Remedial Investigation Report North Lot Development Seattle, Washington

May 23, 2011

Prepared for

North Lot Development, LLC Seattle, Washington

TABLE OF CONTENTS

LIST	OF A	ABBREVIATIONS AND ACRONYMS	vi
1.0	INT	RODUCTION	1-1
	1.1	PROPERTY DESCRIPTION AND BACKGROUND	1-1
	1.2	REGULATORY FRAMEWORK	1-2
	1.3	PURPOSE	1-3
	1.4	REPORT ORGANIZATION	1-4
2.0	PRO	PPERTY INVESTIGATIONS	2-1
	2.1	CHRONOLOGY OF PROPERTY INVESTIGATIONS	2-1
	2.2	PHASE I ENVIRONMENTAL SITE ASSESSMENT	2-2
	2.3	SOIL INVESTIGATIONS	2-5
		2.3.1 Phase II Investigation	2-5
		2.3.2 Remedial Investigation Field Investigation	2-7
		2.3.3 Supplemental Investigation	2-9
		2.3.4 Physical Soil Characteristics and Field Observations	2-10
	2.4	GROUNDWATER INVESTIGATION	2-12
		2.4.1 Phase II Investigation	2-13
		2.4.2 Remedial Investigation Field Investigation	2-13
		2.4.3 Supplemental Investigation	2-15
3.0	REMEDIAL INVESTIGATION RESULTS		3-1
	3.1	GEOLOGY	3-1
	3.2	HYDROGEOLOGY	3-2
		3.2.1 Saturated Thickness and Flow Direction	3-4
		3.2.2 Hydraulic Conductivity and Groundwater Velocity	3-4
		3.2.3 Potential for Vapor Intrusion	3-6
	3.3	ENVIRONMENTAL CONDITIONS	3-7
		3.3.1 Soil Quality	3-7
		3.3.2 Groundwater Quality	3-12
		3.3.3 Forensic Analysis	3-18
4.0	SUMMARY AND CONCLUSIONS		4-1
	4.1	HISTORICAL INFORMATION, FIELD INVESTIGATIONS, AND PHYSICAL	
		CONDITIONS	4-1
	4.2	NATURE AND EXTENT OF CONTAMINATION	4-2
	4.3	CONCLUSIONS	4-3
5.0	USE OF THIS REPORT		
6.0	REFERENCES		

Page

FIGURES

Figure	Title
--------	-------

- 1 Vicinity Map
- 2 Property Plan and Surrounding Area
- 3 Historical Property Features
- 4 Property Plan and Existing Features
- 5 Sampling Locations
- 6 Groundwater Elevation Contours for November 24, 2008
- 7 Groundwater Elevation Contours for January 16, 2009
- 8 Groundwater Elevation Contours for June 3, 2009
- 9 Groundwater Elevation Contours for August 25, 2009
- 10 Cross-Section Locations
- 11 Geologic Cross Section A-A'
- 12 Geologic Cross Section B-B'
- 13 Geologic Cross Sections C-C' and D-D'
- 14 Geologic Cross Section E-E'
- 15 Diesel and Motor Oil Detected in Soil 0-15 Feet Below Ground Surface
- 16 Diesel and Motor Oil Detected in Soil 15+ Feet Below Ground Surface
- 17 Arsenic, Copper, Mercury, and Zinc Detected in Soil 0-15 Feet Below Ground Surface
- 18 Arsenic, Copper, Mercury, and Zinc Detected in Soil 15+ Feet Below Ground Surface
- 19 cPAHs (TEQ) Detected in Soil 0-15 Feet Below Ground Surface
- 20 cPAHs (TEQ) Detected in Soil 15+ Feet Below Ground Surface
- 21 Gasoline and Benzene Detected in Soil 0-15 Feet Below Ground Surface
- 22 Gasoline and Benzene Detected in Soil 15+ Feet Below Ground Surface
- 23 Approximate Extent of Observed Creosote-Like Material
- 24 Diesel and Motor Oil Detected in Groundwater
- 25 Arsenic and Lead Detected in Groundwater
- 26 cPAHs (TEQ) Detected in Groundwater
- 27 Gasoline and Benzene Detected in Groundwater

TABLES

Table <u>Title</u>

- 1 Summary of Samples and Analyses
- 2 Summary of Subsurface Conditions Encountered During Drilling
- 3 Monitoring Well Groundwater Elevations
- 4 Soil Analytical Results Detected Compounds
- 5 Preliminary Soil Cleanup Levels
- 6 Constituents Detected in Soil at Concentrations Greater than the Preliminary Cleanup Levels
- 7 Dioxin/Furan Analytical Results
- 8 Groundwater Analytical Results Detected Compounds
- 9 Preliminary Groundwater Cleanup Levels
- 10 Constituents Detected in Groundwater at Concentrations Greater than the Preliminary Cleanup Levels
- 11 Mainline Sewer/Storm Drain Elevations Compared to Groundwater Elevations
- 12 Product Analytical Results
- 13 Soil Analytical Forensic Results

APPENDICES

Appendix <u>Title</u>

- A Selected Historical Sanborn Maps
- B Selected Historical Aerial Photographs
- C Boring Logs and Monitoring Well Construction Details
- D Geophysical Investigation Report
- E Vapor Intrusion
- F Laboratory Analytical Results (on CD-ROM)
- G Development of Cleanup Levels
- H Empirical Demonstration and Arsenic Background Information

This page intentionally left blank.

LIST OF ABBREVIATIONS AND ACRONYMS

ARAR	Applicable or Relevant and Appropriate Requirement
ASTM	American Society for Testing and Materials
BGS	Below Ground Surface
BTEX	Benzene, Toluene, Ethylbenzene, and Xylenes
CAP	Cleanup Action Plan
CERCLA	Comprehensive Environmental Response, Compensation, and
	Liability Act
CERCLIS NFRAP	Comprehensive Environmental Response, Compensation, and
	Liability Information System No Further Remedial Action
	Planned
cm/s	Centimeters per Second
cPAH	Carcinogenic Polycyclic Aromatic Hydrocarbon
CSCSL	Confirmed and Suspected Contaminated Sites List
Ecology	Washington State Department of Ecology
EPA	U.S. Environmental Protection Agency
ESA	Environmental Site Assessment
FINDS	Facility Index System / Facility Registry System
FS	Feasibility Study
HCID	Hydrocarbon Identification
INST CONTROL	Institutional Control
LUST	Leaking Underground Storage Tank
MANIFEST	Hazardous Waste Manifest
MCL	Maximum Contaminant Level
mg/kg	Milligrams per Kilogram
mg/L	Milligrams per Liter
MSL	Mean Sea Level
MTCA	Washington State Model Toxics Control Act
NAVD88	North American Vertical Datum of 1988
NFA	No Further Action
ng/kg NLD	Nanogram per Kilogram North Lot Development
NPDES	Notur Lot Development National Pollutant Discharge Elimination System
PAH	- · · ·
	Polycyclic Aromatic Hydrocarbon
PCB PID	Polychlorinated Biphenyl Photoionization Detector
ppm	Parts per Million
RAO	Remedial Action Objective
RCRA	Resource Conservation and Recovery Act
RCW	Revised Code of Washington
RI	Remedial Investigation
SEPA	Washington State Environmental Policy Act
SWPPP	Stormwater Pollution Prevention Plan
TEF	Toxicity Equivalency Factor
TEQ	Toxicity Equivalency Quotient
TPH	Total Petroleum Hydrocarbons
TPH-D	Diesel-Range Petroleum Hydrocarbons
TPH-G	Gasoline-Range Petroleum Hydrocarbons
TPH-O	Motor Oil-Range Petroleum Hydrocarbons
UCL	Upper Confidence Limit

µg/kg	Micrograms per Kilogram
μg/L	Micrograms per Liter
UST	Underground Storage Tank
VCP	Voluntary Cleanup Program
VOC	Volatile Organic Compound
WAC	Washington Administrative Code

1.0 INTRODUCTION

This document presents the remedial investigation (RI) for the North Lot Property (Property) in Seattle, Washington. North Lot Development (NLD), as prospective purchaser of the Property, has conducted various investigations to document and characterize soil and groundwater conditions at the Property. This RI documents and evaluates the nature and extent of contamination at the Property.

Investigation of the Property began with the Phase I environmental site assessment (ESA) conducted in 2007 (Landau Associates 2007), and continued with the soil and groundwater quality sampling and analysis conducted in 2008 and 2009.

1.1 PROPERTY DESCRIPTION AND BACKGROUND

The Property is known as the "North Lot Development" (King County parcel number 7666204878) and is located in Seattle, Washington's south end Central Business District adjacent to Qwest Field, as shown on Figure 1. The Property is comprised of 3.85 acres currently owned by King County, and is located southeast of the intersection of South King Street and Occidental Avenue South in Seattle, Washington (Figure 2). The Property consists of a paved parking lot, which is used for commuter parking and parking for events at Qwest Field. Based on a Phase I ESA completed by Landau Associates (dated March 28, 2007), the Property was originally undeveloped tideflats of Elliott Bay. The Property was filled in the late 1890s and early 1900s and was operated as a rail yard from the late 1800s until the late 1960s. Prior to filling, the area was initially developed with streets, buildings, and railroad tracks elevated and supported by pilings. Several sets of railroad tracks were formerly present on the Property. Structures associated with the rail yard included engine maintenance buildings, paint shops, track switching areas, and materials storage areas. In addition, two gasoline stations were formerly located in the northwestern portion of the Property at different times between the late 1930s and approximately 1966. King County purchased the Property in the 1970s to facilitate construction of the Kingdome stadium to the south of the Property, which was later demolished and replaced with the current Qwest Field development. The Property has been used as a parking lot since the 1970s (Landau Associates 2007). The Property is served by various utilities including a stormwater drainage system that consists of a series of four storm drain lines running north to south across the Property. A fifth storm drain line runs approximately northwest to southeast in the eastern half of the Property. The King County main storm drain runs along King Street to the north of the Property and the King County combined sewer main runs along Occidental Avenue to the west of the Property. Relevant historical Property features are illustrated on Figure 3. Existing Property features including the stormwater drainage system and other below-grade utilities on and adjacent to the Property are shown on Figure 4.

The Property will be developed by NLD as part of an Inter-Modal regional transit hub at King Street Station and will encompass two full city blocks with approximately 1.5 million gross square feet of buildable area. The planned development will include two podiums (east and west blocks) that contain residential/North Lot replacement parking, building lobbies, and retail uses. Above the podium on the east block will be a single office tower, and the west block will include more than 400 units of new housing stock (including 100 affordable units).

1.2 REGULATORY FRAMEWORK

Property cleanup, including this RI and the Feasibility Study (FS), which will be submitted as a separate document, is being accomplished under the Washington State Model Toxics Control Act (MTCA). The Property is currently owned by King County. NLD, as the prospective purchaser of the Property, has been in communication with Ecology since April 2008 regarding a suitable regulatory mechanism to facilitate the RI/FS and Cleanup Action Plan (CAP) review and concurrence by Ecology. NLD submitted a proposal for a Prospective Purchaser Agreement/Consent Decree to Ecology in May 2008. Proposal approval has been delayed due to limited Ecology and Attorney General staff resources. Ecology subsequently proposed temporary use of Voluntary Cleanup Program (VCP) staff for completion of the RI/FS work because VCP staff could be assigned immediately.

The NLD team submitted an initial VCP application and met with Mr. Bob Warren and Mr. Russ Olsen of Ecology in September 2008. During the meeting, the VCP process was discussed in the context of the NLD team's development schedule and obligations to the current owner (King County). NLD subsequently submitted a revised VCP application with a specific request for Ecology to review the Remedial Investigation Work Plan, which included proposed additional investigation of soil and groundwater at the Property to identify the source(s), nature, and extent of the contamination and potential exposure pathways, and to collect sufficient data to establish cleanup standards and select a cleanup action. The cover letter with the revised application requested a letter from Ecology stating that the proposed remedial action (i.e., pre-cleanup investigation activities) is likely to be sufficient to meet the specific substantive requirements of MTCA, chapter 70.105D RCW and its implementing regulations, chapter 173-340 WAC, for characterizing and addressing the release(s) at the Property. Ecology subsequently provided comments regarding the RI Work Plan via e-mail (Adams 2008). The Ecology comments were addressed in the Ecology Review Draft Report: *Remedial Investigation/Feasibility Study, North Lot Development, Seattle, Washington* dated February 24, 2009, which was submitted to Ecology for review.

Ecology provided an Opinion Letter dated April 21, 2009 that included its comments regarding the draft RI/FS report. The NLD team met with Ecology on May 28, 2009 to discuss the comments in the

Opinion Letter, and a plan to move forward and complete the RI/FS for the Property. Specific responses to the Ecology comments were provided in a letter dated June 12, 2009 (Landau Associates 2009a), which also included a summary of the topics discussed during the May 28 meeting and actions agreed to by NLD.

The NLD team also submitted a Work Plan (initial version dated June 18, 2009 and revised version dated July 7, 2009) detailing the Supplemental Investigation activities that were planned in response to the April 21, 2009 Opinion Letter and agreed to with Ecology. The NLD team, at Ecology's request, also submitted a letter (dated July 7, 2009; Landau Associates 2009b) clarifying how the proposed Supplemental Investigation activities outlined in the Work Plan will address Ecology comments. The July 7, 2009 letter included responses to additional comments received from Ecology via e-mail on June 30, 2009 regarding the Work Plan and responses to Ecology comments regarding the RI portion of the draft RI/FS report. The Work Plan was subsequently revised (and dated July 7, 2009) to be consistent with the July 7, 2009 clarification letter (Landau Associates 2009c). This RI report includes revisions to the draft RI report to address Ecology comments and incorporate the data from the Supplemental Investigation conducted in July and August 2009. The FS portion of the draft RI/FS report has been removed for revision and submittal as a separate document.

The use of VCP staff has allowed the RI/FS work to progress; however, the technical opinion letters available under the VCP will not provide sufficient liability protection for the viability of the proposed development for the Property. Therefore, NLD has requested that Ecology continue to consider the existing Prospective Purchaser Agreement/Consent Decree Proposal, and that Ecology formal program and Attorney General office staff be made available to oversee the cleanup action after the work with the VCP staff has been completed.

In anticipation of transfer of the project to the Ecology formal program, the documents for the remedial action (this RI report, the FS report, and the planned CAP) are being prepared in a format, and with sufficient detail, to meet the requirements of MTCA under both the VCP and formal programs. The documents will support transfer of the project from the VCP to the formal program during the first quarter of 2010.

1.3 PURPOSE

The purpose of the RI is to collect, develop, and evaluate sufficient information regarding the Property to enable the evaluation of suitable remedial action alternatives in the FS, and selection of a cleanup action. Specifically, the RI:

• Characterizes the nature and extent of contamination for affected media (i.e., soil and groundwater)

• Identifies cleanup standards for affected media.

This document presents the information collected and the evaluations performed to achieve this purpose.

1.4 REPORT ORGANIZATION

Section 2.0 of this report presents a summary of investigative activities conducted on-Property and off-Property for the RI. Section 3.0 presents the results of the RI, including characterization of the nature and extent of contamination using all data collected to date. Section 4.0 presents the summary and conclusions for the RI. Section 5.0 describes the uses of this report, and Section 6.0 provides references.

2.0 PROPERTY INVESTIGATIONS

This section provides a description of the investigative activities that were conducted to characterize conditions at the Property and to develop the data for this RI report. The Property investigations are presented in this section by the type of investigation or the media of concern (e.g., soil or groundwater) to provide the reader with a thorough understanding of the activities that were performed as part of the RI.

The findings of the Phase I ESA are provided in Section 2.2 to establish the context for the soil and groundwater investigations conducted at the Property during the Phase II investigation, the RI field investigation, and the Supplemental Investigation. Findings of the Phase II investigation, RI field investigation, and Supplemental Investigation that are related to the physical conditions at the Property are also included in this section. The analytical results for the samples collected during the Phase II investigation, RI soil and groundwater investigation, and Supplemental Investigation, and Supplemental Investigation, and Supplemental Investigation are presented in Section 3.0 and combined to present the physical conditions of the Property and the nature and extent of contamination to soil and groundwater for this RI report.

2.1 CHRONOLOGY OF PROPERTY INVESTIGATIONS

Four investigations were conducted at the Property to develop the data used in this RI report. A Phase I ESA was conducted in 2007 (Landau Associates 2007), and a focused Phase II soil and groundwater investigation was conducted in February 2008. The Phase II investigation included a geophysical survey, the drilling and sampling of soil borings at 22 locations on the Property, and the collection of groundwater samples from 12 of the boring locations.

The RI field investigation was conducted in October and November 2008 to further characterize soil and groundwater conditions at the Property in areas where soil or groundwater contamination was detected during the Phase II investigations, and to assess the potential for migration of the contamination detected on the Property. The RI field investigation included drilling and sampling of soil borings at 26 locations, the collection of groundwater samples from 4 of the boring locations, and the installation and sampling of 11 groundwater monitoring wells.

The Supplemental Investigation was conducted in July and August 2009 to further characterize the areal and vertical distribution and concentrations of hazardous substances in soil and groundwater. The Supplemental Investigation included drilling and sampling of soil borings at an additional 21 locations including 2 off-Property locations, the installation of 8 additional monitoring wells including wells at 2 off-Property locations, and sampling and analysis of groundwater from all 19 groundwater monitoring wells.

The investigations have included the drilling of more than 70 soil borings, the installation of 19 monitoring wells, and the collection and laboratory analysis of 90 soil samples and 48 groundwater samples from locations on and off the Property over a 3-year period. A summary of the sampling activities and the associated sample analyses are presented in Table 1. The sampling locations are shown on Figure 5. The following sections summarize the activities conducted during these investigations.

2.2 PHASE I ENVIRONMENTAL SITE ASSESSMENT

The Phase I ESA (Landau Associates 2007) consisted of a review of historical information regarding the Property and surrounding area; contacts with representatives of local, state, and federal government agencies regarding the Property and properties of potential concern within a 1-mile radius; a Property reconnaissance; data evaluation; and reporting. The Phase I ESA was conducted in accordance with the guidelines of the American Society for Testing and Materials (ASTM) as identified in its Standard Practice for Environmental Property Assessment Process, E 1527-05 (as currently applied in the state of Washington).

The goal of the assessment process outlined in ASTM E 1527-05 is to identify *recognized environmental conditions*, which are defined as the presence or likely presence of any hazardous substances or petroleum products under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the Property or into the ground, groundwater, or surface water of the Property. The term includes hazardous substances or petroleum products even under conditions in compliance with laws. The term is not intended to include *de minimis* conditions that generally do not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of the appropriate governmental agencies. The Phase I ESA identified various areas of potential environmental concern and *recognized environmental conditions* for the Property related to historical site operations on sites in the surrounding area.

Included below is relevant historical, regulatory, and physical information regarding the Property and surrounding area developed during the Phase I ESA and during preparation of this RI report. Copies of selected historical Sanborn maps and aerial photographs are provided in Appendices A and B, respectively.

• According to historical Sanborn maps, the Property was operated as a rail yard from 1888 to 1969. Railroad tracks were originally located along the northern Property boundary (current location of South King Street) and ran diagonally from the northwestern portion to the southeastern portion of the Property. Structures associated with the rail yard included a roundhouse; turntables; coal boxes; a blacksmith shop; an office; a machine shop/storage area; a car repair, maintenance, and painting facility; and locomotive houses. The 1888 map shows the western portion of the Property as a rail yard and the portion of the Property

located east of 2nd Avenue South (shown as South 3rd Street on this map) is shown as Elliott Bay, which at that time was likely tidal flats (see Appendix A). On the 1904 map, several of the structures are labeled "fire ruins," indicating a fire occurred on the Property between 1888 and 1904. Prior to 1916, the configuration of the rail yard changed significantly. The railroad tracks, the roundhouse, and other structures were removed and replaced. South King Street is shown to the north of the Property. Railroad tracks ran north to south from South King Street and long, narrow sheds were located along the tracks. Both the railroad tracks and the freight sheds extended onto the adjacent property to the south (see Appendices A and B). In the 1950 map, a structure is shown in the northwestern portion of the Property, which is interpreted to have been a gasoline station based on records reviewed at the Puget Sound Regional Archives (see Appendix A). This building is not shown on the 1969 map (see Appendices A and B).

- The historical data review indicates that the western portion of the Property was filled and developed by 1888, before the eastern portion (i.e., east of the current location of 2nd Avenue and the Center Drive Lane on the Property), which appears to have been filled and developed by about 1904 and after the Great Seattle Fire of 1889.
- During operation of the Property as a rail yard, the railroad tracks were primarily located in the eastern portion of the Property and the associated structures were located in the western portion. Several of the structures were known to have been heated using oil. Typical contamination associated with rail yards includes degreasing solvents, polychlorinated biphenyl (PCB)-containing lubricating oils, heavy metals, paint, petroleum hydrocarbons, and creosote (from treated railroad tracks). The long history of the Property as a rail yard is considered a *recognized environmental condition*.
- Two gasoline stations were formerly located in the northwestern portion of the Property. The gasoline stations operated during different time periods in the same area of the Property. Given that the stations had two distinct configurations and a different number of gasoline pumps, it is possible that two sets of tanks were associated with the gasoline stations. There are no records available regarding the specific footprints of the stations or of removal or closure of the tanks associated with the gasoline stations. The former operation of gasoline stations on the Property is considered a *recognized environmental condition*.
- The Union Station property (Union Station) is located approximately 300 feet (ft) east of the Property and is listed on the CSCSL, FINDS, INST CONTROL, MANIFEST, CERCLIS NFRAP, and RCRA databases. Soil and groundwater impacts have been identified at Union Station. Union Station Associates entered into a Consent Decree with Ecology in 1997 that specified the remedial actions required for the Union Station property. The remedial actions, including soil excavation, paving, and the placement of an institutional control limiting the use of groundwater to industrial uses, have been completed. Ecology issued a Certification of Completion in January 2005 and Union Station is currently undergoing groundwater monitoring every 5 years. Gasoline-range and diesel-range petroleum hydrocarbons and related constituents, and arsenic have been detected in groundwater samples collected from the Union Station monitoring wells. The source of these constituents has not been identified, but is likely to be east of Union Station.

Based on the results of the last two groundwater monitoring events at Union Station in 2004 and 2009, petroleum hydrocarbons and related constituents, and arsenic were detected in the monitoring wells at Union Station approximately 300 ft hydraulically upgradient from the eastern boundary of the Property. Groundwater beneath the Property has likely been impacted by petroleum hydrocarbons and related constituents, and/or arsenic. The potential presence of petroleum hydrocarbons and related constituents, and arsenic in the groundwater

beneath the Property due to the contamination detected at this upgradient property is considered a *recognized environmental condition* for the Property.

Background-based screening levels were developed for Union Station based on concentrations of constituents of concern in groundwater sampled from offsite background wells. Background concentrations evaluated at Union Station may be considered reasonable background concentrations for the North Lot Property due to the proximity and upgradient location of Union Station.

- The King Street Center site is located adjacent to the north of the Property, across King Street. This site is listed on the ICR database for an interim cleanup report, which was submitted to Ecology in 1998, regarding petroleum detected in the groundwater. This site is also listed on the underground storage tank (UST) and leaking underground storage tank (LUST) databases. A release was reported from one of two USTs, which were removed in 1998. The release was reported cleaned up; however, a 2003 notice to the property owner from Ecology indicated that the level of contamination at this site may pose a risk to human health and the environment. Ecology requested additional investigation; however, investigations for the Phase I ESA and this RI found that no further information was available from King County regarding soil or groundwater investigation and cleanup at this site. Given that this site is located adjacent to the Property as a result of this release; therefore, this release is considered a *recognized environmental condition* for the Property.
- The former Kingdome site is located adjacent to the south of the Property. A 1997 Phase I ESA conducted for the former Kingdome site (including the Property) by Shannon & Wilson identified potential impacts to the site soil and groundwater as a result of historical site practices, the nearby Union Station site (which was formerly operated as a coal gasification plant), and a former steam plant in the current location of the Weller Street Bridge Touchdown, which is located adjacent to the east of the Property. A 10,000-gallon fuel oil UST was removed from the southern side of the steam plant in 1996. Petroleum-contaminated soil encountered during the tank removal was removed and transported off site for disposal.

Based on the findings of the 1997 Phase I ESA, additional environmental investigations were completed on the properties to the south of the Property, including the current Public Stadium Authority (PSA) parking lot, Qwest Field, and the Exhibition Center to the south of Qwest Field. Investigations were focused in this area in preparation for the development of Qwest Field and the Exhibition Center. Following the initial subsurface investigation, 13 impacted areas were identified on the former Kingdome site that were generally associated with USTs discovered prior to and during construction activities.

The additional investigations identified soil and groundwater that had been impacted by total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), vinyl chloride (groundwater only), and metals. Groundwater was generally encountered from 7 to 10 ft below ground surface (BGS), and the direction of groundwater flow was stated to be to the southwest. No soil or groundwater investigations were conducted on the Property. Soil encountered during the investigations consisted of loose to medium dense, silty sand and gravel with intermixed materials (including coal, boulders, saw mill debris, brick, ash, building debris, railroad ties, rails, and concrete) to depths ranging from 4 to 18 ft BGS.

Following remedial activities that generally consisted of removal of USTs and the surrounding impacted soils, the available information indicates that Ecology issued a No Further Action (NFA) determination for 12 of the 13 impacted areas. The NFA stated that elevated concentrations of PAHs and metals remain in place due to historical industrial use.

The remaining area is located along Occidental Avenue to the southwest of the Property. Shannon & Wilson completed additional investigation in this area; however, information regarding the current status of this impacted area was not identified during the RI.

The records review conducted for the Phase I ESA for the Property did not identify any detailed information regarding remedial actions associated with the adjacent properties, or area groundwater flow information, other than the data for the Union Station site discussed above.

2.3 SOIL INVESTIGATIONS

The investigations for the Property included evaluation of soil quality during the Phase II investigation, the RI field investigations, and the Supplemental Investigation, and are discussed in this section chronologically by investigation. The soil sampling locations are shown on Figure 5. The soil sample descriptions, depths, and analytical parameters are provided in Table 1 and the conditions encountered during drilling are summarized in Table 2. Boring logs are provided in Appendix C.

2.3.1 PHASE II INVESTIGATION

The Phase II soil investigation was completed to evaluate the conditions of potential concern and *recognized environmental conditions* identified in the Phase I ESA. The Phase II investigation included sampling and chemical analysis of soil from areas of the Property likely to show significant impacts due to previous Property operations, including the locations of the former gasoline stations in the northwestern portion, the locations of the previous structures associated with the former rail yard in the western portion of the Property, and the former railroad track locations in the eastern portion. Samples were also collected near the Property boundaries to evaluate the potential for impact to the Property from neighboring properties.

Soil sampling was conducted from February 27 to February 29, 2008 at 22 locations (B-1 through B-22). Direct-push sampling technology was used to collect soil samples at discrete depths from each boring location. Twenty-two soil samples were collected from the borings for laboratory analysis.

The maximum depths of the borings ranged from about 7 to 24 ft BGS. The maximum depth was selected to target the base of the fill material, which is known from the Phase I ESA to have been placed in the area, and the interface of the fill with the native former tideflat surface. The actual depths were often determined by refusal during drilling due to subsurface obstructions. As shown in Table 2, the native former tideflat surface was encountered in five of the Phase II borings. As discussed below, the upper surface of the native former tideflat surface became a focus of the subsurface investigations after creosote-like material was encountered locally at the contact of the fill with the native material in the northeastern portion of the Property.

In addition to the soil and groundwater investigation, a geophysical survey was completed at the Property as part of the Phase II ESA. The results of the geophysical survey are presented in Section 2.3.1.2.

2.3.1.1 Sampling and Analysis

One soil sample was submitted for laboratory analysis from each of borings B-1 and B-3 through B-20. Two soil samples were submitted for laboratory analysis from each of borings B-2 and B-21. No soil samples were submitted for laboratory analysis from boring B-22 because this boring (along with B-21) was added to visually assess whether the creosote-like material encountered at nearby location B-2 was also present farther to the west. The soil analytical parameters were selected based on the historical Property use in the area where the boring was located. Soil samples were selected for laboratory analysis based on visual observations and field-screening information [i.e., photoionization detector (PID) measurements] collected during drilling.

Borings B-15 through B-20 were advanced in the area of the former gasoline stations in the northwestern portion of the Property. As shown in Table 1, soil samples were collected for selected laboratory analysis from borings B-15 through B-20 from depths ranging from about 5 to 8 ft BGS, based on field-screening evidence of potential contamination (i.e., elevated PID measurements and odor). As shown in Table 2, the highest PID measurements from the Phase II investigation were recorded at a depth of about 5 ft BGS from the borings in the northwestern portion of the Property.

Soil borings B-1, B-2, B-4, B-5, B-7, B-21, and B-22 were advanced in the northeastern portion of the Property. The creosote-like material, which was first encountered at a depth of about 18 ft BGS in boring B-2, was the only evidence of contamination encountered during drilling. As shown in Table 2, no elevated PID measurements were recorded during drilling of the soil borings in the northeastern portion of the Property. Therefore, the soil samples selected from these borings for laboratory analysis were collected from depths ranging from about 6 to 20 ft BGS, with most being from greater than 15 ft BGS, and analyzed for TPH, metals, and PAHs, based on the former rail yard operations in this portion of the Property. In addition, the soil sample collected from B-21 (B-21-19-20) was analyzed only for metals. The other sample collected from B-21 (B-21-20-23) was analyzed as a product sample due to the presence of creosote-like material. The sample of creosote-like material was analyzed for TPH, metals, PCBs, and PAHs.

Soil borings B-3 and B-8 through B-14 were advanced in the central and southern areas of the Property and soil boring B-6 was advanced slightly south of the Property boundary to evaluate potential impact from the former rail yard operations and to evaluate subsurface conditions at the Property

boundaries. Soil samples selected from these borings for laboratory analysis were collected from depths ranging from about 5 to 7.5 ft BGS and analyzed for TPH, metals, and PAHs.

2.3.1.2 Geophysical Survey

A geophysical survey was conducted at the Property as part of the Phase II investigation. The purpose of the survey was to determine if USTs were present in the area of the former gasoline stations in the northwestern portion of the Property and to identify subsurface conditions that could impact the proposed Property development. The Property was investigated using electromagnetic and ground-penetrating radar methods. A copy of the geophysical survey report is provided in Appendix D. Significant findings of the geophysical survey are as follows:

- The geophysical survey identified a "low anomalous zone" in the northwestern portion of the Property, in the area of borings B-17 and B-18 (see Figure 5), suggesting that scattered buried metal is likely present in this area. No evidence of USTs was identified in this area based on the geophysical survey.
- The geophysical survey results indicate an anomaly suggesting the presence of a large (approximately 45 ft x 20 ft) object about 1 ft below grade in the southeastern portion of the Property. According to the geophysical report, this anomaly is likely a buried concrete slab associated with a former structure.
- Scattered anomalies were identified in the western portion of the Property that may be indicative of former building foundations or other remnants of the former structures.
- The geophysical survey did not identify any significant subsurface anomalies in the northeastern portion of the Property.

In summary, the geophysical survey results indicate that scattered buried metal objects are present at the Property; however, no evidence of the presence of USTs was identified. Anomalous zones likely associated with foundations of former structures were also identified.

2.3.2 Remedial Investigation Field Investigation

The RI field investigation was conducted to fill data gaps remaining from the Phase II investigation. Information from the Phase II investigation indicated that localized contamination was present in the northwestern portion of the Property, in the area of the former retail gasoline stations, and in the northeastern portion of the Property where the creosote-like material was encountered at the depth of the former tideflat surface. The RI field investigation focused on further characterization of soil and groundwater conditions and the nature and extent of contamination in these areas, and on documentation of groundwater occurrence, quality, and flow at the Property. Additional soil borings were also advanced in the western half of the Property to characterize the vertical profile of PAH contamination identified in this area during the Phase II investigation. Boring depths were extended at selected locations to further

evaluate the depth of the interface between the fill material and the underlying native silt of the former tideflat surface, and the extent of the creosote-like material.

During the RI field investigation, 26 additional direct-push borings were completed at the Property between October 7 and October 10, 2008 (B-23 through B-47; including B-31A and B-31B). The maximum depths of the borings ranged from about 12 to 32 ft BGS. As shown in Table 2, the native former tideflat surface was encountered in 14 of the RI field investigation direct-push borings. Forty soil samples were collected from 26 direct-push borings and submitted for laboratory analysis, including a sample of creosote-like material collected from boring B-41 that was submitted for forensic analysis/product identification. As discussed below, samples were not collected for laboratory analysis from eight borings (B-25, B-29, B-34, B-35, B-37, B-42, B-43, and B-46). Field-screening data from these borings were used in evaluating the nature and extent of contamination identified in the areas of these borings.

Eleven monitoring wells were installed between November 10 and November 14, 2008. Borings for the 11 monitoring wells (MW-1 through MW-9, including MW-7S and-7D, and MW-9S and -9D) were completed using hollow-stem auger drilling techniques. As discussed below, selected borings at the monitoring well locations were extended well below the planned maximum depth of the well(s) to collect additional stratigraphic information.

2.3.2.1 Sampling and Analysis

Soil borings B-23 through B-29, B-45, and B-46 were advanced in the northwestern portion of the Property to further evaluate contamination likely associated with the former gasoline stations. Soil samples from these borings were collected for laboratory analysis from depths ranging from 2.2 to 19 ft BGS based on elevated PID measurements, and analyzed for gasoline-range total petroleum hydrocarbons (TPH-G), benzene, toluene, ethylbenzene, and xylenes (BTEX), and PAHs. Samples collected from B-24 and B-27 were also analyzed for PCBs. No samples were collected for laboratory analysis from boring B-29 due to poor recovery and refusal at multiple attempts during direct-push exploration; however, a monitoring well was installed at this location (MW-2) that allowed for groundwater sample collection. Samples were not collected for laboratory analysis from boring B-25 because of similarities in soil types and conditions to other borings nearby, and there were no observations or field-screening data to indicate the potential presence of contamination. The analytical parameters were selected based on the constituents detected in soil or groundwater samples during the Phase II investigations. Soil samples were selected for laboratory analysis based on visual observations and field-screening information (i.e., the samples with the highest PID measurements) collected during drilling, or from specific zones in order to evaluate the vertical extent of contamination.

Soil borings B-34 through B-44 and B-47 were advanced in the northeastern portion of the Property to further evaluate the creosote-like material identified in this area during the Phase II investigation. These borings were drilled to maximum depths ranging from 24 to 32 ft BGS. The occurrence of the creosote-like material was evaluated by visual observation and field screening during drilling, and soil samples were collected periodically for selected laboratory analysis from depths ranging from 16.5 to 26.0 ft BGS from some of the borings (Table 1).

Soil borings B-30 through B-33 were advanced in the west-central and southern portions of the Property to further evaluate these areas and fill in data gaps. Soil samples from these borings were collected from depths ranging from 0.2 to 18.5 ft BGS and analyzed for TPH, metals, and PAHs to further characterize the fill material. Samples collected from B-30 and B-33 were also analyzed for PCBs.

2.3.3 SUPPLEMENTAL INVESTIGATION

The Supplemental Investigation was conducted to further characterize the areal and vertical distribution and concentrations of hazardous substances in soil and groundwater, address Ecology comments regarding the draft RI/FS report, and complete the RI for the Property. Twenty-one additional soil borings (B-50 through 68 including B-50A and B-63A) were drilled on July 27 and 28 and August 6, 2009 at locations on or adjacent to the Property including:

- In the northwestern portion of the Property to further characterize soil and groundwater in the former gasoline station area, including two off-Property borings
- In the western portion of the Property to further evaluate PAHs in soil greater than 15 ft BGS and to evaluate metals and semivolatile organic compounds (SVOCs) including PAHs in shallow soils about 1 to 2 ft BGS
- In the eastern portion of the Property to evaluate metals and SVOCs including PAHs in shallow soils about 1 to 2 ft BGS.

The maximum depths of the borings ranged from about 6 to 25 ft BGS. As shown in Table 2, the native former tideflat surface was encountered in 9 of the 21 Supplemental Investigation direct-push borings. Twenty-six soil samples were collected and submitted for laboratory analysis. The analytical parameters were selected based on the constituents detected in soil or groundwater samples during the Phase II and RI field investigations and as outlined in the Work Plan (Landau Associates 2009c). Soil samples were selected for laboratory analysis as outlined in the Work Plan. At least one sample was collected for laboratory analysis from each boring, except the locations where two borings were advanced (i.e., B-50 and B-63), then samples were only analyzed from one boring at each location (i.e., samples were collected from B-50A and B-63).

Eight additional monitoring wells were installed on August 3 and August 4, 2009 including two wells (MW-16D and -17D) located off-Property to the northeast. Borings for the eight monitoring wells

(MW-10 through MW-17D, including MW-15D) were completed using hollow-stem auger drilling techniques.

2.3.3.1 Sampling and Analysis

Soil borings B-50 through B-56 were advanced in the northwestern portion of the Property to further evaluate contamination likely associated with the former gasoline stations. Soil samples from these borings were collected for laboratory analysis from depths ranging from 5 to 16 ft BGS and analyzed for TPH-G and BTEX to evaluate the lateral and vertical extent of contamination. No samples were collected for laboratory analysis from boring B-50 due to poor recovery, but a sample was collected from B-50A at the same location.

Soil borings B-57 through B-63A were advanced in the western portion of the Property to further evaluate PAHs in soil greater than 15 ft BGS (B-57 through B-60) and to evaluate metals and SVOCs including PAHs in shallow soils about 1 to 2 ft BGS (B-57 through 63A). These borings were drilled to maximum depths ranging from 9 to 25 ft BGS. No sample was collected for laboratory analysis from boring B-63A, which was drilled to identify geologic data to 10 ft BGS after B-63 encountered refusal at 9 ft BGS. The shallow soil sample representative of the location for borings B-63 and B-63A was collected from B-63.

Soil borings B-64 through B-68 were advanced in the eastern portion of the Property to evaluate metals and SVOCs including PAHs in shallow soils about 1 to 2 ft BGS.

One surface soil sample from each of B-62 and B-65 was also submitted for dioxin/furan analysis per the Work Plan.

Soil samples were also collected for laboratory analysis from the borings for MW-11 (TPH-G and BTEX), MW-15D (PAHs), and MW-17D [HCID, diesel-range total petroleum hydrocarbons (TPH-Dx), metals, PAHs, and SVOCs] to supplement the direct-push boring data.

2.3.4 PHYSICAL SOIL CHARACTERISTICS AND FIELD OBSERVATIONS

The drilling for the Phase II investigation, RI field investigation, and Supplemental Investigation for evaluation of subsurface conditions consisted of 68 direct-push borings, and 19 hollow-stem auger borings. The physical soil characteristics of the material encountered during drilling were evaluated using data from borings completed for environmental and geotechnical purposes. Borings that were completed for geotechnical evaluation purposes were included to allow for a more thorough understanding of the subsurface conditions below about 32 ft BGS, which was the approximate maximum extent of borings completed by Landau Associates for environmental purposes.

Five Landau Associates boring locations (B-38, B-34, B-44, B-33, and B-31b) were selected as locations for drilling of deeper borings by Terra Associates for use in their geotechnical evaluation for the Property. Terra Associates designated the deeper borings B-1, B-2, B-3, B-4, and B-5, respectively, and the conditions encountered during drilling were observed and logged by both Landau Associates and Terra Associates personnel. In the text of this report, discussion of Terra Associates borings will be indicated by including the Terra Associates name in parenthesis following the respective boring ID, otherwise the referenced boring was advanced by Landau Associates. Geologic logs developed for the borings by Landau Associates (B-1 through B-68 and MW-1 through MW-17D) and Terra Associates (B-1 through B-5) are provided in Appendix C.

Boring depths for soil characterization ranged from 7 ft BGS (B-11, B-14) to 32 ft BGS (B-40) for the direct-push borings and from 45.5 ft BGS (B-5, Terra Associates) to 80.5 ft BGS (B-3, Terra Associates) for the hollow-stem auger borings.

Soil conditions encountered during drilling consisted of various types of fill material to a maximum depth of 30.5 ft BGS (B-4 Terra Associates). The fill material was variable in consistency and included very loose to medium dense, fine to coarse sand, silty sand, silt, gravels, wood chips, sawdust, and solid wood. In places, coal, ash, concrete and brick fragments, metal debris, and glass fragments were observed in the fill.

Beneath the fill, the upper contact with a marine sediment layer (former native tideflat) was observed at 31 boring locations (see Table 2) at depths ranging from 18 ft BGS (B-7) to 30.75 ft BGS (B-4, Terra Associates). The marine sediment layer generally consisted of a medium stiff to very soft silt with varying percentages of sand, and usually contained shell fragments. Locally the unit consisted of silty fine to medium sand with shell fragments, fine to medium sand with silt, gravel and shell fragments, or silty gravel with sand and shell fragments.

Underlying the marine sediment layer was a thick layer of silty sand, with interbedded gravel, silt, clay, or peat in places, interpreted to be alluvial deposits. This layer was observed in boring B-40, and in borings B-1 through B-5 by Terra Associates. The upper contact with the alluvial deposits ranged from 25.0 ft BGS (B-40) to 45.5 ft BGS (B-2; Terra Associates).

