

Engineering & Surveying

## **REMEDIAL INVESTIGATION REPORT**

Tidrick's Quality Transmission 1802 South 1<sup>st</sup> Street Yakima, Washington 98903

FS ID No. 543; CU ID No. 6497

May 26, 2015 PLSA Project No. 14006

Prepared for:

**Washington State Department of Ecology** 15 West Yakima Avenue, Suite 200 Yakima, WA 98902

## Table of Contents

| INTRODUCTION                            | 1  |
|-----------------------------------------|----|
| 1 PROPERTY LOCATION & DESCRIPTION       | 2  |
| 1.1 Site Location and Legal Description | 2  |
| 1.1.1 Topography                        | 2  |
| 1.1.2 Hydrology                         | 2  |
| 1.1.3 Geology & Soil                    | 2  |
| 2 SITE BACKGROUND                       |    |
| 3 PRIOR SITE INVESTIGATION              | 5  |
| 3.1 Soil Investigation                  | 5  |
| 3.1.1 Sampling Deficiencies             | 5  |
| 3.1.2 Analysis Deficiencies             | 6  |
| 4 SCOPE OF CURRENT INVESTIGATION        |    |
| 4.1 Conceptual Site Model               |    |
| 4.2 Cleanup Levels                      |    |
| 4.3 Field Investigation and Sampling    |    |
| 4.3.1 Soil                              |    |
| 4.3.2 Groundwater                       | 9  |
| 4.3.3 Air                               |    |
| 5 ANALYTICAL RESULTS SUMMARY            |    |
| 5.1 Soil                                |    |
| 5.2 Groundwater                         |    |
| 6 CONCLUSIONS                           | 14 |
| 7 REFERENCES                            | 1  |

## **INTRODUCTION**

The objective of this Remedial Investigation (RI) is the evaluation of the nature and extent of contamination related to past land use practices and is based on evidence of chemical releases at the Tidrick's Quality Transmission Site. These practices were associated with automotive repair and service facilities and included the use of two drywells, one waste oil underground storage tank (UST), and two gasoline UST's.

## **1 PROPERTY LOCATION & DESCRIPTION**

## 1.1 Site Location and Legal Description

Address: The subject property consists of a single tax parcel, located at 1802 South 1<sup>st</sup> Street Yakima, Washington, 98903. See Figure 1 for vicinity map.

## Yakima County Tax Parcel's: 191331-11012

**Latitude:** 46° 34' 46 38.3988" N; **Longitude:** 120° 29' 32.0352" W

**Legal Description:** That portion of the Northwest <sup>1</sup>/<sub>4</sub> of the Northwest <sup>1</sup>/<sub>4</sub> of the Northeast <sup>1</sup>/<sub>4</sub> of the Northeast <sup>1</sup>/<sub>4</sub> of Section 31, Township 13 North, Range 19, E.W.M., described as follows: Beginning at the point of intersection of the South line of Mead Avenue and the Westerly line of State Road No. 3; thence Southeasterly along said Westerly line 300 feet; thence West parallel with the South line of Mead Avenue 249.2 feet; thence North 183.6 feet; thence West 1 foot; thence North to the South line of said Mead Avenue; thence East to the Point of Beginning.

## 1.1.1 Topography

The land surface on the property is nearly flat but was modified after demolition of building structures and the asphalt parking lot so that the average grade across the property is 1 to 2 feet below the adjacent intersection. Two commercial structures and a paved asphalt parking lot formerly existed on the property. Assessor records document that a building was constructed in 1935, presumably the main building, and the associated smaller building was built in 1940. In December 2013 and January 2014, the two buildings and the asphalt pavement were demolished and removed from the property. Previous to demolition, the land surface was generally level.

## 1.1.2 Hydrology

**Groundwater** - The Yakima Valley, being a part of the Columbia Basin Plateau, also contains several productive aquifers in the interbeds between the various basalt flows that make up the Columbia River Basalt Group. The average groundwater gradient of the various aquifers varies in direction and distance below ground surface, and with respect to irrigation seasons; but is generally toward the Yakima River which is located several miles southeast. Contamination plumes, should they exist in the groundwater, would likely migrate in that direction. Depth to groundwater in the unconfined aquifer is relatively shallow.

Surface Water - The Yakima River is located greater than a mile east of the property.

## 1.1.3 Geology & Soil

General and specific information regarding surface and subsurface conditions at the site are available from several sources. General soils data is given in the U.S. Soil Conservation Service (SCS) publication entitled Soil Survey of Yakima County Area, Washington. These sources present generally consistent findings regarding subsurface conditions. The site consists of up to a 3 foot thick surface layer of silty sand overlying a deep stratum of native sand and gravel that extends to groundwater that can be observed at a depth of 12 to 14 feet below the ground surface. The Unified Soil Classification System (USCS) of the native topsoil is GW.



## 2 SITE BACKGROUND

The following narrative is derived from records stored at the Washington State Department of Ecology (Ecology) and personal recollection of Brad Card, Senior Engineer for PLSA: From early 1960's to 1978 it was the location of the Al Lundgren Volkswagen/Porsche dealership. In 1979 it was the location of a Kubota tractor dealership. At the time of Ecology's first initial investigation, the site was identified as Carlos Motors, Inc., a used car dealership specializing in detailing older model cars.

On July 21, 1992, Ecology received a complaint of oil dumping on the site. Upon completing its preliminary investigation, Ecology concluded that a release had occurred and notified the property owner of a further action determination. Prior to the performance of a site hazard assessment, Carlos Motors was replaced by Tidrick's Quality Transmission as the business entity operating at this address. According to local telephone directories, Tidrick's Quality Transmission was listed at this address beginning about November 1993. Two drywells and three USTs existed on the property in conjunction with these businesses. The length of time the drywells and USTs were in use is unknown; however, the drywells were active for at least 20 years. The Site Hazard Assessment completed in 1994 yielded a site ranking of "1".

In May 1994, limited soil sampling performed during the site hazard assessment confirmed releases in the vicinity of the two drywells and the waste oil UST (Figure 2). In September of that year, Cayuse Environmental (Cayuse), an environmental consulting company hired by the former property owner, decommissioned the three USTs on the site. Cayuse also initiated an independent remedial action in association with the removal of one of the two drywells (south drywell) and the release from the waste oil UST. The interim action consisted of petroleum-contaminated soil removal.

In October and November 1994, the scope of the interim action was expanded in the areas surrounding the waste oil UST and the south drywell. The scope of work also included remedial action to address soil contamination in the north drywell. Approximately 700 tons of petroleum contaminated soils (PCS) were reported to have been removed and disposed at the former Rabanco landfill in Roosevelt. No receipts or other supporting documentation are known to exist to verify the removal and proper disposal of the PCS.

Ecology review of the remedial action report concluded that the site characterization was incomplete due to the lack of sufficient (characterization and confirmation) analysis for the type and nature of the known contamination. Analyses of the soil initially excavated in the vicinity of the waste oil UST and the north drywell exhibited concentrations of chlorinated solvents including tetrachloroethene (PCE) and trichloroethene (TCE) above Model Toxics Control Act (MTCA) Method "A" soil cleanup levels (CUL). Although soil had been over excavated in the vicinity of the waste oil UST and the two drywells, no analyses for chlorinated solvents were performed on the soil confirmational samples. Additionally, an undetermined quantity of PCS was reportedly left intact under the former garage/paint shop building (west building) during removal of the north drywell.

In March 2007, the site underwent a second Toxics Cleanup Program (TCP) initial investigation in conjunction with a Dangerous Waste Compliance inspection by the Hazardous Waste and Toxics Reduction Program. The joint investigations were prompted by visible evidence of improper storage and handling of generated waste streams. Numerous examples of releases to the ground were documented with photographic evidence that showed impact to the environment including conveyance to the stormwater drain. The business operating on the site at that time was Tidrick's Quality Transmission.

During the TCP initial investigation, limited soil sampling was performed in the shallow subsurface. Two grab samples were collected and analysis of both samples showed heavy oil and lead concentrations that exceeded their respective MTCA Method A soil cleanup levels.

## **3 PRIOR SITE INVESTIGATION**

## 3.1 Soil Investigation

In September 1994, Cayuse performed a site assessment with the removal of three USTs and initiated the removal of contaminated soils from releases at the waste oil UST and the south drywell. In October and November of that year, Cayuse expanded the scope of work to assess the north drywell and to excavate contaminated soils from the waste oil UST area and the two drywells. No other remedial actions were conducted on the Site with the exclusion of the limited soil sampling during the second initial investigation by Ecology.

## 3.1.1 Sampling Deficiencies

The site assessment and interim soil removal action presented many deficiencies in site characterization and post-removal soil confirmational sampling.

## 3.1.1.1 Gasoline UST Removal

The two USTs located at the north portion of the site were listed as gasoline USTs but little or no detail is known concerning whether the tanks had contained other chemicals such as heating oil. Upon removal of these two tanks, Cayuse reported there were no obvious signs of release based on the appearance of the tanks. Three confirmational soil samples were obtained from each tank cavity, two from the sidewalls and one at the bottom of the excavation at a maximum depth of five feet below ground surface (bgs). The soil samples were analyzed for gasoline-range organics by WTPH-G and lead by EPA Method 6010. Based on these analyses there were no signs of gasoline releases from the USTs; however, the required UST site assessment testing should have routinely included analysis for volatile organic compounds (benzene, ethylbenzene, toluene, and xylenes or BTEX).

## *3.1.1.2 Fuel Distribution Lines*

The report did not describe any removal of piping system or associated dispensers. The report also did not document investigation of the fuel distribution piping system associated with both gasoline USTs. According to the *Guidance on Site Checks and Site Assessments for Underground Storage Tanks* (February 1991), soil samples should have been obtained to assess the dispenser and piping areas for all required analyses.

## 3.1.1.3 Waste Oil UST

The initial soil samples obtained from the waste oil UST area and two drywells were analyzed by WTPH-418.1. The shortcoming of this analytical method is that it does not identify the type of petroleum hydrocarbon in the sample but yields only a total recoverable petroleum hydrocarbon value. Analyses should have been performed to identify the specific types of petroleum hydrocarbons potentially present in the waste oil mixture or possibly disposed through the drywell system. The confirmational samples are compliant for petroleum hydrocarbons if the contamination was diesel-range or heavy oil-range hydrocarbons. If gasoline-range organics were present, the confirmational samples were not in compliance. The appropriate analyses would have included WTPH-HCID and where petroleum hydrocarbons were identified as present, quantified through WTPH-Gx or WTPH-Dx, respectively. The soil excavation depths for cleanup at each of the drywells and the waste oil UST area should have been dictated by the type and nature of the contamination.

## 3.1.2 Analysis Deficiencies

## 3.1.2.1 Chlorinated Solvents and other Volatile Organic Compounds

The site characterization in 1994 was inadequate since the required testing was not performed or only a portion of the analytical results were reported to Ecology. A limited number of initial soil samples from the waste oil UST area and the south drywell area were analyzed by EPA Method 8260 but the laboratory report only shows the analysis as a chlorinated solvent scan and does not list detections or concentrations of benzene, toluene, ethylbenzene, or xylenes as constituents that were assessed. The samples from these two areas should have been screened for BTEX with the analytical results listed in the laboratory report. Detections of these constituents would have yielded information potentially indicative of a release containing fresh or less weathered gasoline to supplement hydrocarbon identification analysis if it had been conducted.

Other appropriate soil analysis should have included EPA Method 8270 to assess semi-volatile organics including such possible contaminants as naphthalene and carcinogenic polyaromatic hydrocarbons (cPAHs). Only one sample from the waste oil UST (#9422-09) and one sample from the south drywell (9422-12) were assessed via Method 8270. Analysis of both samples showed values of naphthalene near the compliance level for protection of groundwater for drinking water purposes; however, the values were flagged as estimates.

Soil samples taken from the north drywell area were only analyzed for petroleum hydrocarbons by WTPH-418.1 Modified. Other analytical methods to screen for potential constituents in a waste mixture were not performed on these samples. According to the notes associated with MTCA Table 830-1, the waste oil category applies to unknown petroleum products and mixtures of petroleum and nonpetroleum substances. As such, testing is required in a sufficient number of samples to determine whether a possibly associated chemical is present at concentrations of concern.

In 2007, an additional but very limited investigation was performed to assess surface contamination due to poor business housekeeping practices associated with the historical land use. Two grab samples of soil were collected from the shallow subsurface at a depth of three to six inches bgs. One soil sample was collected near the south fence line in the vicinity of the southwest corner of the property. This sample exhibited a concentration of lube oil at 2,200 mg/kg. Analysis for chlorinated solvents was also conducted but the results were reported as estimates or as non-detections. Metals analyses were not performed on this sample. The other grab sample of soil is described in the next section (Metals).

The confirmational analyses for the areas where soil was removed also did not account for chlorinated solvents and possibly other contaminants although the initial sampling showed concentrations of several chlorinated solvents in soil above Method A compliance levels. Subsequent analysis for chlorinated solvents following soil removal was not conducted nor were required screening analyses under MTCA Table 830-1 performed. Analyses including EPA Method 8260 and 8270 will be performed to screen for possible constituents that have the potential to migrate due to high solubility.

## 3.1.2.2 Metals

The initial soil samples obtained from the waste oil UST as well as two samples from the south drywell were analyzed for metals; however, the soil samples were prepared by a leaching method typically used with waste profiling for disposal purposes. The laboratory analytical sheets indicated that EPA Method 1311 (TCLP) was used prior to analysis of the samples by EPA Method 6010. MTCA does allow for the derivation of soil concentrations protective of groundwater based on a leaching test. Per WAC 173-340-747(7), these analytical results are appropriate when determining

the leachability of contaminants from a soil sample and to evaluate the soil leaching to groundwater pathway. For the soil concentrations to be protective of groundwater, the leaching test effluent concentrations shall be less than or equal to ten (10) times the applicable groundwater cleanup level established under WAC 173-3470-720. The analytical results showed that three of the soil samples failed the leaching test (Sample Nos. 9422-7, 9422-8 and 9422-12) for lead.

The direct contact exposure pathway should also have been evaluated at that time by performing EPA Method 6000 or 7000 series to determine contaminant concentrations in comparison to MTCA Method A or Method B CUL. Assessment of the direct contact exposure pathway would not include EPA Method 1311 as a sample preparatory method prior to analysis.

During the limited site investigation in 2007, only one of the two grab samples of soil was analyzed for metals along with NWTPH-Dx. Analytical results showed that the sample obtained along the east wall near the southeast corner of the garage/paint shop (west building) had exceedances of lead (480 mg/kg) and lube oil (6,300 mg/kg).

In any event, the soil sampling for characterization and cleanup confirmational sampling were insufficient to determine if the soil concentrations were protective of human health for either of the two applicable exposure pathways for metals. Consequently, confirmational sampling and analysis for metals is required at the following areas: near the former waste oil UST, the north and south drywells, and the area where the PCS was left intact under the building.

## **4** SCOPE OF CURRENT INVESTIGATION

## 4.1 Conceptual Site Model

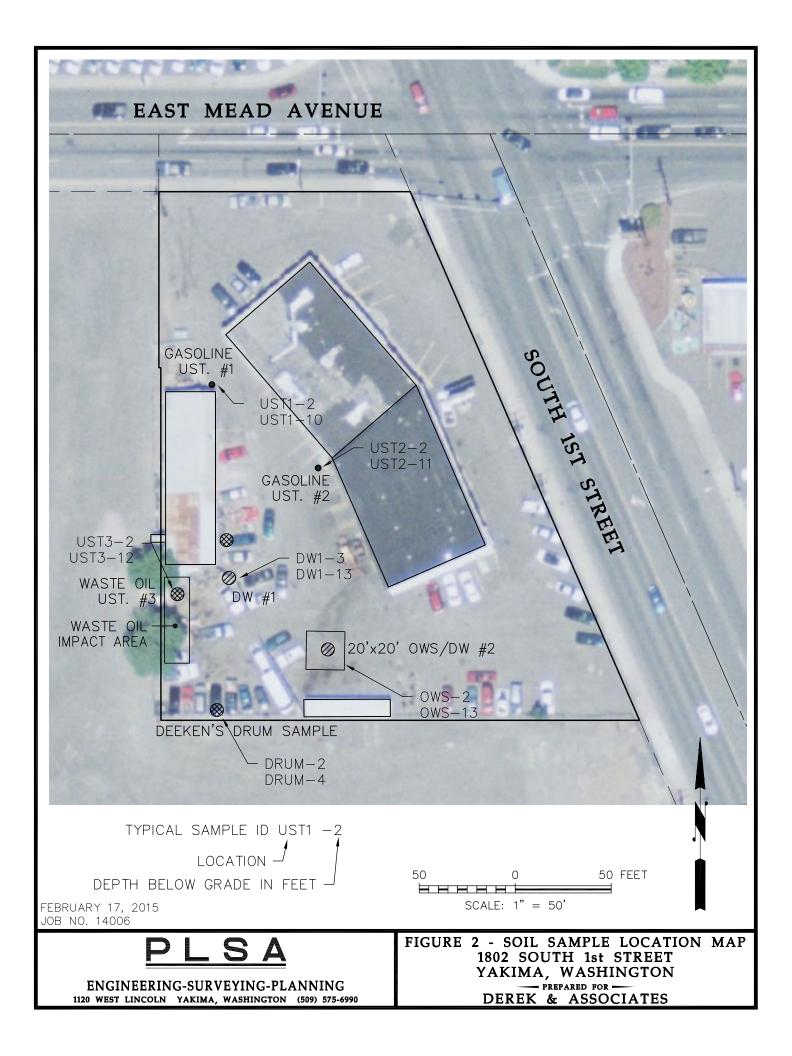
All structures and paving were removed from the site prior to this investigation. To identify areas of the site that had the highest probability of the presence of residual contamination, PLSA reviewed sketches and narratives from previous investigations, and mapped past remedial activities on an aerial photograph of the site where structures and other benchmarks were visible. Soil sampling locations and depths are illustrated in Figure 2. Once sampling locations were identified, PLSA surveyors staked the locations in the field.

A similar methodology was used to assess and locate appropriate locations to install groundwater monitoring wells. Figure 3 shows the location of three monitoring wells relative to former site features and provides specific horizontal and vertical data for each well. Groundwater from the wells was sampled on June 6, 2014 when groundwater flow would potentially be affected by recharge from regional irrigation and then sampled again on November 20, 2014 well after regional irrigation practices had been suspended.

The investigation described above was established to address data gaps in the previous investigation. Based on previous investigation elements deemed reliable, current field observations, field screening, and analytical data, PLSA developed a revised Conceptual Site Model (CSM).

## 4.2 Cleanup Levels

Typically, the appropriate cleanup levels for a site are determined by the nature and extent of contamination which includes fate and transport of the contaminants, media impacted, and exposure pathways. Soil and groundwater samples at this site were generally evaluated using Method A cleanup levels for unrestricted land use. The Method A cleanup levels for many contaminants is generally established on protection of groundwater for drinking water uses. Consequently, the Method A cleanup levels for many contaminants tend to be more stringent than cleanup levels based solely on the direct contact exposure pathway.


## 4.3 Field Investigation and Sampling

The site characterization consisted of soil sampling at six test pit locations (two soil samples taken from each location at varying depths) and groundwater sampling while groundwater flow was influenced by regional irrigation and again after regional irrigation was suspended for several weeks. In lieu of extensive soil sampling, installation of groundwater monitoring wells and limited soil sampling was approved to assess the site for current contamination. See Appendix "B" for a copy of Remedial Action Plan.

## 4.3.1 Soil

Soil was sampled July 8, 2014, at 6 key locations on the site. See Figure 2. Table 1 below summarizes sample descriptions, sample identification, and sample depth below the existing ground surface (bgs). An open pit was excavated at each of the mapped locations. Soil logs can be found in Appendix "A". Soil was sampled at two depths in each excavation; one below but near the surface and the second at significant depth near the anticipated high groundwater depth.

Soil samples were analyzed for BTEX, Ethylene Dibromide (EDB), 1, 2-Dichloroethane (EDC), MTBE, Carcinogenic Polycyclic Aromatic Hydrocarbons, Naphthalene's, PCB's, Halogenated



Volatile Organic Compounds, Cadmium, Chromium, Nickel, and Zinc. Tables 2A thru 2B found in the following pages summarize the analytical results.

Cayuse Environmental reported that petroleum contaminated soil was left in place near the south end of the west building; however the Cayuse report contained several inconsistencies and was deficient in site characterization.

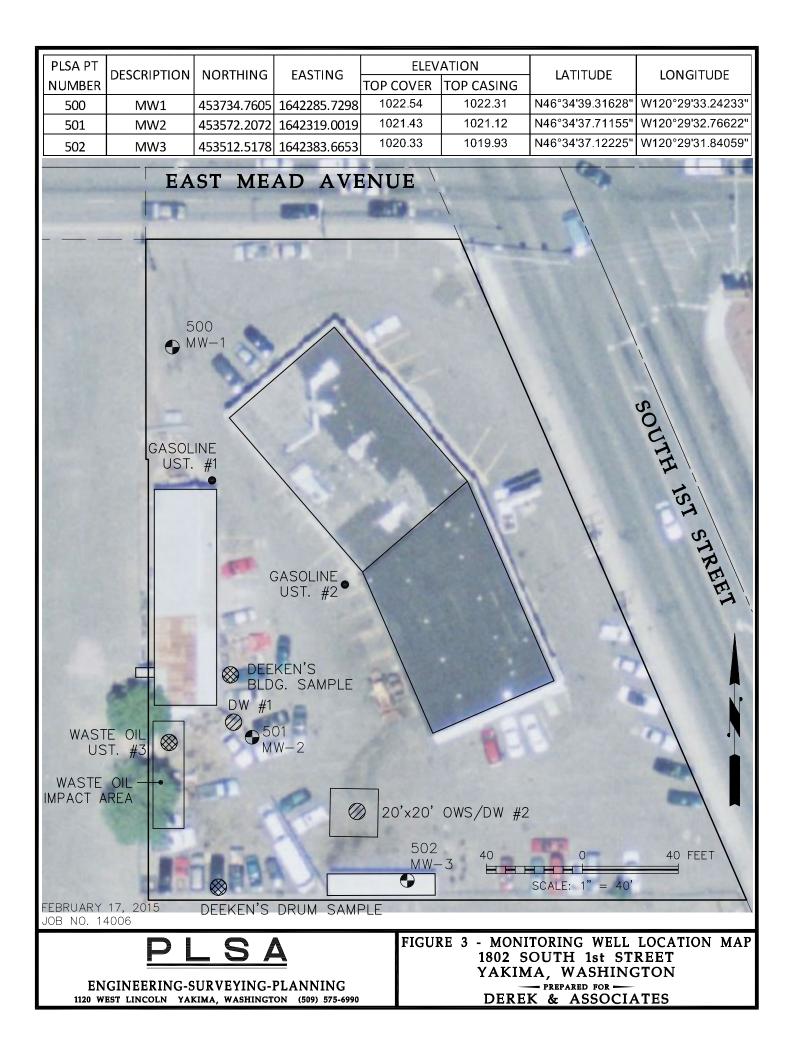
During the current field investigation PLSA did not find visual, olfactory or other field evidence of remaining petroleum contamination. Soil observed, throughout the entire depth of each excavation, was free of discoloration and odor. Field screening, during the investigation, with a PID did not identify petroleum contamination in any of the locations investigated.

## 4.3.2 Groundwater

Three monitoring wells were installed by air rotary drilling. Locations of the monitoring wells are indicated on the site diagram (See Figure 3) and are based, in part, on the former source areas. The up-gradient well is located at the northwest corner of the property and down gradient wells were located near the location of suspected releases, at the south end of the site. The up-gradient well was installed to assess potential off-site contribution of chlorinated solvents and associated daughter products.

## 4.3.2.1 Well Construction

Construction and specifications of the monitoring wells followed the requirements as stated in Chapter 173-160 WAC (Minimum Standards for Construction and Maintenance of Wells) and the commonly accepted industry standards for installation of wells that produce representative groundwater samples. The well casing consists of 2-inch diameter Schedule 40 polyvinyl chloride (PVC). The screen consists of a five foot section having 10 slot (0.010 inch) openings flush threaded with riser. The filter pack consists of 10/20 silica sand deposited from the bottom of the screen to one foot above the top of the screen. The remainder of the annulus space is filled with 3/8 inch bentonite chips to the bottom of a steel casing that has a flush-mounted well monument set in a finished concrete base.


The project schedule for monitoring well compliance sampling was based on the completion of well development. The wells were developed by surge block and pumping until the fines had dissipated (water is clear). Well construction was monitored continuously by engineers from PLSA. Soil samples were not obtained due to the gravelly/cobbly nature of the substrate resulting from the air rotary drilling process. There were no visual or olfactory indications of contamination noted during the construction process. Drill cuttings did not display unusual odor or discoloration.

## 4.3.2.2 Groundwater (General Hydrology)

Depth to groundwater in the area is variable depending on the information source: Measured depth to groundwater in the three monitoring wells ranged from 14 to 15.5 feet below the ground surface (bgs). Based on the Yakima Railroad Area study, the groundwater fluctuation may be as much as two feet between low and high water. The same study shows groundwater in the shallow aquifer generally flows easterly or southeasterly, which was confirmed by our calculations.

## 4.3.2.3 Survey of Monitoring Well Location and Elevation

All monitoring wells were surveyed by PLSA, a licensed surveying firm. The horizontal locations of monitoring wells are measured to within 0.1 foot. See Figure 3 for "Monitoring Well Location Map". Monitoring well elevation measurements were measured to a reference point marked at the top of the PVC well casing to the nearest 0.01 foot relative to the North American Vertical Datum of 1988



(NAVD88). Water levels are measured to within 0.01 foot from this reference point on the casing. Horizontal datum conforms to the North American Datum of 1983, updated in 1991 (NAD83 (1991)).

## 4.3.2.4 Monitoring Well Sampling & Analysis

Groundwater was found at approximately 15 feet bgs. Groundwater static level was measured and recorded and groundwater samples were collected for the required analyses. The entire suite of analyses for waste oil was performed on these samples to determine if impact had occurred.

Initially, groundwater sampling of the monitoring wells was to conform to the guidelines set forth in the *Guidance on Remediation of Petroleum Contaminated Sites* where the initial groundwater sampling results dictate the required frequency of sampling (Stage 1, 2 or 3). However, since this site exists within the Yakima Railroad Area, provision was allowed for deviation from the guidance with regard to frequency of groundwater sampling and with focus on the source and downgradient wells.

Prior to sampling, the field personnel coordinated with the laboratory to ensure sampling protocols including recommended sample volume, holding times, and proper storage.

Groundwater elevation measurements were recorded from each well prior to sampling. The groundwater levels were measured to within 0.01 foot from the reference point on the casing. Based on groundwater elevations and surveyed coordinates of the wells groundwater flow was calculated to be south-southeast. Flow direction did not change appreciably from the influence to groundwater recharge from irrigation.

Groundwater was collected using a low-flow submersible pump and was unfiltered as recommended, to facilitate analysis for organic compounds. Samples were observed to be clear and had no discernable turbidity. The samples were odorless and exhibited no other evidence of contamination.

Per the work plan, groundwater samples were to be collected and analyzed for the following: petroleum hydrocarbons, volatile petroleum compounds (BTEX), fuel additives and blending compounds (MTBE, EDB, EDC), carcinogenic PAHs, naphthalene, metals (cadmium, chromium, nickel, zinc, and lead), PCBs, and halogenated VOCs.

Groundwater samples analyzed for petroleum hydrocarbons were initially analyzed with NWTPH-HCID, and then quantified by NWTPH-Gx, NWTPH-Dx as necessary. Although, NWTPH-HCID is a qualitative and semi-quantitative procedure the Department of Ecology Publication ECY 97-602 <u>Analytical Methods for Petroleum Hydrocarbons</u> states that "it can be used to eliminate the need for further analysis for those samples which demonstrate TPH levels significantly below regulatory limits". Analytical results may be found in **Appendix C.** 

## 4.3.2.5 Hydraulic Gradient

Groundwater depths at the wells were measured, prior to purging and sampling, for the determination of the direction of groundwater flow. Measurements were made in June during peak potential for groundwater to be influenced by seasonal irrigation and again in late November well after irrigation systems had been turned off. Calculations showed that in both cases flow was consistently to the south-southeast. In June 2014 groundwater flow direction was calculated to be on a bearing of 174 degrees at an average elevation of 1006.79 feet above mean sea level (MSL). In November the direction of flow was calculated to be 170 degrees at an average depth of 1007.01. Groundwater flow did not show significant deviation due to recharge from seasonal irrigation.

## 4.3.2.6 Management of Investigative Wastes

Regulated investigation derived wastes (IDW) such as soil cuttings generated during drilling and sampling activities were containerized in 55-gallon, US Department of Transportation (DOT)

approved drums. Decontamination water and purge water from the groundwater monitoring wells was stored in the same 55-gallon DOT-approved drums. Subsequent groundwater analytical results found that groundwater removed from wells contained concentrations of PCE that exceed permissible levels for on-site disposal. PLSA will coordinate IDW disposal and provide supporting documentation of appropriate disposal within 90 days of acceptance of the R.I. Report.

## 4.3.2.7 Groundwater Monitoring Well Decommissioning

The groundwater monitoring wells will be decommissioned per Chapter 173-160 WAC (Minimum Standards for Construction and Maintenance of Wells) <u>only</u> after receiving written approval from Ecology

## 4.3.3 Air

Several organic chemicals were detected in the groundwater samples obtained for the monitoring wells. The dissolved concentration of these chemicals is one criterion on whether these chemicals pose a concern for vapor intrusion. The concentrations of tetrachloroethene (PCE) quantified in the groundwater samples were within vapor intrusion screening levels since the groundwater screening level for tetrachloroethene is  $22.9 \ \mu g/L$ . Although the concentration of Cis-1,2-Dichloroethylene in groundwater was quantified, this chemical was removed from the vapor intrusion screening list because there are no toxicity values as part of the Cleanup Levels and Risk Calculations (CLARC) under the Model Toxics Control Act.

Chloroform was also detected. Chloroform is widespread throughout the Yakima Railroad Area (YRRA). However, the source of the chloroform is unknown. Chloroform is known to be a disinfection by-product commonly produced during chlorination of water supplies and wastewater (Ivahnenko and Zororski, 2006).

Although Cis-1,2-Dichloroethylene and chloroform may present a potential vapor intrusion hazard, the evaluation of these chemicals is beyond the scope of this investigation.

## **5 ANALYTICAL RESULTS SUMMARY**

## 5.1 Soil

Analytical results for analytes with concentration exceeding MTCA Method "A" level are limited to total chromium. Results are summarized in Tables 2A - 2D on the following pages. Complete Laboratory Analytical Results may be found in Appendix D.

Chromium concentrations exceed the MCTA Method "A" cleanup level of 19 mg/kg for hexavalent chromium. Follow up analysis to determine chromium speciation was not performed to identify if any of the concentration of the total chromium is hexavalent chromium. For comparison, Method "B" cleanup levels are shown. Table 3 lists Method "B" CUL.

|                   | Chromium III                           | Chromium VI                            |
|-------------------|----------------------------------------|----------------------------------------|
| Exposure Type     | Method "B" Soil Clean Limit<br>(mg/kg) | Method "B" Soil Clean Limit<br>(mg/kg) |
| Ingestion Only    | 120,000                                | 240                                    |
| Ingestion +Dermal | 45,000                                 | 128                                    |

Table 3: Method B CUL for Chromium.

The reported concentrations of total chromium, found in the soil samples, are below the MTCA Method "B" soil cleanup level for either form of chromium; however, these values are applicable to non-carcinogenic effects. Information for carcinogenic effects was not available.

Given that some of the soil samples were obtained from what is considered fill material, e.g., near the former gasoline UST areas, then it is reasonable to assume the values for total chromium are representative of chromium III. As reported in the Ecology publication, "Natural Background Soil Metals Concentrations in Washington State", the concentration of chromium in the soil samples is approximately one-half of the background concentration (38 mg/kg) for Yakima. These multiple lines of evidence suggest that hexavalent chromium is not a chemical of concern at this site. However, only additional chemical analysis will conclusively show that hexavalent chromium is not present as explained in the footnotes to Table 740-1 (Method A Soil Cleanup Levels for Unrestricted Land Uses), Model Toxics Control Act.

For the carcinogenic polyaromatic hydrocarbons (cPAHs), the total toxicity equivalence (TTEC) concentration was calculated to obtain the equivalent concentration of benzo(a)pyrene. The soil sample showing the highest concentrations of cPAHs was used to calculate the TTEC. The result demonstrates that the soil concentration of cPAHs is within the regulatory compliance levels for MTCA. See Appendix E for calculations.

Analytical results, field screening, and field observations did not indicate the presence of other soil contaminants above regulatory levels.

|                              |                   |             | Total Pe | al Petroleum Hydrocarbons | carbons | ٨       | Volatile Petroleum Hydrocarbons | m Hydrocarbo | ns                   |             |
|------------------------------|-------------------|-------------|----------|---------------------------|---------|---------|---------------------------------|--------------|----------------------|-------------|
|                              |                   |             |          |                           |         |         |                                 |              |                      |             |
|                              | Depth             |             |          |                           |         |         |                                 | Ethyl-       |                      | Total       |
| Sample ID.                   | (ft.)             | Sample Date | TPH-GRO  | TPH-DRO                   | TPH-HRO | Benzene | Touene                          | benzene      | <b>Total Xylenes</b> | Naphthalene |
| OWS-2                        | 2                 | 7/8/2014    |          | -                         |         | DN      | DN                              | ND           | DN                   | ND          |
| OWS-13                       | 13                | 7/8/2014    | -        | 1                         |         | DN      | DN                              | ND           | ND                   | ND          |
| UST1-2                       | 2                 | 7/8/2014    | -        | 1                         |         | DN      | DN                              | ND           | ND                   | ND          |
| UST1-10                      | 10                | 7/8/2014    | -        | -                         |         | DN      | DN                              | ND           | DN                   | ND          |
| UST2-2                       | 2                 | 7/8/2014    | -        | 1                         |         | DN      | DN                              | ND           | ND                   | ND          |
| UST2-11                      | 11                | 7/8/2014    | -        | 1                         |         | DN      | DN                              | ND           | ND                   | ND          |
| UST3-2                       | 2                 | 7/8/2014    | -        | -                         |         | DN      | 0.0333                          | ND           | 0.032                | 0.0389      |
| UST3-12                      | 12                | 7/8/2014    | -        | 1                         |         | DN      | DN                              | ND           | ND                   | ND          |
| DRUM-2                       | 2                 | 7/8/2014    | -        | -                         |         | DN      | DN                              | ND           | ND                   | ND          |
| DRUM-14                      | 14                | 7/8/2014    | -        | 1                         |         | DN      | DN                              | ND           | ND                   | ND          |
| DWI-3                        | 3                 | 7/8/2014    | -        | 1                         |         | DN      | DN                              | ND           | ND                   | ND          |
| DWI-13                       | 13                | 7/8/2014    | 1        | 1                         | 1       | ND      | ND                              | ND           | ND                   | ND          |
| MTCA Method A Cleanup Levels | hod A Clear       | nup Levels  | 30/100   | 2,000                     | 2,000   | 0.03    | 7                               | 6            | 6                    | 5           |
| Anal                         | Analytical Method | por         | NWTPH-Gx | NWTPH-Dx                  | XD-Hc   |         | EPA 8                           | EPA 8260B    |                      | EPA 8270D   |
|                              |                   |             |          |                           |         |         |                                 |              |                      |             |

Table 2A Soil Analytical Result Summary Tidrick's

## 1802 South 1st Street

Yakima Washington

All data and CUL reported in mg/kg

GRO = Gasoline Range Oraganics DRO = Diesel Range Organics HRO = Heavy Oil Range Organics GRO MTCA Method A cleanup levels are 30 mg/kg if benzene is present and 100mg/kg if benzene is not present. (- )= No Analysis Performed ND = Not Detected

## Table 2B Soil Analytical Results Summary Tidrick's 1802 South 1st Street Yakima Washington

|            |                               |             |                        |                      |                            | Chlo                  | Chloronated Compounds: | nds:       |                           |         |                                   |
|------------|-------------------------------|-------------|------------------------|----------------------|----------------------------|-----------------------|------------------------|------------|---------------------------|---------|-----------------------------------|
| Sample ID. | Depth (ft.)                   | Sample Date | Tetrachloro-<br>ethene | Trichloro-<br>ethene | 1,1,1-trichloro-<br>ethane | Methylene<br>chloride | Vinyl chloride         | Chloroform | Cis-1,2-dichloro<br>thene | Acetone | Trans-1,2-<br>dichloro-<br>ethene |
| OWS-2      | 2                             | 7/8/2014    | 0.0130                 | ND                   | ND                         | DN                    | DN                     | ND         | DN                        | ND      | ND                                |
| OWS-13     | 13                            | 7/8/2014    | 0.0156                 | ND                   | ND                         | DN                    | DN                     | DN         | ΠN                        | ND      | ND                                |
| UST1-2     | 2                             | 7/8/2014    | DN                     | ND                   | ND                         | DN                    | DN                     | DN         | DN                        | ND      | ND                                |
| UST1-10    | 10                            | 7/8/2014    | DN                     | ND                   | ND                         | DN                    | DN                     | DN         | ΠN                        | ND      | ND                                |
| UST2-2     | 2                             | 7/8/2014    | 0.00647                | ND                   | ND                         | DN                    | DN                     | DN         | ΠN                        | ND      | ND                                |
| UST2-11    | 11                            | 7/8/2014    | 0.00567                | ND                   | DN                         | DN                    | DN                     | DN         | ΠN                        | ND      | ND                                |
| UST3-2     | 2                             | 7/8/2014    | 0.0427                 | ND                   | ND                         | ND                    | ND                     | DN         | ND                        | ND      | ND                                |
| UST3-12    | 12                            | 7/8/2014    | 0.00783                | ND                   | ND                         | DN                    | DN                     | DN         | ΠN                        | ND      | ND                                |
| DRUM-2     | 2                             | 7/8/2014    | 0.0104                 | ND                   | ND                         | DN                    | DN                     | ΠN         | ΠN                        | ND      | ND                                |
| DRUM-14    | 14                            | 7/8/2014    | DN                     | ND                   | ND                         | DN                    | DN                     | ΠN         | ΠN                        | ND      | ND                                |
| DWI-3      | 3                             | 7/8/2014    | 0.00574                | ND                   | DN                         | DN                    | DN                     | DN         | ΠN                        | ND      | ND                                |
| DWI-13     | 13                            | 7/8/2014    | 0.00674                | ND                   | ND                         | ND                    | ND                     | DN         | ND                        | ND      | ND                                |
| MTCA Me    | MTCA Method A Cleanup Levels: | up Levels:  | 0.05                   | 0.03                 | 2                          | 0.02                  | 1                      | 1          | 1                         |         |                                   |
| An         | Analytical Method             | pc          |                        |                      |                            |                       | EPA 8260B              |            |                           |         |                                   |
|            |                               |             |                        |                      |                            |                       |                        |            |                           |         |                                   |

All data and CUL reported in mg/kg

## Soil Analytical Results Summary 1802 South 1st Street Yakima Washington Tidrick's Table 2C

|        | Chromium    | 21.7     | 17       | 14.7     | 17.5     | 18.9     | 21       | 21       | 19.1     | 20.6     | 16.1     | 19.9     | 20       | 19/2,000                      |                   |
|--------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------------------------|-------------------|
|        | Lead        | 123      | 3.31     | 3.51     | 16.7     | 5.01     | 3.16     | 153      | 19.2     | 5.67     | 25.8     | 4.97     | 49.3     | 250                           |                   |
| Metals | Nickel      | 21.6     | 13.9     | 13.4     | 14.2     | 17.6     | 16.1     | 18.6     | 17.4     | 19.2     | 14.1     | 17.2     | 18.7     |                               | EPA 8260B         |
|        | Zinc        | 151      | 48.6     | 49.6     | 45.4     | 68       | 52.6     | 138      | 56       | 72       | 62       | 62.2     | 68.7     | ı                             |                   |
|        | Cadmium     | 0.8900   | ND       | ND       | DN       | ND       | ND       | 0.5950   | ND       | DN       | ND       | ND       | ND       | 2                             |                   |
|        | Sample Date | 7/8/2014 | 7/8/2014 | 7/8/2014 | 7/8/2014 | 7/8/2014 | 7/8/2014 | 7/8/2014 | 7/8/2014 | 7/8/2014 | 7/8/2014 | 7/8/2014 | 7/8/2014 | Levels:                       |                   |
|        | Depth (ft.) | 2        | 13       | 2        | 10       | 2        | 11       | 2        | 12       | 2        | 14       | 3        | 13       | MTCA Method A Cleanup Levels: | Analytical Method |
|        | Sample ID.  | OWS-2    | OWS-13   | UST1-2   | UST1-10  | UST2-2   | UST2-11  | UST3-2   | UST3-12  | DRUM-2   | DRUM-14  | DWI-3    | DWI-13   | MTCA Me                       | An                |

Chromium MTCA Method A CUL = 19 mg/kg if Chromium VI, if Chromium III CUL is 2,000 mg/kg See Table 3 for Method B CUL Values. All data and CUL reported in mg/kg

## Table 2D Soil Analytical Results Summary Tidrick's 1802 South 1st Street Yakima Washington

|            |                                      |             |                    |                        | Carcino                  | Carcinogenic Polyaromatic Hydrocarbons (cPAHs) | ic Hydrocarbons | (cPAHs)                    |                               |             |                                            |
|------------|--------------------------------------|-------------|--------------------|------------------------|--------------------------|------------------------------------------------|-----------------|----------------------------|-------------------------------|-------------|--------------------------------------------|
| Sample ID. | Depth (ft.)                          | Sample Date | Benzo(a)<br>pyrene | Benzo(a)<br>anthracene | Benzo(b)<br>fluoranthene | Benzo(k)<br>fluoranthene                       | Chrysene        | Dibenzo(a,h)<br>anthracene | Indeno<br>(1,2,3cd)<br>pyrene | Total cPAHs | Total<br>Polychlorinated<br>biphenyl (PCB) |
| OWS-2      | 2                                    | 7/8/2014    | ND                 | 0.0186                 | 0.0122                   | ND                                             | ND              | ΔN                         | 0.0124                        | 0.0432      | ND                                         |
| OWS-13     | 13                                   | 7/8/2014    | DN                 | DN                     | DN                       | DN                                             | DN              | DN                         | ND                            | ND          | ND                                         |
| UST1-2     | 2                                    | 7/8/2014    | DN                 | DN                     | DN                       | DN                                             | DN              | DN                         | ND                            | ND          | ND                                         |
| UST1-10    | 10                                   | 7/8/2014    | DN                 | DN                     | DN                       | DN                                             | DN              | DN                         | ND                            | ND          | ND                                         |
| UST2-2     | 2                                    | 7/8/2014    | DN                 | DN                     | DN                       | DN                                             | DN              | DN                         | ND                            | ND          | ND                                         |
| UST2-11    | 11                                   | 7/8/2014    | DN                 | DN                     | DN                       | DN                                             | DN              | DN                         | ND                            | ND          | ND                                         |
| UST3-2     | 2                                    | 7/8/2014    | DN                 | 0.0237                 | ND                       | ND                                             | 0.0106          | ND                         | ND                            | 0.0343      | ND                                         |
| UST3-12    | 12                                   | 7/8/2014    | DN                 | DN                     | DN                       | DN                                             | 0.0112          | DN                         | ND                            | 0.0112      | ND                                         |
| DRUM-2     | 2                                    | 7/8/2014    | DN                 | DN                     | DN                       | DN                                             | DN              | DN                         | ND                            | ND          | ND                                         |
| DRUM-14    | 14                                   | 7/8/2014    | DN                 | DN                     | DN                       | DN                                             | DN              | DN                         | ND                            | ND          | ND                                         |
| DWI-3      | 3                                    | 7/8/2014    | DN                 | DN                     | DN                       | DN                                             | DN              | DN                         | ND                            | ND          | ND                                         |
| DWI-13     | 13                                   | 7/8/2014    | ND                 | 0.0139                 | ND                       | ND                                             | ND              | ND                         | ND                            | 0.0139      | ND                                         |
| MTCA Me    | <b>MTCA Method A Cleanup Levels:</b> | up Levels:  |                    |                        |                          | See Total cPAHs                                |                 |                            |                               | 0.1         | 1                                          |
| An         | Analytical Method                    | pc          |                    |                        |                          | EPA 8270D                                      |                 |                            |                               |             | EPA 8082                                   |
|            |                                      |             |                    |                        |                          |                                                |                 |                            |                               |             |                                            |

All data and CUL reported in mg/kg

## 5.2 Groundwater

Based on the recommended analytical procedure (See 5.3.2.4), NWTPH-HCID was used to substantiate or eliminate the need for further analysis. Petroleum hydrocarbons were not detected in any of the groundwater samples. No further analysis for petroleum hydrocarbons is warranted. No other contaminants of concern were found to exceed MTCA Method "A" Values for groundwater.

Tables 4A thru 4D on the following pages summarize the groundwater analytical results. Complete Laboratory Analytical Results may be found in Appendix D.

## **Grounwater Analytical Result Summary** Tidrick's Table 4A

## **1802 South 1st Street**

Yakima Washington

|                  |                   |                           |           | Total Petr                 | <b>Total Petroleum Hydrocarbons</b> | ocarbons.                  | Volat   | ile Petroleu | Volatile Petroleum Hydrocarbons | oons             |                           |
|------------------|-------------------|---------------------------|-----------|----------------------------|-------------------------------------|----------------------------|---------|--------------|---------------------------------|------------------|---------------------------|
| Well<br>ID./Date | тос (ft.)         | DTW (ft.)                 | GWE (ft.) | WATPH-<br>HCID<br>GASOLINE | WATPH-<br>HCID<br>DIESEL            | WATPH-<br>HCID LUBE<br>OIL | Benzene | Touene       | Ethyl-<br>benzene               | Total<br>Xylenes | Total<br>Naphth-<br>alene |
| MW-1             |                   |                           |           |                            |                                     |                            |         |              |                                 |                  |                           |
| 6/23/2014        | 1022.31           | 15.15                     | 1007.16   | 1                          | :                                   |                            | :       | ND           | ΠN                              | ND               | ND                        |
| 11/20/2015       | 1022.31           | 14.95                     | 1007.36   | 1                          | -                                   |                            | 1       | 1            | -                               | :                | :                         |
| MW-2             |                   |                           |           |                            |                                     |                            |         |              |                                 |                  |                           |
| 6/23/2014        | 1021.12           | 14.46                     | 1006.66   | 1                          | :                                   |                            | ND      | ND           | ΠN                              | ND               | ND                        |
| 11/20/2014       | 1021.12           | 14.22                     | 1006.90   | < 250                      | < 630                               | < 630                      | ND      | ND           | DN                              | ND               | ND                        |
| MW-3             |                   |                           |           |                            |                                     |                            |         |              |                                 |                  |                           |
| 6/23/2014        | 1019.93           | 13.40                     | 1006.53   | 1                          | 1                                   |                            | ND      | ND           | ΠN                              | DN               | ND                        |
| 11/20/2014       | 1019.93           | 13.15                     | 1006.78   | < 250                      | < 630                               | < 630                      | ND      | ND           | ND                              | ND               | ND                        |
| MTC              | CA Method A       | MTCA Method A Cleanup Lev | vels      | 800/1,000                  | 500                                 | 500                        | 5       | 1,000        | 700                             | 1,000            | 160                       |
|                  | Analytical Method | Method                    |           | NWTPH-Gx                   | ITWN                                | NWTPH-Dx                   |         | EPA 8        | EPA 8260B                       |                  | 8270C                     |
|                  |                   |                           |           |                            |                                     |                            |         |              |                                 |                  |                           |

All data and CUL reported in µg/L GRO MTCA Method A cleanup levels are 800 µg/kg if benzene is present and 1,000 µg/kg if benzene is not present. (- )= No Analysis Performed ND = Not Detected

## Groundwater Analytical Results Summary Tidrick's 1802 South 1st Street Table 4B

Yakima Washington

ī

|                         |                   |                               |           |                                        |                                           |                                               | Chlor                 | Chloronated Compounds:    | inds:      |                                 |         |                                   |
|-------------------------|-------------------|-------------------------------|-----------|----------------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------|---------------------------|------------|---------------------------------|---------|-----------------------------------|
| Well ID./Date TOC (ft.) | TOC (ft.)         | DTW (ft.)                     | GWE (ft.) | Trichloro-<br>ethene (PCE) ethene (TCE | Tetrachloro-<br>Ethene (PCE) ethene (TCE) | 1,1,1-<br>trichloro-<br>ethane<br>(1,1,1-TCA) | Methylene<br>chloride | Vinyl chloride Chloroform | Chloroform | Cis-1,2-<br>dichloro-<br>ethene | Acetone | Trans-1,2-<br>dichloro-<br>ethene |
| MW-1                    |                   |                               |           |                                        |                                           |                                               |                       |                           |            |                                 |         |                                   |
| 6/23/2014               | 1022.31           | 15.15                         | 1007.16   | 1.02                                   | DN                                        | DN                                            | ND                    | DN                        | 2.70       | ND                              | ND      | ND                                |
| 11/20/2014              | 1022.31           | 14.95                         | 1007.36   | -                                      | -                                         | -                                             | -                     | -                         | -          | :                               | -       | I                                 |
| MW-2                    |                   |                               |           |                                        |                                           |                                               |                       |                           |            |                                 |         |                                   |
| 6/23/2014               | 1021.12           | 14.46                         | 1006.66   | 2.00                                   | DN                                        | DN                                            | DN                    | DN                        | 2.74       | ND                              | ND      | ND                                |
| 11/20/2014              | 1021.12           | 14.22                         | 1006.90   | 2.46                                   | DN                                        | DN                                            | ND                    | DN                        | 3.00       | 1.10                            | ND      | ND                                |
| MW-3                    |                   |                               |           |                                        |                                           |                                               |                       |                           |            |                                 |         |                                   |
| 6/23/2014               | 1019.93           | 13.40                         | 1006.53   | 1.73                                   | DN                                        | ND                                            | ND                    | ND                        | 2.57       | DN                              | ND      | ND                                |
| 11/20/2014              | 1019.93           | 13.15                         | 1006.78   | 2.23                                   | ND                                        | ND                                            | ND                    | ND                        | 2.79       | ND                              | ND      | ND                                |
| V                       | ITCA Method A     | MTCA Method A Cleanup Levels: | ;;        | 5                                      | 5                                         | 200                                           | 5                     | 0.2                       |            | •                               |         |                                   |
|                         | Analytical Method | Method                        |           |                                        | ,                                         |                                               |                       | EPA 8260B                 |            |                                 |         |                                   |
|                         |                   |                               |           |                                        |                                           |                                               |                       |                           |            |                                 |         |                                   |

All data and CUL reported in µg/L

## Groundwater Analytical Results Summary Tidrick's Table 4C

## 1802 South 1st Street Yakima Washington

|               |                               |                |         |         |      | Metals    |      |          |
|---------------|-------------------------------|----------------|---------|---------|------|-----------|------|----------|
| Well ID./Date | TOC (ft.)                     | DTW (ft.)      | GWE     | Cadmium | Zinc | Nickel    | Lead | Chromium |
| MW-1          |                               |                |         |         |      |           |      |          |
| 6/23/2014     | 1022.31                       | 15.15          | 1007.16 | DN      | ND   | ΠN        | ND   | DN       |
| 11/20/2014    | 1022.31                       | 14.95          | 1007.36 | -       |      |           |      | -        |
| MW-2          |                               |                |         |         |      |           |      |          |
| 6/23/2014     | 1021.12                       | 14.46          | 1006.66 | DN      | ND   | DN        | ND   | ND       |
| 11/20/2014    | 1021.12                       | 14.22          | 1006.90 | -       | -    |           |      | 1        |
| MW-3          |                               |                |         |         |      |           |      |          |
| 6/23/2014     | 1019.93                       | 13.40          | 1006.53 | DN      | 1.16 | 1.53      | ND   | ND       |
| 11/20/2014    | 1019.93                       | 13.15          | 1006.78 | 1       | -    | -         | -    | 1        |
| 4             | MTCA Method A Cleanup Levels: | leanup Levels: |         | 5       | -    | -         | 15   | 50       |
|               | Analytical Method             | Method         |         |         |      | EPA 6020A |      |          |

All data and CUL reported in µg/L

Table 4D

# Groundwater Analytical Results Summary Tidrick's

## 1802 South 1st Street Yakima Washington

|               |                                      |            |           |                    |                        | Carcinoge                                              | Carcinogenic Polyaromatic Hydrocarbons (cPAHs) | ic Hydrocarbo | ns (cPAHs)                 |                               |             |                                            |
|---------------|--------------------------------------|------------|-----------|--------------------|------------------------|--------------------------------------------------------|------------------------------------------------|---------------|----------------------------|-------------------------------|-------------|--------------------------------------------|
| Well ID./Date | TOC (ft.) DTW (ft.) GWE (ft.)        | DTW (ft.)  | GWE (ft.) | Benzo(a)<br>pyrene | Benzo(a)<br>anthracene | Benzo(a) Benzo(b) Benzo(k)<br>anthracene fluor anthene | Benzo(k)<br>fluor anthene                      | Chrysene      | Dibenzo(a,h)<br>anthracene | Indeno<br>(1,2,3cd)<br>pyrene | Total cPAHs | Total<br>Polychlorinated<br>biphenyl (PCB) |
| MW-1          |                                      |            |           |                    |                        |                                                        |                                                |               |                            |                               |             |                                            |
| 6/23/2014     | 1022.31                              | 15.15      | 1007.16   | ND                 | ΠN                     | DN                                                     | ΠN                                             | ND            | DN                         | ΠD                            | ΠN          | ΠN                                         |
| 11/20/2014    | 1022.31                              | 14.95      | 1007.36   |                    | 1                      | '                                                      | '                                              | Ţ             | '                          | ı                             | 1           | '                                          |
| MW-2          |                                      |            |           |                    |                        |                                                        |                                                |               |                            |                               |             |                                            |
| 6/23/2014     | 1021.12                              | 14.46      | 1006.66   | ND                 | ΠN                     | DN                                                     | ΠN                                             | DN            | DN                         | ΠD                            | ΠN          | ΠD                                         |
| 11/20/2014    | 1021.12                              | 14.22      | 1006.90   | I                  | -                      | '                                                      | -                                              | -             | -                          | ı                             | -           |                                            |
| MW-3          |                                      |            |           |                    |                        |                                                        |                                                |               |                            |                               |             |                                            |
| 6/23/2014     | 1019.93                              | 13.40      | 1006.53   | ND                 | ΠN                     | DN                                                     | ΠN                                             | ND            | DN                         | ΠD                            | ΠN          | ΠN                                         |
| 11/20/2014    | 1019.93                              | 13.15      | 1006.78   | I                  | I                      | '                                                      | -                                              | I             | -                          | I                             | 1           | I                                          |
| MTCA          | <b>MTCA Method A Cleanup Levels:</b> | eanup Leve | els:      |                    |                        |                                                        | See Total cPAHs                                |               |                            |                               | 0.1         | 1                                          |
|               | Analytical Method                    | 1ethod     |           |                    |                        |                                                        | EPA 8270C SIM                                  |               |                            |                               |             | EPA 8082                                   |
|               |                                      |            |           |                    |                        |                                                        |                                                |               |                            |                               |             |                                            |

All data and CUL reported in µg/L

## **6** CONCLUSIONS

This investigation was performed by the PLP's agent, PLSA, to be consistent with the work plan. Soil and groundwater was sampled at locations with the high likelihood of residual contamination from past activities. Analytical results identified chromium concentrations in the soil that exceeded Method "A" values; however were well below Method "B" values and also below documented background concentrations for the area. Chromium was not found in the groundwater, demonstrating that the soil leaching to groundwater pathway is incomplete.

The Tidrick site resides within the Yakima Railroad Service Area (YRRA) which includes approximately 6 square miles known to have groundwater impacted by concentrations of tetrachloroethylene (PCE) exceeding MTCA method "A" CUL. PCE concentrations found in groundwater samples on the Tidrick site are below Method "A" CUL and were observed to be consistently present in all three wells, including the up gradient well. Offsite contribution appears to be occurring based on the groundwater concentrations observed in the upgradient well. This investigation did not yield evidence of current contamination although past contribution of contaminants to the environment from onsite activities was indicated by evidence from previous investigations.

## 7 REFERENCES

State of Washington Department of Ecology, *Guidance for Remediation of Petroleum Contaminated Sites*, Publication No. 10-09-057, September 2011.

State of Washington Department of Ecology, *Analytical Methods for Petroleum Hydrocarbons*, Publication No. ECY 97-602, June 1997.

State of Washington Department of Ecology, *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action, Draft* Publication No. 09-09-047, October 2009.

