 %
Sr 421.552†	2273.0		mg/Lc ent	0.000037	0.00393	mg/L	0.000037	0.948
Ti 334.903†	166.1	0.00185		0.000235	0.00185	mg/L	0.000235	12.68%
Tì 190.801†	-40.8	-0.01128	mg/L	0.001292	-0.01128	mg/L	0.001292	11.46 8
V 292.402†	3921.1	0.00098	mq/L	0.000408	0.00098	mg/L	0.000408	41.67%
Zn 206.200†	-21.3	-0.00673	ma/L	0.000947	-0.00673	ma/L	0.000947	14.06%

Sequence No.: 5

Autosampler Location: 23
Date Collected: 11/1/2012 11:54:28 AM

Sample ID: ICSAB Analyst: EL 72222 Dilution: 1X 22222

Data Type: Original

Nebulizer Parameters: ICSAB

 Analyte
 Back
 Pressure
 Flow

 All
 231.0 kPa
 0.55 L/min

Mean Data: ICSAB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	R S D
ScA 357.253	2619354.8	98.91	ક	0.543				0.55%
ScR 361.383	215966.6	102.0	ક	0.71				0.70%
Ag 328.068†	298306.4	1.006	mg/L	0.0037	1.006	mg/L	0.0037	0.37%
Al 308.215†	290392.1	193.1	mg/L	0.67	193.1	mg/L	0.67	0.35%
As 188.979†	2370.7	0.9950	mg/L	0.00515	0.9950	mg/L	0.00515	0.52%
B 249.677†	18.2	0.00536	mg/L	0.002743	0.00536	mg/L	0.002743	51.21%
Ba 233.527†	9886.3	0.9525	mg/L	0.00896	0.9525	mg/L	0.00896	0.94%
Be 313.042†	266043.1	0.9967	mg/L	0.00485	0.9967	mg/L	0.00485	0.49%
Ca 317.933†	1005184.8	94.96	mg/L	0.436	94.96	mg/L	0.436	0.46%
Cd 228.802†	81798.0	0.9764		0.00467	0.9764	mg/L	0.00467	0.48%
Co 228.616†	76142.4	0.9003	mg/L	0.00303	0.9003	mg/L	0.00303	0.34%
Cr 267.716†	4358.8	0.9520	mg/L	0.01008	0.9520	mg/L	0.01008	1.06%
Cu 324.752†	309647.5	1.005	mg/L	0.0064	1.005	mg/L	0.0064	0.64%
Fe 273.955†	236743.6	193.1	mg/L	0.50	193.1		0.50	0.26%
K 766.490†	62.9	0.01746	mg/L	0.016770	0.01746	mg/L	0.016770	96.03%
Mg 279.077†	116487.6	99.90	2.	0.326	99.90	mg/L	0.326	0.33%
Mn 257.610†	38171.5	0.9421	mg/L	0.00307	0.9421		0.00307	0.33%
Mo 202.031†	-171.6	-0.00665		0.000665	-0.00665	_	0.000665	10.00%
Na 589.592†	636.1	0.07820		0.002857	0.07820	mg/L	0.002857	3.65%
Na 330.237†	37.5	0.6012	mg/L	0.09047	0.6012	mg/L	0.09047	15.05%
Ni 231.604†	2093.8	0.9479	mg/L	0.00916	0.9479		0.00916	0.97%
Pb 220.353†	11516.0	0.9528	mg/L	0.00504	0.9528	mg/L	0.00504	0.53%
Sb 206.836†	3880.3	1.029		0.0037	1.029	mg/L	0.0037	0.36%
Se 196.026†	1798.2	0.9333		0.00755	0.9333	mg/L	0.00755	0.81%
Si 288.158†	41.7	0.04709		0.004939	0.04709	mg/L	0.004939	10.49%
Sn 189.927†	-50.7	0.01487		0.000493	0.01487	mg/L	0.000493	3.31%
Sr 421.552†	2547.8	0.00440	mg/Iccut-	0.000025	0.00440	mg/L	0.000025	0.57%
Ti 334.903†	166.1	0.00159	mg/L	0.000377	0.00159	mg/L	0.000377	23.66%
Tl 190.801†	3350.5	0.9038	mg/L	0.00729	0.9038	mg/L	0.00729	0.81%
V 292.402†	197290.2	0.9556	_	0.00478	0.9556	_	0.00478	0.50%
Zn 206.200†	2221.5	0.9136	mg/L	0.01191	0.9136	mg/L	0.01191	1.30%

Sequence No.: 6

Sample ID: CV 27.22
Analyst: EL 2. Analysis Dilution: 1X

Autosampler Location: 7

Date Collected: 11/1/2012 12:01:28 PM

Data Type: Original

Nebulizer Parameters: CV

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: CV								
	Mean Corrected		Calib.			Samp1e		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2656598.2	100.3	ક	0.40				0.40%
ScR 361.383	216442.6	102.2	િ	0.82				0.80%
Ag 328.068†	300504.0	1.008	mg/L	0.0020	1.008	mg/L	0.0020	0.20%
Al 308.215†	3057.4	1.991	mg/L	0.0189	1.991	mg/L	0.0189	0.95%
As 188.979†	4985.3	2.092	mg/L	0.0022	2.092	mg/L	0.0022	0.10%
B 249.677†	2119.8	0.9756	mg/L	0.01082	0.9756	mg/L	0.01082	1.11%
Ba 233.527†	10148.2	0.9869	mg/L	0.00890	0.9869	mq/L	0.00890	0.90%
Be 313.042†	271227.1	1.016	mg/L	0.0011	1.016	mg/L	0.0011	0.11%
Ca 317.933†	21205.4	2.003	mg/L	0.0192	2.003	mg/L	0.0192	0.96%
Cd 228.802†	85753.8	1.021	mg/L	0.0029	1.021	mg/L	0.0029	0.29%
Co 228.616†	83058.7	0.9830	mg/L	0.00120	0.9830	mg/L	0.00120	0.12%
Cr 267.716†	4500.0	0.9826	mg/L	0.01150	0.9826	mq/L	0.01150	1.17%
Cu 324.752†	331138.3	1.058	mg/L	0.0021	1.058	mg/L	0.0021	0.20%
Fe 273.955†	2560.7	2.088	mg/L	0.0192	2.088		0.0192	0.92%
K 766.490†	72337.4	20.08	mg/L	0.090	20.08	mg/L	0.090	0.45%
Mg 279.077†	2427.8	2.088	mg/L	0.0185	2.088	mg/L	0.0185	0.89%
Mn 257.610†	40233.7	0.9946	mg/L	0.00053	0.9946	mg/L	0.00053	0.05%
Mo 202.031†	17992.8	0.9722	mg/L	0.00146	0.9722	mg/L	0.00146	0.15%
Na 589.592†	413052.2	50.78	mg/L	0.233	50.78		0.233	0.46%
Na 330.237†	1406.2	51.04	mg/L	0.428	51.04	mg/L	0.428	0.84%
Ni 231.604†	2221.8	1.006	mg/L	0.0111	1.006	mg/L	0.0111	1.11%
Pb 220.353†	26633.0	2.062	mg/L	0.0046	2.062		0.0046	0.22%
Sb 206.836†	7767.8	2.122	mg/L	0.0048	2.122	mg/L	0.0048	0.23%
Se 196.026†	3901.5	2.028	mg/L	0.0046	2.028	mg/L	0.0046	0.23%
Si 288.158†	2849.8	2.114	mg/L	0.0163	2.114		0.0163	0.77%
Sn 189.927†	6008.5	0.9170	mg/L	0.00114	0.9170	mq/L	0.00114	0.12%
Sr 421.552†	586064.5	1.013	mg/L	0.0041	1.013	mg/L	0.0041	0.41%
Ti 334.903†	25474.1	0.9899	mg/L	0.00107	0.9899	mg/L	0.00107	0.11%
Tl 190.801†	7382.1	2.005	mg/L	0.0059	2.005		0.0059	0.29%
V 292.402†	203645.0	1.009		0.0079	1.009		0.0079	0.78%
Zn 206.200†	2601.2	1.067		0.0067	1.067		0.0067	0.63%

Sequence No.: 7

Autosampler Location: 1

Sample ID: CB 72.2 Analyst: EL 7 Cont.
Dilution: 1X Date Collected: 11/1/2012 12:07:31 PM Data Type: Original

Dilution: 1X

Nebulizer Parameters: CB

Analyte Back Pressure Flow

All 232.0 kPa 0.55 L/min

Mean Data: CB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2694565.4	101.7	용	0.18				0.18%
ScR 361.383	215850.0	101.9	ક	1.82				1.78%
Ag 328.068†	39.8	0.00013	mg/L	0.000096	0.00013	mg/L	0.000096	71.60%
A1 308.215†	-3.7	-0.00248	mg/L	0.013676	-0.00248	mg/L	0.013676	552.19%
As 188.979†	2.2	0.00093		0.000661	0.00093	mg/L	0.000661	70.95%
B 249.677†	2.1	0.00099	mg/L	0.002246	0.00099	mg/L	0.002246	227.07%
Ba 233.527†	9.2	0.00089	mg/L	0.000438	0.00089	mg/L	0.000438	49.10%
Be 313.042†	65.6	0.00025	mg/L	0.000105	0.00025	mg/L	0.000105	42.67%
Ca 317.933†	-21.1	-0.00200	mg/L	0.001141	-0.00200	mg/L	0.001141	57.21%
Cd 228.802†	27.9	0.00033	mg/L	0.000048	0.00033		0.000048	14.40%
Co 228.616†	18.7	0.00022	mg/L	0.000086	0.00022	mg/L	0.000086	38.59%
Cr 267.716†	2.2	0.00048		0.000628	0.00048	mg/L	0.000628	130.11%
Cu 324.752†	631.1	0.00202	_mg/L	0.000062	0.00202	mg/L	0.000062	3.09%
Fe 273.955†	2.6	0.00211	mg/L	0.000969	0.00211	mg/L	0.000969	45.91%
K 766.490†	157.0	0.04356	mg/L	0.005952	0.04356	mg/L	0.005952	13.66%
Mg 279.077†	-2.5	-0.00214	mg/L	0.005591	-0.00214	mg/L	0.005591	261.87%
Mn 257.610†	-3.0	-0.00007	mg/L	0.000061	-0.00007	mg/L	0.000061	84.13%
Mo 202.031†	2.0	0.00011	mg/L	0.000114	0.00011	mg/L	0.000114	106.42%
Na 589.592†	233.7	0.02873	mg/L	0.005703	0.02873	mg/L	0.005703	19.85%
Na 330.237†	1.0	0.03659	mg/L	0.229724	0.03659	mg/L	0.229724	627.90%
Ni 231.604†	2.0	0.00092	mg/L	0.002309	0.00092	mg/L	0.002309	251.58%
Pb 220.353†	12.1	0.00093	mg/L	0.000297	0.00093	mg/L	0.000297	31.88%
Sb 206.836†	10.1	0.00276	mg/L	0.001332	0.00276	mg/L	0.001332	48.20%
Se 196.026†	8.9	0.00462	mg/L	0.001553	0.00462	mg/L	0.001553	33.64%
Sı 288.158†	8.2	0.00609	mg/L	0.002276	0.00609	mg/L	0.002276	37.36%
Sn 189.927†	6.7	0.00102		0.000144	0.00102	mg/L	0.000144	14.09%
Sr 421.552†	-18.8	-0.00003	mg/L	0.000076	-0.00003		0.000076	233.18%
Ti 334.903†	-1.3	-0.00005	mg/L	0.000612	-0.00005		0.000612	>999.9%
Tl 190.801†	9.4	0.00256	mg/L	0.002534	0.00256		0.002534	98.89%
V 292.402†	-29.6	-0.00014	mg/L	0.000063	-0.00014		0.000063	44.72%
Zn 206.200†	2.6	0.00107	mg/L	0.000400	0.00107	mg/L	0.000400	37.51%

UPS4 BOS12

Analysis Begun

Start Time: 11/1/2012 12:13:39 PM Plasma On Time: 11/1/2012 9:01:02 AM

Technique: ICP Continuous Logged In Analyst: metals Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\CRISET.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1

Date Collected: 11/1/2012 12:13:42 PM Sample ID: Calib Blank 1

Data Type: Original

Nebulizer Parameters: Calib Blank 1

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min All 232.0 kPa

Mean Data: Calib Blank 1

mean Data. Callb	Diank i				
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.		Conc.	Units
ScA 357.253	2710131.8	20389.97	0.75%	102.3	ક
ScR 361.383	216445.5	1416.51	0.65%	102.2	8
Ag 328.068†	580.4	11.89	2.05%	[0.00]	${ m mg/L}$
Al 308.215†	28.0	9.82	35.04%	[0.00]	mg/L
As 188.979†	1.3	2.05	154.00%	[0.00]	mg/L
B 249.677†	-122.2	2.15	1.76%	[0.00]	mg/L
Ba 233.527†	64.0	1.53	2.40%	[0.00]	mg/L
Be 313.042†	612.7	25.08	4.09%	[0.00]	mg/L
Ca 317.933†	-10.2	13.51	132.96%	[0.00]	mg/L
Cd 228.802†	301.2	5.36	1.78%	[0.00]	mg/L
Co 228.616†	310.7	4.38	1.41%	[0.00]	mg/L
Cr 267.716†	4.2	3.23	76.27%	[0.00]	mg/L
Cu 324.752†	1762.9	27.67	1.57%	[0.00]	mg/L
Fe 273.955†	-31.3	1.94	6.19%	[0.00]	mg/L
K 766.490†	2075.2	51.81	2.50%	[0.00]	mg/L
Mg 279.077†	-154.7	0.52	0.34%	[0.00]	mg/L
Mn 257.610†	-63.9	6.51	10.19%	[0.00]	mg/L
Mo 202.031†	-128.2	3.52	2.75%	[0.00]	mg/L
Na 589.592†	129.0	25.26	19.58%	[0.00]	mg/L
Na 330.237†	47.0	13.68	29.12%	[0.00]	mg/L
Ni 231.604†	29.0	2.93	10.12%	[0.00]	mg/L
Pb 220.353†	259.1	5.92	2.29%	[0.00]	mg/L
Sb 206.836†	128.9	3.48	2.70%	[0.00]	mg/L
Se 196.026†	-94.7	2.87	3.03%	[0.00]	mg/L
Si 288.158†	2.1	3.94	192.21%	[0.00]	mg/L
Sn 189.927†	-8.2	2.93	35.52%	[0.00]	mg/L
Sr 421.552†	630.8	12.46	1.97%	[0.00]	mg/L
Ti 334.903†	-75.1	32.85	43.71%	[0.00]	mg/L
Tl 190.801†	21.9	5.73	26.18%	[0.00]	mg/L
V 292.402†	-43.2	34.92	80.77%	[0.00]	${ m mg/L}$
Zn 206.200†	-27.2	1.05	3.86%	[0.00]	mg/L

Analysis Begun

Start Time: 11/1/2012 12:18:49 PM Plasma On Time: 11/1/2012 9:01:02 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\CRISET.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1 Autosampler Location: 7

Sample ID: TCV Date Collected: 11/1/2012 12:18:52 PM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: CV

Analyte Back Pressure Flow

All 232.0 kPa 0.55 L/min

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2633249.0	99.43		0.349				0.35%
ScR 361.383	217033.1	102.5		0.89		_		0.86%
Ag 328.068†	300317.2	1.008		0.0038	1.008		0.0038	0.38%
Al 308.215†	3058.1	1.992	_	0.0211	1.992		0.0211	1.06%
As 188.979†	4956.8	2.080	_	0.0139	2.080	_	0.0139	0.67%
B 249.677†	2142.8	0.9862	_	0.00445	0.9862	_	0.00445	0.45%
Ba 233.527†	10177.1	0.9898	J .	0.00944	0.9898	mg/L	0.00944	0.95₺
Be 313.042†	273164.2	1.023	mg/L	0.0015	1.023	J .	0.0015	0.14%
Ca 317.933†	21369.6	2.019	mg/L	0.0173	2.019	mg/L	0.0173	0.85%
Cd 228.802†	85915.7	1.023	mg/L	0.0016	1.023	mg/L	0.0016	0.16%
Co 228.616†	83218.6	0.9849	mg/L	0.00072	0.9849	mg/L	0.00072	0.07%
Cr 267.716†	4534.8	0.9902	mg/L	0.00729	0.9902	mg/L	0.00729	0.74%
Cu 324.752†	332156.8	1.061	mg/L	0.0019	1.061	mg/L	0.0019	0.18%
Fe 273.955†	2571.2	2.097	mg/L	0.0207	2.097	mg/L	0.0207	0.99%
K 766.490†	72078.9	20.01	mg/L	0.063	20.01	mg/L	0.063	0.31%
Mg 279.077†	2437.8	2.096	mg/L	0.0223	2.096	mg/L	0.0223	1.07%
Mn 257.610†	40347.9	0.9975	mg/L	0.00050	0.9975	mg/L	0.00050	0.05%
Mo 202.031†	17932.6	0.9689	mg/L	0.00600	0.9689	mg/L	0.00600	0.62%
Na 589.592†	413480.9	50.84	mg/L	0.087	50.84	mg/L	0.087	0.17%
Na 330.237†	1396.9	50.70	mg/L	0.327	50.70	mg/L	0.327	0.65%
Ni 231.604†	2239.3	1.014	mg/L	0.0082	1.014	mg/L	0.0082	0.81%
Pb 220.353†	26542.9	2.055	mg/L	0.0121	2.055	mg/L	0.0121	0.59%
Sb 206.836†	7754.7	2.118	mg/L	0.0145	2.118	mg/L	0.0145	0.68%
Se 196.026†	3886.4	2.020	mg/L	0.0150	2.020	mg/L	0.0150	0.74%
Si 288.158†	2855.2	2.118	mg/L	0.0250	2.118	mg/L	0.0250	1.18%
Sn 189.927†	5985.3	0.9135	mg/L	0.00549	0.9135	mq/L	0.00549	0.60%
Sr 421.552†	588852.4	1.018	mg/L	0.0059	1.018	mg/L	0.0059	0.58%
Ti 334.903+	25617.3	0.9955	mg/L	0.00354	0.9955		0.00354	0.36%
Tl 190.801†	7377.6	2.004	mg/L	0.0163	2.004	mg/L	0.0163	0.81%
V 292.402†	204495.3	1.013		0.0015	1.013	mg/L	0.0015	0.149
Zn 206.200†	2606.4	1.069	mg/L	0.0120	1.069	mg/L	0.0120	1.12%

4P51 : 00214

Sequence No.: 2 Sample ID: CB

Autosampler Location: 1

Date Collected: 11/1/2012 12:24:55 PM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: CB

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: CB			0-1:1-			0 1 -	
	Mean Corrected	0	Calib. Units	Std.Dev.	Conc.	Sample	Std.Dev. RSD
Analyte	Intensity			1.50	cone.	Units	1.46%
ScA 357.253	2710476.7	102.4		1.02			1.40%
ScR 361.383	213769.7	101.0		0.000054	-0.00002	/T	0.000054 307.41%
Ag 328.068†	-5.2	-0.00002				J .	
Al 308.215†	2.7	0.00178	J .	0.004150	0.00178		0.004150 233.57%
As 188.979†	-0.1	-0.00006	J .	0.001428	-0.00006	٥.	0.001428 >999.9%
B 249.677†	7.8	0.00359		0.002171	0.00359	J .	0.002171 60.52%
Ba 233.527†	-3.7	-0.00036		0.000185	-0.00036	J .	0.000185 51.10%
Be 313.042†	9.3	0.00004		0.000039	0.00004		0.000039 109.87%
Ca 317.933†	27.9	0.00263	٠.	0.000219	0.00263	٥.	0.000219 8.30%
Cd 228.802†	-2.2	-0.00003		0.000109	-0.00003	J .	0.000109 418.91%
Co 228.616†	-1.9	-0.00002		0.000146	-0.00002	J .	0.000146 615.62%
Cr 267.716†	5.9	0.00129	_	0.000264	0.00129	_	0.000264 20.42%
Cu 324.752†	-18.2	-0.00006		0.000094	-0.00006	_	0.000094 161.72%
Fe 273.955t	-0.3	-0.00024		0.000892	-0.00024	٠.	0.000892 365.82%
K 766.490†	75.1	0.02085		0.016415	0.02085	-	0.016415 78.73%
Mg 279.077† '	-1.5	-0.00126		0.003255	-0.00126	_	0.003255 258.72%
Mn 257.610†	3.9	0.00010		0.000047	0.00010	-	0.000047 48.63%
Mo 202.031†	-2.2	-0.00012	${ m mg/L}$	0.000190	-0.00012		0.000190 157.32%
Na 589.592†	190.1	0.02338	${ m mg/L}$	0.004610	0.02338	mg/L	0.004610 19.72%
Na 330.237†	-2.1	-0.07805	${ m mg/L}$	0.366111	-0.07805	${ m mg/L}$	0.366111 469.10%
Ni 231.604†	0.7	0.00031	mg/L	0.000943	0.00031	mg/L	0.000943 301.15%
Pb 220.353†	1.4	0.00011	mg/L	0.001022	0.00011	mg/L	0.001022 942.77%
Sb 206.836†	-0.2	-0.00006	mg/L	0.001422	-0.00006	mg/L	0.001422 >999.9%
Se 196.026†	-1.8	-0.00093	mg/L	0.001506	-0.00093	mg/L	0.001506 161.60%
Si 288.158†	8.2	0.00607	mg/L	0.004564	0.00607	mg/L	0.004564 75.23%
Sn 189.927†	9.4	0.00143	mg/L	0.000152	0.00143	mg/L	0.000152 10.59%
Sr 421.552†	32.5	0.00006	mg/L	0.000107	0.00006	mg/L	0.000107 191.39%
Ti 334.903†	18.4	0.00071		0.000746	0.00071		0.000746 104.46%
Tl 190.801†	1.5	0.00040		0.001247	0.00040	mg/L	0.001247 308.30%
V 292.402†	-25.3	-0.00012	_	0.000101	-0.00012	mg/L	0.000101 87.12%
Zn 206.200†	0.7	0.00028	_	0.000324	0.00028	mq/L	0.000324 117.54%
			_			_	

Sequence No.: 3 Sample ID: CRI

Autosampler Location: 21

Date Collected: 11/1/2012 12:30:53 PM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: CRI

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min All

Mean Data: CRI								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2725519.0	102.9	8	0.76				0.74%
ScR 361.383	217319.7	102.6	8	1.29				1.26%
Ag 328.068†	890.0	0.00299	mg/L	0.000084	0.00299	mg/L	0.000084	2.82%
Aĺ 308.215†	79.9	0.05294	mg/L	0.007970	0.05294	mg/L	0.007970	15.05%
As 188.979†	124.2	0.05215	mg/L	0.000501	0.05215		0.000501	0.96%
B 249.677†	47.8	0.02202	mg/L	0.000503	0.02202	mg/L	0.000503	2.28%
Ba 233.527†	30.4	0.00295	mg/L	0.000201	0.00295	٠.	0.000201	6.83%
Be 313.042†	285.3	0.00106	mg/L	0.000020	0.00106	J .	0.000020	1.90%
Ca 317.933†	557.6	0.05267	mg/L	0.002177	0.05267		0.002177	4.13%
Cd 228.802†	168.3	0.00189	mg/L	0.000034	0.00189	_	0.000034	1.78%
Co 228.616†	267.8	0.00316	mg/L	0.000027	0.00316	J .	0.000027	0.86%
Cr 267.716†	28.7	0.00626	mg/L	0.000279	0.00626	J .	0.000279	4.46%
Cu 324.752†	440.1	0.00141	mg/L	0.000015	0.00141		0.000015	1.09%
Fe 273.955†	65.9	0.05379	mg/L	0.000359	0.05379	_	0.000359	0.67%
K 766.490†	1844.9	0.5120	mg/L	0.00390	0.5120	J.	0.00390	0.76%
Mg 279.077+	62.5	0.05363	mg/L	0.004148	0.05363	mg/L	0.004148	7.73%
Mn 257.610†	44.4	0.00110	mg/L	0.000078	0.00110	_	0.000078	7.08%
Mo 202.031†	89.8	0.00485	mg/L	0.000366	0.00485		0.000366	7.55%
Na 589.592†	4234.0	0.5205	mg/L	0.00758	0.5205		0.00758	1.46%
Na 330.237†	15.2	0.5507	mg/L	0.72771	0.5507		* * * - * -	132.13%
Ni 231.604†	25.8	0.01168	mg/L	0.002131	0.01168		0.002131	18.25%
Pb 220.353†	261.8	0.02028	mg/L	0.000880	0.02028	_	0.000880	4.34%
Sb 206.836†	184.7	0.05051	${\tt mg/L}$	0.000839	0.05051	mg/L	0.000839	1.66%
Se 196.026†	94.8	0.04932	mg/L	0.000055	0.04932	_	0.000055	0.11%
Si 288.158†	118.8	0.08790	.mg/L	0.000496	0.08790		0.000496	0.56%
Sn 189.927†	60.1	0.00917	mg/L	0.000205	0.00917		0.000205	2.24%
Sr 421.552†	625.8	0.00108		0.000056	0.00108	mg/L	0.000056	5.19%
Ti 334.903†	137.5	0.00534	mg/L	0.000386	0.00534	mg/L	0.000386	7.22%
Tl 190.801†	172.7	0.04717	${\tt mg/L}$	0.001569	0.04717	_	0.001569	3.33%
V 292.402†	635.8	0.00318	mg/L	0.000085	0.00318	mg/L	0.000085	2.66%
Zn 206.200†	24.0	0.00986	mg/L	0.000699	0.00986	mg/L	0.000699	7.09%

Date: 11/1/2012 12:40:57 PM

Sequence No.: 4 Autosampler Location: 22 Sample ID: ICSA

Date Collected: 11/1/2012 12:36:53 PM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: ICSA

Analyte

Back Pressure Flow 232.0 kPa 0.55 L/min All

Mean Data: ICSA								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
ScA 357.253	2657159.0	100.3	8	1.66				1.65%
ScR 361.383	220195.9	104.0	ક	1.21				1.16%
Ag 328.068†	-1831.9	-0.00089	J .	0.000127	-0.00089	mg/L	0.000127	14.19%
Al 308.215†	286248.3	190.4		2.56	190.4		2.56	1.35%
As 188.979†	-6.9	-0.00284		0.002083	-0.00284	mg/L	0.002083	73.24%
B 249.677†	0.4	0.00016	mg/L	0.003970	0.00016	mg/L	0.003970	>999.9%
Ba 233.527†	79.3	-0.00115	mg/L	0.000112	-0.00115	mg/L	0.000112	9.75%
Be 313.042†	-22.9	-0.00013	mg/L	0.000016	-0.00013	mg/L	0.000016	11.89%
Ca 317.933†	993818.7	93.88	mg/L	1.189	93.88	mg/L	1.189	1.27%
Cd 228.802†	7 6.5	0.00092	${ t mg/L}$	0.000094	0.00092	mg/L	0.000094	10.15%
Co 228.616†	143.3	-0.00053	J .	0.000029	-0.00053	mg/L	0.000029	5.59%
Cr 267.716†	17.7	0.00386	mg/L	0.000585	0.00386	mg/L	0.000585	15.15%
Cu 324.752†	- 4 977.9	0.00009	mg/L	0.000397	0.00009	mg/L	0.000397	442.99%
Fe 273.955†	234359.9	191.2	mg/L	3.38	191.2	mg/L	3.38	1.77%
K 766.490†	-36.8	-0.01022	mg/L	0.026871	-0.01022	mg/L	0.026871	262.90%
Mg 279.077†	114646.6	98.32	mg/L	1.301	98.32	mg/L	1.301	1.32%
Mn 257.610†	30.6	-0.00055	mg/L	0.000109	-0.00055	mg/L	0.000109	19.67%
Mo 202.031†	-170.2	-0.0 <u>0643</u>	J .	0.000759	-0.00643	mg/L	0.000759	11.80%
Na 589.592†	203.6	0.02503	-	0.008479	0.02503	mg/L	0.008479	33.87%
Na 330.237†	5.6	-0.2091		0.49364	-0.2091	mg/L	0.49364	236.04%
Ni 231.604†	8.2	0.00375		0.002062	0.00375	mg/L	0.002062	54.93%
Pb 220.353†	-693.9	0.00630		0.001606	0.00630		0.001606	25.49%
Sb 206.836†	150.0	0.02301		0.002754	0.02301	mg/L	0.002754	11.97%
Se 196.026†	-122.2	-0.06362	.mg/L	0.004118	-0.06362		0.004118	6.47%
Si 288.158†	-2.1	0.01022	mg/L	0.007194	0.01022	mg/L	0.007194	70.38원
Sn 189.927†	-47.0	0.01 <u>51</u> 8		0.000403	0.01518	mg/L	0.000403	2.65%
Sr 421.552†	2286.6	0.0 <u>0395</u>	mg/Leont	0.000068	0.00395		0.000068	1.72%
Ti 334.903†	171.8	0.00209		0.000240	0.00209	mg/L	0.000240	11.47%
Tl 190.801†	-41.1	-0.01134		0.001447	-0.01134	mg/L	0.001447	12.76%
V 292.402†	3752.7	0.00019	٠.	0.0003 7 5	0.00019	mg/L	0.000375	194.51%
Zn 206.200†	-20.3	-0.00635	mg/L	0.001039	-0.00635	mg/L	0.001039	16.38%

Sequence No.: 5

Autosampler Location: 23 Sample ID: ICSAB Date Collected: 11/1/2012 12:42:56 PM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: ICSAB

Analyte Back Pressure Flow

All 232.0 kPa 0.55 L/min

								
Mean Data: ICSAF								
_	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2618195.3	98.87		0.287				0.29ક
ScR 361.383	217326.8	102.6		0.56				0.55%
Ag 328.068†	296557.3	1.000		0.0016	1.000		0.0016	0.16%
Al 308.215†	289283.6	192.4		0.12	192.4	mg/L	0.12	0.06%
As 188.979†	2367.1	0.9935	mg/L	0.00367	0.9935		0.00367	0.37%
B 249.677†	15.9	0.00432	mg/L	0.003038	0.00432	mg/L	0.003038	70.37€
Ba 233.527†	9687.5	0.9332	mg/L	0.00057	0.9332	mg/L	0.00057	0.06%
Be 313.042†	265418.8	0.9943	mg/L	0.00242	0.9943	mg/L	0.00242	0.24%
Ca 317.933†	1004608.9	94.90		0.097	94.90	mg/L	0.097	0.10%
Cd 228.802†	81303.6	0.9705	mg/L	0.00073	0.9705	mg/L	0.00073	0.08%
Co 228.616†	76215.7	0.9012	mg/L	0.00146	0.9012	mg/L	0.00146	0.16%
Cr 267.716†	4283.7	0.9356	mg/L	0.00194	0.9356	mg/L	0.00194	0.21%
Cu 324.752†	308817.9	1.003	mg/L	0.0022	1.003		0.0022	0.22%
Fe 273.955†	236621.3	193.0	mg/L	0.70	193.0	mg/L	0.70	0.36%
K 766.490†	-69.7	-0.01936	mg/L	0.011128	-0.01936		0.011128	57.49%
Mg 279.077†	116250.7	99.70	mg/L	0.030	99.70	mg/L	0.030	0.03%
Mn 257.610†	38058.1	0.9393		0.00053	0.9393	mq/L	0.00053	0.06%
Mo 202.031†	-173.1	-0.00674	mg/L	0.000336	-0.00674	mg/L	0.000336	4.98%
Na 589.592†	654.9	0.08051	mg/L	0.007693	0.08051		0.007693	9.55%
Na 330.237†	18.8	-0.07506	mq/L	0.238557	-0.07506		0.238557	317.80%
Ni 231.604†	2052.8	0.9293		0.00135	0.9293		0.00135	0.15%
Pb 220.353†	11466.1	0.9486		0.00376	0.9486	_	0.00376	0.40%
Sb 206.836†	3850.0	1.021	mg/L	0.0018	1.021		0.0018	0.17%
Se 196.026†	1784.3	0.9261	mq/L	0.01374	0.9261		0.01374	1.48%
Si 288.158†	48.3	0.05188		0.008149	0.05188	J .	0.008149	15.71%
Sn 189.927†	-52.8	0.01454	mg/L	0.000536	0.01454	_	0.000536	3.69%
Sr 421.552†	2562.9		mg/Ic end		0.00443		0.000047	1.06%
Ti 334.903†	185.0	0.00233		0.000505	0.00233	_	0.000505	21.64%
Tl 190.801†	3344.0	0.9020		0.00290	0.9020		0.00290	0.32%
V 292.402†	196687.8	0.9526		0.00356	0.9526		0.00356	0.37%
Zn 206.200†	2179.3	0.8962		0.00109	0.8962		0.00109	0.12%

Sequence No.: 6
Sample ID: CV {

Autosampler Location: 7

Date Collected: 11/1/2012 12:49:56 PM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: CV

Analyte Back Pressure Flow

233.0 kPa 0.55 L/min

| Mean Corrected | Intensity | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | Conc. Units | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | RSD | 1.66% | 220178.2 | 104.0 % | 0.91 | 0.0982 | mg/L | 0.00982 | 0.9828 | mg/L | 0.00982 | 1.00% | 3005.0 | 1.957 | mg/L | 0.0330 | 1.957 | mg/L | 0.0330 | 1.957 | mg/L | 0.0330 | 1.957 | mg/L | 0.0330 | 1.957 | mg/L | 0.0330 | 1.957 | mg/L | 0.0330 | 1.957 | mg/L | 0.0330 | 1.957 | mg/L | 0.0330 | 1.957 | mg/L | 0.0330 | 1.957 | mg/L | 0.0340 | 1.957 | mg/L | 0.0340 | 1.957 | mg/L | 0.0340 | 1.958 | mg/L | 0.01170 | 1.21% | 0.0086 | 0.9658 | mg/L | 0.01170 | 0.9658 | mg/L | 0.01170 | 1.21% | 0.0086 | 0.9679 | mg/L | 0.01482 | 0.9679 | mg/L | 0.01482 | 0.9679 | mg/L | 0.0049 | 0.9679 | 0.0049 | Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402† Zn 206.200†

Sequence No.: 7
Sample ID: CB;

Autosampler Location: 1

Date Collected: 11/1/2012 12:55:59 PM

Data Type: Original

Dilution: 1X

Nebulizer Parameters: CB

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: CB							
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2709170.9	102.3	ge o	0.31			0.31%
ScR 361.383	212994.3	100.6	olo Olo	0.98			0.98%
Ag 328.068†	13.4	0.00005	mg/L	0.000037	0.00005		0.000037 82.70%
Al 308.215†	5.1	0.00338	mg/L	0.014044	0.00338	mg/L	0.014044 415.57%
As 188.979†	0.8	0.00035	mg/L	0.000428	0.00035	mg/L	0.000428 122.88%
В 249.677†	8.6	0.00395	mg/L	0.001308	0.00395	mg/L	0.001308 33.13%
Ba 233.527†	-1.5	-0.00015	mg/L	0.000656	-0.00015	mg/L	0.000656 443.22%
Be 313.042†	7.4	0.00003	mg/L	0.000023	0.00003	mg/L	0.000023 84.23%
Ca 317.933†	-2.2	-0.00021	mg/L	0.000908	-0.00021	mg/L	0.000908 431.73%
Cd 228.802†	17.3	0.00021	mg/L	0.000034	0.00021	mg/L	0.000034 16.35%
Co 228.616†	-1.4	-0.00002	${ t mg/L}$	0.000115	-0.00002	mg/L	0.000115 644.11%
Cr 267.716†	6.5	0.00142	mg/L	0.001127	0.00142	mg/L	0.001127 79.40%
Cu 324.752†	54.2	0.00017	mg/L	0.000272	0.00017	mg/L	0.000272 157.17%
Fe 273.955†	5.6	0.00459		0.001521	0.00459	mg/L	0.001521 33.16%
K 766.490†	185.6	0.05152	mg/L	0.015556	0.05152	mg/L	0.015556 30.20%
Mg 279.077†	-6.0	-0.00519	${ m mg/L}$	0.001857	-0.00519	mg/L	0.001857 35.78%
Mn 257.610†	3.1	0.00008	mg/L	0.000041	0.00008	mg/L	0.000041 53.85%
Mo 202.031†	0.7	0.00004	mg/L	0.000121	0.00004	mg/L	0.000121 310.92%
Na 589.592†	217.2	0.02670	${ m mg/L}$	0.005712	0.02670	mg/L	0.005712 21.39%
Na 330.237†	9.1	0.3317	mg/L	0.16164	0.3317	mg/L	0.16164 48.73%
Ni 231.604†	2.2	0.00099	${ m mg/L}$	0.000294	0.00099	mg/L	0.000294 29.65%
Pb 220.353†	6.7	0.00052	mg/L	0.000389	0.00052	mg/L	0.000389 74.22%
Sb 206.836†	0.5	0.00013	mg/L	0.000671	0.00013		0.000671 519.96%
Se 196.026†	2.3	0.00119	mg/L	0.003186	0.00119	mg/L	0.003186 266.70%
Si 288.158†	3.3	0.00245		0.002866	0.00245	mg/L	0.002866 116.74%
Sn 189.927†	9.5	0.00144	mg/L	0.000349	0.00144	mg/L	0.000349 24.18%
Sr 421.552†	99.2	0.00017	mg/L	0.000070	0.00017	mg/L	0.000070 40.98%
Ti 334.903†	14.5	0.00056	mg/L	0.000930	0.00056	mg/L	0.000930 165.45%
Tl 190.801†	5.0	0.00137	mg/L	0.000484	0.00137	mg/L	0.000484 35.18%
V 292.402†	34.9	0.00018	mg/L	0.000174	0.00018	mg/L	0.000174 96.61%
Zn 206.200†	2.3	0.00094	${ m mg/L}$	0.000837	0.00094	mg/L	0.000837 88.76%

uned annon

Analysis Begun

Start Time: 11/1/2012 1:03:05 PM Plasma On Time: 11/1/2012 9:01:02 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\1101.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1

Autosampler Location: 24 Date Collected: 11/1/2012 1:03:07 PM

Sample ID: VP23 MB2 WMN Analyst: EL

Data Type: Original

Dilution: 1X

Nebulizer Parameters: VP23 MB2 WMN

Analyte Back Pressure Flow

All 232.0 kPa 0.55 L/min

Mean Data: VP23 MB	2 WMN						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2770538.4	104.6	8	0.85			0.81%
ScR 361.383	222018.1	104.8	ક	1.28			1.22%
Ag 328.068†	-31.4	-0.00011	mg/L	0.000162	-0.00011	mg/L	0.000162 153.14%
Al 308.215†	-3.8	-0.00256	mg/L	0.009660	-0.00256	mg/L	0.009660 378.06%
As 188.979†	0.1	0.00003	mg/L	0.001240	0.00003	mg/L	0.001240 >999.9%
B 249.677†	2.2	0.00103	mg/L	0.000611	0.00103	mg/L	0.000611 59.19%
Ba 233.527†	-1.3	-0.00012	mg/L	0.000415	-0.00012	mg/L	0.000415 338.65%
Be 313.042†	-12.8	-0.00005	mg/L	0.000068	-0.00005	mg/L	0.000068 140.82%
Ca 317.933†	31.9	0.00301		0.002809	0.00301	mg/L	0.002809 93.24%
Cd 228.802†	-5.1	-0.00006	mg/L	0.000064	-0.00006	mg/L	0.000064 104.09%
Co 228.616†	-13.1	-0.00016	mg/L	0.000053	-0.00016	mg/L	0.000053 33.95%
Cr 267.716†	2.2	0.00049	mg/L	0.000718	0.00049	mg/L	0.000718 147.27%
Cu 324.752†	-620.9	-0.00198	mg/L	0.000018	-0.00198	mg/L	0.000018 0.93%
Fe 273.955†	-2.5	-0.00206		0.001831	-0.00206		0.001831 88.70%
K 766.490†	-59.8	-0.01661	mg/L	0.027527	-0.01661	mg/L	0.027527 165.78%
Mg 279.077†	1.6	0.00141	mg/L	0.003382	0.00141	mg/L	0.003382 239.50%
Mn 257.610†	-4.9	-0.00012		0.000063	-0.00012	mg/L	0.000063 51.74%
Mo 202.031†	2.6	0.00014		0.000046	0.00014	mg/L	0.000046 32.76%
Na 589.592†	-42.6	-0.00524		0.004269	-0.00524	mg/L	0.004269 81.51%
Na 330.237†	5.1	0.1863		0.79704	0.1863	mg/L	0.79704 427.76%
Ni 231.604†	-3.8	-0.00170		0.001926	-0.00170	mg/L	0.001926 113.15%
Pb 220.353†	-6.1	-0.00047	mg/L	0.000317	-0.00047	mg/L	0.000317 67.12%
Sb 206.836†	-9.8	-0.00268		0.000339	-0.00268	mg/L	0.000339 12.67%
Se 196.026†	9.7	0.00506	mg/L	0.003410	0.00506	mg/L	0.003410 67.35%
Si 288.158†	1.6	0.00116	mg/L	0.001951	0.00116	mg/L	0.001951 168.06%
Sn 189.927†	5.4	0.00082	mg/L	0.000525	0.00082	mg/L	0.000525 64.17%
Sr 421.552†	68.7	0.00012		0.000070	0.00012	mg/L	0.000070 58.60%
Ti 334.903†	5.6	0.00022		0.000666	0.00022	mg/L	0.000666 304.54%
Tl 190.801†	-5.1	-0.00139		0.000819	-0.00139	mg/L	0.000819 58.82%
V 292.402†	33.4	0.00017		0.000124	0.00017	mg/L	0.000124 73.93%
Zn 206.200†	0.7	0.00029	mg/L	0.000388	0.00029	mg/L	0.000388 131.59%

Sequence No.: 2

Autosampler Location: 25 Sample ID: VO93 MB SWC

Analyst: EL Dilution: 2X

Date Collected: 11/1/2012 1:09:07 PM

Data Type: Original

Nebulizer Parameters: VO93 MB SWC

Analyte Back Pressure Flow

All 232.0 kPa 0.55 L/min

Mean Data: VO93 MB	SWC						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2700243.4	102.0	g S	0.65			0.64 }
ScR 361.383	214834.4	101.5	옿	1.26			1.24%
Ag 328.068†	-11.0	-0.00004		0.000298	-0.00007	mg/L	0.000596 805.30%
Al 308.215†	4.7	0.00309	mg/L	0.012153	0.00618	mg/L	0.024305 392.98%
As 188.979†	-0.2	-0.00007	mg/L	0.001269	-0.00014	mg/L	0.002537 >999.9%
B 249.677†	2.3	0.00106		0.001329	0.00213	mg/L	0.002657 124.83%
Ba 233.527†	-2.8	-0.00028		0.000083	-0.00055	mg/L	0.000165 30.05%
Be 313.042†	0.0	0.00000	mg/L	0.000074	0.00000	mg/L	0.000147 >999.9%
Ca 317.933†	168.2	0.01589	mg/L	0.000971	0.03178	mg/L	0.001942 6.11%
Cd 228.802†	0.4	0.00001	mg/L	0.000097	0.00001	mg/L	0.000193 >999.9%
Co 228.616†	2.7	0.00003		0.000109	0.00006	mg/L	0.000218 372.99%
Cr 267.716†	6.0	0.00132		0.000465	0.00264	mg/L	0.000930 35.17%
Cu 324.752†	-182.1	-0.00058	_	0.000206	-0.00116	mg/L	0.000412 35.45%
Fe 273.955†	5.1	0.00420	J .	0.001272	0.00840	mg/L	0.002544 30.30%
K 766.490†	15.7	0.00434		0.018420	0.00869	mg/L	0.036840 424.03%
Mg 279.077†	1.7	0.00145	mg/L	0.001517	0.00290	mg/L	0.003033 104.55%
Mn 257.610†	-2.9	-0.00007		0.000038	-0.00014	mg/L	0.000076 52.98%
Mo 202.031†	-1.5	-0.00008		0.000263	-0.00016	mg/L	0.000526 322.65%
Na 589.592†	70.2	0.00863		0.003335	0.01727	mg/L	0.006669 38.62%
Na 330.237†	-1.4	-0.05001		0.188603	-0.1000	mg/L	0.37721 377.12%
Ni 231.604†	2.5	0.00112	_ ·	0.002581	0.00224	mg/L	0.005161 230.67%
Pb 220.353†	8.8	0.00069		0.000895	0.00137	mg/L	0.001790 130.30%
Sb 206.836†	2.5	0.00067		0.000390	0.00133		0.000779 58.47%
Se 196.026†	-1.2	-0.00065		0.002293	-0.00130	mg/L	0.004586 353.56%
Si 288.158†	15.6	0.01150		0.001618	0.02301		0.003236 14.07%
Sn 189.927†	1.2	0.00019	mg/L	0.000521	0.00038	mg/L	0.001041 275.50%
Sr 421.552†	75.1	0.00013	J .	0.000079	0.00026	mg/L	0.000158 60.69%
Ti 334.903†	32.9	0.00128		0.000267	0.00256	mg/L	0.000535 20.91*
Tl 190.801†	-7.4	-0.00201		0.000062	-0.00403	mg/L	0.000123 3.06%
V 292.402†	12.5	0.00007		0.000118	0.00014	mg/L	0.000237 172.23%
Zn 206.200†	4.1	0.00168	mg/L	0.000537	0.00335	mg/L	0.001074 32.07%

UD51:00222

Sequence No.: 3

Sample ID: VO93 H SWC

Analyst: EL
Dilution: 2X

Autosampler Location: 26

Date Collected: 11/1/2012 1:15:07 PM

Data Type: Original

Nebulizer Parameters: VO93 H SWC

Analyte

Back Pressure Flow

All 232.0 kPa 0.55 L/min

Mean Data: V093 H	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2635107.2	99.50	욯	0.120				0.12%
ScR 361.383	216212.0	102.1	બ	1.86				1.827
Ag 328.068†	104093.8	0.3501	mg/L	0.00014	0.7001	mg/L	0.00027	0.04%
Al 308.215†	239495.3	159.2	mg/L	2.10	318.4	mg/L	4.21	1.32%
As 188.979†	1210.3	0.5066	mg/L	0.00019	1.013		0.0004	0.04%
B 249.677†	2743.7	1.260	mg/L	0.0235	2.519	mq/L	0.0470	1.87%
Ba 233.527†	59805.7	5.815	mg/L	0.0937	11.63		0.187	1.61%
Be 313.042†	452628.3	1.694	mg/L	0.0221	3.388	mg/L	0.0441	1.30%
Ca 317.933†	364621.2	34.44		0.425	68.89	mg/L	0.850	1.23%
Cd 228.802†	178185.6	2.131	mg/L	0.0065	4.262	mq/L	0.0129	0.30%
Co 228.616†	215110.8	2.547	mg/L	0.0037	5.093	mg/L	0.0074	0.15%
Cr 267.716†	5374.0	1.173	mg/L	0.0213	2.345	mq/L	0.0427	1.82%
Cu 324.752†	452081.6	1.449	mg/L	0.0016	2.897	mq/L	0.0032	0.11%
Fe 273.955†	67954.6	55.44	mg/L	0.733	110.9		1.47	1.32%
K 766.490†	93693.5	26.00	mg/L	0.343	52.01		0.686	1.32%
Mg 279.077†	53907.3	46.26	mg/L	0.764	92.52	mq/L	1.528	1.65%
Mn 257.610†	203274.9	5.023	mg/L	0.0639	10.05	mg/L	0.128	1.27%
Mo 202.031†	27928.6	1.512	mg/L	0.0015	3.023		0.0031	0.10%
Na 589.592†	23576.0	2.899	mg/L	0.0419	5.797	mq/L	0.0839	1.45%
Na 330.237†	103.3	2.246	mg/L	0.4867	4.492	mg/L	0.9734	21.67%
Ni 231.604†	7246.2	3.279	mg/L	0.0492	6.558	mq/L	0.0985	1.50%
Pb 220.353†	41536.5	3.268	mg/L	0.0035	6.536	mq/L	0.0070	0.11%
Sb 206.836†	1281.9	0.3443	mg/L	0.00173	0.6886		0.00345	0.50%
Se 196.026†	2837.0	1.468	mg/L	0.0119	2.935		0.0238	0.81%
Si 288.158†	6512.2	4.832		0.0498	9.664		0.0995	1.03%
Sn 189.927†	4758.8	0.7344	mg/L	0.00122	1.469	mq/L	0.0024	0.17%
Sr 421.552†	1277222.7	2.208		0.0276	4.416	_	0.0551	1.25%
Ti 334.903†	26093.1	1.012	mg/L	0.0131	2.024	mq/L	0.0263	1.30%
Tl 190.801†	7300.1	1.962	mg/L	0.0014	3.925		0.0027	0.07%
V 292.402†	453615.9	2.234		0.0080	4.468		0.0161	0.36%
Zn 206.200†	10035.0	4.121	mg/L	0.0580	8.242		0.1160	1.41 \$

Date: 11/1/2012 1:24:46 PM

Sequence No.: 4

Sample ID: VP23 I WMN

Analyst: EL Dilution: 1X

Autosampler Location: 27 Date Collected: 11/1/2012 1:20:28 PM

Data Type: Original

Nebulizer Parameters: VP23 I WMN

Analyte

Back Pressure Flow

All 232.0 kPa 0.55 L/min

Mean Data: VP23 I	WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2727351.4	103.0		1.43				1.39%
ScR 361.383	222034.4	104.9	8	2.06				1.96%
Ag 328.068†	111.3	-0.00057	${ t mg/L}$	0.000199	-0.00057		0.000199	34.73%
Al 308.215†	8.6	0.00558	J .	0.004007	0.00558	mg/L	0.004007	71.86%
As 188.979†	4.4	0.00182	${ t mg/L}$	0.000775	0.00182	mg/L	0.000775	42.46%
В 249.677†	73.0	0.03366	${\tt mg/L}$	0.001580	0.03366	mg/L	0.001580	4.69%
Ba 233.527†	356.8	0.03471		0.001092	0.03471	mg/L	0.001092	3.15%
Be 313.042†	-9.6	-0.00004	mg/L	0.000030	-0.00004	mg/L	0.000030	72.54%
Ca 317.933†	867513.6	81.95	${ t mg/L}$	1.569	81.95	mg/L	1.569	1.91%
Cd 228.802†	-3.8	-0.00005	${\tt mg/L}$	0.000008	-0.00005		0.000008	16.98%
Co 228.616†	-7.2	-0.00011	${ t mg/L}$	0.000067	-0.00011	mg/L	0.000067	61.42%
Cr 267.716†	20.9	0.00455	${ t mg/L}$	0.000433	0.00455	mg/L	0.000433	9.53%
Cu 324.752†	-93.1	-0.00030	J .	0.000140	-0.00030	mg/L	0.000140	47.25%
Fe 273.955†	61.2	0.04991	${ t mg/L}$	0.002541	0.04991	mg/L	0.002541	5.09%
K 766.490†	13229.1	3.672	${ t mg/L}$	0.1049	3.672	mg/L	0.1049	2.86%
Mg 279.077†	57019.6	48.95	${ t mg/L}$	1.242	48.95	mg/L	1.242	2.54%
Mn 257.610†	3357.1	0.08295		0.001565	0.08295	mg/L	0.001565	1.89%
Mo 202.031†	72.2	0.00331	${ t mg/L}$	0.000094	0.00331	mg/L	0.000094	2.84%
Na 589.592†	154811.8	19.03	${ t mg/L}$	0.366	19.03	mg/L	0.366	1.92%
Na 330.237†	545.4	19.52	mg/L	0.839	19.52		0.839	4.30%
Ni 231.604†	18.7	0.00846	${\tt mg/L}$	0.001707	0.00846	mg/L	0.001707	20.16%
Pb 220.353†	-32.5	-0.00040	${ t mg/L}$	0.000367	-0.00040	mg/L	0.000367	90.82%
Sb 206.836†	-10.1	-0.00289	${ t mg/L}$	0.001517	-0.00289	mg/L	0.001517	52.59%
Se 196.026†	20.3	0.01052	mg/L	0.002963	0.01052	mg/L	0.002963	28.17%
Si 288.158†	23588.1	17.45	${ t mg/L}$	0.367	17.45	mg/L	0.367	2.10%
Sn 189.927†	-29.9	0.01406	${\tt mg/L}$	0.000966	0.01406	mg/L	0.000966	6.87%
Sr 421.552†	275600.3	0.4764	${ t mg/L}$	0.00966	0.4764	mg/L	0.00966	2.03%
Ti 334.903†	162.3	0.00229		0.000330	0.00229	mg/L	0.000330	14.39%
Tl 190.801†	-15.0	-0.00421	mg/L	0.001190	-0.00421	mg/L	0.001190	28.30%
V 292.402†	386.5	0.00195	${\tt mg/L}$	0.000144	0.00195	mg/L	0.000144	7.38%
Zn 206.200†	-1.9	0.00098	mg/L	0.000875	0.00098	mg/L	0.000875	88.82%

Sequence No.: 5

Sample ID: VP23 J WMN

Analyst: EL Dilution: 1X

Autosampler Location: 28 Date Collected: 11/1/2012 1:26:45 PM

Data Type: Original

Nebulizer Parameters: VP23 J WMN

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

| Mean Data: VP23 J WMN | Mean Corrected | Calib. | Std.Dev. | Conc. Units | Std.Dev. | RSD | O.166 | ScR 357.253 | 2710038.9 | 102.3 % | 0.16 | ScR 361.383 | 216247.8 | 102.1 % | 0.89 | 0.168 | ScR 361.383 | 216247.8 | 102.1 % | 0.00027 | 0.000027 | 0.00007 | Mg/L | 0.000027 | 0.00027 | 0.0 Mean Data: VP23 J WMN

Sequence No.: 6

Sample ID: VP23 K WMN

Analyst: EL Dilution: 1X

Autosampler Location: 29 Date Collected: 11/1/2012 1:32:46 PM

Data Type: Original

Nebulizer Parameters: VP23 K WMN

Zn 206.200†

All

Analyte Back Pressure Flow

233.0 kPa 0.55 L/min

Mean Data: VP23 K WMN Mean Corrected Calib. Sample Std.Dev. Conc. Units Std.Dev. RSD Intensity Conc. Units 2772180.8 104.7 % 222752.7 105.2 % ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402†

Sequence No.: 7

Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402† Zn 206.200†

Sample ID: VP23 L WMN

Analyst: EL Dilution: 1X

Autosampler Location: 30

Date Collected: 11/1/2012 1:38:46 PM

Data Type: Original

Nebulizer Parameters: VP23 L WMN

Analyte Back Pressure Flow

233.0 kPa 0.55 L/min

Mean Data: VP23 L WMN Mean Corrected Calib. Sample Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215†

Sequence No.: 8

Sample ID: VP23 HDUP WMN

Analyst: EL Dilution: 1X

Autosampler Location: 31 Date Collected: 11/1/2012 1:44:48 PM

Data Type: Original

Nebulizer Parameters: VP23 HDUP WMN

Δlī

Analyte Back Pressure Flow

233.0 kPa 0.55 L/min

Mean Data: VP23 HDUP WMN Calib. Sample Mean Corrected Analyte ScA 357.253 ScR 361.383 Ag 328.068t A1 308.215t As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716t Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mn 207.021 Mo 202.031† Na 589.592† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402† Zn 206.200†

UDS1:00228

Sequence No.: 9

Sample ID: VP23 H WMN

Analyst: EL Dilution: 1X

Autosampler Location: 32

Date Collected: 11/1/2012 1:51:07 PM

Data Type: Original

Nebulizer Parameters: VP23 H WMN

Analyte Back Pressure Flow

233.0 kPa 0.55 L/min

Mean Data: VP23 H WMN Mean Corrected Calib.
Intensity Conc. Units
2774664.4 104.8 %
224541.3 106.0 % Sample Std.Dev. Conc. Units Std.Dev. RSD Analyte 0.2**7** 0.50 ScA 357.253 0.26% ScR 361.383 0.47% Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716t Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026t Si 288.158† Sn 189.927† Sr 421.552† Ti 334.502 Tl 190.801† Ti 334.903† V 292.402† Zn 206.200†

Sequence No.: 10

Sample ID: VP23 HSPK WMN

Analyst: EL Dilution: 1X Autosampler Location: 33

Date Collected: 11/1/2012 1:57:26 PM

Data Type: Original

Nebulizer Parameters: VP23 HSPK WMN

Analyte

Back PressureFlow232.0 kPa0.55 L/min

All

Mean Data: VP23	 HSPK WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2635164.5	99.51	8	0.345				0.35%
ScR 361.383	217338.5	102.6	8	0.36				0.36%
Ag 328.068†	153375.1	0.5129	mg/L	0.00830	0.5129	mg/L	0.00830	1.62%
Al 308.215†	3531.7	2.340	mg/L	0.0058	2.340		0.0058	0.25%
As 188.979†	6105.6	2.563	mg/L	0.0056	2.563	mg/L	0.0056	0.22%
В 249.677†	143.6	0.06436	mg/L	0.003024	0.06436		0.003024	4.70%
Ba 233.527†	23474.6	2,284	mg/L	0.0127	2.284	mg/L	0.0127	0.56%
Be 313.042†	163922.0	0.6141	mg/L	0.00438	0.6141	mq/L	0.00438	0.71%
Ca 317.933†	820259.3	77.49	mg/L	0.584	77.49		0.584	0.75%
Cd 228.802†	50725.2	0.6009	mg/L	0.00415	0.6009	mg/L	0.00415	0.69%
Co 228.616†	47000.4	0.5565	mg/L	0.00293	0.5565		0.00293	0.53%
Cr 267.716†	2708.9	0.5905	mg/L	0.00175	0.5905	mg/L	0.00175	0.30%
Cu 324.752†	170199.1	0.5440	mg/L	0.00212	0.5440	mg/L	0.00212	0.39%
Fe 273.955†	3062.2	2.498	mg/L	0.0108	2.498	mg/L	0.0108	0.43%
K 766.490†	55379.8	15.37	mg/L	0.111	15.37	mg/L	0.111	0.73%
Mg 279.077†	38274.1	32.86	mg/L	0.196	32.86	mg/L	0.196	0.60%
Mn 257.610†	220595.2	5.451	mg/L	0.0320	5.451	mg/L	0.0320	0.59%
Mo 202.031†	52.5	0.00237	mg/L	0.000293	0.00237	mg/L	0.000293	12.37%
Na 589.592†	198325.1	24.38	mg/L	0.117	24.38	mg/L	0.117	0.48%
Na 330.237†	677.9	24.15	mg/L	0.151	24.15	mg/L	0.151	0.63%
Ni 231.604†	1261.5	0.5701		0.00511	0.5701	mg/L	0.00511	0.90%
Pb 220.353†	30272.3	2.345		0.0172	2.345	mg/L	0.0172	0.73%
sb 206.836†	25.9	-0.00181	mg/L	0.001502	-0.00181	mg/L	0.001502	82.86%
Se 196.026†	5412.3	2.815	mg/L	0.0066	2.815	mg/L	0.0066	0.24%
Sı 288.158†	12987.3	9.609	mg/L	0.0488	9.609	mg/L	0.0488	0.51%
Sn 189.927†	-38.3	0.01145		0.000623	0.01145	mg/L	0.000623	5.44%
Sr 421.552†	617771.3	1.068		0.0065	1.068		0.0065	0.61%
Ti 334.903†	153.1	0.00201	mg/L	0.000475	0.00201		0.000475	23.57%
Tl 190.801†	8700.2	2.365		0.0043	2.365	mg/L	0.0043	0.18%
V 292.402†	120465.7	0.5953	mg/L	0.00337	0.5953	mg/L	0.00337	0.57%
Zn 206.200†	1397.0	0.5752	mg/L	0.00458	0.5752	mg/L	0.00458	0.80%

Sequence No.: 11 Sample ID: CV 2 Analyst: EL

Dilution: 1X

Autosampler Location: 7

Date Collected: 11/1/2012 2:03:23 PM

Data Type: Original

Nebulizer Parameters: CV

Analyte

Back Pressure Flow 9.55 L/min All

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	$\mathtt{Std}.\mathtt{Dev}.$	RSD
ScA 357.253	2650925.8	100.1		1.28				1.28%
ScR 361.383	216601.7	102.3	용	0.21				0.21%
Ag 328.068†	296350.4	0.9943	mg/L	0.00305	0.9943	_	0.00305	0.31%
Al 308.215†	3065.1	1.997	mg/L	0.0102	1.997	_	0.0102	0.51%
As 188.979†	4962.5	2.082	mg/L	0.0227	2.082	mg/L	0.0227	1.09%
B 249.677†	2144.1	0.9868	mg/L	0.00569	0.9868	mg/L	0.00569	0.58%
Ba 233.527†	10165.4	0.9886	mg/L	0.00415	0.9886	mg/L	0.00415	0.42%
Be 313.042†	273597.1	1.025	mg/L	0.0016	1.025	mg/L	0.0016	0.16%
Ca 317.933†	21479.3	2.029	mg/L	0.0090	2.029	mg/L	0.0090	0.44%
Cd 228.802†	84782.2	1.010	mg/L	0.0008	1.010	mg/L	0.0008	0.08%
Co 228.616†	82995.8	0.9823	mg/L	0.00130	0.9823	mg/L	0.00130	0.13%
Cr 267.716†	4549.8	0.9935	mg/L	0.00325	0.9935	mg/L	0.00325	0.33%
Cu 324.752†	330292.4	1.055	mg/L	0.0005	1.055	mg/L	0.0005	0.05%
Fe 273.955†	2602.2	2.122	mg/L	0.0089	2.122	mg/L	0.0089	0.42%
K 766.490†	73030.5	20.27	mg/L	0.082	20.27	mg/L	0.082	0.40%
Mg 279.077†	2450.2	2.107	mg/L	0.0120	2.107	mg/L	0.0120	0.57%
Mn 257.610†	40359.2	0.9977	mg/L	0.00220	0.9977	mg/L	0.00220	0.22%
Mo 202.031†	17818.7	0.9628	mg/L	0.01057	0.9628	mg/L	0.01057	1.10%
Na 589.592†	411626.7	50.61	mg/L	0.129	50.61	mg/L	0.129	0.25%
Na 330.237†	1388.3	50.38	mg/L	0.327	50.38	mg/L	0.327	0.65%
Ni 231.604†	2240.3	1.014		0.0051	1.014	mg/L	0.0051	0.50 €
Pb 220.353†	26529.0	2.054	mg/L	0.0193	2.054	mg/L	0.0193	0.94%
Sb 206.836†	7704.7	2.104	mg/L	0.0215	2.104	mg/L	0.0215	1.028
Se 196.026†	3879.1	2.016	mg/L	0.0236	2.016	mg/L	0.0236	1.17 %
Si 288.158†	2898.6	2.150	mg/L	0.0133	2.150	mg/L	0.0133	0.62%
Sn 189.927†	5991.8	0.9145	mg/L	0.00968	0.9145	mg/L	0.00968	1.06%
Sr 421.552†	596077.9	1.030	mg/L	0.0019	1.030	mg/L	0.0019	0.19%
Ti 334.903†	25623.9	0.9957		0.00096	0.9957	mg/L	0.00096	0.10%
Tl 190.801†	7365.9	2.001		0.0229	2.001	mg/L	0.0229	1.14%
V 292.402†	203012.7	1.006		0.0008	1.006		0.0008	0.088
Zn 206.200†	2635.6	1.081	_	0.0048	1.081		0.0048	0.45%

Date: 11/1/2012 2:13:25 PM

Sequence No.: 12 Sample ID: CB·2_ Analyst: EL

Dilution: 1X

Zn 206.200†

Autosampler Location: 1

Date Collected: 11/1/2012 2:09:25 PM

Data Type: Original

Nebulizer Parameters: CB

Analyte Back Pressure Flow

232.0 kPa 0.55 L/min

 Mean Corrected Intensity
 Conc. Units
 Std.Dev. Conc. Units
 Std.Dev. Conc. Units
 RSD 0.86% 0.86% 0.87

 2689324.6
 101.6 % 0.87
 0.86% 0.87
 0.0001
 0.00037
 0.00011 mg/L 0.000037 0.00011 mg/L 0.000037 33.58% 0.00795 mg/L 0.009365 0.00795 mg/L 0.009365 117.76% 0.22 0.00092 mg/L 0.000625 0.00092 mg/L 0.000625 67.61% 0.8 0.0001 mg/L 0.000241 0.000241 0.000241 0.000241 0.000241 0.000241 0.000241 0.000241 0.000241 0.000241 0.000241 0.000241 0.000241 0.000241 0.000241 0.000241 0.000241 0.000241 0.000041 mg/L 0.000244 0.00001 mg/L 0.000244 0.00001 mg/L 0.000244 0.00001 mg/L 0.000045 55.61% 0.000241 0.000041 0.000241 0.000045 0.000241 0.000045 0.000241 0.000045 0.000241 0.000045 0.000241 0.000045 0.00024 mg/L 0.000045 0.000257 0.00066 mg/L 0.000365 0.00065 mg/L 0.000365 0.00065 mg/L 0.000365 0.00064 mg/L 0.000365 0.00064 mg/L 0.000365 0.00064 mg/L 0.000365 0.00064 mg/L 0.000365 0.00064 mg/L 0.000041 0.00004 0.00041 0.00004 0.00041 0.00004 0.00041 0.00004 0.00044 0.000044 0.00044 0.00044 0.00044 0.00044 0.00044 0.00044 0.00044 0.000044 0. Mean Data: CB Calib. Mean Corrected Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402†

Sequence No.: 13

Sample ID: VQ16 MB2 DMN

Analyst: EL

Dilution: 1X

Zn 206.200†

Autosampler Location: 34

Date Collected: 11/1/2012 2:15:23 PM

Data Type: Original

Nebulizer Parameters: VQ16 MB2 DMN

Analyte Back Pressure Flow Al1 233.0 kPa 0.55 L/min

| Mean Corrected | Calib. | Std.Dev. | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | RSD | O.17% | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | RSD | O.17% | Conc. Units | Std.Dev. | RSD | O.17% | Conc. Units | Conc. Units | Std.Dev. | RSD | O.17% | Conc. Units | Conc. Uni Mean Data: VQ16 MB2 DMN Mean Corrected Calib. Sample Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610†
Mo 202.031†
Na 589.592†
Na 330.237†
Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402†

Zn 206.200†

Sequence No.: 14
Sample ID: VQ25 MB Analyst: EL Dilution: 1X

Autosampler Location: 35
Date Collected: 11/1/2012 2:21:25 PM
Data Type: Original

Nebulizer Parameters: VQ25 MB DMN

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VQ25 MB DMN Mean Corrected Calib. Sample Analyte ScA 357.253 ScR 361.383 Ag 328.068† AĨ 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616t Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† T1 190.801† V 292.402†

