Quarterly Groundwater Monitoring First Quarter 2015

Tiger Oil North 1st Yakima, Washington

for Washington State Department of Ecology

May 18, 2015

Quarterly Groundwater Monitoring First Quarter 2015

Tiger Oil North 1st Yakima, Washington

for Washington State Department of Ecology

May 18, 2015

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Quarterly Groundwater Monitoring First Quarter 2015

Tiger Oil North 1st Yakima, Washington

File No. 0504-101-00

May 18, 2015

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program - Central Region Office 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902-3452

Attention: Mary Monahan

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

Jedidiah R. Sugalski, PE Environmental Engineer

Bruce D. Williams Principal

JRS:BDW:tjh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND BACKGROUND	1
3.0	SCOPE OF SERVICES	3
4.0	FIELD ACTIVITIES	3
4.2.	Monitoring Well Headspace Vapor Monitoring Groundwater Elevation Monitoring Groundwater Sampling	4
5.0	CHEMICAL ANALYTICAL RESULTS	4
5.1. 5.2.	CHEMICAL ANALYTICAL RESULTS	4 5
5.1. 5.2. 5.3.	Groundwater Chemical Analytical Results Natural Attenuation Parameters	4 5 5
5.1. 5.2. 5.3. 6.0	Groundwater Chemical Analytical Results Natural Attenuation Parameters QA/QC Summary	4 5 5 6

LIST OF TABLES

Table 1. Summary of Groundwater Field Parameters
Table 2. Summary of Groundwater Level Measurements
Table 3. Summary of Chemical Analytical Results – Groundwater
Table 4. Summary of Chemical Analytical Results - Groundwater PAHs
LIST OF FIGURES
Figure 1. Vicinity Map

- Figure 2. Site Plan and Sample Locations
- Figure 3. Groundwater Elevation and Interpreted Flow Direction, March 10, 2015

APPENDICES

Appendix A. Field Procedures Appendix B. Chemical Analytical Laboratory Report and Data Validation Appendix C. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

This report describes groundwater monitoring activities conducted on March 10, 2015 at the Tiger Oil North 1st site located at 1808 North 1st Street in Yakima, Washington (herein referred to as "site"). The site is located approximately as shown in the Vicinity Map, Figure 1.

Environmental investigation activities at the site currently are managed by the Washington State Department of Ecology (Ecology). This report provides a brief site description and background, our scope of services, a description of field activities, chemical analytical results and conclusions for the March 2015 groundwater monitoring event.

2.0 SITE DESCRIPTION AND BACKGROUND

The site is located at 1808 North 1st Street in Yakima, Washington. The site is bordered by arterial roadway North 1st Street to the east and the Sun Country Inn to the south and west of the site. A paved entrance to the All Star Motel and Ron Nehls Auto Sales is located to the north as shown on Site Plan and Sample Locations, Figure 2.

The site operated as a retail gasoline station and convenience store until closure in 2001. The site contains two buildings and three historical fuel dispenser islands formerly under a central canopy. Buildings at the site include the larger former convenience store in the southwest corner of the site and a smaller kiosk near the center of the site. The site is generally paved, except where four former underground storage tanks (USTs) were removed from the north central portion of the site.

In 1982, a release of approximately 12,000 to 22,000 gallons of leaded and unleaded gasoline from delivery lines occurred between the tanks and dispensers (Wagner et al., 1991). The release reportedly contaminated drinking water wells to the east and residential units in the area were eventually connected to a public water supply source.

Remediation activities included installation of 34 groundwater monitoring wells and two recovery wells. These wells were installed both as part of the remediation activities and for a hydrogeological study performed in the area. It is unknown how many of these wells remain today and if decommissioning reports are available for the wells. These wells have not been located as part of previous assessments. Removal records indicate that approximately 40 gallons of free product was recovered between 1982 and 1983. Recovery efforts were ceased in 1983 because of the cost of spill response efforts and low product recovery volume. Groundwater monitoring conducted in 1989 indicated concentrations of benzene and xylenes greater than Model Toxics Control Act (MTCA) Method A cleanup levels in groundwater samples collected from wells directly east of the site (Wagner et al., 1991).

In 2005, four USTs were decommissioned at the site and the subsurface fuel lines were drained and capped with quick setting cement. The tanks removed from the site included:

- 20,000-gallon steel unleaded gasoline tank
- 10,000-gallon steel unleaded gasoline tank

GEOENGINEERS

- 8,000-gallon steel unleaded gasoline tank
- 6,000-gallon diesel tank

Upon removal, the tanks were examined by Tetra Tech FW, Inc., Tri-Valley Construction and Ecology. The tanks had minor surface rust and were reported to be in good condition with no visual evidence of leaks or holes. However, some visual evidence of staining near the fill pipe and turbine unit, and in the surrounding soil was observed near the 20,000-gallon UST (Tetra Tech, 2005). Evidence of fill piping or turbine unit spillage was not observed on the other three tanks.

Soil samples collected from the tank removal excavation in 2005 indicated the presence of gasoline contamination at depths of 8 and 13 feet in 2 of the 10 samples collected (McCreedy, 2005). Detected gasoline in samples reportedly was weathered, as indicated by the absence of benzene. The UST excavation was backfilled with both excavated soil and imported fill material. The Tetra Tech report (Tetra Tech, 2005) does not indicate if excavated soil used to backfill the excavation was contaminated or if any contaminated soil was transported off site. Fuel dispensers and product delivery lines were not assessed as part of the 2005 work.

In 2014, GeoEngineers, Inc. (GeoEngineers) conducted additional assessment activities in order to confirm the presence and extents of contamination identified during the 2005 UST removal (GeoEngineers, 2014c). The additional assessment activities included advancing eight direct-push borings, collecting groundwater samples from temporary wells installed in each direct-push boring, installing five groundwater monitoring wells with flush mount monuments and, in September 2014, collecting groundwater samples from the new wells. Exploration locations and soil cleanup level exceedances are shown in Figure 2.

Results of the 2014 assessment indicated petroleum contamination exceeding MTCA Method A cleanup criteria were present in soil samples collected near the former tank pit and fuel dispenser islands. Field screening results of soil samples from boring N1DP-5 generally indicated petroleum contamination in soil had not migrated to the south portion of the property. Concentrations of diesel-range petroleum hydrocarbons (DRPH) and oil-range petroleum hydrocarbons (ORPH) less than MTCA Method A cleanup levels for unrestricted land use have been observed in soil samples from borings N1MW-3 and N1MW-5, indicating that low-level contamination might have migrated to north and south portions of the site. Soil assessment results can be summarized by the following:

- Gasoline-range petroleum hydrocarbons (GRPH), DRPH, benzene, toluene, ethylbenzene and xylenes (BTEX), and naphthalenes were detected at concentrations exceeding MTCA Method A cleanup criteria in soil samples from N1DP-8.
- GRPH, benzene, ethylbenzene, xylenes and naphthalenes were detected at concentrations exceeding MTCA Method A cleanup criteria in soil samples from N1DP-1 and N1DP-3.
- GRPH were detected at concentrations exceeding the MTCA Method A cleanup criteria in soil samples from N1DP-2 and N1DP-4.

Laboratory analytical results indicated contaminants of concern did not exceed MTCA Method A cleanup criteria in groundwater samples collected from the five groundwater monitoring wells (N1MW-1 through N1MW-5). Results of hydrocarbon identification (HCID) analyses indicated the presence of GRPH, DRPH or ORPH in temporary wells completed in N1DP-1 through N1DP-5. Sampling methods from temporary wells

and analytical methods using HCID analysis are not as accurate as other methods and therefore the results should be considered as screening tools. Groundwater samples collected from the direct-push borings were generally turbid and analytical results might not be representative of actual groundwater conditions.

3.0 SCOPE OF SERVICES

GeoEngineers prepared a Work Plan, dated April 15, 2014 (GeoEngineers, 2014a) and supplemental memorandum (GeoEngineers, 2014b) to guide the groundwater monitoring activities described herein. The scope of services performed by GeoEngineers during the quarterly groundwater monitoring event conducted on March 10, 2015 included:

- Measuring well headspace vapors and depth to groundwater in each of the five monitoring wells (N1MW-1 through N1MW-5).
- Measuring water quality parameters including pH, temperature, specific conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP) and ferrous iron.
- Collecting primary groundwater samples from each well and a duplicate sample from N1MW-1 using low-flow/low-stress sampling techniques.
- Submitting groundwater samples to TestAmerica Laboratories, Inc. (TestAmerica) for chemical analysis of:
 - GRPH (Northwest Method NWTPH-Gx);
 - DRPH (Northwest Method NWTPH-Dx, with and without silica gel cleanup);
 - Volatile organic compounds (VOCs) (Environmental Protection Agency [EPA] Method 8260C);
 - 1,2-dibromoethane (EDB) (EPA Method 8011C);
 - Total Organic Carbon (TOC) (Method SM5310C);
 - Lead (EPA Method 200.7); and
 - Polycyclic aromatic hydrocarbons (PAHs) including naphthalenes (EPA Method 8270D).
- Comparing laboratory analytical results with applicable project cleanup criteria.
- Calculating groundwater elevation within site monitoring wells.
- Estimating groundwater flow direction and the range in hydraulic gradient across the site.

Samples were also analyzed for two natural attenuation parameters: nitrate and sulfate (SO₄) by EPA Method 300.0. Soluble ferrous iron (Fe⁺²), which has a 15-minute hold time, was analyzed in the field using a Hach IR-18C color disc test kit and the 1,10 phenanthroline testing method.

4.0 FIELD ACTIVITIES

4.1. Monitoring Well Headspace Vapor Monitoring

Monitoring well headspace vapors were measured on March 10, 2015 using a photoionization detector (PID). Headspace measurements were collected by inserting the PID probe into the well casing immediately after removing the well cap and recording the maximum observed concentration. Headspace vapors were

measured at less than 1.0 part per million in monitoring wells N1MW-1 though N1MW-5, as shown in Summary of Groundwater Field Parameters, Table 1.

4.2. Groundwater Elevation Monitoring

Static depth to groundwater was measured in monitoring wells N1MW-1 through N1MW-5 on March 10, 2015 using an electronic water level indicator. Depth to groundwater ranged from 11.26 feet (N1MW-4) to 14.05 feet (N1MW-1) below the top of well casing, as shown in Summary of Groundwater Level Measurements, Table 2. Groundwater elevations ranged from about 1,070.51 feet in N1MW-2 to 1,070.87 feet in N1MW-4 and N1MW-5. In monitoring wells N1MW-1 through N1MW-5, groundwater elevations decreased an average of about 0.3 feet relative to the previous monitoring event conducted during December 2014.

Based on groundwater elevations measured on March 10, 2015, groundwater flow in the shallow unconfined aquifer beneath the property generally was toward the east, as shown in Groundwater Elevation and Interpreted Flow Direction, March 10, 2015, Figure 3. The estimated hydraulic groundwater gradient of the shallow aquifer was about 0.002 feet per foot (about 11 feet per mile). Groundwater elevation contours were interpreted from depth to water measurements, surveyed elevations of well casings and Surfer Version 1.2.

4.3. Groundwater Sampling

Monitoring wells N1MW-1 through N1MW-5 were purged and sampled in general conformance with standard low-flow sampling methodology on March 10, 2015. A duplicate sample was collected from N1MW-1. A peristaltic pump and dedicated well tubing were used to purge and sample each well. Groundwater quality parameters were measured at approximate 3-minute intervals during well purging. Groundwater samples were collected in conformance with the stabilization and/or maximum purge time criteria presented in Appendix A. Groundwater field parameters recorded at the conclusion of well purging are provided in Table 1.

Purge water generated during groundwater sampling was drummed, labeled and stored on the site pending profiling and disposal.

5.0 CHEMICAL ANALYTICAL RESULTS

5.1. Groundwater Chemical Analytical Results

Analytical results for samples collected on March 10, 2015 are tabulated and compared to previous results and MTCA Method A cleanup criteria in Summary of Chemical Analytical Results – Groundwater, Table 3 and Summary of Chemical Analytical Results – Groundwater PAHs, Table 4. TestAmerica's laboratory report is provided in Appendix B.

The following is a summary of the March 10, 2015 analytical data:

 GRPH was detected at concentrations less than the MTCA Method A cleanup criteria in the samples from N1MW-1 and N1MW-2. GRPH was not detected in samples collected from monitoring wells N1MW-3, N1MW-4 or N1MW-5.

- DRPH was detected at a concentrations less than the MTCA Method A cleanup criteria in the sample from N1MW-2. DRPH was not detected in samples collected from monitoring wells N1MW-1, N1MW-3, N1MW-4 or N1MW-5.
- Other site contaminants of concern were either not detected or were detected at concentrations less than their respective cleanup criteria in groundwater samples collected from site wells.

N1MW-2 is located downgradient of observed soil contamination at the site. However, groundwater samples collected and analyzed from N1MW-2 indicate that groundwater near that well may contain contamination that has migrated from sources on the Tiger Oil site, but at concentrations less than MTCA Method A cleanup criteria.

5.2. Natural Attenuation Parameters

In addition to the contaminants of concern, groundwater samples were analyzed for natural attenuation parameters and field parameters. Results of laboratory-analyzed natural attenuation parameters are provided in Table 3. Field measurement results are provided in Table 1. Reported field parameters reflect stabilized conditions at the conclusion of well purging during low-flow sampling. Low DO and nitrate concentrations observed in December 2014 and March 2015 suggest possible biodegradation of petroleum contamination near N1MW-2.

Dissolved oxygen was measured at 0.06 milligrams per liter in monitoring well N1MW-2, and 0.42 milligrams per liter (mg/L) in monitoring well N1MW-5, suggesting that anaerobic conditions are present in shallow groundwater beneath the site near these wells and that electron acceptors other than oxygen are relied on to metabolize contaminants during biodegradation reactions. In general, observed natural attenuation parameters suggest that natural attenuation processes (and associated loss of contaminant mass) are ongoing near N1MW-2 and N1MW-5. This conclusion is based on the following observed conditions in monitoring wells N1MW-2 and N1MW-5 relative to up- and cross-gradient monitoring wells N1MW-1, N1MW-3 and N1MW-4.

- Lower field-measured ORP and DO.
- A slight decrease in nitrate concentrations, which can act as an electron acceptor compound in natural attenuation processes.
- An increase in the ferrous iron concentrations in N1MW-5, which can be an indicator of natural attenuation processes.

5.3. QA/QC Summary

GeoEngineers reviewed the laboratory internal quality assurance/quality control (QA/QC) in the context of project data quality goals. Results of our review, as well as our evaluation of data suitability, are provided in Appendix B. In summary, it is our opinion that the quality of the analytical data generally is acceptable for the intended use. However, the following items were noted:

- The laboratory noted that the trip blank sample was not written on the chain-of-custody (COC).
- There was a positive result for naphthalene in the method blank extracted on March 16, 2015. The associated field samples, MW-5-031015 and MW-Dup-031015 exhibited a positive result for this analyte. The positive results for naphthalene were qualified as non-detected (U) in these samples.

- The percent recovery for acetone was greater than the control limits in the laboratory control sample (LCS) extracted on March 12, 2015. There were no positive results for this target analyte in the associated field samples; therefore, no action was required for this outlier.
- One field duplicate sample pair, MW-1-031015 and MW-Dup-031015, was submitted with this sample delivery group (SDG). The precision criteria for all target analytes were met for this sample pair, with the exception of 1,2,4-Trimethylbenzene. The positive results for this target analyte were qualified as estimated (J) in this sample pair.
- The laboratory reported two sets of PAH results for Samples MW-5-031015 and MW-Dup-031015, an initial and a reanalysis, due to a method blank detection of naphthalene and positive results for this analyte in these samples. The reanalysis was performed outside of holding time; therefore, the entire data set of target analytes in the reanalysis sample were labeled as do-not-report (DNR) and should not be used for any purpose.

6.0 CONCLUSIONS

Groundwater monitoring activities representing the first quarter of 2015 occurred at the North 1st Street site on March 10, 2015. Depth to groundwater ranged from 11.26 feet (N1MW-4) to 14.05 feet (N1MW-1) below the top of well casing. Groundwater elevations ranged from about 1,070.51 feet in N1MW-2 to 1,070.87 feet in N1MW-4 and N1MW-5; elevations decreased an average of approximately 0.3 feet, as measured in the five site wells, relative to the previous monitoring event. Groundwater elevations at the site indicated groundwater flow in the shallow unconfined aquifer beneath the property generally was toward the east.

Site contaminants of concern were not detected at concentrations exceeding MTCA Method A cleanup criteria in groundwater samples obtained during the March 2015 groundwater monitoring event. GRPH was detected in N1MW-1 and N1MW-2 at concentrations less than the MTCA Method A cleanup criteria. DRPH was detected in N1MW-2 at a concentration less than the MTCA Method A cleanup criteria. Natural attenuation parameters indicate possible biodegradation of petroleum hydrocarbons is occurring near N1MW-2 and N1MW-5. These locations might be near the fringe of the documented groundwater plume from previous studies. Samples analyzed from the remaining monitoring wells were generally less than laboratory reporting limits for suspected petroleum-based contaminants.

7.0 LIMITATIONS

We have prepared this report for the exclusive use of Ecology and their authorized agents.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to "Report Limitations and Guidelines for Use," Appendix C, for additional information pertaining to use of this report.

8.0 REFERENCES

- GeoEngineers, Inc., 2014a. "Sampling and Analysis Plan, Soil and Groundwater Assessment." Three Tiger Oil Sites, Yakima, Washington. GEI File No. 0504-101-00, April 15.
- GeoEngineers, Inc., 2014b. "Tiger Oil Work Plan Amendment Monitoring Wells." Three Tiger Oil Sites, Yakima, Washington. GEI File No. 0504-101-00, July 21.
- GeoEngineers, Inc., 2014c. "Phase II Site Assessment Report." Tiger Oil North 1st, Yakima, Washington. GEI File No. 0504-101-00, February 11.
- McCreedy, Re: Tiger Oil Corporation. 2005. 1808 North First Street (North First) and 1606 East Nob Hill Blvd., Yakima, Washington. Letter to Alex Smith, Assistant Attorney General, Ecology Division and Thomas L. Mackie, Hydrogeologist Site Manager, Toxics Cleanup Program, Department of Ecology. April 9.
- Puls, R. W. and M. J. Barcelona. 1996. Low-flow (Minimal Drawdown) Ground-water Sampling Procedures: EPA Ground Water Issue, April, p.1-9.
- Tetra Tech, 2005, "UST Decommissioning and Site Assessment at Tiger Oil Corporation Facility, 1808 First Avenue, Yakima, Washington," March 17.
- U.S. Environmental Protection Agency (EPA). 1996. Region 1, "Low Stress (Low-Flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells," EPA SOP No. GW 0001, Revision No. 2. July 30.
- U.S. Environmental Protection Agency. 2008. "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June.
- U.S. Environmental Protection Agency. 2009. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January.
- U.S. Environmental Protection Agency. 2010. "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," EPA-540-R-10-011. January.
- Wagner, Richard J., Ebbert, J.C. 1991. "Changes Between 1984 and 1989 in the Concentration and Aerial Extent of Ground-Water Contamination from a Gasoline and Diesel Fuel Leak at a Site in Yakima, Washington," United States Geological Survey (USGS), Preliminary Draft, April 10.

Table 1

Summary of Groundwater Field Parameters¹

Tiger Oil North 1st

Yakima, Washington

Well Number	Date Collected	рН	Temperature (°C)	Specific Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	ORP - Field ² (mV)	ORP - Normalized ³ (mV)	Turbidity (NTU)	Soluble Ferrous Iron (mg/L)	Monitoring Well Headspace ⁴ (ppm)
	09/18/14	6.57	17.03	0.25	2.46	54	256	16.31	1.25	1.5
N1MW-1	12/11/14	6.59	16.99	0.23	1.04	13	215	1.15	1.0	1.5
	03/10/15	6.76	15.29	0.24	4.33	519	722	2.42	1.25	0.3
	09/18/14	6.69	17.46	0.27	0.05	-143	59	1.03	0	0.0
N1MW-2	12/11/14	6.49	16.50	0.25	0.14	-90	112	4.13	0	0.0
	03/10/15	6.72	13.17	0.23	0.06	44	249	4.54	0	0.0
	09/18/14	6.75	16.25	0.26	5.69	-148	55	0.07	0	0.3
N1MW-3	12/11/14	6.65	16.32	0.24	6.32	142	345	0.86	0	0.3
	03/10/15	6.82	14.08	0.22	8.07	230	434	0.34	0	0.0
	09/18/14	6.68	16.77	0.24	5.82	90	292	4.48	0	0.1
N1MW-4	12/11/14	6.65	15.83	0.21	6.77	135	338	0.59	0	0.1
	03/10/15	6.82	13.83	0.21	8.63	267	472	4.90	0	0.0
	09/18/14	6.49	18.25	0.25	0.98	-25	176	0.12	1.5	0.1
N1MW-5	12/11/14	6.53	17.01	0.23	0.90	-24	178	2.35	2.0	0.1
	03/10/15	6.61	13.95	0.23	0.42	132	337	2.17	1.3	0.4

Notes:

¹Reported water quality parameters reflect stabilized conditions at the conclusion of well purging during low-flow sampling.