(Ivahnenko and Zoroski, 2006, Sources and Occurrence of Chloroform and Other Trihalomethanes in Drinking-Water Supply Wells in the United States, 1986-2001. USGS Scientific Investigations Report 2006-5015,)

## APPENDIX "A" Test Pit Soil Logs & Photographs

## EXCAVATION LOG NO.: TP1

By: SDG Project No.: 14006 Location: Gasoline UST #2 Surface Conditions: Weedy Gravel

| Depth (ft) | Moisture<br>Content % | Unit<br>Weight | Sample | UCS<br>Symbol | Desription                                    | Remarks                          |
|------------|-----------------------|----------------|--------|---------------|-----------------------------------------------|----------------------------------|
| 1          |                       |                |        | SM            | Silty Sand                                    | Dry                              |
| 2          |                       |                | *      |               |                                               |                                  |
| 3          |                       |                |        |               |                                               |                                  |
| 4          |                       |                |        |               |                                               |                                  |
| 5          |                       |                |        |               |                                               |                                  |
| 6          |                       |                |        | GW            | Sand & Gravel                                 | Dry                              |
| 7          |                       |                |        |               |                                               |                                  |
| 8          |                       |                |        |               |                                               |                                  |
| 9          |                       |                |        |               |                                               |                                  |
| 10         |                       |                |        |               |                                               | Moist at 10 ft.                  |
| 11         |                       |                | *      |               | Excavation Terminated at 11 ft. Due to Caving | 110 <i>isi ui</i> 10 <i>ji</i> . |
| 12         |                       |                |        |               |                                               |                                  |
| 13         |                       |                |        |               |                                               |                                  |
| 14         |                       |                |        |               |                                               |                                  |
| 15         |                       |                |        |               |                                               |                                  |
| 16         |                       |                |        |               |                                               |                                  |

## EXCAVATION LOG NO.: TP2

By: SDG Project No.: 14006 Location: Drywell DW#1/ Deeken's Bldg Sammple Surface Conditions: Weedy Gravel

| Depth (ft) | Moisture<br>Content % | Unit<br>Weight | Sample | UCS<br>Symbol | Desription                                    | Remarks         |
|------------|-----------------------|----------------|--------|---------------|-----------------------------------------------|-----------------|
| 1          |                       |                |        | GW            | 8" Depth Crushed Gravel                       | Dry             |
| 2          |                       |                |        |               |                                               |                 |
| 3          |                       |                | *      |               |                                               |                 |
| 4          |                       |                |        |               |                                               |                 |
| 5          |                       |                |        | GW/<br>GM     | Silty Sand & Gravel                           | Dry / Fill      |
| 6          |                       |                |        | 01vi          |                                               |                 |
| 7          |                       |                |        |               |                                               |                 |
| 8          |                       |                |        |               |                                               |                 |
| 9          |                       |                |        |               |                                               |                 |
| 10         |                       |                |        |               |                                               |                 |
| 11         |                       |                |        |               |                                               |                 |
| 12         |                       |                |        | GW            | Sand & Gravel                                 | Moist at 12 ft. |
| 13         |                       |                | *      |               | Excavation Terminated at 13 ft. Due to Caving |                 |
| 14         |                       |                |        |               |                                               |                 |
| 15         |                       |                |        |               |                                               |                 |
| 16         |                       |                |        |               |                                               |                 |

## EXCAVATION LOG NO.: TP3

By: SDG Project No.: 14006 Location: Waste Oil UST #3 Surface Conditions: Weedy Gravel

| Depth (ft) | Moisture<br>Content % | Unit<br>Weight | Sample | UCS<br>Symbol | Desription                                    | Remarks        |
|------------|-----------------------|----------------|--------|---------------|-----------------------------------------------|----------------|
| 1          |                       |                |        | GW            | 8" Depth Crushed Gravel                       | Dry            |
| 2          |                       |                | *      |               |                                               |                |
| 3          |                       |                |        | GW/           | Silty Sand & Gravel                           | Fill / Dry     |
| 4          |                       |                |        | GM            |                                               |                |
| 5          |                       |                |        |               |                                               |                |
| 6          |                       |                |        |               |                                               |                |
| 7          |                       |                |        |               |                                               |                |
| 8          |                       |                |        |               |                                               |                |
| 9          |                       |                |        | GW            | Sand & Gravel                                 | Dry            |
| 10         |                       |                |        |               |                                               |                |
| 11         |                       |                |        |               |                                               |                |
| 12         |                       |                | *      |               | Excavation Terminated at 12 ft. Due to Caving | Moist @ 12 ft. |
| 13         |                       |                |        |               |                                               |                |
| 14         |                       |                |        |               |                                               |                |
| 15         |                       |                |        |               |                                               |                |
| 16         |                       |                |        |               |                                               |                |

## EXCAVATION LOG NO.: TP4

By: SDG Project No.: 14006 Location: Deeken's Drum Sample Area Surface Conditions: Weedy Gravel

| Depth (ft) | Moisture<br>Content % | Unit<br>Weight | Sample | UCS<br>Symbol | Desription                                    | Remarks              |
|------------|-----------------------|----------------|--------|---------------|-----------------------------------------------|----------------------|
| 1          |                       |                |        | GW            | 8" Crushed Gravel                             | Dry                  |
| 2          |                       |                | *      |               |                                               |                      |
| 3          |                       |                |        | SM            | Silty Sand                                    | Dry<br>Firm          |
| 4          |                       |                |        |               |                                               |                      |
| 5          |                       |                |        |               |                                               |                      |
| 6          |                       |                |        |               |                                               |                      |
| 7          |                       |                |        |               |                                               |                      |
| 8          |                       |                |        | GW            | Sand, Gravel, & Cobbles                       | Gray Sand<br>Dry     |
| 9          |                       |                |        |               |                                               | Dry                  |
| 10         |                       |                |        |               |                                               |                      |
| 11         |                       |                |        |               |                                               |                      |
| 12         |                       |                |        |               |                                               |                      |
| 13         |                       |                |        |               |                                               |                      |
| 14         |                       |                | *      |               | Excavation Terminated at 14 ft. Due to Caving | Groundwater @ 14 ft. |
| 15         |                       |                |        |               |                                               |                      |
| 16         |                       |                |        |               |                                               |                      |

## EXCAVATION LOG NO.: TP5

By: SDG Project No.: 14006 Location: Oil Water Separator /DW #2 Surface Conditions: Weedy Gravel

| Depth (ft) | Moisture<br>Content % | Unit<br>Weight | Sample | UCS<br>Symbol | Desription                                    | Remarks         |
|------------|-----------------------|----------------|--------|---------------|-----------------------------------------------|-----------------|
| 1          |                       |                |        | SM            | Silty Sand                                    | Dry             |
| 2          |                       |                | *      | GW/<br>GM     | Silty Sand & Gravel                           | Dry             |
| 3          |                       |                |        |               |                                               |                 |
| 4          |                       |                |        |               |                                               |                 |
| 5          |                       |                |        |               |                                               |                 |
| 6          |                       |                |        | GW            | Sand & Gravel                                 | Dry             |
| 7          |                       |                |        |               |                                               |                 |
| 8          |                       |                |        |               |                                               |                 |
| 9          |                       |                |        |               |                                               |                 |
| 10         |                       |                |        |               |                                               |                 |
| 11         |                       |                |        |               |                                               |                 |
| 12         |                       |                |        |               |                                               | Moist at 12 ft. |
| 13         |                       |                | *      |               | Excavation Terminated at 13 ft. Due to Caving |                 |
| 14         |                       |                |        |               |                                               |                 |
| 15         |                       |                |        |               |                                               |                 |
| 16         |                       |                |        |               |                                               |                 |

## EXCAVATION LOG NO.: TP6

By: SDG Project No.: 14006 Location: Gasoline UST #1 Surface Conditions: Weedy Gravel

| Depth (ft) | Moisture<br>Content % | Unit<br>Weight | Sample | UCS<br>Symbol | Desription                                     | Remarks         |
|------------|-----------------------|----------------|--------|---------------|------------------------------------------------|-----------------|
| 1          |                       |                |        | GW/<br>GM     | Silty Sand & Gravel                            | Dry             |
| 2          |                       |                | *      |               |                                                |                 |
| 3          |                       |                |        |               |                                                |                 |
| 4          |                       |                |        |               |                                                |                 |
| 5          |                       |                |        |               |                                                |                 |
| 6          |                       |                |        | GW            | Sand & Gravel                                  | Dry             |
| 7          |                       |                |        |               |                                                |                 |
| 8          |                       |                |        |               |                                                |                 |
| 9          |                       |                | *      |               | Energy ation Terminated at 10 ft Due to Caning | Moint at 10 ft  |
| 10         |                       |                |        |               | Excavation Terminated at 10 ft. Due to Caving  | Moist at 10 ft. |
| 11         |                       |                |        |               |                                                |                 |
| 12         |                       |                |        |               |                                                |                 |
| 13         |                       |                |        |               |                                                |                 |
| 14         |                       |                |        |               |                                                |                 |
| 15         |                       |                |        |               |                                                |                 |
| 16         |                       |                |        |               |                                                |                 |



Excavation at Oil Release area.



Soil cross section at DRUM sampling excavation.



Soil sampling at North Drywell/PCS area.



Excavation at North Drywell/PCS area.



Construction of upgradient monitoring well. (MW-1)

# APPENDIX "B" Field Reports

# **PLSA**

### **ENGINEERING & SURVEYING**

#### **ENGINEERING FIELD REPORT**

| WEATHER:SUNNY/WARMPROJECT DISC:MONITORING WELLSLOCATION:1802 SO. 1 <sup>ST</sup> ST., YAKIMAOWNER:DEREKCONTRACTOR:PRESENT:BRAD CARD, DRILLING CREW | DATE:         | 6/18/14                             | TIME: |                      | <b>PROJECT #:</b> | PLSA #14006 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------|-------|----------------------|-------------------|-------------|
| OWNER:DEREKCONTRACTOR:MIKE ROBINSONPRESENT:BRAD CARD, DRILLING CREW                                                                                | WEATHER:      | SUNNY/WARM                          |       | <b>PROJECT DISC:</b> | MONITORING WELLS  |             |
| PRESENT:     BRAD CARD, DRILLING CREW                                                                                                              | LOCATION:     | 1802 SO. 1 <sup>ST</sup> ST, YAKIMA |       |                      |                   |             |
|                                                                                                                                                    | <b>OWNER:</b> | DEREK CONTRACTOR: MIKE ROP          |       |                      | MIKE ROBINSON     |             |
|                                                                                                                                                    | PRESENT:      | BRAD CARD, DRILLING CREW            |       |                      |                   |             |
| WORK IN PROGRESS: WELL DRILLING, SOIL SAMPLING                                                                                                     |               |                                     |       |                      |                   |             |

#### **OBSERVATIONS:**

Over the past two days, three monitoring wells were drilled and developed at the former Tidrick property located at 1802 South 1<sup>st</sup> Street, Yakima. Horizontal and vertical geographic locations are in the process of determination. Depth from the surface to groundwater is as follows: All depths are from the top of casing:

Well No. 1 -15.5 feet Well No. 2 -15.0 feet Well No. 3 -14.0 feet

Collection of ground water samples is scheduled for Monday, June 23, 2014.

Copies To: \_\_\_\_\_

Signed:

(509) 575-6990



#### **ENGINEERING & SURVEYING**

#### **ENGINEERING FIELD REPORT**

| <b>OWNER:</b>        | Derek & Associates                    | FIELD REPORT:     | NA            |
|----------------------|---------------------------------------|-------------------|---------------|
| <b>PROJECT:</b>      | Mead & South 1st Sampling             | <b>PROJECT #:</b> | PLSA # 14006  |
| DATE:                | 06-23-2014                            | WEATHER:          | Sunny 89 deg. |
| PRESENT:             | Scott Garland, P.E.                   |                   |               |
| WORK IN<br>PROGRESS: | Groundwater Monitoring Well Sampling. |                   |               |

#### **LOCATION:**

Mead Avenue & South 1st Street, Southwest Corner.

#### **OBSERVATIONS:**

Groundwater from monitoring wells MW-1, MW-2, and MW-3 was sampled. Samples from MW-2 and MW-3 were delivered directly to Valley Environmental Lab for analysis by methods HCID an EPA 8260B. Sampling from MW-1 was optional. Sample will be save for future analysis if needed. Follow up analysis was specified should results of HCID require. Depth to groundwater was measured from the top of casing (TOC) at each well. The results of groundwater elevation determination is summarized in the table below.

| Well ID. | Casing Elev. (Ft) | GW Depth Below | GW Elev. |
|----------|-------------------|----------------|----------|
|          |                   | TOC            |          |
| MW-1     | 1022.31           | 15.15          | 1007.16  |
| MW-2     | 1021.12           | 14.46          | 1006.66  |
| MW-3     | 1019.93           | 13.40          | 1006.53  |

Groundwater temperature was measured during purging. Initial groundwater temperatures were measured at 62° F. Water temperature stabilized at 60° F for 5 minutes prior to sampling. There was no visible turbidity, discoloration, and no odor.

By: Set De Sailand

# PLSA

## **ENGINEERING & SURVEYING**

#### **ENGINEERING FIELD REPORT**

| DATE:                                                   | 7/8/14                                | TIME:                                 | <b>PROJECT #:</b>    | PLSA #14006                |  |  |
|---------------------------------------------------------|---------------------------------------|---------------------------------------|----------------------|----------------------------|--|--|
| WEATHER:                                                | SUNNY/WARM                            |                                       | <b>PROJECT DISC:</b> | SOIL SAMPLING              |  |  |
| LOCATION:                                               | 1802 SO. 1 <sup>8</sup>               | 1802 SO. 1 <sup>ST</sup> ST.,, YAKIMA |                      |                            |  |  |
| OWNER:                                                  | DEREK                                 |                                       | CONTRACTOR:          | TRI-VALLEY<br>CONSTRUCTION |  |  |
| PRESENT:                                                | SCOTT GARLAND, BRAD CARD, GREG HUYLAR |                                       |                      |                            |  |  |
| WORK IN PROGRESS: SOIL SAMPLE EXCAVATION AND COLLECTION |                                       |                                       |                      |                            |  |  |
|                                                         |                                       |                                       |                      |                            |  |  |

#### **OBSERVATIONS:**

Six locations identified in the Work Plan were excavated and sampled in accordance with the Plan. There was no visual or olfactory evidence of contamination in any of the excavations. Soil samples were collected in accordance with the Work Plan and submitted to Valley Environmental Laboratory for the analyses specified in the Work Plan.

Copies To: \_\_\_\_\_

Signed:

(509) 575-6990

# **PLSA**

## **ENGINEERING & SURVEYING**

#### **ENGINEERING FIELD REPORT**

| DATE:                                   | 7/29/14                                  | TIME:                                 |  | <b>PROJECT #:</b>    | PLSA #14006   |  |
|-----------------------------------------|------------------------------------------|---------------------------------------|--|----------------------|---------------|--|
| WEATHER:                                | SUNNY/WA                                 | ARM                                   |  | <b>PROJECT DISC:</b> | SOIL SAMPLING |  |
| LOCATION:                               | 1802 SO. 1 <sup>s</sup>                  | 1802 SO. 1 <sup>ST</sup> ST.,, YAKIMA |  |                      |               |  |
| <b>OWNER:</b>                           | DEREK CONTRACTOR:                        |                                       |  |                      |               |  |
| PRESENT:                                | SCOTT GARLAND, JOHN MEFFORD, GREG HUYLAR |                                       |  |                      |               |  |
| WORK IN PROGRESS: SOIL SAMPLING RESULTS |                                          |                                       |  |                      |               |  |
|                                         |                                          |                                       |  |                      |               |  |

#### **OBSERVATIONS:**

On July 8, 2014, 12 soil samples were collected from test pits excavated on the premises and delivered to Valley Environmental Lab for analysis in accordance with the Work Plan. This is a continuation of the July 8 report for the purpose of including the analytical results which are attached.

Review of the analyses finds that of the parameters found in WAC 173-340 Table 720-1 were exceeded in only a five minor instances. In each case the cleanup level for chromium (19 mg/kg) was slightly exceeded. The Washington State Department of Ecology publication "Natural Background Soil Metals Concentrations in Washington State" reports that the 90 percentile background concentration for chromium in Yakima is 38 mg/kg. The highest concentrations of chromium found were approximately one half that of the background level for Yakima.

The sample number and chromium content of those samples exceeding cleanup level are listed as follows:

| TP NO.  | Cr mg/kg |
|---------|----------|
| UST2-11 | 21.      |
| OWS-2   | 21.7     |
| DRUM-2  | 20.6     |
| UST3-12 | 19.1     |
| DWI-13  | 20.0     |
|         |          |

The number suffix on the sample identification indicates sample depth in feet. All other analytical results were below Table 720-1 cleanup values.

Copies To: \_\_\_\_\_

Signed:

1120 West Lincoln Avenue • Yakima, Washington 98902

• (509) 575-6990

FAX (509) 575-6993



#### **ENGINEERING & SURVEYING**

#### **ENGINEERING FIELD REPORT**

| <b>OWNER:</b>        | Derek & Associates                    | FIELD REPORT:     | NA             |
|----------------------|---------------------------------------|-------------------|----------------|
| <b>PROJECT:</b>      | Mead & South 1st Sampling             | <b>PROJECT #:</b> | PLSA # 14006   |
| DATE:                | 11-20-2014                            | WEATHER:          | Cloudy 34 deg. |
| PRESENT:             | Scott Garland, P.E.                   |                   |                |
| WORK IN<br>PROGRESS: | Groundwater Monitoring Well Sampling. |                   |                |

#### **LOCATION:**

Mead Avenue & South 1st Street, Southwest Corner.

#### **OBSERVATIONS:**

Groundwater from monitoring wells MW-1, MW-2, and MW-3 was sampled. Samples from MW-2 and MW-3 were delivered directly to Valley Environmental Lab for analysis by methods HCID an EPA 8260B. Sampling from MW-1 was optional. Sample will be save for future analysis if needed. Follow up analysis was specified should results of HCID require. Depth to groundwater was measured from the top of casing (TOC) at each well. The results of groundwater elevation determination is summarized in the table below.

| Well ID. | Casing Elev. (Ft) | GW Depth Below | GW Elev. |
|----------|-------------------|----------------|----------|
|          |                   | TOC            |          |
| MW-1     | 1022.31           | 14.95          | 1007.36  |
| MW-2     | 1021.12           | 14.22          | 1006.90  |
| MW-3     | 1019.93           | 13.15          | 1006.78  |

Groundwater temperature was measured during purging. Initial groundwater temperatures were measured at 58° F. Water temperature remained stable at 58° F for 5 minutes prior to sampling. There was no visible turbidity, discoloration, and no odor.

By: Jost D. Sailand

## APPENDIX "C"

Remedial Action Work Plan including SAP/QAPP/HASP

### REMEDIAL INVESTIGATION WORK PLAN

TIDRICK'S QUALITY TRANSMISSION 1802 South 1<sup>st</sup> Street, Yakima, WA (FS ID No. 543, CU ID No. 6497)

Prepared For: Washington State Department of Ecology 15 West Yakima Avenue, Suite 200 Yakima, WA 98902



February 2014 Job No. 14006 Prepared by

PLSA Engineering & Surveying 1120 West Lincoln Avenue Yakima, Washington 98902 (509) 575-6990

## **Table of Contents**

| Pag                                                                                                                        | ge                                                    |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Table of Contents                                                                                                          | i                                                     |
| List of Figures and Tables                                                                                                 | . ii                                                  |
| 1.0 INTRODUCTION                                                                                                           | 1                                                     |
| 2.0 SITE BACKGROUND<br>2.1 Description and History of Site                                                                 |                                                       |
| <ul> <li>3.0 PROPERTY LOCATION AND DESCRIPTION</li> <li>3.1 Property Location</li> <li>3.2 Property Description</li> </ul> | 2                                                     |
| <ul><li>4.0 PRIOR SITE INVESTIGATION SUMMARY</li></ul>                                                                     | 3                                                     |
| <ul> <li>5.0 SCOPE OF INVESTIGATION</li></ul>                                                                              | 7<br>7<br>8<br>10<br>10<br>11<br>11<br>12<br>12<br>12 |
| <ul> <li>6.0 QUALITY ASSURANCE PROJECT PLAN</li> <li>6.1 Personnel</li></ul>                                               | 15<br>15<br>16<br>16<br>17<br>17<br>18<br>19<br>19    |

| 7.0 REFERENCES |    |
|----------------|----|
| APPENDIX A     | 21 |

# List of Figures and Tables

## Figures

| Figure 1: General site diagram             |
|--------------------------------------------|
| Figure 2: Site diagram of Areas of Concern |
| Figure 3: Areas of Proposed Investigation  |

## Tables

| Table 1. | Required Analyses for Waste Oil Release (Table 830-1, Chapter 173-340 |    |
|----------|-----------------------------------------------------------------------|----|
|          | WAC)                                                                  | 14 |
| Table 2. | Recommended Bottle Type, Preservation, and Holding Times for Samples  | 18 |

## **1.0 INTRODUCTION**

The objective of this Remedial Investigation (RI) is to evaluate the current nature and extent of contamination related to past land use practices at the Tidrick's Quality Transmission Site. These practices were associated with automotive repair and service facilities and included the use of two drywells, one waste oil underground storage tank (UST), and two gasoline USTs.

## 2.0 SITE BACKGROUND

#### 2.1 Description and History of Site

The Tidrick's Quality Transmission Site is located at 1802 South 1st Street near its intersection with West Mead Avenue, Yakima, Washington. The Site is identified by geographic coordinates: Latitude 46° 34' 38.3988", Longitude -120° 29' 32.0352" or by Public Land Survey: South half of Section 30, T. 13 N., R 19 E, Willamette Meridian (Figure 1).

The history of this Site is not well known. The following narrative is derived from records stored at the Washington State Department of Ecology (Ecology): At the time of Ecology's first initial investigation, the site was identified as Carlos Motors, Inc., a used car dealership specializing in detailing older model cars. This business operated at this location from approximately 1967 until about 1993. Two drywells and three USTs existed on the property in conjunction with this business. The length of time the drywells and USTs were in use is unknown; however, the drywells were active for at least 20 years.

On July 21, 1992, Ecology received a complaint of oil dumping on the site. Upon completing its preliminary investigation, Ecology concluded that a release had occurred and notified the property owner of a further action determination. Prior to the performance of a site hazard assessment, Carlos Motors was replaced by Tidrick's Quality Transmission as the business entity operating at this address. According to local telephone directories, Tidrick's Quality Transmission was listed at this address beginning approximately November 1993.

In May 1994, limited soil sampling was performed during the site hazard assessment and releases were confirmed in the vicinity of the two drywells and the waste oil UST (Figure 2). In September of that year, Cayuse Environmental (Cayuse), an environmental consulting company hired by the former property owner, decommissioned three USTs on the site. Cayuse also initiated an independent remedial action in association with the removal of one of the two drywells (south drywell) and the release from the waste oil UST. The interim action consisted of soil removal.

In October and November 1994, the scope of the interim action was expanded in the areas surrounding the waste oil UST and the south drywell. The scope of work also included remedial action to address soil contamination in the north drywell. Approximately 700 tons of petroleum

contaminated soils (PCS) were reported to have been removed and disposed at the former Rabanco landfill in Roosevelt. However, no receipts or other supporting documentation are known to exist to verify the removal and proper disposal of the PCS.

Ecology review of the remedial action report concluded that the site characterization was incomplete due to the type and nature of the contamination. Analyses of the soil initially excavated in the vicinity of the waste oil UST and the north drywell exhibited concentrations of chlorinated solvents including tetrachloroethene (PCE) and trichloroethene (TCE) above Model Toxics Control Act (MTCA) Method A soil cleanup levels. Although soil had been over excavated in the vicinity of the waste oil UST and the two drywells, no analyses for chlorinated solvents were performed on the soil confirmational samples. Additionally, an undetermined quantity of PCS was left intact under the former garage/paint shop building (west building) during removal of the north drywell.

In March 2007, the site underwent a second Toxics Cleanup Program (TCP) initial investigation in conjunction with a Dangerous Waste Compliance inspection by the Hazardous Waste and Toxics Reduction Program. The joint investigations were prompted by visible evidence of improper storage and handling of generated waste streams. Numerous examples of releases to the ground with resultant contamination of the soil and conveyance to the stormwater drain were documented during the investigations. The business operating on the site at that time was Tidrick's Quality Transmission.

During the TCP initial investigation, limited soil sampling was performed in the shallow subsurface. Two grab samples were collected and analysis of both samples showed contaminant concentrations that exceeded the MTCA Method A soil cleanup level for heavy oil range organics. Other contaminants detected in the soil above compliance levels included lead and arsenic.

## **3.0 PROPERTY LOCATION AND DESCRIPTION**

#### **3.1 Property Location**

The site is listed as assessor Parcel Number 191331-11012 located at 1802 South 1<sup>st</sup> Street Yakima, Washington, 98903. The property is approximately 1.57 acres in size. The north and east properties boundaries are defined by Mead Avenue and South 1<sup>st</sup> Street, respectively (Figure 1). The west and south property lines are bounded by land currently leased to the Yakima County Sheriff's Department. See Figure 1

#### **3.2 Property Description**

The legal description of the property is listed as: That portion of the Northwest <sup>1</sup>/<sub>4</sub> of the Northwest <sup>1</sup>/<sub>4</sub> of the Northeast <sup>1</sup>/<sub>4</sub> of the Northeast <sup>1</sup>/<sub>4</sub> of Section 31, Township 13 North, Range 19, E.W.M., described as follows: Beginning at the point of intersection of the South line of

Mead Avenue and the Westerly line of State Road No. 3; thence Southeasterly along said Westerly line 300 feet; thence West parallel with the South line of Mead Avenue 249.2 feet; thence North 183.6 feet; thence West 1 foot; thence North to the South line of said Mead Avenue; thence East to the point of beginning. (Parcel No. 191331-11012).

Two commercial structures and a paved parking lot formerly existed on the property. Assessor records documented that a building was constructed in 1935, presumably the main one, and the associated building was built in 1940. In December 2013 and January 2014, the two buildings and the asphalt pavement were demolished and removed from the site.

## 4.0 PRIOR SITE INVESTIGATION SUMMARY

#### 4.1 Soil Investigation

In September 1994, Cayuse performed a site assessment with the removal of three USTs and initiated the removal of contaminated soils from releases at the waste oil UST and the south drywell. In October and November of that year, Cayuse expanded the scope of work to assess the north drywell and to excavate contaminated soils from the waste oil UST area and the two drywells (Figure 2).

#### **Sampling and Analysis Deficiencies**

The site assessment and interim soil removal action presented many deficiencies in site characterization and post-removal soil confirmational sampling.

The two USTs located at the north portion of the site were listed as gasoline USTs but little or no detail is known concerning whether the tanks had contained other chemicals such as heating oil. Upon removal of these two tanks, Cayuse reported there were no obvious signs of release. Three confirmational soil samples were obtained from each tank cavity, two from the sidewalls and one at the bottom of the excavation at a maximum depth of five feet below ground surface (bgs). The soil samples were analyzed for gasoline-range organics by WTPH-G and lead by EPA Method 6010. Based on these analyses there were no signs of gasoline releases from the USTs; however, the required testing should have additionally included analysis for volatile organic compounds (benzene, ethylbenzene, toluene, xylenes or BTEX).

The report also did not document investigation of the fuel distribution piping system associated with both gasoline USTs. The report did not describe any removal of the piping system or associated dispensers. According to the *Guidance on Site Checks and Site Assessments for Underground Storage Tanks* (February 1991), soil samples should have been obtained to assess the dispenser and piping areas for all required analyses.

In contrast, the initial soil samples obtained from the waste oil UST area and two drywells were analyzed by WTPH-418.1. Also, the soil excavation depths for cleanup at each of the drywells and the waste oil UST area were dictated by petroleum contamination as determined from

samples analyzed by that method. The shortcoming of this analytical method is that it does not identify the type of petroleum hydrocarbon in the sample but yields only a total recoverable petroleum hydrocarbon value. Analyses should have been performed to identify the specific types of petroleum hydrocarbons potentially present in the waste oil mixture or possibly disposed through the drywell system. The confirmational samples are compliant for petroleum hydrocarbons. If gasoline-range organics were present, the confirmational samples were not in compliance. The appropriate analyses would have included WTPH-HCID and where petroleum hydrocarbons were identified as present, quantified through WTPH-Gx or WTPH-Dx, respectively.

#### Chlorinated solvents and other volatile organic compounds

The characterization analysis in 1994 was inadequate since all of the required testing was not performed or only a portion of the analytical results were reported. A limited number of initial soil samples from the waste oil UST area and the south drywell area were analyzed by EPA Method 8260 but the laboratory report only shows the analysis as a chlorinated solvent scan and does not list detections or concentrations of benzene, toluene, ethylbenzene, or xylenes as constituents that were assessed. The samples from these two areas should have been screened for BTEX with the analytical results listed in the laboratory report. Detections of these constituents would have yielded information potentially indicative of a release containing fresh or less weathered gasoline to supplement hydrocarbon identification analysis if it had been conducted.

Other appropriate soil analysis should have included EPA Method 8270 to assess semi-volatile organics including such possible contaminants as naphthalene and carcinogenic polyaromatic hydrocarbons (cPAHs). Only one sample from the waste oil UST (#9422-09) and one sample from the south drywell (9422-12) were assessed via Method 8270. Analysis of both samples showed values of naphthalene near the compliance level for protection of groundwater for drinking water purposes; however, the values were flagged as estimates since the values were detected above the method detection limit but below the reporting limits.

Soil samples taken from the north drywell area were only analyzed for petroleum hydrocarbons by WTPH-418.1 Modified. Other analytical methods to screen for potential constituents were not performed on these samples. According to the notes associated with MTCA Table 830-1, the waste oil category applies to unknown petroleum products and mixtures of petroleum and nonpetroleum substances. As such, testing is required in a sufficient number of samples to determine whether a possibly associated chemical is present at concentrations of concern.

In 2007, an additional but very limited investigation was performed to assess surface contamination due to poor business housekeeping practices associated with the historical land use. Two grab samples of soil were collected from the shallow subsurface at a depth of three to six inches bgs. One soil sample was collected near the south fenceline in the vicinity of the southwest corner of the property. This sample exhibited a concentration of lube oil at 2,200 mg/kg. Analysis for chlorinated solvents was also conducted but the results were reported as estimates or as non-detections. Metals analyses were not performed on this sample.

The confirmational analyses for these areas following soil removal also did not account for chlorinated solvents and possibly other contaminants although the initial sampling results showed several chlorinated solvents present in soil concentrations above compliance levels. Subsequent analysis for chlorinated solvents following soil removal was not conducted nor were required screening analyses under MTCA Table 830-1 performed. Analyses including EPA Method 8260 and 8270 should have been performed to screen for possible constituents that have the potential to migrate due to high solubility as opposed to focusing specifically on heavy oil or total recoverable petroleum hydrocarbons.

#### Metals

The initial soil samples obtained from the waste oil UST as well as two samples from the south drywell were analyzed for metals; however, the soil samples were prepared by a leaching method typically used with waste profiling for disposal purposes. The laboratory analytical sheets indicated that EPA Method 1311 (TCLP) was used prior to analysis of the samples by EPA Method 6010. MTCA does allow for the derivation of soil concentrations protective of groundwater based on a leaching test. Per WAC 173-340-747(7), these analytical results are appropriate when determining the leachability of contaminants from a soil sample and to evaluate the soil leaching test effluent concentrations shall be less than or equal to ten (10) times the applicable groundwater cleanup level established under WAC 173-3470-720. The analytical results showed that three of the soil samples failed the leaching test (sample nos. 9422-7, 9422-8 and 9422-12) for lead.

The direct contact exposure pathway should also have been evaluated at that time by performing EPA Method 6000 or 7000 series to determine contaminant concentrations in comparison to MTCA Method A or Method B cleanup levels. Assessment of the direct contact exposure pathway would not include EPA Method 1311 as a sample preparatory method prior to analysis.

During the limited site investigation in 2007, only one of the two grab samples of soil was analyzed for metals along with NWTPH-Dx. Analytical results showed that the sample obtained along the east wall near the southeast corner of the garage/paint shop (west building) had exceedances of lead (480 mg/kg) and lube oil (6,300 mg/kg).

In any event, the soil sampling for characterization and cleanup confirmational sampling were insufficient to determine if the soil concentrations were protective of human health for either of the two applicable exposure pathways for metals. Consequently, confirmational sampling and analysis for metals is required at the following areas: near the former waste oil UST, the north drywell and the area where the PCS was left intact under the building.

#### 4.2 Groundwater Investigation

The maximum depth of soil excavation was 14 feet bgs during the interim action in 1994. Groundwater was not assessed since it was not encountered; however, the field work was performed in late October and early November after the area-wide irrigation had been shut down and groundwater is expected to be near its low level. However, information from various sources indicates that groundwater in the area can be relatively shallow and the estimated depth to groundwater is variable:

- The USGS National Water Information System website records the shallow groundwater table ranging from 6 feet to 28 feet bgs (average = ~17.5 feet bgs, Sec. 30, T.13N., R.19E.)
- Information from the Ecology well log database indicates that the static water level varies
- from 8 feet to 30 feet bgs.
- The nearest Yakima Railroad Area (YRRA) shallow screened monitoring wells show groundwater levels from 8 to 10 feet bgs.
- A site adjacent to the south, Crop King/Woods Industries, has two monitoring wells that indicate that the static groundwater level is 7 feet bgs.

Additional groundwater characteristics can be inferred from the Yakima Railroad Area study. The study shows groundwater fluctuation is generally two feet between low and high water base with groundwater flow in the shallow aquifer easterly to southeasterly.

During the independent remedial action, PCS was left intact under the southeast corner of the garage/paint shop (west building). The analytical values in the adjacent excavation were below the default residual saturation values for petroleum. However, the PCS appears to be closely associated with the north drywell as shown on the remedial action site diagram. Consequently, there is the likely presence of a mixture of petroleum hydrocarbons and other contaminants including chlorinated solvents. Also, there may have been commingling of the impacted areas associated with the waste oil release and the north drywell. This supports additional inquiry for possible impact to groundwater.

Further investigation of groundwater is recommended due to the former use of the dry wells and the known releases from the waste oil UST. Additional support for assessment is provided by the unknown length of time that the dry wells were in use and duration of the waste oil releases.

## **5.0 SCOPE OF INVESTIGATION**

The primary objective of the soil sampling and analysis is the determination of the nature and extent of contamination from releases to the environment in the areas of concern. The main areas of concern are the source areas that include the former locations of the two drywells and the waste oil UST. Additional but minor areas of concern include the two gasoline USTs and near-surface contamination as determined during the limited soil sampling associated with the second initial investigation performed by Ecology.

#### **5.1 Data Quality Objectives**

The objective for the soil sampling is to obtain discrete, representative soil samples that will include the collection of "worst case" samples determined by field screening as well as confirmational samples. This additional sampling will allow the conceptual site model to be updated and refined based on current site conditions.

The objective for the groundwater sampling is the collection of representative groundwater samples and associated groundwater data to screen and characterize the site for all the chemicals of concern that exist or potentially exist on the site. If monitoring wells are required, groundwater samples will be obtained during low and high water conditions to characterize groundwater for seasonal variations in flow and contaminant concentrations.

#### 5.2 Utility Locates and Other Required Notifications

At least three days prior to subsurface investigations, the Northwest Utility Notification Center (1-800-424-5555 or 811) will be contacted so that the locations of public utilities will be marked. If as-built diagrams are available, these will also be consulted to assist in placement of proposed boring or trenching locations. Additionally, a private utility locating service will scan all tentative boring locations to verify clearance.

Start cards (Notice of Intent) will be submitted to the Water Resources Section of the Department of Ecology 72 hours prior to drilling for all proposed soil borings 10 feet or deeper below ground surface.

#### 5.3 Sampling and Analysis Plan

The purpose of the Sampling and Analysis Plan is to establish the methodology for the collection of data that meets the Data Quality Objectives of this project.

The site characterization will consist of two components. The first component will be characterization of the soil to be performed in the former source areas and other areas where soil contamination is likely to be found. The second component will be assessment of groundwater characteristics such as groundwater levels and analytical results including groundwater screening and compliance data. If sufficient information is derived from the soil investigation then detailed groundwater analytical information may not be required with the exception of groundwater static level.

The soil assessment component will include characterization to determine the vertical and lateral extent of contamination, if existing, and assess the likelihood of impact to groundwater. The soil sampling will include screening to determine the presence or absence of contaminants not originally assessed in the subsurface in the areas of concern. The sampling will also include confirmational sampling over the extent of soil excavation as performed in the original

assessment. Additionally, the vertical extent of sampling may yield sufficient information to determine if impact to groundwater was likely to have occurred.

The necessity for installation of monitoring wells to assess possible groundwater impacts will be gauged through evaluation of site characteristics to include the following:

- Lack of verifiable records that only a small quantity of petroleum products were released;
- Lack of thorough soil testing showing the soil contamination has not significantly migrated;
- Lack of predominantly fine-textured soils in the area of soil contamination (dominated by silt or clay;
- Lack of considerable depth to groundwater (more than 50 feet from the ground surface);
- Release of products less prone to migration (diesel or heavy oil).

The groundwater assessment component, if required, will directly evaluate for the existence of a contaminant

#### 5.3.1 Field Screening and Sampling of Soil

Surface or shallow subsurface soil sampling will be conducted to address the areas of concern determined during the limited site investigation in 2007. Additional soil sampling will be performed to assess the effectiveness of the interim action in the former source areas that occurred during 1994 (Figure 1).

The two surface areas of concern may have been disturbed by demolition activities in 2013 and 2014. Consequently, a grid will be established over an area measuring approximately 30 feet by 90 feet with boundaries at each 10 feet east to west and at each 18 feet north to south. This area represents that portion of the site historically lacking an impervious or semi-impervious surface cover. The area is visible in the aerial photograph as south of the west building to the south fenceline. The grid will be field screened using a field portable x-ray fluorescence (XRF) unit with one sample point within the center of each grid square unit. This will result in 15 sample locations. OR, lay out grid and visually assess for hydrocarbon staining. Sample each grid square with staining and assess for HRO and metals.

In the two surface areas of concern, soil samples for laboratory analyses will be obtained from the surface (0-1 "), then 1" to 6" below ground surface; thereafter depending on field observations. In the event that surface soils have been disturbed, then provision is allowed to field screen the two surface areas with a field portable x-ray fluorescence (XRF) unit.

A minimum of seven excavations will be advanced in former source areas (5 excavations) and additional areas (1 excavation each) upgradient and downgradient of the former source areas (Figure 3). Of the five borings in the former source areas, one boring will be advanced in the vicinity of the north drywell in the area where PCS exists and as close to the southeast corner of the garage as possible.

Trenching and test pits may be performed as an alternative means to characterize the soil profile and to collect samples. If this method is used, appropriate safety measures will be taken as described in the site-specific HASP. A minimum of three to four trenches are proposed.

The areas of investigation include a trench to characterize the waste oil UST area near the west fenceline (north-south) and a trench that transects the north drywell (north-south). Another trench will define the north boundary of the waste oil area, PCS area and north drywell (east-west).

Test pits will be excavated in the vicinity of the two gasoline USTs.

Continuous soil sampling will be attempted at the proposed excavation locations to characterize the soil profile throughout the site to a depth of approximately 20 feet or to groundwater or to a sufficient depth determined by field conditions and in consultation with Ecology. However, the continuous sampling does not have to begin at the surface but can begin at the designated depth:

- North drywell area: 8 to 14 feet bgs
- South drywell area: 9 feet bgs
- Waste oil UST excavation area: 6 to 9 feet bgs
- Gasoline UST areas: 5 feet bgs

Sufficient depth of sampling may be determined by bracketing the boundary where the soil contamination is above the MTCA Method A cleanup level to a depth where contamination is undetected or below compliance levels. This depth shall, at a minimum, extend 5 feet below where contamination was last encountered. An exception to this would exist if the contamination is minor, e.g., surficial, and fine grained soils predominate.

The substrate characteristics may require the use of drilling to recover soil samples and, if necessary, to install groundwater monitoring wells. If soil characteristics prevent the collection of a continuous profile, then another method may be used to obtain soil samples. The site investigation will have a contingency to allow for other methods other than drilling, for instance, a backhoe or excavator may be used to collect soil samples. If adequate soil samples cannot be obtained through this contingency, then an alternate sampling method may be used to assess the soil leaching to groundwater pathway through the collection of groundwater samples.

If drilling refusal is encountered or other circumstances prevent the advancement of the boring then another borehole may be attempted within the area cleared from the utility locate. During drilling or open excavation, detailed logs of subsurface conditions will be recorded. Initially, all soil will be field screened visually for staining and by other field methods including but not limited to the sheen test, headspace readings (vapor analysis) using a photoionization detector (PID) or a flame ionization detector (FID).

If groundwater is encountered during advancement of a soil boring, a soil sample will be obtained from the soil core near the soil/water interface and another sample should be collected at the deepest portion of the last sampling interval.

#### **5.4 Groundwater Sampling**

Depth to groundwater in the area is variable depending on the information source:

- The USGS National Water Information System website records the shallow groundwater table ranging from 6 feet to 28 feet bgs (average = ~17.5 feet bgs, Sec. 30, T.13N., R.19E.)
- Information from the Ecology well log database indicates that the static water level varies from 8 feet to 30 feet bgs.
- The nearest Yakima Railroad Area (YRRA) shallow screened monitoring wells show groundwater levels from 8 to 10 feet bgs.
- A site adjacent to the south, Crop King/Woods Industries, has two monitoring wells that indicate that the static groundwater level is 7 feet bgs.

Based on the Yakima Railroad Area study, the groundwater fluctuation is generally two feet between low and high water. The same study shows groundwater in the shallow aquifer generally flows easterly or southeasterly.

#### 5.4.1 Temporary Well Groundwater Sampling

If groundwater is encountered in any boring within 20 feet bgs, the initial groundwater static level will be measured and in-situ grab samples from temporary well points will be collected for the required analyses. This information will be evaluated to assist in determining where groundwater monitoring wells shall be installed.

If groundwater is not encountered within 20 feet bgs, at a minimum, one boring in the vicinity of the drywell/waste oil UST area but on the downgradient side will be advanced deep enough to assess groundwater level by a temporary well point.

Groundwater samples will be collected at this location for screening purposes and the entire suite of analyses for waste oil will be performed on these samples to determine if impact had occurred. If subsequent analysis indicates contamination in the groundwater at the downgradient temporary well, then an upgradient monitoring well is proposed to assess groundwater level and background contaminant concentrations, if present, in groundwater.

#### 5.4.2 Monitoring Well Construction and Development

Based on the analyses of the soil and grab groundwater samples, monitoring wells may be installed for continued groundwater sampling. If the findings during the site investigation indicate that groundwater is likely to be impacted, then a minimum of three monitoring wells will be installed. Proposed locations for the monitoring wells are indicated on the site diagram and are based, in part, on the former source areas.

Construction and specifications of the monitoring wells will follow the requirements as stated in Chapter 173-160 WAC (Minimum Standards for Construction and Maintenance of Wells) and the commonly accepted industry standards for installation of wells that will produce representative groundwater samples. The well casing will consist of 2-inch diameter Schedule 40 polyvinyl chloride (PVC). The screen will consist of a five foot section having 10 slot (0.010 inch) openings flush threaded with riser. The filter pack will consist of 10/20 silica sand deposited from the bottom of the screen to one foot above the top of the screen. The remainder of the annulus space will be filled with 3/8 inch bentonite chips to the bottom of a steel, flush-mounted well monument and finished with concrete.

The project schedule for monitoring well compliance sampling will be based on the completion of well development. The wells will be developed by surge block and pumping until the fines have dissipated (water is clear).

#### 5.4.3 Survey of Monitoring Well Location and Elevation

All monitoring wells will be surveyed by a licensed surveying firm. For each monitoring well, the vertical elevation of the reference point marked on the top of the PVC casing for water levels should be measured to within 0.01 foot relative to the North American Vertical Datum of 1988 (NAVD88). The horizontal location of borings and monitoring wells will be measured to within 1.0 foot.

Monitoring well elevation measurements will be measured to a reference point marked at the top of the PVC well casing to the nearest 0.01 foot relative to the North American Vertical Datum of 1988 (NAVD88). Water levels should be measured to within 0.01 foot from this reference point on the casing.

If a property boundary survey is required, the horizontal datum will conform to the North American Datum of 1983, updated in 1991 (NAD83 (1991)).

Other methods of determining horizontal and vertical coordinates may be used, provided that the same level of precision is achievable. The method used to establish coordinates and other site measurements should be described as well as the accuracy of the method (closure or GPS equivalent).

#### **5.4.4 Monitoring Well Sampling**

Groundwater sampling of the monitoring wells will conform to the guidelines set forth in the *Guidance on Remediation of Petroleum Contaminated Sites*. The initial groundwater sampling results from the monitoring wells will dictate the frequency of sampling. Prior to sampling, the field personnel will coordinate with the laboratory to ensure sampling protocols including recommended sample volume, holding times, storage, etc.

Groundwater elevation measurements will be recorded from each well prior to sampling. The ground water levels will be measured to within 0.01 foot from the reference point on the casing. Samples will be collected by the low-flow purge and sampling method.

Groundwater samples will generally be collected unfiltered. The possible exception is the collection of samples for metals analysis. If turbidity is high, collect both unfiltered (for total metals analysis) and field filtered (for dissolved metals analysis). Once filtered, the sample should be preserved as per laboratory instructions.

Samples for organic contaminants will be unfiltered during collection

Groundwater samples will be screened for petroleum hydrocarbons, volatile petroleum compounds (BTEX), fuel additives and blending compounds (MTBE, EDB, EDC), carcinogenic PAHs, Naphthalenes, metals (cadmium, chromium, nickel, zinc, and lead), PCBs, and halogenated VOCs.

Groundwater samples will be initially analyzed with NWTPH-HCID, then quantified by NWTPH-Gx, NWTPH-Dx as necessary.

#### 5.4.5 Groundwater Monitoring Well Decommissioning

The groundwater monitoring wells will be decommissioned per Chapter 173-160 WAC (Minimum Standards for Construction and Maintenance of Wells) <u>only</u> after receiving written approval from Ecology.

#### **5.5 Management of Investigative Wastes**

Regulated investigation derived wastes (IDW) such as soil cuttings generated during drilling and sampling activities will be containerized in 55-gallon, US Department of Transportation (DOT) approved drums. Decontamination water and purge water from the groundwater monitoring wells will be stored in additional 16 or 55-gallon DOT-approved drums.

The onsite storage of regulated IDW shall not exceed 90 days. All regulated IDW will be temporarily staged onsite until profiling analyses are performed. Representative samples will be collected to profile the soil/drill cuttings and any groundwater. The drums will be labeled with the date, type and source of the materials contained. Non-regulated IDW including nitrile gloves,

visqueen sheeting, Teflon lined polyethylene tubing may be disposed as standard municipal waste.

Management of IDW will be documented in the Remedial Investigation report. The documentation will include disposal arrangements and laboratory analytical results for waste profiling.

For soil, the requirements in Chapter 173-350-300 WAC (Collection and Transportation Standards for Solid Waste) shall apply. Receipts documenting off-site disposal should be retained by the property owner.

#### **5.6 Laboratory Analyses**

Soil and groundwater samples will be submitted to a laboratory accredited for the required analyses. If the laboratory is not accredited for a particular analysis, the analysis can be performed by another laboratory that is accredited for that method. A chain-of-custody shall be completed to document the transfer. The receiving laboratory shall note sample conditions and anomalies in the samples, e.g., if air bubbles are present in the 40-ml VOA groundwater vials.

Final documentation shall indicate the preservation and storage of samples, if the samples were analyzed within their respective holding times for particular analyses, and any discrepancies noted that may affect the quality of the samples.

The soil and groundwater samples taken in the vicinity of the waste oil UST should be analyzed for volatile organic compounds (BTEX), fuel additives and blending compounds (MTBE, EDB, EDC), carcinogenic PAHs, metals, PCBs, and halogenated VOCs. The required analyses for waste oil releases are outlined in Table 1 below. Since the same contaminants may be expected to potentially exist in the drywell area, the drywell soils and groundwater shall also be assessed by the listed analyses.

The analyses for fuel additives including BTEX, EDB, EDC, MTBE are not required on all soil and groundwater samples; however, sufficient analyses should be performed to cover each area of concern.

For soil:

- NWTPH-HCID, if detections then quantification by NWTPH-Gx and NWTPH-Dx;
- EPA Method 8260 to assess VOCs, MTBE, EDC, EDB, and halogenated VOCs (chlorinated VOCs);
- EPA Method 8270 for carcinogenic PAHs, naphthalene;
- EPA Method 8082 for PCBs;
- EPA Method 6000 or 7000 Series for metals (cadmium, chromium, nickel, lead and zinc).

• EPA Method 5035 for collection of soils for volatile organic compounds analysis (This is the preferred method for collection of VOC samples but it is understood that this method may be difficult depending on grain size, etc. Difficulties in sample recovery and collection should be noted in field notebook.)

TCLP will only be used for waste profiling as a preparatory procedure prior to the appropriate analytical method for metals.

For groundwater:

- NWTPH-HCID, if detections then quantification by NWTPH-Gx and NWTPH-Dx;
- EPA Method 8260 to assess VOCs, MTBE, EDC, and halogenated VOCs (chlorinated VOCs);
- EPA Method 504.1 for EDB;
- EPA Method 8270 for carcinogenic PAHs, naphthalene;
- EPA Method 8082 for PCBs;
- EPA Method 6000 or 7000 Series for metals (cadmium, chromium, nickel, lead and zinc).

| Chemical                               | Analytical Method               |                         |  |
|----------------------------------------|---------------------------------|-------------------------|--|
| Chemiear                               | Soil                            | Groundwater             |  |
| Volatile Petroleum Compounds           |                                 |                         |  |
| Benzene                                | EPA Method 8260                 | EPA Method 8260         |  |
| Toluene                                | EPA Method 8260                 | EPA Method 8260         |  |
| Ethylbenzene                           | EPA Method 8260                 | EPA Method 8260         |  |
| Xylenes                                | EPA Method 8260                 | EPA Method 8260         |  |
| Fuel Additives & Blending Compounds    |                                 |                         |  |
| EDB                                    | EPA Method 8260                 | EPA Method 504.1        |  |
| EDC                                    | EPA Method 8260                 | EPA Method 8260         |  |
| MTBE                                   | EPA Method 8260                 | EPA Method 8260         |  |
| Total lead & other additives           | EPA 6000 or 7000 Series         | EPA 6000 or 7000 Series |  |
| Other Petroleum Components             |                                 |                         |  |
| Carcinogenic PAHs                      | EPA Method 8270 SIM             | EPA Method 8270 SIM     |  |
| Naphthalenes                           | EPA Method 8270                 | EPA Method 8270         |  |
| Other Compounds                        |                                 |                         |  |
| PCBs                                   | EPA Method 8082 EPA Method 8082 |                         |  |
| Halogenated Volatile Organic Compounds | EPA Method 8260 EPA Method 8260 |                         |  |
| Metals (lead included as additive)     |                                 |                         |  |
| Cadmium                                | EPA 6000 or 7000 Series         | EPA Method SW 7131      |  |
| Chromium (Total)                       | EPA 6000 or 7000 Series         | EPA 6000 or 7000 Series |  |
| Nickel                                 | EPA 6000 or 7000 Series         | EPA 6000 or 7000 Series |  |

| Chemical | Analytical Method       |                         |  |
|----------|-------------------------|-------------------------|--|
| Zinc     | EPA 6000 or 7000 Series | EPA 6000 or 7000 Series |  |

## 6.0 QUALITY ASSURANCE PROJECT PLAN

The primary objective of the QAPP is to assure that a sufficient number of samples are collected to gain quality analytical information for the Tidrick Quality Transmission site, to evaluate the various environmental media of concern, and to determine whether there is a risk of offsite contamination transport.

#### 6.1 Personnel

The site manager for Ecology is John Mefford, who is responsible for defining the scope and objectives of this project.

PLSA co-project managers and principal sampling personnel, Brad Card P.E. and Scott Garland P.E., are responsible for assuring that all on-site personnel are trained to properly carry out information included in this SAP and QAPP and that all resources are made available to meet the investigation objectives.

The PLSA health and safety officer is Scott Garland P.E., who is responsible for identifying and mitigating potential hazards while field work is being performed and insuring health and safety procedures are implemented and followed.


#### 6.2 Documentation

A complete record of field activities will be maintained. Documentation necessary to meet quality assurance (QA) objectives for this project includes field notes and field forms, borehole logs, sample container labels, and chain-of-custody (COC) forms. The field documentation will provide descriptions of all sampling activities, sampling personnel, and weather conditions. All modifications, decisions, and/or corrective actions to the study design and procedures identified in the SAP will be recorded in the field documents with a signature and date.

Daily activities will be recorded. Information recorded will include the following:

- Date, time, place, and location of sampling
- Onsite personnel and visitors
- Daily safety discussion and any safety issues
- Quality control samples (i.e., duplicate samples, trip blanks, etc.)
- Field measurements and their units
- Observations about site, location, and samples (weather, current, odors, appearance, etc.)
- Equipment decontamination verification







Field logbooks are intended to provide sufficient data and observations to enable participants to reconstruct events that occur during project field activities. Entries should be factual, detailed, and objective. If an error is made, the individual responsible may make corrections simply by crossing out the error and entering the correct information. The erroneous information should not be obliterated. All corrections must be initialed and dated. All documentation, including voided entries, must be maintained within project files. Photocopies or electronic scans of the field logbooks will be made at the end of each field event and maintained in the project file. Boring logs will be used to record geological and well installation observations and data. Soil sampling information (sample ID, depth, time) will also be recorded on these logs.

Sample collection data sheets will be completed for each groundwater sample location. Sample data sheets will contain date and time of sample collection, sample number, sample location, field measurements (e.g., pH, conductivity, temperature), and analyses collected. Sample labels will be attached to each sample container. Labels will contain the sample number, date and time of sample collection, analyses requested, and information on sample preservation. Chain-of-custody forms will accompany all samples shipped to the analytical laboratory. In addition to containing a record of sample information, chain-of-custody forms will contain the signature of the sample shipper and will document the date and time that samples were shipped. Upon receipt at the laboratory, the chain-of-custody record will be compared with the samples received, any discrepancies will be noted, and the form will be signed and dated by an authorized laboratory representative and a copy returned to the sender.

#### **6.3 Analytical Methods**

Analytical methods may be found in Section 5.6 of this Plan.

#### 6.4 Laboratory QA/QC and Data Submittals

Laboratory quality control (QC) samples will include the following, as relevant to each analytical method:

- Method blanks
- Method blank spikes
- Laboratory control samples
- Surrogates
- Matrix spikes/matrix spike duplicates
- Laboratory duplicates

Laboratory data will be provided in both, hard copy and electronic file to PLSA and will consist of laboratory narratives, chain-of-custody documentation, quality control documentation containing method blank results, and QA summary forms. The narrative should note any deviations from the sample handling protocols as previously established by the laboratory. The sample handling protocols should note conformance to preservation methods such as storage in a cooler with blue ice to a temperature of 4 degrees Celcius. Also, the presence of air bubbles in groundwater VOA vials should be noted.

Laboratory deliverables will include electronic data formatted to meet the submittal requirements of Ecology's Environmental Information Management database.

#### 6.5 Field QA/QC Measures

Samples will be considered acceptable to the field manager if sufficient quantity of material is recovered to adequately and appropriately represent the target material and depth interval. Examples of unacceptable samples or sample locations include soil samples with largely coarse-grained material (coarser than sand), refusal before extending below major contaminant depths, and water samples that are extremely turbid. For cases of poor recovery or refusal or lack of physical access, the PLSA field manager or project manager will discuss with the Ecology site manager to decide whether data completeness has been affected significantly enough to require moving boring locations or resampling.

Field QC samples will also be collected to gauge the quality of samples being collected; these include the following:

**Field duplicates** will be collected to assess natural variability in the sampled soil and groundwater matrix. One soil and one groundwater field duplicate will be collected per 20 samples or one for each field sampling day of this investigation, whichever is greater. This sample will allow the relative percent difference to be calculated, to gauge the variability in the sampling and analysis processes.

**Trip blanks** will be submitted with every sample shipment in which samples are being analyzed for volatile organics including BTEX + MTBE, EDB, EDC and NWTPH-Gx. One trip blank, consisting of laboratory-supplied organic-free water, will be included in each cooler and analyzed upon receipt for the same constituents as the environmental samples.

#### 6.6 Containers, Preservatives, and Holding Times

Sample containers will be certified clean from the laboratory. Sufficient volume of soil and groundwater will be collected to perform all required analyses as listed in Table 1. Also, sufficient volume will be collected if additional analyses are needed, for instance, when screening for hydrocarbon type by NWTPH-HCID and, if present, quantify by NWTPH-Gx and NWTPH-Dx.

