

Imagine the result

Well Installation and Dual-Phase Extraction Pilot Test Report

Former Chevron Bulk Terminal No. 100-1327 1602 North Northlake Way Seattle, Washington

April 15, 2015

ARCADIS

ARCADIS

Ryan Brauchla

Field Technician

Scott Zorn **Project Manager**

1

Peter Campbell, PE Senior Engineer

Well Installation and Dual-**Phase Extraction Pilot Test** Report

Former Chevron Bulk Terminal No. 100-1327 1602 North Northlake Way Seattle, Washington

Prepared for: Chevron Environmental Management Company

Prepared by: ARCADIS U.S., Inc. 1100 Olive Way Suite 800 Seattle Washington 98101 Tel 206 325 5254 Fax 206 325 8218

Our Ref.: B0045799.0012 Date: April 16, 2015

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Former Chevron Bulk Terminal No. 100-1327

Ac	Acronyms and Abbreviations ii						
1.	Introdu	ction		1			
	1.1	Report (Organization	1			
2.	Site De	scriptio	n and History	1			
	2.1	Site Sub	2				
		2.1.1	North Yard	2			
		2.1.2	South Yard	2			
		2.1.3	Public Right of Way between North and South Yard	2			
		2.1.4	Offsite Area and Adjacent Sites	2			
	2.2	Historica	al Site Use	3			
		2.2.1	North Yard	3			
		2.2.2	South Yard	4			
		2.2.3	Public Right of Way between North and South Yard	5			
3.	Well In	stallatio	n and Soil Borings	5			
	3.1	Pre-Fiel	ld Activities	5			
	3.2	Over-Dr	rill and Replacement of MW-9	6			
	3.3	Downgr	adient Monitoring Well Installation	6			
	3.4	Soil Bor	ring Advancement	7			
	3.5	Soil Sar	mple Analytical Results	8			
	3.6	Waste D	Disposal	9			
	3.7	Survey		9			
4.	Dual Pl	nase Ext	traction Pilot Test	9			
	4.1	Remedi	al Approach	9			
	4.2	Dual Ph	ase Extraction System and Equipment Setup	10			
	4.3	Dual Ph	hase Extraction Operation	11			
	4.4	Field an	nd System Measurements	11			
	4.5	13					

ARCADIS

Well Installation and Dual-Phase Extraction Pilot Test Report

Former Chevron Bulk Terminal No. 100-1327

5. Summary

6. References

Tables

Table 1	Soil Hydrocarbons Analytical Results
Table 2	Construction Details
Table 3	Event and Post-Event Gauging Data

Figures

Figure 1	Site Map
Figure 2	Soil Analytical Results
Figure 3	Dual Phase Extraction System Layout
Figure 4	Typical DPE System Flow Sheet with Sampling Locations
Figure 5	DPE Treatment System Installation Details

Appendices

Appendix A	Right of Way (ROW) Permits
Appendix B	Boring Logs
Appendix C	Drilling Field Notes
Appendix D	Soil Laboratory Report and Chain-of-Custody Documentation
Appendix E	DPE Pilot Test Field Notes
Appendix F	Dual Phase Extraction Pilot Test Field Measurements and Results

Acronyms and Abbreviations

ARCADIS	ARCADIS U.S., Inc.
ASTs	aboveground storage tanks
bgs	below ground surface
CAP	Cleanup Action Plan
CD	Consent Decree
Chevron	Chevron Environmental Management Company
COCs	constituents of concern
CULs	cleanup levels

13

14

Former Chevron Bulk Terminal No. 100-1327

DNAPL	dense non-aqueous phase liquid
DPE	dual phase extraction
DRO	diesel range organics
Ecology	Washington State Department of Ecology
EPA	Environmental Protection Agency
GRO	gasoline-range organics
HASP	health and safety plan
HO	heavy range organics
HSA	Hollow Stem Auger
in. wc	inches of water column
lb/day	pounds per day
LNAPL	light non-aqueous phase liquid
mg/kg	milligrams per kilogram
Metro	King County, Seattle, Washington
MTCA	Model Toxics Control Act
NWTPH	Northwest Total Petroleum Hydrocarbons-gasoline range
PPCD	prospective purchaser consent decree
PID	photoionization detector
PVC	polyvinyl chloride
ROI	radius of influence
ROW	right of way
Site	Former Chevron Bulk Plant No. 100-1327 located at Facilities North / King County (Metro), Seattle, Washington
SOP	standard operating procedure
TOC	top of casing
Touchstone	Touchstone Corporation
UST	Underground Storage Tank
VOC	volatile organic compound

ARCADIS

Well Installation and Dual-Phase Extraction Pilot Test Report

Former Chevron Bulk Terminal No. 100-1327

1. Introduction

On behalf of Chevron Environmental Management Company (Chevron) and King County, ARCADIS U.S., Inc. (ARCADIS) has prepared this Well Installation and Dual Phase Extraction (DPE) Pilot Test Report to document the actions performed at the at former Chevron Bulk Plant No. 100-1327 (the Site) along North Northlake Place and Woodlawn Avenue North, located at Facilities North/King County, Seattle, Washington (Metro). These activities were conducted to complete all requirements of the Metro-Chevron-Ecology Consent Decree (CD) #99-2-08651-1SEA and Exhibit A – Cleanup Action Plan (CAP) at former Chevron Bulk Plant No. 100-1327 (the Site) located at Facilities North/King County, Seattle, Washington (Metro). These actions include the installation of monitoring wells, an investigation of petroleum hydrocarbon impacts in the soil, and the activities and results of the DPE pilot test.

This report presents relevant background information, well installation activities, pilot test procedures, results and site-specific implementation considerations, in accordance with the *Dual Phase Extraction and Additional Soil Investigation Work Plan* submitted to the Washington State Department of Ecology (Ecology) on July 9, 2014 (ARCADIS 2014). A map of the Site and surrounding area is presented on **Figure 1**.

1.1 Report Organization

The remaining sections of this work plan are presented as follows:

- Section 2 summarizes the Site background and history.
- Section 3 discusses the well installation and soil boring activities.
- Section 4 discusses the DPE pilot test results.
- Section 5 discusses conclusions and recommendations.

2. Site Description and History

The Site is located at 1602 North Northlake Way along the north shore of Lake Union in a mixed-use residential and commercial neighborhood. The property is divided into two operable areas: a North Yard located on the north side of North Northlake Way and a South Yard located adjacent to the north shore of Lake Union and south of North Northlake Way. The Site boundary as outlined in the CAP includes a public right of

Former Chevron Bulk Terminal No. 100-1327

way (ROW) between the North Yard and South Yard. All portions of the Site are shown on **Figure 1**.

2.1 Site Subdivisions

2.1.1 North Yard

The portion of the Site that is located between North 34th Street (to the north) and North Northlake Place (to the south), and between Woodlawn Avenue North (to the west) and Densmore Avenue North (to the east) is defined as the North Yard. In 2007, the property development company Touchstone Corporation (Touchstone) entered into a prospective purchaser consent decree (PPCD) to perform additional cleanup activities and, in 2009, purchased the North Yard property. Touchstone began performing a remedial excavation in November 2014 for source removal of light nonaqueous phase liquid (LNAPL). Prior to excavation it was estimated that LNAPL was distributed throughout the North Yard over an area of nearly 40,000 square feet. Following Touchstone's excavation, the area where LNAPL may be present is estimated at approximately 900 square feet (ARCADIS 2014). The site is currently being dewatered in conjunction with current construction activities.

2.1.2 South Yard

The South Yard is bounded by Lake Union on the southwest, private property on the northwest, North Northlake Place on the northeast, and a property occupied by the Seattle Harbor Patrol on the southeast.

2.1.3 Public Right of Way between North and South Yard

The portion of the Site between the North Yard and South Yard at North Northlake Place and North Northlake Way is referred to as the public ROW in this report.

2.1.4 Offsite Area and Adjacent Sites

Other cleanup sites in the vicinity include but are not limited to Northlake Shipyard, with metals-impacted sediments as the primary medium of concern (Ecology, 1994), and the Gas Works Park site, with coal-tar (i.e., dense non-aqueous phase liquid [DNAPL]) and metals-impacted groundwater, soils, and sediments (Ecology, 2005). The Gas Works Park site also includes the Seattle Harbor Patrol, which previously had

Former Chevron Bulk Terminal No. 100-1327

underground storage tanks (USTs) and has been affected by migration of contaminants from Gas Works Park.

2.2 Historical Site Use

Between 1925 and 1927, Standard Oil of California (later Chevron) developed the North and South Yards as a marine bulk fuel storage and distribution facility. The North Yard included 11 aboveground storage tanks (ASTs), transfer piping, truck loading racks, and various small buildings. The petroleum product stored in the North Yard was linked to the South Yard fuel dock by underground piping. According to the CAP (Foster Wheeler, 1998), the ASTs historically stored gasoline, diesel, fuel oil, refined oil, gasoline distillates, and lubricating oils.

Metro acquired the property in 1982 and used it for diesel fueling operations until April 1992, when all remaining diesel products were removed from the Site. Only three truck deliveries of diesel were received in 1991 and according to Metro staff, no gasoline products were ever received or stored onsite by Metro. Metro decommissioned the fueling equipment in 1992 and used the property as a maintenance operations base until selling the North Yard as described in Section 2.2.1.

2.2.1 North Yard

The following summarizes the chronology of the North Yard:

- 1925 Standard Oil Company of California (later Chevron) developed the North Yard and reportedly constructed the ASTs and piping.
- 1927 Chevron constructed the garage along the northern boundary and the tanktruck loading racks.
- 1950 Available maps show various small buildings and sheds associated with oil delivery on the southern portion on the North Yard.
- 1982 Metro purchased the property for diesel fueling operations. Metro also used the North Yard property for parking, private offices, lunch and meeting rooms, restrooms, locker rooms, record storage, and a woodworking and paint shop.

Former Chevron Bulk Terminal No. 100-1327

- 1992 Metro decommissioned fueling equipment and cleaned and capped pipelines leading from the North Yard to the South Yard.
- 1998 Chevron, Metro, and Ecology entered into a CD for the Site.
- 2007 Touchstone and Ecology entered into a PPCD for the North Yard.
- 2009 Touchstone purchased the North Yard from Metro.
- 2014 Touchstone remedial excavation and development activities

2.2.2 South Yard

The following summarizes the chronology of the South Yard:

- Prior to 1908 Puget Sound Sheet Metal Works reportedly occupied the South Yard. A number of wood-frame buildings were reportedly present.
- 1912 A tannery reportedly occupied the South Yard until the late 1920s.
- 1950 Chevron used a building in the South Yard as a warehouse.
- 1960 Chevron and a chemical company (California Spray and Chemical Company) reportedly occupied the South Yard. No information on California Spray and Chemical Company activities is available.
- 1982 Metro purchased the South Yard property. Metro used the property in connection with its diesel fueling operations at the North Yard. Metro also used the South Yard property for storage of equipment and materials and for parking.
- 1992 Metro decommissioned fueling equipment and cleaned and capped pipelines leading from North Yard to South Yard.
- 1998 Chevron, Metro, and Ecology entered into a CD for the Site.

Former Chevron Bulk Terminal No. 100-1327

2.2.3 Public Right of Way between North and South Yard

Two sets of subsurface piping were used to transfer product from the South Yard to the North Yard. In 1992, the subsurface piping was cleaned and capped at the south wall of the AST containment area. In 1998, an inspection of piping pits and pipe connections indicated no surface or shallow (within 0.5 foot) petroleum staining or detection in the eight locations tested. The subsurface piping that was closed in place is located under the former North Yard office area, beneath the South Yard and under the dock.

3. Well Installation and Soil Borings

During the third quarter of 2014, ARCADIS over-drilled monitoring well MW-9 and replaced it with an extraction well (MW-9R) for the DPE pilot test. Additionally, three monitoring wells (EW-1, MW-29, and MW-30) were installed downgradient of MW-9R, and six soil borings (SB-1 through SB-6) were advanced. This section discusses these activities.

3.1 Pre-Field Activities

Prior to implementing field activities, the site-specific Health and Safety Plan (HASP) was modified and updated June 2014, for use by on-site personnel. The site-specific HASP addresses potential health and safety concerns and hazards that field personnel may encounter during the proposed field events. All personnel, including on-site subcontractors, were required to familiarize themselves with and sign the HASP.

Prior to commencing field work, all applicable permits were obtained from the Seattle Department of Transportation. Copies of the approved ROW permits for well installation and soil borings are included in **Appendix A**.

A detailed utility search was performed prior to initiating drilling to verify that proposed boring locations are not within a utility line or corridor. Three lines of evidence were gathered: One Call, private utility locator, and a review of utility as-built maps. In addition, each borehole was pre-cleared with a vacuum truck to 8 feet below ground surface (bgs).

Former Chevron Bulk Terminal No. 100-1327

3.2 Over-Drill and Replacement of MW-9

On July 16, 2014, well MW-9 was over-drilled and reinstalled in the same location, as a 6-inch-diameter well (MW-9R) to enhance DPE effectiveness. MW-9R was constructed to maximize the groundwater flow area, minimize the likelihood of well fouling with fine-grained sediment accumulation, and allow the use of a larger-diameter down-hole stinger or pump in the well. The borehole was advanced to a total depth of 24 feet bgs and the screen interval of MW-9R mirrored that of MW-9, with a total depth of 22.5 feet bgs. MW-9R was constructed of 6-inch diameter schedule 40 polyvinyl chloride (PVC) with 0.02-inch slots from 22.5 to 12.5 feet bgs. The sand pack of #10/20 silica sand was placed around the well screen to 1 foot above the top of screen. Bentonite seal was installed above the sand pack followed by neat cement to completion. A locking, water-tight well plug and flush-mounted, 18-inch diameter, traffic-rated well box was installed at ground surface.

During over-drilling, the drill cuttings were screened in the field for volatile organic compounds (VOCs) using a photoionization detector (PID), and were visually examined for the presence of LNAPL. PID readings, presence of LNAPL, soil types, and other pertinent geologic data were recorded on the boring logs included in **Appendix B**. A soil sample was collected for chemical analysis at the bottom of the boring (22.5-24 feet bgs). Analytical results are discussed in section 4.4 below. Field notes discussing drilling activities are included in **Appendix C**.

3.3 Downgradient Monitoring Well Installation

On July 15 and 16, 2014, three monitoring wells (EW-1, MW-29 and MW-30) were installed to monitor depth to water, measurable LNAPL and vacuum radius of influence (ROI) during the DPE events and collect performance monitoring data post-DPE implementation. Additionally, EW-1 was installed to potentially be used during DPE activities as an additional extraction well. The initial 8 feet of the boreholes were cleared using an air-knife and vacuum truck to reduce the potential for damage to underground utilities. The remainder of the soil boring was advanced using a hollow-stem auger (HSA) methodology and sampled using decontaminated 1.5-foot split spoon samplers.

EW-1, MW-29, and MW-30 are located approximately 5 feet southwest, 10 feet southwest, and 20 feet southeast of MW-9R, respectively, and are hydraulically downgradient of the extraction well. Monitoring well locations are identified on **Figure 1**. EW-1, MW-29 and MW-30 boreholes were advanced to a total depth of 24 feet bgs

ARCADIS

Well Installation and Dual-Phase Extraction Pilot Test Report

Former Chevron Bulk Terminal No. 100-1327

with the wells installed to a total depth of 22.5 feet bgs and constructed of 4-inch diameter schedule 40 PVC with 0.02-inch slots from 22.5 to 7.5 feet bgs. The sand pack of #10/20 silica sand was placed from 24 to 22.5 feet bgs and around the well screen to 1 foot above the top of screen. Bentonite seal was installed above the sand pack followed by neat cement to completion. A locking, water-tight well plug and flush-mounted, 18-inch diameter, traffic-rated well box was installed at ground surface.

During drilling, soil samples were collected for lithological description, screened for VOCs using a PID, and visually examined for the presence of LNAPL at 2.5-foot intervals from 2.5 feet bgs to the bottom of the boring (24 feet bgs). PID readings, soil types, and other pertinent geologic data were recorded on boring logs included as **Appendix B**. Soil samples were collected for chemical analysis in each boring at the groundwater interface, or smear zone (12.5 feet bgs), and at the bottom of the borings (22.5 feet bgs). Duplicate soil samples were collected for MW-29 at 12.5 feet bgs (DUP-1) and MW-30 at 12.5 (DUP-2) and submitted for laboratory analysis quality assurance. Analytical results are discussed below, in section 4.4. Field notes taken during drilling activities are included in **Appendix C**.

3.4 Soil Boring Advancement

On August 14 and 15, 2014, six soil borings were advanced. Two soil borings (SB-1 and SB-2) were installed in Woodlawn Avenue North, adjacent to the location of former soil boring B-14 (SAIC, 2007), which contained concentrations of gasoline range organics (GRO) in excess of the cleanup level (CUL) at 12.5 feet bgs below or at the water table. Borings SB-3 through SB-6 were installed along the southern boundary of the North Yard, in North Northlake Place, to allow sampling in areas of historical soil exceedances at B-12 and B-23 at or near the water table (SAIC, 2007). The soil borings were advanced, as shown on Figure 1, between historical soil borings B-12 and B-23, which contained concentrations of diesel range organics (DRO) in excess of the DRO CUL at a depths of 12.5 and 10 feet bgs, respectively. The initial 8 feet of the borehole were cleared using an air-knife and vacuum truck to reduce the potential for damage to underground utilities. The remainder of the soil boring was advanced using HSA methodology and sampled using decontaminated 1.5-foot split spoon samplers. Drilling augers and sampling tools were decontaminated after drilling in accordance with ARCADIS's Field Equipment Decontamination Standard Operating Procedure (SOP).

Samples were collected at depths previously reported as containing contaminants of concern (COCs) in excess of Site CULs and at other depths where field screening

ARCADIS

Well Installation and Dual-Phase Extraction Pilot Test Report

Former Chevron Bulk Terminal No. 100-1327

indicated that LNAPL may be present. Field testing of soil samples for the presence of LNAPL and/or sheen was conducted. Field testing procedures consisted of placing a representative soil sample from the split spoon into a decontaminated stainless steel bowl. Clean water was then added to the soil sample enough to saturate the soil, which was then agitated to allow any free products to come out of the soil. The surface of the water was then observed for the presence of LNAPL or sheen. No LNAPL or sheen was observed during soil boring installation activities. During drilling, soil samples were collected for lithological description and potential chemical analysis at 2.5-foot intervals from 2.5 feet bgs to the bottom of the boring (21.5 feet bgs). Soil analytical samples were collected at SB-1 through SB-4 from 12.5 feet bgs and at SB-5 and SB-6 from 10 feet bgs. A duplicate soil sample was collected from SB-1 at 12.5 feet bgs and submitted blind for laboratory analysis quality assurance. Soil boring logs are included in **Appendix B** and field notes are included in **Appendix C**. Soil analytical results are summarized in the following section.

3.5 Soil Sample Analytical Results

The soil samples were placed in laboratory-provided containers with appropriate preservatives and stored in an ice-chilled cooler prior to delivery to the analytical laboratory. Soil samples were analyzed for the following:

- GRO by Northwest Method NWTPH-Gx,
- DRO and heavy range organics (HO) by Northwest Method NWTPH-Dx, and
- Benzene by Environmental Protection Agency (EPA) Method 8260B.

The soil sample analytical results from soil samples collected from monitoring wells (EW-1, MW-29 and MW-30) and soil borings (SB-1 through SB-6) did not exceed the respective Site specific CULs developed in the Draft CAP (Foster Wheeler, 1998) with the exception of GRO detected in soil boring SB-1 at 12.5 feet bgs with a concentration of 6,700 milligrams per kilogram (mg/kg) and SB-2 at 12.5 feet bgs with a concentration of 21,000 mg/kg; however both samples were collected at or below the established groundwater level. All laboratory reporting limits were established below the respective site specific cleanup levels. Soil hydrocarbon analytical results are presented in **Table 1** and **Figure 2**. Laboratory analytical reports are included in **Appendix D**.

Former Chevron Bulk Terminal No. 100-1327

3.6 Waste Disposal

Soil cuttings and decontamination water were collected in labeled drums and temporarily stored onsite in the South Yard. Waste was removed from the Site on December 1, 2014 by Clean Harbors Environmental Services, and disposed of at appropriate waste facilities.

3.7 Survey

On October 30, 2014, all wells and soil borings drilled at the Site during this event were surveyed by Otak Inc. of Kirkland, WA, a licensed surveyor. The top of casing (TOC) elevation data is included in the well construction details presented in **Table 2**.

4. Dual Phase Extraction Pilot Test

As proposed in the work plan (ARCADIS 2014), ARCADIS performed a DPE pilot test. The test began on January 5, 2015 and continued to January 8, 2015. Post-pilot test gauging activities continued after the end of extraction activities. The following sections of the report will outline the remedial approach, the setup and operation of the DPE system, and the post-event monitoring activities.

4.1 Remedial Approach

In November 2014, Touchstone conducted an excavation in the North Yard. The excavation was conducted as part of cleanup activities for source removal of LNAPL under the 2007 PPCD issued to Touchstone. Touchstone performed the remedial excavation such that remaining LNAPL would be located within a finite horizontal and vertical area immediately adjacent to MW-9R. Development activities began after excavation which included dewatering of the North Yard.

To address this small area of remaining LNAPL in the immediate vicinity of MW-9R, DPE events were scheduled to be conducted while the North Yard was dewatered for excavation. During periods of falling water table conditions, like those that occur when Touchstone is dewatered the North Yard during excavation activities, LNAPL volume trapped in soil under two-phase conditions (water-saturated soil) located below the natural static water table is progressively exposed to three-phase conditions (air-water-LNAPL) as the soil is desaturated. Under three-phase conditions, LNAPL droplets in the soil coalesce, and the LNAPL phase is more mobile for a given saturation than under two-phase conditions. This enhances the mobility of the LNAPL in the

Former Chevron Bulk Terminal No. 100-1327

desaturated soil interval and causes LNAPL thickness to increase when the water table elevation drops. As the water table falls, LNAPL recovery is more efficient via gravity drainage (fluid extraction events). In some cases, applied high vacuum in conjunction with fluid extraction (DPE configuration) can further enhance liquid drainage by improving the dewatering cone of depression around the extraction well.

4.2 Dual Phase Extraction System and Equipment Setup

Equipment for the DPE pilot test included a mobile DPE system trailer, temporary manifold, 2-inch conveyance hosing, 1-inch stinger hose, oil/water separator and a water storage tank. On January 4, 2015, one day prior to the field event, ARCADIS barricaded the parking strip exclusion zone to prevent parked vehicles from blocking the staging area. On January 5, 2015, the DPE system trailer was staged in the exclusion zone as shown on **Figure 3**. This location was determined prior to starting work in order to establish a work area that would not impact ongoing construction activities in the North Yard. The mobile trailer was placed within a secondary containment berm to ensure that impacted groundwater was not released back to the ground surface in case of a spill. A portable tow-behind diesel generator powered the system trailer and was staged in back of the trailer within secondary containment. Emergency shutoffs were reviewed and emergency equipment was placed in a marked location.

The mobile trailer contained a 15 horsepower rotary claw blower capable of moving air at 270 cubic feet per minute at 22 inches of mercury vacuum. The blower extracted liquid and vapors through a system manifold to a vapor/liquid knockout tank. A pump capable of handling 15 gallons per minute (gpm) of water was onsite to transfer liquids into an oil/water separator. The purpose of the oil/water separator was to separate LNAPL from the extracted groundwater. A 630-gallon polyethylene tank was temporarily kept onsite to store recovered groundwater. The tank was staged just north of the DPE trailer within secondary containment. The water pump and polyethylene storage tank were not used during the DPE pilot test.

A 2-inch diameter, reinforced, flexible PVC vacuum hose was connected from the wellhead to a 3-inch diameter temporary DPE manifold containing a vapor flow control valve, a sampling port, a vacuum gauge, and a port for air flow measurements. A system flow sheet displaying the sampling locations is provided as **Figure 4**, and system installation details are shown on **Figure 5**. The 2-inch diameter conveyance hose reduced to a 1-inch flexible PVC vacuum hose at the well head to be used as a

Former Chevron Bulk Terminal No. 100-1327

stinger in DPE test well, MW-9R. The wellhead was equipped with a jet pump well seal to allow for an airtight seal around the groundwater extraction stinger.

4.3 Dual Phase Extraction Operation

Prior to testing, wells EW-1, MW-9R, MW-29, and MW-30 were gauged for depth-towater and depth-to-bottom to obtain baseline measurements. LNAPL was not observed in any of the wells; baseline gauging data is included in **Table 3**. The water column in MW-9R was measured at 1.05 feet, so the stinger inlet was placed at a depth of 22.25 feet below TOC, approximately 6 inches above the bottom of the casing and 7 inches below the surface of the groundwater. When the test was started, a vacuum pressure of approximately 18.5 inches of mercury was applied to MW-9R and within 30 seconds all water in MW-9R had been evacuated.

The DPE pilot test was conducted for a total of 26 hours over the course of four days, between January 5 and 8, 2015 during normal working hours. At the end of each field day, field personnel contacted the ARCADIS engineer to discuss results from the pilot test. System readings, including runtime, flow rates, VOC concentrations, flow totalizer values, and system vacuum, were measured periodically during the pilot test. These readings and measurements are outlined in the following section.

4.4 Field and System Measurements

During DPE operations, system parameters were collected every half hour on the first day of system operations and on an hourly basis for the remainder of the event. A description of parameters collected, how they were collected, and what the data was used for is presented below. Field notes collected during the pilot test are included in **Appendix E**.

- Influent temperature and air speed were measured with an anemometer to calculate air flow rate;
- Influent PID and system runtime readings were measured and, together with the previously calculated air flow rate, used to calculate mass removal;
- Casing vacuum in extraction well MW-9R and response wells EW-1, MW-29, and MW-30 were used to calculate induced vacuum ROI;
- Stinger, manifold, and knockout tank vacuums and response well groundwater elevations were recorded;

Former Chevron Bulk Terminal No. 100-1327

 Volumes of extracted groundwater and LNAPL were also proposed to be monitored; however, a limited amount of liquid was extracted from MW-9R.

Influent flow rate was calculated, using the cross-sectional area of the influent conveyance pipe and the speed of the air travelling through it, to find the flow rate in actual cubic feet per minute. The influent temperature and vacuum was used to convert the flow rate to standard cubic feet per minute (SCFM). System flow rates during the pilot test ranged from approximately 62 SCFM to 74 SCFM with an average rate of approximately 71 SCFM. These values are summarized in **Table F-1** and **Chart F-1** in **Appendix F**.

VOC concentrations were measured at the manifold using a PID. The concentrations ranged from 394 parts per million by volume (ppmv) to 789.4 ppmv. It appears VOC concentrations decreased over time. Based on system runtime, during the first 18 hours of the test VOC measurements ranged approximately from 600 to 800 ppmv; for the remaining 8 hours, VOC measurements ranged from approximately 400 to 550 ppmv. These readings are summarized in **Table F-1** and **Chart F-2** in **Appendix F**.

Mass removal rates were calculated using the measured PID readings and calculated flow rates. Mass removal rates ranged from 8.82 pounds per day (lb/day) to 17.32 lb/day. During the pilot test, approximately 15 pounds of VOCs were removed from MW-9R. Over the course of pilot testing, VOC concentrations generally decreased. Based on system runtime, during the first 18 hours of the test, VOC mass removal rates ranged from 13.25 to 17.32 lb/day; for the remaining 8 hours, VOC measurements ranged from 8.82 to 11.74 lb/day. These values are summarized in **Table F-1, Chart F-3** and **Chart F-4** in **Appendix F**.

Applied or induced vacuum was recorded at each of the well heads during the pilot test. Vacuum readings generally decrease exponentially with distance. Therefore, in order to determine the ROI when the maximum sustainable vacuum was applied to MW-9R, the log of the average vacuum was plotted against the distance between MW-9R and each of the response wells. For the purpose of presenting the effective ROI, vacuum influence was considered present at induced vacuum levels of 0.10 inches of water column (in. wc) or greater (Kostecki, Calabrese, and Bonazountas 1992). An average vacuum of 5.35 inches of mercury (74.3 in. wc) were applied to MW-9R during the pilot test. Average induced vacuum values of 9.51 and 0.85 in. wc were recorded at EW-1 and MW-29, respectively. Induced vacuum was not detected at MW-30 greater than 0.01 inches of water column. These values determined an ROI of 33 feet.

Former Chevron Bulk Terminal No. 100-1327

Measured values are reported in **Table F-1** and ROI calculations are presented in **Chart F-5** in **Appendix F**.

Stinger, manifold, and knockout tank vacuums were recorded during the pilot test but were not used for calculations. Response well groundwater elevations were recorded in order to observe drawdown and to check for the presence of LNAPL. No LNAPL was observed in the response wells during the pilot test. Measured values are reported in **Table F-1 in Appendix F**.

4.5 Post-Event Monitoring

On January 9, 2015, DPE pilot test equipment was demobilized from the Site and postevent gauging began. Wells MW-9R, MW-29, MW-30, and EW-1 were gauged daily during the event and for two weeks following the event. Thereafter, they were gauged every two to three days for four additional weeks. The wells were gauged to determine the presence of LNAPL following the pilot test. No measurable LNAPL was observed during any of the gauging events. Groundwater elevations and PID readings were also recorded and are compiled in **Table 3**.

5. Summary

Two drilling events were conducted by ARCADIS during the third quarter of 2014 in order to facilitate a DPE pilot test event and confirm previous soil samples with COCs greater than the Site CULs. Monitoring well MW-9 was over-drilled and replaced with extraction well MW-9R, monitoring wells EW-1, MW-29, and MW-30 were installed downgradient of MW-9R, and soil borings SB-1 through SB-6 were advanced. During these drilling events, no soil impacts were noted in excess of the Site CULs within the unsaturated zone, as defined in the CAP.

During the DPE pilot test conducted in the first quarter of 2015, limited groundwater was recovered due to low water levels, caused by nearby Touchstone dewatering activities. Approximately 15 pounds of VOCs were removed from the subsurface by vapor extraction. VOC concentrations and mass recovery rates appeared to decrease over time; higher values were observed during the first 18 hours of the 26 hours (based on test runtime). Based on the observed vacuum at MW-9R and nearby monitoring wells, the calculated ROI was 33 feet.

LNAPL was not measured in monitoring wells EW-1, MW-9R, MW-29 and MW-30 during baseline measurements, DPE pilot testing, and the six week gauging period

Former Chevron Bulk Terminal No. 100-1327

following DPE pilot testing activities. These wells will be added to the semi-annual groundwater monitoring program to monitor potential LNAPL in the area.

6. References

- ARCADIS, 2014. Cleanup Action Plan Compliance Work Plan, Former Chevron Bulk Terminal No. 100-1327, 1602 North Northlake Way, Seattle, Washington. July 9.
- Ecology. 1994. Prospective Purchaser Consent Decree: Washington State Department of Ecology and Northlake Shipyard, Inc. August 12.
- Ecology. 2005. WDOE Agreed Order for Gas Works Park Sediment Site. Issued to the City of Seattle and PSE. No. DE 2008. March 18.
- Foster Wheeler. 1998. Draft Cleanup Action Plan, Former Chevron Bulk Plant 100-1327, Facilities North/King County Metro Transit, Lake Union Site, Prepared for Chevron Products Company & King County Metro Transit. November 24.
- Kostecki, Calabrese, and Bonazountas, 1992. Hydrocarbon Contaminated Soils, Volume 2, Lewis Publishers, September 1.
- SAIC. 2007. North Yard Investigation Report. Former Chevron Bulk Terminal #100-1327, Prepared for Chevron. October 29.

Tables

Table 1

Soil Hydrocarbons Analytical Results

Former Chevron Bulk Plant #1001327 1602 North Northlake Place Seattle, Washington

Boring ID	Date	Depth (feet bgs)	Benzene (<i>mg/kg</i>)	GRO (mg/kg)	DRO (mg/kg)	HO (mg/kg)
Soil Cleanup Level ¹			4,530	4,520	5,140	5,780
EW-1-12.5	7/15/2014	12.5	0.025 U	64	3.3 U	11 U
EW-1-22.5	7/15/2014	22.5	0.029 U	450	8.5	11 U
MW-9R-22.5	7/16/2014	22.5	0.035 U	1900	300	100
MW-29-12.5	7/15/2014	12.5	0.0004 U	4.2	110	75
DUP-1 (MW-29-12.5)	7/15/2014	12.5	0.0005 U	1.5	26	33
MW-29-22.5	7/15/2014	22.5	0.0004 U	0.9 U	3.2 U	11 U
MW-30-12.5	7/16/2014	12.5	0.028 U	46	310	670
DUP-2 (MW-30-12.5)	7/16/2014	12.5	0.030 U	46	270	1,000
MW-30-22.5	7/16/2014	22.5	0.0004 U	20	19	62
SB-1 12.5-13.5	8/13/2014	12.5-13.5	0.031 U	6,700	330	110
DUP-1 (SB-1 12.5-13.5)	8/13/2014	12.5-13.5	0.029 U	3,000	190	92
SB-2 12.5-13.5	8/13/2014	12.5-13.5	0.060 U	21,000	1,500	470
SB-3 12.5-13.5	8/13/2014	12.5-13.5	0.026 U	360	1,600	53 U
SB-4 12.5-13.5	8/13/2014	12.5-13.5	0.024 U	61	970	54 U
SB-5 10-11	8/14/2014	10-11'	0.085	1.7	3.3 U	11 U
SB-6 10-11	8/14/2014	10-11'	0.29	250	260	32

DUP = Duplicate

bgs = below ground surface

(mg/kg) = milligrams per kilogram

GRO = TPH as Gasoline Range Organics

DRO = TPH as Diesel Range Organics

HO = TPH as Heavy Oil Range Organics

U = Not detected, value shown is detection limit

TPH = Total Petroleum Hydrocarbons EPA = Environmental Protection Agency

GRO analyzed by NWTPH-Gx

DRO and HO analyzed by NWTPH-Dx

BTEX analyzed by EPA Method 8021B

Analyte concentration exceeds site specific cleanup levels

NOTES

1 - Site specific cleanup levels developed in 1998 Draft Cleanup Action Plan.

Table 2Construction DetailsFormer Chevron Bulk Plant #10013271602 North Northlake PlaceSeattle, Washington

Well ID	Date of Installation	Total Depth (feet bgs)	Approximate Depth to Water (feet bgs)	Ground Surface Elevation (feet above msl)	Top of Casing Elevation (feet above msl)	Well Casing Diameter (inches)	Sreen Slot Diameter (inches)	Screened Interval (feet bgs)	Filter Pack Interval (feet bgs)	Bentonite Seal Interval (feet bgs)
EW-1	07/16/14	24.0	13.5	35.60	35.05	4	0.020	7.5 - 22.5	6.5 - 24.0	2.0 - 6.5
MW-9R	07/15/14	24.0	13.5	36.60	36.33	6	0.020	12.5 - 22.5	11.5 - 24.0	2.0 - 11.5
MW-29	07/15/14	24.0	13.5	34.65	34.06	4	0.020	7.5 - 22.5	6.5 - 24.0	2.0 - 6.5
MW-30	07/16/14	24.0	13.5	34.12	33.45	4	0.020	7.5 - 22.5	6.5 - 24.0	2.0 - 6.5
SB-1	08/13/14	21.5	17.5	39.15						3.0 - 21.5
SB-2	08/13/14	21.5	18.0	38.52						3.0 - 21.5
SB-3	08/13/14	21.5	19.0	33.00						3.0 - 21.5
SB-4	08/13/14	21.5	17.0	32.98						3.0 - 21.5
SB-5	08/14/14	21.5	20.0	32.72						3.0 - 21.5
SB-6	08/14/14	21.5	20.5	32.75						3.0 - 21.5

Notes:

bgs = below ground surface

msl = mean sea level

-- = not applicable

Table 3Event and Post-Event Gauging DataFormer Chevron Bulk Plant #10013271602 North Northlake Place

Seattle, Washington

Well Number ¹		Depth to	Depth to	LNAPL	Groundwater
(Well Casing Elevation)	Date	Groundwater ²	LNAPL	Thickness	Elevation ³
(feet above mean sea level)	Measured	(feet)	(feet)	(feet)	(feet)
MW-9R	01/05/15	21.70		0.00	14.63
(36.33)	01/06/15	21.61		0.00	14.72
	01/07/15	21.65		0.00	14.68
	01/08/15	21.50		0.00	14.83
	01/09/15	21.49		0.00	14.84
	01/12/15	21.74		0.00	14.59
	01/13/15	21.74		0.00	14.59
	01/14/15	21.76		0.00	14.57
	01/15/15	21.74		0.00	14.59
	01/16/15	21.65		0.00	14.68
	01/19/15	21.41		0.00	14.92
	01/20/15	21.50		0.00	14.83
	01/21/15	21.53		0.00	14.80
	01/22/15	21.64		0.00	14.69
	01/23/15	21.70		0.00	14.63
	01/26/15	21.69		0.00	14.64
	01/28/15	21.71		0.00	14.62
	01/30/15	21.50		0.00	14.83
	02/02/15	21.57		0.00	14.76
	02/06/15	21.63		0.00	14.70
	02/09/15	21.60		0.00	14.73
	02/20/15	21.63		0.00	14.70
MW-29	01/05/15	18.80		0.00	15.26
(34.06)	01/06/15	18.76		0.00	15.30
	01/07/15	18.82		0.00	15.24
	01/08/15	18.61		0.00	15.45
	01/09/15	18.61		0.00	15.45
	01/12/15	18.61		0.00	15.45
	01/13/15	18.63		0.00	15.43
	01/14/15	18.67		0.00	15.39
	01/15/15	18.50		0.00	15.56
	01/16/15	18.65		0.00	15.41
	01/19/15	18.67		0.00	15.39
	01/20/15	18.60		0.00	15.46
	01/21/15	18.53		0.00	15.53
	01/22/15	18.65		0.00	15.41
	01/23/15	18.79		0.00	15.27
	01/26/15	18.70		0.00	15.36
	01/28/15	18.78		0.00	15.28
	01/30/15	18.64		0.00	15.42
	02/02/15	18.59		0.00	15.47
	02/06/15	18.65		0.00	15.41
	02/09/15	18.59		0.00	15.47
	02/20/15	19.26		0.00	14.80
MW-30	01/05/15	18.68		0.00	14.77
(33.45)	01/06/15	18.67		0.00	14.78
	01/07/15	18.70		0.00	14.75
	01/08/15	18.46		0.00	14.99
	01/09/15	18.50		0.00	14.95
	01/12/15	18.41		0.00	15.04
	01/13/15	18.45		0.00	15.00

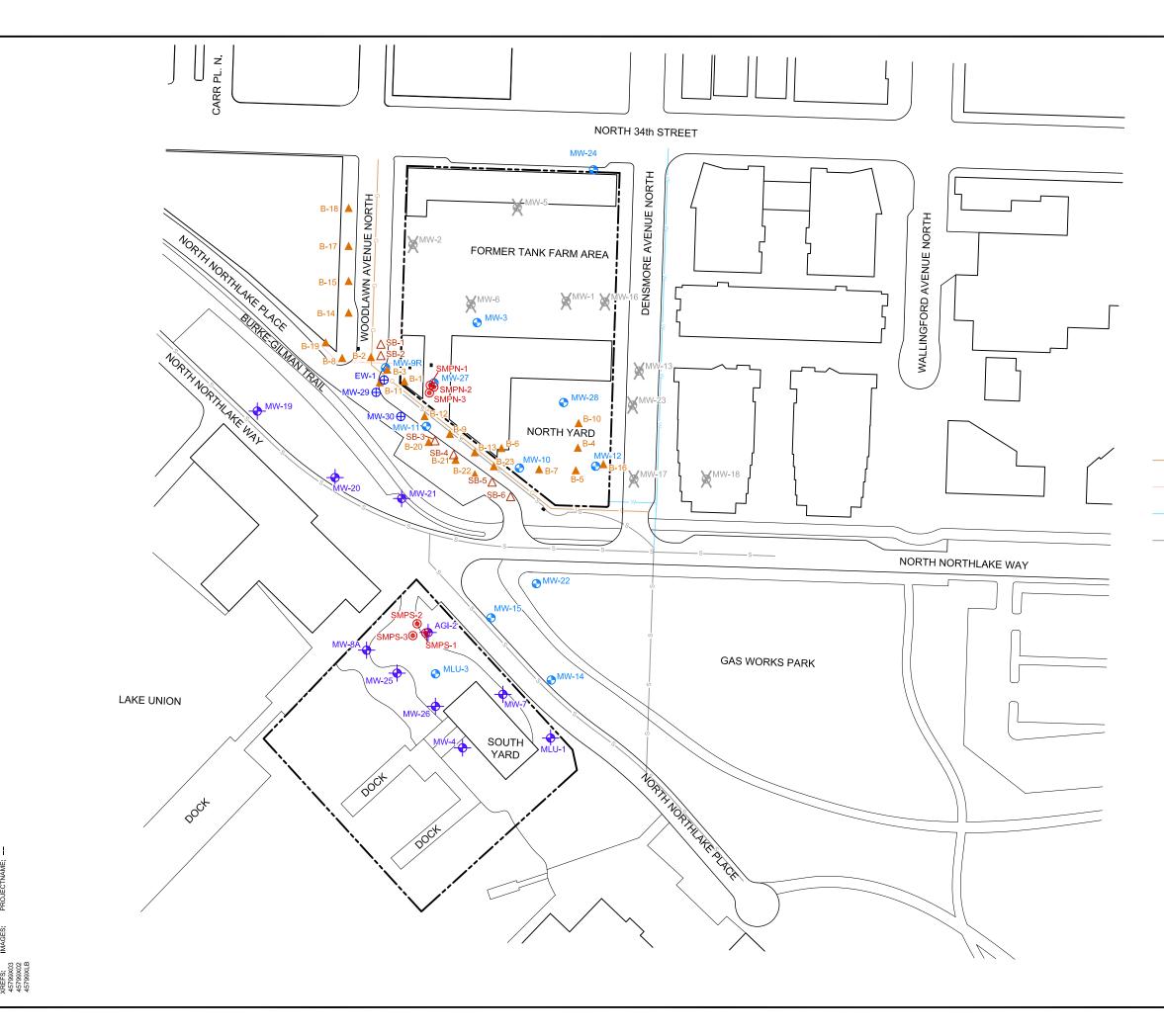
Table 3Event and Post-Event Gauging DataFormer Chevron Bulk Plant #10013271602 North Northlake Place

Seattle. Washington

Well Number ¹		Depth to	Depth to	LNAPL	Groundwater
(Well Casing Elevation)	Date	Groundwater ²	LNAPL	Thickness	Elevation ³
(feet above mean sea level)	Measured	(feet)	(feet)	(feet)	(feet)
MW-30 (continued)	01/14/15	18.61		0.00	14.84
(33.45)	01/15/15	18.59		0.00	14.86
	01/16/15	18.50		0.00	14.95
	01/19/15	18.53		0.00	14.92
	01/20/15	18.50		0.00	14.95
	01/21/15	18.42		0.00	15.03
	01/22/15	18.60		0.00	14.85
	01/23/15	18.72		0.00	14.73
	01/26/15	18.55		0.00	14.90
	01/28/15	18.63		0.00	14.82
	01/30/15	18.47		0.00	14.98
	02/02/15	18.52		0.00	14.93
	02/06/15	18.55		0.00	14.90
	02/09/15	18.60		0.00	14.85
	02/20/15	19.18		0.00	14.27
EW-1	01/05/15	21.70		0.00	13.35
(35.05)	01/06/15	21.67		0.00	13.38
	01/07/15	21.65		0.00	13.40
	01/08/15	21.72		0.00	13.33
	01/09/15	21.70		0.00	13.35
	01/12/15	21.80		0.00	13.25
	01/13/15	21.76		0.00	13.29
	01/14/15	21.80		0.00	13.25
	01/15/15	21.80		0.00	13.25
	01/16/15	21.76		0.00	13.29
	01/19/15	21.58		0.00	13.47
	01/20/15	21.60		0.00	13.45
	01/21/15	21.65		0.00	13.40
	01/22/15	21.74		0.00	13.31
	01/23/15	21.80		0.00	13.25
	01/26/15	21.69		0.00	13.36
	01/28/15	21.74		0.00	13.31
	01/30/15	21.71		0.00	13.34
	02/02/15	21.63		0.00	13.42
	02/06/15	21.76		0.00	13.29
	02/09/15	21.70		0.00	13.35
	02/20/15	21.71		0.00	13.34

Notes:

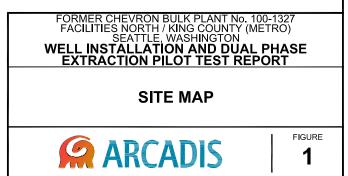
¹Well casing elevations listed in feet above mean sea level. Approximate monitoring well locations are shown on Figure 2. ²Below top of casing.