Underlying the alluvial deposits was material interpreted to be a glacial unit with very similar characteristics to the alluvial deposits and consisting of generally fine to medium silty sand with gravel above a fine to coarse sand with gravel with intermixed layers of silt or clay. The transition between the alluvial deposits and glacial deposits corresponded with an increased material density from medium dense to dense increasing to dense to very dense. The occurrence of the glacial deposits was interpreted from B-1 through B-5 (Terra Associates) where they were encountered from a depth of 44 ft BGS (B-1, Terra Associates) to a maximum depth of 80.5 ft BGS (B-3, Terra Associates), which is also the maximum

depth of the subsurface exploration for the investigations at the Property. Therefore, the thickness of this unit was not identified during this investigation.

Petroleum odor, sheen, or elevated PID measurements were observed in soil from borings drilled in the area of the former gasoline stations in the northwestern portion of the Property (B-16 through B-20, B-23 through B-28, B-45, and B-50 through B-52). PID measurements of 100 parts per million (ppm) or greater were observed in samples collected from B-17, B-18, B-24, B-26, B-28, B-50A, and B-57 at depths ranging from about 4.5 to 15 ft BGS.

A strong petroleum odor, sheen, and a creosote-like material were observed at boring locations B-2, B-21, B-22, B-35, B-37, B-38, B-40, and B-41 and B-1 (Terra Associates), which were drilled in the northeastern portion of the Property. The creosote-like material appears to be present at the contact between the fill unit and underlying marine sediment. This material was encountered from about 18 ft BGS at location B-2 to 23 ft BGS at location B-40, and ranged from 1 ft to 3 ft in thickness. PID readings of this affected material were collected at several locations, and ranged from 21.2 ppm at 22 ft BGS (B-37) up to 68.6 ppm at 25 ft BGS (B-40). Samples of the creosote-like material were collected for laboratory analysis from borings B-21 and B-41.

Observations during drilling in the northeastern, eastern, and southern portions of the Property and field screening (i.e., PID measurements, see Table 2) did not indicate the presence of potential contamination in the fill material from the surface to about 18 ft BGS, even in those areas where the creosote-like material was encountered.

2.4 GROUNDWATER INVESTIGATION

The groundwater investigation for the Property included evaluation of groundwater quality and/or flow characteristics during the Phase II investigation, RI field investigation, and Supplemental Investigation. The groundwater quality evaluation focused on impacted areas identified in the Phase II investigation including the northwestern portion of the Property in the area of the former gasoline stations and the northeastern portion of the Property in areas where creosote-like material was encountered during drilling. Groundwater samples were also collected from the Property boundaries in order to evaluate potential migration of impacted groundwater to or from the Property. Two off-Property wells were also installed to the northeast across King Street. Groundwater flow characteristics were evaluated by estimating groundwater gradients and flow direction based on measured groundwater elevations and estimating a range of hydraulic conductivity based on the soil types encountered within the fill (silty sand to clean sand) and published values (Freeze and Cherry 1979).

The groundwater investigations are discussed chronologically in this section. Although a comprehensive evaluation of the groundwater analytical results is presented in Section 3.3.2, general

conclusions are presented in this section to provide the reader an understanding of groundwater conditions at the Property. Groundwater sampling locations are shown on Figure 5. Sample descriptions and analytical parameters for the groundwater samples are presented in Table 1. Construction details for monitoring wells installed during the RI field investigation are presented in Appendix C.

2.4.1 PHASE II INVESTIGATION

The Phase II groundwater investigation was completed to evaluate areas of potential concern at the Property identified in the Phase I ESA. The Phase II investigation included sampling and chemical analysis of groundwater grab samples collected from direct-push borings in various areas of the Property to document groundwater quality and assess potential impacts due to previous on-Property activities, including the location of the former gasoline stations and the locations of the previous structures associated with the former rail yard. Samples were collected near the Property boundaries to document groundwater quality and evaluate the potential for impact to the Property from neighboring properties.

From February 27 to 29, 2008, 12 groundwater grab samples were collected from temporary well points installed using direct-push sampling technology. The groundwater samples were analyzed for volatile organic compounds (VOCs), TPH-G, TPH-D, motor oil-range total petroleum hydrocarbons (TPH-O), PAHs, and dissolved metals (MTCA metals arsenic, cadmium, chromium, lead, and mercury). The Phase II groundwater sampling locations are identified in Table 1 and shown on Figure 5. The analytical results for the Phase II groundwater grab samples are presented in Section 3.3.2.

2.4.2 REMEDIAL INVESTIGATION FIELD INVESTIGATION

The RI field investigation included collection and laboratory analysis of groundwater grab samples from 4 additional direct-push borings, and the installation of 11 monitoring wells for the measurement of groundwater elevations and for collection of groundwater samples for laboratory analysis. The primary objectives of the RI groundwater investigation were to:

- Further evaluate groundwater quality in the vicinity of the former gasoline stations in the northwestern portion of the Property and in the area of creosote-like material identified in the northeastern portion of the Property
- Further evaluate groundwater quality at the Property boundaries and across the Property
- Evaluate groundwater elevation and flow.

The four additional groundwater grab samples were collected during the direct-push portion of the RI field investigation between October 7 and October 10, 2008. The groundwater grab samples were collected from temporary well points installed using direct-push technology in borings B-26, B-27, B-38, and B-41. The groundwater grab samples were analyzed for TPH only using Method NWTPH-HCID.

TPH-G was detected above the NWTPH-HCID laboratory reporting limit in the sample collected from B-26, which was located in the northwestern portion of the Property, but the result was not further quantified by additional analysis due to limited sample volume. TPH-G, TPH-D, and TPH-O were detected at concentrations above the NWTPH-HCID laboratory reporting limit in the sample collected from B-38, and diesel-range petroleum hydrocarbons were detected at concentrations above the reporting limit in the sample from B-41 in the northeastern portion of the Property; both samples were further analyzed for TPH-D and TPH-O using Method NWTPH-Dx to quantify the results.

2.4.2.1 Monitoring Well Installation and Development

Eleven groundwater monitoring wells, consisting of nine shallow (15 ft in depth) wells (MW-1 through MW-6, MW-7S, MW-8, and MW-9s) and two deeper (20 ft in depth) wells (MW-7D and MW-9d), were installed between November 10 and November 14, 2008. Drilling and construction of the monitoring wells were conducted in general accordance with the Minimum Standards for Construction and Maintenance of Wells (Ecology; WAC 173-160). The shallows wells were constructed with 2-inch PVC casing and 0.020 slot screens placed from 5 to 15 ft BGS to intersect the water table. The deeper wells were constructed with pre-packed well screens (0.010 slot screen packed inside 0.020 slot screen) placed from 15 to 25 ft BGS (MW-7D) and 15 to 20 ft BGS (MW-9D), and located immediately above the elevation of the top of the creosote-like material encountered in the northeastern portion of the Property. A 1-ft length of blank PVC casing was added to the bottom of the well screen to collect any creosote-like material entering the well. Boring and well construction logs for the monitoring wells are presented in Appendix C.

The monitoring wells were developed between November 13 and November 17, 2008. Wells were developed by surging and overpumping the wells using a centrifuge pump and new dedicated polyethylene tubing. A minimum of five casing volumes of water were purged from each well, and development was continued until the groundwater was visibly clear. Water from wells MW-3, MW-4, and MW-6 remained slightly turbid even after development.

2.4.2.2 Groundwater Elevation Monitoring

Depth to groundwater measurements were collected from the monitoring wells prior to sampling on November 24 and November 25, 2008 to provide data for evaluation of groundwater flow and gradient. A second round of water level measurements was collected on January 16, 2009. The groundwater elevation data are provided in Table 3 and groundwater contour maps based on the November 2008 and January 2009 data are presented on Figures 6 and 7, respectively.

2.4.2.3 Groundwater Quality Monitoring

Groundwater samples were collected for laboratory analysis from the 11 monitoring wells on November 24 and November 25, 2008. The samples were analyzed for constituents detected in soil or groundwater samples during the Phase II investigation or suspected to be present based on historical Property operations. The samples from the monitoring wells were analyzed for TPH-G, TPH-D, and TPH-O, VOCs including BTEX, PAHs, and dissolved metals.

The analytical results for groundwater samples are discussed in Section 3.3.2.

2.4.3 SUPPLEMENTAL INVESTIGATION

The Supplemental Investigation included the installation of 8 additional monitoring wells, including 2 off-Property wells, measurement of groundwater elevations, and collection and laboratory analysis of groundwater samples from all 19 of the monitoring wells installed for investigation of the Property. The primary objectives of the Supplemental Investigation for groundwater were:

- Further characterization of groundwater quality within and downgradient of the former gasoline station area in the northwestern portion of the Property
- Further characterization of groundwater quality and, specifically, the concentrations of PAHs in deeper groundwater in the eastern portion of the Property
- Further characterization of groundwater quality within and downgradient of the area of creosote-like material identified in the northeastern portion of the Property
- Further characterization of groundwater quality at the Property boundaries
- Evaluation of groundwater quality off-Property to the north-northeast
- Further evaluation of groundwater elevation and flow.

2.4.3.1 Monitoring Well Installation and Development

Eight groundwater monitoring wells, consisting of five shallow (approximately 15 ft in depth) wells (MW-10 through MW-14) and three deeper (MW-15D and MW-16D, approximately 25 ft in depth; MW-17D, approximately 21 ft in depth) wells, were installed on August 3 and 4, 2009. Drilling and construction of the monitoring wells were conducted in general accordance with the Minimum Standards for Construction and Maintenance of Wells (Ecology; WAC 173-160). The shallows wells were constructed with 2-inch PVC casing and 0.020 slot screens placed from about 5 to 15 ft BGS to intersect the water table. The deeper wells were constructed with 2-inch PVC casing and 0.020 slot screens placed from about 5 to 15 ft BGS to intersect with the base of the screen at or near the interface of the fill with the native former tideflat surface. Boring and well construction logs for the monitoring wells are presented in Appendix C.

The monitoring wells were developed on August 11, 2009. Wells were developed by surging and overpumping the wells using a centrifuge pump and new dedicated polyethylene tubing. A minimum of

five casing volumes of water were purged from each well, and development was continued until the groundwater was visibly clear. Water from wells MW-10 through MW-17D remained turbid even after purging more than five casing volumes.

2.4.3.2 Groundwater Elevation Monitoring

Depth to groundwater was measured in the on-Property monitoring wells and at five wells located at Union Station to the east on June 3, 2009 prior to the installation of the Supplemental Investigation monitoring wells, and from the 19 wells installed for the RI (including the two off-Property wells) on August 25, 2009 prior to groundwater sampling to provide data for evaluation of groundwater flow and gradient. The groundwater elevation data are provided in Table 3 and groundwater contour maps for the June 3 and August 25, 2009 data are presented on Figures 8 and 9, respectively. Groundwater flow at the Property is discussed in Section 3.2.

2.4.3.3 Groundwater Quality Monitoring

Groundwater samples were collected for laboratory analysis from the 17 on-Property and the 2 off-Property monitoring wells from August 11 to 13, 2009. The samples were analyzed for constituents detected in soil or groundwater samples during the Phase II and RI field investigations and as outlined in the Work Plan. The samples from the monitoring wells were analyzed for TPH-G, TPH-D, and TPH-O, VOCs including BTEX, PAHs, and dissolved metals (i.e., arsenic, cadmium, chromium, copper, lead, mercury, and zinc).

The analytical results for groundwater samples are discussed in Section 3.3.2.

3.0 REMEDIAL INVESTIGATION RESULTS

This section presents the results of investigative activities conducted for the RI, and discusses the nature and extent of contamination and other relevant Property data. As noted above, the RI data were collected during the Phase II investigation conducted in February 2008, the RI field investigation conducted in October and November 2008, and the Supplemental Investigation conducted in July and August 2009. The results of these investigations and the associated data relevant to Property conditions are integrated in this section to provide the reader with a thorough understanding of Property conditions, and to make the RI a comprehensive document.

3.1 GEOLOGY

General geologic information for the Property was obtained from the *Geologic Map of Seattle* (Troost et al. 2005), *Preliminary Geotechnical Evaluation* (Terra Associates 2008), *Driven Piles for Safeco Field* (Miner and Gurtowski 2001), and from soil borings completed at the Property during the Phase II investigation, RI field investigation, and Supplemental Investigation. The borings drilled at the Property for the RI along with selected borings drilled prior to the RI by other consultants (B-1, GeoGroup Northwest, 1996; B-15, Metropolitan Engineers, 1966; BH-3 and BH-4, Geosciences Inc., 1998; and B-2, Shannon & Wilson, 1993) were used to interpret subsurface geologic conditions. Two east-west geologic cross sections, A-A' and B-B', and three north-south cross sections, C-C', D-D', and E-E' were developed for the Property from the geologic logs for the selected borings. The boring and cross-section locations are shown on Figure 10 and the cross sections are presented on Figures 11 through 14. Boring logs are provided in Appendix C.

The ground surface of the Property is generally level and is at an average elevation of 18 ft [North American Vertical Datum of 1988 (NAVD88)] (Pacific Geomatic Services 2008). The stratigraphy within the depth range of exploration at the Property consists primarily of four geologic units identified as: fill, marine sediments, alluvial deposits, and glacial deposits.

Fill is present directly below the existing parking lot pavement section extending to depths ranging from 18 to 30 ft BGS. The fill likely originated from the Jackson Street Regrade, and Duwamish Waterway dredging projects (Terra Associates 2008). As discussed in Section 2.3.3, the fill material is variable in composition, including very loose to medium dense, fine to coarse sand, silty sand, silt, gravels, wood chips, sawdust, and solid wood. In places, coal, ash, concrete and brick fragments, metal debris, and glass fragments were observed in the fill. In general, the fill encountered in the eastern portion of the Property appears more uniform (less variable) in composition and has less debris than the fill encountered in the western portion of the Property, likely due to the different filling episodes

identified during the Phase I ESA. Layers of wood were encountered within the central portion of the Property, ranging from about 1 to 17 ft in thickness. Thinner, discontinuous layers of wood were observed in most of the borings throughout the Property.

The marine sediment directly underlying the fill consists of very soft to medium stiff silt, ranging from approximately 2 to 18 ft in thickness. As discussed above, locally the unit consisted of a silty, fine to medium sand with shell fragments, a fine to medium sand with silt, gravel and shell fragments, or a silty gravel with sand and shell fragments.

Alluvial deposits directly underlying the marine sediment consist of silty sand, with interbedded gravel, silt, clay, or peat. This unit was observed in B-1 through B-5 (Terra Associates) and recorded in boring logs B-1 (GeoGroup Northwest 1996), BH-3 and BH-4 (Geosciences Inc. 1998), B-15 (Metropolitan Engineers 1966), and B-2 (Shannon & Wilson 1993). As noted above, the depth of the upper contact of these alluvial deposits ranges from 25.0 ft BGS (B-40) to 45.5 ft BGS (BH-4) and the thickness of the alluvial deposits ranges from 11 ft (B-2, Shannon & Wilson) to 26 ft (B-3, Terra Associates).

Underlying the alluvial deposits, are glacial deposits, which are similar in composition to the alluvial deposits, but generally have a higher density. The glacial deposits range from dense to very dense; whereas the alluvial deposits are loose to medium dense. The upper contact of the glacial deposits was encountered in seven borings, B-1 through B-5 (Terra Associates), and BH-3 and BH-4 (Geosciences Inc.) at depths ranging from approximately 44 ft BGS (B-1, Terra Associates) to 68 ft BGS (BH-4, Geosciences, Inc). The glacial deposits were encountered to a maximum depth of 80.5 ft BGS (B-3, Terra Associates) during the RI field investigation.

3.2 HYDROGEOLOGY

Hydrogeologic conditions at the Property were evaluated using geologic data from previous investigations and data collected during the RI. Based on available boring and groundwater data, the uppermost hydrostratigraphic unit at the Property is the water table aquifer within the fill that overlies the marine sediment unit. The marine sediment unit forms the uppermost aquitard beneath the Property. Based on available information, the overall groundwater flow in the Property area is to the west toward Elliott Bay and Puget Sound.

Groundwater levels were measured in monitoring wells at and near the Property four times from November 2008 to August 2009. Groundwater elevation contours for the monitoring events are presented on Figures 6 through 9. The groundwater elevation contours presented on Figures 6 and 7 were developed from water level measurements collected from the initial 11 on-Property monitoring wells. The groundwater contours shown on Figure 8 were developed from water level measurements collected from the initial 11 on-Property wells plus five additional wells located near Union Station about 300 ft to the east (MW-101R, MW-102R, MW-104, MW-105, and HC-103). The groundwater elevation contours shown on Figure 9 were developed from water level measurements collected from the initial 11 on-Property wells and the 8 additional wells installed in August 2009. As shown on Figures 6 through 9, the local groundwater gradient and flow pattern across the Property are variable, which is characteristic of shallow unconfined aquifers consisting of fill material, especially in urban areas where constructed features, such as foundation drainage systems and utility trenches, can distort the groundwater table. As noted above, the available information indicates that the western and eastern portions of the Property were filled at different times and the fill encountered during drilling in the eastern portion of the Property was relatively less variable in composition than the fill encountered in the western portion. The different fill histories and compositions have likely resulted in the variable groundwater conditions observed at the Property. As part of this RI, local conditions were evaluated in an effort to identify features that could locally affect shallow groundwater flow. However, no specific features were identified that can be directly associated with the variable flow patterns across the Property. Based on the available groundwater elevation data, there is a localized area of relatively lower groundwater elevations (i.e., groundwater low) roughly between the corner of South King Street and 2nd Avenue South on the west and King Street Station on the east, and an area of relatively higher groundwater elevations (i.e., groundwater high) near monitoring well MW-14 in the central portion of the Property. The data from these areas strongly affect the groundwater flow directions calculated from the groundwater elevations measured in the Property and off-Property monitoring wells. The groundwater low is prominent on all four of the groundwater contour maps and results in apparent local groundwater flow to the northeast in the central and eastern portions of the Property. The most recent round of groundwater measurements (including the newest wells) indicates a groundwater high in the central portion of the Property, as shown on Figure 9. The groundwater high results in apparent local groundwater flow radially from the area of the high including flow to the west and northwest in the western portion of the Property. The local flow to the west-northwest is consistent with overall area flow toward Elliott Bay and Puget Sound. As noted above, no specific features have been identified to explain the groundwater low or the groundwater high. The existing monitoring well network at the Property includes wells along the perimeter of the Property and provides documentation of local groundwater flow on and off the Property.

The depths to groundwater measured during the RI range from about 5.5 to 11 ft BGS with groundwater elevations ranging from about 7.2 ft Mean Sea Level (MSL) to 11.7 ft MSL (Table 3). Based on the elevations measured to date (i.e., November 2008; January, June, and August 2009), the groundwater elevations do not appear to show any significant seasonal variation(s). Deeper groundwater beneath the marine silt unit was not evaluated as part of this study.

Hydrogeologic conditions for Union Station, which is located 300 ft east of the Property, were evaluated based on data from reports completed by Landau Associates in October 2004 and October 2009 as part of the Union Station Purchaser Consent Decree requirements. Based on available groundwater elevation contours from October 2009, the groundwater elevations at Union Station appear generally higher near the southeastern portion of the site, and lower near the western and northwestern portions of the site, suggesting localized groundwater flow toward the western and northwestern Union Station property boundary. No hydrogeologic data were available for the former Kingdome site (adjacent to the south) or King Street Center (adjacent to the north).

Hydrogeologic parameters for the uppermost hydrostratigraphic unit are discussed in the following subsections, including saturated thickness, flow direction, hydraulic conductivity, and groundwater velocity.

3.2.1 SATURATED THICKNESS AND FLOW DIRECTION

As noted above, the groundwater elevation data developed during the RI are presented in Table 3. The depths to groundwater measured during the RI ranged from approximately 5.5 to 11.0 ft BGS. The saturated thickness of the uppermost hydrostratigraphic unit generally ranges from approximately 11 ft to 25 ft in thickness, based on available geologic data and water level measurements.

The well reference elevations in conjunction with groundwater monitoring data were used to determine groundwater elevations at each well location. The direction of groundwater flow and groundwater flow gradient were estimated based on these data. Groundwater flow at the Property, based on the four rounds of monitoring from November 2008 to August 2009 noted above, is locally variable. Due to the groundwater low near the northeastern portion of the Property and the groundwater high in the central portion of the Property discussed above, the flow direction calculated from the measurements collected from the on- and off-Property wells for the RI is locally inconsistent with overall area groundwater flow to the west toward Elliott Bay and Puget Sound except in the western portion of the Property.

3.2.2 HYDRAULIC CONDUCTIVITY AND GROUNDWATER VELOCITY

Property-specific data were not collected to document aquifer properties, so the hydraulic conductivity of the uppermost hydrostratigraphic unit was estimated as a range based on the soil types encountered within the fill (silty sand to clean sand) and published values (Freeze and Cherry 1979). The highly variable nature of the fill results in a large range of estimated values for hydraulic conductivity from 10⁻³ to 10⁻¹ centimeters per second (cm/s; approximately 28 to 2,800 ft/day). As discussed above, the fill generally tends to have slightly less fines and be coarser-grained in the eastern portion of the

Property than in the western portion, and in the west-central portion the fill contains significantly more wood debris. Therefore, the hydraulic conductivity of the fill in the eastern portion is more similar to that for clean sand $(10^{-2} \text{ to } 10^{-1} \text{ cm/s}; \text{ approximately 280 to } 2,800 \text{ ft/day})$, and the hydraulic conductivity of the fill in the western portion is more similar to that for silty sand to clean sand $(10^{-3} \text{ to } 10^{-2} \text{ cm/s}; \text{ approximately } 28 \text{ to } 280 \text{ ft/day})$. No attempt was made to estimate the hydraulic conductivity for the wood debris.

Effective porosity (n) of the fill unit was estimated to range between 25 and 50 percent, based on a published porosity range for sand (Freeze and Cherry 1979). An average value of 37 percent (0.37) was used for effective porosity to estimate the groundwater velocity.

Average hydraulic gradients were calculated based on the water levels measured at the Property during the monitoring events in January 2009, June 2009, and August 2009. The gradients between selected well pairs (i.e., MW-4 and MW-6 in the eastern portion of the Property, MW-3 and MW-7 in the central portion, and MW-2 and MW-8 in the western portion) were calculated for each monitoring event and then an average gradient was calculated for each well pair. The average hydraulic gradient ranges from about 0.0025 ft/feet between wells MW-4 and MW-6 in the eastern portion to 0.012 ft/feet between wells MW-3 and MW-7 in the central portion (Table 3, Figures 7, 8, and 9). The average hydraulic gradient in the western portion of the Property was 0.0054 ft/feet between wells MW-8.

The groundwater average linear (seepage) velocity (V) is estimated for the eastern and western portions of the Property using the equation:

$$V = \frac{Ki}{n}$$

where:

K = hydraulic conductivity (L/t)

i = hydraulic gradient (dimensionless)

n = effective porosity (dimensionless).

Given the range in horizontal hydraulic gradient and soil composition across the Property, estimations of linear velocity were made for the eastern and western portions of the Property. In the eastern portion of the Property, the horizontal hydraulic gradient ranges from 0.0025 ft/feet to 0.0122 ft/feet and the hydraulic conductivity ranges from approximately 280 to 2,800 ft/day. In the western portion of the Property, the gradient ranges from 0.0054 ft/feet to 0.0122 ft/feet and the hydraulic conductivity ranges from 0.0054 ft/feet to 0.0122 ft/feet and the hydraulic conductivity ranges from 0.0054 ft/feet to 0.0122 ft/feet and the hydraulic conductivity ranges from 0.0054 ft/feet to 0.0122 ft/feet and the hydraulic conductivity ranges from 0.0054 ft/feet to 0.0122 ft/feet and the hydraulic conductivity ranges from approximately 28 to 280 ft/day. Given an effective porosity of 0.37 (mean value), the average seepage velocity is calculated to range between 2.4 ft/day and 92.3 ft/day in the

eastern portion of the Property, and between 0.4 and 9.2 ft/day in the western portion. The calculations are as follows:

Eastern portion:
$$V_{\min} = \frac{(0.0025)(280)}{0.37} = 1.89$$
 (ft/day) and $V_{\max} = \frac{(0.0122)(2800)}{0.37} = 92.3$ (ft/day)
Western portion: $V_{\min} = \frac{(0.0054)(28)}{0.37} = 0.4$ (ft/day) and $V_{\max} = \frac{(0.0122)(280)}{0.37} = 9.2$ (ft/day)

3.2.3 POTENTIAL FOR VAPOR INTRUSION

Based on the RI analytical data, and as discussed above, the VOC benzene is present in shallow (less than 8 ft BGS) soil above the groundwater table in the northwestern portion of Property (in the former gasoline station area) at concentrations greater than the preliminary cleanup level. Benzene was not detected at concentrations greater than the preliminary cleanup level in any of the groundwater samples collected in the northwestern portion of the Property. Benzene was not detected above the preliminary cleanup level in shallow soil or shallow groundwater monitoring well samples collected in the eastern portion of the Property. Benzene was the only VOC that was detected at concentrations that pose a potential vapor intrusion concern and, therefore, was the only analyte evaluated for potential vapor intrusion.

Due to the detected concentrations of benzene in shallow soil and the planned commercial and residential uses for the western portion of the Property, the Johnson and Ettinger (1991) model was used to evaluate the potential incremental increase in risk to users of the building planned for the western portion of the Property from benzene that enters indoor air via vapor intrusion. The planned residential units will be located on the third floor and will be separated from the ground floor by a mechanically vented parking garage; therefore, vapor intrusion is not anticipated to be a concern for residential use. Therefore, employees and visitors of the ground floor commercial areas were considered in the model. Based on the results from the model, which are summarized in Appendix E, the benzene concentrations in soil indicate an incremental risk greater than 10^{-6} for occupants of a building in the northwestern portion of the Property. Results from the model indicate that if the one highest benzene concentration in soil (location B-23 in the northwesternmost corner of the Property) is removed from the data set, the risk would be at an acceptable level of less than 10^{-6} .

Based on this evaluation of the potential risk due to vapor intrusion to future users of the planned building on the Property, mitigation for vapor intrusion will be considered in the FS.

3.3 ENVIRONMENTAL CONDITIONS

This section describes Property environmental conditions including soil and groundwater quality. Property environmental conditions were evaluated based on analytical results for soil and groundwater generated during the Phase II investigation, the RI field investigation, and the Supplemental Investigation.

All analytical data were evaluated for data quality prior to use. The data quality evaluation was conducted in accordance with the procedures identified in the RI Work Plan (Landau Associates 2008). Accuracy of the data was determined through recovery of spiked surrogates, matrix spikes, duplicates, and spiked laboratory control samples. Control limits for spike recovery were based on laboratory acceptance limits generated according to EPA guidelines. A summary of data validation qualifiers is presented in Appendix F. No data were rejected and the data, as qualified, are acceptable for use.

The nature and extent of contamination were evaluated based on relevant criteria and standards for affected media. Groundwater quality was generally evaluated based on MTCA Method B groundwater cleanup levels, based on the lower of protection of groundwater as drinking water and protection of marine surface water. Soil quality was generally evaluated using MTCA Method B cleanup levels, based on the lowest of direct contact, protection of groundwater as drinking water, and protection of groundwater as marine surface water values. For soil and groundwater constituents that do not have a Method B soil cleanup level, MTCA Method A soil cleanup levels for unrestricted land uses, where available, were used.

These evaluation criteria are presented as preliminary cleanup levels in this document. Actual Property cleanup levels will be established by Ecology as part of the Cleanup Action Plan (CAP). A more detailed discussion of the development of the preliminary cleanup levels is presented in Appendix G.

3.3.1 SOIL QUALITY

Preliminary Method B soil cleanup levels (or for lead and TPH, MTCA Method A cleanup levels for soil) have been identified as preliminary soil cleanup levels for the detected constituents. MTCA Method B soil cleanup levels were developed based on the most stringent of the constituent concentrations in soil protective of groundwater as drinking water and marine surface water, and protection of human health based on direct contact (Method B standard formula values for carcinogens and non-carcinogens). MTCA Method A soil cleanup levels, where available, were used for lead, TPH-G, TPH-D, and TPH-O for which Method B cleanup levels could not be calculated. Cleanup levels were adjusted upward if the calculated cleanup level was lower than the natural background concentration for the constituent. Cleanup levels for non-carcinogens were evaluated based on total Property risk and

were adjusted downward, where necessary, in order to achieve a total Property hazard index of 1. Adjustment of cleanup levels for carcinogens for total Property risk was not necessary.

Soil quality data and the associated preliminary soil cleanup levels for constituents detected in soil samples are presented in Table 4. The criteria used in developing the preliminary cleanup levels are provided in Table 5. The analytical results for constituents detected in soil at concentrations greater than the preliminary cleanup levels are presented in Table 6. The analytical results for all of the constituents tested for and the laboratory analytical reports are presented in Appendix F.

3.3.1.1 General Property Soil Quality

As noted above, based on the historical operations conducted at the Property, the constituents of concern for this RI are TPH, VOCs (including BTEX), PAHs, and metals. Five samples were analyzed for PCBs due to the various oils that may have been associated with historical Property operations. Two samples collected during the Supplemental Investigation were also analyzed for dioxins/furans. The number of soil samples analyzed for each of these constituents are listed below:

- 30 soil samples were analyzed for TPH using Method NWTPH-HCID
- 27 soil samples were analyzed for TPH-D and TPH-O using Method NWTPH-Dx
- 31 soil samples were analyzed for TPH-G using Method NWTPH-Gx
- 13 soil samples were analyzed for arsenic, cadmium, chromium, copper, lead, mercury, and zinc
- 29 soil samples were analyzed for arsenic, cadmium, chromium, lead, and mercury
- 28 soil samples were analyzed for BTEX
- 51 soil samples were analyzed for PAHs
- 13 soil samples were analyzed for SVOCs
- 5 soil samples were analyzed for PCBs
- 2 soil samples were analyzed for dioxins/furans.

Based on the analytical results for these samples, the detected concentration in one or more samples was greater than the preliminary cleanup levels in shallow soil (i.e., less than 15 ft BGS) for:

- TPH-O (1 sample; Figures 15)
- TPH-G (13 samples; Figure 21)
- BTEX (11 samples; Figure 21)
- Arsenic (4 samples; Figure 17)
- Mercury (10 samples; Figure 17)
- cPAHs (24 samples; Figure 19).

Based on the analytical results for these samples, the detected concentration in one or more samples was greater than the preliminary cleanup levels in deeper soil (i.e., greater than 15 ft BGS) for:

- TPH-D or TPH-O (3 samples; Figure16)
- TPH-G (6 samples; Figure 22)
- BTEX (5 samples; Figure 22)
- Arsenic (1 samples; Figure 18)
- Mercury (2 samples; Figure 18)
- cPAHs (12 samples; Figure 20).

PCBs were not detected in any of the soil samples at a concentration greater than the laboratory reporting limit.

Dioxins and furans were analyzed for and detected in two shallow soil samples from the western and eastern halves of the Property at borings B-62 and B-65, respectively. Analytical results for dioxin and furans are provided in Table 7 and discussed in Section3.3.1.4.

Based on these data, soil quality at the Property is impacted by one or more of the listed constituents in two primary areas:

- The northwestern portion in the area of the former gasoline stations
- The northeastern portion where the creosote-like material was observed.

In addition, PAHs, including primarily carcinogenic PAHs (cPAHs; Figures 19 and 20), were detected at concentrations greater than the preliminary cleanup levels at locations across the Property. Limited concentrations of metals including arsenic, copper, mercury, and zinc, and motor oil-range petroleum hydrocarbons were also detected at concentrations greater than the preliminary cleanup levels at various locations across the Property. The analytical results for soil samples collected in the two primary areas and those collected at locations throughout the Property are discussed further below by area.

3.3.1.2 Soil Quality in the Vicinity of the Former Gasoline Stations (Northwestern Portion)

Soil quality in the northwestern portion of the Property was primarily impacted by operations associated with the former gasoline stations, probably including the associated underground storage tanks (USTs), transfer piping, and/or dispenser islands. As discussed in the Phase I ESA (Landau Associates 2007), few details of the former station operations and footprints are available; however, the field-screening data and observations discussed in Section 2.3.3, the analytical data indicating the presence of TPH-G and BTEX, and the localized areal extent of the contamination suggest that the contamination is related to surface or shallow subsurface releases from the former station(s). The detected concentrations of TPH-G, usually along with one or more BTEX constituents, were greater than the preliminary cleanup

levels in the soil samples collected from 13 borings at depths ranging from about 5 to 8 ft BGS (Figure 21) near the depth of the groundwater table at the time of drilling. Concentrations of TPH-G, benzene, toluene, and ethylbenzene were also greater than the preliminary cleanup levels in four (B-26-17.0, B-50A-15-16, B-51-15-15, and B-52-15-16) of the seven deeper soil samples collected from this area (Figure 22). The soil contamination appears to primarily be near the top of the groundwater table, but extends to a depth of at least 17 ft BGS locally; however, as noted below, TPH-G was detected at a concentration greater than the preliminary cleanup level in only 1 of 10 groundwater samples collected from eight locations (four temporary wells set in borings and four permanent wells) in this area (Figure 27). No BTEX was detected at concentrations greater than the preliminary cleanup levels in any of the groundwater samples from this area.

3.3.1.3 Soil Quality in the Northeastern Portion

As discussed in Section 2.3.3, no visual or field-screening evidence of potential contamination was identified in soils from the surface to about 20 ft BGS in any areas of the Property except the northwestern portion, discussed above. The drilling, and soil sampling and analysis in the northeastern portion focused on evaluation of the extent of the creosote-like material that was first encountered at boring B-2 at the base of the fill at the contact with the underlying marine sediments layer. The RI field investigation included drilling 11 borings in the area around B-2; soil samples were selected for laboratory analysis from near the contact with the marine sediments where the creosote-like material was encountered. The creosote-like material was encountered in nine borings at depths of about 18 to 23 ft BGS and was estimated to be up to about 3 ft in thickness (Table 2 and Figure 23). The analytical results for the two samples collected of the creosote-like material for laboratory analysis are discussed in Section 3.3.3.

The analytes detected in soil in the northeastern portion of the Property at concentrations greater than the preliminary cleanup levels were all in samples collected from greater than 15 ft BGS and consisted of:

- PAHs (B-36, B-38, B-39, B-40, B-41)
- cPAHs (B-38, B-39, B-40, B-47, MW-17D-15.5-16.5; Figure 20)
- TPH-D (B-2, B-36; Figure 16)
- TPH-O (B-2; Figure 16)
- TPH-G (B-36, B-38, B-41; Figure 22)
- BTEX (B-38, B-41, B-47; Figure 22).

Based on the field screening, observations during drilling, and analytical data, the soil contamination appears to be primarily associated with the creosote-like material at the base of the fill.

As noted below, four shallow groundwater monitoring wells and two deeper wells were installed in the northeastern portion of the Property. The groundwater samples from deeper well MW-9D indicated detected concentrations of PAHs, cPAHs, TPH-G, TPH-D, and BTEX greater than the preliminary cleanup levels (Figures 24, 26, and 27). Well MW-9D is screened from 15 to 20 ft BGS, at approximately the depth where the creosote-like material was encountered. Well MW-7D, located east of MW-9D but outside of the extent of creosote-like material observed in the soil borings, is also screened at the approximate depth of the creosote-like material. Unlike well MW-9D, well MW-7D has not had any constituents of concern detected at concentrations greater than preliminary cleanup levels, suggesting that groundwater contamination associated with the creosote-like material does not extend beyond locations where groundwater is in contact with the creosote-like material.

Two additional off-Property deeper groundwater monitoring wells (MW-16D and MW17-D) were installed to the north and the northeast of the Property during the Supplemental Investigation to further evaluate the extent of the creosote-like material. Due to the presence of various utilities and permanent structures, these two off-Property wells could not be located nearer to the Property boundaries. The creosote-like material was not encountered during installation and drilling of either MW-16D or MW-17D. Preliminary cleanup levels were not exceeded for any constituent in the groundwater sample from off-Property deeper well MW-16D to the north of the Property. The sample from off-Property deeper well MW-17D to the northeast of the Property indicated low concentrations of cPAHs [0.02 micrograms per liter (μ g/L)] slightly above the cleanup level.

Based on the occurrence of the creosote-like material at the base of the fill material, and the lack of evidence of contamination within the fill at shallower depths, the creosote-like material appears to be from a distinct source and likely predates placement of the overlying fill. The creosote-like material was not observed in soil borings from MW-16D and MW-17D indicating the creosote-like material does not extend off-Property to those locations to the north and northeast.

3.3.1.4 Soil Quality Property-wide

Carcinogenic PAHs were detected at concentrations greater than preliminary cleanup levels in soil samples collected across the Property, as shown on Figures 19 and 20. In the shallow soil, cPAHs were detected above the preliminary cleanup level primarily in the western portion of the Property, although some cPAH exceedances were identified in the eastern portion of the Property as well (B-66 and B-67). The highest concentrations of cPAHs in the shallow soil were in the sample from 4.6 ft BGS at boring B-23, which is the location of monitoring well MW-8. In the deeper soil, concentrations of cPAHs were detected above the preliminary cleanup level at 10 of the 15 locations across the Property where samples were collected and analyzed. The occurrence of the cPAHs in soil at various depths throughout

the Property (ranging from less than 1 ft to about 17 ft BGS on the western side of the Property to greater than 20 ft BGS on the eastern side) suggest the presence of a source within the fill material placed over the native marine sediments and/or impacts due to the Seattle Fire in1889.

Property-wide concentrations of the metals arsenic and mercury greater than the preliminary cleanup levels were identified in soil during the RI field investigation and the Supplemental Investigation. Arsenic was detected in shallow soils Property-wide, and exceeded the cleanup level at four locations, with the highest concentration at B-65 [30 milligrams per kilogram (mg/kg)]. In the deeper soils, arsenic exceeded the preliminary cleanup level in only the sample from off-Property location MW-17D (8 mg/kg). Because this location is off-Property, the detected concentration is likely indicative of area background concentrations. Due to the change in preliminary cleanup levels to include criteria for protection of marine surface water, the preliminary cleanup level for mercury decreased from the preliminary cleanup level presented in the draft RI/FS report and is equal to the Puget Sound background level (Ecology 1994). Mercury concentrations are greater than the revised preliminary cleanup level at 10 locations across the Property (9 in shallow soil, 1 in deeper soil), with the highest concentration of 1.88 mg/kg at B-33 from 17.5 to 18.5 BGS. These Property-wide detections of metals suggest the presence of a source within the fill material placed over the native marine sediments.

Dioxins and furans were detected in two shallow soil samples from the western and eastern halves of the Property at borings B-62 and B-65, respectively. The TEQ of dioxins/furans at B-62 was 0.0922 nanograms per kilogram (ng/kg), and the TEQ of dioxins/furans at B-65 was 34.4 ng/kg. Dioxins and furans may be formed during combustion of organic compounds in the presence of chloride. Typical sources include combustion of saltwater-soaked wood, waste incineration including home burn barrels, and some types of chemical manufacturing. Various studied have evaluated background levels of dioxin in soil. Ecology found dioxin/furan concentrations (as 2,3,7,8 TEQ) ranging from 0.13 ng/kg to 19 ng/kg in urban soil statewide (Ecology 1999); a recent study of dioxins/furans in soil from residential and undeveloped areas of Port Angeles found TEQ concentrations ranging from 0.49 ng/kg to 76 ng/kg (Ecology & Environment 2009). The concentrations found at North Lot are within this range and may reflect combustion in the downtown Seattle area prior to the Property being paved.

3.3.2 GROUNDWATER QUALITY

Preliminary Method B groundwater cleanup levels based on drinking water use and discharge to marine surface water, or MTCA Method A cleanup levels for groundwater were used to identify preliminary groundwater cleanup levels for detected constituents. MTCA Method B groundwater cleanup levels were developed based on the most stringent of the federal or state maximum contaminant levels (MCLs), state primary and secondary MCLs, protection of marine surface water, and Method B standard

formula values. MTCA Method A groundwater cleanup levels, where available, were used for constituents for which Method B cleanup levels could not be calculated. Cleanup levels were adjusted upward if the calculated cleanup level was lower than the natural background concentration for the constituent. Cleanup levels for non-carcinogens were evaluated based on total Property risk and were adjusted downward, where necessary, in order to achieve a hazard index equal to or less than 1. Adjustment of cleanup levels for carcinogens for total Property risk was not necessary. Total risk adjustment tables are provided in Appendix G.

The western edge of Union Station is about 300 ft hydraulically upgradient of the Property. The groundwater monitoring data for Union Station from 1997 through 2009 indicate the presence of arsenic in groundwater at concentrations greater than the unadjusted preliminary MTCA Method B groundwater cleanup level. Dissolved arsenic concentrations in the June 2004 samples collected from six Union Station wells, which appear to be hydraulically upgradient of the Property (USMW-101R, USMW-102R, USMW-104, USMW-105, USMW-108R, USB-4R, and USB-6R¹), ranged from 2.0 µg/L to 30 µg/L, with one non-detected value at a reporting limit of 5 µg/L. The samples collected in August 2009 had arsenic concentrations ranging from 1.4 µg/L to 31 µg/L with one non-detected value at a reporting limit of 2 µg/L. The arsenic background concentration calculated in 2004 was 36 µg/L; the arsenic background concentration being calculated for the 2009 data is expected to be similar to the 2004 value (Landau Associates 2004, 2009d).

An arsenic background concentration for the Property of 25 μ g/L was calculated in accordance with WAC 173-340-709; the Ecology Toxics Cleanup Program guidance document, *Statistical Guidance for Ecology Site Managers* (Ecology 1992) using the MTCA Stat97 Background Module; and the 2004 and 2009 arsenic concentrations detected in the Union Station wells identified above. The MTCA Stat97 calculations worksheet for the background calculation showing the screening level based on the 90th percentile value as well as the data upon which it is based is provided in Appendix H. The calculated arsenic background level was used for comparison with groundwater data from Property monitoring wells because it is considered to represent conditions upgradient of the Property.