Sequence No.: 15

Autosampler Location: 36

Sample ID: VQ16 L DMN

Date Collected: 11/1/2012 2:27:27 PM

Data Type: Original

Analyst: EL Dilution: 1X

All

Nebulizer Parameters: VQ16 L DMN

Analyte Back Pressure Flow

232.0 kPa 0.55 L/min

Mean Data: VQ16 L	DMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	_	Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev.	
ScA 357.253	2750494.9	103.9		0.59				0.57%
ScR 361.383	222597.2	105.1		0.70				0.66%
Ag 328.068†	-54.8	-0.00030	J.	0.000071	-0.00030		0.000071	24.10%
Al 308.215†	173.9	0.1155		0.00518	0.1155	_	0.00518	4.49%
As 188.979†	5.6	0.00233	_	0.000246	0.00233		0.000246	10.59%
B 249.677†	90.7	0.04184	٠.	0.001204	0.04184	_	0.001204	2.88%
Ba 233.527†	61.9	0.00603	2	0.000069	0.00603		0.000069	1.148
Be 313.042†	-14.2	-0.00006	2.	0.000060	-0.00006	-	0.000060	
Ca 317.933†	102052.4	9.641	${ m mg/L}$	0.0517	9.641		0.0517	0.54%
Cd 228.802†	-0.8	-0.00002	_	0.000062	-0.00002			408.03%
Co 228.616†	-7.0	-0.00009	${ m mg/L}$	0.000025	-0.00009	_	0.000025	28.79%
Cr 267.716†	11.8	0.00258	${ m mg/L}$	0.000713	0.00258	J.	0.000713	27.63%
Cu 324.752†	1180.8	0.00377	${ m mg/L}$	0.000147	0.00377	,	0.000147	3.90%
Fe 273.955†	47.7	0.03895	${ m mg/L}$	0.002319	0.03895		0.002319	5.95%
K 766.490†	5155.5	1.431	${ m mg/L}$	0.0079	1.431	_	0.0079	0.55%
Mg 279.077†	1450.7	1.245	${ m mg/L}$	0.0115	1.245	_	0.0115	0.93%
Mn 257.610†	574.6	0.01420	${ m mg/L}$	0.000174	0.01420	mg/L	0.000174	1.23%
Mo 202.031†	74.8	0.00403	${ t mg/L}$	0.000049	0.00403		0.000049	1.22%
Na 589.592†	67066.9	8.246	mg/L	0.0216	8.246	${ m mg/L}$	0.0216	0.26%
Na 330.237†	226.2	8.199	${\tt mg/L}$	0.5477	8.199		0.5477	6.68₺
Ni 231.604†	-1.0	-0.00045	mg/L	0.000963	-0.00045	${ m mg/L}$		214.96%
Pb 220.353†	-10.9	-0.00056	${ m mg/L}$	0.000249	-0.00056	${ m mg/L}$	0.000249	44.66%
Sb 206.836†	-5.1	-0.00145	mg/L	0.000449	-0.00145	${ m mg/L}$	0.000449	31.00%
Se 196.026†	1.8	0.00094	mg/L	0.000985	0.00094	-		104.92%
Si 288.158†	1888.9	1.397	mg/L	0.0103	1.397	${ m mg/L}$	0.0103	0.74%
Sn 189.927†	-7.7	0.00091	mg/L	0.000820	0.00091	mg/L	0.000820	90.44%
Sr 421.552†	24699.1	0.04270	mg/L	0.000086	0.04270	mg/L	0.000086	0.20%
Ti 334.903†	62.8	0.00197	mg/L	0.000366	0.00197	${ m mg/L}$	0.000366	18.61%
Tl 190.801†	-8.9	-0.00245	mg/L	0.000664	-0.00245	${ m mg/L}$	0.000664	27.05%
V 292.402†	306.4	0.00154	mg/L	0.000080	0.00154	${ m mg/L}$	0.000080	5.18%
Zn 206.200†	24.5	0.01026	mg/L	0.000410	0.01026	mg/L	0.000410	4.00%

Date: 11/1/2012 2:37:28 PM

Sequence No.: 16

Autosampler Location: 37

Sample ID: VQ16 KDUP DMN Analyst: EL Date Collected: 11/1/2012 2:33:27 PM
Data Type: Original

Dilution: 1X

Nebulizer Parameters: VQ16 KDUP DMN

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: VQ16 KI	OUP DMN							
_	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2771757.6	104.7	લ	0.50				0.48%
ScR 361.383	219340.3	103.6	olo Olo	1.36				1.31%
Ag 328.068†	-31.4	-0.00022	mg/L	0.000100	-0.00022		0.000100	45.04%
Al 308.215†	129.5	0.08610	mg/L	0.005275	0.08610	mg/L	0.005275	6.13%
As 188.979†	3.1	0.00129	mg/L	0.000832	0.00129	mg/L	0.000832	64.35%
B 249.677†	273.6	0.1261	mg/L	0.00431	0.1261	mg/L	0.00431	3.42%
Ba 233.527†	57.2	0.00557	${ m mg/L}$	0.000552	0.00557	mg/L	0.000552	9.92%
Be 313.042†	-30.5	-0.00012	mg/L	0.000033	-0.00012	mg/L	0.000033	28.61%
Ca 317.933†	106904.9	10.10	mg/L	0.021	10.10	mg/L	0.021	0.21%
Cd 228.802†	-2.3	-0.00003	mg/L	0.000028	-0.00003	${ m mg/L}$	0.000028	91.81%
Co 228.616†	-13.7	-0.00017	${ m mg/L}$	0.000053	-0.00017	mg/L	0.000053	31.63%
Cr 267.716†	12.0	0.00262	${ m mg/L}$	0.000721	0.00262	mg/L	0.000721	27.48%
Cu 324.752†	343.0	0.00110	mg/L	0.000011	0.00110	${ m mg/L}$	0.000011	0.99%
Fe 273.955†	39.5	0.03225	mg/L	0.000855	0.03225	${ m mg/L}$	0.000855	2.65%
K 766.490†	3216.8	0.8928	${ m mg/L}$	0.00953	0.8928	mg/L	0.00953	1.07%
Mg 279.077†	925.7	0.7947	${ m mg/L}$	0.00533	0.7947		0.00533	0.67%
Mn 257.610†	582.5	0.01439	${ m mg/L}$	0.000255	0.01439	mg/L	0.000255	1.77%
Mo 202.031†	29.1	0.00156	${ m mg/L}$	0.000072	0.00156	mg/L	0.000072	4.63%
Na 589.592†	35183.0	4.326	${ m mg/L}$	0.0201	4.326	mg/L	0.0201	0.47%
Na 330.237†	116.3	4.195	${ m mg/L}$	0.0378	4.195	${\sf mg/L}$	0.0378	0.90 ધ
Nı 231.604†	3.8	0.00173	mg/L	0.001148	0.00173		0.001148	66.27%
Pb 220.353†	-13.6	-0.00076	_	0.000295	-0.00076		0.000295	38.60%
Sb 206.836†	-7.5	-0.00212	J .	0.001301	-0.00212	J .	0.001301	61.29%
Se 196.026†	3.9	0.00201		0.001810	0.00201		0.001810	90.25%
Si 288.158†	1190.4	0.8802		0.00808	0.8802		0.00808	0.92%
Sn 189.927†	-9.8	0.00067	mg/L	0.000836	0.00067	${\sf mg/L}$	0.000836	124.13%
Sr 421.552†	21618.3	0.03737		0.000239	0.03737	mg/L	0.000239	0.64%
Ti 334.903†	61.2	0.00189	${\tt mg/L}$	0.000189	0.00189	${ m mg/L}$	0.000189	10.05%
Tl 190.801†	-8.9	-0.00246	-	0.001222	-0.00246	-	0.001222	49.70%
V 292.402†	123.7	0.00063		0.000116	0.00063		0.000116	18.43%
Zn 206.200†	10.8	0.00467	mg/L	0.000445	0.00467	mg/L	0.000445	9.54%

Sample ID: VQ16 K DMN

Sequence No.: 17

Autosampler Location: 38
Date Collected: 11/1/2012 2:39:27 PM

Analyst: EL

Data Type: Original

Dilution: 1X

Nebulizer Parameters: VQ16 K DMN

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: VQ16 K	DMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2767994.0	104.5		0.22				0.21%
ScR 361.383	218541.0	103.2		0.79				0.77%
Ag 328.068†	-17.4	-0.00018	J .	0.000308	-0.00018		0.000308	
Al 308.215†	120.4	0.08005	٠.	0.011998	0.08005		0.011998	14.99%
As 188.979†	0.0	0.00001		0.002183	0.00001		0.002183	
в 249.677†	280.8	0.1295		0.00109	0.1295		0.00109	0.84%
Ba 233.527†	54.6	0.00531	${ m mg/L}$	0.000214	0.00531		0.000214	4.03%
Be 313.042†	-3.9	-0.00002	mg/L	0.000028	-0.00002	J .	0.000028	
Ca 317.933†	107773.3	10.18	mg/L	0.023	10.18	_	0.023	0.22≩
Cd 228.802†	1.4	0.00002	mg/L	0.000053	0.00002	J .	0.000053	309.32%
Co 228.616†	-14.9	-0.00018	mg/L	0.000096	-0.00018	mg/L	0.000096	52.51%
Cr 267.716†	9.3	0.00204	mg/L	0.000826	0.00204		0.000826	40.56%
Cu 324.752†	364.0	0.00116	${ m mg/L}$	0.000090	0.00116	J .	0.000090	7.69%
Fe 273.955†	40.0	0.03260	mg/L	0.001116	0.03260	mg/L	0.001116	3.42%
K 766.490†	3210.2	0.8910	${ t mg/L}$	0.01864	0.8910	mg/L	0.01864	2.09%
Mg 279.077†	933.1	0.8011	${ m mg/L}$	0.00775	0.8011	mg/L	0.00775	0.97%
Mn 257.610†	582.6	0.01440	mg/L	0.000144	0.01440		0.000144	1.00%
Mo 202.031†	27.8	0.00150	${ m mg/L}$	0.000229	0.00150	mg/L	0.000229	15.33%
Na 589.592†	35476.9	4.362	${ m mg/L}$	0.0138	4.362	mg/L	0.0138	0.32%
Na 330.237†	106.4	3.832	mg/L	0.4855	3.832	mg/L	0.4855	12.67%
Ni 231.604†	1.9	0.00085	mg/L	0.001162	0.00085	mg/L	0.001162	136.12%
Pb 220.353†	-17.7	-0.00108	mg/L	0.000155	-0.00108	mg/L	0.000155	14.42%
Sb 206.836†	-11.4	-0.00316	mg/L	0.000816	-0.00316	mg/L	0.000816	25.82%
Se 196.026†	5.1	0.00264	mg/L	0.000933	0.00264	mg/L	0.000933	35.39%
Si 288.158†	1197.7	0.8856	${\tt mg/L}$	0.00717	0.8856	mg/L	0.00717	418.0
Sn 189.927†	-10.2	0.00064	mg/L	0.000139	0.00064	mg/L	0.000139	21.79%
Sr 421.552†	21664.7	0.03745	mg/L	0.000089	0.03745	mg/L	0.000089	0.24૬
Ti 334.903†	56.3	0.00169	mg/L	0.000924	0.00169	mg/L	0.000924	54.73%
Tl 190.801†	-8.3	-0.00229	mg/L	0.001667	-0.00229	mg/L	0.001667	72.81%
V 292.402†	131.8	0.00067	mg/L	0.000134	0.00067	mg/L	0.000134	20.20%
Zn 206.200†	12.9	0.00552	mg/L	0.001063	0.00552	mg/L	0.001063	19.26%

The second of th

Date: 11/1/2012 2:49:30 PM

Sequence No.: 18

Autosampler Location: 39 Sample ID: VQ16 KSPK DMN Date Collected: 11/1/2012 2:45:27 PM

Data Type: Original Analyst: EL

Dilution: 1X

Nebulizer Parameters: VQ16 KSPK DMN

Analyte

Back Pressure Flow 233.0 kPa 0.55 L/min All 233.0 kPa

Mean Data: VQ16	KSPK DMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2707834.1	102.3	ક	0.25				0.25%
ScR 361.383	220594.4	104.2	8	0.17				0.16%
Ag 328.068†	135395.0	0.4541	mg/L	0.00671	0.4541	mg/L	0.00671	1.48%
Al 308.215†	3516.8	2.330	mg/L	0.0098	2.330	mg/L	0.0098	0.42%
As 188.979†	5615.2	2.357	mg/L	0.0056	2.357	mg/L	0.0056	0.24%
B 249.677†	269.6	0.1224	mg/L	0.00142	0.1224	mg/L	0.00142	1.16%
Ba 233.527†	22447.0	2.184	mg/L	0.0156	2.184	mg/L	0.0156	0.71%
Be 313.042†	158314.3	0.5931	mg/L	0.00168	0.5931	mg/L	0.00168	0.28%
Ca 317.933†	226549.0	21.40	mg/L	0.059	21.40	mg/L	0.059	0.27%
Cd 228.802†	49243.8	0.5837	mg/L	0.00311	0.5837	mg/L	0.00311	0.53%
Co 228.616†	46876.2	0.5551	mg/L	0.00197	0.5551	mg/L	0.00197	0.36%
Cr 267.716†	2617.3	0.5716	mg/L	0.00466	0.5716	mg/L	0.00466	0.82%
Cu 324.752†	171162.2	0.5471	mg/L	0.00118	0.5471	mg/L	0.00118	0.22%
Fe 273.955†	2922.1	2.383	mg/L	0.0157	2.383	mg/L	0.0157	0.66%
K 766.490†	45304.0	12.57	mg/L	0.044	12.57	mg/L	0.044	0.35%
Mg 279.077†	14396.0	12.36	mg/L	0.100	12.36	mg/L	0.100	0.81%
Mn 257.610†	22835.9	0.5648	mg/L	0.00378	0.5648	mg/L	0.00378	0.67%
Mo 202.031†	38.6	0.00187	mg/L	0.000110	0.00187	mg/L	0.000110	5.86%
Na 589.592†	128278.8	15.77	mg/L	0.013	15.77	mq/L	0.013	0.08%
Na 330.237†	428.4	15.30	mg/L	0.121	15.30	mg/L	0.121	0.79%
Ni 231.604†	1250.0	0.5649	mg/L	0.00542	0.5649	mg/L	0.00542	0.96%
Pb 220.353†	30267.7	2.344	mg/L	0.0100	2.344	mg/L	0.0100	0.43%
Sb 206.836†	22.0	-0.00257	mg/L	0.000722	-0.00257	mg/L	0.000722	28.05%
Se 196.026†	4805.9	2.500	mg/L	0.0088	2.500	mg/L	0.0088	0.35%
Si 288.158†	1193.3	0.8864	mg/L	0.00360	0.8864	mg/L	0.00360	0.41%
Sn 189.927†	-17.6	0.00218	mg/L	0.000298	0.00218	mg/L	0.000298	13.70%
Sr 421.552†	358948.9	0.6205	mg/L	0.00292	0.6205		0.00292	0.47%
Ti 334.903†	79.5	0.00191	mg/L	0.000482	0.00191		0.000482	25.27%
Tl 190.801†	8612.5	2.347	mg/L	0.0087	2.347	mg/L	0.0087	0.37%
V 292.402†	115442.3	0.5698		0.00235	0.5698	_	0.00235	0.41%
Zn 206.200†	1428.0	0.5867		0.00660	0.5867	mg/L	0.00660	1.13%

Sequence No.: 19

Sample ID: VQ25 ADUP WMN

Analyst: EL

Dilution: 1X

Autosampler Location: 40

Date Collected: 11/1/2012 2:51:29 PM

Data Type: Original

Nebulizer Parameters: VQ25 ADUP WMN

Analyte

Back Pressure

Flow

All 233.0 kPa 0.55 L/min

Mean Data: VQ25	ADUP WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2712569.6	102.4	8	0.51				0.50%
ScR 361.383	219916.7	103.9		0.86				0.83%
Ag 328.068†	11.3	-0.00025	mg/L	0.000133	-0.00025	mg/L	0.000133	53.72%
Al 308.215†	12.5	0.00807	mg/L	0.005340	0.00807	mg/L	0.005340	66.13%
As 188.979†	1.5	0.00062		0.001041	0.00062	mg/L	0.001041 1	L67.77%
B 249.677†	20.2	0.00932	mg/L	0.001143	0.00932	mg/L	0.001143	12.26%
Ba 233.527†	156.7	0.01524		0.000255	0.01524	mg/L	0.000255	1.67%
Be 313.042†	-13.9	-0.00008	mg/L	0.000039	-0.00008	mg/L	0.000039	49.50%
Ca 317.933†	268479.4	25.36	mg/L	0.055	25.36	mg/L	0.055	0.22%
Cd 228.802†	-9.4	-0.00011	mg/L	0.000039	-0.00011	mg/L	0.000039	33.76%
Co 228.616†	-21.3	-0.00026	mg/L	0.000025	-0.00026	mg/L	0.000025	9.76%
Cr 267.716†	2.7	0.00060	mg/L	0.000355	0.00060	mg/L	0.000355	59.48%
Cu 324.752†	10.0	0.00003	mg/L	0.000189	0.00003	mg/L	0.000189 5	553.25%
Fe 273.955t	48.1	0.03920	mg/L	0.000774	0.03920		0.000774	1.98%
K 766.490†	10618.6	2.947	mg/L	0.0098	2.947		0.0098	0.33%
Mg 279.077†	7793.7	6.691		0.0134	6.691		0.0134	0.20%
Mn 257.610†	204.5	0.00505	mg/L	0.000132	0.00505	mg/L	0.000132	2.61%
Mo 202.031†	33.8	0.00175	mg/L	0.000046	0.00175	mg/L	0.000046	2.61%
Na 589.592†	32180.0	3.956	mg/L	0.0129	3.956	mg/L	0.0129	0.33%
Na 330.237†	103.5	3.656	mg/L	0.1842	3.656	mg/L	0.1842	5.04%
Ni 231.604†	0.6	0.00027	mg/L	0.001420	0.00027	mg/L	0.001420 5	516.69%
Pb 220.353†	-15.7	-0.00056	mg/L	0.000763	-0.00056	mg/L	0.000763 1	.35.37%
Sb 206.836†	-1.9	-0.00050	mg/L	0.002160	-0.00050		0.002160 4	133.06%
Se 196.026†	4.2	0.00219	mg/L	0.001777	0.00219	mg/L	0.001777	81.11%
Si 288.158†	36245.3	26.80	mg/L	0.061	26.80		0.061	0.23%
Sn 189.927†	-17.7	0.00286	mg/L	0.000723	0.00286	mg/L	0.000723	25.30%
Sr 421.552†	52182.3	0.09020	mg/L	0.000092	0.09020		0.000092	0.10%
Ti 334.903†	45.0	0.00051		0.000351	0.00051		0.000351	69.18%
Tl 190.801†	-14.2	-0.00393	mg/L	0.001154	-0.00393		0.001154	29.38%
V 292.402†	2102.7	0.01032		0.000266	0.01032		0.000266	2.57%
Zn 206.200†	39.7	0.01685	mg/L	0.000844	0.01685	mg/L	0.000844	5.01%

Sequence No.: 20

Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927†

Sample ID: VQ25 A WMN

Analyst: EL Dilution: 1X

Autosampler Location: 41

Date Collected: 11/1/2012 2:57:29 PM

Data Type: Original

Nebulizer Parameters: VQ25 A WMN

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

| Tale | VQ25 | A WAN | Mean Corrected | Intensity | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | RSD | 1.34 | 2.62 | 1.39 | 1.34 | 1 Mean Data: VQ25 A WMN Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955t K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237†

UDS: DADUA

Sequence No.: 21

Sample ID: VQ25 ASPK WMN

Analyst: EL Dilution: 1X

All

Autosampler Location: 42
Date Collected: 11/1/2012 3:03:29 PM

Data Type: Original

v

Nebulizer Parameters: VQ25 ASPK WMN

Analyte Back Pressure Flow

233.0 kPa 0.55 L/min

Mean Data: VQ25 AS	SPK WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	$\mathtt{Std.Dev}$.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2695063.5	101.8		0.30				0.29 *
ScR 361.383	219888.4	103.8		0.68				0.65%
Ag 328.068†	160513.6	0.5382	${ m mg/L}$	0.00673	0.5382	mg/L	0.00673	1.25%
Al 308.215†	3406.7	2.257	${ m mg/L}$	0.0122	2.257	٠.	0.0122	0.54%
As 188.979†	5686.9	2.387		0.0135	2.387		0.0135	0.57%
B 249.677†	21.7	0.00817		0.001534	0.00817	_	0.001534	18.78%
Ba 233.527†	23264.2	2.263	${ m mg/L}$	0.0040	2.263	mg/L	0.0040	0.18%
Be 313.042†	159233.6	0.5966	${ m mg/L}$	0.00090	0.5966	mg/L	0.00090	0.15%
Ca 317.933†	385478.9	36.41	${ t mg/L}$	0.062	36.41	mg/L	0.062	0.17%
Cd 228.802†	49463.7	0.5862	${ m mg/L}$	0.00574	0.5862	mg/L	0.00574	0.98%
Co 228.616†	46336.1	0.5487	${ m mg/L}$	0.00469	0.5487	mg/L	0.00469	0.85%
Cr 267.716†	2623.6	0.5730	${ m mg/L}$	0.00328	0.5730	mg/L	0.00328	0.57%
Cu 324.752†	175320.8	0.5604	mg/L	0.00367	0.5604		0.00367	0.66%
Fe 273.955†	2934.2	2.393	${ m mg/L}$	0.0149	2.393	mg/L	0.0149	0.62%
K 766.490†	52458.2	14.56	${ m mg/L}$	0.098	14.56	mg/L	0.098	0.68%
Mg 279.077†	21493.9	18.45	${ m mg/L}$	0.017	18.45	mg/L	0.017	0.09%
Mn 257.610†	23042.0	0.5699	${ m mg/L}$	0.00108	0.5699	mg/L	0.00108	0.19€
Mo 202.031†	41.5	0.00195	mg/L	0.000062	0.00195	mg/L	0.000062	3.20%
Na 589.592†	125552.4	15.44	${ m mg/L}$	0.036	15.44	mg/L	0.036	0.23%
Na 330.237†	424.0	15.06	${ m mg/L}$	0.164	15.06	mg/L	0.164	1.09%
Ni 231.604†	1232.0	0.5568	${ m mg/L}$	0.00217	0.5568	mg/L	0.00217	0.39%
Pb 220.353†	30115.1	2.332	${ m mg/L}$	0.0163	2.332	mg/L	0.0163	0.70%
Sb 206.836†	19.9	-0.00314	mg/L	0.001241	-0.00314	mg/L	0.001241	39.51%
Se 196.026†	4980.7	2.591	mg/L	0.0165	2.591	${ m mg/L}$	0.0165	0.64%
Si 288.158†	35875.2	26.53	${\sf mg/L}$	0.060	26.53	mg/L	0.060	0.23%
Sn 189.927†	-30.1	0.00361	mg/L	0.000563	0.00361	mg/L	0.000563	15.60%
Sr 421.552†	394144.7	0.6813	mg/L	0.00136	0.6813	mg/L	0.00136	0.20%
Ti 334.903†	83.5	0.00133	mg/L	0.000291	0.00133	mg/L	0.000291	21.91%
Tl 190.801†	8557.0	2.332	mg/L	0.0133	2.332	mg/L	0.0133	0.57₺
V 292.402†	117215.2	0.5785	mg/L	0.00476	0.5785	mg/L	0.00476	0.82%
Zn 206.200†	1460.5	0.6004	mg/L	0.00575	0.6004	mg/L	0.00575	0.96%

Sequence No.: 22

Sample ID: VP23 MB2SPK WMN

Analyst: EL Dilution: 1X

Autosampler Location: 43

Date Collected: 11/1/2012 3:09:33 PM Data Type: Original

Nebulizer Parameters: VP23 MB2SPK WMN

A11

Analyte Back Pressure

ure Flow 0.55 L/min 233.0 kPa

Mean Data: VP23 M	B2SPK WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	R S D
ScA 357.253	2687766.0	101.5	8	0.67				0.66%
ScR 361.383	217065.8	102.5	8	0.84				0.82%
Ag 328.068†	161488.7	0.5418	mg/L	0.00601	0.5418	mg/L	0.00601	1.11%
A1 308.215†	3451.3	2.287	mg/L	0.0150	2.287	mg/L	0.0150	0.65%
As 188.979†	5587.7	2.345	mg/L	0.0256	2.345	mg/L	0.0256	1.09%
B 249.677†	3.5	-0.00027	mg/L	0.001332	-0.00027	mg/L	0.001332	
Ba 233.527†	23329.8	2.270	mg/L	0.0078	2.270	mg/L	0.0078	0.34%
Be 313.042†	161593.6	0.6054	mg/L	0.00217	0.6054	- ·	0.00217	0.36%
Ca 317.933†	124267.4	11.74	mg/L	0.032	11.74	mg/L	0.032	0.27%
Cd 228.802†	49996.6	0.5927	mg/L	0.00358	0.5927	mg/L	0.00358	0.60%
Co 228.616†	47520.7	0.5627	mg/L	0.00270	0.5627	mg/L	0.00270	0.48%
Cr 267.716†	2668.7	0.5828	mg/L	0.00613	0.5828	mg/L	0.00613	1.05%
Cu 324.752†	174810.5	0.5587	mg/L	0.00314	0.5587	_	0.00314	0.56%
Fe 273.955†	2928.8	2.389	mg/L	0.0247	2.389	mg/L	0.0247	1.03%
K 766.490†	43054.8	11.95	mg/L	0.059	11.95	mg/L	0.059	0.49%
Mg 279.077†	13934.8	11.96	${ m mg/L}$	0.122	11.96	_	0.122	1.02%
Mn 257.610†	23081.7	0.5709	${ m mg/L}$	0.00156	0.5709	J .	0.00156	0.27%
Mo 202.031†	15.1	0.00060	${ m mg/L}$	0.000182	0.00060	_	0.000182	30.18%
Na 589.592†	96711.6	11.89	mg/L	0.055	11.89	J .	0.055	0.47%
Na 330.237†	325.0	11.57	${ t mg/L}$	0.208	11.57	_	0.208	1.80%
Ni 231.604†	1289.5	0.5828	mg/L	0.00572	0.5828		0.00572	0.98%
Pb 220.353†	30809.6	2.385	mg/L	0.0087	2.385	-	0.0087	0.36%
Sb 206.836†	17.0	-0.00412	mg/L	0.000983	-0.00412		0.000983	23.84%
Se 196.026†	4789.1	2.491	mg/L	0.0247	2.491	_	0.0247	0.99%
Si 288.158†	2.4	0.00585	${ m mg/L}$	0.001312	0.00585	٠.	0.001312	22.45%
Sn 189.927†	-14.5	0.00057	mg/L	0.000655	0.00057	_	0.000655	
Sr 421.552†	345344.5	0.5970	${ m mg/L}$	0.00206	0.5970	mg/L	0.00206	0.34%
Ti 334.903†	41.6	0.00090	mg/L	0.000349	0.00090	-	0.000349	38.61%
T1 190.801†	8738.1	2.381	${ m mg/L}$	0.0191	2.381	-	0.0191	0.80%
V 292.402†	116264.7	0.5739	mg/L	0.00153	0.5739	_	0.00153	0.27%
Zn 206.200†	1453.6	0.5970	mg/L	0.00639	0.5970	mg/L	0.00639	1.07%

Sequence No.: 23 Sample ID: CV 3 Analyst: EL Dilution: 1X Autosampler Location: 7

Date Collected: 11/1/2012 3:15:36 PM

Data Type: Original

Nebulizer Parameters: CV

Analyte Back Pressure Flow All 233.0 kPa 0.55 L/min

SCA 357.253	Mean Data: CV								
SCA 357.253		Mean Corrected		Calıb.			Sample		
SCR 361.383	Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 328.068† 295516.5 0.9915 mg/L 0.00520 0.9915 mg/L 0.00520 0.5 Al 308.215† 3088.0 2.012 mg/L 0.0031 2.012 mg/L 0.0031 0.1 As 188.979† 4920.7 2.064 mg/L 0.0146 2.064 mg/L 0.0146 0.5 B 249.677† 2158.7 0.9935 mg/L 0.00334 0.9935 mg/L 0.00334 0.9935 mg/L 0.00334 0.5 Ba 233.527† 10217.3 0.9937 mg/L 0.00307 0.9937 mg/L 0.00307 0.9337 mg/L 0.00307 0.5 Ca 317.933† 21533.9 2.034 mg/L 0.0068 2.034 mg/L 0.0068 2.034 mg/L 0.0068 0.024 mg/L 0.0063 0.0	ScA 357.253	2652436.1	100.2	ક	0.48				0.48%
Al 308.215† 3088.0 2.012 mg/L 0.0031 2.012 mg/L 0.0031 0.1 As 188.979† 4920.7 2.064 mg/L 0.0146 2.064 mg/L 0.0146 0.7 B 249.677† 2158.7 0.9935 mg/L 0.00334 0.9935 mg/L 0.00334 0.5 Ba 233.527† 10217.3 0.9937 mg/L 0.00307 0.9937 mg/L 0.00307 0.5 Ba 313.042† 274128.4 1.027 mg/L 0.0063 1.027 mg/L 0.0063 0.6 Ca 317.933† 21533.9 2.034 mg/L 0.0068 2.034 mg/L 0.0068 0.5 Cd 228.802† 85058.9 1.013 mg/L 0.0017 1.013 mg/L 0.0017 0.5 Cc 228.616† 83267.5 0.9955 mg/L 0.00287 0.9855 mg/L 0.00287 0.5 Cc 227.716† 4578.3 0.9997 mg/L 0.00325 0.9997 mg/L 0.00325 0.5 Cc 324.752† 332434.0 1.062 mg/L 0.00287 0.9855 mg/L 0.00287 0.5 Fe 273.955† 2611.8 2.130 mg/L 0.0029 1.062 mg/L 0.0029 0.6 K 766.490† 73698.9 20.45 mg/L 0.0092 2.130 mg/L 0.0092 0.6 K 766.490† 73698.9 20.45 mg/L 0.0092 2.130 mg/L 0.0092 0.6 K 766.490† 73698.9 20.45 mg/L 0.0081 2.101 mg/L 0.0081 0.5 Mg 279.077† 2442.8 2.101 mg/L 0.0081 2.101 mg/L 0.0081 0.5 Mo 202.031† 17722.7 0.9576 mg/L 0.00425 0.9977 mg/L 0.00425 0.6 Mo 202.031† 17722.7 0.9576 mg/L 0.00425 0.9977 mg/L 0.00425 0.6 Na 589.592† 414251.3 50.93 mg/L 0.0050 0.9576 mg/L 0.00425 0.5 Na 330.237† 1401.6 50.87 mg/L 0.052 50.87 mg/L 0.0050 0.5 Na 231.604† 2246.3 1.017 mg/L 0.0077 1.017 mg/L 0.0077 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0177 50.93 mg/L 0.0177 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0165 2.093 mg/L 0.0170 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0165 2.093 mg/L 0.0160 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0165 2.093 mg/L 0.0160 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0165 2.093 mg/L 0.0166 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0165 2.093 mg/L 0.0166 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0165 2.093 mg/L 0.0166 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0166 0.0064 0.0064 0.0066 0.5 Sn 189.927† 5943.8 0.99072 mg/L 0.00465 0.90072 mg/L 0.00465 0.5 Sn 189.927† 5943.8 0.99072 mg/L 0.00465 0.90072 mg/L 0.00465 0.5 Sn 189.927† 5943.8 0.99072 mg/L 0.00465 0.90072 mg/L 0.00465 0.5 Sn 189.927† 5943.8 0.99072 mg/L 0.00465 0.90072 mg/L 0.00465 0.5	ScR 361.383	213720.7	100.9	90	0.11				0.10%
As 188_979†	Aq 328.068†	295516.5	0.9915	mg/L	0.00520				0.52%
B 249.677†	A1 308.215†	3088.0	2.012	mg/L	0.0031	2.012	mg/L		0.16%
Ba 233.527† 10217.3 0.9937 mg/L 0.00307 0.9937 mg/L 0.00307 0.5 Be 313.042† 274128.4 1.027 mg/L 0.0063 1.027 mg/L 0.0063 0.6 Ca 317.933† 21533.9 2.034 mg/L 0.0068 2.034 mg/L 0.0017 0.5 Cd 228.802† 85058.9 1.013 mg/L 0.0017 1.013 mg/L 0.0017 0.5 Cc 228.616† 83267.5 0.9855 mg/L 0.00287 0.9855 mg/L 0.00287 0.5 Cr 267.716† 4578.3 0.9997 mg/L 0.00287 0.9855 mg/L 0.00287 0.5 Cu 324.752† 332434.0 1.062 mg/L 0.0029 1.062 mg/L 0.00325 0.5 Cu 324.752† 332434.0 1.062 mg/L 0.0029 1.062 mg/L 0.0029 0.5 K 766.490† 73698.9 20.45 mg/L 0.0092 2.130 mg/L 0.0092 0.5 K 766.490† 73698.9 20.45 mg/L 0.0039 20.45 mg/L 0.0039 0.5 Mg 279.077† 2442.8 2.101 mg/L 0.0081 2.101 mg/L 0.0081 0.5 Mn 257.610† 40357.2 0.9977 mg/L 0.00425 0.9977 mg/L 0.00425 0.5 Mn 202.031† 17722.7 0.9576 mg/L 0.00425 0.9977 mg/L 0.00425 0.5 Na 380.237† 1401.6 50.87 mg/L 0.052 50.87 mg/L 0.0050 0.5 Na 330.237† 1401.6 50.87 mg/L 0.052 50.87 mg/L 0.0052 0.5 Ni 231.604† 2246.3 1.017 mg/L 0.0017 1.017 mg/L 0.0017 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0151 2.093 mg/L 0.0177 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0151 2.093 mg/L 0.0151 0.5 Se 196.026† 3842.5 1.997 mg/L 0.0064 2.166 mg/L 0.00167 0.5 Sn 189.927† 5943.8 0.9072 mg/L 0.00465 0.9072 mg/L 0.00465 0.5 Sr 421.552† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014 0.5	As 188,979†	4920.7	2.064	mg/L	0.0146	2.064	mg/L	0.0146	0.71%
Be 313.042† 274128.4 1.027 mg/L 0.0063 1.027 mg/L 0.0063 0.6 Ca 317.933† 21533.9 2.034 mg/L 0.0068 2.034 mg/L 0.0068 0.3 Cd 228.802† 85058.9 1.013 mg/L 0.0017 1.013 mg/L 0.0017 0.3 Cc 228.616† 83267.5 0.9855 mg/L 0.00287 0.9855 mg/L 0.00287 0.2 Cr 267.716† 4578.3 0.9997 mg/L 0.00325 0.9997 mg/L 0.00325 0.3 Cu 324.752† 332434.0 1.062 mg/L 0.0029 1.062 mg/L 0.0029 0.2 Fe 273.955† 2611.8 2.130 mg/L 0.0029 1.062 mg/L 0.0029 0.2 Fr 273.955† 2611.8 2.130 mg/L 0.0092 2.130 mg/L 0.0092 0.4 K 766.490† 73698.9 20.45 mg/L 0.0092 2.130 mg/L 0.0092 0.4 Mg 279.077† 2442.8 2.101 mg/L 0.0081 2.101 mg/L 0.0081 0.3 Mn 257.610† 40357.2 0.9977 mg/L 0.00425 0.9977 mg/L 0.00425 0.4 Mo 202.031† 17722.7 0.9576 mg/L 0.00425 0.9977 mg/L 0.00425 0.4 Mo 202.031† 17722.7 0.9576 mg/L 0.00509 0.9576 mg/L 0.00509 0.5 Na 589.592† 414251.3 50.93 mg/L 0.177 50.93 mg/L 0.177 0.3 Na 330.237† 1401.6 50.87 mg/L 0.0052 50.87 mg/L 0.052 0.5 Na 589.592† 414251.3 50.93 mg/L 0.177 50.93 mg/L 0.177 0.3 Na 330.237† 1401.6 50.87 mg/L 0.0052 50.87 mg/L 0.052 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0146 2.042 mg/L 0.0146 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0151 2.093 mg/L 0.0146 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0165 0.9072 mg/L 0.0107 0.5 Si 288.158† 2920.4 2.166 mg/L 0.0064 2.166 mg/L 0.0064 0.5 Sn 189.927† 5943.8 0.9072 mg/L 0.0045 0.9072 mg/L 0.0064 0.5 Sr 421.552† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014	B 249.677†	2158.7	0.9935	mg/L	0.00334	0.9935	mg/L		0.34%
Ca 317.933† 21533.9 2.034 mg/L 0.0068 2.034 mg/L 0.0068 0.0068 0.00287 0.0068 0.00288 0.00288 0.00288 0.00288 0.00288 0.00287 0.0017 0.000288 0.000287 0.00288 0.000287 0.00288 0.000287 0.000287 0.000287 0.000287 0.000287 0.000287 0.000287 0.000287 0.000287 0.000287 0.000287 0.000287 0.000287 0.000287 0.000287 0.000288 0.000288 0.000288 0.000288 0.00029 0.0	Ba 233.527†	10217.3	0.9937	mg/L	0.00307	0.9937	mg/L	0.00307	0.31%
Ca 317.933† 21533.9 2.034 mg/L 0.0068 2.034 mg/L 0.0068 0.5 Cd 228.802† 85058.9 1.013 mg/L 0.0017 1.013 mg/L 0.0017 0.017 Co 228.616† 83267.5 0.9855 mg/L 0.00287 0.9855 mg/L 0.00287 0.2855 mg/L 0.00287 0.2855 mg/L 0.00287 0.2855 mg/L 0.00287 0.2855 mg/L 0.00287 0.2865 mg/L 0.00287 0.2865 mg/L 0.00287 0.2855 mg/L 0.00287 0.2855 mg/L 0.00287 0.2855 mg/L 0.00287 0.2855 mg/L 0.00287 0.2855 mg/L 0.00325 0.9977 mg/L 0.00325 0.9997 mg/L 0.00325 0.9997 mg/L 0.00325 0.9997 mg/L 0.00325 0.9997 mg/L 0.0029 0.2864 0.0029 1.062 mg/L 0.0029 0.2864 0.0029 0.2864 0.0029 0.2874 0.0029 0.2864 0.0029 0.2864 0.0029 0.2864 0.0029 0.2864 0.0029 0.2864 0.0029 0.2864 0.0029 0.2864 0.0029 0.2864 0.0029 0.2864 0.0029 0.2864 0.0029 0.2864 0.0029 <td>Be 313.042†</td> <td>274128.4</td> <td>1.027</td> <td>mg/L</td> <td>0.0063</td> <td>1.027</td> <td>mg/L</td> <td>0.0063</td> <td>0.61%</td>	Be 313.042†	274128.4	1.027	mg/L	0.0063	1.027	mg/L	0.0063	0.61%
Cd 228.802† 85058.9 1.013 mg/L 0.0017 1.013 mg/L 0.0017 0.1 Co 228.616† 83267.5 0.9855 mg/L 0.00287 0.9855 mg/L 0.00287 0.2 Cr 267.716† 4578.3 0.9997 mg/L 0.00325 0.9997 mg/L 0.00325 0.5 Cu 324.752† 332434.0 1.062 mg/L 0.0029 1.062 mg/L 0.0029 1.062 mg/L 0.0029 0.2 Fe 273.955† 2611.8 2.130 mg/L 0.0029 1.062 mg/L 0.0029 0.2 0.0029 0.0029		21533.9	2.034	mg/L	0.0068	2.034	mg/L	0.0068	0.34 ₹
Cr 267.716† 4578.3 0.9997 mg/L 0.00325 0.9997 mg/L 0.00325 0.9997 mg/L 0.00325 0.20325 0.00325 0.00325 0.0029 0.20325 0.0029 0.20325 0.2045 mg/L 0.00325		85058.9	1.013	mg/L	0.0017	1.013	mg/L	0.0017	0.16%
Cu 324.752†	Co 228.616†	83267.5	0.9855	mg/L	0.00287	0.9855	mg/L	0.00287	0.29%
Fe 273.955†	Cr 267.716t	4578.3	0.9997	mg/L	0.00325	0.9997	mg/L	0.00325	0.32*
K 766.490† 73698.9 20.45 mg/L 0.039 20.45 mg/L 0.039 0.7 Mg 279.077† 2442.8 2.101 mg/L 0.0081 2.101 mg/L 0.0081 0.7 Mn 257.610† 40357.2 0.9977 mg/L 0.00425 0.9977 mg/L 0.00425 0.4 Mo 202.031† 17722.7 0.9576 mg/L 0.00509 0.9576 mg/L 0.00509 0.5 Na 589.592† 414251.3 50.93 mg/L 0.177 50.93 mg/L 0.177 0.3 Na 330.237† 1401.6 50.87 mg/L 0.052 50.87 mg/L 0.052 0.3 Ni 231.604† 2246.3 1.017 mg/L 0.0017 1.017 mg/L 0.0017 0.3 Pb 220.353† 26377.0 2.042 mg/L 0.0146 2.042 mg/L 0.0146 0.3 Sb 206.836† 7664.3 2.093 mg/L 0.0151 2.093 mg/L 0.0151 0.3 Se 196.026† 3842.5 1.997 mg/L 0.0107 1.997 mg/L 0.0107 0.5 Si 288.158† 2920.4 2.166 mg/L 0.0064 2.166 mg/L 0.0064 0.3 Sn 189.927† 5943.8 0.9072 mg/L 0.00465 0.9072 mg/L 0.00146 0.3 Sr 421.552† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014 0.3	Cu 324.752†	332434.0	1.062	mg/L	0.0029	1.062	mg/L	0.0029	0.28%
Mg 279.077† 2442.8 2.101 mg/L 0.0081 2.101 mg/L 0.0081 0.000425 0.00977 mg/L 0.000509 0.0052 0.00977 mg/L 0.0177 0.00972 0.00972 0.00972 0.0017	Fe 273.955†	2611.8	2.130	mg/L	0.0092	2.130	mg/L	0.0092	0.43%
Mn 257.610† 40357.2 0.9977 mg/L 0.00425 0.9977 mg/L 0.00509 0.5 Mo 202.031† 17722.7 0.9576 mg/L 0.00509 0.9576 mg/L 0.00509 0.5 Na 589.592† 414251.3 50.93 mg/L 0.177 50.93 mg/L 0.177 0.5 Na 330.237† 1401.6 50.87 mg/L 0.052 50.87 mg/L 0.052 0.5 Ni 231.604† 2246.3 1.017 mg/L 0.0017 1.017 mg/L 0.0017 Pb 220.353† 26377.0 2.042 mg/L 0.0146 2.042 mg/L 0.0146 0.7 Sb 206.836† 7664.3 2.093 mg/L 0.0151 2.093 mg/L 0.0151 Se 196.026† 3842.5 1.997 mg/L 0.0107 1.997 mg/L 0.0107 Si 288.158† 2920.4 2.166 mg/L 0.0064 2.166 mg/L 0.0064 Sn 189.927† 5943.8 0.9072 mg/L 0.00465 0.9072 mg/L 0.00146 0.5 Sr 421.552† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014	K 766.490†	73698.9	20.45	mg/L	0.039	20.45	mg/L	0.039	0.19%
Mo 202.031† 17722.7 0.9576 mg/L 0.00509 0.9576 mg/L 0.00509 0.5 Na 589.592† 414251.3 50.93 mg/L 0.177 50.93 mg/L 0.177 0.3 Na 330.237† 1401.6 50.87 mg/L 0.052 50.87 mg/L 0.052 0.3 Ni 231.604† 2246.3 1.017 mg/L 0.0017 1.017 mg/L 0.0017 0.3 Pb 220.353† 26377.0 2.042 mg/L 0.0146 2.042 mg/L 0.0146 0.3 Sb 206.836† 7664.3 2.093 mg/L 0.0151 2.093 mg/L 0.0151 0.3 Se 196.026† 3842.5 1.997 mg/L 0.0107 1.997 mg/L 0.0107 0.5 Si 288.158† 2920.4 2.166 mg/L 0.0064 2.166 mg/L 0.0064 0.3 Sn 189.927† 5943.8 0.9072 mg/L 0.00465 0.9072 mg/L 0.0014 0.3 Sr 421.552† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014 0.3	Mg 279.077†	2442.8	2.101	mg/L	0.0081	2.101	mg/L	0.0081	0.38%
Na 589.592† 414251.3 50.93 mg/L 0.177 50.93 mg/L 0.052 Na 330.237† 1401.6 50.87 mg/L 0.052 50.87 mg/L 0.052 0.3 Ni 231.604† 2246.3 1.017 mg/L 0.0017 1.017 mg/L 0.0017 0.3 Ni 231.604† 2246.3 1.017 mg/L 0.0017 1.017 mg/L 0.0017 0.3 Ni 231.604† 2246.3 1.017 mg/L 0.0146 2.042 mg/L 0.0146 0.3 Ni 230.353† 26377.0 2.042 mg/L 0.0146 2.042 mg/L 0.0146 0.3 Ni 230.261† 3842.5 1.997 mg/L 0.0151 2.093 mg/L 0.0151 0.3 Ni 238.158† 2920.4 2.166 mg/L 0.0107 1.997 mg/L 0.0107 0.5 Ni 288.158† 2920.4 2.166 mg/L 0.0064 2.166 mg/L 0.0064 0.3 Ni 189.927† 5943.8 0.9072 mg/L 0.00465 0.9072 mg/L 0.0014 0.3 Ni 189.52† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014 0.3 Ni 230.251† 0.0014	Mn 257.610†	40357.2	0.9977	mg/L	0.00425	0.9977	mg/L	0.00425	0.43%
Na 330.237† 1401.6 50.87 mg/L 0.052 50.87 mg/L 0.052 0 Ni 231.604† 2246.3 1.017 mg/L 0.0017 1.017 mg/L 0.0017 0 Pb 220.353† 26377.0 2.042 mg/L 0.0146 2.042 mg/L 0.0146 0 Sb 206.836† 7664.3 2.093 mg/L 0.0151 2.093 mg/L 0.0151 0 Se 196.026† 3842.5 1.997 mg/L 0.0107 1.997 mg/L 0.0107 0 Si 288.158† 2920.4 2.166 mg/L 0.0064 2.166 mg/L 0.0064 0 Sn 189.927† 5943.8 0.9072 mg/L 0.00465 0.9072 mg/L 0.0014 0 Sr 421.552† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014 0	Mo 202.031†	17722.7	0.9576	mg/L	0.00509	0.9576	mg/L	0.00509	0.53%
Ni 231.604† 2246.3 1.017 mg/L 0.0017 1.017 mg/L 0.0017 0.1 Pb 220.353† 26377.0 2.042 mg/L 0.0146 2.042 mg/L 0.0146 0.7 Sb 206.836† 7664.3 2.093 mg/L 0.0151 2.093 mg/L 0.0151 0.7 Se 196.026† 3842.5 1.997 mg/L 0.0107 1.997 mg/L 0.0107 0.5 288.158† 2920.4 2.166 mg/L 0.0064 2.166 mg/L 0.0064 0.3 Sn 189.927† 5943.8 0.9072 mg/L 0.00465 0.9072 mg/L 0.00465 0.5 Sr 421.552† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014 0.3	Na 589.592†	414251.3	50.93	mg/L	0.177	50.93	mg/L	0.177	0.35%
Pb 220.353† 26377.0 2.042 mg/L 0.0146 2.042 mg/L 0.0146 0.5 Sb 206.836† 7664.3 2.093 mg/L 0.0151 2.093 mg/L 0.0151 0.5 Se 196.026† 3842.5 1.997 mg/L 0.0107 1.997 mg/L 0.0107 0.5 Si 288.158† 2920.4 2.166 mg/L 0.0064 2.166 mg/L 0.0064 0.5 Sn 189.927† 5943.8 0.9072 mg/L 0.00465 0.9072 mg/L 0.00465 0.5 Sr 421.552† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014 0.5	Na 330.237†	1401.6	50.87	mg/L	0.052	50.87	mg/L	0.052	0.10%
Sb 206.836† 7664.3 2.093 mg/L 0.0151 2.093 mg/L 0.0151 0.0164 0.0151 0.0164	Ni 231.604†	2246.3	1.017	mg/L	0.0017	1.017	mg/L	0.0017	0.16%
Se 196.026† 3842.5 1.997 mg/L 0.0107 1.997 mg/L 0.0107 0.5 Si 288.158† 2920.4 2.166 mg/L 0.0064 2.166 mg/L 0.0064 0.0064 Sn 189.927† 5943.8 0.9072 mg/L 0.00465 0.9072 mg/L 0.00465 0.9072 mg/L 0.0014 Sr 421.552† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014	Pb 220.353†	26377.0	2.042	mg/L	0.0146	2.042	mg/L	0.0146	0.72%
Si 288.158† 2920.4 2.166 mg/L 0.0064 2.166 mg/L 0.0064 Sn 189.927† 5943.8 0.9072 mg/L 0.00465 0.9072 mg/L 0.00465 0.9072 mg/L 0.0014 Sr 421.552† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014 0.0014	Sb 206.836†	7664.3	2.093	mg/L	0.0151	2.093	mg/L	0.0151	0.72%
Sn 189.927† 5943.8 0.9072 mg/L 0.00465 0.9072 mg/L 0.00465 0.5 sr 421.552† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014 0.3	Se 196.026†	3842.5	1.997	mg/L	0.0107	1.997	mg/L	0.0107	0.53}
Sr 421.552† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014 0.3	Si 288.158†	2920.4	2.166	mg/L	0.0064	2.166	mg/L	0.0064	0.30%
Sr 421.552† 604317.9 1.045 mg/L 0.0014 1.045 mg/L 0.0014 0.00	Sn 189.927†	5943.8	0.9072	mg/L	0.00465	0.9072	mg/L	0.00465	0.51%
		604317.9	1.045	mg/L	0.0014	1.045	mg/L	0.0014	0.13%
Ti 334.903† 25676.7 0.9978 mg/L 0.00333 0.9978 mg/L 0.00333 0.3		25676.7			0.00333	0.9978	mg/L	0.00333	0.33%
				_	0.0131	1.990	mg/L	0.0131	0.66%
	· · · · · · · · · · · · · · · · · · ·				0.0043	1.010	mg/L	0.0043	0.42%
					0.0063	1.082	mg/L	0.0063	0.59%

The state of the s

Sequence No.: 24 Sample ID: CB 3 Analyst: EL Dilution: 1X

Autosampler Location: 1

Date Collected: 11/1/2012 3:21:41 PM

Data Type: Original

Nebulizer Parameters: CB

Analyte Al1

Back Pressure Flow
232.0 kPa 0.55 L/min

Mean Data: CB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2641997.0	99.76	9	0.272				0.27%
ScR 361.383	209711.4	99.04	8	0.617				0.62%
Aq 328.068†	40.4	0.00014	mg/L	0.000117	0.00014	mg/L	0.000117	85.98%
Al 308.215†	5.9	0.00392	mg/L	0.004763	0.00392	mg/L	0.004763	121.50%
As 188.979†	3.6	0.00152	mg/L	0.001565	0.00152	mg/L	0.001565	103.01%
B 249.677†	4.0	0.00183	mg/L	0.002697	0.00183	mg/L	0.002697	
Ba 233.527†	0.6	0.00005	mg/L	0.000256	0.00005	mg/L	0.000256	472.42%
Be 313.042†	2.8	0.00001	mg/L	0.000043	0.00001	mg/L	0.000043	
Ca 317.933†	13.2	0.00124	mg/L	0.000491	0.00124	mg/L	0.000491	39.52%
Cd 228.802†	11.7	0.00014	mg/L	0.000051	0.00014	mg/L	0.000051	36.93%
Co 228.616†	8.7	0.00010	mg/L	0.000024	0.00010	mg/L	0.000024	22.98%
Cr 267.716†	7.3	0.00159	mg/L	0.000351	0.00159	mg/L	0.000351	22.11%
Cu 324.752†	378.0	0.00121	mg/L	0.000081	0.00121	mg/L	0.000081	6.72%
Fe 273.955†	4.4	0.00360	mg/L	0.001547	0.00360	mg/L	0.001547	42.93%
K 766.490†	170.4	0.04730	mg/L	0.015301	0.04730	mg/L	0.015301	32.35%
Mg 279.077†	-1.1	-0.00092	mg/L	0.001887	-0.00092	mg/L	0.001887	204.51%
Mn 257.610†	22.4	0.00055	mg/L	0.000116	0.00055	mg/L	0.000116	20.90%
Mo 202.031†	-5.5	-0.00030	mg/L	0.000058	-0.00030	mg/L	0.000058	19.40%
Na 589.592†	260.4	0.03201	mg/L	0.006854	0.03201	mg/L	0.006854	21.41%
Na 330.237†	9.6	0.3488	mg/L	0.37818	0.3488	mg/L	0.37818	
Ni 231.604†	0.7	0.00030	mg/L	0.002784	0.00030	mg/L	0.002784	942.65%
Pb 220.353†	19.1	0.00148	mg/L	0.000472	0.00148	mg/L	0.000472	31.90%
Sb 206.836†	-4.7	-0.00130	mg/L	0.001476	-0.00130	mg/L	0.001476	113.50%
Se 196.026†	-0.6	-0.00032	mg/L	0.001361	-0.00032	mg/L	0.001361	
Si 288.158†	9.0	0.00662	mg/L	0.002411	0.00662	_	0.002411	36.42%
Sn 189.927†	5.9	0.00090	mg/L	0.000236	0.00090	mg/L	0.000236	26.27%
Sr 421.552†	86.3	0.00015	mg/L	0.000066	0.00015	mg/L	0.000066	44.24 %
Ti 334.903†	4.9	0.00019	mg/L	0.000246	0.00019	mg/L	0.000246	129.02%
Tl 190.801†	4.9	0.00133	mg/L	0.000646	0.00133	mg/L	0.000646	48.49%
V 292.402†	38.6	0.00020	mg/L	0.000115	0.00020	J .	0.000115	57.90%
Zn 206.200†	-0.4	-0.00016	mg/L	0.001037	-0.00016	mg/L	0.001037	663.26%

Sequence No.: 25

Sample ID: VP40 MB1 SWC

Analyst: EL Dilution: 2X

Autosampler Location: 44

Date Collected: 11/1/2012 3:27:39 PM Data Type: Original

Nebulizer Parameters: VP40 MB1 SWC

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

| Mean Corrected | Calib. | Sample | Conc. | Units | Std.Dev. | Conc. | Units | Std.Dev. | RSD | O.24 | O.2673523.7 | 101.0 % | O.518 Mean Data: VP40 MB1 SWC Mean Corrected Sample Calib. Analvte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077†
Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402† Zn 206.200†

Page 26 Date: 11/1/2012 3:37:30 PM

Sequence No.: 26 Autosampler Location: 45

Sample ID: VP41 A SWC

Analyst: EL Dilution: 2X

Date Collected: 11/1/2012 3:33:39 PM

Data Type: Original

Nebulizer Parameters: VP41 A SWC

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: VP41 A	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Unıts	Std.Dev.	RSD
ScA 357.253	2616861.3	98.82	8	0.368				0.37%
ScR 361.383	215629.0	101.8		0.94				0.92%
Ag 328.068†	-1255.1	-0.00043		0.000095	-0.00086	J .	0.000191	22.09%
Al 308.215†	161726.6	107.5		0.16	215.1	${ m mg/L}$	0.32	0.15%
As 188.979†	529.0	0.2376		0.00091	0.4751	mg/L	0.00181	0.38%
B 249.677†	56.0	0.02558	mg/L	0.004553	0.05116	mg/L	0.009107	17.80%
Ba 233.527†	3771.6	0.3591	mg/L	0.00288	0.7182	mg/L	0.00575	0.80%
Be 313.042†	590.2	0.00114	${ m mg/L}$	0.000053	0.00228	${ m mg/L}$	0.000107	4.68%
Ca 317.933†	1429603.0	135.1	mg/L	0.29	270.1	mg/L	0.58	0.21*
Cd 228.802†	178.2	0.00163	mg/L	0.000052	0.00327	mg/L	0.000105	3.21%
Co 228.616†	7058.5	0.06885	mg/L	0.000428	0.1377	mg/L	0.00086	0.62%
Cr 267.716†	620.2	0.1346	${\tt mg/L}$	0.00056	0.2692	mg/L	0.00113	0.42%
Cu 324.752†	115204.4	0.3797	mg/L	0.00083	0.7594	mg/L	0.00166	0.22%
Fe 273.955†	204107.4	166.5	mg/L	0.47	333.0	mg/L	0.95	0.28%
K 766.490†	28170.8	7.819	mg/L	0.0429	15.64	mg/L	0.086	0.55%
Mg 279.077†	65333.1	56.00	${\tt mg/L}$	0.100	112.0	mg/L	0.20	0.18%
Mn 257.610†	113741.4	2.810	mg/L	0.0028	5.620	mg/L	0.0056	0.10%
Mo 202.031†	433.7	0.02496	mg/L	0.000152	0.04991	mg/L	0.000305	0.61%
Na 589.592†	31384.1	3.859	${\tt mg/L}$	0.0138	7.717	mg/L	0.0275	0.36%
Na 330.237†	94.0	4.088	mg/L	0.1395	8.175	mg/L	0.2791	3.41%
Ni 231.604†	410.6	0.1859	mg/L	0.00234	0.3717	mg/L	0.00469	1.26%
Pb 220.353†	1596.9	0.1566	mg/L	0.00020	0.3132	mg/L	0.00041	0.13%
sb 206.836†	213.6	0.05074		0.002067	0.1015	mg/L	0.00413	4.07%
Se 196.026†	-75.9	-0.03998	mg/L	0.007237	-0.07996	mg/L	0.014473	18.10%
Si 288.158†	3937.0	2.918	mg/L	0.0250	5.836		0.0501	0.86%
Sn 189.927†	-9.9	0.03127	mg/L	0.000638	0.06253	mg/L	0.001277	2.04%
Sr 421.552†	210392.9	0.3637	mg/L	0.00113	0.7274	mg/L	0.00225	0.31%
Ti 334.903†	187800.1	7.300	${ m mg/L}$	0.0049	14.60	mg/L	0.010	0.07%
Tl 190.801†	23.9	-0.00596	${\tt mg/L}$	0.002253	-0.01192	mg/L	0.004506	37.80%
V 292.402†	75504.8	0.3496	${\tt mg/L}$	0.00075	0.6992	mg/L	0.00149	0.21%
Zn 206.200†	1214.9	0.5018	mg/L	0.00219	1.004	mg/L	0.0044	0.44%

unea: aane

Sequence No.: 27

Sample ID: VP41 B SWC

Autosampler Location: 46 Date Collected: 11/1/2012 3:39:29 PM

Data Type: Original

Analyst: EL
Dilution: 2X

Nebulizer Parameters: VP41 B SWC

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: VP41 B	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2461674.4	92.96	용	0.443				0.48%
ScR 361.383	203648.1	96.17	용	0.972				1.01%
Ag 328.068†	-19471.8	-0.00698	mg/L	0.002458	-0.01396	mg/L	0.004915	35.22%
AÍ 308.215†	110517.0	73.49	mg/L	0.128	147.0	mg/L	0.26	0.17위
As 188.979†	969.4	0.4127	mg/L	0.00740	0.8254	mg/L	0.01480	1.79%
B 249.677†	702.1	0.3229	mg/L	0.01440	0.6457	mg/L	0.02880	4.46%
Ba 233.527†	4652.3	0.3621	mg/L	0.00681	0.7241	mg/L	0.01362	1.88%
Be 313.042†	367.8	0.00035	mg/L	0.000068	0.00071	mg/L	0.000136	19.24%
Ca 317.933†	2512008.0	237.3	mg/L	0.15	474.6	mg/L	0.30	0.06%
Cd 228.802†	972.1	0.01099	mg/L	0.000231	0.02198	mg/L	0.000462	2.10%
Co 228.616†	18702.0	0.1931	mg/L	0.00289	0.3861	mg/L	0.00578	1.50%
Cr 267.716†	4855.3	1.056	mg/L	0.0129	2.113	mg/L	0.0259	1.23%
Cu 324.752†	1031611.6	3.457	mg/L	0.0065	6.914	mg/L	0.0129	0.19%
Fe 273.955†	2390948.9	1950	mg/L	2.1	3901	mg/L	4.3	0.11%
K 766.490†	14803.2	4.109	mg/L	0.0276	8.217	mg/L	0.0552	0.67%
Mg 279.077†	148847.5	126.7	mg/L	0.04	253.4	${ m mg/L}$	0.07	0.03%
Mn 257.610†	747759.1	18.48	mg/L	0.016	36.96	mg/L	0.033	0.09%
Mo 202.031†	3412.4	0.1842	mg/L	0.00209	0.3684	mg/L	0.00419	1.14%
Na 589.592†	183028.9	22.50	mg/L	0.072	45.01	mg/L	0.145	0.32%
Na 330.237†	585.6	20.20	mg/L	0.639	40.40	mg/L	1.277	3.16%
Ni 231.604†	2884.0	1.305	mg/L	0.0110	2.611	mg/L	0.0219	0.84 રે
Pb 220.353†	132916.3	10.22	mg/L	0.046	20.44	mg/L	0.092	0.45%
Sb 206.836†	926.3	0.05860	mg/L	0.010510	0.1172	mg/L	0.02102	17.94%
Se 196.026†	-528.9	-0.2785	mg/L	0.00987	-0.5571	mg/L	0.01974	3.54ક
Si 288.158†	4684.8	3.481	mg/L	0.0609	6.961	mg/L	0.1218	1.75%
Sn 189.927†	1779.3	0.3261	mg/L	0.00121	0.6523	mg/L	0.00242	0.37%
Sr 421.552†	643054.0	1.112	mg/L	0.0020	2.223	mg/L	0.0040	0.18%
Ti 334.903†	87539.0	3.394		0.0047	6.788	mg/L	0.0094	0.14%
Tl 190.801†	-454.0	-0.1532	mg/L	0.00397	-0.3065	mg/L	0.00794	2.59%
V 292.402†	76828.6	0.1994	mg/L	0.00301	0.3988	mg/L	0.00601	1.51₺
Zn 206.200†	4914.3	2.023	mg/L	0.0302	4.047	mg/L	0.0603	1.49%

Page 28 Date: 11/1/2012 3:47:48 PM

Sequence No.: 28 Autosampler Location: 47

Sample ID: VP41 C SWC Date Collected: 11/1/2012 3:43:56 PM

Data Type: Original Analyst: EL Dilution: 2X

Nebulizer Parameters: VP41 C SWC

Back Pressure Flow 233.0 kPa 0.55 L/min Analyte All

Mean Data: VP41 (C SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2618281.4	98.87	용	0.451				0.46%
ScR 361.383	208394.8	98.42	B	1.076				1.09%
Ag 328.068†	-6937.2	-0.00048	mg/L	0.000208	-0.00096	mg/L	0.000416	43.34%
Al 308.215†	44270.5	29.44	mg/L	0.102	58.89	mg/L	0.205	0.35%
As 188.979†	226.4	0.09486	mg/L	0.004379	0.1897	mg/L	0.00876	4.62%
B 249.677†	152.3	0.06999	mg/L	0.002217	0.1400	mg/L	0.00443	3.17%
Ba 233.527†	908.0	0.05364	mg/L	0.000711	0.1073	mg/L	0.00142	1.33%
Be 313.042†	118.9	0.00020	mg/L	0.000012	0.00040	mg/L	0.000023	5.87%
Ca 317.933†	642912.0	60.73	mg/L	0.088	121.5	mg/L	0.18	0.14%
Cd 228.802†	970.5	0.01147	mg/L	0.000187	0.02293	mg/L	0.000373	1.63%
Co 228.616†	6033.2	0.06267	mg/L	0.000467	0.1253	mg/L	0.00093	0.74%
Cr 267.716†	1171.0	0.2544	mg/L	0.00344	0.5087	mg/L	0.00689	1.35%
Cu 324.752†	540015.7	1.787	mg/L	0.0016	3.574	mg/L	0.0033	0.09%
Fe 273.955†	917135.7	748.2	mg/L	5.02	1496	mg/L	10.0	0.67%
K 766.490†	5779.9	1.604	mg/L	0.0243	3.208	mg/L	0.0486	1.51%
Mg 279.077†	25982.1	21.88	mg/L	0.217	43.76	mg/L	0.434	0.99%
Mn 257.610†	260967.3	6.448	mg/L	0.0215	12.90	mg/L	0.043	0.33%
Mo 202.031†	1193.0	0.06477	mg/L	0.001019	0.1295	mg/L	0.00204	1.57%
Na 589.592†	86518.3	10.64	mg/L	0.062	21.27	mg/L	0.124	0.58%
Na 330.237†	288.9	9.759	mg/L	0.1713	19.52	mg/L	0.343	1.76%
Ni 231.604†	736.7	0.3335	mg/L	0.00368	0.6669	mg/L	0.00736	1.10%
Pb 220.353†	4993.7	0.3607	mg/L	0.00172	0.7215	mg/L	0.00344	0.48%
Sb 206.836†	249.0	-0.00557	mg/L	0.002502	-0.01113	mg/L	0.005004	44.96%
Se 196.026†	-196.1	-0.1029		0.00528	-0.2058	mg/L	0.01056	5.13%
Si 288.158†	4550.8	3.368	mg/L	0.0325	6.736	mg/L	0.0649	0.96%
Sn 189.927†	537.9	0.09552		0.000676	0.1910	mg/L	0.00135	0.71%
Sr 421.552†	369507.7	0.6387	mg/L	0.00559	1.277	mg/L	0.0112	0.88%
Ti 334.903†	2848.7	0.1077		0.00079	0.2155	mg/L	0.00157	0.73%
Tl 190.801†	-149.5	-0.04980	mg/L	0.002203	-0.09959	mg/L	0.004406	4.42%
V 292.402†	19509.1	0.02748	mg/L	0.000496	0.05495	mg/L	0.000991	1.80%
Zn 206.200†	3369.5	1.385	mg/L	0.0167	2.770	mg/L	0.0335	1.21%