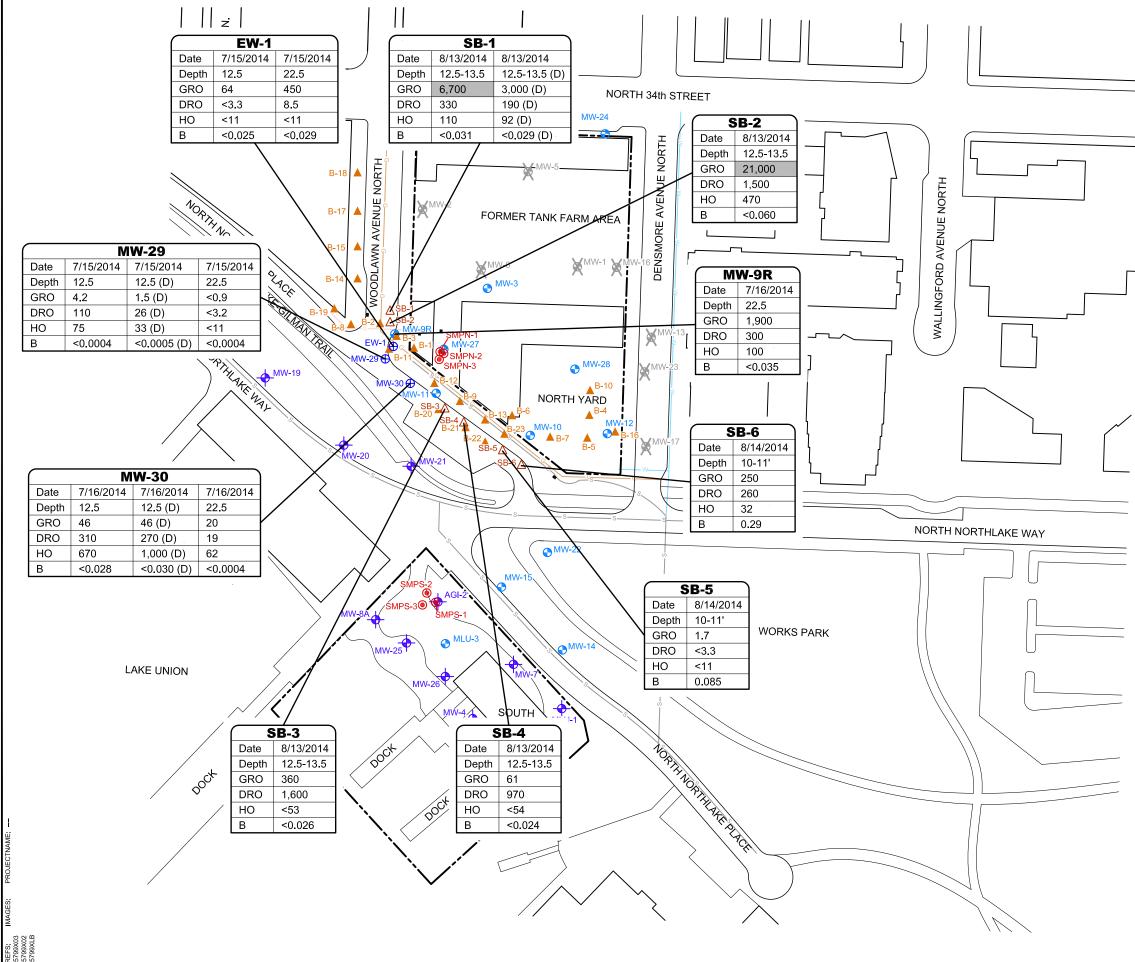

³Elevation referenced to Horizontal Datum NAD 83/98, State Plane Coordinates Washington North Zone and Vertical Datum NAVD 88 LNAPL = light non-aqueous phase liquid

Bold data measured during dewatering of site

"--" = not measured or not obtainable

Figures


LEGEND:


\oplus	APPROXIMATE MONITORING WELL LOCATION
Δ	APPROXIMATE SOIL BORING LOCATION
•	GROUNDWATER MONITORING WELL
×	ABANDONED MONITORING WELL
+	COMPLIANCE MONITORING WELL
۲	SEPARATE-PHASE MONITORING POINT LOCATION
	2007 BORING LOCATIONS
-	CATCH BASIN
G	NATURAL GAS LINE (APPROX.)
	UNDERGROUND ELECTRIC LINE (APPROX.)
	WATER LINE (APPROX.)
s	SEWER LINE (APPROX.)

NOTES:

- BASE MAP FROM A DRAWING BY SAIC TITLED "SITE MAP", DATED 09-14-07, @ A SCALE OF 1" = 60'. REVISED IN ACCORDANCE WITH A SURVEY DRAWING BY OTAK CONDUCTED IN APRIL & MAY, 2011.
- 2. ALL LOCATIONS OTHER THAN MONITORING WELLS ARE APPROXIMATE.

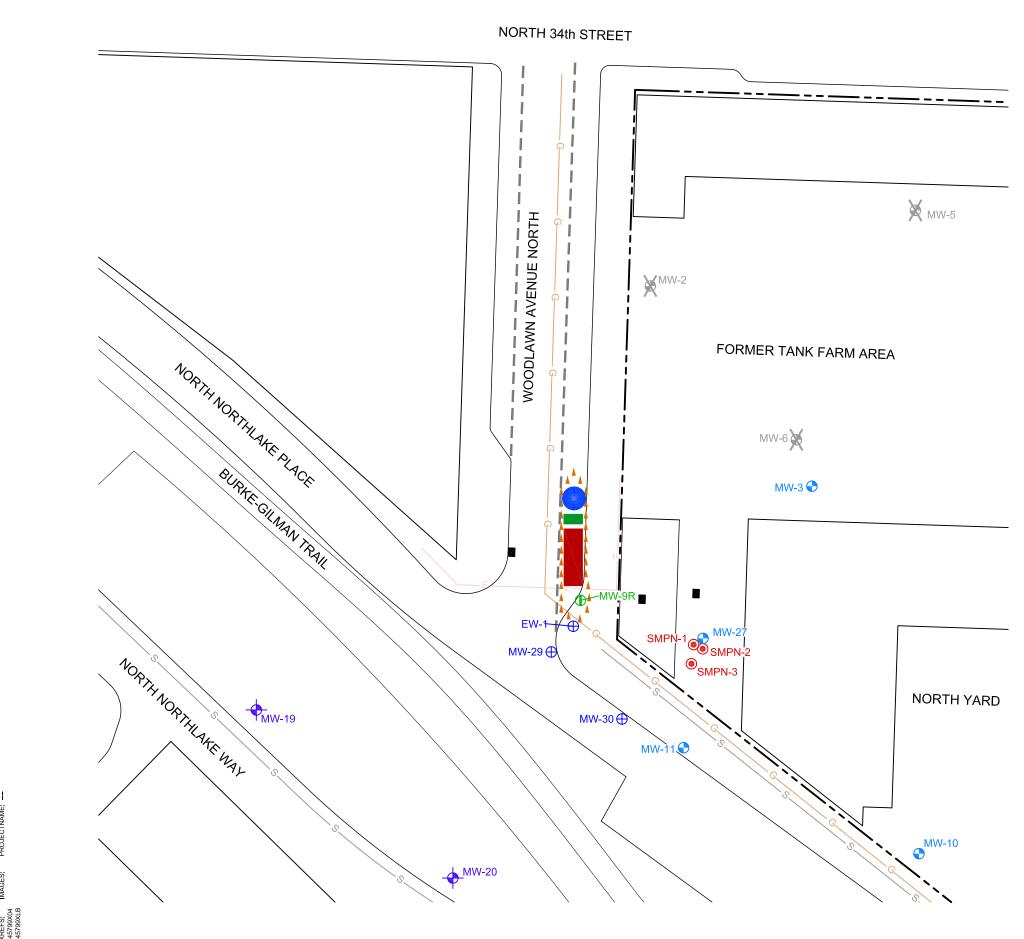
0	1C	0'	200'
	GRAPHI	C SCALE	

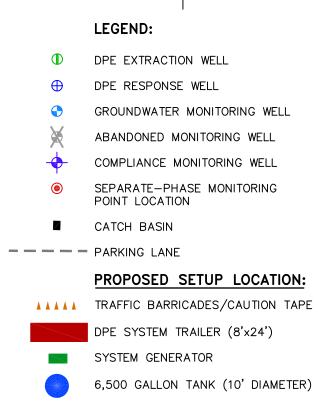
Ϋ́R TR E EPPLE AM ACADVER TM: S. MILES ZORN PM: S LAY PIC: D

LEGEND:

\oplus	APPROXIMATE MONITORING WELL LOCATION
Δ	APPROXIMATE SOIL BORING LOCATION
•	GROUNDWATER MONITORING WELL
×	ABANDONED MONITORING WELL
+	COMPLIANCE MONITORING WELL
۲	SEPARATE-PHASE MONITORING POINT LOCATION
	2007 BORING LOCATIONS
•	CATCH BASIN
G	NATURAL GAS LINE (APPROX.)
	UNDERGROUND ELECTRIC LINE (APPROX.)
W	WATER LINE (APPROX.)
S	SEWER LINE (APPROX.)
(D)	DUPLICATE VALUE

SHADED INDICATES VALUE GREATER THAN SITE CULS


\square	SAMPLE ID
Date	Month/Day/Year
Depth	Feet Below Ground Surface
GRO	Gasoline-Range Organics (mg/kg)
DRO	Diesel-Range Organics (mg/kg)
НО	Heavy Oil (mg/kg)
В	Benzene (mg/kg)

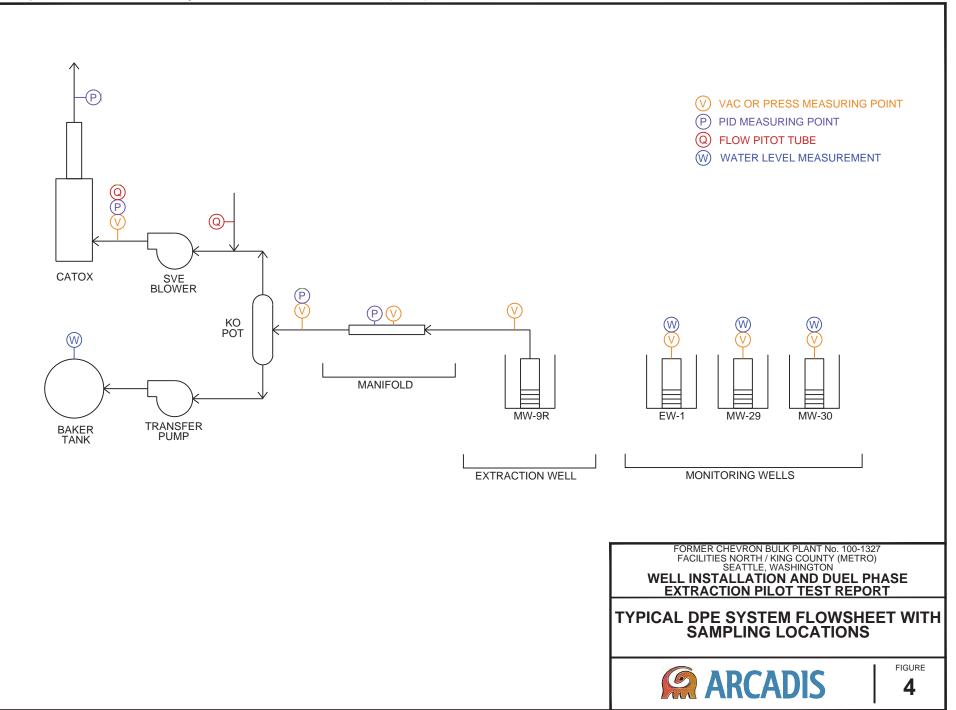

NOTES:

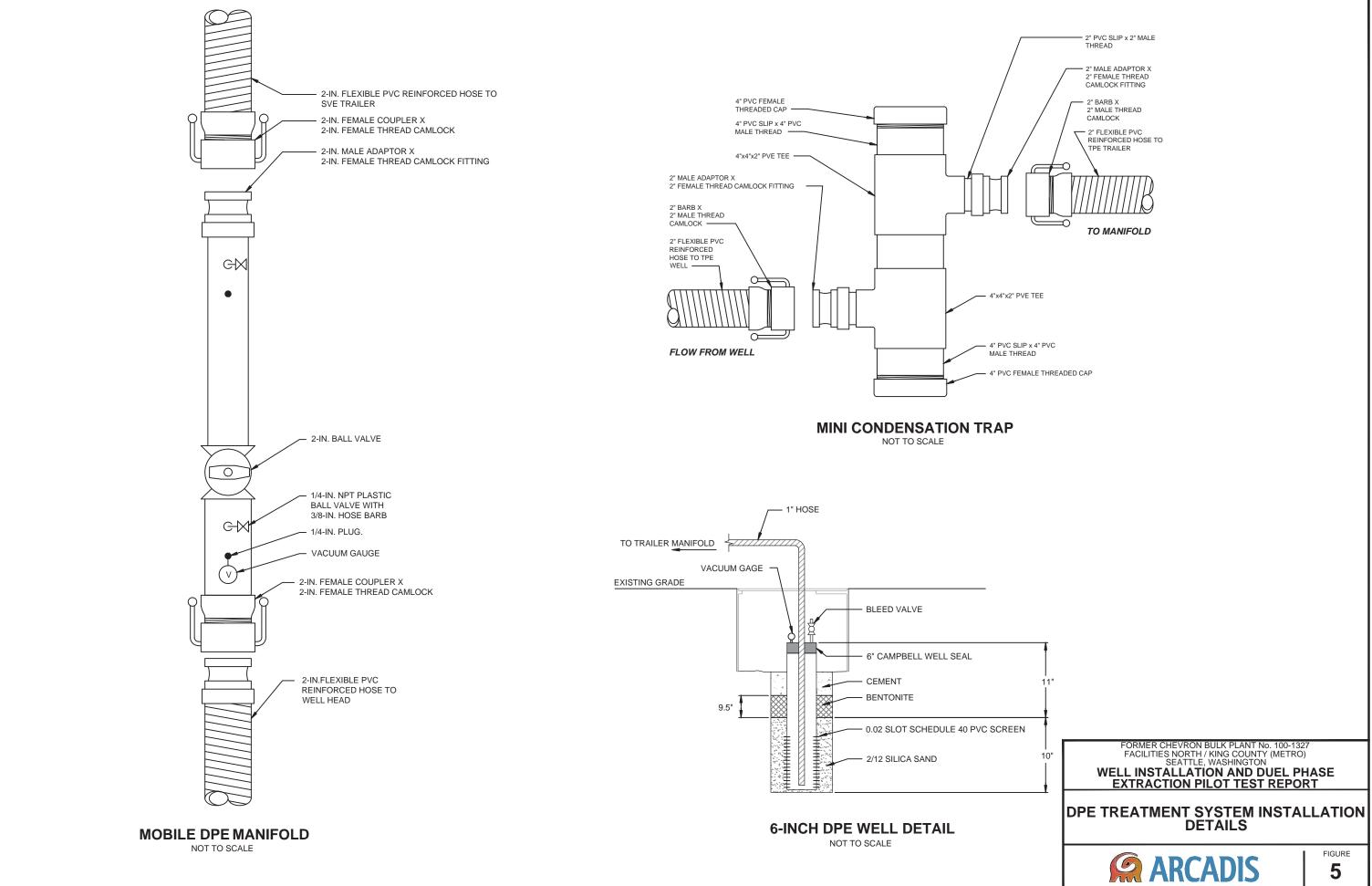
- BASE MAP FROM A DRAWING BY SAIC TITLED "SITE MAP", DATED 09-14-07,
 A SCALE OF 1" = 60'. REVISED IN ACCORDANCE WITH A SURVEY DRAWING BY OTAK CONDUCTED IN APRIL & MAY, 2011.
- 2. ALL LOCATIONS OTHER THAN MONITORING WELLS ARE APPROXIMATE.

FORMER CHEVRON BULK PLANT No. 100-1327 FACILITIES NORTH / KING COUNTY (METRO) SEATTLE, WASHINGTON WELL INSTALLATION AND DUAL PHASE EXTRACTION PILOT TEST REPORT SOIL ANALYTICAL RESULTS

NOTE:

- 1. BASE MAP FROM A DRAWING BY SAIC TITLED "SITE MAP", DATED 09-14-07, @ A SCALE OF 1"=60'. REVISED IN ACCORDANCE WITH A SURVEY DRAWING BY OTAK CONDUCTED IN APRIL & MAY, 2011.
- 2. ALL LOCATIONS OTHER THAN MONITORING WELLS ARE APPROXIMATE.


0	40	o'	80'


GRAPHIC SCALE

FORMER CHEVRON BULK PLANT №. 100-1327 FACILITIES NORTH / KING COUNTY (METRO) SEATTLE, WASHINGTON WELL INSTALLATION AND DUAL PHASE EXTRACTION PILOT TEST REPORT

DUAL PHASE EXTRACTION SYSTEM LAYOUT

Appendix A

Right of Way (ROW) Permits

UTILITY PERMIT

Permit No.: 235724

PERMITTEE

Inspector: Daniel Conn Inspection District: UNIVERSITY

LOCATION

Address: 1602 N NORTHLAKE WAY

Details: 5 LOCATIONS AT OR AROUND THE CORNER OF N NORTHLAKE PL AND WOODLAWN AVE. IMPACT TO SIDEWALK AND TRAVEL LANES.

 Application Date:
 5/21/14
 11:36 am

 Issue Date:
 6/19/14
 2:23 pm

PARTIES (* Primary Applicant)

Role	Name	Address	Phone	From	То
*24 Hour Contact	MILES, SAM	1100 OLIVE WAY, SUITE 800,,SEATTLE,WA,98101	(206)853-7428		
Permittee	MILES, SAM	1100 OLIVE WAY, SUITE 800, SEATTLE, WA, 98101	(206)726-4720		
Engineer	MILES, SAM	1100 OLIVE WAY, SUITE 800, SEATTLE, WA, 98101	(206)726-4720		

PERMITTED USES

Right of W	ay: NON-Ai	RTERIAL	DPD #:		To Be	Restored By: F	PERMITTEE
Use	Space	Start Date	Duration	Max Allowed Date	Sq. Ft.	Issued Date	Intended Vacate Date
511	Α	6/25/14	. 10	7/4/14	1500	6/19/14	7/4/14
Use Space	Descriptio	on			Condition	15	
51I A	Prepatory or exploratory work for upcoming projects, including surveying, installing monitoring wells, and soil sampling			AROUND		rterial. 5 LOCATIONS AT OR DF N NORTHLAKE PL AND closure.	

CONDITIONS OF USE

DESCRIPTION OF WORK :

Additional Notes: Preparatory and exploratory work for upcoming projects, including surveying, installing wells/soil borings, and soil sampling at or around the corner of N Northlake PI and Woodlawn Ave.

ADDITIONAL CONDITIONS

Additional Notes: ADDITONAL DESCRIPTION, 1 OVER DRILL @ mw 9. Location 1 NE corner NE woodlawn ave, 2@ 1" wells, NE corner of N Northlake PI, 2 soil borings Northeast side of North Northlake PI-SE of Woodlawn Ave N.

ADDITIONAL CONDITIONS 1 :

Additional Notes: Contractor must place street closed signs at each end of alley to notify vehicle traffic. Contractor must notify all adjacent residents and businesses a minimum of 24 hours prior to any activity that will impact alley access. Garbage collection services must be provided access whenever necessary. Seattle Police Department must be contacted at the non-emergency number, (206) 625-5011, to notify that the street is closed to thru traffic.

E1.15 :

MULCHING AND MATTING - Apply mulch to protect exposed soils and promote plant establishment.

E1.40:

PERMANENT SEEDING AND PLANTING - Install temporary surface runoff control measures prior to seeding or planting to protect the surface from erosion until the vegetation is established. Establish permanent vegetation (e.g., grasses, legumes, trees, and shrubs) as rapidly as possible to prevent soil erosion by wind or water.

E1.45 :

SODDING - Establish permanent turf for immediate erosion protection or to stabilize drainage pathways where concentrated overland flow will occur.

E1.50:

TOPSOILING - Preserve and use topsoil to enhance final site stabilization with vegetation and to provide a suitable growth medium for final site stabilization with vegetation.

E3.25 :

STORM DRAIN INLET PROTECTION - Install storm drain covers on stormwater structures less than 12 inches deep during construction. Install catch basin filter socks in stormwater structures greater than 12 inches deep. Place the storm drain or catch basin grate on top of the catch basin filter sock to hold it in place.

C1.20:

USE OF CHEMICALS DURING CONSTRUCTION - Use only the recommended amounts of chemical materials and apply them in a proper manner. Neutralize the pH of concrete wash water from concrete mixers, if necessary.

C1.35 :

Je Dept of Transportation et Use Permits, 23rd Floor d0 Fifth Ave, Suite 2300 P O Box 34996 Seattle, WA 98124-4996

UTILITY PERMIT

AWCUTTING AND PAVING POLLUTION PREVENTION - Vacuum slurry and cuttings during the activity to prevent migration offsite and do not leave slurry and cuttings on permanent concrete or asphalt paving overnight. Dispose of collected slurry and cuttings, waste material, and demolition debris in a manner that does not violate groundwater or surface water quality standards. Implement preventative measures such as berms, barriers, secondary containment, and vactor trucks if observations indicate that a violation of water quality standards could occur. C1.45 :

SOLID WASTE HANDLING AND DISPOSAL - Remove and dispose of accumulated solid waste at authorized disposal areas. Label waste containers and place them in a covered area with closed lids. Salvage and recycle any useful materials. BMP5:

SPILL PREVENTION AND CLEANUP-Keep a spill cleanup kit in a nearby vehicle or next to the work site so that it is easily accessible. Make sure the contents of the spill kit are appropriate for the types and quantities of materials used for this work task. Refill spill kit materials before beginning work. BMP16 :

CONCRETE POURING, CONCRETE/ASPHALT CUTTING, AND ASPHALT APPLICATION - Sweep or shovel loose aggregate chunks and dust for recycling or proper disposal. Place storm drain covers or similarly effective containment devices over all storm drains located downslope or adjacent to the work area. Shovel or vacuum all slurry and remove from the site. Perform cleaning of concrete application and mixing equipment or concrete-delivery vehicles in a

BMP20 :

LANDSCAPING AND LAWN VEGETATION MANAGEMENT - Use proper fertilizer and herbicide application techniques to minimize nutrient pollution of stormwater. Implement proper landscaping and mulching techniques to prevent plant material and excess mulch from entering the separate storm drainage system. Do not dispose of collected vegetation in separate storm drainage systems, waterways, water bodies or greenbelt areas.

DAMAGED OR DESTROYED UTILITY :

SDOT makes no representation regarding the safety or integrity of the subject structure. If the structure is damaged or destroyed, SDOT will have no

TREE TRUNK OR ROOTS :

Contact the City Arborist Office (684-8733) a minimum of five working-days prior to digging within any landscaped areas in the street rights-of-way. The edge of all trenching must be at least five feet (5') from any street trees. When trenching near trees with trunks greater than twelve inches (12") in diameter, hand dig all trenching for a distance of ten feet (10'), measured five feet (5') radius from the tree trunk. When encountering tree roots, cut off cleanly with sharp saw (do not leave torn or ripped tree roots unattended). Do not cut roots greater than two inches (2") in diameter (contractor will have to hand tunnel underneath the roots). Do not paint ends of roots. Notify Landscape Maintenance at 684-4121 at least forty eight (48) hours in advance when working in

FEES

S

P_f

Description			
	Date	Amount	
ISSUANCE FEE - USE 511	06/19/2014	\$146.00	
Totals:		\$146.00	
TREET USE INSPECTOR		Daniel Conn	(200) 000 (70)
ermittee Roy 6 Hand		Director Per_FandSand	(206) 386-4504

GENERAL REQUIREMENTS

- Nature of permit. This permit is issued pursuant to the Seattle Municipal Code (SMC), Chapter 15.04, for use and/or occupancy of the public l. right-of-way consistent with the terms and conditions set forth herein. This permit is wholly of a temporary nature, vests no permanent rights
- Acceptance of terms, conditions, and requirements. Permittee accepts the terms, conditions, and requirements of this permit and agrees to comply 2 with them to the satisfaction of the Seattle Department of Transportation, Street Use Division, or such other agency as may be designated by the City of Seattle. Permittee further agrees to comply with all applicable city ordinances, including but not limited to Title 15 SMC, and all applicable
- Copy of permit. A copy of the issued permit and approved plans must be on site and available at all times.
- Expiration of permit. This permit shall remain valid until revoked pursuant to SMC 15.04.070; provided that, the permit shall expire automatically if the authorized work does not begin within six months from the date the permit is issued.

Superiority of Street Improvement Permit. When a Street Improvement Permit exists, the rights acquired under the Street Improvement Permit supersedes those acquired under any other Street Use or Utility Permits.

Compliance with technical requirements and standards. All work within the public right-of-way shall be performed and completed in accordance with requirements set forth in the following technical documents published by the City of Seattle, as now or hereafter amended: Right-of-Way Improvements Manual; Standard Specifications for Road, Bridge, and Municipal Construction; Standard Plans for Municipal Construction; Street and Sidewalk Pavement Opening and Restoration Rule; and Traffic Control Manual for In-Street Work.

Scope of Work. The Permittee shall construct the improvements reflected in, and in accordance with, this permit and the City approved construction plans. Any and all revisions, omissions and / or additions to the scope of work shall be reviewed and approved by the City prior to implementation. Street Use Notification. Construction work may be completed in several phases: site preparation (setting up traffic control, sawcutting, etc), ground breaking, and restoration. Before beginning any phase of work in the public right-of-way, the Permittee shall notify Street Use of each start date.

.de Dept of Transportation ,eet Use Permits, 23rd Floor ,00 Fifth Ave, Suite 2300 P O Box 34996 Seattle, WA 98124-4996

UTILITY PERMIT

Permittee shall be responsible for notifying Street Use Job Start at (206) 684-5270 or <u>SDOTJobStart@Seattle.gov_a minimum of 2 business days prior</u> to the start of work and provide the following information:

- Permit Number
- · Job Site Address
- · Start Date Please specify if Job Start date is the same as the Excavation date. If the dates are different, please provide both dates.
- Brief Work Description
- Job Site Contact Name and Phone Number

Failure to do so shall result in a penalty of \$300 or such other amount as may be established pursuant to SMC 15.04.074.

For Street Improvement Permits and Major Utility Permits, a preconstruction meeting is required prior to the start of construction, and the assigned inspector shall be notified a minimum of 2 business days prior to required inspections.

- 9. Utility notification prior to ground disturbance. The Permittee shall call Utility Underground Locator Center (1-800-424-5555) a minimum of 48 hours prior to ground disturbance.
- 10. Public notification. Permittee shall notify all potentially affected residents and businesses, at least one week prior to starting work within the public right-of-way.
- 11. Coordination of work. In performing work authorized by this permit, the Permittee shall coordinate with other contractors working in the public right-of-way to minimize the impact to the public.
- 12. Hours of work. Work performed within the public right-of-way shall occur only during hours authorized under all applicable codes, regulations, rules and permits.
- 13. Off-Hour Work. Work outside of normal working hours (8:00 am -5:00 pm Monday through Friday) requires a minimum of 3 business days advanced notice to the SDOT Street Use Inspection Supervisor prior to the off hours work. Work outside of normal working hours may also require a separate approved traffic control plan. A minimum of 2 hours of inspection time will be charged for inspection outside of normal working hours at the premium rate. A Stop Work order and/or a Citation may be issued for failure to notify a minimum of 3 business days in advance.
- 14. Inspection fees. Permittee shall pay for City inspections of work authorized under this permit per the current fee schedule as established pursuant to SMC 15.04.074, and to cover all other associated costs.
- 15. Billing. All fees and costs billed pursuant to this permit shall be paid to the City of Seattle within 30 days from the date of the invoice. Past due invoices may be subject to interest charges and / or sent to collections.
- 16. Deposits, Charges, and Future Billings. The Permittee is responsible for all permit charges. If a deposit was made for estimated future street use services, any unused portion of the deposit shall be refunded to the Permittee. Any charges in excess of the deposit shall be billed to the Permittee.
- 17. Corrective Work. The Permittee is responsible for any additional costs incurred by the City resulting from temporary or corrective measures required to bring the work area in compliance with standards that apply, including, but not limited to, temporary traffic control, requirements for temporary structures, temporary stabilization and temporary restoration when the Permittee is not on site.
- 18. Indemnification. The Permittee agrees to defend, indemnify, and hold harmless the City of Seattle, its officials, officers, employees, and agents against: (1) any liability, claims, causes of action, judgments, or expenses, including reasonable attorney fees, resulting directly or indirectly from any act or omission of the Permittee, its contractors, subcontractors, anyone directly or indirectly employed by them, and anyone for whose acts or omissions they may be liable, arising out of the Permittee's use or occupancy of the public right-of-way; and (2) all loss by the failure of the Permittee to fully or adequately perform, in any respect, all authorizations or obligations under this Permit.

EXISTING IMPROVEMENTS

- 1. Costs of damage to City property and improvements. Permittee shall be responsible for the costs of repairing any damage to city property or improvements resulting from work performed by or on behalf of the Permittee within the public right-of-way.
- 2. Utility protection. The Permittee shall be responsible for checking locations and providing adequate protection for all utilities in the work area.
- 3. Utility relocation. The Permittee shall be responsible for notifying affected utilities and requesting any necessary relocation.
- 4. Survey monuments. Prior to removing, destroying, disturbing, or covering a survey monument, such that the survey point is no longer visible or readily accessible, Permittee shall obtain a permit from the Department of Natural Resources pursuant to Washington Administrative Code, Chapter 332-120.

ENVIRONMENTAL PROTECTION

1. Best management practices required. The Permittee shall be responsible for the control of surface runoff, erosion and sediment at the construction site, as required by: the Stormwater Code (Title 22 Subtitle VIII SMC), the Standard Specifications for Road, Bridge, and Municipal Construction and Department of Planning and Development Director's Rule 16-2000, as now or hereafter amended. The site and the surrounding area shall generally be kept clean and free of construction debris or other material, including but not limited to mud, dust, rock, asphalt, and concrete. Waste materials shall be collected and disposed of at an appropriate disposal site. These materials shall be prevented from entering any part of the public sewer and storm drain system, and any surface waters.

TRAFFIC CONTROL REQUIREMENTS

- 1. Compliance with the Traffic Control Manual for In-Street Work. In order to provide safe and effective work areas and to ward, control, protect, and expedite vehicular and pedestrian traffic, signage for all construction within the public right-of-way shall comply with the City of Seattle Traffic Control Manual for In-Street Work, as now or hereafter amended. When required, the conditions on the traffic control plan shall supercede any conflicting provisions or requirements in the City of Seattle Manual for In Street Work. A copy of the current City of Seattle Traffic Control Manual for In-Street Work, and approved traffic control plan, when required, shall be on site at all times.
- 2. Lanes to remain open during peak hours. Traffic lanes shall not be closed during the following peak hours: 6:00 am-9:00 am and 3:00 pm-7:00 pm

de Dept of Transportation reet Use Permits, 23rd Floor /00 Fifth Ave, Suite 2300 P O Box 34996 Seattle, WA 98124-4996

UTILITY PERMIT

in the Central Business District, and 7:00 am-9:00 am and 4:00 pm-6:00 pm for arterials elsewhere in the City, unless specifically noted on the approved traffic control plan.

- 3. Maintain access. Access shall be maintained or accommodated during construction.
- 4. Width of temporary traffic lanes. Temporary traffic lanes created during the permitted work shall be a minimum of 11 feet in width, unless otherwise approved on the traffic control plan.
- 5. Working within restricted curb spaces. When the project impacts a restricted curb space, such as parking stalls, meters, pay stations, and related signage, the Permittee shall obtain permission from SDOT Traffic Management prior to the start of work. Contact the SDOT Traffic Engineers at (206) 684-5086 prior to the start of work.
- 6. Temporary No Parking signs and easels. In areas without parking pay stations or parking meters, establishing a Temporary No Parking Zone requires placement of type T-38 or T-39 easels, and completion of an online verification form in conformance with the Traffic Control Manual for In-street Work. The Permittee shall contact SDOT's Traffic Permit Counter when working in pay-to-park areas (meters or pay station controlled).
- 7. Nighttime Illumination. Four or more Type B warning lights of sufficient brilliance to be seen from 500 feet, must be maintained at all times during the hours of darkness at the points of obstruction or excavation of any right-of-way.

Seattle Dept of Transportation Street Use Permits, 23rd Floor 700 Fifth Ave, Suite 2300 P O Box 34996 Seattle, WA 98124-4996

UTILITY PERMIT PERMITTEE

Inspector: Daniel Conn

LOCATION

Inspection District: UNIVERSITY

Address: **1602 N NORTHLAKE WAY** Details: 5 LOCATIONS AT OR AROUND THE CORNER OF N NORTHLAKE PL AND WOODLAWN AVE. IMPACT TO SIDEWALK AND TRAVEL LANES.

Application Date: 5/21/14 11:36 am **Issue Date:** 6/24/14 11:41 am

PARTIES (* Primary Applicant)

Role	Name	Address	Phone	From	То
*24 Hour Contact	MILES, SAM	1100 OLIVE WAY, SUITE 800, SEATTLE, WA, 98101	(206)853-7428	ann a' chuis	a terre
Permittee	MILES, SAM	1100 OLIVE WAY, SUITE 800,,SEATTLE,WA,98101	(206)726-4720		
Engineer	MILES, SAM	1100 OLIVE WAY, SUITE 800,,SEATTLE,WA,98101	(206)726-4720		

PERMITTED USES

Use	Space	Start Date	Duration	Max Allowed Date	Sq. Ft.	Issued Date	Intended Vacate Date	- 830 P
511	A	6/25/14		7/4/14	1500	6/19/14	7/4/14	
511	А	7/14/14	10	7/23/14	1	6/24/14	7/23/14	
Use Space	Descripti	on	Varifica (1963) Marina (1975)	tala ang sana ang sana panga san	Condition	IS	êr terstrik in 1860 de ein tearrigh die Statue	(1.)) (S.
51I A		Prepatory or exploratory work for upcoming projects, including surveying, installing monitoring wells, and soil sampling			Soil borings or wells, non arterial. 5 LOCATIONS AT OR AROUND THE CORNER OF N NORTHLAKE PL AND WOODLAWN AVE. Street closure.			
51I A		Prepatory or exploratory work for upcoming projects, including surveying, installing monitoring wells, and soil sampling			New start LOCATIO	date. Soil borings	or wells, non arterial. 5 ND THE CORNER OF N ODLAWN AVE. Street closure.	

CONDITIONS OF USE

DESCRIPTION OF WORK:

Additional Notes: Preparatory and exploratory work for upcoming projects, including surveying, installing wells/soil borings, and soil sampling at or around the corner of N Northlake PI and Woodlawn Ave.

ADDITIONAL CONDITIONS:

Additional Notes: ADDITONAL DESCRIPTION, 1 OVER DRILL @ mw 9. Location 1 NE corner NE woodlawn ave, 2@ 1" wells, NE corner of N Northlake PI, 2 soil borings Northeast side of North Northlake PI-SE of Woodlawn Ave N.

ADDITIONAL CONDITIONS 1:

Additional Notes: Contractor must place street closed signs at each end of alley to notify vehicle traffic. Contractor must notify all adjacent residents and businesses a minimum of 24 hours prior to any activity that will impact alley access. Garbage collection services must be provided access whenever necessary. Seattle Police Department must be contacted at the non-emergency number, (206) 625-5011, to notify that the street is closed to thru traffic.

E1.15:

MULCHING AND MATTING - Apply mulch to protect exposed soils and promote plant establishment.

E1.40:

PERMANENT SEEDING AND PLANTING - Install temporary surface runoff control measures prior to seeding or planting to protect the surface from erosion until the vegetation is established. Establish permanent vegetation (e.g., grasses, legumes, trees, and shrubs) as rapidly as possible to prevent soil erosion by wind or water.

E1.45:

SODDING - Establish permanent turf for immediate erosion protection or to stabilize drainage pathways where concentrated overland flow will occur.

TOPSOILING - Preserve and use topsoil to enhance final site stabilization with vegetation and to provide a suitable growth medium for final site stabilization with vegetation.

E3.25:

STORM DRAIN INLET PROTECTION - Install storm drain covers on stormwater structures less than 12 inches deep during construction. Install catch basin filter socks in stormwater structures greater than 12 inches deep. Place the storm drain or catch basin grate on top of the catch basin filter sock to hold it in place.

C1.20:

USE OF CHEMICALS DURING CONSTRUCTION - Use only the recommended amounts of chemical materials and apply them in a proper manner. Neutralize the pH of concrete wash water from concrete mixers, if necessary.

UTILITY PERMIT

- 8. Street Use Notification. Construction work may be completed in several phases: site preparation (setting up traffic control, sawcutting, etc), ground breaking, and restoration. Before beginning any phase of work in the public right-of-way, the Permittee shall notify Street Use of each start date. Permittee shall be responsible for notifying Street Use Job Start at (206) 684-5270 or <u>SDOTJobStart@Seattle.gov</u> a minimum of 2 business days prior to the start of work and provide the following information:
 - · Permit Number
 - · Job Site Address
 - · Start Date Please specify if Job Start date is the same as the Excavation date. If the dates are different, please provide both dates.
 - Brief Work Description
 - · Job Site Contact Name and Phone Number

Failure to do so shall result in a penalty of \$300 or such other amount as may be established pursuant to SMC 15.04.074.

For Street Improvement Permits and Major Utility Permits, a preconstruction meeting is required prior to the start of construction, and the assigned inspector shall be notified a minimum of 2 business days prior to required inspections.