 $^2\mbox{Field ORP}$ values are relative to the reference electrode associated with the multi-parameter meter.

³Normalized ORP values have been normalized, using algorithms provided by the instrument manufacturer, to the standard hydrogen electrode (SHE).

⁴Well headspace measurements were obtained using a photoionization detector immediately upon removal of the well's compression cap.

ORP = Oxidation-reduction potential; °C = degrees Celsius; mS/cm = millisiemens per centimeter; mg/L = milligrams per liter; mV = millivolts; NTU = nephelometric turbidity units ppm = parts per million

Table 2Summary of Groundwater Level MeasurementsTiger Oil North 1stYakima, Washington

Well Number	Grid Northing ¹ (feet)	Grid Easting ¹ (feet)	Top of Casing Elevation ² (feet)	Screen Elevation ² (feet)	Date Measured	Depth to Groundwater ³ (feet)	Groundwater Elevation ² (feet)	Change in Groundwater Elevation ⁴ (feet)
					09/18/14	13.78	1,071.07	NA
N1MW-1	470569.0	1637341.4	1,084.85	1075.4 to 1065.4	12/11/14	13.65	1,071.20	0.13
					03/10/15	14.05	1,070.80	-0.40
					09/18/14	13.31	1,070.50	NA
N1MW-2	470616.9	1637480.0	1,083.81	1073.8 to 1063.8	12/11/14	13.01	1,070.80	0.30
					03/10/15	13.30	1,070.51	-0.29
					09/18/14	13.75	1,070.86	NA
N1MW-3	470475.5	1637358.7	1,084.61	1074.6 to 1064.6	12/11/14	13.56	1,071.05	0.19
					03/10/15	13.86	1,070.75	-0.30
					09/18/14	11.10	1,071.03	NA
N1MW-4	470595.3	1637199.9	1,082.13	1075.1 to 1065.1	12/11/14	10.91	1,071.22	0.19
					03/10/15	11.26	1,070.87	-0.35
					09/18/14	12.48	1,070.95	NA
N1MW-5	470681.7	1637363.0	1,083.43	1074.4 to 1064.4	12/11/14	12.27	1,071.16	0.21
					03/10/15	12.56	1,070.87	-0.29

Notes:

¹Grid northing and easting are referenced to the North American Datum of 1983 (NAD83), Washington State Plane Coordinate System, South Zone.

²Elevations are referenced to the North American Vertical Datum of 1988 (NAVD88).

³Depth to water measurements obtained from the north side of the top of PVC well casing.

⁴Represents change in groundwater elevation from previous monitoring event, as measured in monitoring wells.

NA = Not Applicable

Table 3

Summary of Chemical Analytical Results - Groundwater¹

Tiger Oil North 1st Yakima, Washington

	T	1			1	1			1						T		
Well ID	Regulatory		N1MW-1		Duplicate (N1MW-1)		N1MW-2			N1MW-3			N1MW-4			N1MW-5	
Date Sampled		09/18/14	12/11/14	03/10/15	03/10/15	09/18/14	12/11/14	03/10/15	09/18/14	12/11/14	03/10/15	09/18/14	12/11/14	03/10/15	09/18/14	12/11/14	03/10/15
Method NWTPH-Gx - Gasoline Range (µg/L)																	
Gasoline-range hydrocarbons	800/1,000 ³	256	<100	120	110	506	372	340	<100	<100	<100	<100	<100	<100	<100	<100	<100
Method NWTPH-Dx - Diesel Range (µg/L)																	
Diesel-range hydrocarbons	500	<0.234	<233	<230	<230	459	269 J	280	<231	<234	<240	<232	<232	<240	238	<234	<230
Diesel-range hydrocarbons w/silica gel	500	NT	NT	<230	<230	<229	247 J	230	NT	NT	<240	NT	NT	<240	<230	NT	<230
Heavy oil-range hydrocarbons	500	<0.389	<388	<380	<390	<382	<383	<390	<386	<389	<390	<386	<387	<390	<384	<391	<380
Heavy oil-range hydrocarbons w/silica gel	500	NT	NT	<380	<390	<382	<383	<390	NT	NT	<390	NT	NT	<390	<384	NT	<380
Method EPA 8011 - EDB (µg/L)		•	-	•	•	•	•	•	•	•		•				•	
1,2-Dibromoethane (EDB)	0.01	NT	<0.0100	<0.010	<0.010	NT	<0.0100	<0.010	NT	<0.0100	<0.010	NT	<0.0100	<0.010	NT	<0.0100	<0.010
Method EPA 8260C - VOCs (µg/L) ⁴	•	•					•					•			•	•	•
1,2-Dichloroethane (EDC)	5	<1.00	<1.00	<1.0	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0
1,2,4-Trimethylbenzene	NE	4.12	<1.00	5.0 J	3.4 J	1.08	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0
1,3,5-Trimethylbenzene	80 ⁵	1.21	<1.00	<1.0	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0
2-Butanone	4,800 ⁵	<10.0	<10.0	<10	<10	<10.0	16.2	19	<10.0	<10.0	<10	<10.0	<10.0	<10	<10.0	<10.0	<10
Acetone	7,200 ⁵	26.2	<25.0	<25	<25	<25.0	<25.0	<25	<25.0	<25.0	<25	<25.0	<25.0	<25	<25.0	<25.0	<25
Benzene	5	<0.200	<0.200	<0.20	<0.20	<0.200	<0.200	<0.20	<0.200	<0.200	<0.20	<0.200	<0.200	<0.20	<0.200	<0.200	<0.20
Ethylbenzene	700	<1.00	<1.00	<1.0	<1.0	5.17	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0
Hexane	480 ⁵	5.01	<1.00	<1.0	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0
Isopropylbenzene	NE	<1.00	<1.00	<1.0	<1.0	5.69	4.59	2.6	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0
Methyl t-butyl ether (MTBE)	20	<1.00	<1.00	<1.0	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0
n-Butylbenzene	400 ⁵	<1.00	<1.00	<1.0	<1.0	4.92	<1.00	2.2	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0
n-Propylbenzene	800 ⁵	<1.00	<1.00	1.9	1.7	15.2	2.56	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	1.22	1.78	<1.0
Naphthalene	160	<2.00	<2.00	<2.0	<2.0	3.15	<2.00	<2.0	<2.00	<2.00	<2.0	<2.00	<2.00	<2.0	<2.00	<2.00	<2.0
sec-Butylbenzene	800 ⁵	<1.00	<1.00	<1.0	<1.0	2.80	3.24	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	1.21	<1.0
Toluene	1,000	<1.00	<1.00	<1.0	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0
Xylene, m-,p-	_	<2.00	<2.00	<2.0	<2.0	<2.00	<2.00	<2.0	<2.00	<2.00	<2.0	<2.00	<2.00	<2.0	<2.00	<2.00	<2.0
Xylene, o-	1,0006	<1.00	<1.00	<1.0	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0	<1.00	<1.00	<1.0
Xlylene, total		<3.00	<3.00	<3.0	<3.0	<3.00	<3.00	<3.0	<3.00	<3.00	<3.0	<3.00	<3.00	<3.0	<3.00	<3.00	<3.0
Metals Method EPA 200.7 - Total Lead (mg/l	,	1	-								-		-	-	T	1	
Lead	0.015	NT	<0.0140	<0.014	<0.014	NT	<0.0140	<0.014	NT	<0.0140	<0.014	NT	<0.0140	<0.014	NT	<0.0140	<0.014
Conventionals (mg/L)			•											-	•		
Nitrate-nitrogen	10 ⁷	0.840	0.610	0.78	0.76	<0.200	<0.200	<0.20	1.24	0.740	0.86	0.950	0.620	1.1	0.490	0.350	0.51
Sulfate	250 ⁸	9.69	7.90	8.8	9.4	5.25	5.50	5.7	10.1	8.25	8.5	8.49	6.92	8.2	9.68	9.25	13
Total organic carbon	NE	1.55	1.05	1.0	1.0	1.66	1.41	1.1	1.22	<1.00	<1.0	1.19	<1.00	1.0	1.36	1.09	1.1

Notes:

¹Chemical analyses conducted by TestAmerica of Spokane, Washington.

²Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup level unless otherwise footnoted.

 3 Cleanup level for Gasoline-range petroleum hydrocarbons (GRPH) is 800 µg/L when benzene is present, 1,000 µg/L when benzene is not present.

⁴Volatile organic compounds (VOCs) detected at concentrations greater than their reporting limits, and benzene, toluene, ethylbenzene and xylenes (BTEX), are listed in the table. For a complete list of VOCs analyzed see the laboratory analytical report, Appendix B. ⁵MTCA Method B cleanup level.

⁶Cleanup level for total xylenes.

⁷Maximum contaminant level established by Title 40, Volume 19 of the Code of Federal Regulations.

⁸Secondary maximum contaminant level recommeded by the Environmental Protection Agency.

J flag indicates results are qualified as estimated. B flag indicates analyte was detected both in the sample and in the blank. U flag indicates analyte was qualified as non-detect. See data validation report for additional information.

Bold indicates analyte concentration exceeds laboratory reporting limit.

 μ g/L = micrograms per liter; mg/L = milligrams per liter; NT = not tested; NE = not established

Table 4

Summary of Chemical Analytical Results - Groundwater PAHs¹ Tiger Oil North 1st Yakima, Washington

				Car	cinogenic P	AHs														
		Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	сРАН ТЕQ ²	Naphthalene	2-Methylnaphthalene	1-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(ghi)perylene
	TEF ²	0.1	1.0	0.1	0.1	0.01	0.1	0.1												
Sample ID	Date Collected	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
N1MW-1	09/18/14	<0.0858	<0.0858	<0.0858	<0.0858	<0.0858	<0.0858	<0.0858	0.06	0.242	0.487	0.400	<0.0858	<0.0858	<0.0858	<0.0858	<0.0858	<0.0858	<0.0858	<0.0858
	03/10/15	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084	0.06	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084
Duplicate (N1MW-1)	09/18/14	<0.0893	<0.0893	<0.0893	<0.0893	<0.0893	<0.0893	<0.0893	0.07	0.331	0.629	0.503	<0.0893	<0.0893	<0.0893	<0.0893	<0.0893	<0.0893	<0.0893	<0.0893
	03/10/15	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	0.06	<0.085 U	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083	<0.083
N1MW-2	09/18/14	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847	0.06	3.24	<0.0847	10.1	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847
	03/10/15	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	0.06	1.1	<0.085	2.6	<0.085	0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085
N1MW-3	09/18/14	<0.0850	<0.0850	<0.0850	<0.0850	<0.0850	<0.0850	<0.0850	0.06	<0.0850	<0.0850	<0.0850	<0.0850	<0.0850	<0.0850	<0.0850	<0.0850	<0.0850	<0.0850	<0.0850
	03/10/15	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	0.06	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085
N1MW-4	09/18/14	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	0.06	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854
	03/10/15	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	0.06	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085
N1MW-5	09/18/14	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847	0.06	0.550	<0.0847	0.410	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847	<0.0847
	03/10/15	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084	0.06	<0.23 U	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084	<0.084
MTCA Method A Unres	stricted Land Use CUL ³	NE	0.1	NE	NE	NE	NE	NE	0.14		160 ⁵		NE	NE	NE	NE	NE	NE	NE	NE

Notes:

¹Polycyclic aromatic hydrocarbons (PAHs) analyzed using EPA Method 8270D by TestAmerica Laboratories, Inc., in Spokane, Washington.

²Carcinogenic PAH (cPAH) toxic equivalency (TEQ) calculated using toxicity equivalency factors (TEF) from MTCA Table 708-2, based on methodology described in MTCA Cleanup Regulation WAC 173-340-708. One half the reporting limit was used to calculate the TEQ. ³Model Toxics Control Act (MTCA) Method A unrestricted land use cleanup levels.

Model Toxics Control Act (MTCA) Method A unrestricted land use ci

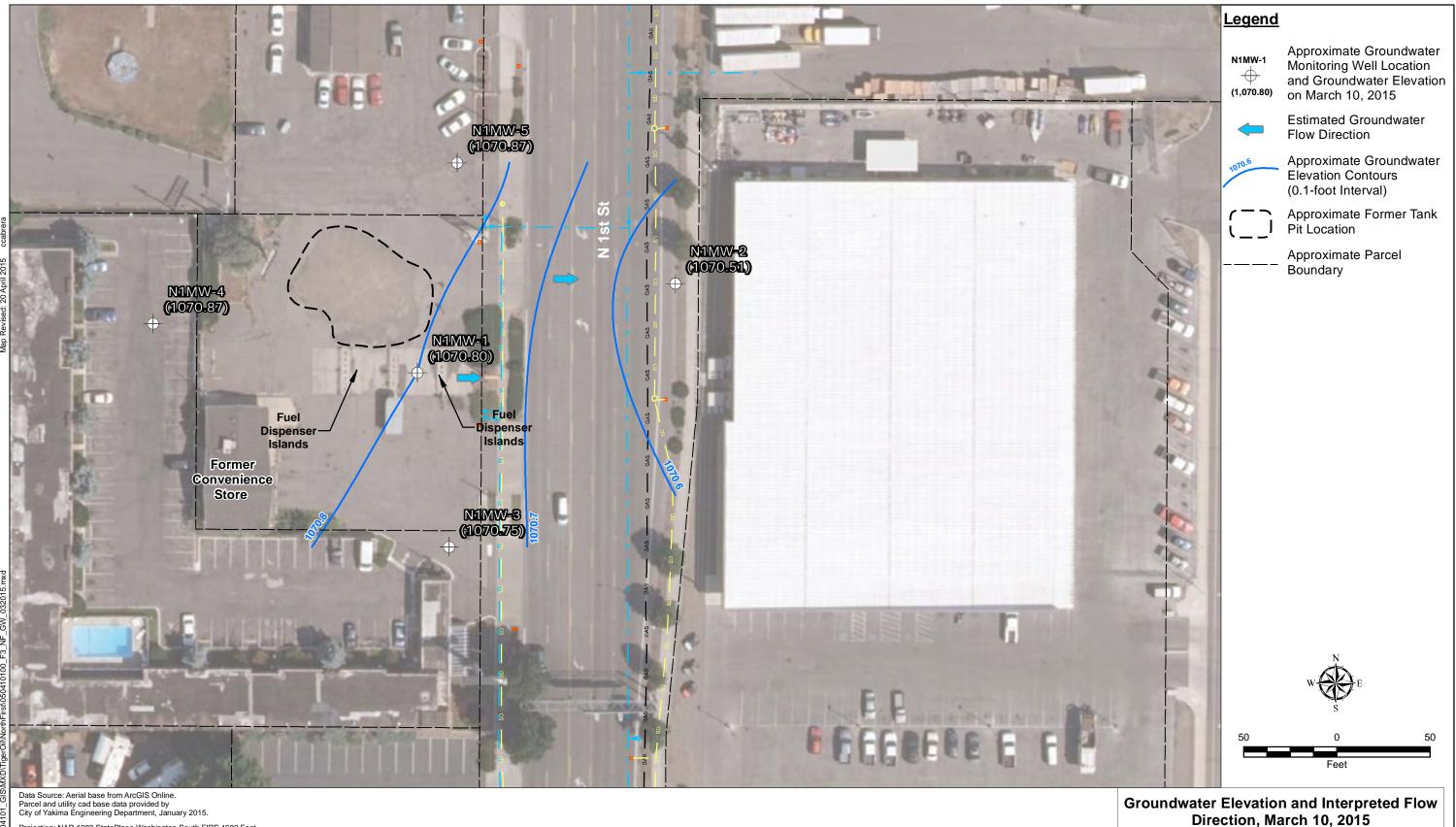
⁴MTCA Method A cleanup level for benzo(a)pyrene.

⁵Cleanup level for total naphthalenes

 μ g/L = micrograms per liter; NE = Not Established.

 $\ensuremath{\textbf{Bold}}$ indicates analyte concentration exceeds laboratory reporting limit.

U flag indicates analyte was qualified as non-detect. See data validation report for additional information.



- 2. This drawing is for information purposes. It is intended
- to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content
- of electronic files. The master file is stored by GeoEngineers, Inc.
- and will serve as the official record of this communication.

GEOENGINEERS

Figure 2

- Projection: NAD 1983 StatePlane Washington South FIPS 4602 Feet

- Notes: 1. The locations of all features shown are approximate. 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. 3. Groundwater elevations are referred to the North American Varieral Datum of 1998 (NUN 89)
- Vertical Datum of 1988 (NAVD 88). 4. Groundwater elevations contours interpreted by Surfer Version 12.

Tiger Oil North 1st Yakima, Washington

GEOENGINEERS

Figure 3

APPENDIX A Field Procedures

APPENDIX A FIELD PROCEDURES

General

Groundwater conditions at the Tiger Oil North 1st site were monitored on March 10, 2015 by measuring depth to groundwater and sampling groundwater in monitoring wells N1MW-1 through N1MW-5, which are situated at the approximate locations shown on Figures 2 and 3. Field methods generally were performed in compliance with the project Work Plan dated April 15, 2014 (GeoEngineers, 2014a).

Groundwater Elevations

Depths to groundwater were measured relative to the north side of the monitoring well casing rim using an electric water level indicator. The probe of the water level indicator was decontaminated between wells using a detergent wash, followed by two distilled water rinses.

Low-Flow Sampling Procedures

Groundwater sampling was performed consistent with the EPA's low-flow groundwater sampling procedure, as described by EPA (1996) and Puls and Barcelona (1996). Monitoring well purging and sampling activities were accomplished using a Cole-Parmer Masterflex or GeoTech Environmental peristaltic pump and dedicated tubing. During purging activities, water quality parameters, including pH, conductivity, temperature, ORP and DO, were measured using a Troll 9500 multi-parameter meter equipped with a flow-through cell. Water quality measurements were recorded approximately every 3 minutes. The meter calibration was verified at the beginning of each work day consistent with manufacturer recommendations prior to purging and sampling activities.

Groundwater samples were collected after (1) water quality parameters had stabilized; or (2) a maximum purge time of 30 minutes was achieved. During purging and sampling, purge rate was not allowed to exceed 500 milliliters per minute. Water quality parameter stabilization criteria include the following:

- Turbidity: ±10 percent for values greater than 5 nephelometric turbidity units (NTU);
- Dissolved oxygen: ±10 percent for values greater than 0.5 mg/L;
- Conductivity: ±3 percent;
- Temperature: ±3 percent; and
- Oxidation reduction potential: ±10 millivolts (mV).

After groundwater quality stabilization criteria or maximum purge time were reached, the pump's discharge tubing was disconnected from the flow-through cell and groundwater samples were collected for analysis. Each sample was pumped directly into sample containers supplied by the laboratory. Groundwater samples collected for chemical analysis were kept cool during on-site storage and transport to the laboratory. Chain-of-custody procedures were observed during transport of the groundwater samples.

APPENDIX B

Chemical Analytical Laboratory Report and Data Validation

APPENDIX B CHEMICAL ANALYTICAL LABORATORY REPORT AND DATA VALIDATION

Project:	Tiger Oil – North 1 st Street First Quarter 2015 Groundwater Samples
GEI File No:	00504-101-00
Date:	April 13, 2015

General

This report documents the results of a United States EPA-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of groundwater samples collected as part of the March 2015 sampling event, and the associated laboratory and field quality control samples. The samples were obtained from the Tiger Oil, North 1st Street Site located at 1808 North 1st Street in Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The QA/QC procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with Quality Assurance Project Plan (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014a), the data validation included review of the following QC elements:

- Data package completeness
- Chain-of-custody documentation
- Holding times and sample preservation
- Surrogate recoveries
- Method and trip blanks
- Matrix spikes/matrix spike duplicates
- Laboratory control samples/laboratory control sample duplicates
- Field duplicates

Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the SDG listed below in Table B-1.