Sequence No.: 29

Sample ID: VP41 D SWC

Analyst: EL Dilution: 2X

Autosampler Location: 48

Date Collected: 11/1/2012 3:49:48 PM

Data Type: Original

Nebulizer Parameters: VP41 D SWC

Analyte Back Pressure Flow All 233.0 kPa 0.55 L/min

Mean Data: VP41	Mean Corrected	i .	Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2724288.1	102.9	ે	0.47				0.46%
ScR 361.383	219704.1	103.8	용	0.35				0.33%
Ag 328.068†	-2484.8	0.00079	mg/L	0.000074	0.00158	mg/L	0.000147	9.32%
Al 308.215†	129968.2	86.43	mg/L	0.232	172.9	mg/L	0.46	0.27%
As 188.979†	166.6	0.07674	mg/L	0.001534	0.1535	mg/L	0.00307	2.00%
B 249.677†	136.8	0.06277	mg/L	0.001305	0.1255	mg/L	0.00261	2.08%
Ba 233.527†	6422.6	0.6098	mg/L	0.00313	1.220	mg/L	0.0063	0.51%
Be 313.042†	662.2	0.00174	mg/L	0.000023	0.00349	mg/L	0.000047	1.34%
Ca 317.933†	584705.6	55.24	mg/L	0.072	110.5	mg/L	0.14	0.13%
Cd 228.802†	987.6	0.01172	mg/L	0.000132	0.02344	mg/L	0.000264	1.12%
Co 228.616†	5879.4	0.05990	mg/L	0.000444	0.1198	mg/L	0.00089	0.74%
Cr 267.716†	1424.4	0.3098	mg/L	0.00172	0.6196	mg/L	0.00344	0.56%
Cu 324.752†	367622.8	1.200	mg/L	0.0010	2.400	mg/L	0.0020	0.08%
Fe 273.955†	394672.4	322.0	mg/L	1.39	643.9	mg/L	2.78	0.43%
K 766.490†	25611.5	7.108	mg/L	0.0217	14.22	mg/L	0.043	0.31%
Mg 279.077†	35781.1	30.54	mg/L	0.156	61.07	mg/L	0.311	0.51%
Mn 257.610†	224480.5	5.547	mg/L	0.0174	11.09	mg/L	0.035	0.31%
Mo 202.031†	579.9	0.03271	mg/L	0.000294	0.06541	mg/L	0.000589	0.90%
Na 589.592†	128343.7	15.78	mg/L	0.040	31.56	mg/L	0.079	0.25%
Na 330.237†	437.5	15.25	mg/L	0.192	30.50	mg/L	0.383	1.26%
Ni 231.604†	711.4	0.3220	mg/L	0.00371	0.6440	mg/L	0.00742	1.15%
Pb 220.353†	17672.6	1.383	mg/L	0.0072	2.766	mg/L	0.0143	0.52%
Sb 206.836†	164.0	0.01485	mg/L	0.000770	0.02969	mg/L	0.001540	5.19%
Se 196.026†	-107.5	-0.05675	mg/L	0.002957	-0.1135	mg/L	0.00591	5.21%
Si 288.158†	7355.3	5.442	mg/L	0.0374	10.88	mg/L	0.075	0.69%
Sn 189.927†	535.4	0.09536	mg/L	0.000510	0.1907	mg/L	0.00102	0.53%
Sr 421.552†	220178.2	0.3806	mg/L	0.00114	0.7612	mg/L	0.00227	0.30%
Ti 334.903†	86275.3	3.354	mg/L	0.0056	6.708	mg/L	0.0113	0.17%
Tl 190.801†	-31.1	-0.02017	mg/L	0.002525	-0.04033	mg/L	0.005050	12.52%
V 292.402†	54474.2	0.2368	mg/L	0.00036	0.4735	mg/L	0.00072	0.15%
Zn 206.200†	7160.7	2.942		0.0228	5.884	ma/L	0.0456	0.77%

Date: 11/1/2012 3:59:34 PM

Page 30

Sequence No.: 30

Sample ID: VP41 E SWC

Analyst: EL Dilution: 2X

Autosampler Location: 49

Date Collected: 11/1/2012 3:55:39 PM

Data Type: Original

Nebulizer Parameters: VP41 E SWC

 Analyte
 Back
 Pressure
 Flow

 All
 233.0 kPa
 0.55 L/min

Mean Data: VP41 E	SWC							
	Mean Corrected		Calıb.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2671460.5	100.9		0.76				0.75%
ScR 361.383	219481.5	103.7	ે	1.67				1.61%
Ag 328.068†	-7280.6	0.00007	${\tt mg/L}$	0.000708	0.00015	mg/L	0.001416	974.30%
Al 308.215†	43935.8	29.22	${ t mg/L}$	0.396	58.43	mg/L	0.792	1.36%
As 188.979†	393.4	0.1678	${\tt mg/L}$	0.00129	0.3356	mg/L	0.00258	0.77%
B 249.677†	43.0	0.01937	${ m mg/L}$	0.003254	0.03874	mg/L	0.006509	16.80%
Ba 233.527†	1293.2	0.08977	${\tt mg/L}$	0.000679	0.1795	mg/L	0.00136	0.76%
Be 313.042†	194.5	0.00025	mg/L	0.000058	0.00051	mg/L	0.000116	22.80%
Ca 317.933†	203350.2	19.21	${\tt mg/L}$	0.255	38.42	mg/L	0.510	1.33%
Cd 228.802†	707.7	0.00829	${\tt mg/L}$	0.000220	0.01658		0.000440	2.65%
Co 228.616†	10637.7	0.1144	${ m mg/L}$	0.00180	0.2289		0.00361	1.58%
Cr 267.716†	2039.8	0.4444	mg/L	0.00597	0.8888	mg/L	0.01193	1.34%
Cu 324.752†	858212.8	2.805	${\tt mg/L}$	0.0033	5.611	mg/L	0.0065	0.12%
Fe 273.955†	950250.6	775.2	${\tt mg/L}$	11.85	1550	mg/L	23.7	1.53%
K 766.490†	9065.9	2.516	${\tt mg/L}$	0.0435	5.032	mg/L	0.0870	1.73%
Mg 279.077†	26180.5	22.04	${ m mg/L}$	0.318	44.07	mg/L	0.637	1.45%
Mn 257.610†	203581.8	5.030	${ m mg/L}$	0.0657	10.06	mg/L	0.131	1.31%
Mo 202.031†	1364.3	0.07399	${ m mg/L}$	0.001352	0.1480	mg/L	0.00270	1.83%
Na 589.592†	81254.8	9.990	${\tt mg/L}$	0.1458	19.98	mg/L	0.292	1.46%
Na 330.237†	262.9	8.975	${\tt mg/L}$	0.0604	17.95	mg/L	0.121	0.67%
Ni 231.604†	1870.1	0.8464	${ m mg/L}$	0.00971	1.693	mg/L	0.0194	1.15%
Pb 220.353†	11896.4	0.8917	${ m mg/L}$	0.01127	1.783	mg/L	0.0225	1.26%
Sb 206.836†	502.5	0.06722	${\tt mg/L}$	0.003482	0.1344	mg/L	0.00696	5.18%
Se 196.026†	-202.2	-0.1074	${ m mg/L}$	0.00524	-0.2147	mg/L	0.01048	4.88%
Si 288.158†	4771.0	3.531	mg/L	0.0464	7.062	mg/L	0.0928	1.31%
Sn 189.927†	4749.4	0.7294	mg/L	0.00884	1.459	mg/L	0.0177	1.21%
Sr 421.552†	97133.3	0.1679	mg/L	0.00258	0.3358	mg/L	0.00516	1.54%
Ti 334.903†	39028.4	1.517	mg/L	0.0202	3.035		0.0404	1.33%
Tl 190.801†	-158.0	-0.05245	mg/L	0.001683	-0.1049	mg/L	0.00337	3.21%
V 292.402†	35709.3	0.1043	mg/L	0.00127	0.2086	mg/L	0.00254	1.22%
Zn 206.200†	5279.5	2.168	mg/L	0.0287	4.337	mg/L	0.0574	1.32%

Date: 11/1/2012 4:05:24 PM

Sequence No.: 31

Sample ID: VP40 B SWC (

Analyst: EL Dilution: 2X

Autosampler Location: 50
Date Collected: 11/1/2012 4:01:34 PM
Data Type: Original

Nebulizer Parameters: VP40 B SWC

Analyte Back Pressure Flow

All

233.0 kPa 0.55 L/min

Mean Data: VP40 B SWC Mean Corrected Analyte Calib. v 292.402† Zn 206.200†

Sequence No.: 32

Sample ID: VP40 C SWC Analyst: EL Dilution: 2X Dilution: 2X

Autosampler Location: 51

Date Collected: 11/1/2012 4:07:24 PM

Data Type: Original

Nebulizer Parameters: VP40 C SWC

Mean Data: VP40 C	SWC							
	Mean Corrected		Calib.			Sample	e	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2685212.2	101.4		0.35				0.35%
ScR 361.383	216164.4	102.1	용	0.08				0.08%
Ag 328.068†	-1973.4	0.00157	٥.	0.000101	0.00313		0.000202	6.43%
Al 308.215†	95162.5	63.28		0.075	126.6		0.15	0.12%
As 188.979†	127.6	0.06285		0.000742	0.1257	mg/L	0.00148	1.18%
B 249.677†	117.8	0.05409	J .	0.003404	0.1082	mg/L	0.00681	6.29%
Ba 233.527†	13012.3	1.253		0.0028	2.507	mg/L	0.0055	0.22%
Be 313.042†	340.7	0.00062		0.000045	0.00124	mg/L	0.000090	7.23%
Ca 317.933†	639106.7	60.37		0.034	120.7	mg/L	0.07	0.06%
Cd 228.802†	8346.7	0.09976		0.000563	0.1995	mg/L	0.00113	0.56%
Co 228.616†	3948.0	0.03548		0.000324	0.07096	mg/L	0.000648	0.91%
Cr 267.716†	832.0	0.1811	${ m mg/L}$	0.00022	0.3623	mg/L	0.00045	0.12%
Cu 324.752†	74815.3	0.2605		0.00019	0.5210	mg/L	0.00037	0.07%
Fe 273.955†	334887.8	273.2	_	0.66	546.4	mg/L	1.32	0.24%
K 766.490†	18079.7	5.018		0.0171	10.04	mg/L	0.034	0.34%
Mg 279.077†	53777.8	46.02		0.050	92.03	mg/L	0.101	0.11%
Mn 257.610†	76541.7	1.892		0.0020	3.784	mg/L	0.0041	0.11%
Mo 202.031†	169.3	0.00987		0.000165	0.01974	mg/L	0.000330	1.67%
Na 589.592†	57588.8	7.080	${ t mg/L}$	0.0126	14.16	mg/L	0.025	0.18%
Na 330.237†	562.7	4.150	${ t mg/L}$	0.6053	8.300	mg/L	1.2106	14.59%
Ni 231.604†	325.3	0.1472		0.00241	0.2945	mg/L	0.00482	1.64%
Pb 220.353†	51699.6	4.011		0.0043	8.021		0.0086	0.11 է
Sb 206.836†	94.5	0.01201	_	0.001134	0.02403	mg/L	0.002267	9.43%
Se 196.026†	-96.8	-0.05078		0.004467	-0.1016		0.00893	8.80%
Si 288.158†	4529.8	3.355	mg/L	0.0148	6.711	mg/L	0.0296	0.44%
Sn 189.927†	5040.3	0.7841		0.00453	1.568	mg/L	0.0091	0.58%
Sr 421.552†	245049.1	0.4236		0.00254	0.8472	mg/L	0.00509	0.60%
Ti 334.903†	113745.9	4.423		0.0055	8.845		0.0110	0.12%
Tl 190.801†	-18.2	-0.01280		0.001566	-0.02560	٠.	0.003131	12.23%
V 292.402†	46465.3	0.1997		0.00029	0.3993	mg/L	0.00058	0.15%
Zn 206.200†	108725.1	44.66	mg/L	0.065	89.31	mg/L	0.129	0.14%

Sequence No.: 33

Sample ID: VQ16 MB2SPK DMN

Analyst: EL Dilution: 1X

Autosampler Location: 52 Date Collected: 11/1/2012 4:13:13 PM Data Type: Original

Nebulizer Parameters: VQ16 MB2SPK DMN

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

a: VQ16 MB2SPK DMN

Mean Corrected Calib.

Intensity Conc. Units

253 2795176.3 105.5 %

220436.4 104.1 % Mean Data: VQ16 MB2SPK DMN Sample Conc. Units Std.Dev. RSD Std.Dev. Analyte

Sequence No.: 34

Autosampler Location: 53
MBSPK WMN Date Collected: 11/1/2012 4:19:16 PM

Sample ID: VQ25 MBSPK WMN Date Collected: 11/1
Analyst: EL Data Type: Original

Dilution: 1X

Nebulizer Parameters: VQ25 MBSPK WMN

Analyte Back Pressure Flow
All 233.0 kPa 0.55 L/min

Mean Data: VQ25 ME	SPK WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2793957.6	105.5		0.37				0.35%
ScR 361.383	223763.9	105.7		0.69				0.65%
Ag 328.068†	162560.5	0.5454		0.00358	0.5454	_	0.00358	0.66%
A1 308.215†	3392.9	2.248		0.0237	2.248	_	0.0237	1.05%
As 188.979†	5537.2	2.324	_	0.0085	2.324	J.	0.0085	0.36%
B 249.677†	-4.1	-0.00376	_	0.002424	-0.00376	٠.	0.002424	64.42%
Ba 233.527†	22775.6	2.216	${ t mg/L}$	0.0205	2.216		0.0205	0.92%
Be 313.042†	157967.1	0.5918	${ m mg/L}$	0.00243	0.5918		0.00243	0.41%
Ca 317.933†	123291.6	11.65	${ m mg/L}$	0.051	11.65	_	0.051	0.44%
Cd 228.802†	49754.0	0.5899	${ m mg/L}$	0.00519	0.5899	_	0.00519	0.88%
Co 228.616†	47554.5	0.5631		0.00496	0.5631		0.00496	0.88%
Cr 267.716†	2656.6	0.5802	${ m mg/L}$	0.00589	0.5802	_	0.00589	1.01%
Cu 324.752†	171945.1	0.5496	${ m mg/L}$	0.00412	0.5496	_	0.00412	0.75%
Fe 273.955†	2923.8	2.385	${ m mg/L}$	0.0154	2.385	-	0.0154	0.64%
K 766.490†	42319.4	11.75	mg/L	0.005	11.75	-	0.005	0.04%
Mg 279.077†	13823.9	11.87	mg/L	0.107	11.87	_	0.107	0.90%
Mn 257.610†	22402.8	0.5541	mg/L	0.00482	0.5541	_	0.00482	0.87%
Mo 202.031†	11.3	0.00040	${ m mg/L}$	0.000151	0.00040	mg/L	0.000151	37.90%
Na 589.592†	93827.2	11.54	${ m mg/L}$	0.016	11.54	J .	0.016	0.14%
Na 330.237†	314.3	11.18	mg/L	0.323 '	11.18	_	0.323	2.89%
Ni 231.604†	1284.1	0.5803	${ m mg/L}$	0.00694	0.5803	mg/L	0.00694	1.20%
Pb 220.353†	31008.3	2.401	mg/L	0.0213	2.401	J .	0.0213	0.89%
Sb 206.836†	15.4	-0.00451	mg/L	0.001405	-0.00451	2	0.001405	31.18%
Se 196.026†	4756.6	2.474		0.0085	2.474		0.0085	0.34%
Si 288.158†	-0.2	0.00384	mg/L	0.004367	0.00384	J .		113.80%
Sn 189.927†	-16.1	0.00032	${ t mg/L}$	0.000475	0.00032		0.000475	
Sr 421.552†	339592.3	0.5870	${ m mg/L}$	0.00031	0.5870	mg/L	0.00031	0.05%
Ti 334.903†	28.7	0.00041	${ m mg/L}$	0.000332	0.00041	mg/L	0.000332	81.56%
Tl 190.801†	8707.9	2.373	mg/L	0.0046	2.373	_	0.0046	0.20%
V 292.402†	116010.2	0.5727	mg/L	0.00497	0.5727	mg/L	0.00497	0.87%
Zn 206.200†	1462.2	0.6006	${ m mg/L}$	0.00509	0.6006	mg/L	0.00509	0.85%

Date: 11/1/2012 4:28:10 PM

Analysis Begun

Start Time: 11/1/2012 4:24:13 PM Plasma On Time: 11/1/2012 9:01:02 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\1101.sif

Batch ID:

Analyst: EL

Dilution: 1X

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1 Autosampler Location: 7 Sample ID: CV 4

Date Collected: 11/1/2012 4:24:16 PM

Data Type: Original

Nebulizer Parameters: CV

Flow Back Pressure Analyte

All 233.0 kPa 0.55 L/min

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2696116.0	101.8		0.19				0.19%
ScR 361.383	215 7 76.9	101.9		0.68				0.66%
Ag 328.068†	294934.7	0.9895		0.00301	0.9895		0.00301	0.30%
Al 308.215†	3079.6	2.007	_	0.0047	2.007		0.0047	0.23%
As 188.979†	4960.1	2.081		0.0085	2.081	J .	0.0085	0.41%
B 249.677†	2141.7	0.9856	mg/L	0.00775	0.9856	mg/L	0.00775	0.79%
Ba 233.527†	10340.0	1.006	mg/L	0.0057	1.006	_	0.0057	0.57%
Be 313.042†	273952.4	1.026	_	0.0017	1.026	mg/L	0.0017	0.17%
Ca 317.933†	21850.7	2.064	mg/L	0.0117	2.064	mg/L	0.0117	0.57%
Cd 228.802†	84815.5	1.010	mg/L	0.0019	1.010		0.0019	0.19%
Co 228.616†	83729.9	0.9910	mg/L	0.00159	0.9910	mg/L	0.00159	0.16%
Cr 267.716†	4617.7	1.008	mg/L	0.0051	1.008	mg/L	0.0051	0.51%
Cu 324.752†	328506.8	1.049	mg/L	0.0009	1.049	mg/L	0.0009	0.09%
Fe 273.955†	2660.9	2.170	mg/L	0.0129	2.170	mg/L	0.0129	0.60%
K 766.490†	74033.2	20.55	mg/L	0.056	20.55	mg/L	0.056	0.27%
Mg 279.077†	2476.8	2.130	mg/L	0.0139	2.130	mg/L	0.0139	0.65%
Mn 257.610†	40593.5	1.004	mg/L	0.0008	1.004	mg/L	0.0008	0.08%
Mo 202.031†	17682.3	0.9554	mg/L	0.00392	0.9554	mg/L	0.00392	0.41%
Na 589.592†	410712.4	50.50	mg/L	0.125	50.50	mg/L	0.125	0.25%
Na 330.237†	1386.0	50.28	mg/L	0.233	50.28	mg/L	0.233	0.46%
Ni 231.604†	2283.3	1.034	mg/L	0.0086	1.034	mg/L	0.0086	0.83%
Pb 220.353†	26879.8	2.081	mg/L	0.0094	2.081	mg/L	0.0094	0.45%
Sb 206.836†	7651.6	2.089	mg/L	0.0082	2.089	mg/L	0.0082	0.39%
Se 196.026†	3863.1	2.008	mg/L	0.0091	2.008	mg/L	0.0091	0.45%
Si 288.158†	2922.5	2.167	mg/L	0.0099	2.167	mg/L	0.0099	0.46%
Sn 189.927†	5983.6	0.9132	mg/L	0.00424	0.9132	mg/L	0.00424	0.46%
Sr 421.552†	606331.3	1.048	mg/L	0.0020	1.048	mg/L	0.0020	0.19%
Ti 334.903†	25672.7	0.9976	mg/L	0.00102	0.9976	mg/L	0.00102	0.10%
Tl 190.801†	7366.3	2.001		0.0064	2.001	mg/L	0.0064	0.32%
V 292.402†	203480.9	1.008	mg/L	0.0037	1.008	mg/L	0.0037	0.37%
Zn 206.200†	2773.2	1.138		0.0078	1.138	mg/L	0.0078	0.69%

Page

Sequence No.: 2 Sample ID: CB \dot{l}_i^c Analyst: EL Dilution: 1X Autosampler Location: 1

Date Collected: 11/1/2012 4:30:18 PM

Data Type: Original

Nebulizer Parameters: CB

 Analyte
 Back Pressure
 Flow

 All
 233.0 kPa
 0.55 L/min

Mean Data: CB							
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2745444.6	103.7	용	0.69			0.67%
ScR 361.383	211900.8	100.1	ક	0.89			0.89%
Ag 328.068†	97.5	0.00033	mg/L	0.000015	0.00033	mg/L	0.000015 4.71%
Al 308.215†	3.3	0.00220	mg/L	0.003726	0.00220	mg/L	0.003726 169.01%
As 188.979†	0.5	0.00021	J .	0.000415	0.00021	mg/L	0.000415 201.09%
В 249.677†	-1.4	-0.00064	J .	0.000423	-0.00064		0.000423 66.29%
Ba 233.527†	-0.7	-0.00007	mg/L	0.000326	-0.00007	mg/L	0.000326 492.92%
Be 313.042†	38.0	0.00014		0.000028	0.00014	mg/L	0.000028 19.28%
Ca 317.933†	19.5	0.00184		0.000740	0.00184		0.000740 40.25%
Cd 228.802†	15.7	0.00019	mg/L	0.000097	0.00019	mg/L	0.000097 51.36%
Co 228.616†	10.2	0.00012	_	0.000108	0.00012	_	0.000108 89.52 è
Cr 267.716†	1.6	0.00034	mg/L	0.001895	0.00034	mg/L	0.001895 552.01%
Cu 324.752†	317.4	0.00102	J .	0.000182	0.00102	mg/L	0.000182 17.93%
Fe 273.955†	22.8	0.01858	mg/L	0.001814	0.01858	mg/L	0.001814 9.77%
K 766.490†	299.8	0.08321	mg/L	0.011592	0.08321	mg/L	0.011592 13.93%
Mg 279.077†	-12.9	-0.01109	mg/L	0.001236	-0.01109	mg/L	0.001236 11.15%
Mn 257.610†	23.8	0.00059	٠.	0.000049	0.00059	mg/L	0.000049 8.33%
Mo 202.031†	-8.2	-0.00044	J .	0.000260	-0.00044	J .	0.000260 58.54%
Na 589.592†	275.2	0.03383	J .	0.003847	0.03383	mg/L	0.003847 11.37%
Na 330.237†	7.4	0.2626	mg/L	0.51393	0.2626	mg/L	0.51393 195.72%
Ni 231.604†	3.5	0.00157	J .	0.002350	0.00157	J .	0.002350 149.41%
Pb 220.353†	22.5	0.00174	J .	0.000351	0.00174	mg/L	0.000351 20.15%
Sb 206.836†	0.2	0.00006	mg/L	0.000904	0.00006		0.000904 >999.9%
Se 196.026†	-2.4	-0.00125	mg/L	0.004492	-0.00125	mg/L	0.004492 360.54%
Si 288.158†	6.1	0.00453	mg/L	0.003544	0.00453	mg/L	0.003544 78.20%
Sn 189.927†	2.8	0.00043	J .	0.000592	0.00043	mg/L	0.000592 138.91%
Sr 421.552†	124.0	0.00021	mg/L	0.000063	0.00021	mg/L	0.000063 29.26%
Tı 334.903†	3.5	0.00014		0.000945	0.00014	mg/L	0.000945 685.73%
Tl 190.801†	4.6	0.00125	mg/L	0.000828	0.00125	mg/L	0.000828 66.23%
V 292.402†	13.3	0.00006	mg/L	0.000105	0.00006	mg/L	0.000105 164.78%
Zn 206.200†	39.7	0.01631	Ĵmg/L	0.001689	0.01631	mg/L	0.001689 10.36%

The state of the state of

Analysis Begun

Start Time: 11/1/2012 4:37:40 PM Plasma On Time: 11/1/2012 9:01:02 AM

Logged In Analyst: metals Technique: ICP Continuous Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\1101.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Sequence No.: 1

Sample ID: Calib Blank 1 Date Collected: 11/1/2012 4:37:42 PM

Data Type: Original

Nebulizer Parameters: Calib Blank 1

AnalyteAll

Back Pressure

Flow

233.0 kPa

0.55 L/min

Mean Data: Calib Blank 1

	Mean Corrected				Calib
Analyte	Intensity	Std.Dev	. RSD	Conc.	Units
ScA 357.253	2743025.2	29392.22	1.07%	103.6	8
ScR 361.383	216784.2	2230.23	1.03%	102.4	િ
Ag 328.068†	646.9	24.09	3.72%	[0.00]	mg/L
Al 308.215†	42.3	13.46	31.85%	[0.00]	mg/L
As 188.979†	3.2	1.64	51.33%	[0.00]	mg/L
B 249.677†	-126.9	8.24	6.49%	[0.00]	mg/L
Ba 233.527†	70.1	3.56	5.07%	[0.00]	mg/L
Be 313.042†	635.4	16.83	2.65%	[0.00]	mg/L
Ca 317.933†	-1.5	9.24	634.50%	[0.00]	mg/L
Cd 228.802†	311.3	8.41	2.70%	[0.00]	mg/L
Co 228.616†	319.0	9.02	2.83%	[0.00]	mg/L
Cr 267.716†	8.9	0.36	3.97%	[0.00]	mg/L
Cu 324.752†	1864.5	28.52	1.53%	[0.00]	mg/L
Fe 273.955†	-11.6	2.54	21.83%	[0.00]	mg/L
K 766.490†	2249.0	24.15	1.07%	[0.00]	mg/L
Mg 279.077†	-169.5	7.35	4.34%	[0.00]	mg/L
Mn 257.610†	-45.8	6.79	14.82%	[0.00]	mg/L
Mo 202.031†	-133.4	2.41	1.81%	[0.00]	mg/L
Na 589.592†	203.0	5.29	2.61%	[0.00]	mg/L
Na 330.237†	43.9	7.47	17.02%	[0.00]	mg/L
Ni 231.604†	30.7	3.00	9.78%	[0.00]	mg/L
Pb 220.353†	284.8	2.96	1.04%	[0.00]	mg/L
Sb 206.836†	123.5	3.01	2.44%	[0.00]	mg/L
Se 196.026†	-98.3	1.40	1.43%	[0.00]	mg/L
Si 288.158†	4.6	1.86	40.29%	[0.00]	mg/L
Sn 189.927†	-8.6	7.65	88.73%	[0.00]	mg/L
Sr 421.552†	736.2	33.60	4.56%	[0.00]	mg/L
Ti 334.903†	-44.9	6.40	14.25%	[0.00]	mg/L
Tl 190.801†	17.5	3.57	20.32%	[0.00]	mg/L
V 292.402†	-13.3	23.46	176.14%	[0.00]	mg/L
Zn 206.200†	-8.3	2.00	24.13%	[0.00]	${ m mg/L}$

The same of the sa

Sequence No.: 2 Sample ID: STD3

Date Collected: 11/1/2012 4:44:13 PM

Data Type: Original

Nebulizer Parameters: STD3

Analyte

BackPressureFlow233.0kPa0.55L/min 233.0 kPa All

Mean Data: STD3				
	Mean Corrected			Calib
Analyte	Intensity	$\mathtt{Std.Dev.}$	RSD	Conc. Units
ScA 357.253	2706785.4	10235.05	0.38%	102.2 %
ScR 361.383	210301.8	1635.71	0.78%	99.32 %
Ag 328.068†	292246.5	537.41	0.18%	[1.0] mg/L
As 188.979†	23574.7	173.29	0.74%	[10] mg/L
B 249.677†	21810.3	69.78	0.32%	[10] mg/L
Be 313.042†	1379288.3	7495.92	0.54%	[5.0] mg/L
Na 589.592†	413710.4	554.80	0.13%	[50] mg/L
Ni 231.604†	22835.0	55.33	0.24%	[10] mg/L
Pb 220.353†	132246.6	216.73	0.16%	[10] mg/L
Se 196.026†	18880.0	80.49	0.43%	[10] mg/L
Sr 421.552†	3035653.2	42484.90	1.40%	[5] mg/L
T1 190.801†	36287.7	201.09	0.55%	[10] mg/L
Zn 206.200†	25537.0	70.16	0.27%	[10] mg/L

The same of the sa

Analysis Begun

Plasma On Time: 11/1/2012 9:01:02 AM Start Time: 11/1/2012 4:52:12 PM

Technique: ICP Continuous Logged In Analyst: metals Spectrometer Model: Optima 4300 DV, S/N 077N0060101Autosampler Model: S10

Sample Information File: C:\pe\metals\Sample Information\1101.sif

Batch ID:

Results Data Set: PE121101

Results Library: C:\pe\metals\Results\Results.mdb

Autosampler Location: 7 Sequence No.: 1

Sample ID: CV 🕰 Date Collected: 11/1/2012 4:52:15 PM

Data Type: Original Analyst: EL

Dilution: 1X

Mean Data: CV

T1 190.801†

V 292.402†

Zn 206.200†

Nebulizer Parameters: CV

Back Pressure Flow Analyte

0.55 L/min A11 233.0 kPa

7365.2

2675.8

207018.9

Mean Corrected Calib. Sample Intensity Conc. ...
100.5 % Conc. Units Std.Dev. Analyte Conc. Units Std.Dev. RSD 0.91 0.90% ScA 357.253 2661489.5 100.2 % 0.26 0.26% ScR 361.383 212234.8 $1.019\ {
m mg/L}$ $1.019~{
m mg/L}$ 0.0038 Ag 328.068† 0.0038 0.38% 297879.8 2.008 mg/L 2.095 mg/L 1.003 mg/L 0.0032 0.0126 0.0043 2.008 mg/L 2.095 mg/L 1.003 mg/L 3081.5 Al 308.215† 0.0032 0.16% 0.0126 0.60% As 188.979† 4941.0 2190.8 0.0043 B 249.677† 0.43% $1.005~{
m mg/L}$ 0.0015 $1.005~{
m mg/L}$ 10337.0 0.0015 0.15% Ba 233.527† Be 313.042† 275463.4 $0.9959 \, \text{mg/L}$ 0.00319 0.9959 mg/L0.00319 0.32% 0.0038 2.060 mg/L 2.060 mg/L 0.0038 21803.8 Ca 317.933† 0.19% $1.024~\mathrm{mg/L}$ 0.0016 $1.024~\mathrm{mg/L}$ 0.0016 0.15% 86004.2 Cd 228.802† 84378.7 0.00231 0.00231 Co 228.616† 0.9986 mg/L0.9986 mg/L 0.23% $1.009~{
m mg/L}$ Cr 267.716† 4621.6 0.0012 $1.009~{
m mg/L}$ 0.0012 0.12% Cu 324.752† 332812.7 $1.063~{
m mg/L}$ 0.0015 $1.063~\mathrm{mg/L}$ 0.0015 0.14% 0.0035 0.0035 2.138 mg/L2.138 mg/L0.16% Fe 273.955† 2622.5 0.092 0.0043 0.0010 20.66 mg/L 0.092 0.45% K 766.490† 74438.7 20.66 mg/L 2.143 mg/L 2.143 mg/L 1.009 mg/L Mg 279.077† 2491.7 0.0043 0.20% 0.0010 $1.009 \, \text{mg/L}$ 0.10% Mn 257.610† 40808.4 17691.6 0.9559 mg/L 0.00654 0.9559~mg/L0.00654 0.68% Mo 202.031† 0.128 0.128 50.31 mg/L 50.31 mg/L 0.26% Na 589.592† 416283.2 0.185 Na 330.237† 1405.3 $51.02 \, \text{mg/L}$ 51.02 mg/L0.185 0.36% 0.00105 0.00105 Ni 231.604† 2274.5 0.9966 mg/L0.9966 mg/L 0.11% 0.0132 2.025 mg/L 2.086 mg/L 2.028 mg/L 2.025 mg/L 2.086 mg/L 0.0132 0.0152 0.65% 26758.8 Pb 220.353† Sb 206.836† 7639.5 0.0152 0.73% 0.0058 2.028 mg/L 0.0058 3833.9 0.28% Se 196.026† $2.169~{
m mg/L}$ 2.169 mg/LSi 288.158† 2923.9 0.0058 0.0058 0.27% $0.9055 \, \text{mg/L}$ 0.00426 0.9055 mg/L0.00426 0.47% Sn 189.927† 5932.9 $1.004~{
m mg/L}$ 0.0037 0.0037 0.37% $1.004~{
m mg/L}$ Sr 421.552† 609822.9 25894.4 1.006 mg/L 0.0003 1.006 mg/L 0.0003 0.03% Ti 334.903† 0.0144 0.0006

0.0024

 $2.017 \, \text{mg/L}$

 $1.026~\mathrm{mg/L}$

 $1.047~\mathrm{mg/L}$

0.0144

0.0006

0.0024 0.23%

0.72%

0.06%

2.017 mg/L

1.026 mg/L

1.047 mg/L

Date: 11/1/2012 5:02:19 PM

Sequence No.: 2 Sample ID: CB Analyst: EL Dilution: 1X

Autosampler Location: 1

Date Collected: 11/1/2012 4:58:18 PM

Data Type: Original

Nebulizer Parameters: CB

Analyte All

Zn 206.200†

Back Pressure

Flow

233.0 kPa 0.55 L/min

Mean Data: CB Mean Corrected Calib. Sample Intensity Conc. Units
2729381.8 103.1 %
209067.3 98.73 % Std.Dev. Conc. Units Analyte Std.Dev. RSD 0.48 ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† 0.002023 172.02% 0.000062 63.37% 0.000081 119.13% 0.000592 140.53% 0.000060 17.36% 0.001541 42 000 Ca 317.933† -8.2 -0.00010 mg/L -5.9 -0.00007 mg/L Cd 228.802† 33.37
331 119.13
3.000592 140.53%
0.000060 17.36%
0.001541 42.93%
0.0011186 36.21%
0.0015506 >999.9%
0.001581 0.0005506 >999.9%
0.001586 0.2477 mg/L
0.001586 0.2477 mg/L
0.001586 0.00022 mg/L
0.001586 0.00027 mg/L
0.00166 0.00171 mg/L
0.00158 0.00171 mg/L
0.00159 0.00069 mg/L
0.002777 0.00408 mg/L
0.002777 0.00408 mg/L
0.000154 0.00020 mg/L
0.000154 0.00020 mg/L
0.000154 0.000093 mg/L
0.000104 0.00057 0.00069
0.00071 0.000598 0.000062 -0.00010 mg/L 0.000081 -0.00007 mg/L 0.000592 -0.00042 mg/L Co 228.616† -1.9 -0.00042 mg/L Cr 267.716† -107.7 -0.00034 mg/L Cu 324.752† Fe 273.955† -4.4 -0.00359 mg/L 111.3 0.03089 mg/L -0.0 -0.00001 mg/L -1.9 -0.00005 mg/L K 766.490† Mg 279.077† Mn 257.610† -1.5 -0.00008 mg/L Mo 202.031† 268.7 Na 589.592† 0.03247~mg/L6.8 0.2477 mg/L -0.5 -0.00022 mg/L -3.5 -0.00027 mg/L 6.2 0.00171 mg/L Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† -1.3 -0.00069 mg/L Se 196.026t 5.5 0.00408 mg/L Si 288.158† 1.3 Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402†

Sequence No.: 3

3 Autosampler Location: 54 44 MB LEN Date Collected: 11/1/2012 5:04:17 PM

Sample ID: VP44 MB LEN Date Collected: 11/1/
Analyst: EL Data Type: Original

Dilution: 5X

Nebulizer Parameters: VP44 MB LEN

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Moan Data: VD44 MR IFN

Mean Data: VP44 MB	LEN						
	Mean Corrected		Calib.			${\tt Sample}$	
Analyte	Intensity		Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev. RSD
ScA 357.253	2558628.8	96.62		0.343			0.36%
ScR 361.383	205348.1	96.98		0.563			0.58%
Ag 328.068†	72.6	0.00025	J .	0.000187	0.00124		0.000935 75.55%
Al 308.215†	-1.4	-0.00090	mg/L	0.004158	-0.00450	mg/L	0.020792 462.44%
As 188.979†	2.0	0.00086	J .	0.001360	0.00430	mg/L	0.006800 158.07%
B 249.677†	52.6	0.02412	mg/L	0.003025	0.1206	mg/L	0.01513 12.54%
Ba 233.527†	1790.8	0.1742	٠.	0.00094	0.8712	mg/L	0.00472 0.54%
Be 313.042†	0.9	0.00000	${ m mg/L}$	0.000011	0.00002	mg/L	0.000054 319.28%
Ca 317.933†	809.9	0.07651	${ m mg/L}$	0.000392	0.3825	mg/L	0.00196 0.51%
Cd 228.802†	12.7	0.00015	${ m mg/L}$	0.000046	0.00075	mg/L	0.000228 30.22%
Co 228.616†	33.9	0.00035		0.000139	0.00173	mg/L	0.000693 40.18%
Cr 267.716†	-1.0	-0.00022	-	0.000611	-0.00108	mg/L	0.003055 281.85%
Cu 324.752†	45.1	0.00014	mg/L	0.000099	0.00072	mg/L	0.000495 68.54%
Fe 273.955†	-2.0	-0.00162	${ m mg/L}$	0.001513	-0.00812	mg/L	0.007566 93.16%
K 766.490†	1550.3	0.4303	mg/L	0.01749	2.151	mg/L	0.0875 4.07%
Mg 279.077†	4.5	0.00387	${ m mg/L}$	0.002475	0.01934	mg/L	0.012374 63.97%
Mn 257.610†	-6.5	-0.00016	${ t mg/L}$	0.000200	-0.00080	mg/L	0.001000 124.81%
Mo 202.031†	-7.0	-0.00038	mg/L	0.000217	-0.00190	mg/L	0.001085 57.03%
Na 589.592†	2257020.6	272.8	mg/L	1.05	1364	mg/L	5.3 0.39%
Na 330.237†	7793.3	284.1	mg/L	0.57	1420	mg/L	2.9 0.20%
Ni 231.604†	6.0	0.00262	mg/L	0.000465	0.01308	mg/L	0.002326 17.79%
Pb 220.353†	14.3	0.00108	${ m mg/L}$	0.000354	0.00540	mg/L	0.001768 32.75%
Sb 206.836†	12.3	0.00338	mg/L	0.001437	0.01689	mg/L	0.007184 42.52%
Se 196.026†	-1.8	-0.00095	mg/L	0.002960	-0.00476	mg/L	0.014801 311.22%
Si 288.158†	29.6	0.02191	mg/L	0.004303	0.1096	mg/L	0.02151 19.64%
Sn 189.927†	-1.2	-0.00016	mg/L	0.000388	-0.00080	mg/L	0.001941 242.91%
Sr 421.552†	728.2	0.00120		0.000016	0.00600		0.000080 1.33%
Ti 334.903†	-18.3	-0.00071	mg/L	0.000273	-0.00357	mg/L	0.001363 38.13%
Tl 190.801†	4.7	0.00130	${\tt mg/L}$	0.001194	0.00652	mg/L	0.005969 91.49%
V 292.402†	-3.9	-0.00002	${ m mg/L}$	0.000264	-0.00011	mg/L	0.001319 >999.9%
Zn 206.200†	89.2	0.03492	mg/L	0.000326	0.1746	mg/L	0.00163 0.93%

UPE4 : 00251

Date: 11/1/2012 5:14:39 PM

Sequence No.: 4

Sample ID: VP51 MB1 SWC Date Collected: 11/1/2012 5:10:37 PM Data Type: Original

Analyst: EL Dilution: 2X

Autosampler Location: 55

Nebulizer Parameters: VP51 MB1 SWC

Analyte

Back PressureFlow233.0 kPa0.55 L/min All

Mean Data: VP51 N	4B1 SWC						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2721103.3	102.8	90	0.59			0.57%
ScR 361.383	209433.3	98.91	ક	1.022			1.03%
Ag 328.068†	0.8	0.00000	mg/L	0.000109	0.00001	mg/L	0.000218 >999.9%
Al 308.215†	1.4	0.00096	${ m mg/L}$	0.005012	0.00192	mg/L	0.010024 521.37%
As 188.979†	2.7	0.00113	mg/L	0.001774	0.00226	mg/L	0.003548 157.24%
B 249.677†	4.8	0.00220	mg/L	0.001394	0.00440	mg/L	0.002789 63.36%
Ba 233.527†	-3.7	-0.00036	mg/L	0.000239	-0.00072	mg/L	0.000478 66.74%
Be 313.042†	13.2	0.00005	${\tt mg/L}$	0.000063	0.00010	mg/L	0.000125 130.98%
Ca 317.933†	78.0	0.00737	mg/L	0.001221	0.01474	mg/L	0.002442 16.57%
Cd 228.802†	-0.5	-0.00001	${ t mg/L}$	0.000060	-0.00002	mg/L	0.000120 653.77%
Co 228.616†	7.1	0.00009		0.000013	0.00017	mg/L	0.000027 15.46%
Cr 267.716†	1.6	0.00036		0.001059	0.00072		0.002118 296.21%
Cu 324.752†	-171.2	-0.00055	${\tt mg/L}$	0.000225	-0.00109	mg/L	0.000450 41.24%
Fe 273.955†	1.4	0.00114	_	0.001438	0.00228	mg/L	0.002876 126.38%
K 766.490†	185.2	0.05140		0.010936	0.1028	mg/L	0.02187 21.28%
Mg 279.077†	2.5	0.00216		0.002899	0.00432		0.005799 134.15%
Mn 257.610†	-8.3	-0.00021		0.000080	-0.00041		0.000161 38.97%
Mo 202.031†	-4.3	-0.00023		0.000206	-0.00047	mg/L	0.000413 88.74%
Na 589.592†	2591.5	0.3132		0.01990	0.6264	mg/L	0.03981 6.35%
Na 330.237†	12.7	0.4648	_	0.32740	0.9296		0.65479 70.43%
Ni 231.604†	-0.3	-0.00013	J .	0.001213	-0.00026		0.002426 919.95%
Pb 220.353†	-13.1	-0.00099		0.000420	-0.00197	mg/L	0.000840 42.55%
Sb 206.836†	-0.4	-0.00011	-	0.001320	-0.00022	mg/L	0.002640 >999.9%
Se 196.026†	0.7	0.00035	_	0.002272	0.00070	_	0.004544 646.02%
Si 288.158†	5.9	0.00439		0.005070	0.00879	mg/L	0.010139 115.38%
Sn 189.927†	-1.3	-0.00020		0.000528	-0.00039	J · —	0.001055 269.08%
Sr 421.552†	26.0	0.00004		0.000046	0.00009	mg/L	0.000092 107.46%
Ti 334.903†	-24.7	-0.00096		0.000925	-0.00192	٠.	0.001849 96.15%
Tl 190.801†	-3.0	-0.00082		0.000385	-0.00164		0.000770 47.05%
V 292.402†	14.2	0.00007		0.000080	0.00014	J .	0.000160 111.64%
Zn 206.200†	-13.5	-0.00527	mg/L	0.000261	-0.01055	mg/L	0.000522 4.95%

Method: ARIIEC6AN.552AS

Page 5

Sequence No.: 5

Sample ID: VP51 B SWC

Analyst: EL Dilution: 2X

Autosampler Location: 56

Date Collected: 11/1/2012 5:16:38 PM

Data Type: Original

Nebulizer Parameters: VP51 B SWC

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VP51 B	SWC							
	Mean Corrected		Calib.			Sample	€	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	R S D
ScA 357.253	2658066.8	100.4	용	0.43				0.43%
ScR 361.383	215088.5	101.6		0.13				0.12%
Ag 328.068†	-970.5	0.00092	${\tt mg/L}$	0.000080	0.00183	mg/L	0.000160	8.74%
Al 308.215†	173647.4	115.5		0.22	231.0	mg/L	0.43	0.19%
As 188.979†	70.6	0.04374		0.000860	0.08748	mg/L	0.001719	1.97₹
В 249.677†	66.0	0.02992		0.000515	0.05983		0.001031	1.72%
Ba 233.527†	3416.1	0.3249		0.00146	0.6498		0.00292	0.45%
Be 313.042†	661.1	0.00132	mg/L	0.000032	0.00264	mg/L	0.000065	2.46%
Ca 317.933†	751462.1	70.99	mg/L	0.097	142.0	mg/L	0.19	0.14%
Cd 228.802†	225.2	0.00267		0.000086	0.00534	mg/L	0.000173	3.23%
Co 228.616†	6629.1	0.06523	${ m mg/L}$	0.000546	0.1305	٠.	0.00109	0.84%
Cr 267.716†	1118.2	0.2435	mg/L	0.00091	0.4869	${ m mg/L}$	0.00182	0.37%
Cu 324.752†	71983.3	0.2412		0.00062	0.4823	mg/L	0.00124	0.26ર
Fe 273.955†	193203.2	157.6		1.08	315.2	mg/L	2.16	0.68%
K 766.490†	33470.9	9.290		0.0462	18.58	J .	0.092	0.50%
Mg 279.077†	67162.4	57.57	mg/L	0.094	115.1	mg/L	0.19	0.16%
Mn 257.610†	104157.5	2.573	J .	0.0053	5.146		0.0105	0.20%
Mo 202.031†	0.2	0.00166	_	0.000299	0.00332		0.000599	18.04%
Na 589.592†	53585.7	6.476	J .	0.0184	12.95		0.037	0.28%
Na 330.237†	168.7	6.881	_	0.2290	13.76		0.458	3.33%
Ni 231.604†	606.4	0.2656	mg/L	0.00068	0.5311	mg/L	0.00136	0.26%
Pb 220.353†	2261.3	0.2060	mg/L	0.00122	0.4120	J .	0.00244	0.59%
Sb 206.836†	98.1	0.01720	J .	0.000159	0.03440		0.000318	0.92%
Se 196.026†	-65.9	-0.03556	J .	0.005170	-0.07113		0.010341	14.54%
Si 288.158†	1400.5	1.043		0.0057	2.085		0.0113	0.54%
Sn 189.927†	134.5	0.03941		0.001035	0.07882	mg/L	0.002070	2.63%
Sr 421.552†	163186.7	0.2688		0.00142	0.5376	mg/L	0.00284	0.53%
Ti 334.903†	167778.6	6.524		0.0020	13.05	_	0.004	0.03%
Tl 190.801†	22.1	-0.00545		0.000764	-0.01090		0.001529	14.03%
V 292.402†	76753.6	0.3578	J .	0.00092	0.7157		0.00184	0.26%
Zn 206.200†	1658.5	0.6508	mg/L	0.00457	1.302	mg/L	0.0091	0.70%

Sequence No.: 6

Sample ID: VP40 ADUP SWC

Analyst: EL Dilution: 2X Autosampler Location: 57

Date Collected: 11/1/2012 5:22:28 PM

Data Type: Original

_____ Nebulizer Parameters: VP40 ADUP SWC

Back Pressure

sure Flow
0.55 L/min Analyte All 232.0 kPa

Mean Data: VP40 A	ADUP SWC Mean Corrected		Calib.			Sample		
Amalista	Intensity	Conc.		Std.Dev.	Conc.	-	Std.Dev.	R S D
Analyte ScA 357.253	2638891.2	99.65		0.165	conc.	0112 05	500.500.	0.17%
SCR 361.383	211185.2	99.73		0.746				0.75%
Ag 328.068†	-1298.5	0.00107		0.000192	0.00214	ma/L	0.000385	17.98%
Al 308.215†	185479.3	123.3	J .	0.03	246.7	_	0.06	0.03%
As 188.979†	66.9	0.04406	_	0.001185	0.08813		0.002371	2.69%
B 249.677†	123.6	0.05628	_	0.001929	0.1126		0.00386	3.43%
Ba 233.527†	7066.6	0.6783	_	0.00445	1.357		0.0089	0.66%
Be 313.042†	762.0	0.00153	J.	0.000056	0.00306		0.000112	3.66%
Ca 317.933†	734548.9	69.39		0.142	138.8	_	0.28	0.21%
Cd 228.802†	456.4	0.00545	_	0.000112	0.01089	J.	0.000223	2.05%
Co 228.616†	7232.5	0.07021	-	0.000944	0.1404		0.00189	1.34%
Cr 267.716†	1396.1	0.3041	-	0.00246	0.6082		0.00492	0.81%
Cu 324.752†	99160.4	0.3308		0.00045	0.6616	mg/L	0.00091	0.14%
Fe 273.955†	238760.2	194.8	_	0.29	389.6		0.58	0.15%
K 766.490†	44778.0	12.43	-	0.022	24.86		0.043	0.17%
Ma 279.077†	86316.1	74.00	mq/L	0.107	148.0		0.21	0.14%
Mn 257.610†	107452.2	2.654	mg/L	0.0040	5.309	mg/L	0.0079	0.15%
Mo 202.031†	35.1	0.00350	mq/L	0.000180	0.00700	mg/L	0.000360	5.15%
Na 589.592†	96363.2	11.65	mg/L	0.018	23.29	mg/L	0.036	0.15%
Na 330.237†	303.3	11.96	mg/L	0.246	23.91	mg/L	0.492	2.06%
Ni 231.604†	665.3	0.2914	mg/L	0.00195	0.5827	mg/L	0.00389	0.67%
Pb 220.353†	2944.1	0.2586	mg/L	0.00223	0.5172		0.00446	0.86%
Sb 206.836†	98.9	0.01396	mg/L	0.002395	0.02792	mg/L	0.004790	17.15%
Se 196.026†	-83.9	-0.04517	mg/L	0.000882	-0.09033	${ m mg/L}$	0.001765	1.95%
Si 288.158†	4034.1	2.992	mg/L	0.0079	5.984	mg/L	0.0158	0.26%
Sn 189.927†	52.4	0.02727	mg/L	0.000548	0.05455	mg/L	0.001096	2.01%
Sr 421.552†	216813.2	0.3571	mg/L	0.00127	0.7142	mg/L	0.00253	0.35%
Ti 334.903†	191541.0	7.449	mg/L	0.0103	14.90	_	0.021	0.14%
Tl 190.801†	19.6	-0.00741	${ m mg/L}$	0.001663	-0.01482		0.003326	22.45%
V 292.402†	87646.9	0.4074	mg/L	0.00007	0.8148	_	0.00015	0.025
Zn 206.200†	1823.2	0.7152	${ m mg/L}$	0.00609	1.430	mg/L	0.0122	0.85%

Sequence No.: 7

Autosampler Location: 58 Sample ID: VP40 A SWC

Analyst: EL Dilution: 2X Date Collected: 11/1/2012 5:28:16 PM

Data Type: Original

Nebulizer Parameters: VP40 A SWC

Analyte

Back PressureFlow232.0 kPa0.55 L/min All

Mean Data: VP40 A	A SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2684604.0	101.4	용	0.28				0.27%
ScR 361.383	215255.5	101.7	용	0.38				0.38%
Ag 328.068†	-1353.2	0.00099	mg/L	0.000182	0.00198	mg/L	0.000364	18.33%
Al 308.215†	185090.1	123.1	mg/L	0.12	246.2	mg/L	0.23	0.10%
As 188.979†	67.4	0.04244	mg/L	0.000500	0.08487	mg/L	0.001000	1.18%
B 249.677†	121.7	0.05543	${\tt mg/L}$	0.003441	0.1109	mg/L	0.00688	6.21%
Ba 233.527†	7413.0	0.7119	mg/L	0.00498	1.424	mg/L	0.0100	0.70%
Be 313.042†	774.0	0.00158	mg/L	0.000050	0.00316	mg/L	0.000100	3.17%
Ca 317.933†	681299.4	64.36	mg/L	0.062	128.7	mg/L	0.12	0.10%
Cd 228.802†	491.3	0.00588	mg/L	0.000038	0.01175	mg/L	0.000076	0.64%
Co 228.616†	7259.8	0.07199	mg/L	0.000477	0.1440	${\tt mg/L}$	0.00095	0.66%
Cr 267.716†	1420.2	0.3094	mg/L	0.00191	0.6188	mg/L	0.00382	0.62%
Cu 324.752†	105585.6	0.3518	mg/L	0.00050	0.7036	${\tt mg/L}$	0.00099	0.14%
Fe 273.955†	242118.2	197.5	mg/L	0.37	395.0	mg/L	0.75	0.19%
K 766.490†	48802.1	13.54	mg/L	0.038	27.09	mg/L	0.076	0.28%
Mg 279.077†	94421.7	80.95	mg/L	0.059	161.9	mg/L	0.12	0.07%
Mn 257.610†	109312.9	2.700	${\tt mg/L}$	0.0024	5.401		0.0048	0.09%
Mo 202.031†	40.6	0.00370	mg/L	0.000332	0.00740	${\tt mg/L}$	0.000665	8.98%
Na 589.592†	99182.5	11.99	mg/L	0.030	23.97	${ m mg/L}$	0.059	0.25%
Na 330.237†	324.1	12.56	mg/L	0.205	25.13	${ m mg/L}$	0.411	1.63%
Ni 231.604†	783.7	0.3432	mg/L	0.00263	0.6864	${ m mg/L}$	0.00525	0.77%
Pb 220.353†	2920.9	0.2565	mg/L	0.00147	0.5129	mg/L	0.00294	0.57%
Sb 206.836†	101.9	0.01348	mg/L	0.001774	0.02696	${\tt mg/L}$	0.003548	13.16%
Se 196.026†	-80.8	-0.04364	${\tt mg/L}$	0.002226	-0.08727	${ m mg/L}$	0.004453	5.10 ક
Si 288.158†	4763.9	3.532	mg/L	0.0161	7.065	${ t mg/L}$	0.0323	0.46%
Sn 189.927†	74.5	0.02943	mg/L	0.000315	0.05886	mg/L	0.000629	1.07%
Sr 421.552†	203403.8	0.3350	mg/L	0.00144	0.6700	mg/L	0.00288	0.43%
Ti 334.903†	169504.4	6.592	mg/L	0.0033	13.18	mg/L	0.007	0.05%
Tl 190.801†	9.0	-0.00960	mg/L	0.002834	-0.01920	${\tt mg/L}$	0.005667	29.52%
V 292.402†	88284.7	0.4110	mg/L	0.00044	0.8220	mg/L	0.00088	0.11%
Zn 206.200†	1841.3	0.7222	mg/L	0.00310	1.444	mg/L	0.0062	0.43%

Autosampler Location: 59

Data Type: Original

Sequence No.: 8

Sample ID: VP40 ASPK SWC Date Collected: 11/1/2012 5:34:05 PM

Analyst: EL Dilution: 2X

Nebulizer Parameters: VP40 ASPK SWC

Analyte Back Pressure Flow All 232.0 kPa 0.55 L/min

	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2647957.2	99.99	%	0.374				0.37%
ScR 361.383	212990.8	100.6	ફ	0.59				0.59%
Ag 328.068†	146105.0	0.5047	mg/L	0.00228	1.009	mg/L	0.0046	0.45%
Al 308.215†	189449.4	126.0	mg/L	0.21	252.0	mg/L	0.41	0.16%
As 188.979†	4824.3	2.060	mg/L	0.0377	4.120	mg/L	0.0755	1.83%
B 249.677†	150.2	0.06697	mg/L	0.001534	0.1339	mg/L	0.00307	2.29%
Ba 233.527†	26945.3	2.613	mg/L	0.0132	5.226	mg/L	0.0264	0.51%
Be 313.042†	140509.1	0.5070	mg/L	0.00038	1.014	mg/L	0.0008	0.08%
Ca 317.933†	891998.0	84.26	mg/L	0.096	168.5	mg/L	0.19	0.11%
Cd 228.802†	42143.2	0.4995	mg/L	0.00920	0.9990	mg/L	0.01840	1.84%
Co 228.616†	45628.4	0.5267	mg/L	0.00983	1.053	mg/L	0.0197	1.87%
Cr 267.716†	3932.2	0.8580		0.00506	1.716	mg/L	0.0101	0.59%
Cu 324.752†	261183.5	0.8473		0.00054	1.695	mg/L	0.0011	0.06%
Fe 273.955†	217606.4	177.5	mg/L	0.31	355.0	mg/L	0.62	0.17ક
K 766.490†	78649.9	21.83		0.112	43.66	mg/L	0.225	0.51%
Mg 279.077†	94492.8	81.03	mg/L	0.063	162.1	mg/L	0.13	0.08%
Mn 257.610†	130456.2	3.223		0.0056	6.446	mg/L	0.0113	0.17%
Mo 202.031†	339.3	0.01981		0.000380	0.03962	mg/L	0.000759	1.92%
Na 589.592†	180526.6	21.82	mg/L	0.078	43.64	mg/L	0.156	0.36%
Na 330.237†	594.7	22.16	mg/L	0.027	44.32	mg/L	0.054	0.12%
Ni 231.604†	1756.3	0.7687	mg/L	0.00213	1.537	mg/L	0.0043	0.28%
Pb 220.353†	27842.6	2.144	mg/L	0.0385	4.288	mg/L	0.0771	1.80%
Sb 206.836†	1713.0	0.4473	mg/L	0.01343	0.8945	mg/L	0.02686	3.00%
Se 196.026†	3690.9	1.953	mg/L	0.0346	3.906	mg/L	0.0693	1.77 %
Si 288.158†	5189.5	3.849		0.0230	7.699	mg/L	0.0461	0.60%
Sn 189.927†	62.0	0.03172	mg/L	0.001634	0.06344	mg/L	0.003267	5.15%
Sr 421.552†	512765.0	0.8446	mg/L	0.00174	1.689	mg/L	0.0035	0.21 ધ
Ti 334.903†	167112.0	6.498	mg/L	0.0125	13.00	mg/L	0.025	0.19%
Tl 190.801†	6802.4	1.857	mg/L	0.0336	3.713	mg/L	0.0672	1.81%
V 292.402†	179484.3	0.8641	mg/L	0.00114	1.728	mg/L	0.0023	0.13%
Zn 206.200†	2931.1	1.149	ma/L	0.0045	2.298	ma/L	0.0091	0.40%

Sequence No.: 9

Autosampler Location: 60 Sample ID: VP44 ADUP LEN

Analyst: EL Dilution: 5X Date Collected: 11/1/2012 5:39:11 PM

Data Type: Original

Nebulizer Parameters: VP44 ADUP LEN

Back Pressure Flow
232.0 kPa 0.55 L/min Analyte A11

Mean Data: VP44 ADUP LEN								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2566190.7	96.90	ક	0.690				0.71%
ScR 361.383	203330.4	96.02		0.652				0.68%
Ag 328.068†	134.8	0.00046	mg/L	0.000197	0.00231	mg/L	0.000987	42.77%
A1 308.215†	459.0	0.3053	${\tt mg/L}$	0.00458	1.526	${\tt mg/L}$	0.0229	1.50%
As 188.979†	8.0	0.00340	${\tt mg/L}$	0.001216	0.01700	${\tt mg/L}$	0.006080	35.76%
B 249.677†	119.1	0.05461		0.001343	0.2730	mg/L	0.00672	2.46%
Ba 233.527†	3541.4	0.3445	mg/L	0.00141	1.723	mg/L	0.0071	0.41%
Be 313.042†	124.4	0.00045	${\tt mg/L}$	0.000033	0.00224	${\tt mg/L}$	0.000165	7.35%
Ca 317.933†	19481.9	1.840	J .	0.0017	9.202	${\tt mg/L}$	0.0087	0.09%
Cd 228.802†	485.8	0.00581		0.000102	0.02903	mg/L	0.000511	1.76%
Co 228.616†	170.5	0.00188	${ m mg/L}$	0.000104	0.00940	mg/L	0.000522	5.55%
Cr 267.716†	15.0	0.00325	J.	0.001005	0.01626	_	0.005023	30.88%
Cu 324.752†	6448.3	0.02068		0.000189	0.1034		0.00095	0.92%
Fe 273.955†	1281.1	1.045	${ m mg/L}$	0.0033	5.225	mg/L	0.0166	0.32%
K 766.490†	5116.2	1.420	-	0.0257	7.100	_	0.1285	1.81%
Mg 279.077†	1227.1	1.053		0.0091	5.265	_	0.0453	0.86%
Mn 257.610†	2947.5	0.07284		0.000391	0.3642	-	0.00196	0.54%
Mo 202.031†	-9.2	-0.00051		0.000277	-0.00253	_	0.001384	54.78%
Na 589.592†	2066430.0	249.7		0.98		${ m mg/L}$	4.9	0.39%
Na 330.237†	7151.2	260.5		1.61		${ m mg/L}$	8.1	0.62%
Ni 231.604†	14.7	0.00643	mg/L	0.002094	0.03215	mg/L	0.010471	32.57%
Pb 220.353†	392.8	0.02979	mg/L	0.000824	0.1490	mg/L	0.00412	2.76%
Sb 206.836†	19.5	0.00519	_	0.001502	0.02595	_	0.007508	28.94 %
Se 196.026†	-0.7	-0.00040	mg/L	0.005115	-0.00202		0.025574	>999.9%
Si 288.158†	196.3	0.1453	${ m mg/L}$	0.00516	0.7265		0.02579	3.55%
Sn 189.927†	-3.1	-0.00005		0.000692	-0.00027		0.003460	
Sr 421.552†	16193.1	0.02667	${ m mg/L}$	0.000176	0.1334	mg/L	0.00088	૦.66ક
Ti 334.903†	195.4	0.00751	- ·	0.000148	0.03757	J .	0.000738	1.96%
Tl 190.801†	18.6	0.00500		0.000072	0.02502	J .	0.000360	1.44%
V 292.402†	266.4	0.00123		0.000083	0.00616		0.000417	6.77%
Zn 206.200†	850.9	0.3333	mg/L	0.00138	1.666	mg/L	0.0069	0.41%

Date: 11/1/2012 5:49:52 PM

Sequence No.: 10

Autosampler Location: 61 Sample ID: VP44 A LEN

Analyst: EL Dilution: 5X Date Collected: 11/1/2012 5:45:31 PM

Data Type: Original

Nebulizer Parameters: VP44 A LEN

 Analyte
 Back
 Pressure
 Flow

 All
 232.0 kPa
 0.55 L/min

_______ n Data: VP/// A T.FN

Mean Data: VP44 A	LEN							
	Mean Corrected		Calib.			Sample	!	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2594742.4	97.98	ક્ર	0.092				0.09%
ScR 361.383	205102.5	96.86	용	1.130				1.17%
Ag 328.068†	-30.6	-0.00011	mg/L	0.000056	-0.00054	mg/L	0.000280	51.48%
Al 308.215†	285.7	0.1900	${ m mg/L}$	0.00514	0.9500	mg/L	0.02572	2.71%
As 188.979†	1.9	0.00082		0.001128	0.00409	${ m mg/L}$	0.005642 1	Լ38.06%
B 249.677†	114.1	0.05231		0.002505	0.2615	mg/L	0.01252	4.79%
Ba 233.527†	3486.9	0.3392	${ m mg/L}$	0.00319	1.696	mg/L	0.0160	0.94%
Be 313.042†	-14.7	-0.00005	${\tt mg/L}$	0.000033	-0.00027	mg/L	0.000165	61.21%
Ca 317.933†	18528.2	1.750	J ,	0.0135	8.752	${\tt mg/L}$	0.0677	0.77%
Cd 228.802†	441.9	0.00529	${ m mg/L}$	0.000115	0.02643	${\tt mg/L}$	0.000576	2.18%
Co 228.616†	128.1	0.00139	J.	0.000130	0.00696	${ m mg/L}$	0.000652	9.37%
Cr 267.716†	11.6	0.00251		0.000909	0.01253		0.004547	36.28%
Cu 324.752†	6014.7	0.01928		0.000123	0.09641		0.000616	0.64%
Fe 273.955†	1063.9	0.8679		0.00987	4.339		0.0494	1.14%
K 766.490†	4504.0	1.250		0.0249	6.250	J .	0.1245	1.99%
Mg 279.077†	1131.6	0.9710		0.01197	4.855		0.0599	1.23%
Mn 257.610†	2800.8	0.06921		0.000589	0.3461	٥.	0.00295	0.85%
Mo 202.031†	-6.3	-0.00035		0.000032	-0.00175		0.000159	9.08%
Na 589.592†	2068766.2	250.0	_	2.64	1250	_	13.2	1.06%
Na 330.237†	7121.7	259.5		1.57	1297	_	7.8	0.60%
Ni 231.604†	11.7	0.00514	_	0.001530	0.02571		0.007648	29.74%
Pb 220.353†	360.6	0.02732		0.000145	0.1366		0.00072	0.53%
Sb 206.836†	13.1	0.00344		0.000355	0.01718	٠.	0.001775	10.339
Se 196.026†	-1.7	-0.00092		0.001209	-0.00460	J.	0.006045 1	
Si 288.158†	182.2	0.1349	٠.	0.00136	0.6744		0.00681	1.01%
Sn 189.927†	-3.4	-0.00012	٥.	0.000244	-0.00060			201.95%
Sr 421.552†	15740.4	0.02593	_	0.000410	0.1296	J .	0.00205	1.58%
Ti 334.903†	35.8	0.00131		0.000284	0.00654		0.001419	21.71%
Tl 190.801†	-0.5	-0.00024		0.000667	-0.00119		0.003333 2	
V 292.402†	41.4	0.00015	_	0.000172	0.00073		0.000861 1	
Zn 206.200†	857.5	0.3358	mg/L	0.00407	1.679	mg/L	0.0203	1.21%

Sequence No.: 11

Sample ID: VP44 ASPK LEN

Analyst: EL Dilution: 5X Autosampler Location: 62

Date Collected: 11/1/2012 5:51:51 PM

Data Type: Original

Nebulizer Parameters: VP44 ASPK LEN

Analyte

Back Pressure Flow
232.0 kPa 0.55 L/min A11

Mean Data: VP44 AS	SPK LEN							
neun baca. VIII ne	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2563572.3	96.80	용	0.501				0.52%
ScR 361.383	201802.1	95.30	96	1.083				1.14%
Ag 328.068†	60079.5	0.2056	mg/L	0.00224	1.028	mg/L	0.0112	1.09%
Al 308.215†	1532.9	1.016	mg/L	0.0112	5.082	mg/L	0.0559	1.10⊱
As 188.979†	2025.0	0.8589	mg/L	0.00463	4.295	mg/L	0.0232	0.54%
B 249.677†	118.7	0.05374	mg/L	0.003251	0.2687	mg/L	0.01625	6.05%
Ba 233.527†	11775.6	1.146	mg/L	0.0123	5.728	mg/L	0.0617	1.08%
Be 313.042†	57177.2	0.2067	mg/L	0.00106	1.034	mg/L	0.0053	0.51%
Ca 317.933†	63208.3	5.971	mg/L	0.0273	29.86		0.136	0.46%
Cd 228.802†	18074.6	0.2143	mg/L	0.00260	1.071	mg/L	0.0130	1.21%
Co 228.616†	16781.7	0.1986	mg/L	0.00201	0.9930	mg/L	0.01003	1.01%
Cr 267.716†	976.6	0.2133	mg/L	0.00355	1.066	mg/L	0.0177	1.66%
Cu 324.752†	73169.3	0.2339	${ m mg/L}$	0.00223	1.170	mg/L	0.0111	0.95%
Fe 273.955†	2110.3	1.721	${\tt mg/L}$	0.0179	8.607	mg/L	0.0897	1.04%
K 766.490†	19752.9	5.482	${\tt mg/L}$	0.0533	27.41	_	0.267	0.97%
Mg 279.077†	6037.0	5.182	${ m mg/L}$	0.0608	25.91	_	0.304	1.17%
Mn 257.610†	10825.0	0.2677	${\tt mg/L}$	0.00303	1.338	_	0.0151	1.13%
Mo 202.031†	4.4	0.00016	${\tt mg/L}$	0.000056	0.00078	_ ·	0.000280	35.85%
Na 589.592†	2113740.1	255.5	${ m mg/L}$	3.15		mg/L	15.7	1.23%
Na 330.237†	7237.9	263.6	${ m mg/L}$	1.97		mg/L	9.8	0.75%
Ni 231.604†	476.8	0.2086	${\tt mg/L}$	0.00209	1.043	_	0.0104	1.00%
Pb 220.353†	11151.3	0.8438	${ m mg/L}$	0.01168	4.219	_	0.0584	1.38%
Sb 206.836†	22.7	0.00290	${ m mg/L}$	0.000966	0.01452	_	0.004831	33.27%
Se 196.026†	1604.6	0.8493	mg/L	0.00232	4.246		0.0116	0.27%
Si 288.158†	234.6	0.1750	${ m mg/L}$	0.00324	0.8752	_	0.01621	1.85%
Sn 189.927†	-6.6	0.00039	${\tt mg/L}$	0.000651	0.00193	-	0.003253	
Sr 421.552†	143562.1	0.2365	_	0.00262	1.182	_	0.0131	1.11%
Ti 334.903†	48.5	0.00154	${ m mg/L}$	0.000283	0.00772	-	0.001415	18.33%
T1 190.801†	2798.2	0.7685	_	0.00256	3.842		0.0128	0.33%
V 292.402†	42099.8	0.2078	_	0.00245	1.039	_	0.0122	1.18%
Zn 206.200†	1356.9	0.5314	mg/L	0.00521	2.657	mg/L	0.0260	0.98%