- 9. Utility notification prior to ground disturbance. The Permittee shall call Utility Underground Locator Center (1-800-424-5555) a minimum of 48 hours prior to ground disturbance.
- 10. Public notification. Permittee shall notify all potentially affected residents and businesses, at least one week prior to starting work within the public right-of-way.
- 11. Coordination of work. In performing work authorized by this permit, the Permittee shall coordinate with other contractors working in the public right-of-way to minimize the impact to the public.
- 12. Hours of work. Work performed within the public right-of-way shall occur only during hours authorized under all applicable codes, regulations, rules and permits.
- 13. Off-Hour Work. Work outside of normal working hours (8:00 am -5:00 pm Monday through Friday) requires a minimum of 3 business days advanced notice to the SDOT Street Use Inspection Supervisor prior to the off hours work. Work outside of normal working hours may also require a separate approved traffic control plan. A minimum of 2 hours of inspection time will be charged for inspection outside of normal working hours at the premium rate. A Stop Work order and/or a Citation may be issued for failure to notify a minimum of 3 business days in advance.
- 14. Inspection fees. Permittee shall pay for City inspections of work authorized under this permit per the current fee schedule as established pursuant to SMC 15.04.074, and to cover all other associated costs.
- 15. Billing. All fees and costs billed pursuant to this permit shall be paid to the City of Seattle within 30 days from the date of the invoice. Past due invoices may be subject to interest charges and / or sent to collections.
- 16. Deposits, Charges, and Future Billings. The Permittee is responsible for all permit charges. If a deposit was made for estimated future street use services, any unused portion of the deposit shall be refunded to the Permittee. Any charges in excess of the deposit shall be billed to the Permittee.
- 17. Corrective Work. The Permittee is responsible for any additional costs incurred by the City resulting from temporary or corrective measures required to bring the work area in compliance with standards that apply, including, but not limited to, temporary traffic control, requirements for temporary structures, temporary stabilization and temporary restoration when the Permittee is not on site.
- 18. Indemnification. The Permittee agrees to defend, indemnify, and hold harmless the City of Seattle, its officials, officers, employees, and agents against: (1) any liability, claims, causes of action, judgments, or expenses, including reasonable attorney fees, resulting directly or indirectly from any act or omission of the Permittee, its contractors, subcontractors, anyone directly or indirectly employed by them, and anyone for whose acts or omissions they may be liable, arising out of the Permittee's use or occupancy of the public right-of-way; and (2) all loss by the failure of the Permittee to fully or adequately perform, in any respect, all authorizations or obligations under this Permit.

EXISTING IMPROVEMENTS

- 1. Costs of damage to City property and improvements. Permittee shall be responsible for the costs of repairing any damage to city property or improvements resulting from work performed by or on behalf of the Permittee within the public right-of-way.
- 2. Utility protection. The Permittee shall be responsible for checking locations and providing adequate protection for all utilities in the work area.
- 3. Utility relocation. The Permittee shall be responsible for notifying affected utilities and requesting any necessary relocation.
- 4. Survey monuments. Prior to removing, destroying, disturbing, or covering a survey monument, such that the survey point is no longer visible or readily accessible, Permittee shall obtain a permit from the Department of Natural Resources pursuant to Washington Administrative Code, Chapter 332-120.

ENVIRONMENTAL PROTECTION

1. Best management practices required. The Permittee shall be responsible for the control of surface runoff, erosion and sediment at the construction site, as required by: the Stormwater Code (Title 22 Subtitle VIII SMC), the Standard Specifications for Road, Bridge, and Municipal Construction and Department of Planning and Development Director's Rule 16-2000, as now or hereafter amended. The site and the surrounding area shall generally be kept clean and free of construction debris or other material, including but not limited to mud, dust, rock, asphalt, and concrete. Waste materials shall be collected and disposed of at an appropriate disposal site. These materials shall be prevented from entering any part of the public sewer and storm drain system, and any surface waters.

TRAFFIC CONTROL REQUIREMENTS

1. Compliance with the Traffic Control Manual for In-Street Work. In order to provide safe and effective work areas and to ward, control, protect, and expedite vehicular and pedestrian traffic, signage for all construction within the public right-of-way shall comply with the City of Seattle Traffic Control Manual for In-Street Work, as now or hereafter amended. When required, the conditions on the traffic control plan shall supercede any conflicting provisions or requirements in the City of Seattle Manual for In Street Work. A copy of the current City of Seattle Traffic Control Manual

UTILITY PERMIT

Permit No.: 235724

Inspector: Daniel Conn Inspection District: UNIVERSITY

LOCATION

Address: **1602 N NORTHLAKE WAY**

MILES, SAM

Application Date: 5/21/14 11:36 am

(206)726-4720

	OCATIONS AT OR AROUN ODLAWN AVE. IMPACT T	ssue Date:	6/19/14	2:23 pm	
ARTIES (* Pr	rimary Applicant)				
Role	Name	Address	Phone	From	То
24 Hour Conta	act MILES, SAM	1100 OLIVE WAY, SUITE 800,,SEATTLE,WA,98101	(206)853-7428		a.
Permittee	MILES, SAM	1100 OLIVE WAY, SUITE 800,,SEATTLE,WA,98101	(206)726-4720		

1100 OLIVE WAY, SUITE 800, SEATTLE, WA, 98101

PERMITTED USES

Engineer

Right of W	ay: NON-AI	RTERIAL	DPD #:	To Be Restored By: PERMITTEE						
Use	Space	Start Date	Duration	Max Allowed Date	Sq. Ft.	Issued Date	Intended Vacate Date			
511	А	6/25/14	10	7/4/14	1500	6/19/14	7/4/14			
Use Space 51I A		or exploratory w		ning projects, including nd soil sampling	Conditions Soil borings or wells, non arterial. 5 LOCATIONS AT OR AROUND THE CORNER OF N NORTHLAKE PLAND WOODLAWN AVE, Street closure.					

CONDITIONS OF USE

DESCRIPTION OF WORK:

Additional Notes: Preparatory and exploratory work for upcoming projects, including surveying, installing wells/soil borings, and soil sampling at or around the corner of N Northlake Pl and Woodlawn Ave.

ADDITIONAL CONDITIONS:

Additional Notes: ADDITONAL DESCRIPTION, 1 OVER DRILL @ mw 9. Location 1 NE corner NE woodlawn ave, 2@ 1" wells, NE corner of N Northlake PI, 2 soil borings Northeast side of North Northlake PI-SE of Woodlawn Ave N.

ADDITIONAL CONDITIONS 1:

Additional Notes: Contractor must place street closed signs at each end of alley to notify vehicle traffic. Contractor must notify all adjacent residents and businesses a minimum of 24 hours prior to any activity that will impact alley access. Garbage collection services must be provided access whenever necessary. Seattle Police Department must be contacted at the non-emergency number, (206) 625-5011, to notify that the street is closed to thru traffic.

E1.15 :

MULCHING AND MATTING - Apply mulch to protect exposed soils and promote plant establishment.

E1.40 :

PERMANENT SEEDING AND PLANTING - Install temporary surface runoff control measures prior to seeding or planting to protect the surface from erosion until the vegetation is established. Establish permanent vegetation (e.g., grasses, legumes, trees, and shrubs) as rapidly as possible to prevent soil erosion by wind or water.

E1.45:

SODDING - Establish permanent turf for immediate erosion protection or to stabilize drainage pathways where concentrated overland flow will occur.

E1.50 :

TOPSOILING - Preserve and use topsoil to enhance final site stabilization with vegetation and to provide a suitable growth medium for final site stabilization with vegetation.

E3.25 :

STORM DRAIN INLET PROTECTION - Install storm drain covers on stormwater structures less than 12 inches deep during construction. Install catch basin filter socks in stormwater structures greater than 12 inches deep. Place the storm drain or catch basin grate on top of the catch basin filter sock to hold it in place.

C1.20:

USE OF CHEMICALS DURING CONSTRUCTION - Use only the recommended amounts of chemical materials and apply them in a proper manner. Neutralize the pH of concrete wash water from concrete mixers, if necessary.

C1.35:

UTILITY PERMIT

SAWCUTTING AND PAVING POLLUTION PREVENTION - Vacuum slurry and cuttings during the activity to prevent migration offsite and do not leave slurry and cuttings on permanent concrete or asphalt paving overnight. Dispose of collected slurry and cuttings, waste material, and demolition debris in a manner that does not violate groundwater or surface water quality standards. Implement preventative measures such as berms, barriers, secondary containment, and vactor trucks if observations indicate that a violation of water quality standards could occur.

C1.45:

SOLID WASTE HANDLING AND DISPOSAL - Remove and dispose of accumulated solid waste at authorized disposal areas. Label waste containers and place them in a covered area with closed lids. Salvage and recycle any useful materials.

BMP5:

SPILL PREVENTION AND CLEANUP-Keep a spill cleanup kit in a nearby vehicle or next to the work site so that it is easily accessible. Make sure the contents of the spill kit are appropriate for the types and quantities of materials used for this work task. Refill spill kit materials before beginning work.

BMP16 :

CONCRETE POURING, CONCRETE/ASPHALT CUTTING, AND ASPHALT APPLICATION - Sweep or shovel loose aggregate chunks and dust for recycling or proper disposal. Place storm drain covers or similarly effective containment devices over all storm drains located downslope or adjacent to the work area. Shovel or vacuum all slurry and remove from the site. Perform cleaning of concrete application and mixing equipment or concrete-delivery vehicles in a designated area where the rinse water is controlled.

BMP20 :

LANDSCAPING AND LAWN VEGETATION MANAGEMENT - Use proper fertilizer and herbicide application techniques to minimize nutrient pollution of stormwater. Implement proper landscaping and mulching techniques to prevent plant material and excess mulch from entering the separate storm drainage system. Do not dispose of collected vegetation in separate storm drainage systems, waterways, water bodies or greenbelt areas.

DAMAGED OR DESTROYED UTILITY :

SDOT makes no representation regarding the safety or integrity of the subject structure. If the structure is damaged or destroyed, SDOT will have no obligation to provide an alternative location for the permit utility.

TREE TRUNK OR ROOTS :

Contact the City Arborist Office (684-8733) a minimum of five working-days prior to digging within any landscaped areas in the street rights-of-way. The edge of all trenching must be at least five feet (5') from any street trees. When trenching near trees with trunks greater than twelve inches (12") in diameter, hand dig all trenching for a distance of ten feet (10'), measured five feet (5') radius from the tree trunk. When encountering tree roots, cut off cleanly with sharp saw (do not leave torn or ripped tree roots unattended). Do not cut roots greater than two inches (2") in diameter (contractor will have to hand tunnel underneath the roots). Do not paint ends of roots. Notify Landscape Maintenance at 684-4121 at least forty eight (48) hours in advance when working in landscaped areas or on trees.

FEES			
Description	Date	Amount	
ISSUANCE FEE - USE 511	06/19/2014	\$146.00	
Totals:		\$146.00	
STREET USE INSPECTOR		Daniel Conn	(206) 386-4504
Permittee Roy 6 Hank	Din	ector Per Fan Spath	

GENERAL REQUIREMENTS

- 1. Nature of permit. This permit is issued pursuant to the Seattle Municipal Code (SMC), Chapter 15.04, for use and/or occupancy of the public right-of-way consistent with the terms and conditions set forth herein. This permit is wholly of a temporary nature, vests no permanent rights whatsoever, and is revocable pursuant to SMC 15.04.070.
- 2. Acceptance of terms, conditions, and requirements. Permittee accepts the terms, conditions, and requirements of this permit and agrees to comply with them to the satisfaction of the Seattle Department of Transportation, Street Use Division, or such other agency as may be designated by the City of Seattle. Permittee further agrees to comply with all applicable city ordinances, including but not limited to Title 15 SMC, and all applicable requirements of state and federal law.
- 3. Copy of permit. A copy of the issued permit and approved plans must be on site and available at all times.
- 4. Expiration of permit. This permit shall remain valid until revoked pursuant to SMC 15.04.070; provided that, the permit shall expire automatically if the authorized work does not begin within six months from the date the permit is issued.
- 5. Superiority of Street Improvement Permit. When a Street Improvement Permit exists, the rights acquired under the Street Improvement Permit supersedes those acquired under any other Street Use or Utility Permits.
- 6. Compliance with technical requirements and standards. All work within the public right-of-way shall be performed and completed in accordance with requirements set forth in the following technical documents published by the City of Seattle, as now or hereafter amended: Right-of-Way Improvements Manual; Standard Specifications for Road, Bridge, and Municipal Construction; Standard Plans for Municipal Construction; Street and Sidewalk Pavement Opening and Restoration Rule; and Traffic Control Manual for In-Street Work.
- 7. Scope of Work. The Permittee shall construct the improvements reflected in, and in accordance with, this permit and the City approved construction plans. Any and all revisions, omissions and / or additions to the scope of work shall be reviewed and approved by the City prior to implementation.
- Street Use Notification. Construction work may be completed in several phases: site preparation (setting up traffic control, sawcutting, etc), ground breaking, and restoration. Before beginning any phase of work in the public right-of-way, the Permittee shall notify Street Use of each start date.

UTILITY PERMIT

Permittee shall be responsible for notifying Street Use Job Start at (206) 684-5270 or <u>SDOTJobStart@Seattle.gov</u> a minimum of 2 business days prior to the start of work and provide the following information:

- · Permit Number
- · Job Site Address
- · Start Date Please specify if Job Start date is the same as the Excavation date. If the dates are different, please provide both dates.
- · Brief Work Description
- · Job Site Contact Name and Phone Number

Failure to do so shall result in a penalty of \$300 or such other amount as may be established pursuant to SMC 15.04.074.

For Street Improvement Permits and Major Utility Permits, a preconstruction meeting is required prior to the start of construction, and the assigned inspector shall be notified a minimum of 2 business days prior to required inspections.

- 9. Utility notification prior to ground disturbance. The Permittee shall call Utility Underground Locator Center (1-800-424-5555) a minimum of 48 hours prior to ground disturbance.
- 10. Public notification. Permittee shall notify all potentially affected residents and businesses, at least one week prior to starting work within the public right-of-way.
- 11. Coordination of work. In performing work authorized by this permit, the Permittee shall coordinate with other contractors working in the public right-of-way to minimize the impact to the public.
- 12. Hours of work. Work performed within the public right-of-way shall occur only during hours authorized under all applicable codes, regulations, rules and permits.
- 13. Off-Hour Work. Work outside of normal working hours (8:00 am -5:00 pm Monday through Friday) requires a minimum of 3 business days advanced notice to the SDOT Street Use Inspection Supervisor prior to the off hours work. Work outside of normal working hours may also require a separate approved traffic control plan. A minimum of 2 hours of inspection time will be charged for inspection outside of normal working hours at the premium rate. A Stop Work order and/or a Citation may be issued for failure to notify a minimum of 3 business days in advance.
- 14. Inspection fees. Permittee shall pay for City inspections of work authorized under this permit per the current fee schedule as established pursuant to SMC 15.04.074, and to cover all other associated costs.
- 15. Billing. All fees and costs billed pursuant to this permit shall be paid to the City of Seattle within 30 days from the date of the invoice. Past due invoices may be subject to interest charges and / or sent to collections.
- 16. Deposits, Charges, and Future Billings. The Permittee is responsible for all permit charges. If a deposit was made for estimated future street use services, any unused portion of the deposit shall be refunded to the Permittee. Any charges in excess of the deposit shall be billed to the Permittee.
- 17. Corrective Work. The Permittee is responsible for any additional costs incurred by the City resulting from temporary or corrective measures required to bring the work area in compliance with standards that apply, including, but not limited to, temporary traffic control, requirements for temporary structures, temporary stabilization and temporary restoration when the Permittee is not on site.
- 18. Indemnification. The Permittee agrees to defend, indemnify, and hold harmless the City of Seattle, its officials, officers, employees, and agents against: (1) any liability, claims, causes of action, judgments, or expenses, including reasonable attorney fees, resulting directly or indirectly from any act or omission of the Permittee, its contractors, subcontractors, anyone directly or indirectly employed by them, and anyone for whose acts or omissions they may be liable, arising out of the Permittee's use or occupancy of the public right-of-way; and (2) all loss by the failure of the Permittee to fully or adequately perform, in any respect, all authorizations or obligations under this Permit.

EXISTING IMPROVEMENTS

- 1. Costs of damage to City property and improvements. Permittee shall be responsible for the costs of repairing any damage to city property or improvements resulting from work performed by or on behalf of the Permittee within the public right-of-way.
- 2. Utility protection. The Permittee shall be responsible for checking locations and providing adequate protection for all utilities in the work area.
- 3. Utility relocation. The Permittee shall be responsible for notifying affected utilities and requesting any necessary relocation.
- 4. Survey monuments. Prior to removing, destroying, disturbing, or covering a survey monument, such that the survey point is no longer visible or readily accessible, Permittee shall obtain a permit from the Department of Natural Resources pursuant to Washington Administrative Code, Chapter 332-120.

ENVIRONMENTAL PROTECTION

1. Best management practices required. The Permittee shall be responsible for the control of surface runoff, erosion and sediment at the construction site, as required by: the Stormwater Code (Title 22 Subtitle VIII SMC), the Standard Specifications for Road, Bridge, and Municipal Construction and Department of Planning and Development Director's Rule 16-2000, as now or hereafter amended. The site and the surrounding area shall generally be kept clean and free of construction debris or other material, including but not limited to mud, dust, rock, asphalt, and concrete. Waste materials shall be collected and disposed of at an appropriate disposal site. These materials shall be prevented from entering any part of the public sewer and storm drain system, and any surface waters.

TRAFFIC CONTROL REQUIREMENTS

- 1. Compliance with the Traffic Control Manual for In-Street Work. In order to provide safe and effective work areas and to ward, control, protect, and expedite vehicular and pedestrian traffic, signage for all construction within the public right-of-way shall comply with the City of Seattle Traffic Control Manual for In-Street Work, as now or hereafter amended. When required, the conditions on the traffic control plan shall supercede any conflicting provisions or requirements in the City of Seattle Manual for In Street Work. A copy of the current City of Seattle Traffic Control Manual for In-Street Work, and approved traffic control plan, when required, shall be on site at all times.
- 2. Lanes to remain open during peak hours. Traffic lanes shall not be closed during the following peak hours: 6:00 am-9:00 am and 3:00 pm-7:00 pm

UTILITY PERMIT

in the Central Business District, and 7:00 am-9:00 am and 4:00 pm-6:00 pm for arterials elsewhere in the City, unless specifically noted on the approved traffic control plan.

- 3. Maintain access. Access shall be maintained or accommodated during construction.
- 4. Width of temporary traffic lanes. Temporary traffic lanes created during the permitted work shall be a minimum of 11 feet in width, unless otherwise approved on the traffic control plan.
- 5. Working within restricted curb spaces. When the project impacts a restricted curb space, such as parking stalls, meters, pay stations, and related signage, the Permittee shall obtain permission from SDOT Traffic Management prior to the start of work. Contact the SDOT Traffic Engineers at (206) 684-5086 prior to the start of work.
- 6. Temporary No Parking signs and easels. In areas without parking pay stations or parking meters, establishing a Temporary No Parking Zone requires placement of type T-38 or T-39 easels, and completion of an online verification form in conformance with the Traffic Control Manual for In-street Work. The Permittee shall contact SDOT's Traffic Permit Counter when working in pay-to-park areas (meters or pay station controlled).
- 7. Nighttime Illumination. Four or more Type B warning lights of sufficient brilliance to be seen from 500 feet, must be maintained at all times during the hours of darkness at the points of obstruction or excavation of any right-of-way.

UTILITY PERMIT

Permit No.: 242324

7/24/14 4:39 pm

8/5/14 10:51 am

Inspector Copy

Application Date:

Issue Date:

□ File Copy

Inspector: Daniel Conn Inspection District: UNIVERSITY

LOCATION

Address: 1602 N NORTHLAKE PL

Details: AT NORTHEAST SIDE N NORHTLAKE PL, BETWEEN N NORTHLAKE WAY AND WOODLAWN AVE N; AND EAST SIDE WOODLAWN AVE N, BETWEEN N NORTHLAKE PL AND N 34TH ST. IMPACT TO CURB LANE AND SIDEWALK.

PARTIES (* Primary Applicant)

Role	Name	Address	Phone	From	То
*24 Hour Contact	MILES, SAM	1100 OLIVE WAY, SUITE 800, SEATTLE, WA, 98101	(206)853-7428		22.0
Permittee	ARCADIS U.S. INC.	1100 OLIVE WAY STE 800,,SEATTLE,WA,98101-	(206)726-4732		
Contractor'S Age	ntHENNECK, RORY	2300 EASTLAKE AVE E,SUITE 200,SEATTLE,WA,98102	(206)726-9504		

PERMITTED USES

Right of W	ay: NON-A	RTERIAL	DPD #:	To Be Restored By: PERMITTEE								
Use	Space	Start Date	Duration	Max Allowed Date	Sq. Ft.	Issued Date	Intended Vacate Date					
511	А	8/11/14	10	8/20/14	2400	8/5/14	8/20/14					
Use Space	Descripti	on	W.		Condition	ns						
51I A				ning projects, including nd soil sampling	Norhtlake and east s	Soil Boring 6 locations, non arterial. At Northeast side N Norhtlake PI, between N Northlake Way and Woodlawn Ave N; and east side Woodlawn Ave N, between N Northlake PI and N 34th St. Impact to curb lane and sidewalk.						

CONDITIONS OF USE

DESCRIPTION OF WORK :

Additional Notes: SCOPE:/// CUST DESC: install 6 borings at or around the corner of N Northlake PL and Woodlawn Ave N. temporary lane closure. At Northeast side N Northlake PI, between N Northlake Way and Woodlawn Ave N; and east side Woodlawn Ave N, between N Northlake PI and N 34th St. Impact to curb lane and sidewalk.

ADDITIONAL CONDITIONS :

Additional Notes: Contact Wave Broadband for construction coordination. 206-330-6440 Seth Dwyer: 1 sidewalk to remain open at all times. 1@11' traffic lane must be available. In the event that no coordination for work at the same time then, reschedule work so only 1 contractor is on site at a time.

E1.15 :

MULCHING AND MATTING - Apply mulch to protect exposed soils and promote plant establishment.

E1.40 :

PERMANENT SEEDING AND PLANTING - Install temporary surface runoff control measures prior to seeding or planting to protect the surface from erosion until the vegetation is established. Establish permanent vegetation (e.g., grasses, legumes, trees, and shrubs) as rapidly as possible to prevent soil erosion by wind or water.

E1.45 :

SODDING - Establish permanent turf for immediate erosion protection or to stabilize drainage pathways where concentrated overland flow will occur.

E1.50:

TOPSOILING - Preserve and use topsoil to enhance final site stabilization with vegetation and to provide a suitable growth medium for final site stabilization with vegetation.

E3.25 :

STORM DRAIN INLET PROTECTION - Install storm drain covers on stormwater structures less than 12 inches deep during construction. Install catch basin filter socks in stormwater structures greater than 12 inches deep. Place the storm drain or catch basin grate on top of the catch basin filter sock to hold it in place.

C1.20:

USE OF CHEMICALS DURING CONSTRUCTION - Use only the recommended amounts of chemical materials and apply them in a proper manner. Neutralize the pH of concrete wash water from concrete mixers, if necessary.

C1.35:

SAWCUTTING AND PAVING POLLUTION PREVENTION - Vacuum slurry and cuttings during the activity to prevent migration offsite and do not leave slurry and cuttings on permanent concrete or asphalt paving overnight. Dispose of collected slurry and cuttings, waste material, and demolition debris in a manner that does not violate groundwater or surface water quality standards. Implement preventative measures such as berms, barriers, secondary containment, and vactor trucks if observations indicate that a violation of water quality standards could occur.

UTILITY PERMIT

C1.45:

SOLID WASTE HANDLING AND DISPOSAL - Remove and dispose of accumulated solid waste at authorized disposal areas. Label waste containers and place them in a covered area with closed lids. Salvage and recycle any useful materials.

BMP5 :

SPILL PREVENTION AND CLEANUP-Keep a spill cleanup kit in a nearby vehicle or next to the work site so that it is easily accessible. Make sure the contents of the spill kit are appropriate for the types and quantities of materials used for this work task. Refill spill kit materials before beginning work.

BMP16 :

CONCRETE POURING, CONCRETE/ASPHALT CUTTING, AND ASPHALT APPLICATION - Sweep or shovel loose aggregate chunks and dust for recycling or proper disposal. Place storm drain covers or similarly effective containment devices over all storm drains located downslope or adjacent to the work area. Shovel or vacuum all slurry and remove from the site. Perform cleaning of concrete application and mixing equipment or concrete-delivery vehicles in a designated area where the rinse water is controlled.

BMP20:

LANDSCAPING AND LAWN VEGETATION MANAGEMENT - Use proper fertilizer and herbicide application techniques to minimize nutrient pollution of stormwater. Implement proper landscaping and mulching techniques to prevent plant material and excess mulch from entering the separate storm drainage system. Do not dispose of collected vegetation in separate storm drainage systems, waterways, water bodies or greenbelt areas.

DAMAGED OR DESTROYED UTILITY :

SDOT makes no representation regarding the safety or integrity of the subject structure. If the structure is damaged or destroyed, SDOT will have no obligation to provide an alternative location for the permit utility.

TREE TRUNK OR ROOTS :

Contact the City Arborist Office (684-8733) a minimum of five working-days prior to digging within any landscaped areas in the street rights-of-way. The edge of all trenching must be at least five feet (5') from any street trees. When trenching near trees with trunks greater than twelve inches (12") in diameter, hand dig all trenching for a distance of ten feet (10'), measured five feet (5') radius from the tree trunk. When encountering tree roots, cut off cleanly with sharp saw (do not leave torn or ripped tree roots unattended). Do not cut roots greater than two inches (2") in diameter (contractor will have to hand tunnel underneath the roots). Do not paint ends of roots. Notify Landscape Maintenance at 684-4121 at least forty eight (48) hours in advance when working in landscaped areas or on trees.

FEES

Description	Date	Amount	
ISSUANCE FEE - USE 511	08/5/2014	\$146.00	
Totals:		\$146.00	
	Dir	Daniel Conn	(206) 386-4504
12			

GENERAL REQUIREMENTS

- Nature of permit. This permit is issued according to Seattle Municipal Code ("SMC"), Chapter 15.04, for the use or occupancy of the public right of
 way in a manner consistent with the terms and conditions in this permit. This permit is wholly of a temporary nature, vests no permanent rights, and is
 revocable according to SMC Section 15.04.070.
- 2. Acceptance of terms, conditions, and requirements. The Permittee accepts the terms, conditions, and requirements of this permit and agrees to comply with them to the satisfaction of the Seattle Department of Transportation, Street Use & Urban Forestry Division ("Street Use"), or such other agency as may be designated by the City. The Permittee further agrees to comply with all applicable City ordinances, including but not limited to SMC Title 15, and all applicable state and federal laws.
- 3. Copy of permit. A copy of the issued permit and current approved plans shall be on site and available at all times.
- 4. Expiration of permit. This permit shall remain valid until revoked according to SMC Section 15.04.070; provided that the permit shall expire automatically if the authorized work does not begin within 6 months from the date the permit is issued. The Permittee is responsible for keeping the permit up to date including submitting updated plans for approval. The Permittee shall submit requests to update a permit in writing or in person, and all requests shall be made to Street Use in a timely manner; otherwise, the Permittee may lose access to requested schedule for continued work in the right of way.
- 5. Superiority of Street Improvement Permits. When a Street Improvement Permit exists, rights acquired under the Street Improvement Permit supersede those acquired under any other Street Use or Utility Permits. Work not approved under the Street Improvement Permit shall require separate Street Use or Utility Permits and Permittee shall obtain these permits in advance of work.
- 6. Compliance with technical requirements and standards. All work within the public right of way shall be performed and completed according to the current or subsequently-amended requirements in the following technical documents published by the City: Right-of-Way Improvements Manual; Street Tree Manual; Standard Specifications for Road, Bridge and Municipal Construction; Standard Plans for Municipal Construction; Street and Sidewalk Pavement Opening and Restoration Rule; and Traffic Control Manual for In-Street Work.
- 7. Scope of work. The Permittee shall stage equipment or materials and construct or install the improvements and infrastructure reflected in and in accordance with this permit and the City-approved construction plans. Any revisions, or additions to the scope of work shall be reviewed and approved by the City before implementation.
- 8. Street Use notification. Construction work may be completed in several phases: site preparation (installing traffic control, saw-cutting, etc.); ground

UTILITY PERMIT

breaking; restoration; or staging of equipment and materials. Before beginning any phase of work in the public right of way, the Permittee shall notify Street Use of each start date. The Permittee shall be responsible for notifying Street Use Job Start at (206) 684-5270 or SDOTJobStart@seattle.gov a minimum of 2 business days before starting work and shall provide the following information:

- Permit number;
- Job-site address;

Start date - please specify if Job Start date is the same as the excavation or ground breaking date. If the dates are different, please provide both dates;

- Brief work description; and
- Job-site contact name and phone number.

Failure to notify Street Use Job Start shall result in a \$300 penalty or other amounts according to SMC Section 15.04.074. For Street Improvement Permits and Utility Major Permits, a preconstruction meeting is required before starting construction, and the assigned inspector shall be notified a minimum of 2-business days before required inspections. Construction or utility activity occurring with, but not approved under, a Street Improvement or Utility Major Permit shall be permitted under separate Street Use permits. The Permittee shall apply for and obtain these Street Use permits in advance of work. Failure to do so may subject the Permittee to the above-described penalties, and additional permit review charges may apply.

- Underground and overhead utility notification. The Permittee shall notify the following entities, as applicable, 2 full business days in advance:
 Utility Underground Locate Center (811 or 1-800-424-5555) before ground disturbance; and
 - Seattle City Light (206-684-4911) if working within 10 feet of high-voltage lines.
- 10. Olympic Pipe Line Company notification. When work in the right of way occurs within 100 feet of an Olympic Pipe Line Company ("OPLC") pipeline, the Permittee shall coordinate the work with OPLC, which may include submitting detailed construction plans to OPLC. The Permittee shall notify OPLC's field coordinator 10-business days in advance of the work (425-235-7767) and an OPLC representative may be required to be onsite during the work.
- 11. Public notification. The Permittee shall notify all potentially affected residents and businesses at least 10-business days before starting work in the public right of way, including alleys. If a tree has been approved for removal, the Permittee shall post a "tree removal" public-notice placard at least 10-business days before starting work. If a SDOT public notice comment period is required prior to permitting, the Permittee shall conduct the public notice outreach prior to commencement of the SDOT public notice comment period.
- 12. Alley notification. Where this permit authorizes work in an alley, the Permittee shall notify all potentially impacted property owners and businesses prior to any activity occurring in the alley, including and especially those property owners and businesses with tenants using the alley to access parking or for building ingress/egress or deliveries. The Permittee shall schedule work around waste-management-collection days. If this is not possible, the Permittee shall coordinate with waste management services to either provide intermittent alley access during waste pickup or to temporarily establish waste pickup at an alternate location. If an alley is to remain open during permitted work, a minimum 11-foot clear width is required for vehicular access. If an alley is closed to through traffic, the Permittee shall notify the nearest Seattle Fire Department fire station and the Seattle Police Department at the non-emergency number prior to commencing work.
- 13. Coordination of work. In performing work authorized by this permit, the Permittee shall coordinate with other contractors working in the public right of way to minimize impact to the public. Documented coordination agreements may be required prior to permit issuance.
- 14. Hours of work. Work performed in the public right of way shall only occur during hours authorized under all applicable codes, regulations, rules, and permits.
- 15. Off-hours work. Work outside of normal working hours, 8:00 AM 5:00 PM Monday through Friday, is considered "off-hours work" and requires a minimum of 3-business days advanced notice to the Street Use Inspection Supervisor before the off-hours work commences. Off-hours work may also require a separately-approved traffic control plan. A minimum of 2 hours of inspection time shall be charged for off-hours inspections at the premium rate. A Stop Work order or Citation may be issued for failing to notify Street Use at least 3-business days before the off-hours work.
- 16. Inspection fees. The Permittee shall pay for City inspections of work authorized under this permit according to the current fee schedule established by SMC Section 15.04.074 and all other associated costs.
- 17. Billing. All fees and costs billed according to this permit shall be paid to the City of Seattle within 30-calendar days from the invoice date. Past due invoices may be subject to interest charges and may be sent to collections.
- 18. Deposits, charges, and future billings. The Permittee, also identified as the "Financially Responsible Party" on Street Use permit applications, is responsible and liable for all permit-related charges. If a deposit was made for estimated future Street Use services, any unused portion of the deposit shall be refunded to the Permittee. Any charges in excess of the deposit shall be billed to the Permittee on a monthly basis.
- 19. Corrective work. The Permittee is responsible for any additional costs incurred by the City resulting from temporary or corrective measures required to bring the work area into compliance with standards that apply, including but not limited to; temporary traffic control, requirements for temporary structures, temporary stabilization, and temporary restoration when the Permittee is not on site.
- 20. Indemnification. The Permittee agrees to defend, indemnify, and hold harmless the City of Seattle, its officials, officers, employees, and agents against: any liability, claims, causes of action, judgments, or expenses, including reasonable attorney fees, resulting directly or indirectly from any act or omission of the Permittee, its contractors, subcontractors, anyone directly or indirectly employed by them, and anyone for whose acts or omissions they may be liable, arising out of the Permittee's use or occupancy of the public right of way; and all loss by the failure of the Permittee to fully or adequately perform, in any respect, all authorizations or obligations under this Permit.

EXISTING IMPROVEMENTS

- Costs of damage to City property and improvements. The Permittee shall be responsible for the costs of repairing any damage to City property or improvements, including street trees, resulting from work performed by or on behalf of the Permittee within the public right of way. Damage to street trees is assessed on the value of the tree according to SMC subsection 15.90.018.B.
- 2. Utility protection. The Permittee shall be responsible for checking locations and providing adequate protection for all utilities in the work area.
- 3. Utility relocation. The Permittee shall be responsible for notifying affected utilities and requesting any necessary relocation.
- 4. Survey monuments. Before removing, destroying, disturbing, or covering a survey monument, such that the survey point is no longer visible or

UTILITY PERMIT

readily accessible, the Permittee shall obtain a permit from the Department of Natural Resources according to Washington Administrative Code, Chapter 332-120.

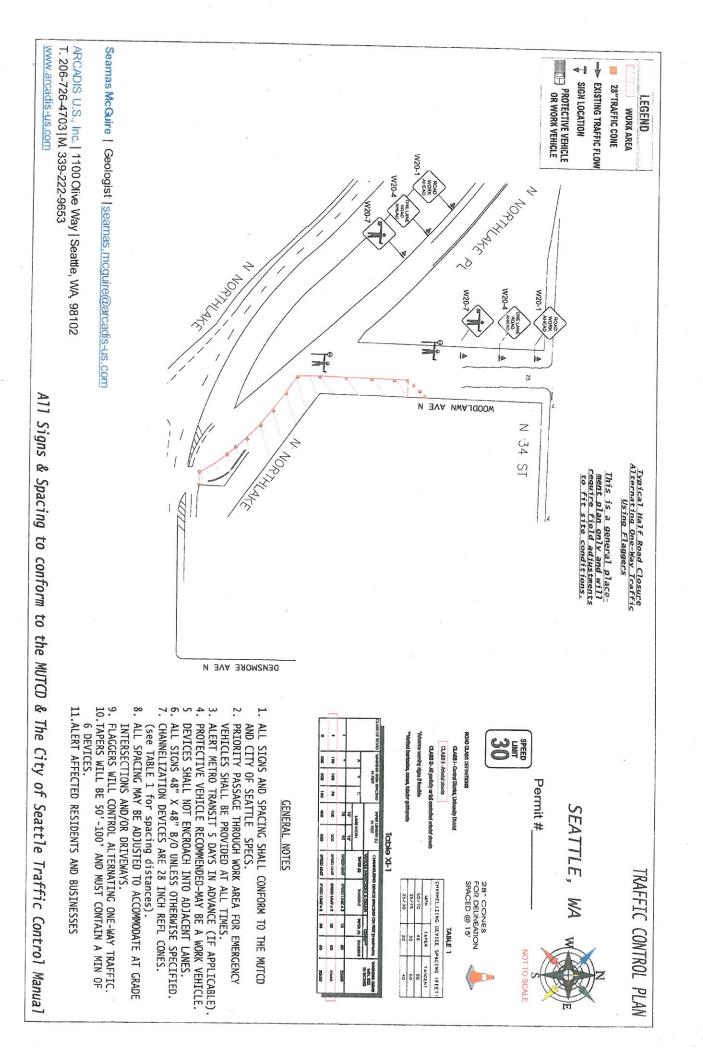
5. Protecting, removing, and relocating existing improvements. The Permittee, at their own cost and expense, shall be responsible for coordinating the removal and relocation of existing improvements within the public right of way that their construction or permitted project may interfere with. These existing improvements include, but are not limited to trees, bike racks, newsstands, bike-share stations, signs, benches, artwork, and waste receptacles.

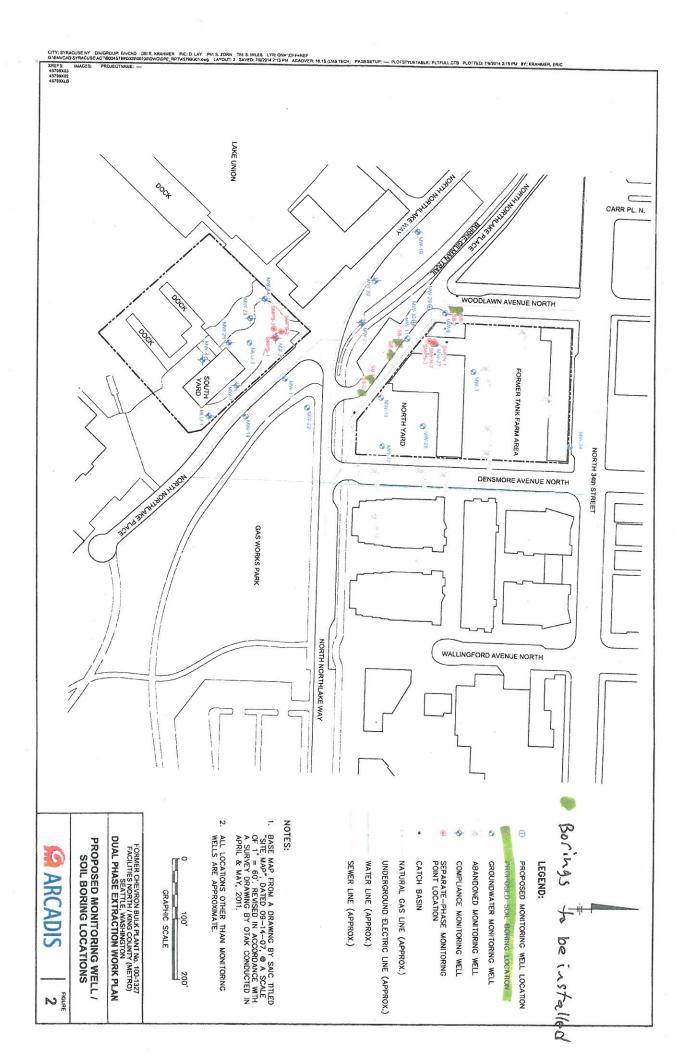
For bike-share stations, the Permittee shall contact the bike-share operator at least 30-calendar days before starting work in order to coordinate the removal and relocation of the bike-share station.

For all other existing improvements, the Permittee shall contact the improvement owner at least 10-business days before starting work to coordinate the temporary removal of the improvement.

For newsstands, the Permittee shall coordinate temporary relocation during the construction period by posting notice of upcoming construction projects at seattlenewsstands.org at least 10-business days before starting work.

The Permittee shall be responsible for reinstalling the improvements or coordinating the reinstallation in their original location or at a reasonable alternative location approved by the existing improvement owner and meeting all applicable City requirements. The Permittee is further responsible for protecting all trees within the construction project area and shall contact Urban Forestry to disclose and describe any construction impacts to trees. Failure to contact the improvement owners or Urban Forestry is cause for Street Use to revoke this permit.

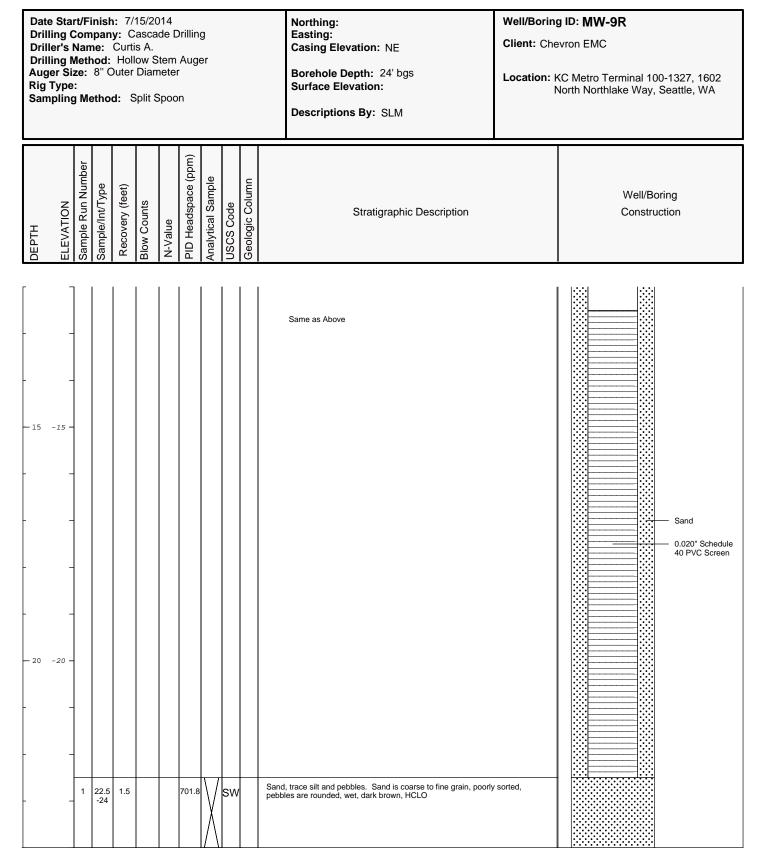

- 6. Monorail system proximity requirements. The Permittee shall be responsible for coordinating with the Seattle Center when any work, deliveries, or loading/unloading that would occur within 14 feet of a Monorail structure, or 20 feet of a Monorail foundation or below-ground installation. The Permittee shall contact the Seattle Center at 206-905-2601 at least 10-business days before starting construction. Failure to do so is cause for permit revocation.
- 7. Monorail system proximity guidelines. Below grade: A restricted digging area shall include a 45-degree cone extending outward and downward from the ground level of all monorail piers. Nearby excavations shall be monitored to assure footing stability. At or above grade: The piers above ground level cannot be moved, nor can any item such as lighting or signage be attached to the piers without prior written consent from the Seattle Center Director. Piers shall not be painted. Landscaping shall not occur adjacent to piers or within 10 feet of a Monorail structure without prior written consent of the Seattle Center Director. Any construction activity in the area of the power rails shall follow OSHA guidelines for working around high voltage. Construction equipment shall be located and operated in awareness of and taking account of beam height and the trains' 14-foot-operational envelope from each side of the beam. Contractors shall string warning lines from pier to pier under the beams as a guide. Spotters shall be employed when any construction activity occurs within 25 feet of the beams.