TABLE B-1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
590-398-1	MW-1-031015, MW-Dup-031015, MW-2-031015, MW-3-031015, MW-4-031015, MW-5-031015, Trip Blank

CHEMICAL ANALYSIS PERFORMED

TestAmerica, located in Spokane, Washington, performed laboratory analyses on the groundwater samples using the following methods:

- Petroleum hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Petroleum hydrocarbons with silica gel (SG) cleanup (NWTPH-Dx/SG) by Method NWTPH-Dx/SG;
- GRPH (NWTPH-Gx) by Method NWTPH-Gx;
- VOCs by Method SW8260C;
- EDB by Method SW8011;
- PAHs by Method SW8270D-SIM;
- Total metals by Method EPA200.7;
- Anions by Method EPA300.0; and
- TOC by Method SM5310C

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory appears to have followed adequate corrective action processes; however, the laboratory analytical report does not contain a case narrative.

Chain-of-Custody Documentation

COC forms were provided with the laboratory analytical report. The COCs were accurate and complete when submitted to the laboratory, with the following exception:

SDG 590-398-1: The laboratory noted that the trip blank sample was not written on the COC.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. All surrogate percent recoveries for field samples were within the laboratory control limits.

Method and Trip Blanks

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in any of the method blanks, with following exception:

SDG 590-398-1: (PAHs) There was a positive result for naphthalene in the method blank extracted on March 16, 2015. The associated field samples, MW-5-031015 and MW-Dup-031015 exhibited a positive result for this analyte. The positive results for naphthalene were qualified as non-detected (U) in these samples.

In cases were target analytes are qualified as non-detected because of blank contamination, the new reporting limit is elevated to the level of the former concentration reported in the sample.

Trip Blanks

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. None of the target analytes were detected above the reporting limits in the trip blank.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is

calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if any element percent recoveries were outside the control limits in the matrix spike. The percent recovery control limits for matrix spikes are 75 to 125 percent.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A LCS is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/laboratory control sample duplicate (LCSD) control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits, with the following exception:

SDG 590-398-1: (VOCs) The percent recovery for acetone was greater than the control limits in the LCS extracted on March 12, 2015. There were no positive results for this target analyte in the associated field samples; therefore, no action was required for this outlier.

Field Duplicates

In order to assess precision, field duplicate samples are collected and analyzed along with the reviewed sample batches. The duplicate samples are analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit is 20 percent.

SDG 590-398-1: One field duplicate sample pair, MW-1-031015 and MW-Dup-031015, was submitted with this SDG. The precision criteria for all target analytes were met for this sample pair, with the exception of 1,2,4-Trimethylbenzene. The positive results for this target analyte were qualified as estimated (J) in this sample pair.

MISCELLANEOUS

SDG 590-398-1: (PAHs) The laboratory reported two sets of PAH results for Samples MW-5-031015 and MW-Dup-031015, an initial and a reanalysis, due to a method blank detection of naphthalene and positive results for this analyte in these samples. The reanalysis was performed outside of holding time; therefore,

the entire data set of target analytes in the reanalysis sample were labeled as DNR and should not be used for any purpose.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS percent recovery values, with the exception noted above. Precision was acceptable, as demonstrated by the LCS/LCSD and field duplicate RPD values, with the exception noted above.

All data are acceptable for the intended use, with the following qualifications listed below in Table B-2.

Sample ID	Analyte	Qualifier	Result
MW-1-031015	1,2,4-Trimethylbenzene	J	Field Duplicate RPD
MW-5-031015	Naphthalene	U	Method Blank Contamination
MW-Dup-031015	Naphthalene	U	Method Blank Contamination
	1,2,4-Trimethylbenzene	J	Field Duplicate RPD

TABLE B-2: SUMMARY OF QUALIFIED SAMPLES

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-398-1 Client Project/Site: Tiger Oil NIST

For: GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by: 4/3/2015 10:34:39 AM Michelle Johnston, Project Manager II (303)736-0110 michelle.johnston@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	
Sample Summary	3
Definitions	
Client Sample Results	5
QC Sample Results	27
Chronicle	37
Certification Summary	42
Method Summary	43
Chain of Custody	44
Receipt Checklists	46

Sample Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil NIST

Lab Sample ID

590-398-1 590-398-2

590-398-3

590-398-4

590-398-5

590-398-6

590-413-1

590-413-2

590-413-3

590-413-4

590-413-5

590-413-6

590-413-7

Client Sample ID

MW-1-031015

MW-2-031015

MW-3-031015

MW-4-031015

MW-5-031015

MW-1-031015

MW-2-031015

MW-3-031015

MW-4-031015

MW-5-031015

Trip Blank

MW-Dup-031015

MW-DUP-031015

TestAmerica Job ID: 590-398-1

Matrix	Collected	Received	
Water	03/10/15 12:05	03/11/15 09:50	
Water	03/10/15 08:54	03/11/15 09:50	
Water	03/10/15 09:48	03/11/15 09:50	5
Water	03/10/15 10:23	03/11/15 09:50	J
Water	03/10/15 11:15	03/11/15 09:50	
Water	03/10/15 12:00	03/11/15 09:50	
Water	03/10/15 12:05	03/12/15 09:05	
Water	03/10/15 08:54	03/12/15 09:05	
Water	03/10/15 09:48	03/12/15 09:05	
Water	03/10/15 10:23	03/12/15 09:05	8
Water	03/10/15 11:15	03/12/15 09:05	
Water	03/10/15 12:00	03/12/15 09:05	9
Water	03/10/15 08:54	03/12/15 09:05	

Qualifiers

GC	MS	VOA

GC/MS VOA	A	Δ.
Qualifier	Qualifier Description	
*	LCS or LCSD exceeds the control limits	5
GC/MS Sem	ni VOA	
Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	
н	Sample was prepped or analyzed beyond the specified holding time	
*	LCS or LCSD exceeds the control limits	
		8

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: GeoEngineers Inc Project/Site: Tiger Oil NIST

Date Collected: 03/10/15 12:05

Date Received: 03/11/15 09:50

Sulfate

Client Sample ID: MW-1-031015

TestAmerica Job ID: 590-398-1

Lab Sample ID: 590-398-1

Matrix: Water

5
8
9

Method: 300.0 - Anions, Ion Chromat	tography								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.78		0.20		mg/L			03/11/15 12:52	1
Sulfate	8.8		0.50		mg/L			03/11/15 12:52	1
lient Sample ID: MW-2-031015							Lab S	ample ID: 590)-398-2
ate Collected: 03/10/15 08:54								Matrix	x: Water
ate Received: 03/11/15 09:50									
Method: 300.0 - Anions, Ion Chroma	tography								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND		0.20		mg/L			03/11/15 13:06	1
Sulfate	5.7		0.50		mg/L			03/11/15 13:06	1
lient Sample ID: MW-3-031015							Lab S	ample ID: 590)-398-3
ate Collected: 03/10/15 09:48								Matrix	x: Water
ate Received: 03/11/15 09:50									
Method: 300.0 - Anions, Ion Chroma	tography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.86		0.20		mg/L			03/11/15 13:20	1
Sulfate	8.5		0.50		mg/L			03/11/15 13:20	1
lient Sample ID: MW-4-031015							Lab S	ample ID: 590)-398-4
•								-	x: Water
ate Received: 03/11/15 09:50									
Method: 300.0 - Anions, Ion Chroma	tography								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	1.1		0.20		mg/L			03/11/15 13:34	1
Sulfate	8.2		0.50		mg/L			03/11/15 13:34	1
lient Sample ID: MW-5-031015							Lab S	ample ID: 590)-398-5
•									x: Water
ate Received: 03/11/15 09:50									
Method: 300.0 - Anions, Ion Chroma	tography								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.51		0.20		mg/L			03/11/15 13:48	1
Sulfate	13		0.50		mg/L			03/11/15 13:48	1
lient Sample ID: MW-DUP-0310	015						Lab S	ample ID: 590)-398-6
ate Collected: 03/10/15 12:00									x: Water
ate Received: 03/11/15 09:50									
Method: 300.0 - Anions, Ion Chromat	tography								
Method: 300.0 - Anions, Ion Chromat Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 300.0 - Anions, Ion Chromat Analyte Vitrate as N Sulfate lient Sample ID: MW-5-031015 ate Collected: 03/10/15 11:15	Result	Qualifier	0.20	MDL	mg/L	<u>D</u>	Prepared	Analyze 03/11/15 13 03/11/15 13 ample ID:	Matrix ed 3:34 3:34 : 59(

1

03/11/15 14:31

0.50

mg/L

9.4

Client: GeoEngineers Inc Project/Site: Tiger Oil NIST

Hexachlorobutadiene

Hexane

Client Sample ID: MW-1-031015 Date Collected: 03/10/15 12:05 Date Received: 03/12/15 09:05

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: 590-413-1 Matrix: Water

5

1	
	ŏ
1	
1	Q
1	3
1	
1	
1	
1	
1	
1	
1	
1	
1	
. 1	

			D Prepared		Dil Fac
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
5.0	1.0	ug/L		03/12/15 15:39	1
ND	5.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0	ug/L		03/12/15 15:39	1
ND	1.0			03/12/15 15:39	1
ND		· · · · · · · · · · · · · · · · · · ·			
		-			
					1
					1
					1
ND *	25	· · · · · · · · · · · · · · · · · · ·			
					1
		-			1
					1
					1
		-			
					•
		-			•
		· · · · · · · · · · · · · · · · · · ·			•
		-			
		ug/L			-
ND	1.0	ug/L		03/12/15 15:39	
	ND ND ND ND ND ND ND ND ND S.0 ND ND ND ND ND ND ND ND ND ND ND ND ND	Result Qualifier RL ND 1.0 ND	Result Qualifier RL MDL Unit ND 1.0 ug/L ND </td <td>Result Qualifier RL MDL Unit D Prepared ND 1.0 ug/L </td> <td>Result Qualifier RL MDL Unit D Propared Analyzed ND 1.0 ug/L 03/12/15 15.39 03/12/15 15.39 ND 1.0 ug/L 03/12/15 15.39</td>	Result Qualifier RL MDL Unit D Prepared ND 1.0 ug/L	Result Qualifier RL MDL Unit D Propared Analyzed ND 1.0 ug/L 03/12/15 15.39 03/12/15 15.39 ND 1.0 ug/L 03/12/15 15.39

1

1

03/12/15 15:39

03/12/15 15:39

2.0

1.0

ug/L

ug/L

ND

ND

RL

MDL Unit

D

Prepared

Analyte

Client Sample ID: MW-1-031015 Date Collected: 03/10/15 12:05 Date Received: 03/12/15 09:05

Lab Sample ID: 590-413-1 Matrix: Water

Analyzed

5

Dil Fac

	8
	9

	nooun	Quanto				/	
Isopropylbenzene	ND		1.0	ug/L		03/12/15 15:39	1
m,p-Xylene	ND		2.0	ug/L		03/12/15 15:39	1
Methyl tert-butyl ether	ND		1.0	ug/L		03/12/15 15:39	1
Methylene Chloride	ND		10	ug/L		03/12/15 15:39	1
Naphthalene	ND		2.0	ug/L		03/12/15 15:39	1
n-Butylbenzene	ND		1.0	ug/L		03/12/15 15:39	1
N-Propylbenzene	1.9		1.0	ug/L		03/12/15 15:39	1
o-Xylene	ND		1.0	ug/L		03/12/15 15:39	1
p-Isopropyltoluene	ND		1.0	ug/L		03/12/15 15:39	1
sec-Butylbenzene	ND		1.0	ug/L		03/12/15 15:39	1
Styrene	ND		1.0	ug/L		03/12/15 15:39	1
tert-Butanol	ND		5.0	ug/L		03/12/15 15:39	1
tert-Butylbenzene	ND		1.0	ug/L		03/12/15 15:39	1
Tetrachloroethene	ND		1.0	ug/L		03/12/15 15:39	1
Toluene	ND		1.0	ug/L		03/12/15 15:39	1
trans-1,2-Dichloroethene	ND		1.0	ug/L		03/12/15 15:39	1
trans-1,3-Dichloropropene	ND		1.0	ug/L		03/12/15 15:39	1
Trichloroethene	ND		1.0	ug/L		03/12/15 15:39	1
Trichlorofluoromethane	ND		1.0	ug/L		03/12/15 15:39	1
Vinyl chloride	ND		0.20	ug/L		03/12/15 15:39	1
Xylenes, Total	ND		3.0	ug/L		03/12/15 15:39	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		70 - 140			03/12/15 15:39	1
4-Bromofluorobenzene (Surr)	102		68.7 - 141			03/12/15 15:39	1
Dibromofluoromethane (Surr)	94		71.2 - 143			03/12/15 15:39	1
Toluene-d8 (Surr)	103		74.1 - 135			03/12/15 15:39	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

Analyte	Result Qualit	ifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	120	100	ug/L			03/17/15 10:46	1
Surrogate	%Recovery Qualit	ifier Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		68.7 - 141				03/17/15 10:46	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	0.084		ug/L		03/16/15 10:37	03/17/15 12:26	1
2-Methylnaphthalene	ND	0.084		ug/L		03/16/15 10:37	03/17/15 12:26	1
1-Methylnaphthalene	ND	0.084		ug/L		03/16/15 10:37	03/17/15 12:26	1
Acenaphthylene	ND	0.084		ug/L		03/16/15 10:37	03/17/15 12:26	1
Acenaphthene	ND	0.084		ug/L		03/16/15 10:37	03/17/15 12:26	1
Fluorene	ND	0.084		ug/L		03/16/15 10:37	03/17/15 12:26	1
Phenanthrene	ND	0.084		ug/L		03/16/15 10:37	03/17/15 12:26	1
Anthracene	ND	0.084		ug/L		03/16/15 10:37	03/17/15 12:26	1
Fluoranthene	ND	0.084		ug/L		03/16/15 10:37	03/17/15 12:26	1
Pyrene	ND	0.084		ug/L		03/16/15 10:37	03/17/15 12:26	1
Benzo[a]anthracene	ND	0.084		ug/L		03/16/15 10:37	03/17/15 12:26	1
Chrysene	ND	0.084		ug/L		03/16/15 10:37	03/17/15 12:26	1
Benzo[b]fluoranthene	ND	0.084		ug/L		03/16/15 10:37	03/17/15 12:26	1

Client: GeoEngineers Inc Project/Site: Tiger Oil NIST

Client Sample ID: MW-1-031015 Date Collected: 03/10/15 12:05 Date Received: 03/12/15 09:05

Operative lettle Operation

Lab Sample ID: 590-413-1 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[k]fluoranthene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 12:26	
Benzo[a]pyrene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 12:26	
Indeno[1,2,3-cd]pyrene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 12:26	
Dibenz(a,h)anthracene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 12:26	
Benzo[g,h,i]perylene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 12:26	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	77		32.7 _ 135				03/16/15 10:37	03/17/15 12:26	
2-Fluorobiphenyl (Surr)	69		44.3 - 120				03/16/15 10:37	03/17/15 12:26	
p-Terphenyl-d14	89		59.5 - 154				03/16/15 10:37	03/17/15 12:26	
Method: 8011 - EDB, DBCP, and	1,2,3-TCP (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	ND		0.010		ug/L		03/20/15 13:52	03/20/15 18:20	
Method: NWTPH-Dx - Northwest	- Semi-Volatile	Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO) (C10-C25)	ND		0.23		mg/L		03/17/15 11:40	03/18/15 16:01	
Residual Range Organics (RRO) (C25-C36)	ND		0.38		mg/L		03/17/15 11:40	03/18/15 16:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	88		50 - 150				03/17/15 11:40	03/18/15 16:01	
n-Triacontane-d62	86		50 - 150				03/17/15 11:40	03/18/15 16:01	
Method: NWTPH-Dx - Northwest Analyte		Petroleum Qualifier	Products (GC) RL		Gel Cleanu Unit	р D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO)			0.23		mg/L		03/17/15 11:40	03/18/15 19:55	
(C10-C25)					-				
Residual Range Organics (RRO) (C25-C36)	ND		0.38		mg/L		03/17/15 11:40	03/18/15 19:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	94		50 - 150				03/17/15 11:40	03/18/15 19:55	
n-Triacontane-d62	89		50 - 150				03/17/15 11:40	03/18/15 19:55	
Method: 200.7 Rev 4.4 - Metals (I						_	_		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	ND		0.014		mg/L		03/19/15 14:47	03/20/15 10:32	
General Chemistry	_	0.115				_	. .		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total Organic Carbon	1.0		1.0		mg/L			03/16/15 09:42	
lient Sample ID: MW-2-0310)15						Lab Sa	mple ID: 590	
ate Collected: 03/10/15 08:54								Matrix	c: Wate

Dil Fac Result Qualifier RL MDL Unit Analyte D Prepared Analyzed 1,1,1,2-Tetrachloroethane 1.0 03/12/15 16:02 ND ug/L 1 ND 03/12/15 16:02 1,1,1-Trichloroethane 1.0 ug/L 1

TestAmerica Spokane

Isopropylbenzene

m,p-Xylene

Client Sample ID: MW-2-031015 Date Collected: 03/10/15 08:54 Date Received: 03/12/15 09:05

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-413-2 Matrix: Water

5

Analyte	Result (MDL Ur	nit	D Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND	1.0	ug	J/L		03/12/15 16:02	1
1,1,2-Trichloroethane	ND	1.0	ug	j/L		03/12/15 16:02	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug	J/L		03/12/15 16:02	1
1,1-Dichloroethane	ND	1.0	ug	j/L		03/12/15 16:02	1
1,1-Dichloroethene	ND	1.0	ug	j/L		03/12/15 16:02	1
1,1-Dichloropropene	ND	1.0	ug	J/L		03/12/15 16:02	1
1,2,3-Trichlorobenzene	ND	1.0	ug	J/L		03/12/15 16:02	1
1,2,3-Trichloropropane	ND	1.0	ug	j/L		03/12/15 16:02	1
1,2,4-Trichlorobenzene	ND	1.0	ug	J/L		03/12/15 16:02	1
1,2,4-Trimethylbenzene	ND	1.0	ug	J/L		03/12/15 16:02	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug	j/L		03/12/15 16:02	1
1,2-Dibromoethane (EDB)	ND	1.0	ug	J/L		03/12/15 16:02	1
1,2-Dichlorobenzene	ND	1.0	ug	j/L		03/12/15 16:02	1
1,2-Dichloroethane	ND	1.0	ug	р/L		03/12/15 16:02	1
1,2-Dichloropropane	ND	1.0	ug			03/12/15 16:02	1
1,3,5-Trimethylbenzene	ND	1.0	ug	J/L		03/12/15 16:02	1
1,3-Dichlorobenzene	ND	1.0	ug	j/L		03/12/15 16:02	1
1,3-Dichloropropane	ND	1.0	ug	j/L		03/12/15 16:02	1
1,4-Dichlorobenzene	ND	1.0	ug	J/L		03/12/15 16:02	1
2,2-Dichloropropane	ND	1.0	ug	j/L		03/12/15 16:02	1
2-Butanone (MEK)	19	10	ug	J/L		03/13/15 12:42	1
2-Chlorotoluene	ND	1.0	ug	J/L		03/12/15 16:02	1
P-Hexanone	ND	10	ug	j/L		03/12/15 16:02	1
I-Chlorotoluene	ND	1.0	ug	J/L		03/12/15 16:02	1
-Methyl-2-pentanone (MIBK)	ND	10	ug	J/L		03/12/15 16:02	1
Acetone	ND '	* 25	ug	j/L		03/12/15 16:02	1
Benzene	ND	0.20	ug	J/L		03/12/15 16:02	1
Bromobenzene	ND	1.0	ug	J/L		03/12/15 16:02	1
Bromochloromethane	ND	1.0	ug	j/L		03/12/15 16:02	1
Bromodichloromethane	ND	1.0	ug	J/L		03/12/15 16:02	1
Bromoform	ND	1.0	ug	J/L		03/12/15 16:02	1
Bromomethane	ND	5.0	ug	j/L		03/12/15 16:02	1
Carbon disulfide	ND	1.0	ug	J/L		03/12/15 16:02	1
Carbon tetrachloride	ND	1.0	ug	J/L		03/12/15 16:02	1
Chlorobenzene	ND	1.0	ug	j/L		03/12/15 16:02	1
Chloroethane	ND	1.0	ug	J/L		03/12/15 16:02	1
Chloroform	ND	1.0	ug	J/L		03/12/15 16:02	1
Chloromethane	ND	3.0	ug	j/L		03/12/15 16:02	1
sis-1,2-Dichloroethene	ND	1.0	ug	J/L		03/12/15 16:02	1
sis-1,3-Dichloropropene	ND	1.0	ug	J/L		03/12/15 16:02	1
Dibromochloromethane	ND	1.0	ug	j/L		03/12/15 16:02	1
Dibromomethane	ND	1.0	ug	J/L		03/12/15 16:02	1
Dichlorodifluoromethane	ND	1.0	ug	J/L		03/12/15 16:02	1
Dichlorofluoromethane	ND	0.20	ug	j/L		03/12/15 16:02	1
Ethylbenzene	ND	1.0	ug	J/L		03/12/15 16:02	1
Hexachlorobutadiene	ND	2.0	ug	J/L		03/12/15 16:02	1
Hexane	ND	1.0	ug	j/L		03/12/15 16:02	1