Date: 11/1/2012 6:02:18 PM

Sequence No.: 12

Autosampler Location: 63 Date Collected: 11/1/2012 5:58:14 PM Sample ID: VP40 MB1SPK SWC

Analyst: EL Data Type: Original

Dilution: 2X

Nebulizer Parameters: VP40 MB1SPK SWC

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

Mean Data: VP40 MB1SPK SWC								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2726608.3	103.0		0.46				0.45%
ScR 361.383	211568.0	99.91		0.386				0.39%
Ag 328.068†	148988.8	0.5098		0.00775	1.020	J .	0.0155	1.52%
Al 308.215†	3071.9	2.036	${ m mg/L}$	0.0097	4.071	mg/L	0.0194	0.48원
As 188.979†	4802.0	2.037	_	0.0204	4.074	mg/L	0.0409	1.00%
B 249.677†	2.6	-0.00046	٥.	0.002848	-0.00091		0.005696	624.04%
Ba 233.527†	20837.9	2.027	_	0.0016	4.054	mg/L	0.0032	0.08%
Be 313.042†	143849.8	0.5202	_	0.00084	1.040	mg/L	0.0017	0.16%
Ca 317.933†	111366.8	10.52	${ m mg/L}$	0.015	21.04	mg/L	0.030	0.14%
Cd 228.802†	42410.4	0.5027	٠.	0.00761	1.005		0.0152	1.51%
Co 228.616†	42019.6	0.4976	J .	0.00800	0.9951	mg/L	0.01599	1.61%
Cr 267.716†	2382.8	0.5204		0.00220	1.041	mg/L	0.0044	0.42%
Cu 324.752†	160205.8	0.5120		0.00705	1.024	J .	0.0141	1.38%
Fe 273.955†	2638.4	2.152	_	0.0083	4.304	mg/L	0.0167	0.39%
K 766.490†	37979.7	10.54		0.031	21.08	J .	0.062	0.29%
Mg 279.077†	12490.0	10.72	J .	0.055	21.45	mg/L	0.109	0.51%
Mn 257.610†	20612.7	0.5098		0.00116	1.020	_	0.0023	0.23%
Mo 202.031†	10.8	0.00040	_	0.000138	0.00080	J .	0.000275	34.57%
Na 589.592†	88211.5	10.66	mg/L	0.035	21.32	mg/L	0.070	0.33%
Na 330.237†	303.6	10.83	_	0.140	21.67	mg/L	0.281	1.30%
Ni 231.604†	1148.4	0.5034	2	0.00473	1.007	mg/L	0.0095	0.94%
Pb 220.353†	26734.7	2.023	_	0.0343	4.046		0.0686	1.70%
Sb 206.836†	7455.0	2.031	_	0.0187	4.062	_	0.0375	0.92%
Se 196.026†	3820.6	2.022		0.0189	4.044	J .	0.0379	0.94%
Si 288.158†	5.0	0.00719		0.000516	0.01438		0.001032	7.18%
Sn 189.927†	-18.7	-0.00035		0.000574	-0.00070	mg/L	0.001148	163.72%
Sr 421.552†	310705.8	0.5118		0.00098	1.024	mg/L	0.0020	0.19%
Ti 334.903†	65.7	0.00192	J .	0.000341	0.00383	_	0.000683	17.81%
Tl 190.801†	7222.8	1.984		0.0183	3.968	_	0.0367	0.92%
V 292.402†	102775.5	0.5074	_	0.00849	1.015		0.0170	1.67%
Zn 206.200†	1260.0	0.4929	mg/L	0.00188	0.9859	mg/L	0.00376	0.38%

upca: Goorg

Sequence No.: 13 Autosampler Location: 7

Sample ID: CV: Date Collected: 11/1/2012 6:04:18 PM

Analyst: EL Data Type: Original Dilution: 1%

Nebulizer Parameters: CV

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2640784.6	99.72		0.976				0.98%
ScR 361.383	211288.2	99.78	ક	0.478				0.48%
Ag 328.068†	297223.8	1.017		0.0022	1.017	mg/L	0.0022	0.22%
Al 308.215†	3079.3	2.006	mg/L	0.0161	2.006	mg/L	0.0161	0.80%
As 188.979†	4950.4	2.099	mg/L	0.0234	2.099	mg/L	0.0234	1.11%
B 249.677†	2131.6	0.9756	mg/L	0.00754	0.9756	mg/L	0.00754	0.77%
Ba 233.527†	10227.6	0.9947	mg/L	0.00520	0.9947	mg/L	0.00520	0.52%
Be 313.042†	271088.6	0.9801	mg/L	0.00604	0.9801	mg/L	0.00604	0.62%
Ca 317.933†	21564.3	2.037	mg/L	0.0112	2.037	mg/L	0.0112	0.55%
Cd 228.802†	85164.6	1.014	mg/L	0.0032	1.014	mg/L	0.0032	0.31%
Co 228.616†	84248.4	0.9971	mg/L	0.00092	0.9971	mg/L	0.00092	0.09%
Cr 267.716†	4579.1	0.9999		0.00664	0.9999	mg/L	0.00664	0.66%
Cu 324.752†	334182.7	1.067	mg/L	0.0017	1.067	mg/L	0.0017	0.16%
Fe 273.955†	2602.5	2.122	mg/L	0.0144	2.122	mg/L	0.0144	0.68%
K 766.490†	74275.3	20.61	mg/L	0.112	20.61	mg/L	0.112	0.54%
Mg 279.077†	2467.7	2.122	mg/L	0.0151	2.122		0.0151	0.71%
Mn 257.610†	40161.4	0.9929	mg/L	0.00496	0.9929	mg/L	0.00496	0.50%
Mo 202.031†	17718.4	0.9574	mg/L	0.00920	0.9574	mg/L	0.00920	0.96%
Na 589.592†	415009.9	50.16	mg/L	0.335	50.16	mg/L	0.335	0.67%
Na 330.237†	1392.0	50.54	mg/L	0.108	50.54	mg/L	0.108	0.21%
Ni 231.604†	2255.1	0.9881	mg/L	0.00672	0.9881	mg/L	0.00672	0.68%
Pb 220.353†	26976.2	2.041	mg/L	0.0201	2.041	mg/L	0.0201	0.99%
Sb 206.836†	7653.5	2.090	mg/L	0.0238	2.090	mg/L	0.0238	1.149
Se 196.026†	3821.3	2.021	mg/L	0.0205	2.021	mg/L	0.0205	1.02%
Si 288.158†	2935.9	2.177	mg/L	0.0183	2.177	mg/L	0.0183	0.84%
Sn 189.927†	5943.9	0.9072	mg/L	0.00945	0.9072	mg/L	0.00945	1.04%
Sr 421.552†	603523.2	0.9941	mg/L	0.00153	0.9941	mg/L	0.00153	0.15%
Ti 334.903†	25549.2	0.9928	mg/L	0.00609	0.9928	mg/L	0.00609	0.61%
Tl 190.801†	7402.2	2.027	mg/L	0.0189	2.027	mg/L	0.0189	0.93%
V 292.402†	207588.3	1.029	mg/L	0.0046	1.029	mg/L	0.0046	0.45%
Zn 206.200†	2636.2	1.031	mg/L	0.0067	1.031	mg/L	0.0067	0.65%

Page 14

Sequence No.: 14 Autosampler Location: 1
Sample ID: CB: Date Collected: 11/1/2012 6:10:22 PM

Analyst: EL Data Type: Original Dilution: 1X

Nebulizer Parameters: CB

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: CB							
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2761143.0	104.3	D _O	0.08			0.08
ScR 361.383	208243.2	98.34	-	0.343			0.35
Ag 328.068†	60.8	0.00021		0.000270	0.00021		0.000270 130.01
Al 308.215†	-1.1	-0.00071	mg/L	0.016022	-0.00071	mg/L	0.016022 >999.9
As 188.979†	2.9	0.00124	mg/L	0.000606	0.00124	mg/L	0.000606 49.11
B 249.677†	7.3	0.00333	mg/L	0.001351	0.00333	mg/L	0.001351 40.53
Ba 233.527†	-3.8	-0.00037	mg/L	0.000247	-0.00037	mg/L	0.000247 66.67
Be 313.042†	3.6	0.00001	mg/L	0.000028	0.00001	mg/L	0.000028 208.61
Ca 317.933†	1.3	0.00012	mg/L	0.002312	0.00012	mg/L	0.002312 >999.9
Cd 228.802†	4.0	0.00005	mg/L	0.000079	0.00005	mg/L	0.000079 172.85
Co 228.616†	-5.5	-0.00007	mg/L	0.000041	-0.00007	mg/L	0.000041 62.41
Cr 267.716†	0.5	0.00011	mg/L	0.001266	0.00011	mg/L	0.001266 >999.9
Cu 324.752†	-171.0	-0.00055	mg/L	0.000047	-0.00055	mg/L	0.000047 8.56
Fe 273.955†	-5.5	-0.00448	mg/L	0.000316	-0.00448	mg/L	0.000316 7.05
K 766.490†	195.0	0.05411	mg/L	0.011971	0.05411	mg/L	0.011971 22.12
Mg 279.077†	2.9	0.00248	mg/L	0.009119	0.00248		0.009119 367.66
Mn 257.610†	-4.8	-0.00012	mg/L	0.000177	-0.00012	mg/L	0.000177 150.69
Mo 202.031†	2.9	0.00016	mg/L	0.000086	0.00016	mg/L	0.000086 54.12
Na 589.592†	1243.0	0.1502	mg/L	0.00864	0.1502	mg/L	0.00864 5.75
Na 330.237†	8.8	0.3239	mg/L	0.14637	0.3239	mg/L	0.14637 45.19
Ni 231.604†	4.9	0.00215	mg/L	0.001050	0.00215	mg/L	0.001050 48.88
Pb 220.353†	-12.9	-0.00097	mg/L	0.000148	-0.00097	mg/L	0.000148 15.25
Sb 206.836†	4.5	0.00122	mg/L	0.000476	0.00122	mg/L	0.000476 38.92
Se 196.026†	3.4	0.00178	mg/L	0.000739	0.00178	mg/L	0.000739 41.43
Si 288.158†	2.5	0.00189	mg/L	0.002740	0.00189	mg/L	0.002740 145.29
Sn 189.927†	0.1	0.00001	mg/L	0.000345	0.00001	mg/L	0.000345 >999.9
Sr 421.552†	23.2	0.00004	mg/L	0.000070	0.00004	mg/L	0.000070 182.28
Ti 334.903†	-0.9	-0.00004	mg/L	0.000939	-0.00004	mg/L	0.000939 >999.9
Tl 190.801†	5.8	0.00161		0.000604	0.00161		0.000604 37.44
V 292.402†	-33.3	-0.00016	mg/L	0.000268	-0.00016	mg/L	0.000268 165.91
Zn 206.200†	-18.3	-0.00718	mg/L	0.000665	-0.00718		0.000665 9.26

Sequence No.: 15

Autosampler Location: 64

Sample ID: VP51 C SWC

Date Collected: 11/1/2012 6:16:20 PM

Analyst: EL Dilution: 2X Data Type: Original

Nebulizer Parameters: VP51 C SWC

Analyte Back Pressure Flow
All 232.0 kPa 0.55 L/min

| Mean Data: VP51 C SWC | Mean Corrected | Calib. | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | RSD | O.666 | ScR 361.383 | 213267.9 | 100.7 % | 0.35 | 0.35 | 0.358 | 0.367 | 0.358 | 0.367 | 0.358 | 0.367 | 0.358 | 0.367 | 0.358 | 0.367 | 0.358 | 0.367 | 0.358 | 0.367 | 0.358 | 0.367 | 0.358 | 0.367 | 0.358 | 0.367 | 0.368 | 0.367 | 0.368 | 0 Mean Data: VP51 C SWC

Sequence No.: 16 Sample ID: VP51 D SWC

Autosampler Location: 65

Analyst: EL Dilution: 2X

Sr 421.552† Ti 334.903† Tl 190.801† Zu 206.200† Date Collected: 11/1/2012 6:22:08 PM

Data Type: Original

Nebulizer Parameters: VP51 D SWC

Analyte Back Pressure Flow

231.0 kPa 0.55 L/min

 SWC
 Mean Corrected
 Calib.
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 2710276.8
 102.3 %
 0.21
 0.20%
 0.57%
 0.57%
 0.57%

 -1580.1
 0.00037 mg/L
 0.000176
 0.00074 mg/L
 0.000352 47.56%
 121414.3
 80.74 mg/L
 0.184
 161.5 mg/L
 0.037
 0.23%

 114.1
 0.05908 mg/L
 0.00132
 0.1182 mg/L
 0.00346
 2.93%

 3619.8
 0.3425 mg/L
 0.00125
 0.6849 mg/L
 0.00250
 4.29%

 3619.8
 0.3425 mg/L
 0.00025
 0.6849 mg/L
 0.00250
 0.37%

 375.6
 0.00043 mg/L
 0.00021
 0.0086 mg/L
 0.00025
 0.37%

 487554.0
 80.10 mg/L
 0.00071
 0.00568 mg/L
 0.000021
 0.00066 mg/L
 0.00042
 4.89%

 847954.0
 80.100 mg/L
 0.000071
 0.00568 mg/L
 0.000142
 2.49%

 4895.6
 0.04556 mg/L
 0.000071
 0.00568 mg/L
 0.000142</ Mean Data: VP51 D SWC Mean Corrected Calib. Analvte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927†

UPS1 AMP74

Sequence No.: 17 Autosampler Location: 66

Sample ID: VP51 E SWC Date Collected: 11/1/2012 6:28:00 PM
Analyst: EL Data Type: Original

Analyst: EL Dilution: 2X

Nebulizer Parameters: VP51 E SWC

 Analyte
 Back Pressure
 Flow

 All
 231.0 kPa
 0.55 L/min

Mean Data: VP51 E SWC								
	Mean Corrected		Calib.			Sample	è	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2693088.7	101.7	ફ	2.05				2.01%
ScR 361.383	208827.3	98.62	ફ	2.462				2.50%
Ag 328.068†	-1399.2	0.00162		0.000210	0.00324		0.000421	12.97%
Al 308.215†	101916.7	67.77	${\tt mg/L}$	0.744	135.5	mg/L	1.49	1.10%
As 188.979†	116.0	0.05881	${ t mg/L}$	0.003099	0.1176		0.00620	5.27%
B 249.677†	149.2	0.06821	${ m mg/L}$	0.001573	0.1364	mg/L	0.00315	2.31%
Ba 233.527†	8054.4	0.7739	${ m mg/L}$	0.01951	1.548	${ m mg/L}$	0.0390	2.52%
Be 313.042†	370.6	0.00067	mg/L	0.000074	0.00134	mg/L	0.000147	10.97%
Ca 317.933†	364055.3	34.39	${ m mg/L}$	0.230	68.78	mg/L	0.459	0.67%
Cd 228.802†	412.4	0.00486	${ m mg/L}$	0.000217	0.00972	mg/L	0.000434	4.46%
Co 228.616†	4907.3	0.04746		0.001344	0.09493	J .	0.002687	2.83%
Cr 267.716†	919.3	0.2003	mg/L	0.00677	0.4006	mg/L	0.01354	3.38%
Cu 324.752†	183261.8	0.6014	mg/L	0.00470	1.203	_	0.0094	0.78%
Fe 273.955†	255650.6	208.6	${ t mg/L}$	2.05	417.1	mg/L	4.10	0.98%
K 766.490†	23817.9	6.611	${ m mg/L}$	0.1087	13.22		0.217	1.64%
Mg 279.077†	56855.1	48.69	mg/L	0.352	97.39	mg/L	0.703	0.72%
Mn 257.610†	64495.2	1.593		0.0145	3.187		0.0290	0.91%
Mo 202.031†	486.6	0.02707	${ m mg/L}$	0.000849	0.05414	${\tt mg/L}$	0.001697	3.13%
Na 589.592†	168457.3	20.36	${\sf mg/L}$	0.270	40.72	mg/L	0.540	1.33%
Na 330.237†	547.1	20.18	mg/L	0.751	40.37	mg/L	1.502	3.72%
Ni 231.604†	502.4	0.2200	mg/L	0.00511	0.4400	${ m mg/L}$	0.01021	2.32%
Pb 220.353†	12726.6	0.9767	${ m mg/L}$	0.02234	1.953	_	0.0447	2.29%
Sb 206.836†	88.4	0.00806	mg/L	0.000353	0.01612	J .	0.000706	4.38%
Se 196.026†	-57.5	-0.03103		0.003561	-0.06206		0.007122	11.48%
Si 288.158†	1023.8	0.7631	${ m mg/L}$	0.02034	1.526	mg/L	0.0407	2.67%
Sn 189.927†	413.7	0.07326	_	0.001057	0.1465	mg/L	0.00211	1.44%
Sr 421.552†	141494.1	0.2331	mg/L	0.00302	0.4661	mg/L	0.00603	1.29%
Ti 334.903†	118086.4	4.593	_	0.0435	9.185	_	0.0869	0.95%
Tl 190.801†	-20.2	-0.01327	_	0.001394	-0.02654	2	0.002788	10.51%
V 292.402†	47192.7	0.2094		0.00183	0.4188		0.00366	0.88%
Zn 206.200†	3475.4	1.362	mg/L	0.0349	2.723	mg/L	0.0697	2.56%

The second of th

Sequence No.: 18

Autosampler Location: 67 Sample ID: VP51 F SWC Date Collected: 11/1/2012 6:33:48 PM Data Type: Original

Analyst: EL Dilution: 2X

Nebulizer Parameters: VP51 F SWC

Back Pressure Flow 231.0 kPa 0.55 L/min Analyte A11

Mean Data: VP51 F SWC								
	Mean Corrected		Calib.			Sample	9	
Analyte	Intensity		Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	$\mathtt{Std}.\mathtt{Dev}.$	RSD
ScA 357.253	2732249.3	103.2	ક્ર	0.08				0.08%
ScR 361.383	210861.4	99.58	%	0.480				0.48%
Ag 328.068†	-948.0	0.00213	mg/L	0.000276	0.00425		0.000553	13.00%
A1 308.215†	75557.0	50.25	J .	0.111	100.5	_	0.22	0.22%
As 188.979†	92.5	0.04499		0.001081	0.08997	J .	0.002161	2.40%
в 249.677†	46.0	0.02099	${ m mg/L}$	0.000731	0.04198		0.001461	3.48%
Ba 233.527†	2109.0	0.1970	mg/L	0.00075	0.3940		0.00151	0.38%
Be 313.042†	276.1	0.00051	${ t mg/L}$	0.000046	0.00103	_	0.000093	9.07%
Ca 317.933†	279599.7	26.41		0.037	52.83	J .	0.073	0.14%
Cd 228.802†	350.5	0.00412	${ m mg/L}$	0.000148	0.00825	٥.	0.000296	3.59%
Co 228.616†	3193.4	0.03089	mg/L	0.000093	0.06178	mg/L	0.000185	0.30%
Cr 267.716†	589.7	0.1284	mg/L	0.00091	0.2569		0.00181	0.71%
Cu 324.752†	100715.4	0.3355	mg/L	0.00026	0.6710		0.00053	9.08%
Fe 273.955†	214718.7	175.2	mg/L	0.58	350.3		1.16	0.33%
К 766.490†	16285.9	4.520	mg/L	0.0281	9.040	${ m mg/L}$	0.0561	0.62%
Mg 279.077†	35489.8	30.37	${ m mg/L}$	0.046	60.74	mg/L	0.092	0.15%
Mn 257.610†	53040.0	1.311	${ m mg/L}$	0.0024	2.622		0.0048	0.18%
Mo 202.031†	694.4	0.03818	${ m mg/L}$	0.000237	0.07635	${ m mg/L}$	0.000473	0.62%
Na 589.592†	45293.3	5.474		0.0231	10.95	_	0.046	0.42%
Na 330.237†	157.4	5.622	${ m mg/L}$	0.3267	11.24	${ m mg/L}$	0.653	5.81%
Ni 231.604†	279.3	0.1223	mg/L	0.00141	0.2446	mg/L	0.00281	1.15%
Pb 220.353†	54628.1	4.141	mg/L	0.0240	8.281	mg/L	0.0480	0.58%
Sb 206.836†	-27.5	0.01676	mg/L	0.001195	0.03352	mg/L	0.002390	7.13%
Se 196.026†	-50.8	-0.02720	mg/L	0.004551	-0.05439	mg/L	0.009103	16.73 કે
Si 288.158†	1289.3	0.9572	mg/L	0.00283	1.914	${ m mg/L}$	0.0057	0.30%
Sn 189.927†	21939.4	3.353	mg/L	0.0164	6.705	mg/L	0.0329	0.49%
Sr 421.552†	111923.2	0.1843	mg/L	0.00069	0.3687	mg/L	0.00137	0.37%
Ti 334.903†	71687.9	2.788	${ m mg/L}$	0.0055	5.576	mg/L	0.0110	0.20%
T1 190.801†	-14.4	-0.00919	${ m mg/L}$	0.001733	-0.01838	mg/L	0.003466	18.85%
V 292.402+	34982.4	0.1538	${ m mg/L}$	0.00053	0.3075	mg/L	0.00105	0.34%
Zn 206.200†	3717.5	1.457	mg/L	0.0055	2.913	mg/L	0.0109	0.38%

Autosampler Location: 68

Data Type: Original

Date Collected: 11/1/2012 6:39:35 PM

Date: 11/1/2012 6:43:43 PM

Sequence No.: 19

Sample ID: VP51 ADUP SWC

Analyst: EL Dilution: 2X

Nebulizer Parameters: VP51 ADUP SWC

Analyte

Back Pressure Flow 231.0 kPa 0.55 L/min All

Mean Data: VP51 ADUP SWC								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2654476.2	100.2	⁹ 6	0.48				0.48%
ScR 361.383	207293.3	97.90	ક્ર	1.693				1.739
Ag 328.068†	-1173.1	-0.00095	mg/L	0.000255	-0.00190	mg/L	0.000509	26.76%
Al 308.215†	188786.5	125.5	${\tt mg/L}$	0.73	251.1	mg/L	1.46	0.58%
As 188.979†	230.1	0.1111	${ t mg/L}$	0.00121	0.2222	mg/L	0.00242	1.09%
B 249.677†	209.2	0.09555	mg/L	0.001783	0.1911	mg/L	0.00357	1.87%
Ba 233.527†	6417.4	0.6162	${ t mg/L}$	0.01069	1.232	mg/L	0.0214	1.73%
Be 313.042†	706.8	0.00149	${ m mg/L}$	0.000088	0.00298	mg/L	0.000176	5.90%
Ca 317.933†	2229796.0	210.6	mg/L	2.55	421.3	mg/L	5.09	1.21%
Cd 228.802†	254.9	0.00287		0.000111	0.00575	mg/L	0.000223	3.86%
Co 228.616†	6411.9	0.06254	٠.	0.000726	0.1251	mg/L	0.00145	1.16%
Cr 267.716†	1581.9	0.3447	_	0.00696	0.6894	mg/L	0.01393	2.02%
Cu 324.752†	81865.5	0.2739		0.00058	0.5479	mg/L	0.00116	0.21%
Fe 273.955†	210492.2	171.7		1.31	343.4		2.62	0.76%
K 766.490†	42948.3	11.92	${ t mg/L}$	0.108	23.84	mg/L	0.216	0.91%
Mg 279.077†	95169.2	81.61	_	0.337	163.2	mg/L	0.67	0.41%
Mn 257.610†	114745.8	2.835	J .	0.0125	5.669	${\tt mg/L}$	0.0250	0.44%
Mo 202.031†	-50.2	-0.00116		0.000058	-0.00232	mg/L	0.000117	5.05%
Na 589.592†	144433.8	17.46		0.101	34.91	mg/L	0.201	0.58%
Na 330.237†	505.3	18.26	J .	0.315	36.53	mg/L	0.629	1.72%
Ni 231.604†	646.9	0.2833		0.00683	0.5666	mg/L	0.01365	2.41%
Pb 220.353†	2875.9	0.2591		0.00295	0.5182	mg/L	0.00590	1.14%
Sb 206.836†	113.4	0.01776		0.002045	0.03553		0.004090	11.51%
Se 196.026†	-70.1	-0.03787	J .	0.001184	-0.07574		0.002367	3.13%
Si 288.158†	1201.6	0.8986		0.02003	1.797		0.0401	2.23%
Sn 189.927†	45.5	0.05611		0.000290	0.1122	mg/L	0.00058	0.52%
Sr 421.552†	351902.2	0.5796		0.00642	1.159	mg/L	0.0128	1.11%
Ti 334.903†	165660.7	6.435		0.0682	12.87		0.136	1.06ક
Tl 190.801†	11.2	-0.00872		0.001710	-0.01744		0.003419	19.60%
V 292.402†	76508.7	0.3561	_	0.00226	0.7122	_	0.00452	0.64%
Zn 206.200†	3351.7	1.317	mg/L	0.0221	2.634	mg/L	0.0441	1.68%

Date: 11/1/2012 6:49:50 PM

Sequence No.: 20 Sample ID: VP51 A SWC

No.: 20 Autosampler Location: 69

Analyst: EL

Dilution: 2X

Date Collected: 11/1/2012 6:45:42 PM

Data Type: Original

Nebulizer Parameters: VP51 A SWC

Analyte Back Pressure Flow Ali 230.0 kPa 0.55 L/min

Mean Data: VP51 A	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2697139.7	101.8	8	0.37				0.37%
ScR 361.383	211186.3	99.73		0.185				0.19%
Ag 328.068†	-1248.0	-0.00081		0.000297	-0.00161	mg/L	0.000594	36.92%
Al 308.215†	185629.1	123.4	mg/L	0.20	246.9	mg/L	0.40	0.16%
As 188.979†	200.5	0.09837	mg/L	0.003175	0.1967	mg/L	0.00635	3.23 ૄ
B 249.677†	201.1	0.09182	mg/L	0.001519	0.1836	mg/L	0.00304	1.65%
Ba 233.527†	6132.9	0.5882	mg/L	0.00293	1.176	mg/L	0.0059	0.50%
Be 313.042†	806.3	0.00170	mg/L	0.000056	0.00339	mg/L	0.000112	3.31%
Ca 317.933†	2041312.9	192.8	mg/L	0.19	385.7	mg/L	0.37	0.10%
Cd 228.802†	211.0	0.00236	mg/L	0.000009	0.00472	mg/L	0.000018	0.37%
Co 228.616†	6869.4	0.06807	${ m mg/L}$	0.000414	0.1361	mg/L	0.00083	0.61%
Cr 267.716†	1356.8	0.2955	${ m mg/L}$	0.00146	0.5910	mg/L	0.00292	0.49%
Cu 324.752†	85443.5	0.2859		0.00029	0.5718	mg/L	0.00058	0.10%
Fe 273.955†	218166.4	178.0	mg/L	0.55	356.0	mg/L	1.10	0.31%
K 766.490†	38489.2	10.68	mg/L	0.027	21.37	mg/L	0.054	0.25%
Mg 279.077†	91968.5	78.86	mg/L	0.103	157.7	mg/L	0.21	0.13%
Mn 257.610†	118684.3	2.932	mg/L	0.0044	5.864	mg/L	0.0087	0.15%
Mo 202.031†	-51.5	-0.00123	mg/L	0.000392	-0.00247	mg/L	0.000784	31.75€
Na 589.592†	123569.2	14.93	mg/L	0.037	29.87	mg/L	0.074	0.25%
Na 330.237†	422.6	15.46	mg/L	0.177	30.91	mg/L	0.355	1.15%
Ni 231.604†	554.9	0.2430	mg/L	0.00541	0.4861	mg/L	0.01082	2.23%
Pb 220.353†	2316.8	0.2152		0.00183	0.4304	mg/L	0.00367	0.85%
Sb 206.836†	99.5	0.01449	mg/L	0.002726	0.02898	mg/L	0.005452	18.81%
Se 196.026†	-65.9	-0.03551	mg/L	0.004962	-0.07103	mg/L	0.009924	13.97%
Si 288.158†	1204.6	0.9004	mg/L	0.00309	1.801	mg/L	0.0062	0.34%
Sn 189.927†	14.8	0.04754	mg/L	0.000514	0.09507	mg/L	0.001029	1.08%
Sr 421.552†	348016.8	0.5732	mg/L	0.00210	1.146	mg/L	0.0042	0.37원
Ti 334.903†	163214.4	6.341	mg/L	0.0099	12.68	mg/L	0.020	0.16%
Tl 190.801†	18.7	-0.00697	mg/L	0.002439	-0.01394	mg/L	0.004878	35.00%
V 292.402†	88669.5	0.4149	mg/L	0.00104	0.8298		0.00207	0.25%
Zn 206.200†	2346.4	0.9228	mg/L	0.00428	1.846	mg/L	0.0086	0.46%

Date: 11/1/2012 6:55:02 PM

Sequence No.: 21

Autosampler Location: 70 Sample ID: VP51 ASPK SWC Date Collected: 11/1/2012 6:51:49 PM

Analyst: EL Data Type: Original

Dilution: 2X

Nebulizer Parameters: VP51 ASPK SWC

Analyte Back Pressure Flow
All 230.0 kPa 0.55 L/min

Mean Data: VP51 ASPK SWC								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2646528.1	99.94		0.689				0.69%
ScR 361.383	211171.2	99.73	ક	0.385				0.39%
Ag 328.068†	146751.9	0.5064	mg/L	0.00225	1.013	mg/L	0.0045	0.44%
Al 308.215†	260602.3	173.3	mg/L	1.74	346.6	mg/L	3.47	1.00%
As 188.979†	4864.3	2.082		0.0159	4.164	mg/L	0.0318	0.76%
В 249.677†	290.8	0.1313		0.00108	0.2626	mg/L	0.00216	0.82%
Ba 233.527†	28245.2	2.737	_	0.0218	5.474	${\tt mg/L}$	0.0435	0.80%
Be 313.042†	137355.3	0.4951		0.00496	0.9903	${\tt mg/L}$	0.00991	1.00%
Ca 317.933†	2922552.7	276.1		2.69	552.2	${\tt mg/L}$	5.38	0.97%
Cd 228.802†	41681.0	0.4939	mg/L	0.00380	0.9879	mg/L	0.00761	0.77%
Co 228.616†	47515.0	0.5441	_	0.00347	1.088	${\tt mg/L}$	0.0069	0.64%
Cr 267.716†	4198.9	0.9158	_	0.00687	1.832		0.0137	0.75%
Cu 324.752†	281783.6	0.9169		0.00220	1.834		0.0044	0.24%
Fe 273.955†	284756.8	232.3	J.	2.97	464.6		5.95	1.28%
K 766.490†	95427.6	26.49		0.321	52.97		0.642	1.21%
Mg 279.077†	135742.7	116.4	J.	1.22	232.8		2.44	1.05%
Mn 257.610†	192232.8	4.749	_	0.0481	9.499	_	0.0961	1.01%
Mo 202.031†	-86.8	-0.00268		0.000550	-0.00536	_	0.001099	20.52%
Na 589.592†	257907.2	31.17	_	0.300	62.34	_	0.600	0.96%
Na 330.237†	871.9	31.67	J.	0.269	63.35	_	0.539	0.85%
Ni 231.604†	1892.3	0.8283	_	0.00493	1.657	_	0.0099	0.60%
Pb 220.353†	27314.5	2.123		0.0190	4.246	_	0.0379	0.89%
Sb 206.836†	1605.0	0.4150	J .	0.00214	0.8300	_	0.00427	0.51%
Se 196.026†	3512.2	1.858	_	0.0101	3.716	_	0.0203	0.54%
Si 288.158†	2319.4	1.731	_	0.0153	3.463	_	0.0306	0.88%
Sn 189.927†	6.4	0.06583		0.000855	0.1317	_	0.00171	1.30%
Sr 421.552†	770174.1	1.269		0.0101	2.537	2 '	0.0202	0.80%
Ti 334.903†	230233.9	8.944	_	0.0789	17.89		0.158	0.88%
Tl 190.801†	6421.4	1.747	_	0.0166	3.493	_	0.0333	0.95%
V 292.402†	208508.7	0.9996	_	0.00722	1.999	_	0.0144	0.72%
Zn 206.200†	4424.0	1.738	mg/L	0.0156	3.475	mg/L	0.0312	0.90%

Date: 11/1/2012 7:01:05 PM

Sequence No.: 22 Autosampler Location: 71

Sample ID: VP51 MB1SPK SWC Date Collected: 11/1/2012 6:57:01 PM

Analyst: EL Data Type: Original

Dilution: 2X

Nebulizer Parameters: VP51 MB1SPK SWC

Back Pressure Analyte

Flow 0.55 L/min 230.0 kPa All

Mean Data: VP51 MB1SPK SWC Mean Corrected Calıb. Sample Intensity Conc. Units
2813773.0 106.3 %
211697.4 99.98 % Std.Dev. 1.39 Conc. Units Std.Dev. Analvte RSD

UPEA AAGEA

Autosampler Location: 72

Sample ID: VP29 N TWC

Date Collected: 11/1/2012 7:03:04 PM

Analvst: EL Dilution: 1X Data Type: Original

Nebulizer Parameters: VP29 N TWC

Analyte Back Pressure Flow 231.0 kPa 0.55 L/min All

 Mean Data: VP29 N TWC
 Mean Corrected Analyte
 Calib.
 Std.Dev. Onc. Units
 Std.Dev. Std.Dev. Onc. Units
 Std.Dev. Std.Dev. Onc. Units
 Std.Dev. RSD Onc. Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Units
 Std.Dev. RSD Onc. Unit Mean Data: VP29 N TWC

uper corre

Sequence No.: 24

Sample ID: VP40 APOST SWC

Analyst: EL Dilution: 2X

Autosampler Location: 73

Date Collected: 11/1/2012 7:09:30 PM

Date: 11/1/2012 7:12:43 PM

Data Type: Original

Nebulizer Parameters: VP40 APOST SWC

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: VP40 APOST SWC								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2739927.9	103.5	ક	0.62				0.60%
ScR 361.383	214376.5	101.2	ક	0.32				0.32%
Ag 328.068†	151312.3	0.5233		0.00285	1.047	${\tt mg/L}$	0.0057	0.54%
Al 308.215†	184327.2	122.6	${\tt mg/L}$	0.35	245.1	mg/L	0.69	0.28%
As 188.979†	5157.4	2.201		0.0237	4.402	${\tt mg/L}$	0.0475	1.08%
B 249.677†	111.2	0.04897		0.004490	0.09793		0.008979	9.17%
Ba 233.527†	29162.6	2.828		0.0044	5.656	${\tt mg/L}$	0.0088	0.16%
Be 313.042†	151252.2	0.5457		0.00183	1.091	${\tt mg/L}$	0.0037	0.34%
Ca 317.933†	782827.9	73.95		0.270	147.9	mg/L	0.54	0.36%
Cd 228.802†	44315.7	0.5252		0.00501	1.050	mg/L	0.0100	0.95%
Co 228.616†	48856.6	0.5648		0.00376	1.130		0.0075	0.67%
Cr 267.716†	3902.9	0.8516	_	0.00177	1.703		0.0035	0.21ક
Cu 324.752†	273176.7	0.8873	J .	0.00127	1.775		0.0025	0.14%
Fe 273.955†	241667.0	197.1		0.09	394.3	mg/L	0.17	0.04%
K 766.490†	89074.7	24.72		0.095	49.44	٠.	0.191	0.39%
Mg 279.077†	104779.5	89.85		0.300	179.7	_	0.60	0.33%
Mn 257.610†	126920.5	3.136	_	0.0102	6.272		0.0204	0.33%
Mo 202.031†	48.1	0.00388	2.	0.000515	0.00777		0.001030	13.26%
Na 589.592†	189420.4	22.89	J .	0.088	45.79	J .	0.175	0.38%
Na 330.237†	605.5	22.56	J .	0.118	45.12	_	0.236	0.52%
Ni 231.604†	1945.3	0.8524		0.00088	1.705		0.0018	0.10%
Pb 220.353†	29489.0	2.266		0.0181	4.532	_	0.0362	0.80%
Sb 206.836†	7607.3	2.058		0.0133	4.116		0.0267	0.65%
Se 196.026†	3975.1	2.103	J .	0.0153	4.206	J .	0.0305	0.73%
Si 288.158†	5401.3	4.007		0.0043	8.014	_	0.0086	0.11%
Sn 189.927†	59.5	0.02934	J .	0.000315	0.05869	J .	0.000630	1.07%
Sr 421.552†	536070.2	0.8830		0.00144	1.766		0.0029	0.16%
Ti 334.903†	165896.9	6.451	_	0.0185	12.90		0.037	0.29%
Tl 190.801†	7383.5	2.016	_	0.0074	4.033	_	0.0149	0.37%
V 292.402†	195347.9	0.9399	_	0.00201	1.880	J .	0.0040	0.21%
Zn 206.200†	3095.3	1.213	mg/L	0.0026	2.425	mg/L	0.0052	0.21%

The state of the s

Sequence No.: 25

Autosampler Location: 7

Sample ID: CV 7 Date Collected: 11/1/2012 7:14:42 PM
Analyst: EL Data Type: Original

Dilution: 1X

Nebulizer Parameters: CV

Analyte Back Pressure Flow All 230.0 kPa 0.55 L/min

Mean Data: CV								
	Mean Corrected		Calıb.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2706570.5	102.2		0.73				0.71%
ScR 361.383	210587.7	99.45		0.850				0.85%
Ag 328.068†	289705.3	0.9913	_	0.00610	0.9913	J .	0.00610	0.62%
A1 308.215†	3055.8	1.992		0.0114	1.992	_	0.0114	0.57%
As 188.979†	4752.6	2.015		0.0121	2.015		0.0121	0.60%
B 249.677†	2112.9	0.9670	_	0.00616	0.9670		0.00616	0.64%
Ba 233.527†	10169.4	0.9890	mg/L	0.00320	0.9890	mg/L	0.00320	0.32%
Be 313.042†	267430.8	0.9669	mg/L	0.00127	0.9669	mg/L	0.00127	0.13%
Ca 317.933†	21379.3	2.020	mg/L	0.0081	2.020	mg/L	0.0081	0.40%
Cd 228.802†	82599.0	0.9836	mg/L	0.00074	0.9836	mg/L	0.00074	0.07%
Co 228.616†	82333.2	0.9744	mg/L	0.00077	0.9744	mg/L	0.00077	0.08%
Cr 267.716†	4569.0	0.9977	mg/L	0.00517	0.9977	mg/L	0.00517	0.52%
Cu 324.752†	327083.3	1.045	mg/L	0.0020	1.045	mg/L	0.0020	0.19%
Fe 273.955†	2612.8	2.131	mg/L	0.0056	2.131	mg/L	0.0056	0.26%
к 766.490†	74309.0	20.62	mg/L	0.115	20.62	mg/L	0.115	0.56%
Mg 279.077†	2442.5	2.100	mg/L	0.0051	2.100	mg/L	0.0051	0.24%
Mn 257.610†	39795.3	0.9838	mg/L	0.00148	0.9838	mg/L	0.00148	0.15%
Mo 202.031†	17006.6	0.9189	mg/L	0.00635	0.9189	mg/L	0.00635	0.69%
Na 589.592†	412221.2	49.82	mg/L	0.202	49.82	mg/L	0.202	0.41%
Na 330.237†	1371.4	49.78	mg/L	0.348	49.78	mg/L	0.348	0.70%
Ni 231.604†	2240.8	0.9818	mg/L	0.00510	0.9818	mg/L	0.00510	0.52%
Pb 220.353†	26103.4	1.975	mg/L	0.0116	1.975	mg/L	0.0116	0.59%
Sb 206.836†	7330.4	2.001	mg/L	0.0111	2.001	mg/L	0.0111	0.56%
Se 196.026†	3654.3	1.933	mg/L	0.0121	1.933	mg/L	0.0121	0.62%
Si 288.158†	2947.4	<u>2.</u> 186		0.0164	2.186	mg/L	0.0164	0.75%
Sn 189.927†	5697.7	0.8696	mg/L	0.00512	0.8696	mg/L	0.00512	0.59%
Sr 421.552†	604546.6	0.9957	mg/L	0.00488	0.9957	mg/L	0.00488	0.49%
Ti 334.903†	25329.2	0.9843	mg/L	0.00173	0.9843	mg/L	0.00173	0.18%
Tl 190.801†	7114.0	1.948		0.0107	1.948	mg/L	0.0107	0.55%
V 292.402†	202975.2	1.006	mg/L	0.0023	1.006	mg/L	0.0023	0.23%
Zn 206.200†	2637.8	1.032	mg/L	0.0048	1.032	mg/L	0.0048	0.47%

Date: 11/1/2012 7:24:46 PM

Sequence No.: 26 Sample ID: CB ~ Analyst: EL Dilution: 1X Autosampler Location: 1

Date Collected: 11/1/2012 7:20:45 PM

Data Type: Original

Nebulizer Parameters: CB

Analyte Back Pressure Flow
All 230.0 kPa 0.55 L/min

Mean Data: CB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2763890.4	104.4	90	0.46				0.449
ScR 361.383	207420.2	97.96	g _e	0.641				0.65%
Ag 328.068†	68.3	0.00023	mg/L	0.000304	0.00023	mg/L	0.000304	129.94%
Al 308.215†	3.0	0.00202	mg/L	0.014149	0.00202	mg/L	0.014149	699.39%
As 188.979†	6.2	0.00265	mg/L	0.001626	0.00265	mg/L	0.001626	61.46%
B 249.677†	4.7	0.00215	mg/L	0.002603	0.00215	mg/L	0.002603	121.02%
Ba 233.527†	-3.9	-0.00038	mg/L	0.000513	-0.00038	mg/L	0.000513	136.06%
Be 313.042†	1.5	0.00001	mg/L	0.000036	0.00001	mg/L	0.000036	639.48%
Ca 317.933†	-5.2	-0.00049	mg/L	0.001583	-0.00049	mg/L	0.001583	323.64%
Cd 228.802†	13.9	0.00016	mg/L	0.000067	0.00016	mg/L	0.000067	41.73%
Co 228.616†	- 5.7	-0.00007	mg/L	0.000126	-0.00007	mg/L	0.000126	187.32%
Cr 267.716†	2.2	0.00048	mg/L	0.000717	0.00048	mg/L	0.000717	150.44%
Cu 324.752†	-99.2	-0.00032	mg/L	0.000123	-0.00032	mg/L	0.000123	38.75%
Fe 273.955†	0.2	0.00015	mg/L	0.001357	0.00015	mg/L	0.001357	886.75%
K 766.490†	206.0	0.05718	mg/L	0.015851	0.05718	mg/L	0.015851	27.72%
Mg 279.077†	-4.6	-0.00395	mg/L	0.003705	-0.00395	mg/L	0.003705	93.76%
Mn 257.610†	6.6	0.00016	mg/L	0.000150	0.00016	mg/L	0.000150	91.36%
Mo 202.031†	3.5	0.00019	mg/L	0.000255	0.00019	mg/L	0.000255	134.89%
Na 589.592†	759.6	0.09181	mg/L	0.009034	0.09181	mg/L	0.009034	9.84%
Na 330.237†	15.0	0.5496	mg/L	0.46305	0.5496	mg/L	0.46305	84.25%
Ni 231.604†	2.1	0.00094	mg/L	0.001802	0.00094	mg/L	0.001802	191.74%
Pb 220.353†	-7.7	-0.00058	mg/L	0.000685	-0.00058	mg/L	0.000685	117.87%
Sb 206.836†	5.6	0.00153	mg/L	0.001152	0.00153	mg/L	0.001152	75.10%
Se 196.026†	6.5	0.00344	mg/L	0.000409	0.00344	mg/L	0.000409	11.90%
Si 288.158†	3.8	0.00282	mg/L	0.000930	0.00282	mg/L	0.000930	32.95%
Sn 189.927†	5.7	0.00088	mg/L	0.000324	0.00088	mg/L	0.000324	37.04%
Sr 421.552†	65.3	0.00011	mg/L	0.000027	0.00011	mg/L	0.000027	24.66૬
Ti 334.903†	-1.4	-0.00005	mg/L	0.000480	-0.00005	mg/L	0.000480	873.21%
Tl 190.801†	9.9	0.00274	mg/L	0.001649	0.00274	mg/L	0.001649	60.21*
V 292.402†	-22.1	-0.00010	mg/L	0.000210	-0.00010	mg/L	0.000210	201.84%
Zn 206.200†	-18.1	-0.00709	mg/L	0.000703	-0.00709	mg/L	0.000703	9.922

End pkg

Sequence No.: 27

Sample ID: VP83 MB TWC

Analyst: EL Dilution: 1X Dilution: 1X

Autosampler Location: 74

Date Collected: 11/1/2012 7:26:44 PM Data Type: Original

Nebulizer Parameters: VP83 MB TWC

Analyte Back Pressure Flow
All 230.0 kPa 0.55 L/min

Zn 206.200†

| Mean Corrected | Calib. | Std.Dev. | Conc. Units | Std.Dev. | RSD | 2806512.7 | 106.0 % | 0.45 | 0.55% | 16.5 | 0.00005 | mg/L | 0.000090 | 0.00005 | mg/L | 0.000090 | 166.97% | 164.5 | 0.1094 | mg/L | 0.00034 | 0.1094 | mg/L | 0.00034 | 3.14% | 4.2 | 0.00179 | mg/L | 0.000055 | 0.00179 | mg/L | 0.00055 | 30.83% | 27.9 | 0.01280 | mg/L | 0.0000755 | 0.01280 | mg/L | 0.000255 | 30.83% | 27.9 | 0.01280 | mg/L | 0.000055 | 0.00179 | mg/L | 0.000265 | 41.47% | 5.6 | 0.00002 | mg/L | 0.000055 | 0.00179 | mg/L | 0.000265 | 41.47% | 5.6 | 0.00002 | mg/L | 0.000055 | 0.00002 | mg/L | 0.000265 | 41.47% | 5.6 | 0.00002 | mg/L | 0.000055 | 0.00002 | mg/L | 0.0000265 | 41.47% | 5.6 | 0.00002 | mg/L | 0.000055 | 0.00002 | mg/L | 0.000026 | 41.47% | 5.6 | 0.00008 | mg/L | 0.000055 | 0.00010 | mg/L | 0.000055 | 254.39% | 2782.5 | 0.2629 | mg/L | 0.000055 | 0.00010 | mg/L | 0.000055 | 0.00010 | mg/L | 0.000055 | 0.00010 | mg/L | 0.000055 | 0.00010 | mg/L | 0.000055 | 0.00010 | mg/L | 0.000055 | 0.00010 | mg/L | 0.000055 | 0.00010 | mg/L | 0.000055 | 0.00010 | mg/L | 0.000055 | 0.00010 | mg/L | 0.000055 | 0.00010 | mg/L | 0.000055 | 0.00010 | mg/L | 0.000055 | 0.00063 | mg/L | 0.00065 | 0.00063 | mg/L | 0.00065 | 0.00063 | mg/L | 0.00065 | 0.00063 | mg/L | 0.00065 | 0.00063 | mg/L | 0.00065 | 0.00063 | mg/L | 0.00065 | 0.00063 | mg/L | 0.00065 | 0.00063 | mg/L | 0.00 Mean Data: VP83 MB TWC Mean Corrected Analvte ScA 357.253 ScR 361.383 Ag 328.068† A1 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927t Sr 421.552+ Ti 334.903† Tl 190.801+ V 292.402†

Sequence No.: 28

Autosampler Location: 75

Sample ID: VP92 MB TWC Date Collected: 11/1/2012 7:32:45 PM

Analyst: EL

Data Type: Original

Dilution: 1X

Nebulizer Parameters: VP92 MB TWC

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: VP92 MB	TWC						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity		Units	Std.Dev.	Conc.	Unıts	Std.Dev. RSD
ScA 357.253	2801133.5	105.8		0.91			0.86%
ScR 361.383	208220.1	98.33		1.853			1.88%
Ag 328.068†	-39.7	-0.00014		0.000148	-0.00014	_	0.000148 108.60%
A1 308.215†	32.3	0.02147	_	0.008449	0.02147	_	0.008449 39.36%
As 188.979†	1.2	0.00050	_	0.000629	0.00050	_	0.000629 124.59%
B 249.677†	-4.7	-0.00216	_	0.004315	-0.00216	J .	0.004315 199.73%
Ba 233.527†	-2.5	-0.00024	mg/L	0.000550	-0.00024	mg/L	0.000550 230.14%
Be 313.042†	-43.2	-0.00016	mg/L	0.000064	-0.00016	mg/L	0.000064 40.58%
Ca 317.933†	126.8	0.01197	${ t mg/L}$	0.002299	0.01197	J.	0.002299 19.20%
Cd 228.802†	4.9	0.00006	mg/L	0.000041	0.00006	mg/L	0.000041 70.52%
Co 228.616†	-10.4	-0.00012	${ t mg/L}$	0.000094	-0.00012	mg/L	0.000094 76.53%
Cr 267.716†	2.3	0.00050		0.000623	0.00050		0.000623 123.92%
Cu 324.752†	-280.0	-0.00089	mg/L	0.000156	-0.00089	mg/L	0.000156 17.40%
Fe 273.955†	2.8	0.00230	${ t mg/L}$	0.001867	0.00230	mg/L	0.001867 81.15월
K 766.490†	110.5	0.03067	${\tt mg/L}$	0.020410	0.03067	mg/L	0.020410 66.54%
Mg 279.077†	6.5	0.00557		0.001793	0.00557	mg/L	0.001793 32.17%
Mn 257.610†	3.7	0.00009	mg/L	0.000155	0.00009	mg/L	0.000155 171.41%
Mo 202.031†	8.4	0.00045	٠.	0.000155	0.00045	mg/L	0.000155 34.23%
Na 589.592†	291.1	0.03518	${\tt mg/L}$	0.004984	0.03518	mg/L	0.004984 14.17%
Na 330.237†	15.8	0.5769	${ t mg/L}$	0.09218	0.5769	mg/L	0.09218 15.98%
Ni 231.604†	1.6	0.00068	mg/L	0.002144	0.00068	mg/L	0.002144 313.07%
Pb 220.353†	-15.0	-0.00113	mg/L	0.000101	-0.00113		0.000101 9.00%
Sb 206.836†	0.8	0.00021	${\tt mg/L}$	0.000258	0.00021	mg/L	0.000258 125.949
Se 196.026†	5.9	0.00315	${ t mg/L}$	0.002252	0.00315	mg/L	0.002252 71.57%
Si 288.158†	10.4	0.00767	mg/L	0.002900	0.00767	mg/L	0.002900 37.82%
Sn 189.927†	0.0	0.00001	mg/L	0.000348	0.00001	mg/L	0.000348 >999.9%
Sr 421.552†	45.6	0.00008	${ m mg/L}$	0.000059	0.00008	mg/L	0.000059 78.00%
Ti 334.903†	-12.8	-0.00050	mg/L	0.000611	-0.00050	mg/L	0.000611 122.68%
T1 190.801†	-2.5	-0.00069	mg/L	0.000735	-0.00069	mg/L	0.000735 106.81%
V 292.402†	0.3	0.00001	${\tt mg/L}$	0.000093	0.00001	mg/L	0.000093 >999.9%
Zn 206.200†	-15.7	-0.00614	mg/L	0.000527	-0.00614	mg/L	0.000527 8.59%

Sequence No.: 29

Sample ID: VP92 B TWC

Analyst: EL Dilution: 2X Autosampler Location: 76

Date Collected: 11/1/2012 7:38:46 PM

Data Type: Original

Nebulizer Parameters: VP92 B TWC

Analyte Back Pressure Flow All 230.0 kPa 0.55 L/min

| TWC | Mean Corrected | Calib. | Intensity | Conc. | Units | Std.Dev. | Conc. | Units | Conc. | Units | Std.Dev. | Conc. | Units | Conc. | Conc. | Units | Conc. | Conc. | Units | Conc. | Conc. | Units | Conc. | Conc. | Units | Conc. | Conc. | Units | Conc. | Conc. | Units | Conc. | Conc. | Units | Conc. | Co Mean Data: VP92 B TWC Mean Corrected Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Be 313.042, Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Cu 324.752† Fe 273.955† 5795.8 2548.1 138868.5 20771.6 253130.0 K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402† Zn 206.200†

Sequence No.: 30

Dilution: 1X

Sample ID: VP83 B TWC Analyst: EL

Autosampler Location: 77

Date Collected: 11/1/2012 7:44:49 PM

Data Type: Original

Nebulizer Parameters: VP83 B TWC

Analyte All

Back Pressure Flow
230.0 kPa 0.55 L/min

Mean Data: VP83 B								
	Mean Corrected		Calib.		_	Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2183971.0	82.47		0.591				0.72%
ScR 361.383	187707.4	88.65		1.077		,_		1.21%
Ag 328.068†	336.0	-0.00083	_	0.000142	-0.00083		0.000142	17.10%
Al 308.215†	-2.0	-0.00156	,	0.008046	-0.00156		0.008046	
As 188.979†	0.9	0.00035	_	0.001458	0.00035		0.001458	
B 249.677†	3436.8	1.576	_	0.0063	1.576	-	0.0063	0.40%
Ba 233.527†	1048.6	0.1019	_	0.00096	0.1019	٠.	0.00096	0.94%
Be 313.042†	33.0	0.00012	-	0.000036	0.00012		0.000036	29.02%
Ca 317.933†	1541909.1	145.7	${ m mg/L}$	2.38	145.7	J .	2.38	1.63%
Cd 228.802†	18.4	0.00023	mg/L	0.000077	0.00023		0.000077	33.93%
Co 228.616†	473.1	0.00552	${ m mg/L}$	0.000053	0.00552		0.000053	0.96%
Cr 267.716†	90.8	0.01933	mg/L	0.002095	0.01933		0.002095	10.84%
Cu 324.752†	301.7	0.00125	mg/L	0.000221	0.00125	mg/L	0.000221	17.62%
Fe 273.955†	4286.8	3.497	mg/L	0.0346	3.497	_	0.0346	0.99%
K 766.490†	595451.0	165.3	mg/L	2.90	165.3	${ m mg/L}$	2.90	1.76%
Mg 279.077†	490579.1	421.2	${ m mg/L}$	0.60	421.2	mg/L	0.60	0.14%
Mn 257.610†	92297.8	2.281	mg/L	0.0029	2.281	${ m mg/L}$	0.0029	0.13%
Mo 202.031†	162.8	0.00366	mg/L	0.000357	0.00366	mg/L	0.000357	9.76%
Na 589.592†	Saturated2							
Na 330.237†	93712.5	3415	mg/L	2.3		mg/L	2.3	0.07%
Ni 231.604†	57.0	0.02495	mg/L	0.004160	0.02495	mg/L	0.004160	16.67%
Pb 220.353†	-10.0	0.00285	mg/L	0.000330	0.00285	mg/L	0.000330	11.58%
Sb 206.836†	3.3	0.00006	mg/L	0.001609	0.00006	mg/L	0.001609	>999.9%
Se 196.026†	13.8	0.00724	mg/L	0.000751	0.00724	mg/L	0.000751	10.37%
Si 288.158†	8474.6	6.317	mg/L	0.0432	6.317	mg/L	0.0432	0.68%
Sn 189.927†	-77.6	0.02925	mg/L	0.000995	0.02925	mg/L	0.000995	3.40%
Sr 421.552†	1689224.3	2.782	mg/L	0.0507	2.782	mg/L	0.0507	1.82%
Ti 334.903†	236.1	0.00203	mg/L	0.000153	0.00203	mg/L	0.000153	7.54%
Tl 190.801†	-25.5	-0.00987	mg/L	0.002486	-0.00987	mg/L	0.002486	25.18%
V 292.402†	-274.6	-0.00117	mg/L	0.000359	-0.00117	mg/L	0.000359	30.74%
Zn 206.200†	-9.9	-0.00075	mg/L	0.000678	-0.00075	mg/L	0.000678	90.77%

Sequence No.: 31

Autosampler Location: 78

Sample ID: VP83 C TWC
Analyst: EL

Date Collected: 11/1/2012 7:51:14 PM

Data Type: Original

Nebulizer Parameters: VP83 C TWC

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: VP83 C	TWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2376865.5	89.75		0.276				0.31%
ScR 361.383	200743.2	94.80		0.864				0.91%
Ag 328.068†	240.6	-0.00046		0.000106	-0.00046			23.29%
Al 308.215†	13.9	0.00917	mg/L	0.002882	0.00917	٠,		31.43%
As 188.979†	1.0	0.00043	${ m mg/L}$	0.002673	0.00043	٠.		521.43%
В 249.677†	1520.8	0.6973		0.00555	0.6973	J .	0.00555	0.80%
Ba 233.527†	2047.3	0.1992		0.00068	0.1992		0.00068	0.34%
Be 313.042†	-26.7	-0.00009		0.000024	-0.00009	_		25.29%
Ca 317.933†	835802.6	78.96		0.184	78.96		0.184	0.23%
Cd 228.802†	15.7	0.00019	_	0.000030	0.00019	J .		15.79%
Co 228.616†	297.7	0.00345	_	0.000210	0.00345		0.000210	6.08%
Cr 267.716†	53.8	0.01132		0.000902	0.01132	J .	0.000902	7.97%
Cu 324.752†	797.5	0.00255		0.000032	0.00255	_	0.000032	1.26%
Fe 273.955†	23.4	0.01904	-	0.000331	0.01904	_	0.000331	1.74%
K 766.490†	221736.0	61.54	_	0.301	61.54		0.301	0.49%
Mg 279.077†	197659.4	169.7		0.38	169.7	_	0.38	0.22%
Mn 257.610†	80805.9	1.997		0.0248	1.997	J .	0.0248	1.24%
Mo 202.031†	60.3	0.00119	mg/L	0.000112	0.00119	mg/L	0.000112	9.43%
Na 589.592†	Saturated2							
Na 330.237†	42461.7		${ m mg/L}$	17.9		mg/L	17.9	1.16%
Ni 231.604†	6.5	0.00284	٠.	0.000835	0.00284			29.42%
Pb 220.353†	-14.7	0.00094		0.001750	0.00094	_	0.001750 1	
Sb 206.836†	-2.1	-0.00090	_	0.002855	-0.00090			815.85%
Se 196.026†	10.1	0.00536	_	0.003396	0.00536	J.	0.003396	63.40%
Si 288.158†	7218.1	5.357	_	0.0858	5.357	2 .	0.0858	1.60%
Sn 189.927†	-56.9	0.01219	-	0.000285	0.01219		0.000285	2.34%
Sr 421.552†	751869.0	1.238		0.0095	1.238	_	0.0095	0.77%
Ti 334.903†	147.6	0.00187		0.000723	0.00187		0.000723	38.72%
T1 190.801†	-18.8	-0.00766		0.000755	-0.00766		0.000755	9.85%
V 292.402†	-168.1	-0.00044		0.000218	-0.00044	J.	0.000218	49.53%
Zn 206.200†	-12.9	-0.00335	mg/L	0.000756	-0.00335	mg/L	0.000756	22.55%

Date: 11/1/2012 8:01:59 PM Page 32

Sequence No.: 32 Sample ID: VP83 D TWC

Sample ID. ..
Analyst: EL
Dilution: 1X

Autosampler Location: 79 Date Collected: 11/1/2012 7:57:36 PM

Data Type: Original

Nebulizer Parameters: VP83 D TWC

Back Pressure Flow 231.0 kPa 0.55 L/min Analyte All

Mean Data: VP83 D	TWC							
	Mean Corrected		Calib.			Sample	•	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2285866.1	86.32	용	0.916				1.06%
ScR 361.383	193480.1	91.37	ક	1.526				1.67%
Ag 328.068†	283.4	-0.00061	${ m mg/L}$	0.000224	-0.00061		0.000224	36.87%
Al 308.215†	-6.4	-0.00442	${ m mg/L}$	0.003015	-0.00442		0.003015	68.27%
As 188.979†	1.0	0.00042	_	0.000484	0.00042	mg/L	0.000484	114.57%
B 249.677†	2263.5	1.038	_	0.0128	1.038	mg/L	0.0128	1.24%
Ba 233.527†	1230.3	0.1196	${ m mg/L}$	0.00205	0.1196	mg/L	0.00205	1.71%
Be 313.042†	4.0	0.00002	mg/L	0.000032	0.00002		0.000032	
Ca 317.933†	1203839.4	113.7		1.63	113.7	_	1.63	1.43%
Cd 228.802†	-7.5	-0.00009	٠.	0.000216	-0.00009	J .	0.000216	
Co 228.616†	166.7	0.00189		0.000944	0.00189		0.000944	49.92%
Cr 267.716†	77.1	0.01640		0.000575	0.01640	_	0.000575	3.51%
Cu 324.752†	289.0	0.00117		0.000159	0.00117	_	0.000159	13.57%
Fe 273.955†	3636.5	2.967		0.0414	2.967		0.0414	1.40%
K 766.490†	386676.0	107.3		1.82	107.3		1.82	1.70%
Mg 279.077+	336101.3	288.6	_	4.13	288.6	_	4.13	1.43%
Mn 257.610†	80688.9	1.994		0.0454	1.994	_	0.0454	2.28%
Mo 202.031†	101.3	0.00196	mg/L	0.000246	0.00196	mg/L	0.000246	12.55%
Na 589.592†	Saturated2							
Na 330.237†	63961.7		${\tt mg/L}$	46.7		mg/L	46.7	2.00%
Ni 231.604†	31.9	0.01397		0.001552	0.01397	_	0.001552	11.11%
Pb 220.353†	-38.5	-0.00011	٠.	0.002258	-0.00011	,	0.002258	
Sb 206.836†	-9.0	-0.00318		0.003854	-0.00318	_	0.003854	
Se 196.026†	22.4	0.01185	_	0.001329	0.01185	_	0.001329	11.21%
Sı 288.158†	7260.8	5.403	_	0.1277	5.403		0.1277	2.36%
Sn 189.927†	-59.5	0.02203	_	0.000405	0.02203		0.000405	1.84%
Sr 421.552†	1239502.6	2.042		0.0341	2.042	_	0.0341	1.67%
Ti 334.903†	179.7	0.00141	_	0.000638	0.00141		0.000638	45.31%
Tl 190.801†	-15.8	-0.00681	_	0.001311	-0.00681		0.001311	19.27%
V 292.402†	-230.1	-0.00098	_	0.000239	-0.00098		0.000239	24.42%
Zn 206.200†	-17.3	-0.00434	mg/L	0.001151	-0.00434	mg/L	0.001151	26.52%

Date: 11/1/2012 8:08:02 PM

Sequence No.: 33 Autosampler Location: 80

Sample ID: VP92 ADUP TWC Date Collected: 11/1/2012 8:03:59 PM Data Type: Original

Analyst: EL Dilution: 2X

Nebulizer Parameters: VP92 ADUP TWC

Analyte Back Pressure Flow All 231.0 kPa 0.55 L/min

Mean Data: VP92 A	DUP TWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2734573.3	103.3		0.59				0.57%
ScR 361.383	211042.1	99.67		1.338				1.34%
Ag 328.068†	-88.4	0.00002		0.000096	0.00003	mg/L	0.000193	562.90%
Al 308.215†	256.4	0.1536	${ m mg/L}$	0.00425	0.3072	mg/L	0.00850	2.77%
As 188.979†	32.1	0.01133		0.002706	0.02266	mg/L	0.005412	23.88%
B 249.677†	88.6	0.04164	${ m mg/L}$	0.001896	0.08329	mg/L	0.003791	4.55%
Ba 233.527†	120.5	0.01068		0.000336	0.02136	mg/L	0.000672	3.15%
Be 313.042†	-60.1	-0.00022		0.000026	-0.00044	mg/L	0.000052	11.67%
Ca 317.933†	86828.6	8.202	${ m mg/L}$	0.1070	16.40	mg/L	0.214	1.30%
Cd 228.802†	5.4	0.00041		0.000069	0.00083	mg/L	0.000138	16.75%
Co 228.616†	320.0	0.00354		0.000024	0.00708	mg/L	0.000048	0.67%
Cr 267.716†	468.6	0.1021		0.00192	0.2042	mg/L	0.00383	1.88%
Cu 324.752†	118314.3	0.3793	mg/L	0.00336	0.7586	mg/L	0.00671	0.89%
Fe 273.955†	23807.3	19.42	${ m mg/L}$	0.324	38.84	mg/L	0.648	1.67%
K 766.490†	6798.2	1.887	mg/L	0.0497	3.774	mg/L	0.0994	2.63%
Mg 279.077†	1774.2	1.514	${ m mg/L}$	0.0098	3.028	mg/L	0.0196	0.65%
Mn 257.610†	22868.8	0.5651		0.00920	1.130	mg/L	0.0184	1.63ક
Mo 202.031†	12339.5	0.6668	${ m mg/L}$	0.00110	1.334	mg/L	0.0022	0.16%
Na 589.592†	291716.8	35.26	mg/L	0.413	70.51	mg/L	0.827	1.17%
Na 330.237†	954.5	34.75	${ m mg/L}$	0.437	69.51	mg/L	0.873	1.26%
Ni 231.604†	3144.4	1.377	${ t mg/L}$	0.0168	2.754	mg/L	0.0336	1.22%
Pb 220.353†	76.7	0.00474	mg/L	0.000329	0.00949	mg/L	0.000658	6.94%
Sb 206.836†	9.0	-0.00076		0.001702	-0.00152	mg/L	0.003404	224.46%
Se 196.026†	7.1	0.00041	mg/L	0.003145	0.00081	mg/L	0.006289	773.64%
Si 288.158†	1895.4	1.403	${\tt mg/L}$	0.0134	2.806	mg/L	0.0268	0.95%
Sn 189.927†	11.0	0.00346	mg/L	0.000611	0.00693	mg/L	0.001221	17.63%
Sr 421.552†	13988.0	0.02304	mg/L	0.000329	0.04608	mg/L	0.000658	1.43%
Ti 334.903†	150.2	0.00479	${ m mg/L}$	0.000898	0.00957	mg/L	0.001796	18.76%
Tl 190.801†	-9.1	-0.00245	mg/L	0.000765	-0.00490	mg/L	0.001530	31.23%
V 292.402†	248.5	0.00346	mg/L	0.000149	0.00693	mg/L	0.000297	4.29%
Zn 206.200†	22.8	0.00884	mg/L	0.001278	0.01767	mg/L	0.002557	14.47%