Note that the sample preservation and storage, desired sample volume, and the minimum sample volume may vary between laboratories. Check with the laboratories prior to sampling and document if deviating from this table. Also, if the samples are chilled to the required storage temperature but are not preserved by acid then the holding time will be shorter.

| Analysis                | Medium      | Container                               | Preservation    | Holding<br>Time |
|-------------------------|-------------|-----------------------------------------|-----------------|-----------------|
| NWTPH-HCID              | groundwater | 1-500 ml amber; 2-40 ml glass VOA vials | Cool to $4^0$ C | 7 days          |
|                         | soil        | 2-4 oz clear wide mount jar             | Cool to $4^0$ C | 14 days         |
| NWTPH-Gx ground<br>soil | groundwater | 2-40 ml VOA glass vials with HCl        | Cool to $4^0$ C | 14 days         |
|                         | soil        | 2-40 ml VOA glass vials with methanol   | Cool to $4^0$ C | 14 days         |
| $NWTPH_Dy =$            | groundwater | 2-500 ml amber                          | Cool to $4^0$ C | 14 days         |
|                         | soil        | 2-40 oz clear wide mouth jar            | Cool to $4^0$ C | 14 days         |
|                         | groundwater | 3-40 ml VOA glass vials with HCl        | Cool to $4^0$ C | 14 days         |
|                         | soil        | 3-40 ml VOA glass vials with methanol   | Cool to $4^0$ C | 14 days         |
|                         | groundwater |                                         |                 |                 |
|                         | soil        |                                         |                 |                 |
|                         | groundwater |                                         |                 |                 |
|                         | soil        |                                         |                 |                 |

Table 2. Recommended Bottle Type, Preservation, and Holding Times for Samples

#### 6.7 Sample Numbering

Each soil and groundwater sample will be clearly labeled using unique sample identifiers as follows:

#### Subsurface soils (SB)

The sample numbering for the soil samples will be the generic alpha-numeric designation, SB-xx-yy, where "xx" is the boring number and "yy" is the depth of the top of the sampled interval measured in feet below ground surface, for example, SB-01-05.

Note that the general convention on sample numbering for each dash-separated segment is a two digit number with a "0" as a placeholder if the number is less than 10. This applies to all of the types of sample numbers as shown in the examples.

#### Groundwater grab sample from temporary well points (TW)

The sample numbering for the groundwater samples from temporary well points will be the generic alpha-numeric designation, TW-xx-mmddyy, where "xx" is the boring number and "mmddyy" is the date of collection, for example, TW-04-051809.

#### Groundwater sample from monitoring well (MW)

The sample numbering for the groundwater samples from monitoring wells will be the generic alpha-numeric designation, MW-xx-mmddyy, where "xx" is the monitoring well number and "mmddyy" is the date of collection, for example, MW-12-051809.

#### Trip blanks: *TB-mmddyy-x* (for example, TB-0521809-2)

Where "mmddyy" is the date and "x" is the sequential number of this type of sample prepared on the same day.

#### 6.8 Field Equipment Calibration

Field instruments, including a photo-ionization detector (PID) and a field portable x-ray fluorescent (XRF) unit will be calibrated prior to use each day according to the manufacturer's recommended procedure using the appropriate calibration standards. Recalibration may be needed during the day after a significant gap of time, or if the instrument does not give reliable readings (such as does not zero out). All calibration of such instruments will be recorded in the field log book. Any instrument issues should be recorded in field book.

#### **6.9 Sample Storage and Delivery Procedures**

At a minimum, all samples will be stored in insulated coolers and preserved by cooling with ice to a temperature of  $4^{\circ}$  to  $6^{\circ}$  Celsius. During receipt of samples, the receiving laboratory shall note any discrepancies in its narrative. This narrative should form part of the record in addition to the chain-of-custody.

Maximum sample holding and extraction times for the required analyses will be adhered to by field personnel and the analytical laboratories. Sample preservatives such as HCl or methanol shall be used for any samples if extraction or analysis cannot be performed within the proper holding time and as appropriate for that particular analysis.

#### 6.10 Chain-of-Custody Procedures

Chain of custody (COC) forms will ensure that all collected samples are properly documented and traceable through storage, transport, and analysis. When all line items on the form are completed or when the samples are relinquished, the person with custody will sign and date the form, list the time, and confirm the completeness of all descriptive information and required analyses.

Samples will be retained in the field crew's custody until samples are delivered or shipped to the appropriate laboratory by PLSA personnel. The field COC terminates when the laboratory receives the samples. The field sample custodian should retain a copy of the completed, signed COC form(s) for the project files. If the laboratory sends samples for additional analyses then another chain of custody should record the subsequent transfers. Each laboratory should complete a narrative describing the condition of the samples received.

## 7.0 REFERENCES

Cayuse Environmental (1994), *Removal of two gasoline storage tanks and one used oil tank located at the corner of 1<sup>st</sup> Ave. and Mead in Yakima, WA*. Underground storage tank closure report.

U.S. Environmental Protection Agency (2008), *Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods SW-846*.

Contents of site file including notes describing the 1992 and 2007 initial investigations to include the Manchester Laboratory report and the Site Hazard Assessment report.

## **APPENDIX** A

#### PLSA HEALTH AND SAFETY PLAN TIDRICK'S QUALITY TRANSMISSION

#### **GENERAL INFORMATION**

**CLIENT:** Dereck & Associates

**PROJECT MANAGER**: John Mefford, Washington State Department of Ecology, Brad Card P.E. and Scott Garland P.E., PLSA Engineering & Surveying

SITE NAME. Tidrick's Quality Transmission

SITE NAME: Tidrick's Quality Transmission

**SITE LOCATION:** 1802 South 1<sup>st</sup> Street, Yakima, WA

PURPOSE OF FIELD VISIT(S): Collect groundwater samples and soil samples

DATE OF VISIT(S): First Quarter 2014

#### **Article I. Site Characteristics**

#### **AREA DESCRIPTION**

The site is located at 1802 South 1<sup>st</sup> Street, Yakima, WA. The site is a former automotive repair facility that is bordered by Mead Avenue (runs east-west) and South 1<sup>st</sup> Street on the east.

Commercial property borders on the south and east/

#### **Possible Contaminate Characteristics**

a) Waste Type(s)

Liquid X Solid X Sludge Gas Dust X\_\_\_\_

#### b) Characteristics

Corrosive Ignitable Radioactive Volatile \_

Toxic Reactive Unknown x\_ Other \_\_\_\_

Article II. Hazard Evaluation

#### CHEMICAL HAZARDS

Based upon review of the previous assessments, potential chemical hazards on the site include petroleum products from historic underground storage tanks (USTs).

Site personnel are trained in hazard recognition and will use personal protective equipment (PPE) appropriate to the potential hazards.

#### a) Air Monitoring

Direct read air monitoring equipment may be employed to screen for contaminants and toxic or flammable atmospheres prior to collecting samples if the project manager, or site supervisor, deems it appropriate.

#### b) General Safety Hazards

Sampling at the proposed sites will be unlikely to pose any unanticipated safety hazard to workers. The proposed scheme involves subsurface water and soil sampling.

If sampling will be performed along roads and alleys, personnel will don "OSHA

Orange" vests and traffic control measures will be initiated. The site supervisor will identify any site-specific hazards during pre-job safety meetings. The site supervisor will update employees if site hazards change.

The most likely hazards to be encountered are those commonly encountered on many work-sites (heat stress, working around machinery, noise, etc.). All PLSA employees performing field work on this project will comply with the most current Health and Safety Manual and Health and Safety Standard Operating Procedures for PLSA. Each employee has been provided access to this manual.

#### **Article III. Work Practices**

Workers will comply with all PLSA Health and Safety Manual rules. Workers will comply with all state and federal regulations.

#### PERSONAL PROTECTIVE EQUIPMENT

Section 100.5 of the most current Health and Safety Manual and Health and Safety Standard Operating Procedures for PLSA addresses PPE selection:

- A Class A, B, or C hard hat as appropriate to the site,
- Steel-toed, steel shank work boots,
- Hearing protection, and
- Safety Glasses.

#### DECONTAMINATION PROCEDURES

#### a) Personnel

Before leaving the sample area, thoroughly wash hands and face with soap and water before eating, drinking, or smoking. If water is not available use pre-moistened towelettes to wash face and hands.

Do not track contaminated soils and dust off-site.

#### b) Samples

After the sample containers are filled they will be sealed shut, marked with indelible marker, and any excess dirt will be wiped from the outside of the sample containers before they are stored. Sample containers will be transported in suitable sealed containers placed in stable containers that can be securely closed.

#### c) Disposal of Materials Generated On-Site

Collect trash and non-hazardous waste and place it in appropriate trash receptacles for municipal trash pick up. Potentially contaminated materials will be separated, sealed in chemically compatible containers, and labeled for appropriate off-site disposal.

#### d) Safety Equipment and Materials

Each sampling team will have access to a first aid kit, clean water, paper cups, and premoistened towelettes. Site supervisors will ensure appropriate safety gear is available for site operations. The site supervisor will also be equipped with a cell phone in case of an emergency requiring outside assistance.

Article IV. Emergency Procedures

- If an injury occurs, take the following steps:
- Prevent further injury and notify the site supervisor.
- Initiate first aid and get medical attention for the injured person immediately.
- Depending on the type and severity of the injury, call for medical attention.
- Prepare an incident report.
- The crew chief / site safety officer will assume charge during a medical emergency.
- a) Local Emergency Phone Numbers

Ambulance: 911 Hospital: Yakima Regional Medical & Cardiac Center (509) 575-5000 (non-emergency) 911 (emergency department) 110 South 9<sup>th</sup> Avenue Yakima, WA 98944 Poison Control Center: 800-222-1222 Sheriff/Police: 911 (509) 575-6200 (City of Yakima Police Dept. non-emergency)

Fire Department: 911
(509) 837-3999 (non-emergency) *b) Emergency Contacts*8 am to 5 pm: PLSA office (509) 575-6990

#### **Article V. Site Organization**

Map/Sketch Attached YES Site Secured NO Perimeter Identified YES

#### **EMERGENCY ROUTE**

Driving directions to Yakima Regional Medical & Cardiac Center (Hospital) Total Travel Estimates: about 15 minute / 0.48 miles

1. Start out going WEST on E Mead Avenue toward S 10th Avenue.

2. Take the 1st LEFT onto S 10th Avenue.

3. Turn SLIGHT RIGHT onto Walnut Street.

4. Enter Yakima Regional Parking Lot.

## APPENDIX "D"

Laboratory Analytical Reports

## JULY 2014 SOIL ANALYTICAL RESULTS

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         | -             |                          |
| Attn:    | DARA OSBORNE             |               |                          |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-001<br>(70813<br>Soil | Samp   | ling Date<br>ling Time<br>le Locatior | 7/8/2014<br>8:34 AM<br>9 | Date          | Time Received | 7/11/2014 | 11:20 AM |
|---------------------------------------------------------|---------------------------------|--------|---------------------------------------|--------------------------|---------------|---------------|-----------|----------|
| Parameter                                               |                                 | Result | Units                                 | PQL                      | Analysis Date | Analyst       | Method    | Qualifie |
| Cadmium                                                 |                                 | 0.890  | mg/Kg                                 | 0.507                    | 7/23/2014     | ETL           | EPA 6020A |          |
| Chromium                                                |                                 | 21.7   | mg/Kg                                 | 0.507                    | 7/23/2014     | ETL           | EPA 6020A |          |
| Nickel                                                  |                                 | 21.6   | mg/Kg                                 | 0.507                    | 7/23/2014     | ETL           | EPA 6020A |          |
| Zinc                                                    |                                 | 151    | mg/Kg                                 | 0.507                    | 7/23/2014     | ETL           | EPA 6020A |          |
|                                                         | 140714014-002                   |        |                                       |                          |               | ETL           | EPA 6020A | 11.2     |
| Sample Number                                           | -                               |        | ling Date                             | 7/8/2014                 | Date/         | Time Received | 7/11/2014 | 11:20 A  |
| Client Sample ID<br>Matrix                              | 70814<br>Soil                   | •      | ling Time<br>le Location              | 8:29 AM                  |               |               |           |          |

| Parameter | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier |
|-----------|--------|-------|-------|---------------|---------|-----------|-----------|
| Cadmium   | ND     | mg/Kg | 0.472 | 7/23/2014     | ETL     | EPA 6020A |           |
| Chromium  | 17.0   | mg/Kg | 0.472 | 7/23/2014     | ETL     | EPA 6020A |           |
| Nickel    | 13.9   | mg/Kg | 0.472 | 7/23/2014     | ETL     | EPA 6020A |           |
| Zinc      | 48.6   | mg/Kg | 0.472 | 7/23/2014     | ETL     | EPA 6020A |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Comments

,

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### **Client:** VALLEY ENVIRONMENTAL LAB Address: 15 W. YAKIMA AVE STE210 **YAKIMA, WA 98901**

Batch #: 140714014 Project Name:

VOC / METALS / PAH / PCB

Attn: DARA OSBORNE

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-003<br>70815<br>Soil | Samp   | oling Date<br>oling Time<br>ole Location |       | Date/         | Time Received | 7/11/2014 | 11:20 AM  |
|---------------------------------------------------------|--------------------------------|--------|------------------------------------------|-------|---------------|---------------|-----------|-----------|
| Parameter                                               |                                | Result | Units                                    | PQL   | Analysis Date | Analyst       | Method    | Qualifier |
| Cadmium                                                 |                                | ND     | mg/Kg                                    | 0.557 | 7/23/2014     | ETL           | EPA 6020A |           |
| Chromium                                                |                                | 20,6   | mg/Kg                                    | 0.557 | 7/23/2014     | ETL           | EPA 6020A |           |
| Nickel                                                  |                                | 19.2   | mg/Kg                                    | 0.557 | 7/23/2014     | ETL           | EPA 6020A |           |
| Zinc                                                    |                                | 72.0   | mg/Kg                                    | 0.557 | 7/23/2014     | ETL           | EPA 6020A |           |

| Sample Number<br>Client Sample ID<br>Matrix | 140714014-004<br>70816<br>Soil | Samp   | oling Date<br>oling Time<br>ole Location |      | Date/         | Time Received | 7/11/2014 | 11:20 AM |
|---------------------------------------------|--------------------------------|--------|------------------------------------------|------|---------------|---------------|-----------|----------|
| Comments                                    |                                |        |                                          | •    |               |               |           |          |
| Parameter                                   |                                | Result | Units                                    | PQL  | Analysis Date | Analyst       | Method    | Qualifie |
| Cadmium                                     |                                | ND     | mg/Kg                                    | 0.54 | 7/23/2014     | ETL.          | EPA 6020A | ••••     |
| Chromium                                    |                                | 16.1   | mg/Kg                                    | 0.54 | 7/23/2014     | ETL           | EPA 6020A |          |
| Nickel                                      |                                | 14.1   | mg/Kg                                    | 0.54 | 7/23/2014     | ETL           | EPA 6020A |          |
| Zinc                                        |                                | 62.0   | mg/Kg                                    | 0.54 | 7/23/2014     | ETL           | EPA 6020A |          |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0096; FL(NELAP): E871099

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### **Client:** VALLEY ENVIRONMENTAL LAB Address: 15 W. YAKIMA AVE STE210 **YAKIMA, WA 98901** Attn:

Batch #: 140714014 Project Name: VOC / METALS / PAH / PCB

DARA OSBORNE

#### **Analytical Results Report**

| Sample Number 140714014-005<br>Client Sample ID 70817<br>Matrix Soil<br>Comments |  | Sampling Date 7/8/2014<br>Sampling Time 9:53 AM<br>Sample Location |       |       | Date/Time Received 7/11/2014 |         |           | 11:20 AM  |
|----------------------------------------------------------------------------------|--|--------------------------------------------------------------------|-------|-------|------------------------------|---------|-----------|-----------|
| Parameter                                                                        |  | Result                                                             | Units | PQL   | Analysis Date                | Analyst | Method    | Qualifier |
| Cadmium                                                                          |  | 0.595                                                              | mg/Kg | 0.531 | 7/23/2014                    | ETL     | EPA 6020A |           |
| Chromium                                                                         |  | 21.0                                                               | mg/Kg | 0.531 | 7/23/2014                    | ETL     | EPA 6020A |           |
| Nickel                                                                           |  | 18.6                                                               | mg/Kg | 0.531 | 7/23/2014                    | ETI.    | EPA 6020A |           |
| Zinc                                                                             |  | 138                                                                | mg/Kg | 0.531 | 7/23/2014                    | ETL     | EPA 6020A |           |

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-006<br>70818<br>Soil | Sampling Date 7/8/2014<br>Sampling Time 9:40 AM<br>Sample Location |       | Date/ | 7/11/2014     | 11:20 AM |           |           |
|---------------------------------------------------------|--------------------------------|--------------------------------------------------------------------|-------|-------|---------------|----------|-----------|-----------|
| Parameter                                               |                                | Result                                                             | Units | PQL   | Analysis Date | Analyst  | Method    | Qualifier |
| Cadmium                                                 |                                | ND                                                                 | mg/Kg | 0.477 | 7/23/2014     | ËTL      | EPA 6020A | •         |
| Chromium                                                |                                | 19.1                                                               | mg/Kg | 0.477 | 7/23/2014     | ETL      | EPA 6020A |           |
| Nickel                                                  |                                | 17.4                                                               | mg/Kg | 0.477 | 7/23/2014     | ETL      | EPA 6020A |           |
| Zinc                                                    |                                | 56.0                                                               | mg/Kg | 0.477 | 7/23/2014     | ETL      | EPA 6020A |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB                    | Batch #:      | 140714014                |
|----------|---------------------------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210<br>YAKIMA, WA 98901 | Project Name: | VOC / METALS / PAH / PCB |
| Attn:    | DARA OSBORNE                                |               |                          |

#### **Analytical Results Report**

| Sample Number 140714014-007<br>Client Sample ID 70819<br>Matrix Soil<br>Comments |  | Sampling Date 7/8/2014<br>Sampling Time 10:32 AM<br>Sample Location |       |       | Date/Time Received 7/11/2014 |         |           | 11:20 AM  |
|----------------------------------------------------------------------------------|--|---------------------------------------------------------------------|-------|-------|------------------------------|---------|-----------|-----------|
| Parameter                                                                        |  | Result                                                              | Units | PQL   | Analysis Date                | Analyst | Method    | Qualifier |
| Cadmium                                                                          |  | ND                                                                  | mg/Kg | 0.511 | 7/23/2014                    | ETL     | EPA 6020A |           |
| Chromium                                                                         |  | 19.9                                                                | mg/Kg | 0.511 | 7/23/2014                    | ETL     | EPA 6020A |           |
| Nickel                                                                           |  | 17.2                                                                | mg/Kg | 0.511 | 7/23/2014                    | ETL     | EPA 6020A |           |
| Zinc                                                                             |  | 62.2                                                                | mg/Kg | 0.511 | 7/23/2014                    | ETL     | EPA 6020A |           |

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-008<br>.70820<br>Soil | · · · · · · · · · · · · · · · · · · · |       | 7/8/2014<br>10:15 AM<br>า | Date/Time Received |         | 7/11/2014 | 11:20 AM  |
|---------------------------------------------------------|---------------------------------|---------------------------------------|-------|---------------------------|--------------------|---------|-----------|-----------|
| Parameter                                               |                                 | Result                                | Units | PQL                       | Analysis Date      | Analyst | Method    | Qualifier |
| Cadmium                                                 |                                 | ND                                    | mg/Kg | 0.535                     | 7/23/2014          | ETL     | EPA 6020A |           |
| Chromium                                                |                                 | 20.0                                  | mg/Kg | 0.535                     | 7/23/2014          | ETL     | EPA 6020A |           |
| Nickel                                                  |                                 | 18.7                                  | mg/Kg | 0.535                     | 7/23/2014          | ETL     | EPA 6020A |           |
| Zinc                                                    |                                 | 68.7                                  | mg/Kg | 0.535                     | 7/23/2014          | ETL     | EPA 6020A |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |

#### **Analytical Results Report**

| imple Number<br>ient Sample ID<br>atrix<br>omments | 140714014-009<br>70821<br>Soil | 1 5    |       | Sampling Time 11:16 AM |               | Date/   | 7/11/2014 | 11:20 AM  |
|----------------------------------------------------|--------------------------------|--------|-------|------------------------|---------------|---------|-----------|-----------|
| Parameter                                          |                                | Result | Units | PQL                    | Analysis Date | Analyst | Method    | Qualifier |
| Cadmium                                            |                                | ND     | mg/Kg | 0.525                  | 7/23/2014     | ETL     | EPA 6020A |           |
| Chromium                                           |                                | 18.9   | mg/Kg | 0.525                  | 7/23/2014     | ETL     | EPA 6020A |           |
| Nickel                                             |                                | 17.6   | mg/Kg | 0.525                  | 7/23/2014     | ETL     | EPA 6020A |           |
| Zinc                                               |                                | 68.0   | mg/Kg | 0.525                  | 7/23/2014     | ETL     | EPA 6020A |           |

| ample Number<br>Client Sample ID<br>Aatrix<br>Comments | ient Sample ID 70822<br>atrix Soil |        | Sampling Date 7/8<br>Sampling Time 11:<br>Sample Location |       | Date/Time Received |         | 7/11/2014 | 11:20 AM  |  |
|--------------------------------------------------------|------------------------------------|--------|-----------------------------------------------------------|-------|--------------------|---------|-----------|-----------|--|
| Parameter                                              |                                    | Result | Units                                                     | PQL   | Analysis Date      | Analyst | Method    | Qualifier |  |
| Cadmium                                                |                                    | ND     | mg/Kg                                                     | 0.503 | 7/23/2014          | ETL     | EPA 6020A |           |  |
| Chromium                                               |                                    | 21.0   | mg/Kg                                                     | 0.503 | 7/23/2014          | ETL     | EPA 6020A |           |  |
| Nickel                                                 |                                    | 16.1   | mg/Kg                                                     | 0.503 | 7/23/2014          | ETL     | EPA 6020A |           |  |
| Zinc                                                   |                                    | 52.6   | mg/Kg                                                     | 0.503 | 7/23/2014          | ETL     | EPA 6020A |           |  |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cent0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

# Client:VALLEY ENVIRONMENTAL LABBatch #:Address:15 W. YAKIMA AVE STE210Project Name:YAKIMA, WA 98901YAKIMA, WA 98901Attn:DARA OSBORNE

#: 140714014 : Name: VOC / METALS / PAH / PCB

**Analytical Results Report** 

| ample Number<br>lient Sample ID<br>atrix<br>comments | 140714014-011<br>70823<br>Soil | Samp   | oling Date<br>oling Time<br>ole Location | 7/8/2014<br>11:42 AM<br>n | Date/         | Time Received | 7/11/2014 | 11:20 AM  |
|------------------------------------------------------|--------------------------------|--------|------------------------------------------|---------------------------|---------------|---------------|-----------|-----------|
| Parameter                                            |                                | Result | Units                                    | PQL                       | Analysis Date | Analyst       | Method    | Qualifier |
| Cadmium                                              |                                | ND     | mg/Kg                                    | 0.46                      | 7/23/2014     | ETL           | EPA 6020A |           |
| Chromium                                             |                                | 14.7   | mg/Kg                                    | 0.46                      | 7/23/2014     | ETL           | EPA 6020A |           |
| Nickel                                               |                                | 13.4   | mg/Kg                                    | 0.46                      | 7/23/2014     | ETL           | EPA 6020A |           |
| Zinc                                                 |                                | 49.6   | mg/Kg                                    | 0.46                      | 7/23/2014     | ETL           | EPA 6020A |           |

| ample Number 140714014-012<br>lient Sample ID 70824<br>atrix Soil<br>omments |  | Samp   | Sampling Date 7/8/2014<br>Sampling Time 11:31 AM<br>Sample Location |       |               | Date/Time Received 7/11/2014 |           |           |
|------------------------------------------------------------------------------|--|--------|---------------------------------------------------------------------|-------|---------------|------------------------------|-----------|-----------|
| Parameter                                                                    |  | Result | Units                                                               | PQL   | Analysis Date | Analyst                      | Method    | Qualifier |
| Cadmium                                                                      |  | ND     | mg/Kg                                                               | 0.441 | 7/23/2014     | ETL                          | EPA 6020A |           |
| Chromium                                                                     |  | 17.5   | mg/Kg                                                               | 0.441 | 7/23/2014     | ETL                          | EPA 6020A |           |
| Nickel                                                                       |  | 14.2   | mg/Kg                                                               | 0.441 | 7/23/2014     | ETL                          | EPA 6020A |           |
| Zinc                                                                         |  | 45.4   | mg/Kg                                                               | 0.441 | 7/23/2014     | ETL                          | EPA 6020A |           |

Authorized Signature

. Contt

John Coddingtor, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C585 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

## VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

BTEX by EPA 8260B

|                                                                                                                                       |                                                         | DILA                                   | Dy L/L                                                              | A 8260B                                                 |                          |                                       |                |          |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|--------------------------|---------------------------------------|----------------|----------|--|--|
| Date Colle                                                                                                                            | ected: 07/08/14                                         |                                        |                                                                     |                                                         |                          |                                       |                |          |  |  |
|                                                                                                                                       | le No: 227-70813                                        |                                        | _                                                                   |                                                         | ounty                    | YAKIMA                                | <u></u>        |          |  |  |
| Sample Loc                                                                                                                            | ation: OWS2                                             | <u> </u>                               |                                                                     | <b>D</b> ( <b>D</b>                                     | • •                      | 0.5/0.14 /                            |                |          |  |  |
|                                                                                                                                       |                                                         |                                        | Date Received: 07/08/14                                             |                                                         |                          |                                       |                |          |  |  |
|                                                                                                                                       |                                                         |                                        | Date Reported: 07/29/14                                             |                                                         |                          |                                       |                |          |  |  |
| Send Report To:                                                                                                                       |                                                         |                                        | Sample Collected By: SDG         SAMPLE COMMENTS       Matrix: Soil |                                                         |                          |                                       |                |          |  |  |
| PLSA Engineering                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                   |                                        | SAMP                                                                |                                                         | LEN15                    | Matri                                 | x: Soll        |          |  |  |
| Attn: Scott Garland                                                                                                                   |                                                         |                                        |                                                                     |                                                         |                          |                                       |                |          |  |  |
| 1120 West Lincoln Av                                                                                                                  | CONTRA                                                  |                                        |                                                                     |                                                         |                          |                                       |                |          |  |  |
| Yakima, WA 98902                                                                                                                      | venue                                                   |                                        |                                                                     |                                                         |                          |                                       |                |          |  |  |
| BTEX by EPA 8260B                                                                                                                     |                                                         |                                        | <b>I</b>                                                            | ,                                                       |                          |                                       |                | <u> </u> |  |  |
| OH# Analytes                                                                                                                          | Results                                                 | Units                                  | MRL                                                                 | Trigger                                                 | MCL                      | Method                                | Analyzed       | Analys   |  |  |
| Benzene                                                                                                                               | ND                                                      | ррш                                    | 0.005                                                               |                                                         | 1                        | EPA 8260B                             | 07/17/14       | 125      |  |  |
| Toluene                                                                                                                               | ND                                                      | ppm                                    | 0.005                                                               |                                                         |                          | EPA 8260B                             | 07/17/14       | 125      |  |  |
| Ethylbenzene                                                                                                                          | ND                                                      | ppm                                    | 0.005                                                               |                                                         | <u> </u>                 | EPA 8260B                             | 07/17/14       | 125      |  |  |
| Xylenes (m,p,o)                                                                                                                       | ND                                                      | ppm                                    | 0.005                                                               |                                                         |                          | EPA 8260B                             | 07/17/14       | 125      |  |  |
|                                                                                                                                       |                                                         | <i></i>                                |                                                                     |                                                         | L                        |                                       |                |          |  |  |
|                                                                                                                                       |                                                         |                                        | <u> </u>                                                            |                                                         |                          |                                       |                | [        |  |  |
|                                                                                                                                       |                                                         |                                        |                                                                     |                                                         | ļ                        |                                       |                |          |  |  |
|                                                                                                                                       |                                                         |                                        |                                                                     |                                                         |                          | · ·                                   |                |          |  |  |
| ······································                                                                                                |                                                         | •                                      | <u> </u>                                                            |                                                         | <u> </u>                 |                                       |                |          |  |  |
| ·····                                                                                                                                 | · ·                                                     |                                        |                                                                     | ,                                                       |                          |                                       |                |          |  |  |
|                                                                                                                                       | ·                                                       | ·                                      |                                                                     | ·                                                       |                          | · · · · · · · · · · · · · · · · · · · |                |          |  |  |
|                                                                                                                                       |                                                         |                                        |                                                                     |                                                         |                          |                                       |                |          |  |  |
| ·                                                                                                                                     |                                                         |                                        |                                                                     |                                                         |                          |                                       | ·              |          |  |  |
|                                                                                                                                       |                                                         | ······································ |                                                                     | · ·                                                     |                          |                                       |                |          |  |  |
|                                                                                                                                       |                                                         |                                        | -                                                                   | <u> </u>                                                |                          |                                       |                |          |  |  |
|                                                                                                                                       |                                                         |                                        |                                                                     |                                                         |                          |                                       |                |          |  |  |
| v                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                   |                                        |                                                                     |                                                         |                          | ·                                     |                |          |  |  |
|                                                                                                                                       | ·                                                       |                                        |                                                                     |                                                         |                          |                                       | ·              |          |  |  |
|                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                   |                                        | ł ·                                                                 |                                                         |                          |                                       |                |          |  |  |
|                                                                                                                                       |                                                         |                                        |                                                                     |                                                         |                          |                                       | •••            |          |  |  |
|                                                                                                                                       |                                                         |                                        |                                                                     |                                                         | — — j                    | ·                                     |                |          |  |  |
|                                                                                                                                       |                                                         |                                        |                                                                     | ·                                                       |                          |                                       |                |          |  |  |
| MRL (Method Reporting Level):<br>Trigger: DOH Drinking Water res<br>MCL (maximum contaminant lev<br>ND (Not Detected): Indicates this | ponse level. Public System<br>el): Highest level recomm | ns in excess of<br>ended by the fe     | this level mus<br>ederal govern<br>at a level gre                   | st take addition<br>ment for public<br>ater than or equ | al samples<br>water syst | . Recommended rang                    | e on packages. |          |  |  |
|                                                                                                                                       | ·····                                                   | <u></u>                                | Ар                                                                  | proved By:                                              |                          | - r                                   |                |          |  |  |
|                                                                                                                                       |                                                         |                                        |                                                                     |                                                         |                          | []                                    |                |          |  |  |

70813-btex

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

#### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Washington State DOE Accredited Lab #<br>Sampled At: OWS2 |                                                                     |                              |                                                                                                                                                                                      |                                        | Date Reported: 07/29/14<br>Date Collected: 07/08/14<br>Time Collected: 8:34 AM<br>Sampled By: SDG |  |  |  |  |  |
|-----------------------------------------------------------|---------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
| PLSA Engineering                                          | · · · · · · · · · · · · · · · · · · ·                               |                              |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Attn: Scott Garland                                       |                                                                     |                              |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| 1120 West Lincoln Avenue                                  |                                                                     |                              |                                                                                                                                                                                      |                                        | Invoice                                                                                           |  |  |  |  |  |
| Yakima, WA 98902                                          |                                                                     |                              |                                                                                                                                                                                      |                                        | 2770                                                                                              |  |  |  |  |  |
| Volatile Organic Chemicals                                | ·····                                                               | Method: EPA 8260B Matrix: So |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| VEL Sample #                                              | 227-70813                                                           |                              |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Sample ID                                                 | עונט א לא האור משפע לו האור אין |                              | אין אירו דאין מערוי ער פורעסאניקטרופי רעסיו ארא פיזיריא איליליק און איירו אין אייר איז אייר אייר אייר אייר איי<br>אין אירו דאין מערוי אין מערוי אייר אייר אייר אייר אייר אייר אייר א | 1)                                     | i litan teruca wa ida ama i waa ama waa w                                                         |  |  |  |  |  |
| Units                                                     | ppm                                                                 | Limits                       |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Check Standards - Ave.Recovery:                           | - pp                                                                |                              |                                                                                                                                                                                      |                                        | ····                                                                                              |  |  |  |  |  |
|                                                           |                                                                     |                              |                                                                                                                                                                                      |                                        | · · · · · · · · · · · · · · · · · · ·                                                             |  |  |  |  |  |
| 1,2-Dichlorobenzene-d4                                    | 90.4%                                                               | (70-130)                     |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| 4-Bromofluorobenzene                                      | 95.2%                                                               | (70-130)                     |                                                                                                                                                                                      | :                                      |                                                                                                   |  |  |  |  |  |
| Toluene-d8                                                | 98.8%                                                               | (70-130)                     |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Dichlorodifluoromethane                                   | ND                                                                  | 0.005                        |                                                                                                                                                                                      | ······································ |                                                                                                   |  |  |  |  |  |
| Chloromethane                                             | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Vinyl chloride                                            | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Bromomethane                                              | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Chloroethane                                              | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Acetone                                                   | ND                                                                  | 0.025                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Acrolein                                                  | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| 1,1-Dichloroethylene                                      | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Methylene chloride                                        | ND                                                                  | 0.025                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Acrylonitrile                                             | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| trans-1,2-Dichloroethylene                                | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| 1,1-Dichloroethane                                        | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Methyl ethyl ketone (MEK)                                 | ND                                                                  | 0.025                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| cis-1,2-Dichloroethylene                                  | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| 2,2-Dichloropropane                                       | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Chloroform                                                | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Bromochloromethane                                        | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| 1,1,1-Trichloroethane                                     | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| 1,2-Dichloroethane                                        | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| 1,1-Dichloropropene                                       | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Carbon tetrachloride                                      | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Benzene                                                   | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Frichloroethylene                                         | ND                                                                  | 0.005                        |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Date Analyzed:                                            | 7/17/2014                                                           |                              |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| Analyst:                                                  | 125                                                                 |                              |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |
| ND = None Detected                                        | ·····                                                               | Page 1 of 3                  |                                                                                                                                                                                      |                                        |                                                                                                   |  |  |  |  |  |

#### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902

,

| (509) | ) 575 - | 3999 | Fax: | (509) | <u>) 575 - 3068</u> |  |
|-------|---------|------|------|-------|---------------------|--|
|       |         |      |      |       |                     |  |

|                             | Volatile Or | ganic Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pounds (Continued) |
|-----------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| VEL Sample #                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Sample ID                   |             | (Al Presidence Construction and service of the serv |                    |
| Units                       | ppm         | Limts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,2-Dichloropropane         | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Dibromomethane              | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Bromodichloromethane        | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| cis-1,3-Dichloropropene     | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Toluene                     | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| trans-1,3-Dichloropropene   | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,1,2-Trichloroethane       | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,3-Dichloropropane         | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Dibromochloromethane        | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Tetrachloroethylene         | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,2-Dibromoethane           | ND          | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Chlorobenzene               | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,1,1,2-Tetrachloroethane   | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Ethylbenzene                | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| m,p-Xylene                  | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Styrene                     | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| o-Xylene                    | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Bromoform                   | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,1,2,2-Tetrachloroethane   | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,2,3-Trichloropropane      | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Bromobenzene                | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| n-Propylbenzene             | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 2-Chlorotoluene             | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 4-Chlorotoluene             | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,3,5-Trimethylbenzene      | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| tert-Butylbenzene           | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,2,4-Trimethylbenzene      | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| sec-Butylbenzene            | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,3-Dichlorobenzene         | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,4-Dichlorobenzene         | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 4-Isopropyltoluene          | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,2-Dichlorobenzene         | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| n-Butylbenzene              | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,2-Dibromo-3-chloropropane | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 1,2,4-Trichlorobenzene      | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Naphthalene                 | ND          | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Date Analyzed:              | 7/17/2014   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Analyst:                    | 125         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page 2 of 3        |
|                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 ago 2 01 J       |

#### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210

#### Yakima, WA 98902

(509) 575 - 3999 Fax: (509) 575 - 3068

|                                                                                                                                                                                                                                                                                                   | Volatile Or | ganic Co                                  | mpounds (Con                                                                                                    | tinued)                                                                                                         |                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|
| VEL Sample #                                                                                                                                                                                                                                                                                      | 227-70813   |                                           |                                                                                                                 |                                                                                                                 |                                      |
| Sample ID                                                                                                                                                                                                                                                                                         |             | NARA (MANANA) BUTTAN PUBLIN DALAR DADA MU | na a marta da sel a la la constanción a casa a casa a casa a fas fasta de acordo constanción a casa de acordo c | 18 I MAR (19 MARINE MARINE) I POLINIZATA I MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARIN |                                      |
| Units                                                                                                                                                                                                                                                                                             |             | Limits                                    |                                                                                                                 |                                                                                                                 |                                      |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                             | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                         | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                            | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| 2-hexanone                                                                                                                                                                                                                                                                                        | ND          | 0.025                                     |                                                                                                                 |                                                                                                                 |                                      |
| Bromoform                                                                                                                                                                                                                                                                                         | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| Carbon disulfide                                                                                                                                                                                                                                                                                  | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| Chlorobenzene                                                                                                                                                                                                                                                                                     | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| cis-1,2-dichloroethene                                                                                                                                                                                                                                                                            | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                           | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                               | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| Isopropylbenzene                                                                                                                                                                                                                                                                                  | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| Methyl Isobutyl ketone (MIBK)                                                                                                                                                                                                                                                                     | ND          | 0.025                                     |                                                                                                                 |                                                                                                                 |                                      |
| methyl-t-butyl ether (MTBE)                                                                                                                                                                                                                                                                       | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| p-siopropyltoluene                                                                                                                                                                                                                                                                                | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| tert-Butylbenzene                                                                                                                                                                                                                                                                                 | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                          | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                            | ND          | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| Tetrachloroethene                                                                                                                                                                                                                                                                                 | 0.0130      | 0.005                                     |                                                                                                                 |                                                                                                                 |                                      |
| ·····                                                                                                                                                                                                                                                                                             |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                             |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                   |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                   |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                   |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                             |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                   |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                   |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
| · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
| ·                                                                                                                                                                                                                                                                                                 |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                   |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                   |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                   |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                   |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                   |             |                                           | •                                                                                                               |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                   |             |                                           |                                                                                                                 |                                                                                                                 |                                      |
| Date Analyzed:                                                                                                                                                                                                                                                                                    | 7/17/2014   |                                           | - ha:                                                                                                           |                                                                                                                 |                                      |
| Analyst:                                                                                                                                                                                                                                                                                          | 125         |                                           |                                                                                                                 |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                   |             |                                           |                                                                                                                 | ·····                                                                                                           | t, , , , , , , , , , , , , , , , , , |
|                                                                                                                                                                                                                                                                                                   |             |                                           | Page 3 of 3                                                                                                     | m                                                                                                               |                                      |

VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

PCB's (Soil)

|                             | Date Collected                         | : 07/08/14        |                  |                                                                 |                |               |                    |                 |       |  |  |
|-----------------------------|----------------------------------------|-------------------|------------------|-----------------------------------------------------------------|----------------|---------------|--------------------|-----------------|-------|--|--|
|                             | Lab/Sample No                          |                   |                  |                                                                 | C              | ounty:        | YAKIMA             |                 |       |  |  |
|                             | Sample Location:                       | : OWS2            |                  |                                                                 |                |               | <u> </u>           |                 |       |  |  |
|                             |                                        | ·                 |                  | Date Received: 07/08/14                                         |                |               |                    |                 |       |  |  |
|                             | ····                                   |                   | ·                | Date Reported: 07/29/14                                         |                |               |                    |                 |       |  |  |
|                             | D                                      |                   |                  | Sample Collected By: SDG       SAMPLE COMMENTS     Matrix: Soil |                |               |                    |                 |       |  |  |
|                             | Report To:                             |                   | <u>.</u>         | SAMPI                                                           | LE COMM        | ENTS          | Matri              | x: Soil         |       |  |  |
|                             | PLSA Engineering                       |                   |                  |                                                                 |                |               |                    |                 |       |  |  |
|                             | Attn: Scott Garland                    |                   |                  |                                                                 |                |               |                    |                 |       |  |  |
|                             | 1120 West Lincoln Avenue               | 9                 |                  |                                                                 |                |               |                    |                 |       |  |  |
|                             | Yakima, WA 98902                       |                   |                  |                                                                 |                |               |                    |                 |       |  |  |
| ]                           | PCB's (Soil)                           |                   |                  |                                                                 |                |               |                    |                 |       |  |  |
| ОН#                         | Analytes                               | Results           | Units            | MRL                                                             | Trigger        | MCL           | Method             | Analyzed        | Analy |  |  |
|                             | Aroclor 1016                           | ND                | mg/kg            | 0.1                                                             |                |               | EPA 8082           | 07/22/14        | 125   |  |  |
|                             | Aroclor 1221                           | ND                | mg/kg            | 0.1                                                             |                |               | EPA 8082           | 07/22/14        | 125   |  |  |
| 1                           | Aroclor 1232                           | ND                | mg/kg            | 0.1                                                             |                |               | EPA 8082           | 07/22/14        | 125   |  |  |
|                             | Aroclor 1242                           | ND                | mg/kg            | 0.1                                                             |                | ļ             | EPA 8082           | 07/22/14        | 125   |  |  |
|                             | Aroclor 1248                           | ND                | mg/kg            | 0.1                                                             |                |               | EPA 8082           | 07/22/14        | 125   |  |  |
| · · · · · · · - <del></del> | Aroclor 1254                           | ND                | mg/kg            | 0.1                                                             |                |               | EPA 8082           | 07/22/14        | 125   |  |  |
|                             | Aroclor 1260                           | ND                | mg/kg            | 0.1                                                             | ·              |               | EPA 8082           | 07/22/14        | 125   |  |  |
|                             | PCB 8082 (total)                       | ND                | mg/kg            | 0.1                                                             |                |               | EPA 8082           | 07/22/14        | 125   |  |  |
|                             |                                        |                   |                  |                                                                 |                |               | * en auto a        |                 |       |  |  |
|                             |                                        |                   |                  |                                                                 |                |               |                    |                 |       |  |  |
|                             | Surrogate Std:                         |                   |                  |                                                                 |                |               |                    |                 |       |  |  |
|                             | DCB                                    | 102.0             | %                | 30-130                                                          | • • •          |               | EPA 8082           | 07/22/14        | 125   |  |  |
|                             |                                        |                   |                  |                                                                 |                |               | a . <u></u>        |                 |       |  |  |
|                             |                                        |                   |                  | <u> </u>                                                        |                |               | ······             |                 |       |  |  |
|                             | · · · ·                                |                   |                  |                                                                 |                |               |                    |                 |       |  |  |
|                             |                                        |                   |                  |                                                                 |                |               |                    |                 |       |  |  |
|                             |                                        |                   |                  |                                                                 |                |               |                    |                 |       |  |  |
|                             |                                        | · ··              |                  | <u> </u>                                                        |                |               |                    |                 |       |  |  |
|                             |                                        |                   |                  |                                                                 |                |               |                    | _               |       |  |  |
|                             | ·                                      |                   | ·                |                                                                 |                |               |                    |                 |       |  |  |
|                             |                                        |                   | ··               |                                                                 |                |               |                    |                 |       |  |  |
|                             |                                        |                   |                  |                                                                 |                |               |                    |                 |       |  |  |
| <u> </u>                    | IRL (Method Reporting Level): Indica   | tes the minimum r | enorting level - | required and a                                                  | htgined by the | laborator     | (MDF ~ MDI ~ 907 \ | <u> </u>        |       |  |  |
|                             | rigger: DOH Drinking Water response la |                   |                  |                                                                 |                |               |                    |                 |       |  |  |
|                             | 4CL (maximum contaminant level): Hi    |                   |                  |                                                                 |                |               |                    | se on packages. |       |  |  |
|                             | D (Not Detected): Indicates this compo |                   |                  | -                                                               | -              | -             |                    |                 |       |  |  |
|                             |                                        |                   |                  | at a lot of glt                                                 |                | aan to tife P |                    | -               |       |  |  |
|                             |                                        |                   |                  | Ар                                                              | proved By:     |               | \/                 |                 | _     |  |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

70813-pcbs

## VALLEY Environmental Laboratory

#### Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

|                    | Date Collected:                                                                                                                                                       |                                         | inum, ci            |                                                   |                                     | ,                         |                   |              |         |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------|---------------------------------------------------|-------------------------------------|---------------------------|-------------------|--------------|---------|--|--|
|                    | Lab/Sample No:                                                                                                                                                        |                                         |                     | County: YAKIMA                                    |                                     |                           |                   |              |         |  |  |
|                    | Sample Location:                                                                                                                                                      | OWS2                                    |                     | Date Received: 07/08/14                           |                                     |                           |                   |              |         |  |  |
|                    |                                                                                                                                                                       |                                         |                     | <b> </b>                                          |                                     |                           |                   |              |         |  |  |
| 1097,05<br>1097,05 |                                                                                                                                                                       |                                         |                     | G                                                 | *                                   |                           | 07/29/14          |              |         |  |  |
| C I                | Den ent Tex                                                                                                                                                           |                                         |                     |                                                   | ole Collect                         | -                         |                   | <u>a a</u>   |         |  |  |
| Sena               | Report To:                                                                                                                                                            | SAMPI                                   | LE COMM             | IEN15                                             | Matri                               | x: Soll                   |                   |              |         |  |  |
|                    | PLSA Engineering<br>Attn: Scott Garland                                                                                                                               |                                         |                     |                                                   |                                     |                           |                   |              |         |  |  |
|                    |                                                                                                                                                                       |                                         |                     |                                                   |                                     |                           |                   |              |         |  |  |
|                    | 1120 West Lincoln Avenue                                                                                                                                              | ,<br>,                                  |                     |                                                   |                                     |                           |                   |              |         |  |  |
|                    | Yakima, WA 98902                                                                                                                                                      |                                         |                     |                                                   |                                     | <del></del>               |                   |              |         |  |  |
|                    | Cadmium, Chromium, Nic                                                                                                                                                | kel, Zinc                               |                     |                                                   |                                     |                           |                   |              |         |  |  |
| DOH#               | Analytes                                                                                                                                                              | Results                                 | Units               | MRL                                               | Trigger                             | MCL                       |                   | Analyzed     |         |  |  |
|                    | Cadmium                                                                                                                                                               | 0.890                                   | mg/kg               | 0.507                                             |                                     |                           | EPA 6020A         |              | 125     |  |  |
|                    | Chromium                                                                                                                                                              | 21.7                                    | mg/kg               | 0.507                                             |                                     |                           | EPA 6020A         | 07/23/14     | · · · · |  |  |
|                    | Nickel                                                                                                                                                                | 21.6                                    | mg/kg               | 0.507                                             |                                     |                           | EPA 6020A         | 07/23/14     | 125     |  |  |
|                    | Zinc                                                                                                                                                                  | 151                                     | mg/kg               | 0.507                                             |                                     |                           | EPA 6020A         | 07/23/14     | 125     |  |  |
|                    |                                                                                                                                                                       |                                         |                     |                                                   |                                     |                           |                   |              |         |  |  |
| i                  | MRL (Method Reporting Level): Indicat<br>Trigger: DOH Drinking Water response le<br>MCL (maximum contaminant level): Hig<br>ND (Not Detected): Indicates this compour | vel. Public Syster<br>hest level recomm | ns in excess of the | nis level mus<br>leral governm<br>at a level grea | t take additiona<br>nent for public | l samples.<br>water syste | Recommended range | on packages. |         |  |  |

70813-cdcrni

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
| `        | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

Batch #: Project Name:

140714014

e: VOC / METALS / PAH / PCB

#### **Analytical Results Report**

| Sample Number     140/14014-001     Sampling Date     //8/2014     Date/Time Received     7/11/2014     11:20 AM       Client Sample JD     70813     Sampling Time     8:34 AM       Matrix     Soil     Sample Location       Comments     Comments | Matrix | , |  | 7/8/2014<br>8:34 AM | Date/Time Received | 7/11/2014 | 11:20 AM |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|--|---------------------|--------------------|-----------|----------|--|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|--|---------------------|--------------------|-----------|----------|--|

|            | Parameter                         | Result | Units          | PQL     | Analysis Date | Analyst | Method    | Qualifier |
|------------|-----------------------------------|--------|----------------|---------|---------------|---------|-----------|-----------|
|            | 1,1,1,2-Tetrachloroethane         | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,1,1-Trichloroethane             | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,1,2,2-Tetrachloroethane         | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,1,2-Trichloroethane             | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,1-Dichloroethane                | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,1-Dichloroethene                | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,1-dichloropropene               | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,2,3-Trichlorobenzene            | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,2,3-Trichloropropane            | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,2,4-Trichlorobenzene            | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,2,4-Trimethylbenzene            | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,2-Dibromo-3-chloropropane(DBCP) | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| <b>6</b> 0 | 1,2-Dibromoethane                 | ND     | mg/kg          | 0.001 🤤 | > 7/17/2014   | SAT     | EPA 8260B |           |
|            | 1,2-Dichlorobenzene               | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,2-Dichloroethane                | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,2-Dichloropropane               | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,3,5-Trimethylbenzene            | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,3-Dichlorobenzene               | ND     | m <b>g</b> /kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,3-Dichloropropane               | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 1,4-Dichlorobenzene               | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 2,2-Dichloropropane               | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 2-Chlorotoluene                   | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| €.2        | 2-hexanone                        | ND     | mg/kg          | 0.025 🕋 | 7/17/2014     | SAT     | EPA 8260B |           |
|            | 4-Chlorotoluene                   | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Ę. 3       | Acetone                           | ND     | mg/kg          | 0.025   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | Acrylonitrile                     | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | Benzene                           | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            | Bromobenzene                      | ND     | mg/kg          | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
|            |                                   |        |                |         |               |         |           |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

# Client: VALLEY ENVIRONMENTAL LAB Batch #: 140714014 Address: 15 W. YAKIMA AVE STE210 Project Name: VOC / METALS / PAH / PCB YAKIMA, WA 98901 DARA OSBORNE Production Dependence Project Name:

#### **Analytical Results Report**

| Sample Number    | 140714014-001 | Sampling Date   | 7/8/2014 | Date/Time Received | 7/11/2014 | 11:20 AM |
|------------------|---------------|-----------------|----------|--------------------|-----------|----------|
| Client Sample ID | 70813         | Sampling Time   | 8:34 AM  |                    |           |          |
| Matrix           | Soil          | Sample Location |          |                    |           |          |
| Comments         |               |                 |          |                    |           |          |

| Parameter                     | Result | Units | PQL                      | Analysis Date | Analyst | Method    | Qualifier |
|-------------------------------|--------|-------|--------------------------|---------------|---------|-----------|-----------|
| Bromochloromethane            | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromodichloromethane          | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromoform                     | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromomethane                  | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon disulfide              | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon Tetrachloride          | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Chlorobenzene                 | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroethane                  | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroform                    | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloromethane                 | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,2-dichloroethene        | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,3-Dichloropropene       | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromochloromethane          | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromomethane                | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Dichlorodifluoromethane       | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Ethylbenzene                  | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Hexachlorobutadiene           | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| lsopropylbenzene              | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| m+p-Xylene                    | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| ∞Methyl ethyl ketone (MEK)    | ND     | mg/kg | 0.025                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl isobutyl ketone (MIBK) | ND     | mg/kg | 0.025 <sup>&amp;\$</sup> | 7/17/2014     | SAT     | EPA 8260B |           |
| Methylene chloride            | ND     | mg/kg | 0.025 🥙                  | 7/17/2014     | SAT     | EPA 8260B |           |
| methyl-t-butyl ether (MTBE)   | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| Naphthalene                   | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Butylbenzene                | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Propylbenzene               | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| o-Xylene                      | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| p-isopropyltoluene            | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
| sec-Butylbenzene              | ND     | mg/kg | 0.005                    | 7/17/2014     | SAT     | EPA 8260B |           |
|                               |        |       |                          |               |         |           |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA0D169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

# Client:VALLEY ENVIRONMENTAL LABBatch #:140714014Address:15 W. YAKIMA AVE STE210Project Name:VOC / METALS / PAH / PCBYAKIMA, WA 98901YAKIMA, WA 98901Project Name:VOC / METALS / PAH / PCBAttn:DARA OSBORNEPatrixDara Statement

#### **Analytical Results Report**

| ample Number<br>ient Sample ID<br>atrix<br>omments | 140714014-001<br>70813<br>Soil |        | Sampling D<br>Sampling T<br>Sample Loc | ime   | 7/8/2014 Date<br>8:34 AM | e/Time Rece | ived 7/ <b>11</b> /2014 | 11:20 AM |
|----------------------------------------------------|--------------------------------|--------|----------------------------------------|-------|--------------------------|-------------|-------------------------|----------|
| Parameter                                          |                                | Result | Units                                  | PQL   | Analysis Date            | Analyst     | Method                  | Qualifie |
| Styrene                                            |                                | ND     | mg/kg                                  | 0.005 | 7/17/2014                | SAT         | EPA 8260B               | <b></b>  |
| tert-Butylbenze                                    | ne                             | ND     | mg/kg                                  | 0.005 | 7/17/2014                | SAT         | EPA 8260B               |          |
| Tetrachloroethe                                    | ene                            | 0.0130 | mg/kg                                  | 0.005 | 7/17/2014                | SAT         | EPA 8260B               |          |
| Toluene                                            |                                | ND     | mg/kg                                  | 0.005 | 7/17/2014                | SAT         | EPA 8260B               |          |
| trans-1,2-Dichle                                   | proethene                      | ND     | mg/kg                                  | 0.005 | 7/17/2014                | SAT         | EPA 8260B               |          |
| trans-1,3-Dichle                                   | propropene                     | ND     | mg/kg                                  | 0.005 | 7/17/2014                | SAT         | EPA 8260B               |          |
| Trichloroethene                                    | •                              | ND     | mg/kg                                  | 0.005 | 7/17/2014                | SAT         | EPA 8260B               |          |
| Trichloroflouron                                   | neihane                        | ND     | mg/kg                                  | 0.005 | 7/17/2014                | SAT         | EPA 8260B               |          |
| Vinyl Chloride                                     |                                | ND     | mg/kg                                  | 0.005 | 7/17/2014                | SAT         | EPA 8260B               |          |
| %moisture                                          |                                | 10.3   | Percent                                |       | 7/17/2014                | SAT         | %moisture               |          |

#### Surrogate Data

| Sample Number 140714014-001 |           |                  |                |
|-----------------------------|-----------|------------------|----------------|
| Surrogate Standard          | Method    | Percent Recovery | Control Limits |
| 1,2-Dichlorobenzene-d4      | EPA 8260B | 90.4             | 70-130         |
| 4-Bromofluorobenzene        | EPA 8260B | 95.2             | 70-130         |
| Toluene-d8                  | EPA 8260B | 98.8             | 70-130         |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO.ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:         | 140714014                |
|----------|--------------------------|------------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name:    | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |                  |                          |
| Attn:    | DARA OSBORNE             |                  |                          |
|          | A so a la state a la D a | and the Discount |                          |