1

1

03/12/15 16:02

03/12/15 16:02

1.0

2.0

2.6

ND

ug/L

ug/L

Client Sample ID: MW-2-031015 Date Collected: 03/10/15 08:54 Date Received: 03/12/15 09:05

Lab Sample ID: 590-413-2 Matrix: Water

5
8
9

Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	1.0		ug/L			03/12/15 16:02	1
Methylene Chloride	ND	10		ug/L			03/12/15 16:02	1
Naphthalene	ND	2.0		ug/L			03/12/15 16:02	1
n-Butylbenzene	2.2	1.0		ug/L			03/12/15 16:02	1
N-Propylbenzene	ND	1.0		ug/L			03/12/15 16:02	1
o-Xylene	ND	1.0		ug/L			03/12/15 16:02	1
p-Isopropyltoluene	ND	1.0		ug/L			03/12/15 16:02	1
sec-Butylbenzene	ND	1.0		ug/L			03/12/15 16:02	1
Styrene	ND	1.0		ug/L			03/12/15 16:02	1
tert-Butanol	ND	5.0		ug/L			03/12/15 16:02	1
tert-Butylbenzene	ND	1.0		ug/L			03/12/15 16:02	1
Tetrachloroethene	ND	1.0		ug/L			03/12/15 16:02	1
Toluene	ND	1.0		ug/L			03/12/15 16:02	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			03/12/15 16:02	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			03/12/15 16:02	1
Trichloroethene	ND	1.0		ug/L			03/12/15 16:02	1
Trichlorofluoromethane	ND	1.0		ug/L			03/12/15 16:02	1
Vinyl chloride	ND	0.20		ug/L			03/12/15 16:02	1
Xylenes, Total	ND	3.0		ug/L			03/12/15 16:02	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		70 - 140		03/12/15 16:02	1
1,2-Dichloroethane-d4 (Surr)	93		70 - 140		03/13/15 12:42	1
4-Bromofluorobenzene (Surr)	102		68.7 - 141		03/12/15 16:02	1
4-Bromofluorobenzene (Surr)	106		68.7 - 141		03/13/15 12:42	1
Dibromofluoromethane (Surr)	96		71.2 - 143		03/12/15 16:02	1
Dibromofluoromethane (Surr)	95		71.2 - 143		03/13/15 12:42	1
Toluene-d8 (Surr)	99		74.1 - 135		03/12/15 16:02	1
Toluene-d8 (Surr)	99		74.1 - 135		03/13/15 12:42	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)											
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Gasoline	340		100		ug/L			03/17/15 11:08	1	
	Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac	
			quanner					ricpurcu			
	4-Bromofluorobenzene (Surr)	92		68.7 - 141					03/17/15 11:08	1	

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.1	в	0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
2-Methylnaphthalene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
1-Methylnaphthalene	2.6		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Acenaphthylene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Acenaphthene	0.085		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Fluorene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Phenanthrene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Anthracene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Fluoranthene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Pyrene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Benzo[a]anthracene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1

TestAmerica Spokane

Client: GeoEngineers Inc Project/Site: Tiger Oil NIST

Client Sample ID: MW-2-031015 Date Collected: 03/10/15 08:54 Date Received: 03/12/15 09:05

Lab Sample ID: 590-413-2 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Benzo[b]fluoranthene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Benzo[k]fluoranthene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Benzo[a]pyrene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Indeno[1,2,3-cd]pyrene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Dibenz(a,h)anthracene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Benzo[g,h,i]perylene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 12:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	77		32.7 - 135				03/16/15 10:37	03/17/15 12:53	1
2-Fluorobiphenyl (Surr)	62		44.3 - 120				03/16/15 10:37	03/17/15 12:53	1
p-Terphenyl-d14	90		59.5 - 154				03/16/15 10:37	03/17/15 12:53	1
Method: 8011 - EDB, DBCP, and	1,2,3-TCP (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.010		ug/L		03/20/15 13:52	03/20/15 18:36	1
Method: NWTPH-Dx - Northwest	t - Semi-Volatile	Petroleun	n Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	0.28		0.23		mg/L		03/17/15 11:40	03/18/15 16:24	1
Residual Range Organics (RRO) (C25-C36)	ND		0.39		mg/L		03/17/15 11:40	03/18/15 16:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	94		50 - 150				03/17/15 11:40	03/18/15 16:24	1
n-Triacontane-d62	91		50 - 150				03/17/15 11:40	03/18/15 16:24	1
Method: NWTPH-Dx - Northwest	t - Semi-Volatile	Petroleun	n Products (GC) -	Silica	Gel Clean	up			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	0.23		0.23		mg/L		03/17/15 11:40	03/18/15 20:19	1
Residual Range Organics (RRO) (C25-C36)	ND		0.39		mg/L		03/17/15 11:40	03/18/15 20:19	1
	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate							03/17/15 11:40	03/18/15 20:19	1
	96		50 - 150						
Surrogate o-Terphenyl n-Triacontane-d62	96 93		50 - 150 50 - 150				03/17/15 11:40	03/18/15 20:19	1
o-Terphenyl	93 ICP)	Qualifier					03/17/15 11:40	03/18/15 20:19	1 Dil Fac

 General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	1.1		1.0		mg/L			03/16/15 09:42	1

Client: GeoEngineers Inc Project/Site: Tiger Oil NIST

Hexane

Client Sample ID: MW-3-031015 Date Collected: 03/10/15 09:48 Date Received: 03/12/15 09:05

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: 590-413-3 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			03/12/15 16:24	1
1,1,1-Trichloroethane	ND		1.0	ι	ug/L			03/12/15 16:24	1
1,1,2,2-Tetrachloroethane	ND		1.0	ι	ug/L			03/12/15 16:24	1
1,1,2-Trichloroethane	ND		1.0	l	ıg/L			03/12/15 16:24	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	ι	ug/L			03/12/15 16:24	1
1,1-Dichloroethane	ND		1.0	ι	ug/L			03/12/15 16:24	1
1,1-Dichloroethene	ND		1.0	ι	ıg/L			03/12/15 16:24	1
1,1-Dichloropropene	ND		1.0	ι	ug/L			03/12/15 16:24	1
1,2,3-Trichlorobenzene	ND		1.0	ι	ug/L			03/12/15 16:24	1
1,2,3-Trichloropropane	ND		1.0	l	ıg/L			03/12/15 16:24	1
1,2,4-Trichlorobenzene	ND		1.0	ι	ug/L			03/12/15 16:24	1
1,2,4-Trimethylbenzene	ND		1.0	ι	ıg/L			03/12/15 16:24	1
1,2-Dibromo-3-Chloropropane	ND		5.0	ι	ıg/L			03/12/15 16:24	1
1,2-Dibromoethane (EDB)	ND		1.0	ι	ıg/L			03/12/15 16:24	1
1,2-Dichlorobenzene	ND		1.0	ι	ıg/L			03/12/15 16:24	1
1,2-Dichloroethane	ND		1.0	ι	ıg/L			03/12/15 16:24	1
1,2-Dichloropropane	ND		1.0	ι	ıg/L			03/12/15 16:24	1
1,3,5-Trimethylbenzene	ND		1.0		ıg/L			03/12/15 16:24	1
1,3-Dichlorobenzene	ND		1.0		ug/L			03/12/15 16:24	1
1,3-Dichloropropane	ND		1.0	ι	ug/L			03/12/15 16:24	1
1,4-Dichlorobenzene	ND		1.0		ıg/L			03/12/15 16:24	1
2,2-Dichloropropane	ND		1.0		ıg/L			03/12/15 16:24	1
2-Butanone (MEK)	ND		10		ıg/L			03/12/15 16:24	1
2-Chlorotoluene	ND		1.0		ıg/L			03/12/15 16:24	1
2-Hexanone	ND		10		ug/L			03/12/15 16:24	1
4-Chlorotoluene	ND		1.0		ug/L			03/12/15 16:24	1
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			03/12/15 16:24	1
Acetone	ND	*	25		ug/L			03/12/15 16:24	1
Benzene	ND		0.20		ug/L			03/12/15 16:24	1
Bromobenzene	ND		1.0		ug/L			03/12/15 16:24	1
Bromochloromethane	ND		1.0		ug/L			03/12/15 16:24	1
Bromodichloromethane	ND		1.0		ug/L			03/12/15 16:24	1
Bromoform	ND		1.0		ug/L			03/12/15 16:24	1
Bromomethane	ND		5.0		ug/L			03/12/15 16:24	1
Carbon disulfide	ND		1.0		ug/L			03/12/15 16:24	1
Carbon tetrachloride	ND		1.0		ug/L			03/12/15 16:24	۲ ۲
Chloroothana	ND		1.0		ug/L			03/12/15 16:24	1
Chloroethane Chloroform	ND ND		1.0 1.0		ug/L			03/12/15 16:24 03/12/15 16:24	1
			1.0		ug/L				1
Chloromethane	ND		3.0		ug/L			03/12/15 16:24	1
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	ND ND		1.0 1.0		ıg/L ıg/L			03/12/15 16:24 03/12/15 16:24	1
Dibromochloromethane	ND		1.0					03/12/15 16:24	1
Dibromomethane	ND		1.0		ıg/L ıg/L			03/12/15 16:24	1
Dichlorodifluoromethane	ND		1.0		ıg/∟ ıg/L			03/12/15 16:24	1
Dichlorofluoromethane	ND		0.20		ıg/∟ ıg/L			03/12/15 16:24	
Ethylbenzene	ND		1.0		ıg/∟ ıg/L			03/12/15 16:24	ı 1
Hexachlorobutadiene	ND		2.0		ıg/∟ ıg/L			03/12/15 16:24	1
			2.0		лу, L			00/12/10 10.24	

1

03/12/15 16:24

1.0

ug/L

ND

Client Sample ID: MW-3-031015 Date Collected: 03/10/15 09:48 Date Received: 03/12/15 09:05

Lab Sample ID: 590-413-3 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		1.0		ug/L			03/12/15 16:24	1
m,p-Xylene	ND		2.0		ug/L			03/12/15 16:24	1
Methyl tert-butyl ether	ND		1.0		ug/L			03/12/15 16:24	1
Methylene Chloride	ND		10		ug/L			03/12/15 16:24	1
Naphthalene	ND		2.0		ug/L			03/12/15 16:24	1
n-Butylbenzene	ND		1.0		ug/L			03/12/15 16:24	1
N-Propylbenzene	ND		1.0		ug/L			03/12/15 16:24	1
o-Xylene	ND		1.0		ug/L			03/12/15 16:24	1
p-Isopropyltoluene	ND		1.0		ug/L			03/12/15 16:24	1
sec-Butylbenzene	ND		1.0		ug/L			03/12/15 16:24	1
Styrene	ND		1.0		ug/L			03/12/15 16:24	1
tert-Butanol	ND		5.0		ug/L			03/12/15 16:24	1
tert-Butylbenzene	ND		1.0		ug/L			03/12/15 16:24	1
Tetrachloroethene	ND		1.0		ug/L			03/12/15 16:24	1
Toluene	ND		1.0		ug/L			03/12/15 16:24	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			03/12/15 16:24	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			03/12/15 16:24	1
Trichloroethene	ND		1.0		ug/L			03/12/15 16:24	1
Trichlorofluoromethane	ND		1.0		ug/L			03/12/15 16:24	1
Vinyl chloride	ND		0.20		ug/L			03/12/15 16:24	1
Xylenes, Total	ND		3.0		ug/L			03/12/15 16:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		70 - 140			-		03/12/15 16:24	1
4-Bromofluorobenzene (Surr)	104		68.7 - 141					03/12/15 16:24	1
Dibromofluoromethane (Surr)	96		71.2 - 143					03/12/15 16:24	1
Toluene-d8 (Surr)	105		74.1 - 135					03/12/15 16:24	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepare	ed Analyzed	Dil Fac
Gasoline	ND		100		ug/L			03/17/15 11:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepare	ed Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		68.7 - 141				-	03/17/15 11:31	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	1
2-Methylnaphthalene	ND	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	1
1-Methylnaphthalene	ND	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	1
Acenaphthylene	ND	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	1
Acenaphthene	ND	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	1
Fluorene	ND	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	1
Phenanthrene	ND	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	1
Anthracene	ND	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	1
Fluoranthene	ND	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	1
Pyrene	ND	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	1
Benzo[a]anthracene	ND	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	1
Chrysene	ND	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	1
Benzo[b]fluoranthene	ND	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	1

TestAmerica Spokane

Client: GeoEngineers Inc Project/Site: Tiger Oil NIST

Client Sample ID: MW-3-031015 Date Collected: 03/10/15 09:48 Date Received: 03/12/15 09:05

Lab Sample ID: 590-413-3 Matrix: Water

Method: 8270D SIM - Semivolat Analyte		Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[k]fluoranthene		Quaimer	0.085		ug/L		03/16/15 10:37	03/17/15 13:21	
Benzo[a]pyrene	ND		0.085				03/16/15 10:37	03/17/15 13:21	
					ug/L				
Indeno[1,2,3-cd]pyrene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:21	
Dibenz(a,h)anthracene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:21	
Benzo[g,h,i]perylene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:21	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	77		32.7 - 135				03/16/15 10:37	03/17/15 13:21	
2-Fluorobiphenyl (Surr)	67		44.3 - 120				03/16/15 10:37	03/17/15 13:21	
p-Terphenyl-d14	87		59.5 - 154				03/16/15 10:37	03/17/15 13:21	
Method: 8011 - EDB, DBCP, and	1,2,3-TCP (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	ND		0.010		ug/L		03/20/15 13:52	03/20/15 18:53	
- Method: NWTPH-Dx - Northwes	t - Semi-Volatile	Petroleum	n Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO)	ND		0.24		mg/L		03/17/15 11:40	03/18/15 16:48	
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND		0.39		mg/L		03/17/15 11:40	03/18/15 16:48	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	91		50 - 150				03/17/15 11:40	03/18/15 16:48	
n-Triacontane-d62	89		50 - 150				03/17/15 11:40	03/18/15 16:48	
- Method: NWTPH-Dx - Northwes	t - Semi-Volatile	Petroleum	Products (GC)	- Silica (Gel Cleani	ın			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO)	ND		0.24		mg/L		03/17/15 11:40	03/18/15 20:42	
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND		0.39		mg/L		03/17/15 11:40	03/18/15 20:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	94		50 - 150				03/17/15 11:40	03/18/15 20:42	
n-Triacontane-d62	100		50 - 150				03/17/15 11:40	03/18/15 20:42	
Method: 200.7 Rev 4.4 - Metals	(ICP)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	ND		0.014		mg/L		03/19/15 14:47	03/20/15 10:37	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total Organic Carbon	ND		1.0		mg/L			03/16/15 09:42	·
Client Sample ID: MW-4-03	1015						Lab Sa	mple ID: 590	-413-4
ate Collected: 03/10/15 10:23 ate Received: 03/12/15 09:05									c: Wate
- Method: 8260C - Volatile Organ Analyte		oy GC/MS Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa

wethou. 02000 - Volatile Organic Co	inpounds i	Jy GOING							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			03/12/15 16:47	1
1,1,1-Trichloroethane	ND		1.0		ug/L			03/12/15 16:47	1

TestAmerica Spokane

RL

MDL Unit

D

Prepared

Analyte

m,p-Xylene

Client Sample ID: MW-4-031015 Date Collected: 03/10/15 10:23 Date Received: 03/12/15 09:05

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

Lab Sample ID: 590-413-4 Matrix: Water

Analyzed

5

Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			03/12/15 16:47	1	
1,1,2-Trichloroethane	ND		1.0		ug/L			03/12/15 16:47	1	
1,1,2-Trichlorotrifluoroethane	ND		1.0		ug/L			03/12/15 16:47	1	
1,1-Dichloroethane	ND		1.0		ug/L			03/12/15 16:47	1	
1,1-Dichloroethene	ND		1.0		ug/L			03/12/15 16:47	1	
1,1-Dichloropropene	ND		1.0		ug/L			03/12/15 16:47	1	
1,2,3-Trichlorobenzene	ND		1.0		ug/L			03/12/15 16:47	1	
1,2,3-Trichloropropane	ND		1.0		ug/L			03/12/15 16:47	1	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			03/12/15 16:47	1	
1,2,4-Trimethylbenzene	ND		1.0		ug/L			03/12/15 16:47	1	
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			03/12/15 16:47	1	
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			03/12/15 16:47	1	
1,2-Dichlorobenzene	ND		1.0		ug/L			03/12/15 16:47	1	
1,2-Dichloroethane	ND		1.0		ug/L			03/12/15 16:47	1	
1,2-Dichloropropane	ND		1.0		ug/L			03/12/15 16:47	1	
1,3,5-Trimethylbenzene	ND		1.0		ug/L			03/12/15 16:47	1	
1,3-Dichlorobenzene	ND		1.0		ug/L			03/12/15 16:47	1	
1,3-Dichloropropane	ND		1.0		ug/L			03/12/15 16:47	1	
1,4-Dichlorobenzene	ND		1.0		ug/L			03/12/15 16:47	1	
2,2-Dichloropropane	ND		1.0		ug/L			03/12/15 16:47	1	
2-Butanone (MEK)	ND		10		ug/L			03/12/15 16:47	1	
2-Chlorotoluene	ND		1.0		ug/L			03/12/15 16:47	1	
2-Hexanone	ND		10		ug/L			03/12/15 16:47	1	
4-Chlorotoluene	ND		1.0		ug/L			03/12/15 16:47	1	
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			03/12/15 16:47	1	
Acetone	ND	*	25		ug/L			03/12/15 16:47	1	
Benzene	ND		0.20		ug/L			03/12/15 16:47	1	
Bromobenzene	ND		1.0		ug/L			03/12/15 16:47	1	
Bromochloromethane	ND		1.0		ug/L			03/12/15 16:47	1	
Bromodichloromethane	ND		1.0		ug/L			03/12/15 16:47	1	
Bromoform	ND		1.0		ug/L			03/12/15 16:47	1	
Bromomethane	ND		5.0		ug/L			03/12/15 16:47	1	
Carbon disulfide	ND		1.0		ug/L			03/12/15 16:47	1	
Carbon tetrachloride	ND		1.0		ug/L			03/12/15 16:47	1	
Chlorobenzene	ND		1.0		ug/L			03/12/15 16:47	1	
Chloroethane	ND		1.0		ug/L			03/12/15 16:47	1	
Chloroform	ND		1.0		ug/L			03/12/15 16:47	1	
Chloromethane	ND		3.0		ug/L			03/12/15 16:47	1	
cis-1,2-Dichloroethene	ND		1.0		ug/L			03/12/15 16:47	1	
cis-1,3-Dichloropropene	ND		1.0		ug/L			03/12/15 16:47	1	
Dibromochloromethane	ND		1.0		ug/L			03/12/15 16:47	1	
Dibromomethane	ND		1.0		ug/L			03/12/15 16:47	1	
Dichlorodifluoromethane	ND		1.0		ug/L			03/12/15 16:47	1	
Dichlorofluoromethane	ND		0.20		ug/L			03/12/15 16:47	1	
Ethylbenzene	ND		1.0		ug/L			03/12/15 16:47	1	
Hexachlorobutadiene	ND		2.0		ug/L			03/12/15 16:47	1	
Hexane	ND		1.0		ug/L			03/12/15 16:47	1	
Isopropylbenzene	ND		1.0		ug/L			03/12/15 16:47	1	
m n Vulono			2.0		ua/I			02/12/15 16:47	1	