Date: 11/1/2012 8:14:21 PM

Sequence No.: 34 Autosampler Location: 81

Sample ID: VP92 A TWC Date Collected: 11/1/2012 8:10:02 PM Data Type: Original

Analyst: EL Dilution: 2X

Nebulizer Parameters: VP92 A TWC

Analyte Back Pressure Flow 231.0 kPa 0.55 L/min All

Mean Data: VP92 A	TWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2718210.1	102.6	ક્ર	0.57				0.56%
ScR 361.383	211444.8	99.86		0.933				0.93%
Ag 328.068†	-81.8	-0.00002		0.000102	-0.00004	mg/L	0.000205	483.00%
Al 308.215†	278.4	0.1682		0.01107	0.3365	mg/L	0.02214	6.58%
As 188.979†	28.3	0.00976	${ t mg/L}$	0.001208	0.01952	mg/L	0.002416	12.37%
B 249.677†	96.0	0.04505	mg/L	0.002966	0.09010	mg/L	0.005933	6.58%
Ba 233.527†	111.6	0.00993	${ t mg/L}$	0.000380	0.01987	mg/L	0.000760	3.83%
Be 313.042†	-45.2	-0.00017	mg/L	0.000038	-0.00033	mg/L	0.000075	22.61%
Ca 317.933†	87081.4	8.226	${ m mg/L}$	0.0205	16.45	mg/L	0.041	0.25%
Cd 228.802†	1.7	0.00035		0.000100	0.00070	mg/L	0.000199	28.48%
Co 228.616†	285.5	0.00317	${ t mg/L}$	0.000181	0.00634	mg/L	0.000361	5.70%
Cr 267.716†	359.1	0.07821		0.003499	0.1564	mg/L	0.00700	4.47%
Cu 324.752†	114611.1	0.3673	mg/L	0.00381	0.7345	mg/L	0.00761	1.04%
Fe 273.955†	20860.6	17.02	mg/L	0.184	34.04	mg/L	0.368	1.08%
K 766.490†	5965.5	1.656	${\tt mg/L}$	0.0092	3.311	mg/L	0.0185	0.56%
Mg 279.077†	1739.1	1.485	J .	0.0218	2.970	mg/L	0.0437	1.47%
Mn 257.610†	18904.9	0.4671	${\tt mg/L}$	0.00588	0.9343		0.01176	1.26%
Mo 202.031†	12309.2	0.6652	${\tt mg/L}$	0.00717	1.330	mg/L	0.0143	1.08%
Na 589.592†	280257.5	33.87	${ m mg/L}$	0.188	67.74	mg/L	0.376	0.56%
Na 330.237†	924.1	33.65	mg/L	0.306	67.29	mg/L	0.612	0.91%
Ni 231.604†	2957.8	1.295	${\tt mg/L}$	0.0150	2.591		0.0301	1.16%
Pb 220.353†	75.4	0.00474		0.000415	0.00948	mg/L	0.000829	8.74%
Sb 206.836†	7.1	-0.00064	${\tt mg/L}$	0.000834	-0.00128	mg/L	0.001667	130.17%
Se 196.026†	7.1	0.00064		0.004539	0.00129	mg/L	0.009078	704.68%
Si 288.158†	2378.1	1.760		0.0234	3.520	mg/L	0.0468	1.33%
Sn 189.927†	6.8	0.00282	mg/L	0.000323	0.00564	mg/L	0.000646	11.45%
Sr 421.552†	14329.9	0.02360	J .	0.000050	0.04721	mg/L	0.000101	0.21%
Ti 334.903†	135.8	0.00423		0.000968	0.00846		0.001936	22.89%
Tl 190.801†	-8.9	-0.00228		0.000797	-0.00456	mg/L	0.001595	35.01%
V 292.402†	188.7	0.00321		0.000010	0.00641	mg/L	0.000020	0.31%
Zn 206.200†	22.0	0.00854	mg/L	0.000479	0.01708	mg/L	0.000957	5.60%

Data Type: Original

Date: 11/1/2012 8:20:24 PM

Sequence No.: 35

Autosampler Location: 82 Sample ID: VP92 ASPK TWC Date Collected: 11/1/2012 8:16:20 PM

Analyst: EL Dilution: 2X

All

Nebulizer Parameters: VP92 ASPK TWC

Analyte

Back Pressure Flow 231.0 kPa 0.55 L/min

Mean Data: VP92 A								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev.	
ScA 357.253	2727909.1	103.0		0.60				0.59%
ScR 361.383	210229.5	99.28		0.535				0.54 ધ
Ag 328.068†	72688.7	0.2490	_ ·	0.00297	0.4980	J .	0.00594	1.19%
Al 308.215†	1721.4	1.124		0.0120	2.248	_ ·	0.0241	1.07%
As 188.979†	2351.1	0.9950	J .	0.01130	1.990		0.0226	1.14%
B 249.677†	73.4	0.03386		0.001833	0.06772	mg/L	0.003665	5.41%
Ba 233.527†	9964.1	0.9683	_	0.00728	1.937	${\tt mg/L}$	0.0146	0.75%
Be 313.042†	70259.3	0.2540	mg/L	0.00205	0.5081	mg/L	0.00410	0.81%
Ca 317.933†	142218.1	13.43	${ t mg/L}$	0.109	26.87	mg/L	0.217	0.81%
Cd 228.802†	20752.3	0.2463	${ t mg/L}$	0.00299	0.4927	mg/L	0.00597	1.21%
Co 228.616†	20801.9	0.2461	${ t mg/L}$	0.00244	0.4922	mg/L	0.00488	0.99%
Cr 267.716†	1492.7	0.3258	${ m mg/L}$	0.00179	0.6515	mg/L	0.00357	0.55%
Cu 324.752†	199448.3	0.6385		0.00628	1.277	mg/L	0.0126	0.98%
Fe 273.955†	22913.0	18.69	mg/L	0.175	37.38	mg/L	0.350	0.93%
K 766.490†	24942.7	6.923	${ m mg/L}$	0.0785	13.85		0.157	1.13%
Mg 279.077†	7753.4	6.648	mg/L	0.0480	13.30	${\tt mg/L}$	0.096	0.72%
Mn 257.610†	29197.4	0.7217		0.00575	1.443		0.0115	0.80%
Mo 202.031†	12419.7	0.6710	${ m mg/L}$	0.00547	1.342	mg/L	0.0109	0.82%
Na 589.592†	316029.3	38.19	${ m mg/L}$	0.390	76.39	mg/L	0.780	1.02%
Na 330.237†	1041.4	37.80	mg/L	0.318	75.61	mg/L	0.637	0.84%
Ni 231.604†	3595.0	1.574	${ t mg/L}$	0.0101	3.148	mg/L	0.0202	0.64%
Pb 220.353†	12926.7	0.9771	${ t mg/L}$	0.01150	1.954	mg/L	0.0230	1.18%
Sb 206.836†	22.1	-0.00025	${ t mg/L}$	0.001417	-0.00050	mg/L	0.002835	569.49₺
Se 196.026†	1711.5	0.9026	mg/L	0.00525	1.805	mg/L	0.0105	0.58%
Si 288.158†	1798.4	1.333	mg/L	0.0185	2.666	mg/L	0.0370	1.39%
Sn 189.927†	6.7	0.00404	mg/L	0.000078	0.00809	mg/L	0.000155	1.92%
Sr 421.552†	171908.8	0.2831	mg/L	0.00217	0.5663	mg/L	0.00435	0.77%
Ti 334.903†	149.5	0.00444	mg/L	0.000452	0.00889	mg/L	0.000904	10.17%
Tl 190.801†	3472.7	0.9540	mg/L	0.00698	1.908	mg/L	0.0140	0.73%
V 292.402†	51685.3	0.2573	mg/L	0.00335	0.5146	mg/L	0.00671	1.30%
Zn 206.200†	656.7	0.2571	mg/L	0.00312	0.5142	mg/L	0.00625	1.21%

The state of the s

Autosampler Location: 83

Data Type: Original

Sequence No.: 36

Sample ID: VP92 MBSPK TWC Date Collected: 11/1/2012 8:22:23 PM

Analyst: EL Dilution: 1X

Nebulizer Parameters: VP92 MBSPK TWC

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: VP92 MBSPK TWC								
	Mean Corrected		Calib.			Sample	:	
Analyte	Intensity		Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2783799.6	105.1		0.73				0.70%
ScR 361.383	215901.9	102.0		0.57				0.56%
Ag 328.068†	145994.2	0.4996		0.00343	0.4996		0.00343	0.69%
Al 308.215†	2996.6	1.985	mg/L	0.0063	1.985		0.0063	0.32%
As 188.979†	4578.8	1.942	J .	0.0162	1.942		0.0162	0.83%
В 249.677†	10.8	0.00334	${ m mg/L}$	0.001754	0.00334	mg/L	0.001754	52. 53%
Ba 233.527†	19653.8	1.912	${ m mg/L}$	0.0017	1.912	_	0.0017	0.09%
Be 313.042†	139871.0	0.5057	${ m mg/L}$	0.00145	0.5057	mg/L	0.00145	0.29%
Ca 317.933†	109028.6	10.30	mg/L	0.023	10.30	mg/L	0.023	0.225
Cd 228.802†	41060.0	0.4867	mg/L	0.00297	0.4867	mg/L	0.00297	0.61%
Co 228.616†	41099.4	0.4867		0.00282	0.4867	mg/L	0.00282	0.58%
Cr 267.716†	2279.8	0.4979	mg/L	0.00216	0.4979	mg/L	0.00216	0.43%
Cu 324.752†	159055.6	0.5084		0.00302	0.5084	J .	0.00302	0.59%
Fe 273.955†	2547.5	2.078	mg/L	0.0048	2.078	mg/L	0.0048	0.23%
K 766.490†	38059.6	10.56	mg/L	0.024	10.56	mg/L	0.024	0.22%
Mg 279.077†	11937.1	10.25	mg/L	0.015	10.25	mg/L	0.015	0.15%
Mn 257.610†	19477.2	0.4817	mg/L	0.00058	0.4817	mg/L	0.00058	0.12%
Mo 202.031†	24.3	0.00113	mg/L	0.000145	0.00113	mg/L	0.000145	12.75%
Na 589.592†	106565.2	12.88	mg/L	0.055	12.88	mg/L	0.055	0.43%
Na 330.237†	351.1	12.58	mg/L	0.118	12.58	mg/L	0.118	0.94%
Ni 231.604†	1076.4	0.4707	mg/L	0.00344	0.4707	mg/L	0.00344	0.73%
Pb 220.353†	25752.0	1.949	mg/L	0.0179	1.949	mg/L	0.0179	0.92%
Sb 206.836†	12.9	-0.00390	mg/L	0.000650	-0.00390	mg/L	0.000650	16.67%
Se 196.026†	3587.0	1.899	mg/L	0.0141	1.899	mg/L	0.0141	0.74%
Si 288.158†	53.7	0.04309	mg/L	0.003480	0.04309	mg/L	0.003480	8.07%
Sn 189.927†	-13.7	0.00034	mg/L	0.000661	0.00034	mg/L	0.000661	193.03%
Sr 421.552†	313731.7	0.5167		0.00095	0.5167	mg/L	0.00095	0.18%
Ti 334.903†	0.1	-0.00062	mg/L	0.000316	-0.00062	mg/L	0.000316	50.98%
Tl 190.801†	6829.4	1.876		0.0145	1.876	mg/L	0.0145	0.78%
V 292.402†	103099.0	0.5088	mg/L	0.00370	0.5088	mg/L	0.00370	0.73%
Zn 206.200†	1176.5	0.4607	mg/L	0.00073	0.4607	mg/L	0.00073	0.16%

Sequence No.: 37 Autosampler Location: 7

Sample ID: CV% Date Collected: 11/1/2012 8:28:27 PM Data Type: Original

Analyst: EL Dilution: 1X

Nebulizer Parameters: CV

Analyte Back Pressure Flow 230.0 kPa 0.55 L/min All

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2701181.8	102.0		0.72				0.70%
ScR 361.383	211255.1	99.77	ક	0.780				0.78%
Ag 328.068†	286433.2	0.9801	mg/L	0.00051	0.9801	mg/L	0.00051	0.05%
Al 308.215†	3030.6	1.976	mg/L	0.0103	1.976	mg/L	0.0103	0.52%
As 188.979†	4626.7	1.962		0.0250	1.962		0.0250	1.27%
В 249.677†	2036.0	0.9318	mg/L	0.00962	0.9318	mg/L	0.00962	1.03%
Ba 233.527†	9777.0	0.9508		0.00841	0.9508	mg/L	0.00841	0.88%
Be 313.042†	265732.3	0.9607	mg/L	0.00579	0.9607	mg/L	0.00579	0.60%
Ca 317.933†	21405.6	2.022	mg/L	0.0157	2.022	mg/L	0.0157	0.78%
Cd 228.802†	80866.8	0.9630	mg/L	0.00171	0.9630		0.00171	0.18%
Co 228.616†	81259.9	0.9617	_	0.00161	0.9617		0.00161	0.17%
Cr 267.716†	4448.8	0.9714	mg/L	0.00827	0.9714		0.00827	0.85%
Cu 324.752†	325895.2	1.041	_	0.0012	1.041	mg/L	0.0012	0.12%
Fe 273.955†	2551.6	2.081		0.0131	2.081	mg/L	0.0131	0.63%
K 766.490†	74589.6	20.70	mg/L	0.022	20.70	mg/L	0.022	0.11%
Mg 279.077†	2391.4	2.056		0.0177	2.056	mg/L	0.0177	0.86%
Mn 257.610†	38270.0	0.9461		0.00273	0.9461	mg/L	0.00273	0.29%
Mo 202.031†	16363.0	0.8841		0.01000	0.8841	mg/L	0.01000	1.13%
Na 589.592†	428970.3	51.84	J .	0.323	51.84	mg/L	0.323	0.629
Na 330.237†	1421.5	51.63		0.276	51.63	mg/L	0.276	0.53%
Ni 231.604†	2146.0	0.9403		0.00750	0.9403	mg/L	0.00750	0.80%
Pb 220.353†	25436.0	1.925	_	0.0215	1.925	mg/L	0.0215	1.12%
Sb 206.836†	7060.1	1.927		0.0218	1.927	mg/L	0.0218	1.13%
Se 196.026†	3547.5	1.876		0.0226	1.876	mg/L	0.0226	1.20%
Si 288.158†	2921.7	2.167	mg/L	0.0137	2.167		0.0137	0.63%
Sn 189.927†	5522.3	0.8429		0.00740	0.8429	mg/L	0.00740	0.88%
Sr 421.552†	613923.0	1.011		0.0040	1.011		0.0040	0.40%
Ti 334.903†	25273.1	0.9822		0.00299	0.9822		0.00299	0.30%
Tl 190.801†	6913.6	1.893		0.0159	1.893	_	0.0159	0.84%
V 292.402†	202811.1	1.005	J .	0.0013	1.005	_	0.0013	0.13%
Zn 206.200†	2495.8	0.9761	mg/L	0.00773	0.9761	mg/L	0.00773	0.79%

Date: 11/1/2012 8:38:31 PM

Sequence No.: 38
Sample ID: CB
Analyst: EL

Dilution: 1X

All

Autosampler Location: 1

Date Collected: 11/1/2012 8:34:30 PM

Data Type: Original

Nebulizer Parameters: CB

Analyte Back Pressure Flow

231.0 kPa 0.55 L/min

Page 39 Date: 11/1/2012 8:44:30 PM

Sequence No.: 39

Autosampler Location: 84

Sample ID: VP81 MB TWC Analyst: EL Dilution: 1X

Date Collected: 11/1/2012 8:40:29 PM
Data Type: Original

Nebulizer Parameters: VP81 MB TWC

Analyte Back Pressure Flow All 230.0 kPa 0.55 L/min

Mean Data: VP81 MB							
	Mean Corrected		Calib.			\mathtt{Sample}	
Analyte	Intensity		Units	${\tt Std.Dev.}$	Conc.	Units	Std.Dev. RSD
ScA 357.253	2793008.3	105.5		0.12			0.11%
ScR 361.383	211641.9	99.95		0.486			0.49%
Ag 328.068†	69.7	0.00024		0.000063	0.00024		0.000063 26.55%
Al 308.215†	11.1	0.00737		0.012581	0.00737		0.012581 170.69%
As 188.979†	1.1	0.00045		0.000817	0.00045	mg/L	0.000817 180.52%
В 249.677†	7.1	0.00326		0.001641	0.00326	mg/L	0.001641 50.38%
Ba 233.527†	-6.9	-0.00067		0.000465	-0.00067		0.000465 69.31%
Be 313.042†	-39.4	-0.00014		0.000034	-0.00014	mg/L	0.000034 23.79%
Ca 317.933†	38.4	0.00363		0.001454	0.00363	mg/L	0.001454 40.03%
Cd 228.802†	1.4	0.00002	mg/L	0.000044	0.00002	mg/L	0.000044 277.50%
Co 228.616†	-8.6	-0.00010		0.000036	-0.00010	mg/L	0.000036 35.94%
Cr 267.716†	1.7	0.00037	mg/L	0.000508	0.00037		0.000508 137.51%
Cu 324.752†	-222.3	-0.00071	mg/L	0.000247	-0.00071	mg/L	0.000247 34.74%
Fe 273.955†	-3.4	-0.00280	mg/L	0.001565	-0.00280	mg/L	0.001565 55.91%
K 766.490†	230.3	0.06392		0.016938	0.06392	mg/L	0.016938 26.50%
Mg 279.077†	4.6	0.00391	mg/L	0.003208	0.00391	mg/L	0.003208 81.95%
Mn 257.610†	10.4	0.00026	mg/L	0.000090	0.00026	mg/L	0.000090 34.97%
Mo 202.031†	9.0	0.00049	mg/L	0.000151	0.00049	mg/L	0.000151 31.02%
Na 589.592†	14777.3	1.786	mg/L	0.0436	1.786	mg/L	0.0436 2.44%
Na 330.237†	49.9	1.820	mg/L	0.3403	1.820	mg/L	0.3403 18.70%
Nı 231.604†	-0.4	-0.00017	mg/L	0.000540	-0.00017	mg/L	0.000540 323.98%
Pb 220.353†	-19.9	-0.00150	mg/L	0.000801	-0.00150	mg/L	0.000801 53.36%
Sb 206.836†	-6.2	-0.00170	mg/L	0.001384	-0.00170	mg/L	0.001384 81.54%
Se 196.026†	9.8	0.00518	mg/L	0.002420	0.00518	mg/L	0.002420 46.72%
Si 288.158†	11.6	0.00859	mg/L	0.001189	0.00859	mg/L	0.001189 13.85%
Sn 189.927†	1.3	0.00020	mg/L	0.000076	0.00020	mg/L	0.000076 38.19%
Sr 421.552†	46.3	0.00008	mg/L	0.000035	0.00008	mg/L	0.000035 45.82%
Ti 334.903†	-3.7	-0.00014	mg/L	0.000950	-0.00014	mg/L	0.000950 656.51%
T1 190.801†	-3.3	-0.00090	mg/L	0.000736	-0.00090		0.000736 81.69%
V 292.402†	-13.5	-0.00006	mg/L	0.000094	-0.00006		0.000094 154.52%
Zn 206.200†	-16.7	-0.00652	mg/L	0.000478	-0.00652		0.000478 7.33%

Sequence No.: 40 Autosampler Location: 85

Sample ID: VP81 A TWC Date Collected: 11/1/2012 8:46:29 PM

Analyst: EL Data Type: Original

Dilution: 1X

Nebulizer Parameters: VP81 A TWC

Analyte Back Pressure Flow All 230.0 kPa 0.55 L/min

Mean Data: VP81	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Cong	Units	Std.Dev.	RSD
ScA 357.253	2764606.5	104.4		0.24	cone.	Units	sta.bev.	. RSD 0.23%
ScR 361.383	212287.6	100.3		0.38				0.23
Ag 328.068†	35.1	-0.00009		0.000183	-0.00009	mar/T	0.000183	
Al 308.215†	10.0	0.00663		0.000183	0.00663		0.000183	
As 188.979†	-0.8	-0.00035		0.000747	-0.00035	- ·	0.000747	
B 249.677†	70.0	0.03209	J .	0.001392	0.03209	J.	0.000307	4.34%
Ba 233.527†	120.7	0.01174	J.	0.000331	0.01174		0.000331	2.649
Be 313.042†	-11.5	-0.00004		0.000085	-0.00004		0.000085	
Ca 317.933†	185914.7	17.56	_	0.027	17.56		0.027	0.16%
Cd 228.802†	-5.8	-0.00007		0.000008	-0.00007	2.	0.000008	12.11%
Co 228.616†	-28.8	-0.00035		0.000064	-0.00035	J .	0.000064	18.439
Cr 267.716†	6.5	0.00141		0.000894	0.00141	J.	0.000894	63.40%
Cu 324.752†	645.8	0.00206		0.000071	0.00206		0.000071	3.45%
Fe 273.955†	35.3	0.02882		0.001193	0.02882		0.001193	4.14%
K 766.490†	12671.5	3.517		0.0099	3.517		0.0099	0.289
Ma 279.077†	8193.9	7.035		0.0203	7.035		0.0203	0.299
Mn 257.610†	1934.7	0.04781	mg/L	0.000113	0.04781	J.	0.000113	0.249
Mo 202.031†	35.9	0.00185	_	0.000096	0.00185		0.000096	5.20%
Na 589.592†	86906.8	10.50	mg/L	0.035	10.50		0.035	0.338
Na 330.237†	289.2	10.47	mg/L	0.179	10.47	_	0.179	1.718
Ni 231.604†	-0.2	-0.00009		0.001133	-0.00009	mq/L	0.001133	>999.99
Pb 220.353†	-32.4	-0.00200		0.000439	-0.00200		0.000439	21.989
Sb 206.836†	-3.6	-0.00106	mg/L	0.001344	-0.00106		0.001344	126.889
Se 196.026†	12.2	0.00648		0.002509	0.00648	mg/L	0.002509	38.749
Si 288.158†	23881.5	17.66		0.124	17.66		0.124	0.709
Sn 189.927†	-19.6	0.00092		0.000426	0.00092		0.000426	46.329
Sr 421.552†	58056.7	0.09562		0.000319	0.09562	mq/L	0.000319	0.339
Ti 334.903†	25.3	0.00012	mg/L	0.000647	0.00012		0.000647	539.489
Tl 190.801†	-2.4	-0.00072		0.000798	-0.00072	mg/L	0.000798	111.36
V 292.402†	-45.7	-0.00020	mg/L	0.000143	-0.00020	mg/L	0.000143	71.139
Zn 206.200†	-24.4	-0.00916		0.000809	-0.00916		0.000809	8.83%

ge 41 Date: 11/1/2012 8:56:32 PM

Sequence No.: 41 Autosampler Location: 86

Sample ID: VP81 B TWC Date Collected: 11/1/2012 8:52:30 PM

Analyst: EL Dilution: 1X

Data Type: Original

Nebulizer Parameters: VP81 B TWC

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: VP81 B TWC								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2795080.2	105.5	8	0.91				0.86%
ScR 361.383	213085.4	100.6	ક	0.94				0.93%
Ag 328.068†	79.8	0.00018		0.000152	0.00018	mg/L	0.000152	85.63%
Al 308.215†	3872.7	2.575	${ m mg/L}$	0.0147	2.575	mg/L	0.0147	0.57%
As 188.979†	11.7	0.00514	${ m mg/L}$. 0.000827	0.00514	mg/L	0.000827	16.10%
B 249.677†	93.7	0.04298	${ m mg/L}$	0.002025	0.04298	mg/L	0.002025	4.71%
Ba 233.527†	887.5	0.08622	${ m mg/L}$	0.000550	0.08622	mg/L	0.000550	0.64%
Be 313.042†	-34.6	-0.00014	${ m mg/L}$	0.000023	-0.00014	mg/L	0.000023	16.23%
Ca 317.933†	171810.6	16.23	${ m mg/L}$	0.013	16.23	mg/L	0.013	0.08%
Cd 228.802†	12.6	0.00014	${ m mg/L}$	0.000058	0.00014		0.000058	41.36%
Co 228.616†	97.8	0.00091	${ m mg/L}$	0.000061	0.00091	mg/L	0.000061	6.69%
Cr 267.716†	50.9	0.01111		0.000574	0.01111	${ m mg/L}$	0.000574	5.16%
Cu 324.752†	18015.2	0.05774	${ m mg/L}$	0.000501	0.05774	mg/L	0.000501	0.87%
Fe 273.955†	3497.7	2.853	${ m mg/L}$	0.0118	2.853	mg/L	0.0118	0.41%
K 766.490†	7395.4	2.053	${ t mg/L}$	0.0205	2.053	mg/L	0.0205	1.00%
Mg 279.077†	1924.5	1.651	${ m mg/L}$	0.0053	1.651	${ m mg/L}$	0.0053	0.32%
Mn 257.610†	1986.1	0.04906	${ t mg/L}$	0.000237	0.04906	mg/L	0.000237	0.48%
Mo 202.031†	135.5	0.00736		0.000270	0.00736	mg/L	0.000270	3.67%
Na 589.592†	35233.4	4.258	mg/L	0.0343	4.258	mg/L	0.0343	0.81%
Na 330.237†	125.6	4.465	mg/L	0.1095	4.465	mg/L	0.1095	2.45%
Ni 231.604†	15.6	0.00683	${ m mg/L}$	0.000484	0.00683	mg/L	0.000484	7.08%
Pb 220.353†	85.6	0.00763	${ t mg/L}$	0.000869	0.00763	mg/L	0.000869	11.40%
Sb 206.836†	30.4	0.00799	${\tt mg/L}$	0.001293	0.00799	mg/L	0.001293	16.18%
Se 196.026†	10.4	0.00548	${ m mg/L}$	0.003125	0.00548	mg/L	0.003125	57.04%
Si 288.158†	9653.8	7.138	${ m mg/L}$	0.0995	7.138	mg/L	0.0995	1.39%
Sn 189.927†	-0.7	0.00343		0.000638	0.00343	mg/L	0.000638	18.60≹
Sr 421.552†	54420.6	0.08964	${ m mg/L}$	0.000665	0.08964	mg/L	0.000665	0.74%
Ti 334.903†	2721.4	0.1051		0.00103	0.1051	mg/L	0.00103	0.98%
Tl 190.801†	-0.8	-0.00042	mg/L	0.000965	-0.00042	mg/L	0.000965	228.16%
V 292.402†	1374.4	0.00650	J .	0.000178	0.00650	${ m mg/L}$	0.000178	2.73%
Zn 206.200†	425.4	0.1669	mg/L	0.00100	0.1669	mg/L	0.00100	0.60%

Sequence No.: 42

Sample ID: VP83 E TWC Analyst: EL Dilution: 1X Autosampler Location: 87

Date Collected: 11/1/2012 8:58:32 PM

Data Type: Original

Nebulizer Parameters: VP83 E TWC

Analyte Back Pressure Flow All 230.0 kPa 0.55 L/min

Mean Data: VP83 E	TWC						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2813624.9	106.2	용	0.98			0.92%
ScR 361.383	214924.4	101.5		1.13			1.11%
Ag 328.068†	33.6	0.00011	_	0.000216	0.00011	_	0.000216 195.69%
Al 308.215†	168.7	0.1122		0.00282	0.1122	_	0.00282 2.52%
As 188.979†	1.3	0.00056	mg/L	0.000982	0.00056	2	0.000982 175.21%
B 249.677†	32.5	0.01488	J .	0.002709	0.01488	_	0.002709 18.20%
Ba 233.527†	-3.9	-0.00038		0.000332	-0.00038		0.000332 88.02%
Be 313.042†	-31.5	-0.00011		0.000035	-0.00011	٠.	0.000035 30.24%
Ca 317.933†	4098.8	0.3872		0.00232	0.3872	J .	0.00232 0.60%
Cd 228.802†	-1.4	-0.00002	mg/L	0.000057	-0.00002	_	0.000057 309.00%
Co 228.616†	23.8	0.00028	J .	0.000074	0.00028	_	0.000074 26.25%
Cr 267.716†	1.9	0.00041	_	0.001038	0.00041		0.001038 256.16%
Cu 324.752†	-165.2	-0.00053	_	0.000094	-0.00053	_	0.000094 17.77%
Fe 273.955†	15.6	0.01272	_	0.002513	0.01272		0.002513 19.75%
K 766.490†	207.0	0.05746	J .	0.008412	0.05746	_	0.008412 14.64%
Mg 279.077†	42.7	0.03664		0.002073	0.03664	J .	0.002073 5.66%
Mn 257.610†	124.4	0.00307		0.000056	0.00307	_	0.000056 1.81%
Mo 202.031†	12.2	0.00066	_	0.000195	0.00066	_	0.000195 29.51%
Na 589.592†	8745.9	1.057		0.0199	1.057	_	0.0199 1.88%
Na 330.237†	29.7	1.082		0.3340	1.082	_	0.3340 30.88%
Ni 231.604†	2.8	0.00124		0.000805	0.00124	J .	0.000805 64.99%
Pb 220.353†	-21.4	-0.00157	_	0.001028	-0.00157		0.001028 65.69%
sb 206.836†	-5.2	-0.00143	_	0.001582	-0.00143	_	0.001582 110.85%
Se 196.026†	9.2	0.00485	_	0.000870	0.00485	_	0.000870 17.92%
Si 288.158†	111.6	0.08251	_	0.016137	0.08251	_	0.016137 19.56%
Sn 189.927†	-1.8	-0.00018	_	0.000128	-0.00018	٠.	0.000128 69.80%
Sr 421.552†	1272.4	0.00210	_	0.000110	0.00210	J .	0.000110 5.26%
Ti 334.903†	-25.9	-0.00103	_	0.000889	-0.00103		0.000889 86.41%
Tl 190.801†	-3.6	-0.00099	٠.	0.000871	-0.00099	_	0.000871 88.24%
V 292.402†	-0.3	0.00000	J .	0.000121	0.00000	٥.	0.000121 >999.9%
Zn 206.200†	-8.8	-0.00345	mg/L	0.000740	-0.00345	mg/L	0.000740 21.44%

Method: ARIIEC6AN.552AS Page 43 Date: 11/1/2012 9:09:14 PM

Sequence No.: 43

Autosampler Location: 88 Sample ID: VP83 ADUP TWC Date Collected: 11/1/2012 9:04:32 PM

Analyst: EL

Dilution: 1X

Data Type: Original

Nebulizer Parameters: VP83 ADUP TWC

Analyte Back Pressure Flow 230.0 kPa 0.55 L/min All

Mean Data: VP83 A							
	Mean Corrected		Calib.			Sample	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2511825.3	94.85		1.590			1.68%
ScR 361.383	205488.8	97.04		0.326			0.34%
Ag 328.068†	5.0	-0.00057	J.	0.000328	-0.00057	J.	0.000328 57.47%
Al 308.215†	14.2	0.00920		0.005600	0.00920		0.005600 60.85%
As 188.979†	1.1	0.00043	mg/L	0.002450	0.00043	mg/L	0.002450 564.23%
B 249.677†	987.9	0.4530	mg/L	0.00783	0.4530	${ m mg/L}$	0.00783 1.73%
Ba 233.527†	437.3	0.04255	mg/L	0.000096	0.04255	${ m mg/L}$	0.000096 0.22%
Be 313.042†	-24.9	-0.00010	mg/L	0.000114	-0.00010	mg/L	0.000114 113.43%
Ca 317.933†	477024.9	45.06	mg/L	0.084	45.06		0.084 0.19%
Cd 228.802†	-4.1	-0.00005	mg/L	0.000132	-0.00005	mg/L	0.000132 279.29%
Co 228.616†	41.6	0.00047	mg/L	0.002567	0.00047	mg/L	0.002567 545.37%
Cr 267.716†	29.7	0.00639	mg/L	0.000680	0.00639	mg/L	0.000680 10.63%
Cu 324.752†	203.6	0.00065	mg/L	0.000169	0.00065	mg/L	0.000169 25.95%
Fe 273.955†	37.0	0.03019	mg/L	0.000828	0.03019	mg/L	0.000828 2.74%
К 766.490†	129804.8	36.03	mg/L	0.078	36.03	mg/L	0.078 0.22%
Mg 279.077†	97992.5	84.13	mg/L	0.319	84.13	mg/L	0.319 0.38%
Mn 257.610†	16225.2	0.4009	mg/L	0.00232	0.4009	mg/L	0.00232 0.58%
Mo 202.031†	111.6	0.00500	mg/L	0.000277	0.00500	mg/L	0.000277 5.55%
Na 589.592†	5742411.8	694.0	mg/L	9.65	694.0	mg/L	9.65 1.39%
Na 330.237†	20475.9	746.2	mg/L	2.15	746.2	mg/L	2.15 0.29%
Ni 231.604†	31.2	0.01365	mg/L	0.000803	0.01365	mg/L	0.000803 5.88%
Pb 220.353†	-68.8	-0.00404	mg/L	0.006475	-0.00404	mg/L	0.006475 160.36%
Sb 206.836†	-25.8	-0.00719	mg/L	0.010722	-0.00719	mg/L	0.010722 149.099
Se 196.026†	32.9	0.01738	mg/L	0.013171	0.01738	mg/L	0.013171 75.80%
Si 288.158†	6293.7	4.664	mg/L	0.0312	4.664	mg/L	0.0312 0.67%
Sn 189.927†	-17.3	0.00897	mg/L	0.002292	0.00897	mg/L	0.002292 25.55%
Sr 421.552†	391271.6	0.6445	mg/L	0.00360	0.6445	mg/L	0.00360 0.56%
Ti 334.903†	112.6	0.00217	mg/L	0.000684	0.00217	mg/L	0.000684 31.61%
Tl 190.801†	-17.6	-0.00536	mg/L	0.001289	-0.00536	mg/L	0.001289 24.03%
V 292.402†	798.6	0.00404		0.000083	0.00404		0.000083 2.07%
Zn 206.200†	-21.3	-0.00738	mg/L	0.000201	-0.00738	mg/L	0.000201 2.72%

VF54: 00301

Page 44

Sequence No.: 44 Autosampler Location: 89

Sample ID: VP83 A TWC Date Collected: 11/1/2012 9:11:14 PM

Analyst: EL Data Type: Original Dilution: 1X \(\subseteq \text{L} \)

Nebulizer Parameters: VP83 A TWC

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: VP83 A								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	$\mathtt{Std}.\mathtt{Dev}.$	RSD
ScA 357.253	2531224.4	95.58		1.380				1.44%
ScR 361.383	206133.0	97.35	-	1.368				1.41%
Ag 328.068†	62.3	-0.00038	J.	0.000060	-0.00038			15.70%
A1 308.215†	11.8	0.00764		0.002596	0.00764			33.99%
As 188.979†	5.3	0.00221	_	0.002964	0.00221	_		.33.84%
В 249.677†	994.0	0.4557	mg/L	0.00493	0.4557	_	0.00493	1.08%
Ba 233.527†	449.3	0.04371	mg/L	0.000877	0.04371	mg/L	0.000877	2.01%
Be 313.042†	-39.1	-0.00015	mg/L	0.000043	-0.00015	mg/L	0.000043	28.12%
Ca 317.933†	484848.7	45.80	mg/L	0.291	45.80	mg/L	0.291	0.64%
Cd 228.802†	-7.7	-0.00009	mg/L	0.000211	-0.00009	${\tt mg/L}$		24.99%
Co 228.616†	55.9	0.00064	mg/L	0.002477	0.00064	mg/L	0.002477 3	87.62%
Cr 267.716†	30.5	0.00657	mg/L	0.001308	0.00657	mg/L		19.90%
Cu 324.752†	143.9	0.00046	${ m mg/L}$	0.000169	0.00046	mg/L		36.73%
Fe 273.955†	36.1	0.02943	mg/L	0.003059	0.02943	mg/L	0.003059	10.39%
K 766.490†	129862.3	36.04	mg/L	0.221	36.04	mg/L	0.221	0.61%
Mg 279.077†	98315.5	84.41	mg/L	0.879	84.41	mg/L	0.879	1.04%
Mn 257.610†	16470.2	0.4070	mg/L	0.00372	0.4070	mg/L	0.00372	0.91%
Mo 202.031†	108.0	0.00481	mg/L	0.000087	0.00481	mg/L	0.000087	1.80%
Na 589.592†	5720412.9	691.4	${\tt mg/L}$	13.72	691.4	mg/L	13.72	1.98%
Na 330.237†	20730.3	755.5	mg/L	8.17	755.5	mg/L	8.17	1.08%
Ni 231.604†	35.0	0.01534	mg/L	0.002111	0.01534	mg/L	0.002111	13.76 €
Pb 220.353†	-66.9	-0.00387	mg/L	0.006314	-0.00387	mg/L	0.006314 1	.62.97%
Sb 206.836†	-19.7	-0.00551	mg/L	0.010596	-0.00551	mg/L	0.010596 1	.92,26%
Se 196.026†	32.8	0.01736	mg/L	0.014643	0.01736	mg/L	0.014643	84.36%
Si 288.158†	6160.3	4.565	mg/L	0.0294	4.565	mg/L	0.0294	0.64₺
Sn 189.927†	-18.3	0.00897	mg/L	0.002424	0.00897	mg/L	0.002424	27.01%
Sr 421.552†	395156.1	0.6509	mg/L	0.00294	0.6509	mg/L	0.00294	0.45%
Ti 334.903†	118.4	0.00235	mg/L	0.000297	0.00235		0.000297	12.60%
Tl 190.801†	-17.9	-0.00544	mg/L	0.001059	-0.00544	mg/L	0.001059	19.47%
V 292.402†	778.4	0.00394	mg/L	0.000085	0.00394	mg/L	0.000085	2.16%
Zn 206.200†	-25.2	-0.00889		0.001102	-0.00889	mg/L	0.001102	12.40%

Date: 11/1/2012 9:22:10 PM

Sequence No.: 45

Sample ID: VP83 ASPK TWC

Analyst: EL Dilution: 1X

Autosampler Location: 90

Date Collected: 11/1/2012 9:17:55 PM

Data Type: Original

Nebulizer Parameters: VP83 ASPK TWC

Analyte Back Pressure Flow
All 231.0 kPa 0.55 L/min

Mean Data: VP83 ASPK TWC								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2498122.5	94.33	િ	0.248				0.26%
ScR 361.383	204633.0	96.64	ક	0.209				0.22%
Ag 328.068†	150596.5	0.5147	${ m mg/L}$	0.00196	0.5147	mg/L	0.00196	0.38%
Al 308.215†	3042.6	2.016		0.0096	2.016	mg/L	0.0096	0.48%
As 188.979†	5010.8	2.125	${ m mg/L}$	0.0047	2.125		0.0047	0.22%
B 249.677†	1006.5	0.4599	${ m mg/L}$	0.00069	0.4599	mg/L	0.00069	0.15%
Ba 233.527†	19631.4	1.910	${ m mg/L}$	0.0083	1.910	mg/L	0.0083	0.44%
Be 313.042†	136862.6	0.4948	${ m mg/L}$	0.00525	0.4948	mg/L	0.00525	1.06%
Ca 317.933†	588734.0	55.62	${ m mg/L}$	0.656	55.62	mg/L	0.656	1.18%
Cd 228.802†	41625.6	0.4931	mg/L	0.00159	0.4931	mg/L	0.00159	0.32%
Co 228.616†	39868.2	0.4721	mg/L	0.00148	0.4721	mg/L	0.00148	0.31%
Cr 267.716†	2274.6	0.4966		0.00181	0.4966	mg/L	0.00181	0.36%
Cu 324.752†	168031.7	0.5370	${ t mg/L}$	0.00053	0.5370	mg/L	0.00053	0.10%
Fe 273.955†	2573.3	2.099	mg/L	0.0102	2.099	mg/L	0.0102	0.49%
К 766.490†	169964.3	47.17	${ t mg/L}$	0.359	47.17	mg/L	0.359	0.76%
Mg 279.07 7 †	109994.2	94.44	${ t mg/L}$	1.156	94.44	mg/L	1.156	1.22%
Mn 257.610†	35034.8	0.8661	${ t mg/L}$	0.00284	0.8661	mg/L	0.00284	0.33%
Mo 202.031†	118.1	0.00518	mg/L	0.000514	0.00518	mg/L	0.000514	9.93%
Na 589.592†	5798045.7	700.7	mg/L	5.61	700.7		5.61	0.80%
Na 330.237†	21057.2	767.2	${ t mg/L}$	1.62	767.2	mg/L	1.62	0.21%
Ni 231.604†	1076.6	0.4709	mg/L	0.00290	0.4709	mg/L	0.00290	0.62%
Pb 220.353†	23917.1	1.811	mg/L	0.0024	1.811		0.0024	0.13%
Sb 206.836†	19.2	-0.00210	20'	0.001681	-0.00210		0.001681	80.17원
Se 196.026†	3796.2	2.009	mg/L	0.0109	2.009	mg/L	0.0109	0.54%
Si 288.158†	6200.5	4.598		0.0046	4.598	mg/L	0.0046	0.10%
Sn 189.927†	-36.8	0.00848	mg/L	0.000995	0.00848	mg/L	0.000995	11.73%
Sr 421.552†	717994.8	1.183	${ t mg/L}$	0.0122	1.183		0.0122	1.03%
Ti 334.903†	161.1	0.00342	mg/L	0.000171	0.00342	mg/L	0.000171	5.01%
Tl 190.801†	6251.0	1.716	mg/L	0.0034	1.716	mg/L	0.0034	0.20%
V 292.402†	106045.9	0.5233	mg/L	0.00061	0.5233		0.00061	0.12%
Zn 206.200†	1139.2	0.4471	mg/L	0.00305	0.4471	mg/L	0.00305	0.68%

Sequence No.: 46

Sample ID: VP83 MBSPK TWC

Analyst: EL Dilution: 1X

Autosampler Location: 91

Date Collected: 11/1/2012 9:24:09 PM
Data Type: Original

Nebulizer Parameters: VP83 MBSPK TWC

Analyte Back Pressure Flow 231.0 kPa 0.55 L/min

 Mean Data: VP83 MSSPK TWC
 Mean Corrected Analyte
 Conc. Units
 Std.Dev. Conc. Units
 Std.Dev. Sample

 ScA 357.253
 2744030.8
 103.6
 8
 0.39
 0.378

 ScR 361.383
 213973.2
 101.1
 8
 0.47
 0.0243
 0.468

 Ag 328.068†
 147335.2
 0.5041 mg/L
 0.00243
 0.5041 mg/L
 0.00243
 0.488

 A1 308.215†
 3176.9
 2.105 mg/L
 0.00120
 2.105 mg/L
 0.0029
 0.01878 mg/L
 0.0029
 0.01878 mg/L
 0.0029
 0.01878 mg/L
 0.0059
 1.967 mg/L
 0.0059
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 0.308
 <td

Sequence No.: 47

Sample ID: VP81 MBSPK TWC

Analyst: EL Dilution: 1X Autosampler Location: 92

Date Collected: 11/1/2012 9:30:14 PM

Data Type: Original

Nebulizer Parameters: VP81 MBSPK TWC

Analyte Back Pressure All 231.0 kPa

Back Pressure Flow 231.0 kPa 0.55 L/min

						- 		
Mean Data: VP81 MBSPK TWC								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2785062.7	105.2		0.73				0.69%
ScR 361.383	219357.2	103.6	ે	0.74				0.71%
Ag 328.068†	144806.7	0.4955	${ m mg/L}$	0.00168	0.4955	_	0.00168	0.34%
Al 308.215†	3091.8	2.049	${ m mg/L}$	0.0146	2.049	_	0.0146	0.71%
As 188.979†	4536.7	1.924	mg/L	0.0165	1.924		0.0165	0.86%
B 249.677†	40.2	0.01686	mg/L	0.001561	0.01686	mg/L	0.001561	9.25%
Ba 233.527†	19457.5	1.893	mg/L	0.0063	1.893	${ m mg/L}$	0.0063	0.33%
Be 313.042†	138862.0	0.5021	mg/L	0.00125	0.5021	${ m mg/L}$	0.00125	0.25%
Ca 317.933†	110550.0	10.44	mg/L	0.023	10.44	mg/L	0.023	0.22%
Cd 228.802†	40263.1	0.4772	mg/L	0.00141	0.4772		0.00141	0.29%
Co 228.616†	40408.0	0.4785	mq/L	0.00310	0.4785	mg/L	0.00310	0.65%
Cr 267.716†	2238.0	0.4887	mg/L	0.00403	0.4887	mg/L	0.00403	0.83%
Cu 324.752†	158876.2	0.5078	mq/L	0.00261	0.5078	mg/L	0.00261	0.51%
Fe 273.955†	2508.1	2.046	mq/L	0.0172	2.046	mg/L	0.0172	0.84%
K 766.490†	38197.9	10.60	mg/L	0.022	10.60	mg/L	0.022	0.21%
Mg 279.077†	11718.5	10.06	mg/L	0.077	10.06	mg/L	0.077	0.77%
Mn 257.610†	19334.0	0.4782		0.00093	0.4782	mg/L	0.00093	0.19%
Mo 202.031†	26.9	0.00128	_	0.000259	0.00128	mg/L	0.000259	20.30%
Na 589.592†	94305.3	11.40	_	0.064	11.40	mg/L	0.064	0.56%
Na 330.237†	305.2	10.91	_	0.116	10.91	mg/L	0.116	1.06%
Ni 231.604†	1053.1	0.4605	_	0.00339	0.4605	mq/L	0.00339	0.74%
Pb 220.353†	25133.3	1.902		0.0132	1.902		0.0132	0.69%
Sb 206.836†	7.8	-0.00512		0.000962	-0.00512	mq/L	0.000962	18.78%
Se 196.026†	3548.0	1.878		0.0132	1.878	mg/L	0.0132	0.70%
Si 288.158†	29.5	0.02514	_	0.002284	0.02514	_	0.002284	9.08%
Sn 189.927†	-10.0	0.00094	_	0.000092	0.00094	ma/L	0.000092	9.77%
Sr 421.552†	317040.9	0.5222		0.00213	0.5222	2 '	0.00213	0.41%
Ti 334.903†	-2.2	-0.00071	J .	0.000507	-0.00071	J .	0.000507	70.97%
T1 334.9031 T1 190.801†	6802.2	1.868	_	0.0117	1.868		0.0117	0.63%
	102168.1	0.5042		0.00271	0.5042	_	0.00271	0.54%
V 292.402†	1159.6	0.4541	_	0.00168	0.4541	_	0.00168	0.37%
Zn 206.200†	1139.6	0.4541	шу/ш	0.00100	0.4041	g / ப	0.00100	

Date: 11/1/2012 9:39:30 PM

Sequence No.: 48

Autosampler Location: 93

Sample ID: VP51 APOST SWC Date Collected: 11/1/2012 9

Analyst: EL Dilution: 2X

Date Collected: 11/1/2012 9:36:17 PM

Data Type: Original

Nebulizer Parameters: VP51 APOST SWC

 Analyte
 Back Pressure
 Flow

 All
 231.0 kPa
 0.55 L/min

Mean Data: VP51 A	POST SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
ScA 357.253	2688288.3	101.5		0.61				0.60%
ScR 361.383	211760.9	100.0		0.26				0.26%
Ag 328.068†	150822.0	0.5195		0.00097	1.039	mg/L	0.0019	0.19%
Al 308.215†	190839.9	126.9	${ m mg/L}$	0.83	253.8	mg/L	1.66	0.65%
As 188.979†	5138.0	2.193	mg/L	0.0289	4.386	mg/L	0.0577	1.32%
В 249.677†	206.2	0.09257	mg/L	0.001803	0.1851	mg/L	0.00361	1.95%
Ba 233.527†	26225.5	2.543	mg/L	0.0111	5.086	mg/L	0.0222	0.44%
Be 313.042†	147138.0	0.5308	mg/L	0.00393	1.062	mg/L	0.0079	0.74%
Ca 317.933†	2138545.9	202.0	mg/L	1.61	404.0	mg/L	3.22	0.80%
Cd 228.802†	43250.8	0.5124	mg/L	0.00430	1.025	mg/L	0.0086	0.84%
Co 228.616†	47199.6	0.5456	mg/L	0.00563	1.091	mg/L	0.0113	1.03%
Cr 267.716†	3699.7	0.8072	mg/L	0.00421	1.614	mg/L	0.0084	0.52%
Cu 324.752†	259760.0	0.8427		0.00139	1.685	mg/L	0.0028	0.16%
Fe 273.955†	216700.5	176.8	mg/L	1.19	353.6	mg/L	2.37	0.67%
K 766.490†	82269.1	22.83	mg/L	0.116	45.67	mg/L	0.231	0.51%
Mg 279.077†	102052.1	87.52	mg/L	0.710	175.0	mg/L	1.42	0.81%
Mn 257.610†	134664.5	3.327	${ m mg/L}$	0.0244	6.654	mg/L	0.0488	0.73%
Mo 202.031†	-31.9	-0.00031	mg/L	0.000473	-0.00062	mg/L	0.000946	152.73%
Na 589.592†	227089.5	27.45	mg/L	0.114	54.89	mg/L	0.228	0.42%
Na 330.237†	750.5	27.22	mg/L	0.438	54.43	mg/L	0.877	1.61%
Ni 231.604†	1613.0	0.7068	mg/L	0.00184	1.414	mg/L	0.0037	0.26%
Pb 220.353†	27647.6	2.133	mg/L	0.0243	4.265	mg/L	0.0486	1.14%
Sb 206.836†	7115.6	1.926	mg/L	0.0243	3.852	mg/L	0.0487	1.26%
Se 196.026†	3822.3	2.023	mg/L	0.0119	4.045	mg/L	0.0238	0.59%
Si 288.158†	1313.5	0.9842	mg/L	0.00559	1.968	mg/L	0.0112	0.57≉
Sn 189.927†	-10.5	0.04585	mg/L	0.001131	0.09171	mg/L	0.002261	2.47%
Sr 421.552†	702350.2	1.157	mg/L	0.0096	2.314	mg/L	0.0192	0.83%
Ti 334.903†	164067.5	6.373	mg/L	0.0435	12.75	mg/L	0.087	0.68%
Tl 190.801†	7046.6	1.923	mg/L	0.0195	3.847		0.0391	1.02%
V 292.402†	199074.5	0.9599	mg/L	0.00093	1.920	mg/L	0.0019	0.10%
Zn 206.200†	3416.2	1.341	mg/L	0.0079	2.682	mg/L	0.0158	0.59%

uper eases

Date: 11/1/2012 9:45:24 PM

Sequence No.: 49 Sample ID: CV Analyst: EL

Dilution: 1X

Autosampler Location: 7

Date Collected: 11/1/2012 9:41:30 PM

Data Type: Original

Nebulizer Parameters: CV

Analyte Back Pressure Flow 231.0 kPa 0.55 L/min

Mean Data: CV								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2717649.6	102.6	ક	0.70				0.68%
ScR 361.383	215848.6	101.9		1.09				1.07%
Ag 328.068†	286669.8	0.9809	mg/L	0.00049	0.9809	mg/L	0.00049	0.05%
Al 308.215†	2963.9	1.932	mg/L	0.0269	1,932	mg/L	0.0269	1.39%
As 188.979†	4520.1	1.916	mg/L	0.0126	1.916	mg/L	0.0126	0.66%
B 249.677†	1985.5	0.9086	mg/L	0.01043	0.9086	mg/L	0.01043	1.15%
Ba 233.527†	9524.7	0.9263	mg/L	0.01148	0.9263	mg/L	0.01148	1.24%
Be 313.042†	261240.6	0.9444	mg/L	0.00091	0.9444	mg/L	0.00091	0.10%
Ca 317.933†	20926.9	1.977	mg/L	0.0313	1.977	mg/L	0.0313	1.58%
Cd 228.802†	79521.4	0.9470	mg/L	0.00298	0.9470	mg/L	0.00298	0.329
Co 228.616†	79410.7	0.9398	mg/L	0.00039	0.9398	mg/L	0.00039	0.04%
Cr 267.716†	4316.0	0.9424	mg/L	0.01261	0.9424	mg/L	0.01261	1.34%
Cu 324.752†	323865.0	1.034	mg/L	0.0015	1.034	mg/L	0.0015	0.14 %
Fe 273.955†	2475.5	2.019	mg/L	0.0304	2.019	mg/L	0.0304	1.50%
K 766.490†	73599.0	20.43	mg/L	0.013	20.43	mg/L	0.013	0.06%
Mg 279.077†	2338.9	2.011		0.0308	2.011	mg/L	0.0308	1.53%
Mn 257.610†	37567.3	0.9287		0.00107	0.9287		0.00107	0.11%
Mo 202.031†	16011.5	0.8651		0.00515	0.8651	mg/L	0.00515	0.59%
Na 589.592†	415345.9	50.20	mg/L	0.114	50.20	mg/L	0.114	0.23%
Na 330.237†	1352.3	49.11	mg/L	0.525	49.11	mg/L	0.525	1.07%
Ni 231.604†	2087.6	0.9147	mg/L	0.01378	0.9147	mg/L	0.01378	1.51%
Pb 220.353†	24769.4	1.874	mg/L	0.0146	1.874	mg/L	0.0146	0.78%
Sb 206.836†	6891.8	1.882	mg/L	0.0137	1.882	mg/L	0.0137	0.73%
Se 196.026†	3455.2	1.827		0.0111	1.827	mg/L	0.0111	0.61%
Si 288.158†	2837.2	2.104	mg/L	0.0308	2.104	mg/L	0.0308	1.46%
Sn 189.927†	5428.0	(0.8285		0.00525	0.8285	mg/L	0.00525	0.63%
Sr 421.552†	608044.1	1.002		0.0013	1.002	mg/L	0.0013	0.13%
Ti 334.903†	24898.0	0.9676	mg/L	0.00196	0.9676	mg/L	0.00196	0.20%
Tl 190.801†	6761.4	1.851	mg/L	0.0148	1.851	mg/L	0.0148	0.80%
V 292.402†	201135.5	0.9961	mg/L	0.00117	0.9961	mg/L	0.00117	0.12%
Zn 206.200†	2451.5	0.9588	mg/L	0.01259	0.9588	mg/L	0.01259	1.31%

upei acca?

Date: 11/1/2012 9:51:32 PM

Sequence No.: 50 Sample ID: CB

Autosampler Location: 1
Date Collected: 11/1/2012 9:47:32 PM

Data Type: Original

Analyst: EL Dilution: 1X

Nebulizer Parameters: CB

Analyte
All 2

Back Pressure Flow
230.0 kPa 0.55 L/min

Mean Data: CB							
	Mean Corrected		Calib.			Sample	
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2728417.8	103.0	8	0.42			0.41%
ScR 361.383	203487.2	96.10	ક	0.945			0.98%
Ag 328.068†	170.9	0.00058	mg/L	0.000192	0.00058	mg/L	0.000192 32.80%
A1 308.215†	4.7	0.00313	mg/L	0.006476	0.00313		0.006476 206.97%
As 188.979†	4.5	0.00189	mg/L	0.000819	0.00189	mg/L	0.000819 43.26%
B 249.677†	12.0	0.00553	J .	0.000148	0.00553	mg/L	0.000148 2.68%
Ba 233.527†	-5.1	-0.00050	mg/L	0.000407	-0.00050	mg/L	0.000407 81.83%
Be 313.042†	-23.6	-0.00009	mg/L	0.000037	-0.00009	mg/L	0.000037 43.08%
Ca 317.933†	-4.8	-0.00046	mg/L	0.002324	-0.00046		0.002324 508.81%
Cd 228.802†	2.5	0.00003	J.	0.000022	0.00003	mg/L	0.000022 87.72%
Co 228.616†	-4.8	-0.00005		0.000132	-0.00005	mg/L	0.000132 240.40%
Cr 267.716†	-3.8	-0.00082		0.000445	-0.00082	mg/L	0.000445 54.04%
Cu 324.752†	-19.7	-0.00006	mg/L	0.000130	-0.00006	mg/L	0.000130 206.41%
Fe 273.955†	-2.6	-0.00208	mg/L	0.000852	-0.00208	mg/L	0.000852 40.93%
K 766.490†	399.6	0.1109	mg/L	0.01609	0.1109	mg/L	0.01609 14.51%
Mg 279.077†	2.8	0.00244	mg/L	0.001679	0.00244	mg/L	0.001679 68.76%
Mn 257.610†	13.0	0.00032	mg/L	0.000052	0.00032		0.000052 16.08%
Mo 202.031†	14.6	0.00079	mg/L	0.000121	0.00079	mg/L	0.000121 15.29%
Na 589.592†	5642.7	0.6820	mg/L	0.00579	0.6820	mg/L	0.00579 0.85%
Na 330.237†	19.2	0.7032	mg/L	0.51828	0.7032	mg/L	0.51828 73.70%
Ni 231.604†	2.3	0.00102	J .	0.003328	0.00102	mg/L	0.003328 325.12%
Pb 220.353†	-14.5	-0.00110		0.000586	-0.00110		0.000586 53.23%
Sb 206.836†	-3.1	-0.00083	mg/L	0.000540	-0.00083	mg/L	0.000540 65.39%
Se 196.026†	11.6	0.00617	mg/L	0.003203	0.00617	mg/L	0.003203 51.94%
Si 288.158†	12.3	0.00912	mg/L	0.005090	0.00912	mg/L	0.005090 55.84%
Sn 189.927†	4.8	0.00074	mg/L	0.000120	0.00074	mg/L	0.000120 16.35%
Sr 421.552†	115.8	0.00019		0.000073	0.00019	mg/L	0.000073 38.39%
Ti 334.903†	-27.5	-0.00107		0.000703	-0.00107	mg/L	0.000703 65.77%
Tl 190.801†	7.5	0.00206		0.000636	0.00206	mg/L	0.000636 30.84%
V 292.402†	19.2	0.00009		0.000193	0.00009	mg/L	0.000193 207.33%
Zn 206.200†	-18.2	-0.00712	mg/L	0.000322	-0.00712	mg/L	0.000322 4.52%

End pkg

Mercury Analysis Log

Analyst: _____*\MB* Instrument: CETAC

Date: 11-02-12 Page: ___

Al Samp		Prep Code	Dilution	QC Data (ppb)	Comments
570	0.0	SMM	lx		
îI	0.1				
11	0.5				
H	1.0				
11	2.0				
11	5.0				
11	10.0				
ICV				7.95	Begin CLP. 2R=99 V
ICB				-0.02	✓
CCVI				4.06	2R=102 V
CCBI				-0.01	V
CRA				0.10	V
VP5i	MBI			0.00	✓
8/	MBISPK			2.02	2R=101 ~
17	A			0-15	
RI	ADUP			0.17	V
ti	ASPIC			1.23	ZR=108 ✓
17	B				
4	<u> </u>				
é l					
i1	D E				
LCV2				4.03	2R=101 V
CCB2	···			-0.01	
VP51	F				
VP54	MBi			-0.60	V
#	MBISAK			1.88	2R=94 V
"	_A			0.30	
"	Apur			0.28	\
h	ASPK	1		1.34	7R=104 V
11	D	-			

^	ho	m	امما	JD.			6 OF .
•	116	111	ıvaı	/ 17(ead	ent	ID:

10% SnCl₂: MP2384

14% NH2OH/NaCI: MP2360

Standard ID: Standard: <u>그건웅궁-구</u>

icv/ccv: <u>56-18</u>

Mercury Analysis Log

Analyst: ____/\\S Instrument: <u>CETAC</u>

Date: 11-02-12 Page: _2_ of _4

ARI Sample ID		Prep Code	Dilut	lion	QC Data (ppb)	Con	nments	
		MM	l×		(2)			The steps of the
	4			2				
	i				***************************************			
CCV3					4.01		ZR=100	· defe
CCB3			(-0.00			·/
V254								
11	V							
ccv4	\rightarrow				4.03		ZR=101	1 200
cc84	-				-0.01	End CLP		~
	Bi				0.00			V
.,, W	BISPK				1.94		12 = 97	V
ie #	1	ļ						
	18				-0.01	PE scaph		·/
11	H \				22.57	7	Sat d	×
CCV		1			4.02		5at d 2R=101	V
CCB		\	1	,	-0.01			V
CCV CCB VO93 H	'		5x	-	20:70	PE Single	High ZR=100	X
CCV		$\bot \bot$	<u>l×</u>		3.49		ZR=loc	. "
CCB			IX		-0.01			
V093 H		1	20	X	5,27	PESample		
CCV			\/x		3.48		ZR=100	Ŷ.
CCB		V	\perp		-0.01			100
	0.0 5	WM						
li C) e [1		
<i>tr</i> 6	3.5					I I WYY	0/	
11	.0					Mille	rv	
	2.0					V		$\neg \neg$
	5.0							
	0.0							
ICV			V		7.86	-	%R=98	V

Chemical/Reagent ID: 10% SnCl₂: MFC384

MP2360 14% NH2OH/NaCI: 12360 1602-12

Standard ID:

Standard: 2988-7

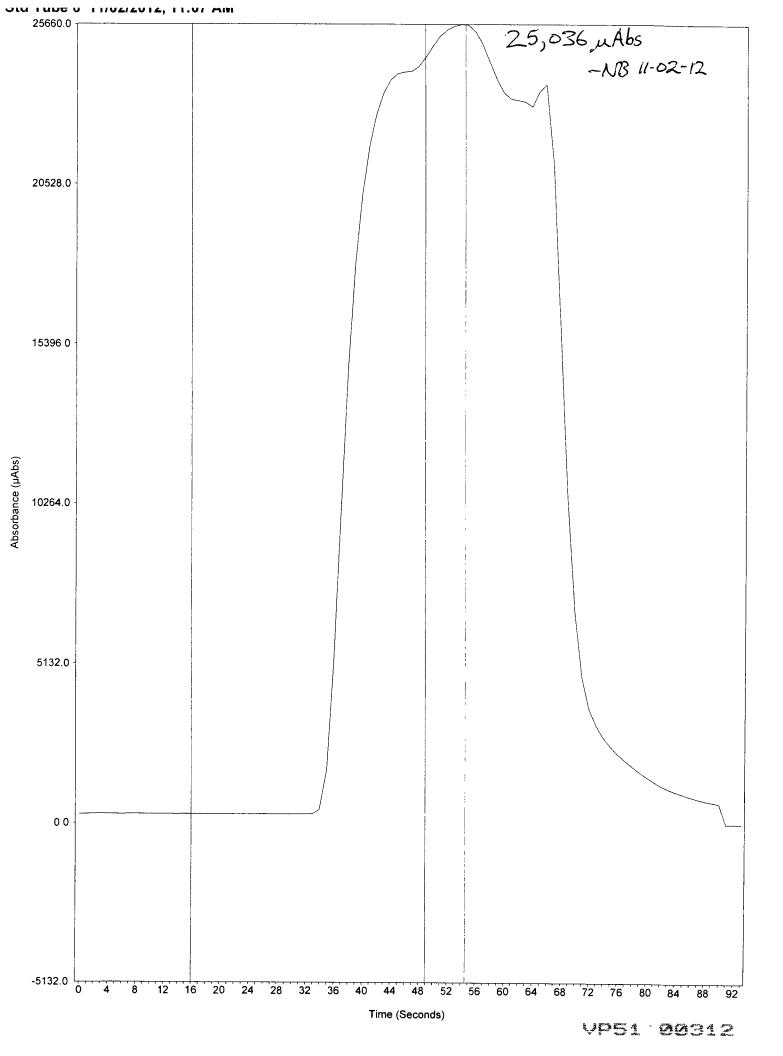
ICV/CCV: 56-18

5026F

Page 08770

Revision 4 1/26/01

unga ngaan



Metals Data Review Checklist

Method: ICP ICP-MS GFA CVA

Analysis Date: 11-02-12

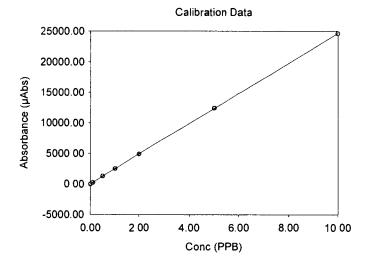
	Analyst	Peer	Comment
Logieck	NB 11-02-12	ACII-5	
Analyst, Date, Method info	_	7	
Sample ID's		,	
Standard/QC solution ID's recorded	\(\sqrt{\sqrt{\color{1000000000000000000000000000000000000	V	
Prep codes			
Dilution factors		1	
Crossouts/Corrections/Deletions		/	
Calibration:			
Blank & Standard intensities	- V	//	
Standard deviations	- V	, , , , , , , , , , , , , , , , , , ,	
Curve fit			
Calibration Verification:			
ICV/CCV	V	8	
ICB/CCB	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/	
Samples			
RSD's & SD's	V	1	
Internal Standards		_	
Carry-over		1	
Wethod OC:			
CRI/CRA		✓	
ICSA/ICSAB		_	
Post Spikes/Serial Dilutions		_	
Analytic Spikes			
Matrix OC:			
SRM/LCS		J	
Matrix Spikes	V	/	
Matrix Duplicates	V	/	
Method Blanks	V		
Data Distribution:			
Requested elements/isotope identified	V	/	
Correct samples identified for distribution) V	7	
Raw data match distributed data	V	1	
Data filename correct	V	/	
Negeosary Amalysts Notes and CAF's			

CETAC Hg Analysis Report - 12110200.DB - Friday, November 02, 2012, 3:12:27 PM

11-512

Page 1

Analyst
Date Started
Worksheet
Comment


Friday, November 02, 2012, 11:07:16

ARI 10ppb CALIB

Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. μAbs	Dilution	Flags
Std Tube 6	02-Nov-2012, 11:07	10.00	1.43	25000 00	1 00	

Information about this calibration could not be retrieved from the Master File.

Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. μAbs	Dilution	Flags
Calibration Zero	02-Nov-2012, 11:09	0.00	22.70	-15.50	1 00	
Standard #1	02-Nov-2012, 11:11	0.10	0.62	247.00	1.00	
Standard #2	02-Nov-2012, 11:12	0.50	0 48	1260.00	1.00	
Standard #3	02-Nov-2012, 11:14	1.00	0 32	2490.00	1.00	
Standard #4	02-Nov-2012, 11:16	2.00	0.66	4870.00	1.00	
Standard #5	02-Nov-2012, 11:17	5 00	0.59	12400.00	1.00	
Standard #6	02-Nov-2012, 11.19	10.00	0 44	24600.00	1.00	

int	0 000
Slope	2468.092
Correlation	0 99999

Sample ID Analysis Time Conc (PPB) %RSD Avg. µAbs Dilution Flags Begin CLP ICV 02-Nov-2012, 11:28 7.95 0.50 19600.00 1.00 **ICB** 02-Nov-2012, 11.29 -0.02 2.01 -59 30 1.00 Sample ID **Analysis Time** Conc (PPB) %RSD Avg. µAbs Dilution Flags QC Standard 02-Nov-2012, 11:31 4 06 10000 00 0.43 1 00 Sample ID **Analysis Time** Conc (PPB) %RSD Avg. µAbs Dilution Flags QC Blank 02-Nov-2012, 11:32 -0.01 8.21 -29.90 1 00 Sample ID **Analysis Time** Conc (PPB) %RSD Avg. µAbs Dilution Flags CRA 02-Nov-2012, 11:34 0.10 0.55 257.00 1.00 VP51 MB1 SMM 02-Nov-2012, 11:36 0.00 22.10 10.70 1 00 VP51 MB1SPK SMM 02-Nov-2012, 11:37 2.02 0.48 4970.00 1.00 VP51 A SMM 02-Nov-2012, 11:39 0.15 0.98 370.00 1.00 VP51 ADUP SMM 02-Nov-2012, 11:40 0.44 0.17 424 00 1.00 VP51 ASPK SMM 02-Nov-2012, 11:42 0.61 1.23 3030.00 1.00 VP51 B SMM 02-Nov-2012, 11:44 0.76 0.42 1880 00 1.00 02-Nov-2012, 11:45 VP51 C SMM 0.40 0.23 993.00 1.00 VP51 D SMM 02-Nov-2012, 11:47 0.35 0.28 865 00 1.00 VP51 E SMM 02-Nov-2012, 11:49 1.26 0.51 3120 00 1.00 Sample ID Analysis Time Conc (PPB) %RSD Avg. µAbs Dilution Flags QC Standard 02-Nov-2012, 11:50 4.03 0.39 9940 00 1.00

Analyst Date Started Worksheet Comment

Friday, November 02, 2012, 11:52:20 ARI 10ppb CALIB

Commis ID	Amakasia Tima	Cama (DDD)	e/ DCD	A	Dilestina	Flores
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. µAbs	Dilution	Flags
QC Blank	02-Nov-2012, 11:52	-0.01	13 30	-31.80	1.00	
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. µAbs	Dilution	Flags
VP51 F SMM	02-Nov-2012, 11:53	1.44	0.66	3550.00	1 00	
VP54 MB1 SMM	02-Nov-2012, 11:55	-0.00	30.00	-5.28	1 00	
VP54 MB1SPK SMM	02-Nov-2012, 11:57	1.88	0.72	4630.00	1.00	
VP54 A SMM	02-Nov-2012, 11:58	0.30	0.64	730 00	1.00	
VP54 ADUP SMM VP54 ASPK SMM	02-Nov-2012, 12.00 02-Nov-2012, 12:01	0 28 1.34	0 70 0 74	691 00 3310 00	1.00 1.00	
VP54 ASEK SIVIVI	02-Nov-2012, 12:01	0.15	1.02	365.00	1 00	
VP54 G SMM	02-Nov-2012, 12:05	0.30	0.30	730.00	1.00	
VP54 H SMM	02-Nov-2012, 12:06	0.26	0.67	648 00	1 00	
VP54 I SMM	02-Nov-2012, 12:08	0.34	0.63	832.00	1.00	
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. µAbs	Dilution	Flags
QC Standard	02-Nov-2012, 12.10	4.01	0.49	9900.00	1.00	
	,					
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. μAbs	Dilution	Flags
QC Blank	02-Nov-2012, 12:11	-0.00	7.62	-12 20	1 00	
GC Blank	02-1404-2012, 12.11	-0.00	7.02	-12 20	1 00	
Commis ID	Amabasia Tim	Come (DDD)	0/ 000	AA! =	Dila:	Flore
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. µAbs	Dilution	Flags
VP54 L SMM VP54 N SMM	02-Nov-2012, 12.13 02-Nov-2012, 12 ⁻ 15	0.29 0.28	0.36 0.33	703.00 688 00	1.00 1.00	
VP34 N 3NNN	02-1404-2012, 12 15	0.20	0.33	000 00	1 00	
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. µAbs	Dilution	Flags
QC Standard	02-Nov-2012, 12:16	4.03	0.54	9940.00	1.00	
,	- ,					
1						
Samula ID	Anchinia Tima	Cons (DDD)	% BSD	Ava uAba	Dilution	Elema
Sample ID	Analysis Time	Conc (PPB)	%RSD	Avg. μAbs	Dilution	Flags
Sample ID QC Blank	Analysis Time 02-Nov-2012, 12 18	Conc (PPB) -0.01	%RSD 16.50	Avg. µAbs -13 60	Dilution 1.00	Flags End CLP.
QC Blank Sample ID	02-Nov-2012, 12 ⁻ 18 Analysis Time	-0.01	16.50 %RSD	-13 60 Avg. µAbs	1.00 Dilution	End CLP.
QC Blank	02-Nov-2012, 12·18	-0.01	16.50	-13 60	1.00	End CLP.
QC Blank Sample ID VP90 MB1 SMM	02-Nov-2012, 12·18 Analysis Time 02-Nov-2012, 12:22	-0.01 Conc (PPB) 0.00	16.50 %RSD 277.00	-13 60 Avg. µAbs 0.99	1.00 Dilution 1.00	End CLP.
QC Blank Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM	02-Nov-2012, 12·18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:27	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01	16.50 %RSD 277.00 0.89 1.41 52.90	-13 60 Avg. µAbs 0.99 4790.00 400.00 -12.60	1.00 Dilution 1.00 1.00 1.00	End CLP.
QC Blank Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM	02-Nov-2012, 12·18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25	-0.01 Conc (PPB) 0.00 1.94 0.16	16.50 %RSD 277.00 0.89 1.41	-13 60 Avg. µAbs 0.99 4790.00 400.00	1.00 Dilution 1.00 1.00 1.00	End CLP.
QC Blank Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM	02-Nov-2012, 12·18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:27	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01	16.50 %RSD 277.00 0.89 1.41 52.90	-13 60 Avg. µAbs 0.99 4790.00 400.00 -12.60	1.00 Dilution 1.00 1.00 1.00	End CLP.
QC Blank Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM	02-Nov-2012, 12·18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:27	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01	16.50 %RSD 277.00 0.89 1.41 52.90	-13 60 Avg. µAbs 0.99 4790.00 400.00 -12.60	1.00 Dilution 1.00 1.00 1.00	End CLP.
QC Blank Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM	02-Nov-2012, 12·18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:27 02-Nov-2012, 12:28 Analysis Time	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd.	16.50 %RSD 277.00 0.89 1.41 52.90 0.00 %RSD	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00 Avg. μAbs	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 Dilution	End CLP. Flags SO Sat'd
QC Blank Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:28	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB)	16.50 %RSD 277.00 0.89 1.41 52.90 0.00	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00	1.00 Dilution 1.00 1.00 1.00 1.00 1.00	End CLP. Flags SO Sat'd
QC Blank Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID QC Standard	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:28 Analysis Time 02-Nov-2012, 12:32	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB) 4.02	16.50 %RSD 277.00 0.89 1.41 52.90 0.00 %RSD 0.54	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00 Avg. μAbs 9920.00	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 Dilution 1.00	End CLP. Flags So Sat'd Flags
QC Blank Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID QC Standard Sample ID	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:28 Analysis Time 02-Nov-2012, 12:32 Analysis Time	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB) 4.02 Conc (PPB)	16.50 **RSD 277.00 0.89 1.41 52.90 0.00 **RSD 0.54 **RSD	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00 Avg. μAbs 9920.00 Avg. μAbs	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 1.00 Dilution 1 00 Dilution	End CLP. Flags SO Sat'd Flags
QC Blank Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID QC Standard	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:28 Analysis Time 02-Nov-2012, 12:32	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB) 4.02	16.50 %RSD 277.00 0.89 1.41 52.90 0.00 %RSD 0.54	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00 Avg. μAbs 9920.00	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 Dilution 1.00	End CLP. Flags So Sat'd Flags
QC Blank Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID QC Standard Sample ID QC Blank	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:28 Analysis Time 02-Nov-2012, 12:32 Analysis Time 02-Nov-2012, 12:34	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB) 4.02 Conc (PPB) -0.01	16.50 %RSD 277.00 0.89 1.41 52.90 0.00 %RSD 0.54 %RSD 16.60	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00 Avg. μAbs 9920.00 Avg. μAbs -21.70	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 1.00 Dilution 1.00 Dilution 1.00	End CLP. Flags So Sat'd Flags Flags
Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID QC Standard Sample ID QC Blank Sample ID	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:27 02-Nov-2012, 12:28 Analysis Time 02-Nov-2012, 12:32 Analysis Time 02-Nov-2012, 12:34 Analysis Time	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB) 4.02 Conc (PPB) -0.01 Conc (PPB)	16.50 **RSD 277.00 0.89 1.41 52.90 0.00 **RSD 0.54 **RSD 16.60 **RSD	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00 Avg. μAbs 9920.00 Avg. μAbs -21.70 Avg. μAbs	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 Dilution 1.00 Dilution 1.00 Dilution	End CLP. Flags SO Sat'd Flags Flags
QC Blank Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID QC Standard Sample ID QC Blank	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:28 Analysis Time 02-Nov-2012, 12:32 Analysis Time 02-Nov-2012, 12:34	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB) 4.02 Conc (PPB) -0.01 Conc (PPB)	16.50 %RSD 277.00 0.89 1.41 52.90 0.00 %RSD 0.54 %RSD 16.60	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00 Avg. μAbs 9920.00 Avg. μAbs -21.70	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 1.00 Dilution 1.00 Dilution 1.00	End CLP. Flags So Sat'd Flags Flags
Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID QC Standard Sample ID QC Blank Sample ID	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:27 02-Nov-2012, 12:28 Analysis Time 02-Nov-2012, 12:32 Analysis Time 02-Nov-2012, 12:34 Analysis Time	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB) 4.02 Conc (PPB) -0.01 Conc (PPB)	16.50 **RSD 277.00 0.89 1.41 52.90 0.00 **RSD 0.54 **RSD 16.60 **RSD	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00 Avg. μAbs 9920.00 Avg. μAbs -21.70 Avg. μAbs	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 Dilution 1.00 Dilution 1.00 Dilution	End CLP. Flags SO Sat'd Flags Flags
Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID QC Standard Sample ID QC Blank Sample ID	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:27 02-Nov-2012, 12:28 Analysis Time 02-Nov-2012, 12:32 Analysis Time 02-Nov-2012, 12:34 Analysis Time	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB) 4.02 Conc (PPB) -0.01 Conc (PPB)	16.50 **RSD 277.00 0.89 1.41 52.90 0.00 **RSD 0.54 **RSD 16.60 **RSD	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00 Avg. μAbs 9920.00 Avg. μAbs -21.70 Avg. μAbs	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 Dilution 1.00 Dilution 1.00 Dilution	End CLP. Flags SO Sat'd Flags Flags
Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID QC Standard Sample ID QC Blank Sample ID VO93 H SMM	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:28 Analysis Time 02-Nov-2012, 12:32 Analysis Time 02-Nov-2018, 12:34 Analysis Time 02-Nov-2018, 12:34	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB) 4.02 Conc (PPB) -0.01 Conc (PPB) 20.70	16.50 **RSD 277.00 0.89 1.41 52.90 0.00 **RSD 0.54 **RSD 16.60 **RSD 0.61	-13 60 Avg. μAbs 0.99 4790.00 400 00 -12.60 55700.00 Avg. μAbs 9920.00 Avg. μAbs -21.70 Avg. μAbs 51100.00	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 Dilution 1.00 Dilution 1.00 Dilution 5.00	End CLP. Flags So Sat'd Flags Flags O High
Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID QC Standard Sample ID QC Blank Sample ID VO93 H SMM	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:27 02-Nov-2012, 12:28 Analysis Time 02-Nov-2012, 12:34 Analysis Time 02-Nov-2012, 12:34 Analysis Time 02-Nov-2012, 12:40 Analysis Time	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB) 4.02 Conc (PPB) -0.01 Conc (PPB) 20.70 Conc (PPB)	16.50 %RSD 277.00 0.89 1.41 52.90 0.00 %RSD 0.54 %RSD 16.60 %RSD 0.61	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00 Avg. μAbs 9920.00 Avg. μAbs -21.70 Avg. μAbs 51100.00 Avg. μAbs	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 Dilution 1.00 Dilution 5.00 Dilution	End CLP. Flags So Sat'd Flags Flags O High
Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID QC Standard Sample ID QC Blank Sample ID VO93 H SMM Sample ID VO93 H SMM	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:28 Analysis Time 02-Nov-2012, 12:32 Analysis Time 02-Nov-2012, 12:34 Analysis Time 02-Nov-2012, 12:40 Analysis Time 02-Nov-2012, 12:40	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB) 4.02 Conc (PPB) -0.01 Conc (PPB) 20.70 Conc (PPB) 3.99	16.50 %RSD 277.00 0.89 1.41 52.90 0.00 %RSD 0.54 %RSD 16.60 %RSD 0.61 %RSD 0.77	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00 Avg. μAbs 9920.00 Avg. μAbs -21.70 Avg. μAbs 51100.00 Avg. μAbs 9850.00	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 Dilution 1.00 Dilution 1.00 Dilution 1.00 Dilution 1.00	Flags SO Sat'd Flags Flags O High Flags
Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID QC Standard Sample ID QC Blank Sample ID VO93 H SMM Sample ID VO93 H SMM Sample ID VO93 H SMM	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:27 02-Nov-2012, 12:28 Analysis Time 02-Nov-2012, 12:34 Analysis Time 02-Nov-2012, 12:40 Analysis Time 02-Nov-2012, 12:40 Analysis Time 02-Nov-2012, 12:40 Analysis Time	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB) 4.02 Conc (PPB) -0.01 Conc (PPB) 20.70 Conc (PPB) 3.99 Conc (PPB)	16.50 %RSD 277.00 0.89 1.41 52.90 0.00 %RSD 0.54 %RSD 16.60 %RSD 0.61 %RSD 0.77	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00 Avg. μAbs 9920.00 Avg. μAbs -21.70 Avg. μAbs 51100.00 Avg. μAbs 9850.00 Avg. μAbs	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 Dilution 1.00 Dilution 5.00 Dilution	End CLP. Flags So Sat'd Flags Flags O High
Sample ID VP90 MB1 SMM VP90 MB1SPK SMM VP90 A SMM VO93 MB SMM VO93 H SMM Sample ID QC Standard Sample ID QC Blank Sample ID VO93 H SMM Sample ID VO93 H SMM	02-Nov-2012, 12:18 Analysis Time 02-Nov-2012, 12:22 02-Nov-2012, 12:23 02-Nov-2012, 12:25 02-Nov-2012, 12:28 Analysis Time 02-Nov-2012, 12:32 Analysis Time 02-Nov-2012, 12:34 Analysis Time 02-Nov-2012, 12:40 Analysis Time 02-Nov-2012, 12:40	-0.01 Conc (PPB) 0.00 1.94 0.16 -0.01 Sat'd. Conc (PPB) 4.02 Conc (PPB) -0.01 Conc (PPB) 20.70 Conc (PPB) 3.99	16.50 %RSD 277.00 0.89 1.41 52.90 0.00 %RSD 0.54 %RSD 16.60 %RSD 0.61 %RSD 0.77	-13 60 Avg. μAbs 0.99 4790.00 400.00 -12.60 55700.00 Avg. μAbs 9920.00 Avg. μAbs -21.70 Avg. μAbs 51100.00 Avg. μAbs 9850.00	1.00 Dilution 1.00 1.00 1.00 1.00 1.00 Dilution 1.00 Dilution 1.00 Dilution 1.00 Dilution 1.00	Flags SO Sat'd Flags Flags O High Flags

Analyst

Date Created:Thursday, July 13, 2000WorksheetARI 10ppb CALIB

Comment

30 Sip Duration (Sec.): Rinse Duration (Sec.): 60 Read Delay: 49 Integration Time/Replicate: 1.40 # of Replicates: 4 # of Repeats: **Baseline Correction Enabled:** True **Baseline Point 1 Start Time:** 10 **Baseline Point 1 End Time:** 16 2-Point Baseline Corr. Enabled: False **Baseline Point 2 Start Time:**

Baseline Point 2 Start Time:

Gas Flow (ml/min): 180

Calibration Algorithm: Linear, Zero Intercept

Recalibration Frequency: 0
Reslope Frequency: 0
Reslope Standard: 5

Calibration Standard #1 Conc.:

Calibration Standard #2 Conc.:

Calibration Standard #3 Conc.:

Calibration Standard #4 Conc.:

Calibration Standard #4 Conc.:

Calibration Standard #5 Conc.:

Calibration Standard #6 Conc.:

Calibration Standard #6 Conc.:

0.10 PPB
0.50 PPB
0.10 PPB

QC Enabled: True QC-RSD Enabled: True

Limit Condition & Error Action: If %RSD > 5.0%, if µAbs > 1500, Flag and Continue

QC-Std Enabled: True

Limit Condition & Error Action: If outside 80% .. 120%, Stop

QC-Blank Enabled: True

Limit Condition & Error Action: If outside -100 .. 100, Stop

Mercury Standard Prep Log

Bath Temp:				Instrument:	<u> </u>
oaun remp:	(3			Date:	10-31-12
		Start Time:	115 C	_ End Time:	1220
Standard ID	ID	Volume Added (mL)	Final Volume (mL)	Standard Conc. (μg/L)	Number Made
STD0		0.00	50.0	0.0	3
STD1	2988->	0.01		C · i	2
STD2		0.05		0.5	2
STD3		0.10	Addition of the second	1,0	
STD4		0.20		14·C),
STD5		0 50	İ	5.4	2
STD6		1.00		10.0	2
CRA	- t	001		C f	
ICB/CCB		0.00	9	0.0	3
ICV/LCS	E6-17	: C + 0	1	8.0	, '
CCV mical/Reagent II	ign	C V 4	5-16	.1 0	}
		411 6011 601	at v;		CE74C
rep Code: 5 v	V 19	411 - 10 27 eC 1	a (, , ;)	Instrument: _ Date: _	10-3 -13
rep Code: <u>5</u> \	V 19	Start Time:	ISU Final Volume	Instrument: _ Date: _ End Time: _ Standard Conc.	10-3 -13
rep Code:S\/ Analyst: ith Temp:s Standard ID STD0	U M UIS USC Stock	۹۱۱ نصدودا ۱۹۱۱ عدد ا	Final Volume (mL)	Instrument: Date: End Time: Standard Conc. (µg/L	Number Made
rep Code:S Analyst:s ath Temp:s Standard ID STD0 STD1	Stock	Start Time: Volume Added (mL)	ISU Final Volume	Instrument:	Number Made
rep Code:S\ Analyst:s ath Temp:s Standard D STD0 STD1 STD2	Stock ID	Start Time: Volume Added (mL) 0.00	Final Volume (mL)	Instrument: Date: End Time: Standard Conc. (µg/L	Number Made
rep Code:Synth Temp:Si Standard ID	Stock ID	Start Time: Volume Added (mL) 0.00	Final Volume (mL)	Instrument: Date: _ End Time: _ Standard Conc. (µg/L)	Number Made
rep Code:Synth Temp:sith Temp:	Stock ID	Start Time: Volume Added (mL) 0.00 ©.01 0.05	Final Volume (mL)	Instrument: Date: End Time: Standard Conc. (µg/L)	Number Made
rep Code:Sy Analyst:ath Temp:a Standard ID STD0 STD1 STD2 STD3 STD4 STD5	Stock ID	Start Time:	Final Volume (mL)	Instrument: Date: End Time: Standard Conc. (µg/L)	Number Made 2 2 2
rep Code:	Stock ID	Start Time: Volume	Final Volume (mL)	Instrument:	Number Made 2 2 2 2 3
rep Code:S\ Analyst:	Stock ID	Start Time:	Final Volume (mL)	Instrument: Date: End Time: Standard Conc. (µg/L) CS CS CS CS CS CS CS CS CS C	Number Made 2 2 2 2 2
rep Code:Sy Analyst: ath Temp: Standard ID STD0 STD1 STD2 STD3 STD4 STD5 STD6 CRA ICB/CCB	Stock ID	Start Time: Volume Added (mL) 0.00 0.01 0.05 0.10 0.20 0.50 0.00	Final Volume (mL)	Instrument:	Number Made 2 2 2 2 3 3
rep Code:	Stock ID	Start Time: Volume Added (mL)	Final Volume (mL)	Instrument:	Number Made 2 2 2 3 2 3 3
rep Code:S\ Analyst:	Stock ID	Start Time: Volume Added (mL)	Final Volume (mL)	Instrument: Date: End Time: Standard Conc. (µg/L) CS TO CS TO CO CO CO CO CO CO CO CO CO	Number Made 2 2 2 2 3 3
rep Code:S\/ Analyst: ath Temp: Standard ID STD0 STD1 STD2 STD3 STD4 STD5 STD6 CRA ICB/CCB ICV/LCS CCV ical/Reagent ID:	Stock ID	Start Time:	Final Volume (mL)	Instrument:	Number Made 2 2 2 3 2 3 3

Page 01876

Revision 006 11/7/08

Mercury Digestion Log

Prep Code:SMM		Matrix: SOIL
Analyst:NB		Date: 10-30-12
Bath Temp: <u>92°C</u>	Start Time:	End Time: 1337

	ARI nple ID	Sample Bottle #	pH<2	Initial Weight (g) Volume (mL)	Final Volume (mL)	# KMnO ₄ Aliquots	CLP	Comments
VP	Si A	7	-	0.215	50.0	11 00	YES	
"	ADUP	7	-	0.215			T	
"	ASPK	7	-	0.216				
"	B	7	-	0.271				
"	C	7		0.222				
"	D	7	-	0.235				
"	E	7		0.273				
"	F	7		0.272		1		
"	MBI		-					
"	MBISPK				50.0			
				NB 10-30	-12			

Chemical/Reagent ID:	
The second secon	

HNO₃: <u>T7628</u> H₂SO₄: <u>T7677</u> HCI: _____ 5% K₂S₂O₈: <u>MP2375</u> 5% KMnO₄: <u>MP2376</u> Digest Tube Lot: <u>1205258</u>

5037F

Page 12569

Revision 007 6/18/09

January 3, 2013

Cindy Fields Anchor QEA 720 Olive Way, Suite 1900 Seattle, WA 98101

RE: Client Project: Central Waterfront RI, 080007-01.02

ARI Job No.: VX92

Dear Cindy:

Please find enclosed the Chain of Custody records (COCs), sample receipt documentation, and the results for samples from the project referenced above. On December 27, 2012 ten soil samples were removed from archive. Per email instructions, ten gram aliquots were taken from each sample to form one composite sample. The composite sample was analyzed for TCLP lead, as requested.

There were no anomalies associated with the analysis of this sample.

An electronic copy of this report and all supporting raw data will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro
Project Manager
(206) 695-6214
cheronneo@arilabs.com
www.arilabs.com

cc: eFile VX92

Enclosures

Subject: RE: TCLP Lead analysi request on VB51 held samples

From: Nik Bacher <nbacher@anchorgea.com>

Date: 12/27/2012 7:34 AM

To: Cheronne Oreiro <cheronneo@arilabs.com>

CC: Cindy Fields <cfields@anchorqea.com>, Halah Voges <hvoges@anchorqea.com>

Hi Cheronne

Take the same amount of material out of each jar to ensure you have enough volume in the final composite to be able to run TCLP.

Niklas Bacher, L.G.

ANCHOR QEA, LLC

nbacher@anchorgea.com

From: Cheronne Oreiro [mailto:cheronneo@arilabs.com]

Sent: Wednesday, December 26, 2012 2:33 PM

To: Nik Bacher

Cc: Cindy Fields; Halah Voges

Subject: Re: TCLP Lead analysi request on VB51 held samples

Hi Nik,

Do you have any special compositing instructions? For example do you want us to take 10g from each jar, 20g, etc?

Thanks,

-Cheronne

NOTE: ARI is closed December 25th and January 1st.

I will be out of the office Dec. 24th-25th and Dec. 28-Jan. 1st.

Cheronne Oreiro
Project Manager
Analytical Resources, Inc.
4611 S. 134th Place, Suite 100
Tukwila, WA 98168-3240
cheronneo@arilabs.com
(206)-695-6214

This correspondence contains confidential information from Analytical Resources, Inc. (ARI) The information contained herein is intended solely for the use of the individual(s) named above. If you are not the intended recipient, any copying, distribution, disclosure, or use of the text and/or attached document(s) is strictly prohibited.

If you have received this correspondence in error, please notify sender immediately. Thank you.

On 12/26/2012 11:26 AM, Nik Bacher wrote:

Hi Cheronne

We would like to run TCLP lead on samples currently on hold for SDG VB51. See attached PDF and highlighted samples. I think those are the ones that are still in hold based on information you

VX92: @@@@/2012 9:55 AM

gave Cindy a few weeks back. Please advise if that is not the case.

Please pull the highlighted samples from hold and prepare one composite sample which should be analyzed for TCLP lead only. If possible, retain and hold all remaining individual sample material not used for the composite.

Please let me or Cindy know if you have any questions.

Thanks Nik

Niklas Bacher, L.G.

Senior Geologist

ANCHOR QEA, LLC

nbacher@anchorqea.com 720 Olive Way, Suite 1900 Seattle, WA 98101

T 206.287.9130

D 206.903.3376

C 206.351.0951

ANCHOR QEA,LLC

www.anchorgea.com

Please consider the environment before printing this email.

This electronic message transmission contains information that may be confidential and/or privileged work product prepared in anticipation of litigation. The information is intended for the use of the individual or entity named above. If you are not the intended recipient, please be aware that any disclosure, copying distribution or use of the contents of this information is prohibited. If you have received this electronic transmission in error, please notify us by telephone at (206) 287-9130.

VX92: @@@@2/2012 9:55 AM

Page 1 of 1

Cooler Temp. (Deg.C): 0.3-2.9

Logged by: TS

Validatable Data Pkg: LV4 Client: Anchor QEA, LLC Contact: Fields, Cindy

Special Instructions:

ANALYTICAL RESOURCES INCORPORATED

ARI Job No: VB51

Project Manager: Cheronne 206-695-6214 VTSR: 07/07/12

Data Due: 07/23/12

Project No: 080007-01.02 Proj ID: Central Waterfront RI SDG No:

In-hous	
Analytical Protocol:	Deliverables:

14 Sample(s)		Matrix	Sampling	*	CHGTWN WN	SWR260Acid/silcRotti	<u>v</u>
ARI ID	Client ID	Condition	Date/Time	*HOLD*	φ	VOA NWTPHD ON HOLD	Q.
12-12906-VB51A	CW-TP-06-5.5-6.5	Soil	07/02/12 09:35		×	×	
	CW-TP-06-5.5-6.5	Soil	07/02/12 09:40		×		
	CW-TP-06-5.5-6.5	Soil	07/02/12 09:40			×	
	CW-TP-07-6.5-7.5	Soil	07/02/12 10:35	×		9	
	CW-TP-07-6.5-7.5	Soil	07/02/12 10:40	×		1	
12-12911-VB51F	CW-TP-07-9-10	Soil	07/02/12 10:50		×	X	
	CW-TP-07-9-10	Soil	07/02/12 10:55		×		
	CW-TP-07-9-10	Soil	07/02/12 10:55			×	
12-12914-VB51I	CW-TP-09-6.3-7.3	Soil	07/02/12 12:35		×	×	
E CONTRACTOR OF THE PROPERTY O	CW-TP-09-6.3-7.3	Soil	07/02/12 12:40		×		
	CW-TP-09-6.3-7.3	Soil	07/02/12 12:40	4		X	
12-12917-VB51L	CW-TP-09-10-11	Soil	07/02/12 12:55		X	×	
ALIZAGE BUSECIES	CW-TP-09-10-11	Soil	07/02/12 13:00		×		
	the CWTP-0910,11 hown here.	Spilhere a	07/02/12 13:00	discrepa	incies, conta	ct your ARI ^X Project M	Spilnere are 7/02/12 13:00 discrepancies, contact your ARI ^X Project Manager designated above.

Unless other arrangements for storage/archiving samples are made for this project, volatile samples not consumed will be disposed of 08/06/12. All other sample aliquots will be disposed no earlier than 10/19/12.

Chain of Custody Record & Laboratory Analysis Request

Analytical Resources, Incorporated Analytical Chemists and Consultants	4611 South 134th Place, Suite 100 Tukwila, WA 98168	206-695-6200 206-695-6201 (fax)	Notes/Comments	Perform all	こがです-0×かん	a without silico		With and Wo Silia ad clarup		10 m		7-		Ų,		11	Received by: (Signature)	Printed Name:	Company:	Date & Time:
Page: of 5	Date: 7/2/12 Present?	No. of Cooler Coolers: Temps:	Analysis Requested	χη- Χη-	X	TWN TWN TWN		X	SON SON XX X	X XON X	X X X X	X	X X X	×		×	Relinquished by: (Signature)	My Commendation of the Comment of th	Company:	7/12 1030 Date & Time:
ARI Assigned Number: Tum-around Requested:	ARI Client Company: A. L.C. Phone: (2016) 903 3394	lia L	arme: 19 12 datado	Welchont Ringlers	1080007-01-02- JC	Sample ID Date Time Matrix No. Containers	CW-TP-CS-S-5-5-12/12/935 SO 6	14/2 940	CIN-TP-07-69-7,5 12/12 1/035 SO 6	0401 71/1/2	1/2	CW-TP-07-9-10 Hila 1055 SO	CW-72-09-6.3-7.3 76/12 1235 50 16	CW-7P-09-11,3-73 76/12/1240 SO 1	2007-10-11 74/2 12-55 SO 6	1300 SD	Relingdished by: (Signature)	Printed Name:		Date & Time: Date & Time: Date & Time:

said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for signed agreement between ARI and the Client.

vyga: 60665

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless afternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client: Anchor	Project Name: Central	Water Seent Sile RI
COC No(s):	Delivered by: Fed-Ex UPS Courier	
Assigned ARI Job No:	Tracking No:	
Preliminary Exam ination Phase:	Tracking No.	(NA.)
Were intact, properly signed and dated custody seals attached to	the outside of to cooler?	YES
Were custody papers included with the cooler?		NECO
Were custody papers properly filled out (ink, signed, etc.)	•	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chem		3 1a NO
If cooler temperature is out of compliance fill out form 00070F		emp Gun ID#: 7/9////3
100	7/d/17/1/12	1030
Cooler Accepted by: Complete custody forms a	Date:Time: and attach all shipping documents	
Log-in Phase:	and an emponing dealmonts	
Was a temperature blank included in the cooler?		YES NO
Was sufficient ice used (if appropriate)?		AIA COST
Were all bottles s ealed in individual plastic bags?		NO
Did all bottles arrive in good condition (unbroken)?		YES NO
Were all bottle labels complete and legible?		· · · · · · · · · · · · · · · · · · ·
Did the number of containers listed on COC match with the numb	,	YOU NO
Did all bottle labe Is and tags agree with custody papers?		NO NO
Were all bottles used correct for the requested analyses?		OS NO
Do any of the analyses (bottles) require preservation? (attach pre	servation sheet, excluding VOCs)	MA YES NO
Were all VOC via Is free of air bubbles?		YES NO
Was sufficient amount of sample sent in each bottle?		NO NO
Date VOC Trip Blank was made at ARI		
Was Sample Split by ARI: NA YES Date/Time:	Equipment:	Split by:
Samples Logged by: 13 Date:	7- 9- 12 Time: 8	·<1
	r of discrepancies or concerns **	
Nowly 1 Toyact manage.	or discrepancies of concerns	
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle	Sample ID on COC
		GENERAL STATES
Additional Notes, Discrepancies, & Resolutions:		
		·
By: Date:		ł
Small Air Bubbles Peabubbles LARGE Air Bubbles	Small → "sm"	
-2mm 2-4 mm >-4 mm	Peabubbles -> "pb"	
	Large → "lg"	
Image contemporal black and a short over spill or a place of the contemporal black and a short ov	Headspace → "bs"	

0016F 3/2/10

Cooler Receipt Form

Revision 014

Sample ID Cross Reference Report

ARI Job No: VX92

Client: Anchor QEA, LLC Project Event: 080007-01.02

Project Name: Central Waterfront RI

ARI ARI

Lab ID LIMS ID Matrix Sample Date/Time

VTSR

1. 12-12907,08,09,10,12,13,VX92A,18,12-25561 Soil

Sample ID

07/02/12 09:40

07/07/12 10:30

Printed 12/27/12 Page 1 of 1

VX92:20007

TCLP METALS

Page 1 of 1

Sample ID: 12-12907,08,09,10,12,13,15,16,1 SAMPLE

Lab Sample ID: VX92A LIMS ID: 12-25561

Matrix: Soil

Data Release Authorized: Reported: 01/15/13

QC Report No: VX92-Anchor QEA, LLC Project: Central Waterfront RI

080007-01.02

Date Sampled: 07/02/12 Date Received: 07/07/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	<u>Q</u>
1311	12/28/12	6010C	01/02/13	7440-43-9	Cadmium	0.01	0.01	U
1311	12/28/12	6010C	01/02/13	7440-47-3	Chromium	0.02	0.02	U
1311	12/28/12	6010C	01/02/13	7439-92-1	Lead	0.1	0.1	U

U-Analyte undetected at given RL RL-Reporting Limit

FORM-I

TCLP METALS

Page 1 of 1

Sample ID: 12-12907,08,09,10,12,13,15,16,1

MATRIX SPIKE

Lab Sample ID: VX92A LIMS ID: 12-25561

Matrix: Soil

Data Release Authorized

Reported: 01/15/13

QC Report No: VX92-Anchor QEA, LLC Project: Central Waterfront RI

080007-01.02

Date Sampled: 07/02/12 Date Received: 07/07/12

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	8	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Cadmium	6010C	0.01 U	1.09	1.00	109%	
Chromium	6010C	0.02 U	1.02	1.00	102%	
Lead	6010C	0.1 U	4.2	4.0	105%	

Reported in mg/L

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked or diluted near or below detection limit

Percent Recovery Limits: 75-125%

FORM-V

oulishs VX92:00009_rev

Sample ID: 12-12907,08,09,10,12,13,15,16,1

DUPLICATE

INORGANICS ANALYSIS DATA SHEET

TCLP METALS

Page 1 of 1

QC Report No: VX92-Anchor QEA, LLC Project: Central Waterfront RI

080007-01.02

Date Sampled: 07/02/12 Date Received: 07/07/12

Lab Sample ID: VX92A LIMS ID: 12-25561

Matrix: Soil

Data Release Authorized Reported: 01/15/13

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
Cadmium	6010C	0.01 U	0.01 U	0.0%	+/- 0.01	L	
Chromium	6010C	0.02 U	0.02 U	0.0%	+/- 0.02	${f L}$	
Lead	6010C	0.1 U	0.1 U	0.0%	+/- 0.1	${f L}$	

Reported in mg/L

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

TCLP METALS

Page 1 of 1

Lab Sample ID: VX92MB

LIMS ID: 12-25561

Matrix: Soil

Data Release Authorized

Reported: 01/15/13

Sample ID: METHOD BLANK

QC Report No: VX92-Anchor QEA, LLC

Project: Central Waterfront RI

080007-01.02

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
1311	12/28/12	6010C	01/02/13	7440-43-9	Cadmium	0.01	0.01	U
1311	12/28/12	6010C	01/02/13	7440-47-3	Chromium	0.02	0.02	U
1311	12/28/12	6010C	01/02/13	7439-92-1	Lead	0.1	0.1	U

U-Analyte undetected at given RL RL-Reporting Limit

wilsts VX92: ØØØII_ rev

January 3, 2013

Cindy Fields Anchor QEA 720 Olive Way, Suite 1900 Seattle, WA 98101

RE: Client Project: Central Waterfront RI, 080007-01.02

ARI Job No.: VX92

Dear Cindy:

Please find enclosed the Chain of Custody records (COCs), sample receipt documentation, and the results for samples from the project referenced above. On December 27, 2012 ten soil samples were removed from archive. Per email instructions, ten gram aliquots were taken from each sample to form one composite sample. The composite sample was analyzed for TCLP lead, as requested.

There were no anomalies associated with the analysis of this sample.

An electronic copy of this report and all supporting raw data will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro
Project Manager
(206) 695-6214
cheronneo@arilabs.com
www.arilabs.com

cc: eFile VX92

Enclosures

Subject: RE: TCLP Lead analysi request on VB51 held samples

From: Nik Bacher <nbacher@anchorgea.com>

Date: 12/27/2012 7:34 AM

To: Cheronne Oreiro <cheronneo@arilabs.com>

CC: Cindy Fields <cfields@anchorqea.com>, Halah Voges <hvoges@anchorqea.com>

Hi Cheronne

Take the same amount of material out of each jar to ensure you have enough volume in the final composite to be able to run TCLP.

Niklas Bacher, L.G.

ANCHOR QEA, LLC

nbacher@anchorgea.com

From: Cheronne Oreiro [mailto:cheronneo@arilabs.com]

Sent: Wednesday, December 26, 2012 2:33 PM

To: Nik Bacher

Cc: Cindy Fields; Halah Voges

Subject: Re: TCLP Lead analysi request on VB51 held samples

Hi Nik,

Do you have any special compositing instructions? For example do you want us to take 10g from each jar, 20g, etc?

Thanks,

-Cheronne

NOTE: ARI is closed December 25th and January 1st.

I will be out of the office Dec. 24th-25th and Dec. 28-Jan. 1st.

Cheronne Oreiro
Project Manager
Analytical Resources, Inc.
4611 S. 134th Place, Suite 100
Tukwila, WA 98168-3240
cheronneo@arilabs.com
(206)-695-6214

This correspondence contains confidential information from Analytical Resources, Inc. (ARI) The information contained herein is intended solely for the use of the individual(s) named above. If you are not the intended recipient, any copying, distribution, disclosure, or use of the text and/or attached document(s) is strictly prohibited.

If you have received this correspondence in error, please notify sender immediately. Thank you.

On 12/26/2012 11:26 AM, Nik Bacher wrote:

Hi Cheronne

We would like to run TCLP lead on samples currently on hold for SDG VB51. See attached PDF and highlighted samples. I think those are the ones that are still in hold based on information you

VX92: @@@@/2012 9:55 AM

gave Cindy a few weeks back. Please advise if that is not the case.

Please pull the highlighted samples from hold and prepare one composite sample which should be analyzed for TCLP lead only. If possible, retain and hold all remaining individual sample material not used for the composite.

Please let me or Cindy know if you have any questions.

Thanks Nik

Niklas Bacher, L.G.

Senior Geologist

ANCHOR QEA, LLC

nbacher@anchorqea.com 720 Olive Way, Suite 1900 Seattle, WA 98101

T 206.287.9130

D 206.903.3376

C 206.351.0951

ANCHOR QEA,LLC

www.anchorgea.com

Please consider the environment before printing this email.

This electronic message transmission contains information that may be confidential and/or privileged work product prepared in anticipation of litigation. The information is intended for the use of the individual or entity named above. If you are not the intended recipient, please be aware that any disclosure, copying distribution or use of the contents of this information is prohibited. If you have received this electronic transmission in error, please notify us by telephone at (206) 287-9130.

VX92: @@@@2/2012 9:55 AM

Page 1 of 1

Cooler Temp. (Deg.C): 0.3-2.9

Logged by: TS

Validatable Data Pkg: LV4 Client: Anchor QEA, LLC Contact: Fields, Cindy

Special Instructions:

ANALYTICAL RESOURCES INCORPORATED

ARI Job No: VB51

Project Manager: Cheronne 206-695-6214 VTSR: 07/07/12

Data Due: 07/23/12

Project No: 080007-01.02 Proj ID: Central Waterfront RI SDG No:

In-hous	
Analytical Protocol:	Deliverables:

14 Sample(s)		Matrix	Samoling	*	CHGTWN MN	SW8260Acid/silcROTTF	5/
ARI ID	Client ID	Condition	Date/Time	*HOLD*	φ	VOA NWTPHD ON HOLD	
12-12906-VB51A	CW-TP-06-5.5-6.5	Soil	07/02/12 09:35		×	×	
	CW-TP-06-5.5-6.5	Soil	07/02/12 09:40		×		
	CW-TP-06-5.5-6.5	Soil	07/02/12 09:40			×	
	CW-TP-07-6.5-7.5	Soil	07/02/12 10:35	×		9	
	CW-TP-07-6.5-7.5	Soil	07/02/12 10:40	×		1	
12-12911-VB51F	CW-TP-07-9-10	Soil	07/02/12 10:50		×	×	
	CW-TP-07-9-10	Soil	07/02/12 10:55		×		
	CW-TP-07-9-10	Soil	07/02/12 10:55			×	
12-12914-VB51I	CW-TP-09-6.3-7.3	Soil	07/02/12 12:35		×	×	
E CONTRACTOR OF THE PROPERTY O	CW-TP-09-6.3-7.3	Soil	07/02/12 12:40		×		
	CW-TP-09-6.3-7.3	Soil	07/02/12 12:40	4		X	
12-12917-VB51L	CW-TP-09-10-11	Soil	07/02/12 12:55		X	×	
#1925-B	CW-TP-09-10-11	Soi1	07/02/12 13:00		×		
	he Cunformation 13hown here.	Soil there a	07/02/12 13:00	discrepa	ncies, conta	ct your ARI ^X Project Ma	Spilnere are 7408/12 13:00 discrepancies, contact your ARI ^X Project Manager designated above.

Unless other arrangements for storage/archiving samples are made for this project, volatile samples not consumed will be disposed of 08/06/12. All other sample aliquots will be disposed no earlier than 10/19/12.

Chain of Custody Record & Laboratory Analysis Request

Analytical Resources, Incorporated Analytical Chemists and Consultants	4611 South 134th Place, Suite 100 Tukwila, WA 98168	206-695-6200 206-695-6201 (fax)	Notes/Comments	Perform all	こがです-0×かん	a without silico		With and Wo Silia ad clarup		10 m		7-		Z Z		11	Received by: (Signature)	Printed Name:	Company:	Date & Time:
Page: of 5	Date: 7/2/12 Present?	No. of Cooler Coolers: Temps:	Analysis Requested	χη- Χη-	X	TWN TWN TWN		X	SON SON XX X	X Xon	X X X X	X		<u>×</u>		×	Relinquished by: (Signature)	My Commendation of the Comment of th	Company:	7/12 1030 Date & Time:
ARI Assigned Number: Tum-around Requested:	ARI Client Company: A. L.C. Phone: (2016) 903 3394	lia L	arme: 19 12 datado	Welchont Ringlers	1080007-01-02- JC	Sample ID Date Time Matrix No. Containers	CW-TP-CS-S-5-5-12/12/935 SO 6	14/2 940	CIN-TP-07-69-7,5 12/12 1/035 SO 6	0401 71/1/2	1/2	CW-TP-07-9-10 Hila 1055 SO	CW-78-09-63-73 7/4/2 1235 50 16	cw-78-09-13-73/26/21/240 SO 1	2007-10-11 74/2 12-55 SO 6	1300 SD	Relingdished by: (Signature)	Printed Name:		Date & Time: Date & Time: Date & Time:

said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for signed agreement between ARI and the Client.

vyga: 60665

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless afternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client: Anchor	Project Name: Central	Water Seent Sile RI
COC No(s):	Delivered by: Fed-Ex UPS Courier	
Assigned ARI Job No:	Tracking No:	
Preliminary Exam ination Phase:	Trading No.	(NA.)
Were intact, properly signed and dated custody seals attached to	the outside of to cooler?	YES
Were custody papers included with the cooler?		NECO
Were custody papers properly filled out (ink, signed, etc.)		NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chem		3 1 a NO
If cooler temperature is out of compliance fill out form 00070F		emp Gun ID#: 7/9////3
100	7/d/17/1/2	1030
Cooler Accepted by:	Date:Time: and attach all shipping documents	1050
Log-in Phase;	no attach an simpling documents	
Was a temperature blank included in the cooler?		YES NO
What kind of packing material was used? Bubble Wrap		
Was sufficient ice used (if appropriate)?		NA (YES) NO
Did all bottles arrive in good condition (unbroken)?		YES NO
Were all bottle labels complete and legible?		· · · · · · · · · · · · · · · · · · ·
Did the number of containers listed on COC match with the numb	,	NO NO
Did all bottle labe Is and lags agree with custody papers?		NO NO
Were all bottles used correct for the requested analyses?		NO NO
Do any of the analyses (bottles) require preservation? (attach pre		MA) YES NO
Were all VOC via Is free of air bubbles?		YES NO
Was sufficient amount of sample sent in each bottle?		NO NO
Date VOC Trip Blank was made at AR!		
Was Sample Split by ARI: NA YES Date/Time:	Equipment:	Split by:
R	7-9-12 - 0	
Samples Logged by: Date:	r of discrepancies or concerns **	31
Nothy Froject manage.	or discrepancies of concerns	
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle	Sample ID on COC
Gampio is on coo	Campie is on some	Sauthe in QU CDC
Additional Notes, Discrepancies, & Resolutions:		
		·
Date:		l
By: Date: Small Air Bubbles Peabubbles' LARGE Air Bubbles	Small → "sm"	
-2mm >-4 mm	Peabubbles -> "pb"	
	Large → "lg"	
The contract of the contract o	Headspace → "bs"	

0016F 3/2/10

Cooler Receipt Form

Revision 014

Sample ID Cross Reference Report

ARI Job No: VX92

Client: Anchor QEA, LLC Project Event: 080007-01.02

Project Name: Central Waterfront RI

ARI ARI

Lab ID LIMS ID Matrix Sample Date/Time

VTSR

1. 12-12907,08,09,10,12,13,VX92A,18,12-25561 Soil

Sample ID

07/02/12 09:40

07/07/12 10:30

Printed 12/27/12 Page 1 of 1

VX92:20007

TCLP METALS

Page 1 of 1

Lab Sample ID: VX92A

LIMS ID: 12-25561

Matrix: Soil Data Release Authorized

Reported: 01/03/13

Sample ID: 12-12907,08,09,10,12,13,15,16,1

SAMPLE

QC Report No: VX92-Anchor QEA, LLC

Project: Central Waterfront RI

080007-01.02

Date Sampled: 07/02/12 Date Received: 07/07/12

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
1311	12/28/12	6010C	01/02/13	7439-92-1	Lead	0.1	0.1	Ü

U-Analyte undetected at given RL RL-Reporting Limit

VX92:00005

TCLP METALS

Page 1 of 1

Sample ID: 12-12907,08,09,10,12,13,15,16,1

MATRIX SPIKE

Lab Sample ID: VX92A LIMS ID: 12-25561

Matrix: Soil

Data Release Authorized:

Reported: 01/03/13

QC Report No: VX92-Anchor QEA, LLC Project: Central Waterfront RI

080007-01.02

Date Sampled: 07/02/12 Date Received: 07/07/12

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	% Recovery	Q
Lead	6010C	0.1 U	4.2	4.0	105%	

Reported in mg/L

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked or diluted near or below detection limit

Percent Recovery Limits: 75-125%

VXC2: 2000G

TCLP METALS

Page 1 of 1

Sample ID: 12-12907,08,09,10,12,13,15,16,1

DUPLICATE

Lab Sample ID: VX92A LIMS ID: 12-25561

Matrix: Soil

Data Release Authorized:

Reported: 01/03/13

QC Report No: VX92-Anchor QEA, LLC Project: Central Waterfront RI

080007-01.02 Date Sampled: 07/02/12 Date Received: 07/07/12

MATRIX DUPLICATE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Duplicate	RPD	Control Limit	Q
Lead	6010C	0.1 U	0.1 U	0.0%	+/- 0.1	L

Reported in mg/L

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

VX92:00010

TCLP METALS

Page 1 of 1

Lab Sample ID: VX92MB

LIMS ID: 12-25561

Matrix: Soil

Data Release Authorized: Reported: 01/03/13

Sample ID: METHOD BLANK

QC Report No: VX92-Anchor QEA, LLC

Project: Central Waterfront RI

080007-01.02

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
1311	12/28/12	6010C	01/02/13	7439-92-1	Lead	0.1	0.1	U

U-Analyte undetected at given RL RL-Reporting Limit

VX92:00011

Laboratory Data Consultants, Inc.

7750 El Camino Real, Ste. 2L Carlsbad, CA 92009

Phone 760.634.0437

Web www.lab-data.com

Fax 760.634.0439

Anchor Environmental, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101 ATTN: Ms. Cindy Fields November 28, 2012

SUBJECT: Central Waterfront, Data Validation

Dear Ms. Fields,

Enclosed is the final validation report for the fractions listed below. This SDG was received on November 12, 2012. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 28742:

SDG # Fraction

VP40/VP41

Volatiles, Metals, Gasoline Range Organics, Total Petroleum

Hydrocarbons as Extractables

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, January 2010
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Ming-Hwa Hwang

Project Manager/Senior Chemist

enginensan		1 ::1		_	T	1				 I			Γ															<u> </u>	Т	7 -	 ;;;
		s /	\dashv	+	\vdash	├	-	\vdash	Н	_	_	-	 	<u> </u>	<u> </u>		H			ļ,						\vdash	\vdash	<u> </u>			7
			4	_	╄	_	_																		_		<u> </u>			_ c	╣
		S	_	_	<u> </u>	lacksquare	_			_								_								_				_ c	ᅦ
		3		\perp	<u> </u>																									0	<u>』</u>
		တ																												_ -	,
		×																												-	,
		S		\top																										7	,
		8		1	T																									+-	,
		S		+-	\vdash	\vdash																							\Box	-	\dashv
		3		+	١.							-															\vdash				- -
		+	\dashv		╫	 						_						-										_	+		╣
8		S /		+	-	<u> </u>						-	_														<u> </u>		\dashv		-1
2		≥			╁┈	-						_														_					-11
9		S		+	_	L	_					_																		0	-11
Sa		3			<u> </u>		_				 	_																		ح ا	<u>'</u>
<u> </u>		S			<u> </u>																					L				c	<u> </u>
		≥																												c	<u>, </u>
O		S																												0	,∥
7		×																												0	,]
3		S																												٦	,
vironmental-Seattle WA / Central Waterfront)		3			T																									-	,
eat		S		1-	╁																									-	,
<u>S-I</u>		3		+	1																									-	-11
nta		S	\dashv	+	ļ	_		_																					-+	+	-11
ne		3		+																				_			_			-	4
		1		+	 	-					 																		- -	-	\mathbb{H}
Š		S /		+							 		_			_		-			\dashv		\dashv	_					\dashv	+	\parallel
الله	I	>	_	-	+	┞		-	Ш								_	-		Н		_							+	+=	\parallel
6	H-E VTPI DX)	S	9	+-	1	_																							-	Ę	-1 1
LDC #28742 (Anchor En	TPH-G TPH-E (NWTPH -Gx)	≥	0	_	-																								-	ļc	41
3	7. T.P. (X)	S	9	1	ļ																									3	71
42	H N	≥	7	\perp	<u> </u>															Ш										^	-
82	Metals (6010C /7000)	S	ω		ļ																									_ ~	<u>'</u>
#	Me (60 /70	≥	0																											c	<u>,</u>
2	χ ₍)	တ	9																											5	<u>:</u>
7	BTEX (8260C)	≥	2																											^	ᅦ
			12																												1
	(3) DATE DUE		12/05/12																												
		-		-	-			-															-	-					-		\parallel
	DATE REC'D		11/12/12																												
3 2B	D,		1																										_		╢
Stage 2B																															
		200																l											1	- 1	Ш
	#5	200	VP41													ļ			1		- 1]						- 1	ΙĮ	
	\$DG#	200	P40/VP41																											1/MH	
EDD	#90S	200	VP40/VP41							:																				IW/E	1
	#BOS DOT	Matrix: Water/Soil	A VP40/VP41																											Total T/MH	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Central Waterfront

Collection Date:

October 25, 2012

LDC Report Date:

November 28, 2012

Matrix:

Soil/Water

Parameters:

Volatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): VP40/VP41

Sample Identification

CWS1-04-2-4

CWS1-04-6-8

CWS1-04-13.5-15

CWS1-TB-01 (1)

CWS1-02-1-3

CWS1-02-7-8

CWS1-02-12-13

CWS1-01-3-5

CWS1-01-11-13

CWS1-03-2-4

CWS1-03-7-9

CWS1-TB-01 (2)

Introduction

This data review covers 10 soil samples and 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260C for Volatiles which are Benzene, Toluene, Ethylbenzene and Xylenes (BTEX).

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of the presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Average relative response factors (RRF) for all compounds were within method and validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and RLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

January Same

The quality control criteria reviewed were met and are considered acceptable. Based upon the Stage 2B data validation all results are considered valid and usable for all purposes.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Samples CWS1-TB-01 (1) and CWS1-TB-01 (2) were identified as trip blanks. No volatiles were found.

Central Waterfront Volatiles - Data Qualification Summary - SDG VP40/VP41

No Sample Data Qualified in this SDG

Central Waterfront Volatiles - Laboratory Blank Data Qualification Summary - SDG VP40/VP41

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 28742A1a Stage 2B SDG #: VP40/VP41 Laboratory: Analytical Resources, Inc.

2nd Reviewer

METHOD: GC/MS Volatiles (BTEX) (EPA SW 846 Method 8260C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	A	Sampling dates: 16 /2 5 /17
II.	GC/MS Instrument performance check	A	
111.	Initial calibration	Á	7. RS9 & 205
IV.	Continuing calibration/JEV	Ä	CW & 20 % 164 6 20 3
V.	Blanks	A	
VI.	Surrogate spikes	À	
VII.	Matrix spike/Matrix spike duplicates	N	as
VIII.	Laboratory control samples	A	LCS /b
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	N N	
XII.	Compound quantitation/RL/LOQ/LODs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	N	
XVII.	Field blanks	M	TB = 4, 1~

Note: A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

FB = Field blank

R = Rinsate

D = Duplicate

TB = Trip blank EB = Equipment blank

Validated Samples:

 $column{1}{c}$

	30	<u>, 1</u>						
1	CWS1-04-2-4	S	11	CWS1-03-7-9	21	MB-103012A	31	
+ 2	CWS1-04-6-8		12	CWS1-TB-01 (2) W	22		32	
+ 3	CWS1-04-13.5-15	1	13		23		33	
4	CWS1-TB-01 (1)	W	14		24		34	
1 5	CWS1-02-1-3	ی	15		25		35	
+ 6	CWS1-02-7-8		16		26		36	
+ 7	CWS1-02-12-13		17		27		37	
8	CWS1-01-3-5		18		28		38	
19	CWS1-01-11-13		19		29		39	
† 10	CWS1-03-2-4		20		30		40	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Central Waterfront

Collection Date:

October 25, 2012

LDC Report Date:

November 19, 2012

Matrix:

Soil

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): VP40/VP41

Sample Identification

CWS1-04-2-4

CWS1-04-6-8

CWS1-04-13.5-15

CWS1-02-1-3

CWS1-02-7-8

CWS1-02-12-13

CWS1-01-3-5

CWS1-01-11-13

CWS1-04-2-4MS

CWS1-04-2-4DUP

Introduction

This data review covers 10 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Methods 6010C and 7471A for Metals. The metals analyzed were Antimony, Arsenic, Beryllium, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Silver, Thallium, and Zinc.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of the presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

ICP-MS was not utilized in this SDG.

III. Calibration

The initial and continuing calibrations were performed at the required frequency.

The calibration standards criteria were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No metal contaminants were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Copper	0.4 mg/Kg	All samples in SDG VP40/VP41

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	%R (Limits)	Flag	A or P
CWS1-04-2-4MS (All samples in SDG VP40/VP41)	Antimony	22.4 (75-125)	J (all detects) UJ (all non-detects)	Α

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

- 400

IX. Internal Standards (ICP-MS)

ICP-MS was not utilized in this SDG.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XII. Sample Result Verification

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS %R problems, data were qualified as estimated in eight samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the Stage 2B data validation all other results are considered valid and usable for all purposes.

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

XV. Field Blanks

No field blanks were identified in this SDG.

Central Waterfront Metals - Data Qualification Summary - SDG VP40/VP41

SDG	Sample	Analyte	Flag	A or P	Reason
VP40/VP41	CWS1-04-2-4 CWS1-04-6-8 CWS1-04-13,5-15 CWS1-02-1-3 CWS1-02-7-8 CWS1-02-12-13 CWS1-01-3-5 CWS1-01-11-13	Antimony	J (all detects) UJ (all non-detects)	А	Matrix spike analysis (%R)

Central Waterfront Metals - Laboratory Blank Data Qualification Summary - SDG VP40/VP41

No Sample Data Qualified in this SDG

LDC#	#: <u>28742A4</u>	VA	ALIDATIO				ESS WORKSHEET	Date: <u>\ רו</u> ירו
	#:VP40/VP41			5	Stage	2B	,	_ Page: <u></u> _of <u></u> \
Labor	atory: <u>Analytical Resource</u>	ces, I	nc.	ا م	ıA			Reviewer:2nd Reviewer:
METH	HOD: Metals (EPA SW 8	46 M	ethod 6010	C/7000)	(, ,			Zilu Keviewei
Thora	amples listed below were	. rovi	awad far aa	ah af tha t	followin		alidation areas Validation	findings are noted in ottools.
	ition findings worksheets		ewed for ea		IOIIOWII	iy va	alluation areas. Validation	n findings are noted in attache
[
	Validation	Area	1		<u> </u>		Comme	ents
I.	Technical holding times			A	Sampl	ling d	dates: 10125/12	
II.	ICP/MS Tune			N	16	+ 1	UEILIZED	
111.	Calibration			A				
IV.	Blanks			SW				
V.	ICP Interference Check Sar	nple (I	CS) Analysis	A				
VI.	Matrix Spike Analysis			SW	Wo	>		
VII.	Duplicate Sample Analysis			A	DG	R		
VIII.	Laboratory Control Samples	(LCS)	4	LC	$\overline{\mathcal{D}}$		
IX.	Internal Standard (ICP-MS)			N	No	ナひ	tilized	
X.	Furnace Atomic Absorption	QC		N	1			
XI.	ICP Serial Dilution			N	No	<u>+ (2</u>	serformed	
XII.	Sample Result Verification			N				
XIII.	Overall Assessment of Data	1		A				
XIV.	Field Duplicates			N				
χV	Field Blanks			N				
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet)	R = Rin	o compound sate eld blank	ds detect	ted	D = Duplicate TB = Trip blank EB = Equipment blank	
Validate	ed Samples:							
1	CWS1-04-2-4	11	CWS1-04-2-4	IMS	2	21	3	31
2	CWS1-04-6-8	12	CWS1-04-2-4	IDUP		22	3	32
3	CWS1-04-13.5-15	13				23	3	33
4	CWS1-02-1-3	14				24	3	34
5	CWS1-02-7-8	15				25	3	35
6	CWS1-02-12-13	16				26	3	36
7	CWS1-01-3-5	17				27	3	37
8	CWS1-01-11-13	18				28	3	38
9	CWS1-03-2-4	19				29	3	39
10	CWS1-03-7-9	20			3	30	4	40
Notes	,							
NOIG2								

LDC #: 08740A4

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: of Reviewer: 2nd reviewer:

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1-8		Al(Sb, As), Ba, Be, Cd, Ca, Cr, Co(Cy, Fe(Pb), Mg, Mn, Hg, Ni, K, Se, Ag, Na(Tl, V, Zh, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
acity.		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zh, Mo, B, Sh, Ti, Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu) Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zh, Mo, B, Sh, Ti,
Ch 171C		
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
	,	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Analysis Method
ICP		Al,(Sb, As) Ba, Be, Cd, Ca, Cr, Co, Cu, Fe(Pb), Mg, Mn, Hg,(Ni) K, Se, Ag, Na,(T), V,(Zr), Mo, B, Sn, Ti,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
GEAA		Al Sh As Ra Re Cd Ca Cr Co Cu Fe Ph Mg Mn Hg Ni K Se Ag Na Tl V Zn Mo B Sn Ti

Comments: Mercury by CVAA if performed

LDC #: 28742A4

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: mg/Kg

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Associated Samples:

Soil preparation factor applied: NA

Page: of Reviewer: 2nd Reviewer: 1

		_	7
:			
			l
			l
			l
Sie			
tualifie			
No N			
Action No Qualifiers Level			
Action Level	2		
<u> </u>		_	
Maximum ICB/CCB ^a (ug/l.)			
Ma ICE			١
aximum PB" Lug/L)			
Maxi Pi			
E G		司	
Aaximum PB ^a (mg/Kg)	0.4		
ie M		4	
Analyte Maximum Maximum PBª ICB/CCB³ (mg/Kg) (ug/l)			
⋖	ပ		

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were

qualified as not defected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

LDC# DRJUGARY

VALIDATION FINDINGS WORKSHEET Matrix Spike Analysis

Reviewer:__ 2nd Reviewer:_

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Were matrix spike percent recoveries (%R) within the control limits ϕ f 75-125 β . If the sample concentration exceeded the spike concentration by a factor Y N/A

of 4 or more, no action was taken.

Was a post digestion spike analyzed for ICP elements that did not meet the required criteria for matrix spike recovery?

LEVEL TV ONLY:
Y N (N/A) Wer

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

Qualifications	3/US/A CPS=102,9%												
	NA												
%R	H'46												
Analyte	GS.												
Matrix													
Matrix Spike ID	11												
# Date													

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Central Waterfront

Collection Date:

October 25, 2012

LDC Report Date:

November 26, 2012

Matrix:

Soil/Water

Parameters:

Gasoline Range Organics

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): VP40/VP41

Sample Identification

CWS1-04-2-4

CWS1-04-6-8

CWS1-04-13.5-15

CWS1-TB-01 (1)

CWS1-02-1-3

CWS1-02-7-8

CWS1-02-12-13

CWS1-01-3-5

CWS1-01-11-13

CWS1-03-2-4

CWS1-03-7-9

CWS1-TB-01 (2)

Introduction

This data review covers 10 soil samples and 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per NWTPH-Gx for Gasoline Range Organics.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of the presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) of calibration factors for compounds were less than or equal to 20.0%.

III. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 20.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No gasoline range organic contaminants were found in the method blanks.

V. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Target Compound Identification

Raw data were not reviewed for this SDG.

IX. Compound Quantitation and RLs

Raw data were not reviewed for this SDG.

X. System Performance

Raw data were not reviewed for this SDG.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the Stage 2B data validation all results are considered valid and usable for all purposes.

XII. Field Duplicates

No field duplicates were identified in this SDG.

XIII. Field Blanks

Samples CWS1-TB-01 (1) and CWS1-TB-01 (2) were identified as trip blanks. No gasoline range organics were found.

Central Waterfront Gasoline Range Organics - Data Qualification Summary - SDG VP40/VP41

No Sample Data Qualified in this SDG

Central Waterfront Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG VP40/VP41

No Sample Data Qualified in this SDG

SDG Labor METH The s	#: 28742A7 #: VP40/VP41 ratory: Analytical Resource HOD: Gasoline Range Or amples listed below were ation findings worksheets	ces, l rgani	nc. cs (NWTPH	-Gx)	Stage 2E			Date: 1/16/1-Page: 1 of 1/2 /-Page: 1 of
	Validation	Area					Comments	
1.	Technical holding times			A	Sampling of	dates:	25 /12	
fl	Initial calibration			A		2 RSD 62		
111.	Calibration verification/ICV			Å		cw/w :		
IV.	Blanks			À				
V	Surrogate recovery			Ā			-	
VI.	Matrix spike/Matrix spike du	plicate	es	,2		<u>'</u> S		
VII.	Laboratory control samples			A	10	'S (b)	_	
VIII.	Target compound identificat	ion		N				
IX.	Compound quantitation/RL/	LOQ/L	.ODs	N				
X.	System Performance			N				
XI.	Overall assessment of data			A				
XII.	Field duplicates			4				
XIII.	Field blanks			M		18 = 4 12		
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:		R = Rins FB = Fie	eld blank	s detected	D = Duplica TB = Trip b EB = Equip	lank	
*	50	<u> </u>	where			I	<u> </u>	
1+	CWS1-04-2-4	11	CWS1-03-7-9		21	MB-10301	> 31	
2	CWS1-04-6-8	12	CWS1-TB-01	(2) W	/ 22		32	
† 3	CWS1-04-13.5-15	13			23		33	
4	CWS1-TB-01 (1) ₩	14			24		34	
5 +	CWS1-02-1-3	15			25		35	
6	CWS1-02-7-8	16			26		36	
7	CWS1-02-12-13	17			27		37	
8	CWS1-01-3-5	18			28		38	
9	CWS1-01-11-13	19			29		39	
	CWS1-03-2-4	20			30		40	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Central Waterfront

Collection Date:

October 25, 2012

LDC Report Date:

November 20, 2012

Matrix:

Soil

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): VP40/VP41

Sample Identification

CWS1-04-2-4

CWS1-04-6-8

CWS1-04-13.5-15

CWS1-02-1-3

CWS1-02-7-8

CWS1-02-12-13

CWS1-01-3-5

CWS1-01-11-13

CWS1-03-2-4

CWS1-03-7-9

CWS1-02-1-3MS

CWS1-02-1-3MSD

Introduction

This data review covers 12 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per NWTPH-Dx for Total Petroleum Hydrocarbons as Extractables.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of the presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) of calibration factors for compounds were less than or equal to 20.0%.

III. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 20.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No total petroleum hydrocarbons as extractables were found in the method blanks.

V. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Target Compound Identification

Raw data were not reviewed for this SDG.

IX. Compound Quantitation and RLs

Raw data were not reviewed for this SDG.

X. System Performance

Raw data were not reviewed for this SDG.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the Stage 2B data validation all results are considered valid and usable for all purposes.

XII. Field Duplicates

No field duplicates were identified in this SDG.

XIII. Field Blanks

No field blanks were identified in this SDG.