#### **Analytical Results Report**

| ample Number<br>Hent Sample ID<br>Aatrix<br>Comments | 140714014-001<br>70813<br>Soil |        | Sampling Da<br>Sampling Ti<br>Sample Loc | me   | 7/8/2014<br>8:34 AM | Date/Time Rece<br>Extraction Date | ived 7/11/2014<br>7/17/2014 | 11:20 AM |
|------------------------------------------------------|--------------------------------|--------|------------------------------------------|------|---------------------|-----------------------------------|-----------------------------|----------|
| Parameter                                            |                                | Result | Units                                    | PQL  | Analysis E          | )ate Analyst                      | Method                      | Qualifie |
| 2-Methyinaphth                                       | alene                          | 0.0221 | mg/Kg                                    | 0.01 | 7/17/20             | 14 EMP                            | EPA 8270D                   |          |
| Acenaphthene                                         |                                | ND     | mg/Kg                                    | 0.01 | 7/17/201            | I4 EMP                            | EPA 8270D                   |          |
| Acenaphthylen                                        | e                              | ND     | mg/Kg                                    | 0.01 | 7/17/201            | 14 EMP                            | EPA 8270D                   |          |
| Anthracene                                           |                                | ND     | mg/Kg                                    | 0.01 | 7/17/201            | I4 EMP                            | EPA 8270D                   |          |
| Benzo(ghi)pery                                       | lene                           | 0.0206 | mg/Kg                                    | 0.01 | 7/17/201            | I4 EMP                            | EPA 8270D                   |          |
| Benzo[a]anthra                                       | cene                           | 0.0186 | mg/Kg                                    | 0.01 | 7/17/201            | I4 EMP                            | EPA 8270D                   |          |
| Benzo[a]pyrene                                       | ;                              | ND     | mg/Kg                                    | 0.01 | 7/17/201            | I4 EMP                            | EPA 8270D                   |          |
| Benzo[b]fluorar                                      | thene                          | 0.0122 | mg/Kg                                    | 0.01 | 7/17/201            | I4 EMP                            | EPA 8270D                   |          |
| Benzo[k]fluoran                                      | thene                          | ND     | mg/Kg                                    | 0.01 | 7/17/201            | 4 EMP                             | EPA 8270D                   |          |
| Chrysene                                             |                                | ND     | mg/Kg                                    | 0.01 | 7/17/201            | 4 EMP                             | EPA 8270D                   |          |
| Dibenz[a,h]anth                                      | racene                         | ND     | mg/Kg                                    | 0.01 | 7/17/201            | 4 EMP                             | EPA 8270D                   |          |
| Fluoranthene                                         |                                | ND     | mg/Kg                                    | 0.01 | 7/17/201            | 4 EMP                             | EPA 8270D                   |          |
| Fluorene                                             |                                | ND     | mg/Kg                                    | 0.01 | 7/17/201            | 4 EMP                             | EPA 8270D                   |          |
| Indeno[1,2,3-cd                                      | ]pyrene                        | 0.0124 | mg/Kg                                    | 0.01 | 7/17/201            | 4 EMP                             | EPA 8270D                   |          |
| Naphthalene                                          |                                | 0.0159 | mg/Kg                                    | 0.01 | 7/17/201            | 4 EMP                             | EPA 8270D                   |          |
| Phenanthrene                                         |                                | ND     | mg/Kg                                    | 0.01 | 7/17/201            | 4 EMP                             | EPA 8270D                   |          |
| Pyrene                                               |                                | ND     | mg/Kg                                    | 0.01 | 7/17/201            | 4 EMP                             | EPA 8270D                   |          |
| %moisture                                            |                                | 10.3   | Percent                                  |      | 7/17/201            | 4 SAT                             | %moisture                   |          |

| Sample Number | 140714014-001                           |           |                  |                |
|---------------|-----------------------------------------|-----------|------------------|----------------|
| Surrogate S   | Standard                                | Method    | Percent Recovery | Control Limits |
| Terphenyl-d   | 14                                      | EPA 8270D | 90.3             | 18-137         |
|               | - · · · · · · · · · · · · · · · · · · · |           |                  |                |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO.ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-001<br>70813<br>Soil |        | Sampling Da<br>Sampling Ti<br>Sample Loca | me      | 7/8/2014<br>8:34 AM | Date/Time Rece<br>Extraction Date | ived 7/11/2014<br>7/18/2014 | 11:20 AM  |
|---------------------------------------------------------|--------------------------------|--------|-------------------------------------------|---------|---------------------|-----------------------------------|-----------------------------|-----------|
| Parameter                                               |                                | Result | Units                                     | PQL     | Analysis D          | ate Analyst                       | Method                      | Qualifier |
| Aroclor 1016 (I                                         | PCB-1016)                      | ND     | mg/Kg                                     | 0.1     | 7/22/201            | 4 SAT                             | EPA 8082                    |           |
| Aroclor 1221 (F                                         | PCB-1221)                      | ND     | mg/Kg                                     | 0.1     | 7/22/201            | 4 SAT                             | EPA 8082                    |           |
| Aroclor 1232 (F                                         | PCB-1232)                      | ND     | mg/Kg                                     | 0.1     | 7/22/201            | 4 SAT                             | EPA 8082                    |           |
| Aroclor 1242 (F                                         | °CB-1242)                      | ND     | mg/Kg                                     | 0.1     | 7/22/201            | 4 SAT                             | EPA 8082                    |           |
| Aroclor 1248 (F                                         | PCB-1248)                      | ND     | mg/Kg                                     | 0.1     | 7/22/201            | 4 SAT                             | EPA 8082                    |           |
| Aroclor 1254 (F                                         | PCB-1254)                      | ND     | mg/Kg                                     | 0.1     | 7/22/201-           | 4 SAT                             | EPA 8082                    |           |
| Aroclor 1260 (F                                         | PCB-1260)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014           | 4 SAT                             | EPA 8082                    |           |
| PCB 8082 (tota                                          | el)                            | ND     | mg/kg                                     | 0.1     | 7/22/2014           | 4 SAT                             | EPA 8082                    |           |
| %moisture                                               |                                | 10.3   | Percent                                   |         | 7/17/2014           | 4 SAT                             | %moisture                   |           |
|                                                         |                                |        | Surroga                                   | ite Dat | ta                  |                                   |                             |           |
| mple Number                                             | 140714014-001                  |        |                                           |         |                     |                                   |                             |           |
| Surrogate St                                            | andard                         |        | Method                                    |         | Pe                  | ercent Recovery                   | Control L                   | imits     |
| DCB                                                     |                                |        | EPA 808                                   | 2       |                     | 102.0                             | 30-13                       | 0         |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO.ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

## VALLEY Environmental Laboratory

### Washington State Certified Lab #227 - DOE Accredited Lab C345

BTEX by EPA 8260B

|        | Date Colle                                                                                                                           | cted: 07/08/14                                          |                                    |                                                  |                                     |                         |                                       |          |            |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------|--------------------------------------------------|-------------------------------------|-------------------------|---------------------------------------|----------|------------|--|--|
|        |                                                                                                                                      | e No: 227-70814                                         |                                    |                                                  | C                                   | county:                 | YAKIMA                                |          |            |  |  |
|        | Sample Loca                                                                                                                          | tion: OWS13                                             |                                    | Date Received: 07/08/14                          |                                     |                         |                                       |          |            |  |  |
|        | · · · · · · · · · · · · · · · · · · ·                                                                                                |                                                         | <u></u>                            |                                                  |                                     |                         |                                       |          |            |  |  |
|        |                                                                                                                                      |                                                         |                                    | Date Reported: 07/29/14 Sample Collected By: SDG |                                     |                         |                                       |          |            |  |  |
| end    | Report To:                                                                                                                           |                                                         |                                    | SAMPLE COMMENTS Matrix: Soil                     |                                     |                         |                                       |          |            |  |  |
|        | PLSA Engineering                                                                                                                     |                                                         |                                    |                                                  |                                     |                         |                                       |          | . <u>.</u> |  |  |
|        | Attn: Scott Garland                                                                                                                  |                                                         |                                    |                                                  |                                     |                         |                                       |          |            |  |  |
|        | 1120 West Lincoln Av                                                                                                                 | enue                                                    |                                    |                                                  |                                     |                         |                                       |          |            |  |  |
|        | Yakima, WA 98902                                                                                                                     |                                                         |                                    |                                                  |                                     |                         |                                       |          |            |  |  |
|        | BTEX by EPA 8260B                                                                                                                    |                                                         | <u></u>                            |                                                  |                                     |                         | <u> </u>                              |          |            |  |  |
| OH#    | Analytes                                                                                                                             | Results                                                 | Units                              | MRL                                              | Trigger                             | MCL                     | Method                                | Analyzed | Analy      |  |  |
| +      | Benzene                                                                                                                              | ND                                                      | ppm                                | 0.005                                            |                                     |                         | EPA 8260B                             | 07/17/14 | 125        |  |  |
| ······ | Toluene                                                                                                                              | ND                                                      | ppm                                | 0.005                                            | ·                                   |                         | EPA 8260B                             | 07/17/14 |            |  |  |
|        | Ethylbenzene                                                                                                                         | ND                                                      | ppm                                | 0.005                                            |                                     | +                       | EPA 8260B                             | 07/17/14 | 125        |  |  |
|        | Xylenes (m,p,o)                                                                                                                      | ND                                                      | ppm                                | 0.005                                            |                                     | ļ                       | EPA 8260B                             | 07/17/14 | 125        |  |  |
|        | ·                                                                                                                                    |                                                         |                                    |                                                  |                                     |                         |                                       |          |            |  |  |
|        |                                                                                                                                      |                                                         |                                    |                                                  |                                     |                         |                                       |          |            |  |  |
|        |                                                                                                                                      |                                                         |                                    |                                                  |                                     | †                       |                                       | ~        |            |  |  |
|        |                                                                                                                                      |                                                         |                                    |                                                  |                                     |                         | · · · · · · · · · · · · · · · · · · · |          | 1          |  |  |
|        |                                                                                                                                      |                                                         |                                    | · · · ·                                          |                                     | <br>                    |                                       |          |            |  |  |
|        |                                                                                                                                      |                                                         |                                    |                                                  |                                     |                         |                                       |          |            |  |  |
|        |                                                                                                                                      |                                                         |                                    |                                                  |                                     |                         | · · · · ·                             |          |            |  |  |
|        |                                                                                                                                      |                                                         | · · ·                              |                                                  |                                     |                         | ····                                  |          |            |  |  |
|        | ······································                                                                                               |                                                         |                                    |                                                  |                                     | +                       |                                       |          |            |  |  |
|        |                                                                                                                                      |                                                         |                                    |                                                  |                                     |                         | ·                                     |          |            |  |  |
| ĺ      |                                                                                                                                      |                                                         |                                    | -                                                |                                     |                         |                                       |          |            |  |  |
|        |                                                                                                                                      |                                                         |                                    |                                                  |                                     |                         |                                       |          | · · · ·    |  |  |
| <br>   |                                                                                                                                      |                                                         |                                    |                                                  | · <u> </u>                          |                         |                                       |          | 1          |  |  |
| _      | ,                                                                                                                                    |                                                         |                                    | +                                                |                                     |                         |                                       |          |            |  |  |
|        |                                                                                                                                      |                                                         |                                    |                                                  | <u></u> _                           |                         | · · · · · · · · · · · · · · · · ·     | _        |            |  |  |
|        |                                                                                                                                      |                                                         |                                    | · · · · · ·                                      | ··                                  |                         |                                       |          |            |  |  |
| T<br>M | <b>ARL (Method Reporting Level): 'rigger:</b> DOH Drinking Water response <b>ACL (maximum contaminant level): ID (Not Detected):</b> | ponse level. Public System<br>el): Highest level recomm | ns in excess of<br>rended by the f | this level mu<br>ederal govern                   | st take addition<br>ment for public | al samples<br>water sys | s. Recommended rang                   |          |            |  |  |
|        |                                                                                                                                      |                                                         | Approved By:                       |                                                  |                                     |                         |                                       |          |            |  |  |

70814-btex

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

#### VALLEY Environmental Laboratory 15 W. Yakima Ave, St 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Washington State DOE Accredited Lab #<br>Sampled At: OWS13 | Date Reported: 07/29/14<br>Date Collected: 07/08/14<br>Time Collected: 8:29 AM<br>Sampled By: SDG |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------|
| PLSA Engineering                                           |                                                                                                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Attn: Scott Garland                                        |                                                                                                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| 1120 West Lincoln Avenue                                   |                                                                                                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | Invoice                                                         |
| Yakima, WA 98902                                           |                                                                                                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | <u>2770</u>                                                     |
| Volatile Organic Chemicals                                 |                                                                                                   | Method                                     | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Matrix: |                                                                 |
| VEL Sample #                                               | 227-70814                                                                                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Sample ID                                                  | 1710 (0.94) IN CALIFORNIA AND INCOMENDATION OF A COMPLEX OF                                       | Mistorian Concession Concession Concession | In the second construction of the second s |         | יר מוזע מערכי עלי אין לא אין אין אין אין אין אין אין אין אין אי |
| Units                                                      | ррт                                                                                               | Limits                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Check Standards - Ave.Recovery:                            | phu                                                                                               | Linits                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Show Standards Artifictorely.                              |                                                                                                   | ·····                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| 1,2-Dichlorobenzene-d4                                     | 88.0%                                                                                             | (70-130)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| 4-Bromofluorobenzene                                       | 94.0%                                                                                             | (70-130)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i       |                                                                 |
| Toluene-d8                                                 | 99.6%                                                                                             | (70-130)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Dichlorodifluoromethane                                    | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Chloromethane                                              | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Vinyl chloride                                             | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Bromomethane                                               | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Chloroethane                                               | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Acetone                                                    | ND                                                                                                | 0.025                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Acrolein                                                   | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| 1,1-Dichloroethylene                                       | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Methylene chloride                                         | ND                                                                                                | 0.025                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Acrylonitrile                                              | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| rans-1,2-Dichloroethylene                                  | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| 1,1-Dichloroethane                                         | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Methyl ethyl ketone (MEK)                                  | ND                                                                                                | 0.025                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| cis-1,2-Dichloroethylene                                   | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| 2,2-Dichloropropane                                        | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Chloroform                                                 | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Bromochloromethane                                         | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| ,1,1-Trichloroethane                                       | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| ,2-Dichloroethane                                          | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| ,1-Dichloropropene                                         | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Carbon tetrachloride                                       | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Benzene                                                    | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| richloroethylene                                           | ND                                                                                                | 0.005                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Date Analyzed:                                             | 7/17/2014                                                                                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                 |
| Analyst:                                                   | 125                                                                                               |                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                 |

#### VALLEY Environmental Laboratory 15 W. Yakima Ave, St 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

|                           | V     | 'olatile Or               | ganic Com | oounds (Cor                               | ntinued)                                                                                                         |
|---------------------------|-------|---------------------------|-----------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| VEL Sam<br>Samp           | ple # | 227-70814<br>OWS13<br>ppm | Limts     | M-9-19-19-19-19-19-19-19-19-19-19-19-19-1 | Ref Courses and an an annual second |
| 1,2-Dichloropropane       |       | ND                        | 0.005     | 3                                         |                                                                                                                  |
| Dibromomethane            |       | ND                        | 0.005     |                                           |                                                                                                                  |
| Bromodichloromethane      |       | ND                        | 0.005     |                                           |                                                                                                                  |
| cis-1,3-Dichloropropene   |       | ND                        | 0.005     |                                           |                                                                                                                  |
| Toluene                   |       | ND                        | 0.005     | ŕ                                         |                                                                                                                  |
| trans-1,3-Dichloropropene |       | ND                        | 0.005     |                                           |                                                                                                                  |
| 1,1,2-Trichloroethane     |       | ND                        | 0.005     |                                           |                                                                                                                  |
| 1,3-Dichloropropane       |       | ND                        | 0.005     |                                           |                                                                                                                  |
| Dibromochloromethane      |       | ND                        | 0.005     |                                           |                                                                                                                  |
| Tetrachloroethylene       |       | ND                        | 0.005     |                                           |                                                                                                                  |
| 1,2-Dibromoethane         |       | ND                        | 0.001     |                                           |                                                                                                                  |

|                             |           | - No <sup>4</sup> | Page 2 of 3 |   | · |
|-----------------------------|-----------|-------------------|-------------|---|---|
| Analyst:                    | 125       |                   |             |   |   |
| Date Analyzed:              | 7/17/2014 |                   |             |   | - |
| Naphthalene                 | ND        | 0.005             |             |   |   |
| 1,2,4-Trichlorobenzene      | ND        | 0.005             |             |   |   |
| 1,2-Dibromo-3-chloropropane | ND        | 0.005             |             |   |   |
| n-Butylbenzene              | ND        | 0.005             |             |   |   |
| 1,2-Dichlorobenzene         | ND        | 0.005             |             |   |   |
| 4-Isopropyltoluene          | ND        | 0.005             |             |   |   |
| 1,4-Dichlorobenzene         | ND        | 0.005             |             |   |   |
| 1,3-Dichlorobenzene         | ND        | 0.005             |             |   |   |
| sec-Butylbenzene            | ND        | 0.005             |             |   |   |
| 1,2,4-Trimethylbenzene      | ND        | 0.005             |             |   |   |
| tert-Butylbenzene           | ND        | 0.005             |             |   |   |
| 1,3,5-Trimethylbenzene      | ND        | 0.005             |             |   |   |
| 4-Chlorotoluene             | ND        | 0.005             |             |   |   |
| 2-Chlorotoluene             | ND        | 0.005             |             |   |   |
| n-Propylbenzene             | ND        | 0.005             |             |   |   |
| Bromobenzene                | ND        | 0.005             |             |   |   |
| 1,2,3-Trichloropropane      | ND        | 0.005             |             |   |   |
| 1,1,2,2-Tetrachloroethane   | ND        | 0.005             |             |   |   |
| Bromoform                   | ND        | 0.005             |             |   |   |
| o-Xylene                    | ND        | 0.005             | Í           | ľ |   |
| Styrene                     | ND        | 0.005             |             |   |   |
| m,p-Xylene                  | ND<br>ND  | 0.005             |             |   |   |
| Ethylbenzene                | ND        | 0.005             |             |   |   |
| 1,1,1,2-Tetrachloroethane   | ND        | 0.005             |             |   |   |
| Chlorobenzene               |           | 0.001             |             |   |   |

#### VALLEY Environmental Laboratory 15 W. Yakima Ave, St 210

#### Yakima, WA 98902

(509) 575 - 3999 Fax: (509) 575 - 3068

| (509) 575 - 5999 Fax: (505             |                                                                                                                  |                                      | npounds (Cor                                | ntinued)                                                                                                       |                                                                                                                                  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| VEL Sample #                           |                                                                                                                  | game Cor                             |                                             |                                                                                                                |                                                                                                                                  |
| Sample ID                              | and the second | IRACIOS MALIANDE) DIVID DIRUCEAU AGA | 544) maa maa maa maa maa maa maa maa maa ma | 1977 PLOT COMPANY I DE LA COMUNICIA DE LA COMUNICIÓN (1976) (1976) MUNICIPAL DE LA COMUNICIÓN (1976) MUNICIPAL | ין קרקארו קרקאנו שאורוע (מנוסח פערעט וויזאאריפאר יידע עוילטילי)<br>קריקארו קרקאנו או אוויז איני איני איני איני איני איני איני אי |
| Units                                  |                                                                                                                  | Limits                               |                                             |                                                                                                                |                                                                                                                                  |
| 1,1,1-Trichloroethane                  | ND                                                                                                               | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
| 1,1,2,2-Tetrachloroethane              | ND                                                                                                               | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
| 1,1-Dichloroethene                     | ND                                                                                                               | 0.005                                |                                             |                                                                                                                | to a final summary of                                                                                                            |
| 1,2,3-Trichlorobenzene                 | ND                                                                                                               | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
| 1,2-Dichloroethane                     | ND                                                                                                               | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
| 2-hexanone                             | ND                                                                                                               | 0.025                                |                                             |                                                                                                                |                                                                                                                                  |
| Bromoform                              | ND                                                                                                               | 0.005                                |                                             |                                                                                                                | 1                                                                                                                                |
| Carbon disulfide                       | ND                                                                                                               | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
| Chlorobenzene                          | ND                                                                                                               | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
| cis-1,2-dichloroethene                 | ND                                                                                                               | 0.005                                |                                             | 1                                                                                                              |                                                                                                                                  |
| cis-1,3-Dichloropropene                | ND                                                                                                               | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
| Hexachlorobutadiene                    | ND                                                                                                               | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
| Isopropylbenzene                       | ND                                                                                                               | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
| Methyl Isobutyl ketone (MIBK)          | ND                                                                                                               | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
| methyl-t-butyl ether (MTBE)            | ND                                                                                                               | 0.025                                |                                             |                                                                                                                |                                                                                                                                  |
| p-siopropyltoluene                     | ND                                                                                                               | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
| tert-Butylbenzene                      | ND                                                                                                               | 0.005                                | -                                           |                                                                                                                |                                                                                                                                  |
| trans-1,2-Dichloroethene               | ND                                                                                                               | 0.005                                |                                             | Ì                                                                                                              |                                                                                                                                  |
| Trichlorofluoromethane                 | ND                                                                                                               | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
| Tetrachloroethene                      | 0.0156                                                                                                           | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
|                                        | 0.0150                                                                                                           | 0.005                                |                                             |                                                                                                                |                                                                                                                                  |
| ·····                                  | -                                                                                                                |                                      |                                             |                                                                                                                | 7                                                                                                                                |
|                                        |                                                                                                                  |                                      |                                             |                                                                                                                |                                                                                                                                  |
|                                        |                                                                                                                  |                                      |                                             |                                                                                                                |                                                                                                                                  |
|                                        | 4                                                                                                                |                                      |                                             |                                                                                                                |                                                                                                                                  |
|                                        | Ì                                                                                                                |                                      |                                             |                                                                                                                |                                                                                                                                  |
|                                        |                                                                                                                  |                                      |                                             |                                                                                                                | :                                                                                                                                |
|                                        |                                                                                                                  |                                      |                                             |                                                                                                                |                                                                                                                                  |
| • ,                                    |                                                                                                                  |                                      |                                             |                                                                                                                |                                                                                                                                  |
| · · · · · · · · · · · · · · · · · · ·  |                                                                                                                  |                                      |                                             |                                                                                                                | 2                                                                                                                                |
|                                        |                                                                                                                  |                                      |                                             |                                                                                                                |                                                                                                                                  |
|                                        |                                                                                                                  |                                      |                                             |                                                                                                                |                                                                                                                                  |
|                                        |                                                                                                                  |                                      |                                             |                                                                                                                |                                                                                                                                  |
| ······································ | 1                                                                                                                |                                      |                                             |                                                                                                                |                                                                                                                                  |
|                                        |                                                                                                                  |                                      |                                             |                                                                                                                |                                                                                                                                  |
|                                        |                                                                                                                  |                                      |                                             |                                                                                                                |                                                                                                                                  |
| Date Analyzed:                         | 7/17/2014                                                                                                        |                                      | · · · · · · · · · · · · · · · · · · ·       |                                                                                                                |                                                                                                                                  |
| Date Analyzeu:<br>Analyst:             | 125                                                                                                              |                                      |                                             |                                                                                                                |                                                                                                                                  |
| Analyst.                               | 125                                                                                                              |                                      | ļ <u> </u>                                  | 1                                                                                                              |                                                                                                                                  |
|                                        |                                                                                                                  |                                      | Page 3 of 3                                 | N                                                                                                              |                                                                                                                                  |
|                                        | ·                                                                                                                |                                      | 1 age 5 01 5                                | <u> </u>                                                                                                       |                                                                                                                                  |

## VALLEY Environmental Laboratory

## Washington State Certified Lab #227 - DOE Accredited Lab C345

PCB's (Soil)

|       | Date Colle                                                                                                                                | cted: 07/08/14                                          |                                    |                                                     |                                                         |            |                    |            |        |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------|-----------------------------------------------------|---------------------------------------------------------|------------|--------------------|------------|--------|
|       | Lab/Sample                                                                                                                                | e No: 227-70814                                         |                                    |                                                     | C                                                       | county:    | YAKIMA             |            |        |
|       |                                                                                                                                           | tion: OWS-13                                            |                                    |                                                     |                                                         | <u> </u>   |                    |            |        |
| 1     |                                                                                                                                           |                                                         |                                    |                                                     | Date Re                                                 | ceived:    | 07/08/14           | · <u> </u> |        |
|       |                                                                                                                                           |                                                         |                                    |                                                     |                                                         |            | 07/29/14           |            |        |
|       |                                                                                                                                           |                                                         |                                    | Samp                                                | le Collect                                              |            |                    |            |        |
| Send  | Report To:                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                   |                                    |                                                     | E COMM                                                  |            |                    | x: Soil    |        |
| • • • | PLSA Engineering                                                                                                                          |                                                         |                                    |                                                     |                                                         |            |                    |            |        |
|       | Attn: Scott Garland                                                                                                                       |                                                         |                                    |                                                     |                                                         |            |                    |            |        |
|       | 1120 West Lincoln Av                                                                                                                      | enue                                                    |                                    |                                                     |                                                         |            |                    |            |        |
|       | Yakima, WA 98902                                                                                                                          | Chuc                                                    |                                    |                                                     |                                                         |            |                    |            |        |
|       | PCB's (Soil)                                                                                                                              |                                                         | <u> </u>                           |                                                     |                                                         |            |                    |            |        |
| OH#   | Analytes                                                                                                                                  | Results                                                 | Units                              | MRL                                                 | Trigger                                                 | MCL        | Method             | Analyzed   | Analyz |
|       | Aroclor 1016                                                                                                                              | ND                                                      | mg/kg                              | 0.1                                                 | 11166*1                                                 |            | EPA 8082           | 07/22/14   | 125    |
|       | Aroclor 1221                                                                                                                              | ND ND                                                   | mg/kg                              | 0.1                                                 |                                                         |            | EPA 8082           | 07/22/14   | 125    |
|       | Aroclor 1232                                                                                                                              | ND                                                      | mg/kg                              | 0.1                                                 |                                                         |            | EPA 8082           | 07/22/14   | 125    |
|       | Aroclor 1242                                                                                                                              | ND                                                      | mg/kg                              | 0.1                                                 | ·                                                       |            | EPA 8082           | 07/22/14   | 125    |
|       | Aroclor 1248                                                                                                                              | ND                                                      | mg/kg                              | 0.1                                                 |                                                         |            | EPA 8082           | 07/22/14   | 125    |
|       | Aroclor 1254                                                                                                                              | ND                                                      | <br>mg/kg                          | 0.1                                                 | ·                                                       |            | EPA 8082           | 07/22/14   | 125    |
| `     | Aroclor 1260                                                                                                                              | ND                                                      | mg/kg                              | 0.1                                                 |                                                         |            | EPA 8082           | 07/22/14   | 125    |
|       | PCB 8082 (total)                                                                                                                          | ND                                                      | mg/kg                              | 0.1                                                 |                                                         |            | EPA 8082           | 07/22/14   | 125    |
|       |                                                                                                                                           |                                                         | 0                                  |                                                     |                                                         |            |                    |            | 1      |
|       |                                                                                                                                           |                                                         |                                    |                                                     |                                                         |            | · ·                |            |        |
|       | Surrogate Std:                                                                                                                            |                                                         |                                    |                                                     |                                                         |            |                    |            |        |
|       | DCB                                                                                                                                       | 93.3                                                    | %                                  | 30-130                                              |                                                         |            | EPA 8082           | 07/22/14   | 125    |
|       |                                                                                                                                           |                                                         |                                    |                                                     |                                                         |            |                    |            |        |
|       |                                                                                                                                           |                                                         |                                    |                                                     |                                                         |            |                    |            |        |
|       |                                                                                                                                           |                                                         |                                    |                                                     |                                                         |            |                    |            |        |
|       |                                                                                                                                           |                                                         |                                    |                                                     |                                                         |            |                    |            |        |
|       |                                                                                                                                           |                                                         |                                    |                                                     |                                                         |            |                    |            |        |
|       |                                                                                                                                           |                                                         |                                    |                                                     |                                                         |            |                    |            |        |
|       |                                                                                                                                           |                                                         |                                    |                                                     |                                                         |            |                    |            |        |
|       | · · · · · · · · · · · · · · · · · · ·                                                                                                     |                                                         |                                    |                                                     |                                                         |            |                    | ·          |        |
|       | ;<br>                                                                                                                                     |                                                         |                                    |                                                     |                                                         |            |                    |            |        |
|       |                                                                                                                                           |                                                         |                                    |                                                     |                                                         |            | · · ·              | _          |        |
|       |                                                                                                                                           | <u> </u>                                                |                                    |                                                     |                                                         |            |                    | <u> </u>   |        |
|       | MRL (Method Reporting Level):<br>Trigger: DOH Drinking Water resp<br>MCL (maximum contaminant leve<br>ND (Not Detected): Indicates this o | ponse level. Public System<br>el): Highest level recomm | ns in excess of<br>nended by the f | this level mu:<br>ederal govern<br>1 at a level gre | st take addition<br>ment for public<br>cater than or eq | al samples | . Recommended rang |            |        |
|       |                                                                                                                                           |                                                         |                                    | Ap                                                  | proved By:                                              |            | /                  |            | -      |

70814-pcbs

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

## VALLEY Environmental Laboratory

### Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

|                    |                                                                                                                                                  |                                                        | , 01                     | T                              | m, Nicke                               | , <u>2.11</u>             |                   |              |          |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------|--------------------------------|----------------------------------------|---------------------------|-------------------|--------------|----------|
|                    | Date Colle                                                                                                                                       | cted: 07/08/14                                         |                          |                                |                                        |                           |                   |              |          |
|                    |                                                                                                                                                  | e No: 227-70814                                        |                          |                                | C                                      | ounty                     | YAKIMA            |              |          |
| 1001-1000-1000-100 | Sample Loca                                                                                                                                      | tion: OWS13                                            |                          |                                |                                        |                           |                   |              |          |
|                    |                                                                                                                                                  | ··· .                                                  |                          |                                |                                        |                           | : 07/08/14        |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           | 07/29/14          |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                | ole Collect                            | -                         | : SDG             |              |          |
|                    | Report To:                                                                                                                                       |                                                        |                          | SAMPI                          | LE COMM                                | IENTS                     | Matri             | x: Soil      |          |
|                    | PLSA Engineering                                                                                                                                 |                                                        |                          |                                |                                        |                           |                   |              |          |
|                    | Attn: Scott Garland                                                                                                                              |                                                        |                          |                                |                                        |                           |                   |              |          |
|                    | 1120 West Lincoln Av                                                                                                                             | enue                                                   |                          |                                |                                        |                           |                   |              |          |
|                    | Yakima, WA 98902                                                                                                                                 |                                                        |                          |                                |                                        |                           |                   |              |          |
|                    | Cadmium, Chromium                                                                                                                                | , Nickel, Zinc                                         |                          |                                |                                        |                           | -<br>-            |              |          |
|                    | Analytes                                                                                                                                         | Results                                                | Units                    | MRL                            | Trigger                                | MCL                       | Method            | Analyzed     | l Analy  |
|                    | Cadmium                                                                                                                                          | ND                                                     | mg/kg                    | 0.472                          |                                        |                           | EPA 6020A         | 07/23/14     | 125      |
|                    | Chromium                                                                                                                                         | 17.0                                                   | mg/kg                    | 0.472                          |                                        |                           | EPA 6020A         | 07/23/14     |          |
|                    | Nickel                                                                                                                                           | 13.9                                                   | mg/kg                    | 0.472                          |                                        |                           | EPA 6020A         | 07/23/14     | 125      |
| 4                  | Zinc                                                                                                                                             | 48.6                                                   | mg/kg                    | 0.472                          |                                        |                           | EPA 6020A         | 07/23/14     | 125      |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              |          |
|                    |                                                                                                                                                  |                                                        | ·                        |                                |                                        |                           |                   |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              | <b> </b> |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        | -                         |                   |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              |          |
| -                  |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              | [        |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                | · <u></u>                              |                           |                   |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              |          |
|                    |                                                                                                                                                  |                                                        |                          |                                |                                        |                           |                   |              | ŀ        |
|                    |                                                                                                                                                  |                                                        |                          | -                              | -                                      |                           |                   | · ·          |          |
| T<br>M             | <b>IRL (Method Reporting Level):</b> 'rigger: DOH Drinking Water resp <b>ICL (maximum contaminant level): D (Not Detected):</b> Indicates this c | onse level. Public System<br>I): Highest level recomme | is in excess of the feet | nis level mus<br>leral governn | t take additional<br>nent for public v | l samples.<br>water syste | Recommended range | on packages. |          |

70814-cdcrni

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anatekiabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### **Client:** VALLEY ENVIRONMENTAL LAB Address: 15 W. YAKIMA AVE STE210

**YAKIMA, WA 98901** 

Project Name:

Batch #:

140714014 VOC / METALS / PAH / PCB

Attn:

DARA OSBORNE

#### **Analytical Results Report**

| Sample Number    | 140714014-002 | Sampling Date   | 7/8/2014 | Date/Time Received | 7/11/2014 | 11:20 AM |
|------------------|---------------|-----------------|----------|--------------------|-----------|----------|
| Client Sample ID | 70814         | Sampling Time   | 8:29 AM  |                    |           |          |
| Matrix           | Soil          | Sample Location |          |                    |           |          |
| Comments         |               |                 |          |                    |           |          |

| Parameter                         | Result | Units | PQL     | Analysis Date | Analyst | Method    | Qualifier |
|-----------------------------------|--------|-------|---------|---------------|---------|-----------|-----------|
| 1,1,1,2-Tetrachloroethane         | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,1-Trichloroethane             | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2,2-Tetrachloroethane         | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2-Trichloroethane             | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethane                | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethene                | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-dichloropropene               | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichlorobenzene            | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichloropropane            | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trichlorobenzene            | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trimethylbenzene            | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromo-3-chloropropane(DBCP) | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromoethane                 | ND     | mg/kg | 0.001 - | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichlorobenzene               | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloroethane                | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloropropane               | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3,5-Trimethylbenzene            | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichlorobenzene               | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichloropropane               | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,4-Dichlorobenzene               | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 2,2-Dichloropropane               | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-Chlorotoluene                   | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-hexanone                        | ND     | mg/kg | 0.025 · | 7/17/2014     | SAT     | EPA 8260B |           |
| 4-Chlorotoluene                   | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Acetone                           | ND     | mg/kg | 0.025 🧳 | 7/17/2014     | SAT     | EPA 8260B |           |
| Acrylonitrile                     | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Benzene                           | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromobenzene                      | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromochloromethane                | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO.ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200D01-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0096; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

# Client:VALLEY ENVIRONMENTAL LABBatch #:140714014Address:15 W. YAKIMA AVE STE210Project Name:VOC / METALS / PAH / PCBYAKIMA, WA 98901DARA OSBORNEVOC / METALS / PAH / PCB

#### **Analytical Results Report**

Sample Number140714014-002Sampling Date7/8/2014Date/Time Received7/11/201411:20 AMClient Sample ID70814Sampling Time8:29 AMMatrixSoilSample LocationCommentsCommentsComments

| Parameter                     | Result | Units | PQL     | Analysis Date | Analyst | Method    | Qualifier |
|-------------------------------|--------|-------|---------|---------------|---------|-----------|-----------|
| Bromodichloromethane          | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromoform                     | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromomethane                  | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon disulfide              | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon Tetrachloride          | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Chlorobenzene                 | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroethane                  | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroform                    | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloromethane                 | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,2-dichloroethene        | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,3-Dichloropropene       | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromochloromethane          | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromomethane                | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Dichlorodifluoromethane       | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Ethylbenzene                  | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Hexachlorobutadiene           | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| lsopropylbenzene              | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| m+p-Xylene                    | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl ethyl ketone (MEK)     | ND     | mg/kg | 0.025 🖌 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl isobutyl ketone (MIBK) | ND     | mg/kg | 0.025 - | 7/17/2014     | SAT     | EPA 8260B |           |
| Methylene chloride            | ND     | mg/kg | 0.025   | 7/17/2014     | SAT     | EPA 8260B |           |
| methyl-t-butyl ether (MTBE)   | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Naphthalene                   | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Butylbenzene                | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Propylbenzene               | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| o-Xylene                      | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| o-isopropyltoluene            | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| sec-Butylbenzene              | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |
| Styrene                       | ND     | mg/kg | 0.005   | 7/17/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anatekiabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anatekiabs.com

# Client:VALLEY ENVIRONMENTAL LABBatch #:140714014Address:15 W. YAKIMA AVE STE210Project Name:VOC / METALS / PAH / PCBYAKIMA, WA 98901Project Name:VOC / METALS / PAH / PCBAttn:DARA OSBORNEImage: Comparison of the state of th

#### **Analytical Results Report**

| ample Number<br>lient Sample ID<br>latrix<br>omments | 140714014-002<br>70814<br>Soil |        | Sampling D<br>Sampling Ti<br>Sample Loc | me    | 7/8/2014 Dat<br>8:29 AM | e/Time Rece | ived 7/11/2014 | 11:20 AM  |
|------------------------------------------------------|--------------------------------|--------|-----------------------------------------|-------|-------------------------|-------------|----------------|-----------|
| Parameter                                            |                                | Result | Units                                   | PQL   | Analysis Date           | Analyst     | Method         | Qualifier |
| tert-Butylbenze                                      | ne                             | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |           |
| Tetrachloroeth                                       | ene                            | 0.0156 | mg/kg                                   | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |           |
| Toluene                                              |                                | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |           |
| trans-1,2-Dichle                                     | proethene                      | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |           |
| trans-1,3-Dichl                                      | propropene                     | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |           |
| Trichloroethene                                      | )                              | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |           |
| Trichloroflouror                                     | nethane                        | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |           |
| Vinyl Chloride                                       |                                | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |           |
| %moisture                                            |                                | 4.5    | Percent                                 |       | 7/17/2014               | SAT         | %moisture      |           |

| ample Number  | 140714014-002 |           |                  |                |
|---------------|---------------|-----------|------------------|----------------|
| Surrogate S   | tandard       | Method    | Percent Recovery | Control Limits |
| 1,2-Dichlorol | benzene-d4    | EPA 8260B | 88.0             | 70-130         |
| 4-Bromofiuo   | robenzene     | EPA 8260B | 94.0             | 70-130         |
| Toluene-d8    |               | EPA 8260B | 99.6             | 70-130         |

Surrogate Data

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### **Client:** VALLEY ENVIRONMENTAL LAB Batch #: 140714014 Address: 15 W. YAKIMA AVE STE210 VOC / METALS / PAH / PCB Project Name: **YAKIMA, WA 98901** Attn: DARA OSBORNE

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-002<br>70814<br>Soil |                                       | Sampling Da<br>Sampling Ti<br>Sample Loc | me     |                   | ate/Time Rece<br>xtraction Date |           | 11:20 AM |
|---------------------------------------------------------|--------------------------------|---------------------------------------|------------------------------------------|--------|-------------------|---------------------------------|-----------|----------|
| Parameter                                               |                                | Result                                | Units                                    | PQL    | Analysis Dat      | e Analyst                       | Method    | Qualifie |
| 2-Methylnaphth                                          | alene                          | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Acenaphthene                                            |                                | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Acenaphthylen                                           | e                              | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Anthracene                                              |                                | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Benzo(ghi)pery                                          | ene                            | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Benzo[a]anthra                                          | cene                           | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Benzo[a]pyrene                                          | ;                              | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Benzo[b]fluorar                                         | thene                          | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Benzo[k]fluorar                                         | thene                          | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Chrysene                                                |                                | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Dibenz[a,h]anth                                         | racene                         | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Fluoranthene                                            |                                | NÐ                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Fluorene                                                |                                | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Indeno[1,2,3-cd                                         | ]pyrene                        | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Naphthalene                                             |                                | ND                                    | mg/Kg                                    | 0.01   | <b>7/1</b> 7/2014 | EMP                             | EPA 8270D |          |
| Phenanthrene                                            |                                | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| Pyrene                                                  |                                | ND                                    | mg/Kg                                    | 0.01   | 7/17/2014         | EMP                             | EPA 8270D |          |
| %moisture                                               |                                | 4.5                                   | Percent                                  |        | 7/17/2014         | SAT                             | %moisture |          |
|                                                         |                                | · · · · · · · · · · · · · · · · · · · | Surrog                                   | ate Da | ta                |                                 | <u> </u>  | · • •    |

| Surrogate Standard | Method    | Percent Recovery | Control Limits |  |
|--------------------|-----------|------------------|----------------|--|
| Terphenyl-d14      | EPA 8270D | 94.6             | 18-137         |  |

Certifications held by Anatek Labs ID. EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cent0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, iD 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-002<br>70814<br>Soil |        | Sampling Date<br>Sampling Time<br>Sample Location |         |                  | Date/Time Receiv<br>Extraction Date | ved 7/11/2014<br>7/18/2014 | 11:20 AM |  |
|---------------------------------------------------------|--------------------------------|--------|---------------------------------------------------|---------|------------------|-------------------------------------|----------------------------|----------|--|
| Parameter                                               |                                | Result | Units                                             | PQL     | Analysis D       | ate Analyst                         | Method                     | Qualifie |  |
| Aroclor 1016 (F                                         | PCB-1016)                      | ND     | mg/Kg                                             | 0.1     | 7/22/201         | 4 SAT                               | EPA 8082                   |          |  |
| Aroclor 1221 (F                                         | °CB-1221)                      | ND     | mg/Kg                                             | 0.1     | 7/22/201         | 4 SAT                               | EPA 8082                   |          |  |
| Aroclor 1232 (F                                         | PCB-1232)                      | ND     | mg/Kg                                             | 0.1     | 7/22/201         | 4 SAT                               | EPA 8082                   |          |  |
| Aroclor 1242 (F                                         | CB-1242)                       | ND     | mg/Kg                                             | 0.1     | 7/22/201         | 4 SAT                               | EPA 8082                   |          |  |
| Aroclor 1248 (F                                         | CB-1248)                       | ND     | mg/Kg                                             | 0.1     | 7/22/201         | 4 SAT                               | EPA 8082                   |          |  |
| Aroclor 1254 (F                                         | PCB-1254)                      | ND     | mg/Kg                                             | 0.1     | 7/22/2014        | 4 SAT                               | EPA 8082                   |          |  |
| Aroclor 1260 (F                                         | PCB-1260)                      | ND     | mg/Kg                                             | 0.1     | 7/22/2014        | 4 SAT                               | EPA 8082                   |          |  |
| PCB 8082 (tota                                          | l)                             | ND     | mg/kg                                             | 0.1     | 7/22/2014        | 4 SAT                               | EPA 8082                   |          |  |
| %moisture                                               | ·                              | 4.5    | Percent                                           |         | 7/17/2014        | 4 SAT                               | %moisture                  |          |  |
|                                                         |                                |        | Surroga                                           | ite Dat | a                |                                     |                            |          |  |
| mple Number                                             | 140714014-002                  |        |                                                   |         |                  | <u> </u>                            |                            |          |  |
| Surrogate St                                            | andard                         |        | Method                                            |         | Percent Recovery |                                     | Control Limits             |          |  |
| DCB                                                     |                                |        | EPA 808                                           | 2       |                  | 93.3                                | 30-130                     |          |  |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C586; MT:Cert0095; FL(NELAP): E871099

## VALLEY Environmental Laboratory

### Washington State Certified Lab #227 - DOE Accredited Lab C345

BTEX by EPA 8260B

| Date Collec                                                                                                                                        | ted: 07/08/14                                    |                                    |                                           | A 8260B                             |                         |                                       | · · ·    |        |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|-------------------------|---------------------------------------|----------|--------|--|--|
|                                                                                                                                                    | No: 227-70815                                    |                                    | County: YAKIMA<br>Date Received: 07/08/14 |                                     |                         |                                       |          |        |  |  |
| Sample Locat                                                                                                                                       | ion: DRUM2                                       |                                    |                                           |                                     |                         |                                       |          |        |  |  |
|                                                                                                                                                    | <u> </u>                                         |                                    | 1                                         |                                     |                         | : 07/29/14                            |          |        |  |  |
|                                                                                                                                                    |                                                  |                                    | Sam                                       | ole Collect                         |                         |                                       |          |        |  |  |
| end Report To:                                                                                                                                     |                                                  |                                    |                                           | LE COMM                             |                         |                                       | x: Soil  |        |  |  |
| PLSA Engineering                                                                                                                                   |                                                  |                                    |                                           |                                     |                         | ·····                                 |          |        |  |  |
| Attn: Scott Garland                                                                                                                                |                                                  |                                    |                                           |                                     |                         |                                       |          |        |  |  |
| 1120 West Lincoln Ave                                                                                                                              | enue                                             |                                    |                                           |                                     |                         |                                       |          |        |  |  |
| Yakima, WA 98902                                                                                                                                   |                                                  |                                    |                                           |                                     |                         |                                       |          |        |  |  |
| BTEX by EPA 8260B                                                                                                                                  |                                                  |                                    | <b></b>                                   | ····                                |                         |                                       |          |        |  |  |
| OOH# Analytes                                                                                                                                      | Results                                          | Units                              | MRL                                       | Trigger                             | MCL                     | Method                                | Analyzed | Analys |  |  |
| Benzene                                                                                                                                            | ND                                               | ppm                                | 0.005                                     | ·                                   |                         | EPA 8260B                             | 07/17/14 | 125    |  |  |
| Toluene                                                                                                                                            | ND                                               | ppm                                | 0.005                                     |                                     |                         | EPA 8260B                             | 07/17/14 | 125    |  |  |
| Ethylbenzene                                                                                                                                       | ND                                               | ppm                                | 0.005                                     |                                     |                         | EPA 8260B                             | 07/17/14 | 125    |  |  |
| Xylenes (m,p,o)                                                                                                                                    | ND                                               | ppm                                | 0.005                                     |                                     |                         | EPA 8260B                             | 07/17/14 | 125    |  |  |
|                                                                                                                                                    |                                                  |                                    |                                           |                                     |                         |                                       |          |        |  |  |
| · · ·.                                                                                                                                             |                                                  |                                    |                                           |                                     |                         | ·                                     |          |        |  |  |
|                                                                                                                                                    |                                                  | ·                                  |                                           |                                     |                         |                                       |          |        |  |  |
|                                                                                                                                                    |                                                  |                                    | ·                                         | · .                                 |                         |                                       |          |        |  |  |
|                                                                                                                                                    |                                                  |                                    |                                           | ·                                   | - ·                     | · · · · · · · · · · · · · · · · · · · |          |        |  |  |
|                                                                                                                                                    |                                                  |                                    |                                           |                                     | <u> </u>                | · · · · · · · · · · · · · · · · · · · |          |        |  |  |
|                                                                                                                                                    |                                                  | •                                  |                                           | ······                              | · .                     | · ·                                   |          |        |  |  |
| · · · ·                                                                                                                                            |                                                  |                                    | ·                                         |                                     |                         | · ·                                   | •        |        |  |  |
| ······································                                                                                                             | ·····                                            |                                    |                                           |                                     | · ··                    |                                       |          |        |  |  |
|                                                                                                                                                    |                                                  |                                    |                                           |                                     |                         |                                       |          |        |  |  |
|                                                                                                                                                    |                                                  |                                    |                                           |                                     |                         |                                       |          |        |  |  |
|                                                                                                                                                    |                                                  |                                    |                                           |                                     |                         | ·                                     |          | ·      |  |  |
|                                                                                                                                                    |                                                  |                                    | _                                         |                                     |                         |                                       |          |        |  |  |
|                                                                                                                                                    |                                                  |                                    |                                           |                                     |                         |                                       |          |        |  |  |
|                                                                                                                                                    |                                                  |                                    |                                           |                                     |                         |                                       |          | ·<br>· |  |  |
|                                                                                                                                                    | ·                                                |                                    |                                           |                                     |                         |                                       |          |        |  |  |
|                                                                                                                                                    |                                                  | ·                                  |                                           |                                     |                         |                                       | ·        |        |  |  |
| BADI /AF II IN II                                                                                                                                  |                                                  |                                    |                                           |                                     |                         |                                       |          |        |  |  |
| MRL (Method Reporting Level):<br>Trigger: DOH Drinking Water respondence<br>MCL (maximum contaminant level<br>ND (Not Detected): Indicates this co | onse level. Public System): Highest level recomm | ns in excess of<br>rended by the f | this level mu<br>ederal govern            | st take addition<br>ment for public | al samples<br>water sys | s. Recommended rang                   |          |        |  |  |
|                                                                                                                                                    |                                                  |                                    | Ap                                        | proved By:                          |                         | ir-                                   |          |        |  |  |
|                                                                                                                                                    |                                                  |                                    |                                           |                                     |                         |                                       |          |        |  |  |

70815-btex

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

#### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Sampled At: DRUM2               | Date Reported: 07/29/14<br>Date Collected: 07/08/14<br>Time Collected: 9:10 AM<br>Sampled By: SDG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                                                                                                 |                                                   |                                    |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------|--|
| PLSA Engineering                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                 |                                                   |                                    |  |
| Attn: Scott Garland             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                 |                                                   |                                    |  |
| 1120 West Lincoln Avenue        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                 | 1                                                 | [nvoice#                           |  |
| Yakima, WA 98902                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                 | 2                                                 | 27700                              |  |
| Volatile Organic Chemicals      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Method                                   | : EPA 8260B                                                                                                     | Matrix: Soil                                      |                                    |  |
| VEL Sample #                    | 227-70815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                 |                                                   |                                    |  |
| Sample ID                       | INCHES INTERNET OF THE AND IN THE REAL PROPERTY OF | an na n | N PROCESSION TRANSPORTATION (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) | uni an agu an | #10Feeb34a3a514F245a5a444eeaaaaaaa |  |
| Units                           | I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limits                                   |                                                                                                                 |                                                   |                                    |  |
| Check Standards - Ave.Recovery: | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lamits                                   |                                                                                                                 |                                                   |                                    |  |
|                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | +                                                                                                               |                                                   |                                    |  |
| 1,2-Dichlorobenzene-d4          | 89.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (70-130)                                 |                                                                                                                 |                                                   |                                    |  |
| 4-Bromofluorobenzene            | 95.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (70-130)                                 |                                                                                                                 |                                                   |                                    |  |
| Foluene-d8                      | 98.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (70-130)                                 |                                                                                                                 |                                                   |                                    |  |
| Dichlorodifluoromethane         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| Chloromethane                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| Vinyl chloride                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| Bromomethane                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| Chloroethane                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| Acetone                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.025                                    |                                                                                                                 |                                                   |                                    |  |
| Acrolein                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| ,1-Dichloroethylene             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| Methylene chloride              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.025                                    |                                                                                                                 |                                                   |                                    |  |
| Acrylonitrile                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| rans-1,2-Dichloroethylene       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| ,1-Dichloroethane               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| Methyl ethyl ketone (MEK)       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.025                                    |                                                                                                                 |                                                   |                                    |  |
| is-1,2-Dichloroethylene         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| ,2-Dichloropropane              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| Chloroform                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| Bromochloromethane              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| ,1,1-Trichloroethane            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| ,2-Dichloroethane               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| ,1-Dichloropropene              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| Carbon tetrachloride            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| Senzene                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 |                                                   |                                    |  |
| richloroethylene                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.005                                    |                                                                                                                 | <u> </u>                                          |                                    |  |
| Date Analyzed:                  | 7/17/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                 |                                                   |                                    |  |
| Analyst:                        | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                                                                                                 |                                                   |                                    |  |

#### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902

### (509) 575 - 3999 Fax: (509) 575 - 3068

|                             | Volatile Organic Compounds (Continued) |                                                                    |             |  |  |  |  |
|-----------------------------|----------------------------------------|--------------------------------------------------------------------|-------------|--|--|--|--|
| VEL Sample #                |                                        |                                                                    |             |  |  |  |  |
| Sample ID                   |                                        | adal fordel i i manimum manimum (manimum (manimum (manimum)))<br>I |             |  |  |  |  |
| Units                       |                                        | Limts                                                              |             |  |  |  |  |
| 1,2-Dichloropropane         | ND                                     | 0.005                                                              |             |  |  |  |  |
| Dibromomethane              | ND                                     | 0.005                                                              |             |  |  |  |  |
| Bromodichloromethane        | ND                                     | 0.005                                                              |             |  |  |  |  |
| cis-1,3-Dichloropropene     | ND                                     | 0.005                                                              |             |  |  |  |  |
| Toluene                     | ND                                     | 0.005                                                              |             |  |  |  |  |
| trans-1,3-Dichloropropene   | ND                                     | 0.005                                                              |             |  |  |  |  |
| 1,1,2-Trichloroethane       | ND                                     | 0.005                                                              |             |  |  |  |  |
| 1,3-Dichloropropane         | ND                                     | 0.005                                                              |             |  |  |  |  |
| Dibromochloromethane        | ND                                     | 0.005                                                              |             |  |  |  |  |
| Tetrachloroethylene         | ND                                     | 0.005                                                              |             |  |  |  |  |
| 1,2-Dibromoethane           | ND                                     | 0.003                                                              |             |  |  |  |  |
| Chlorobenzene               | ND                                     | 0.001                                                              |             |  |  |  |  |
| 1,1,1,2-Tetrachloroethane   | ND                                     | 0.005                                                              |             |  |  |  |  |
| Ethylbenzene                | ND                                     | 0.005                                                              |             |  |  |  |  |
| m,p-Xylene                  | ND                                     | 0.005                                                              |             |  |  |  |  |
| Styrene                     | ND                                     | 0.005                                                              |             |  |  |  |  |
| o-Xylene                    | ND                                     | 0.005                                                              |             |  |  |  |  |
| Bromoform                   | ND                                     | 0.005                                                              |             |  |  |  |  |
| 1,1,2,2-Tetrachloroethane   | ND                                     | 0.005                                                              |             |  |  |  |  |
| 1,2,3-Trichloropropane      | ND                                     | 0.005                                                              |             |  |  |  |  |
| Bromobenzene                | ND                                     | 0.005                                                              |             |  |  |  |  |
| n-Propylbenzene             | ND                                     | 0.005                                                              |             |  |  |  |  |
| 2-Chlorotoluene             | ND                                     | 0.005                                                              |             |  |  |  |  |
| 4-Chlorotoluene             | ND                                     | 0.005                                                              |             |  |  |  |  |
| 1,3,5-Trimethylbenzene      | ND                                     | 0.005                                                              |             |  |  |  |  |
| tert-Butylbenzene           | ND                                     | 0.005                                                              |             |  |  |  |  |
| 1,2,4-Trimethylbenzene      | ND                                     | 0.005                                                              |             |  |  |  |  |
| sec-Butylbenzene            | ND                                     | 0.005                                                              |             |  |  |  |  |
| 1,3-Dichlorobenzene         | ND                                     | 0.005                                                              |             |  |  |  |  |
| 1,4-Dichlorobenzene         | ND                                     | 0.005                                                              |             |  |  |  |  |
| 4-Isopropyltoluene          | ND                                     | 0.005                                                              |             |  |  |  |  |
| 1,2-Dichlorobenzene         | ND                                     | 0.005                                                              |             |  |  |  |  |
| n-Butylbenzene              | ND                                     | 0.005                                                              |             |  |  |  |  |
| 1,2-Dibromo-3-chloropropane | ND                                     | 0.005                                                              |             |  |  |  |  |
| 1,2,4-Trichlorobenzene      | ND                                     | 0.005                                                              |             |  |  |  |  |
| Naphthalene                 | ND                                     | 0.005                                                              |             |  |  |  |  |
| Date Analyzed:              | 7/17/2014                              |                                                                    |             |  |  |  |  |
| Analyst:                    | 125                                    |                                                                    |             |  |  |  |  |
|                             |                                        |                                                                    | Page 2 of 3 |  |  |  |  |

њ. .