1

03/12/15 16:47

2.0

ug/L

ND

RL

1.0

10

2.0

1.0

1.0

1.0

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

D

Prepared

Analyte

Methyl tert-butyl ether

Methylene Chloride

Naphthalene

o-Xylene

n-Butylbenzene

N-Propylbenzene

Client Sample ID: MW-4-031015 Date Collected: 03/10/15 10:23 Date Received: 03/12/15 09:05

Lab Sample ID: 590-413-4 Matrix: Water

Analyzed

03/12/15 16:47

03/12/15 16:47

03/12/15 16:47

03/12/15 16:47

03/12/15 16:47

03/12/15 16:47

Dil Fac

1

1

1

1

1

1

5
8
9

1,2-Dichloroethane-d4 (Surr)	101		70 - 140			03/12/15 16:47	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		3.0	ug/L		03/12/15 16:47	1
Vinyl chloride	ND		0.20	ug/L		03/12/15 16:47	1
Trichlorofluoromethane	ND		1.0	ug/L		03/12/15 16:47	1
Trichloroethene	ND		1.0	ug/L		03/12/15 16:47	1
trans-1,3-Dichloropropene	ND		1.0	ug/L		03/12/15 16:47	1
trans-1,2-Dichloroethene	ND		1.0	ug/L		03/12/15 16:47	1
Toluene	ND		1.0	ug/L		03/12/15 16:47	1
Tetrachloroethene	ND		1.0	ug/L		03/12/15 16:47	1
tert-Butylbenzene	ND		1.0	ug/L		03/12/15 16:47	1
tert-Butanol	ND		5.0	ug/L		03/12/15 16:47	1
Styrene	ND		1.0	ug/L		03/12/15 16:47	1
sec-Butylbenzene	ND		1.0	ug/L		03/12/15 16:47	1
p-Isopropyltoluene	ND		1.0	ug/L		03/12/15 16:47	1

5	•			
1,2-Dichloroethane-d4 (Surr)	101	70 - 140	 03/12/15 16:47	1
4-Bromofluorobenzene (Surr)	104	68.7 - 141	03/12/15 16:47	1
Dibromofluoromethane (Surr)	97	71.2 - 143	03/12/15 16:47	1
Toluene-d8 (Surr)	107	74.1 - 135	03/12/15 16:47	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

ND

ND

ND

ND

ND

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		100		ug/L			03/17/15 11:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		68.7 - 141					03/17/15 11:53	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
2-Methylnaphthalene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
1-Methylnaphthalene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
Acenaphthylene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
Acenaphthene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
Fluorene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
Phenanthrene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
Anthracene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
Fluoranthene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
Pyrene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
Benzo[a]anthracene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
Chrysene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
Benzo[b]fluoranthene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
Benzo[k]fluoranthene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
Benzo[a]pyrene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	1
Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene	ND ND ND		0.085 0.085 0.085		ug/L ug/L ug/L		03/16/15 10:37 03/16/15 10:37 03/16/15 10:37	03/17/15 13:48 03/17/15 13:48 03/17/15 13:48	1 1 1 1

Client Sample ID: MW-4-031015 Date Collected: 03/10/15 10:23

Lab Sample ID: 590-413-4 Matrix: Water

5

Method: 8270D SIM - Semivolati Analyte	-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Indeno[1,2,3-cd]pyrene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	
Dibenz(a,h)anthracene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	
Benzo[g,h,i]perylene	ND		0.085		ug/L		03/16/15 10:37	03/17/15 13:48	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	88		32.7 - 135				03/16/15 10:37	03/17/15 13:48	
2-Fluorobiphenyl (Surr)	76		44.3 - 120				03/16/15 10:37	03/17/15 13:48	
p-Terphenyl-d14	92		59.5 - 154				03/16/15 10:37	03/17/15 13:48	
Method: 8011 - EDB, DBCP, and	1,2,3-TCP (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,2-Dibromoethane (EDB)	ND		0.010		ug/L		03/20/15 13:52	03/20/15 19:10	
Method: NWTPH-Dx - Northwes	t - Semi-Volatile	e Petroleun	n Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Diesel Range Organics (DRO) C10-C25)	ND		0.24		mg/L		03/17/15 11:40	03/18/15 17:11	
Residual Range Organics (RRO) C25-C36)	ND		0.39		mg/L		03/17/15 11:40	03/18/15 17:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
p-Terphenyl	93		50 - 150				03/17/15 11:40	03/18/15 17:11	
n-Triacontane-d62	92		50 - 150				03/17/15 11:40	03/18/15 17:11	
Method: NWTPH-Dx - Northwes									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Diesel Range Organics (DRO) C10-C25)	ND		0.24		mg/L		03/17/15 11:40	03/18/15 21:06	
Residual Range Organics (RRO) C25-C36)	ND		0.39		mg/L		03/17/15 11:40	03/18/15 21:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
p-Terphenyl	95		50 - 150				03/17/15 11:40	03/18/15 21:06	
n-Triacontane-d62	96		50 - 150				03/17/15 11:40	03/18/15 21:06	
Method: 200.7 Rev 4.4 - Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Lead	ND		0.014		mg/L		03/19/15 14:47	03/20/15 10:40	
General Chemistry									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total Organic Carbon	ND		1.0		mg/L			03/16/15 09:42	
lient Sample ID: MW-5-031	015						Lab Sa	mple ID: 590	-413
te Collected: 03/10/15 11:15 te Received: 03/12/15 09:05								Matrix	c: Wat
Method: 8260C - Volatile Organi	c Compounds	by GC/MS							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
								00/40/45 47.40	
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			03/12/15 17:10	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ND ND		1.0 1.0		ug/L ug/L			03/12/15 17:10	

1,1,2-Trichloroethane

TestAmerica Spokane

1

03/12/15 17:10

1.0

ug/L

ND

Methyl tert-butyl ether

Methylene Chloride

Client Sample ID: MW-5-031015 Date Collected: 03/10/15 11:15 Date Received: 03/12/15 09:05

Lab Sample ID: 590-413-5 Matrix: Water

8 9

Method: 8260C - Volatile Org Analyte		Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichlorotrifluoroethane	ND	1.0		ug/L			03/12/15 17:10	1
1,1-Dichloroethane	ND	1.0		ug/L			03/12/15 17:10	1
1,1-Dichloroethene	ND	1.0		ug/L			03/12/15 17:10	1
1,1-Dichloropropene	ND	1.0		ug/L			03/12/15 17:10	1
1,2,3-Trichlorobenzene	ND	1.0		ug/L			03/12/15 17:10	1
1,2,3-Trichloropropane	ND	1.0		ug/L			03/12/15 17:10	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			03/12/15 17:10	1
1,2,4-Trimethylbenzene	ND	1.0		ug/L			03/12/15 17:10	1
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/L			03/12/15 17:10	
1,2-Dibromoethane (EDB)	ND	1.0		ug/L			03/12/15 17:10	1
1,2-Dichlorobenzene	ND	1.0		ug/L			03/12/15 17:10	1
1,2-Dichloroethane	ND	1.0		ug/L			03/12/15 17:10	
1,2-Dichloropropane	ND	1.0		ug/L			03/12/15 17:10	1
1,3,5-Trimethylbenzene	ND	1.0		ug/L			03/12/15 17:10	1
1,3-Dichlorobenzene	ND	1.0		ug/L			03/12/15 17:10	
1,3-Dichloropropane	ND	1.0		ug/L			03/12/15 17:10	1
1,4-Dichlorobenzene	ND	1.0		ug/L			03/12/15 17:10	1
2,2-Dichloropropane	ND	1.0		ug/L			03/12/15 17:10	
2-Butanone (MEK)	ND	10		ug/L			03/12/15 17:10	1
2-Chlorotoluene	ND	1.0		ug/L			03/12/15 17:10	1
2-Hexanone	ND	10		ug/L			03/12/15 17:10	
4-Chlorotoluene	ND	1.0		ug/L			03/12/15 17:10	1
4-Methyl-2-pentanone (MIBK)	ND	10		ug/L			03/12/15 17:10	1
Acetone	ND			ug/L			03/12/15 17:10	
Benzene	ND	0.20		ug/L			03/12/15 17:10	1
Bromobenzene	ND	1.0		ug/L			03/12/15 17:10	1
Bromochloromethane	ND	1.0		ug/L			03/12/15 17:10	
Bromodichloromethane	ND	1.0		ug/L			03/12/15 17:10	1
Bromoform	ND	1.0		ug/L			03/12/15 17:10	1
Bromomethane	ND	5.0		ug/L			03/12/15 17:10	
Carbon disulfide	ND	1.0		ug/L			03/12/15 17:10	1
Carbon tetrachloride	ND	1.0		ug/L			03/12/15 17:10	1
Chlorobenzene	ND	1.0		ug/L			03/12/15 17:10	
Chloroethane	ND	1.0		ug/L			03/12/15 17:10	1
Chloroform	ND	1.0		ug/L			03/12/15 17:10	1
Chloromethane	ND	3.0		ug/L			03/12/15 17:10	
cis-1,2-Dichloroethene	ND			ug/L			03/12/15 17:10	1
cis-1,3-Dichloropropene	ND			ug/L			03/12/15 17:10	1
Dibromochloromethane	ND			ug/L			03/12/15 17:10	
Dibromomethane	ND			ug/L			03/12/15 17:10	1
Dichlorodifluoromethane	ND	1.0		ug/L			03/12/15 17:10	1
Dichlorofluoromethane	ND						03/12/15 17:10	· · · · · · · · 1
Ethylbenzene	ND			ug/L			03/12/15 17:10	1
•	ND ND	1.0		ug/L				1
Hexachlorobutadiene				ug/L			03/12/15 17:10	
Hexane	ND	1.0		ug/L			03/12/15 17:10	1
Isopropylbenzene	ND			ug/L			03/12/15 17:10	1
m,p-Xylene	ND	2.0		ug/L			03/12/15 17:10	1

1

1

03/12/15 17:10

03/12/15 17:10

1.0

10

ug/L

ug/L

ND

ND

Toluene-d8 (Surr)

Client Sample ID: MW-5-031015 Date Collected: 03/10/15 11:15 Date Received: 03/12/15 09:05

Lab Sample ID: 590-413-5 Matrix: Water

03/12/15 17:10

5

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.0		ug/L			03/12/15 17:10	1
n-Butylbenzene	ND		1.0		ug/L			03/12/15 17:10	1
N-Propylbenzene	ND		1.0		ug/L			03/12/15 17:10	1
o-Xylene	ND		1.0		ug/L			03/12/15 17:10	1
p-Isopropyltoluene	ND		1.0		ug/L			03/12/15 17:10	1
sec-Butylbenzene	ND		1.0		ug/L			03/12/15 17:10	1
Styrene	ND		1.0		ug/L			03/12/15 17:10	1
tert-Butanol	ND		5.0		ug/L			03/12/15 17:10	1
tert-Butylbenzene	ND		1.0		ug/L			03/12/15 17:10	1
Tetrachloroethene	ND		1.0		ug/L			03/12/15 17:10	1
Toluene	ND		1.0		ug/L			03/12/15 17:10	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			03/12/15 17:10	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			03/12/15 17:10	1
Trichloroethene	ND		1.0		ug/L			03/12/15 17:10	1
Trichlorofluoromethane	ND		1.0		ug/L			03/12/15 17:10	1
Vinyl chloride	ND		0.20		ug/L			03/12/15 17:10	1
Xylenes, Total	ND		3.0		ug/L			03/12/15 17:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		70 - 140			-		03/12/15 17:10	1
4-Bromofluorobenzene (Surr)	105		68.7 - 141					03/12/15 17:10	1
Dibromofluoromethane (Surr)	100		71.2 - 143					03/12/15 17:10	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

100

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		100		ug/L			03/17/15 12:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		68.7 - 141					03/17/15 12:15	

74.1 - 135

Method: 8270D SIM - Semivo	•	•		MDI	11		Dramanad	Analyzad	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Naphthalene	0.23	В	0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Naphthalene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
2-Methylnaphthalene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
2-Methylnaphthalene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
1-Methylnaphthalene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
1-Methylnaphthalene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Acenaphthylene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Acenaphthylene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Acenaphthene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Acenaphthene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Fluorene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Fluorene	ND	Н*	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Phenanthrene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Phenanthrene	ND	н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Anthracene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Anthracene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Fluoranthene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1

Client Sample ID: MW-5-031015 Date Collected: 03/10/15 11:15 Date Received: 03/12/15 09:05

Lab Sample ID: 590-413-5 Matrix: Water

8

Method: 8270D SIM - Semivolatile Analyte	-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Pyrene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Pyrene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Benzo[a]anthracene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Benzo[a]anthracene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Chrysene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Chrysene	ND	H *	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Benzo[b]fluoranthene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Benzo[b]fluoranthene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Benzo[k]fluoranthene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Benzo[k]fluoranthene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Benzo[a]pyrene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Benzo[a]pyrene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Indeno[1,2,3-cd]pyrene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Indeno[1,2,3-cd]pyrene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Dibenz(a,h)anthracene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Dibenz(a,h)anthracene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Benzo[g,h,i]perylene	ND		0.084		ug/L		03/16/15 10:37	03/17/15 14:16	1
Benzo[g,h,i]perylene	ND	Н	0.083		ug/L		03/27/15 15:49	03/27/15 17:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	84		32.7 - 135				03/16/15 10:37	03/17/15 14:16	1
Nitrobenzene-d5	99		32.7 - 135				03/27/15 15:49	03/27/15 17:47	1
2-Fluorobiphenyl (Surr)	70		44.3 - 120				03/16/15 10:37	03/17/15 14:16	1
2-Fluorobiphenyl (Surr)	82		44.3 - 120				03/27/15 15:49	03/27/15 17:47	1
p-Terphenyl-d14	89		59.5 - 154				03/16/15 10:37	03/17/15 14:16	1
p-Terphenyl-d14	99		59.5 - 154				03/27/15 15:49	03/27/15 17:47	1
Method: 8011 - EDB, DBCP, and	1,2,3-TCP (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.010		ug/L		03/20/15 13:52	03/20/15 19:27	1
Method: NWTPH-Dx - Northwest	- Semi-Volatile	Petroleum	Products (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.23		mg/L		03/17/15 11:40	03/18/15 17:34	1
(C10-C25) Residual Range Organics (RRO)	ND		0.38		mg/L		03/17/15 11:40	03/18/15 17:34	1
(C25-C36)			0.00					56.16.10 H.OT	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	88		50 - 150				03/17/15 11:40	03/18/15 17:34	1
n-Triacontane-d62	83		50 - 150				03/17/15 11:40	03/18/15 17:34	1
Method: NWTPH-Dx - Northwest	- Semi-Volatile	Petroleum	Products (GC) -	Silica	Gel Clean	un			
Analyte		Qualifier	RL	MDL		up D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quanner	NL		Unit	U	riepaieu	Analyzeu	Diriuc

Surrogate o-Terphenyl	86 With the second seco	er <u>Limits</u> 50 - 150		Prepared 03/17/15 11:40	Analyzed	Dil Fac
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND	0.38	mg/L	03/17/15 11:40	03/18/15 21:29	1
Dieser Kange Organies (Divo)						

TestAmerica Spokane

Client Sample Results

Client: GeoEngineers Inc Project/Site: Tiger Oil NIST

Client Sample ID: MW-5-031015

Date Collected: 03/10/15 11:15

TestAmerica Job ID: 590-398-1

Dil Fac

Dil Fac

Matrix: Water

1

1

Lab Sample ID: 590-413-5 Matrix: Water

Lab Sample ID: 590-413-6

Date Received: 03/12/15 09:05

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
n-Triacontane-d62	90		50 - 150				03/17/15 11:40	03/18/15 21:29
	etals (ICP)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
			0.014		mg/L		03/19/15 14:47	03/20/15 10:42

ſ	_									
	General Chemistry									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total Organic Carbon	1.1		1.0		mg/L			03/16/15 09:42	1

Client Sample ID: MW-Dup-031015

Date Collected: 03/10/15 12:00

Date Received: 03/12/15 09:05

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			03/12/15 17:32	1
1,1,1-Trichloroethane	ND		1.0		ug/L			03/12/15 17:32	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			03/12/15 17:32	1
1,1,2-Trichloroethane	ND		1.0		ug/L			03/12/15 17:32	1
1,1,2-Trichlorotrifluoroethane	ND		1.0		ug/L			03/12/15 17:32	1
1,1-Dichloroethane	ND		1.0		ug/L			03/12/15 17:32	1
1,1-Dichloroethene	ND		1.0		ug/L			03/12/15 17:32	1
1,1-Dichloropropene	ND		1.0		ug/L			03/12/15 17:32	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			03/12/15 17:32	1
1,2,3-Trichloropropane	ND		1.0		ug/L			03/12/15 17:32	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			03/12/15 17:32	1
1,2,4-Trimethylbenzene	3.4		1.0		ug/L			03/12/15 17:32	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			03/12/15 17:32	1
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			03/12/15 17:32	1
1,2-Dichlorobenzene	ND		1.0		ug/L			03/12/15 17:32	1
1,2-Dichloroethane	ND		1.0		ug/L			03/12/15 17:32	1
1,2-Dichloropropane	ND		1.0		ug/L			03/12/15 17:32	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			03/12/15 17:32	1
1,3-Dichlorobenzene	ND		1.0		ug/L			03/12/15 17:32	1
1,3-Dichloropropane	ND		1.0		ug/L			03/12/15 17:32	1
1,4-Dichlorobenzene	ND		1.0		ug/L			03/12/15 17:32	1
2,2-Dichloropropane	ND		1.0		ug/L			03/12/15 17:32	1
2-Butanone (MEK)	ND		10		ug/L			03/12/15 17:32	1
2-Chlorotoluene	ND		1.0		ug/L			03/12/15 17:32	1
2-Hexanone	ND		10		ug/L			03/12/15 17:32	1
4-Chlorotoluene	ND		1.0		ug/L			03/12/15 17:32	1
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			03/12/15 17:32	1
Acetone	ND	*	25		ug/L			03/12/15 17:32	1
Benzene	ND		0.20		ug/L			03/12/15 17:32	1
Bromobenzene	ND		1.0		ug/L			03/12/15 17:32	1
Bromochloromethane	ND		1.0		ug/L			03/12/15 17:32	1
Bromodichloromethane	ND		1.0		ug/L			03/12/15 17:32	1
Bromoform	ND		1.0		ug/L			03/12/15 17:32	1
Bromomethane	ND		5.0		ug/L			03/12/15 17:32	1

TestAmerica Spokane

Client Sample ID: MW-Dup-031015 Date Collected: 03/10/15 12:00 Date Received: 03/12/15 09:05