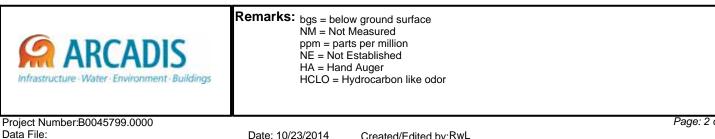

ENVIRONMENTAL PROTECTION

 Best management practices required. The Permittee shall be responsible for the control of surface runoff, erosion and sediment at the construction site, as required by: the Stormwater Code (SMC Title 22, Subtitle VIII); the Standard Specifications for Road, Bridge, and Municipal Construction; and Department of Planning and Development Director's Rule 16-2009, as amended. The site and the surrounding area shall generally be kept clean and free of construction debris or other material, including but not limited to mud, dust, rock, asphalt, and concrete. Waste materials shall be collected and disposed of at an appropriate disposal site. These materials shall be prevented from entering any part of the public sewer and storm drain system, and any surface waters.

TRAFFIC CONTROL REQUIREMENTS

- 1. Compliance with the Traffic Control Manual for In-Street Work. In order to provide safe and effective work areas and to ward, control, protect, and expedite vehicular and pedestrian traffic; signage for all construction within the public right of way shall comply with the City of Seattle Traffic Control Manual for In-Street Work, as amended. When required, the conditions on the traffic control plan shall supersede any conflicting provisions or requirements in the City of Seattle Traffic Control Manual for In-Street Work. A copy of the current City of Seattle Traffic Control Manual for In-Street Work and the approved traffic control plan shall be on site at all times.
- 2. Lanes to remain open during peak hours. Traffic lanes shall not be closed during the following peak hours: 6:00 AM-9:00 AM and 3:00 PM-7:00 PM in the Central Business District, and 7:00 AM-9:00 AM and 4:00 PM-6:00 PM for arterials elsewhere in the City, unless specifically noted on the approved traffic control plan.
- 3. Maintain access. Access shall be maintained or accommodated during construction.
- 4. Width of temporary traffic lanes. Temporary traffic lanes created during the permitted work shall be a minimum of 11 feet in width unless otherwise approved on the traffic control plan.
- 5. Working within restricted curb spaces. When the project impacts a restricted curb space, such as meters, pay stations, specific use and load zones; the Permittee shall obtain permission from SDOT Traffic Management ("TM") and reserve the spaces with the TM Permit Counter (684-5086) before starting work.
- 6. Temporary No Parking signs and easels. In areas without parking pay stations or parking meters, or when Traffic Permits allow reserved parking spaces to be controlled with Temporary No Parking signs, establishing a Temporary No Parking Zone requires placing type R7-T38 (T-38) or R7-T39 (T-39) easels and completing an online verification form in conformance with the Traffic Control Manual for In-Street Work.
- 7. Nighttime illumination. Four or more Type B warning lights of sufficient brilliance to be seen from 500 feet shall be maintained at all times during the hours of darkness at the points of obstruction or excavation of any right-of-way.
- 8. Work in alleys. For work occurring in alleys that impedes vehicular access, including but not limited to egress, ingress, or through travel, Street Closed signs shall be placed at each end of the alley. Property owners adjacent to the alley shall be contacted, and their concerns shall be addressed and mitigated as possible. This may require alternative work scheduling in the case of Solid Waste collection days and hours.

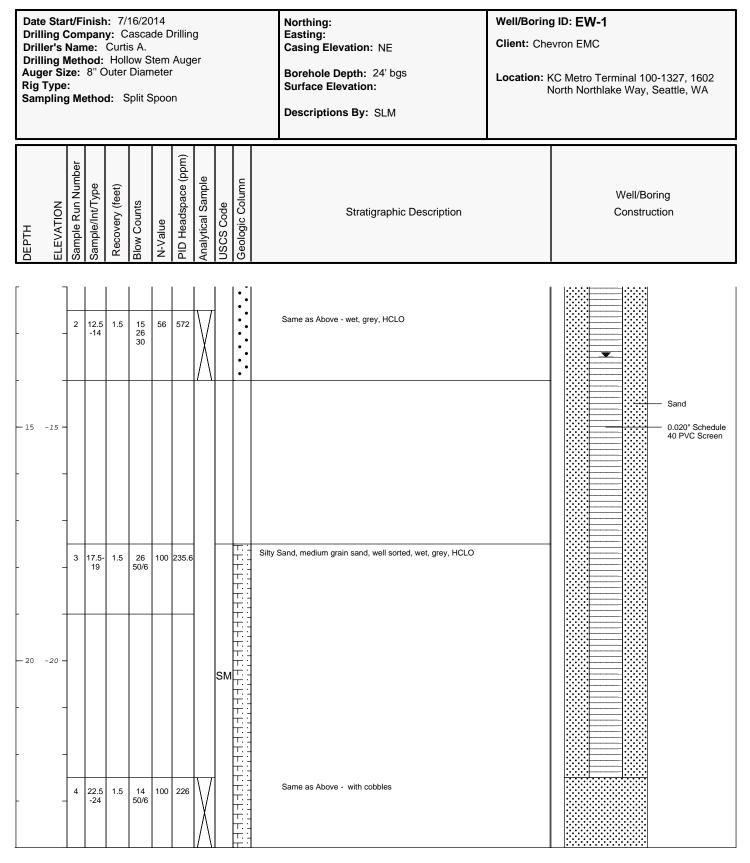




Appendix B

Boring Logs

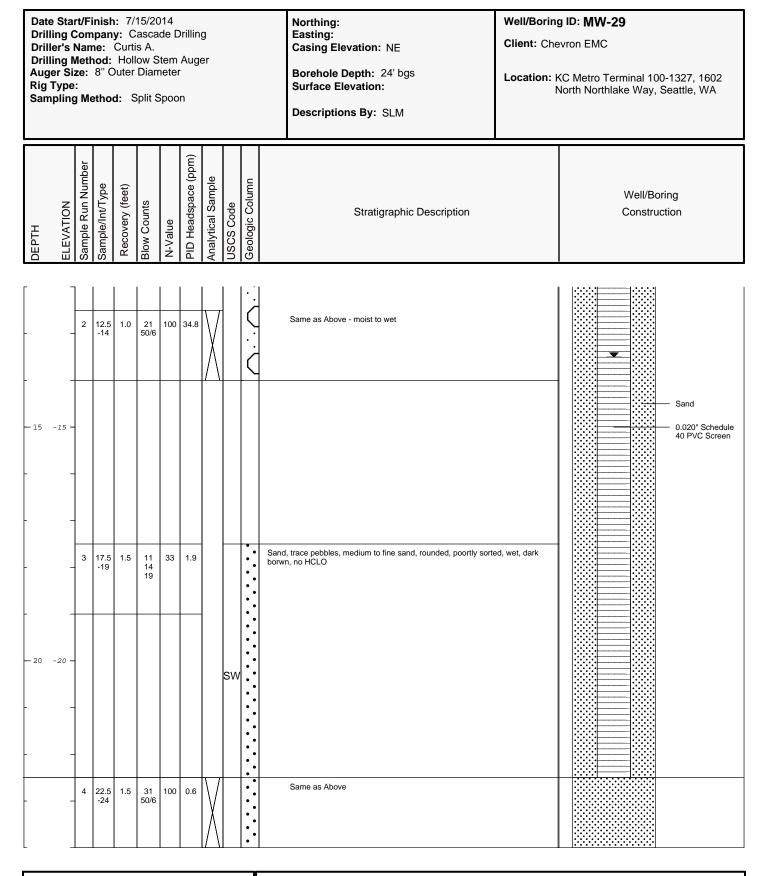
Drill Drill Drill Auge Rig	Date Start/Finish: 7/15/2014 Drilling Company: Cascade Drilling Driller's Name: Curtis A. Drilling Method: Hollow Stem Auger Auger Size: 8" Outer Diameter Rig Type: Sampling Method: Split Spoon											Northing: Easting: Casing Elev Borehole De Surface Elev Description	epth: 24' b vation:		Well/Boring ID: MW-9R Client: Chevron EMC Location: KC Metro Terminal 100-1327, 166 North Northlake Way, Seattle, WA			1327, 1602 eattle, WA		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N-Value	PID Headspace (ppm)	Analytical Sample	USCS Code	Geologic Column			Stratigraph		Well/Boring Construction					
-		-									Origir	nal well box set in 2	2' of concrete s	urrounded by soil		000000000000				 18" Flush-mount Monument 6" Well Cap Concrete
												onite and Sand from								- Bentonite Chiops - 6" Schedule 40 PVC Riser
	Infrastructure - Water - Environment - Buildings										Rem	ppm = NE = HA =	Not Measu = parts per r Not Establis Hand Auge	red million shed						



Created/Edited by:RwL

Drill Drill	Туре	Com Nan Meth ze:	ipan ne: nod: 8" C	y: C Curti Holl Outer	asca s A. ow S Dian	de D stem neter	Auge				Northing: Easting: Casing Elevation: NE Borehole Depth: 24' bgs Surface Elevation: Descriptions By: SLM	Well/Boring ID: EW-1 Client: Chevron EMC Location: KC Metro Terminal 100-1327, 1602 North Northlake Way, Seattle, WA				
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N-Value	PID Headspace (ppm)	Analytical Sample	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction			
•											Fop soil		0 10" Flush-mount			
- 5	-5 -	HA	5- 5.5	0.5			0.0		GS);ö:	Gravel, coarse grain sand, sorted, dry, light brown, no HCLO		4" Well Cap Concrete			
- 10	-10 -	HA 1	7.5- 8 10- 11.5	0.5	9 12 12	24	0.0		SP		Coarse Sand, trace gravel, well sorted, dry, dark brown, no HCl Same as Above	_0				

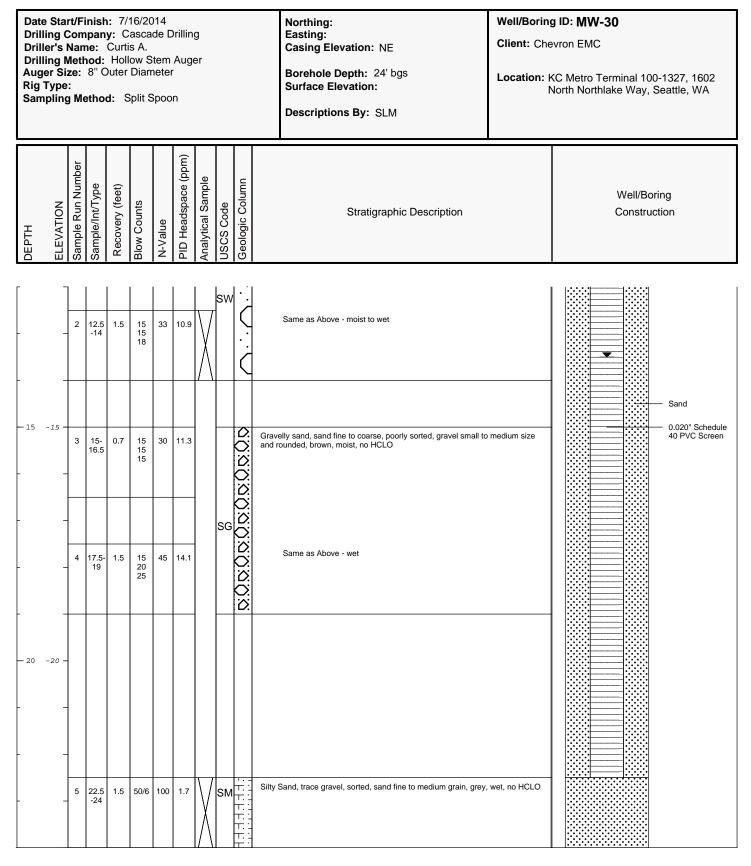
Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger HCLO = Hydrocarbon like odor

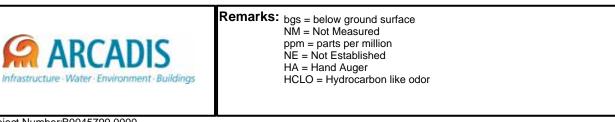

ARCADIS	Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger HCLO = Hydrocarbon like odor	
Project Number:B0045799.0000		Pag

Drill Drill Drill Aug Rig	e Sta ling (ler's l ling M er Si Type pling	Com Nan Meth ze:	ipan ne: nod: 8" C	y: C Curti Holl Duter	asca s A. ow S Dian	ide D Stem neter	Auge	-			Easting: Casing Elevation: NE Client	Well/Boring ID: MW-29 Client: Chevron EMC Location: KC Metro Terminal 100-1327, 160 North Northlake Way, Seattle, WA						
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N-Value	PID Headspace (ppm)	Analytical Sample	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction					
	<i>0</i>	-									~ 4 inches Asphalt and 6 inches concrete		4" Well Cap Concrete					
5	-5 -	HA HA	5- 5.5 7.5- 8	0.5	15 50/6	100	0.8		GS		Sandy Gravel, medium to large rounded gravel, poorly sorted, coarse to fin grain sand, dense, orange to brown, no HCLO Gravelly Sand, medium to coarse grain sand, medium rounded gravel, dens brown, no HCLO	3e,	4" Well Cap Concrete					

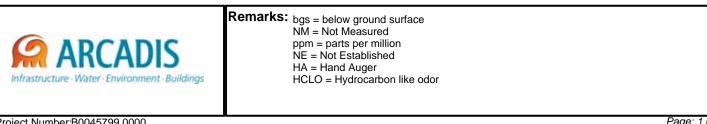
Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger HCLO = Hydrocarbon like odor

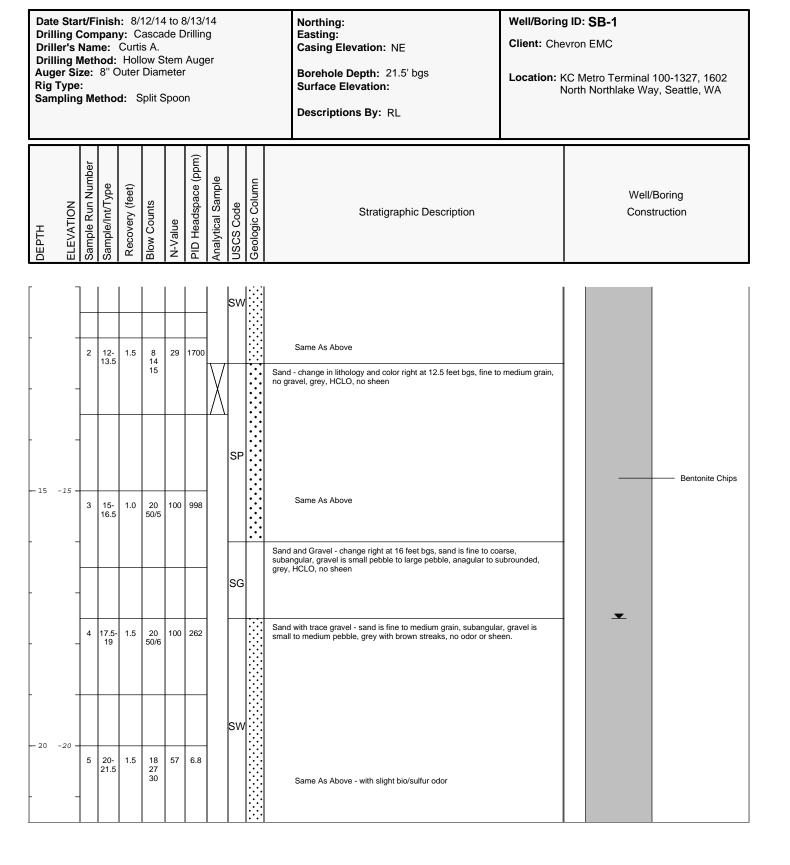
Project Number:B0045799.0000 Data File:

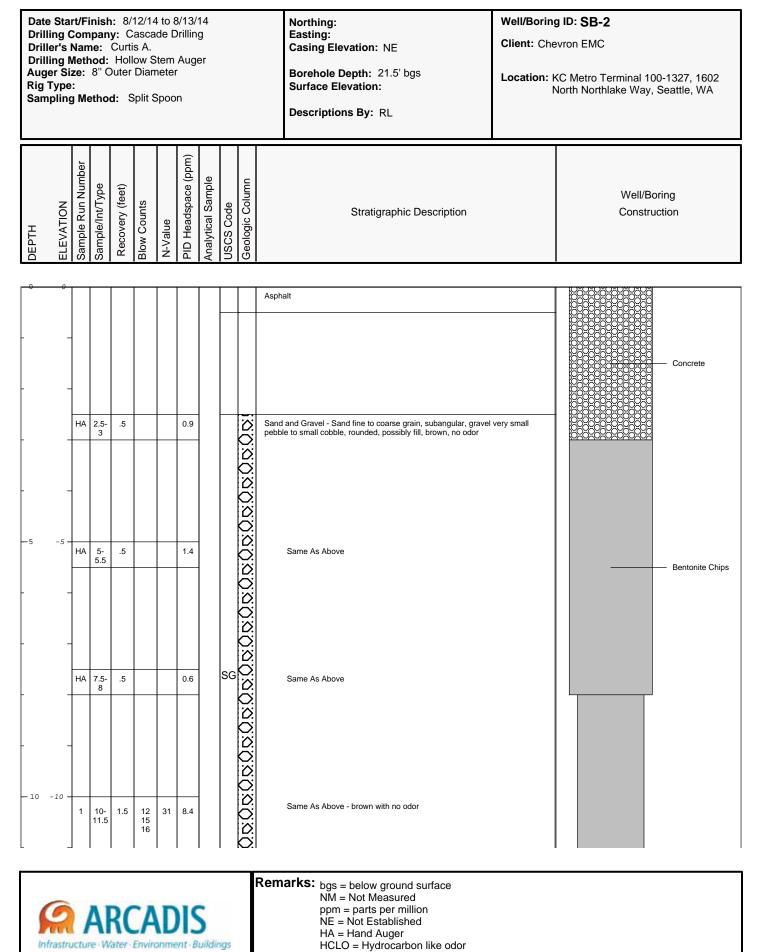

Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger


HCLO = Hydrocarbon like odor

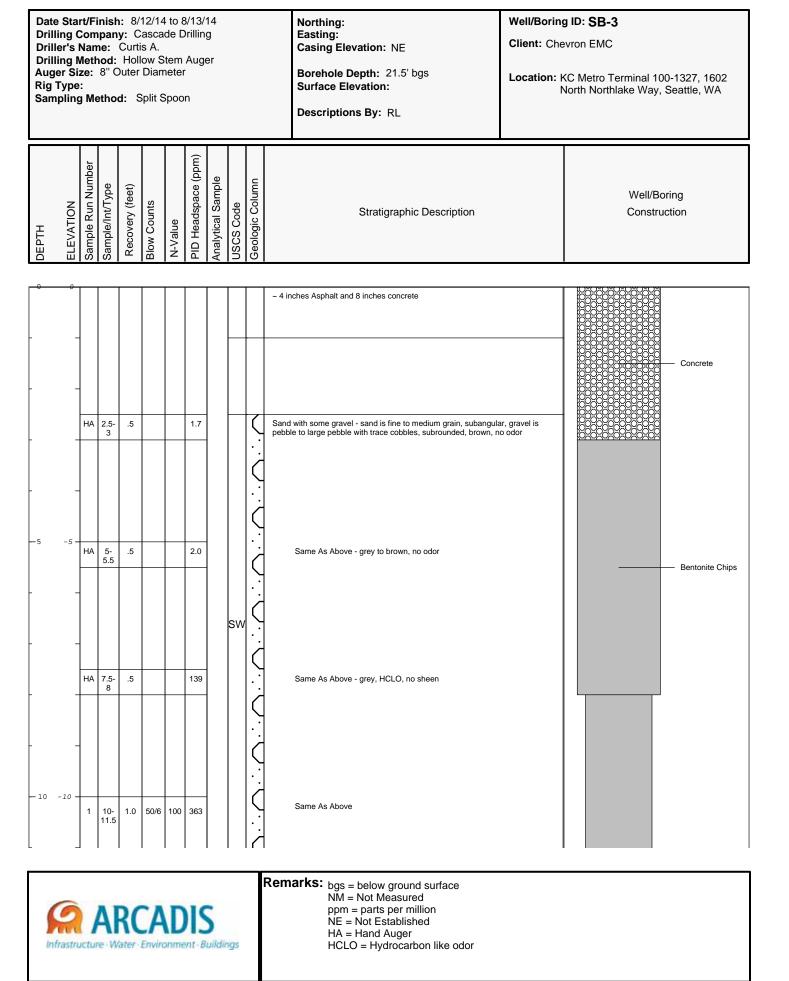
Drill Drill Drill Aug Rig	Illing Company: Cascade Drilling Easting: iller's Name: Curtis A. Casing Elevation: NE Illing Method: Hollow Stem Auger Casing Elevation: NE									Client: Che	ring ID: MW-30 Chevron EMC n: KC Metro Terminal 100-1327, 1602 North Northlake Way, Seattle, WA		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N-Value	PID Headspace (ppm)	Analytical Sample	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction
_											~ 4 inches Asphalt and 6 inches concrete		4" Well Cap
- - - - - - - - - - - - - - - - - - -	-5	HA HA	5- 5.5 7.5- 8	0.5	20 50/6	100	0.4		SG		Gravelly Sand, medium to coase sand with medium rounded gravel moist, no HCLO Same as Above Pebbly Sand, sand fine to coarse, poorly sorted, medium rounded p brown, moist, no HCLO		Image: state of the state o

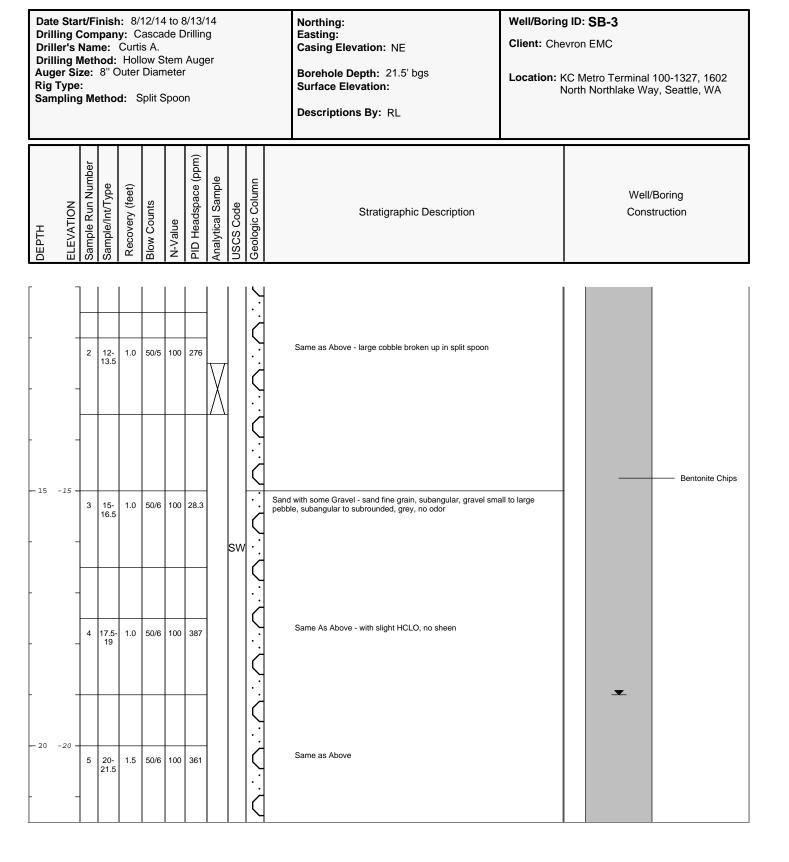



Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger HCLO = Hydrocarbon like odor



Dril Dril Dril Aug Rig	ling ler's ling l ler Si Type	Com Nan Metl ize: e:	npan ne: nod: 8" C	n: 8/ y: C Curti Holl Duter d: S	asca s A. ow S Dian	ide E Stem netei	Drillin Auge	g			Easting: Casing Elevation: NE Client: C	ing ID: SB-1 hevron EMC : KC Metro Terminal 100-1327, 1602 North Northlake Way, Seattle, WA
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N-Value	PID Headspace (ppm)	Analytical Sample	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
	0										Asphalt	
-		HA	2.5- 3	.5			1.1				Sand and Gravel - sand is fine to coarse grain, subangular, gravel is very small pebble to cobble, subangular to rounded, poorly sorted, loose, possibly fill, brown, no odor	- Concrete
- 5	-5-	HA	5- 5.5	.5			0.5		SG		Same As Above	Bentonite Chips
-	-	НА	7.5- 8	.5			0.3				Same As Above	
-												
_ 10	-10 -	1	10- 11.5	1.0	5 13 20	33	3.0				Sand and some gravel - sand is fine to coarse grain, subangular, gravel is sma to large pebble, brown, no odor	

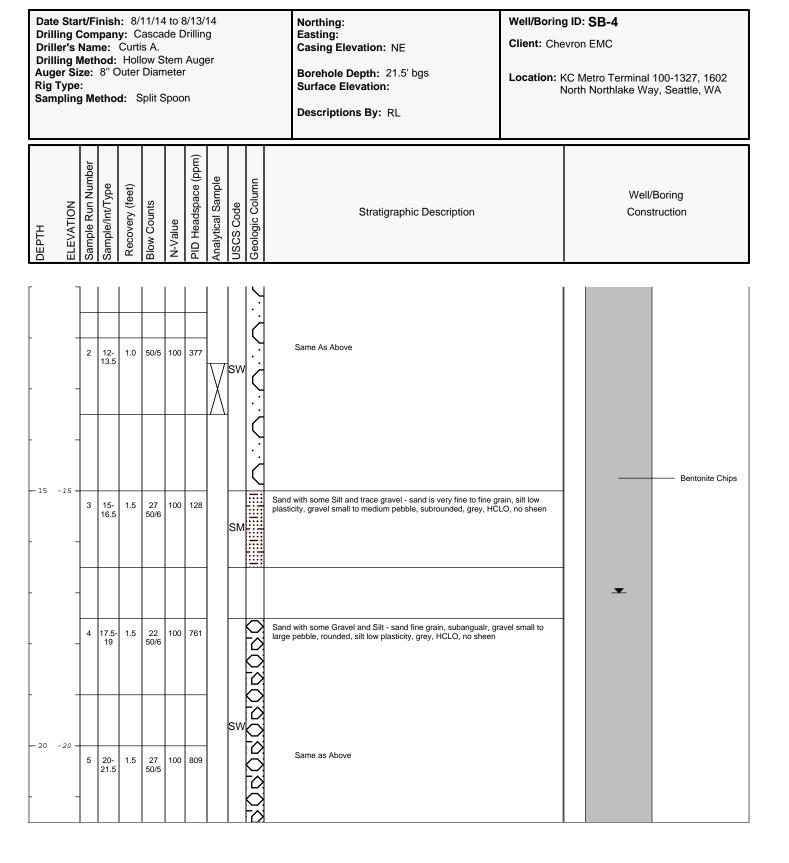

ARCADIS	Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger HCLO = Hydrocarbon like odor	
Project Number:B0045799.0000		Page: 2 of 2


Project Number:B0045799.0000 Data File:

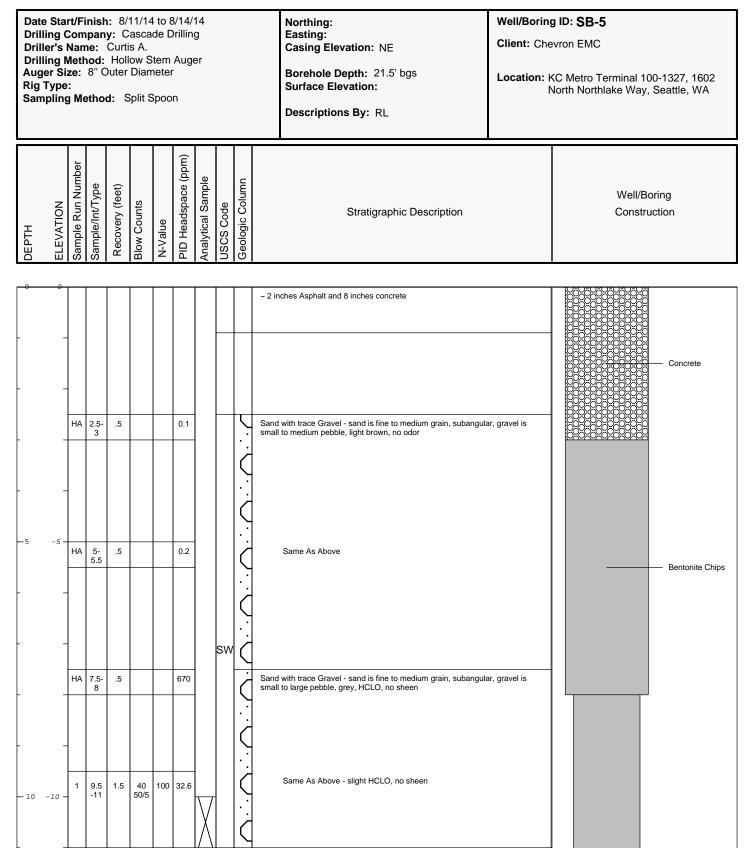
Dril Dril Dril Aug Rig	Drilling Company: Cascade Drilling Driller's Name: Curtis A. Drilling Method: Hollow Stem Auger Auger Size: 8" Outer Diameter Rig Type: Sampling Method: Split Spoon										Northing: Easting: Casing Elevation: NEWell/Boring ID: SB-2Borehole Depth: 21.5' bgs Surface Elevation:Client: Chevron EMCDescriptions By: RLLocation: KC Metro Terminal 100-1327, 1602 North Northlake Way, Seattle, WA
DEPTH	DEPTH ELEVATION Sample Run Number Sample/Int/Type Sample/Int/Type Recovery (feet) Blow Counts N-Value N-Value N-Value PID Headspace (ppm) Analytical Sample USCS Code Geologic Column							Analytical Sample	USCS Code	Geologic Column	Well/Boring Stratigraphic Description Construction
ſ	-						625			00	Change in color to grey with HCLO, no sheen, lithology stayed the same
-	-	2	12- 13.5	1.5	11 15 20	35	> 2,500				Same As Above Sand - fine to medium grain, subangular, grey, HCLO, no sheen
- 15	-15 -	3	15- 16.5	1.5	17 20 30	50	529	-	SP		Sand - medium to coarse grain, subangular, grey, HCLO, no sheen
-	-	4	17.5- 19	1.0	18 50/6	100	559	-		· · · · ·	Sand with some gravel - sand fine to medium grain, subangular, gravel small pebble to cobble, subrounded, grey HCLO, no sheen
- 20	-20 -	5	20- 21.5	1.0	18 21 30	51	157		sw	$\cdot \cdot \bigcirc \bigcirc \cdot \cdot \bigcirc$	Sand and Gravel - sand fine to medium grain, subangular, gravel small pebble to cobble, angular to subrounded, grey, slight HCLO, no sheen

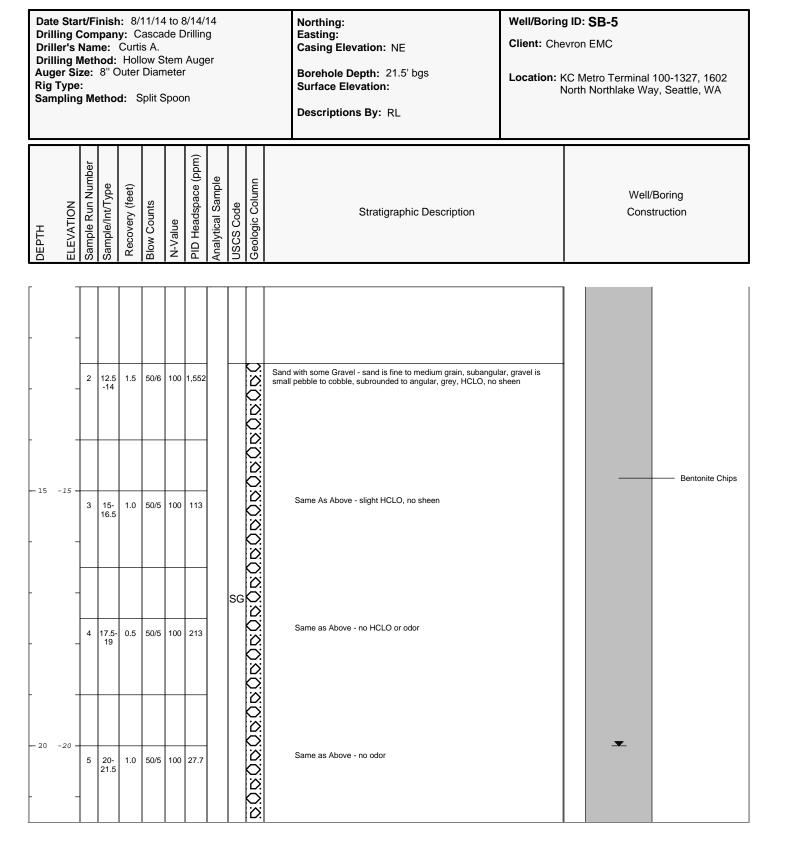
ARCADIS	Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger HCLO = Hydrocarbon like odor	
Project Number:B0045799.0000		Page: 2 of 2

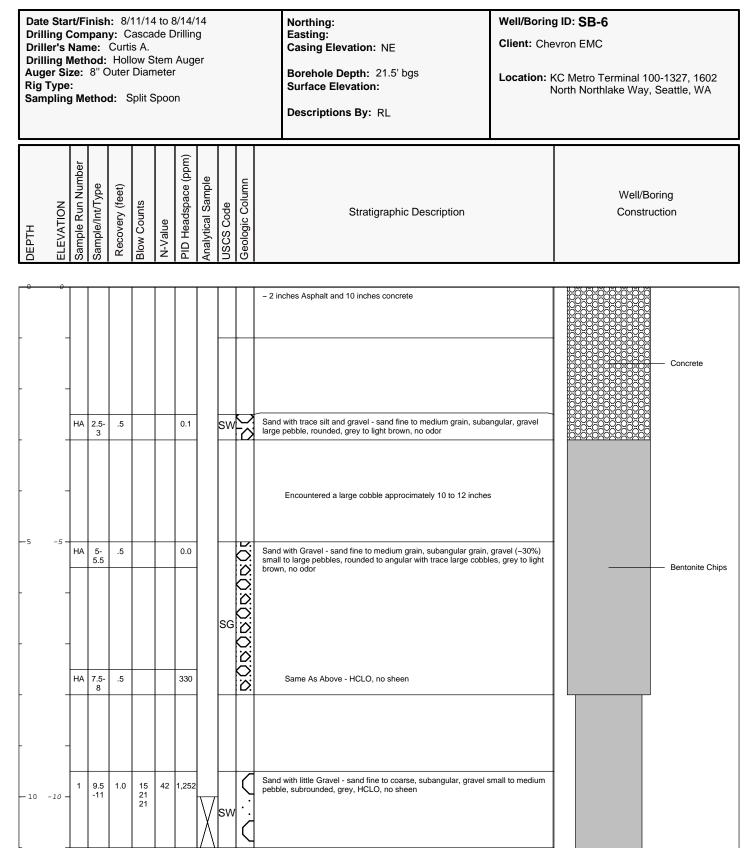
Project Number:B0045799.0000 Data File:

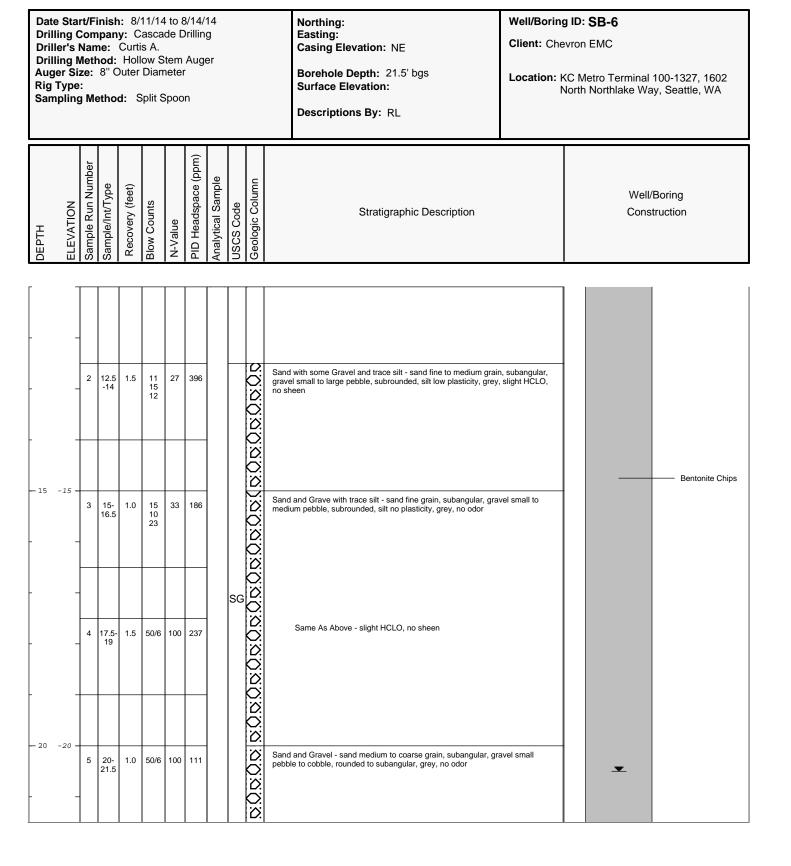


Infrastructure - Water - Environment - Buildings	Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger HCLO = Hydrocarbon like odor	
Project Number:B0045799.0000 Data File:	Date: 8/18/2014 Created/Edited by:RwL	Page: 2 of 2


Drill Drill Drill Aug Rig	Date Start/Finish: 8/11/14 to 8/13/14 Drilling Company: Cascade Drilling Driller's Name: Curtis A. Drilling Method: Hollow Stem Auger Auger Size: 8" Outer Diameter Rig Type: Sampling Method: Split Spoon										Northing: Easting: Casing Elevation: NE Borehole Depth: 21.5' bgs Surface Elevation: Descriptions By: RL	Client: Che	g ID: SB-4 evron EMC KC Metro Terminal 100-1327, 1602 North Northlake Way, Seattle, WA
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N-Value	PID Headspace (ppm)	Analytical Sample	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction
— •	0 - 4 inches Asphalt and 8 inches concrete												
-	-	НА	2.5- 3	.5			0.7			<u>Ö</u> N:	Sand with some Gravel - sand fine to coarse, subangular, grave pebble with trace cobbles, subangular to rounded, light brown,	el small to large ne odor.	- Concrete
5	-5 -	на	5- 5.5	.5			0.1		SG	00000000000	Same As Above - grey, no odor		Bentonite Chips
-	-	НА	7.5- 8	.5			0.4			0000000	Same As Above		
- 10	-10 -												
	_	1	10- 11.5	1.0	10 50/6	100	284				Sand with little gravel - sand fine to medium grain, subangular, large pebble, subrounded, grey, HCLO, no sheen	gravel small to	


Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger HCLO = Hydrocarbon like odor


ARCADIS	Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger HCLO = Hydrocarbon like odor	
Project Number:B0045799.0000 Data File:	Date: 8/18/2014 Created/Edited by:RwL	Page: 2 of 2


Infrastructure - Water - Environment - Buildings	Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger HCLO = Hydrocarbon like odor	
Project Number:B0045799.0000 Data File:	Date: 8/18/2014 Created/Edited by:RwL	Page: 1 of 2

REARCADIS	Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger HCLO = Hydrocarbon like odor	
Project Number:B0045799.0000 Data File:	Date: 8/18/2014 Created/Edited by:RwL	Page: 2 of 2

Infrastructure - Water - Environment - Buildings	Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger HCLO = Hydrocarbon like odor	
Project Number:B0045799.0000		Page: 1 or

Infrastructure - Water - Environment - Buildings	Remarks: bgs = below ground surface NM = Not Measured ppm = parts per million NE = Not Established HA = Hand Auger HCLO = Hydrocarbon like odor	
Project Number:B0045799.0000		Page: 2 of 2

Appendix C

Drilling Field Notes

7-14-14 KC METRO WELL INSTALL/OVERDETLL S. MIGUIRE

0630 - ser animes onsite Reviews sow Paints ideal locations & HW Wells and contingency wells

07007 Cascade Prilling arrives onsite Siteward conducted w/ courts and Maleni about locations of wells and overhad clearance.