Groundwater quality data, along with the preliminary groundwater cleanup levels, for the constituents detected in the groundwater samples are presented in Table 8. The water quality criteria used in developing the preliminary cleanup levels is provided in Table 9. The analytical results for constituents detected in groundwater at concentrations greater than the preliminary cleanup levels are presented in Table 10. Analytical results for all constituents tested for and analytical laboratory reports are presented in Appendix F.

¹ A prefix of US is added to Union Station well names to prevent confusion with the Property wells that have similar names.

As discussed below, the available groundwater analytical data do not indicate off-Property migration of potential groundwater contamination. The groundwater elevations were compared to elevations of main sewer and storm drain pipes surrounding the Property to assess potential impacts to marine surface water due to groundwater infiltration into leaky underground pipes or along backfill associated with utility trenches. The 18-inch diameter combined sewer piping located in areas to the north and northwest of the Property is generally at elevations above the water table and, therefore, groundwater migration off-Property along the sewer alignment in these areas is not considered to be a concern. The 102-inch diameter main extending across the northern perimeter of the Property is at elevations below the groundwater table in most areas. As discussed below, the only groundwater contamination on the Property is limited to the northeastern portion of the Property and there is no evidence of migration off-Property; therefore, there is no concern regarding groundwater migration along the 102-inch diameter main sewer alignment. The evaluation of groundwater elevations compared to main sewer and storm drain elevations is presented in Table 11.

3.3.2.1 General Groundwater Quality

Groundwater quality was evaluated based on laboratory analysis of samples collected from 17 temporary wells installed at direct-push boring locations during the Phase II and RI field investigations, from samples collected from 11 monitoring wells installed during the RI field investigation, and from samples collected from 8 monitoring wells installed during the Supplemental RI field investigation. The 11 monitoring wells installed during the RI field investigation were also sampled during the Supplemental RI field investigation and those data are included in the discussion below. The samples were analyzed as follows:

- 43 groundwater samples were analyzed for TPH-G using Method NWTPH-Gx
- 43 groundwater samples were analyzed for TPH-D and TPH-O using Method NWTPH-Dx
- 43 groundwater samples were analyzed for PAHs
- 43 groundwater samples were analyzed for dissolved MTCA metals (arsenic, cadmium, copper, chromium, lead, mercury, and zinc)
- 24 groundwater samples were analyzed for VOCs, including BTEX
- 19 groundwater samples were analyzed for BTEX
- 4 groundwater samples were analyzed for TPH using Method NWTPH-HCID.

Based on the analytical results for these samples, a limited number of constituents were detected at concentrations greater than the laboratory reporting limit in one or more samples. With the exception of benzo(a)pyrene, all of the laboratory reporting limits were less than the preliminary cleanup levels. Concentrations greater than the preliminary cleanup levels were detected in samples from 4 of 19 monitoring wells, and from 8 of 17 temporary wells. The analytes detected in one or more samples at a concentration greater than the preliminary cleanup level, and the sample location are as follows:

- TPH-D or TPH-O (3 sample locations: MW-9D, and temporary wells B-38 and B-41; Figure 24)
- TPH-G (3 sample locations: MW-9D, and temporary wells B-18 and B-38; Figure 27)
- Benzene (2 sample locations: MW-9D and temporary well B-2; Figure 27)
- Metals (i.e., arsenic and/or lead) (4 sample locations: MW-5 and temporary wells B-1, B-3, and B-7; Figure 25)
- PAHs (2 sample locations: MW-9D and MW-17D; Figure 26).

Based on these data, groundwater contamination at the Property primarily occurs in the northeastern portion in the deeper portion of the shallow aquifer in the area where the creosote-like material was encountered (MW-9D). As noted above, most of the detections above the preliminary cleanup levels were in grab samples from the temporary direct-push wells and not in the monitoring well samples. In most cases, the detection from a temporary well sample was not duplicated in the sample from the nearby monitoring well. The temporary wells do not allow for proper development and, therefore, the sample results from these wells are considered valuable for screening purposes but are not considered representative of Property groundwater quality.

Due to the variable groundwater flow direction across the Property, monitoring wells installed during the RI and Supplemental Investigations were placed around the perimeter of the Property, including the two off-Property monitoring wells, to evaluate the potential migration of contaminants on to or off of the Property. Based on the groundwater quality data, there is no migration of contaminants on to or off of the Property.

The groundwater quality at the Property is discussed by area, similar to the soil quality discussion, as follows:

- The northwestern portion in the area of the former gasoline stations
- The northeastern portion where the creosote-like material was observed.

In addition, arsenic was detected in groundwater at concentrations greater than the preliminary cleanup level at seven locations in the eastern half of the Property and at one location in the north-central portion of the Property (Figure 25). Lead was detected in one groundwater sample at a concentration greater than the preliminary cleanup level at one location in the north-central portion of the Property (Figure 25). The analytical results for groundwater samples collected in the two areas noted above and those with metals concentrations greater than the preliminary cleanup levels from other areas of the Property are discussed below.

3.3.2.2 Groundwater Quality in the Northwestern Portion

The groundwater sampling identified minimal impact to groundwater quality in the vicinity of the former gasoline stations (northwestern portion of the Property). The only constituent that exceeded preliminary cleanup levels for groundwater in the northwestern portion of the Property was TPH-G, which was detected in the groundwater sample collected from the temporary well at direct boring B-18 at a concentration of 1.3 milligrams per liter (mg/L), as shown on Figure 27. The localized impact to groundwater appears to be the result of releases from former gasoline USTs and/or the associated piping and pump dispensers. No other constituents of concern were detected at concentrations greater than the preliminary cleanup levels in groundwater samples collected in this area of the Property.

3.3.2.3 Groundwater Quality in the Northeastern Portion

Based on the analytical data, constituents of concern were detected at concentrations greater than the preliminary cleanup levels at the following locations in the northeastern portion of the Property:

- MW-9D (TPH-D and TPH-G, benzene, ethylbenzene, naphthalene, 2-methylnaphthalene, cPAHs)
- B-38 (TPH-D, TPH-O, and TPH-G)
- B-41 (TPH-D)
- B-2 (benzene).

These impacts likely are the result of the presence of the creosote-like material identified at the fill/marine sediments interface in this area (see Section 3.3.3), and three of the four sampling locations are temporary wells. Monitoring well MW-9D is screened from 15 ft to 20 ft BGS, just at or above the top of where the creosote-like material was identified. Constituents of concern were not detected at concentrations greater than the preliminary cleanup levels in the groundwater samples collected from MW-9S, which is located in the immediate vicinity of MW-9D and is screened from 5 ft to 15 ft BGS. Groundwater samples collected from monitoring wells and soil borings in other areas of the Property support the conclusion that the groundwater impacts from PAHs and from TPH-D and TPH-O are localized at the northeastern portion of the Property. Groundwater impacts from TPH-G and BTEX compounds in this area do not appear to be related to the former gasoline station operations in the northwestern portion of the Property as samples collected from several locations between the northeastern and northwestern portions of the Property (MW-7S, MW-7D, B-3, MW-12, B-14, MW-11, B-27) did not contain reported concentrations of these constituents, with the exception of toluene, which was detected at a concentration slightly greater than the reporting limit [0.5 micrograms per liter $(\mu g/L)$] in the groundwater sample collected from MW-7D. In addition, the off-Property well to the north, MW-16D, did not contain reported concentrations of these constituents. The groundwater sample from off-Property

well MW-17D to the northeast slightly exceeded the preliminary cleanup level for cPAHs; however, given that the creosote-like material was not encountered at MW-17D, it is unlikely that the cPAH exceedance at MW-17D is related to on-Property contamination.

3.3.2.4 Metals in Groundwater

Total arsenic was detected at a concentration greater than the calculated groundwater background level of 25 μ g/L in samples from three locations (MW-5, B-1, and B-7). Lead was detected at a concentration greater than the preliminary cleanup level at one location (B-3).

The detected concentrations of arsenic greater than the calculated background level ranged from 29 μ g/L to 58 μ g/L, or 1.2 to approximately 2.3 times the calculated background level of 25 μ g/L. The highest concentration of arsenic (58 μ g/L) was detected at monitoring well MW-5 during the RI field investigation. During the Supplemental Investigation, monitoring well MW-5 was sampled again, and the arsenic concentration was 17 μ g/L, which is significantly lower and below the calculated background level. Arsenic was detected at concentrations greater than the preliminary cleanup level in 5 of 42 soil samples analyzed for arsenic. Organic material (wood debris) was observed in soil borings advanced across the Property (Figure 8). The presence of organic material, including TPH, which is known to be present in groundwater hydraulically upgradient of the Property, has a significant potential to cause reducing conditions in groundwater and arsenic is more soluble under reducing conditions. Increased solubility of naturally occurring arsenic may be the cause of the elevated arsenic concentrations detected in groundwater.

The lead concentration greater than the preliminary groundwater cleanup level at B-3 was the only exceedance for this constituent, and the detected concentration of 26 μ g/L was less than twice the preliminary cleanup level of 15 μ g/L. In addition, lead was not detected in any of the soil samples collected from the Property during the RI or Supplemental Investigation (including the sample collected from B-3) at concentrations greater than the preliminary cleanup levels and there has been no source of lead identified on the Property. Because only one exceedance of the cleanup level was detected, and the exceedance was less than twice the cleanup level, lead is not anticipated to be a significant contaminant for Property groundwater.

As discussed in Section 3.3.1.4, at some locations Property-wide mercury was detected in soil at concentrations above the preliminary cleanup level. Mercury was not detected in any groundwater samples during either the RI or the Supplemental Investigation, demonstrating that the low concentrations of mercury detected across the Property are not mobile and are not affecting groundwater quality.

3.3.3 FORENSIC ANALYSIS

During the Phase II investigation, one soil sample was collected from the zone of creosote-like material observed in the northeastern portion of the Property and analyzed by the laboratory as a product sample due to the presence of free phase petroleum in the sample (Sample ID: B-21-20-23). The sample was analyzed for TPH (using Method NWTPH-HCID) and for TPH-D, TPH-O, total metals, PCBs and PAHs. The analytical results for this sample are presented in Table 12. TPH-D (77,000 mg/kg), TPH-O (36,000 mg/kg), chromium (5.4 mg/kg), lead (7 mg/kg), and PAHs [120,000 micrograms per kilogram (μ g/kg) to 19,000,000 μ g/kg] were detected in the sample at concentrations greater than the laboratory reporting limits. TPH-G and PCBs were not detected in the sample at concentrations greater then the reporting limits; however, the reporting limits for TPH-G were elevated.

During the RI field investigation, an additional sample of the creosote-like material was collected for forensic analysis by Friedman & Bruya, Inc. A hydrocarbon fuel scan was conducted by analyzing the sample using a gas chromatograph with a flame ionization detector. In addition, the sample was analyzed for parent and alkylated PAHs and sulfur. The analytical results are presented in Table 13 and the full laboratory report is included in Appendix F. Based on the analytical results, Friedman & Bruya, Inc. identified the material as coal tar, or a coal tar-based material such as creosote.

4.0 SUMMARY AND CONCLUSIONS

Landau Associates has prepared this remedial investigation (RI) for the approximately 3.85-acre North Lot Development property (Property), located at the southeastern corner of the intersection of South King Street (to the north) and Occidental Avenue South (to the west) in Seattle, Washington. The Property consists of a paved parking lot, which is currently used for commuter parking and parking for events at Qwest Field.

North Lot Development (NLD), as prospective purchaser of the Property from the owner, King County, has conducted various investigations to document and characterize soil and groundwater conditions at the Property and off-Property, and has identified localized contamination in soil and groundwater on the Property. The RI and FS, which will be prepared and submitted as a separate document, are being conducted, as required under the Washington State Model Toxics Control Act (MTCA; Chapter 173-340 WAC), to document and evaluate contamination at the Property and to identify the appropriate cleanup action.

NLD, as the prospective purchaser of the Property, has been in communication with Ecology since April 2008 regarding a suitable regulatory mechanism to facilitate the RI/FS and Cleanup Action Plan (CAP) review and concurrence by Ecology. NLD submitted a proposal for a Prospective Purchaser Agreement/Consent Decree to Ecology in May 2008. Proposal approval has been delayed due to limited Ecology and Attorney General staff resources. Ecology subsequently proposed temporary use of Voluntary Cleanup Program (VCP) staff for completion of the RI/FS work.

The use of VCP staff has allowed the RI/FS work to progress; however, the technical opinion letters available under the VCP will not provide sufficient liability protection for the viability of the proposed development for the Property. Therefore, NLD has requested that Ecology continue to consider the existing Prospective Purchaser Agreement/Consent Decree Proposal, and that Ecology formal program and Attorney General office staff be made available to oversee the cleanup action after the work with the VCP staff has been completed.

4.1 HISTORICAL INFORMATION, FIELD INVESTIGATIONS, AND PHYSICAL CONDITIONS

- The Property was originally undeveloped tideflats of Elliott Bay and was filled in the late 1890s and early 1900s. The Property was operated as a rail yard from the late 1800s until the late 1960s. In addition, two gasoline stations were formerly located in the northwestern corner of the Property at different times between the late 1930s and approximately 1966. The Property has been used as a parking lot since the 1970s.
- Based on the historical operations conducted on the Property, the constituents of concern for this RI are TPH, VOCs including BTEX, PAHs, metals, and PCBs.

- The field investigations included the drilling and sampling of 80 soil borings for evaluation of shallow (about 6 to 32 ft BGS) subsurface conditions (69 direct-push borings and 11 hollow-stem auger borings), installation of 19 groundwater monitoring wells (14 shallow wells and 5 deeper wells), and a geophysical survey.
- Five Landau Associates boring locations were selected as locations for drilling of deeper borings by Terra Associates for use in their geotechnical evaluation of the Property. These deeper (maximum depth of 80.5 ft BGS) boring data were used to assess geologic and hydrogeologic conditions at the Property.
- Soil conditions encountered during drilling consisted of: 1) various types of fill to maximum depths of 30.75 ft BGS; 2) beneath the fill, a marine sediment layer (former native tideflat) with the upper contact at depths ranging from 18 ft BGS to 30.75 ft BGS; 3) underlying the marine sediment layer, a unit interpreted to be alluvial deposits with the upper contact at depths ranging from 25.0 ft BGS to 45.5 ft BGS.
- The uppermost hydrostratigraphic unit consists of the water table aquifer within the fill that overlies the marine sediment unit, which is the uppermost aquitard beneath the Property. The depths to groundwater measured during the RI range from about 5.5 to 11.0 ft BGS. Based on the limited groundwater measurements collected for the RI, the groundwater elevations appear generally higher toward the southwestern portion of the Property, and lower toward the eastern portion of the Property, suggesting localized mounding and/or variable flow with some localized flow to the north and northeast. This is inconsistent with area and regional flow to the west toward Puget Sound. Deeper groundwater beneath the marine silt unit was not evaluated as part of this study. Groundwater elevations were measured during different seasons, and overall groundwater flow across the Property does not vary significantly with the seasons.
- Field-screening results indicated: 1) petroleum odor, sheen, and elevated PID measurements in shallow soil (less than 15 ft BGS) from borings drilled in the area of the former gasoline stations in the northwestern portion of the Property; and 2) a strong petroleum odor, sheen, and a creosote-like material at depths of about 18 to 23 ft BGS at boring locations in the northeastern portion of the Property. The creosote-like material appears to be present at the contact between the fill unit and underlying marine sediment, and ranges from 1 ft to 3 ft in thickness. Observations during drilling in the northeastern, eastern, and southern portions of the Property and field-screening did not indicate the presence of potential contamination in the fill material from the surface to about 18 ft BGS, even in those areas where the creosote-like material was encountered.

4.2 NATURE AND EXTENT OF CONTAMINATION

- Northwestern Portion of the Property: The laboratory analytical and field-screening data indicate that shallow soil (less than 15 ft BGS) has been impacted by releases resulting from the former gasoline station operations. The soil contamination appears to be primarily near the top of the groundwater table, but extends to a depth of at least 17 ft BGS locally. TPH-G was detected at a concentration greater than the preliminary cleanup level in one of six groundwater samples collected in this area. No BTEX was detected at concentrations greater than the preliminary cleanup levels in any of the groundwater samples from this area. Due to the presence of benzene in shallow soil in the northwestern portion of the Property, the potential for vapor intrusion was evaluated and will be addressed in the FS document.
- Northeastern Portion of the Property: Deeper soil (greater than 15 ft BGS) has been impacted by petroleum hydrocarbons and PAHs. Based on the field screening, observations

during drilling, and analytical data, the soil contamination appears to be primarily associated with the creosote-like material observed at the base of the fill. Groundwater impact was detected in one deeper well (screened from 15 to 20 ft BGS, at approximately the depth where the creosote-like material was encountered). Based on the occurrence of the creosote-like material at the base of the fill material, and the lack of evidence of contamination within the fill at shallower depths, the creosote-like material appears to be from a distinct source and likely predates placement of the overlying fill.

Other Portions of the Property: PAHs including primarily cPAHs, were detected at • concentrations greater than the preliminary cleanup levels in most of the soil samples collected across the southern portion of the Property. Arsenic and motor-oil-range petroleum hydrocarbons were also detected at concentrations greater than the preliminary cleanup levels in soil samples collected in the west-central portion of the Property. The occurrence of these analytes in shallow surface soil suggest a source within the fill material placed over the native marine sediment laver. PAHs were not detected at concentrations greater than the preliminary cleanup levels in groundwater samples collected from the southern portion of the Property. Arsenic was detected in several groundwater samples collected from the southern and western portions of the Property and lead was detected in one groundwater sample collected from the north-central portion of the Property; however, the concentrations of arsenic and lead detected above the preliminary cleanup levels in groundwater were low and are not considered a concern for the Property. Off-Property borings to the northwest of the Property, and off-Property wells to the north and northeast of the Property were generally clean and bounded contaminants of concern to demonstrate that contamination is not migrating off-Property. The analytes detected at off-Property well MW-17D are likely to be indicative of background concentrations and not Property-related due to the well's location relative to and distance from the Property.

4.3 CONCLUSIONS

The information developed and presented for the RI found that groundwater contamination at concentrations greater than the preliminary cleanup levels is present near the base of the water table aquifer (approximately 20 ft BGS) where creosote-like material is present, and that there is localized soil contamination due to gasoline constituents associated with the former gasoline stations in the northwestern portion of the Property near the depth of the water table. Based on the data collected for the RI, the extent of contamination from Property activities is limited to the Property. The FS document will identify the areas and volumes of contamination requiring remedial action and remedial action objectives, provide identification and screening of technologies, develop remedial action alternatives, and recommend a cleanup action plan.

5.0 USE OF THIS REPORT

This report was prepared for the exclusive use of North Lot Development, and applicable regulatory agencies, for specific application to the North Lot Development Property, including review by the public. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Landau Associates. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Landau Associates, shall be at the user's sole risk. Landau Associates warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied. This document was prepared under the supervision and direction of the undersigned.

LANDAU ASSOCIATES, INC.

Kathun J. Hartley

Kathryn F. Hartley Senior Staff Scientist

Koelen

Piper M. Roelen, P.E. Senior Engineer

ens

Timothy L. Syverson, L.G. Senior Associate Geologist

KFH/PMR/TLS/ccy

6.0 REFERENCES

Adams, M. 2008. E-mail message from Mark Adams, Toxics Cleanup Program, Washington State Department of Ecology, to Tim Syverson, Senior Associate Geologist, Landau Associates. Re: *Suggestions for the RI – North Lot.* October 7.

Baechler, M.C. and D.L. Hadley. 1992. Sick Building Syndrome: Sources, Health Effects, Mitigation (Pollution Technology Review No. 205). Noyes Data Corporation. Park Ridge, New Jersey.

Ecology. 1999. Final Report: Screening Survey for Metals and Dioxins in Fertilizer Products and Soils in Washington State. Washington State Department of Ecology Publication No. 99-309. April.

Ecology. 1994. Natural *Background Soil Metals Concentrations in Washington State*. Washington State Department of Ecology Publication No. 94-115. October.

Ecology. 1992. *Statistical Guidance for Ecology Site Managers*. Washington State Department of Ecology Publication No. 92-54. August.

Ecology & Environment. 2009. Final: *Rayonier Mill Off-Property Soil Dioxin Study, Data Summary Technical Memorandum*. Prepared for Washington State Department of Ecology. February 24.

EPA website. 2006. *National Recommended Water Quality Criteria*. <u>http://www.epa.gov/waterscience/criteria/wqctable/</u>. U.S. Environmental Protection Agency. Accessed October 1, 2009.

Freeze, R.A., and J.A. Cherry. 1979. Groundwater. Prentice-Hall, Inc. Englewood Cliffs, New Jersey.

Johnson, P.C., and R.A. Ettinger. 1991. "Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors in Buildings. *Environmental Science and Technology*. 25: 1445-1452.

Landau Associates. 2009a. Letter: *Ecology Opinion Letter Dated April 21, 2009, North Lot Development, 201 South King Street, Seattle, Washington 98104. VCP Project No.: NW1986.* From Timothy L. Syverson, L.G., and Kristy J. Hendrickson, P.E., to Jing Liu, Washington State Department of Ecology. June 12.

Landau Associates. 2009b. Letter: *Ecology Opinion Letter Dated April 21, 2009, Proposed Supplemental Remedial Investigation, North Lot Development, 201 South King Street, Seattle, Washington 98104. VCP Project No.: NW1986.* From Timothy L. Syverson, L.G., and Kristy J. Hendrickson, P.E., to Jing Liu and Mark Adams, Washington State Department of Ecology. July 7.

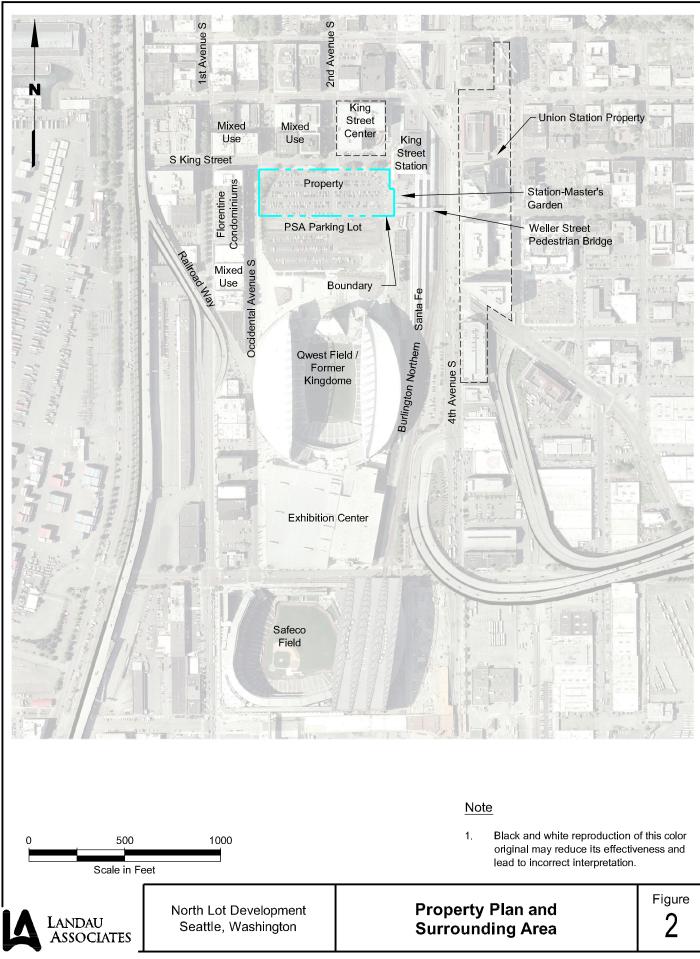
Landau Associates. 2009c. Revised Work Plan, Supplemental Remedial Investigation, North Lot Development, Seattle, Washington. Prepared for North Lot Development, LLC. July 7.

Landau Associates. 2009d. Report: *Groundwater Monitoring, Union Station, Seattle, Washington*. Prepared for Union Station Associates. November 5.

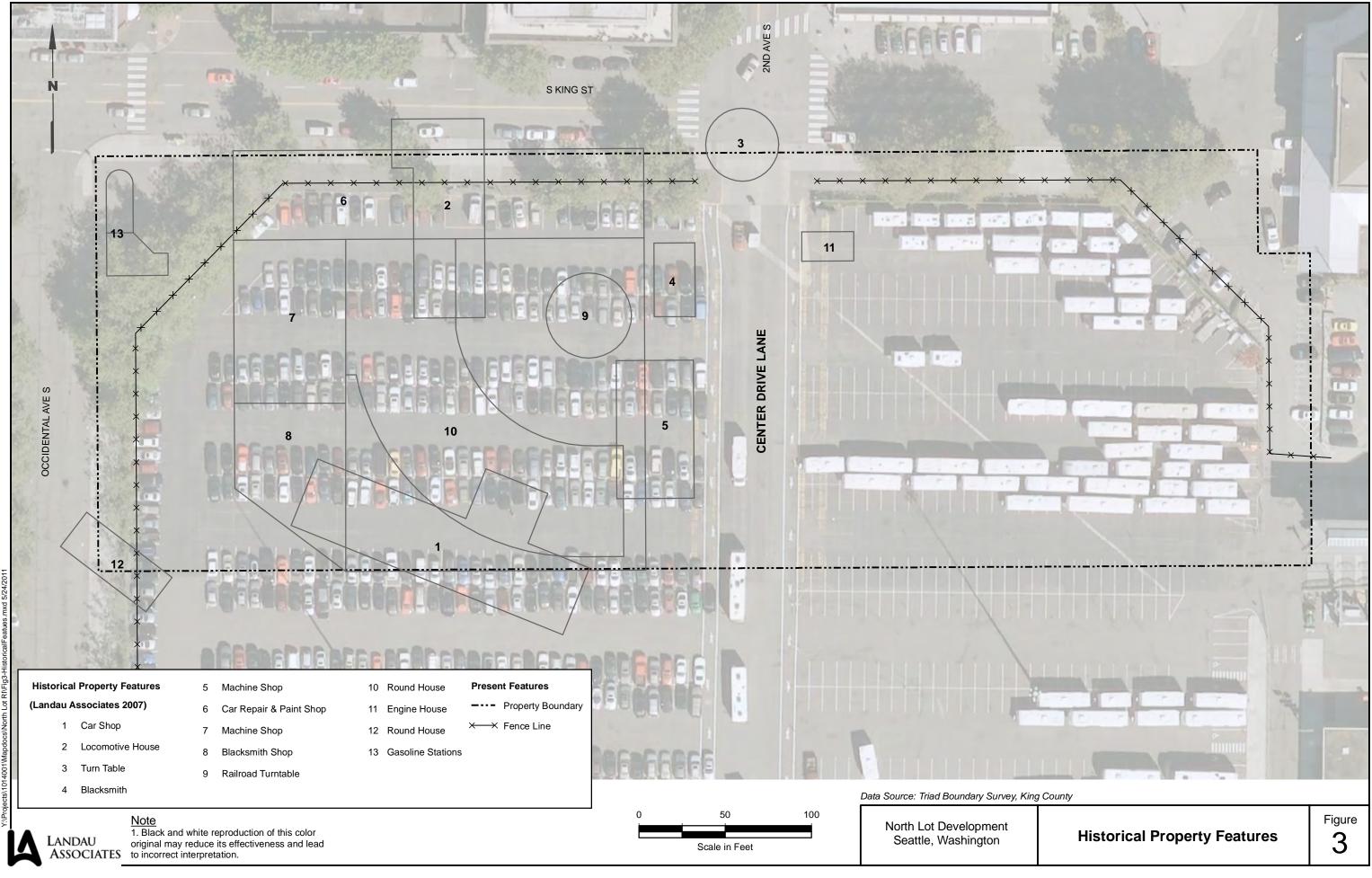
Landau Associates. 2008. Technical Memorandum: *Remedial Investigation Work Plan, Additional Soil and Groundwater Characterization, North Lot Development, South King Street and Occidental Avenue South, Seattle, Washington.* From Tim Syverson, L.G., and Kathryn Hartley, to Alan Cornell, North Lot Development, LLC. September 21.

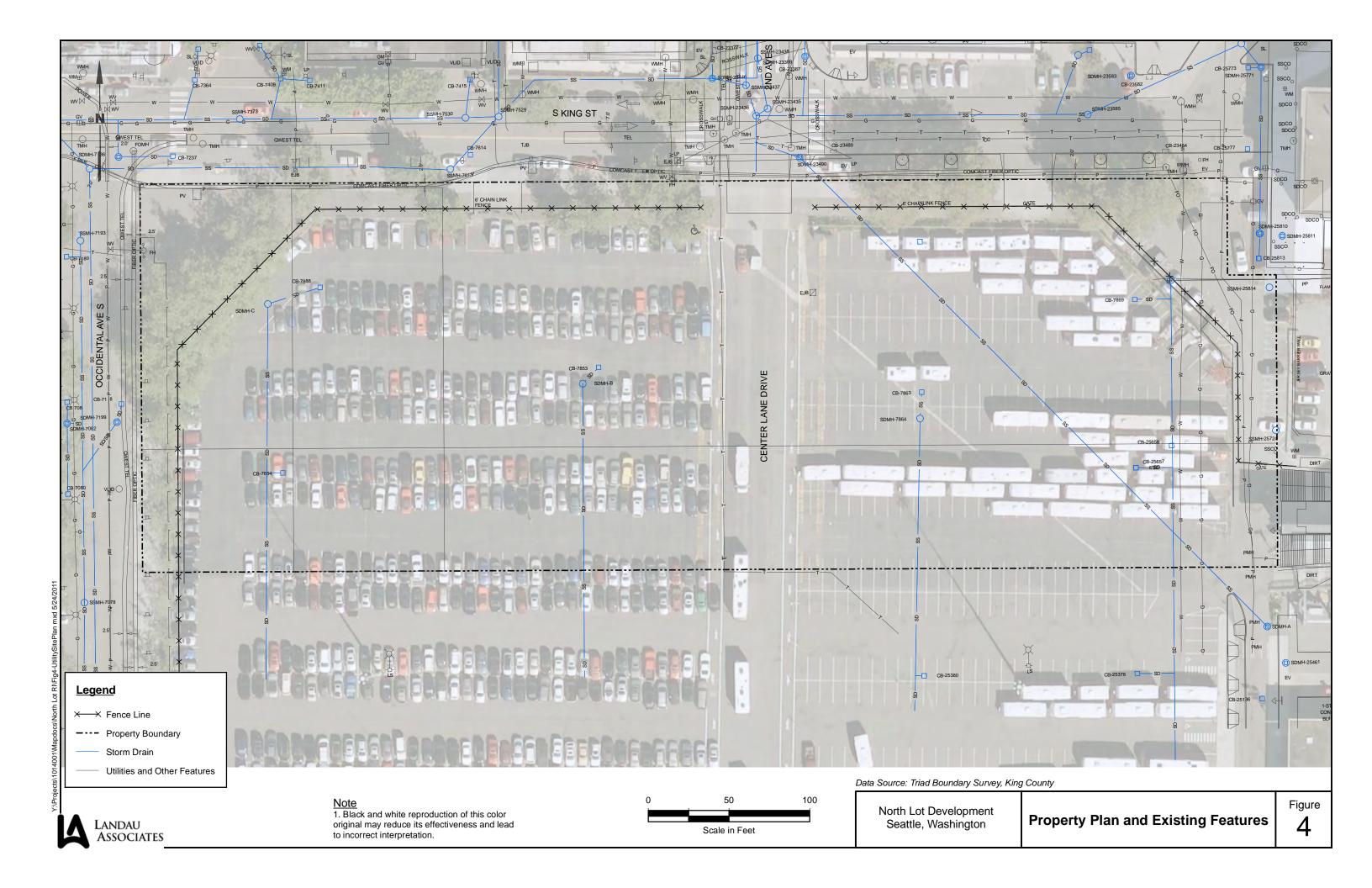
Landau Associates. 2007. Report: *Phase I Environmental Site Assessment, Qwest Field North Lot, Seattle, Washington.* Prepared for Nitze Stagen & Co., Inc. and Opus Northwest LLC. March 28.

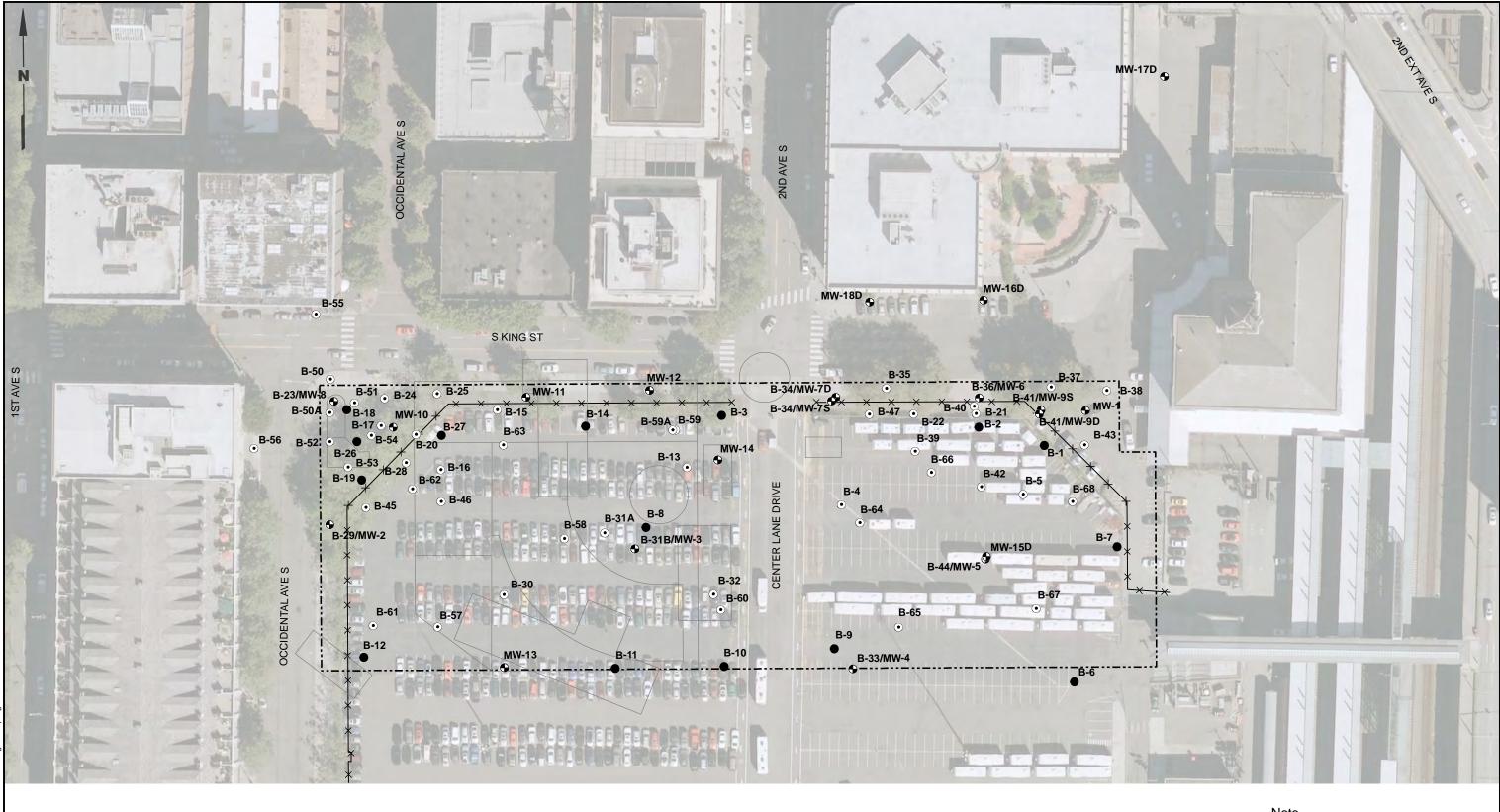
Landau Associates. 2004. Report: *Groundwater Monitoring, Union Station, Seattle, Washington.* Prepared for Union Station Associates. October 28.


Miner, R., and T. Gurtowski. 2001. "Driven Piles for Safeco Field." In: *Proceedings of the Conference on Design and Installation of Cost-Efficient Driven Piles*. Pile Driving Contractors Association. Boulder, Colorado.

Pacific Geomatic Services. 2008. Land Survey Drawings: *Monitoring Well Exhibit Map, Quest Field* (*North Site*), *S. King Street, Seattle, Washington, King County*. Sheet Nos. 1 and 2. Signed and stamped by Robert W. Pusey, Jr., State of Washington Professional Land Surveyor No. 41964. December 17.

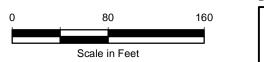

Terra Associates. 2008. Preliminary Geotechnical Evaluation, North Lot Development, Seattle, Washington. June 11.


Troost, K.G., D.B. Booth, A.P. Wisher, and S.A. Shimel. 2005. *The Geologic Map of Seattle – A Progress Report*. U.S. Geological Survey Open-File Report 2005-1252, Version 1.0. Available at http://pubs.usgs.gov/of/2005/1252/.