Lab Sample ID: 590-413-6 Matrix: Water

5

Method: 8260C - Volatile Organic (Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon disulfide	ND				ug/L			03/12/15 17:32	1
Carbon tetrachloride	ND		1.0		ug/L			03/12/15 17:32	1
Chlorobenzene	ND		1.0		ug/L			03/12/15 17:32	
Chloroethane	ND		1.0		ug/L			03/12/15 17:32	1
Chloroform	ND		1.0		ug/L			03/12/15 17:32	1
Chloromethane	ND		3.0		ug/L			03/12/15 17:32	
cis-1,2-Dichloroethene	ND		1.0		ug/L			03/12/15 17:32	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			03/12/15 17:32	1
Dibromochloromethane	ND		1.0		ug/L			03/12/15 17:32	
Dibromomethane	ND		1.0		ug/L			03/12/15 17:32	1
Dichlorodifluoromethane	ND		1.0		ug/L			03/12/15 17:32	1
Dichlorofluoromethane	ND		0.20		ug/L ug/L			03/12/15 17:32	י 1
			1.0					03/12/15 17:32	1
Ethylbenzene Hexachlorobutadiene	ND ND		2.0		ug/L			03/12/15 17:32	1
Hexachiorobutadiene Hexane	ND ND		2.0		ug/L			03/12/15 17:32	ן • • • • • • •
			1.0		ug/L			03/12/15 17:32	1
Isopropylbenzene	ND ND		2.0		ug/L			03/12/15 17:32	1
m,p-Xylene					ug/L			03/12/15 17:32	ا م
Methyl tert-butyl ether	ND		1.0		ug/L				1
Methylene Chloride	ND		10		ug/L			03/12/15 17:32	1
Naphthalene	ND		2.0		ug/L			03/12/15 17:32	1
n-Butylbenzene	ND		1.0		ug/L			03/12/15 17:32	1
N-Propylbenzene	1.7		1.0		ug/L			03/12/15 17:32	1
o-Xylene	ND		1.0		ug/L			03/12/15 17:32	1
p-Isopropyltoluene	ND		1.0		ug/L			03/12/15 17:32	1
sec-Butylbenzene	ND		1.0		ug/L			03/12/15 17:32	1
Styrene	ND		1.0		ug/L			03/12/15 17:32	1
tert-Butanol	ND		5.0		ug/L			03/12/15 17:32	1
tert-Butylbenzene	ND		1.0		ug/L			03/12/15 17:32	1
Tetrachloroethene	ND		1.0		ug/L			03/12/15 17:32	1
Toluene	ND		1.0		ug/L			03/12/15 17:32	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			03/12/15 17:32	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			03/12/15 17:32	1
Trichloroethene	ND		1.0		ug/L			03/12/15 17:32	1
Trichlorofluoromethane	ND		1.0		ug/L			03/12/15 17:32	1
Vinyl chloride	ND		0.20		ug/L			03/12/15 17:32	1
Xylenes, Total	ND		3.0		ug/L			03/12/15 17:32	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		70 - 140			-		03/12/15 17:32	1
4-Bromofluorobenzene (Surr)	106		68.7 _ 141					03/12/15 17:32	1
Dibromofluoromethane (Surr)	102		71.2 - 143					03/12/15 17:32	1
Toluene-d8 (Surr)	101		74.1 - 135					03/12/15 17:32	1
Method: NWTPH-Gx - Northwest -			ducts (GC/MS)						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Gasoline	110		100		ua/L			03/17/15 12:38	1

Gasoline	110	100	ug/L		03/17/15 12:38	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94	68.7 - 141			03/17/15 12:38	1

RL

0.083

MDL Unit

ug/L

D

Prepared

03/16/15 10:37

Client: GeoEngineers Inc Project/Site: Tiger Oil NIST

Analyte

Naphthalene

Client Sample ID: MW-Dup-031015 Date Collected: 03/10/15 12:00 Date Received: 03/12/15 09:05

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Result Qualifier

0.085 B

TestAmerica	Job	ID:	590-398-1

Lab Sample ID: 590-413-6 Matrix: Water

Analyzed

03/17/15 14:44

5

Dil Fac

1

	8
ī	

•	
1	
1	5
1	
1	C
1	
1	
1	
1	
1	
1	
1	

1,2-Dibromoethane (EDB)	ND		0.010		ug/L		03/20/15 13:52	03/20/15 19:44	
Method: 8011 - EDB, DBCP, a Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
- - Mothod: 9011 EDD DDCD -	and 4.2.2 TCB (CC)								
p-Terphenyl-d14	98		59.5 - 154				03/27/15 15:49	03/27/15 18:15	÷
p-Terphenyl-d14	89		59.5 - 154				03/16/15 10:37	03/17/15 14:44	;
2-Fluorobiphenyl (Surr)	75		44.3 - 120				03/27/15 15:49	03/27/15 18:15	
2-Fluorobiphenyl (Surr)	67		44.3 - 120				03/16/15 10:37	03/17/15 14:44	;
Nitrobenzene-d5	91		32.7 - 135				03/27/15 15:49	03/27/15 18:15	;
Nitrobenzene-d5	76		32.7 - 135				03/16/15 10:37	03/17/15 14:44	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Benzo[g,h,i]perylene	ND	Н	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
Benzo[g,h,i]perylene	ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
Dibenz(a,h)anthracene	ND	Н	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
Dibenz(a,h)anthracene	ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
Indeno[1,2,3-cd]pyrene	ND	Н	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
Indeno[1,2,3-cd]pyrene	ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
Benzo[a]pyrene	ND	Н	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
Benzo[a]pyrene	ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
Benzo[k]fluoranthene	ND	Н	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
Benzo[k]fluoranthene	ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
Benzo[b]fluoranthene	ND	н	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
Benzo[b]fluoranthene	ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
Chrysene	ND	H *	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
Chrysene	ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
Benzo[a]anthracene	ND	Η	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
Benzo[a]anthracene	ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
² yrene	ND	н	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
Pyrene	ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
Fluoranthene	ND	Н	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
Fluoranthene	ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
Anthracene	ND	Н	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
Anthracene	ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
Phenanthrene	ND	н	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
Phenanthrene	ND	••	0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
Fluorene	ND	н*	0.085		ug/L ug/L		03/27/15 15:49	03/27/15 18:15	
Fluorene	ND	п	0.083		ug/L ug/L		03/16/15 10:37	03/17/15 14:44	
Acenaphthene Acenaphthene	ND	н	0.085		ug/∟ ug/L		03/16/15 10:37 03/27/15 15:49	03/27/15 18:15	• • • • • • • •
Acenaphthylene	ND	н	0.085 0.083		ug/L ug/L		03/27/15 15:49	03/27/15 18:15 03/17/15 14:44	-
	ND ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	-
1-Methylnaphthalene	ND	н	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	• • • • • • •
1-Methylnaphthalene	ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
2-Methylnaphthalene	ND	Н	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
2-Methylnaphthalene	ND		0.083		ug/L		03/16/15 10:37	03/17/15 14:44	
Naphthalene	ND	Н	0.085		ug/L		03/27/15 15:49	03/27/15 18:15	
Naphthalene	0.085		0.065		ug/L		03/10/15 10.37	03/17/15 14.44	

RL

0.23

0.39

MDL Unit

mg/L

mg/L

D

Prepared

03/17/15 11:40

03/17/15 11:40

Date Collected: 03/10/15 12:00

Date Received: 03/12/15 09:05

Diesel Range Organics (DRO)

Residual Range Organics (RRO)

Analyte

(C10-C25)

(C25-C36)

Client Sample ID: MW-Dup-031015

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Result Qualifier

ND

ND

TestAmerica Job ID: 590-398-1

Lab Sample ID: 590-413-6

Analyzed

03/18/15 17:58

03/18/15 17:58

Matrix: Water

Dil Fac

1

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	94		50 _ 150				03/17/15 11:40	03/18/15 17:58	1
n-Triacontane-d62	94		50 - 150				03/17/15 11:40	03/18/15 17:58	1
- Method: NWTPH-Dx - Northwe	st - Semi-Volatile	e Petroleum	Products (GC)	- Silica (Gel Clean	цр			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.23		mg/L		03/17/15 11:40	03/18/15 21:53	1
Residual Range Organics (RRO) (C25-C36)	ND		0.39		mg/L		03/17/15 11:40	03/18/15 21:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95		50 - 150				03/17/15 11:40	03/18/15 21:53	1
n-Triacontane-d62	84		50 - 150				03/17/15 11:40	03/18/15 21:53	1
- Method: 200.7 Rev 4.4 - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.014		mg/L		03/19/15 14:47	03/20/15 10:45	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	1.0		1.0		mg/L			03/16/15 09:42	1

Client Sample ID: Trip Blank

Date Collected: 03/10/15 08:54 Date Received: 03/12/15 09:05

Method: 8260C - Volatile Organic Compounds by GC/MS Result Qualifier MDL Dil Fac Analyte RL Unit D Prepared Analyzed ND 1.0 ug/L 03/12/15 17:55 1,1,1,2-Tetrachloroethane 1 1,1,1-Trichloroethane ND 1.0 ug/L 03/12/15 17:55 1 ug/L 1.1.2.2-Tetrachloroethane ND 1.0 03/12/15 17:55 1 1,1,2-Trichloroethane ND 1.0 ug/L 03/12/15 17:55 1 1,1,2-Trichlorotrifluoroethane ND 1.0 ug/L 03/12/15 17:55 1 1,1-Dichloroethane ND 1.0 ug/L 03/12/15 17:55 1 1,1-Dichloroethene ND 1.0 ug/L 03/12/15 17:55 1 ND 1,1-Dichloropropene 1.0 ug/L 03/12/15 17:55 1 1,2,3-Trichlorobenzene ND 1.0 ug/L 03/12/15 17:55 1 ND 1,2,3-Trichloropropane 1.0 ug/L 03/12/15 17:55 1 1,2,4-Trichlorobenzene ND 1.0 ug/L 03/12/15 17:55 1 1,2,4-Trimethylbenzene ND 1.0 ug/L 03/12/15 17:55 1 1,2-Dibromo-3-Chloropropane ND 5.0 ug/L 03/12/15 17:55 1 1,2-Dibromoethane (EDB) ND 1.0 ug/L 03/12/15 17:55 1 1,2-Dichlorobenzene ND 1.0 ug/L 03/12/15 17:55 1 1,2-Dichloroethane ND 1.0 ug/L 03/12/15 17:55 1 1,2-Dichloropropane ND 1.0 ug/L 03/12/15 17:55 1 1,3,5-Trimethylbenzene ND 1.0 ug/L 03/12/15 17:55 1

TestAmerica Spokane

Page 24 of 48

Lab Sample ID: 590-413-7

Client Sample ID: Trip Blank Date Collected: 03/10/15 08:54 Date Received: 03/12/15 09:05

TestAmerica	loh	ın	590-398-	1
restAmenta	200	ID.	290-290-	

Lab Sample ID: 590-413-7 Matrix: Water

water

5

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND	1.0	ug/L		03/12/15 17:55	1
,3-Dichloropropane	ND	1.0	ug/L		03/12/15 17:55	1
,4-Dichlorobenzene	ND	1.0	ug/L		03/12/15 17:55	1
2,2-Dichloropropane	ND	1.0	ug/L		03/12/15 17:55	1
P-Butanone (MEK)	ND	10	ug/L		03/12/15 17:55	1
2-Chlorotoluene	ND	1.0	ug/L		03/12/15 17:55	1
2-Hexanone	ND	10	ug/L		03/12/15 17:55	1
I-Chlorotoluene	ND	1.0	ug/L		03/12/15 17:55	1
I-Methyl-2-pentanone (MIBK)	ND	10	ug/L		03/12/15 17:55	1
Acetone	ND *	25	ug/L		03/12/15 17:55	1
Benzene	ND	0.20	ug/L		03/12/15 17:55	1
Bromobenzene	ND	1.0	ug/L		03/12/15 17:55	1
Bromochloromethane	ND	1.0	ug/L		03/12/15 17:55	1
Bromodichloromethane	ND	1.0	ug/L		03/12/15 17:55	1
Bromoform	ND	1.0	ug/L		03/12/15 17:55	1
Bromomethane	ND	5.0	ug/L		03/12/15 17:55	1
Carbon disulfide	ND	1.0	ug/L		03/12/15 17:55	1
Carbon tetrachloride	ND	1.0	ug/L		03/12/15 17:55	1
Chlorobenzene	ND	1.0	ug/L		03/12/15 17:55	• • • • • • •
Chloroethane	ND	1.0	ug/L		03/12/15 17:55	1
Chloroform	ND	1.0	ug/L		03/12/15 17:55	
Chloromethane	ND	3.0	ug/L		03/12/15 17:55	
is-1,2-Dichloroethene	ND	1.0	ug/L		03/12/15 17:55	
is-1,3-Dichloropropene	ND	1.0	ug/L		03/12/15 17:55	
Dibromochloromethane	ND	1.0	ug/L		03/12/15 17:55	
Dibromomethane	ND	1.0			03/12/15 17:55	
			ug/L			
Dichlorodifluoromethane	ND	1.0	ug/L		03/12/15 17:55	
Dichlorofluoromethane	ND	0.20	ug/L		03/12/15 17:55	
thylbenzene	ND	1.0	ug/L		03/12/15 17:55	
lexachlorobutadiene	ND	2.0	ug/L		03/12/15 17:55	
lexane	ND	1.0	ug/L		03/12/15 17:55	
sopropylbenzene	ND	1.0	ug/L		03/12/15 17:55	
1,p-Xylene	ND	2.0	ug/L		03/12/15 17:55	•
Nethyl tert-butyl ether	ND	1.0	ug/L		03/12/15 17:55	
lethylene Chloride	ND	10	ug/L		03/12/15 17:55	
laphthalene	ND	2.0	ug/L		03/12/15 17:55	1
Butylbenzene	ND	1.0	ug/L		03/12/15 17:55	
I-Propylbenzene	ND	1.0	ug/L		03/12/15 17:55	
-Xylene	ND	1.0	ug/L		03/12/15 17:55	
-Isopropyltoluene	ND	1.0	ug/L		03/12/15 17:55	
ec-Butylbenzene	ND	1.0	ug/L		03/12/15 17:55	
styrene	ND	1.0	ug/L		03/12/15 17:55	1
ert-Butanol	ND	5.0	ug/L		03/12/15 17:55	1
ert-Butylbenzene	ND	1.0	ug/L		03/12/15 17:55	
etrachloroethene	ND	1.0	ug/L		03/12/15 17:55	
oluene	ND	1.0	ug/L		03/12/15 17:55	• • • • • • • •
ans-1,2-Dichloroethene	ND	1.0	ug/L		03/12/15 17:55	
ans-1,3-Dichloropropene	ND	1.0	ug/L		03/12/15 17:55	
Trichloroethene	ND	1.0	ug/L		03/12/15 17:55	1

Client Sample Results

Client Sample ID: Trip Blank Date Collected: 03/10/15 08:54 Date Received: 03/12/15 09:05

TestAmerica	Job	ID:	590-398-	1
				•

Lab Sample ID: 590-413-7 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0		ug/L			03/12/15 17:55	1
Vinyl chloride	ND		0.20		ug/L			03/12/15 17:55	1
Xylenes, Total	ND		3.0		ug/L			03/12/15 17:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		70 - 140			-		03/12/15 17:55	1
4-Bromofluorobenzene (Surr)	105		68.7 _ 141					03/12/15 17:55	1
Dibromofluoromethane (Surr)	97		71.2 - 143					03/12/15 17:55	1
Toluene-d8 (Surr)	102		74.1 - 135					03/12/15 17:55	1
_ Method: NWTPH-Gx - Northwe	est - Volatile Petr	oleum Proc	ducts (GC/MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND				ua/l			03/20/15 11:24	1

Gasoline	ND		100	ug/L		03/20/15 11:24	1	
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	91		68.7 - 141			03/20/15 11:24	1	

Method: 8260C - Volatile Organic Compounds by GC/MS

2 3 4 5

Lab Sample ID: MB 590-727/5
Matrix: Water
Analysis Batch: 727

-	MB	МВ					
Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L		03/12/15 12:18	1
1,1,1-Trichloroethane	ND		1.0	ug/L		03/12/15 12:18	1
1,1,2,2-Tetrachloroethane	ND		1.0	ug/L		03/12/15 12:18	1
1,1,2-Trichloroethane	ND		1.0	ug/L		03/12/15 12:18	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	ug/L		03/12/15 12:18	1
1,1-Dichloroethane	ND		1.0	ug/L		03/12/15 12:18	1
1,1-Dichloroethene	ND		1.0	ug/L		03/12/15 12:18	1
1,1-Dichloropropene	ND		1.0	ug/L		03/12/15 12:18	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L		03/12/15 12:18	1
1,2,3-Trichloropropane	ND		1.0	ug/L		03/12/15 12:18	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		03/12/15 12:18	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L		03/12/15 12:18	1
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L		03/12/15 12:18	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L		03/12/15 12:18	1
1,2-Dichlorobenzene	ND		1.0	ug/L		03/12/15 12:18	1
1,2-Dichloroethane	ND		1.0	ug/L		03/12/15 12:18	1
1,2-Dichloropropane	ND		1.0	ug/L		03/12/15 12:18	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L		03/12/15 12:18	1
1,3-Dichlorobenzene	ND		1.0	ug/L		03/12/15 12:18	1
1,3-Dichloropropane	ND		1.0	ug/L		03/12/15 12:18	1
1,4-Dichlorobenzene	ND		1.0	ug/L		03/12/15 12:18	1
2,2-Dichloropropane	ND		1.0	ug/L		03/12/15 12:18	1
2-Butanone (MEK)	ND		10	ug/L		03/12/15 12:18	1
2-Chlorotoluene	ND		1.0	ug/L		03/12/15 12:18	1
2-Hexanone	ND		10	ug/L		03/12/15 12:18	1
4-Chlorotoluene	ND		1.0	ug/L		03/12/15 12:18	1
4-Methyl-2-pentanone (MIBK)	ND		10	ug/L		03/12/15 12:18	1
Acetone	ND		25	ug/L		03/12/15 12:18	
Benzene	ND		0.20	ug/L		03/12/15 12:18	1
Bromobenzene	ND		1.0	ug/L		03/12/15 12:18	1
Bromochloromethane	ND		1.0	ug/L		03/12/15 12:18	
Bromodichloromethane	ND		1.0	ug/L		03/12/15 12:18	1
Bromoform	ND		1.0	ug/L		03/12/15 12:18	1
Bromomethane	ND		5.0	ug/L		03/12/15 12:18	
Carbon disulfide	ND		1.0	ug/L		03/12/15 12:18	1
Carbon tetrachloride	ND		1.0	ug/L		03/12/15 12:18	1
Chlorobenzene	ND		1.0	ug/L		03/12/15 12:18	
Chloroethane	ND		1.0	ug/L		03/12/15 12:18	1
Chloroform	ND		1.0	ug/L		03/12/15 12:18	1
Chloromethane	ND		3.0	ug/L		03/12/15 12:18	
cis-1,2-Dichloroethene	ND		1.0	ug/L		03/12/15 12:18	1
cis-1,3-Dichloropropene	ND		1.0	ug/L		03/12/15 12:18	1
Dibromochloromethane	ND		1.0	ug/L		03/12/15 12:18	
Dibromomethane	ND		1.0	ug/L		03/12/15 12:18	1
Dichlorodifluoromethane	ND		1.0	ug/L		03/12/15 12:18	1
Dichlorofluoromethane	ND		0.20	ug/L		03/12/15 12:18	
Ethylbenzene	ND		1.0	ug/L		03/12/15 12:18	1
Hexachlorobutadiene	ND		2.0	ug/L		03/12/15 12:18	1

TestAmerica Spokane

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

2 3 4 5

Client Sample ID: Method Blank Prep Type: Total/NA

Lab Sample ID: MB 590-727/5 Matrix: Water

	MB ME	3				
Analyte	Result Qu	alifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Hexane	ND	1.0	ug/L		03/12/15 12:18	1
Isopropylbenzene	ND	1.0	ug/L		03/12/15 12:18	1
m,p-Xylene	ND	2.0	ug/L		03/12/15 12:18	1
Methyl tert-butyl ether	ND	1.0	ug/L		03/12/15 12:18	1
Methylene Chloride	ND	10	ug/L		03/12/15 12:18	1
Naphthalene	ND	2.0	ug/L		03/12/15 12:18	1
n-Butylbenzene	ND	1.0	ug/L		03/12/15 12:18	1
N-Propylbenzene	ND	1.0	ug/L		03/12/15 12:18	1
o-Xylene	ND	1.0	ug/L		03/12/15 12:18	1
p-Isopropyltoluene	ND	1.0	ug/L		03/12/15 12:18	1
sec-Butylbenzene	ND	1.0	ug/L		03/12/15 12:18	1
Styrene	ND	1.0	ug/L		03/12/15 12:18	1
tert-Butanol	ND	5.0	ug/L		03/12/15 12:18	1
tert-Butylbenzene	ND	1.0	ug/L		03/12/15 12:18	1
Tetrachloroethene	ND	1.0	ug/L		03/12/15 12:18	1
Toluene	ND	1.0	ug/L		03/12/15 12:18	1
trans-1,2-Dichloroethene	ND	1.0	ug/L		03/12/15 12:18	1
trans-1,3-Dichloropropene	ND	1.0	ug/L		03/12/15 12:18	1
Trichloroethene	ND	1.0	ug/L		03/12/15 12:18	1
Trichlorofluoromethane	ND	1.0	ug/L		03/12/15 12:18	1
Vinyl chloride	ND	0.20	ug/L		03/12/15 12:18	1
Xylenes, Total	ND	3.0	ug/L		03/12/15 12:18	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		70 - 140		03/12/15 12:18	1
4-Bromofluorobenzene (Surr)	104		68.7 - 141		03/12/15 12:18	1
Dibromofluoromethane (Surr)	98		71.2 - 143		03/12/15 12:18	1
Toluene-d8 (Surr)	105		74.1 _ 135		03/12/15 12:18	1