0730 > TCS arrives onsite Discuss Traffic Control Plan and signage. H. Honel Berricede arrives Traffic control is setup. Vehicles and truiter will be rept on level road below. His meeting is conducted. OF then to discussed. Site Specific hozends are addressed and pland for. Casco be remeas use truck JSA. Sim sives flager safety slights etc. To merrice they will bring more PDE, but today they are meeting all cherron specs will sim glassed longs benes.

1.0

0830 > Selvp vic truch on MW-92 overdrill. Wheel chooks in place Besin breaking out old well box. Will schop second exclusion zone to neepour biners and prodestrians.

0915 3 Thrush well monument of MW-9. Stirting to Vic.

1000 > This to Sam Miles will get porter John delinned for crew theorsmort next couple days.

1020 > Finish Vac of MW-9R down to 8' Mon on to location of contingency North. Also in planter per SZ recommendation.

1040 -> No soil simple @ 5' bas as it is just grevel / consules.

1055 7 Sample @ 7.5' bis. Cank prein Sand w/ trace gravel. Dang brown. NO HCCO. PID = 0.0. Some biodebris. Well surjed.

1120 = Finish clearing contingency will N to B' Bacufill MW-9R and C.N. Mas to MW-29 location.

1155 > They have down to And concrete sleb layer. Will need to cone MW-29. cheen other locations. Also have concrete slab.

12057 tane lunch.

Scale: 1 square =

1235 3 Baca to site Mob Concrete atter into pusition on MW-ZR 1300 -> R. Brauchla on site to relieve S. McGuire - site walkdown & H&S briefing 1330 -> S. McGuire off site 1340 -> Honey bucket drops off the other portable toilet 1410 -> Concrete core removed from MW-29, thickness: 8 1430 - Cascade begins air knifing /vacuuming MW-29 - roots & woody debris visible near surface, as well as large (~3') cobbles 7 1500 - Collect soils from 5' bas @ MW-29: Soil is - Sandy Gravel (SG) i medium to large rounded gravel with poorly-sorted fine-to coarse-grained sand (mostly carse) orangish - brown, dense damp, no HCLO (PID=0. 8ppm) -1520-> Collect soils from 7.5' bg, @ MW-29: Soil is - Gravely Sand (SP): medium to coarse-grained rounded sand with medium rounded gravel, brown, dense, damp, agppm 1610 > Still coving on MW-D; call S. Miles & request guidance - Sam says, Finish the well we've on but Joh't worry about the other contingency well. 1655-> Corp on MW-30 removed (thickness: 1.3 1715-> Collect soils from J'bys @MW-30: Soil is - Gravely Sand (SP): medium to coarse sand with medium rounded gravel, brown, loose to medium density, damp, no HCLO (PID=0.4ppm) 1720-7 Collect soils from 7.5 bas @MW-30: Soil is - Gravelly Sund(SP): brown, loose to medium density, damp, no HCLO (PID=0.4 ppm) 1735 > Drillers backfill MW-29 &MW-30 9 1745 -> Drillers patch MW-29 & MW-30 1750-7 Drillers have one drum of Soil Cuttings 19007 National Burricade offsite 1820> ARCADIE Cascade off site Ingulat 3 7 today Soil drom severe that 3 Retein the Rain"

3

Scale: 1 square =

0645 - Set aview on site Conducts Site conview. Beps equipment. 0700 → Consect durilling arising ensite stage exciption. Multiple Miss meeting Review Sour Review Could delling JSA Talk appendix site specific hears is and Mane plan the day 0815 + TES aviews ansite will flaggers Fill in an health and such and size them perification for any to congregation of permits 0850 → Moo min Pession on Hewith CON. 0815 + Besin derilling. 0815 - Sample EW-1 - 12.5' 0815 - Sample EW-1 - 12.5' 0815 - Sample EW-1 - 12.5' 0816 - Mare O'Brian COOR) gurines and put sonice. Mill Soni is phenoscipted to show no contract prosent. 1000 - Mare O'Brian COOR) gurines ansite SCM discosses avory that has been done. Confirm contract be the SS. 1000 - Kansh well been Discoss w/MO Somple at bottom of HW-9E and how they would instead and the two Scott bottom to conce it all Sech would instead and the two Scotts will be sone of 1130 - Mare O'Brian Stage of the put a week plus in the bottom to conce it all Sech with would instead and the two Scotts will be sone of 1130 - Mare Stand the Sounds line to put a week plus in the bottom of conce it all Sech will instead and the two Scotts will be sone of 1130 - Mare Stand the Sounds line to put a week plus in the bottom of 1130 - Mare Stand the Sounds line to put a sone from will discuss will be 1130 - Mare Stand the Sounds line to put a sone from will discuss will be 1130 - Mare Stand the Sounds line to put a sone from will discuss will be 1130 - Mare Stand the Sounds line to put a line. 1130 - Mare Stand the Sounds line to put a line. 1140 - Sample HW-29 loce than 1143 - Besin drilling HW-29. 1130 - Sample HW-29 loce than 1145 - Besin drilling HW-29. 1130 - Sample	S. NIGUERE KC METRO WELL INSTALL OVERDRILL DAY 2 7-15-	17 🗬
equipment. 0.700 > Case & drilling arrive raside steps equipment. Mind Miss meeting Review Sow Review Cosede drilling ISB. Talk good site specific heards and many plan for day. 0500 * Setort to Efficiential. 0815 * Tes arrives andle will flasser's Fill in an hellthe and such and size the monitor's greatiles to city apprend permit. 0830 > Mine in the Passban on #W. # CCN. 0830 > Mine in the Passban on #W. # CCN. 0845 * Begin drilling. 0930 > Sample EW-1-12:5'. 0930 7Sample EW-1-22:5'. 0930 7Sample EW-1-22:5'. 0930 7Sample EW-1-22:5'. 0945 * Begin the construct ment EW-1. Samples are put on its. Att Soil is pheroscopied to show no contract prosent. 100 > Manes O'Brien Cool generoes assite SCM discusses along that has been done. Contract weather to be the soil box. 1100 > Earst will but. Discuss WIMO Sample at bestern ro crime ide. I Seelly will be have a weap ply in the Sostern ro crime ide. I Seelly will be not a weather to be somple at bestern ro crime ide. I Seelly will be a sourd of the size Stander will be the source of the 9E ad how they asked need to be a first to be the to be source from the source of the 9E ad how they found in the past of the source for the source of the 9E ad how they found in the past of the source for the source of the 9E ad how they found in the past of the source for the source of the 9E ad how they found in the past of the source for the source of the 9E ad how they found in the past of the source for the source of the 9E ad how they found in the source of the source of the 9E ad how on the MW 29 lee then. 1130 > More on the MW 29 lee then. 1145 9 Begin drilling MW 29. 1230 # Sample MW 29. 12. 1230 # Sample MW 29. 12.		•
equipment. 0.700 * case & drilling arrives rasify stage excipment. 1%, d His accurate Review Sour Review Case de drilling 25B. Toth about site specific harvests and mane plan the day. 05.00 * Start traffic can have 08.15 * Tes anives ansite of Physics Fill in an helith and toth and give them positives are also to eith approved permit. 08.15 * Regin drilling. 08.15 * Begin drilling. 09.30 * Sample EN-1 - 12.5'. 09.30 * Sample EN-1 - 22.5'. 09.30 * Mare O'Brian CDOE) arrives casit. Scall discosses avery that his been done Costave creating wall bed. 100 * Mare O'Brian CDOE) arrives casit. Scall discosses avery that his been done Costave creating wall bed. 100 * Frank well bed. Discose w/MO sample at bottom of MW. 9.F. and how they word his put a bottom of MW. 9.F. 1100 * Frank well bed. Discos w/MO sample at bottom of MW. 9.F. 1100 * Frank well bed. Discos w/MO sample at bottom of MW. 9.F. 1100 * More O'Brian CDOE) arrives casit. Scall discosses avery that his been done Costave creating will bed. 1100 * Frank well bed. Discos w/MO sample at bottom of MW. 9.F. and how they word not are bed to the SS sample from home of mg. MO thinks that Sample for a start scall will be from 0.5 from the second to 1130 * More on the MW. 29. 1130 * Joo an the MW.	0695 > SLM arrives on site. Conducts site overview. Preps	C
0700 * Cascide drilling arrives inside they environment. 1961 d 1958 meeting Person Sow Review Cost & drilling ISB. Talk about site specific howeds and many plan the day. 0500 * setopt the Person hol. 0815 * TeS arrives onside will flassers Fill in its belith and set of and size them peritoris according to city approach permit. 0830 * Uno into Passition on #W. # CCN. 0830 * Uno into Passition on #W. # CCN. 0845 * Begin duilling. 0915 * Sample EN-1-125'. 0930 * Sample EN-1-125'. 0915 * Begin h Construct well. Simplify are put on its. Att 100 * Marco O'Brian Cool garines arists. SCM discusses avord that has been done. Continue crucking well bot. 1100 * Frank well be. Discuss will MO sample at bottom of MW. 9F and how They would fire to put on the SS sample contained for the SS sample for the SS sample contained for the SS sample contained for the SS sample contained for the SS sample for the SS sample for the SS sample contained for the SS sample the SS sample for the SS sample contained for the SS sample for the SS sample for the SS sample contained for the SS sample for the SS s		
0.400 * Cased of May accord to show some some of the of the some of the some some some some some some of the source of the sourc		_
His sources and sources sour and and an and plan the day. Talk about site specific house is and man plan the day. Talk about site specific house is and man plan the day. OSUS => start the PER can hol. OSUS => start the monitors of the specific to a hellth and such and sine the monitors of an day to a hellth and such and sine the monitors of an day to a hellth OSUS => Begin duillag. OSUS => Begin duillag. OSUS => Begin duillag. OSUS => Begin to a hell the second of the second of the second OSUS => Begin to a hell the second of the s	0700 > cascede drilling queires ensite stage equipment. Iti, a	_ @
0500 - Setrest the fire can had. 0815 - TES arrives anside will flassens Fill in an hellth and shady and give them positions areadies to city approard parallel 0830 - May in a position on EW- & CON. 0845 - Bassa devillas. 0930 - Sample EW-1 - 12.5'. 0930 - Sample EW-1 - 22.5'. 0930 - Sample EW-1 - 22.5'. 0930 - Sample EW-1 - 22.5'. 0930 - May in a previous for invest on intermediate 1100 - May well ber. Discuss with Samples are put on ice. And 1100 - Barsh well ber. Discuss with Sample at batters of MW-9E and how they werd in the put a wave plus in the batters for 1100 - Sansh well ber. Discuss with Sample at batters of MW-9E and how they werd in the put a wave plus in the batters for 1100 - Sansh well ber. Discuss with Sample at batters of MW-9E and how they werd in the put a wave plus in the batters for 1100 - Sansh well ber. Discuss with Sample at batters of MW-9E and how they werd in the put a wave plus in the batters for 1100 - Sansh well ber. Discuss with Sample at batters of MW-9E and how they werd in the put a wave plus in the batters of 1130 - Mose onto MW-29 locetrics. 1130 - Mose onto MW-29 locetrics. 1130 - Mose onto MW-29 locetrics. 11430 - Mose onto MW-29 locetrics. 115 - Basin drilling MW-29. 1230 - Sample MW-29 - 12.5'. Acto DWP-1. 1300 - WAM.	HE'S meeting. Perrew Sow Review Couse drilling JSA.	- C
0310 - Schot the the control 0315 + TES arrives casile will Plassers Fill in an belith and such and size them positions are adies to city approved permit 0330 - May mite position on the control permit 0330 - May mite position on the set of control 0415 - Sample EN-1 - 12.5'. 0730 - 75 maple EN-1 - 12.5'. 0730 - 75 maple EN-1 - 12.5'. 0735 - 800 h construct were EN-1. Simples are put on its. All Soil is prevised to show no control present. 1000 - Maure O'Brian CDOE) arrives and the present. 1000 - Maure O'Brian CDOE) arrives and the first box. 1100 - Frank well bur. Discuss will MO sample at bottom of MW-9P and how they world line to put a word play in the bottom to crue ideal scale in the put a word play in the bottom to crue ideal scale in the put a scale form will box. 1100 - Frank well bur. Discuss will be able to the SS scample and bottom by the put in the put a word play in the bottom to crue ideal scale in the first of a well be the SS scample and bottom by the put of line to be able to the SS scample of 1130 - Mobe on the MW-29 line to control to able to the scample form will be the scample form to be able to the scample form will be the scample form to be able to the scample form will be the scample of the scample form will be the scample form to be able to the scample form to be able to the scample form will be the scample of the scample form will be the scample of the scample form will be the scample form will be the scample form to be able to the scample form to	Tain about site specific hazands and mane plan for day.	- 6
0310 - Schot the the control 0315 + TES arrives casile will Plassers Fill in an belith and such and size them positions are adies to city approved permit 0330 - May mite position on the control permit 0330 - May mite position on the set of control 0415 - Sample EN-1 - 12.5'. 0730 - 75 maple EN-1 - 12.5'. 0730 - 75 maple EN-1 - 12.5'. 0735 - 800 h construct were EN-1. Simples are put on its. All Soil is prevised to show no control present. 1000 - Maure O'Brian CDOE) arrives and the present. 1000 - Maure O'Brian CDOE) arrives and the first box. 1100 - Frank well bur. Discuss will MO sample at bottom of MW-9P and how they world line to put a word play in the bottom to crue ideal scale in the put a word play in the bottom to crue ideal scale in the put a scale form will box. 1100 - Frank well bur. Discuss will be able to the SS scample and bottom by the put in the put a word play in the bottom to crue ideal scale in the first of a well be the SS scample and bottom by the put of line to be able to the SS scample of 1130 - Mobe on the MW-29 line to control to able to the scample form will be the scample form to be able to the scample form will be the scample form to be able to the scample form will be the scample of the scample form will be the scample form to be able to the scample form to be able to the scample form will be the scample of the scample form will be the scample of the scample form will be the scample form will be the scample form to be able to the scample form to		-
0815 + TES arrives ansite WI Flassers Fill in all hellth and seady and give them positions gravity to city approved permit 0830 + May into position on the sead of the sead of the 0830 + May into position on the sead of the sead of the 0845 > Besin devillas. 0930 - Sample EN-1-12.5'. 0930 - Sample EN-1-22.5'. 0930 - Sample EN-1-22.5'. 0945 + Begin h Construct well EN-1. Samples are put on it. April Soil is previse pued to show no contect present. 1000 + Mauri O'Brian CDOE) arrives onsite SCM discorses arouge that has been done. Contrave creating well box. 1100 - Frank well bus. Discors wIMO sample at botteen of MW-9R and how they world line to put a wave plus in the botteen of rig. MO thinks that Sundy he are some is some in some some in the isle is some to be and to the source plus in the botteen of rig. MO thinks that Sundy here a the time SS scarp is on 1130 - Mobile on the MW-29 line to find the time scarpe from will discuss w/ ST 1130 - Mobile on the MW-29. 1130 - Mobile on the MW-29. 1130 - Sample MW-29. 1130 - June MW	0500 - setout traffic control.	
and give them peritors according to city approved permits 0830 > Move min Pesition on the sol CON, 0845 > Begin duilling. 0915 > Sample EW-1 - 12.5' 0930 75mple EW-1 - 22.5'. 0745 ? Begin & construct ment EN.1. Samples and put on ice. At 11 Soil is preview pied to show no control present. 100 > Main O'Brian CDOE) arrives ensite SCM discusses avery that has been done. Control creating well ber. 1100 = Fransk well ber. Discuss w/MO sample at bettern of MW-9P. and how they would limble put a weap plug in the bottom AN crute item 1 Seely but would not be able to the SS sample are bottom, but would asteed read to the science w/SZ. 1130 > Move on to MW-29. 1130 > Move on to MW-29. 1130 > Move on to MW-29. 1130 > Sample MW-29. 1130 > Land MW-29. 1130 > Sample MW-29. 1130 > Land MW-29		
0830 7 May in a passition on the W. & CON. 0815 7 Begin duilling. 0915 7 Sample EW-1-12.5' 0930 7 Sample EW-1-22.5' 0970 7 Sample EW-1-22.5' 0971 7 Bogin & Construct well EW-1. Samples are put on ice. 1911 Soil is prefixen pied to show no contree project. 100 7 Marco O'Brian COOE) arrives ensite SCM discusses avory that has been done. Contrave enerthing wall box. 1100 7 Fransk well box. Discuss WIMO sample at bettem of HW-9F and how they would like to put a wore plag in the bottom of crue ideal Scaly but would not to able to the SS sample are bottom, but would instand read to the scale to the SS sample are 1130 7 Mob on to MW 29 loce trian. 1130 9 Mob on to MW 29 loce trian. 1130 9 Mob on to MW 29 loce trian. 1130 9 Mob on to MW 29. 1130 9 Sample MW-29-12.5' ALSO DUP-1. 1300 7 WINCH.	0815 7/CS arrives pasite with aspers milling on reality and provid	C
0815 > Begin duilling. 0915 > Sample EN-1-12.5'. 0920 >Sample EN-1-22.5'. 0920 >Sample EN-1-22.5'. 0920 >Sample EN-1-22.5'. 0920 > Sample EN-1-22.5'. 0920 > Maure O'Brian (DOE) arrives and put on ice. Attl Soil is pheroscapied to show no contrel present. 1000 > Maure O'Brian (DOE) arrives ensite. Scill discusses aroug that has been done. Controve creating would box. 1100 > Einish well bir. Discuss WIMO Sample at bottom of MW-9E and how they would line to put a worse plus in the bottom to create it all scill bir would not be able to the SS Scin plu arm bottom, but would instead need to the Scingle from both of 1130 > Mob on to MW-29 lace tign. 1130 > Mob on to MW-29 lace tign. 1130 > Mob on to MW-29. 1130 > Mob on to MW-29. 1130 > Sample MW-29-12.5'. ALSO DUP-1. 1300 > WORH.	and give them positions accounts the city approved portion	6
0815 > Begin duilling. 0915 > Sample EN-1-12.5'. 0920 >Sample EN-1-22.5'. 0920 >Sample EN-1-22.5'. 0920 >Sample EN-1-22.5'. 0920 > Sample EN-1-22.5'. 0920 > Maure O'Brian (DOE) arrives and put on ice. Attl Soil is pheroscapied to show no contrel present. 1000 > Maure O'Brian (DOE) arrives ensite. Scill discusses aroug that has been done. Controve creating would box. 1100 > Einish well bir. Discuss WIMO Sample at bottom of MW-9E and how they would line to put a worse plus in the bottom to create it all scill bir would not be able to the SS Scin plu arm bottom, but would instead need to the Scingle from both of 1130 > Mob on to MW-29 lace tign. 1130 > Mob on to MW-29 lace tign. 1130 > Mob on to MW-29. 1130 > Mob on to MW-29. 1130 > Sample MW-29-12.5'. ALSO DUP-1. 1300 > WORH.	C 830 7 Man hat Resition on the - The (CN),	
0845 > Begin duilling. 0915 > Sample EW-1-12.5' 0930 >Sample EW-1-22.5'. 0930 >Sample EW-1-22.5'. 0945 > Begin h construct well EW-1. Samples are put on ice. All Soil is pheroscopied to show no control present. 1000 > Maura O'Brian COOE) gurines onsite SCM discusses along that has been done. Controve creating well box. 1100 > Eringh well box. Discuss WIMO sample at bettom of MW-9E and how they world like to put a wave plus in the bottom to cruce ideal Scalp but world not be able to that SS sample com bottom, but would instead rund to them scalp from both of rig. MO thinks that samds like a good idea. Scin will discuss w/SZ. 1130 > Mob on to MW-29. 1145 > Begin drilling MW-29. 1130 > Mob on to MW-29. 1130 > Sample MW-29-12.5'. ALSO DUP-1. 1300 > WOKH.		
0915 → Sample EW-1-12.5' 0930 75mple EW-1-22.5'. 0945 → Begin & Construct ment EW-1. Samplis and put on ice 1911 Soil is pheroscopied to show no cNAPEC present. 1000 → Maura O'Brian COOE) arrives onsite. SCM discusses avory that has been done. Confirme creating wall box. 1100 → Ernish well bix. Discuss w/MO Sample at bottom of MW-92 and how they would like to put a wave plus in the bottom to cruce ident Scally but would not to suble to three SS Sample arm bottom, but would instead rule to three SS Sample arm bottom, but would instead rule to three Scale from those of rig. MO thinks that Samds like a good ide. Scan will discuss w/SZ. 1130 → Mass on to MW-29. 1145 → Begin drilling MW-29. 1130 → Sample MW-29-12.5'. ALSO DUP-1. 1300 → WAR.	0895 > Begin Juilling.	
0930 75mple EW-1-22.5'. 0745 7 Begin h construct well EW-1. Samples are put on ice. Attl Soil is phoroscopied to show no control present. 1000 7 Maure O'Brian (DOE) arrives ansite. SCM discusses aroug that has been done. Control creating woll bea. 1100 → Ernish well bea. Discuss w/MO Sample at bottom of MW-9R and how they would line to put a wave plus in the bottom to crue iden I Scill but would not be able to the SS Sample arm bottom, but would instead rule to the SS Sample arm both of rig. MO thinks that Samds line a soul iden. Scim will discuss w/ST. 1130 → Mob onto MW-29 loce tran. 1145 → Begin drilling MW-29. 1230 → Sample MW-29 - 12.5'. ALSO DUP-1. 1300 → UNCH.		C
0930 75mple EW-1-22.5'. 0745 7 Begin h construct well EW-1. Samples are put on ice. Attl Soil is phoroscopied to show no control present. 1000 7 Maure O'Brian (DOE) arrives ansite. SCM discusses aroug that has been done. Control creating woll bea. 1100 → Ernish well bea. Discuss w/MO Sample at bottom of MW-9R and how they would line to put a wave plus in the bottom to crue iden I Scill but would not be able to the SS Sample arm bottom, but would instead rule to the SS Sample arm both of rig. MO thinks that Samds line a soul iden. Scim will discuss w/ST. 1130 → Mob onto MW-29 loce tran. 1145 → Begin drilling MW-29. 1230 → Sample MW-29 - 12.5'. ALSO DUP-1. 1300 → UNCH.	0915 > Sample EN-1-12.5'	
0930 752 mple EW-1-22.5'. 0745 7 Begin & Construct well EW-1. Samples are put on ice. Attil Soil is preveraped to show no UNARE present. 1000 7 Mauri O'Brian (DOE) arrives ousite. SCM discusses avory that has been done. Continue creating wall box. 1100 7 Erist well bix. Discuss WIMO Sample at bettern of MW-9R and how they would fine to put a wore plug in the bottom to cruze ideal Scal, but would not the auth to three SS Sample arm bottom, but would instead rund to three Scompte from toothe of rig. MO Thinks that Sands Jin a soud idea. Scim will discuss w/ ST. 1130 9 Mob on to MW-29 loce then. 1145 9 Begin drilling MW-29. 11300 7 UNCH.		- C
0945 → Begin & Construct well EW-1. Samplis and put on ice. And Soil is photoscapied to show no chitle present. 1000 → Maurs O'Brian COOE) graines ansite. Sch. discusses avory that has been done. Continue creating woll box. 1100 → Fransk well bix. Discuss w/MO sample at bottom of MW-9R and how they would line to put a wore plus in the bottom to cruce ideal Scall but would not be able to three SS sample are bottom, but would instead ruld to three Scample from both of rig. MO thread that Samds line a soud idea. Sch. will discuss w/ SZ. 1130 → Mob on to MW-29. 1145 → Begin drilling MW-29. 1230 → Sample MW-29 - 12.5°. ALSO DUP-1. 1300 → WNCH.	0930 75 mple EW-1-22.5'	
Soit is photoscaped to show no initel present. 1000 ? Maurs O'Brian (DOE) arrives ansite SCM discusses word that has been done. Continue creating woll box. 1100 ? Farsh well box. Discuss w/MO sample at bottom of MW-9R and how they would line to put a wood plus in the bottom to create ideal Scally but would not be able to three SS Sample Rom bottom, but would instead read to term sample Gom tooth of rig. MO thinks that Sands line a soud idea. Sch will discuss w/S7. 1130 ? Mob on to MW 29 loce Han. 1145 ? Bigin drilling MW 29. 1230 ? Sample MW-29-12.5' ALSO DUP-1. 1300 ? UNICH.		
1000 → Maura O'Brian (DOE) arrives ansite SCM discusses avory that has been done. Contribue creating wall box. 1100 → Frisch well bex. Discuss w/MO sample at bottom of MW-9R and how they would line to put a wood plus in the bottom to crude iden I scally but would not be able to three SS sample from bottom, but would instead ruld to take sample from both of rig. MO thinks that samds line a soud idea. Sch will discuss w/SZ. 1130 → Mob onto MW-29. 1145 → Bigin drilling MW-29. 1230 → Sample MW-29-12.5' ALSO DUP-1. 1300 > WACH.	0175 Begin to construct men EW-1. Samples and put on ice. MI	
 that has been done. Continue creating woll box. 1100 > Finish well box. Discuss w/MO sample at bottom of MW-9R and how they would like to put a wood plus in the bottom to create ideal Scalp but would not be able to three SS sample from both of rig. MO thinks that seen ds like a soud idea. Scalp will discuss w/SZ. 1130 > Mob on to MW-29 loce tran. 1145 > Begin drilling MW-29. 1130 > unch. 	Soil is photographed to show no counted present.	
 that has been done. Continue creating woll box. 1100 > Finish well box. Discuss w/MO sample at bottom of MW-9R and how they would like to put a wood plus in the bottom to create ideal Scalp but would not be able to three SS sample from both of rig. MO thinks that seen ds like a soud idea. Scalp will discuss w/SZ. 1130 > Mob on to MW-29 loce tran. 1145 > Begin drilling MW-29. 1130 > unch. 	1000 7 M. O'Brian (DOE) arrives ansite SCM discusses wory	G
 1100 → Finish well box. Discuss w/MO sample at bottom of MW-9k and how they would like to put a wave plus in the bottom to energy iden I seel, but would not be able to three SS sample arm bottom, but would instead need to terre sample from both of rig. MO thinks that sends like a good idea. Sam will discuss w/ST. 1130 → Mob on to MW-29 loce tran. 1145 → Begin drilling MW-29. 1230 → Sample MW-29 - 12.5°. ALSO DUP-1. 1300 → WNCH. 		6
and how they would like to put a wood plus in the bottom to cruck iden I seel, but would not be able to the SS Sample Rum bottom, but would instead need to three Sample Room both of rig. MO thinks that sands like a good idea. Sam will discuss will SZ. 1130 > Mob on to MW-29 loce tran. 1145 > Begin drilling MW-29. 1230 > Sample MW-29 - 12.5' ALSO DUP-1. 1300 > WNCH.		_
and how they would like to put a wood plug in the bottom to cruck iden I seel, but would not be able to three SS Sample Rum bottom, but would instead need to three Scomple Room both of rig. MO thinks that Sands like a good idea. Scon will discuss w/SZ. 1130 > Mob on to MW-29 loce tran. 1145 > Begin drilling MW-29. 1230 > Sample MW-29 - 12.5'. ALSO DUP-1. 1300 > WNCH.	1100 > Finish well box. Discuss w/MO sample at bottom of MW-9#	
cruck iden I Scil, but would not be able to three SS Scimple and bottom, but would instead need to terre scimple from booth of rig. MO thinks that sends line a soud idea. Scin will discuss w/SZ. 1130 > Mob on to MW.29 loce tran. 1145 > Begin drilling MW.29. 1230 > Sample MW-29 - 12.5'. ALSO DUP-1. 1300 > WNCH.	and how they would like to put a wood plus in the bottom to	6
rig. MO thinks that sands line a soud idea. Som will discus w/s7. 1130 → Mob on to MW 29 loce tran. 1145 → Begin drilling MW 29. 1230 → Sample MW 29 - 12.5' ALSO DUP-1. 1300 → UNICH.	crude ideal Seal, but would not be able to time SS Sample and	m 6
1130 > Mob onto MW 29 locetron. 1145 > Begin drilling MW:29. 1230 > Sample MW-29 - 12.5' ALSO DUP-1. 1300 > LUNCH.	borrown, but would instead need to the scorpt from booth of	. 6
1145 → Begin drilling MW:29. 1230 → Sample MW-29 - 12.5' ALSO DUP-1. 1300 → UNICH.	rig. MO thinks that sounds live a good idea. SCM will discuss wish	<u>-</u>
1145 → Begin drilling MW:29. 1230 → Sample MW-29 - 12.5' ALSO DUP-1. 1300 → UNICH.		
1230 > Sample MW-29 - 12.5' ALSO DUP-1. 1300 > LUNICH.	1130 > Mob onto MW.CA roce Ton.	
1230 > Sample MW-29 - 12.5' ALSO DUP-1. 1300 > LUNICH.	1116 2 2 and drilling MW:29	6
1300 - UNICH.	high army for the	C
1300 - UNICH.	1230 -> Somply MW-29 - 12.5' ALSO DUP-1.	6
	1300 > LUNICH.	
	Scale: 1 square =	

S. MCGUSRE	and the second se				
12:24:2121	K 1 K 1 K 1 K 1 K 1 K 1 K 1 K 1 K 1 K 1	a	· · · · · · · ·		
13.30 Sample	MW-29-22.	5'		- dik	
400 > FINSH Juic	liva Real SEE	fors world	Call In In	latelie Everandi	sport So
	- pequale	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			
400 7 Finish duit extra bi-s	suite ks ince k	we need	axina wells		
					<u> </u>
430 - Till N Sar	M Miles. Prosnes	es sours a	ell.		
500 7 5tart plecin	y moniment /	lecon of	aisers conti	nos	
600 - ist care	refer se l				
600 3 Let concr					
630 3 Casce de 1	MRCADJ O	18-51 te.			
			1.0		
	10	1	lefen		
		mus /	Cours		1 1 1 1
1 m.) 2 m	111111		7		
+ Today 4 50	"I drums I	decon	ann sener	-cha.	<u> </u>
<u> </u>	1 1 1 1 1 5 1 1 1 1 5				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1	
$\frac{1}{1} + \frac{1}{1} + \frac{1}$		1 1 1 1 1 1 1 1 1 1 1			
t t t t t t - (1 (1 (1		<u> </u>			$\frac{1}{1} + \frac{1}{1} + \frac{1}$
$\frac{1}{1} \frac{1}{1} \frac{1}$		<u> </u>			
1.8 K R R R K K 1.9 K R R R K 1.9 K R R R K					
			1 0 3 8 0 0 1 0 0 0 0 1 0 0 0	<u> </u>	I I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>
	<u> </u>	1 0 0 0			$\frac{ c - c }{ c } = \frac{ c }{ $
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
					10 ⁴⁴

"Lite in the Rain". ALL weather WRITING PAPER

a second and the

Scale: 1 square = __

. MIGURES KI METRO WERLENSTALL OVERPREL	7-15-17
700 > Arme on site Meet Casende / TCS and Mann O'Brien (Dob) a	n Site
730 > Hold Hes talsate meeting. Review sil site specific hozands.	Discuss OF
tengents of operation and Couche duilling J.A. Primary hazar	do tou reaug
will be hive traffizered heat. Setup exclusion Zone.	
BOD > Mob onto MW.30 location which will be doilled first	to see if
any contingency wells will be needed. Besin setting up ex	(Lor Do some
810 > Beyin drilling	
\$30 > Simple MW 30-12-5' ACSO DUP-2	
200 > Simple MW-30-22.5!	
915 3 Kinish duilling. Bern setting could the	
930 > Difficult time setting will to full depty became of capple.	
930 > Difficult time setting will to full depty became of capple.	Prill slightly
930 - Difficult time setting will to full depty became of capple. Leepen to set well correctly	Prill slightly
930 - Difficult time setting will to full depty becare of capple. Deeper to set well correctly 30 - Fires have accomplated at the bustom optimized during	Prill slightly
 930 → Difficilt fine setting will to full depth becan of about. deepen to set well correctly. 30 → Fines have accompleted at the bottom optiwiso during beller and suise block to nemore. 00 → Fines have been removed Will Finish development. 	Prill slightly
930 3 Difficult time setting will to full depty becare of capple. deepen to set one il correctly 30 3 Fires have accompleted at the bostom optimiso during beiler and subsc block to remore.	Prill slightly
 930 → Difficilt fine setting will to full depth becan of about. deepen to set well correctly. 30 → Fines have accompleted at the bottom optiwiso during beller and suise block to nemore. 00 → Fines have been removed Will Finish development. 	Prill slightly
 930 → Difficult fine setting will to full depth becare of capte. depen to test one il correctly. 30 → Fines have accompleted at the bostom of MW.30 during. beiler and subsci block to nemore. 00 → Fines have been removed Will Finish development. 15 > Molp duilling MW-92. 	Privil stightly
 730 → Difficult fine tething will to Full depty becare of capple. deeper to bet one il correctly. 30 → Fires have accompleted at the bottom of MW.30 during beiler and subsci block to nemore. 00 → Fires have been removed Will Finish development. 15 > Molp duilly g justo position on MW-9R. 75 > Begin duilling MW-9R. 730 > Collect Sample at bottom of MW.9R. Sand, tree 	Prill 3 1/2 1 + 14 ECANT USC 2 53 1+ 1 product
 930 → Difficult fine setting will to full depth becare of capte. depen to test one il correctly. 30 → Fines have accompleted at the bostom of MW.30 during. beiler and subsci block to nemore. 00 → Fines have been removed Will Finish development. 15 > Molp duilling MW-92. 	Privil 3 11, 5 + 14 Forther USC 2 53 1+ 1 proble
 930 → D: Frierit fine to this will to Full depth becare of abole. deeper to bet one il correctly. 30 → Fines have accomplated at the bottom of the 30 during be lessed strike block to nemore. 00 → Fines have been removed Will Finish development. 15 > Molp duill vig into position on MW-9R. 15 > Begin duiling MW-9R. 330 > collect Sample at bottom OF MW. 9R. Sand, tree - F. grain Sind, poorly sorted, Hecko, wet, dara brown, 	Privil slightly East Use 2 SS It / pesce youde
 130 → D: f(icrit fine retfin, will to full depta becan of capte. depar to feet one il correctly. 30 → Fines have acconnected at the bottom of MW.30 drives beller and Sursa block to nemore. 00 → Fines have been removed Will Finish development. 15 > Molp duill vig into position on MW-9R. 15 > Begin duilling MW-9R 330 > collect Sample at bottom of MW.9R. Sand, tree in force been sorted, Atco, wet, dave brown, publics ere. PID = 701.88 	Privil slightly East Use 2 SS It / pesce youde
 730 → Difficult fine rething will to full depty becare of abob. deput to bet one il correctly. 30 → Fines have accompleted at the bottom optimise during beiler and strike block to remove. 00 → Fines have been removed Will Finish development. 15 > Mole duill vig inthe position on MW-9R. 75 > Begin drilling MW-9R 730 > collect Sample at bottom of MW 9R. Sand, tree 6. F. grain Sind, paorly striked, Hallo, Wet, dave brown, publics etc. PID = Follo 8 700 → Simple MW 9R-22.5, Then tax lunch. Mane O'e site. 	Privil slightly East Use 2 SS It / pesce youde
 730 → D: #Fixel # fine setting will to full depth becare of cook. deeper to fet well correctly. 30 → Fines have accompleted at the bottom of the 30 during be: len and subsci block to remove. 00 → Fines have been removed Will Finish dueloporent. 15 > Mole duilly if into position on MW-9R. 15 > Begin duilling MW-9R 330 > collect Sample at bottom of MW 9R. Sand, tree 230 > collect Sample MW 9R-22.5, Then tax louch. Mann O'e 	Prill slightly Econs Use 2 SS It / puble Youde

1530 > Measure distances of wells to MW-9R. MW-29=29' MW,30=90' EW-1=10' 1630 - MW-912 his been jessed and possid since However Fines are still accompleting in well. Well monuments on MW. 36 completed and sets Driller Cartis 5., 5 that with the monument construction of MW. 92 and deem I mooping druns they may not have time For diveloping EW-1 and Anothing MW. SR which he thinks could use a couple more heins 1700 > Begin to clean up. Mob to MW-9R to instill well box and monumera. 1800 3 pictures taken. Monument instelled on MW- FR. Mob down 5 to Such Yard liber drums etc. 1900 3 put an gretomal Barricete Comes in Swap to preulop. Sin Codende daily form. Mob portrising ortside for picnop. During locy set state and Ciscide Leiner. 1215 3 sent Corves Jeamas Marian Total drum count is 4 HzO & 10 soil. 9 7-19-19 > 1 SOSE DRUM 7-15-14 A SUEL DRIMS, 1 HZO (PERON) 7-16-11 - 5 SOFE PRIM 1 3 HEO (IDECON/2 pinge) 3 0 9 3 3 3 0 "Alte in the Rain" Scale: 1 square =

S M. Guire 7/22/2014 KC Metro Gauging Round R. Brauchta (Weather: Iow 60 with 0900 - ARCADES on site don PPE, culibrate PID. 0930 - Gauging Round . His tailacte form. Review hazerds scattered showers PID (ppm) DTW (Ft How) DTP(At bloc) Time Woll 935 12.37 MW-30 6:2 7.4 940 MW-29 13.80 945 12,25 EW-1 1.566 10.015 : DTP (sheen 98.4 MW-27 955 10:02 MW-11 10.60 1010 1,5 8.81 MW-10 1020 118.8 7:24 117.2 1025 MW-28 8.44=DP 1030 MW-12 346.4 8.48 0.5 1040 MW-22 14:34 1045 MW-21 1.8 13.05 1050 MW-20 1 242.5 13:35 1055 MW-19 1.7 12:73 624.8 1105 MW-3 9,83=DJP 10:52 secured with allen head screws - off site to get allen keys 1115- MW-9R is 1225 MW-912 1,257 1331 1230- ASCADIS off site (to WA-1835) -ARCADIS returns to label drugues GD out: 1230 -ARCADES Methodology: Wells were measured using a calibrated PID and an oil/water interface probe. The probe was deconned between wells, Drum inventory: Fourteen 55-galon steel drums - stored in the south yard -10 soil drums 2 docon water drame - Z proge wher drugs

ARCADIS

Appendix D

Soil Laboratory Report and Chain-of-Custody Documentation

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

July 30, 2014

Project: 1001327

Submittal Date: 07/18/2014 Group Number: 1490060 PO Number: 0015143985 Release Number: ROEHL State of Sample Origin: WA

Client Sample Description EW-1-12.5' NA Soil EW-1-22.5' NA Soil MW-29-12.5' NA Soil MW-29-22.5' NA Soil DUP-1 NA Soil MW-30-12.5' NA Soil MW-30-22.5' NA Soil MW-9R-22.5' NA Soil DUP-2 NA Soil

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Arcadis COPY TO ELECTRONIC Arcadis COPY TO Attn: Scott Zorn

Attn: Alan Kahal

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Matalie K - 2

Natalie R. Luciano Senior Specialist

(717) 556-7258

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: EW-1-12.5' NA Soil Facility# 1001327 1602 N Northlane Way - Seattle, WA

LL Sample # SW 7537978 LL Group # 1490060 Account # 11964

Project Name: 1001327

Collected: 07/15/2014 09:15 by SM

Submitted: 07/18/2014 09:45 Reported: 07/30/2014 16:04 Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

SE112

CAT No. And	alysis Name	CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS Vo	latiles SW-846 82	60B	mg/kg	mg/kg	
10237 Ber	nzene	71-43-2	N.D.	0.025	46.59
Reportir	ng limits were raised due to :	interference fro	m the sample matrix.		
GC Volat	iles ECY 97-60	2 NWTPH-Gx	mg/kg	mg/kg	
02005 NW	TPH-GX Soil C7-C12	n.a.	64	9.8	224.64
GC Petro	leum ECY 97-60	2 NWTPH-Dx	mg/kg	mg/kg	
Hydrocar	bons w/Si modified				
12006 DR	0 C12-C24 w/Si Gel	n.a.	N.D.	3.3	1
12006 HR	0 C24-C40 w/Si Gel	n.a.	N.D.	11	1
The reve	erse surrogate, capric acid,	is present at <1	8.		
Wet Chem	istry SM 2540 G	8-1997	8	8	
00111 Mo	isture	n.a.	8.3	0.50	1
Мо	isture represents the loss in	weight of the s	ample after oven drying at		

Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	Q142023AA	07/22/2014	03:11	Andrea E Lando	46.59
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201419935125	07/15/2014	09:15	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201419935125	07/15/2014	09:15	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14202A31A	07/22/2014	04:20	Marie D Beamenderfer	224.64
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201419935125	07/15/2014	09:15	Client Supplied	n.a.
12006	NWTPH-Dx soil w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	142020004A	07/23/2014	10:42	Glorines Suarez- Rivera	1
12008	NW Dx soil w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	142020004A	07/21/2014	14:30	Kelli M Barto	1
00111	Moisture	SM 2540 G-1997	1	14204820003B	07/23/2014	19:57	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: EW-1-22.5' NA Soil Facility# 1001327 1602 N Northlane Way - Seattle, WA

LL Sample # SW 7537979 LL Group # 1490060 Account # 11964

Project Name: 1001327

Collected: 07/15/2014 09:30 by SM

Submitted: 07/18/2014 09:45 Reported: 07/30/2014 16:04 Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