Qwest Field | V \1014\D\Ecology Letter\Fig2_3 dwg (A) "Figure 2" 5/24/2011

<u>Legend</u>


- Direct-Push Soil Boring and Monitoring Well Location •
- \odot Direct-Push Soil Boring Location

Historical Building Outlines

 $\times \longrightarrow$ Fence Line

---- Property Boundary

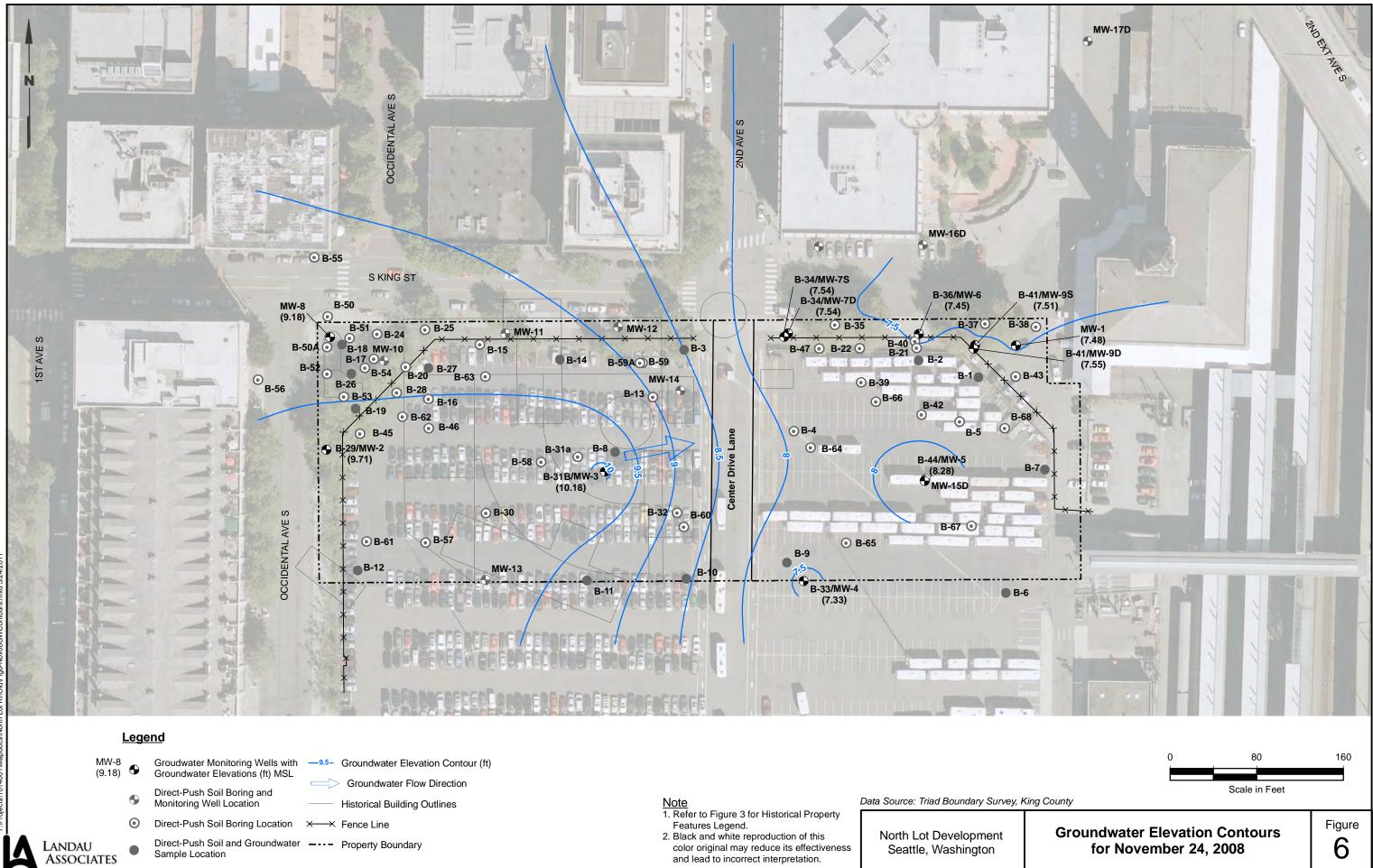
Direct-Push Soil and • Groundwater Sample Location

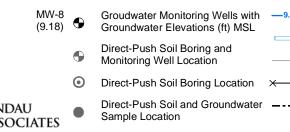
Data Source: Triad Boundary Survey, King County

North Lot Development Seattle, Washington

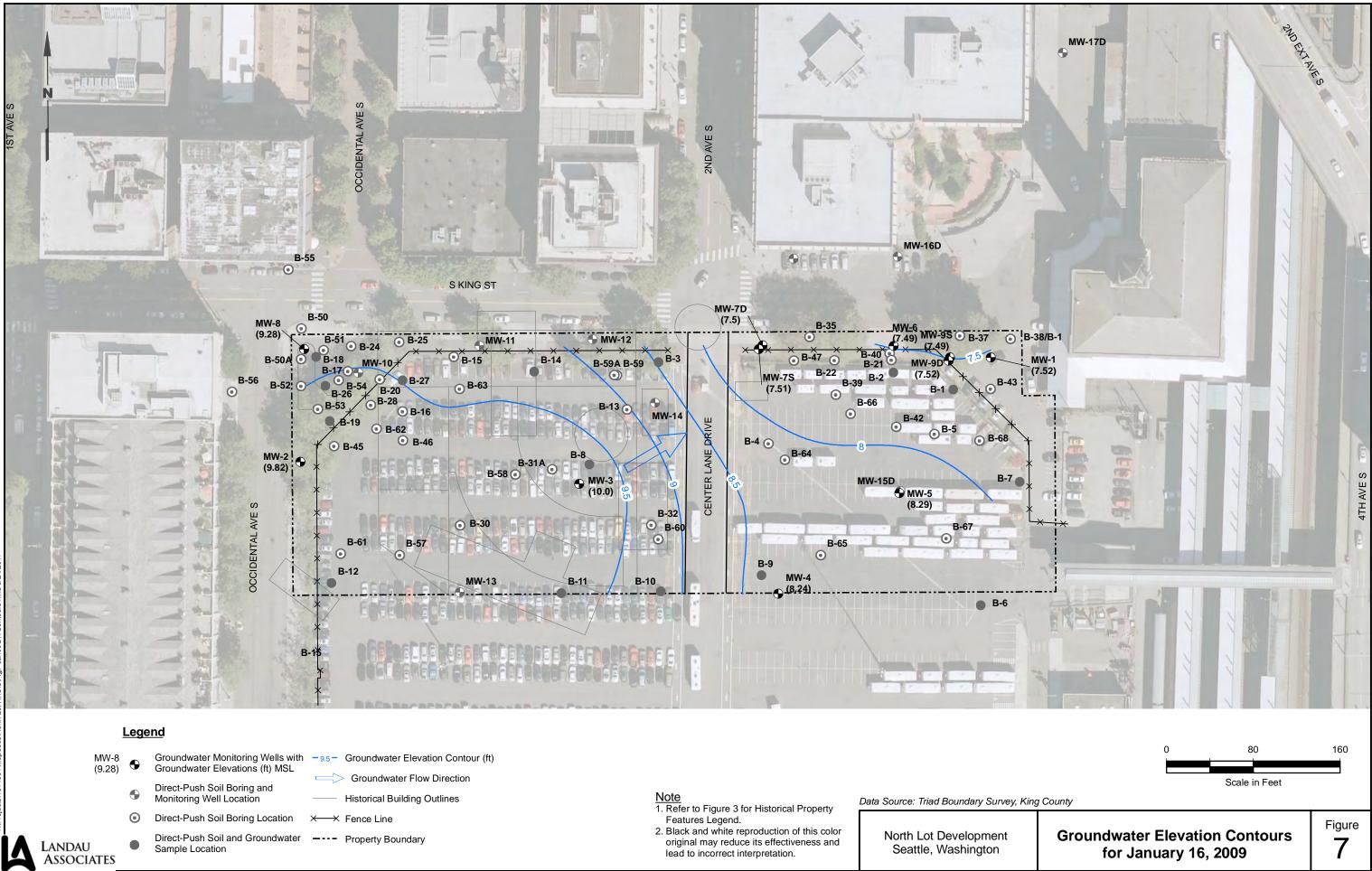
Δ

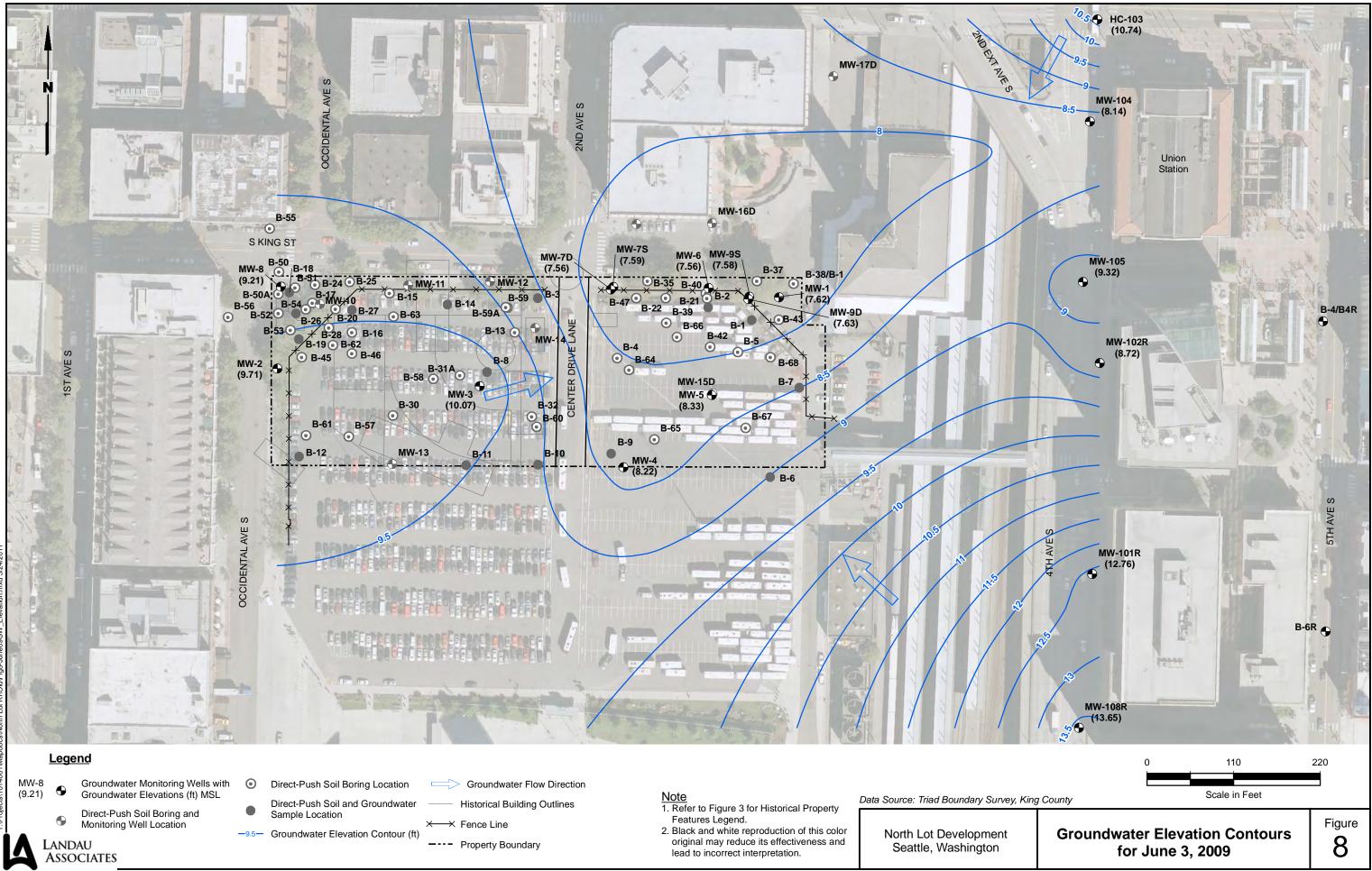
Landau

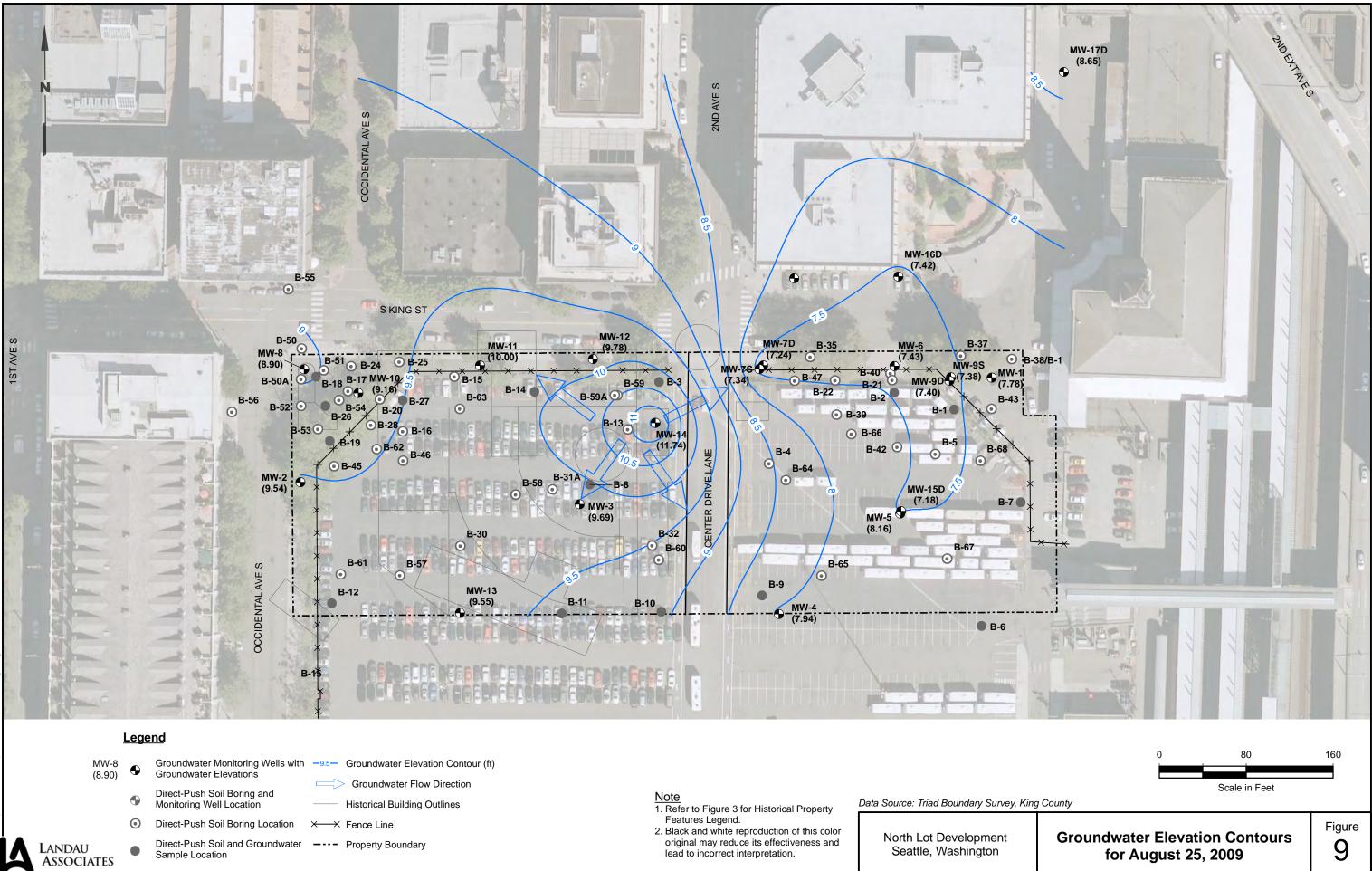

ASSOCIATES

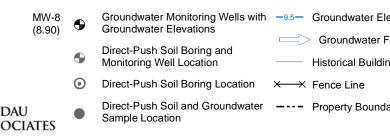

<u>Note</u>

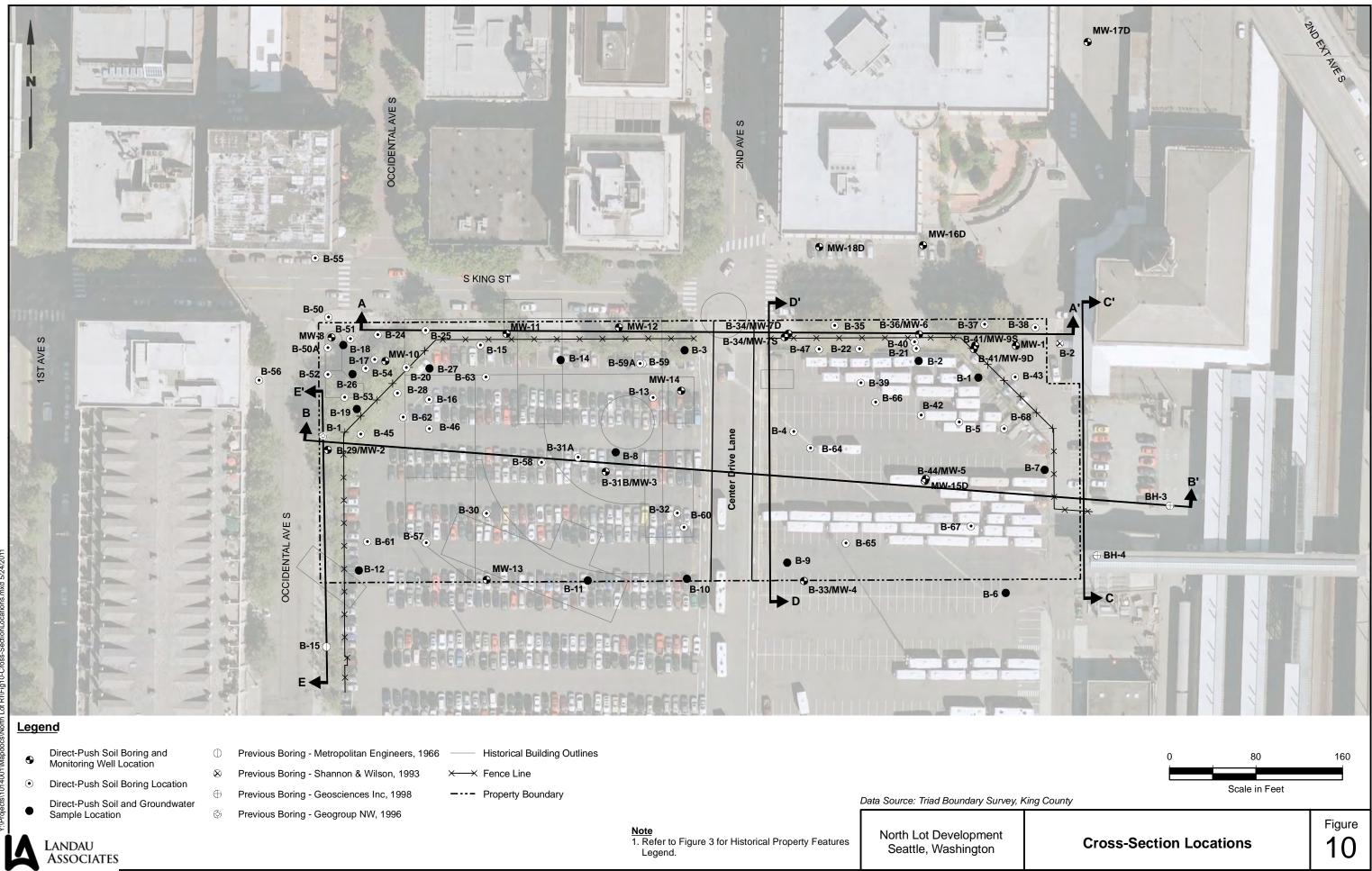
- 1. Refer to Figure 3 for Historical Property Features Legend.
- 2. Black and white reproduction of this color original may reduce its effectiveness and lead to incorrect interpretation.

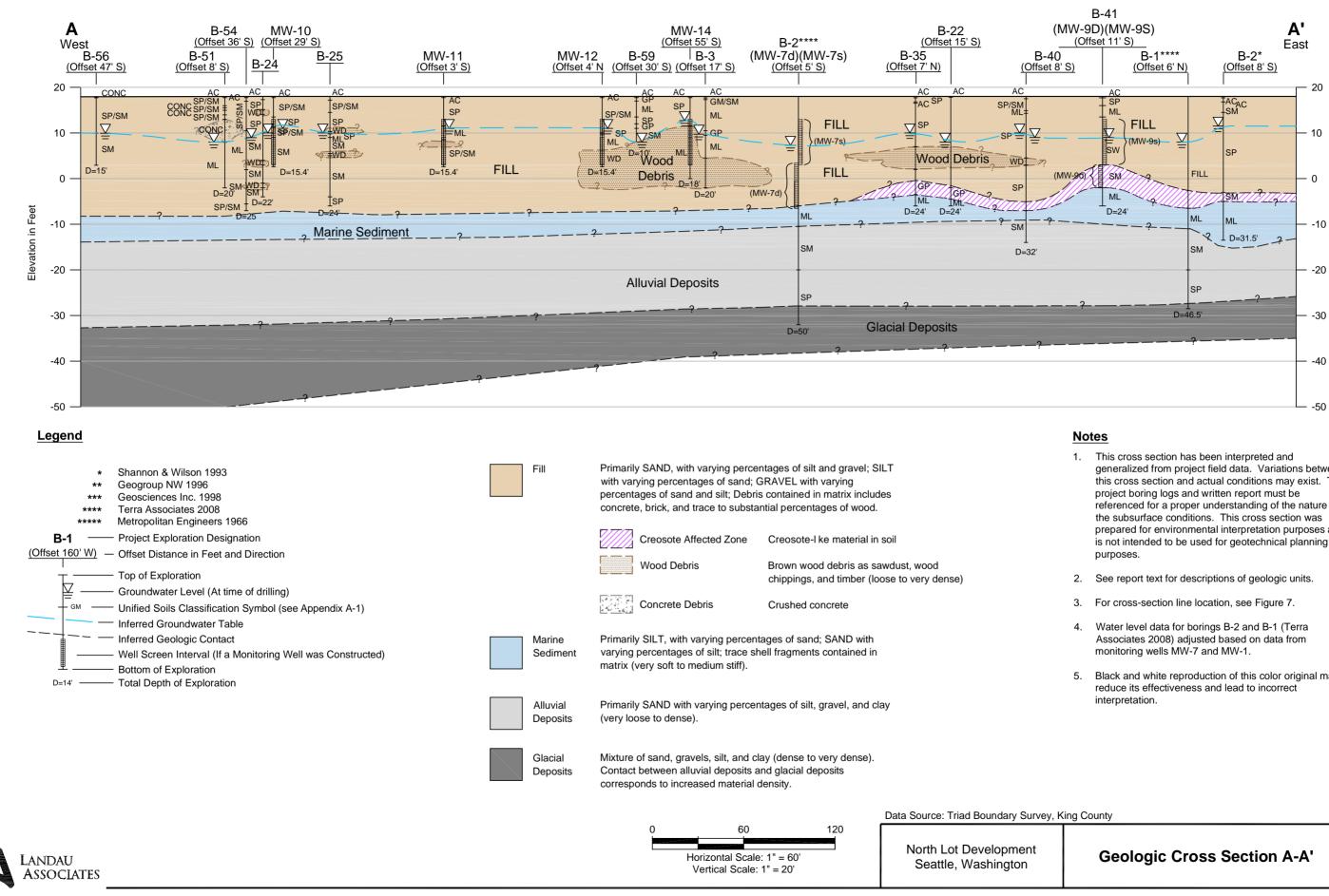

Figure 5

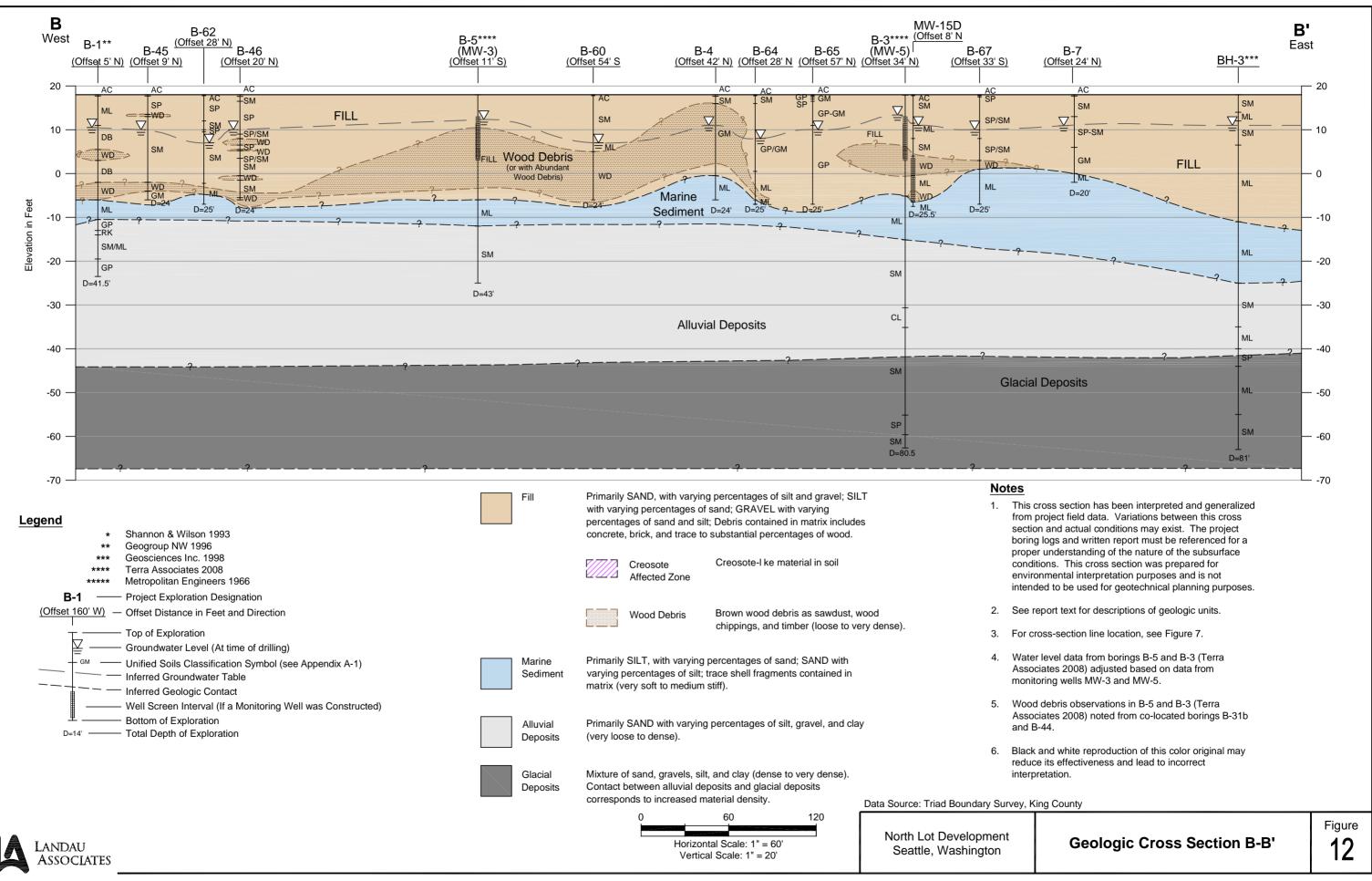

Sampling Locations

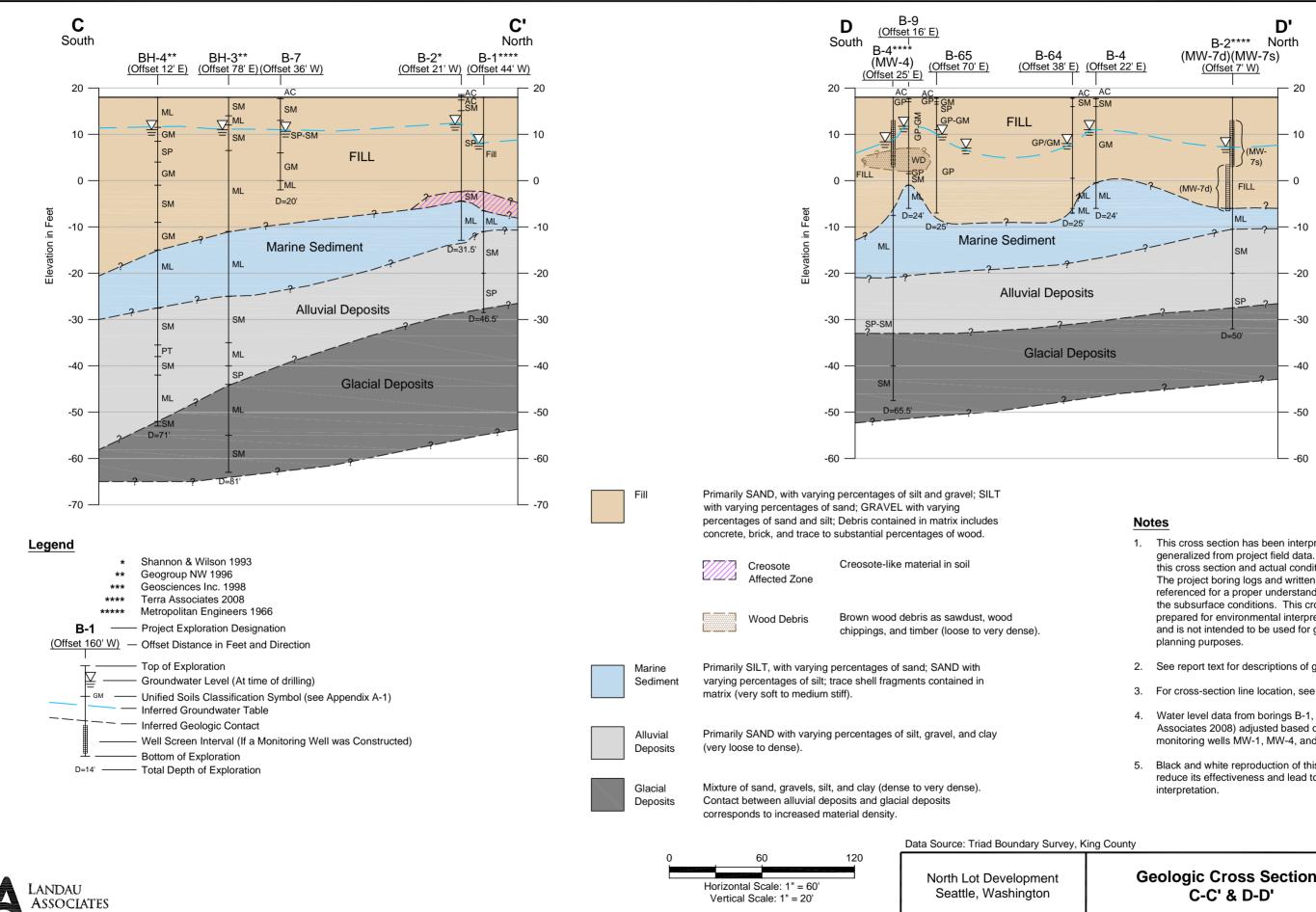





Note 1. Refer to Figure 3 for Historical Property	Data Source: Triad Boundary Survey, Kii		
 Features Legend. Black and white reproduction of this color original may reduce its effectiveness and lead to incorrect interpretation. 	North Lot Development Seattle, Washington		

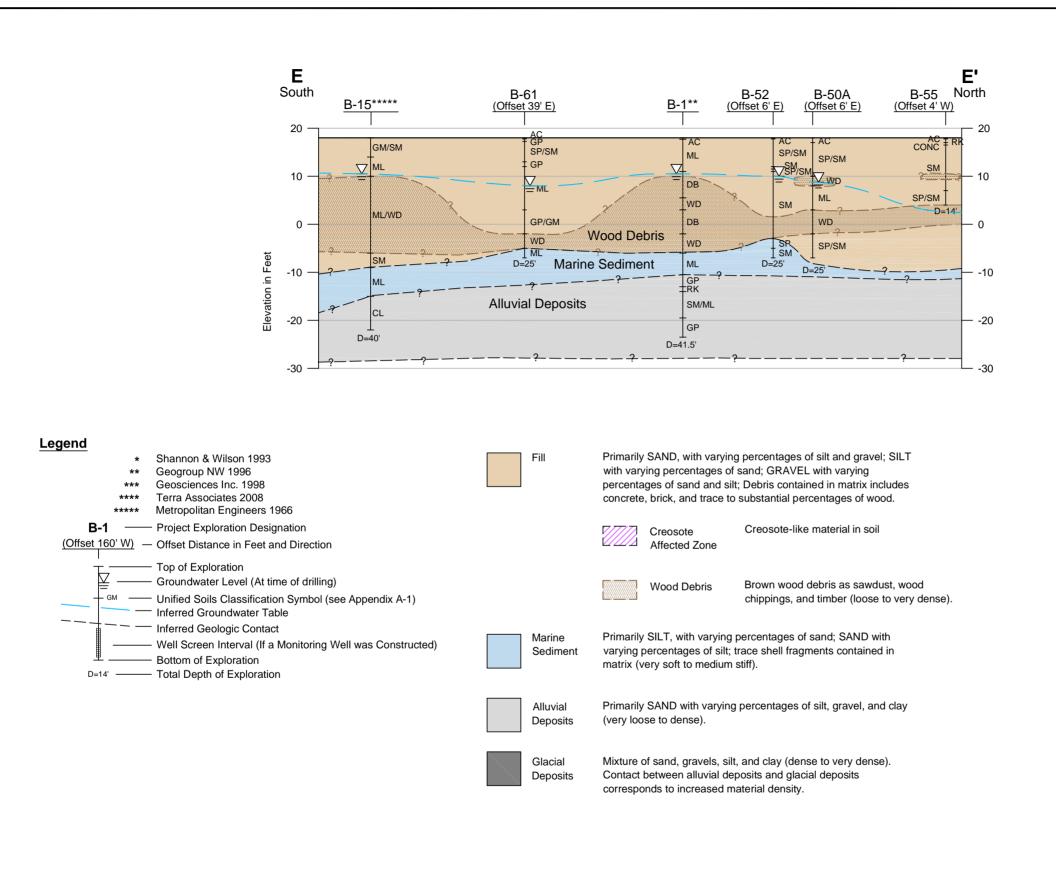






- generalized from project field data. Variations between this cross section and actual conditions may exist. The referenced for a proper understanding of the nature of prepared for environmental interpretation purposes and is not intended to be used for geotechnical planning

- 5. Black and white reproduction of this color original may


King County	
Geologic Cross Section A-A'	Figure 11

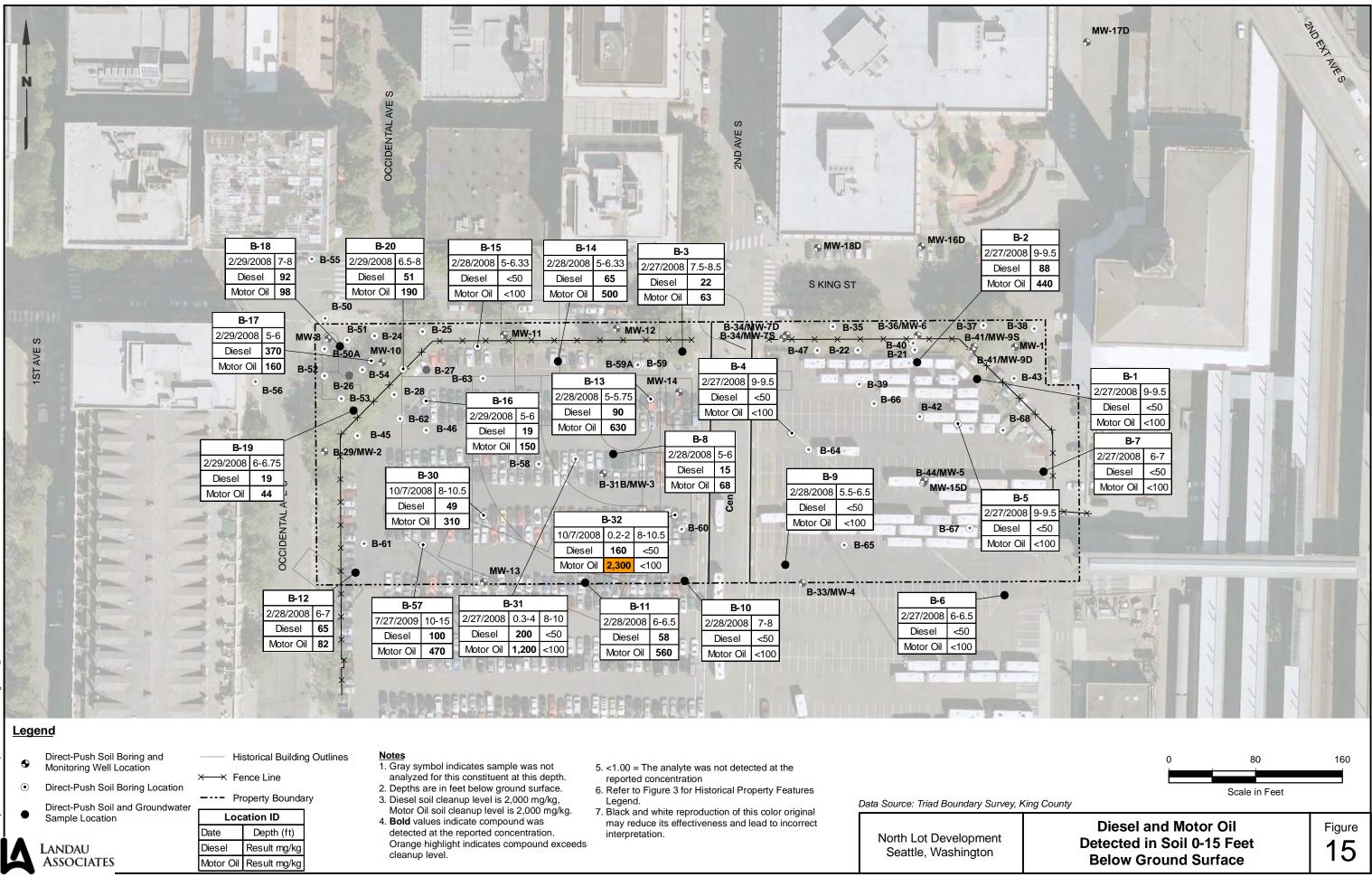
- 1. This cross section has been interpreted and generalized from project field data. Variations between this cross section and actual conditions may exist. The project boring logs and written report must be referenced for a proper understanding of the nature of the subsurface conditions. This cross section was prepared for environmental interpretation purposes and is not intended to be used for geotechnical
- 2. See report text for descriptions of geologic units.
- 3. For cross-section line location, see Figure 7.
- 4. Water level data from borings B-1, B-4, and B-2 (Terra Associates 2008) adjusted based on data from monitoring wells MW-1, MW-4, and MW-7.
- 5. Black and white reproduction of this color original may reduce its effectiveness and lead to incorrect

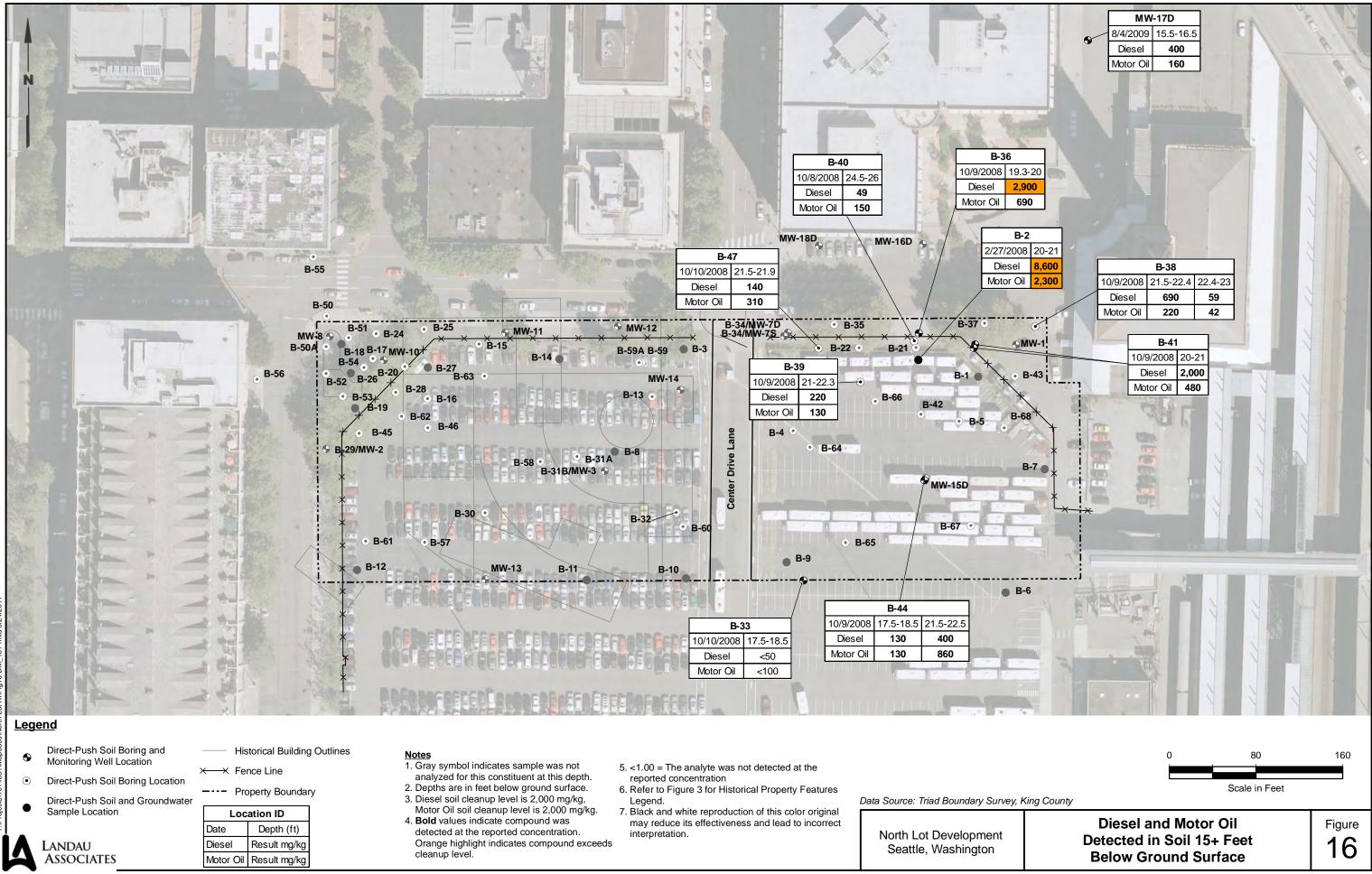
Geologic Cross Sections

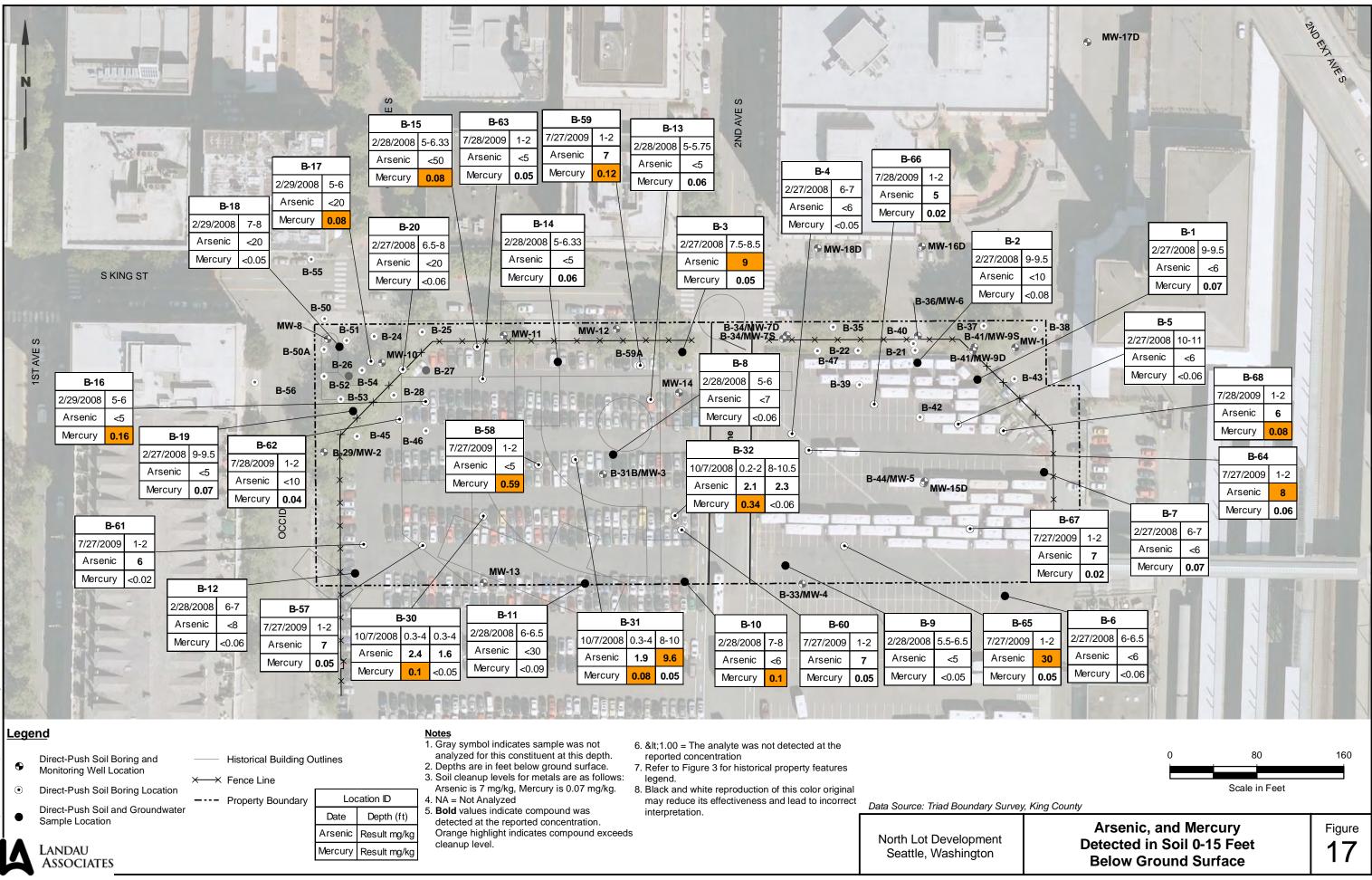
60

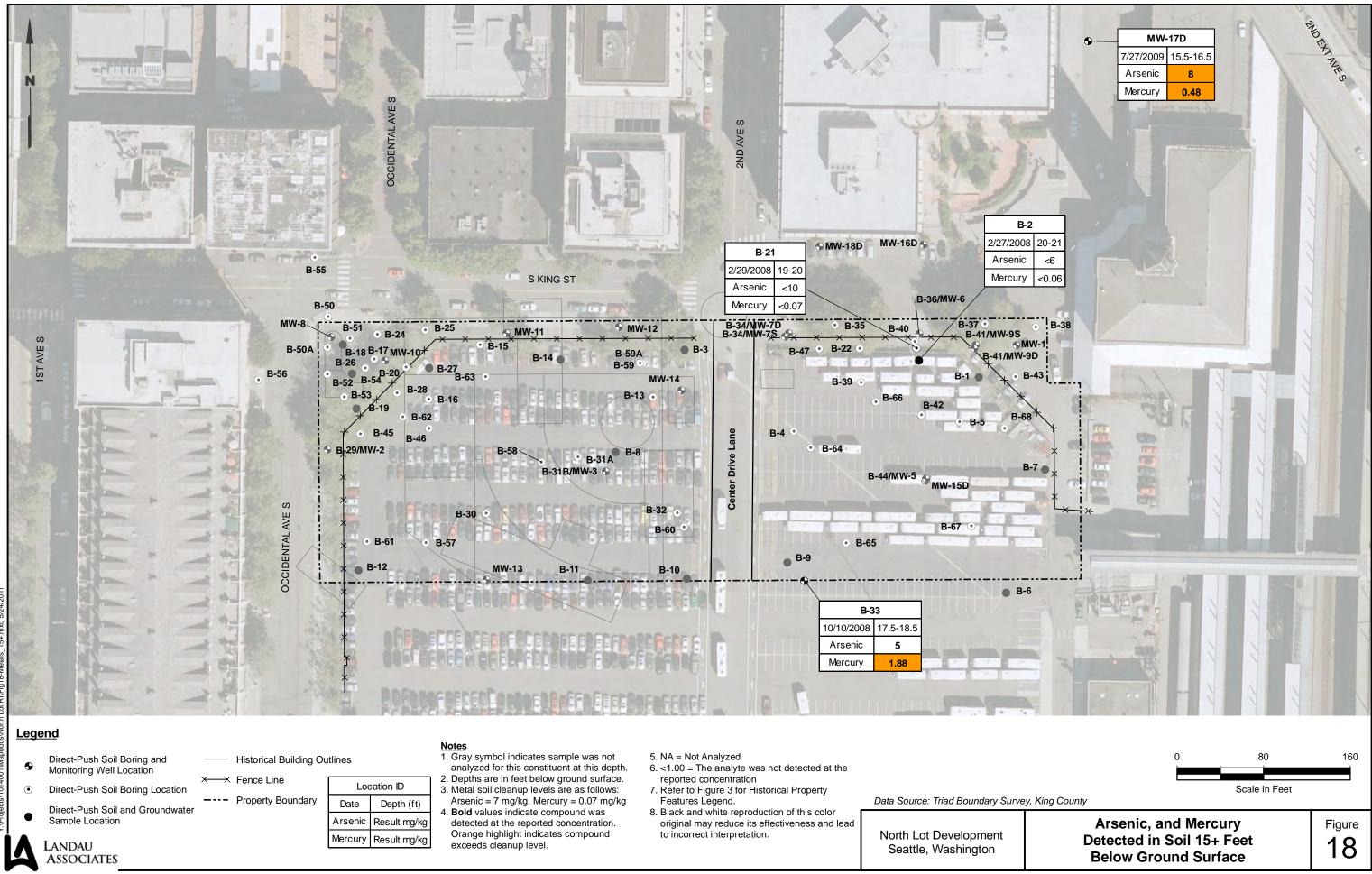
Horizontal Scale: 1" = 60

Vertical Scale: 1" = 20'