Lab Sample ID: LCS 590-727/6 Matrix: Water

Analysis Batch: 727

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	10.0	8.76		ug/L		88	60 - 140
1,1,1-Trichloroethane	10.0	8.30		ug/L		83	60 - 140
1,1,2,2-Tetrachloroethane	10.0	9.91		ug/L		99	60 - 140
1,1,2-Trichloroethane	10.0	9.54		ug/L		95	60 - 140
1,1,2-Trichlorotrifluoroethane	10.0	8.06		ug/L		81	60 - 140
1,1-Dichloroethane	10.0	8.70		ug/L		87	60 - 140
1,1-Dichloroethene	10.0	8.21		ug/L		82	78.1 ₋ 155
1,1-Dichloropropene	10.0	8.52		ug/L		85	60 - 140
1,2,3-Trichlorobenzene	10.0	9.68		ug/L		97	60 - 140
1,2,3-Trichloropropane	10.0	8.39		ug/L		84	60 _ 140
1,2,4-Trichlorobenzene	10.0	9.28		ug/L		93	60 - 140
1,2,4-Trimethylbenzene	10.0	8.94		ug/L		89	60 - 140
1,2-Dibromo-3-Chloropropane	10.0	10.1		ug/L		101	60 - 140
1,2-Dichlorobenzene	10.0	9.05		ug/L		91	60 - 140

TestAmerica Spokane

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Lab Sample ID: LCS 590-727/6

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

2 3 4 5 6 7

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 727	Spike	LCS	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloroethane	<u></u>	8.97				90	63.9 - 144	
1,2-Dichloropropane	10.0	9.31		ug/L		93	60 - 140	
1,3,5-Trimethylbenzene	10.0	8.85		ug/L		89	60 - 140	
1,3-Dichlorobenzene	10.0	9.04		ug/L		90	60 - 140	
1,3-Dichloropropane	10.0	9.23		ug/L		92	60 - 140	
1,4-Dichlorobenzene	10.0	9.08		ug/L		91	60 - 140	
2,2-Dichloropropane	10.0	8.75		ug/L		88	60 - 140	
2-Butanone (MEK)	50.0	55.7		ug/L		111	60 - 140	
2-Chlorotoluene	10.0	8.75		ug/L		88	60 - 140	
2-Hexanone	50.0	52.3		ug/L		105	60 - 140	
4-Chlorotoluene	10.0	8.72		ug/L		87	60 - 140	
4-Methyl-2-pentanone (MIBK)	50.0	48.4		ug/L		97	60 - 140	
Acetone	50.0	72.2	*	ug/L		144	60 - 140	
Benzene	10.0	8.93		ug/L		89	80 - 140	
Bromobenzene	10.0	8.94		ug/L		89	60 - 140	
Bromochloromethane	10.0	8.67		ug/L		87	60 - 140	
Bromodichloromethane	10.0	8.73		ug/L		87	60 - 140	
Bromoform	10.0	8.41		ug/L		84	60 - 140	
Bromomethane	10.0	7.93		ug/L		79	60 - 140	
Carbon disulfide	10.0	7.65		ug/L		76	60 - 140	
Carbon tetrachloride	10.0	8.09		ug/L		81	60 - 140	
Chlorobenzene	10.0	8.86		ug/L		89	79.2 - 125	
Chloroethane	10.0	8.25		ug/L		83	60 - 140	
Chloroform	10.0	8.61		ug/L		86	60 - 140	
Chloromethane	10.0	7.68		ug/L		77	60 - 140	
cis-1,2-Dichloroethene	10.0	8.83		ug/L		88	60 - 140	
cis-1,3-Dichloropropene	10.0	8.87		ug/L		89	60 - 140	
Dibromochloromethane	10.0	8.84		ug/L		88	60 - 140	
Dibromomethane	10.0	8.81		ug/L		88	60 - 140	
Dichlorodifluoromethane	10.0	7.56		ug/L		76	60 - 140	
Dichlorofluoromethane	10.0	8.64		ug/L		86	60 - 140	
Ethylbenzene	10.0	8.45		ug/L		85	80 - 120	
Hexachlorobutadiene	10.0	8.95		ug/L		90	80 - 120	
Hexane	10.0	8.74		ug/L		87	60 - 140	
Isopropylbenzene	10.0	8.54		ug/L		85	60 - 140	
m,p-Xylene	10.0	8.41		ug/L		84	80 - 120	
Methyl tert-butyl ether	10.0	9.15		ug/L		92	80.1 - 128	
Methylene Chloride	10.0	10.1		ug/L		101	60 - 140	
Naphthalene	10.0	9.22		ug/L		92	62.8 - 132	
n-Butylbenzene	10.0	8.58		ug/L		86	60 - 140	
N-Propylbenzene	10.0	8.74		ug/L		87	60 - 140	
o-Xylene	10.0	8.43		ug/L		84	80 - 120	
p-Isopropyltoluene	10.0	9.14		ug/L		91	60 - 140	
sec-Butylbenzene	10.0	8.78		ug/L		88	60 _ 140	
Styrene	10.0	8.21		ug/L		82	60 - 140	
tert-Butanol	100	102		ug/L		102	60 - 140	
ert-Butylbenzene	10.0	9.20		ug/L		92	60 - 140	
Tetrachloroethene	10.0	8.69		ug/L		87	60 - 140	

Spike

Added

10.0

10.0

10.0

10.0

10.0

LCS LCS

8.67

8.53

9.22

8.23

7.58

7.73

Result Qualifier

Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

105

60 - 140

D

Matrix: Water

Analyte

Toluene

Trichloroethene

Analysis Batch: 727

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

2-Butanone (MEK)

Lab Sample ID: LCS 590-727/6

Client Sample ID: Lab Control Sample

2 3 4 5 6 7

	%Rec.
%Rec	Limits
87	80 - 123
85	60 - 140
92	60 _ 140
82	74.8 - 123
76	60 - 140
77	60 - 140

Prep Type: Total/NA

Vinyl chloride			10.0
	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		70 - 140
4-Bromofluorobenzene (Surr)	102		68.7 - 141
Dibromofluoromethane (Surr)	96		71.2 - 143
Toluene-d8 (Surr)	103		74.1 - 135

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 590-730/5 Matrix: Water Analysis Batch: 730		MD								Client S	Sample ID: Metho Prep Type: T	
Analyta	MB	MB Qualifier		RL		MDL	Unit			Droporod	Applyzod	Dil Fac
Analyte	Result	Quaimer				WDL	Unit		D	Prepared	Analyzed	DIFac
2-Butanone (MEK)	ND			10			ug/L				03/13/15 10:12	1
Lab Sample ID: LCS 590-730/6									Clie	nt Sample	e ID: Lab Control	Sample
Matrix: Water											Prep Type: T	otal/NA
Analysis Batch: 730												
			Spike		LCS	LCS					%Rec.	
Analyte			Added		Result	Quali	ifier	Unit	D	%Rec	Limits	

52.7

50.0

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-757/4 Matrix: Water									CI	ient S	ample ID: Metho Prep Type: 1	
Analysis Batch: 757												
	MB	MB										
Analyte	Result	Qualifier	RL		MDL	Unit		D	Prep	ared	Analyzed	Dil Fac
Gasoline	ND		100			ug/L					03/17/15 07:58	1
	MB	МВ										
Surrogate	%Recovery	Qualifier	Limits						Prep	ared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		68.7 - 141								03/17/15 07:58	1
Lab Sample ID: LCS 590-757/5								Clie	nt Sa	ample	ID: Lab Control	Sample
Matrix: Water											Prep Type: 1	otal/NA
Analysis Batch: 757												
			Spike	LCS	LCS						%Rec.	
Analyte			Added	Result	Quali	fier	Unit	0	D %	Rec	Limits	
Gasoline			1000	1020			ug/L			102	80 - 120	

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) (Continued)

LCS LCS

%Recovery Qualifier

96

Matrix: Water

Matrix: Water

Surrogate

Analysis Batch: 757

4-Bromofluorobenzene (Surr)

Lab Sample ID: LCS 590-757/5

Lab Sample ID: LCSD 590-757/6

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

2 3 4 5 6 7

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 757											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline			1000	1010		ug/L		101	80 - 120	1	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	95		68.7 - 141								

Limits

68.7 - 141

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-749/1-A Matrix: Water Analysis Batch: 744							Client Sa	mple ID: Metho Prep Type: T Prep Ba	otal/NA
Analyte	MB	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.158	Quaimer	0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
2-Methylnaphthalene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
1-Methylnaphthalene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
Acenaphthylene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	
Acenaphthene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
Fluorene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
Phenanthrene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	
Anthracene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
Fluoranthene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
Pyrene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
Benzo[a]anthracene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
Chrysene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
Benzo[b]fluoranthene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
Benzo[k]fluoranthene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
Benzo[a]pyrene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
Indeno[1,2,3-cd]pyrene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	
Dibenz(a,h)anthracene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
Benzo[g,h,i]perylene	ND		0.090		ug/L		03/16/15 10:37	03/16/15 13:38	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	100		32.7 - 135				03/16/15 10:37	03/16/15 13:38	1
2-Fluorobiphenyl (Surr)	83		44.3 - 120				03/16/15 10:37	03/16/15 13:38	1
p-Terphenyl-d14	97		59.5 - 154				03/16/15 10:37	03/16/15 13:38	1

Client Sample ID: Lab Control Sample

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-749/2-A

Matrix: Water							Prep T	ype: Total/NA
Analysis Batch: 744							Pr	rep Batch: 749
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	1.60	1.81		ug/L		113	27.8 - 143	
Fluorene	1.60	1.91		ug/L		119	59.2 - 120	
Chrysene	1.60	1.84		ug/L		115	69.1 - 122	
Indeno[1,2,3-cd]pyrene	1.60	1.98		ug/L		124	56.1 - 135	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	104		32.7 - 135
2-Fluorobiphenyl (Surr)	88		44.3 - 120
p-Terphenyl-d14	96		59.5 - 154

Lab Sample ID: MB 590-900/1-A Matrix: Water

Lab Sample ID: LCS 590-900/2-A

Matrix: Water

Analysis Batch: 899

Analysis Datch. 055								гтер Ба	ICH. 300
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
2-Methylnaphthalene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
1-Methylnaphthalene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Acenaphthylene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Acenaphthene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Fluorene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Phenanthrene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Anthracene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Fluoranthene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Pyrene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Benzo[a]anthracene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Chrysene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Benzo[b]fluoranthene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Benzo[k]fluoranthene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Benzo[a]pyrene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Indeno[1,2,3-cd]pyrene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Dibenz(a,h)anthracene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
Benzo[g,h,i]perylene	ND		0.090		ug/L		03/27/15 15:49	03/27/15 16:51	1
	МВ	МВ							

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	115		32.7 - 135
2-Fluorobiphenyl (Surr)	89		44.3 - 120
p-Terphenyl-d14	105		59.5 - 154

Client Sample ID: Lab Control Sample

Analyzed

03/27/15 16:51

03/27/15 16:51

03/27/15 16:51

Prepared

03/27/15 15:49

03/27/15 15:49

03/27/15 15:49

Prep Type: Total/NA Prep Batch: 900

Dil Fac

1

1

1

Analysis Batch: 899							P	rep Batch: 900
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	1.60	1.69		ug/L		106	27.8 - 143	
Fluorene	1.60	2.00	*	ug/L		125	59.2 - 120	
Chrysene	1.60	1.97	*	ug/L		123	69.1 - 122	

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 900

TestAmerica Spokane

Spike

Added

Limits

32.7 - 135

44.3 - 120

59.5 - 154

1.60

LCS LCS

2.09

Result Qualifier

Unit

ug/L

D

%Rec

130

Matrix: Water

Analyte

Surrogate

Nitrobenzene-d5

p-Terphenyl-d14

Analysis Batch: 899

Indeno[1,2,3-cd]pyrene

2-Fluorobiphenyl (Surr)

Lab Sample ID: LCS 590-900/2-A

Client Sample ID: Lab Control Sample

%Rec.

Limits

56.1 - 135

Prep Type: Total/NA Prep Batch: 900 6

Method: 8011 - EDB, DBCP, and 1,2,3-TCP (G	SC)
--	-----

Lab Sample ID: MB 590-812/1-A Matrix: Water Analysis Batch: 813	МВ	МВ									Client Sa	ample ID: Metho Prep Type: ⁻ Prep Ba	
Analyte	Result	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.	.010			ug/L			03/2	0/15 13:52	03/20/15 17:29	1
Lab Sample ID: LCS 590-812/2-A Matrix: Water Analysis Batch: 813			Spike		LCS	LCS			С	lient	Sample	ID: Lab Control Prep Type: ⁻ Prep Ba %Rec.	
Analyte 1,2-Dibromoethane (EDB)			Added		Result 0.145	Qual	ifier	Unit ug/L		<u>D</u>	%Rec	Limits	

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

LCS LCS

%Recovery Qualifier

106

94

102

Lab Sample ID: MB 590-771/1-A Matrix: Water Analysis Batch: 774	МВ	МВ								Client Sa	ample ID: Metho Prep Type: ` Prep Ba	
Analyte	Result	Qualifier	RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.24			mg/L			03/1	7/15 11:40	03/18/15 11:42	1
Residual Range Organics (RRO) (C25-C36)	ND		0.40			mg/L			03/1	7/15 11:40	03/18/15 11:42	1
	МВ	МВ										
Surrogate	%Recovery	Qualifier	Limits						P	repared	Analyzed	Dil Fac
o-Terphenyl	89		50 - 150						03/1	7/15 11:40	03/18/15 11:42	1
n-Triacontane-d62	90		50 - 150						03/1	7/15 11:40	03/18/15 11:42	1
Lab Sample ID: LCS 590-771/2-A Matrix: Water								С	lient	Sample	ID: Lab Control Prep Type: `	
Analysis Batch: 774												tch: 771
			Spike	LCS	LCS						%Rec.	
Analyte			Added	Result	Qual	ifier	Unit		D	%Rec	Limits	
Diesel Range Organics (DRO) (C10-C25)			3.20	2.65			mg/L			83	50 - 150	
Residual Range Organics (RRO) (C25-C36)			3.20	2.82			mg/L			88	50 - 150	

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

LCS LCS

%Recovery Qualifier

98

103

Matrix: Water

Surrogate

o-Terphenyl

n-Triacontane-d62

Analysis Batch: 774

Lab Sample ID: LCS 590-771/2-A

Lab Sample ID: LCSD 590-771/3-A

Client Sample ID: Lab Control Sample

6

Client Sample ID: Lab Control Sample Dup Prop Type: Total/NA

Client Sample ID: Method Blank Prep Type: Silica Gel Cleanup

Client Sample ID: Lab Control Sample

Prep Type: Silica Gel Cleanup

Prep Batch: 772

Prep Type: Total/NA

Prep Batch: 771

Matrix: Water Analysis Batch: 774								ype: Tot ep Batcl	
	Spike	LCSD	LCSD				%Rec.	-	RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO) (C10-C25)	3.20	2.77		mg/L		87	50 - 150	4	25
Residual Range Organics (RRO) (C25-C36)	3.20	2.75		mg/L		86	50 _ 150	2	25

Limits

50 _ 150

50 - 150

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	102		50 - 150
n-Triacontane-d62	99		50 - 150

Lab Sample ID: MB 590-772/1-A
Matrix: Water
Analysis Batch: 774

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.24		mg/L		03/17/15 11:40	03/18/15 18:45	1
Residual Range Organics (RRO) (C25-C36)	ND		0.40		mg/L		03/17/15 11:40	03/18/15 18:45	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	93		50 - 150	03/17/15 11:40	03/18/15 18:45	1
n-Triacontane-d62	97		50 - 150	03/17/15 11:40	03/18/15 18:45	1

Lab Sample ID: LCS 590-772/2-A Matrix: Water

Analysis Batch: 774

Analysis Batch: 774								P	rep Batch: 772
		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Organics (DRO) (C10-C25)		3.20	2.46		mg/L		77	50 - 150	·
Residual Range Organics (RRO) (C25-C36)		3.20	2.82		mg/L		88	50 ₋ 150	
	LCS LCS								

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	95		50 - 150
n-Triacontane-d62	102		50 - 150

5 6

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCSD 590-772 Matrix: Water	2/3-A					Clie	ent Sam		Lab Contro Type: Silica		
Analysis Batch: 774										ep Batc	
-			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO) (C10-C25)			3.20	2.54		mg/L		80	50 - 150	3	25
Residual Range Organics (RRO) (C25-C36)			3.20	2.75		mg/L		86	50 ₋ 150	3	25
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
o-Terphenyl	95		50 _ 150								
n-Triacontane-d62	97		50 - 150								

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 590-711/15 Matrix: Water											Client S	Sample ID: Metho Prep Type: T	
Analysis Batch: 711												1100 1300.1	otantin
	МВ	мв											
Analyte	Result	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Nitrate as N	ND			0.20			mg/L					03/11/15 14:16	1
_ Lab Sample ID: LCS 590-711/14									Cli	ent	Sample	e ID: Lab Control	Sample
Matrix: Water												Prep Type: T	otal/NA
Analysis Batch: 711													
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Nitrate as N			5.00		4.99			mg/L		_	100	90 - 110	
Lab Sample ID: MB 590-712/15											Client S	Sample ID: Metho	d Blank
Matrix: Water												Prep Type: T	otal/NA
Analysis Batch: 712													
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Sulfate	ND			0.50			mg/L					03/11/15 14:16	1
 Lab Sample ID: LCS 590-712/14									Cli	ent	Sample	e ID: Lab Control	Sample
												Prep Type: T	otal/NA
Matrix: Water													
Matrix: Water Analysis Batch: 712													
			Spike		LCS	LCS						%Rec.	
			Spike Added		LCS Result		lifier	Unit		D	%Rec	%Rec. Limits	

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 590-799/2-A Matrix: Water Analysis Batch: 815							Client Sa	mple ID: Metho Prep Type: 1 Prep Ba	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.014		mg/L		03/19/15 14:47	03/20/15 09:45	1

Spike

Added

1.00

LCS LCS

0.957

Result Qualifier

Matrix: Water

Matrix: Water

Analyte

Lead

Analysis Batch: 815

Method: SM 5310C - TOC

Analysis Batch: 233985

Lab Sample ID: MB 490-233985/1

Lab Sample ID: LCS 590-799/1-A

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-1-031015

Prep Batch: 799

Client Sample ID: Lab Control Sample

%Rec.