SE122

CAT No. Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor				
GC/MS Volatiles	SW-846 8260B	mg/kg	mg/kg					
10237 Benzene	71-43-2	N.D.	0.029	51.96				
Reporting limits wer	re raised due to interference f	from the sample matri	x.					
GC Volatiles	ECY 97-602 NWTPH-Gx	mg/kg	mg/kg					
02005 NWTPH-GX Soil	C7-C12 n.a.	450	42	927.75				
GC Petroleum	ECY 97-602 NWTPH-Dx	mg/kg	mg/kg					
Hydrocarbons w/Si	modified							
12006 DRO C12-C24 w/s	Si Gel n.a.	8.5	3.4	1				
12006 HRO C24-C40 w/s	Si Gel n.a.	N.D.	11	1				
The reverse surrogat	The reverse surrogate, capric acid, is present at <1%.							
Wet Chemistry	SM 2540 G-1997	8	8					
Wet Chemistry 00111 Moisture	SM 2540 G-1997 n.a.	% 10.8	% 0.50	1				

Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	Q142023AA	07/22/2014	03:34	Andrea E Lando	51.96
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201419935125	07/15/2014	09:30	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201419935125	07/15/2014	09:30	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14202A31A	07/22/2014	16:33	Marie D Beamenderfer	927.75
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201419935125	07/15/2014	09:30	Client Supplied	n.a.
12006	NWTPH-Dx soil w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	142020004A	07/23/2014	11:04	Glorines Suarez- Rivera	1
12008	NW Dx soil w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	142020004A	07/21/2014	14:30	Kelli M Barto	1
00111	Moisture	SM 2540 G-1997	1	14204820003B	07/23/2014	19:57	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-29-12.5' NA Soil Facility# 1001327 1602 N Northlane Way - Seattle, WA

LL Sample # SW 7537980 LL Group # 1490060 Account # 11964

Project Name: 1001327

S2912

Collected: 07/15/2014 12:30 by SM

Submitted: 07/18/2014 09:45 Reported: 07/30/2014 16:04 Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846 82	60B	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.0004	0.81
GC Vol	latiles	ECY 97-60	2 NWTPH-Gx	mg/kg	mg/kg	
02005	NWTPH-GX Soil C7-0	212	n.a.	4.2	1.2	28.77
GC Pet	croleum	ECY 97-60	2 NWTPH-Dx	mg/kg	mg/kg	
Hydroc	carbons w/Si	modified				
12006	DRO C12-C24 w/Si (Gel	n.a.	110	3.2	1
12006	HRO C24-C40 w/Si (Gel	n.a.	75	11	1
The 1	reverse surrogate,	capric acid, i	s present at <	1%.		
Wet Ch	nemistry	SM 2540 G	-1997	8	8	
00111	Moisture		n.a.	7.5	0.50	1
	Moisture represent	s the loss in	weight of the	sample after oven	drving at	

Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	A142041AA	07/23/2014	08:37	Stephanie A Selis	0.81
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201419935125	07/15/2014	12:30	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201419935125	07/15/2014	12:30	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14202A31A	07/22/2014	01:18	Marie D Beamenderfer	28.77
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201419935125	07/15/2014	12:30	Client Supplied	n.a.
12006	NWTPH-Dx soil w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	142020004A	07/23/2014	13:17	Glorines Suarez- Rivera	1
12008	NW Dx soil w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	142020004A	07/21/2014	14:30	Kelli M Barto	1
00111	Moisture	SM 2540 G-1997	1	14204820003B	07/23/2014	19:57	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-29-22.5' NA Soil Facility# 1001327 1602 N Northlane Way - Seattle, WA

LL Sample # SW 7537981 LL Group # 1490060 Account # 11964

Project Name: 1001327

Collected: 07/15/2014 13:30 by SM

Submitted: 07/18/2014 09:45 Reported: 07/30/2014 16:04 Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

S2922

CAT No. Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS Volatiles	SW-846 8260B	mg/kg	mg/kg	
10237 Benzene	71-43-2	N.D.	0.0004	0.73
GC Volatiles	ECY 97-602 NWTPH-Gx	mg/kg	mg/kg	
02005 NWTPH-GX Soil C7-C1	12 n.a.	N.D.	0.9	21.02
GC Petroleum	ECY 97-602 NWTPH-Dx	mg/kg	mg/kg	
Hydrocarbons w/Si	modified			
12006 DRO C12-C24 w/Si Ge	el n.a.	N.D.	3.2	1
12006 HRO C24-C40 w/Si Ge	el n.a.	N.D.	11	1
The reverse surrogate, c	apric acid, is present at <	18.		
Wet Chemistry	SM 2540 G-1997	8	%	
00111 Moisture	n.a.	7.5	0.50	1
Moisture represents	s the loss in weight of the	sample after oven drying at		

Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	me	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	A142041AA	07/23/2014	09:00	Stephanie A Selis	0.73
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201419935125	07/15/2014	13:30	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201419935125	07/15/2014	13:30	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14202A31A	07/22/2014	01:55	Marie D Beamenderfer	21.02
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201419935125	07/15/2014	13:30	Client Supplied	n.a.
12006	NWTPH-Dx soil w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	142020004A	07/23/2014	11:26	Glorines Suarez- Rivera	1
12008	NW Dx soil w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	142020004A	07/21/2014	14:30	Kelli M Barto	1
00111	Moisture	SM 2540 G-1997	1	14204820003B	07/23/2014	19:57	Scott W Freisher	1

Analysis Report

Account

LL Sample # SW 7537982

11964

LL Group # 1490060

1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DUP-1 NA Soil Facility# 1001327 1602 N Northlane Way - Seattle, WA

Project Name: 1001327

NWSD1

Collected: 07/15/2014 by SM

Submitted: 07/18/2014 09:45 Reported: 07/30/2014 16:04

Chevron T₁4310 6001 Bollinger Canyon Road San Ramon CA 94583

CAT No. Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS Volatiles SW-846 82	60B	mg/kg	mg/kg	
10237 Benzene	71-43-2	N.D.	0.0005	0.89
GC Volatiles ECY 97-60	2 NWTPH-Gx	mg/kg	mg/kg	
02005 NWTPH-GX Soil C7-C12	n.a.	1.5	1.0	23.56
GC Petroleum ECY 97-60	2 NWTPH-Dx	mg/kg	mg/kg	
Hydrocarbons w/Si modified				
12006 DRO C12-C24 w/Si Gel	n.a.	26	3.2	1
12006 HRO C24-C40 w/Si Gel	n.a.	33	11	1
The reverse surrogate, capric acid, i	s present at <1	L%.		
Wet Chemistry SM 2540 G	-1997	8	8	

00111 Moisture n.a. 7.1 0.50 Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	A142041AA	07/23/2014	12:47	Stephanie A Selis	0.89
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201419935125	07/15/2014	00:00	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201419935125	07/15/2014	00:00	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14202A31A	07/22/2014	02:31	Marie D Beamenderfer	23.56
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201419935125	07/15/2014	00:00	Client Supplied	n.a.
12006	NWTPH-Dx soil w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	142030026A	07/28/2014	15:12	Glorines Suarez- Rivera	1
12008	NW Dx soil w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	142030026A	07/23/2014	09:40	Katheryne V Sponheimer	1
00111	Moisture	SM 2540 G-1997	1	14204820003B	07/23/2014	19:57	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-30-12.5' NA Soil Facility# 1001327 1602 N Northlane Way - Seattle, WA

LL Sample # SW 7537983 LL Group # 1490060 Account # 11964

Project Name: 1001327

Collected: 07/16/2014 08:30 by SM

Submitted: 07/18/2014 09:45 Reported: 07/30/2014 16:04 Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

S3012

CAT No. Analysis Name	CAS Nu	Dry mber Result	Dry Method Detection Limit	Dilution Factor
GC/MS Volatiles	SW-846 8260B	mg/kg	mg/kg	
10237 Benzene	71-43-	2 N.D.	0.028	50.96
Reporting limits were	raised due to interfere	ence from the sample mat	trix.	
GC Volatiles	ECY 97-602 NWTP	H-Gx mg/kg	mg/kg	
02005 NWTPH-GX Soil C7	-C12 n.a.	46	2.8	63.69
GC Petroleum	ECY 97-602 NWTP	H-Dx mg/kg	mg/kg	
Hydrocarbons w/Si	modified			
12006 DRO C12-C24 w/Si	Gel n.a.	310	6.4	2
12006 HRO C24-C40 w/Si	Gel n.a.	670	21	2
The reverse surrogate	, capric acid, is preser	nt at <1%.		
Wet Chemistry	SM 2540 G-1997	8	8	
00111 Moisture	n.a.	7.8	0.50	1
Moisture represe	nts the loss in weight o	of the sample after ove	n drying at	

Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	Q142023AA	07/22/2014	03:57	Andrea E Lando	50.96
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201419935125	07/16/2014	08:30	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201419935125	07/16/2014	08:30	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14202A31A	07/22/2014	17:09	Marie D Beamenderfer	63.69
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201419935125	07/16/2014	08:30	Client Supplied	n.a.
12006	NWTPH-Dx soil w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	142030026A	07/28/2014	17:03	Glorines Suarez- Rivera	2
12008	NW Dx soil w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	142030026A	07/23/2014	09:40	Katheryne V Sponheimer	1
00111	Moisture	SM 2540 G-1997	1	14204820003B	07/23/2014	19:57	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-30-22.5' NA Soil Facility# 1001327 1602 N Northlane Way - Seattle, WA

LL Sample # SW 7537984 LL Group # 1490060 Account # 11964

Project Name: 1001327

S3022

Collected: 07/16/2014 09:00 by SM

Submitted: 07/18/2014 09:45 Reported: 07/30/2014 16:04 Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

CAT No. Analysis Name	Cź		Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS Volatiles	SW-846 8260B	3 п	ng/kg	mg/kg	
10237 Benzene	7:	1-43-2 N	1.D.	0.0004	0.72
GC Volatiles	ECY 97-602 M	WTPH-Gx "	ng/kg	mg/kg	
02005 NWTPH-GX Soil	C7-C12 n	.a. 2	20	1.3	28.79
GC Petroleum	ECY 97-602 N	WTPH-Dx ⁿ	ng/kg	mg/kg	
Hydrocarbons w/Si	modified				
12006 DRO C12-C24 w,	'Si Gel n	.a. 1	19	3.3	1
12006 HRO C24-C40 w	'Si Gel n	.a. 6	52	11	1
The reverse surroga	te, capric acid, is p	resent at <1%.			
Wet Chemistry	SM 2540 G-19	997 %	6	8	
00111 Moisture	n	.a. 9	9.9	0.50	1
Moisture repre	esents the loss in wei	ght of the sam	mple after oven drying	g at	

103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	me	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	A142041AA	07/23/2014	13:09	Stephanie A Selis	0.72
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201419935125	07/16/2014	09:00	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201419935125	07/16/2014	09:00	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14202A31A	07/22/2014	03:44	Marie D Beamenderfer	28.79
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201419935125	07/16/2014	09:00	Client Supplied	n.a.
12006	NWTPH-Dx soil w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	142030026A	07/28/2014	15:35	Glorines Suarez- Rivera	1
12008	NW Dx soil w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	142030026A	07/23/2014	09:40	Katheryne V Sponheimer	1
00111	Moisture	SM 2540 G-1997	1	14204820003B	07/23/2014	19:57	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-9R-22.5' NA Soil Facility# 1001327 1602 N Northlane Way - Seattle, WA

LL Sample # SW 7537985 LL Group # 1490060 Account # 11964

Project Name: 1001327

Collected: 07/16/2014 14:00 by SM

Submitted: 07/18/2014 09:45 Reported: 07/30/2014 16:04 Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

S9R22

CAT No. Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS Volatiles SW-846	8260B	mg/kg	mg/kg	
10237 Benzene	71-43-2	N.D.	0.035	64.17
Reporting limits were raised due	to interference fro	m the sample matrix.		
GC Volatiles ECY 97	-602 NWTPH-Gx	mg/kg	mg/kg	
02005 NWTPH-GX Soil C7-C12	n.a.	1,900	270	6019.53
GC Petroleum ECY 97	-602 NWTPH-Dx	mg/kg	mg/kg	
Hydrocarbons w/Si modifi	ed			
12006 DRO C12-C24 w/Si Gel	n.a.	300	6.6	2
12006 HRO C24-C40 w/Si Gel	n.a.	100	22	2
The reverse surrogate, capric aci	d, is present at <1	°.		
Wet Chemistry SM 254	0 G-1997	સ્	સ્	
00111 Moisture	n.a.	9.3	0.50	1
Moisture represents the loss	s in weight of the s	sample after oven drying at		

Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	Q142031AA	07/22/2014		Anita M Dale	64.17
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201419935125	07/16/2014	14:00	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201419935125	07/16/2014	14:00	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14202A31A	07/22/2014	17:45	Marie D Beamenderfer	6019.53
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201419935125	07/16/2014	14:00	Client Supplied	n.a.
12006	NWTPH-Dx soil w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	142030026A	07/29/2014	12:57	Glorines Suarez- Rivera	2
12008	NW Dx soil w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	142030026A	07/23/2014	09:40	Katheryne V Sponheimer	1
00111	Moisture	SM 2540 G-1997	1	14204820003B	07/23/2014	19:57	Scott W Freisher	1

Analysis Report

Account

LL Sample # SW 7537986 LL Group # 1490060

11964

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DUP-2 NA Soil Facility# 1001327 1602 N Northlane Way - Seattle, WA

Project Name: 1001327

Collected: 07/16/2014 by SM

Submitted: 07/18/2014 09:45 Reported: 07/30/2014 16:04 Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

NWSD2

CAT No. Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS Volatiles SW-84	6 8260B	mg/kg	mg/kg	
10237 Benzene	71-43-2	N.D.	0.030	54.96
Reporting limits were raised due	to interference from	m the sample matrix.		
GC Volatiles ECY 9	7-602 NWTPH-Gx	mg/kg	mg/kg	
02005 NWTPH-GX Soil C7-C12	n.a.	46	2.5	57.52
GC Petroleum ECY 9	7-602 NWTPH-Dx	mg/kg	mg/kg	
Hydrocarbons w/Si modif:	ied			
12006 DRO C12-C24 w/Si Gel	n.a.	270	33	10
12006 HRO C24-C40 w/Si Gel	n.a.	1,000	110	10
The reverse surrogate, capric ac	id, is present at <1	è.		
Wet Chemistry SM 254	40 G-1997	8	8	
00111 Moisture	n.a.	9.1	0.50	1
Moisture represents the los	ss in weight of the s	ample after oven drying at		

Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	me	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	Q142031AA		13:49	Anita M Dale	54.96
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201419935125	07/16/2014	00:00	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201419935125	07/16/2014	00:00	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14202A31A	07/22/2014	18:21	Marie D Beamenderfer	57.52
06647	GC-5g Field Preserved MeOH	SW-846 5035	1	201419935125	07/16/2014	00:00	Client Supplied	n.a.
12006	NWTPH-Dx soil w/ 10g Si Gel	ECY 97-602 NWTPH- Dx modified	1	142030026A	07/28/2014	16:41	Glorines Suarez- Rivera	10
12008	NW Dx soil w/ 10g column	ECY 97-602 NWTPH- Dx 06/97	1	142030026A	07/23/2014	09:40	Katheryne V Sponheimer	1
00111	Moisture	SM 2540 G-1997	1	14204820003B	07/23/2014	19:57	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Reported: 07/30/14 at 04:04 PM Group Number: 1490060

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: A142041AA Benzene	Sample numbe N.D.	er(s): 753 0.0005	7980-7537 mg/kg	982,753798 90	87 87	80-120	3	30
Batch number: Q142023AA Benzene	Sample numbe N.D.	er(s): 753 0.025	7978-7537 mg/kg	979,753798 104	33 113	80-120	9	30
Batch number: Q142031AA Benzene	Sample numbe N.D.	er(s): 753 0.025	7985-7537 mg/kg	986 96	97	80-120	1	30
Batch number: 14202A31A NWTPH-GX Soil C7-C12	Sample numbe N.D.	er(s): 753 1.0	7978-7537 mg/kg	986 93	85	65-120	9	30
Batch number: 142020004A DRO C12-C24 w/Si Gel HRO C24-C40 w/Si Gel	Sample numbe N.D. N.D.	er(s): 753 3.0 10.	7978-7537 mg/kg mg/kg	981 85		50-133		
Batch number: 142030026A DRO C12-C24 w/Si Gel HRO C24-C40 w/Si Gel	Sample numbe N.D. N.D.	er(s): 753 3.0 10.	7982-7537 mg/kg mg/kg	986 79		50-133		
Batch number: 14204820003B Moisture	Sample numbe	er(s): 753	7978-7537	986 100		99-101		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: Q142023AA Benzene	Sample 44*	number(s) 60	: 7537978 55-143	-753797 12	79,7537 30	983 UNSPK:	P537092		
Batch number: 142020004A DRO C12-C24 w/Si Gel HRO C24-C40 w/Si Gel	Sample	number(s)	: 7537978	-753798	31 BKG	: P531151 N.D. N.D.	N.D. N.D.	0 (1) 0 (1)	20 20
Batch number: 142030026A DRO C12-C24 w/Si Gel HRO C24-C40 w/Si Gel	Sample	number(s)	: 7537982	-753798	36 BKG	: 7537982 24 30	N.D. N.D.	200* (1) 200* (1)	20 20

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 2 of 3

Quality Control Summary

Group Number: 1490060

Client Name: Chevron Reported: 07/30/14 at 04:04 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	<u>%REC</u>	<u>%REC</u>	<u>Limits</u>	RPD	MAX	<u>Conc</u>	<u>Conc</u>	<u>RPD</u>	<u>Max</u>
Batch number: 14204820003B	Sample	number(s)	: 7537978	-753798	36 BKG:	P540372			
Moisture						68.6	68.9	0	5

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

	Name: VOCs- Solic mber: A142041AA	d by 8260B		
Batth nu	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7537980	107	106	94	93
7537981	105	106	94	93
7537982	101	104	96	94
7537984	102	105	95	97
Blank	106	106	94	90
LCS	104	101	98	99
LCSD	101	99	99	98
Limits:	50-141	54-135	52-141	50-131
	Name: VOCs- Solic mber: Q142023AA	d by 8260B		
Baten nu	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7537978	78	81	87	85
7537979	80	80	82	81
7537983	90	90	83	87
Blank	105	100	89	83
LCS	96	94	88	92
LCSD	108	109	99	101
MS	66	64	66	74
MSD	65	64	65	84
Limits:	50-141	54-135	52-141	50-131
	Name: VOCs- Solid mber: Q142031AA	d by 8260B		
Daten na	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7537985	80	80	76	79
7537986	90	87	81	90
Blank	101	100	96	94
LCS	90	92	88	89
LCSD	89	88	87	89
Limits:	50-141	54-135	52-141	50-131

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 3 of 3

Quality Control Summary

Client Name: Chevron Reported: 07/30/14 at 04:04 PM Group Number: 1490060

Surrogate Quality Control

Analysis Name: NWTPH-GX Soil C7-C12 Batch number: 14202A31A Trifluorotoluene-F

7537978	80
7537979	87
7537980	72
7537981	72
7537982	72 85
7537983	102
7537984	92
7537985	94
7537986	97
Blank	89
LCS	92
LCSD	85
Limits:	50-142
Dimico.	
Analysis	Name: NWTPH-Dx soil w/ 10g Si Gel
Batch nur	nber: 142020004A
	Orthoterphenyl
7537978	104
7537979	104
7537980	113
7537981	102
Blank	112
DUP	118
LCS	114
Limits:	50-150
Analysis	Name: NWTPH-Dx soil w/ 10g Si Gel
Batch nur	nber: 142030026A
	Orthoterphenyl
7537982	101
7537983	103
7537984	99
7537985	96
7537986	93
Blank	104
DUP	104 94
LCS	
цсъ	101
Limits:	50-150
	50 150

(1) The result for one or both determinations was less than five times the LOQ.

	Inevron	NOľ	thW	es	341	Re	egia	DN	A	Ma		/S	IS	IK	eq	JU	65	5t/(Sh	al	in of Custoa	У
🗱 eurofins	Lancaster Laboratories		Aco	ct. # <u> </u>	19	61	-1	Grou	o #	or Lar Ganson r	ncaste OC everse	er Lab) (_ () side cor	oratoi) Sa respon	ries us mple d with c	se onl # ircled n	y umbers	37	97	8-	- 8	6	
1	Client Informatio	on				(4)	Matrix	<	1	5			A	nalv	ses	Real	uest	ed			SCR #: 157 60	2
Facility #		WBS				\sim		-		\leq		l	1							l	SCR #: <u>/ / (() /</u>	
100-1327																						
Site Address		an a]			1										Results in Dry Weight	
1602 N NORTHLAU Chevron PM	IE WAY, SEATT	IE, WI	4			It	a)			Naphth				Ċ.	pq –						J value reporting needed	
Chevron PM	• •	Lead Cons	ultant			ner	ace							dn	Method		ß				Must meet lowest detection	
EPEC RUEHC Consultant/Office	2657	T Zu	PN			Sediment	Ground Surface		รา					Silica Gel Cleanup	Ň		0				limits possible for 8260	
ARCADIS! SE						Š	0 0		ontainers	8260						_	2				compounds	
Consultant Project Mgr.	//							1	nta					9 0	Diss.	МАЕРН	\mathcal{D}				8021 MTBE Confirmation	-
SLOTT ZUEN									10			ates		Silic	ш Ц	EP	Š.	l,			Confirm highest hit by 8260	
Consultant Phone #	n de la calculation de la c			a hina dan aktiran sa sa sa			Potable	Air	of			Oxygenates		Ń		WA	22	2			Confirm all hits by 8260	
206 726-17	709					\mathbf{N}	Potable		oer	ш		0x0		È	Total [Į.	5			Run oxy's on highest	hit
Sampler SEAMAS YAL				3	lite	\Box	d Z		Ξ	+ MTBE	scan		З	DX	10 T		N.	5			Run oxy's on all hits	
OFAMAS PIL	GUIRE				ő		5		Ž	2+	n]]		H	НГ		т	25	4				
2			ected	Grab	Composite	oi	Water		Total Number	BTEX	8260 full s		NWTPH	NWTPH	Lead	WAVPH	Benzy	7				
Sample Identification		Date	Time	U	U U	Ň	3	Ö			8		ĺŹ,	ź,	Le	Š	-2.9				6 Remarks	
EW-1-12.5			0915			\mathbf{V}			5			<u> </u>	$ \vee$	\mathbf{V}			V				- MW-9R only ho	9
EW-1-22-5		H	0930			V_			Б				$ \vee\rangle$	\checkmark				\checkmark			envir sui for f Dx jar and G	illing
MW.29-12.		7.15	1230			\mathbf{V}			5	_			$\overline{\mathbf{V}}$	\square			\vee	V			- D	יאי
MW.29-22	<u>·5'</u>	7-15	1330			\checkmark			5					\checkmark			\checkmark	\checkmark			The the	
DUP-1	1	7-15				\checkmark			5				\checkmark	\checkmark			\checkmark				- and Benzere Vois	<u>з</u> ,
MW-30-12.5		7-16	0830			\checkmark			5								\checkmark					
MW-30-22.		7-16	0900			\bigvee			5				\checkmark	\checkmark			./ ,					
MW-912-22	<u>.5'</u>	7-16	1400			\checkmark			4								\checkmark	\checkmark			+ Any questions	0.0
																					Please cuil Seam	27-
								Τ											Ì		Mequine @ 339-7	-66-
										Ĩ	1										1573	
				Ï.					1	Î	ĺ				İ			Ì				
				1					1	1												
Turnaround Time	ne Requested (TAT)	(nlease c	ircle)	Reling	uished	l by		. /)	Date			Time			Receiv	/ed by				Date Time	9
Standard	5 day	4 dav	liciej	1	C-	~	1	Μ	ł	4.4.	19.	14	1	52	7)	f	ARCI	ADIS	Je	Rel	- 623-H 1200	\sim
Glandard	Judy	4 uay		Ŕeliĝ	uished	l by	$\frac{\sqrt{2}}{1}$	Jot	m	Date			Time				/ed/by	9	<u>v</u> ,	/-	Date. Time	
72 hour	48 hour	24 hour		1.		Å	W.			1	171	14	M	WAY .	P	7	1	ST	7		7/12/14 15 7417.	
				1 pe	auioh		Comme	ricol (arria			. '	V	14		Passi	1 hr		<u></u>			
⁽⁸⁾ Data Package	Options (please cire	cle if rec	luired)		•	ieu by S				•	~					Receiv	/ed by		7/	10	Date Time $7/8/4$ Q	~-
Type I - Ful	I Type VI (I	Raw Data)		PS _	<u> </u>		edE	×		Ot	ner_				U	21	1	: Ll	Kec	7.18.14 9:45	
турстати		aw Dala	7		Te	empe	rature	Upoi	ו Ree	ceint		1.6	-) (°C		Си	istod	ly Sea	ls Int	tact?	Yes No	
		Langest	er Laborat	<u> </u>						1 					 50.00			,				

Lancaster Laboratories, Inc. • 2425 New Holping Piles Lancaster, PA 17601 • 717-656-2300 The white copy should accompany samples to Lancaster Laboratories. The yellow copy should be retained by the client.

Issued by Dept. 40 Management 7051.01

🔅 eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- **ppm** parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.
- ppb parts per billion
- **Dry weight basis** Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C - result confirmed by reanalysis.

J - estimated value – The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- **N** Presumptive evidence of a compound (TICs only)
- **P** Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- X,Y,Z Defined in case narrative

Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- **E** Estimated due to interference
- M Duplicate injection precision not met
- **N** Spike sample not within control limits
- **S** Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

Prepared for:

Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

August 27, 2014

Project: 1001327

Submittal Date: 08/15/2014 Group Number: 1496392 PO Number: 0015143985 Release Number: ROEHL State of Sample Origin: WA

Client Sample Description SB-1 12.5-13.5 Grab Soil SB-2 12.5-13.5 Grab Soil SB-3 12.5-13.5 Grab Soil SB-4 12.5-13.5 Grab Soil SB-5 10-11 Grab Soil SB-6 10-11 Grab Soil **DUP-1** Grab Soil

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Arcadis COPY TO ELECTRONIC Arcadis COPY TO

Attn: Alan Kahal

Attn: Scott Zorn

Respectfully Submitted,

Matalie K - 2 Natalie R. Luciano Senior Specialist

(717) 556-7258

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: SB-1 12.5-13.5 Grab Soil Facility# 1001327 1602 N. Northlake Way - Seattle, WA

LL Sample # SW 7566792 LL Group # 1496392 Account # 11964

Project Name: 1001327

Collected: 08/13/2014 09:30 by RL Submitted: 08/15/2014 09:15

Reported: 08/27/2014 11:05

Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

NNS01

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846 82	60B	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.031	54.26
Repo	rting limits were ra	ised due to i	interference fro	m the sample matrix.		
GC Vo	latiles	ECY 97-60	2 NWTPH-Gx	mg/kg	mg/kg	
02005	NWTPH-GX Soil C7-C1	.2	n.a.	6,700	470	10522.25
GC Pe	troleum	ECY 97-60	2 NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	modified				
08272	Diesel Range Organi	.cs C12-C24	n.a.	330	3.4	1
08272	Heavy Range Organic	s C24-C40	n.a.	110	11	1
Wet C	hemistry	SM 2540 G	-1997	8	8	
00111	Moisture		n.a.	11.1	0.50	1
	Moisture represents	the loss in	weight of the s	ample after oven drying at		
	103 - 105 degrees ('elgiug The r	moisture result	reported is on an		

103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	R142301AA	08/18/2014	16:50	Sarah A Guill	54.26
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201422735376	08/13/2014	09:30	Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201422735376	08/13/2014	09:30	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201422735376	08/13/2014	09:30	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14232A34A	08/21/2014	00:37	Marie D Beamenderfer	10522.2 5
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201422735376	08/13/2014	09:30	Client Supplied	n.a.
08272	NWTPH-Dx soil	ECY 97-602 NWTPH- Dx modified	1	142320010A	08/23/2014	00:13	Glorines Suarez- Rivera	1
11234	WA DRO NW DX Soils (Non SG)	ECY 97-602 NWTPH- Dx 06/97	1	142320010A	08/20/2014	17:00	Sally L Appleyard	1
00111	Moisture	SM 2540 G-1997	1	14233820003B	08/21/2014	17:21	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: SB-2 12.5-13.5 Grab Soil Facility# 1001327 1602 N. Northlake Way - Seattle, WA

LL Sample # SW 7566793 LL Group # 1496392 Account # 11964

Project Name: 1001327

Collected: 08/13/2014 11:00 by RL Submitted: 08/15/2014 09:15

Reported: 08/27/2014 11:05

Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

NNS02

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846 82	60B	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.060	106.23
Repo	rting limits were ra	ised due to i	nterference fro	m the sample matrix.		
GC Vo	latiles	ECY 97-602	2 NWTPH-Gx	mg/kg	mg/kg	
02005	NWTPH-GX Soil C7-C1		n.a.	21,000	950	20965.13
GC Pe	troleum	ECY 97-602	2 NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	modified				
08272	Diesel Range Organi	cs C12-C24	n.a.	1,500	17	5
08272	Heavy Range Organic	cs C24-C40	n.a.	470	57	5
Wet C	hemistry	SM 2540 G	-1997	8	8	
00111	Moisture		n.a.	11.9	0.50	1
	Moisture represents	the loss in	weight of the s	sample after oven drying at		
	103 - 105 degrees (elsius The m	oisture result	reported is on an		

103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	Q142301AA	08/19/2014 0	03:58	Andrea E Lando	106.23
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201422735376	08/13/2014 1	11:00	Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201422735376	08/13/2014 1	11:00	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201422735376	08/13/2014 1	11:00	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14232A34A	08/20/2014 2	23:26	Marie D Beamenderfer	20965.1 3
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201422735376	08/13/2014 1	11:00	Client Supplied	n.a.
08272	NWTPH-Dx soil	ECY 97-602 NWTPH- Dx modified	1	142320010A	08/25/2014 2	20:19	Glorines Suarez- Rivera	5
11234	WA DRO NW DX Soils (Non SG)	ECY 97-602 NWTPH- Dx 06/97	1	142320010A	08/20/2014 1	17:00	Sally L Appleyard	1
00111	Moisture	SM 2540 G-1997	1	14233820003B	08/21/2014 1	17:21	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: SB-3 12.5-13.5 Grab Soil Facility# 1001327 1602 N. Northlake Way - Seattle, WA

LL Sample # SW 7566794 LL Group # 1496392 Account # 11964

Project Name: 1001327

Collected: 08/13/2014 13:30 by RL

Submitted: 08/15/2014 09:15 Reported: 08/27/2014 11:05 Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

NNS03

CAT No. Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS Volatiles	SW-846 8260B	mg/kg	mg/kg	
10237 Benzene	71-43-2	N.D.	0.026	49.48
Reporting limits were ra	aised due to interference fr	com the sample matrix.		
GC Volatiles	ECY 97-602 NWTPH-Gx	mg/kg	mg/kg	
02005 NWTPH-GX Soil C7-C		360	20	463.99
GC Petroleum	ECY 97-602 NWTPH-Dx	mg/kg	mg/kg	
Hydrocarbons	modified			
08272 Diesel Range Organ	ics C12-C24 n.a.	1,600	16	5
08272 Heavy Range Organi	cs C24-C40 n.a.	N.D.	53	5
Wet Chemistry	SM 2540 G-1997	8	8	
00111 Moisture	n.a.	5.8	0.50	1
Moisture represent:	s the loss in weight of the	sample after oven drying a	t	
103 = 105 degrees	Celcius The moisture result	t reported is on an		

103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	R142301AA	08/18/2014	17:12	Sarah A Guill	49.48
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201422735376	08/13/2014	13:30	Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201422735376	08/13/2014 1	13:30	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201422735376	08/13/2014 1	13:30	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14232A34B	08/21/2014 1	17:43	Marie D Beamenderfer	463.99
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201422735376	08/13/2014 1	13:30	Client Supplied	n.a.
08272	NWTPH-Dx soil	ECY 97-602 NWTPH- Dx modified	1	142320010A	08/25/2014 2	20:42	Glorines Suarez- Rivera	5
11234	WA DRO NW DX Soils (Non SG)	ECY 97-602 NWTPH- Dx 06/97	1	142320010A	08/20/2014 1	17:00	Sally L Appleyard	1
00111	Moisture	SM 2540 G-1997	1	14233820003B	08/21/2014	17:21	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: SB-4 12.5-13.5 Grab Soil Facility# 1001327 1602 N. Northlake Way - Seattle, WA

LL Sample # SW 7566795 LL Group # 1496392 Account # 11964

Project Name: 1001327

Collected: 08/13/2014 15:00 by RL Submitted: 08/15/2014 09:15

Reported: 08/27/2014 11:05

Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

NNS04

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846 820	60B	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.024	43.86
Repo	rting limits were ra	ised due to in	nterference fro	m the sample matrix.		
GC Vo	latiles	ECY 97-602	2 NWTPH-Gx	mg/kg	mg/kg	
02005	NWTPH-GX Soil C7-C1		n.a.	61	3.5	80.41
GC Pe	troleum	ECY 97-602	2 NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	modified				
08272	Diesel Range Organi	cs C12-C24	n.a.	970	16	5
08272	Heavy Range Organic	s C24-C40	n.a.	N.D.	54	5
Wet C	hemistry	SM 2540 G	-1997	8	8	
00111	Moisture		n.a.	7.7	0.50	1
	Moisture represents	the loss in	weight of the s	ample after oven drying at		
	103 - 105 degrees (elciuc The m	oisture result	reported is on an		

103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time		Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	R142301AA	08/18/2014 17	:35	Sarah A Guill	43.86
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201422735376	08/13/2014 15	:00	Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201422735376	08/13/2014 15	:00	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201422735376	08/13/2014 15	:00	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14232A34B	08/21/2014 18	:19	Marie D Beamenderfer	80.41
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201422735376	08/13/2014 15	:00	Client Supplied	n.a.
08272	NWTPH-Dx soil	ECY 97-602 NWTPH- Dx modified	1	142320010A	08/25/2014 21	:04	Glorines Suarez- Rivera	5
11234	WA DRO NW DX Soils (Non SG)	ECY 97-602 NWTPH- Dx 06/97	1	142320010A	08/20/2014 17	:00	Sally L Appleyard	1
00111	Moisture	SM 2540 G-1997	1	14233820003B	08/21/2014 17	:21	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: SB-5 10-11 Grab Soil Facility# 1001327 1602 N. Northlake Way - Seattle, WA

LL Sample # SW 7566796 LL Group # 1496392 Account # 11964

Project Name: 1001327

NNS05

Collected: 08/14/2014 10:00 by RL

Submitted: 08/15/2014 09:15 Reported: 08/27/2014 11:05 Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

CAT No. 2	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS V	Volatiles	SW-846	8260B	mg/kg	mg/kg	
10237 H	Benzene		71-43-2	0.085	0.0004	0.75
GC Vola	atiles	ECY 97-	-602 NWTPH-Gx	mg/kg	mg/kg	
02005 1	NWTPH-GX Soil C7-C12	2	n.a.	1.7	1	21.98
GC Petr	roleum	ECY 97-	-602 NWTPH-Dx	mg/kg	mg/kg	
Hydroca	arbons	modifie	ed			
08272 I	Diesel Range Organio	cs C12-C2	4 n.a.	N.D.	3.3	1
08272 H	Heavy Range Organic:	s C24-C40	n.a.	N.D.	11	1
Wet Che	emistry	SM 2540) G-1997	8	8	
00111 M	Moisture		n.a.	9.2	0.50	1
1	Moisture represents 103 - 105 degrees Ce	elsius. T	5	-	1 0	

as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	ne	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	X142301AA	08/19/2014	05:54	Christopher G Torres	0.75
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201422735376	08/14/2014	10:00	Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201422735376	08/14/2014	10:00	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201422735376	08/14/2014	10:00	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14232A34A	08/20/2014	18:40	Marie D Beamenderfer	21.98
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201422735376	08/14/2014	10:00	Client Supplied	n.a.
08272	NWTPH-Dx soil	ECY 97-602 NWTPH- Dx modified	1	142320010A	08/22/2014	23:06	Glorines Suarez- Rivera	1
11234	WA DRO NW DX Soils (Non SG)	ECY 97-602 NWTPH- Dx 06/97	1	142320010A	08/20/2014	17:00	Sally L Appleyard	1
00111	Moisture	SM 2540 G-1997	1	14233820003B	08/21/2014	17:21	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: SB-6 10-11 Grab Soil Facility# 1001327 1602 N. Northlake Way - Seattle, WA

LL Sample # SW 7566797 LL Group # 1496392 Account # 11964

Project Name: 1001327

NNS06

Collected: 08/14/2014 09:00 by RL

Submitted: 08/15/2014 09:15 Reported: 08/27/2014 11:05 Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

CAT No.	Analysis Name			CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-	846 82	60B	mg/kg	mg/kg	
10237	Benzene			71-43-2	0.29	0.023	41.91
GC Vo	latiles	ECY	97-60	2 NWTPH-Gx	mg/kg	mg/kg	
02005	NWTPH-GX Soil C7-C1	.2		n.a.	250	20	439.51
GC Pe	troleum	ECY	97-60	2 NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	mod	ified				
08272	Diesel Range Organi	cs Cl	2-C24	n.a.	260	3.4	1
08272	Heavy Range Organic	s C24	-C40	n.a.	32	11	1
Wet C	hemistry	SM 2	2540 G	-1997	20	90 70	
00111	Moisture			n.a.	10.6	0.50	1
	Moisture represents 103 - 105 degrees (

as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	ne	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	R142301AA	08/18/2014	17:58	Sarah A Guill	41.91
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201422735376	08/14/2014	09:00	Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201422735376	08/14/2014	09:00	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201422735376	08/14/2014	09:00	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14232A34A	08/20/2014	21:39	Laura M Krieger	439.51
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201422735376	08/14/2014	09:00	Client Supplied	n.a.
08272	NWTPH-Dx soil	ECY 97-602 NWTPH- Dx modified	1	142320010A	08/22/2014	23:28	Glorines Suarez- Rivera	1
11234	WA DRO NW DX Soils (Non SG)	ECY 97-602 NWTPH- Dx 06/97	1	142320010A	08/20/2014	17:00	Sally L Appleyard	1
00111	Moisture	SM 2540 G-1997	1	14233820003B	08/21/2014	17:21	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DUP-1 Grab Soil Facility# 1001327 1602 N. Northlake Way - Seattle, WA

LL Sample # SW 7566798 LL Group # 1496392 Account # 11964

Project Name: 1001327

Collected: 08/13/2014 by RL

Submitted: 08/15/2014 09:15 Reported: 08/27/2014 11:05 Chevron L4310 6001 Bollinger Canyon Road San Ramon CA 94583

NNSFD

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846 826	50B	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.029	51.47
Repo	rting limits were ra	ised due to in	nterference from	m the sample matrix.		
GC Vo	latiles	ECY 97-602	2 NWTPH-Gx	mg/kg	mg/kg	
02005	NWTPH-GX Soil C7-C1	2	n.a.	3,000	240	5447.41
GC Pe	troleum	ECY 97-602	2 NWTPH-Dx	mg/kg	mg/kg	
Hydro	carbons	modified				
08272	Diesel Range Organi	cs C12-C24	n.a.	190	3.4	1
08272	Heavy Range Organic	s C24-C40	n.a.	92	11	1
Wet C	hemistry	SM 2540 G	-1997	8	8	
00111	Moisture		n.a.	10.5	0.50	1
	Moisture represents	the loss in	weight of the s	ample after oven drying at		
	103 - 105 degrees (elsius The m	oisture result	reported is on an		

103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.

General Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	le	Analyst	Dilution Factor
10237	VOCs Benzene only - Soil	SW-846 8260B	1	R142301AA	08/18/2014	18:20	Sarah A Guill	51.47
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201422735376	08/13/2014	00:00	Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201422735376	08/13/2014	00:00	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201422735376	08/13/2014	00:00	Client Supplied	1
02005	NWTPH-GX Soil C7-C12	ECY 97-602 NWTPH- Gx	1	14232A34A	08/20/2014	22:14	Marie D Beamenderfer	5447.41
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201422735376	08/13/2014	00:00	Client Supplied	n.a.
08272	NWTPH-Dx soil	ECY 97-602 NWTPH- Dx modified	1	142320010A	08/22/2014	23:51	Glorines Suarez- Rivera	1
11234	WA DRO NW DX Soils (Non SG)	ECY 97-602 NWTPH- Dx 06/97	1	142320010A	08/20/2014	17:00	Sally L Appleyard	1
00111	Moisture	SM 2540 G-1997	1	14233820003B	08/21/2014	17:21	Scott W Freisher	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Reported: 08/27/14 at 11:05 AM Group Number: 1496392

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: Q142301AA Benzene	Sample numbe N.D.	er(s): 756 0.025	6793 mg/kg	108	99	80-120	9	30
Batch number: R142301AA Benzene	Sample numbe N.D.	er(s): 756 0.025	6792,7566 mg/kg	794-756679 93	95,7566797 93	-7566798 80-120	0	30
Batch number: X142301AA Benzene	Sample numbe N.D.	er(s): 756 0.0005	6796 mg/kg	94	91	80-120	3	30
Batch number: 14232A34A NWTPH-GX Soil C7-C12	Sample numbe N.D.	er(s): 756 1.0	6792-7566 mg/kg	793,756679 87	96-7566798 91	65-120	4	30
Batch number: 14232A34B NWTPH-GX Soil C7-C12	Sample numbe N.D.	er(s): 756 1.0	6794-7566 mg/kg	795 87	91	65-120	4	30
Batch number: 142320010A Diesel Range Organics C12-C24 Heavy Range Organics C24-C40	Sample numbe N.D. N.D.	er(s): 756 3.0 10.	6792-7566 mg/kg mg/kg	798 88		60-120		
Batch number: 14233820003B Moisture	Sample numbe	er(s): 756	6792-7566	798 100		99-101		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: R142301AA Benzene	Sample : 85	number(s) 78	: 7566792 55-143	,756679 7	94-7566 30	795,7566797	-7566798 U	NSPK: P565763	
Batch number: 142320010A Diesel Range Organics C12-C24 Heavy Range Organics C24-C40	Sample	number(s)	: 7566792	-756679	98 BKG	: 7566792 290 100	270 99	8 1 (1)	20 20
Batch number: 14233820003B Moisture	Sample	number(s)	: 7566792	-756679	98 BKG	: 7566793 11.9	11.7	2	5

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Reported: 08/27/14 at 11:05 AM Group Number: 1496392

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Batch nu	Name: VOCs- Solid mber: Q142301AA	d by 8260B		
Daten nu	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7566793	84	87	80	86
Blank	96	97	94	91
LCS	104	103	101	99
LCSD	95	93	93	93
Limits:	50-141	54-135	52-141	50-131
	Name: VOCs- Solic mber: R142301AA	d by 8260B		
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7566792	75	73	81	84
7566794	83	82	82	99
7566795	89	86	89	95
7566797	69	64	72	90
7566798	79	75	87	84
Blank	90	89	88	89
LCS	93	89	91	95
LCSD	94	90	94	95
MS	79	75	77	79
MSD	68	66	68	69
Limits:	50-141	54-135	52-141	50-131
	Name: VOCs- Solic mber: X142301AA	d by 8260B		
Dation na	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7566796	110	100	96	104
Blank	112	99	95	100
LCS	112	101	97	105
LCSD	108	96	97	103
Limits:	50-141	54-135	52-141	50-131
	Name: NWTPH-GX So	oil C7-C12		
Batch nu	mber: 14232A34A			
	Trifluorotoluene-F			
7566792	326*			
7566793	0*			
7566796	73			
7566707	70			

*- Outside of specification

78

0*

83

85

88

7566797

7566798

Blank

LCS

LCSD

(1) The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 3 of 3

Quality Control Summary

Client Name: Chevron Reported: 08/27/14 at 11:05 AM Group Number: 1496392

Surrogate Quality Control

Limits: 50-142

Analysis Name: NWTPH-GX Soil C7-C12 Batch number: 14232A34B Trifluorotoluene-F

7566794	99
7566795	79
Blank	85
LCS	85
LCSD	88
Limits:	50-142
June June de a	
	Name: NWTPH-Dx soil
Batch nu	mber: 142320010A
	Orthoterphenyl
7566700	100
7566792	129
7566793	
7566794	118
7566795	
7566796	112
7566797	
7566798	127
Blank	116
DUP	128
LCS	118
Limits:	50-150

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

С	hevron	Nor	thw	es	t [Re	egic)n	A	na	ally	/S	is	R	e (ηu	es	st/C	Cha	air	n of Cust	tody
🐝 eurofins	Lancaster Laboratories							Group	# F	or Lan 1 Gil	caste	r Lab	oratoi Sa		se <u>on</u> # 7	1456	06					
1	Client Informatio	n				4	Matrix		ſ	5			A	nalys	ses	Req	ueste	əd			scr #: 594	53
Facility # KC METRO Site Address 602 N. North Chevron PM EZIC ROCHU Consultant/Office ARCADIS Consultant Project Mgr. Consultant Phone # 206 Sampler Ross LaG 2 Sample Identification SB-1 12.5-13 SB-2 12.5-13	00-1327 Jake Way, S Seattle - Zorn 726 470 randeur 5 5	Colle Date	WA itant ected Time 9.30 1.100 1.330 1.560	X Grab €	nposite	Soil 🕅 Soil 🕅 Sediment 🗆	Potable Ground Water NPDES	Oil Air	Total Number of Containers			Oxygenates		XXXX NWTPH DX 🛛 BINGA BAN BIAN DAY	Lead Total Diss. Method	МАИРН П МАЕРН П	XXXX Moisture				Results in Dry Weigl J value reporting nee Must meet lowest de limits possible for 82 compounds 8021 MTBE Confirm Confirm MTBE + Na Confirm MTBE + Na Confirm highest hit b Confirm all hits by 82 Runoxy's or Runoxy'y or Runoxy'y or Runoxy'y or Ru	nt eded tection 60 ation phthalene by 8260 260 n highest hit n all hits S
513-510-11		8-14-14	1000							X			x	$\boldsymbol{\lambda}$			X				HBTEX run	
SB-6 10-11 DUP-1		8-13-14	900																		Benzene a + Contact « Miles 205-776-	only 5am - 4720
 Turnaround Time Standard 72 hour Data Package Op Type I - Full 	Requested (TAT) 5 day 48 hour otions (please circ Type VI (I	4 day 24 hour cle if req	juired)	Relinc) (i by s (ed by	Comme Ferature	edEx	<	·		14 her_	Time 15	3. C Sco⊂	25	Recei	ved by ved by ved by <u>h/</u> ustoc		ц м s Inta	act?	Dàte	me (9) me () No

Lancaster Laboratories, Inc. • 2425 New Hollagy Bike 3 Longaster, PA 17601 • 717-656-2300 The white copy should accompany samples to Lancaster Laboratories. The yellow copy should be retained by the client.

Issued by Dept. 40 Management 7051.01

🔅 eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- **ppm** parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.
- ppb parts per billion
- **Dry weight basis** Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C - result confirmed by reanalysis.

J - estimated value – The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- **N** Presumptive evidence of a compound (TICs only)
- **P** Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- X,Y,Z Defined in case narrative

Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- **E** Estimated due to interference
- M Duplicate injection precision not met
- **N** Spike sample not within control limits
- **S** Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Appendix E

DPE Pilot Test Field Notes

1-5-19 KL METRO DPE E	EVENT	S. MCGUTZ	
OZ45 > SUNI GIVINES ONSITE Opens	wooden bont	lot. Fills o	it piper-
Wirry.			
0830 - Hurtis de Clear Creey avrives	s onsite iv/s	econdary Co	nteinment
and components to level trail.	or sen and	wets teilse	te meetro
0900 + Lay out Secondary Containme	ent. Dave of	Clear creen	ervives
onside al more parts. Schop seeme	den (un trinme.	at and wai	the sale
			Main
1000 ATRILL arrives onsite EL OF	ATCENTS ; 10	9 of cec).	1-100
into pusition.			
	1		
1030 > Level truler w/ juins and	s crenn.		
	Constant	and Compute	-L-o
1100 > Mob generative in to position. Se			
Sceendary containment.	$\frac{1}{1} \frac{1}{1} \frac{1}$		
	10 100 10 000	P	
1130 -> start to setup system. Tom and	Kortos leeve si	k.	
1130 -> start to setup system. Tom and			
1130 3 start to setup system. Tom and			
1/30 - 3 start to setup system. TOM and 1200->Sitty arrives connects servere our	- Joss Jem.		Fe_
	- Joss Jem.	- Leeves ST	He.
1/30 3 start to setup system. Tom and 1200->SHJ arrives connects server our 1330 > SLM/REStart prepping System F	- Jusystem.	Leeves STA DTW	PTB 22.75
1130 3 start to setup system. TOM and 1200 > SHJ arrives connects server on	- Jusystem. Ev run, SHJ MW-92	DIW 21.70	1010
1/30 3 start to setup system. Tom and 1200->Sitty arrives connects server our 1330 > Sixt / REStart prepping System F	- Jusystem. En run, SHJ MW-9/2 EW-1	Lures ST DTW 21.70 21.70	= 22.75
1130 3 start to setup system. Tom and 1200 -> Sitt arrives connects server ou 1330 -> Sitt / RI Start prepping System F 1330 -> Gauge site wells pre stertup:	- Jusystem. For run, SHJ MW-9/2 EW-1 MW-29	- Lecres ST DTW 21.70 21.70 18.90	= 22.75 21.90
1130 3 start to setup system. Tom and 1200 -> Sitty arrives connects generation 1330 -> Sixt / RE Start prepping System F 1450 -> Gauge site wells pre startp:	- Jusystem. For run, SHJ MW-9/2 EW-1 MW-29 MW-30	- Lecres ST DTW 21.70 21.70 18.90 18.69	22.75 21.90 22.50 20.90
1130 3 start to setup system. Tom and 1200 > SHJ arrives connects server our 1330 3 Sch / RI Start prepping system F 1450 3 Gauge site wells pre stertup?	- Jusystem. - Jusystem. - MW-9/2 EW-1 - MW-29 - MW-30 + NO SIKEEN	Lures ST DTW 21.70 21.70 18.90 18.90 18.69 EN ALL WS	22.75 21.90 22.50 20.90
1/30 3 start to setup system. Tom and 1200 > SHJ arrives connects generatur 1330 > Sixt / REStart prepping System F 1450 > Gauge site wells prestertup:	- Jusystem. - Jusystem. - MW-9/2 EW-1 - MW-29 - MW-30 + NO SIKEEN	Lures ST DTW 21.70 21.70 18.90 18.90 18.69 EN ALL WS	22.75 21.90 22.50 20.90
1/30 3 start to setup system. Tom and 1/30 3 start to setup system. Tom and 1/200 > Sitt a univer connects senere our 1330 3 sent / RE Start pepping system F 1450 3 Gauge site wells pre stertup: 1500 3 START SYSTEM, Water class	- Jusystem. For run, SHJ MW-9/2 EW-1 MW-29 MW-30 +NO SITOTZU IN FIRST 30	Lures ST DTW 21.70 21.70 18.90 18.63 FX ALL WS Seconds.	22.75 21.90 22.50 20.90
1130 3 start to setup system. Tom and 1200 > SHJ arrives connects server our 1330 3 Sch / RI Start prepping system F 1450 3 Gauge site wells pre stertup?	- Jusystem. En run, SHJ MW-9/2 EW-1 MW-29 MW-30 +NO SITOEZI IN FINST 30 Y PID = 666	Lures ST DTW 21.70 21.70 18.90 18.69 NAC WS Seconds.	22.75 21.90 22.50 20.90 20.90
1130 - 3 Start to Schop System. TOM and 1200-35HT arrives connects screecor 1330 - 35LM / PL Start pepping System F 1450 - Gauge site wells prestertop: 1500 - START SYSTEM, Water class 1530 - Paremeter Set; NO DECUTED	- Jusystem. En run, SHJ MW-9/2 EW-1 MW-29 MW-30 +NO SINOTEN IN FINT 30 Y PID = 666 185" Hg	Leeves ST DTW 21.70 21.70 18.90 18.69 FN ALL WO) Seconds.	22.75 21.90 22.50 20.90 20.90
1130 - 3 Start to Schop System. TOM and 1200->Sitty arrives Connect3 genere to 1330 - 3 Sitt / Ri Start prepping System F 1450 - Gauge site wells pre stertup: 1500 - START SYSTEM, Water class 1530 - Principal Set; NO DECUTER. RESPONSE WELLS	- Jusystem. Fr run, SHJ MW-9/2 EW-1 MW 29 MW 30 +NO SINEER IN FINT 30 Y PID = 666 I 85" Hg I 25" Hg	Lures ST DTW 21.70 21.70 18.90 18.69 TN ALL WO D Second S. Manifold Vice KO Vac	22.75 21.90 22.50 20.90 20.90
1/30 - 3 start to Schop System. Tom and 1/200->SHJ arrives connects generator 1330 ->Sch / Ristert pepping system F 1450 -> Gauge site wells prestertup: 1500 ->START SYSTEM, Water class 1530 -> Paremeter Set: NO DECUTER. RESPONSE WELLS EW-1 = 9.5" HzD NAC	= 12373200. $= 12373200.$ $= 100.50000000000000000000000000000000000$	Lerres ST DTW ZI.70 ZI.70 IB.90 IB.90 IB.63 EX ALC WO Deconds. Manifold Use KO Vac	22.75 21.90 22.50 20.90 20.90
1130 - 3 Start to Setup System. Tom and 1200->SHJ arrives connects server or 1330 - 3 Sch / Ristor prepring System F 1450 - Gauge site wells prestertp: 1500 - STHET SYSTEM, Water class 1530 - Principal Set; NO DECUTER <u>Response</u> weres EW-1 = 9,5" HzD VAL	- Jusystem. - Jusystem. - MW-9/2 EW-1 MW-9/2 EW-1 MW-9/2 	Lures ST DTW 21.70 21.70 18.90 18.69 D ALC WS D Seconds. Manifold Unc KO Vac SINS Vac ER VAC	22.75 21.90 22.50 20.90 20.90
1130 3 start to setup system. Tom and 1200 > SHJ arrives connects server or 1330 3 Schl / Ristert pepping system F 1450 3 Gauge site wells prestertup: 1450 3 Gauge site wells prestertup: 1500 3 START SYSTEM, Water class 1530 - Princemen Set; NO DECUTER. Response weres EW-1 = 9,5" HzD VAC MW-29 = ,9" HzD VAC MW-30 - 0.0 HzD VAC	- Jusystem. - Jusystem. - MW-9/2 EW-1 MW-9/2 EW-1 MW-9/2 	Lures ST DTW 21.70 21.70 18.90 18.69 FN ALL WO) Seconds. Manifold Use KO Vac SIMS Vac ER VAC	22.75 21.90 22.50 20.90 20.90
1130 - 3 Start to Schop System. TOM and 1200-75HJ arrives connects generator 1330 - 35ch / REStart prepring System F 1450 - Gauge site wells presterty: 1500 - STHET SYSTEM, Water class 1530 - Princemen Set: NO DECUTER RESPONSE WELLS EW-1 = 9.5" Hz O NAC MW-29 = .9" Hz O NAC	- Jusystem. - Jusystem. - MW-9/2 EW-1 MW-9/2 EW-1 MW-9/2 	Leeves ST DTW 21.70 21.70 18.90 18.69 EN ALC WE D Seconds. Mairs Vac ER VAC M M MR	22.75 21.90 22.50 20.90 20.90

1-5-14 VI METPO DRE EVENIT I	(2) 5. M(G. 172
1600 > Parameter Sat: NO DECUTIC	on $PID = 636$
	18.5" MANIFUD VAC
RESPONSE WELLS!	18.5" KO VAC
EW-1=9.5" HZO @ 21.75 DTW	
MW-29 = 18" H20 @ 28,80' DTW	
MW.30 = 0.0" H20 @ 18.70 DTW	
NO WATER IN NO FANK.	48.8°F TEMP
	80 SCAN
1630 > Parameter Set: NO DELEPTSON PS	
	18.5" MANEFOLD VAC
RESPONSE WELLS!	18.5" KO VAC
$EW - 1 = 9.8'' H_2 O$	5" LASFNG VAC
MW-29=1" H20	20" STONGER VAC
14W-30=0"H=0	3600 FPM
NO WATER IN HO TANKY	48°F TEMP
	78.79 CEM
700 > Parameter set : NO DEFUTION PID = RESPONSE WELLS!	18.5" MANIFOLD VAC 18.5" KO VAC
EW-1 = 9,8" H20 @ 21.76 DTW	
HW-29=0.7" H20 @ 18.81 DTW	20" STINGER VINC
MW-30=0.0" H20@ 1871' DTW	1000 EPM
NO WATER DY UO	47.7°f IEMP 87.2 CFM
	OT 2 CEM
1718 Pala Calla Norma	ises to shot down and stort up
1715 > Tain to Peter Compbell who adv	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
again tomorrow, see if CNAPL is pulling out concer proficers. Sch	
pulling out concer preheus.	
1730 > Sin is clused op. All locus in po	sitter DEC site
1730 - Sicis Cures of Course for	
Jeames 1	Received
	lecco

	SMCG 75
1-6-14 KC METRO DPE EVER	NT DAY Z S.MCGUIRE
	2
0800 75cm arrives onsite Conduct	3 Hes TAILBATE Meeting Reviews
Marked up DEM JSA. Doc.	s system loou over
0815 - 5LM gauging round pre-Syste	im statup.
	ALM ALMON ZID I DED
MW-9K = 21.61 DIM	U. NO WAPL 310.1 PID
EW-1 = 21.67 DTW	NO LNAPL. 370.4 PID
MW 29=10 76 DTW.	NO WAPL, O O PID
MW-30=10.6+ DIW.	NO LNAPL. O.O. PJD
0830 > System is turned on.	
0930 > System Parameters ? NO DIUT	$P_{T}D = 719$
18.5" Hy Maniford Vae	EW-1=9.9" H20 VAC @ 21.69 DTW
18.5" Hg KO Vae	EW-1=7.7 420 VAC 6-
5" Hg Cising Vac	MW-29=1.1" H20 VAC @ 18.76 DTW
20" Hy stinger vae	MW-30 = Water 0.0" Ho VAC @ 18,67
3640 Fem	the all WARE
54°F TEMP	SYSTEM KU TANG GAS NO WATER
79.352 CFM	
	700 A
1030 - System Paremeters : NO DEGUTE	N PED- FOIN
	RESPONSE WELLS:
18.5" Hy MANEFULD VAC	EW-1= 9.7" H20 VAC @ 21.70" DTW
19.5" Hay NO VAC	EW-1= 4. + HZU VAL CO COL.
5" Hg CASTRIG VHC	MW-29=0.9" HZO JAC @ 18.76 MW-30=0.0" HZO JAC @ 18.66
	MW-30 - U.U MZC UNIC C
3920 FPM	SYSTEM KO TANK HAS NO WATER
57°F TEMP	DYSIBM NU IMAN IMA
97.216 CFM	
1130 -> System Parameter: NO DIWI	71070-7099
1130 - System Parameter NO DIWI 18.5" Hg MARITROCD VAC	DEMISE WEUS!
in the still it is a star	FW-1 = 9.8" H20 MAC @ 21.70 UW
185 Hg KO VIL	$MW - 29 = 0.9'' H_2 O VAC @ 18.76' DTW$
5 Hg CASEDIG VIC	MW-30=0.0" H20 VAC @ 18.66 DTW
	SYSTEM WO TANK HAS X/O WATER
3820 2PM 57°F 784	SYSTEM ROW = 83.276 CFM
Scale: 1 square =	

1-6-14 VIL METRO DPE	EVENT DAY 2 (DAGE 2) S.M.GVERO
1230 - SYSTEM PARAMETERS. N	10 DILUTION PID = 689 PPM
18.5" Hg MAXIFOLD VAC	RESPONDE WELLS!
19.5" Hy NO VAC	EW-1= 9.7" H20 ME @ 21.71 DTW
5" Hg CASTRIG VAC	MW.29=0.7" H20 VAC @ 18.78 DTW
20" Hy STENGER VAR	MW. 30 - 0:0" H20 VOC @ 18,67 DTW
3900 FPM	SYSTEM NO HAB NO HZO
58°F TEMP	SYSTEM FLOW = 85.02 CFM
1330 - SYSTEM PARAMETERS NO	O DICUTSON DID = 619 PPM
18.5" Hy MANEFOLD VAC	RESPONSE WELLS.
18.5" Hg UO VAC	EW-1= 9,9" H2O VAC @ 21.72' DTW
5 11 CASIAIG VAC	MW. 29=0,9" H20 VAC @ 18,77 DTW
20 5" Hg STIRIGER VAC	MW-30=00"420 VAC @ 18.66 DTW
3880 FDM	SYSTEM KO HOS ALO H2O
59° 5 roup	SYSTEM FLOW = 81.58 CFM
	Advises SCM to cell PC at end of de
to decide whether to conti Concentrations getting put	inne rouning orstop. Is enconeged by and all.
to beide whether to conti	inne rouning orstop. Is enconeged by and all.
R Socide Whether to conti Concentrations getting put (430 > SYSTEM PARAMETERS: NO 1	inne running orstop. Is enconased by and out. DIRUTION PID= 616 PPM
1930 > SYSTEM PARAMETERS : NO 1 18.5" Hg MANIFOLD VAC	inne running orstop. IS enconaged by (Ld all. DIRUTION PID= 616 PPM RESPONSE WEUS:
R Speide Whether to conti Concern hactions getting put 1430 -> SYSTEM PARAMETERS: NO 1 18.5" Hg MANIFOLD UNC 18.5" Hg KO VAC	inne running or stop. IS enconased by (Ld cit.) DIRUTION PID = 616 PPM $\frac{\mathcal{R}_{\text{espense}}}{\mathcal{R}_{\text{espense}}} \approx 8265$: $\mathcal{E}_{W-1} = 9.5'' H_2 0 \text{ VAC} \ \mathcal{C} 21.72' \text{ Drw}$
1930 → SUSTEM PARAMETERS : NO 1 1930 → SUSTEM PARAMETERS : NO 1 18.5" Hg MANIFOLD UNC 18.5" Hg KO VAC 5" CASDVG VAC	in the remaining or stop. Is enconcepted by (ad all.) DIRUTION PID = 616 PPM P_{0} Provide WELLS: $EW \cdot 1 = 9.5'' H_2 0$ UNC $C = 21.72' Drw$ $MW - 29 = 0.8'' H_2 0$ VNC $C = 18.77 Drw$
R Speide Whether to conti Concentrations getting part (430 > SYSTEM PARAMETERS: NO 1 18.5" Hg MANIFOLD VAC 18.5" Hg MANIFOLD VAC 5" CASDYG VAC 20.5" Hg STENDER VAC	Inne Mining or Stop. IS enconesed by (Ld coll.) DIRUTION PID = 616 PPM <i>Response</i> wells: <i>EW-1 = 9.5" H20 VAC</i> @ 21.72' Drw MW-29 = 0.9" H20 VAC @ 18.77 Drw MW-30 = 0.0" H20 VAC @ 18.66 DTW
R Socide Whether to conti Concern mations getting put 1930 > SYSTEM PARAMETERS: NO 1 18.5" Hg MANIFOLD UNC 18.5" Hg KO VAC 5" CASDYG VAC 20.5" Hg STENDER VAC 4019 FPM	Inne Muing or Stop. IS enconesed by (Ld cH.) DICUTION PID = 616 PPM <i>Response</i> weres: <i>EW-1 = 9.5" H</i> 20 VAC @ 21.72" DrW MW-29=0,9" H20 VAC @ 18.77 Orw MW-30=0.0" H20 VAC @ 18.66 DTW SYSRIM WO HAS NO H20
R Speide Whether to conti Concentrations getting part (430 > SYSTEM PARAMETERS: NO 1 18.5" Hg MANIFOLD VAC 18.5" Hg MANIFOLD VAC 5" CASDYG VAC 20.5" Hg STENDER VAC	Inne Mining or Stop. IS enconesed by (Ld cut. DIRUTION PID = 616 PPM <i>Response</i> wells: <i>EW-1 = 9.5" H20 Vice</i> @ 21.72' Drw MW-29=0.9" H20 Vice @ 18.77 Drw MW-30=0.0" H20 Vice @ 18.66 Drw
18 Jacide Whether to conti Concentrations getting pol (430 > SUSTEM PARAMETERS: NO 1 18.5" Hy MANIFOLD UNC 18.5" Hy KO VAC 5" CASDUG VAC 20.5" Hy STENDER VAC 20.5" Hy STENDER VAC 4019 FPM 58° € TEMP	Inne Muing or Stop. IS enconesed by (Ld clt. DICUTION PID = 616 PPM <i>Response</i> weres: <i>EW-1 = 9.5" H/20 VAC</i> @ 21.72" Drw MW-29 = 0,8" H20 VAC @ 18.77 Drw MW-30 = 0.0" H20 VAC @ 18.66 Drw MW-30 = 0.0" H20 VAC @ 18.66 Drw SYSREM KO HAS XO H20 SYSREM FLOW = 87.614
R Socide Whether to conti Concern mations getting put 1930 > SYSTEM PARAMETERS: NO 1 18.5" Hg MANIFOLD UNC 18.5" Hg KO VAC 5" CASDYG VAC 20.5" Hg STENDER VAC 4019 FPM	Inne Muing or Stop. IS enconesed by (Ld clt. DICUTION PID = 616 PPM <i>Response</i> weres: <i>EW-1 = 9.5" H/20 VAC</i> @ 21.72" Drw MW-29 = 0,8" H20 VAC @ 18.77 Drw MW-30 = 0.0" H20 VAC @ 18.66 Drw MW-30 = 0.0" H20 VAC @ 18.66 Drw SYSREM KO HAS XO H20 SYSREM FLOW = 87.614
R Socide Whether to conti Concentrations getting part (430 → SYSTEM PAPAMETERS: NO) 18.5" Hg MANIFOLD UNC 18.5" Hg MANIFOLD UNC 18.5" Hg KO VAC 5" CASDUG VAC 20.5" Hg STENGER VAC 20.5" Hg STENGER VAC 1019 FPM 58°F TEMP 1530 → SYSTEM PAPAMETERS NO	inversion of stop is encorrespect by (Ld all.) DIRUTION PID = 616 PPM $\frac{265P0NS6}{EW-1} = 9.5" H_20$ VAC $\bigcirc 21.72'$ DrW $MW-29=0.9" H_20$ VAC $\bigcirc 19.77$ DrW $MW-30=0.0" H_20$ VAC $\bigcirc 19.66$ DTW $MW-30=0.0" H_20$ VAC $\bigcirc 19.66$ DTW $SYSREM$ NO HAS NO H_20 SYSREM FLOW = $97.614DIRUTION PID = 646 PPM$
18 Jacide Whether to Conti Concentrations getting pol (1430 > SYSTEM PARAMETERS: NO 1 18.5" Hy MANIFOLD VAC 18.5" Hy KO VAC 5" CASDUG VAC 20.5" Hy STENGER VAC 20.5" Hy STENGER VAC 1019 FPN 58°F TEMP 1530 → SYSTEM PARAMETERS NO 18.5" Hy MANIFUD VAC	inve running or Stop. IS enconesed by "Led and." DIRUTION PID = 616 PPM <i>Response</i> weres: <i>EW-1 = 9.5" H</i> 20 VAC @ 21.72' DrW MW-29 = 0.8" H20 VAC @ 18.77 DrW MW-30 = 0.0" H20 VAC @ 18.66 DrW SYSREM KO HAS NO H20 SYSREM FLOW = 87.614 DELUTION PID = 646 PPM <i>Response</i> Weres:
Re Joerde Whether to Conti Concentrations getting part (430 -> SYSTEM PAPAMETERS: NO 1 18.5" Hg MANIFOLD UNC 18.5" Hg MANIFOLD UNC 18.5" Hg KO VAC 5" CASDUG VAC 20.5" Hg STENDER VAC 4019 FPM 58° F TEXP 1530 -> SYSTEM PAPAMETERS NO 18.5" Hg MANIFUD VAC 18.5" Hg KO VAC	inve waning orstop is enconessed by (Ld out. DIRUTION PID = 616 PPM <i>Besponse</i> weres: <i>EW</i> -1 = 9.5" H/20 VAC @ 21.72' Drw MW-29=0.8" H20 VAC @ 18.77 Drw MW-30=0.0" H20 VAC @ 18.66 Drw SYSREM WO HAS NO H20 SYSREM FLOW = 87.61A DIRUTION PID = 646 PPM <i>Besponse Weres</i> : <i>EW-1 = 9.4" 1420 VAC @ 21.72' DTW</i>
18 Jacide Whether to Conti Concentrations getting poll (1930 → SYSTEM PAPAMETERS: NO 1 18.5" Hg MANIFOLD UNC 18.5" Hg MANIFOLD UNC 18.5" Hg KO VAC 5" CASING VAC 20.5" Hg STENDER VAC 1019 FPM 58°F TERP 1530 → SYSTEM PAPAMETERS NO 18.5" Hg MANIFUD VAC 18.5" Hg KO VAC 5" CASENG VAC	in we want ing or Stop. IS encorresped by (Led cit.) DIRUTION PID = 616 PPM Posponso wells: $EW = 1 = 9.5" H_20$ VARC @ 21.72" DTW $MW = 29 = 0.9!" H_20$ VARC @ 18.77 DTW $MW = 30 = 0.0" H_20$ VARC @ 18.66 DTW $SYSREM KO HAS NO H_20$ SYSREM FLOW = 87.61A DIRUTION PID = 646 PPM Posponso Wolls: EW = 1 = 9.4" 1420 VARC @ 21.72' DTW $MW = 29 = 0.9" H_20 VARC @ 21.72' DTW$
Re Joerde Whether to Conti Concentrations getting part (430 -> SYSTEM PAPAMETERS: NO 1 18.5" Hg MANIFOLD UNC 18.5" Hg MANIFOLD UNC 18.5" Hg KO VAC 5" CASDUG VAC 20.5" Hg STENDER VAC 4019 FPM 58° F TEXP 1530 -> SYSTEM PAPAMETERS NO 18.5" Hg MANIFUD VAC 18.5" Hg KO VAC	inve waning orstop is enconessed by (Ld out. DIRUTION PID = 616 PPM <i>Besponse</i> weres: <i>EW</i> -1 = 9.5" <i>H</i> /20 VAC @ 21.72' Drw <i>MW</i> -29=0.8" 420 VAC @ 18.77 Drw <i>MW</i> -30=0.0" <i>H</i> 20 VAC @ 18.66 Drw <i>MW</i> -30=0.0" <i>H</i> 20 VAC @ 18.66 Drw SYSREM WO HAS NO <i>H</i> 20 <i>SYSREM FLOW = 87.61A</i> <i>DIRUTION PID = 646 PPM</i> <i>Besponse Weres</i> : <i>EW-1 = 9.4" 1420 VAC @ 21.72' DTW</i>

"Rite in the Rein"

Scale: 1 square =

1-6-14 KL METRO DRE	EVENT DAY 2 (PAGE 3) 5. MIGUERE
1630 - SYSTEM PARAMETERS - NO A	DILUTION PID = 627
18.5" Hy MANIFOLD VAC	PLESPONSE WELLS
185" KO VAC	EW-1 = 9.4" H20 VAC & 21.72 DTW
6" CASENG VAC	MW-29 = 0.8" H20 VAC @ 18.75 DTW
205" STINGER VAC	MW-30=0.0" H20 MC@ 18.65 DTW
4000 FPM	SYSTEM NO has no H20
560 F TEMP	SYSTEM FLOW: 87.20 CFU
1645 > Tain to Peter Campbelli A	durses SCM to run system For another
	ness removed are high, SCM Cills SZ
to norm of word dure.	
1700 -> CLEANE UP AND COCH DOWN ST	
1730 ASLA OFF STOR to go breg	to office to charge equipments
ρ	mest len
Loa	my lefen
\mathcal{V}^{\pm}	

Scale: 1 square =

1-7-1-	A KC METRO DRE EVENT DAY 3 S.M. GUSRE
4 4 5 2 1 7	
0750	+ Sim arrives ensite Conducts HES TASCORTE MEETING Reviews
2 24 0 0	Chevron OE tenents and site hazards.
0 905 -	sunloca system compound. Prep system to m. Gauge wells!
1 0 0 0	
1 14 14 14	MW-98=21.65 DTW NO CNAPL 297 DRM PID
1 1	MANDY = 21.65 DTW NO CNAPL 314 PPM PID
	MW-29= 78.82 DW NO WARL O. U PPM PID
	MW-30=18.70 DIW NO LNAPL O.O PPM PID
0 830>	Startup System. Mane sure it is running well.
0930-	SYSTEM PARAMETERS : NO DILUTION PID = 712
	18.5" Hy MANIFOLD VAC RESPONSE WELLS.
	18.5" Hg KO VAC EW-1= 21.69' DTW & 9.5" HZO VAC
21 2. 15 20 17 1	6" Ag LASTRIG VAC MW-29= 1.1" H20 VAC / 18.80' DTW
0 0. 4) 0. 4. 4	1915" Hg STENGER VAC MW-30=0.0" H20/18.70 DTW
	1005 FPM SYSTEM KO has no H2 D
	51° F TEMP STSTEM FLOW = 87.CEM
1. F 1. F	
1030 75	SYSTEM PARAMETERS NO DELUTION PED=678
	DEP INCAPLE ICES IN POLITICIA INTO C
	18.5" Hg MANEFOLD VAC RESPONSE WERES
	18.5" Hg KO VAC EW-1=Z1.70 DTW / 9.4" HZO VAC
	6" 47 CASERG VAC MW-29=18.80 prw/ 1.0" 1+20 pre
	19.5" Hg STERIGER VAC MW. 30 = 19,70 DTW/0.0" 1/20 VAC
	4019 FOM SYSTEM NO HOS NO HZO
	51°F TEMP SYSTEM FLOW ST CEM
10 0 1 0 20 7	DIT IEMI
120 00	SYSTEM PARAMETERS: NO DILUTION PID = 654
10 70	STSTEM IN PARTICIPATION FLO UN
	18:5" Hy MANTFOLD VAL RESPONSE WELLS
	19.5" Hy STALGETZ VAL MW-30=18.70 DAV 10-0" 120 VAL
	1000 FLOW FPM SYSTEM UN HAS NO HELO
1 I I I	52°F TEMP SYSTEM FLOW 87 CFM

"All weather watting paper

Scale: 1 square = _____

1-7-14 KC METRO DPE	EVENT DAY 3 (PAGE 2) S.M.G.SEE
1130 - Tain to Peter Campbell who	wants to test vacuum on Well coping
as it seems strautly low, se	Mreplaces gauge on top of well
with consistent brending of 6"	Hy Vac For cusing PC size wents sen to
tom down merifold vie to	see if removed is the same. Sim
reduces vac at meniford w.	the parameter roomd ?
15" Hy MAXIFOLD VAC	SYSTEM PID = 621
15" Hg VIO VAC	NO HZO
15/3 CASING VAC	FCOW = 69,76
16" STILLG STR VAC	
3200 VELOCITY FOM	
CALL PC Who advised Sim to	set system bely to original configuration.
	e hu si chema a la a
	NS nim system serp. I gre parameter
vound! NO DELUTION PJ	
10 - 11 11 11	C
	RESPONSE WELLS?
	V-1= CI. TO 1913 HZO VAC
	V-29=18.80 DTW/ 1.1" H20 VAC
	130=18:70 DTW 10:0" HZO JAC
	$0 H_2 O = 1 K O$ K = 87.65
54°F REMP. S	
1330 - PARAMETER ROND : NO PILIN	TON PID = 647
1320 (ARAME)BOL ROUND, NO P+CC	
18,5" Hy MANSFOLD VAC	
	W-1 = 21.70 DTW / 9.6" 1420 VAC
	IW-29=18-80 DTW/ 1.0" 1+20 VAC
	W-30 = 18,70 DTW/ 00" H20 VAC
	O HO EN KO
	MSTERIA FLOW = 87
1430 -> PARAMETER ROUND : NO PETUTEON	P = 6.45
18.5" Hy MANERUD VA	
	EW-1=21.70 DTW/ 9,5" H20 VAC
	1W-29 = 18:80 Drw / 10" H20 VAC
	1W-30 = 18.70 DTW/ 0.0" H-10 VAU
70 27 FPM	10 H20 EN KO
Scale: 1 square = 56°F TEHP	SYSTEM ROV=87

1-7-14 UC METRO DPE EL	VENT DAY 3 (DAGE 3) S.MIGUIDE
1520-2Papar papar particular	TIM OTD = 671
1530-7 PARAMER ROUND : NO DILU:	
18 5" 11 M 1000	RESPONSE WELLS ;
18.5" Hg MANEFUD VAC	
18.5" Hg KO VAC	EW-1=21.70 DTW/9,5" H20 VAC MW-29=18.80 DTN/1.0" H20 VAC
6" Hy CASENG VAC	MW 30 = 18 70 pin 1 0.0" H 20
20 STEXIGED VAC 4035 FPM	NO H2O EN VO
	SYSTEM FLOW = 87
57° TEMP	STREPT FLOW - DT
1630 - PARAMETER ROUND NO DE	$D_{TD} = 639$
There is a second in the	
18.5 HS MAXIEFOLD VAC	
18 5" Hg UO VAR	EW-1=21.70 DTW/9.6"1/20 VAC
6" Hy CASSANG VAC	MW-29=18.80 DTW 1019" 1+20
20" HS STALLER VAC	MW-30=10.71 DTW/0-0" HZO
4050 PPM	NO H20 FN 40
550 TEMP	STSTEM FLOW = 88
1/ C - PI H SI IT O	1 1 1 1 1 1 1 1
10 >0 -7 Cell IC W. 54 77213 (rom	day. Will continue to un tomorrow.
- De St. L.	
1725 - SLM clean up sik.	
7187 1 1 1 1	
This TOLM Oft 5 to bothing to	Chinge equipment
	1ec
Jam	st fer
i i	

	1
1-8-15 KC KETTED DPE EUGNT	DAP 4 R. Labradow
715 Arrive on site - HES to	in the second
970	miligation - FR View Sow July &
745 Open trailer to start o	Center all C
115 Charles & Start 1	
800 instant ganging sound, this	Struct System
and the gradient and the	C 31(() 3 3 3 3 () () () () () () () () () () () () ()
HW-9R = 21.50 DTW	NO LNARE PID= 127.
EW-(=21.72 DTW	
MW-29 = 15.61 DTW MO	
4w-30 = 18.46 Drw n	
	S LINAL TID THE
I was told I I swis	that their deventering world (
In SW icorner is al	~ 22. Gen 0
in a were is ut	<i>c</i>
900 System Porrinding - D. No.	dilution
19.5 "Hy Man Fold Vac	Response Wells DTW/ In 420
1915 "Ha KO VAC	Construction of the constr
5 "Hg Casing Vac	EW-1 21.72/25
20.5" His Stinger Vac	MW-29 18.61/0.6
#4000 # FPM	MW-31 18:45/0
56° Ftemp to 12445	The thing of the strander
551 VOC-	
1000 System Performeters -V	De dilution
19 "Hy Manufold	Response Wells DTW/ in Her C
19 "Ha Ko	EW-1 21.72/25
5 "Ita Casing	MW-29 18.62/0.7
20.5 "He stiment	MW-30 18,46/0
\$4000 m FPM	
56° = °F. Temp	
523 VOC	
1100 System Parameters -0 No	Dilution Response well Drug in Hype
19 "Hy Munifold	EW-1 21.72/25 9.2"
	mu-29 18.65 10.6
S" Hy Casing	MW-30 18,46 / 0
20, S " H Stafur	
Scale: 1 square = 4027 FPM 57 5 TEMP [115=	ascel anires on Site
	14

1- 8-	IS IL METRO DIE	EVENT DAY A (PAGE2) S.MIGUERE
1200 \$	System Parements: NO	DICUTSON 471 ppm PID
1. 1. 1. 3. 1. 3.		
0 0 0 0 0 0	19" Hy MADITFOLD VAR	KESPONSE WELS:
	19" KU VAC	EW-1= 21.72 DTW/ 9.3" H20 VAC
1 1 1 2	5" CASTNG VAC	MW-29=18.65 DTW/ 0.9" HZO VAC
1 1 1 1	Ze" STAIGER VAC	MW.30=18-16 DTW/ 0.0" H2 0 VAC
1	1061 FDM	*NO HZO in KO
1400	60° F TEMP	SYSTEM IELOW = BB CFM
1300-3	SYSTEM PARAMETERS NO DI	JUTTON 440 ppm PID
a the		
(the second	19" Hy MANIFOLD VAC	RESPONSE WELLS
	19" NO Hay Vac	EW-1 = Z1.72 DTW/9.4" H20 VAC
	5" Hay CASING VAL	MW-29=18 65DTW 10,7" HZO MAC
	20" Hy STILLGER VAC	MW-30 = 18,47 DTW/0.0" H20 VMC
	59°F REMP	YNO H2O FN KO
	4054	SYSTEM FLOW = 58 CIAN
. C. Set		
1400	SYSTEM PADAMETERS NU DIL	
1100 9	STICK. PAPAPICICUS. NO DIL	UTEON FICI FYPI FED
E E	10" Ha Marca Duar	RESPUNSE WELLS:
1 1 1 1 1 1	19"Hy MANSFOLD VAC	EW-1= 21.73 Drwl 9.5 "HzU VAC
6 6 2 6 1 7 1 7		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5" HO CASENG VAC	MW:29=18.6700 / 0.7" H20 vac
1 1 1 1 1 1 1	20" Hy STALLER VAC	PW-30=18:46 DTW/0:0" H20 VAC
	58°F TEMR	* NO HZO IN KO
	4078 FPM	SYSTEM FLOW = 89 CRM
1430 -		Plan is to demote tomorrow after full
1. (t. 1.	run today.	
C 16		
1500-	SYSTEM PARAMETERS NO D.	ILUTION 401 PPM DID
E E E	19" Hy MANTFOLD VAC	RESPONSE WEUS
	19" Hg MARYTERD VAC	EN-1=21:73 DTW/9.3" H20 VAC
	d	
	5" Hy CASENG VAL	MW-29=18.67 DTW/ 0.7"H20 JAC
		MW-30=18.46 DTW / 0.0" H-0 m
	5" Hy CASENG VAL	MW-29=18.67 DTW/ 0.7" H20 MC MW-30=18.46 DTW/ 0.0" H20 MC + NO H20 DN NO