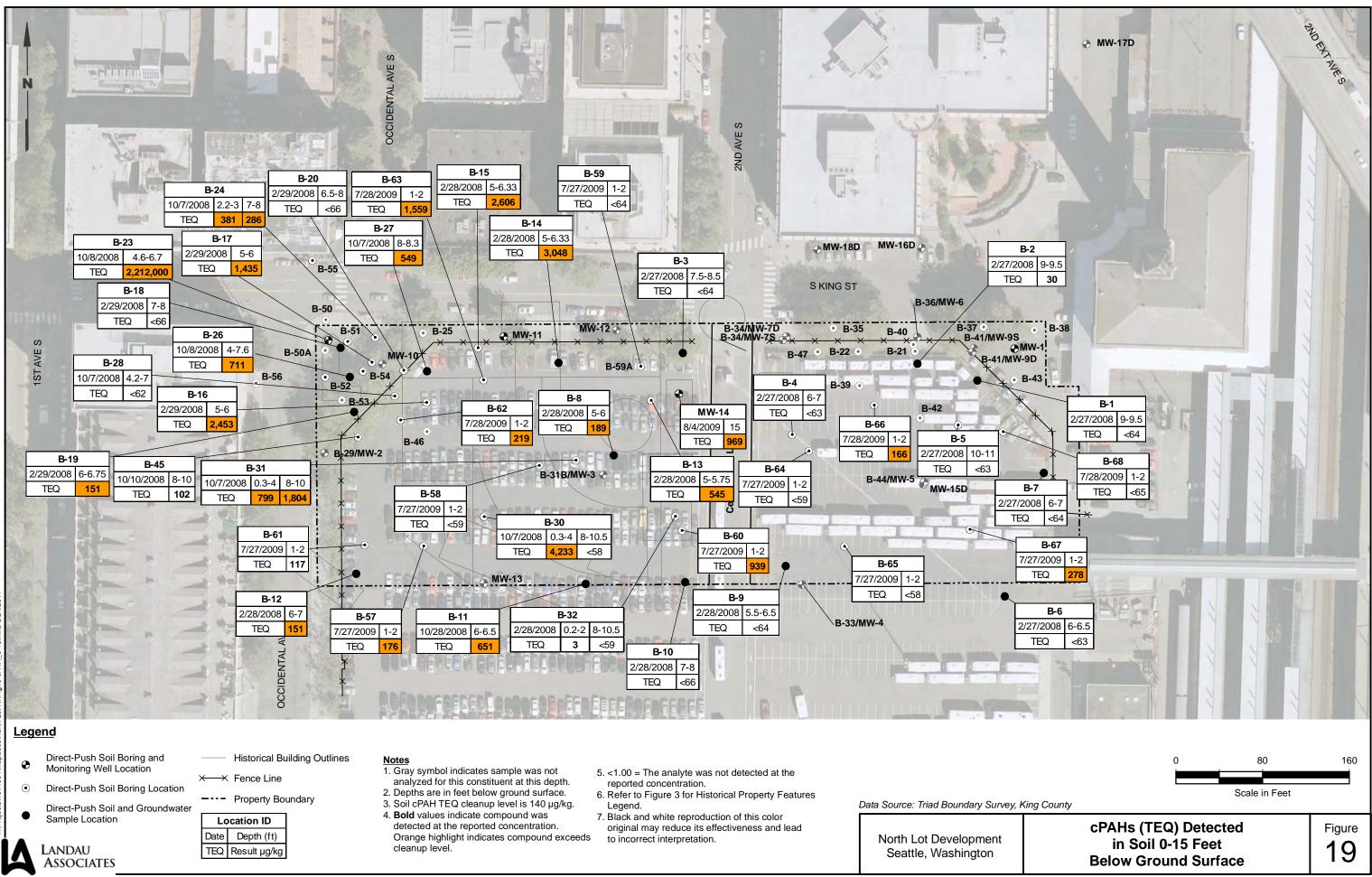

North Lot Development Seattle, Washington

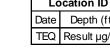


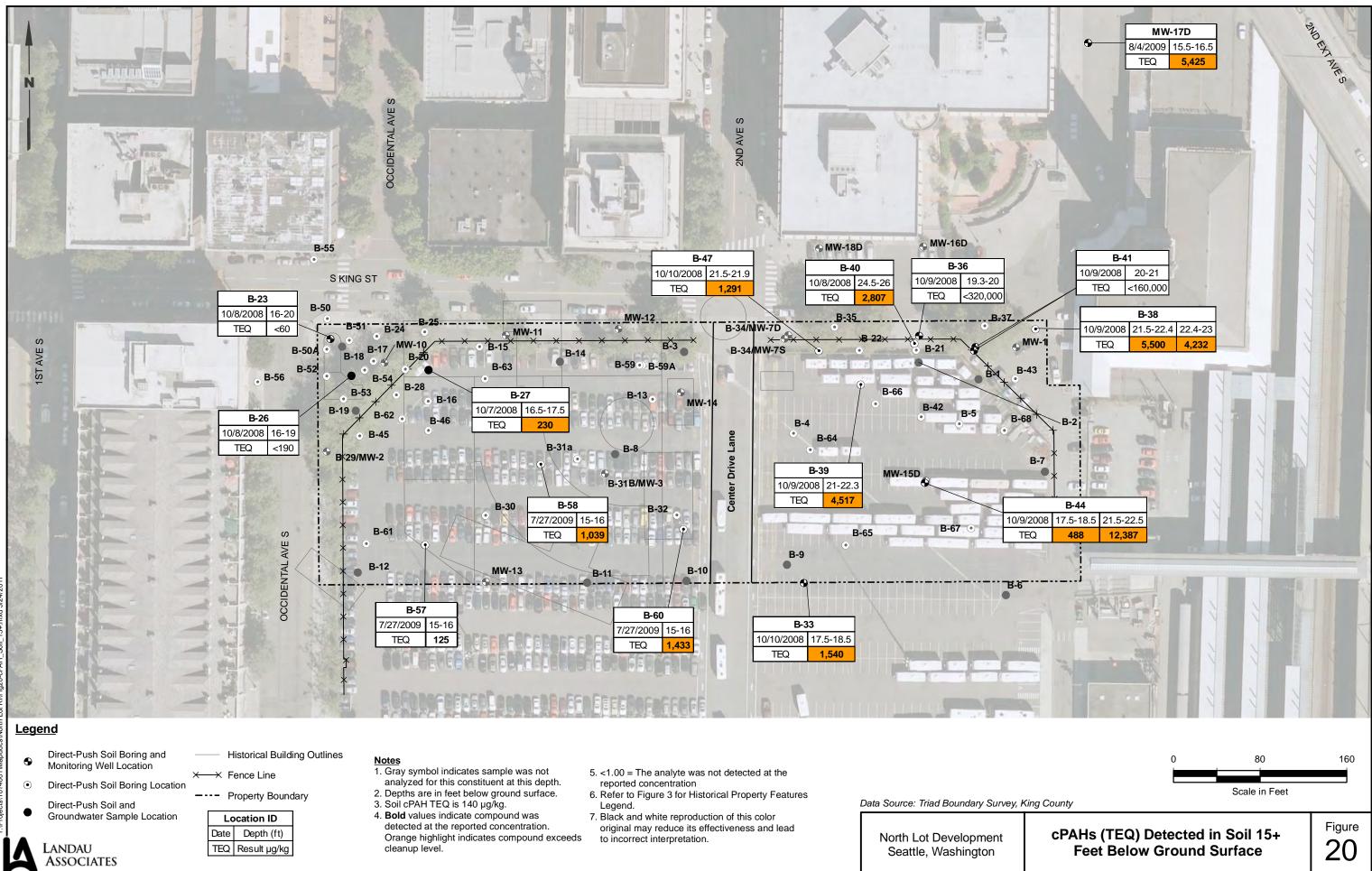

Notes

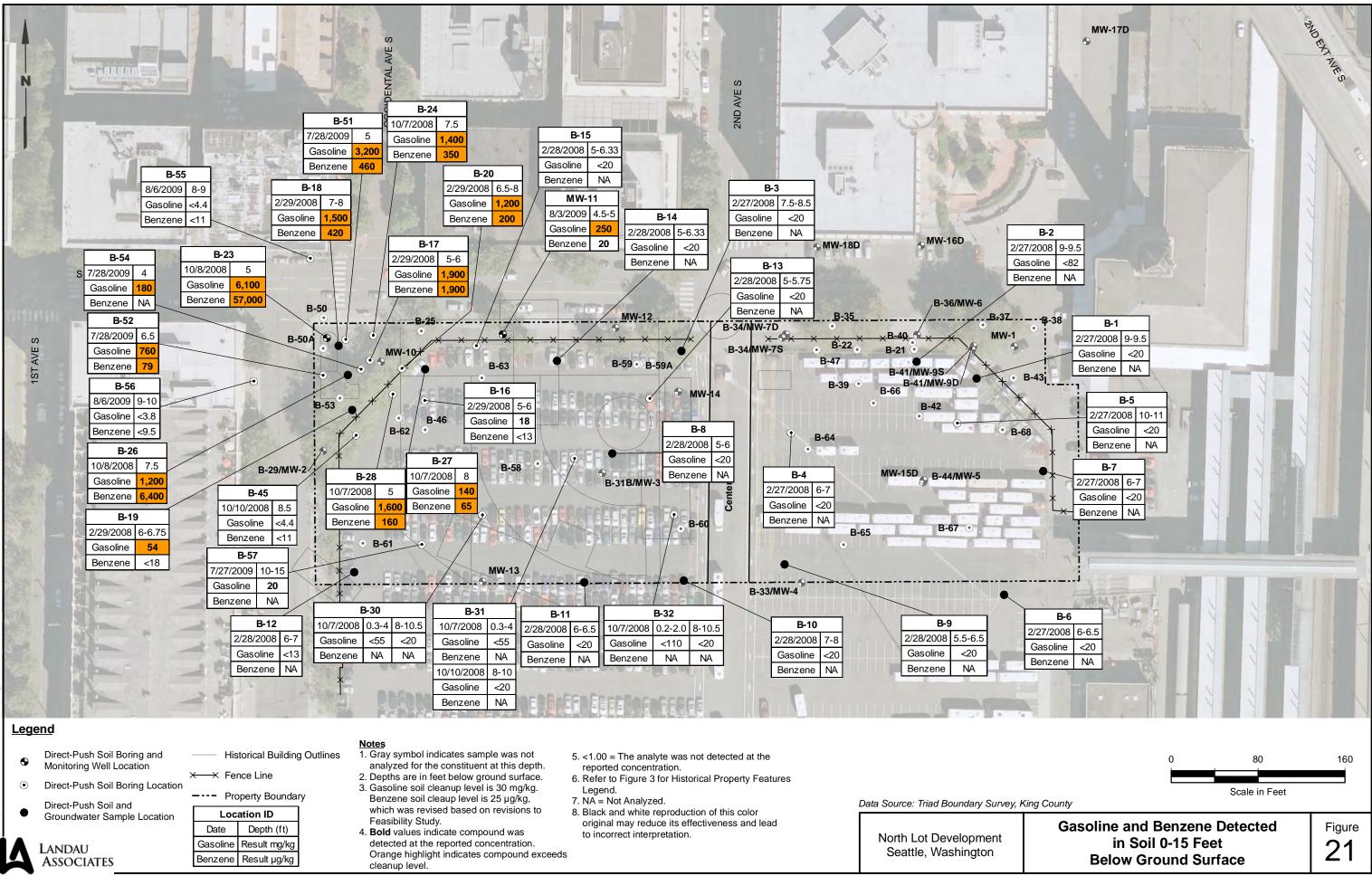

- 1. This cross section has been interpreted and generalized from project field data. Variations between this cross section and actual conditions may exist. The project boring logs and written report must be referenced for a proper understanding of the nature of the subsurface conditions. This cross section was prepared for environmental interpretation purposes and is not intended to be used for geotechnical planning purposes.
- 2. See report text for descriptions of geologic units.
- 3. For cross-section line location, see Figure 7.
- Black and white reproduction of this color 4. original may reduce its effectiveness and lead to incorrect interpretation.

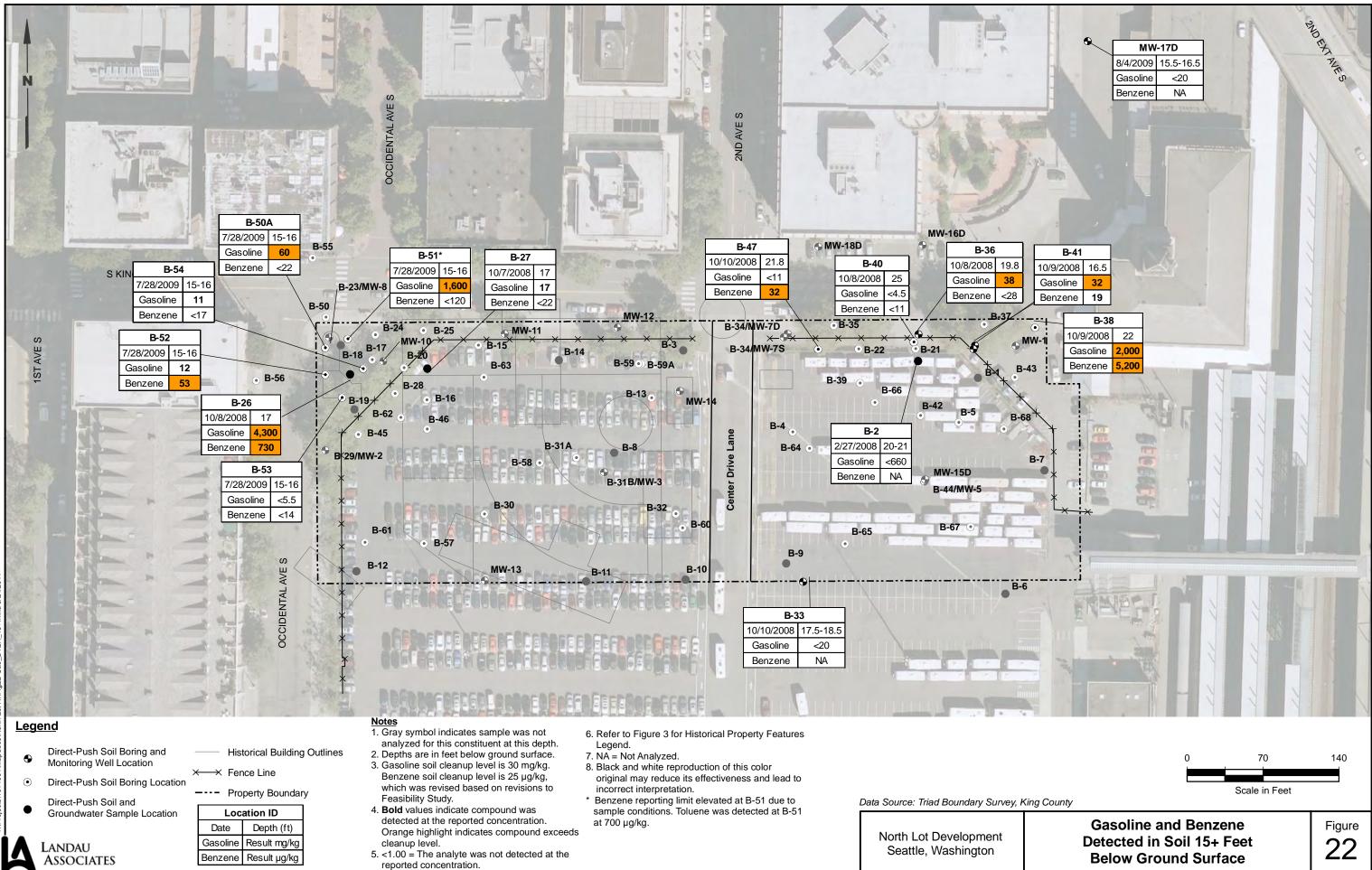
Geologic Cross Section E-E'

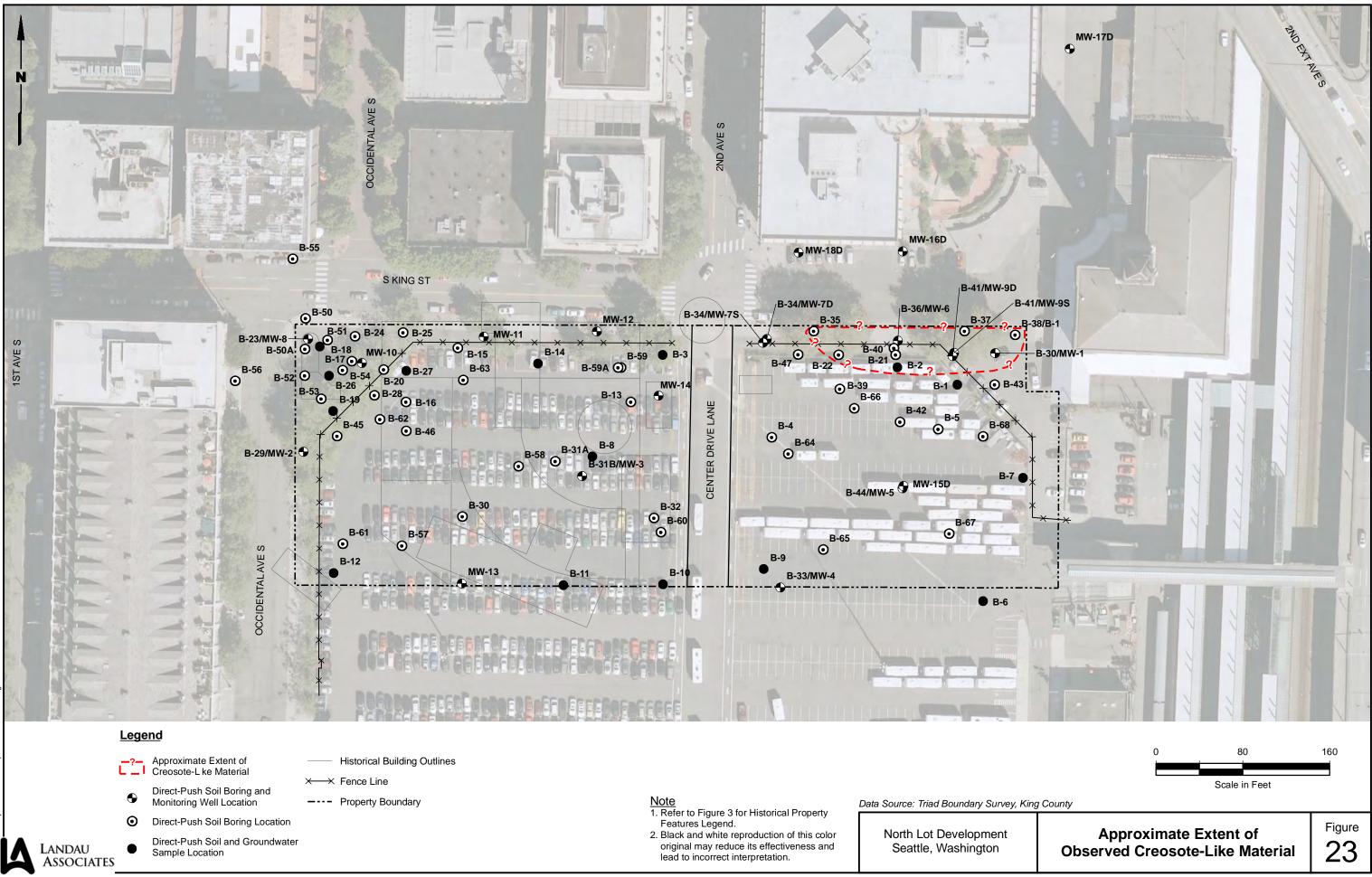


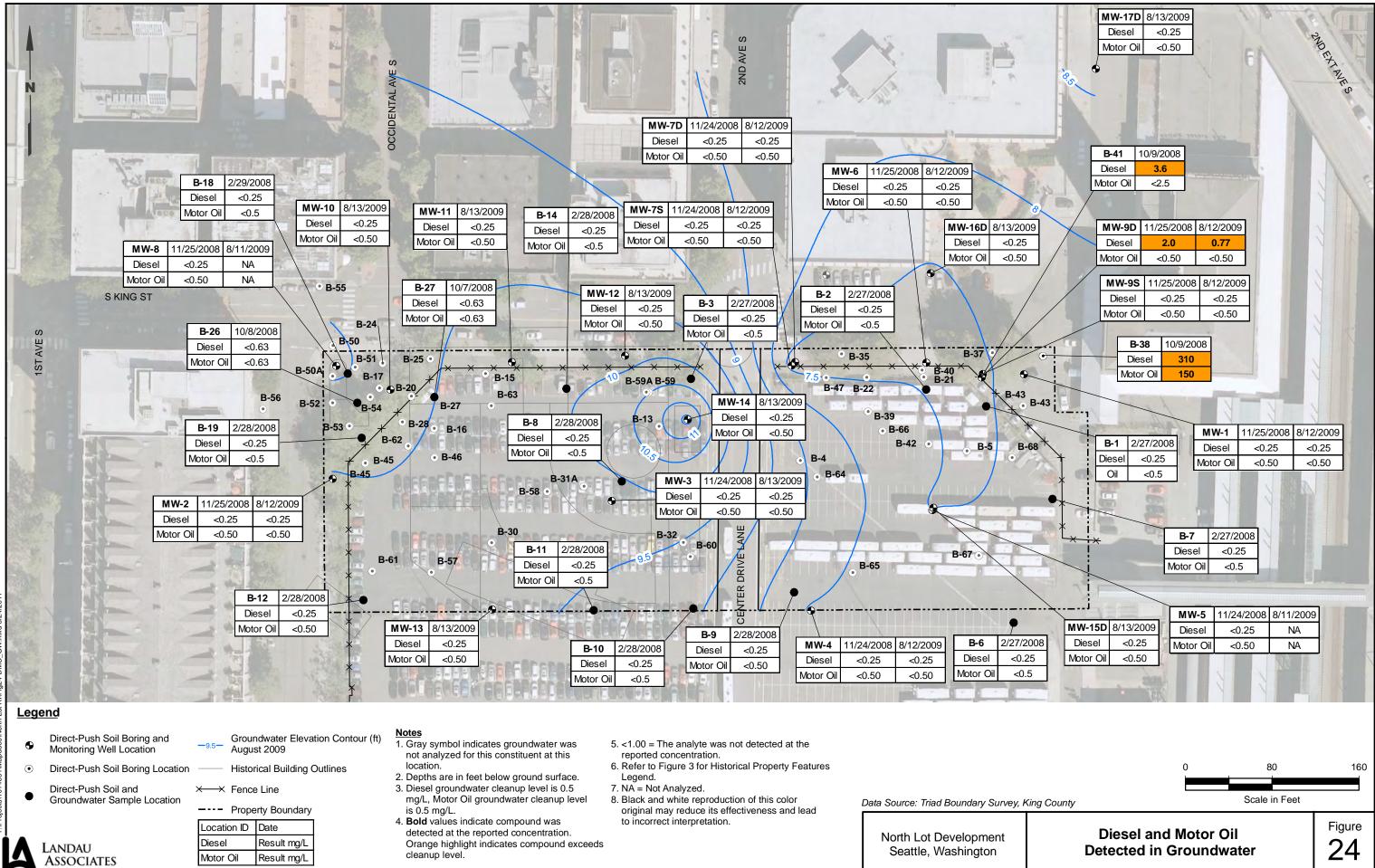




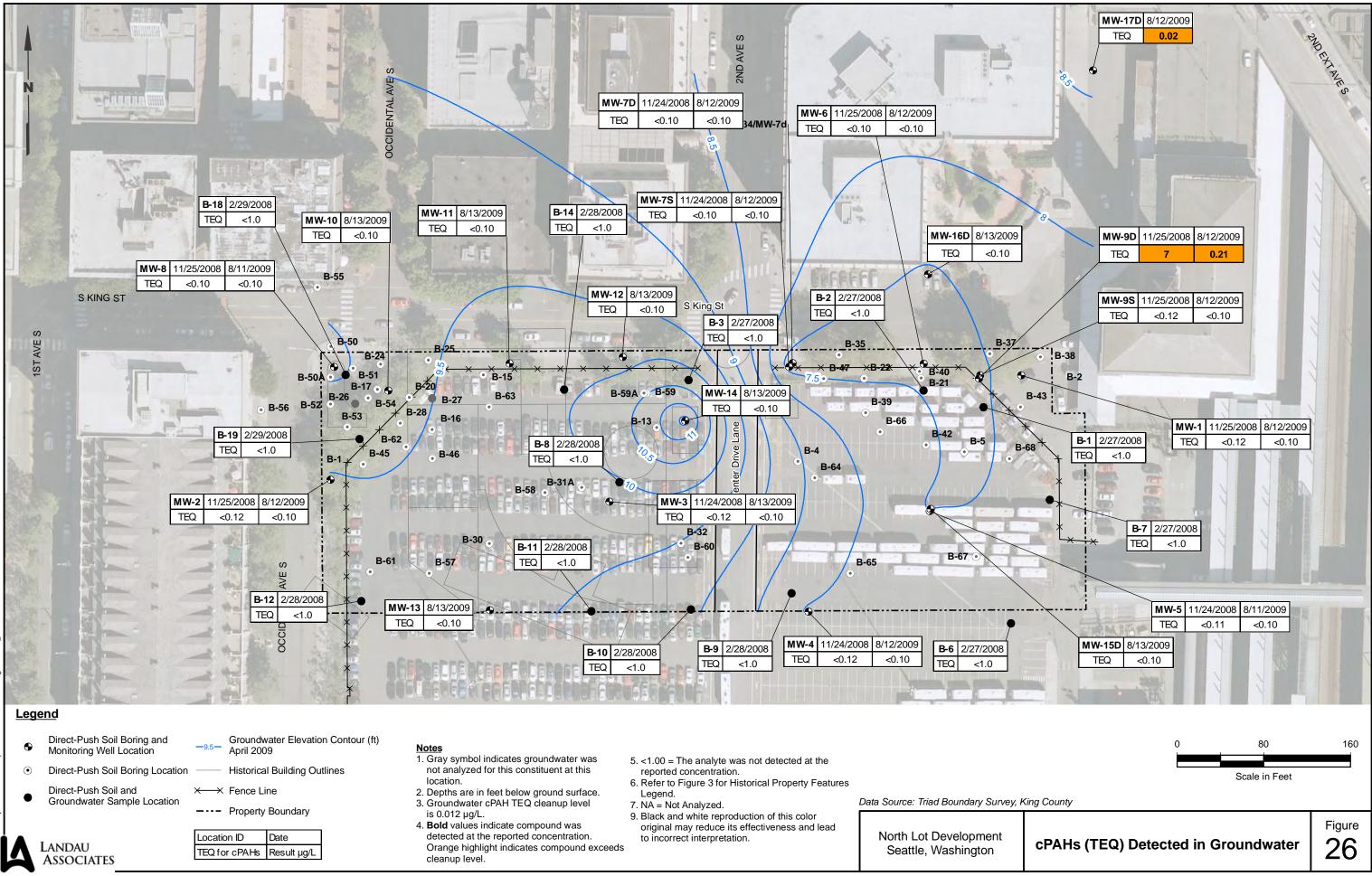



1	Contract -		20	ALC: NOTE OF				and the local division in which the local division in the local di
	Lege	nd						
	•	wontoring wen Location				Notes 1. Gray symbol indicates sample was not analyzed for this constituent at this depth.		
	۲	Direct-Push Soil Boring Location	 Fence Line Property Boundary 	Lo Date	cation ID Depth (ft)	 Depths are in feet below ground surface. Metal soil cleanup levels are as follows: Arsenic = 7 mg/kg, Mercury = 0.07 mg/kg 	reported concentration 7. Refer to Figure 3 for Historical Property Features Legend.	Data Source: T
	•	Direct-Push Soil and Groundwater Sample Location			Result mg/kg	Orange highlight indicates compound	 Black and white reproduction of this color original may reduce its effectiveness and lead to incorrect interpretation. 	North Lot [
		Y		Mercury	Result ma/ka			









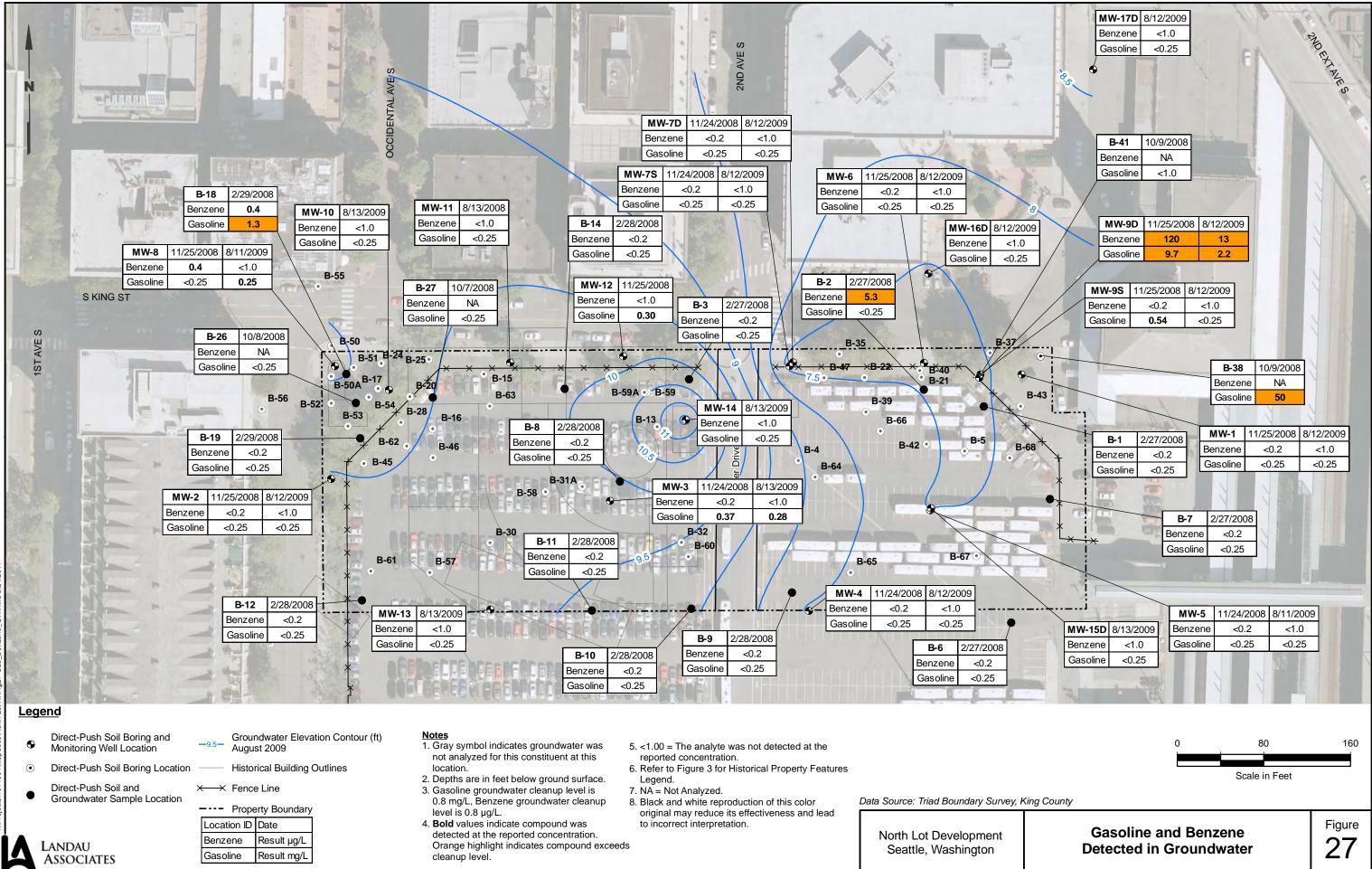


TABLE 1 SUMMARY OF SAMPLES AND ANALYSES NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

							Analysis	and Depth	of Sample	in Feet									
	Maximum				Soil											Water (a)			
Location	Depth (ft BGS)	HCID	TPH-G	TPH-Dx		Metals (As, Cd, Cr, Cu, Pb, Hg, Zn)	BTEX	PCBs	SVOCs	Sulfur	Dioxin/ Furans	HCID	TPH-G	TPH-Dx	PAHs	Dissolved Metals (As, Cd, Cr, Cu, Pb, Hg, Zn)	VOCs	BTEX	SVOCs
		NWTPH-HCID	NWTPH-Gx	NWTPH-DxSG	SW8270D/ SW8270DSIM	6000/7000 Series	SW8021B Mod	SW8082	SW8270D		SW8290	NWTPH- HCID	NWTPH Gx	NWTPH- DxSG	SW8270D/ SW8270DSIM	200.8/6010B/7470A	SW8260B	SW8021B Mod	
Phase II ESA (Feb	oruary 2008)	•				•													<u></u>
B-1	16	9-9.5	9-9.5		9-9.5	9-9.5							Х	Х	Х	Х	Х		1
B-2	21	9-9.5	9-9.5	9-9.5	9-9.5	9-9.5		20-21					Х	Х	Х	Х	Х		
B-3	20	7.5-8.5	7.5-8.5	7.5-8.5	7.5-8.5	7.5-8.5							Х	Х	Х	Х	Х		
B-4	24	6-7			6-7	6-7													
B-5	20	10-11			10-11	10-11													
B-6	16	6-6.5			6-6.5	6-6.5							Х	Х	Х	Х	Х		
B-7	20	6-7			6-7	6-7							Х	Х	Х	Х	Х		
B-8	13.5	5-6		5-6	5-6	5-6							Х	Х	Х	Х	Х		
B-9	24	5.5-6.5			5.5-6.5	5.5-6.5							Х	Х	Х	Х	Х		
B-10	12	7-8			7-8	7-8							Х	Х	Х	Х	Х		<u> </u>
B-11	7	6-6.5		6-6.5	6-6.5	6-6.5							Х	Х	Х	Х	Х		\vdash
B-12	12	6-7	6-7	6-7	6-7	6-7							Х	Х	Х	Х	Х		
B-13	8	5-5.75		5-5.75	5-5.75	5-5.75													
B-14	7	5-6.33		5-6.33	5-6.33	5-6.33							Х	Х	Х	Х	Х		
B-15	8	5-6.33			5-6.33	5-6.33													───
B-16	16	5-6	5-6	5-6	5-6	5-6	5-6												<u> </u>
B-17	16	5-6	5-6	5-6	5-6	5-6	5-6												<u> </u>
B-18	16	7-8	7-8	7-8	7-8	7-8	7-8						Х	X	X	X	X		
B-19	16	6-6.75	6-6.75	6-6.75	6-6.75	6-6.75	6-6.75						Х	Х	Х	Х	Х		<u> </u>
B-20	11.8	6.5-8	6.5-8	6.5-8	6.5-8	6.5-8	6.5-8	00.00											───
B-21	24				20-23	19-20 & 20-23		20-23											
B-22	24																		
RI Field Investiga		nd November 200	-		4 0 0 7 0 40 00	I	-	1		1	1	T	1	-			1		
B-23	21		5		4.6-6.7 & 16-20		5	7.0											───
B-24	22		7.5		2.2-3 & 7-8		7.5	7-8											───
B-25	24		7 5 9 4 7		47094040		7 5 9 47					V							
B-26 B-27	22.8 24		7.5 & 17 8 & 17		4-7.6 & 16-19		7.5 & 17	10 5 17 5				X							
B-28	24		5		8-8.3 & 16.5-17.5 4.2-7		8 & 17 5	16.5-17.5				Х							──
B-29	16		5		4.2-1		5												<u> </u>
B-30	10	0.3-4 & 8-10.5		8-10.5	0.3-4 & 8-10.5	0.3-4 & 8-10.5		8-10.5											<u> </u>
B-31 (a)	28	0.3-4 & 8-10.3		0.3-4	0.3-4 & 8-10	0.3-4 & 8-10.3		0-10.0		<u> </u>									+
	20	0.0 + 0.0 - 10		0.0 4	0.0 + 0.0 10	0.0 + 0.0 10													<u>+</u>
B-32	12	0.2-2 & 8-10.5		0.2-2	0.2-2 & 8-10.5	0.2-2 & 8-10.5		8-10.5											<u>+</u>
B-33	20	17.5-18.5			17.5-18.5	17.5-18.5		0.0.0		1			1	<u> </u>					<u>+</u>
B-34	26												1						<u> </u>
B-35	24					1							1						<u> </u>
B-36	20		19.8	19.3-20	19.3-20	1	19.8												<u> </u>
B-37	24					1													<u> </u>
B-38	24		22	21.5-22.4 & 22.4-23	21.5-22.4 & 22.4-23	1	22					Х		Х					1
B-39	24			21-22.3	21-22.3					1	1	1	1	1					1
B-40	32		25	24.5-26	24.5-26		25			1	1	1	1	1					1
B-41	24		16.5	20-21	20-21		16.5		20-21	20-21	20-21	Х	1	Х					
B-42	20												1						
B-43	28	1									1								1
B-44	24			17.5-18.5 & 21.5-22.5	17.5-18.5 & 21.5-22.5														T