## VALLEY Environmental Laboratory

### Washington State Certified Lab #227 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

|        | Lab/Sample N           | o: 227-70815                          |        |                         | <u>_</u>   | ountr          | YAKIMA    |           | · · · · · · |  |  |
|--------|------------------------|---------------------------------------|--------|-------------------------|------------|----------------|-----------|-----------|-------------|--|--|
|        | Sample Locatio         |                                       |        |                         |            | <u>ounty</u> . | TANIMA    |           |             |  |  |
|        |                        |                                       |        | Date Received: 07/08/14 |            |                |           |           |             |  |  |
| 190.45 |                        | · · · · · · · · · · · · · · · · · · · |        |                         |            |                | 07/29/14  | · ·       | ······      |  |  |
|        |                        |                                       |        | Sam                     | le Collect |                |           |           |             |  |  |
| Send   | Report To:             | ~                                     | E COMM | •                       | Matri      | x: Soil        |           |           |             |  |  |
|        | PLSA Engineering       | · · · · · · · · · · · ·               |        |                         |            |                |           |           |             |  |  |
|        | Attn: Scott Garland    |                                       |        |                         |            |                |           |           |             |  |  |
|        | 1120 West Lincoln Aven | ue                                    |        |                         |            |                |           |           |             |  |  |
|        | Yakima, WA 98902       |                                       |        |                         |            |                |           |           |             |  |  |
|        | Polynuclear Aromatic H | vdrocarbons                           |        | <u> </u>                |            |                |           | - <u></u> | <del></del> |  |  |
| DOH#   | Analytes               | Results                               | Units  | MRL                     | Trigger    | MCL            | Method    | Analyzed  | Analys      |  |  |
|        | Acenaphthene           | ND                                    | mg/kg  | 0.01                    |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Acenaphthylene         | ND                                    | mg/kg  | 0.01                    |            | <u> </u>       | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Anthracene             | ND                                    | mg/kg  | 0.01                    |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Benzo(a)anthracene     | ND                                    | mg/kg  | 0.01                    |            | -              | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Benzo(a)pyrene         | ND                                    | mg/kg  | 0.01                    |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Benzo(b)fluoranthene   | ND                                    | mg/kg  | 0.01                    |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Benzo(ghi)perylene     | ND                                    | mg/kg  | 0.01                    |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Benzo(k)fluoranthene   | ND                                    | mg/kg  | 0.01                    | · · · -    |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Chrysene               | ND                                    | mg/kg  | 0.01                    |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Dibenzo(a,h)anthracene | ND                                    | mg/kg  | 0.01                    |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Fluoranthene           | ND                                    | mg/kg  | 0.01                    |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Fluorene               | ND                                    | mg/kg  | 0.01                    | <u></u>    |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Indeno(1,2,3-cd)pyrene | ND                                    | mg/kg  | 0.01                    |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Naphthalene            | ND                                    | mg/kg  | 0.01                    |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Phenanthrene           | ND                                    | mg/kg  | 0.01                    |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | Pyrene                 | ND                                    | mg/kg  | 0.01                    |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        |                        |                                       | mg/kg  | 0.01                    |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        | 2-Methylnapthalene     | ND                                    |        |                         |            |                |           |           |             |  |  |
|        | 2-Methylnapthalene     | ND                                    |        |                         |            |                |           |           |             |  |  |
|        |                        |                                       |        |                         |            |                |           |           |             |  |  |
|        | Surrogate Std:         |                                       |        | 18-137                  |            |                | EPA 8270D | 07/17/14  | 125         |  |  |
|        |                        | ND<br>93.9                            |        | 18-137                  |            |                | EPA 8270D | 07/17/14  | 125         |  |  |

**Approved By:** 

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3067 0815-8270 pah

## VALLEY Environmental Laboratory

Washington State Certified Lab #227 - DOE Accredited Lab C345

PCB's (Soil)

|                                | Date Collect                               | ed: 07/08/14                                                                                       |                                    |                                                    |                                        |                            |                  |          |         |  |  |  |
|--------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------|------------------|----------|---------|--|--|--|
|                                |                                            | No: 227-70815                                                                                      |                                    | County: YAKIMA                                     |                                        |                            |                  |          |         |  |  |  |
| S                              | ample Location                             | on: DRUM-2                                                                                         |                                    | Date Received: 07/08/14<br>Date Reported: 07/29/14 |                                        |                            |                  |          |         |  |  |  |
|                                |                                            |                                                                                                    |                                    | Samn                                               | le Collect                             |                            |                  |          |         |  |  |  |
| end Report To:                 |                                            | ······································                                                             |                                    |                                                    | E COMM                                 |                            |                  | x: Soil  |         |  |  |  |
| PLSA Eng                       | ineering                                   |                                                                                                    |                                    | 1                                                  |                                        |                            |                  |          |         |  |  |  |
| Attn: Scott                    | -                                          |                                                                                                    |                                    |                                                    |                                        |                            |                  |          |         |  |  |  |
| 1120 West                      | Lincoln Aver                               | nue                                                                                                |                                    |                                                    |                                        |                            |                  |          |         |  |  |  |
| Yakima, W                      | A 98902                                    |                                                                                                    |                                    |                                                    |                                        |                            |                  |          |         |  |  |  |
| PCB's (Soi                     | ·····                                      |                                                                                                    |                                    |                                                    | ŢĿ <b>Ţ</b>                            |                            |                  |          | •       |  |  |  |
| OH# Analytes                   | <u>.</u>                                   | Results                                                                                            | Units                              | MRL                                                | Trigger                                | MCL                        | Method           | Analyzed | Analy   |  |  |  |
| Aroclor 101                    | б —                                        | ND                                                                                                 | mg/kg                              | 0.1                                                |                                        |                            | EPA 8082         | 07/22/14 | 125     |  |  |  |
| Aroclor 122                    |                                            | ND                                                                                                 | mg/kg                              | 0.1                                                |                                        |                            | EPA 8082         | 07/22/14 | 125     |  |  |  |
| Aroclor 1232                   |                                            | ND                                                                                                 | mg/kg                              | 0.1                                                |                                        | ]                          | EPA 8082         | 07/22/14 | 125     |  |  |  |
| Aroclor 1242                   |                                            | ND                                                                                                 | mg/kg                              | 0.1                                                |                                        |                            | EPA 8082         | 07/22/14 | 125     |  |  |  |
| Aroclor 124                    |                                            | ND                                                                                                 | mg/kg                              | 0.1                                                |                                        |                            | EPA 8082         | 07/22/14 | 125     |  |  |  |
| Aroclor 1254                   |                                            | ND                                                                                                 | mg/kg                              | 0.1                                                |                                        |                            | EPA 8082         | 07/22/14 | 125     |  |  |  |
| Aroclor 1260                   |                                            | ND                                                                                                 | mg/kg                              | 0.1                                                |                                        |                            | EPA 8082         | 07/22/14 | 125     |  |  |  |
| PCB 8082 (t                    | otal)                                      | ND                                                                                                 | mg/kg                              | 0.1                                                |                                        |                            | EPA 8082         | 07/22/14 | 125     |  |  |  |
| Surrogate St                   | <br>1:                                     |                                                                                                    |                                    |                                                    |                                        |                            | • • • •          |          |         |  |  |  |
|                                |                                            | 103.0                                                                                              | %                                  | 30-130                                             |                                        |                            | EPA 8082         | 07/22/14 | 125     |  |  |  |
|                                |                                            | · · · · · · · · · · · · · · · · · · ·                                                              |                                    |                                                    |                                        |                            |                  |          |         |  |  |  |
|                                |                                            |                                                                                                    |                                    |                                                    | ·                                      |                            |                  |          |         |  |  |  |
|                                |                                            |                                                                                                    |                                    |                                                    | ······································ |                            |                  |          | <br>    |  |  |  |
| Trigger: DOH D<br>MCL (maximum | inking Water respon<br>contaminant level): | dicates the minimum r<br>ise level. Public Syster<br>Highest level recomm<br>npound was analyzed a | ns in excess of<br>rended by the f | this level mused entry                             | st take addition<br>ment for public    | al samples.<br>water syste | Recommended rang |          | <u></u> |  |  |  |
|                                |                                            |                                                                                                    |                                    | ÁD                                                 | proved By:                             |                            | k /              |          |         |  |  |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

70815-pcbs

### VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

| <u> </u> | Date Collected                                                                                                             |                                           | - <u> </u>                               | <u> </u>                                          | III, MICKE        | -,                        |                                       |              |     |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------------------|-------------------|---------------------------|---------------------------------------|--------------|-----|--|--|--|
|          |                                                                                                                            |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          | Lab/Sample No                                                                                                              |                                           | 5                                        | County: YAKIMA                                    |                   |                           |                                       |              |     |  |  |  |
| *****    | Sample Location                                                                                                            | : DRUM2                                   |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          |                                                                                                                            |                                           |                                          | <u></u>                                           |                   |                           | 07/08/14                              |              |     |  |  |  |
|          |                                                                                                                            |                                           | ····                                     |                                                   | ^                 |                           | 07/29/14                              |              |     |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   | ole Collect       | -                         |                                       |              |     |  |  |  |
| Send     | Report To:                                                                                                                 |                                           |                                          | SAMPI                                             | LE COMM           | ENTS                      | Matri                                 | x: Soil      |     |  |  |  |
|          | PLSA Engineering                                                                                                           |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          | Attn: Scott Garland                                                                                                        |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          | 1120 West Lincoln Avenu                                                                                                    | e                                         |                                          | [                                                 |                   |                           |                                       |              |     |  |  |  |
|          | Yakima, WA 98902                                                                                                           |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          | Cadmium, Chromium, Ni                                                                                                      |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
| DOH#     | Analytes                                                                                                                   | Results                                   | Units                                    | MRL                                               | Trigger           | MCL                       |                                       | Analyzed     | 1   |  |  |  |
|          | Cadmium                                                                                                                    | ND                                        | mg/kg                                    | 0.557                                             |                   |                           | EPA 6020A                             | 07/23/14     |     |  |  |  |
|          | Chromium                                                                                                                   | 20.6                                      | mg/kg                                    | 0.557                                             |                   |                           | EPA 6020A                             | 07/23/14     |     |  |  |  |
|          | Nickel                                                                                                                     | 19.2                                      | mg/kg                                    | 0.557                                             |                   |                           | EPA 6020A                             | 07/23/14     |     |  |  |  |
|          | Zinc                                                                                                                       | 72.0                                      | mg/kg                                    | 0.577                                             |                   |                           | EPA 6020A                             | 07/23/14     | 125 |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          | · · .                                                                                                                      |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   |                   |                           |                                       | •            |     |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   | <u> </u>          |                           | · · · · · · · · · · · · · · · · · · · |              |     |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          | · · · · · · · · · · · · · · · · · · ·                                                                                      |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          | ·                                                                                                                          |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          | ······                                                                                                                     |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          |                                                                                                                            |                                           |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          | MRL (Method Reporting Level): Indica                                                                                       | (                                         |                                          |                                                   |                   |                           |                                       |              |     |  |  |  |
|          | Trigger: DOH Drinking Water response h<br>MCL (maximum contaminant level): Hig<br>ND (Not Detected): Indicates this compot | evel. Public System<br>ghest level recomm | ns in excess of the<br>nended by the fea | nis level mus<br>leral governr<br>at a level grea | t take additional | l samples.<br>water syste | Recommended range                     | on packages. |     |  |  |  |

70815-cdcrni

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |
|          |                          |               |                          |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID | 140714014-003<br>70815 :: | Sampling Date<br>Sampling Time | 7/8/2014<br>9:10 AM | Date/Time Received | 7/11/2014 | 11:20 AM |  |
|-----------------------------------|---------------------------|--------------------------------|---------------------|--------------------|-----------|----------|--|
| Matrix<br>Comments                | Soil                      | Sample Location                |                     |                    |           |          |  |

| Parameter                         | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifie |
|-----------------------------------|--------|-------|-------|---------------|---------|-----------|----------|
| 1,1,1,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,1,1-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,1,2,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,1,2-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,1-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,1-Dichloroethene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,1-dichloropropene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2,3-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2,3-Trichloropropane            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2,4-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2,4-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2-Dibromo-3-chloropropane(DBCP) | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2-Dibromoethane                 | ND     | mg/kg | 0.001 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,3,5-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,3-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,3-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,4-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 2,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 2-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 2-hexanone                        | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |          |
| 4-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Acetone                           | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |          |
| Acrylonitrile                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Benzene                           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Bromobenzene                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Bromochloromethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |

Certifications held by Anatek Labs ID: EPA: D00013; AZ:0701; CO: ID00013; FL(NELAP): E87893; ID: ID00013; MT: CERT0028; NM: ID00013; OR: ID200001-002; WA: C595 Certifications held by Anatek Labs WA: EPA: WA00169; ID: WA00169; WA: C585; MT: Cert0035; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

# Client:VALLEY ENVIRONMENTAL LABBatch #:140714014Address:15 W. YAKIMA AVE STE210Project Name:VOC / METALS / PAH / PCBYAKIMA, WA 98901DARA OSBORNEEndedEnded

#### **Analytical Results Report**

| Sample Number              | 140714014-003 | Sampling Date                    | 7/8/2014 | Date/Time Received | 7/11/2014 | 11:20 AM |
|----------------------------|---------------|----------------------------------|----------|--------------------|-----------|----------|
| Client Sample ID<br>Matrix | 70815<br>Soil | Sampling Time<br>Sample Location | 9:10 AM  |                    |           |          |
| Comments                   |               |                                  |          |                    |           |          |

| Parameter                     | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier |
|-------------------------------|--------|-------|-------|---------------|---------|-----------|-----------|
| Bromodichloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromoform                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromomethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon disulfide              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon Tetrachloride          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chlorobenzene                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroform                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloromethane                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,2-dichloroethene        | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,3-Dichloropropene       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromochloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromomethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dichlorodifluoromethane       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Ethylbenzene                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Hexachlorobutadiene           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Isopropyibenzene              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| m+p-Xylene                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl ethyl ketone (MEK)     | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl isobutyl ketone (MIBK) | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methylene chloride            | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| methyl-t-butyl ether (MTBE)   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Naphthalene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Butylbenzene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Propylbenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| o-Xylene                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| o-isopropyltoluene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| sec-Butylbenzene              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Styrene                       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### 

Attn: DARA OSBORNE

#### **Analytical Results Report**

| ample Number 140714014-003<br>lient Sample ID 70815<br>atrix Soil<br>omments |        | Sampling D<br>Sampling Ti<br>Sample Loc | ime   | 7/8/2014 Dat<br>9:10 AM | ived 7/11/2014 | 11:20 AM  |           |
|------------------------------------------------------------------------------|--------|-----------------------------------------|-------|-------------------------|----------------|-----------|-----------|
| Parameter                                                                    | Result | Units                                   | PQL   | Analysis Date           | Analyst        | Method    | Qualifier |
| tert-Butylbenzene                                                            | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT            | EPA 8260B |           |
| Tetrachloroethene                                                            | 0.0104 | mg/kg                                   | 0.005 | 7/17/2014               | SAT            | EPA 8260B |           |
| Toluene                                                                      | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT            | EPA 8260B |           |
| trans-1,2-Dichloroethene                                                     | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT            | EPA 8260B |           |
| trans-1,3-Dichloropropene                                                    | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT            | EPA 8260B |           |
| Trichloroethene                                                              | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT            | EPA 8260B |           |
| Trichloroflouromethane                                                       | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT            | EPA 8260B |           |
| Vinyl Chloride                                                               | ND     | mg/kg                                   | 0.005 | 7/17/2014               | SAT            | EPA 8260B |           |
| %moisture                                                                    | 13.7   | Percent                                 |       | 7/17/2014               | SAT            | %moisture |           |

| Sample Number | 140714014-003 |           |                  |                |
|---------------|---------------|-----------|------------------|----------------|
| Surrogate     | Standard      | Method    | Percent Recovery | Control Limits |
| 1,2-Dichlor   | obenzene-d4   | EPA 8260B | 89.6             | 70-130         |
| 4-Bromoflu    | probenzene    | EPA 8260B | 95.6             | 70-130         |
| Toluene-d8    |               | EPA 8260B | 98.4             | 70-130         |

Surrogate Data

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0096; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:                   |                  |        | AB                                     |        | Batch #: 140714014 |             |                |           |  |  |  |
|---------------------------|------------------|--------|----------------------------------------|--------|--------------------|-------------|----------------|-----------|--|--|--|
| Address:                  | 15 W. YAKIMA AVE | STE210 |                                        |        | Project Nan        | ne: VOC     | C / METALS / F | PAH / PCI |  |  |  |
|                           | YAKIMA, WA 98901 |        |                                        |        |                    |             |                |           |  |  |  |
| Attn:                     | DARA OSBORNE     |        |                                        |        |                    |             |                |           |  |  |  |
| Analytical Results Report |                  |        |                                        |        |                    |             |                |           |  |  |  |
| Sample Number             | 140714014-003    |        | Sampling Da                            |        | 7/8/2014 Date      | /Time Rece  | ived 7/11/2014 | 11:20 AN  |  |  |  |
| Client Sample ID          | 70815            |        | Sampling Ti                            | me     | 9:10 AM Extr       | action Date | 7/17/2014      |           |  |  |  |
| Matrix                    | Soil             |        | Sample Loc                             | ation  |                    |             |                |           |  |  |  |
| Comments                  |                  |        |                                        |        |                    |             |                |           |  |  |  |
| Parameter                 |                  | Result | Units                                  | PQL    | Analysis Date      | Analyst     | Method         | Qualifie  |  |  |  |
| 2-Methylnaph              | thalene          | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Acenaphthen               | e                | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Acenaphthyle              | ene              | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Anthracene                |                  | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Benzo(ghi)pe              | rylene           | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Benzo[a]anth              | racene           | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Benzo[a]pyrei             | ne               | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Benzo[b]fluor             | anthene          | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Benzo[k]fluora            | anthene          | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Chrysene                  |                  | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Dibenz[a,h]an             | thracene         | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Fluoranthene              |                  | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Fluorene                  |                  | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Indeno[1,2,3-c            | cd]pyrene        | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Naphthalene               |                  | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Phenanthrene              | )                | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| Pyrene                    |                  | ND     | mg/Kg                                  | 0.01   | 7/17/2014          | EMP         | EPA 8270D      |           |  |  |  |
| %moisture                 |                  | 13.7   | Percent                                |        | 7/17/2014          | SAT         | %moisture      |           |  |  |  |
|                           |                  |        | Surrog                                 | ate Da | ta                 |             |                | ,,,       |  |  |  |
| nple Number               | 140714014-003    |        | ······································ |        |                    |             |                |           |  |  |  |
| Surrogate S               | Standard         |        | Method                                 |        | Percen             | t Recovery  | Control L      | imits     |  |  |  |

EPA 8270D

93,9

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Terphenyl-d14

18-137

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-003<br>70815<br>Soil |        | Sampling Da<br>Sampling Ti<br>Sample Loca | me      | 7/8/2014<br>9:10 AM | Date/Time Rece<br>Extraction Date |             | 11:20 AM |
|---------------------------------------------------------|--------------------------------|--------|-------------------------------------------|---------|---------------------|-----------------------------------|-------------|----------|
| Parameter                                               |                                | Result | Units                                     | PQL     | Analysis D          | ate Analyst                       | Method      | Qualifie |
| Aroclor 1016 (F                                         | CB-1016)                       | ND     | mg/Kg                                     | 0.1     | 7/22/201            | 4 SAT                             | EPA 8082    |          |
| Aroclor 1221 (F                                         | CB-1221)                       | ND     | mg/Kg                                     | 0.1     | 7/22/201            | 4 SAT                             | EPA 8082    |          |
| Aroclor 1232 (F                                         | CB-1232)                       | ND     | mg/Kg                                     | 0.1     | 7/22/201            | 4 SAT                             | EPA 8082    |          |
| Aroclor 1242 (F                                         | CB-1242)                       | ND     | mg/Kg                                     | 0.1     | 7/22/201            | 4 SAT                             | EPA 8082    |          |
| Aroclor 1248 (F                                         | CB-1248)                       | ND     | mg/Kg                                     | 0.1     | 7/22/201            | 4 SAT                             | EPA 8082    |          |
| Aroclor 1254 (F                                         | CB-1254)                       | ND     | mg/Kg                                     | 0.1     | 7/22/201            | 4 SAT                             | EPA 8082    |          |
| Aroclor 1260 (F                                         | CB-1260)                       | ND     | mg/Kg                                     | 0.1     | 7/22/201            | 4 SAT                             | EPA 8082    |          |
| PCB 8082 (tota                                          | 1)                             | ND     | mg/kg                                     | 0.1     | 7/22/201            | 4 SAT                             | EPA 8082    |          |
| %moisture                                               |                                | 13.7   | Percent                                   |         | 7/17/201            | 4 SAT                             | · %moisture |          |
|                                                         |                                |        | Surroga                                   | ate Dat | a                   |                                   |             |          |
| mple Number                                             | 140714014-003                  |        |                                           |         |                     |                                   |             |          |
| Surrogate St                                            | andard                         |        | Method                                    |         | Pe                  | ercent Recovery                   | Control L   | .imits   |
| DCB                                                     |                                |        | EPA 808                                   | 2       |                     | 103.0                             | 30-13       |          |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

### Washington State Certified Lab #227 - DOE Accredited Lab C345

BTEX by EPA 8260B

|                        | mple No: 227-70816<br>Location: DRUM14                              |                |                                                    |                 | ountry    |                                                                                                                  |                |      |  |
|------------------------|---------------------------------------------------------------------|----------------|----------------------------------------------------|-----------------|-----------|------------------------------------------------------------------------------------------------------------------|----------------|------|--|
| end Report To:         | Jocation: DRUM14                                                    |                | -                                                  |                 | ounty:    | YAKIMA                                                                                                           |                |      |  |
|                        |                                                                     |                |                                                    | Data Da         | nivad     | 07/00/17                                                                                                         |                |      |  |
|                        | ·····                                                               |                | Date Received: 07/08/14<br>Date Reported: 07/29/14 |                 |           |                                                                                                                  |                |      |  |
|                        | ······································                              |                | Sample Collected By: SDG                           |                 |           |                                                                                                                  |                |      |  |
|                        |                                                                     |                |                                                    | LE COMM         | *         | and the second | x: Soil        | ·    |  |
|                        | <u>r</u>                                                            |                |                                                    |                 |           |                                                                                                                  |                |      |  |
| Attn: Scott Garla      | —                                                                   |                |                                                    |                 |           |                                                                                                                  |                |      |  |
| 1120 West Lincol       |                                                                     |                |                                                    |                 |           |                                                                                                                  |                |      |  |
| Yakima, WA 989         |                                                                     |                |                                                    |                 |           |                                                                                                                  |                |      |  |
| BTEX by EPA 82         |                                                                     |                |                                                    |                 |           | · · · · · · · · · · · · · · · · · · ·                                                                            |                |      |  |
| OH# Analytes           | Results                                                             | Units          | MRL                                                | Trigger         | MCL       | Method                                                                                                           | Analyzed       | Anal |  |
| Benzene                | ND                                                                  | ppm            | 0.005                                              |                 |           | EPA 8260B                                                                                                        | 07/17/14       | 125  |  |
| Toluene                | ND                                                                  | ррт            | 0.005                                              |                 |           | EPA 8260B                                                                                                        | 07/17/14       | 125  |  |
| Ethylbenzene           | ND                                                                  | ppm            | 0.005                                              |                 |           | EPA 8260B                                                                                                        | 07/17/14       | 125  |  |
| Xylenes (m,p,o)        | ND                                                                  | ppm            | 0.005                                              |                 | L         | EPA 8260B                                                                                                        | 07/17/14       | 125  |  |
|                        |                                                                     |                |                                                    |                 |           |                                                                                                                  |                |      |  |
|                        | evel): Indicates the minimum re<br>er response level. Public System |                |                                                    |                 |           |                                                                                                                  |                |      |  |
| MCL (maximum contamina | at level): Highest level recomm<br>s this compound was analyzed at  | ended by the f | ederal govern<br>I at a fevel gre                  | ment for public | water sys | tems.                                                                                                            | e on packages. |      |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

70816-btex

### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Washington State DOE Accredited Lab #<br>Sampled At: DRUM14 | C345      | Date Reported: 07/29/14<br>Date Collected: 07/08/14<br>Time Collected: 8:59 AM<br>Sampled By: SDG |                                                                                                                |              |                                        |  |
|-------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|--|
| PLSA Engineering                                            |           |                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                          |              |                                        |  |
| Attn: Scott Garland                                         |           |                                                                                                   |                                                                                                                |              |                                        |  |
| 1120 West Lincoln Avenue                                    | -         | -                                                                                                 |                                                                                                                |              | Invoice                                |  |
| Yakima, WA 98902                                            |           |                                                                                                   |                                                                                                                |              | 2770                                   |  |
| Volatile Organic Chemicals                                  |           | Method                                                                                            | : EPA 8260B                                                                                                    | Matrix: Soil |                                        |  |
| VEL Sample #                                                | 227-70816 |                                                                                                   |                                                                                                                |              |                                        |  |
| Sample ID                                                   | DRUM14    | HODADCERCENCE (NECK) A SAMPANA A CREATE CODE                                                      | 29 W / D III Y |              |                                        |  |
| Units                                                       | ррт       | Limits                                                                                            |                                                                                                                |              |                                        |  |
| Check Standards - Ave.Recovery:                             | Ppm       |                                                                                                   |                                                                                                                |              | · •                                    |  |
|                                                             |           | <u> </u>                                                                                          |                                                                                                                |              | · · · · · · · · ·                      |  |
| 1,2-Dichlorobenzene-d4                                      | 88.4%     | (70-130)                                                                                          |                                                                                                                |              |                                        |  |
| 4-Bromofluorobenzene                                        | 94.4%     | (70-130)                                                                                          |                                                                                                                |              |                                        |  |
| Toluene-d8                                                  | 99.2%     | (70-130)                                                                                          |                                                                                                                |              |                                        |  |
| Dichlorodifluoromethane                                     | ND        | 0.005                                                                                             |                                                                                                                |              | ······································ |  |
| Chloromethane                                               | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| Vinyl chloride                                              | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| Bromomethane                                                | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| Chloroethane                                                | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| Acetone                                                     | ND        | 0.025                                                                                             |                                                                                                                |              |                                        |  |
| Acrolein                                                    | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| 1,1-Dichloroethylene                                        | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| Methylene chloride                                          | ND        | 0.025                                                                                             |                                                                                                                |              |                                        |  |
| Acrylonitrile                                               | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| trans-1,2-Dichloroethylene                                  | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| 1,1-Dichloroethane                                          | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| Methyl ethyl ketone (MEK)                                   | ND        | 0.025                                                                                             |                                                                                                                |              |                                        |  |
| cis-1,2-Dichloroethylene                                    | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| 2,2-Dichloropropane                                         | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| Chloroform                                                  | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| Bromochloromethane                                          | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| 1,1,1-Trichloroethane                                       | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| 1,2-Dichloroethane                                          | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| 1,1-Dichloropropene                                         | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| Carbon tetrachloride                                        | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| Benzene                                                     | ND        | 0.005                                                                                             |                                                                                                                |              |                                        |  |
| Frichloroethylene                                           | ND        | 0.005                                                                                             |                                                                                                                | l            |                                        |  |
| Date Analyzed:                                              | 7/17/2014 |                                                                                                   |                                                                                                                |              |                                        |  |
| Analyst:                                                    | 125       |                                                                                                   |                                                                                                                |              |                                        |  |
| VD = None Detected                                          | <u>I</u>  | Page 1 of 3                                                                                       |                                                                                                                |              |                                        |  |

### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

·

|                            | Volatile Organic Compounds (Continued) |                                                                                                                |             |  |  |  |  |  |  |
|----------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|--|
| VEL Sample #               |                                        |                                                                                                                |             |  |  |  |  |  |  |
| Sample ID                  | DRUM14                                 | 1997 N 1972 N 19 1993 N 1993 N 1993 N 1994 N 1995 N 19 |             |  |  |  |  |  |  |
| Units                      | <u>pp</u> m                            | Limts                                                                                                          |             |  |  |  |  |  |  |
| 1,2-Dichloropropane        | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| Dibromomethane             | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| Bromodichloromethane       | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| cis-1,3-Dichloropropene    | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| Toluene                    | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| trans-1,3-Dichloropropene  | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| 1,1,2-Trichloroethane      | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| 1,3-Dichloropropane        | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| Dibromochloromethane       | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| Tetrachloroethylene        | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| 1,2-Dibromoethane          | ND                                     | 0.001                                                                                                          |             |  |  |  |  |  |  |
| Chlorobenzene              | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| 1,1,1,2-Tetrachloroethane  | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| Ethylbenzene               | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| m,p-Xylene                 | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| Styrene                    | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| o-Xylene                   | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| Bromoform                  | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane  | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| 1,2,3-Trichloropropane     | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| Bromobenzene               | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| n-Propylbenzene            | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| 2-Chlorotoluene            | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| 4-Chlorotoluene            | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| 1,3,5-Trimethylbenzene     | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| ert-Butylbenzene           | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| ,2,4-Trimethylbenzene      | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| sec-Butylbenzene           | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| ,3-Dichlorobenzene         | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| ,4-Dichlorobenzene         | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| I-Isopropyltoluene         | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| ,2-Dichlorobenzene         | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| n-Butylbenzene             | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| ,2-Dibromo-3-chloropropane | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| ,2,4-Trichlorobenzene      | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| Vaphthalene                | ND                                     | 0.005                                                                                                          |             |  |  |  |  |  |  |
| Date Analyzed:             | 7/17/2014                              |                                                                                                                |             |  |  |  |  |  |  |
| Analyst:                   | 125                                    |                                                                                                                |             |  |  |  |  |  |  |
|                            |                                        |                                                                                                                |             |  |  |  |  |  |  |
|                            | <u> </u>                               |                                                                                                                | Page 2 of 3 |  |  |  |  |  |  |

### 15 W. Yakima Ave, Ste 210

### Yakima, WA 98902

,

### (509) 575 - 3999 Fax: (509) 575 - 3068

| Volatile Organic Compounds (Continued) |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|----------------------------------------|-----------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|
| VEL Sample #                           | 227-70816 |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| Sample ID                              |           | na na halingu (h) (h) fa (h) (h na sa i a na hali na halingu (h) halingu (h) | an fan er felde 1911 fin fersland om en an annalda om en an | fren nen co Louis a a Louis (n. 1999 44 (1997) frisin i fri Jones novem a Louis | NIN TRACKAMUN UNUN UNUN MUNICALITAT |  |  |  |  |  |
| Units                                  | ppm       | <u>Limits</u>                                                                |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| 1,1,1-Trichloroethane                  | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane              | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| 1,1-Dichloroethene                     | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| 1,2,3-Trichlorobenzene                 | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| 1,2-Dichloroethane                     | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| 2-hexanone                             | ND        | 0.025                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| Bromoform                              | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| Carbon disulfide                       | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| Chlorobenzene                          | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| cis-1,2-dichloroethene                 | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| cis-1,3-Dichloropropene                | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| Hexachlorobutadiene                    | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| Isopropylbenzene                       | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| Methyl Isobutyl ketone (MIBK)          | ND        | 0.025                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| methyl-t-butyl ether (MTBE)            | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| p-siopropyltoluene                     | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| ert-Butylbenzene                       | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| rans-1,2-Dichloroethene                | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| Trichlorofluoromethane                 | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| Tetrachloroethene                      | ND        | 0.005                                                                        |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| ·                                      |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| ·                                      |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| ·····                                  | l         |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| Date Analyzed:                         | 7/17/2014 |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| Date Analyzeu:<br>Analyst:             | 125       |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
| Anaiyst:                               | 143       |                                                                              |                                                                                                 |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              | Page 3 of 3                                                                                     |                                                                                 |                                     |  |  |  |  |  |
|                                        |           |                                                                              |                                                                                                 | <u>-4/</u>                                                                      |                                     |  |  |  |  |  |

**Polynuclear Aromatic Hydrocarbons** 

| Send Report To<br>PLSA Eng<br>Attn: Scot<br>1120 West<br>Yakima, V<br>Polynucles<br>DOH# Analytes | ineering<br>t Garland<br>Lincoln Aven |             |                                       | Samr                     | Date Rec<br>Date Rep         | eived:   | YAKIMA<br>07/08/14<br>07/29/14 |                                       |        |  |  |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------|-------------|---------------------------------------|--------------------------|------------------------------|----------|--------------------------------|---------------------------------------|--------|--|--|--|
| Send Report To<br>PLSA Eng<br>Attn: Scot<br>1120 West<br>Yakima, V<br>Polynucles<br>DOH# Aualytes | ineering<br>t Garland<br>Lincoln Aven | n: DRUM-14  |                                       | Samr                     | Date Rep                     |          |                                |                                       |        |  |  |  |
| PLSA Eng<br>Attn: Scot<br>1120 West<br>Yakima, V<br>Polynuclea<br>DOH# Analytes                   | ineering<br>t Garland<br>Lincoln Aven |             | · · · · · · · · · · · · · · · · · · · | Samr                     | Date Rep                     |          |                                |                                       |        |  |  |  |
| PLSA Eng<br>Attn: Scot<br>1120 West<br>Yakima, V<br>Polynuclea<br>DOH# Analytes                   | ineering<br>t Garland<br>Lincoln Aven |             | ·                                     | Samr                     | 7                            | orted:   | 07/20/14                       |                                       |        |  |  |  |
| PLSA Eng<br>Attn: Scot<br>1120 West<br>Yakima, V<br>Polynuclea<br>DOH# Analytes                   | ineering<br>t Garland<br>Lincoln Aven |             | ·                                     | Sam                      |                              |          | 0//4//14                       |                                       |        |  |  |  |
| Attn: Scot<br>1120 West<br>Yakima, V<br>Polynucles<br>DOH# Analytes                               | ineering<br>t Garland<br>Lincoln Aven | -           |                                       | Sample Collected By: SDG |                              |          |                                |                                       |        |  |  |  |
| Attn: Scot<br>1120 West<br>Yakima, V<br>Polynucles<br>DOH# Analytes                               | t Garland<br>Lincoln Aven             |             |                                       | SAMPI                    | SAMPLE COMMENTS Matrix: Soil |          |                                |                                       |        |  |  |  |
| 1120 West<br>Yakima, V<br>Polynucles<br>DOH# Analytes                                             | Lincoln Aven                          |             |                                       |                          |                              |          |                                |                                       |        |  |  |  |
| Yakima, V<br>Polynuclea<br>DOH# Analytes                                                          |                                       |             |                                       |                          |                              |          |                                |                                       |        |  |  |  |
| Polynucles<br>DOH# Analytes                                                                       | 74 08002                              | ue          |                                       |                          |                              |          |                                |                                       |        |  |  |  |
| DOH# Analytes                                                                                     | A 70704                               |             |                                       |                          |                              |          |                                |                                       |        |  |  |  |
|                                                                                                   | r Aromatic H                          | ydrocarbons |                                       | - <b>Q</b>               |                              | <u> </u> | ····                           |                                       |        |  |  |  |
|                                                                                                   | ····                                  | Results     | Units                                 | MRL                      | Trigger                      | MCL      | Method                         | Analyzed                              | Analys |  |  |  |
| Acenaphthe                                                                                        |                                       | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Acenaphthy                                                                                        | lene                                  | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Anthracene                                                                                        |                                       | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Benzo(a)ant                                                                                       | hracene                               | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Benzo(a)pyr                                                                                       | ene                                   | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Benzo(b)flu                                                                                       | oranthene                             | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Benzo(ghi)p                                                                                       |                                       | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Benzo(k)flu                                                                                       | oranthene                             | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Chrysene                                                                                          |                                       | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Dibenzo(a,h                                                                                       |                                       | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Fluoranthene                                                                                      | <u> </u>                              | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Fluorene                                                                                          |                                       | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Indeno(1,2,3                                                                                      | -cd)pyrene                            | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Naphthalene                                                                                       |                                       | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Phenanthren                                                                                       | e                                     | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Pyrene                                                                                            |                                       | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| 2-Methylnap                                                                                       | thalene                               | ND          | mg/kg                                 | 0.01                     |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
| Surrogate St                                                                                      | 4.                                    |             |                                       |                          | · · · · ·                    |          |                                | · · · · · · · · · · · · · · · · · · · |        |  |  |  |
| Terphenyl-d                                                                                       |                                       | 92.7        | %                                     | 18-137                   |                              |          | EPA 8270D                      | 07/17/14                              | 125    |  |  |  |
|                                                                                                   |                                       |             | 70                                    | 10-137                   |                              |          | EFA 8270D                      | 0//1//14                              | 125    |  |  |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-30670816–8270 pah

PCB's (Soil)

| •       | Date Colle                                                            | cted: 07/08/14  |       | С <u>В'8 (5</u><br>]                                                    | <u> </u>   |        |          |                 |          |  |  |  |
|---------|-----------------------------------------------------------------------|-----------------|-------|-------------------------------------------------------------------------|------------|--------|----------|-----------------|----------|--|--|--|
| _       | ······································                                |                 |       | 1                                                                       |            |        |          |                 |          |  |  |  |
|         |                                                                       | e No: 227-70816 |       |                                                                         | C          | ounty: | YAKIMA   |                 |          |  |  |  |
|         | Sample Loca                                                           | tion: DRUM-14   |       | Data Dessived: 07/08/14                                                 |            |        |          |                 |          |  |  |  |
|         |                                                                       |                 |       | Date Received: 07/08/14 Date Reported: 07/29/14                         |            |        |          |                 |          |  |  |  |
| <u></u> |                                                                       |                 |       | Samr                                                                    |            |        |          |                 |          |  |  |  |
| lend    | Report To:                                                            |                 |       | Sample Collected By: SDG           SAMPLE COMMENTS         Matrix: Soil |            |        |          |                 |          |  |  |  |
|         | PLSA Engineering                                                      | ····            |       | BANITI                                                                  |            |        |          | A. 5011         |          |  |  |  |
|         | Attn: Scott Garland                                                   |                 |       |                                                                         |            |        |          |                 |          |  |  |  |
|         | 1120 West Lincoln Av                                                  | /enne           |       |                                                                         |            |        |          |                 |          |  |  |  |
|         | Yakima, WA 98902                                                      | CALLO .         |       |                                                                         |            |        |          |                 |          |  |  |  |
|         | PCB's (Soil)                                                          |                 |       |                                                                         |            |        | *        |                 |          |  |  |  |
| OH      | # Analytes                                                            | Results         | Units | MRL                                                                     | Trigger    | MCL    | Method   | Analyzed        | Analy    |  |  |  |
|         | Aroclor 1016                                                          | ND              | mg/kg | 0.1                                                                     |            |        | EPA 8082 | 07/22/14        | 125      |  |  |  |
|         | Aroclor 1221                                                          | ND              | mg/kg | 0.1                                                                     |            |        | EPA 8082 | 07/22/14        | 125      |  |  |  |
|         | Aroclor 1232                                                          | ND              | mg/kg | 0.1                                                                     |            |        | EPA 8082 | 07/22/14        | 125      |  |  |  |
|         | Aroclor 1242                                                          | ND              | mg/kg | 0.1                                                                     |            |        | EPA 8082 | 07/22/14        | 125      |  |  |  |
|         | Aroclor 1248                                                          | ND              | mg/kg | 0.1                                                                     |            |        | EPA 8082 | 07/22/14        | 125      |  |  |  |
|         | Aroclor 1254                                                          | ND              | mg/kg | 0.1                                                                     | · · · · ·  |        | EPA 8082 | 07/22/14        | 125      |  |  |  |
|         | Aroclor 1260                                                          | ND              | mg/kg | 0.1                                                                     |            |        | EPA 8082 | 07/22/14        | 125      |  |  |  |
|         | PCB 8082 (total)                                                      | ND              | mg/kg | 0.1                                                                     |            |        | EPA 8082 | 07/22/14        | 125      |  |  |  |
|         | Surrogate Std:                                                        |                 |       |                                                                         |            |        |          |                 |          |  |  |  |
|         | DCB                                                                   | 110.0           | %     | 30-130                                                                  | ··         |        | EPA 8082 | 07/22/14        | 125      |  |  |  |
|         | ·····                                                                 |                 |       |                                                                         |            |        |          |                 |          |  |  |  |
|         | ,                                                                     |                 |       |                                                                         |            |        |          |                 |          |  |  |  |
|         |                                                                       |                 |       |                                                                         |            |        |          |                 |          |  |  |  |
|         |                                                                       |                 |       |                                                                         |            |        |          |                 |          |  |  |  |
|         |                                                                       |                 |       |                                                                         |            |        |          |                 |          |  |  |  |
|         |                                                                       |                 |       |                                                                         |            |        |          | · · · ·         |          |  |  |  |
|         | i<br>MRL (Method Reporting Level):<br>Trigger: DOH Drinking Water res |                 |       |                                                                         |            | -      |          |                 |          |  |  |  |
|         | MCL (maximum contaminant lev                                          |                 |       |                                                                         |            |        |          | se on packages. |          |  |  |  |
|         | ND (Not Detected): Indicates this                                     |                 |       |                                                                         | _          | -      |          |                 |          |  |  |  |
|         |                                                                       |                 |       | Ар                                                                      | proved By: |        |          |                 | <u> </u> |  |  |  |
|         |                                                                       |                 |       |                                                                         |            |        |          |                 |          |  |  |  |

70816-pcbs

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

Cadmium, Chromium, Nickel, Zinc

|                                   | •                        | mum, Ci           | ii oiniu                     | m, mere          | /1, <b>Z</b> /III | .C                                                         |             |          |  |  |
|-----------------------------------|--------------------------|-------------------|------------------------------|------------------|-------------------|------------------------------------------------------------|-------------|----------|--|--|
| Date Colle                        | ected: 07/08/14          |                   |                              |                  |                   |                                                            |             |          |  |  |
| Lab/Sampl                         | le No: 227-70816         |                   |                              | C                | ounty:            | YAKIMA                                                     | <u> </u>    |          |  |  |
|                                   | ation: DRUM-14           |                   | -                            |                  |                   |                                                            |             |          |  |  |
|                                   |                          | ·····             | Date Received: 07/08/14      |                  |                   |                                                            |             |          |  |  |
|                                   |                          |                   | Date Reported: 07/29/14      |                  |                   |                                                            |             |          |  |  |
|                                   |                          |                   | Sam                          | ole Collect      | ted By:           | SDG                                                        |             |          |  |  |
| Send Report To:                   |                          |                   | SAMPLE COMMENTS Matrix: Soil |                  |                   |                                                            |             |          |  |  |
| PLSA Engineering                  |                          |                   |                              |                  |                   |                                                            |             |          |  |  |
| Attn: Scott Garland               |                          |                   |                              |                  |                   |                                                            |             |          |  |  |
| 1120 West Lincoln A               | venue                    |                   |                              |                  |                   |                                                            |             |          |  |  |
| Yakima, WA 98902                  |                          |                   |                              |                  |                   |                                                            |             |          |  |  |
| Cadmium, Chromiun                 | n, Nickel, Zinc          |                   |                              |                  |                   | · · · · · · · · · · · · · · · · · · ·                      | <u> </u>    |          |  |  |
| DOH# Analytes                     | Results                  | Units             | MRL                          | Trigger          | MCL               | Method                                                     | Analyzed    | Analyst  |  |  |
| Cadmium                           | ND                       | mg/kg             | 0.54                         |                  |                   | EPA 6020A                                                  | 07/23/14    | 125      |  |  |
| Chromium                          | 16.1                     | mg/kg             | 0.54                         |                  |                   | EPA 6020A                                                  | 07/23/14    | 125      |  |  |
| Nickel                            | 14.1                     | mg/kg             | 0.54                         |                  |                   | EPA 6020A                                                  | 07/23/14    | 125      |  |  |
| Zinc                              | 62.0                     | mg/kg             | 0.54                         |                  |                   | EPA 6020A                                                  | 07/23/14    | 125      |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            |             |          |  |  |
|                                   |                          |                   | ļ                            |                  |                   |                                                            |             |          |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            |             |          |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            |             |          |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            |             |          |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            |             |          |  |  |
|                                   |                          |                   |                              |                  | [                 |                                                            |             |          |  |  |
|                                   |                          |                   |                              |                  | [                 |                                                            |             |          |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            | _           |          |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            |             |          |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            |             |          |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            |             | <br>     |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            |             |          |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            | ·   · · ·   |          |  |  |
|                                   |                          |                   | -                            |                  |                   |                                                            |             |          |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            | -           |          |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            |             | L        |  |  |
|                                   |                          |                   |                              |                  |                   |                                                            |             |          |  |  |
| MRL (Method Reporting Level):     | Indicates the minimum re | enorting level re | ouired and o                 | btained by the l | horatory (        | MDL <mri<srl< td=""><td>1</td><td><u> </u></td></mri<srl<> | 1           | <u> </u> |  |  |
| Trigger: DOH Drinking Water res   |                          | • –               | -                            |                  |                   |                                                            | on packages |          |  |  |
| MCL (maximum contaminant lev      |                          |                   |                              |                  |                   |                                                            | Iveenabeo   |          |  |  |
| ND (Not Detected): Indicates this |                          |                   |                              |                  |                   |                                                            |             |          |  |  |
| , , ,                             | . ,                      |                   | -                            | -                |                   |                                                            |             |          |  |  |
|                                   |                          |                   | Ар                           | proved By:       | . <del></del>     | <u> </u>                                                   |             |          |  |  |

70816-cdcrni

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### Client: VALLEY ENVIRONMENTAL LAB Address: 15 W. YAKIMA AVE STE210

15 W. YAKIMA AVE STE210 YAKIMA, WA 98901 Batch #: 140714014 Project Name: VOC / MET

VOC / METALS / PAH / PCB

Attn: DARA OSBORNE

#### **Analytical Results Report**

Sample Number140714014-004Sampling Date7/8/2014Date/Time Received7/11/201411:20 AMClient Sample ID70816 bSampling Time8:59 AMMatrixSoilSample LocationComments

| Parameter                         | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier |
|-----------------------------------|--------|-------|-------|---------------|---------|-----------|-----------|
| 1,1,1,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,1-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-dichloropropene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichloropropane            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromo-3-chloropropane(DBCP) | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromoethane                 | ND     | mg/kg | 0.001 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3,5-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,4-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-hexanone                        | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| 4-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Acetone                           | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Acrylonitrile                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Benzene                           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromobenzene                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromochloromethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |
|          |                          |               |                          |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-004<br>70816<br>Soil |        | Sampling Da<br>Sampling Ti<br>Sample Loca | me            |             | Date/Time Receir<br>Extraction Date | ved 7/11/2014<br>7/18/2014 | 11:20 AM |
|---------------------------------------------------------|--------------------------------|--------|-------------------------------------------|---------------|-------------|-------------------------------------|----------------------------|----------|
| Parameter                                               |                                | Result | Units                                     | PQL           | Analysis Da | te Analyst                          | Method                     | Qualifie |
| Aroclor 1016 (F                                         | PCB-1016)                      | ND     | mg/Kg                                     | 0.1           | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| Aroclor 1221 (F                                         | CB-1221)                       | ND     | mg/Kg                                     | 0.1           | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| Aroclor 1232 (F                                         | PCB-1232)                      | ND     | mg/Kg                                     | 0.1           | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| Aroclor 1242 (F                                         | CB-1242)                       | ND     | mg/Kg                                     | 0.1           | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| Aroclor 1248 (F                                         | CB-1248)                       | ND     | mg/Kg                                     | 0.1           | 7/22/2014   | \$AT                                | EPA 8082                   |          |
| Aroclor 1254 (P                                         | CB-1254)                       | NÐ     | mg/Kg                                     | 0.1           | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| Aroclor 1260 (P                                         | CB-1260)                       | ND     | mg/Kg                                     | 0.1           | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| PCB 8082 (tota                                          | i)                             | ND     | mg/kg                                     | 0.1           | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| %moisture                                               |                                | 8.9    | Percent                                   |               | 7/17/2014   | SAT                                 | %moisture                  |          |
|                                                         |                                |        | Surroga                                   | ate Dat       | ta          |                                     |                            |          |
| mple Number                                             | 140714014-004                  |        |                                           | <del> ,</del> | <del></del> |                                     |                            |          |
| Surrogate Sta                                           | andard                         |        | Method                                    |               | Per         | cent Recovery                       | Control L                  | imits    |
| DCB                                                     |                                |        | EPA 808                                   | 2             |             | 110.0                               | 30-13                      | 0        |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA0D169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Washington State Certified Lab #227 - DOE Accredited Lab C345

BTEX by EPA 8260B

|       |                                        | e No: 227-70817                       |       |                                                 | C                       | ounty | : YAKIMA                              |          |             |  |  |
|-------|----------------------------------------|---------------------------------------|-------|-------------------------------------------------|-------------------------|-------|---------------------------------------|----------|-------------|--|--|
| SALAN | Sample Loca                            | tion: UST3-2                          |       |                                                 |                         |       |                                       |          |             |  |  |
|       |                                        |                                       |       | Date Received: 07/08/14 Date Reported: 07/29/14 |                         |       |                                       |          |             |  |  |
|       |                                        |                                       |       | Sami                                            | Date Kep<br>ble Collect |       |                                       | •••      |             |  |  |
| end   | Report To:                             | · · · · · · · · · · · · · · · · · · · |       |                                                 | LE COMM                 | T.    | Matri                                 | v Soil   | <u> </u>    |  |  |
|       | PLSA Engineering                       | · · · · · · · · · · · · · · · · · · · |       |                                                 | 000.11                  |       |                                       |          |             |  |  |
|       | Attn: Scott Garland                    |                                       |       |                                                 |                         |       |                                       |          |             |  |  |
|       | 1120 West Lincoln Av                   | venue                                 |       |                                                 |                         |       |                                       |          |             |  |  |
|       | Yakima, WA 98902                       |                                       |       |                                                 |                         |       |                                       |          |             |  |  |
|       | BTEX by EPA 8260B                      |                                       |       |                                                 |                         |       |                                       |          | · · · · · · |  |  |
| OH#   | Analytes                               | Results                               | Units | MRL                                             | Trigger                 | MCL   | Method                                | Analyzed | Analy       |  |  |
|       | Benzene                                | ND                                    | ppm   | 0.005                                           |                         |       | EPA 8260B                             | 07/17/14 | 125         |  |  |
|       | Toluene                                | 0.0333                                | ppm   | 0.005                                           |                         | ļ     | EPA 8260B                             |          | 125         |  |  |
|       | Ethylbenzene                           | ND 0.020                              | ppm   | 0.005                                           |                         |       | EPA 8260B                             | 07/17/14 | 125         |  |  |
|       | Xylenes (m,p,o)                        | 0.032                                 | ppm   | 0.005                                           |                         |       | EPA 8260B                             | 07/17/14 | 125         |  |  |
|       |                                        |                                       |       |                                                 |                         | ·     |                                       |          |             |  |  |
|       |                                        |                                       |       |                                                 | · · ·                   |       |                                       |          |             |  |  |
|       |                                        |                                       |       |                                                 |                         |       |                                       |          |             |  |  |
|       | ···· · · · · · · · · · · · · · · · · · |                                       |       |                                                 |                         |       |                                       |          |             |  |  |
|       |                                        |                                       |       |                                                 |                         | +<br> |                                       |          |             |  |  |
|       |                                        |                                       |       |                                                 |                         |       |                                       |          |             |  |  |
|       |                                        |                                       |       |                                                 |                         |       |                                       |          |             |  |  |
|       | · · · · · · · · · · · · · · · · · · ·  |                                       |       | ·                                               |                         |       |                                       |          |             |  |  |
|       | <u>.</u>                               |                                       |       |                                                 |                         |       |                                       |          | <br>        |  |  |
|       |                                        |                                       |       | -                                               |                         |       | · · ·                                 |          |             |  |  |
|       |                                        |                                       |       |                                                 |                         |       |                                       |          |             |  |  |
|       |                                        |                                       |       |                                                 |                         |       |                                       |          |             |  |  |
|       |                                        |                                       | ··    |                                                 |                         |       |                                       |          | <u> </u>    |  |  |
|       |                                        | r                                     |       |                                                 |                         |       | · · · · · · · · · · · · · · · · · · · |          | <u>├</u>    |  |  |
|       |                                        |                                       |       |                                                 |                         |       |                                       |          |             |  |  |
|       |                                        |                                       |       |                                                 |                         |       |                                       |          |             |  |  |
|       | MRL (Method Reporting Level):          |                                       |       |                                                 |                         |       |                                       |          | <u> </u>    |  |  |

### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902

| V(509) 5755 SG49DOEaxc(509) 5750-#<br>Sampled At: UST3-2 | Date Reported: 07/29/14<br>Date Collected: 07/08/14<br>Time Collected: 9:53 AM<br>Sampled By: SDG |                                                                                                                 |                                                           |                                                                                                                |           |  |  |  |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| PLSA Engineering                                         |                                                                                                   |                                                                                                                 |                                                           |                                                                                                                |           |  |  |  |
| Attn: Scott Garland                                      |                                                                                                   |                                                                                                                 |                                                           |                                                                                                                |           |  |  |  |
| 1120 West Lincoln Avenue                                 |                                                                                                   | <u>Invoice</u><br>27700                                                                                         |                                                           |                                                                                                                |           |  |  |  |
| Yakima, WA 98902                                         |                                                                                                   |                                                                                                                 |                                                           |                                                                                                                |           |  |  |  |
| Volatile Organic Chemicals                               |                                                                                                   | Method: EPA 8260B Matrix: Soil                                                                                  |                                                           |                                                                                                                |           |  |  |  |
| VEL Sample #                                             | 227-70817                                                                                         |                                                                                                                 |                                                           | · · · · · · · · · · · · · · · · · · ·                                                                          |           |  |  |  |
| Sample ID                                                | UST3-2                                                                                            | M (Adia 14, prime talenda i pri | 2011) ( Yun ya 2011) II I I I I I I I I I I I I I I I I I | ra na manana karang kalang manana karang |           |  |  |  |
| Units                                                    | ppm                                                                                               | Limits                                                                                                          |                                                           |                                                                                                                |           |  |  |  |
| Check Standards - Ave.Recovery:                          | • • •                                                                                             |                                                                                                                 |                                                           |                                                                                                                | · · · · · |  |  |  |
|                                                          |                                                                                                   | <u> </u>                                                                                                        |                                                           |                                                                                                                |           |  |  |  |
| 1,2-Dichlorobenzene-d4                                   | 92.00%                                                                                            | (70-130)                                                                                                        |                                                           |                                                                                                                |           |  |  |  |
| 4-Bromofluorobenzene                                     | 95.60%                                                                                            | (70-130)                                                                                                        |                                                           |                                                                                                                |           |  |  |  |
| Toluene-d8                                               | 98.80%                                                                                            | (70-130)                                                                                                        |                                                           |                                                                                                                |           |  |  |  |
| Dichlorodifluoromethane                                  | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Chloromethane                                            | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Vinyl chloride                                           | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Bromomethane                                             | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Chloroethane                                             | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Acetone                                                  | ND                                                                                                | 0.025                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Acrolein                                                 | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| 1,1-Dichloroethylene                                     | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Methylene chloride                                       | ND                                                                                                | 0.025                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Acrylonitrile                                            | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| trans-1,2-Dichloroethylene                               | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| 1,1-Dichloroethane                                       | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Methyl ethyl ketone (MEK)                                | ND                                                                                                | 0.025                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| cis-1,2-Dichloroethylene                                 | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| 2,2-Dichloropropane                                      | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Chloroform                                               | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Bromochloromethane                                       | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| 1,1,1-Trichloroethane                                    | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| 1,2-Dichloroethane                                       | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| 1,1-Dichloropropene                                      | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Carbon tetrachloride                                     | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Benzene                                                  | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Frichloroethylene                                        | ND                                                                                                | 0.005                                                                                                           |                                                           |                                                                                                                |           |  |  |  |
| Date Analyzed:                                           | 7/17/2014                                                                                         |                                                                                                                 |                                                           |                                                                                                                |           |  |  |  |
| Analyst:                                                 | 125                                                                                               |                                                                                                                 |                                                           |                                                                                                                |           |  |  |  |
| ND = None Detected                                       |                                                                                                   | Page 1 of 3                                                                                                     |                                                           |                                                                                                                |           |  |  |  |

### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902

| (509) 575 - 3999 Fax: (509) 57 | Valatile Or | ganic Com                                | pounds (Continued)                        |
|--------------------------------|-------------|------------------------------------------|-------------------------------------------|
| VEL Sample #                   | 227-70817   |                                          |                                           |
| Sample ID                      | UST3-2      | a an |                                           |
| Units                          | ppm         | Limts                                    |                                           |
| 1,2-Dichloropropane            | ND          | 0.005                                    |                                           |
| Dibromomethane                 | ND          | 0.005                                    |                                           |
| Bromodichloromethane           | ND          | 0.005                                    |                                           |
| cis-1,3-Dichloropropene        | ND          | 0.005                                    |                                           |
| Toluene                        | 0.0333      | 0.005                                    |                                           |
| trans-1,3-Dichloropropene      | ND          | 0.005                                    |                                           |
| 1,1,2-Trichloroethane          | ND          | 0.005                                    |                                           |
| 1,3-Dichloropropane            | ND          | 0.005                                    |                                           |
| Dibromochloromethane           | ND          | 0.005                                    |                                           |
| Tetrachloroethylene            | ND          | 0.005                                    |                                           |
| 1,2-Dibromoethane              | ND          | 0.001                                    |                                           |
| Chlorobenzene                  | ND          | 0.001                                    |                                           |
| 1,1,1,2-Tetrachloroethane      | ND          | 0.005                                    |                                           |
| Ethylbenzene                   | ND          | 0.005                                    |                                           |
| m,p-Xylene                     | 0.0251      | 0.005                                    |                                           |
| Styrene                        | ND          | 0.005                                    |                                           |
| o-Xylene                       | 0.00711     | 0.005                                    |                                           |
| Bromoform                      | ND          | 0.005                                    |                                           |
| 1,1,2,2-Tetrachloroethane      | ND          | 0.005                                    |                                           |
| 1,2,3-Trichloropropane         | ND          | 0.005                                    |                                           |
| Bromobenzene                   | ND          | 0.005                                    |                                           |
| n-Propylbenzene                | ND          | 0.005                                    |                                           |
| 2-Chlorotoluene                | ND          | 0.005                                    |                                           |
| 4-Chlorotoluene                | ND          | 0.005                                    |                                           |
| 1,3,5-Trimethylbenzene         | 0.00568     | 0.005                                    |                                           |
| tert-Butylbenzene              | ND          | 0.005                                    |                                           |
| 1,2,4-Trimethylbenzene         | 0.0147      | 0.005                                    |                                           |
| sec-Butylbenzene               | ND          | 0.005                                    |                                           |
| 1,3-Dichlorobenzene            | ND          | 0.005                                    |                                           |
| 1,4-Dichlorobenzene            | ND          | 0.005                                    |                                           |
| 4-Isopropyltoluene             | ND          | 0.005                                    |                                           |
| ,2-Dichlorobenzene             | ND          | 0.005                                    |                                           |
| 1-Butylbenzene                 | ND          | 0.005                                    |                                           |
| ,2-Dibromo-3-chloropropane     | ND          | 0.005                                    |                                           |
| ,2,4-Trichlorobenzene          | ND          | 0.005                                    |                                           |
| Naphthalene                    | 0.0235      | 0.005                                    |                                           |
| Date Analyzed:                 | 7/17/2014   | ········                                 |                                           |
| Analyst:                       | 125         |                                          |                                           |
|                                |             |                                          | de en |
|                                |             |                                          | Page 2 of 3                               |

### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902

| <u>N Diatile UDi</u> | ganic Con                                                                                                       | <u>npounds (Cor</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>ntinued)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 227-70817            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| UST3-2               | a na 1999 na mangang ng kangang na kangang na kangang na kangang na kangang na kang na kang pang na kang pang n | (11) (fen ) (fen men for an andre and an andre and an and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ppm                  | Limits                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND                   | 0.005                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND                   | 0.025                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND                   | 0.005                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND                   | 0.025                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND                   | 0.005                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | 0.005                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| i                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0427               | 0.005                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7/17/2014            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 125                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ă                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 | s <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 | Page 3 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | 227-70817<br>UST3-2<br>ppm<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND        | 227-70817           UST3-2           ppm         Limits           ND         0.005           ND | 227-70817           UST3-2           ppm         Limits           ND         0.005           ND | UST3-2         Limits           ND         0.005           ND         0.005 |

### Washington State Certified Lab #227 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

|      |                                        | · · · · · · · · · · · · · · · · · · · |                                        |               |                |              |           |          |        |
|------|----------------------------------------|---------------------------------------|----------------------------------------|---------------|----------------|--------------|-----------|----------|--------|
|      | Lab/Sample N                           |                                       |                                        |               | C              | ounty:       | YAKIMA    |          |        |
| 28   | Sample Locatio                         | n: UST3-2                             |                                        |               |                |              |           |          |        |
|      |                                        |                                       |                                        |               | Date Re        | ceived:      | 07/08/14  |          |        |
|      |                                        |                                       |                                        |               | Date Rep       | ported:      | 07/29/14  |          |        |
|      |                                        |                                       |                                        | Sam           | ole Collect    | ted By:      | SDG       |          |        |
| Send | l Report To:                           |                                       |                                        | SAMPI         | LE COMM        | ENTS         | Matri     | x: Soil  | 42     |
| ŀ    | PLSA Engineering                       |                                       |                                        |               |                |              |           |          |        |
|      | Attn: Scott Garland                    |                                       |                                        |               |                |              |           |          |        |
|      | 1120 West Lincoln Aven                 | ue                                    |                                        |               |                |              |           |          |        |
|      | Yakima, WA 98902                       |                                       |                                        |               |                |              |           |          |        |
|      | Polynuclear Aromatic H                 | vdrocarbons                           | ······································ | <u> </u>      |                |              |           |          |        |
| DOH  | #Analytes                              | Results                               | Units                                  | MRL           | Trigger        | MCL          | Method    | Analyzed | Analys |
|      | Acenaphthene                           | ND                                    | mg/kg                                  | 0.01          |                |              | EPA 8270D | 07/17/14 | 125    |
|      | Acenaphthylene                         | ND                                    | mg/kg                                  | 0.01          |                | ╞            | EPA 8270D | 07/17/14 | 125    |
|      | Anthracene                             | ND                                    | mg/kg                                  | 0.01          |                |              | EPA 8270D |          | 125    |
|      | Benzo(a)anthracene                     | 0.0237                                | mg/kg                                  | 0.01          |                |              | EPA 8270D | 07/17/14 | 125    |
|      | Benzo(a)pyrene                         | ND                                    | mg/kg                                  | 0.01          |                |              | EPA 8270D | 07/17/14 | 125    |
|      | Benzo(b)fluoranthene                   | ND                                    | mg/kg                                  | 0.01          |                |              | EPA 8270D | 07/17/14 | 125    |
|      | Benzo(ghi)perylene                     | 0.0271                                | mg/kg                                  | 0.01          |                |              | EPA 8270D | 07/17/14 | 125    |
|      | Benzo(k)fluoranthene                   | ND                                    | mg/kg                                  | 0.01          | <u>.</u>       |              | EPA 8270D | 07/17/14 | 125    |
|      | Chrysene                               | 0.0106                                | mg/kg                                  | 0.01          |                |              | EPA 8270D | 07/17/14 | 125    |
|      | Dibenzo(a,h)anthracene                 | ND                                    | mg/kg                                  | 0.01          | ····           |              | EPA 8270D | 07/17/14 | 125    |
|      | Fluoranthene                           | 0.0465                                | mg/kg                                  | 0.01          |                |              | EPA 8270D | 07/17/14 | 125    |
|      | Fluorene                               | ND                                    | mg/kg                                  | 0.01          |                |              | EPA 8270D | 07/17/14 | 125    |
|      | Indeno(1,2,3-cd)pyrene                 | ND                                    | mg/kg                                  | 0.01          |                |              | EPA 8270D | 07/17/14 | 125    |
|      | Naphthalene                            | 0.0389                                | <br>mg/kg                              | 0.01          |                | <u> </u>     | EPA 8270D | 07/17/14 | 125    |
|      | Phenanthrene                           | 0.0412                                | mg/kg                                  | 0.01          | ·              |              | EPA 8270D |          | 125    |
|      | Pyrene                                 | 0.0391                                | mg/kg                                  | 0.01          |                |              | EPA 8270D | 07/17/14 | 125    |
|      | 2-Methylnapthalene                     | 0.0545                                | mg/kg                                  | 0.01          |                |              | EPA 8270D | 07/17/14 | 125    |
|      | · · · · · · · · · · · · · · · · · · ·  |                                       |                                        |               |                |              | · · ·     | •        |        |
|      | Surrogate Std.                         |                                       |                                        |               |                |              |           | · _      |        |
|      | Surrogate Std:                         | 00.4                                  | 0/                                     | 10.107        |                | ·            |           | 05/15/1  | 105    |
|      | Terphenyl-d14                          | 90.4                                  | %                                      | 18-137        |                | · · · ·      | EPA 8270D | 07/17/14 | 125    |
|      | ······································ | · · · ·                               |                                        |               |                |              |           |          |        |
|      | MRL (Method Reporting Level): Ind      | icates the minimum                    | reporting level -                      | equired and a | btained by the | laborato - : |           |          | 1      |

MCL (maximum contaminant level): Highest level recommended by the federal government for public water systems.