Central Waterfront

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG VP40/VP41

No Sample Data Qualified in this SDG

Central Waterfront

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG VP40/VP41

No Sample Data Qualified in this SDG

SDG#	:28742A8 t:VP40/VP41 atory:_Analytical Resourc				PLETEN Stage 21		ESS WORKSHEET	7	Date: 1 / lu // Page: 1 of / Reviewer: 2nd Reviewer: ()
	OD: TPH as Extractable								
ne sa validat	amples listed below were ion findings worksheets.	e revi	ewed for ea	ch of the f	ollowing	va	ilidation areas. Validati	on fin	dings are noted in attached
	Validation	Area					Comr	nents	
<u> </u>	Technical holding times			A	Sampling	da	ates: $10 \sqrt{25}$	ív.	
- 11	Initial calibration			A		7,			
111.	Calibration verification/ICV			A			RSD £ 20 % CW/IW £ 20	<u> </u>	
IV.	Blanks			A			<u> </u>		
V	Surrogate recovery			A					
VI.	Matrix spike/Matrix spike du	plicate	s	*					
VII.	Laboratory control samples			Á		ι	LS 16		
VIII.	Target compound identificat	ion		N					
IX.	Compound quantitation/RL/I	_OQ/L	ODs	N					
X.	System Performance			N					
XI.	Overall assessment of data			A					
XII.	Field duplicates		·	, N					
XIII.	Field blanks			N					
Note: /alidate	A = Acceptable N = Not provided/applicable SW = See worksheet d Samples:		R = Rins	o compound sate eld blank	s detected		D = Duplicate TB = Trip blank EB = Equipment bla	nk	
1 (CWS1-04-2-4	11	CWS1-02-1-3	MS	21		MB - 103012	31	
2 (CWS1-04-6-8	12	CWS1-02-1-3		22			32	
+	CWS1-04-13.5-15	13			23	1		33	
_	CWS1-02-1-3	14			24			34	
+	CWS1-02-7-8	15			25			35	
+ 6 (CWS1-02-12-13	16			26			36	
6 (7 (CWS1-01-3-5	17			27			37	
	CWS1-01-11-13	18			28	T		38	

Notes:_				
	•		. ,	

29

30

CWS1-03-2-4

CWS1-03-7-9

19

20

Central Waterfront - LDC 28742/28782

Analytical Method N	NWTPHDx									
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Repor	Mod Res Report Detect Lab Qual	Val Qual Reason	Reason	R	MDL	Units
CWS1-04-13.5-15	12-21291-VP40C	Diesel Range Hydrocarbons	11/1/2012 200	Yes	>-			5.8	1.5	mg/kg
CWS1-04-13.5-15	12-21291-VP40C	Motor Oil Range	11/1/2012 260	Yes	>-			12	8:	mg/kg
CWS1-04-2-4	12-21289-VP40A	Motor Oil Range	10/31/2012 97	Yes	>-			12	1.9	mg/kg
CWS1-04-2-4	12-21289-VP40A	Diesel Range Hydrocarbons	10/31/2012 67	Yes	>			6.0	5:	mg/kg
CWS1-04-6-8	12-21290-VP40B	Motor Oil Range	10/31/2012 37	Yes	>-			12	2.0	mg/kg
CWS1-04-6-8	12-21290-VP40B	Diesel Range Hydrocarbons	10/31/2012 24	Yes	>-			6.2	1.6	mg/kg
Analytical Method N	NWTPHG									
Sample 1D	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Repor	Mod Res Report Detect Lab Qual	Val Qual Reason	Reason	귈	MDI	Units
CWS1-04-13.5-15	12-21291-VP40C	Gasoline Range Hydrocarbons	10/30/2012 19	Yes	>			9.9	2.2	mg/kg
CWS1-04-2-4	12-21289-VP40A	Gasoline Range Hydrocarbons	10/30/2012 6.4	Yes) Z			6.4	2.1	mg/kg
CWS1-04-6-8	12-21290-VP40B	Gasoline Range Hydrocarbons	10/30/2012 7.8	Yes) Z			7.8	5.6	mg/kg
CWS1-TB-01-20121025-1	12-21293-VP40E	Gasoline Range Hydrocarbons	10/30/2012 0.25	Yes) Z			0.25	0.057	mg/L
Analytical Method S	SW6010C									
Sample 1D	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Repor	Mod Res Report Detect Lab Qual	Vai Qual	Reason	교	롲	Units
CWS1-04-13.5-15	12-21291-VP40C	Beryllium	11/2/2012 0.3	Yes) N			0.3	0.029	mg/kg
CWS1-04-13.5-15	12-21291-VP40C	Cadmium	11/2/2012 11.7	Yes	>			9.0	0.32	mg/kg
CWS1-04-13.5-15	12-21291-VP40C	Chromium	11/2/2012 22	Yes	>			-	0.78	mg/kg
CWS1-04-13.5-15	12-21291-VP40C	Copper	11/2/2012 30.3	Yes	>			9.0	0.15	mg/kg
CWS1-04-13.5-15	12-21291-VP40C	Antimony	11/2/2012 10	Yes) Z	3	œ	10	0.93	mg/kg
CWS1-04-13.5-15	12-21291-VP40C	Thallium	11/2/2012 10	Yes) Z			10	5.	mg/kg
CWS1-04-13.5-15	12-21291-VP40C	Silver	11/2/2012 0.9	Yes) Z			6.0	0.087	mg/kg
CWS1-04-13.5-15	12-21291-VP40C	Nickel	11/2/2012 17	Yes	>			က	0.87	mg/kg
CWS1-04-13.5-15	12-21291-VP40C	Lead	11/2/2012 452	Yes	>			9	0.38	mg/kg
CWS1-04-13.5-15	12-21291-VP40C	Zinc	11/2/2012 5050	Yes	>-			က	0.35	mg/kg
									Page 1 of 16	ıf 16

Analytical Method	SW6010C		-									
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	ult Mod Res Report Detect Lab Qual	Report 1	Detect 1		Vai Qual Reason	Reason	귵	¥	Units
CWS1-04-13.5-15	12-21291-VP40C	Selenium	11/2/2012 10		Yes	z	_			10	1.9	mg/kg
CWS1-04-13.5-15	12-21291-VP40C	Arsenic	11/2/2012 10	•	Yes	z	5			10	1.3	mg/kg
CWS1-04-2-4	12-21289-VP40A	Copper	11/1/2012 40.9		Yes	>-				0.2	0.058	mg/kg
CWS1-04-2-4	12-21289-VP40A	Antimony	11/1/2012 6		Yes	z	5	3	8	ဖ	0.37	mg/kg
CWS1-04-2-4	12-21289-VP40A	Lead	11/1/2012 30		Yes	>-				7	0.15	mg/kg
CWS1-04-2-4	12-21289-VP40A	Nickel	11/1/2012 40		Yes	> -				_	0.35	mg/kg
CWS1-04-2-4	12-21289-VP40A	Selenium	11/1/2012 6		Yes	z	5			9	0.75	mg/kg
CWS1-04-2-4	12-21289-VP40A	Thallium	11/1/2012 6		Yes	z	_			9	0.62	mg/kg
CWS1-04-2-4	12-21289-VP40A	Arsenic	11/1/2012 6		Yes	z	_			9	0.53	mg/kg
CWS1-04-2-4	12-21289-VP40A	Beryllium	11/1/2012 0.2		Yes	> -				0.1	0.012	mg/kg
CWS1-04-2-4	12-21289-VP40A	Cadmium	11/1/2012 0.7		Yes	> -				0.2	0.13	mg/kg
CWS1-04-2-4	12-21289-VP40A	Chromium	11/1/2012 35.9		Yes	> -				9.0	0.31	mg/kg
CWS1-04-2-4	12-21289-VP40A	Zinc	11/1/2012 84		Yes	> -				_	0.14	mg/kg
CWS1-04-2-4	12-21289-VP40A	Silver	11/1/2012 0.3		Yes	z	_			0.3	0.035	mg/kg
CWS1-04-6-8	12-21290-VP40B	Silver	11/2/2012 0.4		Yes	z)			0.4	0.039	mg/kg
CWS1-04-6-8	12-21290-VP40B	Selenium	11/2/2012 6		Yes	z)			9	0.84	mg/kg
CWS1-04-6-8	12-21290-VP40B	Nickel	11/2/2012 23		Yes	> -				_	0.39	mg/kg
CWS1-04-6-8	12-21290-VP40B	Lead	11/2/2012 22		Yes	>-				က	0.17	mg/kg
CWS1-04-6-8	12-21290-VP40B	Chromium	11/2/2012 37.8		Yes	>-				9.0	0.35	mg/kg
CWS1-04-6-8	12-21290-VP40B	Thallium	11/2/2012 6		Yes	z	_			9	0.68	mg/kg
CWS1-04-6-8	12-21290-VP40B	Antimony	11/2/2012 6		Yes	z	_D	3	œ	9	0.41	mg/kg
CWS1-04-6-8	12-21290-VP40B	Arsenic	11/2/2012 6		Yes	z	_D			9	0.59	mg/kg
CWS1-04-6-8	12-21290-VP40B	Cadmium	11/2/2012 0.3		Yes	z)			0.3	0.14	mg/kg
CWS1-04-6-8	12-21290-VP40B	Copper	11/2/2012 34.5		Yes	`~				0.3	0.064	mg/kg
CWS1-04-6-8	12-21290-VP40B	Zinc	11/2/2012 48		Yes	>-				_	0.15	mg/kg

					`					
Analytical Method	SW6010C									
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Report Detect Lab Qual	t Detect Lal		Val Qual Reason	H	MDL	Units
CWS1-04-6-8	12-21290-VP40B	Beryllium	11/2/2012 0.1	Yes	>			0.1	0.013	mg/kg
Analytical Method	SW7471A									
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Report Detect Lab Qual	t Detect Lal	b Qual Val Qual	ılal Reason	₽		Units
CWS1-04-13.5-15	12-21291-VP40C	Mercury	10/30/2012 0.2	Yes	\			0.03	0.0014	mg/kg
CWS1-04-2-4	12-21289-VP40A	Mercury	10/30/2012 0.16	Yes	>			0.02	0.0013	mg/kg
CWS1-04-6-8	12-21290-VP40B	Mercury	10/30/2012 0.08	Yes	>			0.02	0.0013	mg/kg
Analytical Method	SW8260C		Marylanda — Princeson							
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Report Detect Lab Qual	t Detect Lai		Val Qual Reason	펕	E	Units
CWS1-04-13.5-15	12-21291-VP40C	Toluene	10/30/2012 1.1	Yes	¬ ≻			1.2	0.19	ug/kg
CWS1-04-13.5-15	12-21291-VP40C	o-Xylene	10/30/2012 1.2	Yes	o z			1.2	0.28	ug/kg
CWS1-04-13.5-15	12-21291-VP40C	m,p-Xylene	10/30/2012 1.2	Yes	o z			1.2	0.49	ug/kg
CWS1-04-13.5-15	12-21291-VP40C	Ethylbenzene	10/30/2012 1.2	Yes	o z			1.2	0.25	ug/kg
CWS1-04-13.5-15	12-21291-VP40C	Benzene	10/30/2012 17	Yes	>			1.2	0.37	ug/kg
CWS1-04-2-4	12-21289-VP40A	o-Xylene	10/30/2012 1.1	Yes	o z			[0.25	ug/kg
CWS1-04-2-4	12-21289-VP40A	Benzene	10/30/2012 1.1	Yes	o z			[:	0.33	ug/kg
CWS1-04-2-4	12-21289-VP40A	Ethylbenzene	10/30/2012 1.1	Yes) Z			[:	0.22	ug/kg
CWS1-04-2-4	12-21289-VP40A	Toluene	10/30/2012 1.1	Yes) Z			1.1	0.17	ug/kg
CWS1-04-2-4	12-21289-VP40A	m,p-Xylene	10/30/2012 1.1	Yes	D Z			1.1	0.43	ug/kg
CWS1-04-6-8	12-21290-VP40B	Toluene	10/30/2012 0.6	Yes	→			1.2	0.18	ug/kg
CWS1-04-6-8	12-21290-VP40B	Ethylbenzene	10/30/2012 1.2	Yes	o z			1.2	0.24	ug/kg
CWS1-04-6-8	12-21290-VP40B	m,p-Xylene	10/30/2012 1.2	Yes) Z			1.2	0.46	ug/kg
CWS1-04-6-8	12-21290-VP40B	o-Xylene	10/30/2012 1.2	Yes) Z			1.2	0.26	ug/kg
CWS1-04-6-8	12-21290-VP40B	Benzene	10/30/2012 1.2	Yes) Z			1.2	0.35	ug/kg
CWS1-TB-01-20121025-1	25-1 12-21293-VP40E	Benzene	10/30/2012 1	Yes	⊃ z			1.0	0.25	ng/L
CWS1-TB-01-20121025-1	25-1 12-21293-VP40E	m,p-Xylene	10/30/2012 2	Yes	⊃ z			2.0	0.36	ng/L

Analytical Method SW8260C	V8260C								
Sample ID	Lab Sampie ID	Chemical Name	Anal Date Result Mod Res Report Detect Lab Qual Val Qual Reason RL	Aod Res Report I	etect Lab Qua	Val Qual Res	ISON RL	MDE	Units
CWS1-TB-01-20121025-1 12-21293-VP40E Toluene	12-21293-VP40E	Toluene	10/30/2012 1	Yes N	D .		1.0	0.18	ng/L
CWS1-TB-01-20121025-1 12-21293-VP40E Ethylbenzene	12-21293-VP40E	Ethylbenzene	10/30/2012 1	Yes	D		1.0	0.18	ng/L
CWS1-TB-01-20121025-1 12-21293-VP40E o-Xylene	12-21293-VP40E	o-Xylene	10/30/2012 1	Yes)		1.0	0.22	ng/L

Analytical Method	NWTPHDx							
Sample ID	Lab Sample D	Chemical Name	Anal Date Result	Mod Res Report	Mod Res Report Detect Lab Qual Val Qual Reason	Val Qual Reason RL	M	Units
CWS1-01-11-13	12-21283-VP41E	Diesel Range Hydrocarbons	11/1/2012 95	Yes	\	5.8	1.5	mg/kg
CWS1-01-11-13	12-21283-VP41E	Motor Oil Range	11/1/2012 120	Yes	>	12	1.8	mg/kg
CWS1-01-3-5	12-21282-VP41D	Motor Oil Range	11/1/2012 140	Yes	>	11	1.8	mg/kg
CWS1-01-3-5	12-21282-VP41D	Diesel Range Hydrocarbons	11/1/2012 41	Yes	>-	5.7	1.5	mg/kg
CWS1-02-12-13	12-21281-VP41C	Diesel Range Hydrocarbons	11/1/2012 39	Yes	>-	5.7	1.5	mg/kg
CWS1-02-12-13	12-21281-VP41C	Motor Oil Range	11/1/2012 98	Yes	>-	Ħ	1.8	mg/kg
CWS1-02-1-3	12-21279-VP41A	Diesel Range Hydrocarbons	10/31/2012 5.2	Yes	o z	5.2	1.3	mg/kg
CWS1-02-1-3	12-21279-VP41A	Motor Oil Range	10/31/2012 10	Yes	o z	10	1.6	mg/kg
CWS1-02-7-8	12-21280-VP41B	Diesel Range Hydrocarbons	11/1/2012 150	Yes	>-	5.7	1.5	mg/kg
CWS1-02-7-8	12-21280-VP41B	Motor Oil Range	11/1/2012 280	Yes	>-	Ħ	1.8	mg/kg
CWS1-03-2-4	12-21285-VP41G	Diesel Range Hydrocarbons	11/1/2012 100	Yes	>-	5.6	1.4	mg/kg
CWS1-03-2-4	12-21285-VP41G	Motor Oil Range	11/1/2012 84	Yes	>-	£	1.8	mg/kg
CWS1-03-7-9	12-21286-VP41H	Motor Oil Range	11/1/2012 410	Yes	>-	13	2.1	mg/kg
CWS1-03-7-9	12-21286-VP41H	Diesel Range Hydrocarbons	11/1/2012 300	Yes	>-	6.7	1.7	mg/kg
Analytical Method	NWTPHG	-					·	
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Report	Mod Res Report Detect Lab Qua	Val Qual Reason RL	MDL	Units
CWS1-01-11-13	12-21283-VP41E	Gasoline Range Hydrocarbons	10/30/2012 6.4	Yes) Z	6.4	2.1	mg/kg
CWS1-01-3-5	12-21282-VP41D	Gasoline Range Hydrocarbons	10/30/2012 10	Yes) Z	10	3.4	mg/kg
CWS1-02-12-13	12-21281-VP41C	Gasoline Range Hydrocarbons	10/30/2012 7	Yes	o z	7.0	2.3	mg/kg
CWS1-02-1-3	12-21279-VP41A	Gasoline Range Hydrocarbons	10/30/2012 6.5	Yes	o z	6.5	2.2	mg/kg
CWS1-02-7-8	12-21280-VP41B	Gasoline Range Hydrocarbons	10/30/2012 7.6	Yes	>-	6.1	2.0	mg/kg
CWS1-03-2-4	12-21285-VP41G	Gasoline Range Hydrocarbons	10/30/2012 9.5	Yes) Z	9.5	3.1	mg/kg
CWS1-03-7-9	12-21286-VP41H	Gasoline Range Hydrocarbons	10/30/2012 8.8	Yes) Z	8.8	2.9	mg/kg
CWS1-TB-01-20121025-2	5-2 12-21288-VP41J	Gasoline Range Hydrocarbons	10/30/2012 0.25	Yes	o z	0.25	0.057	mg/L

Analytical Method	SW6010C										
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result		Mod Res Report Detect Lab Qual	oct Lab Qual	Val Qual	Reason	R	MOL	Units
CWS1-01-11-13	12-21283-VP41E	Nickel	11/2/2012 109		Yes Y				မွ	1.9	mg/kg
CWS1-01-11-13	12-21283-VP41E	Selenium	11/2/2012 30		Yes	J			30	4.1	mg/kg
CWS1-01-11-13	12-21283-VP41E	Copper	11/2/2012 359	_	Yes Y				_	0.31	mg/kg
CWS1-01-11-13	12-21283-VP41E	Cadmium	11/2/2012 1		Yes	כ			_	69.0	mg/kg
CWS1-01-11-13	12-21283-VP41E	Beryllium	11/2/2012 0.6		Yes	כ			9.0	0.063	mg/kg
CWS1-01-11-13	12-21283-VP41E	Arsenic	11/2/2012 30		Yes	J			30	2.9	mg/kg
CWS1-01-11-13	12-21283-VP41E	Antimony	11/2/2012 30		Yes	J	3	ω	30	2.0	mg/kg
CWS1-01-11-13	12-21283-VP41E	Silver	11/2/2012 2		Yes	J			7	0.19	mg/kg
CWS1-01-11-13	12-21283-VP41E	Zinc	11/2/2012 273	_	Yes Y				9	0.75	mg/kg
CWS1-01-11-13	12-21283-VP41E	Lead	11/2/2012 110		Yes Y				10	0.82	mg/kg
CWS1-01-11-13	12-21283-VP41E	Thallium	11/2/2012 30		Yes	ם		••	30	3.3	mg/kg
CWS1-01-11-13	12-21283-VP41E	Chromium	11/2/2012 57		Yes Y			•	က	1.7	mg/kg
CWS1-01-3-5	12-21282-VP41D	Copper	11/2/2012 148	_	Yes Y				9:0	0.16	mg/kg
CWS1-01-3-5	12-21282-VP41D	Chromium	11/2/2012 38		Yes Y			.,	8	0.84	mg/kg
CWS1-01-3-5	12-21282-VP41D	Cadmium	11/2/2012 1.4		Yes Y			_	9.0	0.34	mg/kg
CWS1-01-3-5	12-21282-VP41D	Beryllium	11/2/2012 0.3		Yes	כ		_	0.3	0.031	mg/kg
CWS1-01-3-5	12-21282-VP41D	Arsenic	11/2/2012 20		Yes	ם		.,	20	4.1	mg/kg
CWS1-01-3-5	12-21282-VP41D	Antimony	11/2/2012 20		Yes	D	ñ	ω	20	1.0	mg/kg
CWS1-01-3-5	12-21282-VP41D	Thallium	11/2/2012 20		Yes	D		•	20	1.6	mg/kg
CWS1-01-3-5	12-21282-VP41D	Silver	11/2/2012 0.9		Yes)		J	6.0	0.093	mg/kg
CWS1-01-3-5	12-21282-VP41D	Nickel	11/2/2012 39		Yes Y			•	e	0.93	mg/kg
CWS1-01-3-5	12-21282-VP41D	Lead	11/2/2012 166		Yes Y			v	9	0.40	mg/kg
CWS1-01-3-5	12-21282-VP41D	Zinc	11/2/2012 347		Yes Y			(,	e E	0.37	mg/kg
CWS1-01-3-5	12-21282-VP41D	Selenium	11/2/2012 20		Yes	Þ		•	20	2.0	mg/kg
CWS1-02-12-13	12-21281-VP41C	Beryllium	11/2/2012 0.6		Yes	D .		J	9.0	0.060	mg/kg

Analytical Wethod	SW6010C										
Sample 1D	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Report Detect Lab Qua	t Detect	Lab Qual	Val Qual Reason	Reason	R	MDL	Units
CWS1-02-12-13	12-21281-VP41C	Selenium	11/2/2012 30	Yes	z	_ 			30	3.9	mg/kg
CWS1-02-12-13	12-21281-VP41C	Zinc	11/2/2012 162	Yes	>				9	0.72	mg/kg
CWS1-02-12-13	12-21281-VP41C	Copper	11/2/2012 209	Yes	>				~	0.30	mg/kg
CWS1-02-12-13	12-21281-VP41C	Cadmium	11/2/2012 1	Yes	>				_	99.0	mg/kg
CWS1-02-12-13	12-21281-VP41C	Arsenic	11/2/2012 30	Yes	z	_D			30	2.7	mg/kg
CWS1-02-12-13	12-21281-VP41C	Antimony	11/2/2012 30	Yes	z	_D	3	æ	30	1.9	mg/kg
CWS1-02-12-13	12-21281-VP41C	Thallium	11/2/2012 30	Yes	z	_D			30	3.2	mg/kg
CWS1-02-12-13	12-21281-VP41C	Silver	11/2/2012 2	Yes	z	_D			7	0.18	mg/kg
CWS1-02-12-13	12-21281-VP41C	Nickel	11/2/2012 39	Yes	>				9	1.8	mg/kg
CWS1-02-12-13	12-21281-VP41C	Chromium	11/2/2012 30	Yes	>				က	1.6	mg/kg
CWS1-02-12-13	12-21281-VP41C	Lead	11/2/2012 40	Yes	>				10	0.78	mg/kg
CWS1-02-1-3	12-21279-VP41A	Antimony	11/2/2012 5	Yes	>		¬	80	5	0.34	mg/kg
CWS1-02-1-3	12-21279-VP41A	Chromium	11/2/2012 14.2	Yes	>				0.5	0.29	mg/kg
CWS1-02-1-3	12-21279-VP41A	Beryllium	11/2/2012 0.1	Yes	>				0.1	0.011	mg/kg
CWS1-02-1-3	12-21279-VP41A	Selenium	11/2/2012 5	Yes	z)			2	69.0	mg/kg
CWS1-02-1-3	12-21279-VP41A	Cadmium	11/2/2012 0.2	Yes	z)			0.2	0.12	mg/kg
CWS1-02-1-3	12-21279-VP41A	Copper	11/2/2012 41.4	Yes	>				0.2	0.053	mg/kg
CWS1-02-1-3	12-21279-VP41A	Thallium	11/2/2012 5	Yes	z	_D			22	0.56	mg/kg
CWS1-02-1-3	12-21279-VP41A	Silver	11/2/2012 0.3	Yes	z)			0.3	0.032	mg/kg
CWS1-02-1-3	12-21279-VP41A	Nickel	11/2/2012 19	Yes	>				_	0.32	mg/kg
CWS1-02-1-3	12-21279-VP41A	Lead	11/2/2012 16	Yes	>				7	0.14	mg/kg
CWS1-02-1-3	12-21279-VP41A	Zinc	11/2/2012 52	Yes	>				-	0.13	mg/kg
CWS1-02-1-3	12-21279-VP41A	Arsenic	11/2/2012 25	χeχ	>				2	0.49	mg/kg
CWS1-02-7-8	12-21280-VP41B	Arsenic	11/2/2012 60	Yes	z	D			09	5.4	mg/kg
CWS1-02-7-8	12-21280-VP41B	Nickel	11/2/2012 160	Yes	>				10	3.5	mg/kg
										Page 7 of 16	f 16

Analytical Method	SW6010C								
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Report	Mod Res Report Detect Lab Qual	Val Qual Reason	son RL	M	Units
CWS1-02-7-8	12-21280-VP41B	Silver	11/2/2012 4	Yes	D Z		4	0.35	mg/kg
CWS1-02-7-8	12-21280-VP41B	Beryllium	11/2/2012 1	Yes	D Z		-	0.12	mg/kg
CWS1-02-7-8	12-21280-VP41B	Cadmium	11/2/2012 2	Yes	D Z		2	1.3	mg/kg
CWS1-02-7-8	12-21280-VP41B	Chromium	11/2/2012 128	Yes	>		9	3.2	mg/kg
CWS1-02-7-8	12-21280-VP41B	Copper	11/2/2012 403	Yes	>-		2	0.59	mg/kg
CWS1-02-7-8	12-21280-VP41B	Zinc	11/2/2012 250	Yes	> -		10	4.1	mg/kg
CWS1-02-7-8	12-21280-VP41B	Selenium	11/2/2012 60	Yes	o z		9	9.7	mg/kg
CWS1-02-7-8	12-21280-VP41B	Thallium	11/2/2012 60	Yes	o z		9	6.2	mg/kg
CWS1-02-7-8	12-21280-VP41B	Antimony	11/2/2012 60	Yes	o z	8	09	3.7	mg/kg
CWS1-02-7-8	12-21280-VP41B	Lead	11/2/2012 1260	Yes	>		20	1.5	mg/kg
Analytical Method	SW7471A								
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Report	Mod Res Report Detect Lab Qual	Val Qual Reason	SON RL	M	Units
CWS1-01-11-13	12-21283-VP41E	Mercury	10/30/2012 0.22	Yes	>		0.02	0.0011	mg/kg
CWS1-01-3-5	12-21282-VP41D	Mercury	10/30/2012 0.06	Yes	>		0.02	0.0012	mg/kg
CWS1-02-12-13	12-21281-VP41C	Mercury	10/30/2012 0.02	Yes	o z		0.02	0.0012	mg/kg
CWS1-02-1-3	12-21279-VP41A	Mercury	10/30/2012 0.03	Yes	o z		0.03	0.0014	mg/kg
CWS1-02-7-8	12-21280-VP41B	Mercury	10/30/2012 0.05	Yes	>		0.03	0.0013	mg/kg
Analytical Method	SW8260C								
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Report	Mod Res Report Detect Lab Qual	Val Qual Reason	son RL	MDI	Units
CWS1-01-11-13	12-21283-VP41E	m,p-Xylene	10/30/2012 1	Yes	D N		1.0	0.39	ng/kg
CWS1-01-11-13	12-21283-VP41E	Toluene	10/30/2012 1	Yes	o z		1.0	0.15	ug/kg
CWS1-01-11-13	12-21283-VP41E	Benzene	10/30/2012 1	Yes	o z		1.0	0:30	ug/kg
CWS1-01-11-13	12-21283-VP41E	o-Xylene	10/30/2012 1	Yes	o z		1.0	0.22	ug/kg
CWS1-01-11-13	12-21283-VP41E	Ethylbenzene	10/30/2012 1	Yes	o z		1.0	0.20	ug/kg
CWS1-01-3-5	12-21282-VP41D	Ethylbenzene	10/30/2012 1.3	Yes	o z		1.3	0.26	ug/kg
							5	Page 8 of 16	of 16

Analytical Method	SW8260C		:						
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Report	Detect La	Mod Res Report Detect Lab Qual Val Qual Reason	Reason RL	MDL	Units
CWS1-01-3-5	12-21282-VP41D	Toluene	10/30/2012 0.7	Yes	γ		1.3	0.19	ug/kg
CWS1-01-3-5	12-21282-VP41D	o-Xylene	10/30/2012 1.3	Yes) Z		1.3	0.29	ug/kg
CWS1-01-3-5	12-21282-VP41D	Benzene	10/30/2012 1.2	Yes	≻		1.3	0.38	ug/kg
CWS1-01-3-5	12-21282-VP41D	m,p-Xylene	10/30/2012 1.3	, Yes	z		1.3	0.50	ug/kg
CWS1-02-12-13	12-21281-VP41C	o-Xylene	10/30/2012 1	Yes) Z		1.0	0.22	ug/kg
CWS1-02-12-13	12-21281-VP41C	Benzene	10/30/2012 0.8	Yes	≻		1.0	0.30	ug/kg
CWS1-02-12-13	12-21281-VP41C	m,p-Xylene	10/30/2012 1	Yes	o z		1.0	0.39	ug/kg
CWS1-02-12-13	12-21281-VP41C	Toluene	10/30/2012 0.6	Yes	>		1.0	0.15	ug/kg
CWS1-02-12-13	12-21281-VP41C	Ethylbenzene	10/30/2012 0.6	Yes	>		1.0	0.20	ug/kg
CWS1-02-1-3	12-21279-VP41A	m,p-Xylene	10/30/2012 1.2	Yes	z		1.2	0.45	ug/kg
CWS1-02-1-3	12-21279-VP41A	o-Xylene	10/30/2012 1.2	Yes	z		1.2	0.26	ug/kg
CWS1-02-1-3	12-21279-VP41A	Benzene	10/30/2012 1.1	Yes	≻		1.2	0.34	ug/kg
CWS1-02-1-3	12-21279-VP41A	Toluene	10/30/2012 1	Yes	≻		1.2	0.17	ug/kg
CWS1-02-1-3	12-21279-VP41A	Ethylbenzene	10/30/2012 1.2	Yes) Z		1.2	0.23	ug/kg
CWS1-02-7-8	12-21280-VP41B	Benzene	10/30/2012 0.9	Yes	≻		1.2	0.35	ug/kg
CWS1-02-7-8	12-21280-VP41B	o-Xylene	10/30/2012 1.2	Yes) Z		1.2	0.27	ug/kg
CWS1-02-7-8	12-21280-VP41B	m,p-Xylene	10/30/2012 1.2	Yes	z		1.2	0.47	ug/kg
CWS1-02-7-8	12-21280-VP41B	Toluene	10/30/2012 1.2	Yes	o z		1.2	0.18	ug/kg
CWS1-02-7-8	12-21280-VP41B	Ethylbenzene	10/30/2012 1.2	Yes) Z		1.2	0.24	ug/kg
CWS1-03-2-4	12-21285-VP41G	Ethylbenzene	10/30/2012 1.4	Yes) Z		1.4	0.28	ug/kg
CWS1-03-2-4	12-21285-VP41G	Toluene	10/30/2012 1.6	Yes	>-		1.4	0.21	ug/kg
CWS1-03-2-4	12-21285-VP41G	m,p-Xylene	10/30/2012 1.4	Yes	D Z		1.4	0.54	ug/kg
CWS1-03-2-4	12-21285-VP41G	Benzene	10/30/2012 1.4	Yes	D Z		1.4	0.40	ug/kg
CWS1-03-2-4	12-21285-VP41G	o-Xylene	10/30/2012 1.4	Yes	z		1.4	0.31	ug/kg
CWS1-03-7-9	12-21286-VP41H	m,p-Xylene	10/30/2012 1.6	Yes	>-		1.2	0.45	ug/kg

VP4	
(i)	
ĕ	

Analytical Method	SW8260C									
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result Mod Res Report Detect Lab Qual Val Qual Reason	Mod Res Repor	't Detect	Lab Qual	Val Qual Reas	on RL	MDL	Units
CWS1-03-7-9	12-21286-VP41H Toluene	Toluene	10/30/2012 2.7	Yes	\			1.2	0.17	ug/kg
CWS1-03-7-9	12-21286-VP41H	o-Xylene	10/30/2012 0.8	Yes	>-	¬		1.2	0.26	ug/kg
CWS1-03-7-9	12-21286-VP41H	Ethylbenzene	10/30/2012 0.6	Yes	>-	¬		1.2	0.23	ug/kg
CWS1-03-7-9	12-21286-VP41H	Benzene	10/30/2012 2.3	Yes	>-			1.2	0.34	ug/kg
CWS1-TB-01-20121025-2 12-21288-VP41J	2 12-21288-VP41J	Ethylbenzene	10/30/2012 1	Yes	z)		1.0	0.18	ng/L
CWS1-TB-01-20121025-2 12-21288-VP41J	2 12-21288-VP41J	o-Xylene	10/30/2012 1	Yes	z			1.0	0.22	ng/L
CWS1-TB-01-20121025-2 12-21288-VP41J	2 12-21288-VP41J	Benzene	10/30/2012 1	Yes	z	5		1.0	0.25	ng/L
CWS1-TB-01-20121025-2 12-21288-VP41J	2 12-21288-VP41J	m,p-Xylene	10/30/2012 2	Yes	z	⊃		2.0	0.36	ng/L
CWS1-TB-01-20121025-2 12-21288-VP41J	2 12-21288-VP41J	Toluene	10/30/2012 1	Yes	z	D		1.0	0.18	ng/L

Laboratory Data Consultants, Inc.

7750 El Camino Real, Ste. 2L Carlsbad, CA 92009

Phone 760.634.0437

Web www.lab-data.com

Fax 760.634.0439

Anchor Environmental, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101 ATTN: Ms. Cindy Fields

November 28, 2012

SUBJECT: Central Waterfront, Data Validation

Dear Ms. Fields,

Enclosed is the final validation report for the fractions listed below. This SDG was received on November 12, 2012. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 28782:

SDG#	<u>Fraction</u>
VP51	Volatiles, Metals, Gasoline Range Organics, Total Petroleum
	Hydrocarbons as Extractables

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, June 2008
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, January 2010
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

Ming-Hwa Hwang

Project Manager/Senior Chemist

		S	1	1			[Ī	Ī		<u> </u>	<u> </u>											 <u> </u>	_		T	一	27
		8	\dashv	\dashv		_	\vdash					_		_		 								\vdash			\dashv	\dashv	0
		\vdash	_	\dashv	_	 								-					_					-			\dashv	-	(
		S	\dashv	_	_	 	<u> </u>			_			-	_		 								_				_	릐
		8				 				<u> </u>		ļ				 												_	_
		S																											0
		≯				 																							0
		S																					·						0
		3																											0
		S																										1	0
		≥				 																						_	0
		S	_	\dashv		 			_	 				 				\vdash						 -				十	0
3		\dashv	-		-		-					-				 				 					-		\dashv	\dashv	 ∥
<u>1</u> 0		Α			-					\vdash														 -			\dashv	\dashv	
ter		S								L		_		_								Ш					_	_	릐
Sa		≯	_					_		<u> </u>		_	_					_						 L			_	_	
<u></u>		S	_			 		_			<u> </u>		_					Ш						_			\sqcup	\perp	
Ħ		3												L										_				\bot	
vironmental-Seattle WA / Central Waterfront)		S																						_			\Box		0
A		Μ																											0
3		S																											0
#e		3						Γ																					0
eal		S														 												T	0
S-1		3																									\Box	\top	0
nta		S																										┪	0
me		3	\neg				\vdash	_		┢┈				\vdash		 											\dashv	\dashv	
Ξo		2	\dashv				-			-	_										_	_		 			\Box	十	0
Ş			\dashv				-			_		\vdash	\vdash								_	_		 			\dashv	\dashv	0
LDC #28782 (Anchor En	I	Α .			-					-							_		_					 -			-	+	9
<u>0</u>	PH-E Ox)	S /	9				\vdash			_		<u> </u>		-		 											\dashv	+	0
10	TPH-G TPH-E (NWTPH (NWTPH -Gx)	Α	0		_		<u> </u>			ļ			-				_					Н		 _				-	
₹	MTP GX)	S	ဖ	_			_		_				_	_					_		_			ļ <u>.</u>			\dashv	\dashv	9
82	<u> </u>	8		_	_		_			<u> </u>			_												-		\dashv	4	_
287	Metals (6010C /7000)	S	9							_	_		_											 		_		4	9
#	Me (60)77	≥	٥																					 				4	0
ă	EX 30C)	S	7					L																				_	7
	BTEX (8260C)	Α	-																										-
			/12																										
	(3) DATE DUE		12/12/12																										
			_				-	<u> </u>		\vdash		-	_	_								-		 -				+	-
	DATE REC'D		11/16/12																										
e 2B	Q 52		=		_		L			<u> </u>														 _				_	_
Stage 2B																													
	#5	/Soil	51																										A/MH
EDD	*SDG	/ater	VP51																										₹
ш		×					ŀ																						
i salasi	CDC	Matrix: Water/Soil	∀							l^-								П				П		\Box			\Box	\top	Total
		12	<u>``</u>	1				<u>L.,.</u>		<u> </u>	L	<u> </u>	L	<u></u>	<u></u>		<u></u>					l		<u> </u>	<u> </u>				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Central Waterfront

Collection Date:

October 26, 2012

LDC Report Date:

November 28, 2012

Matrix:

Soil/Water

Parameters:

Volatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): VP51

Sample Identification

CWSI-07-2-4

CWSI-05-2-4

CWSI-05-7-9

CWSI-05-12-14

CWSI-06-8-10

CWSI-06-8-10RE

CWSI-06-12-14

CWSI-TB-02

Introduction

This data review covers 7 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260C for Volatiles which are Benzene, Toluene, Ethylbenzene and Xylenes (BTEX).

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of the presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Average relative response factors (RRF) for all compounds were within method and validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within method and validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Compound	Flag	A or P
CWSI-06-8-10	Bromofluorobenzene 1,2-Dichloroethane-d4	150 (80-120) 149 (80-120)	All TCL compounds	J (all detects)	А

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and RLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

Sample	Compound	Flag	A or P
CWSI-06-8-10RE	All TCL compounds	R	А

No data were qualified due to high surrogate %R, the associated results were non-detected.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be rejected (R) are unusable for all purposes. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the Stage 2B data validation all other results are considered valid and usable for all purposes.

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

Sample CWSI-TB-02 was identified as a trip blank. No volatiles were found.

Central Waterfront

Volatiles - Data Qualification Summary - SDG VP51

SDG	Sample	Compound	Flag	A or P	Reason
VP51	CWSI-06-8-10	All TCL compounds	J (all detects)	Α	Surrogate spikes (%R)
VP51	CWSI-06-8-10RE	All TCL compounds	R	A	Overall assessment of data

Central Waterfront

Volatiles - Laboratory Blank Data Qualification Summary - SDG VP51

No Sample Data Qualified in this SDG

LDC #: 28782A1a	_ VALIDATION COMPLETENESS WORKSHEET
SDG #: <u>VP51</u>	Stage 2B
Laboratory: Analytical Reso	urces, Inc.

Date: 11/24/12
Page: 1 of 1
Reviewer: 6x 2nd Reviewer:

METHOD: GC/MS Volatiles (BTEX) (EPA SW 846 Method 8260C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	A	Sampling dates: 16 26 12
II.	GC/MS Instrument performance check	A	'
III.	Initial calibration	A	KSD 5207
IV.	Continuing calibration/tox	A	KSD ≤207 CIV ≤ 209
V.	Blanks	A	
VI.	Surrogate spikes	8W	
VII.	Matrix spike/Matrix spike duplicates	N	Client sper.
VIII.	Laboratory control samples	A-	LCSD
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	ASST	
XI.	Target compound identification	N	
XII.	Compound quantitation/RL/LOQ/LODs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SW AF	
XVI.	Field duplicates	λ	
XVII.	Field blanks	ND	TB = 8

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples: Soil + Water

¥ 1 2	CWSI-07-2-4 S	11	21	31/ MB-110212A-W
2 2	CWSI-05-2-4	12	22	322 MB-110212A-S
	CWSI-05-7-9	13	23	333 MB-110512A-S
72	CWSI-05-12-14	14	24	34
= 2	CWSI-06-8-10	15	25	35
63	CWSI-06-8-10RE	16	26	36
Fa	CWSI-06-12-14	17	27	37
- 8 1	CWSI-TB-02	18	28	38
9		19	29	39
10		20	30	40

LDC#. 28782A14

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

of criteria?

%Recovery (Limits)	(80-120) & Jat 1A	() ()	()		()		()		()	()		()	
	8FB 150												
Sample ID	2												
# Date													

(1	85-120	75-120	70-120	85-115
QC Limits (Soi	85-115	85-120	60-120	75-125
	SMC1 (TOL) = Toluene-d8	SMC2 (BFB) = Bromofluorobenzene	SMC3 (DCE) = 1,2-Dichloroethane-d4	SMC4 (DFM) = Dibromofluoromethane

LDC #. 28782A7

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: (of // Reviewer: BR

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data $\frac{|Y|}{|Y|}$ N N/A. Was the overall quality and usability of the data acceptable?

Finding Associated Samples	clevated reporting	1,00, +								
Compound Name										
Date										
#										

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Central Waterfront

Collection Date:

October 26, 2012

LDC Report Date:

November 28, 2012

Matrix:

Soil

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): VP51

Sample Identification

CWSI-07-2-4

CWSI-05-2-4

CWSI-05-7-9

CWSI-05-12-14

CWSI-06-8-10

CWSI-06-12-14

CWSI-07-2-4MS

CWSI-07-2-4DUP

Introduction

This data review covers 8 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Methods 6010C and 7471A for Metals. The metals analyzed were Antimony, Arsenic, Beryllium, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Silver, Thallium, and Zinc.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of the presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. ICPMS Tune

ICP-MS was not utilized in this SDG.

III. Calibration

The initial and continuing calibrations were performed at the required frequency.

The calibration standards criteria were met.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No metal contaminants were found in the initial, continuing and preparation blanks.

V. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

VI. Matrix Spike Analysis

Matrix spike (MS) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	%R (Limits)	Flag	A or P
CWSI-07-2-4MS (All samples in SDG VP51)	Antimony	20.7 (75-125)	J (all detects) UJ (all non-detects)	А
CWSI-07-2-4MS (All samples in SDG VP51)	Copper Zinc	126 (75-125) 164 (75-125)	J (all detects) J (all detects)	А

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Analyte	RPD (Limits)	Difference (Limits)	Flag	A or P
CWSI-07-2-4DUP (All samples in SDG VP51)	Zinc	35.7 (≤20)	-	J (all detects) UJ (all non-detects)	Ά

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Internal Standards (ICP-MS)

ICP-MS was not utilized in this SDG.

X. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

XI. ICP Serial Dilution

ICP serial dilution was not performed for this SDG.

XII. Sample Result Verification

Raw data were not reviewed for this SDG.

XIII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS %R and duplicate RPD problems, data were qualified as estimated in six samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the Stage 2B data validation all other results are considered valid and usable for all purposes.

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

XV. Field Blanks

No field blanks were identified in this SDG.

Central Waterfront Metals - Data Qualification Summary - SDG VP51

SDG	Comple	Analyta	Elea	A a = D	p
VP51	CWSI-07-2-4 CWSI-05-2-4 CWSI-05-7-9 CWSI-05-12-14 CWSI-06-8-10 CWSI-06-12-14	Analyte Antimony	J (all detects) UJ (all non-detects)	A or P	Matrix spike analysis (%R)
VP51	CWSI-07-2-4 CWSI-05-2-4 CWSI-05-7-9 CWSI-05-12-14 CWSI-06-8-10 CWSI-06-12-14	Copper Zinc	J (all detects) J (all detects)	А	Matrix spike analysis (%R)
VP51	CWSI-07-2-4 CWSI-05-2-4 CWSI-05-7-9 CWSI-05-12-14 CWSI-06-8-10 CWSI-06-12-14	Zinc	J (all detects) UJ (all non-detects)	А	Duplicate sample analysis (RPD)

Central Waterfront

Metals - Laboratory Blank Data Qualification Summary - SDG VP51

No Sample Data Qualified in this SDG

abor	#: <u> VP51 </u>	ces, Ind	<u>)</u>		Stage 2B			Page: ∑ of∑ Reviewer: <u> </u>
ETH	IOD: Metals (EPA SW 8	346 Met	hod 6010	7471. C <i>1</i> 7000)	A			2nd Reviewer: V
	·			•	allowing volid	otion orong \/	alidation findi	age are noted in attach
	amples listed below wer tion findings worksheets		wed for ea	ich of the f	ollowing valida	alion areas. V	aliuation illiuli	igs are noted in attack
	<u> </u>			1				
	Validation	Area				101	Comments	
l.	Technical holding times			H	Sampling dates	: 101761	10	
11.	ICP/MS Tune			$ \mathcal{N} $	Notu	uizeb		
111.	Calibration			A	ļ			
IV.	Blanks			A				
V.	ICP Interference Check Sa	mple (IC	S) Analysis	A				
VI.	Matrix Spike Analysis			SW,	ms_			
VII.	Duplicate Sample Analysis	<u>.</u>		SW	De			
VIII.	Laboratory Control Sample	s (LCS)		A	100			
IX.	Internal Standard (ICP-MS)		N	Notur	lized		
Χ.	Furnace Atomic Absorption	n QC		N	7			
XI.	ICP Serial Dilution			N	Not pe	Horned		
XII.	Sample Result Verification			N	`			
XIII.	Overall Assessment of Dat	a		A				
XIV.	Field Duplicates			N,				
χV	Field Blanks			N				
te:	A = Acceptable N = Not provided/applicable SW = See worksheet	le	R = Rir	lo compound nsate ield blank	ds detected	D = Duplicate TB = Trip bla EB = Equipm	nk	
lidate	ed Samples:	mens	5 50:	\				
	CWSI-07-2-4	11			21		31	
	CWSI-05-2-4	12			22		32	
	CWSI-05-7-9	13			23		33	
\Box	CWSI-05-12-14	14			24		34	
	CWSI-06-8-10	15			25		35	
	CWSI-06-12-14	16			26		36	
	CWSI-07-2-4MS	17			27		37	
	©∪€ CWSI-07-2-4 MSD	18			28		38	
		19			29		39	
-		20			30		40	

LDC #: 28782A4 VALIDATION COMPLETENESS WORKSHEET

LDC #: <u>3878</u>284

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: of Reviewer: 2nd reviewer:

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
16		Al,(Sb, As, Ba(Be, Cd) Ca,(Cr,)Co(Cu) Fe(Pb) Mg, Mn(Hg, Ni) K,(Se, Ag,)Na,(Tl) V,(Zn) Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
QC-756		Al, (Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Fb, Mg, Mn, (Hg, Ni) K, Se, Ag, Na, (Ti) V,(Zn) Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Analysis Method
CP		Al, (Sb, As) Ba, (Se, Cd) Ca, (Cr) Co, (Cl), Fe (Pp, Mg, Mn, Hg, Ni, K, Se, Ag, Na(T), V(Zn) Mo, B, Sn, Ti,
CP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
FAA		Al Sh As Ba Re Cd Ca Cr Co Cu Fe Ph Mg Mn Hg Ni K Se Ag Na Tl V 7n Mo R Sn Ti

HP81810 # 2017

VALIDATION FINDINGS WORKSHEET **Matrix Spike Analysis**

Page: of Reviewer: 22 2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

ΊΑ/Ν'.	
re identified as "N	((
e questions a	II.
lot applicable	his SDG?
inswered "N". Not	ch matrix in t
uestions a	e analyzed for each
low for all q	x spike
fications be	Was a matri
Please see quali	
Pleas	N/A N/A

Was a matrix spike analyzed for each matrix in this SDG?
Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor

of 4 or more, no action was taken.

Was a post digestion spike analyzed for ICP elements that did not meet the required criteria for matrix spike recovery?

LEVEL IV ONLY:

Were recalculated results acceptable? See I evel IV Recalculation Worksheet for recalculations

	Qualifications	5/UJA (ps=96,3)	SOLLA	-														
IV Recalculation Worksheet for recalculations.	Associated Samples	Hill																
kecaiculation work	%R	700	126	164														
See Level IV P	Analyte		3															
its acceptable	Matrix	S																:
Were recalculated results acceptable? See Level I	Matrix Spike ID	7																
N/W	Date														٠			
-	#	<u></u>	<u> </u>		l	 <u> </u>	<u> </u>	<u> </u>	<u>L_</u>	<u> </u>	 <u> </u>	 				 		4

Comments:

LDC#: ASTRABY

VALIDATION FINDINGS WORKSHEET **Duplicate Analysis**

Page: 1 Reviewer: 2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Were all duplicate sample relative percent differences (RPD) < 20% for water samples and < 35% for soil samples? If no, see qualifications below. A control

limit of ±R.L. (±2X R.L. for soil) was used for sample values that were <5X the R.L., including the case when only one of the duplicate sample values was <5X R.L. If field blanks were used for laboratory duplicates, note in the Overall Assessment.

LEVEL IX ONLY:

Y N/A

	Qualifications	J 5/15/A												
tions.	Associated Samples	HII											1111	
orksheet for recalcula	Difference (Limits)													
IV Recalculation Wo	RPD (Limits)	(025)L'5S	:											
le? See Leve	Analyte	2n												
ults acceptab	Matrix	\$												
Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.	Duplicate ID	8							17 17 18 18 19					
Y N (N/A)	Date													
≻ [[*													

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Central Waterfront

Collection Date:

October 26, 2012

LDC Report Date:

November 27, 2012

Matrix:

Soil/Water

Parameters:

Gasoline Range Organics

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): VP51

Sample Identification

CWSI-07-2-4

CWSI-05-2-4

CWSI-05-7-9

CWSI-05-12-14

CWSI-06-8-10

CWSI-06-12-14

CWSI-TB-02

Introduction

This data review covers 6 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per NWTPH-Gx for Gasoline Range Organics.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of the presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) of calibration factors for compounds were less than or equal to 20.0%.

III. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 20.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No gasoline range organic contaminants were found in the method blanks.

V. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Target Compound Identification

Raw data were not reviewed for this SDG.

IX. Compound Quantitation and RLs

Raw data were not reviewed for this SDG.

X. System Performance

Raw data were not reviewed for this SDG.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the Stage 2B data validation all results are considered valid and usable for all purposes.

XII. Field Duplicates

No field duplicates were identified in this SDG.

XIII. Field Blanks

Samples CWS1-TB-02 was identified as a trip blank. No gasoline range organics were found.

Central Waterfront Gasoline Range Organics - Data Qualification Summary - SDG VP51

No Sample Data Qualified in this SDG

Central Waterfront Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG VP51

No Sample Data Qualified in this SDG

DG abor	t: 28782A7 #: VP51 atory: Analytical Resource HOD: Gasoline Range Or	- es, Inc.		S	LETENE tage 2B	SS WOR	RKSHEET		Date: <u>I/</u> Page: <u>/ (</u> Reviewer: <u>_/</u> 2nd Reviewer:	of_/ 3x
	amples listed below were tion findings worksheets.		ed for eac	h of the f	ollowing va	lidation are	as. Validatio	on find	lings are noted in atta	ache
	Validation	Area					Comm	ents		
1.	Technical holding times			A	Sampling da	ites: 0	26/12			
ll	Initial calibration			_A_	KSD:	£207				
III.	Calibration verification/#SX	<i>ICV</i>		Á	KV DOW	CCV =	20% .			
IV.	Blanks			A						
٧	Surrogate recovery			A						
VI.	Matrix spike/Matrix spike du	plicates	· .	<u> </u>	Client	sier-				
VII.	Laboratory control samples			A	LCS/					
VIII.	Target compound identificat	tion		N						
IX.	Compound quantitation	LOQ/LODs	3	N						
Χ.	System Performance			N						
XI.	Overall assessment of data			_A						
XII.	Field duplicates			<u>الم</u>						
XIII.	Field blanks			ND	TB >	8				
lote:	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:		R = Rins FB = Fie		s detected	TB = 1	uplicate Trip blank Equipment blar	nk		
	ed Samples: Soil +	T T			- 1			T T		
1 2	cwsi-07-2-4 S	11			21			31	MB-103112	
	CWSI-05-2-4	12			22			32		
3	CWSI-05-7-9	13			23			33		
<u> </u>	CWSI-05-12-14	14			24		 	34		
5	CWSI-06-8-10	15			25			35		
	-CWSI-08-8-10RE	16	· · · · · · · · · · · · · · · · · · ·	·	26			36		
7	CWSI-06-12-14	17			27			37		
8	CWSI-TB-02	18			28			38		
9		19			29_			39		
10		20			30			40		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Central Waterfront

Collection Date:

October 26, 2012

LDC Report Date:

November 27, 2012

Matrix:

Soil

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): VP51

Sample Identification

CWSI-07-2-4

CWSI-05-2-4

CWSI-05-7-9

CWSI-05-12-14

CWSI-06-8-10

CWSI-06-12-14

CWSI-05-2-4MS

CWSI-05-2-4MSD

Introduction

This data review covers 8 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per NWTPH-Dx for Total Petroleum Hydrocarbons as Extractables.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of the presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) of calibration factors for compounds were less than or equal to 20.0%.

III. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 20.0% QC limits.

The percent differences (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

IV. Blanks

Method blanks were reviewed for each matrix as applicable. No total petroleum hydrocarbons as extractables were found in the method blanks.

V. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VIII. Target Compound Identification

Raw data were not reviewed for this SDG.

IX. Compound Quantitation and RLs

Raw data were not reviewed for this SDG.

X. System Performance

Raw data were not reviewed for this SDG.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the Stage 2B data validation all results are considered valid and usable for all purposes.

XII. Field Duplicates

No field duplicates were identified in this SDG.

XIII. Field Blanks

No field blanks were identified in this SDG.

Central Waterfront

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG VP51

No Sample Data Qualified in this SDG

Central Waterfront

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG VP51

No Sample Data Qualified in this SDG

LDC #:_	28782A8	VALIDATION COMPLETENESS WORKSHEET	Date: 11/24/12
SDG #:	VP51	Stage 2B	Page: <u>(</u> of <u></u>
Laborato	ory: Analytical Resour	rces, Inc.	Reviewer: Kn 2nd Reviewer:
METHO	D: TPH as Extractable	les (NWTPH-Dx)	

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
ı.	Technical holding times	A	Sampling dates: lo/26/12
-11	Initial calibration	A	RSD < 207
III.	Calibration verification//b≪ 1 € ✓	A	(N) IN (COVE 20)
IV.	Blanks	A-	
V	Surrogate recovery	A	
VI.	Matrix spike/Matrix spike duplicates	A	
VII.	Laboratory control samples	A	LCS
VIII.	Target compound identification	N	
IX.	Compound quantitation/RL/LOQ/LODs	N	
X.	System Performance	N	
XI.	Overall assessment of data	~	
XII.	Field duplicates	N	
XIII.	Field blanks	\ \	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

+	CWSI-07-2-4	11	21	31 MB-110212
1	CWSI-05-2-4	12	22	32
1 3	CWSI-05-7-9	13	23	33
\$	CWSI-05-12-14	14	24	34
₽- 5	CWSI-06-8-10	15	25	35
8	CWSI-06-12-14	16	26	36
7	# ZMS	17	27	37
8	#2MSD	18	28	38
9		19	29	39
10		20	30	40

Notes:_	NH	Silica	gel	denny	 	·		 	 		

Analytical Method N	NWTPHDx								
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Report	Mod Res Report Detect Lab Qual	Val Qual Reason	=	M	Units
CWSI-05-12-14	12-21317-VP51D	Motor Oil Range	11/6/2012 590	Yes	>		58	9.1	mg/kg
CWSI-05-12-14	12-21317-VP51D	Diesel Range Hydrocarbons	11/6/2012 420	Yes	>		59	7.4	mg/kg
CWSI-05-2-4	12-21315-VP51B	Motor Oil Range	11/5/2012 130	Yes	>		7	4.8	mg/kg
CWSI-05-2-4	12-21315-VP51B	Diesel Range Hydrocarbons	11/5/2012 69	Yes	>		5.7	1.5	mg/kg
CWSI-05-7-9	12-21316-VP51C	Diesel Range Hydrocarbons	11/5/2012 200	Yes	>		5.9	1.5	mg/kg
CWSI-05-7-9	12-21316-VP51C	Motor Oil Range	11/5/2012 250	Yes	>		12	1.9	mg/kg
CWSI-06-12-14	12-21319-VP51F	Motor Oil Range	11/5/2012 330	Yes	>-		7	1.7	mg/kg
CWSI-06-12-14	12-21319-VP51F	Diesel Range Hydrocarbons	11/5/2012 240	Yes	>		5.5	4.	mg/kg
CWSI-06-8-10	12-21318-VP51E	Motor Oil Range	11/6/2012 640	Yes	>		150	24	mg/kg
CWSI-06-8-10	12-21318-VP51E	Diesel Range Hydrocarbons	11/6/2012 1300	Yes	>		92	19	mg/kg
CWSI-07-2-4	12-21314-VP51A	Diesel Range Hydrocarbons	11/5/2012 230	Yes	>		0.9	1.5	mg/kg
CWSI-07-2-4	12-21314-VP51A	Motor Oil Range	11/5/2012 220	Yes	>		12	1.9	mg/kg
Analytical Method N	NWTPHG								
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Report	Mod Res Report Detect Lab Qual	Val Qual Reason	E	MDL	Units
CWSI-05-12-14	12-21317-VP51D	Gasoline Range Hydrocarbons	10/31/2012 160	Yes	*		6.9	2.3	mg/kg
CWSI-05-2-4	12-21315-VP51B	Gasoline Range Hydrocarbons	10/31/2012 24	Yes	>		8.2	2.7	mg/kg
CWSI-05-7-9	12-21316-VP51C	Gasoline Range Hydrocarbons	10/31/2012 7.6	Yes) Z		9.7	2.5	mg/kg
CWSI-06-12-14	12-21319-VP51F	Gasoline Range Hydrocarbons	10/31/2012 62	Yes	>		6.5	2.2	mg/kg
CWSI-06-8-10	12-21318-VP51E	Gasoline Range Hydrocarbons	10/31/2012 1300	Yes	>		20	6.7	mg/kg
CWSI-07-2-4	12-21314-VP51A	Gasoline Range Hydrocarbons	10/31/2012 7.3	Yes	o z		7.3	2.4	mg/kg
CWSI-TB-02-20121026-1	12-21324-VP51K	Gasoline Range Hydrocarbons	10/31/2012 0.25	Yes	ɔ z		0.25	0.057	mg/L
Analytical Method S	SW6010C								
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Report	Mod Res Report Detect Lab Qual	Val Qual Reason	ı RL	MDL	Units
CWSI-05-12-14	12-21317-VP51D	Lead	11/1/2012 69	Yes	> -		2	0.15	mg/kg
CWSI-05-12-14	12-21317-VP51D	Thallium	11/1/2012 6	Yes) Z		9	0.63	mg/kg
								Page 11 of 16	of 16

Analytical Method	SW6010C										
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	t Mod Res Report Detect Lab Qual Val Qual Reason	't Detect	Lab Qua	Val Qual	Reason	H		Units
CWSI-05-12-14	12-21317-VP51D	Arsenic	11/1/2012 7	Yes	>				9	0.55	mg/kg
CWSI-05-12-14	12-21317-VP51D	Chromium	11/1/2012 21.1	Yes	>				9.0	0.32	mg/kg
CWSI-05-12-14	12-21317-VP51D	Silver	11/1/2012 0.4	Yes	z)			9.0	0.036	mg/kg
CWSI-05-12-14	12-21317-VP51D	Selenium	11/1/2012 6	Yes	z	⊃			9	0.77	mg/kg
CWSI-05-12-14	12-21317-VP51D	Zinc	11/1/2012 156	Yes	>		_	6,8	τ-	0.14	mg/kg
CWSI-05-12-14	12-21317-VP51D	Copper	11/1/2012 35.3	Yes	>		_	8	0.2	0.059	mg/kg
CWSI-05-12-14	12-21317-VP51D	Beryllium	11/1/2012 0.1	Yes	z)			0.1	0.012	mg/kg
CWSI-05-12-14	12-21317-VP51D	Cadmium	11/1/2012 0.3	Yes	>				0.2	0.13	mg/kg
CWSI-05-12-14	12-21317-VP51D	Antimony	11/1/2012 6	Yes	z)	3	80	မွ	0.38	mg/kg
CWSI-05-12-14	12-21317-VP51D	Nickel	11/1/2012 18	Yes	>					0.36	mg/kg
CWSI-05-2-4	12-21315-VP51B	Zinc	11/1/2012 73	Yes	>-		_	6,8		0.14	mg/kg
CWSI-05-2-4	12-21315-VP51B	Arsenic	11/1/2012 6	Yes	z)			9	0.52	mg/kg
CWSI-05-2-4	12-21315-VP51B	Beryllium	11/1/2012 0.1	Yes	>-				0.1	0.011	mg/kg
CWSI-05-2-4	12-21315-VP51B	Copper	11/1/2012 27.2	Yes	>-		_	æ	0.2	0.056	mg/kg
CWSI-05-2-4	12-21315-VP51B	Lead	11/1/2012 23	Yes	>-				2	0.15	mg/kg
CWSI-05-2-4	12-21315-VP51B	Nickel	11/1/2012 30	Yes	>-				-	0.34	mg/kg
CWSI-05-2-4	12-21315-VP51B	Silver	11/1/2012 0.3	Yes	z	⊃			0.3	0.034	mg/kg
CWSI-05-2-4	12-21315-VP51B	Selenium	11/1/2012 6	Yes	z	⊃			9	0.73	mg/kg
CWSI-05-2-4	12-21315-VP51B	Thallium	11/1/2012 6	Yes	z	D.			9	09.0	mg/kg
CWSI-05-2-4	12-21315-VP51B	Chromium	11/1/2012 27.4	Yes	>				9.0	0.30	mg/kg
CWSI-05-2-4	12-21315-VP51B	Cadmium	11/1/2012 0.3	Yes	>-				0.2	0.12	mg/kg
CWSI-05-2-4	12-21315-VP51B	Antimony	11/1/2012 6	Yes	z	⊃	3	80	9	96.0	mg/kg
CWSI-05-7-9	12-21316-VP51C	Beryllium	11/1/2012 0.2	Yes	>-				0.1	0.013	mg/kg
CWSI-05-7-9	12-21316-VP51C	Silver	11/1/2012 0.4	Yes	z	⊃			0.4	0.038	mg/kg
CWSI-05-7-9	12-21316-VP51C Antimony	Antimony	11/1/2012 6	Yes	z	D.	3	80	9	0.40	mg/kg

SDG: VP51

Analytical Method	SW6010C										
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	It Mod Res Report Detect Lab Qua	ort Detec	ot Lab Qual	Val Qual Reason	Reason	펕		Units
CWSI-05-7-9	12-21316-VP51C	Chromium	11/1/2012 22.7	Yes	>				9.0	0.34	mg/kg
CWSI-05-7-9	12-21316-VP51C	Nickel	11/1/2012 26	Yes	>				_	0.38	mg/kg
CWSI-05-7-9	12-21316-VP51C	Cadmium	11/1/2012 0.4	Yes	>-				0.3	0.14	mg/kg
CWSI-05-7-9	12-21316-VP51C	Selenium	11/1/2012 6	Yes	z	כ			9	0.82	mg/kg
CWSI-05-7-9	12-21316-VP51C	Arsenic	11/1/2012 18	Yes	>				9	0.58	mg/kg
CWSI-05-7-9	12-21316-VP51C	Lead	11/1/2012 33	Yes	>				ო	0.16	mg/kg
CWSI-05-7-9	12-21316-VP51C	Zinc	11/1/2012 100	Yes	>		7	8,9	_	0.15	mg/kg
CWSI-05-7-9	12-21316-VP51C	Copper	11/1/2012 50.1	Yes	>-		7	œ	0.3	0.063	mg/kg
CWSI-05-7-9	12-21316-VP51C	Thallium	11/1/2012 6	Yes	z	D			9	0.67	mg/kg
CWSI-06-12-14	12-21319-VP51F	Thallium	11/1/2012 6	Yes	z	D			9	0.65	mg/kg
CWSI-06-12-14	12-21319-VP51F	Nickel	11/1/2012 15	Yes	>				_	0.37	mg/kg
CWSI-06-12-14	12-21319-VP51F	Silver	11/1/2012 0.4	Yes	z	D			0.4	0.037	mg/kg
CWSI-06-12-14	12-21319-VP51F	Antimony	11/1/2012 6	Yes	z	D	3	8	9	0.39	mg/kg
CWSI-06-12-14	12-21319-VP51F	Arsenic	11/1/2012 6	Yes	z	ם			9	0.57	mg/kg
CWSI-06-12-14	12-21319-VP51F	Cadmium	11/1/2012 0.5	Yes	>				0.2	0.14	mg/kg
CWSI-06-12-14	12-21319-VP51F	Lead	11/1/2012 511	Yes	>				7	0.16	mg/kg
CWSI-06-12-14	12-21319-VP51F	Chromium	11/1/2012 15.8	Yes	>				9.0	0.33	mg/kg
CWSI-06-12-14	12-21319-VP51F	Copper	11/1/2012 41.4	Yes	>		7	89	0.2	0.062	mg/kg
CWSI-06-12-14	12-21319-VP51F	Zinc	11/1/2012 180	Yes	>		7	6,8	_	0.15	mg/kg
CWSI-06-12-14	12-21319-VP51F	Selenium	11/1/2012 6	Yes	z	ם			9	0.80	mg/kg
CWSI-06-12-14	12-21319-VP51F	Beryllium	11/1/2012 0.1	Yes	z	ם			0.1	0.012	mg/kg
CWSI-06-8-10	12-21318-VP51E	Copper	11/1/2012 89.4	Yes	>		7	80	0.3	0.074	mg/kg
CWSI-06-8-10	12-21318-VP51E	Chromium	11/1/2012 29.8	Yes	>				0.7	0.40	mg/kg
CWSI-06-8-10	12-21318-VP51E	Antimony	11/1/2012 7	Yes	z	ב	3	80	7	0.48	mg/kg
CWSI-06-8-10	12-21318-VP51E	Thallium	11/1/2012 7	Yes	z	⊃			7	0.79	mg/kg

Analytical Method	SW6010C									
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result		Mod Res Report Detect Lab Qual	i Val Qual Reason	Reason	귵	MD.	Units
CWSI-06-8-10	12-21318-VP51E	Silver	11/1/2012 0.4	Yes	⊃ Z			0.4	0.045	mg/kg
CWSI-06-8-10	12-21318-VP51E	Selenium	11/1/2012 7	Yes	o z			7	0.97	mg/kg
CWSI-06-8-10	12-21318-VP51E	Nickel	11/1/2012 33	Yes	>			_	0.45	mg/kg
CWSI-06-8-10	12-21318-VP51E	Lead	11/1/2012 145	Yes	>			က	0.19	mg/kg
CWSI-06-8-10	12-21318-VP51E	Arsenic	11/1/2012 9	Yes	>-			7	0.68	mg/kg
CWSI-06-8-10	12-21318-VP51E	Beryllium	11/1/2012 0.1	Yes	o z			0.1	0.015	mg/kg
CWSI-06-8-10	12-21318-VP51E	Cadmium	11/1/2012 0.7	Yes	>			0.3	0.16	mg/kg
CWSI-06-8-10	12-21318-VP51E	Zinc	11/1/2012 202	Yes	>	7	6,8	-	0.18	mg/kg
CWSI-07-2-4	12-21314-VP51A	Cadmium	11/1/2012 0.3	Yes	>			0.2	0.13	mg/kg
CWSI-07-2-4	12-21314-VP51A	Lead	11/1/2012 25	Yes	>-			7	0.15	mg/kg
CWSI-07-2-4	12-21314-VP51A	Silver	11/1/2012 0.3	Yes	o z			0.3	0.035	mg/kg
CWSI-07-2-4	12-21314-VP51A	Thallium	11/1/2012 6	Yes) Z			9	0.61	mg/kg
CWSI-07-2-4	12-21314-VP51A	Antimony	11/1/2012 6	Yes	o z	3	ω	9	0.37	mg/kg
CWSI-07-2-4	12-21314-VP51A	Arsenic	11/1/2012 11	Yes	>-			9	0.53	mg/kg
CWSI-07-2-4	12-21314-VP51A	Nickel	11/1/2012 28	Yes	>			_	0.35	mg/kg
CWSI-07-2-4	12-21314-VP51A	Chromium	11/1/2012 34.1	Yes	>			9.0	0.31	mg/kg
CWSI-07-2-4	12-21314-VP51A	Selenium	11/1/2012 6	Yes) Z			ဖ	0.75	mg/kg
CWSI-07-2-4	12-21314-VP51A	Beryllium	11/1/2012 0.2	Yes	>			0.1	0.012	mg/kg
CWSI-07-2-4	12-21314-VP51A	Copper	11/1/2012 33	Yes	>	7	ω	0.2	0.058	mg/kg
CWSI-07-2-4	12-21314-VP51A	Zinc	11/1/2012 106	Yes	>	7	₀ හි	_	0.14	mg/kg
Analytical Method	SW7471A									
Sample ID	Lab Sample ID	Chemica Name	Anal Date Result	:	Mod Res Report Detect Lab Qua	Val Qua	Reason	귤		Units
CWSI-05-12-14	12-21317-VP51D	Mercury	11/2/2012 0.09	Yes	> -			0.03	0.0014	mg/kg
CWSI-05-2-4	12-21315-VP51B	Mercury	11/2/2012 0.17	Yes	>-			0.02	0.0011	mg/kg
CWSI-05-7-9	12-21316-VP51C	Mercury	11/2/2012 0.12	Yes	>-			0.03	0.0015	mg/kg
									Page 14 of 16	of 16

Analytical Method	SW7471A					:				
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	t Mod Res Report Detect Lab Qual	rt Detec	t Lab Qual	Val Qual Reason	leason RE	MD	Units
CWSI-06-12-14	12-21319-VP51F	Mercury	11/2/2012 0.33	Yes	>			0.02	200012	2 mg/kg
CWSI-06-8-10	12-21318-VP51E	Mercury	11/2/2012 0.38	Yes	>			0.03	0.0016	s mg/kg
CWSI-07-2-4	12-21314-VP51A	Mercury	11/2/2012 0.04	Yes	>			0.03	0.0015	5 mg/kg
Analytical Method	SW8260C									
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	t Mod Res Report Detect Lab Qual	rt Detec	t Lab Qua	Val Qual F	Reason RE	MDL	Units
CWSI-05-12-14	12-21317-VP51D	Ethylbenzene	11/2/2012 7.5	Yes	>			1.2	2 0.25	ug/kg
CWSI-05-12-14	12-21317-VP51D	Toluene	11/2/2012 11	Yes	>			1.2	0.18	ug/kg
CWSI-05-12-14	12-21317-VP51D	m,p-Xylene	11/2/2012 29	Yes	>			1.2	0.48	ug/kg
CWSI-05-12-14	12-21317-VP51D	o-Xylene	11/2/2012 5.4	Yes	>-			1.2	0.27	ug/kg
CWSI-05-12-14	12-21317-VP51D	Benzene	11/2/2012 63	Yes	>-			1.2	0.36	ug/kg
CWSI-05-2-4	12-21315-VP51B	Toluene	11/2/2012 1.3	Yes	>	7		1.3	0.20	ug/kg
CWSI-05-2-4	12-21315-VP51B	m,p-Xylene	11/2/2012 1.3	Yes	z)		1.3	3 0.51	ug/kg
CWSI-05-2-4	12-21315-VP51B	Ethylbenzene	11/2/2012 1.3	Yes	z	D		1.3	3 0.26	ug/kg
CWSI-05-2-4	12-21315-VP51B	o-Xylene	11/2/2012 1.3	Yes	z	D		1.3	3 0.29	ug/kg
CWSI-05-2-4	12-21315-VP51B	Benzene	11/2/2012 1.6	Yes	>			1.3	3 0.39	ug/kg
CWSI-05-7-9	12-21316-VP51C	Ethylbenzene	11/2/2012 1.5	Yes	z	D		1.5	5 0.31	ug/kg
CWSI-05-7-9	12-21316-VP51C	Toluene	11/2/2012 1.5	Yes	z	D		1.5	5 0.23	ug/kg
CWSI-05-7-9	12-21316-VP51C	m,p-Xylene	11/2/2012 1.5	Yes	z)		1.5	0.59	ug/kg
CWSI-05-7-9	12-21316-VP51C	o-Xylene	11/2/2012 1.5	Yes	z	D		1.5	6 0.34	ug/kg
CWSI-05-7-9	12-21316-VP51C	Benzene	11/2/2012 1.5	Yes	z	D		1.5	0.45	ug/kg
CWSI-06-12-14	12-21319-VP51F	o-Xylene	11/2/2012 0.5	Yes	>-	7		1.1	0.25	ug/kg
CWSI-06-12-14	12-21319-VP51F	Benzene	11/2/2012 3	Yes	>-			1.1	0.33	ug/kg
CWSI-06-12-14	12-21319-VP51F	m,p-Xylene	11/2/2012 3	Yes	>-			7.	0.44	ug/kg
CWSI-06-12-14	12-21319-VP51F	Toluene	11/2/2012 1.3	Yes	>-	Σ		1.1	0.17	ug/kg
CWSI-06-12-14	12-21319-VP51F	Ethylbenzene	11/2/2012 1.8	Yes	>-			Ξ	0.23	ug/kg
									Page	Page 15 of 16

Analytical Method SV	SW8260C										
Sample ID	Lab Sample ID	Chemical Name	Anal Date Result	Mod Res Report Detect Lab Qual	t Detect	Lab Quai	Val Qual	Reason	쿋		Units
CWSI-06-8-10	12-21318-VP51E	o-Xylene	11/2/2012 2.4	Yes	z	ם כ			2.4	0.55	ug/kg
CWSI-06-8-10	12-21318-VP51E	Benzene	11/2/2012 2.4	Yes	z)			2.4	0.73	ug/kg
CWSI-06-8-10	12-21318-VP51E	m,p-Xylene	11/2/2012 2.4	Yes	z)			2.4	96.0	ug/kg
CWSI-06-8-10	12-21318-VP51E	Ethylbenzene	11/2/2012 2.4	Yes	z	-			2.4	0.50	ug/kg
CWSI-06-8-10	12-21318-VP51E	Toluene	11/2/2012 3.5	Yes	z	>			3.5	0.37	ug/kg
CWSI-06-8-10	12-21318-VP51E	Toluene	11/5/2012 140	S N	z	5	œ	22	140	120	ug/kg
CWSI-06-8-10	12-21318-VP51E	o-Xylene	11/5/2012 140	S S	z	5	œ	22	140	92	ug/kg
CWSI-06-8-10	12-21318-VP51E	m,p-Xylene	11/5/2012 140	Š	z	5	œ	22	140	140	ug/kg
CWSI-06-8-10	12-21318-VP51E	Ethylbenzene	11/5/2012 140	Š	z	5	œ	22	140	62	ug/kg
CWSI-06-8-10	12-21318-VP51E	Benzene	11/5/2012 140	N N	z)	œ	22	140	48	ug/kg
CWSI-07-2-4	12-21314-VP51A	m,p-Xylene	11/2/2012 1.1	Yes	>	7			1.2	0.46	ug/kg
CWSI-07-2-4	12-21314-VP51A	Benzene	11/2/2012 2.7	Yes	>				1.2	0.34	ug/kg
CWSI-07-2-4	12-21314-VP51A	o-Xylene	11/2/2012 1.2	Yes	z)			1.2	0.26	ug/kg
CWSI-07-2-4	12-21314-VP51A	Toluene	11/2/2012 2.8	Yes	>				1.2	0.18	ug/kg
CWSI-07-2-4	12-21314-VP51A	Ethylbenzene	11/2/2012 1.2	Yes	z)			1.2	0.23	ug/kg
CWSI-TB-02-20121026-1	12-21324-VP51K	o-Xylene	11/2/2012 1	Yes	z)			1.0	0.22	ng/L
CWSI-TB-02-20121026-1	12-21324-VP51K	Benzene	11/2/2012 1	Yes	z	5			1.0	0.25	ng/L
CWSI-TB-02-20121026-1	12-21324-VP51K	m,p-Xylene	11/2/2012 2	Yes	z	5			2.0	0.36	ng/L
CWSI-TB-02-20121026-1	12-21324-VP51K	Toluene	11/2/2012 1	Yes	z)			1.0	0.18	ng/L
CWSI-TB-02-20121026-1	12-21324-VP51K	Ethylbenzene	11/2/2012 1	Yes	z	כ			1.0	0.18	ng/L

SDG: VP51

ATTACHMENT C GEOTECHNICAL LABORATORY REPORT

November 1, 2012 HWA Project No. 2012-113-23, Task 200

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

Attention: Mr. Zachary L. Koehn, EIT

Subject: Materials Laboratory Report

Index, Strength and Consolidation Testing

Whatcom Waterway Project

Dear Mr. Koehn:

As requested, HWA GeoSciences Inc. (HWA) performed laboratory testing for the subject project. Herein we present the results of our laboratory analyses, which are summarized on the attached Figures. The laboratory testing program was performed in general accordance with your instructions and appropriate ASTM Standards as outlined below.