"Rite in the Rain" All WEATHER WRITING PAPER

5

-

Scale: 1 square =

12

1- 8-15 KL METRO DE EUERIT	DAYA SIMCHUERE
Ston - SYSNEM PARAMETERS : NO DELL	000N 394 P-D
1' VILLAND VILLAND VILLAND	
19" Hy MANIFOLD VAC	RESPONSE WELLS:
19" Hg HO VAC	EW-1=21.73/9.4"H20 mc
5" Hg CASING VAC	MW.29=18.67/0.7" H20 VAC
20" Hy STANGER VAC	MW. 30 = 10.46/0.0" H20 VAC
4000 FPM	FLOW- 87 CFM
	+ NO HZO in VIO TATILL.
	The second providence of the second s
1615 > Tain to 52 about shirting down	
ININ IU - C ABERO JALTANG COM	
1630 - CLEAR/ UP STSTERA.	
correctly UP STOUST	
1700 - SLAL OFF \$ 558.	
<u> </u>	
l 1 te	
francy t	
	¢
	E E E E E E E E E E E E E E E E E E E
	<u> </u>
Scale: 1 square =	-

1-9-1	15 KC METRO DRE EVENT DAY 5 S.M'Gua
	15 KC METRO DRE EVENT DAY 5 S.M'Gua
0700 -	> SCHIPC meet up on site. Conduct HE'S feilsate meeting.
	Pervici OE TENANTS and SOW For Lay, Begin cleaning up al
	components of system.
- doo	action operate (make Wights) a nine analte Revenus Solu Conduct
	CLEAR CREEK (TOME KURTIS) quive onsite. Review Sow Conduct
	teilsche meeting.
- 075 - 2	
0830 =	60 over to system to prep for demots. Tonque of generate
	is too close to boom trucy CLED to more.
10	
	connect CCC truch to system. RC will go with truch to
	Edmonds terminal to drop OFF system. SCH will sty with
	Kintis acc to west for boom truch to more to demons
	generator. Gravaje Wells.
1035 7	TOM/ PL leave site.
2 C X	
	Boom truch is moved
12:45 3	Boom trucu is moved
12:45 3	
1245 3 1330 3	Boom truch is moved Demob generator. Clear of Sik area.
1245 3 1330 3	Boom trucu is moved
1245 3 1330 3	Boom truch is moved Demob generator. Clear of Sik area.
1245 3 1330 3	Boom truch is moved Demob generator. Clear of Sik area.
1245 3 1330 3	Boom truch is moved Demob generator. Clear of Sik area.
12:45 3 13:30 3	Boom truch is moved Demob generator. Clean up site cree. UM / UNIT'S OFF site Jeaming My
12:45 3 13:30 3	Boom truch is moved Demob generator. Clear of Sik area.
1245 3 1330 3	BOOM truck is moved Demob generator. Claus & Sik area. CM / UNIT'S OFF Sik MW-9R = 21.49 DIN / NO UNAPL PID = 131 EN-1 = 21.70 DIW / NO UNAPL PID = 651
1245 3 1330 3 1400 -25	Boom truch is moved Demob generalor. Clair of site area. CM / Murti's off site fearming Murti MW-9R = 21.49 DTW / NO CNARL PID = 131 EW-1 = 21.70 DTW / NO CNARL PID = 651 MW-29 = 18.61 DTW / NO CNARL PID = 2.0
1245 3 1330 3	Boom truck is moved Demob generator. Clear p site area. CM / Unit's off site MW-9/2 = 21.49 DTW / NO UNAPL PID = 131 EW-1 = 21.70 DTW / NO UNAPL PID = 651 MW-29 = 18.61 DTW / NU UNAPL PID = 2.0
1245 3 1330 3	Boom truch is moved Demob generator: Clean of STR area. CM / Unitris of F site MW-9R = 21.49 DTW / NO UNAPL PID = 131 EW-1 = 21.70 DTW / NO UNAPL PID = 651
1245 3 1330 3	Boom truck is moved Demob generator. Clear p site area. CM / Unit's off site MW-9/2 = 21.49 DTW / NO UNAPL PID = 131 EW-1 = 21.70 DTW / NO UNAPL PID = 651 MW-29 = 18.61 DTW / NU UNAPL PID = 2.0
1245 3 1330 3	Boom truck is moved Demob generator. Clear p site area. CM / Unit's off site MW-9/2 = 21.49 DTW / NO UNAPL PID = 131 EW-1 = 21.70 DTW / NO UNAPL PID = 651 MW-29 = 18.61 DTW / NU UNAPL PID = 2.0
1245 3 1330 3 1400 -25	Boom truck is moved Demob generator. Clear p site area. CM / Unit's off site MW-9/2 = 21.49 DTW / NO UNAPL PID = 131 EW-1 = 21.70 DTW / NO UNAPL PID = 651 MW-29 = 18.61 DTW / NU UNAPL PID = 2.0
1245 3 1330 3 1400 -25	Boom truck is moved Demob generator. Clear p site area. CM / Unit's off site MW-9/2 = 21.49 DTW / NO UNAPL PID = 131 EW-1 = 21.70 DTW / NO UNAPL PID = 651 MW-29 = 18.61 DTW / NU UNAPL PID = 2.0
1245 3 1330 3 1400 -25	Boom truck is moved Demob generator. Clear p site area. CM / Unit's off site MW-9/2 = 21.49 DTW / NO UNAPL PID = 131 EW-1 = 21.70 DTW / NO UNAPL PID = 651 MW-29 = 18.61 DTW / NU UNAPL PID = 2.0
1245 3 1330 3 1400 -25	Boom truck is moved Demob generator. Clear p site area. CM / Unit's off site MW-9/2 = 21.49 DTW / NO UNAPL PID = 131 EW-1 = 21.70 DTW / NO UNAPL PID = 651 MW-29 = 18.61 DTW / NU UNAPL PID = 2.0
1245 3 1330 3 1400 -25	Boom truck is moved Demob generator. Clear p site area. CM / Unit's off site MW-9/2 = 21.49 DTW / NO UNAPL PID = 131 EW-1 = 21.70 DTW / NO UNAPL PID = 651 MW-29 = 18.61 DTW / NU UNAPL PID = 2.0

Alte in the Rain"

Scale: 1 square = _

ARCADIS

Appendix F

Dual Phase Extraction Pilot Test Field Measurements and Results

Table F-1Dual Phase Extraction Parameters and MeasurementsFormer Chevron Bulk Plant #10013271602 North Northlake Place

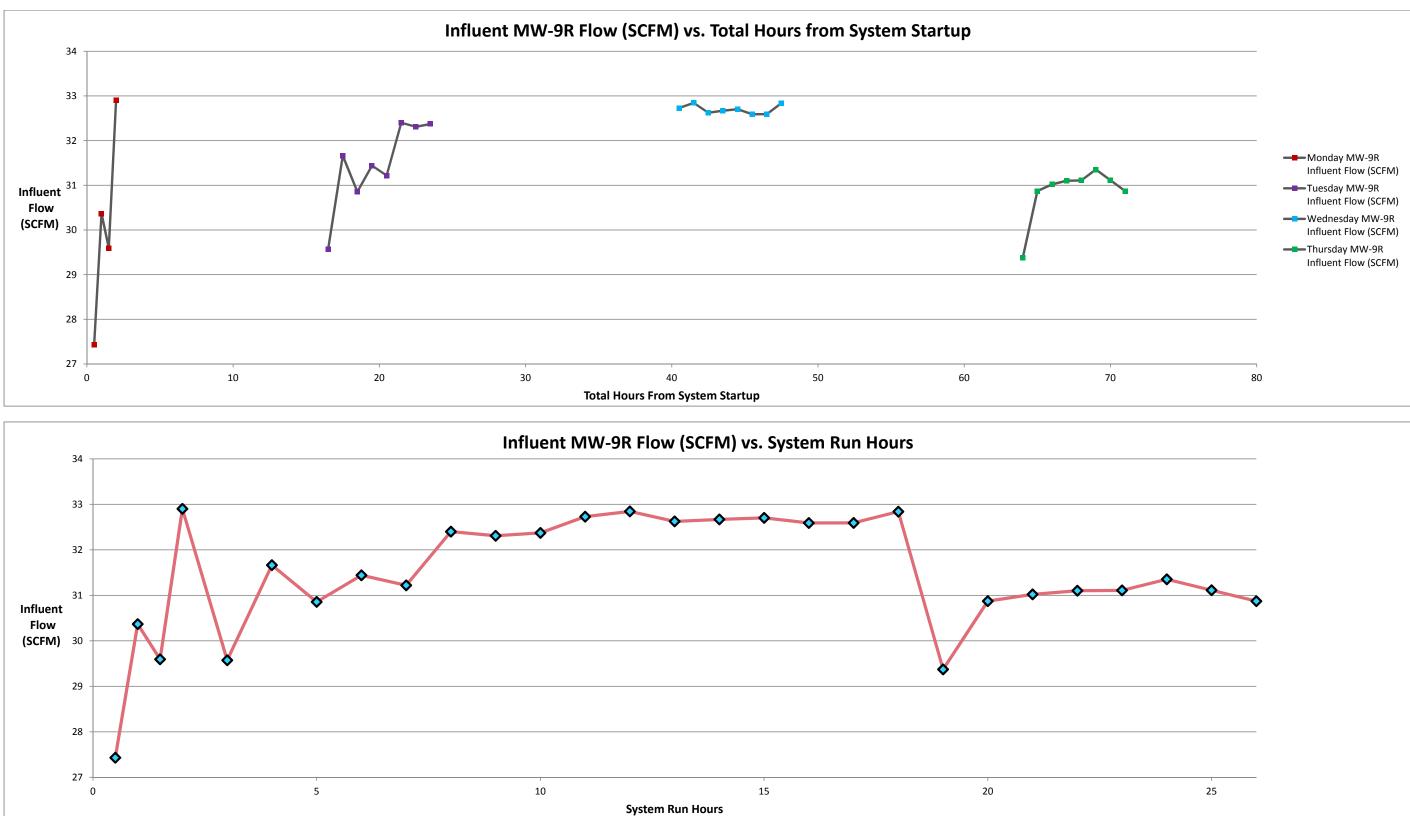
Seattle, Washington

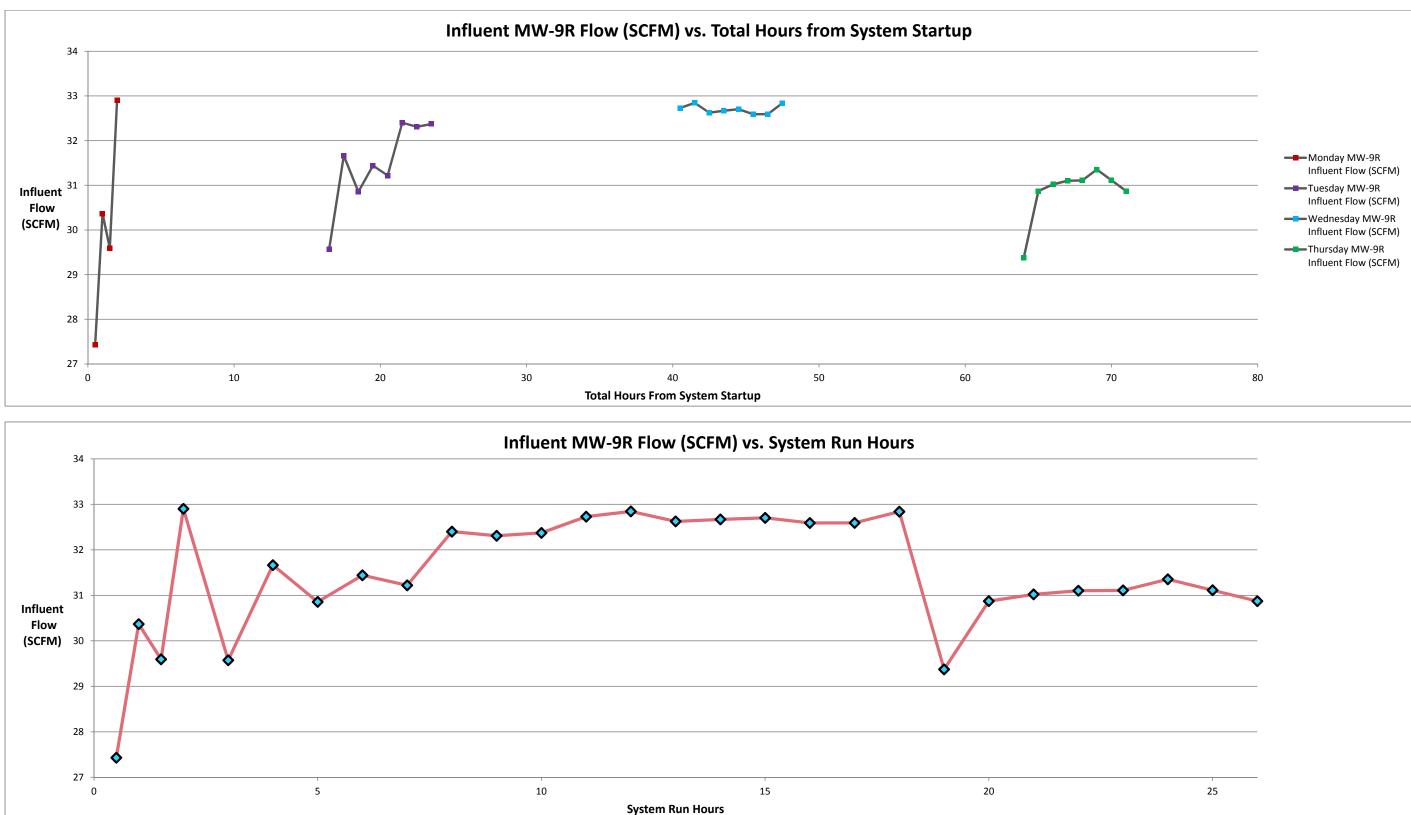
System Parameters								Response Well Parameters													
		Time	Runtime			Knockout							Mass	Cumulative							
		Since	Since		Manifold	Tank	Casing	Stinger	Velecity	Flaur	Flow		Removal	Mass	EW-1						
Date	Time	Startup (hours)	Startup (hours)	PID (ppm)	Vacuum (in. Hg)	Vacuum (in. Hg)	Vacuum (in. Hg)	Vacuum* (in. Hg)	Velocity (ft/min)	Flow (ACFM)	Flow (SCFM)	Temp (°F)	Rate (lbs./day)	Removal (lbs.)	VAC (in. H₂O)	(feet btoc)	(in. H_2O)	(feet btoc)	MW-30 VAC (in. H ₂ O)	MW-30 DTW (feet btoc)	(feet btoc)
1/5/2015	1450	(0	(PP)	((((()	(, (01 11))	(001)	(•)	(1001, 003)	0.00		21.70	(18.80	(18.68	21.70
1/5/2015	1530	0.5	0.5	666	18.5	18.5	5	20	3350	164.49	61.78	50	13.25	0.28	9.5		0.9		0.0		
1/5/2015	1600	1	1	636	18.5	18.5	5	20	3700	181.67	68.40	48.8	14.01	0.57	9.5	21.75	0.8	18.80	0.0	18.70	
1/5/2015	1630	1.5	1.5	725	18.5	18.5	5	20	3600	176.76	66.65	48	15.56	0.89	9.8		1.0		0.0		
1/5/2015	1700	2	2	726	18.5	18.5	5	20	4000	196.40	74.10	47.7	17.32	1.25	9.8	21.76	0.7	18.81	0.0	18.71	
1/6/2015	0815	15.25	2											1.25		21.67		18.76		18.67	21.61
1/6/2015	0930	16.5	3	719	18.5	18.5	5	20	3640	178.72	66.61	54	15.42	1.90	9.9	21.69	1.1	18.76	0.0	18.67	
1/6/2015	1030	17.5	4	789.4	18.5	18.5	5	20	3920	192.47	71.32	57	18.13	2.65	9.7	21.70	0.9	18.76	0.0	18.66	
1/6/2015	1130	18.5	5	709.9	18.5	18.5	5	20.5	3820	187.56	69.50	57	15.89	3.31	9.8	21.70	0.9	18.76	0.0	18.66	
1/6/2015	1230	19.5	6	689	18.5	18.5	5	20	3900	191.49	70.81	58	15.71	3.97	9.7	21.71	0.7	18.78	0.0	18.67	
1/6/2015	1330	20.5	7	619	18.5	18.5	5	20.5	3880	190.51	70.32	59	14.01	4.55	9.9	21.72	0.8	18.77	0.0	18.66	
1/6/2015	1430	21.5	8	616	18.5	18.5	5	20.5	4019	197.33	72.98	58	14.47	5.15	9.5	21.72	0.8	18.77	0.0	18.66	
1/6/2015	1530	22.5	9	646	18.5	18.5	5	20.5	4000	196.40	72.77	57	15.14	5.78	9.4	21.72	0.8	18.77	0.0	18.65	
1/6/2015	1630	23.5	10	627	18.5	18.5	6	20.5	4000	196.40	72.91	56	14.72	6.40	9.4	21.72	0.8	18.75	0.0	18.65	
1/7/2015	0805	39.1	10											6.40		21.65		18.82		18.70	21.65
1/7/2015	0930	40.5	11	712	18.5	18.5	6	19.5	4005	196.40	73.63	51	16.88	7.10	9.5	21.69	1.1	18.80	0.0	18.70	
1/7/2015 1/7/2015	1030	41.5	12 13		18.5	18.5 19.5	0	19.5 10.5	4019 4000	196.40	73.63 73.48	51 52	16.07 15.47	7.77 8.42	9.4	21.70 21.70	1.0	18.80	0.0	18.70 18.70	
1/7/2015	1130 1230	42.5 43.5	13		18.5 18.5	18.5 18.5	0	19.5 20	4000	196.40 196.40	73.40	52 54	15.47	9.06	9.4 9.5	21.70	1.0 1.1	18.80 18.80	0.0 0.0	18.70	
1/7/2015	1330	44.5	15		18.5	18.5	6	20	4033	196.40	73.05	55	15.22	9.69	9.6	21.70	1.0	18.80	0.0	18.70	
1/7/2015	1430	45.5	16		18.5	18.5	6	20	4027	196.40	72.91	56	15.14	10.32		21.70	1.0	18.80	0.0	18.70	
1/7/2015	1530	46.5	17		18.5	18.5	6	20	4035	196.40	72.77	57	15.72	10.98	9.5	21.70	1.0	18.80	0.0	18.70	
1/7/2015	1630	47.5	18		18.5	18.5	6	20	4050	196.40	73.05	55	15.03	11.60	9.6		0.9	18.80	0.0	18.71	
1/8/2015	0800	63	18											11.60		21.72		18.61		18.46	21.5
1/8/2015	0900	64	19	551	19.5	19.5	5	20.5	4000	196.40	66.15	56	11.74	12.09	9.2	21.72	0.6	18.61	0.0	18.45	
1/8/2015	1000	65	20	523	19	19	5	20.5	4000	196.40	69.53	56	11.71	12.58	9.2	21.72	0.7	18.62	0.0	18.46	
1/8/2015	1100	66	21	498	19	19	5	20	4027	196.40	69.40	57	11.13	13.04	9.3	21.72	0.6	18.65	0.0	18.46	
1/8/2015	1200	67	22	471	19	19	5	20	4061	196.40	69.00	60	10.46	13.48	9.4	21.72	0.8	18.65	0.0	18.46	
1/8/2015	1300	68	23	440	19	19	5	20	4054	196.40	69.13	59	9.79	13.89	9.5	21.72	0.7	18.65	0.0	18.47	
1/8/2015	1400	69	24	421	19	19	5	20	4078	196.40	69.26	58	9.39	14.28	9.3	21.73	0.7	18.67	0.0	18.46	
1/8/2015	1500	70	25	401	19	19	5	20	4039	196.40	69.40	57	8.96	14.65	9.4	21.73	0.7	18.67	0.0	18.46	
1/8/2015	1600	71	26	394	19	19	5	20	4000	196.40	69.53	56	8.82	15.02	9.4	21.73	0.7	18.67	0.0	18.46	
Average	Values I	During Pilo	t Test	613	19	19	5.32	20	3939	192.59	70.55	55	13.95		9.52	21.71	0.85	18.74	<0.01	18.61	

LEGEND:

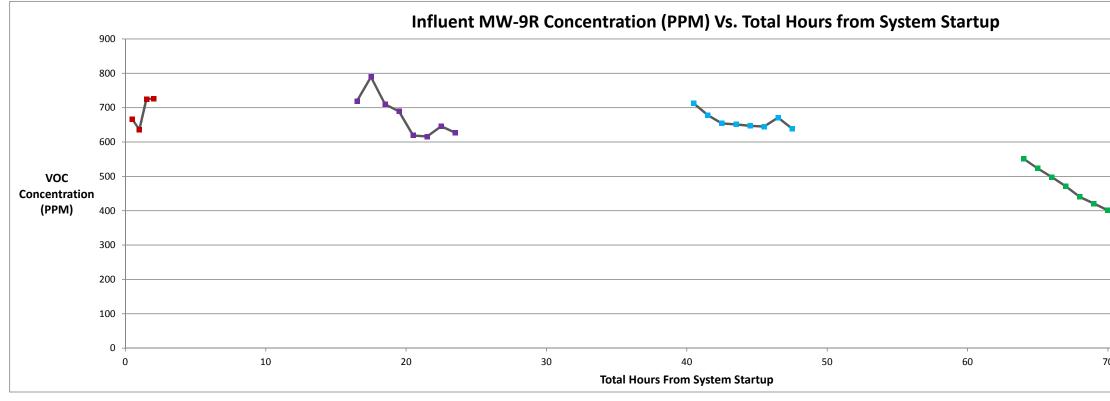
ppm parts per million

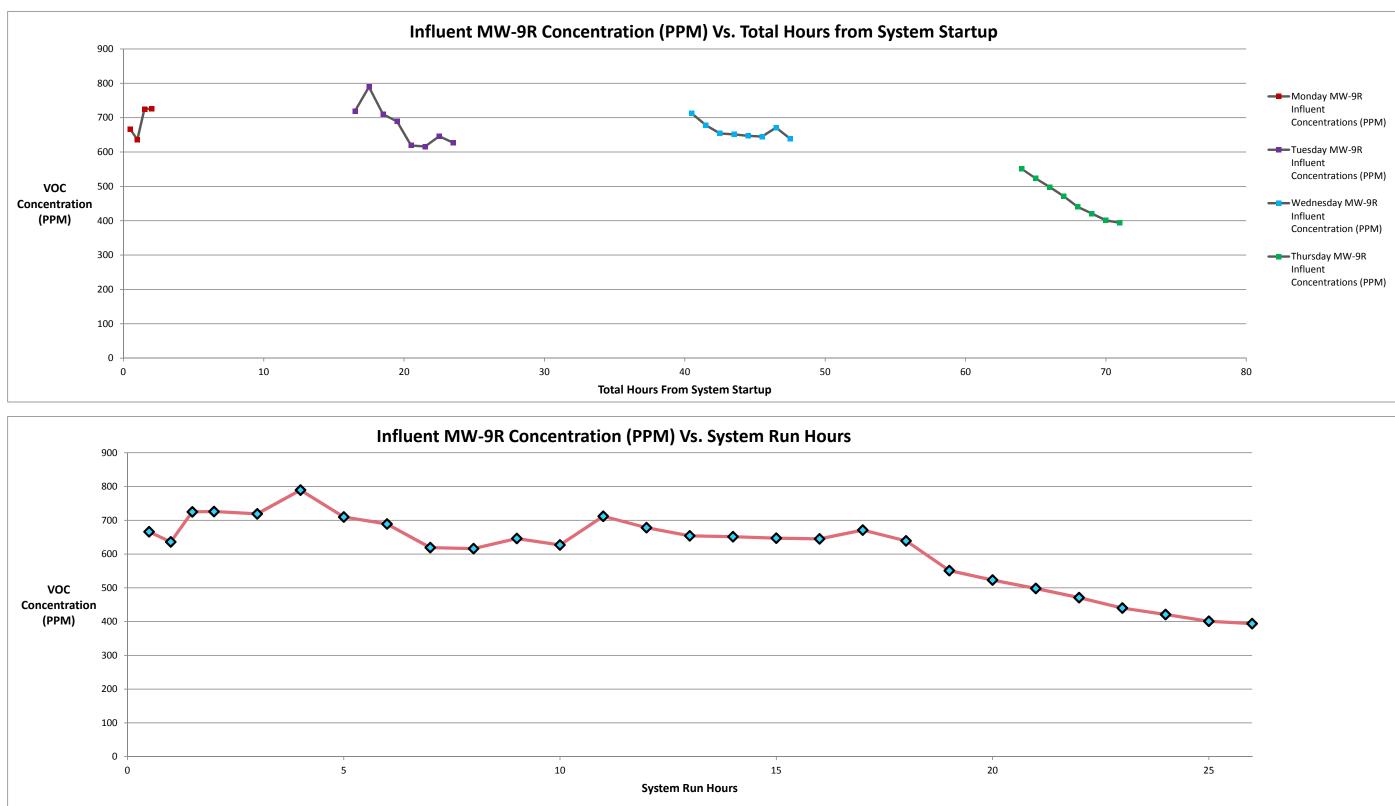
ACFM ctual cubic feet per minute **SCFM** standard cubic feet per minute

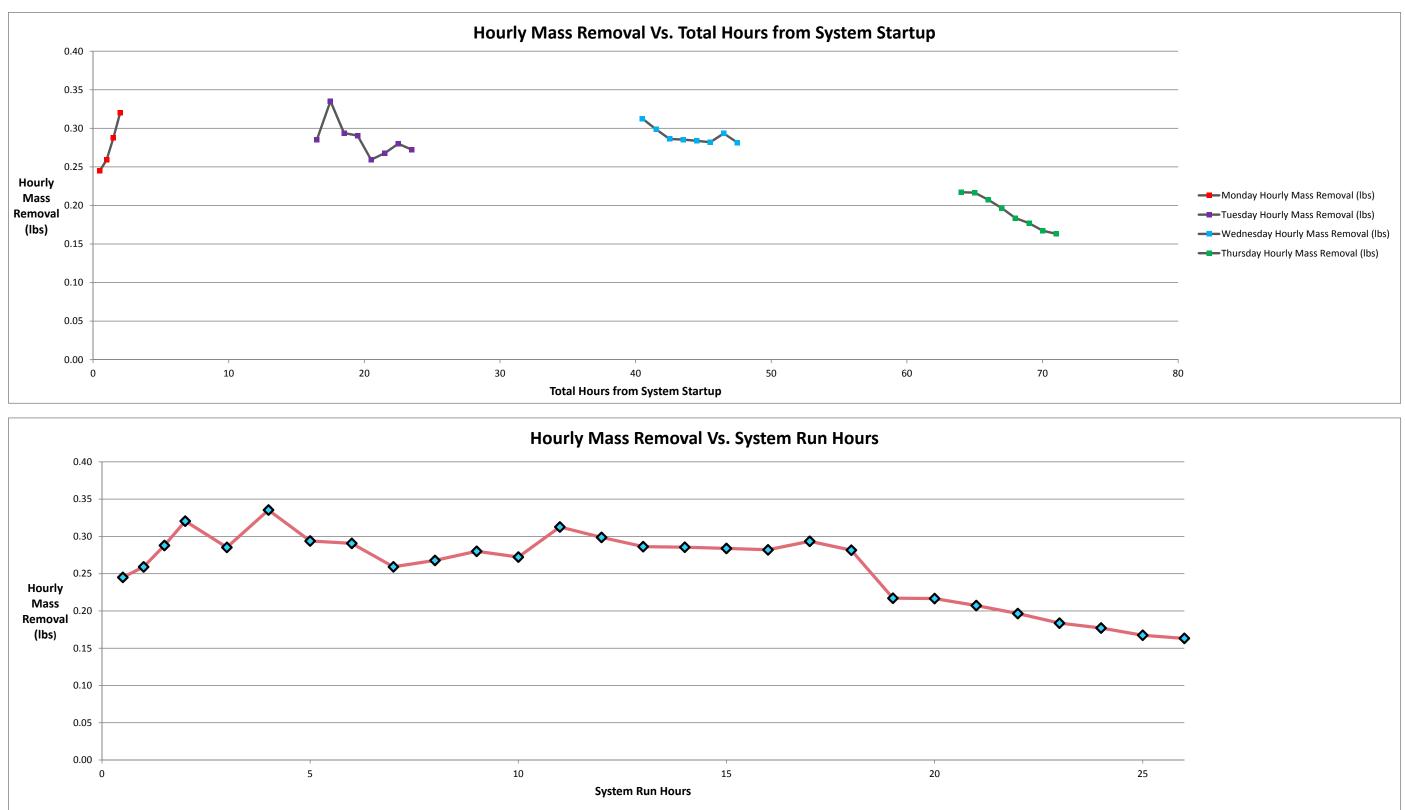

Ibs. pounds

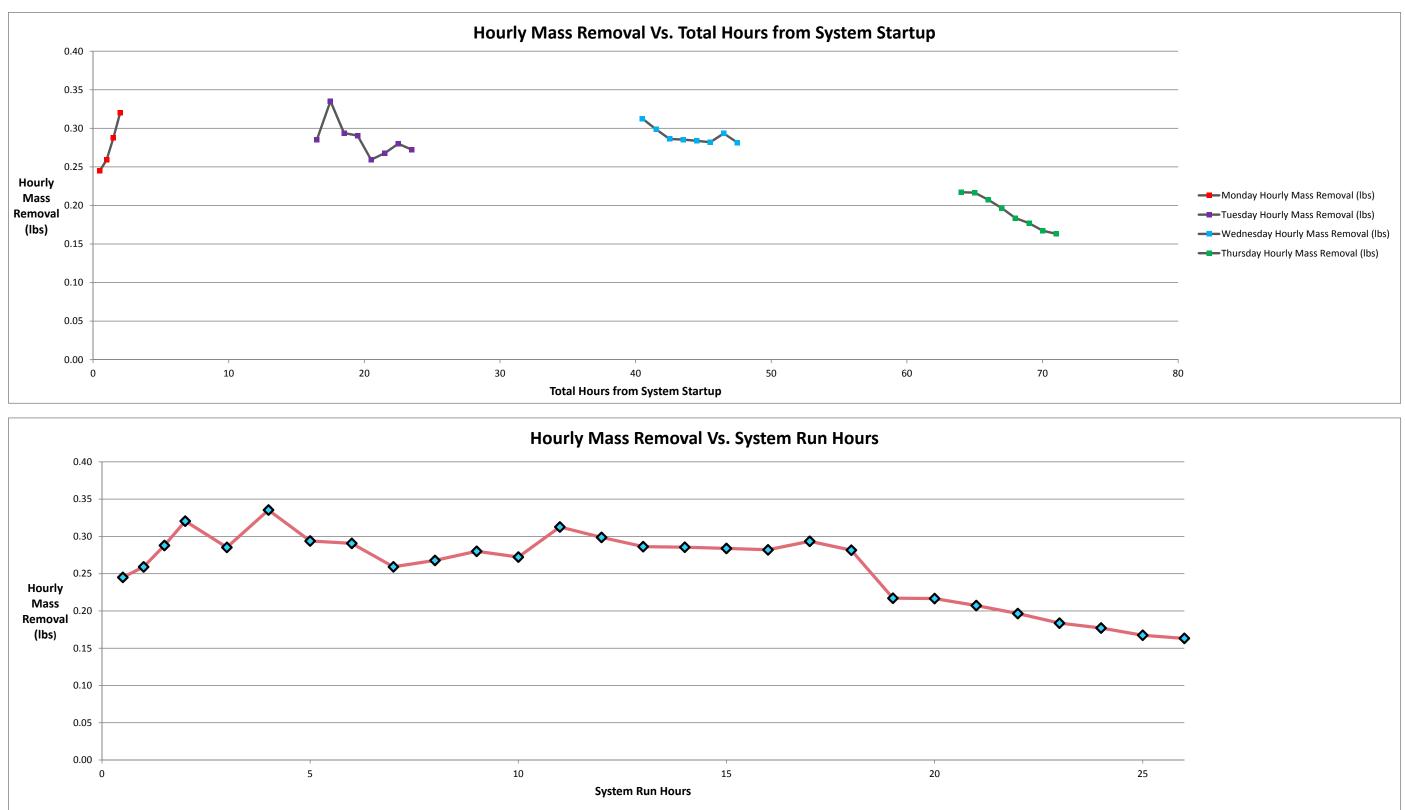

in. Hg inches of mercuryft/min feet per minute

°F degrees Fahrenheit


in. H₂O inches of water column feet bgs feet below top of casing * Difficulties were encountered when reading the stinger vacuum gauge. The gauge was changed out, but the stinger vacuum gauge still read higher than the manifold vacuum.


Chart F-1 System Flow During DPE Pilot Test Former Chevron Bulk Plant #1001327 1602 North Northlake Place Seattle, Washington




Chart F-2 PID Measurements During DPE Pilot Test Former Chevron Bulk Plant #1001327 1602 North Northlake Place Seattle, Washington

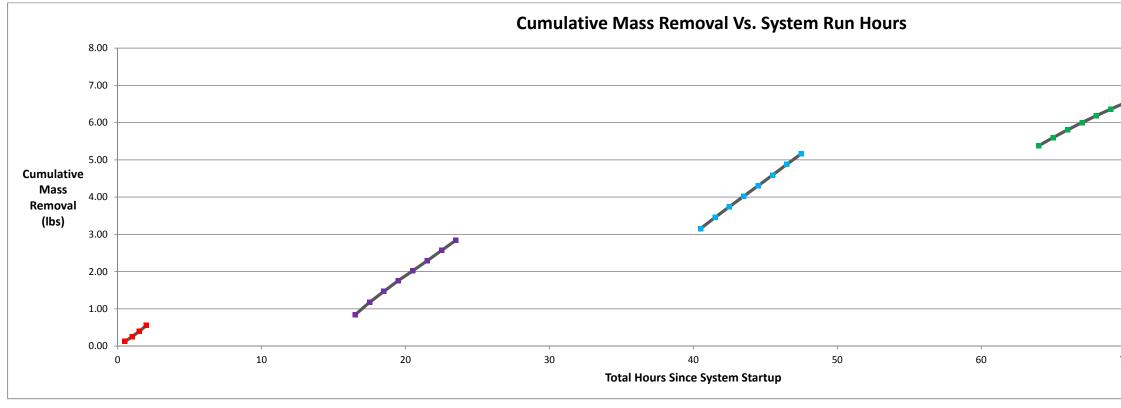


Chart F-3 Hourly Mass Removal During DPE Pilot Test Former Chevron Bulk Plant #1001327 1602 North Northlake Place Seattle, Washington

Chart F-4 Cumulative Mass Removal During DPE Pilot Test Former Chevron Bulk Plant #1001327 1602 North Northlake Place Seattle, Washington

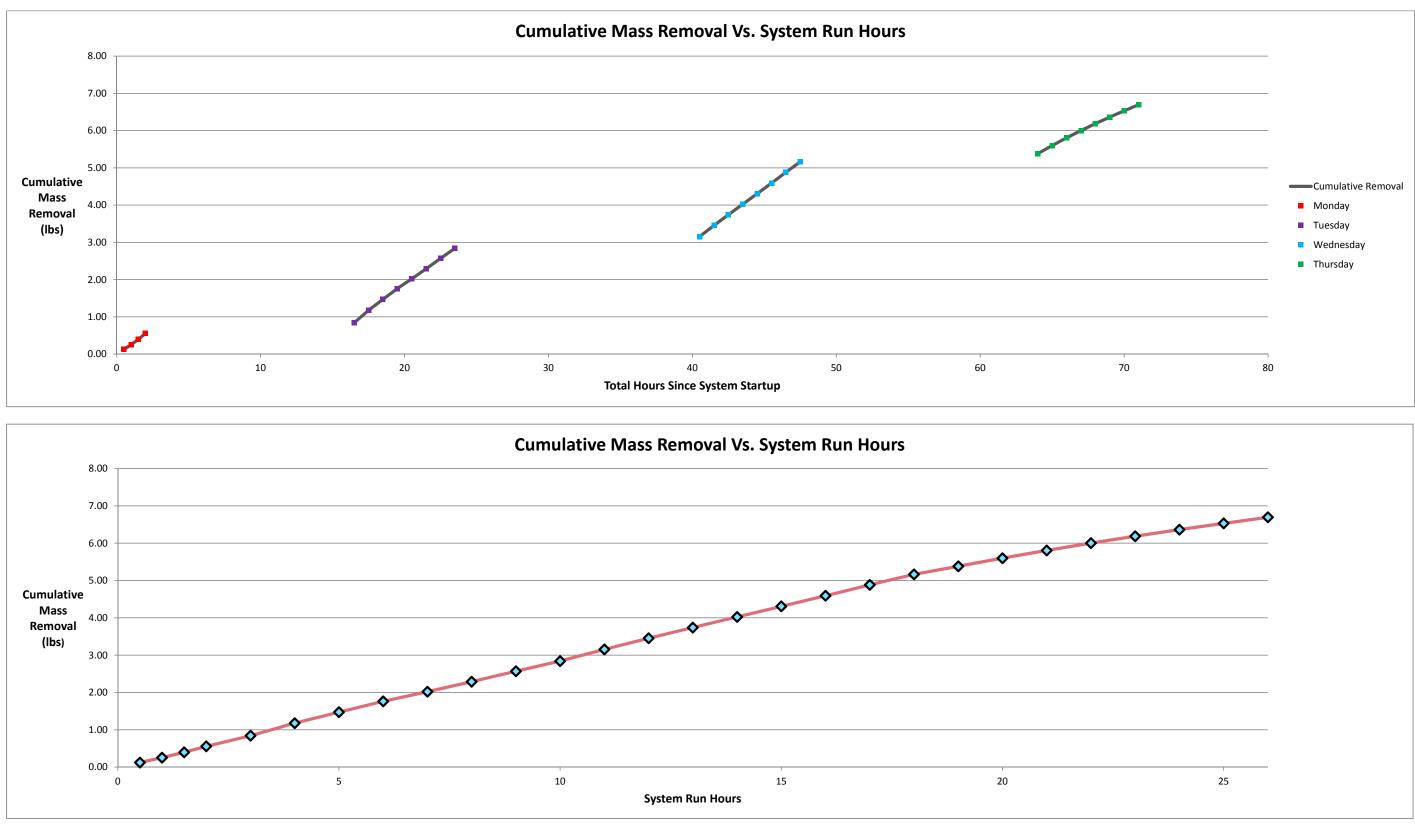
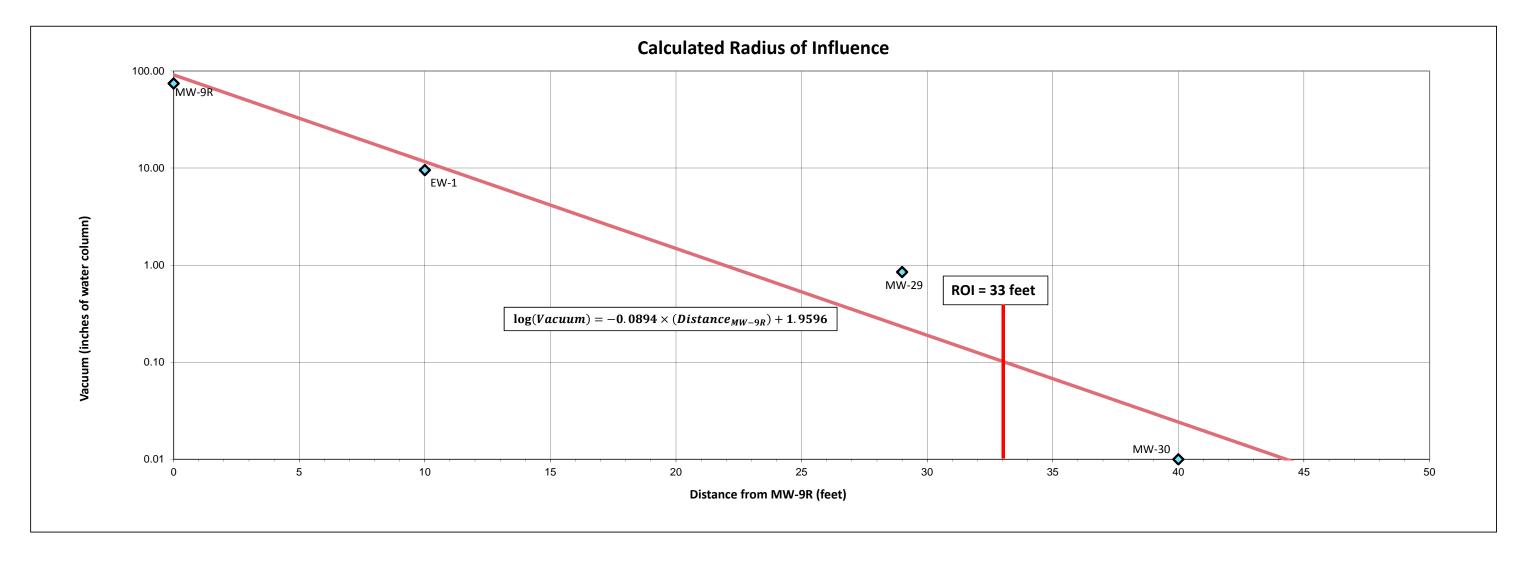



Chart F-5 ROI Calculation Former Chevron Bulk Plant #1001327 1602 North Northlake Place Seattle, Washington

Well	Distance from MW-9R (feet)	Measured Vacuum (inches of water column)
MW-9R	0	74.3 applied
EW-1	10	9.51 induced
MW-29	29	0.85 induced
MW-30	40	<0.01 induced

ROI =	$log(0.1 inches H_2 0) + 1.9596$					
<i>κυι</i> –	-0.0894	- 3				

83 feet