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

Approved By:

## 15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068 70817 - 8270 pah

Washington State Certified Lab #227 - DOE Accredited Lab C345

PCB's (Soil)

|          | Date Colleg                            | cted: 07/08/14                                                                                                  |                |                  | <u>()</u>        |              |             |                |          |
|----------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------|------------------|------------------|--------------|-------------|----------------|----------|
|          | Dair Colle                             |                                                                                                                 |                |                  |                  | <u> </u>     |             |                |          |
|          | Lab/Sample                             | No: 227-70817                                                                                                   |                | -                | C                | ounty:       | YAKIMA      |                |          |
|          | Sample Locat                           | the second se |                |                  |                  |              |             |                |          |
|          |                                        |                                                                                                                 |                |                  | Date Re          | ceived:      | 07/08/14    |                | ·        |
|          |                                        |                                                                                                                 |                |                  | Date Rep         | ported:      | 07/29/14    |                |          |
|          |                                        |                                                                                                                 |                |                  | ole Collect      | -            | SDG         |                |          |
| end      | Report To:                             | ·····                                                                                                           |                | SAMPI            | LE COMM          | IENTS        | Matri       | x: Soil        |          |
|          | PLSA Engineering                       |                                                                                                                 |                |                  |                  |              |             |                |          |
|          | Attn: Scott Garland                    |                                                                                                                 |                |                  |                  |              |             |                |          |
|          | 1120 West Lincoln Ave                  | enue                                                                                                            |                |                  |                  |              |             |                |          |
|          | Yakima, WA 98902                       |                                                                                                                 |                |                  |                  |              |             |                |          |
|          | PCB's (Soil)                           |                                                                                                                 |                |                  |                  |              |             |                |          |
| OH#      | Analytes                               | Results                                                                                                         | Units          | MRL              | Trigger          | MCL          | Method      | Analyzed       | Analy    |
|          | Aroclor 1016                           | ND                                                                                                              | mg/kg          | 0.1              |                  |              | EPA 8082    | 07/22/14       | 125      |
|          | Aroclor 1221                           | ND                                                                                                              | mg/kg          | 0.1              |                  |              | EPA 8082    | 07/22/14       | 125      |
|          | Aroclor 1232                           | ND                                                                                                              | mg/kg          | 0.1              |                  |              | EPA 8082    | 07/22/14       | 125      |
|          | Aroclor 1242                           | ND                                                                                                              | mg/kg          | 0.1              |                  |              | EPA 8082    | 07/22/14       | 125      |
|          | Aroclor 1248                           | ND                                                                                                              | mg/kg          | 0.1              |                  |              | EPA 8082    | 07/22/14       | 125      |
|          | Aroclor 1254                           | ND                                                                                                              | mg/kg          | 0.1              |                  |              | EPA 8082    | 07/22/14       | 125      |
|          | Aroclor 1260                           | ND                                                                                                              | mg/kg          | 0.1              |                  |              | EPA 8082    | 07/22/14       | 125      |
|          | PCB 8082 (total)                       | ND                                                                                                              | mg/kg          | 0.1              |                  |              | EPA 8082    | 07/22/14       | 125      |
|          |                                        | · · ·                                                                                                           |                |                  |                  |              |             |                | ·        |
|          | Surrogate Std:                         |                                                                                                                 |                |                  |                  |              |             |                |          |
|          | DCB                                    | 78.7                                                                                                            | %              | 30-130           |                  |              | EPA 8082    | 07/22/14       | 125      |
|          |                                        |                                                                                                                 | ,              |                  |                  |              |             |                |          |
|          |                                        |                                                                                                                 |                |                  | ·                |              |             |                |          |
|          |                                        |                                                                                                                 |                |                  |                  |              |             |                |          |
|          |                                        |                                                                                                                 |                | <u> </u>         |                  |              |             |                |          |
|          | ,                                      |                                                                                                                 |                |                  | ·                |              |             |                | ļ        |
| [        | ······································ |                                                                                                                 |                |                  |                  |              |             |                |          |
|          | <u></u> .                              |                                                                                                                 |                | <u> </u>         |                  |              |             |                |          |
|          |                                        |                                                                                                                 |                |                  |                  |              |             |                | <br>     |
|          |                                        |                                                                                                                 |                |                  |                  |              |             |                |          |
|          |                                        | ·                                                                                                               | ·              |                  |                  |              |             |                | <u> </u> |
| <u> </u> | MRL (Method Reporting Level):          | Indicates the minimum t                                                                                         | onorting loval |                  | htning d has the | 1-1          |             | <u> </u>       |          |
|          | Trigger: DOH Drinking Water resp       |                                                                                                                 |                |                  |                  | -            |             |                |          |
|          | MCL (maximum contaminant level         |                                                                                                                 |                |                  |                  |              | -           | e on packages. |          |
|          | ND (Not Detected): Indicates this c    |                                                                                                                 |                | -                | •                | -            |             |                |          |
| I        | intersection mutates 1115 6            | ompound was analyzed a                                                                                          |                | i al a ievei gri | and than of eq   | uaa to the l | ING OF SKL. |                |          |
|          |                                        |                                                                                                                 |                | Ар               | proved By:       |              | $\sim$      |                |          |
|          |                                        |                                                                                                                 |                |                  |                  |              |             |                |          |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

70817-pcbs

### Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

| The second se |               |          | 1        | m, micke    | <i>-</i> 1, <i>2</i> -111 |           |              |        |
|-----------------------------------------------------------------------------------------------------------------|---------------|----------|----------|-------------|---------------------------|-----------|--------------|--------|
| Date Collec                                                                                                     | ted: 07/08/14 |          | <b>_</b> |             |                           |           |              |        |
|                                                                                                                 | No: 227-70817 |          |          | C           | ounty:                    | YAKIMA    |              |        |
| Sample Locat                                                                                                    | ion: UST3-2   |          |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          | Date Ree    | ceived:                   | 07/08/14  |              |        |
|                                                                                                                 |               |          |          | Date Rep    | orted:                    | 07/29/14  |              |        |
|                                                                                                                 |               |          | -        | ole Collect | <del>.</del>              | SDG       |              |        |
| Send Report To:                                                                                                 | ~             |          | SAMPI    | LE COMM     | ENTS                      | Matri     | x: Soil      |        |
| PLSA Engineering                                                                                                |               |          |          |             |                           |           |              |        |
| Attn: Scott Garland                                                                                             |               |          |          |             |                           |           |              |        |
| 1120 West Lincoln Ave                                                                                           | enue          |          |          |             |                           |           |              |        |
| Yakima, WA 98902                                                                                                |               |          |          |             |                           |           |              |        |
| Cadmium, Chromium,                                                                                              | Nickel, Zinc  |          |          |             |                           |           |              |        |
| DOH# Analytes                                                                                                   | Results       | Units    | MRL      | Trigger     | MCL                       | Method    | Analyzed     | Analys |
| Cadmium                                                                                                         | 0.595         | mg/kg    | 0.531    |             |                           | EPA 6020A | 07/23/14     | 125    |
| Chromium                                                                                                        | 21.0          | mg/kg    | 0.531    |             |                           | EPA 6020A | 07/23/14     | 125    |
| Nickel                                                                                                          | 18.6          | mg/kg    | 0.531    |             |                           | EPA 6020A | 07/23/14     | 125    |
| Zinc                                                                                                            | 138           | mg/kg    | 0.531    |             |                           | EPA 6020A | 07/23/14     | 125    |
|                                                                                                                 |               |          | -        |             | ļ                         |           |              |        |
|                                                                                                                 |               |          |          |             |                           |           | _ <u>_</u>   |        |
|                                                                                                                 |               |          |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          |             |                           |           | -            |        |
|                                                                                                                 |               | <u>_</u> |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          | · · ·       |                           |           |              |        |
|                                                                                                                 |               |          |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          |             |                           |           |              |        |
|                                                                                                                 |               |          |          |             | <u> </u>                  |           |              |        |
| MRL (Method Reporting Level): 1<br>Trigger: DOH Drinking Water respo                                            |               |          |          |             | -                         | -         | on packages. |        |
| MCL (maximum contaminant level)<br>ND (Not Detected): Indicates this co                                         |               |          |          |             | -                         |           |              |        |
|                                                                                                                 |               |          | Ap       | proved By:  |                           |           |              | •      |

70817-cdcrni

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

# Client:VALLEY ENVIRONMENTAL LABAddress:15 W. YAKIMA AVE STE210

YAKIMA, WA 98901

Attn:

DARA OSBORNE

#### **Analytical Results Report**

Batch #:

**Project Name:** 

140714014

VOC / METALS / PAH / PCB

 Sample Number
 140714014-005
 Sampling Date
 7/8/2014
 Date/Time Received
 7/11/2014
 11:20 AM

 Client Sample ID
 70817<sup>±</sup>
 Sampling Time
 9:53 AM

 Matrix
 Soil
 Sample Location

 Comments
 Sample Location

| Parameter                         | Result  | Units | PQL   | Analysis Date | Analyst | Method     | Qualifier |
|-----------------------------------|---------|-------|-------|---------------|---------|------------|-----------|
| 1,1,1,2-Tetrachloroethane         | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,1,1-Trichloroethane             | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,1,2,2-Tetrachloroethane         | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,1,2-Trichloroethane             | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,1-Dichloroethane                | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,1-Dichloroethene                | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,1-dichloropropene               | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,2,3-Trichlorobenzene            | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,2,3-Trichloropropane            | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,2,4-Trichlorobenzene            | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,2,4-Trimethylbenzene            | 0.0147  | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,2-Dibromo-3-chloropropane(DBCP) | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,2-Dibromoethane                 | ND      | mg/kg | 0.001 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,2-Dichlorobenzene               | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,2-Dichloroethane                | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,2-Dichloropropane               | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,3,5-Trimethylbenzene            | 0.00568 | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,3-Dichlorobenzene               | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,3-Dichloropropane               | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 1,4-Dichlorobenzene               | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 2,2-Dichloropropane               | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 2-Chlorotoluene                   | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 2-hexanone                        | ND      | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B  |           |
| 4-Chlorotoluene                   | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| Acetone                           | ND      | mg/kg | 0.025 | 7/17/2014     | SAT     | E.PA 8260B |           |
| Acrylonitrile                     | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| Benzene                           | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| Bromobenzene                      | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |
| Bromochloromethane                | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B  |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### **Client:** VALLEY ENVIRONMENTAL LAB Address:

15 W. YAKIMA AVE STE210

DARA OSBORNE

**YAKIMA, WA 98901** 

Batch #: Project Name:

140714014 VOC / METALS / PAH / PCB

#### Attn:

#### **Analytical Results Report**

| Sample Number    | 140714014-005 | Sampling Date   | 7/8/2014 | Date/Time Received | 7/11/2014 | 11:20 AM |
|------------------|---------------|-----------------|----------|--------------------|-----------|----------|
| Client Sample ID | 70817         | Sampling Time   | 9:53 AM  |                    |           |          |
| Matrix           | Soil          | Sample Location |          |                    |           |          |
| Comments         |               |                 |          |                    |           |          |

| Parameter                     | Result  | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier |
|-------------------------------|---------|-------|-------|---------------|---------|-----------|-----------|
| Bromodichloromethane          | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromoform                     | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromomethane                  | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon disulfide              | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon Tetrachloride          | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chlorobenzene                 | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroethane                  | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroform                    | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloromethane                 | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,2-dichloroethene        | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,3-Dichloropropene       | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromochloromethane          | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromomethane                | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dichlorodifluoromethane       | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Ethylbenzene                  | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Hexachlorobutadiene           | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| lsopropylbenzene              | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| m+p-Xylene                    | 0.0251  | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl ethyl ketone (MEK)     | ND      | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl isobutyl ketone (MIBK) | ND      | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methylene chloride            | ND      | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| methyl-t-butyl ether (MTBE)   | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Naphthalene                   | 0.0235  | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Butylbenzene                | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Propylbenzene               | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| o-Xylene                      | 0.00711 | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| o-isopropyltoluene            | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| sec-Butylbenzene              | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Styrene                       | ND      | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### **Client:** VALLEY ENVIRONMENTAL LAB Address: 15 W. YAKIMA AVE STE210

**YAKIMA, WA 98901** 

Batch #: 140714014 Project Name:

VOC / METALS / PAH / PCB

Attn: DARA OSBORNE

#### **Analytical Results Report**

| ample Number<br>lient Sample ID<br>latrix<br>omments | 140714014-005<br>70817<br>Soil |        | Sampling D<br>Sampling Ti<br>Sample Loc | ime   | 7/8/2014 Date<br>9:53 AM | e/Time Rece | ived 7/11/2014 | 11:20 AM  |
|------------------------------------------------------|--------------------------------|--------|-----------------------------------------|-------|--------------------------|-------------|----------------|-----------|
| Parameter                                            |                                | Result | Units                                   | PQL   | Analysis Date            | Analyst     | Method         | Qualifier |
| tert-Butylbenze                                      | ne                             | ND     | mg/kg                                   | 0.005 | 7/17/2014                | SAT         | EPA 8260B      |           |
| Tetrachloroeth                                       | ene                            | 0.0427 | mg/kg                                   | 0.005 | 7/17/2014                | SAT         | EPA 8260B      |           |
| Toluene                                              |                                | 0.0333 | mg/kg                                   | 0.005 | 7/17/2014                | SAT         | EPA 8260B      |           |
| trans-1,2-Dichl                                      | proethene                      | ND     | mg/kg                                   | 0.005 | 7/17/2014                | SAT         | EPA 8260B      |           |
| trans-1,3-Dichl                                      | propropene                     | ND     | mg/kg                                   | 0.005 | 7/17/2014                | SAT         | EPA 8260B      |           |
| Trichloroethene                                      | 3                              | ND     | mg/kg                                   | 0.005 | 7/17/2014                | SAT         | EPA 8260B      |           |
| Trichloroflouror                                     | nethane                        | ND     | mg/kg                                   | 0.005 | 7/17/2014                | SAT         | EPA 8260B      |           |
| Vinyl Chloride                                       |                                | ND     | mg/kg                                   | 0.005 | 7/17/2014                | SAT         | EPA 8260B      |           |
| %moisture                                            |                                | 9.9    | Percent                                 |       | 7/17/2014                | SAT         | %moisture      |           |

| Surrogate Data |                                  |                                                             |
|----------------|----------------------------------|-------------------------------------------------------------|
| <u> </u>       |                                  | · · · · · · · · · · · ·                                     |
| Method         | Percent Recovery                 | Control Limits                                              |
| EPA 8260B      | 92.0                             | 70-130                                                      |
| EPA 8260B      | 95.6                             | 70-130                                                      |
| EPA 8260B      | 98.8                             | 70-130                                                      |
|                | Method<br>EPA 8260B<br>EPA 8260B | Method Percent Recovery<br>EPA 8260B 92.0<br>EPA 8260B 95.6 |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C585 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cen0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:<br>Address:<br>Attn:                            | VALLEY ENVIRON<br>15 W. YAKIMA AVI<br>YAKIMA, WA 9890<br>DARA OSBORNE | E STE210 | AB                                       |        | Batch #:<br>Project Na |                                | 714014<br>C / METALS / P   | AH / PCE      |
|---------------------------------------------------------|-----------------------------------------------------------------------|----------|------------------------------------------|--------|------------------------|--------------------------------|----------------------------|---------------|
|                                                         |                                                                       | An       | alytical R                               | lesult | s Report               |                                |                            |               |
| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-005<br>70817<br>Soil                                        |          | Sampling Da<br>Sampling Ti<br>Sample Loc | me     |                        | te/Time Recei<br>traction Date | ved 7/11/2014<br>7/17/2014 | 11:20 AM      |
| Parameter                                               |                                                                       | Result   | Units                                    | PQL    | Analysis Date          | Analyst                        | Method                     | Qualifier     |
| 2-Methylnaph                                            | thalene                                                               | 0.0545   | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  | · · · · _ · · |
| Acenaphthen                                             | e                                                                     | ND       | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Acenaphthyle                                            | ne                                                                    | ND       | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Anthracene                                              |                                                                       | ND       | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Benzo(ghi)pei                                           | rylene                                                                | 0.0271   | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Benzo(a)anthr                                           | racene                                                                | 0.0237   | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Benzo[a]pyrer                                           | ne                                                                    | ND       | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Benzo[b]fluora                                          | anthene                                                               | ND       | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Benzo[k]fluora                                          | anthene                                                               | ND       | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Chrysene                                                |                                                                       | 0.0106   | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Dibenz[a,h]an                                           | thracene                                                              | ND       | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Fluoranthene                                            |                                                                       | 0.0465   | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Fluorene                                                |                                                                       | ND       | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| indeno[1,2,3-o                                          | :d]pyrene                                                             | ND       | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Naphthalene                                             |                                                                       | 0.0389   | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Phenanthrene                                            | •                                                                     | 0.0412   | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| Pyrene                                                  |                                                                       | 0.0391   | mg/Kg                                    | 0.01   | 7/17/2014              | EMP                            | EPA 8270D                  |               |
| %moisture                                               |                                                                       | 9.9      | Percent                                  |        | 7/17/2014              | SAT                            | %moisture                  |               |
|                                                         |                                                                       |          | Surrog                                   | ate Da | ta                     |                                |                            |               |
| mple Number                                             | 140714014-005                                                         |          | <u></u>                                  |        |                        |                                |                            |               |
| Surrogate S                                             | tandard                                                               |          | Method                                   |        | Perce                  | ent Recovery                   | Control L                  | imits         |
| Terphenyl-d1                                            | 14                                                                    |          | EPA 827                                  | '0D    |                        | 90.4                           | 18-13                      |               |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-005<br>70817<br>Soil |        | Sampling Da<br>Sampling Ti<br>Sample Loca | me      |             | Date/Time Recein<br>Extraction Date | ved 7/11/2014<br>7/18/2014 | 11:20 AM  |
|---------------------------------------------------------|--------------------------------|--------|-------------------------------------------|---------|-------------|-------------------------------------|----------------------------|-----------|
| Parameter                                               |                                | Result | Units                                     | PQL     | Analysis Da | ate Analyst                         | Method                     | Qualifier |
| Aroclor 1016 (F                                         | PCB-1016)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | sat                                 | EPA 8082                   |           |
| Aroclor 1221 (F                                         | PCB-1221)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | 1 SAT                               | EPA 8082                   |           |
| Aroclor 1232 (F                                         | PCB-1232)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | 1 SAT                               | EPA 8082                   |           |
| Aroclor 1242 (F                                         | PCB-1242)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                   |           |
| Aroclor 1248 (F                                         | PCB-1248)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                   |           |
| Aroclor 1254 (F                                         | °CB-1254)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                   |           |
| Aroclor 1260 (F                                         | PCB-1260)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                   |           |
| PCB 8082 (tota                                          | il)                            | ND     | mg/kg                                     | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                   |           |
| %moisture                                               |                                | 9.9    | Percent                                   |         | 7/17/2014   | SAT                                 | %moisture                  |           |
|                                                         |                                |        | Surroga                                   | ite Dat | ta          |                                     |                            |           |
| mple Number                                             | 140714014-005                  |        |                                           |         |             |                                     |                            | ·         |
| Surrogate St                                            | andard                         |        | Method                                    |         | Pe          | rcent Recovery                      | Control L                  | imits     |
| DCB                                                     |                                |        | EPA 808                                   | 2       |             | 78.7                                | 30-13                      | 0         |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA0D169; WA:C585; MT:Cert0095; FL(NELAP): E871099

## Washington State Certified Lab #227 - DOE Accredited Lab C345

BTEX by EPA 8260B

| Benzene         ND         ppm         0.005         EPA 8260B         07/17           Toluene         ND         ppm         0.005         EPA 8260B         07/17           Ethylbenzene         ND         ppm         0.005         EPA 8260B         07/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ix: Soil | 07/08/14<br>07/29/14<br>SDG | ceived:<br>oorted:<br>ted By: | Date Rec<br>Date Rep<br>De Collect                                                                             |       | ······   |           |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-----------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------|-------|----------|-----------|------------------------|
| Date Received: 07/08/14         Date Reported: 07/29/14         Sample Collected By: SDG         Send Report To:       SAMPLE COMMENTS       Matrix: Soil         PLSA Engineering<br>Attn: Scott Garland<br>1120 West Lincoln Avenue<br>Yakima, WA 98902       Matrix: Soil       Matrix: Soil         BTEX by EPA 8260B       MRL       Trigger       MCL       Method       Anal         Benzene       ND       ppm       0.005       EPA 8260B       07/17         Toluene       ND       ppm       0.005       EPA 8260B       07/17         Behzene       ND       ppm       0.005       EPA 8260B       07/17         Toluene       ND       ppm       0.005       EPA 8260B       07/17         Ethylbenzene       ND       ppm       0.005       EPA 8260B       07/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ix: Soil | 07/29/14<br>SDG             | oorted:<br>ted By:            | Date Rep<br>ble Collect                                                                                        |       |          |           | I                      |
| Sample Collected By: SDG         Send Report To:       SAMPLE COMMENTS       Matrix: Soil         PLSA Engineering       Attn: Scott Garland       Matrix: Soil         Attn: Scott Garland       1120 West Lincoln Avenue       Vakima, WA 98902         BTEX by EPA 8260B       Benzene       ND       ppm         0H# Analytes       Results       Units       MRL       Trigger       MCL       Method       Anal         Benzene       ND       ppm       0.005       EPA 8260B       07/17         Toluene       ND       ppm       0.005       EPA 8260B       07/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | ix: Soil | SDG                         | ed By:                        | ole Collect                                                                                                    |       |          |           |                        |
| SAMPLE COMMENTS Matrix: Soil         PLSA Engineering       Matrix: Soil         Attn: Scott Garland       Matrix: Soil         1120 West Lincoln Avenue       Matrix: Soil         Yakima, WA 98902       Matrix: Soil         BTEX by EPA 8260B       MRL         OH# Analytes       Results       Units       MRL       Trigger       McL       Method       Anal         Benzene       ND       ppm       0.005       EPA 8260B       07/17         Toluene       ND       ppm       0.005       EPA 8260B       07/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | ix: Soil |                             |                               | the second s |       |          |           |                        |
| PLSA Engineering<br>Attn: Scott Garland<br>1120 West Lincoln Avenue<br>Yakima, WA 98902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | ix: Soil | Matri                       | ENTS                          | E COMM                                                                                                         |       |          |           |                        |
| Attn: Scott Garland<br>1120 West Lincoln Avenue<br>Yakima, WA 98902       Visual Scott       Visual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lyzed Ano  |          |                             |                               |                                                                                                                | SAMPI |          |           | Report To:             |
| 1120 West Lincoln Avenue<br>Yakima, WA 98902BTEX by EPA 8260BOH# AnalytesResultsUnitsMRLTriggerMCLMethodAnalBenzeneNDppm0.005EPA 8260B07/17TolueneNDppm0.005EPA 8260B07/17EthylbenzeneNDppm0.005EPA 8260B07/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lyzed Ano  |          |                             |                               |                                                                                                                |       |          |           | PLSA Engineering       |
| Yakima, WA 98902BTEX by EPA 8260BOH# AnalytesResultsUnitsMRLTriggerMCLMethodAnalBenzeneNDppm0.005EPA 8260B07/17TolueneNDppm0.005EPA 8260B07/17EthylbenzeneNDppm0.005EPA 8260B07/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jyzod Ano  |          |                             |                               |                                                                                                                |       |          |           | Attn: Scott Garland    |
| BTEX by EPA 8260BOH# AnalytesResultsUnitsMRLTriggerMCLMethodAnalBenzeneNDppm0.005EPA 8260B07/17TolueneNDppm0.005EPA 8260B07/17EthylbenzeneNDppm0.005EPA 8260B07/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lyzed Ana  |          |                             |                               |                                                                                                                |       |          | lue       | 1120 West Lincoln Aver |
| OH# AnalytesResultsUnitsMRLTriggerMCLMethodAnalBenzeneNDppm0.005EPA 8260B07/17TolueneNDppm0.005EPA 8260B07/17EthylbenzeneNDppm0.005EPA 8260B07/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ivzed Ana  |          |                             |                               |                                                                                                                |       |          | ·····     | Yakima, WA 98902       |
| Benzene         ND         ppm         0.005         EPA 8260B         07/17           Toluene         ND         ppm         0.005         EPA 8260B         07/17           Ethylbenzene         ND         ppm         0.005         EPA 8260B         07/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lyzed Ano  |          |                             |                               |                                                                                                                |       |          |           | BTEX by EPA 8260B      |
| Toluene         ND         ppm         0.005         EPA 8260B         07/17           Ethylbenzene         ND         ppm         0.005         EPA 8260B         07/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ngatu Alla | Analyzed | Method                      | MCL                           | Trigger                                                                                                        | MRL   | Units    |           |                        |
| EthylbenzeneNDppm0.005EPA 8260B07/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 07/17/14 |                             |                               |                                                                                                                |       | ppm      |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 07/17/14 | EPA 8260B                   |                               |                                                                                                                | - I I | ppm      |           |                        |
| Xylenes (m,p,o)       ND       ppm       0.005       EPA 8260B       07/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          |                             |                               |                                                                                                                | 1 F   |          | 1         |                        |
| Image: state of the state of | 7/14 125   | 07/17/14 | EPA 8260B                   | ļ<br>                         |                                                                                                                | 0.005 | ppm      | ND        | Xylenes (m,p,o)        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          | <u></u>                     |                               |                                                                                                                |       |          |           | :<br>                  |
| Image: state stat                |            |          |                             |                               | ·                                                                                                              | _     |          |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·          |          |                             |                               | · .                                                                                                            |       |          |           | · · ·                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                             |                               |                                                                                                                |       | ·        |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                             |                               |                                                                                                                | -     |          |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                             |                               | <del>_</del>                                                                                                   | + +   |          |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                             |                               | ·                                                                                                              |       |          |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                             |                               |                                                                                                                |       |          |           | ·                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·          |          | · · · ·                     |                               |                                                                                                                |       |          |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          | <u> </u>                    |                               |                                                                                                                |       |          |           | · ·                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                             |                               | ·                                                                                                              |       | et 1141- |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                             |                               |                                                                                                                |       |          |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          | ·                           |                               |                                                                                                                |       |          |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                             |                               |                                                                                                                |       |          |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                             |                               |                                                                                                                |       |          |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                             |                               |                                                                                                                |       | <u>.</u> |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                             | [ [                           |                                                                                                                | -     |          |           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                             |                               |                                                                                                                | 1     |          | 7         |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>       |          | <u>.</u>                    |                               |                                                                                                                | -     |          | · · · · · |                        |

70818-btex

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

.

۰,

| Washington State DOE Accredited Lab #<br>Sampled At: UST3-12 | C345      | Date Reported: 07/29/14<br>Date Collected: 07/08/14<br>Time Collected: 9:40 AM<br>Sampled By: SDG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |                                                                        |                                                 |  |
|--------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------|--|
| PLSA Engineering                                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F                                                                                                               |                                                                        |                                                 |  |
| Attn: Scott Garland                                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                                        |                                                 |  |
| 1120 West Lincoln Avenue                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                                        | Invoice#                                        |  |
| Yakima, WA 98902                                             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                                        | <u>27700</u>                                    |  |
| Volatile Organic Chemicals                                   |           | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : EPA 8260B                                                                                                     | Matrix: Soi                                                            |                                                 |  |
| VEL Sample #                                                 | 227-70818 | 14Aethou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • ETA 8200D                                                                                                     |                                                                        |                                                 |  |
| Sample ID                                                    | UST3-12   | 2010 I D FRI DIN THE OLD T | uart control de le le le secle en la le la le la le secle de la le secle de la le secle de le secle de le secle | 75 AMERICAN DI LEM LETELE IN 2016 DI EUR AN LAN M (1995) (1995) (1996) | 1 N 1997 YO 11 1994 I YO DOLL N 1 1291 N YO I B |  |
| Units                                                        |           | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                                                                        |                                                 |  |
| Check Standards - Ave.Recovery:                              | ppm       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                                        |                                                 |  |
| Check Standards - Aventetovery.                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                                        |                                                 |  |
| 1,2-Dichlorobenzene-d4                                       | 87.60%    | (70-130)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                                                        |                                                 |  |
| 4-Bromofluorobenzene                                         | 95.20%    | (70-130)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                                                        |                                                 |  |
| Toluene-d8                                                   | 98,80%    | (70-130)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                                                        |                                                 |  |
| Dichlorodifluoromethane                                      | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Chloromethane                                                | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Vinyl chloride                                               | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Bromomethane                                                 | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Chloroethane                                                 | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Acetone                                                      | ND        | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Acrolein                                                     | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| 1,1-Dichloroethylene                                         | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Methylene chloride                                           | ND        | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Acrylonitrile                                                | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| trans-1,2-Dichloroethylene                                   | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| 1,1-Dichloroethane                                           | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Methyl ethyl ketone (MEK)                                    | ND        | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| cis-1,2-Dichloroethylene                                     | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| 2,2-Dichloropropane                                          | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Chloroform                                                   | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Bromochloromethane                                           | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| l,1,1-Trichloroethane                                        | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| 1,2-Dichloroethane                                           | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| 1,1-Dichloropropene                                          | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Carbon tetrachloride                                         | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Benzene                                                      | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Frichloroethylene                                            | ND        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                        |                                                 |  |
| Date Analyzed:                                               | 7/17/2014 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                                        |                                                 |  |
| Analyst:                                                     | 125       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | ĺ                                                                      |                                                 |  |
| ND = None Detected                                           | I         | Page 1 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 | <b></b>                                                                |                                                 |  |

### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Volatile Organic Compounds (Continued) |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        | ara karan na mangang karan na mangan manangkaraka karang                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ppm                                    | Limts                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ļ                                      |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| NÐ                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| ND                                     | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 1                                      |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        | 0.005                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| J                                      |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 125                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                        |                                                                                                           | Page 2 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                        | 227-70818<br>UST3-12<br>ppm<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | 227-70818           UST3-12           ppm         Limts           ND         0.005           ND |  |  |  |  |  |

### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210

### Yakima, WA 98902

### (509) 575 - 3999 Fax: (509) 575 - 3068

|                               | Volatile Or | ganic Co                                                           | mpounds (Contir                | nued)                                                                                                                                                                                                                             |                                                          |
|-------------------------------|-------------|--------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| VEL Sample #                  |             |                                                                    |                                | <b>_</b>                                                                                                                                                                                                                          |                                                          |
| Sample ID                     | UST3-12     | ar an an ann an | 0010)<br>10100 (1010)<br>1010) | אס גרע נערוליריעירין אָלאָלָאָן (אָןאַן געעיאנעע שעעט פעעט פוועריין אַלאָלָאָן אָראָאָאָעריין אַראַראַראַ אַראַ<br>אס גרע נערולירייניעירין אַלאַלאָן (אָן אָן אַראַנערע אַ אַראַגערע אַ אַראַגערע אַ אַראָאָאָאָן אַראָאָאָאָן אַ | D ) III MO ILI DI LI |
| Units                         | ppm         | Limits                                                             |                                |                                                                                                                                                                                                                                   |                                                          |
| 1,1,1-Trichloroethane         | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| 1,1,2,2-Tetrachloroethane     | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| 1,1-Dichloroethene            | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| 1,2,3-Trichlorobenzene        | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| 1,2-Dichloroethane            | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| 2-hexanone                    | ND          | 0.025                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| Bromoform                     | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| Carbon disulfide              | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| Chlorobenzene                 | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| cis-1,2-dichloroethene        | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| cis-1,3-Dichloropropene       | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| Hexachlorobutadiene           | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| Isopropylbenzene              | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| Methyl Isobutyl ketone (MIBK) | ND          | 0.025                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| methyl-t-butyl ether (MTBE)   | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| p-siopropyltoluene            | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| tert-Butylbenzene             | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| trans-1,2-Dichloroethene      | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| Trichlorofluoromethane        | ND          | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
| Tetrachloroethene             | 0.00783     | 0.005                                                              |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             | x                                                                  |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
| · ·                           |             |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               | *           |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               | RII PIRAS - |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
| Date Analyzed:                | 7/17/2014   |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
| Analyst:                      | 125         |                                                                    |                                |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    | D 0 (0                         |                                                                                                                                                                                                                                   |                                                          |
|                               |             |                                                                    | Page 3 of 3                    |                                                                                                                                                                                                                                   |                                                          |

### Washington State Certified Lab #227 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

|         | Lab/Sample N           | A 227 70910 |         | _      | ~          | · · · · · · · · · · · · · · · · · · · | <b>X7 &amp; X755 #</b> 4              |          |             |
|---------|------------------------|-------------|---------|--------|------------|---------------------------------------|---------------------------------------|----------|-------------|
|         | Sample Locatio         |             | ·       |        | (          | ounty:                                | YAKIMA                                |          |             |
|         | Sample Locatio         | II; US13-12 | <u></u> | -      | D-4- D-    |                                       | 07/00/11 4                            |          | <del></del> |
|         |                        |             |         |        |            |                                       | 07/08/14                              |          |             |
|         |                        | <u></u>     |         |        |            |                                       | 07/29/14                              |          |             |
| end     | Report To:             |             |         |        | le Collect |                                       | · · · · · · · · · · · · · · · · · · · |          | ····        |
|         | PLSA Engineering       |             |         | SAMP   |            | LIN I S                               | Matri                                 | x: Soil  |             |
|         |                        |             |         |        |            |                                       |                                       |          |             |
|         | Attn: Scott Garland    |             |         |        |            |                                       |                                       |          |             |
|         | 1120 West Lincoln Aven | ue          |         |        |            |                                       |                                       |          |             |
| •       | Yakima, WA 98902       |             |         |        |            |                                       |                                       |          |             |
|         | Polynuclear Aromatic H | ydrocarbons |         |        |            |                                       |                                       |          |             |
| )<br>DH | Analytes               | Results     | Units   | MRL    | Trigger    | MCL                                   | Method                                | Analyzed | Analy       |
|         | Acenaphthene           | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Acenaphthylene         | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Anthracene             | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 1 <b>25</b> |
|         | Benzo(a)anthracene     | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Benzo(a)pyrene         | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Benzo(b)fluoranthene   | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Benzo(ghi)perylene     | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Benzo(k)fluoranthene   | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Chrysene               | 0.0112      | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Dibenzo(a,h)anthracene | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Fluoranthene           | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Fluorene               | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Indeno(1,2,3-cd)pyrene | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Naphthalene            | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Phenanthrene           | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
| ·       | Pyrene                 | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | 2-Methylnapthalene     | ND          | mg/kg   | 0.01   |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | Surrogate Std:         |             |         |        |            |                                       |                                       |          |             |
| ·       | Terphenyl-d14          | 92.2        | %       | 18-137 |            |                                       | EPA 8270D                             | 07/17/14 | 125         |
|         | · · · · ·              |             |         |        |            |                                       |                                       |          |             |

Trigger: DOH Drinking Water response level. Public Systems in excess of this level must take additional samples. Recommended range on packages.

MCL (maximum contaminant level): Highest level recommended by the federal government for public water systems.

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

Approved By:

# 15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3067 0818 – 8270 pah

Washington State Certified Lab #227 - DOE Accredited Lab C345

PCB's (Soil)

|     | Date Colle                                                           | cted: 07/08/14  |                |                  |                  |          | · · · · · · · · · · · · · · · · · · · |          |     |
|-----|----------------------------------------------------------------------|-----------------|----------------|------------------|------------------|----------|---------------------------------------|----------|-----|
|     |                                                                      | e No: 227-70818 |                |                  | C                | ounty:   | YAKIMA                                |          |     |
|     | Sample Loca                                                          | tion: UST3-12   |                | _                |                  |          | 0                                     |          |     |
|     |                                                                      |                 |                | -                |                  |          | 07/08/14                              |          |     |
|     | · · ·                                                                | ·               |                |                  |                  |          | 07/29/14                              |          |     |
| end | Report To:                                                           |                 |                | _                | le Collect       |          |                                       |          |     |
| ulu | PLSA Engineering                                                     |                 |                | SAMPI            | LE COMM          | LIVIS    | Matri                                 | x: Soil  |     |
|     | Attn: Scott Garland                                                  |                 |                |                  |                  |          |                                       |          |     |
|     |                                                                      |                 |                |                  |                  |          |                                       |          |     |
|     | 1120 West Lincoln Av                                                 | enue            |                |                  |                  |          |                                       |          |     |
|     | Yakima, WA 98902                                                     | ······          |                | <u> </u>         |                  | <u> </u> |                                       |          |     |
| OTT | PCB's (Soil)                                                         |                 | ····           |                  |                  | <u></u>  |                                       |          |     |
| UH# | Analytes                                                             | Results         | Units          | MRL              | Trigger          | MCL      | Method                                | Analyzed |     |
|     | Aroclor 1016<br>Aroclor 1221                                         |                 | mg/kg          | 0.1              |                  | 1        | EPA 8082                              | 07/22/14 | 125 |
| ·   |                                                                      |                 | mg/kg          | 0.1              |                  | ļ        | EPA 8082                              | 07/22/14 | 125 |
|     | Aroclor 1232<br>Aroclor 1242                                         |                 | mg/kg          | 0.1              |                  |          | EPA 8082                              | 07/22/14 | 125 |
|     | Aroclor 1242<br>Aroclor 1248                                         | ND<br>ND        | mg/kg          | 0.1              |                  |          | EPA 8082                              | 07/22/14 | 125 |
|     | Aroclor 1248<br>Aroclor 1254                                         | ND ND           | mg/kg          | 0.1              | <u> </u>         |          | EPA 8082                              | 07/22/14 | 125 |
|     | Aroclor 1260                                                         | ND ND           | mg/kg          | 0.1              |                  |          | EPA 8082                              |          | 125 |
|     | PCB 8082 (total)                                                     | ND              | mg/kg<br>mg/kg | 0.1              |                  |          | EPA 8082                              | 07/22/14 | 125 |
|     |                                                                      |                 | mg/kg          |                  |                  |          | EPA 8082                              | 07/22/14 | 125 |
|     |                                                                      | · ·             | <u> </u>       |                  |                  |          |                                       |          |     |
|     | Surrogate Std:                                                       |                 |                |                  |                  | - · ·    | ^                                     |          |     |
|     | DCB                                                                  | 97.4            | %              | 30-130           |                  |          | EPA 8082                              | 07/22/14 | 125 |
|     |                                                                      |                 |                |                  |                  |          |                                       |          | 120 |
|     |                                                                      |                 | ··             |                  |                  |          |                                       |          | ·   |
|     |                                                                      |                 |                |                  | ·                |          |                                       |          |     |
|     |                                                                      |                 |                |                  |                  |          |                                       |          |     |
|     | <u></u>                                                              |                 |                |                  |                  |          |                                       |          |     |
|     |                                                                      |                 |                |                  |                  |          |                                       |          |     |
|     |                                                                      |                 |                |                  |                  |          |                                       |          |     |
|     |                                                                      |                 | ·              |                  |                  |          |                                       |          |     |
|     | · •••,                                                               |                 |                |                  |                  |          |                                       |          |     |
|     | · ·                                                                  |                 |                | ļ [              |                  |          |                                       |          |     |
|     |                                                                      |                 |                |                  |                  |          |                                       | 1        |     |
|     | MRL (Method Reporting Level):<br>Frigger: DOH Drinking Water resp    |                 |                |                  |                  |          |                                       |          |     |
|     | MCL (maximum contaminant leve<br>ND (Not Detected): Indicates this o |                 | -              | l at a level gro | eater than or eq | •        |                                       |          |     |
|     |                                                                      |                 |                | Ap               | proved By:       |          |                                       |          |     |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

70818-pcbs

Cadmium, Chromium, Nickel, Zinc

| Date Collec                                                               | ted: 07/08/14            |                   |               |                   |          |                   | ·.           |         |
|---------------------------------------------------------------------------|--------------------------|-------------------|---------------|-------------------|----------|-------------------|--------------|---------|
|                                                                           | No: 227-70818            |                   |               | C                 | ounty    | YAKIMA            |              |         |
| Sample Locati                                                             | ion: UST3-12             |                   |               |                   |          |                   |              |         |
|                                                                           |                          |                   |               | Date Re           | ceived:  | 07/08/14          |              |         |
|                                                                           |                          |                   |               |                   |          | 07/29/14          |              |         |
|                                                                           |                          |                   |               | ole Collect       | -        | SDG               |              |         |
| Send Report To:                                                           | •                        |                   | SAMP          | LE COMM           | IENTS    | Matri             | x: Soil      |         |
| PLSA Engineering                                                          |                          |                   |               |                   |          |                   |              |         |
| Attn: Scott Garland                                                       |                          |                   |               |                   |          |                   |              |         |
| 1120 West Lincoln Ave                                                     | nue                      |                   |               |                   |          |                   |              |         |
| Yakima, WA 98902                                                          |                          | <u>.</u>          |               |                   |          |                   |              |         |
| Cadmium, Chromium,                                                        | Nickel, Lead             |                   |               |                   |          |                   |              |         |
| DOH# Analytes                                                             | Results                  | Units             | MRL           | Trigger           | MCL      | Method            | Analyzed     | Analyst |
| Cadmium                                                                   | ND                       | mg/kg             | 0.531         | •                 | 1        | EPA 6020A         | 07/23/14     | 125     |
| Chromium                                                                  | 19.1                     | mg/kg             | 0.531         |                   |          | EPA 6020A         | 07/23/14     | 125     |
| Nickel                                                                    | 17.4                     | mg/kg             | 0.531         |                   |          | EPA 6020A         | 07/23/14     | 125     |
| Zinc                                                                      | 56.0                     | mg/kg             | 0.531         |                   |          | EPA 6020A         | 07/23/14     | 125     |
|                                                                           |                          |                   |               |                   |          |                   |              |         |
|                                                                           |                          |                   |               |                   |          | ,<br>             |              |         |
| · · · · · · · · · · · · · · · · · · ·                                     |                          |                   |               |                   |          |                   |              |         |
|                                                                           |                          | <del>.</del>      |               |                   |          |                   |              |         |
|                                                                           |                          |                   |               |                   |          |                   |              |         |
|                                                                           |                          |                   |               |                   |          |                   |              |         |
|                                                                           |                          |                   |               |                   |          |                   |              |         |
|                                                                           |                          |                   |               |                   | <u> </u> |                   |              |         |
|                                                                           |                          |                   |               | <b>-</b> .        |          |                   |              |         |
|                                                                           | -                        |                   |               |                   |          |                   |              |         |
|                                                                           |                          |                   |               |                   |          |                   |              |         |
|                                                                           |                          |                   |               | ·                 |          |                   |              |         |
|                                                                           |                          |                   |               |                   |          |                   |              |         |
|                                                                           |                          |                   |               |                   |          |                   |              |         |
|                                                                           |                          |                   |               |                   |          |                   |              |         |
|                                                                           |                          |                   |               |                   |          |                   |              |         |
|                                                                           |                          |                   |               |                   |          |                   |              |         |
|                                                                           |                          |                   |               |                   |          |                   |              |         |
| MRL (Method Reporting Level): Ir<br>Trigger: DOH Drinking Water respon    | nse level. Public System | ns in excess of t | nis level mus | t take additional | samples. | Recommended range | on packages. |         |
| MCL (maximum contaminant level):<br>ND (Not Detected): Indicates this con |                          | -                 |               | -                 | -        |                   |              |         |
|                                                                           |                          |                   | Ар            | proved By:        |          |                   |              |         |

70818-cdcrni

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### Client: VALLEY ENVIRONMENTAL LAB Address: 15 W. YAKIMA AVE STE210

DARA OSBORNE

15 W. YAKIMA AVE STE210 YAKIMA, WA 98901 Batch #: 140
Project Name: VO

140714014 VOC / METALS / PAH / PCB

Attn:

#### **Analytical Results Report**

| Sample Number              | 140714014-006<br>70818 | Sampling Date                    | 7/8/2014 | Date/Time Received | 7/11/2014 | 11:20 AM |
|----------------------------|------------------------|----------------------------------|----------|--------------------|-----------|----------|
| Client Sample ID<br>Matrix | Soil                   | Sampling Time<br>Sample Location | 9:40 AM  |                    |           |          |
| Comments                   |                        | oumple Eooston                   |          |                    |           |          |

| Parameter                         | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier |
|-----------------------------------|--------|-------|-------|---------------|---------|-----------|-----------|
| 1,1,1,2-Tetrachloroethane         | NÐ     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,1-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-dichloropropene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichloropropane            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromo-3-chloropropane(DBCP) | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromoethane                 | ND     | mg/kg | 0.001 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3,5-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,4-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-hexanone                        | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| 4-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Acetone                           | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Acrylonitrile                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Benzene                           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromobenzene                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromochloromethane                | ND     | mġ/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
|                                   |        |       |       |               |         |           |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C695 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C685; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

# Client:VALLEY ENVIRONMENTAL LABBatch #:140714014Address:15 W. YAKIMA AVE STE210Project Name:VOC / METALS / PAH / PCBYAKIMA, WA 98901DARA OSBORNEE

#### **Analytical Results Report**

| Sample Number    | 140714014-006 | Sampling Date   | 7/8/2014 | Date/Time Received | 7/11/2014 | 11:20 AM |
|------------------|---------------|-----------------|----------|--------------------|-----------|----------|
| Client Sample ID | 70818         | Sampling Time   | 9:40 AM  |                    |           |          |
| Matrix           | Soil          | Sample Location |          |                    |           |          |
| Comments         |               |                 |          |                    |           |          |

| Parameter                     | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier  |
|-------------------------------|--------|-------|-------|---------------|---------|-----------|------------|
| Bromodichloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B | - <u> </u> |
| Bromoform                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Bromomethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Carbon disulfide              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Carbon Tetrachloride          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Chlorobenzene                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Chloroethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Chloroform                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Chloromethane                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| cis-1,2-dichloroethene        | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| cis-1,3-Dichloropropene       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Dibromochloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Dibromomethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Dichlorodifluoromethane       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Ethylbenzene                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Hexachlorobutadiene           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| lsopropylbenzene              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| m+p-Xylene                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Methyl ethyl ketone (MEK)     | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |            |
| Methyl isobutyl ketone (MIBK) | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |            |
| Methylene chloride            | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |            |
| methyl-t-butyl ether (MTBE)   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Naphthalene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| n-Butylbenzene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| n-Propylbenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| o-Xylene                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| p-isopropyltoluene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| sec-Butylbenzene              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
| Styrene                       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |            |
|                               |        |       |       |               |         |           |            |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-D02; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

# Client:VALLEY ENVIRONMENTAL LABBatch #:140714014Address:15 W. YAKIMA AVE STE210Project Name:VOC / METALS / PAH / PCBYAKIMA, WA 98901DARA OSBORNEE

#### **Analytical Results Report**

| ample Number<br>ilient Sample ID<br>latrix<br>omments | 140714014-006<br>70818<br>Soil |         | Sampling D.<br>Sampling Ti<br>Sample Loc | ime   | 7/8/2014 Dat<br>9:40 AM | e/Time Rece | ived 7/11/2014 | 11:20 AM |
|-------------------------------------------------------|--------------------------------|---------|------------------------------------------|-------|-------------------------|-------------|----------------|----------|
| Parameter                                             |                                | Result  | Units                                    | PQL   | Analysis Date           | Analyst     | Method         | Qualifie |
| tert-Butylbenze                                       | ne                             | ND      | mg/kg                                    | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |          |
| Tetrachloroethe                                       | ene                            | 0.00783 | mg/kg                                    | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |          |
| Toluene                                               |                                | ND      | mg/kg                                    | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |          |
| trans-1,2-Dichle                                      | proethene                      | ND      | mg/kg                                    | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |          |
| trans-1,3-Dichle                                      | propropene                     | ND      | mg/kg                                    | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |          |
| Trichloroethene                                       | )                              | ND      | mg/kg                                    | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |          |
| Trichloroflouror                                      | nethane                        | ND      | mg/kg                                    | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |          |
| Vinyl Chloride                                        |                                | ND      | mg/kg                                    | 0.005 | 7/17/2014               | SAT         | EPA 8260B      |          |
| %moisture                                             |                                | 4.7     | Percent                                  |       | 7/17/2014               | SAT         | %moisture      |          |

| ample Number 140714014-006 |           |                  |                |
|----------------------------|-----------|------------------|----------------|
| Surrogate Standard         | Method    | Percent Recovery | Control Limits |
| 1,2-Dichlorobenzene-d4     | EPA 8260B | 87.6             | 70-130         |
| 4-Bromofluorobenzene       | EPA 8260B | 95.2             | 70-130         |
| Toluene-d8                 | EPA 8260B | 98.8             | 70-130         |

Surrogate Data

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:       VALLEY ENVIRONMENTAL LAB         Address:       15 W. YAKIMA AVE STE210         YAKIMA, WA 98901         Attn:       DARA OSBORNE         Analytical Results |                                | -                                                 | ect Name: VOC / N   | 140714014<br>VOC / METALS / PAH / PCB |                        |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------|---------------------|---------------------------------------|------------------------|----------|
| Sample Number<br>Client Sample ID<br>Matrix                                                                                                                                | 140714014-006<br>70818<br>Soil | Sampling Date<br>Sampling Time<br>Sample Location | 7/8/2014<br>9:40 AM | Date/Time Received<br>Extraction Date | 7/11/2014<br>7/17/2014 | 11:20 AM |

Comments

| Parameter              | Result | Units   | PQL  | Analysis Date | Analyst | Method    | Qualifie |
|------------------------|--------|---------|------|---------------|---------|-----------|----------|
| 2-Methylnaphthalene    | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Acenaphthene           | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Acenaphthylene         | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Anthracene             | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Benzo(ghi)perylene     | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Benzo[a]anthracene     | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Benzo[a]pyrene         | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Benzo[b]fluoranthene   | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Benzo[k]fluoranthene   | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Chrysene               | 0.0112 | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Dibenz[a,h]anthracene  | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Fluoranthene           | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Fluorene               | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Indeno[1,2,3-cd]pyrene | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Naphthalene            | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Phenanthrene           | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| Ругепе                 | ND     | mg/Kg   | 0.01 | 7/17/2014     | EMP     | EPA 8270D |          |
| %moisture              | 4.7    | Percent |      | 7/17/2014     | SAT     | %moisture |          |

#### Surrogate Data

| Sample Number | 140714014-006 |           |                  |                |
|---------------|---------------|-----------|------------------|----------------|
| Surrogate :   | Standard      | Method    | Percent Recovery | Control Limits |
| Terphenyl-d   | 14            | EPA 8270D | 92.2             | 18-137         |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |

### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-006<br>70818<br>Soil |        | Sampling Da<br>Sampling Ti<br>Sample Loca | me      |             | Date/Time Receiv<br>Extraction Date | ed 7/11/2014<br>7/18/2014 | 11:20 AM  |
|---------------------------------------------------------|--------------------------------|--------|-------------------------------------------|---------|-------------|-------------------------------------|---------------------------|-----------|
| Parameter                                               |                                | Result | Units                                     | PQL     | Analysis Da | ate Analyst                         | Method                    | Qualifie  |
| Aroclor 1016 (i                                         | PCB-1016)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | 4 SAT                               | EPA 8082                  |           |
| Aroclor 1221 (I                                         | PCB-1221)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | 4 SAT                               | EPA 8082                  |           |
| Aroclor 1232 (F                                         | PCB-1232)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | 4 SAT                               | EPA 8082                  |           |
| Aroclor 1242 (F                                         | PCB-1242)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | 4 SAT                               | EPA 8082                  |           |
| Aroclor 1248 (F                                         | CB-1248)                       | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | 4 SAT                               | EPA 8082                  |           |
| Aroclor 1254 (F                                         | PCB-1254)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | 4 SAT                               | EPA 8082                  |           |
| Aroclor 1260 (F                                         | °CB-1260)                      | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | 1 SAT                               | EPA 8082                  |           |
| PCB 8082 (tota                                          | il)                            | ND     | mg/kg                                     | 0.1     | 7/22/2014   | 1 SAT                               | EPA 8082                  |           |
| %moisture                                               | ·                              | 4.7    | Percent                                   |         | 7/17/2014   | SAT                                 | %moisture                 |           |
|                                                         |                                |        | Surroga                                   | nte Dat | a           |                                     |                           |           |
| mple Number                                             | 140714014-006                  |        |                                           |         |             |                                     |                           | ··· , · · |
| Surrogate St                                            | andard                         |        | Method                                    |         | Pe          | rcent Recovery                      | Control L                 | imits     |
| DCB                                                     |                                |        | EPA 8082                                  |         | 97.4        |                                     | 30-130                    |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; NT:CERTD028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