SAMPLE INFORMATION: The subject samples were delivered to our laboratory on October 29, 2012 by Anchor QEA personnel. The samples were designated with boring, sample and depth information. The samples were delivered in Shelby tubes and plastic bags. Based on manual-visual methods, the descriptions of the samples are as shown on Figure 1.

MOISTURE CONTENT OF SOIL: The moisture content of selected soil samples (percent by dry mass) was determined in general accordance with ASTM D2216. The results are shown on the attached Figure 1.

PARTICLE SIZE ANALYSIS OF SOILS: Selected samples were tested to determine the particle size distribution in general accordance with ASTM D422, using sieve analysis. The results are summarized on the attached Particle Size Analysis reports, Figures 2-4, which also provide information regarding the classification of the sample and the moisture content at the time of testing.

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS (ATTERBERG LIMITS): Selected samples were tested using method ASTM D4318, multi-point method. The results are reported on the attached Liquid Limit, Plastic Limit, and Plasticity Index report, Figure 5.

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION OF SOILS: The selected samples were tested in general accordance with method ASTM D2850 to determine the strength characteristics 21312 30th Drive SE

Suite 110 Bothell, WA 98021.7010

Tel: 425.774.0106 Fax: 425.774.2714

www.hwageo.com

of the soil. The confining stresses used are indicated on the test plots. The results are summarized and plotted graphically on the attached Unconsolidated Undrained Triaxial Compression Test for Cohesive Soils reports, Figures 6-8.

ONE DIMENSIONAL CONSOLIDATION PROPERTIES OF SOIL: The consolidation properties of three specified soil samples were measured in general accordance with ASTM D2435. Saturation was maintained by inundation of the sample throughout the test. The samples were subjected to increasing increments of total stress, the duration of which was selected to exceed the time required for completion of primary consolidation as defined in the Standard, Method B. Unloading of the sample was carried out incrementally. The test results are presented in both Void Ratio (e) versus Log₁₀(P) and Percent Strain versus Log₁₀(P) formats as shown on Figures 9-14.

CLOSURE: Experience has shown that laboratory test values for soils and other natural materials vary with each representative sample. As such, HWA has no knowledge as to the extent and quantity of material the tested sample may represent. HWA also makes no warranty as to how representative either the sample tested or the test results obtained are to actual field conditions. It is a well established fact that sampling methods present varying degrees of disturbance or variance that affect sample representativeness.

No copy should be made of this report except in its entirety.

We appreciate the opportunity to provide laboratory testing services on this project. Should you have any questions or comments, or if we may be of further service, please call.

Sincerely,

HWA GEOSCIENCES INC.

Harold Benny

Materials Laboratory Manager

Steven E. Greene, L.G., L.E.G.

Vice President

Attachments:

Figure 1

Material Summaries

Figures 2-4

Particle Size Analysis of Soils

Figure 5

Liquid Limit, Plastic Limit and Plasticity Index of Soils Report

Figures 6-8

Unconsolidated, Undrained Triaxial Strength of Soils

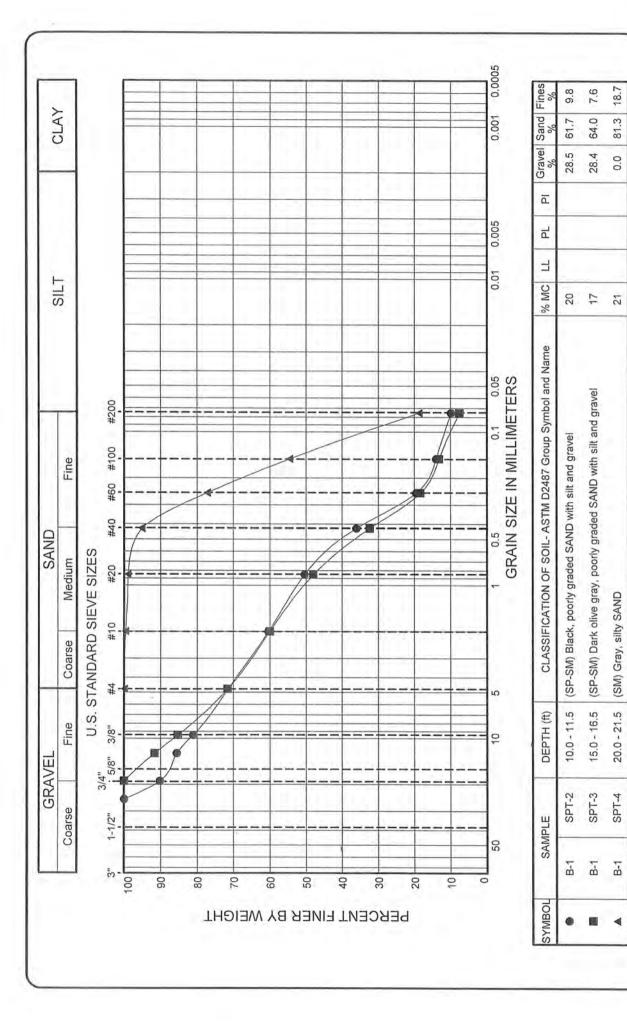
Figures 9-14

One Dimensional Consolidation of Soils

	SAMPLE DESCRIPTION	Dark brown, poorly graded SAND with silt and gravel	Black, poorly graded SAND with silt and gravel	Dark olive gray, poorly graded SAND with silt and gravel	Gray, silty SAND	Dark gray, Iean CLAY	Dark gray, lean CLAY	Dark gray, lean CLAY	Dark gray, lean CLAY	Brown, poorly graded SAND with silt	Very dark gray, silty SAND	Very dark olive gray, silty SAND with gravel	Dark gray, poorly graded SAND	Dark gray, silty SAND	Dark gray, silty SAND	Dark gray, lean CLAY	Dark gray, lean CLAY	Dark gray, lean CLAY	Dark gray, lean CLAY	Dark gray, lean CLAY
NC	ASTM SOIL CLASSIFICATIO	SP-SM	SP-SM	SP-SM	SM	CL	CL	ರ	CL	SP-SM	SM	SM	SP	SM	SM	CL	CL	CL	٦ ت	CF
	(pcf) CONTENT (%)																			
MUMIX	PROCTOR MAY																			
	% LINES		9.8	7.6	18.7						12.8	16.6	2.1	27.6	19.2					
	GNA2 %		61.7	64.0	81.3						79.8	67.7	95.8	72.4	80.8					
	% GKAVEL		28.5	28.4							7.4	15.8	2.1							
ERG (%)	ā											1		Щ				26	22	25
ATTERBERG LIMITS (%)	급																	22	22	20
4	<u> </u>																	48	44	45
	MOISTURE CONTENT (%)	16	20	17	27	34	26	36	16	15	30	21	22	27	22	31	20	28	29	29
	(bct) DBY DENSITY																			
	fracture face (blows/6")																			
Н.	BOTTOM DEPT	6.5	11.5	16.5	21.5	25.5	26.3	31,5	41.5	6.5	11.5	16.5	21.0	21.5	26.5	36.5	46.5	29.5	32.0	37.0
	TOP DEPTH (feet)	5.0	10.0	15.0	20.0	25.0	25.5	30.0	40,0	5.0	10.0	15.0	20.0	21.0	25.0	35.0	45.0	27.5	30.0	35.0
	SAMPLE	SPT-1	SPT-2	SPT-3	SPT-4	SPT-5	SPT-6	SPT-7	8-14S	SPT-1	SPT-2	SPT-3	SPT-4	SPT-4	SPT-5	SPT-7	SPT-9	B-1	B-2	B-1
	EXPLORATION DESIGNATION	B-1	F-4	B-1	B-1	B-1	B-1	F.	F.4	B-2	B-2	B-2	B-2	B-2	B-2	B-2	B-2	ST-6	ST-6	ST-8

This table summarizes information presented elsewhere in the report and should be used in conjunction with the report text, other graphs and tables, and the exploration logs. "Penetration Resistance" may represent the results of standard (SPT) or non-standard penetration tests. See exploration logs.

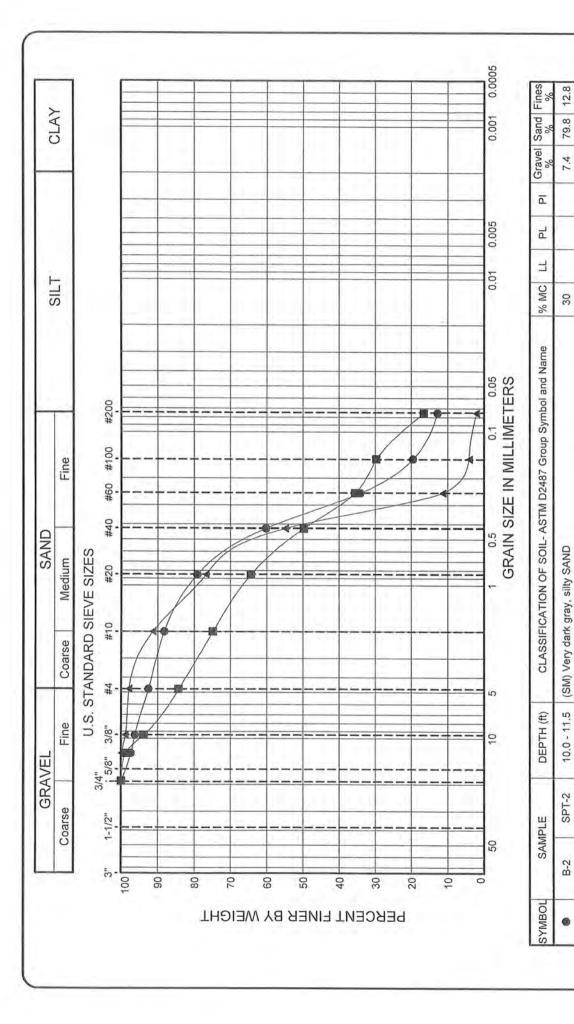
Notes:


Materials Laboratory Testing for Anchor QEA

Whatcom Waterway

SUMMARY OF MATERIAL PROPERTIES

PROJECT NO.: 2012-113 T200 FIGURE:


PARTICLE-SIZE ANALYSIS OF SOILS METHOD ASTM D422

OF SOILS
METHOD ASTM D422
PROJECT NO.: 2012-113 T200 FIGURE:

2

HWAGEOSCIENCES INC.

Materials Laboratory Testing for Anchor QEA Whatcom Waterway

PARTICLE-SIZE ANALYSIS OF SOILS METHOD ASTM D422

Materials Laboratory Testing for Anchor QEA

Whatcom Waterway

67.7 16.6

15.8

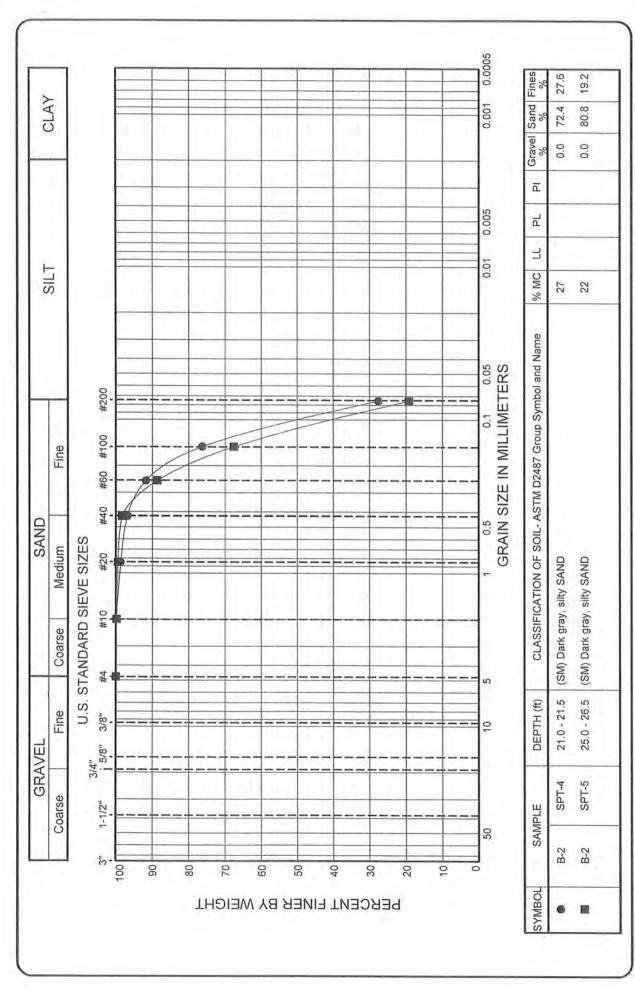
2.1 95.8 2.1

22

(SM) Very dark olive gray, silty SAND with gravel

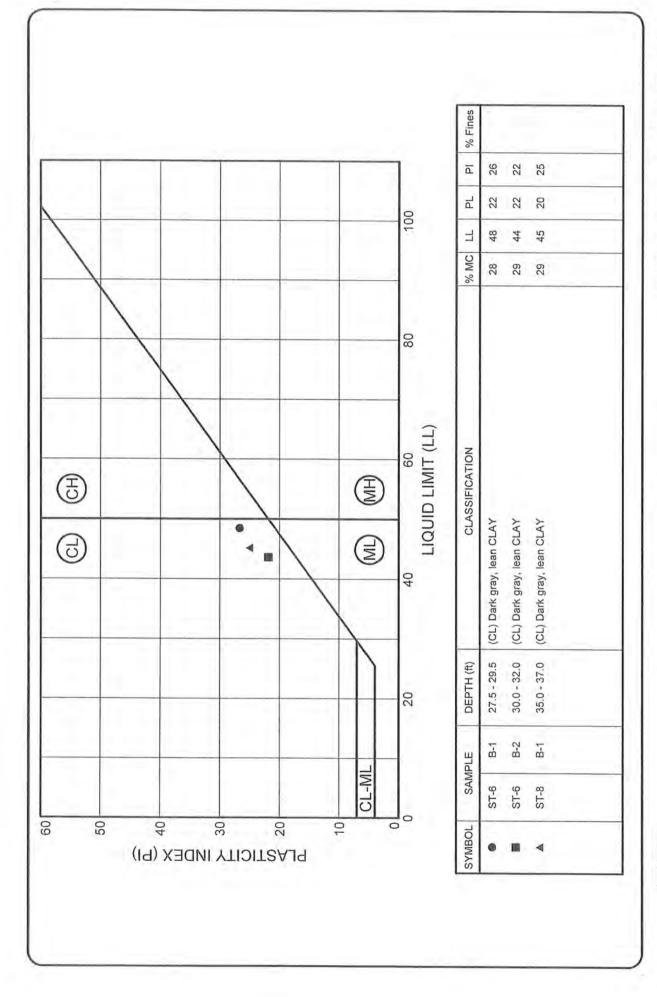
15.0 - 16.5

SPT-3 SPT-4


B-2 B-2

4

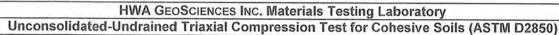
(SP) Dark gray, poorly graded SAND

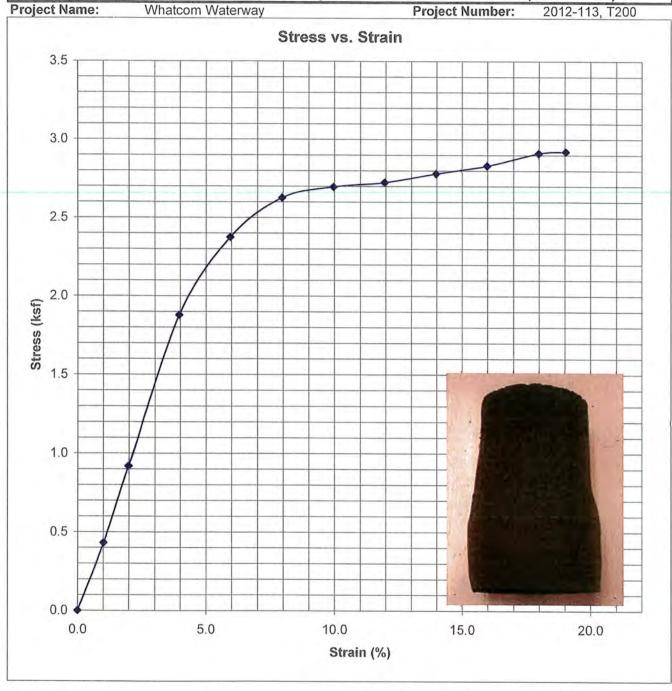

METHOD ASTM D422
PROJECT NO.: 2012-113 T200 FIGURE:

3

PARTICLE-SIZE ANALYSIS OF SOILS METHOD ASTM D422

PROJECT NO.: 2012-113 T200 FIGURE:


LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS METHOD ASTM D4318


PROJECT NO.: 2012-113 T200 FIGURE:

2

HWAGEOSCIENCES INC.

Materials Laboratory Testing for Anchor QEA Whatcom Waterway

Sample Point: Sample Number: B-1 ST-6 Wet Unit Weight (pcf):

122.8

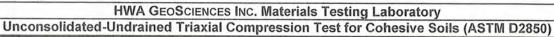
Sample Depth:

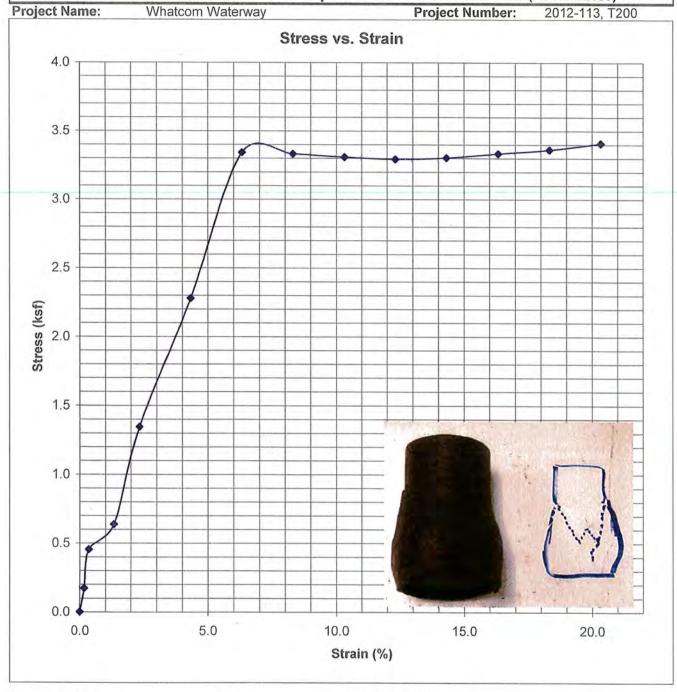
27.5-29.5

Dry Unit Weight (pcf): Total Peak Stress (ksf): 96.0 2.922

6

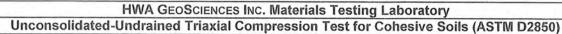
Soil Classification: Confining Stress (ksf): Dark gray, CLAY

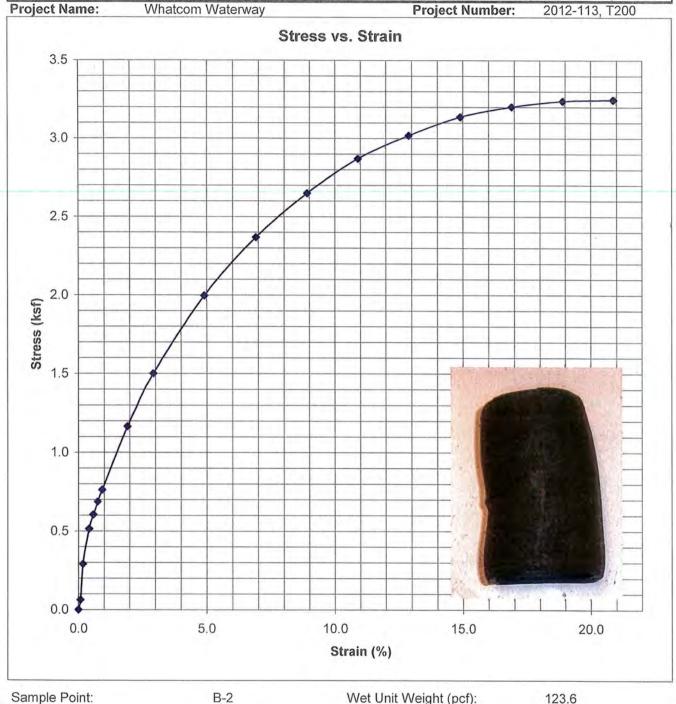

3.37


Strain Rate (%\min):

1.00

Initial Moisture Content (%):


27.9



Sample Point:	B-1
Sample Number:	ST-8
Sample Depth:	35-37
Soil Classification:	0
Confining Stress (ksf):	4.33
Strain Rate (%\min):	1.00
Initial Moisture Content (%):	29.1

Wet Unit Weight (pcf): 123.9 Dry Unit Weight (pcf): 96.0 Total Peak Stress (ksf): 3.410

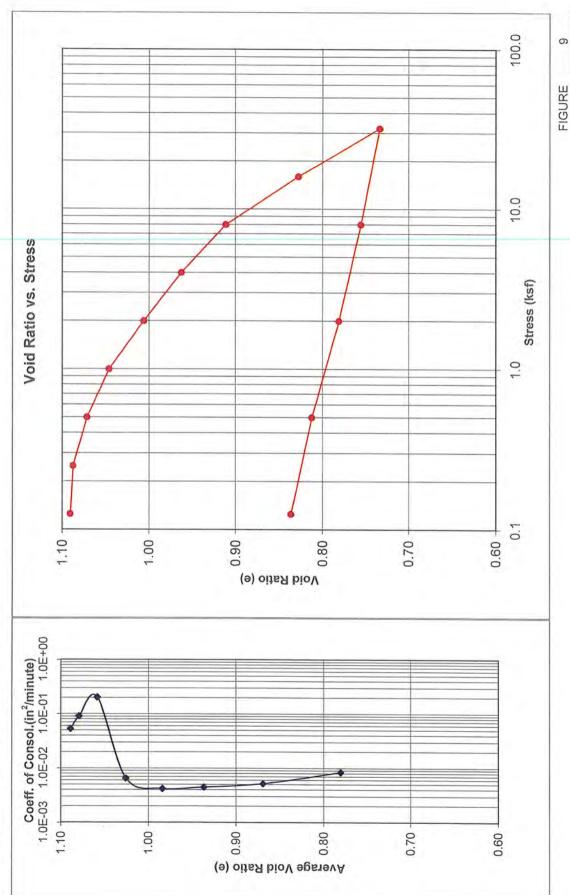
Sample Point:	
Sample Number:	
Sample Depth:	

Sample Depth: 30-32 Soil Classification: Dark gray, CLAY

ST-6

Confining Stress (ksf): 3.71
Strain Rate (%\min): 1.00
Initial Moisture Content (%): 29.1

Wet Unit Weight (pcf): 123.6
Dry Unit Weight (pcf): 95.7
Total Peak Stress (ksf): 3.247


ONE DIMENSIONAL CONSOLIDATION ASTM D 2435 HWA GEOSCIENCES INC.

Whatcom Waterway 2012-113 T200 Project Number: Project Name:

27.5-29.5 ST-6 Borehole Number: Sample Number: Soil Description: Sample Depth:

Dark gray, CLAY

pcf %% 31.5 Finish 93.5 Start 39.6 99.6 82.0 Moisture Content Dry Density Saturation

HWA GEOSCIENCES INC.

Whatcom Waterway Dark gray, CLAY 2012-113 T200 ST-6 27.5-29.5 Borehole Number: Sample Number: Sample Depth: Project Number: Soil Description: Project Name:

1.10 +

1.00

ONE DIMENSIONAL CONSOLIDATION ASTM D 2435

31.5 % 103.6 % 93.5 pcf Finish 39.6 99.6 82.0 Start Moisture Content Dry Density Saturation

100.0		
10.0		
Strain vs. Stress Stress (ksf)		
0.1	(%) nist38	20 [
Coeff. of Consol.(in²/minute) 1.0E-03 1.0E-02 1.0E-01 1.0E+00		
Coeff. of Co	00.100 00.100 00.000 00.	.60

(e) oitsЯ bioV egsrevA

0.70

0.60

10

FIGURE

ONE DIMENSIONAL CONSOLIDATION ASTM D 2435 HWA GEOSCIENCES INC. 1 WA

Whatcom Waterway 2012-113 T200 Project Number: Project Name:

B-1 ST-8 35-37 Borehole Number: Sample Number: Sample Depth:

Soil Description:

Dark gray CLAY

+ 06.0

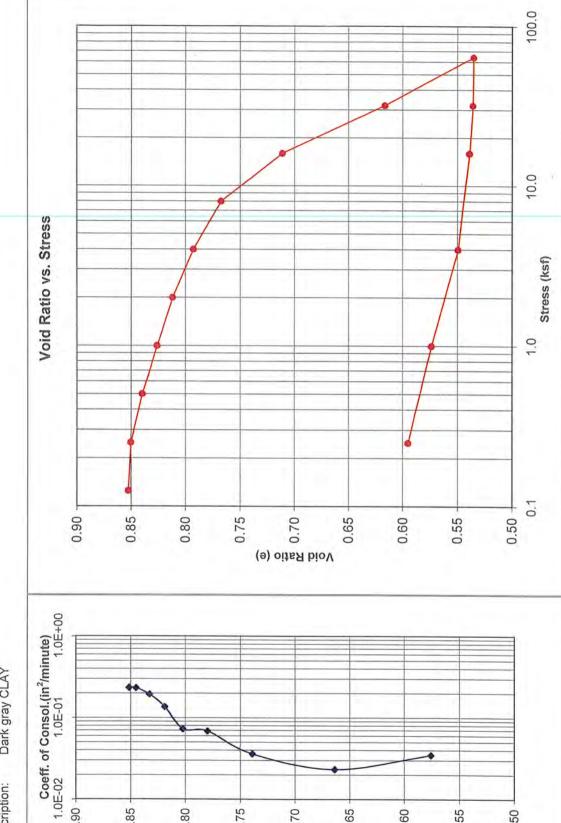
0.85

0.80

0.75

0.70

Average Void Ratio (e)


0.65

0.60

0.55

0.50

pcf %% 22.3 103.0 107.6 Finish 29.9 96.3 92.6 Start Moisture Content Dry Density Saturation

1

FIGURE

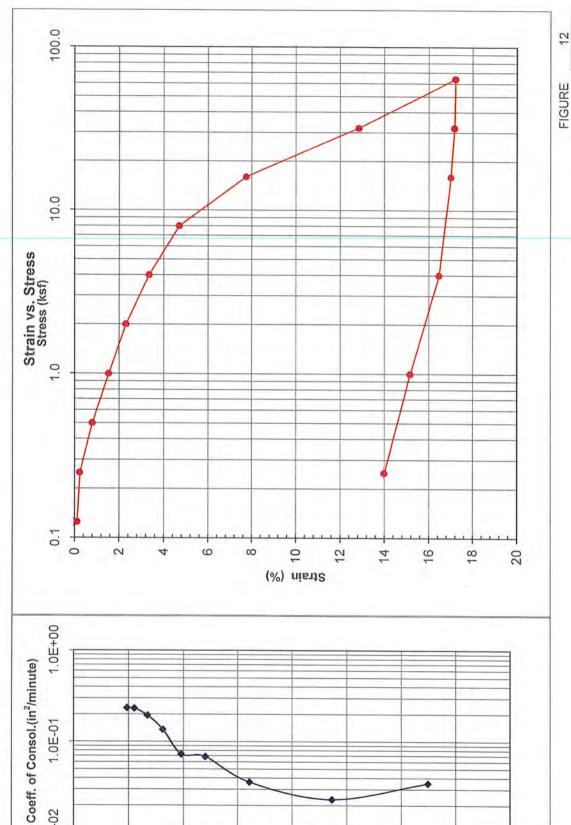
ONE DIMENSIONAL CONSOLIDATION ASTM D 2435 HWA GEOSCIENCES INC. HWY.

Whatcom Waterway

2012-113 T200 Borehole Number: Sample Number: Project Number: Project Name:

B-1 ST-8 35-37 Sample Depth:

Dark gray CLAY Soil Description:


1.0E-02

+ 06.0

0.85

0.80

22.3 % 103.0 % 107.6 pcf Finish Start 29.9 96.3 92.6 Moisture Content Dry Density Saturation

Average Void Ratio (e)

0.60

0.55

0.50

ONE DIMENSIONAL CONSOLIDATION ASTM D 2435 HWA GEOSCIENCES INC.

Whatcom Waterway 2012-113 T200 Borehole Number: Sample Number: Project Number: Project Name:

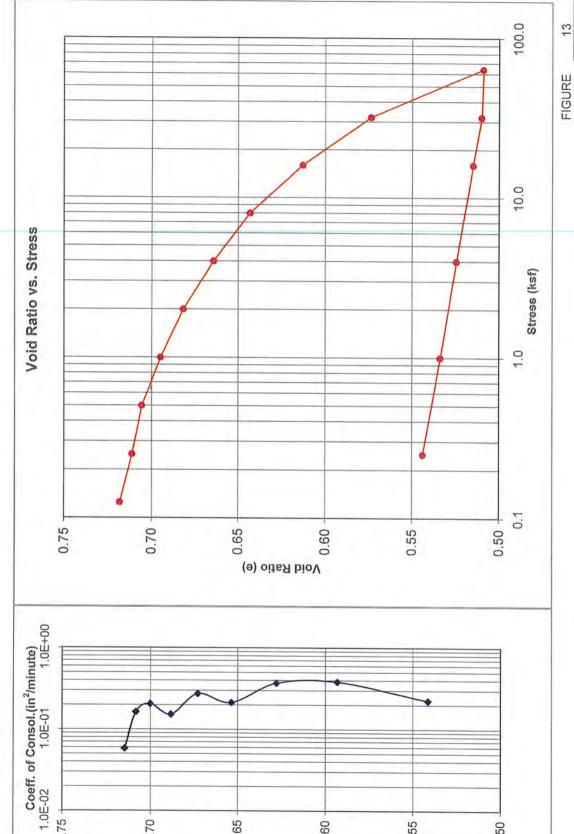
B-2 ST-6 30-32 Sample Depth:

Dark gray CLAY Soil Description:

0.75 +

0.70

0.65


Average Void Ratio (e)

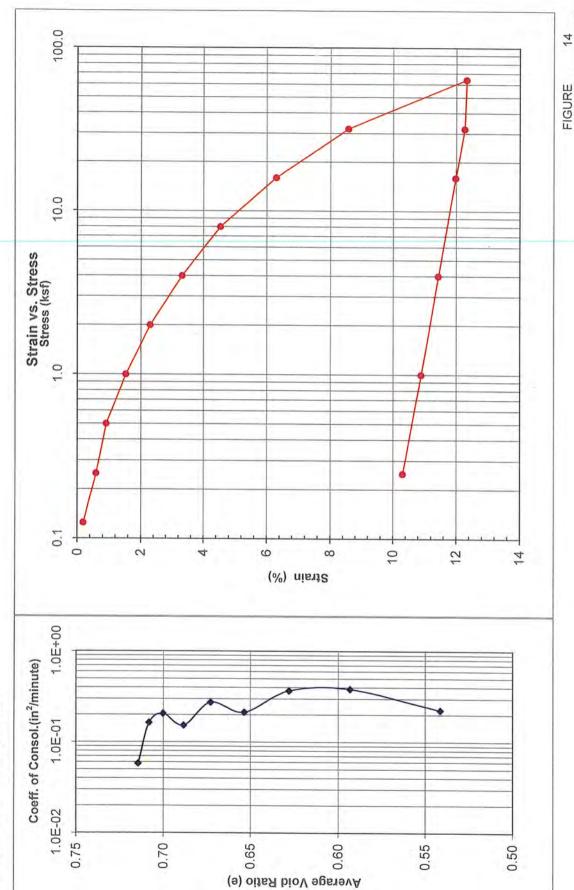
0.60

0.55

0.50

bct %% Finish 20.8 105.2 111.2 Start 26.3 100.1 99.7 Moisture Content Dry Density Saturation

ONE DIMENSIONAL CONSOLIDATION HWA GEOSCIENCES INC. 1 WA Project Name:


ASTM D 2435 Whatcom Waterway

2012-113 T200 Project Number:

B-2 ST-6 30-32 Borehole Number: Sample Number: Sample Depth:

Dark gray CLAY Soil Description:

20.8 % 105.2 % 111.2 pcf Finish Start 26.3 100.1 99.7 Moisture Content Dry Density Saturation

November 15, 2012 HWA Project No. 2012-113-23, Task 200

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

Attention:

Mr. Zachary L. Koehn, EIT

Subject:

Materials Laboratory Report

Index, Strength and Consolidation Testing

Whatcom Waterway Project

Dear Mr. Koehn;

As requested, HWA GeoSciences Inc. (HWA) performed laboratory testing for the subject project. Herein we present the results of our laboratory analyses, which are summarized on the attached Figures. The laboratory testing program was performed in general accordance with your instructions and appropriate ASTM Standards as outlined below.

SAMPLE INFORMATION: The subject samples were delivered to our laboratory on October 29, 2012 by Anchor QEA personnel. The samples were designated with boring, sample and depth information. The samples were delivered in Shelby tubes and plastic bags.

MOISTURE CONTENT OF SOIL: The moisture content of selected soil samples (percent by dry mass) was determined in general accordance with ASTM D2216. The results are shown on the attached Figure 1.

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS (ATTERBERG LIMITS): Selected samples were tested using method ASTM D4318, multi-point method. The results are reported on the attached Liquid Limit, Plastic Limit, and Plasticity Index report, Figure 1.

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION OF SOILS: Selected samples were tested in general accordance with method ASTM D2850 to determine the strength characteristics of the soil. The confining stresses used are indicated on the test plots. The results are summarized and plotted graphically on the attached Unconsolidated Undrained Triaxial Compression Test for Cohesive Soils reports, Figures 2-4.

ONE DIMENSIONAL CONSOLIDATION PROPERTIES OF SOIL: The consolidation properties of three specified soil samples were measured in general accordance with ASTM D2435.

Saturation was maintained by inundation of the sample throughout the test. When inundated with water, all three samples initially consolidated, then began to swell,

21312 30th Drive SE Suite 110 Bothell, WA 98021.7010

> Tel: 425,774,0106 Fax: 425,774,2714 www.hwageo.com

so we proceeded to the next load. The samples were subjected to increasing increments of total stress, the duration of which was selected to exceed the time required for completion of primary consolidation as defined in the Standard, Method B. Unloading of the sample was carried out incrementally. The test results are presented in both Void Ratio (e) versus Log₁₀(P) and Percent Strain versus Log₁₀(P) formats as shown on Figures 5-10.

CLOSURE: Experience has shown that laboratory test values for soils and other natural materials vary with each representative sample. As such, HWA has no knowledge as to the extent and quantity of material the tested sample may represent. HWA also makes no warranty as to how representative either the sample tested or the test results obtained are to actual field conditions. It is a well established fact that sampling methods present varying degrees of disturbance or variance that affect sample representativeness.

No copy should be made of this report except in its entirety.

We appreciate the opportunity to provide laboratory testing services on this project. Should you have any questions or comments, or if we may be of further service, please call.

Sincerely,

HWA GEOSCIENCES INC.

Harold Benny

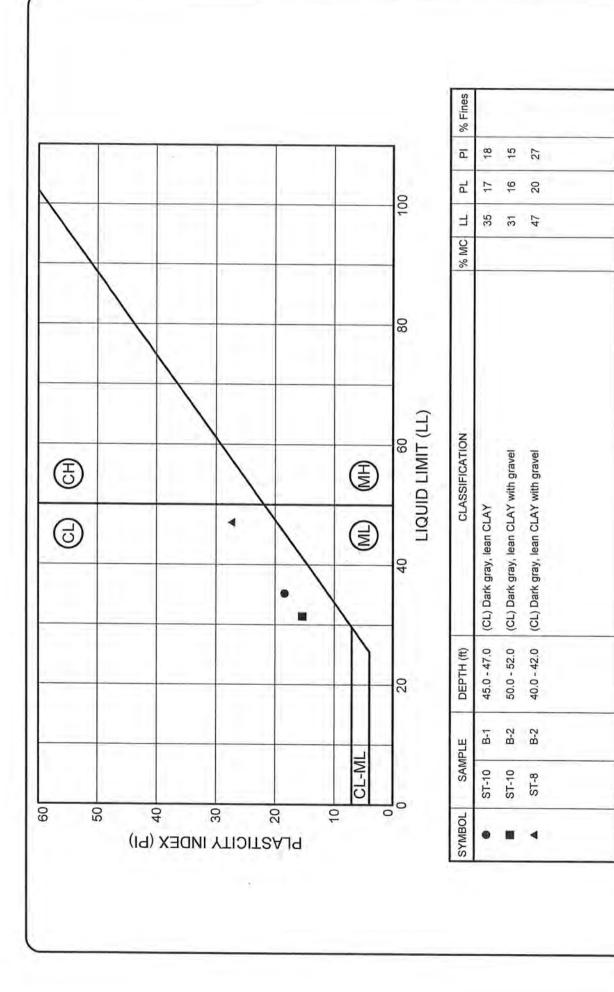
Materials Laboratory Manager

George Minassian, Ph.D., P.E.

Geotechnical Engineer

Attachments:

Figure 1


Liquid Limit, Plastic Limit and Plasticity Index of Soils Report

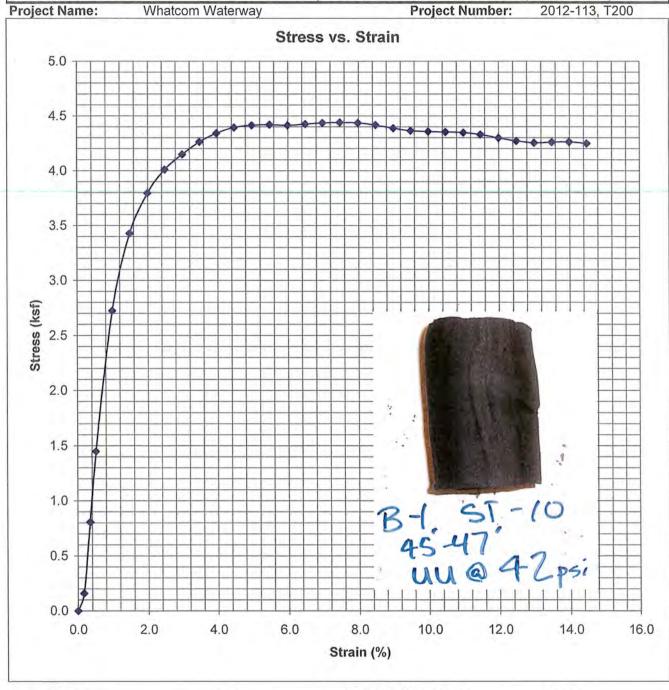
Figures 2-4

Unconsolidated, Undrained Triaxial Strength of Soils

Figures 5-10

One Dimensional Consolidation of Soils

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS METHOD ASTM D4318


Materials Laboratory Testing for Anchor QEA

Whatcom Waterway

FIGURE PROJECT NO.: 2012-113 T200

Unconsolidated-Undrained Triaxial Compression Test for Cohesive Soils (ASTM D2850)

Sample Point:

B-1

Wet Unit Weight (pcf):

134.5

Sample Number: Sample Depth:

ST-10 45-47 Dry Unit Weight (pcf): Total Peak Stress (ksf): 113.1 4.44

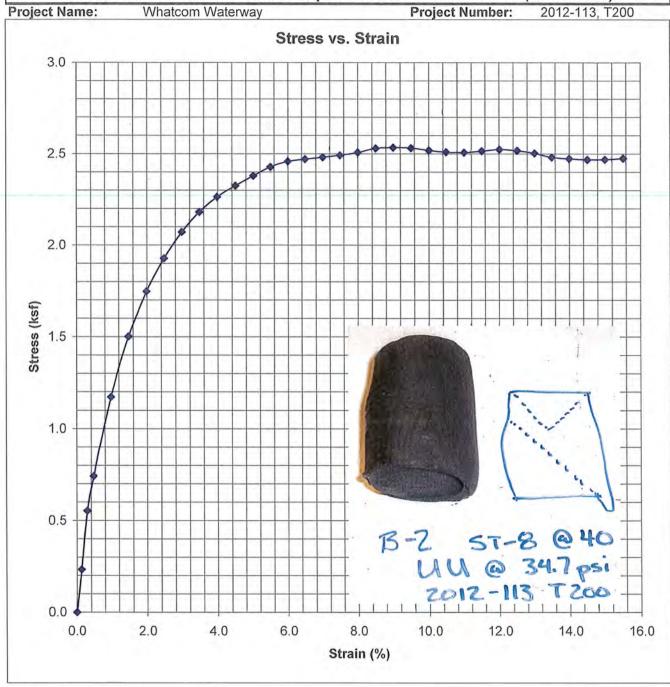
Soil Classification:

Dark gray, CLAY

Confining Stress (ksf): Strain Rate (%\min): 6.05

Initial Moisture Content (%):

1.00


18.9

Figure

2

Unconsolidated-Undrained Triaxial Compression Test for Cohesive Soils (ASTM D2850)

Sample Point:

B-2

Sample Number:

ST-8

125.0

Sample Depth:

96.5

Soil Classification:

40-42

2.53

Dark gray, CLAY

Confining Stress (ksf):

5.00

Strain Rate (%\min):

1.00

Initial Moisture Content (%):

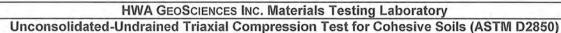

29.6

Figure 3

Wet Unit Weight (pcf):

Dry Unit Weight (pcf):

Total Peak Stress (ksf):

Sample Point:

B-2

Wet Unit Weight (pcf):

134.4

Sample Number: Sample Depth:

ST-10 50-52

Dry Unit Weight (pcf): Total Peak Stress (ksf): 113.7 3.82

Soil Classification:

Dark gray, CLAY with gravel

Confining Stress (ksf): Strain Rate (%\min):

6.71 1.00

Initial Moisture Content (%):

18.2

ONE DIMENSIONAL CONSOLIDATION ASTM D 2435 HWA GEOSCIENCES INC. **FIWA**

Whatcom Waterway 2012-113 T200 Project Number: Project Name:

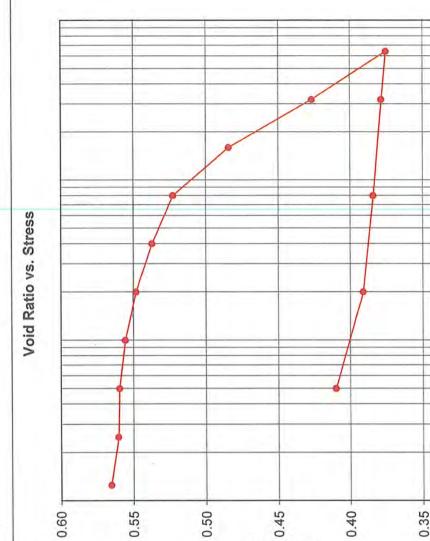
45-47 Borehole Number: Sample Number: Sample Depth:

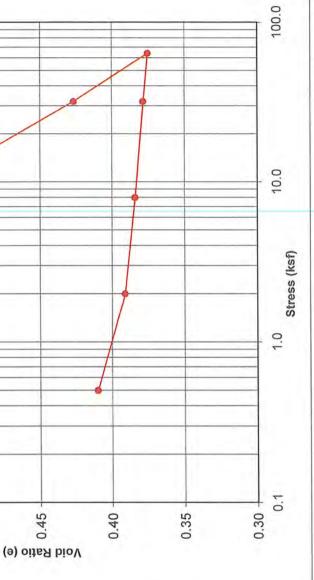
ST-10

Dark gray CLAY with gravel (swelling clay) Soil Description:

Coeff. of Consol.(in²/minute) 1.0E-02 1.0E-01 1.0E+00

+ 09.0


0.55


0.50

0.45

Average Void Ratio (e)

pcf % Finish 16.0% 108.8 121.8 Start 18.9% 98.8 109.6 Moisture Content Dry Density Saturation

0.35

0.30

0.40

2

FIGURE

ONE DIMENSIONAL CONSOLIDATION ASTM D 2435 HWA GEOSCIENCES INC. 1 WA

Whatcom Waterway 2012-113 T200 Project Number: Project Name:

ST-10 Borehole Number: Sample Number:

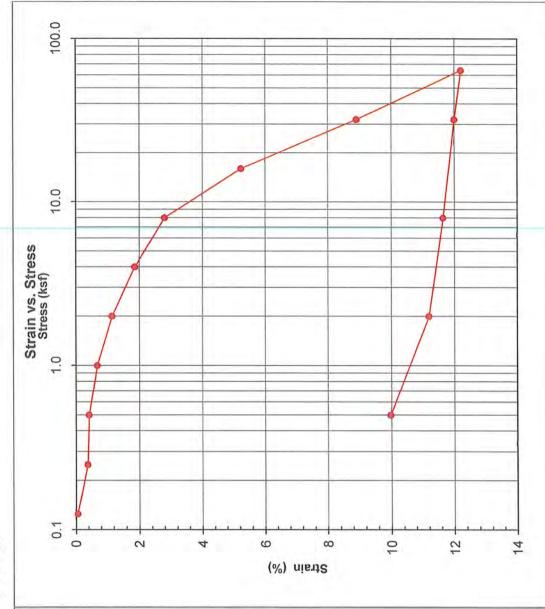
45-47 Sample Depth:

Dark gray CLAY with gravel (swelling clay) Soil Description:

1.0E+00

1.0E-01

1.0E-02


+ 09.0

0.55

0.50

Coeff. of Consol.(in²/minute)

108.8 % 121.8 pcf Finish 16.0% Start 18.9% 98.8 109.6 Moisture Content Dry Density Saturation

0.45

Average Void Ratio (e)

0.40

0.35

0.30

9

FIGURE

ONE DIMENSIONAL CONSOLIDATION ASTM D 2435 HWA GEOSCIENCES INC. F/W/

Whatcom Waterway 2012-113 T200 Project Number: Project Name:

B-2 ST-8 40-42 Borehole Number: Sample Number:

Sample Depth:

Dark gray CLAY (swelling clay) Soil Description:

1.00+

0.95

0.90

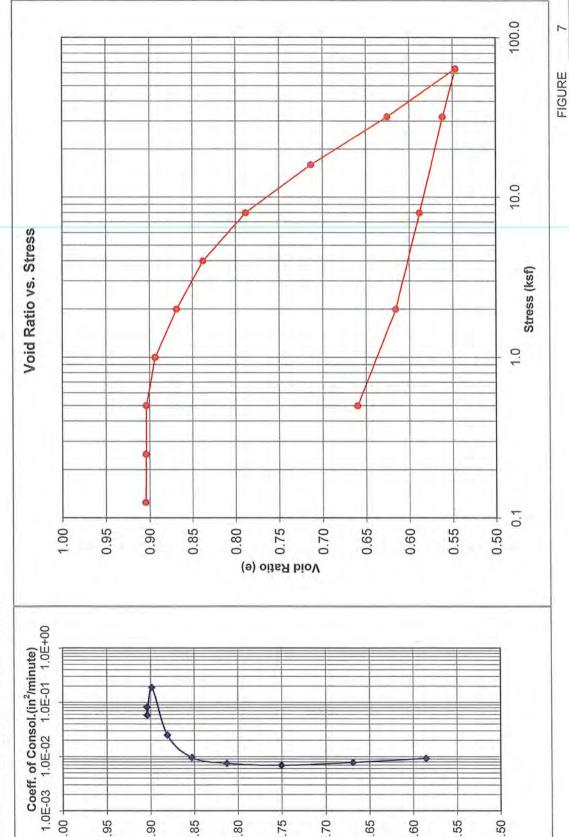
0.85

0.80

0.75

(e) Average Void Ratio (e)

0.70


0.65

0.60

0.55

0.50

pcf % Finish 24.0% 101.3 Start 29.6% 99.4 Moisture Content Dry Density Saturation

ONE DIMENSIONAL CONSOLIDATION ASTM D 2435 HWA GEOSCIENCES INC. HWA

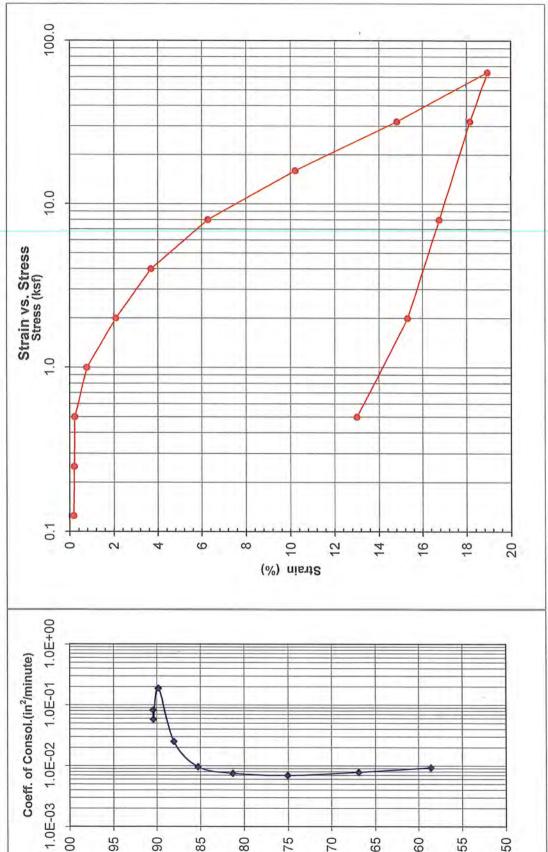
Whatcom Waterway

2012-113 T200 B-2 ST-8 Borehole Number: Sample Number: Project Number: Project Name:

40-42 Soil Description: Sample Depth:

Dark gray CLAY (swelling clay)

1.00+


0.95

0.90

0.85

Start 29.6% 99.4 Moisture Content Saturation Dry Density

101.3 % 128.3 pcf Finish 24.0%

Average Void Ratio (e) 0.75

0.65

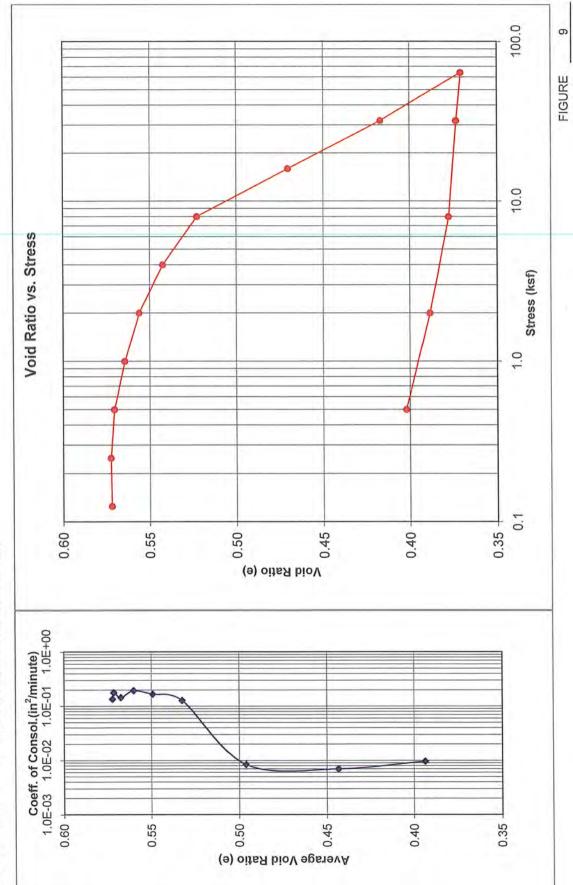
0.60

0.55

0.50

ONE DIMENSIONAL CONSOLIDATION **ASTM D 2435** HWA GEOSCIENCES INC. HWA!

Whatcom Waterway


2012-113 T200 B-2 ST-10 50-52 Borehole Number: Project Number: Project Name:

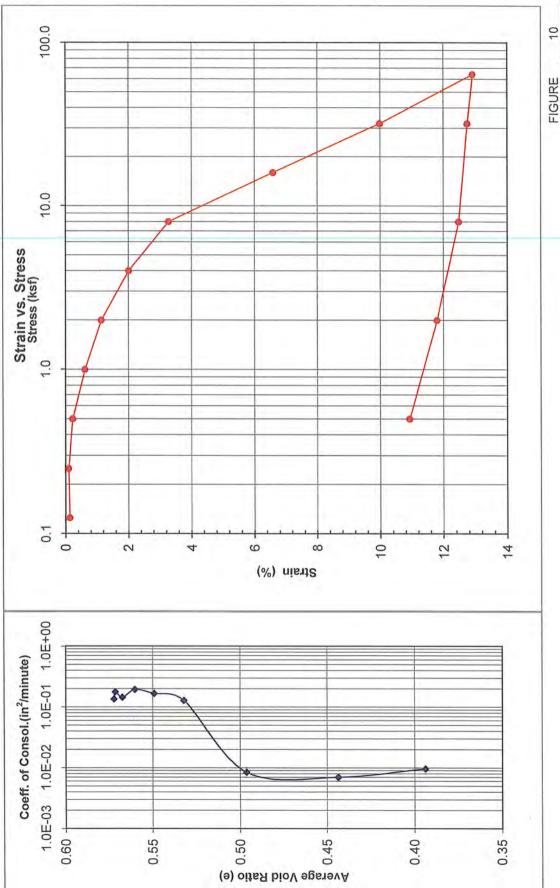
Sample Number: Sample Depth:

Dark gray CLAY with gravel (swelling clay) Soil Description:

% Finish 15.4% 106.6 141.3 Start 18.2% 94.4 Moisture Content Dry Density Saturation

HWA GEOSCIENCES INC. 11WA

ONE DIMENSIONAL CONSOLIDATION ASTM D 2435


Whatcom Waterway Project Name:

2012-113 T200 Borehole Number: Project Number:

ST-10 50-52 Sample Depth: Soil Description: Sample Number:

Dark gray CLAY with gravel (swelling clay)

141.3 pcf 106.6 % Finish 15.4% Start 18.2% 94.4 Moisture Content Dry Density Saturation

APPENDIX N PERMIT EXEMPTIONS AND SUBSTANTIVE REQUIREMENTS

The Whatcom Waterway Cleanup in Phase 1 Site Areas project (Project) is being implemented consistent with a Model Toxics Control Act (MTCA) Consent Decree between the Washington State Department of Ecology (Ecology) and the Port of Bellingham (Port), the City of Bellingham (City), Meridian Pacific Hwy LLC, and the Washington Department of Natural Resources (WDNR). Federal permitting for the Project includes an approval from the U.S. Army Corps of Engineers (USACE) under a Nationwide 38 permit (NW 38) for the cleanup of hazardous and toxic waste. Because the project has been permitted under a NW 38 permit, Ecology determined that an individual 401 Water Quality Certification and a Coastal Zone Management Act Consistency Determination were not required for the project. Additionally and consistent with MTCA requirements for remedial actions conducted under a Consent Decree (WAC 173-340-710(9)(b)), the Project is exempt from the procedural requirements of certain local and state laws, permits, and approvals.

This appendix documents coordination completed with the Washington Department of Fish and Wildlife (WDFW) and the City with respect to their review of the Project, including measures that have been incorporated into the Project engineering design. These measures ensure compliance of the work with the substantive requirements of the WDFW laws and regulations relating to hydraulic project approvals, and to City requirements including shorelines and critical areas review and other local codes, ordinances and permits. This coordination and review is in addition to the review of procedural exemptions and substantive requirements conducted previously as part of the Consent Decree (Ecology 2007) and the First Amendment to the Consent Decree (Ecology 2011). This coordination is also in addition to that conducted as part of the federal permitting for the Project. Outreach conducted as part of federal permitting for the Project has included the following:

- Multiple pre-application meetings between May and October of 2012 with the USACE and WDFW to provide an overview of the Project design, including BMPs and mitigating measures incorporated into the Project to minimize potential impacts and optimize net environmental benefits
- Completion of a multi-agency pre-application meeting, including a Project overview and site tour during August 2012, with participation from the USACE, WDFW, WDNR, Ecology, U.S. Fish and Wildlife Service (USFWS), National Marine Fisheries Service (NMFS), the City, and the Nooksack Tribe Development

- Submittal of a Joint Aquatic Resource Permit Application (JARPA) and supporting materials for the Project
- Completion of follow-up meetings with Ecology, USACE, WDFW, USFWS, NMFS, the City, and WDNR regarding the proposed Project

Coordination with WDFW regarding the agency's review of the Project has included review of construction methods, work windows, best management practices (BMPs), and the shoreline and nearshore habitat changes proposed as part of the Project. These reviews have provided WDFW an opportunity to review the proposed Project and to ensure consistency of the Project with the substantive requirements of the state regulations relating to Hydraulic Project Approvals. WDFW provided a December 17, 2012 comment letter (WDFW 2012) identifying substantive requirements to be incorporated into the Project. Specific WDFW coordination measures include the following:

- Participation in multiple pre-application meetings and a site tour
- Review of the JARPA and supporting materials for the Project
- Participation in follow-up meetings and teleconferences regarding the Site existing conditions, proposed conditions, work windows, and BMPs
- Development by WDFW of a comment letter dated December 17, 2012 (WDFW 2012) providing comments regarding substantive provisions to be incorporated into the Project consistent with Revised Code of Washington (RCW) Chapter 77.55.021 and WAC Chapter 220-110 of the Washington State Hydraulic Code.

In general, WDFW's comments included compliance with Ecology requirements as specified in the engineering design report (EDR) and employment of appropriate BMPs during Project construction. BMPs identified by WDFW included measures related to the following:

- Timing limitations (i.e., allowable in-water work windows)
- Notification requirements
- Eelgrass habitat
- Dredging
 - Temporary upland storage
 - Long-term upland disposal
 - Sediment caps

- Pile removal
 - Pile cutting
 - In-water pile debris capture
 - Pile removal barge operations, work surface, and containment
 - Piling, sediment, water, and sawdust disposal
- Shoreline modifications
 - Temporary upland storage areas
 - Long-term disposal methods
 - Sediment caps
- Requirements for relocation or replacement of infrastructure impacted by the cleanup action
 - Steel piling, dolphins, and fender piles
 - Steel sheet pile bulkheads
 - Mooring floats
 - The Maple Street barge ramp

WDFW's conditions have been incorporated into Appendix K of the EDR.

Coordination with the City's planning department regarding its review of the Project has included review of construction methods, work windows, BMPs, and the shoreline and other habitat changes proposed as part of the Project. The City also reviewed Project impacts and mitigation measures, consistency with the substantive provisions of the City's Shoreline Management Act (SMA), and consistency of the Project with the City's Critical Areas Ordinance (CAO) and stormwater management and building codes. Specific coordination measures include the following:

- Participation by City staff in multiple pre-application meetings and a site tour
- Review of the JARPA, the draft EDR, and supporting materials for the Project
- Review of additional materials relating to Critical Areas and stormwater management
- Participation in follow-up meetings and teleconferences regarding the proposed work

On February 12, 2013, the City provided a letter documenting that the Project complies with the substantive requirements of the City's SMP and CAO and other City approvals for which the Project is exempt from the procedural requirements under MTCA (City of Bellingham 2013).

REFERENCES

City of Bellingham, 2013. Letter Regarding Whatcom Waterway Clean Up – Phase 1
Substantive Compliance. Submitted by Steven Sundin of the City of Bellingham
Planning and Community Development Department to John Hergesheimer, P.E. of the Port of Bellingham. February 12, 2013.

Washington Department of Fish and Wildlife, 2012. Letter Regarding Model Toxic Control Act Substantive Comments – Whatcom Waterway Phase 1 Areas – Whatcom Waterway, Tributary to Bellingham Bay, WRIA 01.9000. Submitted by Brian Williams of WDFW to John Hergesheimer, P.E. of the Port of Bellingham. December 17, 2012.