TABLE 1 SUMMARY OF SAMPLES AND ANALYSES NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

							Analysis	and Depth	of Sample	in Feet									
	Maximum				So	il										Water (a)			
Location	Depth (ft BGS)	HCID	TPH-G	TPH-Dx	PAHs	Metals (As, Cd, Cr, Cu, Pb Hg, Zn)	, BTEX	PCBs	SVOCs	Sulfur	Dioxin/ Furans	HCID	TPH-G	TPH-Dx	PAHs	Dissolved Metals (As, Cd, Cr, Cu, Pb, Hg, Zn)	VOCs	втех	SVOCs
B-45	24	HOLD	8.5		8-10	119, 211)	8.5	1003	01003	ounu	i urans	TIOLD		11 11-07	I AII3	119, 211)	1003	DILX	
B-46	24		0.0		010		0.0												
B-47	24		21.8	21.5-21.9	21.5-21.9		21.8												-
MW-1	27		21.0	21.0 21.0	21.0 21.0		21.0						Х	Х	Х	Х	Х		
MW-2													X	X	X	X	X		-
MW-3													X	X	X	X	X		-
MW-4													X	X	X	X	X		
MW-5													X	X	X	X	X		-
MW-6													X	X	X	X	X		-
MW-7S													X	X	X	X	X		-
MW-7D													X	X	X	X	X		-
MW-8													X	X	X	X	X		
MW-9S													X	X	X	X	X		
MW-9D													X	X	X	X	X		-
	nvestigation (July	and August 20	109)		l								~	~	~	X	~		
B-50	6	and August 20								1								Х	—
B-50A	25		15-16				15-16											X	
B-51	25		5 & 15-16				5 & 15-16											X	
B-52	25		6.5 & 15-16				6.5 & 15-16											X	
B-53	20		15-16				15-16											X	
B-54	25		4				4											X	
B-55	14		8-9				8-9											X	-
B-56	15		9-10				9-10											X	-
B-57	25	10-15	10-15	10-15	15-16	1-2	0.10		1-2						Х			~	Х
B-58	19	10.10	10.10	10 10	15-16	1-2	1		1-2						X				X
B-59	20					1-2	1		1-2										X
B-60	25				15-16	1-2			1-2						Х				X
B-61	25					1-2			1-2										X
B-62	25					1-2			1-2		1-2								Х
B-63	9					1-2			1-2										Х
B-63A	10																		Х
B-64	25					1-2	1		1-2	1			1						X
B-65	25					1-2	1		1-2	1	1-2		1						X
B-66	25					1-2	1		1-2	1									Х
B-67	25					1-2	1		1-2	1									Х
B-68	15				1	1-2	1		1-2	İ									Х
MW-10	15.4						1			1									1
MW-11	15.4		4.5-5				4.5-5			1			Х	Х	Х	Х		Х	1
MW-12	15.4		1		1		1			İ			Х	Х	Х	Х			1
MW-13	15.4		1		1		1			İ			Х	Х	Х	Х			1
MW-14	18		1		15		1			İ			Х	Х	Х	Х			1
MW-15D	25.5		1		1		T						Х	Х	Х	Х			1
MW-16D	24.5		1		1		T						Х	Х	Х	Х			1
MW-17D	21.5	15.5-16.5		15.5-16.5	15.5-16.5	15.5-16.5	1	1	15.5-16.5	1			Х	Х	Х	Х			Х

TABLE 1 SUMMARY OF SAMPLES AND ANALYSES NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

(a) Groundwater grab samples collected from temporary well (direct-push boring).
(b) Samples collected from boring B-31A; no samples were collected from boring B-31B (see Table 1).
BGS = Below Ground Surface
HCID = Hydrocarbon Identification
TPH-G = Gasoline-range Total Petroleum Hydrocarbons
TPH-Dx = Diesel-range (Extended) Total Petroleum Hydrocarbons
PAH = Polycyclic Aromatic Hydrocarbons
Metals = Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, and Zinc
BTEX = Benzene, Toluene, Ethylbenzene, Xylenes
PCBs = Polychlorinated Biphenyls
VOCs = Volatile Organic Compounds
SVOCs = Semivolatile Organic Compounds
MW = Monitoring Well

Page 3 of 3

TABLE 2 SUMMARY OF SUBSURFACE CONDITIONS ENCOUNTERED DURING DRILLING NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

Boring ID (alternate IDs)	Boring Depth (ft)	Native Soil Encountered (ft)	Native Material at Contact	Creosote-Like Material Encountered? (depth in ft)	Highest PID Reading in ppm (depth in ft)	Notes/Observations
B-01	16	Not Encountered		No	0	
B-02	21	Not Encountered		Yes (18-21)	57.5 (20.5)	
B-03	20	Not Encountered		No	0	
B-04	24	18.5 - 24	SILT	No	0	
B-05	20	Not Encountered		No	0	
B-06	16	Not Encountered		No	0	
B-07	20	18 - 20	SILT	No	0	
B-08	13.5	Not Encountered		No	0	
B-09	24	19 - 24	SILT	No	0	
B-10	12	Not Encountered		No	0	
B-11	7	Not Encountered		No	0	
B-12	12	Not Encountered		No	11.2 (4.5)	
B-13	8	Not Encountered		No	0	
B-14	7	Not Encountered		No	0	
B-15	8	Not Encountered		No	0	
B-16	16	Not Encountered		No	6.2 (4.5)	
B-17	16	Not Encountered		No	104 (4.5)	
B-18	16	Not Encountered		No	99.8 (4.5)	
B-19	16	Not Encountered		No	5.1 (4.5)	
B-20	11.75	Not Encountered		No	63.7 (4.5)	
B-21	24	23 - 24	SILT	Yes (20-23)	N/A	
B-22	24	22.5 - 24	SILT	Yes (20-22.5)	N/A	
B-23 (MW-8)	21	Not Encountered		No	45.6 (5)	
B-24	22	Not Encountered		No	106 (7.5)	
B-25	24	Not Encountered		No	4.2 (8)	
			Silty, fine to medium			
B-26	22.75	19.5 - 22.75	SAND	No	106 (6)	
B-27	24	Not Encountered		No	23.4 (8)	
			SAND with silt, gravel			
B-28	24	22.5 - 24	& shells	No	101 (5.5)	
B-29 (MW-2)	16	Not Encountered		No	0	
B-30	12	Not Encountered		No	N/A	
B-31A	6	Not Encountered		No	0	

Page 1 of 3

TABLE 2 SUMMARY OF SUBSURFACE CONDITIONS ENCOUNTERED DURING DRILLING NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

Boring ID (alternate IDs)	Boring Depth (ft)	Native Soil Encountered (ft)	Native Material at Contact	Creosote-Like Material Encountered? (depth in ft)	Highest PID Reading in ppm (depth in ft)	Notes/Observations
B-31B	28	Not Encountered		No	N/A	
B-31C (MW-3)(B-5 Terra	20	Not Encountered		INO	IN/A	
Associates)	45.5	22.75 - 28.75	SILT	No	N/A	
B-32	12	Not Encountered	0.21	No	0	
B-33	20	Not Encountered		No	0	
B-33B (MW-4)(B-4 Terra	20	Hot Enobalitoroa			0	
Associates)	65.5	30.75 - 40.8	SILT	No	N/A	
B-34 (MW-7)	26	24-25	SILT	No	0	
B-34B (B-2 Terra						
Associates)	50.1	24-25	SILT	No	N/A	
						Creosote sample attempt unsuccessful, depth
B-35	24	21.5-24	SILT	Yes (18.5-21.5)	0	estimated
						Creosote-like material present in fill, with strong sheen
B-36 (MW-6)	20	19.5-20	SILT	No	N/A	and creosote odor
B-37	24	Not Encountered		Yes (21-24)	21.2 (22)	Creosote sample attempt unsuccessful
B-38 (MW-1)	24	22.5 - 24	SILT	Yes (21.5-22.5)	N/A	
B-38B (B-1 Terra	10 5	05 5 00	0" T		N 1/A	
Associates)	46.5	25.5 - 33	SILT	Yes (20-21.5)	N/A	
B-39	24	22 - 24	SILT	No	N/A	
B-40	32	25 - 32	Silty SAND with shells	Yes (23-25)	68.6 (25)	Boring overdriven from 24-32 ft, poor recovery, contacts estimated; creosote-like material thickness estimated Creosote-like material saturated silt, creososte layer
B-41	24	20 - 24	SILT	Yes (19-21)	0	estimated
B-42	20	18.5 - 20	SILT	No	0	
B-43	28	Not Encountered		No	0	
B-44 (MW-5)	24	22 - 24	SILT	No	N/A	
B-44B (B-3 Terra						
Associates)	80.5	23.25 - 33	SILT	No	N/A	
			Silty GRAVEL with			
B-45	24	22 - 24	sand & shells	No	6.2 (9.5)	
B-46	24	Not Encountered		No	0	
B-47	24	21.5 - 24	SILT	No	0	
B-50	6	Not Encountered		No	1.7	
B-50A	25	Not Encountered		No	219	

Page 2 of 3

TABLE 2 SUMMARY OF SUBSURFACE CONDITIONS ENCOUNTERED DURING DRILLING NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

Boring ID (alternate IDs)	Boring Depth (ft)	Native Soil Encountered (ft)	Native Material at Contact	Creosote-Like Material Encountered? (depth in ft)	Highest PID Reading in ppm (depth in ft)	Notes/Observations
B-51	20	Not Encountered	Contact	No	36	
B-51 B-52	25	Not Encountered		No	0.8	
B-52 B-53	25	Not Encountered		No	1.9	
В-53	25	Not Encountered		No	23.4	
B-55	23 14	Not Encountered		No		
		Not Encountered			0	
B-56	15			No	0	
B-57	25	23 - 25	SILT	No	132	
B-58	19	Not Encountered		No	85.3	
B-59	10	Not Encountered		No	0	
B-60	24	Not Encountered	SILT with shell	No	0	
B-61	25	23 - 25		No	0	
B-62		20.5 - 25	fragments SILT	No		
В-63	25	Not Encountered	SILT	No	0.5	
	9				0	
B-63A	10	Not Encountered		No	0	
B-64	25	24.5 - 25 Not Encountered	SILT	No	1	
B-65	25			No	0	
B-66	25	Not Encountered	011 T	No	0	
B-67	25	18 - 25	SILT	No	0	
B-68	15	Not Encountered		No	13.7	
MW-10	15.4	Not Encountered		No	3.0	
MW-11	15.4	Not Encountered		No	0	
MW-12	15.4	Not Encountered		No	30.1	
MW-13	15.4	Not Encountered		No		
MW-14	18	Not Encountered		No	0	
MW-15D	25.5	24.5 - 25.5	SILT	No	0	
MW-16D	24.5	24 - 24.5	SILT	No	0	
MW-17D	21.5	18 - 21.5	SILT	No	0	Creosote-like odor noted at about 16 ft BGS, but no visible evidence of creosote-like material.

N/A = Not available.

Page 3 of 3

TABLE 3 MONITORING WELL GROUNDWATER ELEVATIONS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

Monitoring	Elevation	of Top of	D	epth to V	Vater (ft))	Gro	undwate	r Elevati	on (ft)
Well	PVC C	•	11/24/08	1/16/09	6/3/09	8/25/09	11/24/08	1/16/09	6/3/09	8/25/09
MW-1	17.48	(a)	10.00	9.96	9.86	10.00	7.48	7.52	7.62	7.48
MW-2	16.89	(a)	7.18	7.07	7.18	7.35	9.71	9.82	9.71	9.54
MW-3	15.51	(a)	5.33	5.51	5.44	5.82	10.18	10.00	10.07	9.69
MW-4	16.88	(a)	9.55	8.64	8.66	8.94	7.33	8.24	8.22	7.94
MW-5	16.48	(a)	8.20	8.19	8.15	8.32	8.28	8.29	8.33	8.16
MW-6	17.71	(a)	10.26	10.22	10.15	10.28	7.45	7.49	7.56	7.43
MW-7S	18.29	(a)	10.75	10.78	10.70	10.95	7.54	7.51	7.59	7.34
MW-7D	18.24	(a)	10.70	10.74	10.68	11.00	7.54	7.50	7.56	7.24
MW-8	17.57	(a)	8.39	8.29	8.36	8.67	9.18	9.28	9.21	8.90
MW-9S	17.26	(a)	9.75	9.77	9.68	9.88	7.51	7.49	7.58	7.38
MW-9D	17.30	(a)	9.75	9.78	9.67	9.90	7.55	7.52	7.63	7.40
MW-10	17.62	(b)	(c)	(c)	(c)	8.46	(c)	(c)	(c)	9.16
MW-11	17.90	(b)	(c)	(c)	(c)	7.90	(c)	(c)	(c)	10.00
MW-12	17.64	(b)	(c)	(c)	(c)	7.86	(c)	(c)	(c)	9.78
MW-13	16.71	(b)	(c)	(c)	(c)	7.16	(c)	(c)	(c)	9.55
MW-14	17.04	(b)	(c)	(c)	(c)	5.30	(c)	(c)	(c)	11.74
MW-15D	16.18	(b)	(c)	(c)	(c)	9.00	(c)	(c)	(c)	7.18
MW-16D	17.55	(b)	(c)	(c)	(c)	10.13	(c)	(c)	(c)	7.42
MW-17D	17.28	(b)	(c)	(c)	(c)	8.63	(c)	(c)	(c)	8.65

Notes:

- (a) Top of casing elevation surveyed by Pacific Geomatic Services, Inc. on December 12, 2008.
- (b) Top of casing elevation surveyed by Pacific Geomatic Services, Inc. on August 13, 2009.
- (c) Well not yet installed at time of measurement.

	Preliminary Cleanup Level (a)	B-1-9-9.5 MK66A 2/27/2008	B-2-9-9 5 MK66B 2/27/2008	B-2-20-21 MK66G 2/27/2008	B-3-7.5-8.5 MK66H 2/27/2008	B-4-6-7 MK66C 2/27/2008	B-5-10-11 MK66D 2/27/2008	B-6-6-6.5 MK66E 2/27/2008	B-7-6-7 MK66F 2/27/2008	B-8-5-6 MK82A 2/28/2008	B-9-5.5-6.5 MK82B 2/28/2008	B-10-7-8 MK82C 2/28/2008	B-11-6-6.5 MK82D 2/28/2008	B-12-6-7 MK82E 2/28/2008	B-13-5-5.75 MK82F 2/28/2008	B-14-5-6.33 MK82G 2/28/2008	B-15-5-6.33 MK82H 2/28/2008	B-16-5-6 ML02A 2/29/2008	B-17-5-6 ML02B 2/29/2008	B-18-7-8 ML02C 2/29/2008	B-19-6-6.75 ML02D 2/29/2008	B-20-6.5-8 ML02E 2/29/2008	B-21-19-20 ML02F 2/29/2008
NWTPH-HCID (mg/kg) Gasoline Range Organics Diesel Range Organics Motor Oil	30 2,000 2,000	20 U 50 U 100 U	82 U 210 U > 410	> 660 > 1,600 > 3,300	> 20 50 U > 100	20 U 50 U 100 U	20 U 50 U 100 U	20 U 50 U 100 U	50 U	20 U 50 U > 100		20 U 50 U 100 U	> 50	> 20 > 50 > 100	20 U > 50 > 100	20 U > 50 > 100	20 U > 50 > 100	20 U > 50 > 100	> 20 > 50 > 100	> 20 > 50 > 100	20 U 50 U 100 U	> 50	
NWTPH-DxSG (mg/kg) Diesel Range Hydrocarbons Motor Oil	2,000 2,000		88 440	8,600 2,300	22 63					15 68			58 560	65 82	90 630	65 500		19 150	370 160	92 98	19 44	51 190	
NWTPH-GX (mg/kg) Gasoline	30													13 U				18	1,900	1,500	54	1,200	
TOTAL METALS (mg/kg) Method 6000/7000 series Arsenic Cadmium Chromium Copper Lead Mercury Zinc	7 1 120,000 3,000 250 0.07 24,000	6 U 0.2 U 28.5 13 J 0.07	10 U 0.4 U 6 5 0 08 U	6 L 0 3 L 11.1 5 0.06 L	0.3 U 30.6 143	6 U 0.2 U 28.9 7 0.05 U	6 U 0.2 U 12.6 3 0.06 U	6 U 0.2 U 17.9 5 0 06 U	6 U 0 3 U 11.1 3 0.07	7 U 0.3 U 21.5 39 0.06 U	0.2 U 29.6 3	6 U 0 2 U 38.9 25 0.10		7.0 5	0.2 U 36.3 10	5 U 0.2 U 34.5 85 0.06	50 U 2 U 39 70 0.08	5 U 0 2 U 19.5 2 U 0.16	20 U 0.7 U 12 38 0.08		0.2 U 26.2 22		0.4 U 11 5
BTEX (μg/kg) Method SW8021BMod Benzene Toluene Ethylbenzene m.p-Xylene o-Xylene Total Xylenes	4.5 580 2,400 15,000																	13 U 13 U 13 U 26 U 13 U ND	1,900 1,800 3,200 5,100 1,900 7,000	420 1,000 1,800 4,700 1,900 6,600	18 U 18 U 18 U 36 U 18 U ND	240 700	
PAHs (µg/kg) Method SW8270D/SW8270D/SIM Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo		64 U 64 U 64 U 64 U 64 U 64 U 64 U 64 U	300 580 640 66 66 510 90 450 290 120 160 66 100 66 100 66 100 66 100 66 100 66 100 66 100 66 100 66 100 66 10 60 10 60 10 30		64 U 64 U 64 U 64 U 64 U 64 U 64 U 64 U	63 U 63 U 63 U 63 U 63 U 63 U 63 U 63 U	63 U 63 U 63 U 63 U 63 U 63 U 63 U 63 U	63 U 63 U 63 U 63 U 63 U 63 U 63 U 63 U	$\begin{array}{cccc} 64 \ \cup \\ 64$	66 U 66 U 66 U 66 U 66 U 190 66 U 310 230 130 130 150 120 150 140 71 66 U 66 U 66 U	$\begin{array}{cccc} 64 \ U \\ 64$	66 U 66 U 66 U 66 U 66 U 66 U 66 U 66 U	64 U 64 U 100 110 1,000 220 1,700 1,000 520 600 520 460 480 150 64 U		64 U 64 U 75 89 940 200 1,200 810 380 500 370 420 410 130 64 U 130	65 U 65 U 65 U 150 200 2,900 2,900 2,900 2,900 2,100 2,100 2,200 740 3,000 2,100 140 140	280 330 65 U 730 830 6,400 1,700 6,200 4,100 1,800 J 1,700 J 1,700 J 1,700 J 1,700 J 1,700 J 1,700 2,000 580 91 600 290 2,606	83 78 64 U 240 300 2,300 2,300 2,300 1,500 1,800 2,000 2,000 1,800 590 260 520 120 120	1,600 3,000 2,200 65 U 320 240 2,400 680 2,900 2,500 1,100 1,200 1,000 860 1,100 270 65 U 260 150	1,000 1,200 1,200 66 U 66 U 70 66 U 66 U 66 U 66 U 66 U 66 U 66 U 66	64 U 64 U 64 U 64 U 64 U 230 64 U 280 210 110 120 86 100 120 64 U 64 U 64 U	66 L 66 L 66 L 66 L 66 L 66 L 66 L 66 L	

	Preliminary Cleanup	B-1-9-9.5 MK66A	B-2-9-9 5 MK66B	B-2-20-21 MK66G	B-3-7.5-8.5 MK66H	B-4-6-7 MK66C	B-5-10-11 MK66D	B-6-6-6.5 MK66E	B-7-6-7 MK66F	B-8-5-6 MK82A	B-9-5.5-6.5 MK82B	B-10-7-8 MK82C	B-11-6-6.5 MK82D	B-12-6-7 MK82E	B-13-5-5.75 MK82F	B-14-5-6.33 MK82G	B-15-5-6.33 MK82H	B-16-5-6 ML02A	B-17-5-6 ML02B	B-18-7-8 ML02C	B-19-6-6.75 ML02D	B-20-6.5-8 ML02E	B-21-19-20 ML02F
	Level (a)	2/27/2008	2/27/2008	2/27/2008	2/27/2008	2/27/2008	2/27/2008	2/27/2008	2/27/2008	2/28/2008	2/28/2008	2/28/2008	2/28/2008	2/28/2008	2/28/2008	2/28/2008	2/28/2008	2/29/2008	2/29/2008	2/29/2008	2/29/2008	2/29/2008	2/29/2008
SEMIVOLATILES (µg/kg) Method SW8270D																							
Phenol 4-Methylphenol	22,000																						
Naphthalene	4,500																						
2-Methylnaphthalene Acenaphthylene	320,000																						
Acenaphthene	25,000																						
Dibenzofuran	160,000																						
Fluorene	79,000																						
Phenanthrene	000																						
Carbazole Anthracene	320 2,300,000																						
Di-n-Butylphthalate	2,300,000 57,000																						
Fluoranthene	49,000																						
Pyrene	140,000																						
Benzo(a)anthracene																							
Chrysene																							
Benzo(b)fluoranthene																							
Benzo(k)fluoranthene																							
Benzo(a)pyrene	140																						
Indeno(1,2,3-cd)pyrene																							
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	1																						
1-Methylnaphthalene																							
TEQ	140																						
	140	•																					

	Preliminary Cleanup Level (a)	B-23-4.6-6.7 NT63B 10/8/2008	B-23-5.0 NT63A 10/8/2008	B-23-16.0-20 0 NT63C 10/8/2008	B-24-2 2-3.0 NT61M 10/7/2008	B-24-7 0-8.0 NT61O 10/7/2008	B-24-7 5 NT61N 10/7/2008	B-26-4.0-7.6 NT63F 10/8/2008	B-26-7.5 NT63E 10/8/2008	B-26-16-19 NT63J 10/8/2008	B-26-17.0 NT63I 10/8/2008	B-27-8 0-8.3 NT61I 10/7/2008	B-27-8.0 NT61H 10/7/2008	B-27-16.5-17 5 NT61K 10/7/2008	B-27-17.0 NT61J 10/7/2008	B-28-4.2-7 0 NT61F 10/7/2008	B-28-5 0 NT61G 10/7/2008	B-30-0.3-4.0 NT61D 10/7/2008	B-30-8.0-10 5 NT61E 10/7/2008	B-31-0.3-4.0 (b) NT61C 10/7/2008	B-31-8.0-10 0 (b) NU11C 10/10/2008	B-32-0.2-2.0 NT61A 10/7/2008
NWTPH-HCID (mg/kg) Gasoline Range Organics Diesel Range Organics Motor Oil	30 2,000 2,000																	55 U >140 >280	20 U 50 U 100 U	55 U >140 >270	20 U 50 U 100 U	110 U 280 U >550
NWTPH-DxSG (mg/kg) Diesel Range Hydrocarbons Motor Oil	2,000 2,000																		49 310	200 1,200		160 2,300
NWTPH-GX (mg/kg) Gasoline	30		6,100				1,400		1,200		4,300		140		17		1,600					
TOTAL METALS (mg/kg) Method 6000/7000 series Arsenic Cadmium Chromium Copper Lead Mercury Zinc	7 1 120,000 3,000 250 0.07 24,000																	2.4 0.2 ∪ 28.7 24 0.10	1.6 0.2 U 21.7 19 0 05 U	1.9 0.2 31.5 <u>37</u> 0.08	9.6 0.2 U 26.7 22 0.05	2.1 0.2 ∪ 31.2 12.4 0.34
BTEX (μg/kg) Method SW8021BMod Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Total Xylenes	4.5 580 2,400 15,000		57,000 34,000 5,900 43,000 18,000 61,000				350 390 29 (2,200 1,100 3,300	J	6,400 810 2,600 1,200 850 2,050		730 1,100 3,600 1,800 2,000 3,800		65 40 15 U 100 52 152	1	22 U 22 U 22 U 43 U 22 U ND		160 190 21 U 410 730 1,140					
PAHs (µg/kg) Method SW8270D/SW8270DSI Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)anthracene Chrysene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Dibenzofuran TEQ	M 4,500 320,000 25,000 79,000 2,300,000 49,000 140,000 140	5,500,000 760,000 440,000 300,000 1,200,000 7,400,000 5,000,000 1,600,000 1,400,000 1,400,000 1,700,000 1,700,000 1,700,000 1,700,000 1,200,000 810,000 2,212,000		120 74 90 60 U 60 U 60 U 60 U 60 U 60 U 60 U 60	270 360 220 210 280 200 69	64		4,100 9,500 7,300 62 U 100 1,700 280 780 780 780 680 500 700 390 410 540 250 94 270 470 711		1,900 5,300 4,900 190 U 190 U		360 1,200 880 65 U 82 110 1,000 120 980 670 430 590 390 360 410 150 65 U 140 110 549		330 210 230 100 93 240 1,300 260 650 420 170 270 130 110 130 110 66 60 0 63 200 230		2,300 2,100 1,500 62 U 62 U 62 U 62 U 62 U 62 U 62 U 62 U		180 U 180 U 180 U 280 4,000 1,100 12,000 6,600 3,100 3,800 2,900 3,200 3,100 1,300 4,50 950 180 4,233	58 U 58 U	170 U 170 U 170 U 170 U 170 U 170 U 170 U 170 U 170 U 1,000 J 580 J 660 J 430 J 430 J 460 J 430 J 400 J 170 U 400 J 170 U	190 U 190 U 190 U 230 420 3,700 1,300 3,700 J 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,800 1,00 U 1,804	180 U 180 U 180 U 180 U 180 U 200 180 U 540 330 180 U 290 180 U 290 180 U 180 U 180 U 180 U 180 U 180 U 180 U 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310

	Preliminary Cleanup Level (a)	B-23-4.6-6.7 NT63B 10/8/2008	B-23-5.0 NT63A 10/8/2008	B-23-16.0-20 0 NT63C 10/8/2008	B-24-2 2-3.0 NT61M 10/7/2008	B-24-7 0-8.0 NT61O 10/7/2008	B-24-7 5 NT61N 10/7/2008	B-26-4.0-7.6 NT63F 10/8/2008	B-26-7.5 NT63E 10/8/2008	B-26-16-19 NT63J 10/8/2008	B-26-17.0 NT63I 10/8/2008	B-27-8 0-8.3 NT61I 10/7/2008	B-27-8.0 NT61H 10/7/2008	B-27-16.5-17 5 NT61K 10/7/2008	B-27-17.0 NT61J 10/7/2008	B-28-4.2-7 0 NT61F 10/7/2008	B-28-5 0 NT61G 10/7/2008
SEMIVOLATILES (µg/kg)																	
Method SW8270D																	
Phenol	22,000																
4-Methylphenol																	
Naphthalene	4,500																
2-Methylnaphthalene	320,000																
Acenaphthylene																	
Acenaphthene	25,000																
Dibenzofuran	160,000																
Fluorene	79,000																
Phenanthrene																	
Carbazole	320																
Anthracene	2,300,000																
Di-n-Butylphthalate	57,000																
Fluoranthene	49,000																
Pyrene	140,000																
Benzo(a)anthracene																	
Chrysene																	
Benzo(b)fluoranthene																	
Benzo(k)fluoranthene																	
Benzo(a)pyrene	140																
Indeno(1,2,3-cd)pyrene																	
Dibenz(a,h)anthracene																	
Benzo(g,h,i)perylene																	
1-Methylnaphthalene																	
TEQ	140	I															

B-30-0.3-4.0	B-30-8.0-10 5	B-31-0.3-4.0 (b)	B-31-8.0-10 0 (b)	B-32-0.2-2.0	
NT61D	NT61E	NT61C	NU11C	NT61A	
10/7/2008	10/7/2008	10/7/2008	10/10/2008	10/7/2008	

	Preliminary Cleanup Level (a)	B-32-8 0-10.5 NT61B 10/7/2008	B-33-17.5-18.5 NU11B 10/10/2008	B-36-19.3-20 0 NT85I 10/9/2008	B-36-19.8 NT85H 10/9/2008	B-38-21.5-22.4 NT85E 10/9/2008	B-38-22 0 NT85D 10/9/2008	B-38-22.4-23.0 NT85F 10/9/2008	B-39-21 0-22 3 NT85J 10/9/2008	B-40-24.5-26 0 NT63G 10/8/2008	B-40-25 0 NT63H 10/8/2008	B-41-16.5 NT85A 10/9/2008	B-41-20 0-21.0 NT85B 10/9/2008	B-44-17.5-18.5 NT85K 10/9/2008	B-44-21.5-22.5 NU11A 10/10/2008	B-45-8.0-10.0 NU11E 10/10/2008	B-45-8 5 NU11D 10/10/2008	B-47-21.5-21.9 NU11G 10/10/2008	B-47-21.8 NU11F 10/10/2008	B50A-15-16 PI35A 7/28/2009	B51-5 PI35C 7/28/2009	B51-15-16 PI35B 7/28/2009
NWTPH-HCID (mg/kg) Gasoline Range Organics Diesel Range Organics Motor Oil	30 2,000 2,000	20 U 50 U 100 U	20 U 50 U 100 U																			
NWTPH-DxSG (mg/kg) Diesel Range Hydrocarbons Motor Oil	2,000 2,000			2,900 690		690 220		59 42	220 130	49 150			2,000 480	130 130	400 860			140 J 310				
NWTPH-GX (mg/kg) Gasoline	30				38		2,000				4.5 U	32					4.4 U	J	11 L	J 60	3200	1600
TOTAL METALS (mg/kg) Method 6000/7000 series Arsenic Cadmium Chromium Copper Lead Mercury Zinc	7 1 120,000 3,000 250 0.07 24,000	2.3 0.3 U 16.6 9.2 0.06 U	5.0 0.3 U 22.9 33 1.88																			
BTEX (μg/kg) Method SW8021BMod Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Total Xylenes	4.5 580 2,400 15,000				28 U 35 170 180 110 290		5,200 6,100 35,000 34,000 14,000 48,000				11 U 11 U 11 U 23 U 11 U ND	150					11 U 11 U 11 U 22 U 11 U ND)]	32 48 27 U 55 U 27 U ND	J 170	2200 1400 3800	120 U 700 510 1200 640 1840
PAHs (µg/kg) Method SW8270D/SW8270DSIN Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Dibenzofuran TEQ	4,500 320,000 25,000 79,000 2,300,000 49,000 140,000 140	300 59 U 59 U 59 U 59 U 59 U 59 U 59 U 59 U	360 180 U 180 U 180 U 320 470 3,700 820 2,400 J 1,100 1,200 970 1,200 390 180 U 390 210	1,400,000 320,000 U 320,000 U		1,700,000 590,000 360,000 380,000 240,000 820,000 150,000 310,000 310,000 120,000 84,000 E 45,000 E 47,000 E 100,000 E 41,000 14,000 32,000 100 000 U 5,500		49,000 9,100 6,400 160 4,700 3,800 7,300 6,900 3,400 3,400 1,800 1,900 3,300 1,200 1,200 4,300	170,000 51,000 33,000 1,000 28,000 16,000 38,000 5,600 E 11,000 E 3,800 3,700 370 380 3,800 1,700 550 1,400 4,900 4,517	23,000 8,100 5,000 1,600 4,100 12,000 2,400 4,900 2,200 2,200 2,200 1,300 1,200 2,200 2,200 2,200 1,300 2,20			1,500,000 460,000 290,000 160,000 U 260,000 180,000 U 220,000 160,000 U 160,000 U 160,000 U 160,000 U 160,000 U 160,000 U 160,000 U 160,000 U 160,000 U 160,000 U	1,200 J 2,100 3,100 64 U 170 290 2,000 J 230 830 J 200 J 380 530 J 200 J 290 380 160 64 U 200 510 J 488	5,000 1,100 J 850 320 2,000 2,400 19,000 J 7,800 7,800 7,800 7,800 7,800 7,800 7,300 9,700 2,900 890 3,000 1,700 12,387	60 U 60 U 60 U 60 U 60 U 73 60 U 280 230 J 97 100 64 71 78 60 U 60 U 60 U 60 U 60 U 60 U		500 150 J 170 110 480 320 1,200 580 1,900 1,600 J 1,000 490 850 1,000 370 370 130 1,291				

	Cleanup	NT61B	NU11B	B-36-19.3-20 0 NT85I	NT85H	NT85E	B-38-22 0 NT85D	NT85F	B-39-21 0-22 3 NT85J	NT63G	B-40-25 0 NT63H	B-41-16.5 NT85A	NT85B	NT85K	B-44-21.5-22.5 NU11A	NU11E	B-45-8 5 NU11D	B-47-21.5-21.9 NU11G	B-47-21.8 NU11F	B50A-15-16 PI35A	B51-5 PI35C	B51-15-16 PI35B
	Level (a)	10/7/2008	10/10/2008	10/9/2008	10/9/2008	10/9/2008	10/9/2008	10/9/2008	10/9/2008	10/8/2008	10/8/2008	10/9/2008	10/9/2008	10/9/2008	10/10/2008	10/10/2008	10/10/2008	10/10/2008	10/10/2008	7/28/2009	7/28/2009	7/28/2009
SEMIVOLATILES (µg/kg) Method SW8270D																						
Phenol 4-Methylphenol	22,000																					
Naphthalene	4,500																					
2-Methylnaphthalene	320,000																					
Acenaphthylene																						
Acenaphthene	25,000																					
Dibenzofuran	160,000																					
Fluorene	79,000																					
Phenanthrene																						
Carbazole	320																					
Anthracene	2,300,000																					
Di-n-Butylphthalate	57,000																					
Fluoranthene	49,000																					
Pyrene	140,000																					
Benzo(a)anthracene																						
Chrysene																						
Benzo(b)fluoranthene																						
Benzo(k)fluoranthene																						
Benzo(a)pyrene	140																					
Indeno(1,2,3-cd)pyrene																						
Dibenz(a,h)anthracene																						
Benzo(g,h,i)perylene																						
1-Methylnaphthalene																						
TEQ	140	1																				

	Preliminary Cleanup Level (a)	B52-6.5 PI35E 7/28/2009	B52-15-16 PI35D 7/28/2009	B53-15-16 PI35F 7/28/2009	B54-4 PI35H 7/28/2009	B54-15-16 PI35G 7/28/2009	B-55-8-9 PJ46A 8/6/2009	B-56-9-10 PJ46B 8/6/2009	B57-1-2 PI16A 7/27/2009	B57-10-15 PI16B/PI54A 7/27/2009	B57-15-16 PI16C 7/27/2009	B58-1-2 Pl16D 7/27/2009	B58-15-16 PI16E 7/27/2009	B59-1-2 PI16K 7/27/2009	B60-1-2 PI16F 7/27/2009	B60-15-16 PI16G 7/27/2009	B61-1-2 PI16H 7/27/2009	B62-1-2 PI35I 7/28/2009	B63-1-2 PI35J 7/28/2009	B64-1-2 PI16L 7/27/2009	B65-1-2 Pl16l 7/27/2009	B66-1-2 PI35K 7/28/2009	B67-1-2 PI16J 7/27/2009	B68-1-2 PI35L 7/28/2009
NWTPH-HCID (mg/kg) Gasoline Range Organics Diesel Range Organics Motor Oil	30 2,000 2,000									50 100														
NWTPH-DxSG (mg/kg) Diesel Range Hydrocarbons Motor Oil	2,000 2,000									100 470														
NWTPH-GX (mg/kg) Gasoline	30	760	12	5.5 U	180	11	4.4 U	3.8 U		20														
TOTAL METALS (mg/kg) Method 6000/7000 series Arsenic Cadmium Chromium Copper Lead Mercury Zinc	7 1 120,000 3,000 250 0.07 24,000								7 0.2 13.2 75.5 59 0.05 74			5 U 0.2 U 31.9 26.9 25 0.59 58		7 0.2 U 38.5 33.5 67 0.12 82	7 0 2 U 28.5 29.8 37 0.05 56		6 0 2 U 10.8 49.1 17 0.02 U 31	10 U 0.5 U 26 36.3 53 0.04 94		8 0.2 U 18.0 34.9 6 0.06 42	30 0.4 42.1 64.3 132 0.05 104	5 0 2 U 22.2 47.7 6 0.02 47	7 0.2 U 26.2 25.1 12 0.02 41	6 0.2 U 25.9 38.9 41 0.08 71
BTEX (μg/kg) Method SW8021BMod Benzene Toluene Ethylbenzene m.p-Xylene o-Xylene Total Xylenes	4.5 580 2,400 15,000	79 110 430 530 440 970	53 26 20 62 180 242	14 U 18 14 U 27 U 14 U ND	17 U 17 U 33 U		11 U 11 U 11 U 22 U 160 160	9.5 U 9.5 U																
PAHs (µg/kg) Method SW8270D/SW8270DSIM Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Phenanthrene Benzo(a)anthracene Chrysene Benzo(a)anthracene Benzo(a)hfluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Dibenzofuran TEQ	4 4,500 320,000 25,000 79,000 2,300,000 49,000 140,000 140 160,000 140										100 180 220 12 19 48 260 J 39 120 J 130 82 120 J 73 82 120 55 J 73 96 43 29 J 43 50 125		210 150 130 140 J 370 J 1800 J 500 2000 J 1600 840 840 800 610 J 570 790 260 130 J 210 170 J 210			28 12 7.2 37 5.8 19 260 J 210 1400 J 1400 J 1100 1100 720 J 720 1100 360 320 J 410 8.6 1,433								

	Preliminary Cleanup	B52-6.5 PI35E	B52-15-16 Pl35D	B53-15-16 PI35F	B54-4 PI35H	B54-15-16 PI35G	B-55-8-9 PJ46A	B-56-9-10 PJ46B	B57-1-2 Pl16A	B57-10-15 PI16B/PI54A	B57-15-16 PI16C	B58-1-2 Pl16D	B58-15-16 PI16E	B59-1-2 PI16K	B60-1-2 PI16F	B60-15-16 Pl16G	B61-1-2 PI16H	B62-1-2 PI35I	B63-1-2 PI35J	B64-1-2 PI16L	B65-1-2 PI16I	B66-1-2 PI35K	B67-1-2 Pl16J	B68-1-2 PI35L
	Level (a)	7/28/2009	7/28/2009	7/28/2009	7/28/2009	7/28/2009	8/6/2009	8/6/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/27/2009	7/28/2009	7/28/2009	7/27/2009	7/27/2009	7/28/2009	7/27/2009	7/28/2009
SEMIVOLATILES (µg/kg) Method SW8270D																								
Phenol	22,000								63 L	J		59 l	J	64 U	63 L	J	62 U	61 U	58 U	59 U	58 U	64 U	60 L	65 U
4-Methylphenol	22,000								63 L			59 l		64 U	63 1		62 U	61 U			58 U	64 U	60 L	
Naphthalene	4.500								1300	•		59 l		270	69		130	61 U		59 U	58 U	180	71	65 U
2-Methylnaphthalene	320,000								2800			59 l		64 U	63 L	J	410	61 U		59 U	58 U	200	83	65 U
Acenaphthylene	020,000								63 L	J		59 l		64 U	180		62 U	61 U		59 U	58 U	64 U	60 L	
Acenaphthene	25,000								63 L			59 l		100	63 L	J	62 U	61 U		59 U	58 U	64 U	60 L	
Dibenzofuran	160,000								580			59 l		64 U	63 L		62 U	61 U		59 U	58 U	64 U	60 L	
Fluorene	79,000								150			59 l		70	63 L		62 U	61 U	520	59 U	58 U	64 U	60 L	
Phenanthrene	- ,								1900			120		170	340		350	250	3600	59 U	58 U	190	100	65 U
Carbazole	320								140			59 L	J	64 U	63 L	J	62 U	61 U		59 U	58 U	64 U	60 L	
Anthracene	2,300,000								130			59 L		64 U	94		62 U	61 U		59 U	58 U	64 U	60 L	
Di-n-Butylphthalate	57,000								72			59 L		64 U	63 L	J	62 U	61 U		59 U	58 U	64 U	60 L	
Fluoranthene	49,000								230			110		67	1300		150	390	2900	59 U	58 U	160	260	65 U
Pyrene	140,000								300			110		64 U	1500		160	300	2700	59 U	58 U	150	310	65 U
Benzo(a)anthracene	- ,								260			59 L	J	64 U	720		98	160	1100	59 U	58 U	91	180	65 U
Chrysene									420			59 l		64 U	920		160	180	1100	59 U	58 U	140	190	65 U
Benzo(b)fluoranthene									130			59 L		64 U	500		85	160	890	59 U	58 U	140	140	65 U
Benzo(k)fluoranthene									130			59 l		64 U	840		75	150	700	59 U	58 U	120	180	65 U
Benzo(a)pyrene	140								120			59 l		64 U	680		90	160	1200	59 U	58 U	120	220	65 U
Indeno(1,2,3-cd)pyrene									63 L	J		59 l		64 U	320		62 U	100	570	59 U	58 U	93	64	65 U
Dibenz(a,h)anthracene									63 L			59 l		64 U	120		62 U	61 U	220	59 U	58 U	64 U	60 L	
Benzo(g,h,i)perylene									63 L	J		59 l	J	64 U	320		62 U	120	680	59 U	58 U	120	62	65 U
1-Methylnaphthalene									2900			59 L		97	63 L	J	270	61 U	180	59 U	58 U	120	60 L	65 U
TEQ	140								176			ND		ND	939.2		117	219	1559			166	278	