## Washington State Certified Lab #227 - DOE Accredited Lab C345

BTEX by EPA 8260B

|                         | Date Collect              | ed: 07/08/14                           |                  |                         | A 0200D        | <b>-</b>   |                                                      |              |            |  |  |
|-------------------------|---------------------------|----------------------------------------|------------------|-------------------------|----------------|------------|------------------------------------------------------|--------------|------------|--|--|
| <u> </u>                | Lab/Samela                | No. 227 70010                          |                  |                         |                |            |                                                      |              |            |  |  |
|                         | Sample Location           | No: 227-70819<br>on: DWI-3             | <u> </u>         |                         |                | county:    | YAKIMA                                               | <u></u>      |            |  |  |
|                         |                           |                                        |                  | Date Received: 07/08/14 |                |            |                                                      |              |            |  |  |
|                         |                           |                                        |                  |                         |                |            | 07/29/14                                             |              |            |  |  |
|                         |                           |                                        |                  |                         | ole Collect    |            |                                                      |              |            |  |  |
| end Report              |                           |                                        |                  | SAMPI                   | LE COMM        | ENTS       | Matri                                                | x: Soil      |            |  |  |
|                         | ngineering                |                                        |                  |                         |                |            |                                                      |              |            |  |  |
|                         | ott Garland               |                                        |                  |                         |                |            |                                                      |              |            |  |  |
|                         | est Lincoln Aver          | nue                                    |                  |                         |                |            |                                                      |              |            |  |  |
|                         | WA 98902                  |                                        |                  |                         |                |            | <u></u>                                              |              |            |  |  |
|                         | y EPA 8260B               |                                        | TT •/            | -                       |                | La com     |                                                      |              |            |  |  |
| OH# Analytes<br>Benzene |                           | Results     ND                         | Units            | MRL                     | Trigger        | MCL        |                                                      | Analyzed     |            |  |  |
| Toluene                 | · · ·                     | ND<br>ND                               | ppm<br>ppm       | 0.005                   | · ·            |            | EPA 8260B<br>EPA 8260B                               | 07/17/14     | 125<br>125 |  |  |
| Ethylbenz               | ene                       | ND                                     | ppm<br>ppm       | 0.005                   | <u>-</u>       |            | EPA 8260B                                            | 07/17/14     | 125        |  |  |
| Xylenes (               |                           | ND                                     | ppm              | 0.005                   | - ·            | +          | EPA 8260B                                            | 07/17/14     | 125        |  |  |
|                         |                           |                                        | **               |                         |                |            |                                                      |              |            |  |  |
|                         |                           |                                        |                  |                         |                |            |                                                      |              |            |  |  |
|                         |                           |                                        |                  |                         |                |            |                                                      |              |            |  |  |
|                         |                           |                                        |                  |                         |                |            |                                                      |              |            |  |  |
|                         |                           |                                        |                  |                         |                |            |                                                      |              |            |  |  |
|                         | ···-                      |                                        |                  | · ·                     |                | <u> </u>   |                                                      |              |            |  |  |
|                         |                           | ·                                      | ···              |                         |                |            | ·                                                    |              |            |  |  |
|                         |                           |                                        |                  |                         |                |            |                                                      |              |            |  |  |
| · ·                     | <u> </u>                  |                                        | ···              |                         | ·              |            | ·                                                    |              |            |  |  |
| ·                       |                           |                                        |                  |                         |                |            |                                                      |              |            |  |  |
|                         |                           |                                        |                  |                         |                |            |                                                      |              |            |  |  |
|                         |                           |                                        |                  |                         | <u> </u>       |            |                                                      |              |            |  |  |
|                         |                           |                                        |                  |                         |                |            |                                                      |              |            |  |  |
|                         |                           |                                        |                  |                         |                |            |                                                      |              |            |  |  |
|                         |                           |                                        |                  |                         |                |            |                                                      |              | ·          |  |  |
|                         |                           |                                        |                  |                         |                |            |                                                      |              |            |  |  |
| ·                       |                           |                                        |                  |                         |                |            | <u> </u>                                             |              |            |  |  |
| MRL (Metho              | d Reporting Level): In    | dicates the minimum n                  | eporting level r | equired and o           | btained by the | lahoratory | (MDL <mri<sri)< td=""><td></td><td></td></mri<sri)<> |              |            |  |  |
|                         | H Drinking Water respon   |                                        |                  |                         |                |            |                                                      |              |            |  |  |
|                         | um contaminant level):    |                                        |                  |                         |                |            |                                                      | on puonugos. |            |  |  |
|                         | cted): Indicates this con |                                        |                  |                         |                |            |                                                      |              |            |  |  |
|                         |                           |                                        |                  | Ар                      | proved By:     |            | $\left  \right $                                     |              |            |  |  |
|                         |                           | ······································ |                  | <b>F</b> .              |                |            |                                                      | ·            |            |  |  |

70819-btex

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

### VALLEY Environmental Laboratory 15 W. Yakima Ave, St 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Washington State DOE Accredited Lab #<br>Sampled At: DWI-3 | C345      | Date Reported: 07/29/14<br>Date Collected: 07/08/14<br>Time Collected: 10:32 AM<br>Sampled By: SDG |                                                                                                                                                                                                                                    |         |      |          |  |  |
|------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|----------|--|--|
| PLSA Engineering                                           |           | · · · · · · · · · · · · · · · · · · ·                                                              |                                                                                                                                                                                                                                    |         |      | <u> </u> |  |  |
| Attn: Scott Garland                                        |           |                                                                                                    |                                                                                                                                                                                                                                    |         |      |          |  |  |
| 1120 West Lincoln Avenue                                   |           |                                                                                                    |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Yakima, WA 98902                                           |           |                                                                                                    |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Volatile Organic Chemicals                                 |           | Mathada                                                                                            | EPA 8260B                                                                                                                                                                                                                          | Matrix: |      | 27700    |  |  |
| VEL Sample #                                               | 227-70819 | Miethou:                                                                                           | EFA 8200D                                                                                                                                                                                                                          | Matrix: | 5011 |          |  |  |
| Sample ID                                                  | DWI-3     | מיני איניגינאניעניינייניאניאניאניאניאנייניינייניינייניינ                                           | יין מאוינים מארפארט עראיייא אויילא איי איילי אייזא אויינע אויינע איינע איינע איינע איינע איינע איינע איינע איי<br>איינע איינע איינ |         |      |          |  |  |
| Units                                                      |           | <b>T</b> • •/.                                                                                     |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Check Standards - Ave.Recovery:                            | ppm       | Limits                                                                                             |                                                                                                                                                                                                                                    |         | 1    | ·        |  |  |
| Onton Standarus - Avenceuvery;                             |           |                                                                                                    |                                                                                                                                                                                                                                    |         | <br> |          |  |  |
| 1,2-Dichlorobenzene-d4                                     | 88.00%    | (70-130)                                                                                           |                                                                                                                                                                                                                                    |         |      |          |  |  |
| 4-Bromofluorobenzene                                       | 94.00%    | (70-130)                                                                                           |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Toluene-d8                                                 | 98.80%    | (70-130)                                                                                           |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Dichlorodifluoromethane                                    | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    | ······  |      |          |  |  |
| Chloromethane                                              | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Vinyl chloride                                             | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Bromomethane                                               | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Chloroethane                                               | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Acetone                                                    | ND        | 0.025                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Acrolein                                                   | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| 1,1-Dichloroethylene                                       | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Methylene chloride                                         | ND        | 0.025                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Acrylonitrile                                              | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| trans-1,2-Dichloroethylene                                 | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| 1,1-Dichloroethane                                         | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Methyl ethyl ketone (MEK)                                  | ND        | 0.025                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| cis-1,2-Dichloroethylene                                   | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| 2,2-Dichloropropane                                        | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Chloroform                                                 | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Bromochloromethane                                         | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| 1,1,1-Trichloroethane                                      | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| 1,2-Dichloroethane                                         | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| ,1-Dichloropropene                                         | ND        | 0.005                                                                                              | ĺ                                                                                                                                                                                                                                  |         |      |          |  |  |
| Carbon tetrachloride                                       | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Benzene                                                    | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Frichloroethylene                                          | ND        | 0.005                                                                                              |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Date Analyzed:                                             | 7/17/2014 |                                                                                                    |                                                                                                                                                                                                                                    |         |      |          |  |  |
| Analyst:                                                   | 125       |                                                                                                    |                                                                                                                                                                                                                                    |         |      |          |  |  |
| ND = None Detected                                         | I         | Page 1 of 3                                                                                        |                                                                                                                                                                                                                                    |         |      |          |  |  |

### VALLEY Environmental Laboratory 15 W. Yakima Ave, St 210 Yakima, WA 98902

## (509) 575 - 3999 Fax: (509) 575 - 3068

1

| (30) 313 - 3777 TAX. (30) 313 |           | ganic Com                                                             | pounds (Continued) |
|-------------------------------|-----------|-----------------------------------------------------------------------|--------------------|
| VEL Sample #                  |           |                                                                       |                    |
| Sample ID                     |           | n () ( N. 1919) - Picking Prieston ( n. 1919) - Balanta Garat ( 1919) |                    |
| Units                         | r i       | Limts                                                                 |                    |
| 1,2-Dichloropropane           | ND        | 0.005                                                                 |                    |
| Dibromomethane                | ND        | 0.005                                                                 |                    |
| Bromodichloromethane          | ND        | 0.005                                                                 |                    |
| cis-1,3-Dichloropropene       | ND        | 0.005                                                                 |                    |
| Toluene                       | ND        | 0.005                                                                 |                    |
| trans-1,3-Dichloropropene     | ND        | 0.005                                                                 |                    |
| 1,1,2-Trichloroethane         | ND        | 0.005                                                                 |                    |
| 1,3-Dichloropropane           | ND        | 0.005                                                                 |                    |
| Dibromochloromethane          | ND        | 0.005                                                                 |                    |
| Tetrachloroethylene           | ND        | 0.005                                                                 |                    |
| 1,2-Dibromoethane             | ND        | 0.001                                                                 |                    |
| Chlorobenzene                 | ND        | 0.001                                                                 |                    |
| 1,1,1,2-Tetrachloroethane     | ND        | 0.005                                                                 | •                  |
| Ethylbenzene                  | ND        | 0.005                                                                 |                    |
| m,p-Xylene                    | ND        | 0.005                                                                 |                    |
| Styrene                       | ND        | 0.005                                                                 |                    |
| o-Xylene                      | ND        | 0.005                                                                 |                    |
| Bromoform                     | ND        | 0.005                                                                 |                    |
| 1,1,2,2-Tetrachloroethane     | ND        | 0.005                                                                 |                    |
| 1,2,3-Trichloropropane        | ND        | 0.005                                                                 |                    |
| Bromobenzene                  | ND        | 0.005                                                                 |                    |
| n-Propylbenzene               | ND        | 0.005                                                                 |                    |
| 2-Chlorotoluene               | ND        | 0.005                                                                 |                    |
| 4-Chlorotoluene               | ND        | 0.005                                                                 |                    |
| 1,3,5-Trimethylbenzene        | ND        | 0.005                                                                 |                    |
| tert-Butylbenzene             | ND        | 0.005                                                                 |                    |
| 1,2,4-Trimethylbenzene        | ND        | 0.005                                                                 |                    |
| sec-Butylbenzene              | ND        | 0.005                                                                 |                    |
| 1,3-Dichlorobenzene           | ND        | 0.005                                                                 |                    |
| 1,4-Dichlorobenzene           | ND        | 0.005                                                                 |                    |
| 4-Isopropyltoluene            | ND        | 0.005                                                                 |                    |
| 1,2-Dichlorobenzene           | ND        | 0.005                                                                 |                    |
| n-Butylbenzene                | ND        | 0.005                                                                 |                    |
| 1,2-Dibromo-3-chloropropane   | ND        | 0.005                                                                 |                    |
| 1,2,4-Trichlorobenzene        | ND        | 0.005                                                                 |                    |
| Naphthalene                   | ND        | 0.005                                                                 |                    |
| Date Analyzed:                | 7/17/2014 |                                                                       |                    |
| Analyst:                      | 125       |                                                                       |                    |
|                               | <u> </u>  |                                                                       |                    |
|                               |           |                                                                       | Page 2 of 3        |

### VALLEY Environmental Laboratory 15 W. Yakima Ave, St 210

### Yakima, WA 98902

,

| (509) 575 - 5999 Fax: (50             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | mpounds (Co                                                        | ntinuod) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VEL Sample #                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ganic Co                              | hpounds (Co                                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample ID                             | WINNER THE PROPERTY DAMAGE MUSIC CONTRACT OF THE PROPERTY OF T | Maganan protes provinsi and maganah ( | Энин орольных на нализира кажалар в канак ча горона каждуна и жүни |          | N 2016 M (D 144) (D 144 (D 144 (D 1 14 (D 144 (D 14 |
| Units                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limits                                |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,1-Trichloroethane                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    | <br>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1,2,2-Tetrachloroethane             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1-Dichloroethene                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,3-Trichlorobenzene                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichloroethane                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-hexanone                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.025                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bromoform                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Carbon disulfide                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chlorobenzene                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cis-1,2-dichloroethene                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cis-1,3-Dichloropropene               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hexachlorobutadiene                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Isopropylbenzene                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Methyl Isobutyl ketone (MIBK)         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.025                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| methyl-t-butyl ether (MTBE)           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.025                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| p-siopropyltoluene                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tert-Butylbenzene                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| trans-1,2-Dichloroethene              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trichlorofluoromethane                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tetrachloroethene                     | 0.00574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                 |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Analyzed:                        | 7/17/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyst:                              | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    | ĺ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ha                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                               | Page 3 of 3                                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Washington State Certified Lab #227 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

|      | Date Collecte                                                                                                                                          | d: 07/08/14                                   |                                    |                                                    |                                     |                          |            |           |              |             |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------|----------------------------------------------------|-------------------------------------|--------------------------|------------|-----------|--------------|-------------|--|--|
|      | Lab/Sample N                                                                                                                                           |                                               | ·                                  |                                                    | C                                   | 'ounty:                  | YAKIN      | /IA       |              |             |  |  |
|      | Sample Locatio                                                                                                                                         | n: DWI-3                                      |                                    |                                                    |                                     |                          |            |           |              |             |  |  |
|      |                                                                                                                                                        |                                               |                                    | Date Received: 07/08/14                            |                                     |                          |            |           |              |             |  |  |
|      |                                                                                                                                                        |                                               |                                    |                                                    | Date Rep                            | orted:                   | 07/29/1    | 4         |              |             |  |  |
|      |                                                                                                                                                        |                                               |                                    | Samp                                               | le Collect                          | ed By:                   | SDG        |           |              | ·           |  |  |
| Send | Report To:                                                                                                                                             |                                               |                                    | SAMPI                                              | E COMM                              | ENTS                     | I          | Matrix    | : Soil       |             |  |  |
|      | PLSA Engineering                                                                                                                                       |                                               |                                    |                                                    |                                     |                          |            |           |              |             |  |  |
|      | Attn: Scott Garland                                                                                                                                    |                                               |                                    |                                                    |                                     |                          |            |           |              |             |  |  |
|      | 1120 West Lincoln Aven                                                                                                                                 | ue                                            |                                    |                                                    |                                     |                          |            |           |              |             |  |  |
|      | Yakima, WA 98902                                                                                                                                       |                                               |                                    |                                                    |                                     |                          |            |           |              |             |  |  |
|      | Polynuclear Aromatic H                                                                                                                                 | ydrocarbons                                   |                                    |                                                    |                                     |                          |            |           | <u> </u>     | <del></del> |  |  |
| DOH# | Analytes                                                                                                                                               | Results                                       | Units                              | MRL                                                | Trigger                             | MCL                      | Met        | hod       | Analyzed     | Analys      |  |  |
|      | Acenaphthene                                                                                                                                           | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 8270   | )D        | 07/17/14     | 125         |  |  |
|      | Acenaphthylene                                                                                                                                         | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 827(   | D         | 07/17/14     | 125         |  |  |
|      | Anthracene                                                                                                                                             | ND                                            | mg/kg                              | 0.01                                               | <u> </u>                            |                          | EPA 827(   | )D        | 07/17/14     | 125         |  |  |
|      | Benzo(a)anthracene                                                                                                                                     | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 827(   | )D        | 07/17/14     | 125         |  |  |
|      | Benzo(a)pyrene                                                                                                                                         | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 827(   | )D        | 07/17/14     | 125         |  |  |
|      | Benzo(b)fluoranthene                                                                                                                                   | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 827(   | )D        | 07/17/14     | 125         |  |  |
|      | Benzo(ghi)perylene                                                                                                                                     | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 827(   | D         | 07/17/14     | 125         |  |  |
|      | Benzo(k)fluoranthene                                                                                                                                   | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 827(   | )D        | 07/17/14     | 125         |  |  |
|      | Chrysene                                                                                                                                               | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 827(   | )D        | 07/17/14     | 125         |  |  |
|      | Dibenzo(a,h)anthracene                                                                                                                                 | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 827(   | )D        | 07/17/14     | 125         |  |  |
|      | Fluoranthene                                                                                                                                           | ND                                            | mg/kg                              | 0.01                                               |                                     | 1                        | EPA 8270   | )D        | 07/17/14     | 125         |  |  |
|      | Fluorene                                                                                                                                               | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 8270   | D         | 07/17/14     | 125         |  |  |
|      | Indeno(1,2,3-cd)pyrene                                                                                                                                 | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 8270   | )D        | 07/17/14     | 125         |  |  |
|      | Naphthalene                                                                                                                                            | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 8270   | D         | 07/17/14     | 125         |  |  |
|      | Phenanthrene                                                                                                                                           | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 8270   | D         | 07/17/14     | 125         |  |  |
|      | Pyrene                                                                                                                                                 | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 8270   | D         | 07/17/14     | 125         |  |  |
|      | 2-Methylnapthalene                                                                                                                                     | ND                                            | mg/kg                              | 0.01                                               |                                     |                          | EPA 8270   | D         | 07/17/14     | 125         |  |  |
|      | Sumo anto Std.                                                                                                                                         |                                               |                                    |                                                    |                                     |                          |            |           |              | <u> </u>    |  |  |
|      | Surrogate Std:<br>Terphenyl-d14                                                                                                                        | 91.0                                          | <br>Ω/                             | 10 137                                             |                                     |                          | DDA AGES   |           | 07/17/14     | 105         |  |  |
|      |                                                                                                                                                        | 71.0                                          | %                                  | 18-137                                             |                                     |                          | EPA 8270   | U         | 07/17/14     | 125         |  |  |
|      |                                                                                                                                                        |                                               |                                    | ·[                                                 |                                     |                          |            |           |              |             |  |  |
| i    | MRL (Method Reporting Level): Ind<br>Trigger: DOH Drinking Water respons<br>MCL (maximum contaminant level):<br>ND (Not Detected): Indicates this comp | e level. Public Syste<br>Highest level recomr | ms in excess of<br>nended by the f | this level mu<br>ederal govern<br>1 at a level gre | st take addition<br>ment for public | al samples<br>water syst | . Recommen | ded range | on packages. |             |  |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-30670819-8270pah

### Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

| Date Collec                                                     | cted: 07/08/14           |                   |                                              | ш, тлекс          |             |            |              |         |  |  |  |
|-----------------------------------------------------------------|--------------------------|-------------------|----------------------------------------------|-------------------|-------------|------------|--------------|---------|--|--|--|
| Lab/Sample                                                      | No: 227-70819            |                   |                                              | C                 | ountv       | YAKIMA     |              |         |  |  |  |
| Sample Locat                                                    |                          | <u> </u>          |                                              |                   |             |            |              |         |  |  |  |
| 1                                                               |                          |                   | Date Received: 07/08/14                      |                   |             |            |              |         |  |  |  |
|                                                                 |                          |                   |                                              |                   |             | 07/29/14   |              |         |  |  |  |
|                                                                 |                          |                   | Sam                                          | ole Collect       |             |            |              |         |  |  |  |
| Send Report To:                                                 |                          |                   |                                              | LE COMM           |             |            | x: Soil      |         |  |  |  |
| PLSA Engineering                                                |                          |                   | 1                                            |                   |             |            |              |         |  |  |  |
| Attn: Scott Garland                                             |                          |                   |                                              |                   |             |            |              |         |  |  |  |
| 1120 West Lincoln Av                                            | enue                     |                   |                                              |                   |             |            |              |         |  |  |  |
| Yakima, WA 98902                                                |                          |                   |                                              |                   |             |            |              |         |  |  |  |
| Cadmium, Chromium                                               | , Nickel, Zinc           |                   | <u>.                                    </u> |                   | <u> </u>    |            | <u></u>      |         |  |  |  |
| DOH# Analytes                                                   | Results                  | Units             | MRL                                          | Trigger           | MCL         | Method     | Analyzed     | Analyst |  |  |  |
| Cadmium                                                         | ND                       | mg/kg             | 0.511                                        |                   |             | EPA 6020A  |              | 125     |  |  |  |
| Chromium                                                        | 19.9                     | mg/kg             | 0.511                                        |                   |             | EPA 6020A  | 07/23/14     | 125     |  |  |  |
| Nickel                                                          | 17.2                     | mg/kg             | 0.511                                        |                   |             | EPA 6020A  | 07/23/14     | 125     |  |  |  |
| Zinc                                                            | 62.2                     | mg/kg             | 0.511                                        |                   |             | EPA 6020A  | 07/23/14     | 125     |  |  |  |
|                                                                 |                          |                   |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          |                   |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          |                   |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          |                   |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          | -                 |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          |                   |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          |                   |                                              |                   |             |            |              |         |  |  |  |
| -                                                               |                          |                   |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          |                   |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          |                   |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          |                   |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          | <del></del>       |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          |                   |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          | -                 |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          |                   |                                              |                   | <u> </u>    | <u> </u>   |              |         |  |  |  |
|                                                                 |                          |                   |                                              |                   |             |            | 1            |         |  |  |  |
|                                                                 |                          |                   |                                              |                   |             |            |              |         |  |  |  |
|                                                                 |                          |                   |                                              |                   |             |            | 1            |         |  |  |  |
| MRL (Method Reporting Level): Trigger: DOH Drinking Water respo |                          |                   |                                              | -                 |             | -          | on packages. |         |  |  |  |
| MCL (maximum contaminant level                                  | I): Highest level recomm | ended by the fed  | leral governm                                | nent for public v | water syste | ms.        |              |         |  |  |  |
| ND (Not Detected): Indicates this co                            | ombonnn was apalâzed at  | iu not detected a |                                              | proved By:        | u to the M  | KL OF SKL. |              |         |  |  |  |

70819-cdcrni

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### Client: VALLEY ENVIRONMENTAL LAB Batch #: 140714014 Address: 15 W. YAKIMA AVE STE210 Project Name: VOC / METALS / PAH / PCB YAKIMA, WA 98901 Attn: DARA OSBORNE

### **Analytical Results Report**

| Sample Number    | 140714014-007 | Sampling Date   | 7/8/2014 | Date/Time Received | 7/11/2014 | 11:20 AM |
|------------------|---------------|-----------------|----------|--------------------|-----------|----------|
| Client Sample ID | 70819         | Sampling Time   | 10:32 AM |                    |           |          |
| Matrix           | Soil          | Sample Location |          |                    |           |          |
| Comments         |               |                 |          |                    |           |          |

| Parameter                         | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifie |
|-----------------------------------|--------|-------|-------|---------------|---------|-----------|----------|
| 1,1,1,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B | ,        |
| 1,1,1-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,1,2,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,1,2-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,1-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,1-Dichloroethene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,1-dichloropropene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2,3-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2,3-Trichloropropane            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2,4-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2,4-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,2-Dibromo-3-chloropropane(DBCP) | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| ,2-Dibromoethane                  | ND     | mg/kg | 0.001 | 7/17/2014     | SAT     | EPA 8260B |          |
| ,2-Dichlorobenzene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| ,2-Dichloroethane                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| ,2-Dichloropropane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 1,3,5-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| ,3-Dichlorobenzene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| ,3-Dichloropropane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| ,4-Dichlorobenzene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 2,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| 2-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| -hexanone                         | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |          |
| -Chlorotoluene                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Acetone                           | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |          |
| crylonitrile                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| enzene                            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| romobenzene                       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| romochloromethane                 | ND     | ng/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0096; FL(NELAP): E871099

,

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

|                    | - oplague ote. D • opokal |        | + (509) 050-58 |        | (309) 636-4433 • em | ali spokane(<br>- | @anatekiaps.com |           |
|--------------------|---------------------------|--------|----------------|--------|---------------------|-------------------|-----------------|-----------|
| Client:            | VALLEY ENVIRON            |        | AB             |        | Batch #:            |                   | 7 <b>140</b> 14 |           |
| Address:           | 15 W. YAKIMA AVE          | STE210 |                |        | Project Nam         | ne: VOC           | C / METALS / P. | AH / PCB  |
|                    | YAKIMA, WA 98901          |        |                |        |                     |                   |                 |           |
| Attn:              | DARA OSBORNE              |        |                |        |                     |                   |                 |           |
|                    |                           | Ar     | nalytical l    | Result | s Report            |                   |                 |           |
| Sample Number      | 140714014-007             |        | Sampling D     | ate    | 7/8/2014 Date       | /Time Rece        | ived 7/11/2014  | 11:20 AM  |
| Client Sample ID   |                           |        | Sampling T     |        | 10:32 AM            |                   |                 |           |
| Matrix<br>Comments | Soil                      |        | Sample Loc     | ation  |                     |                   |                 |           |
| oonmenta           |                           |        |                |        |                     |                   |                 |           |
| Parameter          |                           | Result | Units          | PQL    | Analysis Date       | Analyst           | Method          | Qualifier |
| Bromodichlor       | romethane                 | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Bromoform          |                           | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Bromometha         | ne                        | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Carbon disulf      | īde                       | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Carbon Tetra       | chloride                  | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Chlorobenzer       | ne                        | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Chloroethane       | •                         | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Chloroform         |                           | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Chloromethar       | ne                        | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| cis-1,2-dichlo     | roethene                  | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| cis-1,3-Dichlo     | ropropene                 | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Dibromochlor       | omethane                  | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Dibromometh        | ane                       | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Dichlorodifiuo     | romethane                 | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Ethylbenzene       |                           | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Hexachlorobu       | tadiene                   | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Isopropylbenz      | ene                       | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| m+p-Xylene         |                           | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Methyl ethyl k     | etone (MEK)               | ND     | mg/kg          | 0.025  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Methyl isobuty     | /I ketone (MIBK)          | ND     | mg/kg          | 0.025  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Methylene chi      | oride                     | ND     | mg/kg          | 0.025  | 7/17/2014           | SAT               | EPA 8260B       |           |
| methyl-t-butyl     | ether (MTBE)              | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |
| Naphthalene        |                           | ND     | mg/kg          | 0.005  | 7/17/2014           | SAT               | EPA 8260B       |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C586; MT:Cert0095; FL(NELAP): E871099

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.005

0.005

0.005

0.005

0,005

0.005

7/17/2014

7/17/2014

7/17/2014

7/17/2014

7/17/2014

7/17/2014

SAT

SAT

SAT

SAT

SAT

SAT

EPA 8260B

EPA 8260B

EPA 8260B

EPA 8260B

EPA 8260B

EPA 8260B

ND

ND

ND

ND

ND

ND

n-Butylbenzene

n-Propylbenzene

p-isopropyltoluene

sec-Butylbenzene

o-Xylene

Styrene

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

## Client:VALLEY ENVIRONMENTAL LABBatch #:140714014Address:15 W. YAKIMA AVE STE210Project Name:VOC / METALS / PAH / PCBYAKIMA, WA 98901YAKIMA OSBORNEVOC / METALS / PAH / PCB

### **Analytical Results Report**

| ample Number<br>Hent Sample ID<br>Natrix<br>Homments | 140714014-007<br>70819<br>Soil |         | Sampling Da<br>Sampling Ti<br>Sample Loc | me    | 7/8/2014 Da<br>10:32 AM | te/Time Recei | ved 7/11/2014 | 11:20 AM |
|------------------------------------------------------|--------------------------------|---------|------------------------------------------|-------|-------------------------|---------------|---------------|----------|
| Parameter                                            |                                | Result  | Units                                    | PQL   | Analysis Date           | Analyst       | Method        | Qualifie |
| tert-Butylbenze                                      | ne                             | ND      | mg/kg                                    | 0.005 | 7/17/2014               | SAT           | EPA 8260B     |          |
| Tetrachloroethe                                      | ene                            | 0.00574 | mg/kg                                    | 0.005 | 7/17/2014               | SAT           | EPA 8260B     |          |
| Toluene                                              |                                | ND      | mg/kg                                    | 0.005 | 7/17/2014               | SAT           | EPA 8260B     |          |
| trans-1,2-Dichle                                     | proethene                      | ND      | mg/kg                                    | 0.005 | 7/17/2014               | SAT           | EPA 8260B     |          |
| trans-1,3-Dichle                                     | propropene                     | ND      | mg/kg                                    | 0.005 | 7/17/2014               | SAT           | EPA 8260B     |          |
| Trichloroethene                                      | •                              | ND      | mg/kg                                    | 0.005 | 7/17/2014               | SAT           | EPA 8260B     |          |
| Trichloroflouror                                     | nethane                        | NÐ      | mg/kg                                    | 0.005 | 7/17/2014               | SAT           | EPA 8260B     |          |
| Vinyl Chloride                                       |                                | ND      | mg/kg                                    | 0.005 | 7/17/2014               | SAT           | EPA 8260B     |          |
| %moisture                                            |                                | 6.2     | Percent                                  |       | 7/17/2014               | SAT           | %moisture     |          |

| mple Number    | 140714014-007 |           |                  |                |
|----------------|---------------|-----------|------------------|----------------|
| Surrogate Sta  | ndard         | Method    | Percent Recovery | Control Limits |
| 1,2-Dichlorobe | nzene-d4      | EPA 8260B | 88.0             | 70-130         |
| 4-Bromofluorol | oenzene       | EPA 8260B | 94.0             | 70-130         |
| Toluene-d8     |               | EPA 8260B | 98.8             | 70-130         |

Surrogate Data

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0026; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

# Client:VALLEY ENVIRONMENTAL LABBatch #:140714014Address:15 W. YAKIMA AVE STE210Project Name:VOC / METALS / PAH / PCBYAKIMA, WA 98901DARA OSBORNEEnd Content of the second se

### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Aatrix<br>Comments | 140714014-007<br>70819<br>Soil |        | Sampling Da<br>Sampling Ti<br>Sample Loc | me     |              | ate/Time Rece<br>xtraction Date | ived 7/11/2014<br>7/17/2014 | 11:20 AM |
|---------------------------------------------------------|--------------------------------|--------|------------------------------------------|--------|--------------|---------------------------------|-----------------------------|----------|
| Parameter                                               |                                | Result | Units                                    | PQL    | Analysis Dat | e Analyst                       | Method                      | Qualifie |
| 2-Methylnaphth                                          | alene                          | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Acenaphthene                                            |                                | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Acenaphthylen                                           | e                              | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Anthracene                                              |                                | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Benzo(ghi)pery                                          | lene                           | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Benzo[a]anthra                                          | cene                           | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Benzo[a]pyrene                                          | :                              | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Benzo[b]fluorar                                         | thene                          | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Benzo[k]fluoran                                         | thene                          | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Chrysene                                                |                                | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Dibenz[a,h]anth                                         | racene                         | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Fluoranthene                                            |                                | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Fluorene                                                |                                | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Indeno[1,2,3-cd                                         | ]pyrene                        | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Naphthalene                                             |                                | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Phenanthrene                                            |                                | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| Pyrene                                                  |                                | ND     | mg/Kg                                    | 0.01   | 7/17/2014    | EMP                             | EPA 8270D                   |          |
| %moisture                                               |                                | 6.2    | Percent                                  |        | 7/17/2014    | SAT                             | %moisture                   |          |
|                                                         |                                |        | Surrog                                   | ate Da | ta           | <u></u> "                       |                             |          |

| Sample Number      |           |                  |                |  |
|--------------------|-----------|------------------|----------------|--|
| Surrogate Standard | Method    | Percent Recovery | Control Limits |  |
| Terphenyl-d14      | EPA 8270D | 91.0             | 18-137         |  |
|                    |           |                  |                |  |

Certifications heid by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00D13; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |

### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-007<br>70819<br>Soil |        | Sampling Da<br>Sampling Ti<br>Sample Loca | me      | 7/8/2014<br>10:32 AM | Date/Time Recei<br>Extraction Date | ved 7/11/2014<br>7/18/2014 | 11:20 AM |
|---------------------------------------------------------|--------------------------------|--------|-------------------------------------------|---------|----------------------|------------------------------------|----------------------------|----------|
| Parameter                                               |                                | Result | Units                                     | PQL     | Analysis D           | ate Analyst                        | Method                     | Qualifie |
| Aroclor 1016 (I                                         | PCB-1016)                      | ND     | mg/Kg                                     | 0.1     | 7/22/201             | I4 SAT                             | EPA 8082                   |          |
| Aroclor 1221 (F                                         | PCB-1221)                      | ND     | mg/Kg                                     | 0.1     | 7/22/201             | i4 SAT                             | EPA 8082                   |          |
| Aroclor 1232 (F                                         | PCB-1232)                      | ND     | mg/Kg                                     | 0.1     | 7/22/201             | 4 SAT                              | EPA 8082                   |          |
| Aroclor 1242 (F                                         | PCB-1242)                      | ND     | mg/Kg                                     | 0.1     | 7/22/201             | 4 SAT                              | EPA 8082                   |          |
| Aroclor 1248 (F                                         | PCB-1248)                      | ND     | mg/Kg                                     | 0.1     | 7/22/201             | 4 SAT                              | EPA 8082                   |          |
| Aroclor 1254 (F                                         | PCB-1254)                      | ND     | mg/Kg                                     | 0.1     | 7/22/201             | 4 SAT                              | EPA 8082                   |          |
| Aroclor 1260 (F                                         | PCB-1260)                      | ND     | mg/Kg                                     | 0.1     | 7/22/201             | 4 SAT                              | EPA 8082                   |          |
| PCB 8082 (tota                                          | al)                            | ND     | mg/kg                                     | 0.1     | 7/22/201             | 4 SAT                              | EPA 8082                   |          |
| %moisture                                               |                                | 6.2    | Percent                                   |         | 7/17/201             | 4 SAT                              | %moisture                  |          |
|                                                         |                                |        | Surroga                                   | ate Dat | ta                   |                                    |                            |          |
| mple Number                                             | 140714014-007                  |        |                                           |         |                      |                                    |                            |          |
| Surrogate St                                            | andard                         |        | Method                                    |         | P                    | ercent Recovery                    | Control L                  | .imits   |
| DCB                                                     |                                |        | EPA 808                                   | 32      |                      | 92.8                               | 30-130                     |          |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C585 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

## VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

BTEX by EPA 8260B

|                                                                                                              |                           |                 | J              | A 8200B           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |  |  |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|----------------|-------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|--|--|--|
| Date Collec                                                                                                  | ted: 07/08/14             |                 |                |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |  |  |  |
| Lab/Sample<br>Sample Locat                                                                                   | No: 227-70820             |                 | County: YAKIMA |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |  |  |  |
| Sample Locat                                                                                                 | 10fl: DW1-13              |                 |                | Data Da           |            | : 07/08/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | . <u>.</u> |  |  |  |
|                                                                                                              |                           |                 | -              |                   |            | : 07/29/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u> |            |  |  |  |
|                                                                                                              |                           |                 | Sami           | ple Collect       | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |  |  |  |
| end Report To:                                                                                               |                           |                 |                | LE COMM           | · · ·      | and the second se | x: Soil  |            |  |  |  |
| PLSA Engineering                                                                                             |                           |                 | , STRINE ,     |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | • .        |  |  |  |
| Attn: Scott Garland                                                                                          |                           |                 |                |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |  |  |  |
| 1120 West Lincoln Ave                                                                                        | enue                      |                 |                |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |  |  |  |
| Yakima, WA 98902                                                                                             |                           |                 | 1              |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |  |  |  |
| BTEX by EPA 8260B                                                                                            | <u></u>                   |                 | "I             |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |  |  |  |
| OH# Analytes                                                                                                 | Results                   | Units           | MRL            | Trigger           | MCL        | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analyzed | Analy      |  |  |  |
| Benzene                                                                                                      | ND                        | ppm             | 0.005          |                   | +          | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07/17/14 | 125        |  |  |  |
| Toluene                                                                                                      | ND                        | ppm             | 0.005          | · · · · -         |            | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07/17/14 | · · · · ·  |  |  |  |
| Ethylbenzene                                                                                                 | ND                        | ppm             | 0.005          | ····              |            | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07/17/14 | 125        |  |  |  |
| Xylenes (m,p,o)                                                                                              | ND                        | ppm             | 0.005          |                   |            | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07/17/14 | 125        |  |  |  |
| MRL (Method Reporting Level): 1<br>Trigger: DOH Drinking Water respondence<br>MCL (maximum contaminant level | onse level. Public Syster | ns in excess of | this level mu  | ist take addition | al samples | s. Recommended rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |            |  |  |  |
| ND (Not Detected): Indicates this co                                                                         |                           |                 |                |                   |            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |            |  |  |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

70820-btex

### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902

| Washington State DOE Accredited Lab #<br>Sampled At: DWI-13 | Date Reported: 07/29/14<br>Date Collected: 07/08/14<br>Time Collected: 10:15 AM<br>Sampled By: SDG |                                               |                                          |                                       |                               |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|---------------------------------------|-------------------------------|
| PLSA Engineering                                            |                                                                                                    |                                               |                                          |                                       |                               |
| Attn: Scott Garland                                         |                                                                                                    |                                               |                                          |                                       |                               |
| 1120 West Lincoln Avenue                                    |                                                                                                    |                                               |                                          |                                       | Invoice                       |
| Yakima, WA 98902                                            |                                                                                                    |                                               |                                          |                                       | 2770                          |
| Volatile Organic Chemicals                                  |                                                                                                    | Method                                        | : EPA 8260B                              | Matrix: Soi                           | -                             |
| VEL Sample #                                                | 227-70820                                                                                          |                                               |                                          |                                       |                               |
| Sample ID                                                   | <b>DWI-13</b>                                                                                      | אנענגעראטאראטאראטאראטאראטאראטאראטאראטאראטאראט | an ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | n n n n n n n n n n n n n n n n n n n | r ann la fairrann in rainn au |
| Units                                                       | ppm                                                                                                | Limits                                        |                                          |                                       |                               |
| Check Standards - Ave.Recovery:                             |                                                                                                    |                                               |                                          |                                       |                               |
| ···                                                         |                                                                                                    |                                               |                                          |                                       |                               |
| 1,2-Dichlorobenzene-d4                                      | 88.00%                                                                                             | (70-130)                                      |                                          |                                       |                               |
| 4-Bromofluorobenzene                                        | 94.40%                                                                                             | (70-130)                                      |                                          |                                       |                               |
| Toluene-d8                                                  | 99.20%                                                                                             | (70-130)                                      |                                          |                                       |                               |
| Dichlorodifluoromethane                                     | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| Chloromethane                                               | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| Vinyl chloride                                              | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| Bromomethane                                                | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| Chloroethane                                                | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| Acetone                                                     | ND                                                                                                 | 0.025                                         |                                          |                                       |                               |
| Acrolein                                                    | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| 1,1-Dichloroethylene                                        | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| Methylene chloride                                          | ND                                                                                                 | 0.025                                         |                                          |                                       |                               |
| Acrylonitrile                                               | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| trans-1,2-Dichloroethylene                                  | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| 1,1-Dichloroethane                                          | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| Methyl ethyl ketone (MEK)                                   | ND                                                                                                 | 0.025                                         |                                          |                                       |                               |
| cis-1,2-Dichloroethylene                                    | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| 2,2-Dichloropropane                                         | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| Chloroform                                                  | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| Bromochloromethane                                          | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| 1,1,1-Trichloroethane                                       | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| 1,2-Dichloroethane                                          | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| 1,1-Dichloropropene                                         | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| Carbon tetrachloride                                        | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| Benzene                                                     | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| Trichloroethylene                                           | ND                                                                                                 | 0.005                                         |                                          |                                       |                               |
| Date Analyzed:                                              | 7/17/2014                                                                                          |                                               |                                          |                                       |                               |
| Analyst:                                                    | 125                                                                                                |                                               |                                          |                                       |                               |

## 15 W. Yakima Ave, Ste 210

### Yakima, WA 98902

|                             | Volatile Organic Compounds (Continued) |                                                  |             |  |  |  |  |
|-----------------------------|----------------------------------------|--------------------------------------------------|-------------|--|--|--|--|
| VEL Sample #                |                                        |                                                  |             |  |  |  |  |
| Sample ID                   |                                        | WIN YEAR AND |             |  |  |  |  |
| Units                       | ppm                                    | Limts                                            |             |  |  |  |  |
| 1,2-Dichloropropane         | ND                                     | 0.005                                            |             |  |  |  |  |
| Dibromomethane              | ND                                     | 0.005                                            |             |  |  |  |  |
| Bromodichloromethane        | ND                                     | 0.005                                            |             |  |  |  |  |
| cis-1,3-Dichloropropene     | ND                                     | 0.005                                            |             |  |  |  |  |
| Toluene                     | ND                                     | 0.005                                            |             |  |  |  |  |
| trans-1,3-Dichloropropene   | ND                                     | 0.005                                            |             |  |  |  |  |
| 1,1,2-Trichloroethane       | ND                                     | 0.005                                            |             |  |  |  |  |
| 1,3-Dichloropropane         | ND                                     | 0.005                                            |             |  |  |  |  |
| Dibromochloromethane        | ND                                     | 0.005                                            |             |  |  |  |  |
| Tetrachloroethylene         | ND                                     | 0.005                                            |             |  |  |  |  |
| 1,2-Dibromoethane           | ND                                     | 0.001                                            |             |  |  |  |  |
| Chlorobenzene               | ND                                     | 0.005                                            |             |  |  |  |  |
| 1,1,1,2-Tetrachloroethane   | ND                                     | 0.005                                            |             |  |  |  |  |
| Ethylbenzene                | ND                                     | 0.005                                            |             |  |  |  |  |
| m,p-Xylene                  | ND                                     | 0.005                                            |             |  |  |  |  |
| Styrene                     | ND                                     | 0.005                                            |             |  |  |  |  |
| o-Xylene                    | ND                                     | 0.005                                            |             |  |  |  |  |
| Bromoform                   | ND                                     | 0.005                                            |             |  |  |  |  |
| 1,1,2,2-Tetrachloroethane   | ND                                     | 0.005                                            |             |  |  |  |  |
| 1,2,3-Trichloropropane      | ND                                     | 0.005                                            |             |  |  |  |  |
| Bromobenzene                | ND                                     | 0.005                                            |             |  |  |  |  |
| n-Propylbenzene             | ND                                     | 0.005                                            |             |  |  |  |  |
| 2-Chlorotoluene             | ND                                     | 0.005                                            |             |  |  |  |  |
| 4-Chlorotoluene             | ND                                     | 0.005                                            |             |  |  |  |  |
| 1,3,5-Trimethylbenzene      | ND                                     | 0.005                                            |             |  |  |  |  |
| tert-Butylbenzene           | ND                                     | 0.005                                            |             |  |  |  |  |
| 1,2,4-Trimethylbenzene      | ND                                     | 0.005                                            |             |  |  |  |  |
| sec-Butylbenzene            | ND                                     | 0.005                                            |             |  |  |  |  |
| 1,3-Dichlorobenzene         | ND                                     | 0.005                                            |             |  |  |  |  |
| 1,4-Dichlorobenzene         | ND                                     | 0.005                                            |             |  |  |  |  |
| 4-Isopropyltoluene          | ND                                     | 0.005                                            |             |  |  |  |  |
| 1,2-Dichlorobenzene         | ND                                     | 0.005                                            |             |  |  |  |  |
| n-Butylbenzene              | ND                                     | 0.005                                            |             |  |  |  |  |
| 1,2-Dibromo-3-chloropropane | ND                                     | 0.005                                            |             |  |  |  |  |
| 1,2,4-Trichlorobenzene      | ND                                     | 0.005                                            |             |  |  |  |  |
| Naphthalene                 | ND                                     | 0.005                                            |             |  |  |  |  |
| Date Analyzed:              | 7/17/2014                              |                                                  |             |  |  |  |  |
| Analyst:                    | 125                                    |                                                  |             |  |  |  |  |
|                             |                                        |                                                  | Page 2 of 3 |  |  |  |  |

### 15 W. Yakima Ave, Ste 210

### Yakima, WA 98902

|                               |           | ganic Con | <u>npounds (Co</u>                                                            | ntinued)                             |                                                                                                                |
|-------------------------------|-----------|-----------|-------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|
| VEL Sample #                  |           |           |                                                                               |                                      |                                                                                                                |
| Sample ID                     |           |           | nazarini tegan na majar u ji lujaja (na cere presa praza du an du persan<br>I | CHARGEN WAR (1719/12/12/12/12/12/10) | SET TE TERRETARIA SANA KANGSUSA MUNIKUN KANG PUN SUPUT DATA MUNIKUN KANG PUN SUPUT DATA MUNIKUN KANG PUN SUPUT |
| Units                         |           | Limits    |                                                                               |                                      |                                                                                                                |
| 1,1,1-Trichloroethane         | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| 1,1,2,2-Tetrachloroethane     | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| 1,1-Dichloroethene            | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| 1,2,3-Trichlorobenzene        | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| 1,2-Dichloroethane            | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| 2-hexanone                    | ND        | 0.025     |                                                                               |                                      |                                                                                                                |
| Bromoform                     | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| Carbon disulfide              | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| Chlorobenzene                 | ND        | 0.005     | 2<br>1<br>2                                                                   |                                      |                                                                                                                |
| cis-1,2-dichloroethene        | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| cis-1,3-Dichloropropene       | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| Hexachlorobutadiene           | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| Isopropylbenzene              | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| Methyl Isobutyl ketone (MIBK) | ND        | 0.025     |                                                                               |                                      |                                                                                                                |
| methyl-t-butyl ether (MTBE)   | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| p-siopropyltoluene            | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| tert-Butylbenzene             | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| trans-1,2-Dichloroethene      | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| Trichlorofluoromethane        | ND        | 0.005     |                                                                               |                                      |                                                                                                                |
| Tetrachloroethene             | 0.00674   | 0.005     |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
| · · · · · ·                   |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
| Date Analyzed:                | 7/17/2014 |           |                                                                               |                                      |                                                                                                                |
| Analyst:                      | 125       |           |                                                                               |                                      |                                                                                                                |
|                               |           |           |                                                                               |                                      |                                                                                                                |
|                               |           |           | Page 3 of 3                                                                   | V                                    |                                                                                                                |

## VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

|                        |             | · · · · =  |        |             |        |            |          |          |  |  |
|------------------------|-------------|------------|--------|-------------|--------|------------|----------|----------|--|--|
| Lab/Sample N           |             | }          |        | <u> </u>    | ounty: | YAKIMA     |          |          |  |  |
| Sample Locatio         | on: DWI-13  |            |        |             |        |            |          |          |  |  |
|                        |             |            |        |             |        | : 07/08/14 |          |          |  |  |
|                        |             | <u>.</u> . |        |             |        | 07/29/14   |          |          |  |  |
|                        |             | -          |        | ole Collect |        |            |          |          |  |  |
| and Report To:         |             |            | SAMPI  | LE COMM     | ENTS   | Matri      | x: Soil  |          |  |  |
| PLSA Engineering       |             |            |        |             |        |            |          |          |  |  |
| Attn: Scott Garland    |             |            |        |             |        |            |          |          |  |  |
| 1120 West Lincoln Aven | ue          |            |        |             |        |            |          |          |  |  |
| Yakima, WA 98902       |             |            |        |             |        |            |          |          |  |  |
| Polynuclear Aromatic H | ydrocarbons |            |        |             |        |            |          |          |  |  |
| )H# Analytes           | Results     | Units      | MRL    | Trigger     | MCL    | Method     | Analyzed | l Analy  |  |  |
| Acenaphthene           | ND          | mg/kg      | 0.01   | ·           |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Acenaphthylene         | ND          | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Anthracene             | ND          | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Benzo(a)anthracene     | 0.0139      | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Benzo(a)pyrene         | ND          | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Benzo(b)fluoranthene   | ND          | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Benzo(ghi)perylene     | ND          | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Benzo(k)fluoranthene   | ND          | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Chrysene               | ND          | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Dibenzo(a,h)anthracene | ND          | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Fluoranthene           | 0.0119      | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Fluorene               | ND          | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Indeno(1,2,3-cd)pyrene | ND          | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Naphthalene            | ND          | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Phenanthrene           | ND          | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| Pyrene                 | ND          | mg/kg      | 0.01   |             |        | EPA 8270D  | 07/17/14 | 125      |  |  |
| 2-Methylnapthalene     | ND          | mg/kg      | 0.01   |             | L      | EPA 8270D  | 07/17/14 | 125      |  |  |
|                        |             |            |        | <u></u>     |        |            |          | <u> </u> |  |  |
|                        | · -         |            |        |             | <br>   | ·          |          |          |  |  |
| Surrogate Std:         |             |            |        |             |        |            |          |          |  |  |
| Terphenyl-d14          | 88.8        | %          | 18-137 |             | ·      | EPA 8270D  | 07/17/14 | 125      |  |  |
|                        |             |            |        |             |        | · ·        |          |          |  |  |
|                        |             |            |        |             |        |            |          |          |  |  |

Approved By:

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-30670820 – 8270 pah

## VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

PCB's (Soil)

| 227-70820<br>DWI-13 |                                             | -                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|---------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DWI-13              |                                             |                                                                                    | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ounty:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YAKIMA                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                             |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                             |                                                                                    | Date Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ceived:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 07/08/14                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                             |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07/29/14                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                             | Samp                                                                               | le Collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDG                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                             | SAMPI                                                                              | LE COMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Matri                               | x: Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                             |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                             |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| :                   |                                             |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                             |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                             |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Results             | Units                                       | MRL                                                                                | Trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Method                              | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND                  | mg/kg                                       | 0.1                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 8082                            | 07/22/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND                  | mg/kg                                       | 0.1                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 8082                            | 07/22/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND                  | mg/kg                                       | 0.1                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 8082                            | 07/22/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND                  | mg/kg                                       | 0.1                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 8082                            | 07/22/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND                  | mg/kg                                       | 0.1                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 8082                            | 07/22/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NÐ                  | mg/kg                                       | 0.1                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 8082                            | 07/22/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND                  | mg/kg                                       | 0.1                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 8082                            | 07/22/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND                  | mg/kg                                       | 0.1                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 8082                            | 07/22/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ·                   |                                             | -                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · ··· · ·                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 93.9                | %                                           | 30-130                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 8082                            | 07/22/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     |                                             |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                             | ~                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | ·                                           |                                                                                    | ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u></u>                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                             |                                                                                    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                             |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Results ND | ResultsUnitsNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kgNDmg/kg | Results         Units         MRL           ND         mg/kg         0.1           ND         mg/kg         0.1 | Results         Units         MRL         Trigger           ND         mg/kg         0.1            ND         mg/kg         0.1 | ResultsUnitsMRLTriggerMCLNDmg/kg0.1 | Results         Units         MRL         Trigger         MCL         Method           ND         mg/kg         0.1         EPA 8082           ND         mg/kg         0.1         EPA 8082 | SAMPLE COMMENTS         Matrix: Soil           Results         Units         MRL         Trigger         MCL         Method         Analyzed           ND         mg/kg         0.1         EPA 8082         07/22/14           MD |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

70820-pcbs

## Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

| Date Collecte                                                                                                                                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      | .,                        |                                              |              |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------|---------------------------|----------------------------------------------|--------------|---------|
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
| Lab/Sample N                                                                                                                                             |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | <u> </u>             | ounty:                    | YAKIMA                                       |              |         |
| Sample Locatio                                                                                                                                           | on: DW1-13                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           | 0.710.014.4                                  |              |         |
|                                                                                                                                                          |                                                | <u>.                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                      |                           | 07/08/14                                     |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C amou                                            |                      |                           | 07/29/14                                     |              |         |
| Send Report To:                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | ole Collect          |                           |                                              |              |         |
| PLSA Engineering                                                                                                                                         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAME                                              |                      | LEAVIS                    | Iviatri                                      | x: Soil      |         |
| Attn: Scott Garland                                                                                                                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
| 1120 West Lincoln Aven                                                                                                                                   | 110                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
|                                                                                                                                                          | ut                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
| Yakima, WA 98902<br>Cadmium, Chromium, Nic                                                                                                               | kel Zinc                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                          |                      |                           | <u> </u>                                     |              |         |
| DOH# Analytes                                                                                                                                            | Results                                        | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MRL                                               | Trigger              | MCL                       | Method                                       | Analyzed     | Analyst |
| Cadmium                                                                                                                                                  | ND                                             | <br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.535                                             |                      |                           | EPA 6020A                                    | 07/23/14     | 125     |
| Chromium                                                                                                                                                 | 20.0                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.535                                             |                      |                           | EPA 6020A                                    | 07/23/14     | 125     |
| Nickel                                                                                                                                                   | 18.7                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.535                                             |                      |                           | EPA 6020A                                    | 07/23/14     | 125     |
| Zinc                                                                                                                                                     | 68.7                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.535                                             |                      |                           | EPA 6020A                                    | 07/23/14     | 125     |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              | -       |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           | · · · · · ·                                  | 1            |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           | <u>.                                    </u> |              |         |
|                                                                                                                                                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                      |                           |                                              |              |         |
| MRL (Method Reporting Level): Ind                                                                                                                        |                                                | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |                      | <u></u>                   |                                              |              |         |
| MCL (Method Reporting Lever): Ind<br>Trigger: DOH Drinking Water respons<br>MCL (maximum contaminant level): 1<br>ND (Not Detected): Indicates this comp | e level. Public Systen<br>Highest level recomm | ns in excess of the fection of the f | nis level mus<br>leral governn<br>at a level grea | t take additionation | l samples.<br>water syste | Recommended range                            | on packages. |         |

70820-cdcrni

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anatekiabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anatekiabs.com

# Client:VALLEY ENVIRONMENTAL LABBatch #:140714014Address:15 W. YAKIMA AVE STE210Project Name:VOC / METALS / PAH / PCBYAKIMA, WA 98901DARA OSBORNEVOC / METALS / PAH / PCB

### **Analytical Results Report**

| Sample Number    | 140714014-008 | Sampling Date   | 7/8/2014 | Date/Time Received | 7/11/2014 | 11:20 AM |
|------------------|---------------|-----------------|----------|--------------------|-----------|----------|
| Client Sample ID | 70820         | Sampling Time   | 10:15 AM |                    |           |          |
| Matrix           | Soil          | Sample Location |          |                    |           |          |
| Comments         |               |                 |          |                    |           |          |

| Parameter                         | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier |
|-----------------------------------|--------|-------|-------|---------------|---------|-----------|-----------|
| 1,1,1,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,1-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2-Trichloroethane             | NÐ     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-dichloropropene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichloropropane            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromo-3-chloropropane(DBCP) | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromoethane                 | ND     | mg/kg | 0.001 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3,5-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,4-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-hexanone                        | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| 4-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Acetone                           | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Acrylonitrile                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Benzene                           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromobenzene                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromochloromethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA: ID00013; AZ:0701; CO:ID00013; FL(NELAP): E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR: ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA: WA00169; ID: WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:<br>Address: | VALLEY ENVIRONMENTAL LAB<br>15 W. YAKIMA AVE STE210 | Batch #:<br>Project Name: | 140714014<br>VOC / METALS / PAH / PCB |
|---------------------|-----------------------------------------------------|---------------------------|---------------------------------------|
| Attn:               | YAKIMA, WA 98901<br>DARA OSBORNE                    |                           |                                       |
|                     | Analytical Resu                                     | ilts Report               |                                       |