Limits

85 - 115

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

D

Unit

mg/L

%Rec

96

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	INIB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	ND		1.0		mg/L			03/16/15 09:42	1

Lab Sample ID: LCS 490-233985/4 Matrix: Water Analysis Batch: 233985

Allarysis Batch. 233905								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	10.0	9.62		mg/L		96	90 - 110	
TOC Result 1	10.0	9.61		mg/L		96	90 _ 110	
TOC Result 2	10.0	9.64		mg/L		96	90 - 110	

Lab Sample ID: LCSD 490-233985/5

Matrix: Water Analysis Batch: 233985

Analysis Datch. 20000										
	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Total Organic Carbon	 10.0	9.55		mg/L		95	90 _ 110	1	20	
TOC Result 1	10.0	9.63		mg/L		96	90 _ 110	0	20	
TOC Result 2	10.0	9.47		mg/L		95	90 - 110	2	20	

Lab Sample ID: 590-413-1 MS Matrix: Water

Analysis Batch: 233985

Analysis Batch: 233965										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	1.0		20.0	20.9		mg/L		99	75 - 122	
TOC Result 1	1.0		20.0	21.1		mg/L		100	75 - 122	
TOC Result 2	1.0		20.0	20.7		mg/L		98	75 - 122	

Lab Sample ID: 590-398-1 Matrix: Water

Lab Sample ID: 590-398-2

Lab Sample ID: 590-398-3

Matrix: Water

Matrix: Water

Date Collected: 03/10/15 12:05 Date Received: 03/11/15 09:50

Client Sample ID: MW-1-031015

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	5 mL		711	03/11/15 12:52	MRS	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		712	03/11/15 12:52	MRS	TAL SPK

Client Sample ID: MW-2-031015 Date Collected: 03/10/15 08:54 Date Received: 03/11/15 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	5 mL		711	03/11/15 13:06	MRS	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		712	03/11/15 13:06	MRS	TAL SPK

Client Sample ID: MW-3-031015 Date Collected: 03/10/15 09:48 Date Received: 03/11/15 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	5 mL		711	03/11/15 13:20	MRS	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		712	03/11/15 13:20	MRS	TAL SPK

Client Sample ID: MW-4-031015

Date Collected: 03/10/15 10:23

D	ate Received:	03/11/15	09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	5 mL		711	03/11/15 13:34	MRS	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		712	03/11/15 13:34	MRS	TAL SPK

Client Sample ID: MW-5-031015

Date Collected: 03/10/15 11:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	5 mL		711	03/11/15 13:48	MRS	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		712	03/11/15 13:48	MRS	TAL SPK

Client Sample ID: MW-DUP-031015

Date Collected: 03/10/15 12:00 Date Received: 03/11/15 09:50

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	5 mL		711	03/11/15 14:31	MRS	TAL SPK

TestAmerica Spokane

15 13:20 MRS TAL SPK

Lab Sample ID: 590-398-4

Matrix: Water

Lab Sample ID: 590-398-5

Lab Sample ID: 590-398-6

Matrix: Water

Client Sample ID: MW-DUP-031015

Date Collected: 03/10/15 12:00 Date Received: 03/11/15 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	5 mL		712	03/11/15 14:31	MRS	TAL SPK

Client Sample ID: MW-1-031015 Date Collected: 03/10/15 12:05 Date Received: 03/12/15 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	727	03/12/15 15:39	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	757	03/17/15 10:46	MRS	TAL SPK
Total/NA	Prep	3510C			268.8 mL	2 mL	749	03/16/15 10:37	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	268.8 mL	2 mL	768	03/17/15 12:26	NMI	TAL SPK
Total/NA	Prep	8011			80 mL	2 mL	812	03/20/15 13:52	NMI	TAL SPK
Total/NA	Analysis	8011		1	80 mL	2 mL	813	03/20/15 18:20	NMI	TAL SPK
Silica Gel Cleanup	Prep	3510C SGC			129.9 mL	2 mL	772	03/17/15 11:40	NMI	TAL SPK
Silica Gel Cleanup	Analysis	NWTPH-Dx		1	129.9 mL	2 mL	774	03/18/15 19:55	NMI	TAL SPK
Total/NA	Prep	3510C			129.9 mL	2 mL	771	03/17/15 11:40	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	129.9 mL	2 mL	774	03/18/15 16:01	NMI	TAL SPK
Total/NA	Prep	200.7			50 mL	50 mL	799	03/19/15 14:47	JSP	TAL SPK
Total/NA	Analysis	200.7 Rev 4.4		1	50 mL	50 mL	815	03/20/15 10:32	JSP	TAL SPK
Total/NA	Analysis	SM 5310C		1	50 mL	50 mL	233985	03/16/15 09:42	JAB	TAL NSH

Client Sample ID: MW-2-031015

Date Collected: 03/10/15 08:54 Date Received: 03/12/15 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	727	03/12/15 16:02	MRS	TAL SPK
Total/NA	Analysis	8260C		1	5 mL	5 mL	730	03/13/15 12:42	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	757	03/17/15 11:08	MRS	TAL SPK
Total/NA	Prep	3510C			266.1 mL	2 mL	749	03/16/15 10:37	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	266.1 mL	2 mL	768	03/17/15 12:53	NMI	TAL SPK
Total/NA	Prep	8011			80 mL	2 mL	812	03/20/15 13:52	NMI	TAL SPK
Total/NA	Analysis	8011		1	80 mL	2 mL	813	03/20/15 18:36	NMI	TAL SPK
Silica Gel Cleanup	Prep	3510C SGC			128.6 mL	2 mL	772	03/17/15 11:40	NMI	TAL SPK
Silica Gel Cleanup	Analysis	NWTPH-Dx		1	128.6 mL	2 mL	774	03/18/15 20:19	NMI	TAL SPK
Total/NA	Prep	3510C			128.6 mL	2 mL	771	03/17/15 11:40	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	128.6 mL	2 mL	774	03/18/15 16:24	NMI	TAL SPK
Total/NA	Prep	200.7			50 mL	50 mL	799	03/19/15 14:47	JSP	TAL SPK
Total/NA	Analysis	200.7 Rev 4.4		1	50 mL	50 mL	815	03/20/15 10:34	JSP	TAL SPK
Total/NA	Analysis	SM 5310C		1	50 mL	50 mL	233985	03/16/15 09:42	JAB	TAL NSH

Lab Sample ID: 590-398-6

Lab Sample ID: 590-413-1

Lab Sample ID: 590-413-2

Matrix: Water

TestAmerica Job ID: 590-398-1

Matrix: Water

Date Collected: 03/10/15 09:48 Date Received: 03/12/15 09:05

Client Sample ID: MW-3-031015

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260C 5 mL 5 mL 727 03/12/15 16:24 MRS TAL SPK 1 Total/NA Analysis NWTPH-Gx 1 43 mL 43 mL 757 03/17/15 11:31 MRS TAL SPK Total/NA Prep 3510C 264.5 mL 2 mL 749 03/16/15 10:37 NMI TAL SPK Total/NA Analysis 8270D SIM 1 264.5 mL 2 mL 768 03/17/15 13:21 NMI TAL SPK Total/NA Prep 8011 80 mL 2 mL 812 03/20/15 13:52 NMI TAL SPK Total/NA Analysis 8011 80 mL 2 mL 813 03/20/15 18:53 NMI TAL SPK 1 Silica Gel Cleanup Prep 3510C SGC 127.4 mL 2 mL 772 03/17/15 11:40 NMI TAL SPK Silica Gel Cleanup Analysis NWTPH-Dx 127.4 mL 2 mL 774 03/18/15 20:42 NMI TAL SPK 1 Total/NA Prep 3510C 127.4 mL 2 mL 771 03/17/15 11:40 NMI TAL SPK Total/NA Analysis NWTPH-Dx 127.4 mL 2 mL 774 03/18/15 16:48 NMI TAL SPK 1 50 mL 50 mL TAL SPK Total/NA 200.7 799 03/19/15 14:47 JSP Prep Total/NA Analysis 200.7 Rev 4.4 1 50 mL 50 mL 815 03/20/15 10:37 JSP TAL SPK 50 mL 233985 Total/NA 50 mL 03/16/15 09:42 JAB TAL NSH Analysis SM 5310C 1

Client Sample ID: MW-4-031015 Date Collected: 03/10/15 10:23 Date Received: 03/12/15 09:05

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	727	03/12/15 16:47	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	757	03/17/15 11:53	MRS	TAL SPK
Total/NA	Prep	3510C			264.5 mL	2 mL	749	03/16/15 10:37	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	264.5 mL	2 mL	768	03/17/15 13:48	NMI	TAL SPK
Total/NA	Prep	8011			80 mL	2 mL	812	03/20/15 13:52	NMI	TAL SPK
Total/NA	Analysis	8011		1	80 mL	2 mL	813	03/20/15 19:10	NMI	TAL SPK
Silica Gel Cleanup	Prep	3510C SGC			127.4 mL	2 mL	772	03/17/15 11:40	NMI	TAL SPK
Silica Gel Cleanup	Analysis	NWTPH-Dx		1	127.4 mL	2 mL	774	03/18/15 21:06	NMI	TAL SPK
Total/NA	Prep	3510C			127.4 mL	2 mL	771	03/17/15 11:40	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	127.4 mL	2 mL	774	03/18/15 17:11	NMI	TAL SPK
Total/NA	Prep	200.7			50 mL	50 mL	799	03/19/15 14:47	JSP	TAL SPK
Total/NA	Analysis	200.7 Rev 4.4		1	50 mL	50 mL	815	03/20/15 10:40	JSP	TAL SPK
Total/NA	Analysis	SM 5310C		1	50 mL	50 mL	233985	03/16/15 09:42	JAB	TAL NSH

Client Sample ID: MW-5-031015 Date Collected: 03/10/15 11:15 Date Received: 03/12/15 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	727	03/12/15 17:10	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	757	03/17/15 12:15	MRS	TAL SPK
Total/NA	Prep	3510C			268.3 mL	2 mL	749	03/16/15 10:37	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	268.3 mL	2 mL	768	03/17/15 14:16	NMI	TAL SPK

Lab Sample ID: 590-413-3 Matrix: Water

Lab Sample ID: 590-413-4

Matrix: Water

Lab Sample ID: 590-413-5

Client Sample ID: MW-5-031015

Date Collected: 03/10/15 11:15 Date Received: 03/12/15 09:05

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 3510C 269.6 mL 2 mL 900 03/27/15 15:49 NMI TAL SPK Total/NA 8270D SIM 269.6 mL 899 TAL SPK Analysis 1 2 mL 03/27/15 17:47 NMI Total/NA Prep 8011 80 mL 2 mL 812 03/20/15 13:52 NMI TAL SPK Total/NA 813 NMI TAL SPK Analysis 8011 1 80 mL 2 mL 03/20/15 19:27 Silica Gel Cleanup Prep 3510C SGC 130.4 mL 2 mL 772 03/17/15 11:40 NMI TAL SPK Silica Gel Cleanup Analysis NWTPH-Dx 1 130.4 mL 2 mL 774 03/18/15 21:29 NMI TAL SPK Total/NA 3510C 130.4 mL 771 03/17/15 11:40 NMI TAL SPK Prep 2 mL Total/NA NWTPH-Dx TAL SPK Analysis 1 130.4 mL 2 mL 774 03/18/15 17:34 NMI Total/NA 200.7 50 mL 50 mL 799 JSP TAL SPK Prep 03/19/15 14:47 Total/NA Analysis 200.7 Rev 4.4 1 50 mL 50 mL 815 03/20/15 10:42 JSP TAL SPK Total/NA SM 5310C 50 mL 50 mL 233985 03/16/15 09:42 TAL NSH Analysis JAB 1

Client Sample ID: MW-Dup-031015 Date Collected: 03/10/15 12:00 Date Received: 03/12/15 09:05

Batch Batch Dil Initial Final Batch Prepared Method Amount Number Prep Type Type Run Factor Amount or Analyzed Analyst Lab Total/NA 8260C 727 03/12/15 17:32 MRS TAL SPK Analysis 1 5 mL 5 mL NWTPH-Gx Total/NA 757 03/17/15 12:38 MRS TAL SPK Analysis 43 mL 43 ml 1 Total/NA Prep 3510C 270 mL 2 mL 749 03/16/15 10:37 NMI TAL SPK Total/NA 8270D SIM 270 mL 768 03/17/15 14:44 NMI TAL SPK Analysis 1 2 mL Total/NA Prep 3510C 264 mL 2 ml 900 03/27/15 15:49 NMI TAL SPK Total/NA 8270D SIM 899 264 mL 2 mL 03/27/15 18:15 NMI TAL SPK Analysis 1 Total/NA 8011 80 mL 812 03/20/15 13:52 NMI TAL SPK Prep 2 mL Total/NA 8011 80 mL 2 ml 813 03/20/15 19:44 NMI TAL SPK Analysis 1 Silica Gel Cleanup Prep 3510C SGC 128.8 mL 2 mL 772 03/17/15 11:40 NMI TAL SPK Silica Gel Cleanup NWTPH-Dx 128.8 mL 2 mL 774 03/18/15 21:53 NMI TAL SPK Analysis 1 128.8 mL 03/17/15 11:40 TAL SPK Total/NA Prep 3510C 2 mL 771 NMI TAL SPK Total/NA NWTPH-Dx 128.8 mL Analysis 1 2 mL 774 03/18/15 17:58 NMI Total/NA Prep 200 7 50 mL 50 mL 799 03/19/15 14:47 JSP TAL SPK Total/NA 50 mL 03/20/15 10:45 JSP TAL SPK Analysis 200.7 Rev 4.4 1 50 mL 815 Total/NA Analysis SM 5310C 50 mL 50 mL 233985 03/16/15 09:42 JAB TAL NSH 1

Client Sample ID: Trip Blank Date Collected: 03/10/15 08:54 Date Received: 03/12/15 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	727	03/12/15 17:55	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	808	03/20/15 11:24	MRS	TAL SPK

Lab Sample ID: 590-413-6 Matrix: Water

Lab Sample ID: 590-413-5

Matrix: Water

Lab Sample ID: 590-413-7

Client: GeoEngineers Inc Project/Site: Tiger Oil NIST

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177 TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Certification Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil NIST

_

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

Laboratory: TestAmerica Nashville

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Washington	State Program	10	C789	07-19-15

Client: GeoEngineers Inc Project/Site: Tiger Oil NIST

1 2 3 4 5 6 7 8	
2 3 4 5 6	
4 5 6	
5 6	
	5
7 8	
8	
	8

9

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	TAL SPK
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
8011	EDB, DBCP, and 1,2,3-TCP (GC)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
300.0	Anions, Ion Chromatography	MCAWW	TAL SPK
200.7 Rev 4.4	Metals (ICP)	EPA	TAL SPK
SM 5310C	TOC	SM	TAL NSH
Protocol Refe	rences:		
EPA = US	Environmental Protection Agency		
MCAWW	= "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1	983 And Subsequent Revisions.	
NWTPH =	Northwest Total Petroleum Hydrocarbon		

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

ĺ

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200	FAX 924-9290 FAX 906-9210 FAX 563-9210	ト
503-906-9200	FAX 906-9210	
907-563-9200	FAX 563-9210	

			(CHAI	N OF	CUST	rody	' REF	ORT			Work O	rder #:				
CLIENT: GreoEngilie	INVOI	CE TO:					TURNAROUND REQUEST										
REPORT TO: JT2 Sugalsk ADDRESS: 523 East Spokane, 1 PHONE: 509 - 363 - 3125 PROJECT NAME: Tise of	~									in Business Days * Organic & Inorganic Analyses							
Spokare,	DO NI	MOED.		· ··	• • • • • •	X 7 STD. 7	Image: Non-State 7 5 4 3 2 1 <1 STD. Petroleum Hydrocarbon Analyses										
PROJECT NAME	MAX: 507-363-310	e 	· · · ·	NC	P.O. NUMBER: PRESERVATIVE								1	3 2 1 <	a		
													, []	ے لیے لیے ل	1		
PROJECT NUMBER: 0534-	-101 - 00	I			REQUESTED ANALYSES								OTHER Specify:				
SAMPLED BY: JWR		J.	e la	<u> </u>								* Turnaround	* Turnaround Requests less than standard may incur Rush Charges				
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	HUHN N	sulfate						:			MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID		
1 MW-1-031015	3/10/15 20554	×	*									ω	1				
2 MW-2-031015	0854																
3 MW-3-031015	0948																
10150 - 4- WW	1023																
5 MW -5-031015	1115			_													
· MW - DUP-031015	محرر ل	5			 							J	L				
7																	
8																	
9																	
10									1	1.	1 -						
RELEASED BY: TA PRINT NAME: Just R	FIRM:			DATE TIME	3/10	115		RECEIVE PRINT N	DBX She	ula Kri	nas	FIRM	Test	DATES			
RELEASED BY.				DATE				RECT			• • •	-		DATE			
PRINT NAME: FIRM: TIME ADDITIONAL REMARKS:						TIME: PRI						<u>3</u>					
								50	0.308 Choin	of Custody				TROCITAL-10	JOO (0714)		

590-398 Chain of Custody

Page 44 of 48

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200	FAX 924-9290
503-906-9200	FAX 906-9210
907-563-9200	FAX 563-9210

X

. .

CHAIN OF CUSTODY REPORT

					C	HAU	N OF	CUS	IOD	I KE	PORT					Work ()rder #	t:		
CLIENT: (5100 Engineer	5	-				INVOI	CE TO:										TURNA	AROUND RE(JUEST	
REPORT TO: JZ Sugals	ki ssuga	ISKi @ geor	engine	a15. CO	معدد												î	n Business Days *		
ADDRESS: 523 East Se Spokane WA	cond Ave																	& Inorganic Analy		_
Spokane WA		· · · ·											STD. Petroleum Hydrocarbon Analyses							
PHONE: 509 - 363-3125	FAX: 509-3	563-5126	1	P.O. NUMBER:										SID. Petroleum Hydrocarbon Analyses						
PROJECT NAME: Tiger Oil				PRESERVATIVE																
PROJECT NUMBER: 0504 -	0 - 00				L	1	REQUESTED ANALYSES													
SAMPLED BY: Ju P				4		14		REQUE		1	<u> </u>]				OTHER Specify: * Turnaround Requests less than standard may occur Rush Charg				h Charges
CLIENT SAMPLE IDENTIFICATION		PLING E/TIME	Harrin	-HULLINN DX	Ś	AJaq) Ath	602	100	lead	PAN'S						MATRIX (W, S, O)		LOCATIO		TA WO ID
1 MW-1-031015	3/10/15	1205	K	X	X	X	X	x	×	· ×						ω	10			
2 MW-2-031015		0854	Í																	
3 MW-3-031015		0948																-		
, mw-4-031015		1023																		
s MW-5-031015		1115																		
6 MW-Dup-031015	J	1200	V	Y	J	5	U	U-		V							J.			
7											 	1 1 116: 66: 66 6	 To D (10) 60 0) 6	[1000100000000] 	1	I			
8																				
9			 														<u>, </u>			
10												413 Cha			1	1	<u> </u>			اسر ا
RELEASED BY Justin The PRINT NAME.	2	~					: 3/12	-		RECEIV	ED B	heila	্ৰ কথ্য	at			· _ ·		DATE. 3/1	
		FIRM (ed			TIME	$-\underline{\nabla}\Gamma$	<u> </u>		PRINT N	AME: S	reila	frat i	2		FIRM	· Last	Amer:cat		:()S
RELEASED BY.						DATE				RECEIV								_	DATE	
PRINT NAME: ADDITIONAL REMARKS:		FIRM:		· · ··· ·		TIME				PRINT N		-				FIRM			1ME-]
NWTPH-DX	both a	with ? (w th	-out	5:	lica	Gel	cle	مەن	e:	Voc	an) V	anht	hales	e E	PA 82	6005,5°	PAGE	OF
ADDITIONAL REMARKS: NWTPH-DX EDB with E	PA 8011	TOC	いけん	SM.	5310	B	~			•)		-		ſ					TAL-100(0 (0714)

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 398 List Number: 1

Creator: Kratz, Sheila J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-398-1

List Source: TestAmerica Spokane

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 413 List Number: 1

Creator: Kratz, Sheila J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Sample Trip Blank received but not listed on COC.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-398-1

List Source: TestAmerica Spokane

Client: GeoEngineers Inc			Job Number: 590-398-1
Login Number: 413 List Number: 2 Creator: Huckaba, Jimmy			List Source: TestAmerica Nashville List Creation: 03/13/15 05:34 PM
Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td></td> <td></td> <td></td>			
The cooler's custody seal, if present, is intact.			
Sample custody seals, if present, are intact.			
The cooler or samples do not appear to have been compromised or tampered with.			
Samples were received on ice.			
Cooler Temperature is acceptable.			
Cooler Temperature is recorded.			
COC is present.			
COC is filled out in ink and legible.			
COC is filled out with all pertinent information.			
Is the Field Sampler's name present on COC?			
There are no discrepancies between the containers received and the COC.			
Samples are received within Holding Time.			
Sample containers have legible labels.			
Containers are not broken or leaking.			
Sample collection date/times are provided.			
Appropriate sample containers are used.			
Sample bottles are completely filled.			
Sample Preservation Verified.			
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs			
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").			
Multiphasic samples are not present.			
Samples do not require splitting or compositing.			
Residual Chlorine Checked.			

APPENDIX C Report Limitations and Guidelines for Use

APPENDIX C REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This Appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of the Washington State Department of Ecology (Ecology). This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except Ecology should rely on this environmental report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the Tiger Oil North 1st site located at 1808 North 1st Street in Yakima, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of Ecology. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm and Ecology with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with Ecology and generally accepted environmental practices in this area at the time this report was prepared.

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

Environmental Regulations are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

No ESA can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely-spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproductions are acceptable, but recognize that separating logs from the report can elevate risk.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Geotechnical, Geologic and Geoenvironmental Reports Should Not be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Ecology desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