	Preliminary Cleanup Level (a)	MW-11-4.5-5 PI99A 8/3/2009	MW-14-15 PJ11A 8/4/2009	MW-17D-15 5-16.5 PJ11B/PJ23A 8/4/2009
NWTPH-HCID (mg/kg) Gasoline Range Organics Diesel Range Organics Motor Oil	30 2,000 2,000			20 U 50 100
NWTPH-DxSG (mg/kg) Diesel Range Hydrocarbons Motor Oil	2,000 2,000			400 160
NWTPH-GX (mg/kg) Gasoline	30	250		
TOTAL METALS (mg/kg) Method 6000/7000 series Arsenic Cadmium Chromium Copper Lead Mercury Zinc	7 1 120,000 3,000 250 0.07 24,000			8 0.3 U 41.6 35.8 24 0.48 61
BTEX (μg/kg) Method SW8021BMod Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Total Xylenes	4.5 580 2,400 15,000	20 48 170 140 200 340		
PAHs (µg/kg) Method SW8270D/SW8270DSIN Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	4,500 320,000 25,000 79,000 2,300,000 49,000 140,000		160 81 69 36 74 100 1,100 2,200 2,200 1,600 780	J 4,200 J 8,900 7,700 4,200
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Dibenzofuran TEQ	140 160,000 140		820 620 770 310 310 280 90 969	

Page 9 of 10

SEMIVOLATILES (µg/kg) 460 Phenol 22,000 460 A-Methylphenol 400 400 Naphthalene 4,500 10,000 2-Methylphenol 1,100 6,700 Acenaphthene 320,000 6,700 Acenaphthene 25,000 17,000 Dibenzofuran 160,000 7,600 J Fluorene 79,000 14,000 Orazole 320 3,400 Anthracene 2,300,000 22,000 Di-n-Butylphthalate 57,000 180 U Fluoranthene 49,000 45,000 Pyrene 140,000 40,000 Benzo(k)fluoranthene 21,000 13,000 Benzo(k)fluoranthene 7,200 5,600 Dibenz(a,h)anthracene 2,700 4,800 Theoral (htylinaphthalene 2,700 5,500		Preliminary Cleanup Level (a)	MW-11-4.5-5 PI99A 8/3/2009	MW-14-15 PJ11A 8/4/2009	MW-17D-15 5-16.5 PJ11B/PJ23A 8/4/2009
Phenol 22,000 460 4-Methylphenol 400 400 Naphthalene 4,500 10,000 2-Methylnaphthalene 320,000 6,700 Acenaphthene 25,000 17,000 Dibenzofuran 160,000 7,600 J Fluorene 79,000 14,000 Phenanthrene 69,000 22,000 Carbazole 320 3,400 Anthracene 2,300,000 180 U Fluoranthene 49,000 45,000 Pyrene 140,000 8enzo(a)anthracene Chrysene 140,000 45,000 Benzo(a)anthracene 7,200 18,000 Chrysene 140,000 40,000 Benzo(a)pyrene 140 18,000 Indeno(1,2,3-cd)pyrene 140 18,000 Indeno(1,2,3-cd)pyrene 4,800 1-Methylnaphthalene	SEMIVOLATILES (µg/kg)				
4-Methylphenol 400 Naphthalene 4,500 2-Methylnaphthalene 320,000 Acenaphthylene 1,100 Acenaphthylene 1,100 Acenaphthene 25,000 Dibenzofuran 160,000 Fluorene 79,000 Phenanthrene 69,000 Carbazole 320 Anthracene 2,300,000 Di-n-Butylphthalate 57,000 Fluoranthene 48,000 Pyrene 140,000 Benzo(a)anthracene 21,000 Benzo(b)fluoranthene 7,200 Benzo(b)fluoranthene 7,200 Benzo(b)fluoranthene 7,200 Benzo(a)pyrene 140 Dibenz(a,h)anthracene 2,700 Benzo(a)pyrene 140 Dibenz(a,h)anthracene 2,700 Benzo(a)pyrene 48,000 Dibenz(a,h)anthracene 2,700	Method SW8270D				
Naphthalene 4,500 10,000 2-Methylnaphthalene 320,000 6,700 Acenaphthylene 1,100 6,700 Acenaphthene 25,000 17,000 Dibenzofuran 160,000 7,600 J Fluorene 79,000 14,000 Phenanthrene 69,000 22,000 Carbazole 320 3,400 Anthracene 2,300,000 22,000 Di-n-Butylphthalate 57,000 180 U Fluoranthene 49,000 45,000 Pyrene 140,000 8enzo(k)fluoranthene 13,000 Benzo(k)fluoranthene 7,200 13,000 Benzo(k)fluoranthene 7,200 5,600 Benzo(k)fluoranthene 5,600 2,700 Benzo(k)fluoranthene 2,700 5,600 Dibenz(a,h)antracene 2,700 5,600 Dibenz(a,h)anthracene 2,700 5,600 Dibenz(g,h,i)perylene 4,800 5,500	Phenol	22,000			460
2-Methylnaphthalene 320,000 6,700 Acenaphthylene 1,100 Acenaphthylene 1,100 Acenaphthene 25,000 17,000 Dibenzofuran 160,000 7,600 J Fluorene 79,000 14,000 Phenanthrene 69,000 3,400 Carbazole 320 3,400 Anthracene 2,300,000 22,000 Di-n-Butylphthalate 57,000 180 U Fluoranthene 49,000 45,000 Pyrene 140,000 8enzo(a)anthracene Chrysene 18,000 7,200 Benzo(k)fluoranthene 7,200 18,000 Indeno(1,2,3-cd)pyrene 140 18,000 Dibenz(a,h)anthracene 2,700 5,600 Benzo(a),h)rene 4,800 1-Methylnaphthalene 5,500	4-Methylphenol				400
Acenaphthylene 1,100 Acenaphthene 25,000 17,000 Dibenzofuran 160,000 7,600 J Fluorene 79,000 14,000 Phenanthrene 69,000 22,000 Carbazole 320 3,400 Anthracene 2,300,000 22,000 Di-n-Butylphthalate 57,000 180 U Fluoranthene 49,000 45,000 Pyrene 140,000 8enzo(a)anthracene Chrysene 18,000 21,000 Benzo(a)anthracene 7,200 8enzo(a)pyrene Benzo(k)fluoranthene 7,200 18,000 Indeno(1,2,3-cd)pyrene 140 18,000 Dibenz(a,h)anthracene 2,700 5,600 Dibenz(a,h)anthracene 2,700 4,800 I-Metrylnaphthalene 4,800 4,800	Naphthalene	4,500			10,000
Acenaphthene 25,000 17,000 Dibenzofuran 160,000 7,600 J Fluorene 79,000 14,000 Phenanthrene 69,000 3,400 Carbazole 320 3,400 Anthracene 2,300,000 22,000 Di-n-Butylphthalate 57,000 180 U Fluoranthene 49,000 45,000 Pyrene 140,000 80,000 Benzo(a)anthracene 18,000 21,000 Chrysene 13,000 80,000 Benzo(b)fluoranthene 7,200 18,000 Benzo(k)fluoranthene 7,200 18,000 Benzo(a)pyrene 140 18,000 Dibenz(a,h)anthracene 2,700 8enzo(k)fluoranthene Benzo(g),hi)perylene 4,800 1-Mettylnaphthalene 4,800	2-Methylnaphthalene	320,000			6,700
Dibenzofuran 160,000 7,600 J Fluorene 79,000 14,000 Phenanthrene 69,000 69,000 Carbazole 320 3,400 Anthracene 2,300,000 22,000 Di-n-Butylphthalate 57,000 180 U Fluoranthene 49,000 45,000 Pyrene 140,000 40,000 Benzo(a)anthracene 18,000 21,000 Chrysene 13,000 8enzo(k)fluoranthene 7,200 Benzo(k)fluoranthene 7,200 18,000 1,3000 Benzo(k)fluoranthene 2,700 18,000 1,3000 Benzo(k)fluoranthene 2,700 18,000 1,48,000 Indeno(1,2,3-cd)pyrene 140 18,000 1,000 Dibenz(a,h)anthracene 2,700 5,600 1,000 Benzo(g),h.j)perylene 4,800 1,000 1,800	Acenaphthylene				1,100
Fluorene 79,000 14,000 Phenanthrene 69,000 69,000 Carbazole 320 3,400 Anthracene 2,300,000 22,000 Di-n-Butylphthalate 57,000 180 U Fluoranthene 49,000 45,000 Pyrene 140,000 8enzo(a)anthracene Chrysene 140,000 40,000 Benzo(a)anthracene 18,000 21,000 Benzo(a)anthene 7,200 8enzo(a)pyrene 140 Benzo(a)pyrene 140 18,000 18,000 Indeno(1,2,3-cd)pyrene 5,600 5,600 Dibenz(a,h)anthracene 2,700 5,600 Benzo(g,h,i)perylene 4,800 4,800	Acenaphthene	25,000			17,000
Phenanthrene 69,000 Carbazole 320 3.400 Anthracene 2,300,000 22,000 Di-n-Butylphthalate 57,000 180 U Fluoranthene 49,000 45,000 Pyrene 140,000 40,000 Benzo(a)anthracene 18,000 21,000 Chrysene 21,000 8enzo(b)fluoranthene 13,000 Benzo(k)fluoranthene 7,200 8enzo(a)pyrene 140 Indeno(1,2,3-cd)pyrene 140 18,000 18,000 Indeno(1,2,3-cd)pyrene 4,800 14,800 14,800 I-Metrylnaphthalene 4,800 5,500 14,800	Dibenzofuran	160,000			7,600 J
Carbazole 320 3.400 Anthracene 2,300,000 22,000 Di-n-Butylphthalate 57,000 180 U Fluoranthene 49,000 45,000 Pyrene 140,000 40,000 Benzo(a)anthracene 18,000 21,000 Chrysene 13,000 8enzo(k)fluoranthene 13,000 Benzo(b)fluoranthene 7,200 13000 Benzo(a)pyrene 140 18,000 Dibenz(a,h)anthracene 2,700 8enzo(k)fluoranthene Benzo(g),hi,)perylene 2,700 4,800 1-Mettylnaphthalene 4,800 5,500	Fluorene	79,000			14,000
Anthracene 2,300,000 22,000 Di-n-Butylphthalate 57,000 180 U Fluoranthene 49,000 45,000 Pyrene 140,000 40,000 Benzo(a)anthracene 18,000 21,000 Chrysene 140,000 80,000 Benzo(a)anthracene 13,000 80,000 Benzo(b)fluoranthene 7,200 80,000 Benzo(k)fluoranthene 7,200 18,000 Indeno(1,2,3-cd)pyrene 5,600 2,700 Benzo(g,h,i)perylene 4,800 1-Methylnaphthalene 5,500	Phenanthrene				69,000
Di-n-Butylphthalate 57,000 180 U Fluoranthene 49,000 45,000 Pyrene 140,000 40,000 Benzo(a)anthracene 18,000 18,000 Chrysene 21,000 13,000 Benzo(b)fluoranthene 7,200 18,000 Benzo(a)pyrene 140 18,000 Indeno(1,2,3-cd)pyrene 5,600 2,700 Benzo(g,h,i)perylene 4,800 4,800	Carbazole	320			3,400
Fluoranthene 49,000 45,000 Pyrene 140,000 40,000 Benzo(a)anthracene 18,000 21,000 Chrysene 21,000 8enzo(b)fluoranthene 13,000 Benzo(b)fluoranthene 7,200 8enzo(a)pyrene 140 Dibenz(a,h)anthracene 2,700 8enzo(g,h,i)perylene 2,700 Jihono(1,2,3-cd)pyrene 4,800 1-Methylnaphthalene 5,500	Anthracene	2,300,000			22,000
Pyrene 140,000 40,000 Benzo(a)anthracene 18,000 18,000 Chrysene 21,000 8enzo(b)fluoranthene 13,000 Benzo(b)fluoranthene 7,200 13,000 18,000 Benzo(a)pyrene 140 18,000 140,000 Indeno(1,2,3-cd)pyrene 5,600 2,700 Benzo(g,h,i)perylene 4,800 1-Methylnaphthalene	Di-n-Butylphthalate	57,000			180 U
Benzo(a)anthracene 18,000 Chrysene 21,000 Benzo(b)fluoranthene 13,000 Benzo(b)fluoranthene 7,200 Benzo(a)pyrene 140 Indeno(1,2,3-cd)pyrene 5,600 Dibenz(a,h)anthracene 2,700 Benzo(g),h)perylene 4,800 1-Methylnaphthalene 5,500	Fluoranthene	49,000			45,000
Chrysene 21,000 Benzo(b)fluoranthene 13,000 Benzo(k)fluoranthene 7,200 Benzo(a)pyrene 140 Indeno(1,2,3-cd)pyrene 5,600 Dibenz(a,h)anthracene 2,700 Benzo(g,h,i)perylene 4,800 1-Methylnaphthalene 5,500	Pyrene	140,000			40,000
Benzo(b)fluoranthene 13,000 Benzo(k)fluoranthene 7,200 Benzo(a)pyrene 140 18,000 Indeno(1,2,3-cd)pyrene 5,600 2,700 Benzo(a,h)anthracene 2,700 8enzo(a,h)perylene 4,800 1-Methylnaphthalene 5,500 1 1	Benzo(a)anthracene				18,000
Benzo(k)fluoranthene 7,200 Benzo(a)pyrene 140 18,000 Indeno(1,2,3-cd)pyrene 5,600 2,700 Dibenz(a,h)anthracene 2,700 8enzo(g,h,i)perylene 4,800 1-Methylnaphthalene 5,500 1 1	Chrysene				21,000
Benzo(a)pyrene 140 18,000 Indeno(1,2,3-cd)pyrene 5,600 5,600 Dibenz(a,h)anthracene 2,700 8enzo(g,h,i)perylene 4,800 1-Methylnaphthalene 5,500 5,500 1	Benzo(b)fluoranthene				13,000
Indeno(1,2,3-cd)pyrene 5,600 Dibenz(a,h)anthracene 2,700 Benzo(g,h,i)perylene 4,800 1-Methylnaphthalene 5,500	Benzo(k)fluoranthene				7,200
Dibenz(a,h)anthracene 2,700 Benzo(g,h,i)perylene 4,800 1-Methylnaphthalene 5,500	Benzo(a)pyrene	140			18,000
Benzo(g,h,i)perylene 4,800 1-Methylnaphthalene 5,500	Indeno(1,2,3-cd)pyrene				5,600
1-Methylnaphthalene 5,500	Dibenz(a,h)anthracene				2,700
	Benzo(g,h,i)perylene				4,800
TEQ 140 22860	1-Methylnaphthalene				5,500
	TEQ	140			22860

(a) See Table 5 for criteria used to develop preliminary cleanup levels.
 (b) Samples collected from boring B-31A; no samples were collected from boring B-31B (see Table 1).
 U = Indicates the compound was undetected at the reported concentration.
 J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
 E = The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate.

E = The concentration indicated for this analyte is Bold = Detected compound. Box = Exceedance of preliminary cleanup level. mg/kg = Milligrams per kilogram μg/kg = Micrograms per kilogram

Page 10 of 10

TABLE 5 PRELIMINARY SOIL CLEANUP LEVELS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

	Protection of	Method B: Unres For soil from	way (Ingestion Only) stricted Land Use 0 - 15 ft BGS rmula Values		Background Soil Metals Concentrations		Preliminary Cleanup		
Analyte	Groundwater and Marine Surface Water (Fixed Parameter 3-Phase Model) mg/kg	Carcinogen mg/kg	Non-carcinogen mg/kg	Preliminary Cleanup Levels (Before adjustment for background) mg/kg	Puget Sound Region 90th Percentile value mg/kg	Preliminary Cleanup Levels (After adjustment for background) mg/kg	Levels (After adjustment for total site risk) mg/kg	Preliminary Cleanup Levels in Final Units	Units
ТРН									
Gasoline-Range Petroleum Hydrocarbons	(b) (c)		30 (b,c)	30		30		30	mg/kg
Diesel-Range Petroleum Hydrocarbons	(b)		2,000 (b)	2,000		2,000		2,000	mg/kg
Motor Oil-Range Petroleum Hydrocarbons	(b)		2,000 (b)	2,000		2,000		2,000	mg/kg
TOTAL METALS									
Arsenic	0 034	0.67	24	0.034	7	7		7	mg/kg
Chromium	1,000,000		120,000 (d)	120,000	42 (e)	120,000		120,000	mg/kg
Lead	3,000		250 (b)	250	17	250		250	mg/kg
Cadmium	0.69		80	0.69	1	1		1	mg/kg
Zinc	(h)		24,000	24,000	86	24,000		24,000	mg/kg
Copper	(h)		3,000	3,000	36	3,000		3,000	mg/kg
Mercury	0 026		24	0.026	0.07	0.07		0.07	mg/kg
втех									
Benzene	0.0045	18.0	320	0.0045		0.0045		4.5	µg/kg
Toluene	4.60		6,400	4.6		4.6	0.58	580	µg/kg
E hylbenzene	6.10		8,000	6.1		6.1	2.4	2,400	µg/kg
Total Xylenes	15.0		16,000	15		15		15,000	µg/kg
PAHs									
Naph halene	4.5		1,600	4.5		4.5		4,500	µg/kg
2-Methylnaphthalene	(a)		320	320		320		320,000	µg/kg
1-Methylnaphthalene	(a)								
Acenaphthylene	(a)								
Acenaphthene	98		4,800	98		98	25	25,000	µg/kg
Fluorene	100		3,200	100		100	79	79,000	µg/kg
Phenanthrene	(a)								µg/kg
Anthracene	2,300		24,000	2,300		2,300		2,300,000	µg/kg

Page 1 of 3

TABLE 5 PRELIMINARY SOIL CLEANUP LEVELS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

Analyte	Protection of Groundwater and Marine Surface Water (Fixed Parameter 3-Phase Model) mg/kg	Method B: Unre For soil from	way (Ingestion Only) stricted Land Use n 0 - 15 ft BGS mmula Values Non-carcinogen mg/kg	Preliminary Cleanup Levels (Before adjustment for background) mg/kg	Background Soil Metals Concentrations Puget Sound Region 90th Percentile value mg/kg	Preliminary Cleanup Levels (After adjustment for background) mg/kg	adjustment	Preliminary Cleanup Levels in Final Units	Units
Fluoran hene	630		3,200	630		630	49	49,000	µg/kg
Pyrene	660		2,400	660		660	140	140,000	µg/kg
Benzo(a)anthracene	(f)	(g)		(g)		(g)		(g)	µg/kg
Chrysene	(f)	(g)		(g)		(g)		(g)	µg/kg
Benzo(b)fluoranthene	(f)	(g)		(g)		(g)		(g)	µg/kg
Benzo(k)fluoranthene	(f)	(g)		(g)		(g)		(g)	µg/kg
Benzo(a)pyrene	0.23	0.14		0.14		0.14		140	µg/kg
Indeno(1,2,3-cd)pyrene	(f)	(g)		(g)		(g)		(g)	µg/kg
Dibenz(a,h)anthracene	(f)	(g)		(g)		(g)		(g)	µg/kg
Benzo(g,h,i)perylene	(a)								
Dibenzofuran	(a)		160	160		160		160,000	µg/kg
SVOCs									
Phenol	22		48,000	22		22		22,000	µg/kg
4-Methylphenol	(a)								
Di-n-butylphthalate	57		8000	57		57		57,000	µg/kg
Carbazole	0.32	50		0.32		0.32		320	µg/kg
DIOXINS/FURANS									
2,3,7,8-TCDD	0.0000027	0.000011		0.0000027		0 00000027		0.27	ng/kg

TABLE 5 PRELIMINARY SOIL CLEANUP LEVELS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

Notes:

Screening level based on lowest of soil concentrations for protection of groundwater and protection of human direct contact (Method B standard formula values for carcinogens and non-carcinogens).

Cleanup levels are developed for all constituents detected above laboratory reporting limits in soil.

Shading indicates basis for cleanup level.

--- = No screening criteria available.

mg/kg = Milligrams per kilogram.

µg/kg = Micrograms per kilogram.

ng/kg = Nanograms per kilogram.

(a) Values for K_{oc} and Henry's Law Constant are not available; therefore, cleanup levels protec ive of groundwater can not be calculated using the three-phase partitioning model.

(b) MTCA Method A soil cleanup levels are used for gasoline-range, diesel-range, motor oil-range petroleum hydrocarbons, and lead.

(c) For gasoline-range petroleum hydrocarbons, if benzene is present. If benzene is not present, screening level is 100 mg/kg.

(d) Value is for chromium III. Based on site history, chormium VI is not expected to be present.

(e) Value is for total chromium.

(f) If toxicity equivalency factors (TEFs) are considered, cleanup levels protective of groundwater for other cPAHs are less than the value for benzo(a)pyrene.

(g) Evaluated using toxicity equivalency quotient (TEQ) based on benzo(a)pyrene.

(h) Based on an empirical demonstration (Appendix H), the existing concentrations of copper and zinc in soil are protective of groundwater. Therefore, Me hod B soil standard formula values for unrestricted land use will be used as the preliminary soil cleanup levels for copper and zinc at the Property.

Page 3 of 3

TABLE 6 CONSTITUENTS DETECTED IN SOIL AT CONCENTRATIONS GREATER THAN THE PRELIMINARY CLEANUP LEVELS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

	Preliminary Cleanup Level (a)	B-1-9-9.5 MK66A 2/27/2008	B-2-9-9.5 MK66B 2/27/2008	B-2-20-21 MK66G 2/27/2008	B-3-7.5-8.5 MK66H 2/27/2008	B-4-6-7 MK66C 2/27/2008	B-5-10-11 MK66D 2/27/2008	B-6-6-6.5 MK66E 2/27/2008	B-7-6-7 MK66F 2/27/2008	B-8-5-6 MK82A 2/28/2008	B-9-5.5-6.5 MK82B 2/28/2008	B-10-7-8 MK82C 2/28/2008	B-11-6-6.5 MK82D 2/28/2008	B-12-6-7 MK82E 2/28/2008	B-13-5-5.75 MK82F 2/28/2008	B-14-5-6.33 MK82G 2/28/2008	B-15-5-6 33 MK82H 2/28/2008	B-16-5-6 ML02A 2/29/2008	B-17-5-6 ML02B 2/29/2008	B-18-7-8 ML02C 2/29/2008	B-19-6-6.75 ML02D 2/29/2008
NWTPH-DxSG (mg/kg) Diesel Range Hydrocarbons Motor Oil	2,000 2,000		88 440	8,600 2,300	22 63					15 68			58 560	65 82	90 630	65 500		19 150	370 160	92 98	19 44
NWTPH-GX (mg/kg) Gasoline	30													13 U				18	1,900	1,500	54
TOTAL METALS (mg/kg) Method 6000/7000 series Arsenic Mercury	7 0.07	6 U 0.07	10 U 0.08 U		<u>9</u> 0.05	6 U 0.05 U	6 U 0.06 U	6 U 0 06 U	6 U 0.07	7 U 0.06 U		6 U 0.10	30 U 0.09 U	8 U 0.06 U		5 U 0.06	50 U 0.08	5 U 0.16	20 U 0.08	20 U 0.05 U	
BTEX (µg/kg) Method SW8021BMod Benzene Toluene E hylbenzene Total Xylenes	4.5 580 2,400 15,000																	13 U 13 U 13 U 13 U ND	1,900 1,800 3,200 7,000	420 1,000 1,800 6,600	18 U 18 U 18 U ND
PAHs (µg/kg) Method SW8270D/SW8270DSIM Naph halene 2-Methylnaphthalene Acenaphthene Fluorene Fluoran hene Pyrene Benzo(a)pyrene Dibenzofuran TEQ	A 4,500 320,000 25,000 79,000 49,000 140,000 140 160,000 140	64 U 64 U 64 U 64 U 64 U 64 U 64 U 64 U	300 580 66 66 U 450 290 66 U 180 30		64 U 64 U 64 U 64 U 64 U 64 U 64 U 64 U	63 U 63 U 63 U 63 U 63 U 63 U 63 U 63 U			64 U 64 U 64 U 64 U 64 U 64 U 64 U 64 U	66 U 66 U 66 U 310 230 140 66 U 189	64 U 64 U	66 U 66 U 66 U 66 U 66 U 66 U 66 U 66 U	64 U 100 110 1,700	66 U 80 66 U 200 170 120 66 U 151	64 U 75 89 1,200 810 410	65 U 65 U 150 7,200 3,500 2,200 140 3,048	280 330 730 830 6,200 4,100 2,000 290 2,606	83 78 240 300 3,800 2,800 1,800 120 2,453	1,600 3,000 220 2,900 2,500 1,100 150 1,435	1,000 1,200 66 U 66 U 66 U 66 U 66 U 66 U ND	64 U 280 210 120
SEMIVOLATILES (µg/kg) Method SW8270D Naph halene Carbazole Benzo(a)pyrene TEQ	4,500 320 140 140																				

TABLE 6 CONSTITUENTS DETECTED IN SOIL AT CONCENTRATIONS GREATER THAN THE PRELIMINARY CLEANUP LEVELS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

	Preliminary Cleanup Level (a)	B-20-6.5-8 ML02E 2/29/2008	B-21-19-20 ML02F 2/29/2008	B-23-4.6-6.7 NT63B 10/8/2008	B-23-5.0 NT63A 10/8/2008	B-23-16.0-20.0 NT63C 10/8/2008	B-24-2.2-3.0 NT61M 10/7/2008	B-24-7.0-8.0 NT61O 10/7/2008	B-24-7.5 NT61N 10/7/2008	B-26-4.0-7.6 NT63F 10/8/2008	B-26-7 5 NT63E 10/8/2008	B-26-16-19 NT63J 10/8/2008	B-26-17.0 NT63I 10/8/2008	B-27-8.0-8.3 NT61I 10/7/2008	B-27-8.0 NT61H 10/7/2008	B-27-16.5-17.5 NT61K 10/7/2008	B-27-17.0 NT61J 10/7/2008	B-28-4.2-7.0 NT61F 10/7/2008	B-28-5.0 NT61G 10/7/2008
NWTPH-DxSG (mg/kg) Diesel Range Hydrocarbons Motor Oil	2,000 2,000	51 190																	
NWTPH-GX (mg/kg) Gasoline	30	1,200			6,100				1,400		1,200		4,300		140		17		1,600
TOTAL METALS (mg/kg) Method 6000/7000 series Arsenic Mercury	7 0.07	20 U 0 06 U	10 U 0.07 U																
BTEX (µg/kg) Method SW8021BMod Benzene Toluene E hylbenzene Total Xylenes	4.5 580 2,400 15,000	200 180 240 1,570			57,000 34,000 5,900 61,000				350 390 29 U 3,300	I	6,400 810 2,600 2,050		730 1,100 3,600 3,800		65 40 15 U 152	J	22 U 22 U 22 U ND		<u>160</u> 190 21 ∪ 1,140
PAHs (µg/kg) Method SW8270D/SW8270DSIN Naph halene 2-Methylnaphthalene Acenaphthene Fluorene Fluoran hene Pyrene Benzo(a)pyrene Dibenzofuran TEQ	A 4,500 320,000 25,000 79,000 49,000 140,000 140 160,000 140	66 U 66 U 66 U 66 U 66 U 66 U 66 U 66 U		5,500,000 760,000 300,000 1,200,000 5,000,000 5,300,000 1,700,000 810,000 2,212,000		120 74 60 U 60 U 60 U 60 U 60 U 60 U ND	610	1,100 1,300 64 74 610 440 220 240 286		4,100 9,500 100 780 680 540 470 711		1,900 5,300 190 U 190 U 190 U 210 190 U 190 U ND		360 1,200 82 110 980 670 410 110 549		330 210 93 240 650 420 180 200 230		2,300 2,100 62 U 62 U 62 U 62 U 62 U 120 ND	
SEMIVOLATILES (µg/kg) Method SW8270D Naph halene Carbazole Benzo(a)pyrene TEQ	4,500 320 140 140																		

TABLE 6CONSTITUENTS DETECTED IN SOIL AT CONCENTRATIONS GREATER THAN THE PRELIMINARY CLEANUP LEVELSNORTH LOT DEVELOPMENTSEATTLE, WASHINGTON

	Preliminary Cleanup Level (a)	B-30-0.3-4.0 NT61D 10/7/2008	B-30-8.0-10.5 NT61E 10/7/2008	B-31-0.3-4.0 (b) NT61C 10/7/2008	B-31-8.0-10.0 (b) NU11C 10/10/2008	B-32-0.2-2.0 NT61A 10/7/2008	B-32-8.0-10.5 NT61B 10/7/2008	B-33-17.5-18.5 NU11B 10/10/2008	B-36-19 3-20.0 NT85I 10/9/2008	B-36-19.8 NT85H 10/9/2008	B-38-21.5-22.4 NT85E 10/9/2008	B-38-22.0 NT85D 10/9/2008	B-38-22.4-23.0 NT85F 10/9/2008	B-39-21.0-22.3 NT85J 10/9/2008	B-40-24.5-26.0 NT63G 10/8/2008	B-40-25.0 NT63H 10/8/2008	B-41-16.5 NT85A 10/9/2008	B-41-20.0-21.0 NT85B 10/9/2008	B-44-17.5-18.5 NT85K 10/9/2008
NWTPH-DxSG (mg/kg) Diesel Range Hydrocarbons Motor Oil	2,000 2,000		49 310	200 1,200		160 2,300			2,900 690		690 220		59 42	220 130	49 150			2,000 480	130 130
NWTPH-GX (mg/kg) Gasoline	30									38		2,000				4.5 U	32		
TOTAL METALS (mg/kg) Method 6000/7000 series Arsenic Mercury	7 0.07	2.4 0.10	1.6 0.05 U	1.9 0.08	9.6 0.05	2.1 0.34	2.3 0.06 L	5.0 J 1.88											
BTEX (μg/kg) Method SW8021BMod Benzene Toluene E hylbenzene Total Xylenes	4.5 580 2,400 15,000									28 U 35 170 290	I	5,200 6,100 35,000 48,000				11 U 11 U 11 U ND	93		
PAHs (µg/kg) Method SW8270D/SW8270DSIM Naph halene 2-Methylnaphthalene Acenaphthene Fluorene Fluorene Fluoran hene Pyrene Benzo(a)pyrene Dibenzofuran TEQ	4,500 320,000 25,000 79,000 49,000 140,000 140 160,000 140	180 U 180 U 280 320 12,000 6,600 3,100 180 4,233	58 U 58 U 58 U 58 U 95 74 58 U 58 U 58 U ND	170 U 170 U 170 U 1,300 J 1,400 J 610 J	190 U 190 U 230 420 3,500 3,700 J 1,400 190 U 1,804	180 U 180 U 180 U 180 U 540 330 180 U 180 U 3	59 L 59 L 59 L 59 L 59 L 59 L 59 L	J 320 J 470 J 2,400 J J 3,000 J J 1,200	1,400,000 500,000 320,000 U 320,000 U 320,000 U 320,000 U 320,000 U 320,000 U ND		1,700,000 590,000 380,000 240,000 310,000 330,000 100,000 U 5,500		49,000 9,100 4,700 4,000 7,300 6,900 3,300 1,300 4,232	170,000 51,000 28,000 16,000 11,000 E 12,000 E 3,800 4,900 4,517	23,000 8,100 4,100 4,100 4,900 5,900 2,200 900 2,807			1,500,000 460,000 260,000 180,000 200,000 220,000 160,000 U 160,000 U ND	1,200 J 2,100 170 290 830 J 700 J 380 510 J 488
SEMIVOLATILES (μg/kg) Method SW8270D Naph halene Carbazole Benzo(a)pyrene TEQ	4,500 320 140 140																		

TABLE 6 CONSTITUENTS DETECTED IN SOIL AT CONCENTRATIONS GREATER THAN THE PRELIMINARY CLEANUP LEVELS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

	Preliminary Cleanup Level (a)	B-44-21 5-22.5 NU11A 10/10/2008	B-45-8.0-10.0 NU11E 10/10/2008	B-45-8.5 NU11D 10/10/2008	B-47-21.5-21.9 NU11G 10/10/2008	B-47-21.8 NU11F 10/10/2008	B50A-15-16 PI35A 7/28/2009	B51-5 PI35C 7/28/2009	B51-15-16 PI35B 7/28/2009	B52-6.5 PI35E 7/28/2009	B52-15-16 PI35D 7/28/2009	B53-15-16 PI35F 7/28/2009	B54-4 PI35H 7/28/2009	B54-15-16 Pl35G 7/28/2009	B-55-8-9 PJ46A 8/6/2009	B-56-9-10 PJ46B 8/6/2009	B57-1-2 PI16A 7/27/2009	B57-10-15 PI16B/PI54A 7/27/2009	B57-15-16 PI16C 7/27/2009	B58-1-2 PI16D 7/27/2009
NWTPH-DxSG (mg/kg) Diesel Range Hydrocarbons Motor Oil	2,000 2,000	400 860			140 J 310													100 470		
NWTPH-GX (mg/kg) Gasoline	30			4.4 L	I	11 U	60	3200	1600	760	12	5.5 U	180	11	4.4 U	3.8 U		20		
TOTAL METALS (mg/kg) Method 6000/7000 series Arsenic Mercury	7 0.07																7 0.05			5 U 0.59
BTEX (µg/kg) Method SW8021BMod Benzene Toluene E hylbenzene Total Xylenes	4.5 580 2,400 15,000			11 L 11 L 11 L ND	I	32 48 27 U ND	22 U 81 J 55 170	460 2200 1400 5500	120 U 700 510 1840	79 110 430 970	53 26 20 242	14 U 18 14 U ND	17 L	I	11 U 11 U 11 U 160	9.5 U 9.5 U 9.5 U 9.5 U ND				
PAHs (µg/kg) Method SW8270D/SW8270DSIM Naph halene 2-Methylnaphthalene Acenaphthene Fluorene Fluoran hene Pyrene Benzo(a)pyrene Dibenzofuran TEQ	4,500 320,000 25,000 79,000 49,000 140,000 140 160,000 140	5,000 1,100 J 2,000 2,400 20,000 17,000 J 9,700 1,700 12,387	60 U 60 U 60 U 280 230 J 78 60 U 102		500 150 J 480 320 1,900 1,600 J 1,000 130 1,291														100 180 19 48 120 J 130 96 50 125	
SEMIVOLATILES (µg/kg) Method SW8270D Naph halene Carbazole Benzo(a)pyrene TEQ	4,500 320 140 140																1300 140 120 176			59 U 59 U 59 U ND

TABLE 6 CONSTITUENTS DETECTED IN SOIL AT CONCENTRATIONS GREATER THAN THE PRELIMINARY CLEANUP LEVELS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

	Preliminary Cleanup Level (a)	B58-15-16 PI16E 7/27/2009	B59-1-2 Pl16K 7/27/2009	B60-1-2 Pl16F 7/27/2009	B60-15-16 PI16G 7/27/2009	B61-1-2 PI16H 7/27/2009	B62-1-2 PI35I 7/28/2009	B63-1-2 PI35J 7/28/2009	B64-1-2 Pl16L 7/27/2009	B65-1-2 PI16I 7/27/2009	B66-1-2 PI35K 7/28/2009	B67-1-2 Pl16J 7/27/2009	B68-1-2 Pl35L 7/28/2009	MW-11-4.5-5 Pl99A 8/3/2009	MW-14-15 PJ11A 8/4/2009	MW-17D-1 PJ11B/F 8/4/20
NWTPH-DxSG (mg/kg) Diesel Range Hydrocarbons Motor Oil	2,000 2,000															
NWTPH-GX (mg/kg) Gasoline	30													250		
TOTAL METALS (mg/kg) Method 6000/7000 series Arsenic Mercury	7 0.07		7 0.12	7 0.05		6 0.02 U	10 U 0.04	5 U 0.05	<u>8</u> 0.06	<u>30</u> 0.05	5 0.02	7 0.02	6 0.08			
BTEX (μg/kg) Method SW8021BMod Benzene Toluene E hylbenzene Total Xylenes	4.5 580 2,400 15,000													20 48 170 340		
PAHs (µg/kg) Method SW8270D/SW8270DSIM Naph halene 2-Methylnaphthalene Acenaphthene Fluorene Fluoran hene Pyrene Benzo(a)pyrene Dibenzofuran TEQ	A 4,500 320,000 25,000 79,000 49,000 140,000 140 160,000 140	210 150 140 J 370 J 2000 J 1600 790 170 J 1,039	I		28 12 5.8 19 1400 J 1400 <u>1100</u> 8.6 1,433										160 81 74 100 2,200 1,600 700 90 969	1, 1, 3, 2, 8, 7, 4, 1, 5,
SEMIVOLATILES (µg/kg) Method SW8270D Naph halene Carbazole Benzo(a)pyrene TEQ	4,500 320 140 140		270 64 U 64 U ND			130 62 ∪ 90 117	61 U 61 U 160 219	130 300 1200 1559	59 U 59 U 59 U	58 U	64 U	71 60 ∪ 220 278	65 L 65 L 65 L	I		10, 3, 18, 22

(a) See Table 5 for criteria used to develop preliminary cleanup levels.(b) Samples collected from boring B-31A; no samples were collected from boring B-31B (see Table 1).

U = Indicates he compound was undetected at the reported concentration.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

E = The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an es imate.

Bold = Detected compound.

Box = Exceedance of preliminary cleanup level.

Page 5 of 5

D-15.5-16.5 1B/PJ23A 4/2009

> 400 160

8 0.48

1,900 1,900 1,400 3,300 2,900 8,900 7,700 4,200 1,400 5,425

10,000
3,400
18,000
22860

TABLE 7 DIOXIN/FURAN ANALYTICAL RESULTS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

	Preliminary Cleanup Levels	B62-1-2 PI35I 7/28/2009	B65-1-2 PI16I 7/27/2009
DIOXIN AND FURANS (ng/kg)			
Method 8290			
2,3,7,8-TCDD		8.25 UJ	12.4 UJ
1,2,3,7,8-PeCDD		41.2 UJ	62.2 UJ
1,2,3,4,7,8-HxCDD		41.2 UJ	62.2 UJ
1,2,3,6,7,8-HxCDD		41.2 UJ	62.2 UJ
1,2,3,7,8,9-HxCDD		41.2 UJ	62.2 UJ
1,2,3,4,6,7,8-HpCDD		7.70 J	131 J
OCDD		50.5 J	1020 J
2,3,7,8-TCDF		8.25 UJ	12.4 UJ
1,2,3,7,8-PeCDF		41.2 UJ	62.2 UJ
2,3,4,7,8-PeCDF		41.2 UJ	92.1 J
1,2,3,4,7,8-HxCDF		41.2 UJ	62.2 UJ
1,2,3,6,7,8-HxCDF		41.2 UJ	19.3 J
2,3,4,6,7,8-HxCDF		41.2 UJ	19.8 J
1,2,3,7,8,9-HxCDF		41.2 UJ	62.2 UJ
1,2,3,4,6,7,8-HpCDF		41.2 UJ	115 J
1,2,3,4,7,8,9-HpCDF		41.2 UJ	62.2 UJ
OCDF		82.5 UJ	198 J
Total TCDD		8.25 UJ	12.4 UJ
Total PeCDD		41.2 UJ	62.2 UJ
Total HxCDD		41.2 UJ	76.0 J
Total HpCDD		15.7 J	214 J
Total TCDF		8.25 UJ	110 J
Total PeCDF		41.2 UJ	795 J
Total HxCDF		41.2 UJ	583 J
Total HpCDF		41.2 UJ	315 J
TEQ (ND=0)	0 27	0.0922 J	34.4 J

 $\mathsf{U}=\mathsf{Indicates}$ the compound was undetected at the reported concentration.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

Bold = Detected compound.

Box = Exeedance of preliminary cleanup level.

TEQ = Total toxic equivalent concentration of 2,3,7,8 TCDD.

	Preliminary Cleanup Levels (a)	B-1 MK66I 2/27/2008	B-2 MK66M 2/27/2008	B-3 MK66J 2/27/2008	B-6 MK66K 2/27/2008	B-7 MK66L 2/27/2008	B-8 MK82I 2/28/2008	B-9 MK82J 2/28/2008	B-10 MK82K 2/28/2008	B-11 MK82L 2/28/2008	B-12 MK82M 2/28/2008	B-14 MK82N 2/28/2008	B-18 ML02H 2/29/2008	B-19 ML02I 2/29/2008	B-26 NT63K 10/7/2008	N 10
NWTPH-HCID (mg/L)																
Gas	0.8														>0.25	
Diesel	0.5														0.63 U	
Oil	0.5														0.63 U	
NWTPH-DxSG (mg/L)																
Diesel Range Organics	0.5	0.25 U	0.25 U	0.25 U	0.25 U	0 25 U	0.25 U									
Motor Oil	0.5	0.50 U	0.50 U	0.20 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0 50 U	0.50 U		
	0.0	0.00 0	0.00 0	0.00.0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00.0	0.00 0		
NWTPH-GX (mg/L)		0.05.11	0.05.11	0.05.11	0.05.11	0.05.11	0.05.11	0.05.11	0.05.11	0.05.11	0.05.11	0.05.11		0.05.11		
Gasoline	0.8	0.25 U	0.25 U	0.25 U	0.25 U	1.3	0.25 U									
BTEX (µg/L)																
Method SW8021BMod																
Benzene	0.8															
Toluene	80															
E hylbenzene	275															
m,p-Xylene																
o-Xylene																
Total Xylenes	1600															
PAHs (µg/L)																
Method SW8270D/SW8270DSIM																
Naph halene	160	1.0 U	43	1.0 U	1.0 U	1.0 U	1.0 U	1.4 U	1.0 U	3.1	1.0 U	1.0 U	1.0 U	1 0 U		
2-Methylnaphthalene	32	1.0 U	5.1	1.0 U	1.0 U	1.0 U	1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U		
1-Methylnaphthalene	02	1.0 U	3.2	1.0 U	1.0 U	1.0 U	1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U		
Acenaphthylene		1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U		10 U							
Acenaphthene	250	1.0 U	1.5	1.0 U	1.0 U	1.0 U	1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U		10 U		
Fluorene	500	1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U							
Phenanthrene	000	1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10U							
Anthracene	4800	1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10U							
Fluoran hene	50	1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U		10U							
Pyrene	100	1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U		10U							
Benzo(a)anthracene	100	1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U							
Chrysene		1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U		10 U							
Benzo(b)fluoranthene		1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U		10 U							
Benzo(b)fluoranthene		1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U 1.0 U	1.4 U 1.4 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U		10 U		
	0.012	1.0 U 1.0 U	1.0 U	1.4 U 1.4 U			1.0 U 1.0 U	1.0 U 1.0 U		10 U						
Benzo(a)pyrene	0.012	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U				1.4 U 1.4 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U		10 U		
Indeno(1,2,3-cd)pyrene					1.0 U	1.0 U	1.0 U									
Benzo(g,h,i)perylene	20	1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U							
Dibenzofuran	32	1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U							
TEQ	0.012	ND	ND	ND	ND	ND	ND									

B-27	B-38	B-41
NT61L	NT85G	NT85C
10/7/2008	10/9/2008	10/9/2008
0.25 U	>50	1.0 U
0.63 U	>120	>2.5
0.63 U	>120	2.5 U
	310 150	3.6 2.5 U

	Preliminary Cleanup Levels (a)	B-1 MK66I 2/27/2008	B-2 MK66M 2/27/2008	B-3 MK66J 2/27/2008	B-6 MK66K 2/27/2008	B-7 MK66L 2/27/2008	B-8 MK82I 2/28/2008	B-9 MK82J 2/28/2008	B-10 MK82K 2/28/2008	B-11 MK82L 2/28/2008	B-12 MK82M 2/28/2008	B-14 MK82N 2/28/2008	B-18 ML02H 2/29/2008	B-19 ML02I 2/29/2008	B-26 NT63K 10/7/2008	E N 10/
DISSOLVED METALS (µg/L)																
Method 200.8/6010B/7470A						,										
Arsenic	25 (b)	29	12	20	4	40	3	25	2	10 U	1 U		3	1		
Lead	15	1 U	1 U	26	1 U	1 U	1	1 U	1 U	1 U	1 U	2	1 U	1 U		
VOLATILES (µg/L)																
Method SW8260B																
Chloromethane	3.4	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0 2 U									
Methylene Chloride	3	0.5 U	0.5 U	0.5 U	0.5 U	1.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	05 U		
Acetone	35	3.0 U	3.0 U	3.0 U	3.0 U	6.6	3.1	7.0	3.0 U	4.8	3.0 U	4.2	3.0 U	30 U		
Carbon Disulfide	400	0.2 U	0.4	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0 2 U						
Chloroform	7.2	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0 2 U									
2-Butanone	2400	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	25 U									
Benzene	0.8	0.2 U	5.3	0.2 U	0.2 U	0.2 U	0.2 U	0.4	0 2 U							
Toluene	80	0.2 U	2.2	0.2 U	0.2 U	0.2 U	0.3	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5	0 2 U		
E hylbenzene	275	0.2 U	5.9	0.2 U	0.2 U	0.2 U	0.2 U	0.2	0 2 U							
Styrene	1.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0 2 U									
m,p-Xylene		0.4 U	5.7	0.4 U	0.4 U	0.4 U	0.4 U	1.1	0.4 U							
o-Xylene		0.2 U	2.5	0.2 U	0.2 U	0.2 U	0.2 U	0.5	0 2 U							
Total Xylenes	1600	ND	8.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6	ND		
1,3,5-Trimethylbenzene	400	0.2 U	0.6	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0 2 U							
1,2,4-Trimethylbenzene	400	0.2 U	1.1	0.2 U	0.4	0.2 U	0.2 U	0.4	0 2 U							
Isopropylbenzene		0.2 U	0.2 U	0.2 U	0.2 U	1.2	0 2 U									
n-Propylbenzene		0.2 U	0.2 U	0.2 U	0.2 U	3.1	0 2 U									
tert-Butylbenzene		0.2 U	0.2 U	0.2 U	0.2 U	3.0	0 2 U									
sec-Butylbenzene		0.2 U	0.2 U	0.2 U	0.2 U	1.6	0 2 U									
4-Isopropyltoluene		0.2 U	0.8	0.3	0.2 U	0.3										
n-Butylbenzene		0.2 U	0.2 U	0.2 U	0.2 U	2.3	0 2 U									
Naph halene	160	0.5 U	68	0.5 U	6.5	0.5 U	0.5 U	0.5 U	05 U							

B-38	B-41
NT85G	NT85C
10/9/2008	10/9/2008
	NT85G

	Preliminary Cleanup Levels (a)	MW-1 OB80A 11/25/08	MW-1 PK34B 08/12/09	MW-2 OB80B 11/25/08	MW-2 PK34A 08/12/09	MW-3 OB80C 11/24/08	MW-3 PK44A 08/13/09	MW-4 OB80D 11/24/08	MW-4 PK34C 08/12/09	MW-5 OB80E 11/24/08	MW-5 PK15A 08/11/09	MW-6 OB80F 11/25/08	MW-6 PK34D 08/12/09	MW-7D OB80G 11/24/08	MW-7D PK34F 08/12/09	MW-7S OB80H 11/24/08	MW-7S PK34E 08/12/09	MW-8 OB80I 11/25/08	MW-8 PK15B 08/11/09
NWTPH-HCID (mg/L) Gas	0.8																		
Diesel	0.5																		
Oil	0.5																		
NWTPH-DxSG (mg/L)																			
Diesel Range Organics	0.5	0.25 U		0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0 25 U	0.25 U									
Motor Oil	0.5	0.50 U		0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0 50 U	0.50 U									
NWTPH-GX (mg/L)																			
Gasoline	0.8	0.25 U	0.25 U	0.25 U	0.25 U	0.37	0.28	0.25 U	0.25 U	0.25 U	0 25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0 25 U	0.25 U	0.25 U
BTEX (μg/L) Method SW8021BMod																			
Benzene	0.8		1.0 U		1.0 U		1.0 U		1.0 U										
Toluene	80		1.0 U		1.0 U		22		1.0 U		1.0 U		1.0 U		1.0 U		1.0 U		1.0 U
E hylbenzene	275		1.0 U		1.0 U		1.0 U		1.0 U										
m,p-Xylene			1.0 U		1.0 U		1.0 U		1.1										
o-Xylene	1600		1.0 U ND		1.0 U ND		1.0 U ND		1.0 U 1.1										
Total Xylenes	1600		ND		ND		ND		1.1										
PAHs (µg/L)																			
Method SW8270D/SW8270DSIM Naph halene	160	5.6	0.13	7.8	0.10 U	9.3	0.10 U	4.4	0.29	1.7	0.10 U	1.1	0.32	0.58	1.9	0.40	0.73	4.0	0.10 U
2-Methylnaphthalene	32	0.61	0.10 U	0.85	0.10 U	1.1	0.10 U	0.45	0.10 U	0.18	0.10 U	0.13	0.32 0.10 U	0.10 U	0.39	0.10 U	0.19	0.47	0.10 U
1-Methylnaphthalene	02	0.32	0.10 U	0.44	0.10 U	0.57	0.10 U	0.29	0.10 U	0.11	0.10 U	0.10 U	0.10 U	0.10 U	0.25	0.10 U	0.10	0.28	0.10 U
Acenaphthylene		0.12 U	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U						
Acenaphthene	250	0.15	0.10 U	0.20	0.10 U	0.30	0.10 U	0.39	0.26	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.15	0.10 U	0.10 U	0.11	0.10 U
Fluorene	500	0.12 U	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U						
Phenanthrene		0.12 U	0.10 U	0.12 U	0.10 U	0.17	0.10 U	0.27	0.32	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Anthracene	4800	0.12 U	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U						
Fluoran hene	50	0.12 U	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U						
Pyrene	100	0.12 U	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U						
Benzo(a)anthracene		0.12 U	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U						
Chrysene Benzo(b)fluoranthene		0.12 U 0.12 U	0.10 U 0.10 U	0.11 U 0.11 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U						
Benzo(b)huoranthene		0.12 U 0.12 U	0.10 U 0.10 U	0.11 U 0.11 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U	0.10 U 0.10 U						
Benzo(a)pyrene	0.012	0.12 U 0.12 U	0.10 U	0.11 U	0.10 U	0.10 U 0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U						
Indeno(1,2,3-cd)pyrene	0.012	0.12 U	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U						
Benzo(g,h,i)perylene		0.12 U	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U						
Dibenzofuran	32	0.12 U	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U						
TEQ	0.012	ND	ND	ND	ND	ND	ND												

	Preliminary Cleanup Levels (a)	MW-1 OB80A 11/25/08	MW-1 PK34B 08/12/09	MW-2 OB80B 11/25/08	MW-2 PK34A 08/12/09	MW-3 OB80C 11/24/08	MW-3 PK44A 08/13/09	MW-4 OB80D 11/24/08	MW-4 PK34C 08/12/09	MW-5 OB80E 11/24/08	MW-5 PK15A 08/11/09	MW-6 OB80F 11/25/08	MW-6 PK34D 08/12/09	MW-7D OB80G 11/24/08	MW-7D PK34F 08/12/09	MW-7S OB80H 11/24/08	MW-7S PK34E 08/12/09	MW-8 OB80I 11/25/08	MW-8 PK15B 08/11/09
DISSOLVED METALS (µg/L) Method 200.8/6010B/7470A																			
Arsenic	25 (b)	7	2.4	3	1.2	5	1.3	6	4.6	58	17	6	1.2	4	2.0	7	3.9	7	2.0
Lead	15	1 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOLATILES (µg/L) Method SW8260B																			
Chloromethane	3.4	0.2 U		0 2 U		0.2 U		0.2 U		0 2 U		0.2 U		0.2 U		0.2 U		0.2 U	
Methylene Chloride	3	0.5 U		05 U		0.5 U		0.5 U		05 U		0.5 U		0.5 U		0.5 U		0.5 U	
Acetone	35	3.0 U		6.2		27		10		3.6		3.4		4.1		8.4		7.5	
Carbon Disulfide	400	0.2 U		0 2 U		0.2 U		0.3		0 2 U		0.2 U		0.2 U		0.2 U		0.2 U	
Chloroform	7.2	0.2 U		0 2 U		0.2 U		0.2 U		0 2 U		0.2 U		0.5		0.2 U		0.2 U	
2-Butanone	2400	2.5 U		25 U		7.4		2.5 U		25 U		2.5 U		2.5 U		2.5 U		2.5 U	
Benzene	0.8	0.2 U		0 2 U		0.2 U		0.2 U		0 2 U		0.2 U		0.2 U		0.2 U		0.4	
Toluene	80	0.3		0 2 U		0.9		0.3		0 2 U		0.2 U		0.5		0.2 U		0.9	
E hylbenzene	275	0.2 U		0 2 U		0.2 U		0.2 U		0 2 U		0.2 U		0.2 U		0.2 U		0.4	
Styrene	1.5	0.2 U		0 2 U		0.2 U		0.2 U		0 2 U		0.2 U		0.2 U		0.2 U		0.2 U	
m,p-Xylene		0.4 U		0.4 U		0.4 U		0.4 U		0.4 U		0.4 U		0.4 U		0.4 U		1.8	
o-Xylene		0.2 U		0 2 U		0.2 U		0.2 U		0 2 U		0.2 U		0.2 U		0.2 U		0.5	
Total Xylenes	1600	ND		ND		ND		2.3											
1,3,5-Trimethylbenzene	400	0.2 U		0 2 U		0.2 U		0.2 U		0 2 U		0.2 U		0.2 U		0.2 U		0.2 U	
1,2,4-Trimethylbenzene	400	0.2 U		0 2 U		0.2 U		0.2 U		0 2 U		0.2 U		0.2 U		0.2 U		0.2 U	
Isopropylbenzene		0.2 U		0 2 U		0.2 U		0.2 U		0 2 U		0.2 U		0.2 U		0.2 U		0.2 U	
n-Propylbenzene		0.2 U		0 2 U		0.2 U		0.2 U		0 2 U		0.2 U		0.2 U		0.2 U		0.2 U	
tert-Butylbenzene		0.2 U		0 2 U		0.2 U		0.2 U		0 2 U		0.2 U		0.2 U		0.2 U		0.2 U	
sec-Butylbenzene		0.2 U		0 2 U		0.2 U		0.2 U		0 2 U		0.2 U		0.2 U		0.2 U		0.2 U	
4-Isopropyltoluene		0.2 U		7.2		130		0.4		0 2 U		0.4		0.2 U		0.2 U		36	
n-Butylbenzene		0.2 U		0 2 U		0.2 U		0.2 U		0 2 U		0.2 U		0.2 U		0.2 U		0.2 U	
Naph halene	160	0.5 U		05 U		0.5 U		0.5 U		05 U		0.5 U		0.5 U		0.5 U		0.5 U	

	Preliminary Cleanup Levels (a)	MW-88 PK15C 08/11/09	MW-9D OB80J 11/25/08	MW-9D PK34G 08/12/09	MW-9S OB80K 11/25/08	MW-9S PK34H 08/12/09	MW-10 PK44B 8/13/2009	MW-11 PK44C 8/13/2009	MW-12 PK44D 8/13/2009	MW-13 PK44E 8/13/2009	MW-14 PK44F 8/13/2009	MW-15D PK44G 8/13/2009	MW-16D PK34I 08/12/09	MW-17D PK34J 08/12/09
NWTPH-HCID (mg/L) Gas Diesel Oil	0.8 0.5 0.5													
NWTPH-DxSG (mg/L) Diesel Range Organics Motor Oil	0.5 0.5		2.0 0.50 U	0.77 0.50 U	0 25 U 0 50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0 25 U 0 50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U
NWTPH-GX (mg/L) Gasoline	0.8	0.25	9.7	2.2	0.54	0.25 U	0.25 U	0.25 U	0.30	0.25 U	0 25 U	0.25 U	0.25 U	0.25 U
BTEX (µg/L) Method SW8021BMod Benzene Toluene E hylbenzene m,p-Xylene o-Xylene Total Xylenes	0.8 80 275 1600	1.0 U 1.0 U 1.0 U 1.2 1.0 U 1.2		13 3.1 37 28 16 44		1.0 U 1.0 U 1.0 U 1.0 U 1.0 U ND	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U ND	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U ND	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U ND	10 U 10 U 10 U 10 U 10 U ND	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U ND	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U ND	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U ND	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U ND
PAHs (µg/L) Method SW8270D/SW8270DSIM Naph halene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoran hene Pyrene Benzo(a)anthracene	160 32 250 500 4800 50 100	0.10 U 0.10 U	4,800 660 13 240 70 95 17 20 23 6.2	880 230 130 2.6 120 56 73 7.9 4.7 6.6 0.36	16 1.9 1.1 0.12 U 0.67 0.19 0.27 0.12 U 0.12 U 0.12 U 0.12 U 0.12 U	0.99 0.23 0.15 0.10 U 0.16 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	0.10 U 0.10 U	1.8 0.23 0.20 0.10 U 0.31 0.19 0.54 0.10 U 0.13 0.15 0.10 U 0.10 U	0.28 0.10 U 0.10 U 0.27 0.10 U 0.16 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U	8.3 3.1 4.2 0.10 U 6.5 3.9 10 1.8 1.6 1.8 0.16
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene Dibenzofuran TEQ	0.012 32 0.012	0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U ND	5.7 2.6 3.1 5.5 2.3 2.4 24 7.0	0.31 0.10 0.15 0.10 U 0.10 U 15 0.21	0.12 U 0.12 U 0.12 U 0.12 U 0.12 U 0.12 U 0.12 U 0.12 U ND	0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U ND	0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U ND	0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.14 0.10 U ND	0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U ND	0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U ND	0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U ND	0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.11 ND	0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U ND	0.15 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 2.0 0.02

Page 5 of 6

	Preliminary Cleanup	MW-88 PK15C	MW-9D OB80J	MW-9D PK34G	MW-9S OB80K	MW-9S PK34H	MW-10 PK44B	MW-11 PK44C	MW-12 PK44D	MW-13 PK44E	MW-14 PK44F	MW-15D PK44G	MW-16D PK34I	MW-17D PK34J
	Levels (a)	08/11/09	11/25/08	08/12/09	11/25/08	08/12/09	8/13/2009	8/13/2009	8/13/2009	8/13/2009	8/13/2009	8/13/2009	08/12/09	08/12/09
DISSOLVED METALS (µg/L) Method 200.8/6010B/7470A														
Arsenic	25 (b)	1.8	8	3.8	6	5.0	4.9	2.6	1.8	2.2	2.5	16.8	7.2	13.5
Lead	15	1 U	1 U	1 U	1 U	1 U	1 U	2	1	1 U	1	1 U	1 U	1 U
VOLATILES (µg/L)														
Method SW8260B														
Chloromethane	3.4		0.2		0.2 U									
Methylene Chloride	3		0.5 U		0.5 U									
Acetone	35		3.0 U		3.0 U									
Carbon Disulfide	400		0.2 U		0.2 U									
Chloroform	7.2		0.2		0.2 U									
2-Butanone	2400		2.5 U		2.5 U									
Benzene	0.8		120		0.2 U									
Toluene	80		60 E		0.3									
E hylbenzene	275		370		0.2 U									
Styrene	1.5		0.9		0.2 U									
m,p-Xylene			310		0.4 U									
o-Xylene			150		0.2 U									
Total Xylenes	1600		460		ND									
1,3,5-Trimethylbenzene	400		58 E		0.2 U									
1,2,4-Trimethylbenzene	400		110		0.2 U									
Isopropylbenzene			20 E		0.2 U									
n-Propylbenzene			0.2 U		0.2 U									
tert-Butylbenzene			0.2 U		0.2 U									
sec-Butylbenzene			0.2 U		0.2 U									
4-Isopropyltoluene			0.2 U		0.2 U									
n-Butylbenzene			0.2 U		0.2 U									
Naph halene	160		7,400		0.6									

(a) See Table 8 for criteria used to develop preliminary cleanup levels(b) Calculated background concentration.

U = Indicates the compound was undetected at the reported concentration

E = The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate

Bold = Detected compound.

Box = Exceedance of preliminary cleanup level.

mg/L = Milligrams per liter. $\mu g/L = Micrograms per liter.$

Page 6 of 6

TABLE 9 PRELIMINARY GROUNDWATER CLEANUP LEVELS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

			Protec	tive of Drinkin	g Water						Prot	ective of Mari	ine Surface Wat	er								
		MCL	, ,	WA State			AWO	QC for				Nat	tional Recommend	led								
		reatment	Board	of Health MCLs	Standard	Formula Values		ction of		ional Toxic	s Rule (b)	Wa	ter Quality Criteria	(c)		Formula Values	Preliminary Cleanup	Background Groundwater	Preliminary Cleanup	Preliminary Cleanup		
	Т	echnique					Aquati	c Life (a)	AWG	QC for					Carcinogen	Non Carcinogen	Levels	from	Levels	Levels		
											AWQC for Protection	Brotostion	Protection	Protection			(Before	PTI 1989	(After	(After		
		Action MCL				Non-					of Human	Protection of Aquatic	of Aquatic	of Human			adjustment for	Draft Report	adjustment for	adjustment for total	Preliminary Cleanup	
	MCL	Level Goal		• •	Carcinogen	carcinogen	Acute	Chronic	Acute	Chronic	Health	Life - Acute	Life - Chronic	Health				90th Percentile	background)	site risk)	Levels in	
Analyte	µg/L	μg/L μg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L	µg/L	µg/L	µg/L	μg/L	μg/L	Final Units	Units
трн																						
Gasoline-Range Petroleum Hydrocarbons						800 (d,e)										800 (d,e)			800		0.8	mg/L
Diesel-Range Petroleum Hydrocarbons						500 (d)										500 (d)			500		0.5	mg/L
Oil-Range Petroleum Hydrocarbons						500 (d)										500 (d)			500		0.5	mg/L
BTEX																						
Benzene	5	0	5		0.8	32					71			51	23	2,000	0.8		0.8		0.8	µg/L
Toluene	1,000	1,000				640					200,000			15,000		19,000	640		640	80	80	µg/L
E hylbenzene	700 10,000	700 10,00				800 1,600 (f)					29,000			2,100		6,900	700 1,600 (f)		700 1,600 (f)	275	275	µg/L
Total Xylenes	10,000	10,00	0 10,000			1,600 (f)											1,600 (f)		1,600 (f)		1,600 (f)	µg/L
PAHs																						
Naph halene						160										4,900	160		160		160	µg/L
2-Methylnaphthalene						32										4,000	32		32		32	μg/L
1-Methylnaphthalene						01																µ9/2
Acenaphthylene																						
Acenaphthene						960								990		640	640		640	250	250	µg/L
Fluorene						640					14,000			5,300		3,500	640		640	500	500	µg/L
Phenanthrene																						
Anthracene						4,800					110,000			40,000		26,000	4,800		4,800		4,800	µg/L
Fluoran hene						640					370			140		90	90		90	50	50	µg/L
Pyrene						480					11,000			4,000		2,600	480		480	100	100	µg/L
Benzo(a)anthracene					(g)						0.031			0.018	(g)		(g)		(g)		(g)	µg/L
Chrysene					(g)						0.031			0.018	(g)		(g)		(g)		(g)	µg/L
Benzo(b)fluoranthene					(g)						0.031			0.018	(g)		(g)		(g)		(g)	µg/L
Benzo(k)fluoranthene		-	~ ~		(g)						0.031			0.018	(g)		(g)		(g)		(g)	µg/L
Benzo(a)pyrene	0.2	0	0.2		0.012						0.031			0.018	0 030		0.012 (g)		0.012 (g)		0.012 (g)	µg/L
Indeno(1,2,3-cd)pyrene					(g)						0.031			0.018	(g)		(g)		(g)		(g)	µg/L
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene					(g)						0.031			0.018	(g)		(g)		(g)		(g) 	µg/L
Dibenzofuran						32											32		32		32	µg/L
																	52		52		52	₩9'⊑
DISSOLVED METALS																						
Arsenic	10		10		0.058	4.8	69	36	69	36	0.14	69	36	0.14	0.10	18	0.058	25 (i)	25		25	µg/L
Lead		15 0				15 (d)	210	8.1	210	8.1		210	8.1					10	15		15	µg/L
Chromium	100	100	100			24,000 (h)										240,000	100	10	100		100	μg/L
Cadmium	5	5				8.0	42	9.3	42	9.3		40	88			20	5	2	5		5	µg/L
Zinc				5,000		4,800	90	81	90	81		90	81	26,000		17,000	81	160	160		160	µg/L
Copper		1,300 1,300	1,300			590	4.8	3.1	2.4	2.4		4.8	3.1			2,700	2.4	20	20		20	µg/L
Mercury	2	2	2			4.8	1.8	0.025	2.1	0.025	0.15	1.8	0.94	0.3			0.025		0.025		0.025	µg/L

TABLE 9 PRELIMINARY GROUNDWATER CLEANUP LEVELS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

				Protectiv	ve of Drinkin	g Water						Prot	ective of Mar	ine Surface Wat	er								
		MCL Treatmen			A State Health MCLs	Standard	Formula Values	Prote	QC for ction of			cs Rule (b)		tional Recomment ter Quality Criteria			Formula Values	Preliminary	Background	Preliminary	Preliminary		
Analyte	MCL µg/L	Techniqu Action Level µg/L		Primary μg/L	Secondary μg/L	Carcinogen µg/L	Non- carcinogen µg/L	Aquat Acute µg/L	ic Life (a) Chronic μg/L	AW Acute µg/L	QC for Chronic µg/L	AWQC for Protection of Human Health μg/L	Protection of Aquatic Life - Acute uq/L	Protection of Aquatic Life - Chronic μg/L	Protection of Human Health μg/L	Carcinogen µg/L	Non Carcinogen µg/L	Cleanup Levels (Before adjustment for background) μg/L	Groundwater from PTI 1989 Draft Report 90th Percentile µg/L	Cleanup Levels (After adjustment for background) µg/L	Cleanup Levels (After adjustment for total site risk) µg/L	Preliminary Cleanup Levels in Final Units	
VOLATILES		-3-	r 3 -	-3-	F37-	- -	F9-						F9-	F37-		F37-	<u> </u>		F3/-	F-37-	F-37-		
Chloromethane						3.4										130		3		3		3	μg/L
Methylene Chloride	5		0	5		5.8	480					1,600			590	960	170,000	5		5	3	3	μg/L
Acetone			-	-			800					,					- ,	800		800	35	35	μg/L
Carbon Disulfide							800											800		800	350	350	µg/L
Chloroform	80			80		7.2	80					470			470	280	6,900	7.2		7.2		7.2	µg/L
2-Butanone							4,800											4,800		4,800	2,400	2,400	µg/L
Styrene	100		100	100		1.5	1600														1.5		
1,3,5-Trimethylbenzene							400											400		400		400	µg/L
1,2,4-Trimethylbenzene							400											400		400		400	µg/L
Isopropylbenzene																							
n-Propylbenzene																							
tert-Butylbenzene																							
sec-Butylbenzene																							
4-Isopropyltoluene																							
n-Butylbenzene																							
SEMIVOLATILES																							
Phenol							4,800	11				4,600,000			1,700,000		1,100,000	4,800		4,800		4,800	µg/L
4-Methylphenol																							
Di-n-butylphthalate							1,600					12,000			4,500		2,900	1,600		1,600		1,600	µg/L
Carbazole						4.4												4.4		4.4		4.4	µg/L
DIOXINS AND FURANS		_																					
2,3,7,8-TCDD	3.0E-05)		3 0E-05				Ш				1.4E-08			5.1E-09			5.1E-09		5.1E-09		5.1E-03	pg/L

Notes:

Preliminary cleanup level is based on lowest of federal or state MCL, state secondary MCL, and Method B standard formula values, for carcinogens without federal or state MCLs on the Method B standard formula value, and for carcinogens with federal or state MCLs.

Preliminary cleanup levels are developed for all constituents detected in groundwater or soil.

Shading indicates basis for preliminary cleanup level.

--- = No cleanup level available.

mg/L = Milligrams per liter.

µg/L = Micrograms per liter.

pg/L = Picograms per liter.

(a) Ambient water quality criteria for protection of aquatic life from WAC 173-201A-240.

(b) Ambient water quality criteria for protection of human health from 40 CFR Part 131d (National Toxics Rule).

(c) National Recommended Water Quality Criteria (EPA website 2006).

(d) MTCA Method A groundwater cleanup levels are used for gasoline-range, diesel-range, oil-range petroleum hydrocarbons, and lead.

(e) For gasoline-range petroleum hydrocarbons, if benzene is present. If benzene is not present, screening level is 1,000 µg/L (1.0 mg/L).

(f) Screening level is for total xylenes.

(g) Evaluated using toxicity equivalency quotient (TEQ) based on benzo(a)pyrene.

(h) Value is for chromium III. Based on site history, chromium VI is not expected to be present.

(i) Calculated background concentration.

TABLE 10 CONSTITUENTS DETECTED IN GROUNDWATER AT CONCENTRATIONS GREATER THAN THE PRELIMINARY CLEANUP LEVELS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

	Preliminary Cleanup Levels (a)	B-1 MK66I 2/27/2008	B-2 MK66M 2/27/2008	B-3 MK66J 2/27/2008	B-6 MK66K 2/27/2008	B-7 MK66L 2/27/2008	B-8 MK82I 2/28/2008	B-9 MK82J 2/28/2008	B-10 MK82K 2/28/2008	B-11 MK82L 2/28/2008	B-12 MK82M 2/28/2008	B-14 MK82N 2/28/2008	B-18 ML02H 2/29/2008	B-19 ML02I 2/29/2008	B-38 NT85G 10/9/2008
NWTPH-DxSG (mg/L) Diesel Range Organics Motor Oil	0.5 0.5	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0 50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0 25 U 0 50 U	0.25 U 0.50 U	<u>310</u> 150
NWTPH-GX (mg/L) Gasoline	0.8	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	1.3	0.25 U	
BTEX (μg/L) Method SW8021BMod Benzene	0.8														
PAHs (μg/L) Method SW8270D/SW8270DSIM Naph halene 2-Methylnaphthalene Benzo(a)pyrene TEQ	160 32 0.012 0.012	1.0 U 1.0 U 1.0 U ND	43 5.1 1.0 U ND	1.0 U 1.0 U 1.0 U ND	1.4 U 1.4 U 1.4 U ND	1.0 U 1.0 U 1.0 U ND	3.1 1.0 U 1.0 U ND	1.0 U 1.0 U 1.0 U ND	1.0 U 1.0 U 1.0 U ND	1.0 U 1.0 U 1.0 U ND	1 0 U 1 0 U 1 0 U ND				
DISSOLVED METALS (µg/L) Method 200.8/6010B/7470A Arsenic Lead	25 (b) 15	29 1 U	12 1 U	20 26	4 1 U	40 1 U	3 1	25 1 U	2 1 U	10 U 1 U	1 U 1 U	4 2	3 1 U	1 1 U	
VOLATILES (μg/L) Method SW8260B Benzene E hylbenzene Naph halene	0.8 275 160	0.2 U 0.2 U 0.5 U	5.3 5.9 68	0.2 U 0.2 U 0.5 U	0.2 U 0.2 U 6.5	0.2 U 0.2 U 0.5 U	0.2 U 0.2 U 0.5 U	0.4 0.2 0.5 U	0 2 U 0 2 U 0 5 U						

3.6 2.5 U

TABLE 10 CONSTITUENTS DETECTED IN GROUNDWATER AT CONCENTRATIONS GREATER THAN THE PRELIMINARY CLEANUP LEVELS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

	Preliminary Cleanup Levels (a)	MW-1 OB80A 11/25/08	MW-1 PK34B 08/12/09	MW-2 OB80B 11/25/08	MW-2 PK34A 08/12/09	MW-3 OB80C 11/24/08	MW-3 PK44A 08/13/09	MW-4 OB80D 11/24/08	MW-4 PK34C 08/12/09	MW-5 OB80E 11/24/08	MW-5 PK15A 08/11/09	MW-6 OB80F 11/25/08	MW-6 PK34D 08/12/09	MW-7D OB80G 11/24/08	MW-7D PK34F 08/12/09	MW-7S OB80H 11/24/08	MW-7S PK34E 08/12/09	MW-8 OB80I 11/25/08	MW-8 PK15B 08/11/09
NWTPH-DxSG (mg/L) Diesel Range Organics Motor Oil	0.5 0.5	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U		0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0 25 U 0 50 U	0.25 U 0.50 U	
NWTPH-GX (mg/L) Gasoline	0.8	0.25 U	0.25 U	0.25 U	0.25 U	0.37	0.28	0.25 U	0.25 U	0.25 U	0 25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0 25 U	0.25 U	0.25 U
BTEX (µg/L) Method SW8021BMod Benzene	0.8		1.0 U		1.0 U		1.0 U		1.0 U		1.0 U		1.0 U		1.0 U		1.0 U		1.0 U
PAHs (μg/L) Method SW8270D/SW8270DSIM Naph halene 2-Methylnaphthalene Benzo(a)pyrene TEQ	160 32 0.012 0.012	5.6 0.61 0.12 U ND	0.13 0.10 U 0.10 U ND	7.8 0.85 0.12 U ND	0.10 U 0.10 U 0.10 U ND	9.3 1.1 0.12 U ND	0.10 U 0.10 U 0.10 U ND	4.4 0.45 0.12 U ND	0.29 0.10 U 0.10 U ND	1.7 0.18 0.11 U ND	0.10 U 0.10 U 0.10 U ND	1.1 0.13 0.10 U ND	0.32 0.10 U 0.10 U ND	0.58 0.10 U 0.10 U ND	1.9 0.39 0.10 U ND	0.40 0.10 U 0.10 U ND	0.73 0.19 0.10 U ND	4.0 0.47 0.10 U ND	0.10 U 0.10 U 0.10 U ND
DISSOLVED METALS (µg/L) Method 200.8/6010B/7470A Arsenic Lead	25 (b) 15	7 1 U	2.4 1 U	3 1 U	1.2 1 U	5 2 U	1.3 1 U	6 2 U	4.6 1 U	58 1 U	17 1 U	6 1 U	1.2 1 U	4 1 U	2.0 1 U	7 1 U	3.9 1 U	7 1 U	2.0 1 U
VOLATILES (µg/L) Method SW8260B Benzene E hylbenzene Naph halene	0.8 275 160	0.2 U 0.2 U 0.5 U		0 2 U 0 2 U 0 5 U		0.2 U 0.2 U 0.5 U		0.2 U 0.2 U 0.5 U		0 2 U 0 2 U 0 5 U		0.2 U 0.2 U 0.5 U		0.2 U 0.2 U 0.5 U		0.2 U 0.2 U 0.5 U		0.4 0.4 0.5 U	

TABLE 10 CONSTITUENTS DETECTED IN GROUNDWATER AT CONCENTRATIONS GREATER THAN THE PRELIMINARY CLEANUP LEVELS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

	Preliminary Cleanup Levels (a)	MW-88 PK15C 08/11/09	MW-9D OB80J 11/25/08	MW-9D PK34G 08/12/09	MW-9S OB80K 11/25/08	MW-9S PK34H 08/12/09	MW-10 PK44B 8/13/2009	MW-11 PK44C 8/13/2009	MW-12 PK44D 8/13/2009	MW-13 PK44E 8/13/2009	MW-14 PK44F 8/13/2009	MW-15D PK44G 8/13/2009	MW-16D PK34I 08/12/09	MW-17D PK34J 08/12/09
NWTPH-DxSG (mg/L) Diesel Range Organics Motor Oil	0.5 0.5		2.0 0.50 U	0.77 0.50 U	0 25 U 0 50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U	0 25 U 0 50 U	0.25 U 0.50 U	0.25 U 0.50 U	0.25 U 0.50 U
NWTPH-GX (mg/L) Gasoline	0.8	0.25	9.7	2.2	0.54	0.25 U	0.25 U	0.25 U	0.30	0.25 U	0 25 U	0.25 U	0.25 U	0.25 U
BTEX (μg/L) Method SW8021BMod Benzene	0.8	1.0 U		13		1.0 U	1.0 U	1.0 U	1.0 U	1 0 U	1.0 U	1.0 U	1.0 U	1.0 U
PAHs (µg/L) Method SW8270D/SW8270DSIM Naph halene 2-Methylnaphthalene Benzo(a)pyrene TEQ	160 32 0.012 0.012	0.10 U 0.10 U 0.10 U ND	4,800 660 5.5 7.0	880 230 0.15 0.21	16 1.9 0.12 U ND	0.99 0.23 0.10 U ND	0.10 U 0.10 U 0.10 U ND	1.8 0.23 0.10 U ND	0.28 0.10 U 0.10 U ND	8.3 3.1 0.10 ∪ 0.02				
DISSOLVED METALS (µg/L) Method 200.8/6010B/7470A Arsenic Lead	25 (b) 15	1.8 1 U	8 1 U	3.8 1 U	6 1 U	5.0 1 U	4.9 1 U	2.6 2	1.8 1	2.2 1 U	2.5 1	16.8 1 U	7.2 1 U	13.5 1 U
VOLATILES (μg/L) Method SW8260B Benzene E hylbenzene Naph halene	0.8 275 160		120 370 7,400		0.2 U 0.2 U 0.6									

(a) See Table 9 for criteria used to develop preliminary cleanup levels(b) Calculated background concentration

U = Indicates the compound was undetected at the reported concentration

E = The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate

Bold = Detected compound.

Box = Exceedance of preliminary cleanup level

mg/L = Milligrams per liter.

 μ g/L = Micrograms per liter.

TABLE 11

Page 1 of 1

MAINLINE SEWER/STORM DRAIN ELEVATIONS COMPARED TO GROUNDWATER ELEVATIONS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

Diameter (inches)	Туре	Rim Elevation (a) (ft)	Corrected Rim Elevation (b) (ft)	Invert Elevation (a) (ft)	Corrected Invert Elevation (b) (ft)	Corrected Top of Pipe Elevation (c) (ft)	Above Average GW Elevation? (d)
18	Combined Mainline	8.2	17.9	1.7	11.4	12.9	yes
18	Combined Mainline	8	17.7	0.94	10.64	12.14	yes
18	Combined Mainline	8.9	18.6	0.62	10.32	11.82	yes
18	Combined Mainline	8.6	18.3	-0.09	9.61	11.11	yes
18	Combined Mainline	8.93	18.63	1.96	11.66	13.16	yes
102	Metro Mainline			-12.02	-2.32	6.18	no
102	Metro Mainline			-12.77	-3.07	5.43	no
102	Metro Mainline			-12.79	-3.09	5.41	no
102	Metro Mainline			-12.75	-3.05	5.45	no

Notes:

- (a) Elevations are Rim and Invert elevations based on City of Seattle Datum given on side sewer cards.
- (b) Corrected elevations were determined by adding 9.7 ft to City of Seattle datum to convert to NAVD88 datum.
- (c) Corrected Top of Pipe Elevation was calculated by adding the diameter of the line in feet to the corrected invert elevation.
- (d) Average GW elevation is 8.34 ft. Average was calculated across all groundwater elevations measured during each event Property-wide.

TABLE 12 PRODUCT ANALYTICAL RESULTS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

	B-21-20-23 ML02G 2/29/2008
NWTPH-HCID (mg/kg) Gasoline Range Organics Diesel Range Organics Motor Oil	> 1,800 U > 4,600 > 9,300
NWTPH-DxSG (mg/kg) Diesel Range Hydrocarbons Motor Oil	77,000 36,000
TOTAL METALS (mg/kg) Method 6000/7000 series Arsenic Cadmium Chromium Lead Mercury	8 U 0.3 U 5.4 7 0.07 U
PCBs (µg/kg) Method SW8082 PCB-Aroclor 1016 PCB-Aroclor 1242 PCB-Aroclor 1248 PCB-Aroclor 1254 PCB-Aroclor 1260 PCB-Aroclor 1221 PCB-Aroclor 1232	170 U 170 U 170 U 170 U 170 U 170 U 170 U 170 U
PAHs (µg/kg) Method SW8270D Naph halene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Fluoran hene Pyrene Benzo(a)anthracene Chrysene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene TEQ	$19,000,000 \\7,300,000 \\3,800,000 \\500,000 \\3,800,000 \\590,000 \\2,900,000 \\7,900,000 \\1,600,000 \\3,500,000 \\2,900,000 \\1,100,000 \\980,000 \\610,000 \\390,000 \\1,000,000 \\280,000 \\120,000 \\270,000 \\1,259,800 \\$

 $\label{eq:U} \begin{array}{l} U = Indicates \ he \ compound \ was \ undetected \ at \ the \ reported \ concentration \\ Bold \ indicates \ detected \ compound. \\ mg/kg = Milligrams \ per \ kilogram \\ \mu g/kg = Micrograms \ per \ kilogram \end{array}$

TABLE 13 SOIL ANALYTICAL FORENSIC RESULTS NORTH LOT DEVELOPMENT SEATTLE, WASHINGTON

	B-41-20.0-21.0 08-27351-NT85B 10/9/2008
SEMIVOLATILES (mg/kg)	
Method SW8270C	
Decalin	20 U
C1-Decalins	20 U
C2-Decalins	20 U
C3-Decalins	20 U
C4-Decalins	20 U
Naph halene	1,500
C1-naphthalenes	730
C2-naphthalenes	330
C3-naphthalenes	84 20 U
C4-naphthalenes	
Biphenyl	130 63
Acenaphthylene Acenaphthene	400
Dibenzofuran	78
Fluorene	270
C1-fluorenes	110
C2-fluorenes	27
C3-fluorenes	20 U
Dibenzothiophene	43
C1-dibenzo hiophenes	27
C2-dibenzo hiophenes	20 U
C3-dibenzo hiophenes	20 U
C4-dibenzo hiophenes	20 U
Phenanthrene	760
Anthracene	160
C1-phenanthrenes/anthracenes	260
C2-phenanthrenes/anthracenes	78
C3-phenanthrenes/anthracenes	23
C4-phenanthrenes/anthracenes	20 U
Fluoran hene	330
Pyrene	330
C1-fluoranthenes/pyrenes	190
C2-fluoranthenes/pyrenes	48
C3-fluoranthenes/pyrenes	20 U
Benzo(a)anthracene	110
Chrysene	99
C1-benzo(a)anthracenes/chrysenes	61
C2-benzo(a)anthracenes/chrysenes	20 U
C3-benzo(a)anthracenes/chrysenes	20 U
C4-benzo(a)anthracenes/chrysenes	20 U
Benzo(e)pyrene	49
Benzo(a)pyrene	110
Perylene Reprochtuoranthopo	24 79
Benzo(b)fluoranthene	-
Benzo(k)fluoranthene	36 48
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	46 20 U
Benzo(g,h,i)perylene	20 O 49
Sulfur (wt %)	
Method D-1152	0.64
	1

U = Indicates the compound was undetected at the reported concentration. Bold indicates detected compound. mg/kg = Milligrams per kilogram.