#### Analytical Results Report

| Sample Number<br>Client Sample ID | 140714014-008<br>70820 | Sampling Date<br>Sampling Time | 7/8/2014<br>10:15 AM | Date/Time Received | 7/11/2014 | 11:20 AM |
|-----------------------------------|------------------------|--------------------------------|----------------------|--------------------|-----------|----------|
| Matrix<br>Comments                | Soil                   | Sample Location                |                      |                    |           |          |

| Parameter                     | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier |
|-------------------------------|--------|-------|-------|---------------|---------|-----------|-----------|
| Bromodichloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromoform                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromomethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon disulfide              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon Tetrachloride          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chlorobenzene                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroform                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloromethane                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,2-dichloroethene        | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,3-Dichloropropene       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromochloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromomethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dichlorodifluoromethane       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Ethylbenzene                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Hexachlorobutadiene           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Isopropylbenzene              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| m+p-Xylene                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl ethyl ketone (MEK)     | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl isobutyl ketone (MIBK) | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methylene chloride            | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| methyl-t-butyl ether (MTBE)   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Naphthalene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Butylbenzene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Propylbenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| o-Xylene                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| o-isopropyltoluene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| sec-Butylbenzene              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Styrene                       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200D01-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C586; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

# Client:VALLEY ENVIRONMENTAL LABBatch #:140714014Address:15 W. YAKIMA AVE STE210Project Name:VOC / METALS / PAH / PCBYAKIMA, WA 98901DARA OSBORNEE

### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-008<br>70820<br>Soil |         | Sampling D<br>Sampling Ti<br>Sample Loc | me    | 7/8/2014 Date<br>10:15 AM | /Time Rece | ived 7/11/2014 | 11:20 AM  |
|---------------------------------------------------------|--------------------------------|---------|-----------------------------------------|-------|---------------------------|------------|----------------|-----------|
| Parameter                                               |                                | Result  | Units                                   | PQL   | Analysis Date             | Analyst    | Method         | Qualifier |
| tert-Butylbenze                                         | ine                            | ND      | mg/kg                                   | 0.005 | 7/17/2014                 | SAT        | EPA 8260B      |           |
| Tetrachloroethe                                         | ene                            | 0.00674 | mg/kg                                   | 0.005 | 7/17/2014                 | SAT        | EPA 8260B      |           |
| Toluene                                                 |                                | ND      | mg/kg                                   | 0.005 | 7/17/2014                 | SAT        | EPA 8260B      |           |
| trans-1,2-Dichl                                         | oroethene                      | ND      | mg/kg                                   | 0.005 | 7/17/2014                 | SAT        | EPA 8260B      |           |
| trans-1,3-Dichl                                         | oropropene                     | ND      | mg/kg                                   | 0.005 | 7/17/2014                 | SAT        | EPA 8260B      |           |
| Trichloroethene                                         | 9                              | ND      | mg/kg                                   | 0.005 | 7/17/2014                 | SAT        | EPA 8260B      |           |
| Trichloroflouror                                        | nethane                        | ND      | mg/kg                                   | 0.005 | 7/17/2014                 | SAT        | EPA 8260B      |           |
| Vinyl Chloride                                          |                                | ND      | mg/kg                                   | 0.005 | 7/17/2014                 | SAT        | EPA 8260B      |           |
| %moisture                                               |                                | 9.7     | Percent                                 |       | 7/17/2014                 | SAT        | %moisture      |           |

| ole Number 140714014-008 |           |                  |                |  |
|--------------------------|-----------|------------------|----------------|--|
| Surrogate Standard       | Method    | Percent Recovery | Control Limits |  |
| 1,2-Dichlorobenzene-d4   | EPA 8260B | 88.0             | 70-130         |  |
| 4-Bromofluorobenzene     | EPA 8260B | 94.4             | 70-130         |  |
| Toluene-d8               | EPA 8260B | 99.2             | 70-130         |  |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; CR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

## Client:VALLEY ENVIRONMENTAL LABBatch #:140714014Address:15 W. YAKIMA AVE STE210Project Name:VOC / METALS / PAH / PCBYAKIMA, WA 98901YAKIMA OSBORNEVOC / METALS / PAH / PCB

### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-008<br>70820<br>Soil |        | Sampling Da<br>Sampling Ti<br>Sample Loc | me     | 7/8/2014<br>10:15 AM | Date/Tim<br>Extractio | e Received<br>n Date | 7/11/2014<br>7/17/2014 | 11:20 AM |
|---------------------------------------------------------|--------------------------------|--------|------------------------------------------|--------|----------------------|-----------------------|----------------------|------------------------|----------|
| Parameter                                               |                                | Result | Units                                    | PQL    | Analysis             | Date An               | alyst                | Method                 | Qualifie |
| 2-Methylnaphth                                          | nalene                         | ND     | mg/Kg                                    | 0.01   | 7/17/20              | )14 E                 | MP E                 | PA 8270D               |          |
| Acenaphthene                                            |                                | ND     | mg/Kg                                    | 0.01   | 7/17/20              | )14 E                 | MP E                 | PA 8270D               |          |
| Acenaphthylen                                           | e                              | ND     | mg/Kg                                    | 0.01   | 7/17/20              | 014 E                 | MP E                 | PA 8270D               |          |
| Anthracene                                              |                                | ND     | mg/Kg                                    | 0.01   | 7/17/20              | )14 E                 | MP E                 | PA 8270D               |          |
| Benzo(ghi)pery                                          | lene                           | ND     | mg/Kg                                    | 0.01   | 7/17/20              | 014 E                 | MP E                 | PA 8270D               |          |
| Benzo[a]anthra                                          | cene                           | 0.0139 | mg/Kg                                    | 0.01   | 7/17/20              | 014 E                 | MP E                 | PA 8270D               |          |
| Benzo[a]pyrene                                          | ÷                              | ND     | mg/Kg                                    | 0.01   | 7/17/20              | )14 E                 | MP E                 | PA 8270D               |          |
| Benzo[b]fluorar                                         | thene                          | ND     | mg/Kg                                    | 0.01   | 7/17/20              | )14 E                 | MP E                 | PA 8270D               |          |
| Benzo[k]fluorar                                         | thene                          | ND     | mg/Kg                                    | 0.01   | 7/17/20              | )14 E                 | MP E                 | PA 8270D               |          |
| Chrysene                                                |                                | ND     | mg/Kg                                    | 0.01   | 7/17/20              | )14 E                 | MP E                 | PA 8270D               |          |
| Dibenz[a,h]anth                                         | racene                         | ND     | mg/Kg                                    | 0.01   | 7/17/20              | )14 E                 | MP E                 | PA 8270D               |          |
| Fluoranthene                                            |                                | 0.0119 | mg/Kg                                    | 0.01   | 7/17/20              | )14 E                 | MP E                 | PA 8270D               |          |
| Fluorene                                                |                                | ND     | mg/Kg                                    | 0.01   | 7/17/20              | )14 E                 | MP E.                | PA 8270D               |          |
| Indeno[1,2,3-cd                                         | ]pyrene                        | ND     | mg/Kg                                    | 0.01   | 7/17/20              | )14 E                 | MP E                 | PA 8270D               |          |
| Naphthalene                                             |                                | ND     | mg/Kg                                    | 0.01   | 7/17/20              | )14 E                 | MP EI                | PA 8270D               |          |
| Phenanthrene                                            |                                | ND     | mg/Kg                                    | 0.01   | 7/17/20              | )14 E                 | MP EI                | PA 8270D               |          |
| Pyrene                                                  |                                | ND     | mg/Kg                                    | 0.01   | 7/17/20              | 14 E                  | MP EI                | PA 8270D               |          |
| %moisture                                               |                                | 9.7    | Percent                                  |        | 7/17/20              | 14 S                  | AT %                 | Smoisture              |          |
|                                                         |                                |        | Surrog                                   | ate Da | ta                   |                       |                      |                        |          |

| Terphenyl-d14 EPA 8270D 88.8 18-137 | Surrogate Standard | Method    | Percent Recovery | Control Limits |  |
|-------------------------------------|--------------------|-----------|------------------|----------------|--|
|                                     | Terphenyl-d14      | EPA 8270D | 88.8             | 18-137         |  |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0096; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |

### **Analytical Results Report**

| Sample Number<br>Ctient Sample ID<br>Matrix<br>Comments | 140714014-008<br>70820<br>Soil |          | Sampling Da<br>Sampling Ti<br>Sample Loca | me      | 7/8/2014<br>10:15 AM | Date/Time Receiv<br>Extraction Date | red 7/11/2014<br>7/18/2014 | 11:20 AM |
|---------------------------------------------------------|--------------------------------|----------|-------------------------------------------|---------|----------------------|-------------------------------------|----------------------------|----------|
| Parameter                                               |                                | Result   | Units                                     | PQL     | Analysis D           | ate Analyst                         | Method                     | Qualifie |
| Aroclor 1016 (I                                         | PCB-1016)                      | ND       | mg/Kg                                     | 0.1     | 7/22/201             | 4 SAT                               | EPA 8082                   |          |
| Aroclor 1221 (I                                         | PCB-1221)                      | ND       | mg/Kg                                     | 0.1     | 7/22/201             | 4 SAT                               | EPA 8082                   |          |
| Aroclor 1232 (F                                         | PCB-1232)                      | ND       | mg/Kg                                     | 0.1     | 7/22/201             | 4 SAT                               | EPA 8082                   |          |
| Aroclor 1242 (I                                         | PCB-1242)                      | ND       | mg/Kg                                     | 0.1     | 7/22/201             | 4 SAT                               | EPA 8082                   |          |
| Aroclor 1248 (F                                         | PCB-1248)                      | ND       | mg/Kg                                     | 0.1     | 7/22/201             | 4 SAT                               | EPA 8082                   |          |
| Aroclor 1254 (F                                         | PCB-1254)                      | ND       | mg/Kg                                     | 0.1     | 7/22/201             | 4 SAT                               | EPA 8082                   |          |
| Aroclor 1260 (F                                         | PCB-1260)                      | ND       | mg/Kg                                     | 0.1     | 7/22/201             | 4 SAT                               | EPA 8082                   |          |
| PCB 8082 (tota                                          | al)                            | ND       | mg/kg                                     | 0.1     | 7/22/201             | 4 SAT                               | EPA 8082                   |          |
| %moisture                                               |                                | 9.7      | Percent                                   |         | 7/17/201             | 4 SAT                               | %moisture                  |          |
|                                                         |                                |          | Surroga                                   | ite Dat | a                    |                                     |                            |          |
| mple Number                                             | 140714014-008                  | <u> </u> |                                           |         | . <u></u>            |                                     |                            |          |
| Surrogate St                                            | andard                         |          | Method                                    |         | Pe                   | ercent Recovery                     | Control L                  | imits    |
| DCB                                                     |                                | EPA 8082 |                                           |         | 93.9                 | 30-130                              |                            |          |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C585 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

## Washington State Certified Lab #227 - DOE Accredited Lab C345

BTEX by EPA 8260B

|              | Date Colle                                                                                                          | ected: 07/08/14                                           |                                   |                                                    |                                          |                         |                                       |          |         |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|----------------------------------------------------|------------------------------------------|-------------------------|---------------------------------------|----------|---------|--|--|--|
|              | Lab/Sample No: 227-70821<br>Sample Location: UST2-2                                                                 |                                                           |                                   | 0                                                  | County:                                  | YAKIMA                  |                                       |          |         |  |  |  |
|              | Sample Loca                                                                                                         | ation: US12-2                                             |                                   | Date Received: 07/08/14                            |                                          |                         |                                       |          |         |  |  |  |
|              |                                                                                                                     |                                                           |                                   |                                                    |                                          |                         | 07/29/14                              |          |         |  |  |  |
|              |                                                                                                                     |                                                           |                                   | Sami                                               | ble Collect                              |                         |                                       |          |         |  |  |  |
| end Re       | port To:                                                                                                            | · · · · · · · · · · · · · · · · · · ·                     |                                   |                                                    | LE COMM                                  |                         |                                       | x: Soil  |         |  |  |  |
|              | SA Engineering                                                                                                      | - · · · · · · · · · · · · · · · · · · ·                   |                                   |                                                    |                                          |                         |                                       |          |         |  |  |  |
|              | tn: Scott Garland                                                                                                   |                                                           |                                   |                                                    |                                          |                         |                                       |          |         |  |  |  |
|              | 20 West Lincoln Av                                                                                                  | venue                                                     |                                   |                                                    |                                          |                         |                                       |          |         |  |  |  |
| Ya           | kima, WA 98902                                                                                                      |                                                           |                                   |                                                    |                                          |                         |                                       |          |         |  |  |  |
|              | <b>EX by EPA 8260B</b>                                                                                              | · · · · · · · · · · · · · · · · · · ·                     |                                   |                                                    | ·····                                    | - decim                 |                                       |          |         |  |  |  |
| OH# An       |                                                                                                                     | Results                                                   | Units                             | MRL                                                | Trigger                                  | MCL                     | Method                                | Analyzed | Analy   |  |  |  |
|              | nzene                                                                                                               | ND                                                        | ррт                               | 0.005                                              |                                          |                         | EPA 8260B                             |          | 125     |  |  |  |
|              | uene                                                                                                                | ND                                                        | ppm                               | 0.005                                              |                                          |                         | EPA 8260B                             | 07/17/14 | 125     |  |  |  |
|              | ylbenzene                                                                                                           | ND ND                                                     | ppm                               | 0.005                                              |                                          |                         | EPA 8260B                             | 07/17/14 | 125     |  |  |  |
|              | lenes (m,p,o)                                                                                                       | ND                                                        | ppm                               | 0.005                                              |                                          |                         | EPA 8260B                             | 07/17/14 | 125     |  |  |  |
|              |                                                                                                                     |                                                           |                                   |                                                    |                                          |                         | ·                                     |          |         |  |  |  |
|              | · ·                                                                                                                 |                                                           | · -=                              |                                                    |                                          | +                       |                                       |          |         |  |  |  |
|              |                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                     |                                   |                                                    |                                          |                         |                                       |          |         |  |  |  |
|              |                                                                                                                     |                                                           |                                   |                                                    |                                          |                         | · · ·                                 |          |         |  |  |  |
|              | ·                                                                                                                   |                                                           |                                   |                                                    |                                          | <u>†</u>                | · · · · · · · · · · · · · · · · · · · |          |         |  |  |  |
|              |                                                                                                                     |                                                           |                                   |                                                    | ·                                        |                         |                                       |          |         |  |  |  |
|              |                                                                                                                     |                                                           |                                   |                                                    |                                          |                         |                                       |          |         |  |  |  |
|              |                                                                                                                     |                                                           |                                   |                                                    |                                          |                         |                                       |          |         |  |  |  |
|              |                                                                                                                     |                                                           |                                   | -                                                  |                                          |                         | · ·                                   |          |         |  |  |  |
|              |                                                                                                                     |                                                           |                                   |                                                    |                                          |                         |                                       |          |         |  |  |  |
|              |                                                                                                                     |                                                           |                                   | ļļ                                                 | <u>,                                </u> |                         |                                       |          |         |  |  |  |
|              |                                                                                                                     |                                                           |                                   | ļ                                                  |                                          |                         |                                       |          |         |  |  |  |
|              |                                                                                                                     |                                                           |                                   |                                                    |                                          |                         | · · · · · · · · · · · · · · · · · · · | ···      | ···     |  |  |  |
|              |                                                                                                                     |                                                           |                                   | <u></u>                                            | ·                                        |                         |                                       |          | ·.      |  |  |  |
|              |                                                                                                                     |                                                           |                                   |                                                    | <u> </u>                                 |                         |                                       | · · ·    |         |  |  |  |
|              |                                                                                                                     |                                                           |                                   |                                                    |                                          | -~.                     | ·                                     |          |         |  |  |  |
|              |                                                                                                                     |                                                           |                                   |                                                    |                                          | ·                       |                                       |          |         |  |  |  |
| Trigg<br>MCL | (Method Reporting Level)<br>er: DOH Drinking Water res<br>(maximum contaminant lev<br>Not Detected): Indicates this | sponse level. Public Systen<br>vel): Highest level recomm | ns in excess of<br>ended by the f | this level mu<br>ederal govern<br>i at a level gro | st take addition<br>ment for public      | al samples<br>water sys | . Recommended rang                    |          | <u></u> |  |  |  |

70821-btex

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Washington State DOE Accredited Lab #<br>Sampled At: UST2-2 | Date Reported: 07/29/14<br>Date Collected: 07/08/14<br>Time Collected: 11:16 AM<br>Sampled By: SDG |             |             |           |         |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------|-------------|-----------|---------|--|
| PLSA Engineering                                            |                                                                                                    |             |             |           |         |  |
| Attn: Scott Garland                                         |                                                                                                    |             |             |           |         |  |
| 1120 West Lincoln Avenue                                    |                                                                                                    |             |             |           | Invoice |  |
| Yakima, WA 98902                                            |                                                                                                    |             |             |           | 2770    |  |
| Volatile Organic Chemicals                                  |                                                                                                    | Method      | : EPA 8260B | Matrix: S | Soil    |  |
| VEL Sample #                                                | 227-70821                                                                                          |             |             |           |         |  |
| Sample ID                                                   | UST2-2                                                                                             |             |             |           |         |  |
| Units                                                       | ppm                                                                                                | Limits      |             |           |         |  |
| Check Standards - Ave.Recovery:                             |                                                                                                    |             |             |           |         |  |
|                                                             |                                                                                                    |             |             |           |         |  |
| 1,2-Dichlorobenzene-d4                                      | 87.60%                                                                                             | (70-130)    |             |           |         |  |
| 4-Bromofluorobenzene                                        | 94.40%                                                                                             | (70-130)    |             |           |         |  |
| Toluene-d8                                                  | 99.20%                                                                                             | (70-130)    |             |           |         |  |
| Dichlorodifluoromethane                                     | ND                                                                                                 | 0.005       |             |           |         |  |
| Chloromethane                                               | ND                                                                                                 | 0.005       |             |           |         |  |
| Vinyl chloride                                              | ND                                                                                                 | 0.005       |             |           |         |  |
| Bromomethane                                                | ND                                                                                                 | 0.005       |             |           |         |  |
| Chloroethane                                                | ND                                                                                                 | 0.005       |             |           |         |  |
| Acetone                                                     | ND                                                                                                 | 0.025       |             |           |         |  |
| Acrolein                                                    | ND                                                                                                 | 0.005       |             |           |         |  |
| 1,1-Dichloroethylene                                        | ND                                                                                                 | 0.005       |             |           |         |  |
| Methylene chloride                                          | ND                                                                                                 | 0.025       |             |           |         |  |
| Acrylonitrile                                               | ND                                                                                                 | 0.005       |             |           |         |  |
| trans-1,2-Dichloroethylene                                  | ND                                                                                                 | 0.005       |             |           |         |  |
| 1,1-Dichloroethane                                          | ND                                                                                                 | 0.005       |             |           |         |  |
| Methyl ethyl ketone (MEK)                                   | ND                                                                                                 | 0.025       |             |           |         |  |
| cis-1,2-Dichloroethylene                                    | ND                                                                                                 | 0.005       |             |           |         |  |
| 2,2-Dichloropropane                                         | ND                                                                                                 | 0.005       |             |           |         |  |
| Chloroform                                                  | ND                                                                                                 | 0.005       |             |           |         |  |
| Bromochloromethane                                          | ND                                                                                                 | 0.005       |             |           |         |  |
| 1,1,1-Trichloroethane                                       | ND                                                                                                 | 0.005       |             |           |         |  |
| ,2-Dichloroethane                                           | ND                                                                                                 | 0.005       |             |           |         |  |
| ,1-Dichloropropene                                          | ND                                                                                                 | 0.005       |             |           |         |  |
| Carbon tetrachloride                                        | ND                                                                                                 | 0.005       |             | ļ         |         |  |
| Benzene                                                     | ND                                                                                                 | 0.005       |             |           |         |  |
| Trichloroethylene                                           | ND                                                                                                 | 0.005       |             |           |         |  |
| Date Analyzed:                                              | 7/17/2014                                                                                          |             |             |           |         |  |
| Analyst:                                                    | 125                                                                                                |             |             |           |         |  |
| JD = None Detected                                          | I                                                                                                  | Page 1 of 3 |             |           |         |  |

### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902 (500) 575 - 3999 Fax: (509) 575 - 3068

1,2-Dibromo-3-chloropropane

1,2,4-Trichlorobenzene

Naphthalene

|                           | <u>Volatile Or</u> | ganic Com                                         | pounds (C                                          | ontinued)                                                                                    |                                                |
|---------------------------|--------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|
| VEL Sample #              | 70821              |                                                   |                                                    |                                                                                              |                                                |
| Sample ID                 | UST2-2             | a na a mpa ana ana ara ara ara ara ara ara ara ar | (mr vena ca bio water Jack III with in 1994) ( ) 4 | 1994 ( 1974) ( 1979) ( 1976) A CHARLEND IN DUDING THE OLD ( 1970) ( 1970) A DUDING A LIVER A | 1939 An |
| Units                     | ppm                | Limts                                             |                                                    |                                                                                              |                                                |
| 1,2-Dichloropropane       | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| Dibromomethane            | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| Bromodichloromethane      | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| cis-1,3-Dichloropropene   | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| Toluene                   | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| trans-1,3-Dichloropropene | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| 1,1,2-Trichloroethane     | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| 1,3-Dichloropropane       | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| Dibromochloromethane      | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| Tetrachloroethylene       | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| 1,2-Dibromoethane         | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| Chlorobenzene             | ND                 | 0.001                                             |                                                    |                                                                                              |                                                |
| 1,1,1,2-Tetrachloroethane | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| Ethylbenzene              | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| m,p-Xylene                | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| Styrene                   | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| o-Xylene                  | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| Bromoform                 | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| 1,1,2,2-Tetrachloroethane | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| 1,2,3-Trichloropropane    | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| Bromobenzene              | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| n-Propylbenzene           | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| 2-Chlorotoluene           | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| 4-Chlorotoluene           | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| 1,3,5-Trimethylbenzene    | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| ert-Butylbenzene          | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| 1,2,4-Trimethylbenzene    | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| sec-Butylbenzene          | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| 1,3-Dichlorobenzene       | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| ,4-Dichlorobenzene        | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| -Isopropyltoluene         | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| ,2-Dichlorobenzene        | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
| a-Butylbenzene            | ND                 | 0.005                                             |                                                    |                                                                                              |                                                |
|                           |                    | 1                                                 | 1                                                  | 1                                                                                            |                                                |

ND

ND

NÐ

7/17/2014

125

Date Analyzed:

Analyst:

0.005

0.005

0.005

Page 2 of 3

### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210

### Yakima, WA 98902

.

|                                        | Volatile Or | ganic Co                                      | mpounds (Con                                                                                                   | tinued)                                  |                                                   |
|----------------------------------------|-------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|
| VEL Sample #                           |             |                                               |                                                                                                                |                                          |                                                   |
| Sample ID                              |             | a a dha ann ann ann ann ann ann ann ann ann a | 1997 (AL OFFICIAL DE TRUTTAL AL MANY DE TRUTTAL DE COMMUNE DE LEUR DE LA DEPARTA DE LEUR DE LA DEPARTA DE LEUR | na ang ang ang ang ang ang ang ang ang a | in A menor manana (menor manana (menor) (de) (de) |
| Units                                  | ppm         | Limits                                        |                                                                                                                |                                          |                                                   |
| 1,1,1-Trichloroethane                  | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| 1,1,2,2-Tetrachloroethane              | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| 1,1-Dichloroethene                     | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| 1,2,3-Trichlorobenzene                 | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| 1,2-Dichloroethane                     | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| 2-hexanone                             | ND          | 0.025                                         |                                                                                                                |                                          |                                                   |
| Bromoform                              | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| Carbon disulfide                       | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| Chlorobenzene                          | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| cis-1,2-dichloroethene                 | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| cis-1,3-Dichloropropene                | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| Hexachlorobutadiene                    | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| Isopropylbenzene                       | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| Methyl Isobutyl ketone (MIBK)          | ND          | 0.025                                         |                                                                                                                |                                          |                                                   |
| methyl-t-butyl ether (MTBE)            | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| p-siopropyltoluene                     | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| tert-Butylbenzene                      | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| trans-1,2-Dichloroethene               | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| Trichlorofluoromethane                 | ND          | 0.005                                         |                                                                                                                |                                          |                                                   |
| Tetrachloroethene                      | 0.00647     | 0.005                                         |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
| ······································ |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                |                                          |                                                   |
| Date Analyzed:                         | 7/17/2014   |                                               |                                                                                                                |                                          |                                                   |
| Analyst:                               | 125         |                                               |                                                                                                                |                                          |                                                   |
|                                        |             |                                               |                                                                                                                | 1                                        |                                                   |
|                                        |             |                                               | Page 3 of 3                                                                                                    |                                          |                                                   |

### VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

|                      | Lab/Sample N                          |             |       |        | County: YAKIMA          |         |           |          |        |  |  |  |  |
|----------------------|---------------------------------------|-------------|-------|--------|-------------------------|---------|-----------|----------|--------|--|--|--|--|
| To the second second | Sample Locatio                        | n: UST2-2   |       |        |                         |         |           |          |        |  |  |  |  |
| 14 SPA               |                                       |             |       |        | Date Received: 07/08/14 |         |           |          |        |  |  |  |  |
| -414)<br>-414)       |                                       |             |       |        | Date Rep                | ported: | 07/29/14  |          |        |  |  |  |  |
|                      |                                       |             |       | Sam    | ole Collect             | ted By: | SDG       |          |        |  |  |  |  |
| Send                 | end Report To:                        |             |       | SAMPI  | LE COMM                 | ENTS    | Matri     | x: Soil  |        |  |  |  |  |
| ļ                    | PLSA Engineering                      |             |       |        |                         |         | · · · · · |          |        |  |  |  |  |
|                      | Attn: Scott Garland                   |             |       |        |                         |         |           |          |        |  |  |  |  |
|                      | 1120 West Lincoln Aven                | ue          |       |        |                         |         |           |          |        |  |  |  |  |
|                      | Yakima, WA 98902                      |             |       |        |                         |         |           |          |        |  |  |  |  |
|                      | Polynuclear Aromatic H                | ydrocarbons |       |        | <u></u>                 |         |           | <u></u>  |        |  |  |  |  |
| DOH                  | # Analytes                            | Results     | Units | MRL    | Trigger                 | MCL     | Method    | Analyzed | Analys |  |  |  |  |
|                      | Acenaphthene                          | ND          | mg/kg | 0.01   |                         |         | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Acenaphthylene                        | ND          | mg/kg | 0.01   |                         | -       | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Anthracene                            | ND          | mg/kg | 0.01   |                         |         | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Benzo(a)anthracene                    | ND          | mg/kg | 0.01   |                         | ·       | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Benzo(a)pyrene                        | ND          | mg/kg | 0.01   | <u></u> <u></u>         |         | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Benzo(b)fluoranthene                  | ND          | mg/kg | 0.01   |                         | -       | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Benzo(ghi)perylene                    | ND          | mg/kg | 0.01   | •••••••••               |         | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Benzo(k)fluoranthene                  | ND          | mg/kg | 0.01   |                         |         | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Chrysene                              | ND          | mg/kg | 0.01   |                         |         | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Dibenzo(a,h)anthracene                | ND          | mg/kg | 0.01   |                         | 1       | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Fluoranthene                          | ND          | mg/kg | 0.01   |                         |         | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Fluorene                              | ND          | mg/kg | 0.01   |                         |         | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Indeno(1,2,3-cd)pyrene                | ND          | mg/kg | 0.01   |                         |         | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Naphthalene                           | ND          | mg/kg | 0.01   |                         |         | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Phenanthrene                          | ND          | mg/kg | 0.01   |                         | ~       | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | Pyrene                                | ND          | mg/kg | 0.01   |                         |         | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | 2-Methylnapthalene                    | ND          | mg/kg | 0.01   |                         |         | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      | · · · · · · · · · · · · · · · · · · · |             |       |        |                         |         |           |          |        |  |  |  |  |
|                      |                                       |             |       |        |                         |         |           |          |        |  |  |  |  |
|                      | Surrogate Std:                        |             |       |        |                         |         |           |          |        |  |  |  |  |
|                      | Terphenyl-d14                         | 92.9        | %     | 18-137 |                         |         | EPA 8270D | 07/17/14 | 125    |  |  |  |  |
|                      |                                       |             |       |        |                         |         |           |          |        |  |  |  |  |
|                      |                                       |             |       |        |                         |         |           |          |        |  |  |  |  |

MCL (maximum contaminant level): Highest level recommended by the federal government for public water systems.

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

Approved By:

## 15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3067 0821-8270 pah

## Washington State Certified Lab #227 - DOE Accredited Lab C345

PCB's (Soil)

|                                                                                                             | ted: 07/08/14           |                 |                                                                     |                 |                                       | · · · · · · · · · · · · · · · · · · · |                 |       |  |  |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|---------------------------------------------------------------------|-----------------|---------------------------------------|---------------------------------------|-----------------|-------|--|--|--|
|                                                                                                             | No: 227-70821           |                 | County: YAKIMA                                                      |                 |                                       |                                       |                 |       |  |  |  |
| Sample Locat                                                                                                | ion: US12-2             |                 |                                                                     |                 |                                       |                                       |                 |       |  |  |  |
|                                                                                                             | ····                    |                 | Date Received: 07/08/14<br>Date Reported: 07/29/14                  |                 |                                       |                                       |                 |       |  |  |  |
|                                                                                                             |                         |                 | Same                                                                |                 |                                       |                                       |                 |       |  |  |  |
| end Report To:                                                                                              |                         |                 | Sample Collected By: SDG         SAMPLE COMMENTS       Matrix: Soil |                 |                                       |                                       |                 |       |  |  |  |
| PLSA Engineering                                                                                            |                         |                 | Sinin 1                                                             |                 |                                       | 1714111                               |                 |       |  |  |  |
| Attn: Scott Garland                                                                                         |                         |                 |                                                                     |                 |                                       |                                       |                 |       |  |  |  |
| 1120 West Lincoln Ave                                                                                       | enue                    |                 |                                                                     |                 |                                       |                                       |                 |       |  |  |  |
| Yakima, WA 98902                                                                                            |                         |                 |                                                                     |                 |                                       |                                       |                 |       |  |  |  |
| PCB's (Soil)                                                                                                |                         | ······          |                                                                     |                 |                                       |                                       |                 |       |  |  |  |
| OH# Analytes                                                                                                | Results                 | Units           | MRL                                                                 | Trigger         | MCL                                   | Method                                | Analyzed        | Analy |  |  |  |
| Aroclor 1016                                                                                                | ND                      | mg/kg           | 0.1                                                                 |                 |                                       | PA 8082                               | 07/22/14        | 125   |  |  |  |
| Aroclor 1221                                                                                                | ND                      | mg/kg           | 0.1                                                                 | ·               | E                                     | PA 8082                               | 07/22/14        | 125   |  |  |  |
| Aroclor 1232                                                                                                | ND                      | mg/kg           | 0.1                                                                 |                 | E                                     | PA 8082                               | 07/22/14        | 125   |  |  |  |
| Aroclor 1242                                                                                                | ND                      | mg/kg           | 0.1                                                                 |                 | E                                     | PA 8082                               | 07/22/14        | 125   |  |  |  |
| Aroclor 1248                                                                                                | ND                      | mg/kg           | 0.1                                                                 |                 | E                                     | PA 8082                               | 07/22/14        | 125   |  |  |  |
| Aroclor 1254                                                                                                | ND                      | mg/kg           | 0.1                                                                 |                 |                                       | PA 8082                               | 07/22/14        | 125   |  |  |  |
| Aroclor 1260                                                                                                | ND                      | mg/kg           | 0.1                                                                 |                 | · · · · · · · · · · · · · · · · · · · | PA 8082                               | 07/22/14        | 125   |  |  |  |
| PCB 8082 (total)                                                                                            | ND                      | mg/kg           | 0.1                                                                 |                 | E                                     | PA 8082                               | 07/22/14        | 125   |  |  |  |
|                                                                                                             | ~ · · -                 |                 |                                                                     | · - ·           |                                       |                                       |                 |       |  |  |  |
| Surrogate Std:                                                                                              | -                       |                 |                                                                     |                 |                                       |                                       |                 |       |  |  |  |
| DCB                                                                                                         | 84.4                    | %               | 30-130                                                              |                 | E                                     | PA 8082                               | 07/22/14        | 125   |  |  |  |
|                                                                                                             |                         |                 |                                                                     |                 |                                       |                                       |                 |       |  |  |  |
|                                                                                                             |                         | ·               |                                                                     | ·               | <u> </u>                              |                                       |                 |       |  |  |  |
|                                                                                                             |                         |                 |                                                                     |                 |                                       |                                       |                 |       |  |  |  |
|                                                                                                             |                         |                 |                                                                     |                 |                                       |                                       |                 | ļ     |  |  |  |
|                                                                                                             |                         |                 |                                                                     |                 |                                       |                                       |                 |       |  |  |  |
|                                                                                                             |                         | <u> </u>        | · · ·                                                               |                 |                                       |                                       |                 |       |  |  |  |
| ;,,,                                                                                                        |                         | ·               |                                                                     |                 | ·····                                 |                                       |                 |       |  |  |  |
|                                                                                                             |                         |                 |                                                                     |                 |                                       |                                       |                 |       |  |  |  |
|                                                                                                             |                         |                 |                                                                     | ····            |                                       |                                       |                 |       |  |  |  |
|                                                                                                             |                         |                 |                                                                     |                 |                                       |                                       |                 |       |  |  |  |
| MRL (Method Reporting Level):                                                                               |                         |                 |                                                                     |                 |                                       |                                       |                 |       |  |  |  |
| Trigger: DOH Drinking Water respo<br>MCL (maximum contaminant level<br>ND (Not Detected): Indicates this co | ): Highest level recomm | nended by the f | èderal govern                                                       | ment for public | water system                          | ns.                                   | ge on packages. |       |  |  |  |
|                                                                                                             |                         |                 |                                                                     | proved By:      |                                       |                                       |                 |       |  |  |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

70821-pcbs

### Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

| Date Col                                                                                                                         | lected: 07/08/14             |                                       |                                |                   |                           | -                                     |              |         |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------|--------------------------------|-------------------|---------------------------|---------------------------------------|--------------|---------|--|--|--|
| Lab/Samp                                                                                                                         | ole No: 227-70821            |                                       |                                | C                 | ounty:                    | YAKIMA                                |              |         |  |  |  |
|                                                                                                                                  | cation: UST2-2               |                                       |                                |                   | Ť.                        |                                       |              |         |  |  |  |
|                                                                                                                                  | ·····                        |                                       | Date Received: 07/08/14        |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       | Date Reported: 07/29/14        |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       | Sample Collected By: SDG       |                   |                           |                                       |              |         |  |  |  |
| end Report To:                                                                                                                   |                              |                                       | SAMPI                          | LE COMM           | IENTS                     | Matri                                 | x: Soil      |         |  |  |  |
| PLSA Engineering                                                                                                                 |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
| Attn: Scott Garland                                                                                                              |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
| 1120 West Lincoln A                                                                                                              | Venue                        |                                       |                                |                   |                           |                                       |              |         |  |  |  |
| Yakima, WA 98902                                                                                                                 |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
| Cadmium, Chromiu                                                                                                                 | m, Nickel, Zinc              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
| DOH# Analytes                                                                                                                    | Results                      | Units                                 | MRL                            | Trigger           | MCL                       | Method                                | Analyzed     | Analyst |  |  |  |
| Cadmium                                                                                                                          | ND                           | mg/kg                                 | 0.535                          |                   |                           | EPA 6020A                             | 07/23/14     | 125     |  |  |  |
| Chromium                                                                                                                         | 18.9                         | mg/kg                                 | 0.535                          |                   |                           | EPA 6020A                             | 07/23/14     | 125     |  |  |  |
| Nickel                                                                                                                           | 17.6                         | mg/kg                                 | 0.535                          |                   |                           | EPA 6020A                             | 07/23/14     | 125     |  |  |  |
| Zinc                                                                                                                             | 68.0                         | _mg/kg                                | 0.535                          |                   |                           | EPA 6020A                             | 07/23/14     | 125     |  |  |  |
|                                                                                                                                  |                              |                                       | Í                              |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       | _            |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       | -            |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           | · · · · · · · · · · · · · · · · · · · |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
|                                                                                                                                  |                              |                                       |                                |                   |                           |                                       |              |         |  |  |  |
| MRL (Method Reporting Level<br>Trigger: DOH Drinking Water re<br>MCL (maximum contaminant le<br>ND (Not Detected): Indicates thi | esponse level. Public System | ns in excess of t<br>ended by the fee | his level mus<br>leral governr | t take additionat | l samples.<br>water syste | Recommended range                     | on packages. |         |  |  |  |
|                                                                                                                                  |                              |                                       | Ар                             | proved By:        |                           |                                       |              |         |  |  |  |

70821-cdcrni

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

## Client:VALLEY ENVIRONMENTAL LABAddress:15 W. YAKIMA AVE STE210

YAKIMA, WA 98901

Attn:

DARA OSBORNE

### **Analytical Results Report**

Batch #:

Project Name:

140714014

VOC / METALS / PAH / PCB

| Sample Number    | 140714014-009 | Sampling Date   | 7/8/2014 | Date/Time Received | 7/11/2014 | 11:20 AM |
|------------------|---------------|-----------------|----------|--------------------|-----------|----------|
| Client Sample ID | 70821         | Sampling Time   | 11:16 AM |                    |           |          |
| Matrix           | Soil          | Sample Location |          |                    |           |          |
| Comments         |               |                 |          |                    |           |          |

| Parameter                         | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier |
|-----------------------------------|--------|-------|-------|---------------|---------|-----------|-----------|
| 1,1,1,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,1-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-dichloropropene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichloropropane            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromo-3-chloropropane(DBCP) | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromoethane                 | ND     | mg/kg | 0.001 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3,5-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,4-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-hexanone                        | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| 4-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Acetone                           | ND     | mġ/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Acrylonitrile                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Benzene                           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromobenzene                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromochloromethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; iD:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### **Client:** VALLEY ENVIRONMENTAL LAB

Address: 15 W. YAKIMA AVE STE210

**YAKIMA, WA 98901** 

140714014 Batch #:

Project Name: VOC / METALS / PAH / PCB

Attn:

DARA OSBORNE

### **Analytical Results Report**

| Sample Number    | 140714014-009 | Sampling Date   | 7/8/2014 | Date/Time Received | 7/11/2014 | 11:20 AM |  |
|------------------|---------------|-----------------|----------|--------------------|-----------|----------|--|
| Client Sample ID | 70821         | Sampling Time   | 11:16 AM |                    |           |          |  |
| Matrix           | Soil          | Sample Location |          |                    |           |          |  |
| Comments         |               |                 |          |                    |           |          |  |

| Parameter                     | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier |
|-------------------------------|--------|-------|-------|---------------|---------|-----------|-----------|
| Bromodichloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromoform                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromomethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon disulfide              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon Tetrachloride          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chlorobenzene                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroform .                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloromethane                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,2-dichloroethene        | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,3-Dichloropropene       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromochloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromomethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dichlorodifluoromethane       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Ethylbenzene                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Hexachlorobutadiene           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Isopropylbenzene              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| m+p-Xylene                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl ethyl ketone (MEK)     | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl isobutyl ketone (MIBK) | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B | •         |
| Methylene chloride            | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| methyl-t-butyl ether (MTBE)   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Naphthalene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Butylbenzene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Propylbenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| o-Xylene                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| p-isopropyltoluene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| sec-Butylbenzene              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Styrene                       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |

### **Analytical Results Report**

| Sample Number    | 140714014-009 |        | Sampling Da  | ite   | 7/8/2014 [  | Date/Time Received | 7/11/2014 | 11:20 AM  |
|------------------|---------------|--------|--------------|-------|-------------|--------------------|-----------|-----------|
| Client Sample ID | 70821         |        | Sampling Tir | ne    | 11:16 AM    |                    |           |           |
| Matrix           | Soil          |        | Sample Loca  | ation |             |                    |           |           |
| Comments         |               |        | •            |       |             |                    |           |           |
|                  |               |        |              |       |             |                    |           |           |
| Parameter        |               | Result | Units        | POL   | Analysis Da | te Analyst         | Method    | Qualifier |

|                           | Hobdit  | •       | 1 44  | 7-0101y 010 0 4 4 4 | Analyst | Methou    | quamer |
|---------------------------|---------|---------|-------|---------------------|---------|-----------|--------|
| tert-Butylbenzene         | ND      | mg/kg   | 0.005 | 7/17/2014           | SAT     | EPA 8260B |        |
| Tetrachloroethene         | 0.00647 | mg/kg   | 0.005 | 7/17/2014           | SAT     | EPA 8260B |        |
| Toluene                   | ND      | mg/kg   | 0.005 | 7/17/2014           | SAT     | EPA 8260B |        |
| trans-1,2-Dichloroethene  | ND      | mg/kg   | 0.005 | 7/17/2014           | SAT     | EPA 8260B |        |
| trans-1,3-Dichloropropene | ND      | mg/kg   | 0.005 | 7/17/2014           | SAT     | EPA 8260B |        |
| Trichloroethene           | ND      | mg/kg   | 0.005 | 7/17/2014           | SAT     | EPA 8260B |        |
| Trichloroflouromethane    | ND      | mg/kg   | 0.005 | 7/17/2014           | SAT     | EPA 8260B |        |
| Vinyl Chloride            | ND      | mg/kg   | 0.005 | 7/17/2014           | SAT     | EPA 8260B |        |
| %moisture                 | 7.3     | Percent |       | 7/17/2014           | SAT     | %moisture |        |
|                           |         |         |       |                     |         |           |        |

| Surrogate Data |                                  |                                                             |  |  |  |  |  |
|----------------|----------------------------------|-------------------------------------------------------------|--|--|--|--|--|
|                |                                  |                                                             |  |  |  |  |  |
| Method         | Percent Recovery                 | Control Limits                                              |  |  |  |  |  |
| EPA 8260B      | 87.6                             | 70-130                                                      |  |  |  |  |  |
| EPA 8260B      | 94.4                             | 70-130                                                      |  |  |  |  |  |
| EPA 8260B      | 99.2                             | 70-130                                                      |  |  |  |  |  |
|                | Method<br>EPA 8260B<br>EPA 8260B | Method Percent Recovery<br>EPA 8260B 87.6<br>EPA 8260B 94.4 |  |  |  |  |  |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00D13; OR:ID200D01-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Address:<br>Attn: | 15 W. YAKIMA AVE<br>YAKIMA, WA 98901 | STE210 |             |        | Batch #:     |                 | 714014         |          |
|-------------------|--------------------------------------|--------|-------------|--------|--------------|-----------------|----------------|----------|
| Attn:             | YAKIMA, WA 98901                     |        |             |        | Project N    | lame: VO        | C / METALS / P |          |
| Attn:             |                                      |        |             |        | , <b>,</b>   |                 |                |          |
|                   | DARA OSBORNE                         |        |             |        |              |                 |                |          |
|                   | b) i b i b b b b l i i i             | An     | alytical R  | esult  | s Report     |                 |                |          |
| Sample Number     | 140714014-009                        |        | Sampling D  | ate    | 7/8/2014     | Date/Time Rece  | ived 7/11/2014 | 11:20 AM |
| Client Sample ID  | 70821                                |        | Sampling Ti | me     | 11:16 AM E   | Extraction Date | 7/17/2014      |          |
| Matrix            | Soil                                 |        | Sample Loc  | ation  |              |                 |                |          |
| Comments          |                                      |        |             |        |              |                 |                |          |
| Parameter         |                                      | Result | Units       | PQL    | Analysis Dat | te Analyst      | Method         | Qualifie |
| 2-Methylnaph      | thalene                              | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Acenaphthen       | e                                    | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Acenaphthyle      | ne                                   | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Anthracene        |                                      | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Benzo(ghi)pe      | rylene                               | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Benzo[a]anthr     | racene                               | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Benzo[a]pyrer     | ıė                                   | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Benzo[b]fluora    | anthene                              | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Benzo[k]fluora    | anthene                              | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Chrysene          |                                      | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Dibenz[a,h]an     | thracene                             | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Fluoranthene      |                                      | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Fluorene          |                                      | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Indeno[1,2,3-c    | d]pyrene                             | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Naphthalene       |                                      | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Phenanthrene      |                                      | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| Pyrene            |                                      | ND     | mg/Kg       | 0.01   | 7/17/2014    | EMP             | EPA 8270D      |          |
| %moisture         |                                      | 7.3    | Percent     |        | 7/17/2014    | SAT             | %moisture      |          |
|                   | , <b></b>                            | ·      | Surrog      | ate Da | ita          |                 | · · · · ·      |          |

| Sample Number | 140714014-009 |           |                  |                |  |
|---------------|---------------|-----------|------------------|----------------|--|
| Surrogate Sta | andard        | Method    | Percent Recovery | Control Limits |  |
| Terphenyl-d14 | l             | EPA 8270D | 92.9             | 18-137         |  |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C686; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |
|          |                          |               |                          |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-009<br>70821<br>Soil |        | Sampling Da<br>Sampling Ti<br>Sample Loca | me     |             | Date/Time Recei<br>Extraction Date | ved 7/11/2014<br>7/18/2014 | 11:20 AM  |
|---------------------------------------------------------|--------------------------------|--------|-------------------------------------------|--------|-------------|------------------------------------|----------------------------|-----------|
| Parameter                                               |                                | Result | Units                                     | PQL    | Analysis Da | ate Analyst                        | Method                     | Qualifier |
| Aroclor 1016 (F                                         | PCB-1016)                      | ND     | mg/Kg                                     | 0.1    | 7/22/201    | 4 SAT                              | EPA 8082                   |           |
| Aroclor 1221 (F                                         | PCB-1221)                      | ND     | mg/Kg                                     | 0.1    | 7/22/201    | 4 SAT                              | EPA 8082                   |           |
| Aroclor 1232 (F                                         | PCB-1232)                      | ND     | mg/Kg                                     | 0.1    | 7/22/201    | 4 SAT                              | EPA 8082                   |           |
| Aroclor 1242 (F                                         | PCB-1242)                      | ND     | mg/Kg                                     | 0.1    | 7/22/201    | 4 SAT                              | EPA 8082                   |           |
| Aroclor 1248 (F                                         | PCB-1248)                      | ND     | mg/Kg                                     | 0.1    | 7/22/2014   | 4 SAT                              | EPA 8082                   |           |
| Aroclor 1254 (F                                         | PCB-1254)                      | ND     | mg/Kg                                     | 0.1    | 7/22/2014   | 4 SAT                              | EPA 8082                   |           |
| Aroclor 1260 (F                                         | PCB-1260)                      | ND     | mg/Kg                                     | 0.1    | 7/22/2014   | 4 SAT                              | EPA 8082                   |           |
| PCB 8082 (tota                                          | i)                             | ND     | mg/kg                                     | 0.1    | 7/22/2014   | 4 SAT                              | EPA 8082                   |           |
| %moisture                                               |                                | 7.3    | Percent                                   |        | 7/17/2014   | 4 SAT                              | %moisture                  |           |
|                                                         |                                |        | Surroga                                   | te Dai | ta          |                                    |                            |           |
| nple Number                                             | 140714014-009                  |        |                                           |        | · · · · · · |                                    |                            | <u> </u>  |
| Surrogate St                                            | andard                         |        | Method                                    |        | Pe          | ercent Recovery                    | Control L                  | .imits    |
| DCB                                                     |                                |        | EPA 808                                   | 2      | 84.4        |                                    | 30-130                     |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:CertD095; FL(NELAP): E871099

#### Washington State Certified Lab #227 - DOE Accredited Lab C345

BTEX by EPA 8260B

|                                                                                                                                             |                                                       | DIEA                               |                                                     | 4 8200B                                                  |                            |                  |          |         |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------|------------------|----------|---------|--|--|--|
| Date Collec                                                                                                                                 | eted: 07/08/14                                        |                                    | -                                                   |                                                          |                            | <u>.</u>         |          |         |  |  |  |
|                                                                                                                                             | No: 227-70822                                         |                                    |                                                     | C                                                        | County:                    | YAKIMA           |          |         |  |  |  |
| Sample Locat                                                                                                                                | tion: UST2-11                                         |                                    |                                                     |                                                          |                            |                  |          |         |  |  |  |
|                                                                                                                                             |                                                       |                                    | Date Received: 07/08/14                             |                                                          |                            |                  |          |         |  |  |  |
|                                                                                                                                             |                                                       | •••••••••                          | Date Reported: 07/29/14<br>Sample Collected By: SDG |                                                          |                            |                  |          |         |  |  |  |
| end Report To:                                                                                                                              |                                                       |                                    |                                                     | E Collect                                                |                            |                  | 61 PF    |         |  |  |  |
| PLSA Engineering                                                                                                                            |                                                       |                                    | SAWIPI                                              |                                                          | ULIN I S                   | Matri            | x: Soil  |         |  |  |  |
| Attn: Scott Garland                                                                                                                         |                                                       |                                    |                                                     |                                                          |                            |                  |          |         |  |  |  |
| 1120 West Lincoln Ave                                                                                                                       | enne                                                  |                                    |                                                     |                                                          |                            |                  |          |         |  |  |  |
| Yakima, WA 98902                                                                                                                            | Chut                                                  |                                    |                                                     |                                                          |                            |                  |          |         |  |  |  |
| BTEX by EPA 8260B                                                                                                                           |                                                       |                                    | <u>I</u>                                            |                                                          |                            | <del></del>      |          |         |  |  |  |
| OH# Analytes                                                                                                                                | Results                                               | Units                              | MRL                                                 | Trigger                                                  | MCL                        | Method           | Analyzed | Analy   |  |  |  |
| Benzene                                                                                                                                     | ND                                                    | ppm                                | 0.005                                               |                                                          |                            | EPA 8260B        | 07/17/14 | 125     |  |  |  |
| Toluene                                                                                                                                     | ND                                                    | ppm                                | 0.005                                               |                                                          |                            | EPA 8260B        | 07/17/14 | 125     |  |  |  |
| Ethylbenzene                                                                                                                                | ND                                                    | ppm                                | 0.005                                               |                                                          |                            | EPA 8260B        | 07/17/14 | 125     |  |  |  |
| Xylenes (m,p,o)                                                                                                                             | ND                                                    | ррт                                | 0.005                                               | <u>_</u>                                                 | -                          | EPA 8260B        | 07/17/14 | 125     |  |  |  |
| · ·                                                                                                                                         | ·                                                     |                                    |                                                     | ·                                                        |                            |                  |          |         |  |  |  |
|                                                                                                                                             |                                                       | · -                                | _                                                   |                                                          |                            | · · · ·          |          |         |  |  |  |
|                                                                                                                                             |                                                       |                                    | +                                                   |                                                          |                            |                  |          | ·       |  |  |  |
|                                                                                                                                             |                                                       |                                    |                                                     |                                                          |                            |                  |          |         |  |  |  |
|                                                                                                                                             |                                                       | ·                                  |                                                     |                                                          |                            |                  |          |         |  |  |  |
| ······································                                                                                                      |                                                       |                                    |                                                     |                                                          | +                          |                  |          |         |  |  |  |
|                                                                                                                                             |                                                       |                                    |                                                     |                                                          |                            | ····· •· •       |          | · · ·   |  |  |  |
|                                                                                                                                             |                                                       |                                    |                                                     |                                                          |                            |                  |          |         |  |  |  |
|                                                                                                                                             |                                                       |                                    | - I                                                 |                                                          |                            |                  |          |         |  |  |  |
|                                                                                                                                             | <sup>1</sup>                                          |                                    | ļ                                                   |                                                          | · · ·                      |                  |          |         |  |  |  |
|                                                                                                                                             |                                                       |                                    |                                                     | ·                                                        |                            | ·                |          |         |  |  |  |
|                                                                                                                                             |                                                       |                                    |                                                     |                                                          |                            | ·                |          |         |  |  |  |
|                                                                                                                                             |                                                       |                                    |                                                     |                                                          |                            | ····             |          |         |  |  |  |
| · · · · · ·                                                                                                                                 |                                                       |                                    |                                                     |                                                          |                            |                  |          | <u></u> |  |  |  |
|                                                                                                                                             |                                                       | · · ·                              |                                                     |                                                          |                            |                  |          |         |  |  |  |
|                                                                                                                                             |                                                       |                                    |                                                     |                                                          |                            |                  |          |         |  |  |  |
|                                                                                                                                             |                                                       | · · · ·                            |                                                     |                                                          |                            |                  |          |         |  |  |  |
| MRL (Method Reporting Level):<br>Trigger: DOH Drinking Water resp<br>MCL (maximum contaminant level<br>ND (Not Detected): Indicates this co | onse level. Public System<br>I): Highest level recomm | ns in excess of<br>conded by the f | this level mu<br>ederal govern<br>l at a level gre  | st take addition<br>ment for public<br>eater than or equ | al samples.<br>water syste | Recommended rang |          |         |  |  |  |
|                                                                                                                                             |                                                       |                                    | A                                                   | proved By:                                               |                            | $\sim$           |          |         |  |  |  |

ļ

70822-btex

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

#### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Washington State DOE Accredited Lab #<br>Sampled At: UST2-11 | C345      | Date Reported: 07/29/14<br>Date Collected: 07/08/14<br>Time Collected: 11:07 AM<br>Sampled By: SDG |             |                                                                                                                |            |  |  |  |
|--------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|------------|--|--|--|
| PLSA Engineering                                             |           |                                                                                                    |             |                                                                                                                |            |  |  |  |
| Attn: Scott Garland                                          |           | 2<br>•                                                                                             |             |                                                                                                                |            |  |  |  |
| 1120 West Lincoln Avenue                                     |           |                                                                                                    |             |                                                                                                                | Invoice    |  |  |  |
| Yakima, WA 98902                                             |           | 277(                                                                                               |             |                                                                                                                |            |  |  |  |
| Volatile Organic Chemicals                                   |           | Method                                                                                             | : EPA 8260B | Matrix: Soi                                                                                                    | i <b>1</b> |  |  |  |
| VEL Sample #                                                 | 227-70822 | I RAL PRATERATION DE LA CARA ANY ( ) MART AL AND PROFESSION POR                                    |             |                                                                                                                |            |  |  |  |
| Sample ID                                                    | UST2-11   |                                                                                                    |             |                                                                                                                |            |  |  |  |
| Units                                                        | ррт       | Limits                                                                                             |             |                                                                                                                |            |  |  |  |
| Check Standards - Ave.Recovery:                              |           |                                                                                                    |             |                                                                                                                |            |  |  |  |
| 1.2 Dichland                                                 | 00 (00)   |                                                                                                    |             |                                                                                                                |            |  |  |  |
| 1,2-Dichlorobenzene-d4<br>4-Bromofluorobenzene               | 88.40%    | (70-130)                                                                                           |             |                                                                                                                |            |  |  |  |
| Toluene-d8                                                   | 95.60%    | (70-130)                                                                                           |             |                                                                                                                |            |  |  |  |
|                                                              | 99.60%    | (70-130)                                                                                           |             |                                                                                                                |            |  |  |  |
| Dichlorodifluoromethane                                      | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| Chloromethane                                                | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| Vinyl chloride                                               | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| Bromomethane                                                 | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| Chloroethane                                                 | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| Acetone                                                      | ND        | 0.025                                                                                              |             |                                                                                                                |            |  |  |  |
| Acrolein                                                     | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| 1,1-Dichloroethylene                                         | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| Methylene chloride                                           | ND        | 0.025                                                                                              |             |                                                                                                                |            |  |  |  |
| Acrylonitrile                                                | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| trans-1,2-Dichloroethylene                                   | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| 1,1-Dichloroethane                                           | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| Methyl ethyl ketone (MEK)                                    | ND        | 0.025                                                                                              |             | 10 yr 10 |            |  |  |  |
| cis-1,2-Dichloroethylene                                     | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| 2,2-Dichloropropane                                          | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| Chloroform                                                   | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| Bromochloromethane                                           | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| 1,1,1-Trichloroethane                                        | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| 1,2-Dichloroethane                                           | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| 1,1-Dichloropropene                                          | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| Carbon tetrachloride                                         | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| Benzene                                                      | ND        | 0.005                                                                                              |             |                                                                                                                |            |  |  |  |
| Frichloroethylene                                            | ND        | 0.005                                                                                              | 1           |                                                                                                                |            |  |  |  |
| Date Analyzed:                                               | 7/17/2014 |                                                                                                    |             |                                                                                                                |            |  |  |  |
| Analyst:                                                     | 125       |                                                                                                    |             |                                                                                                                |            |  |  |  |
| ND = None Detected                                           | I         | Page 1 of 3                                                                                        |             |                                                                                                                |            |  |  |  |

### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902

,

| (509) | 575 - 39 | 99 Fax: | (509) | 575 - 3068 |
|-------|----------|---------|-------|------------|
|       |          |         |       |            |

| (307) 373 - 3979 FAX. (309) 373 | 1                                                                                                               | ganic Com                                                          | pounds (Continued)                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VEL Sample #                    |                                                                                                                 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                           |
| Sample ID                       | in the second | an (shi kan interski) i kan bi sha i bi sha i bi shi ni sha ni shi | אוויאס אווי |
| Units                           |                                                                                                                 | Limts                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,2-Dichloropropane             | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Dibromomethane                  | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Bromodichloromethane            | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| cis-1,3-Dichloropropene         | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Toluene                         | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| trans-1,3-Dichloropropene       | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,1,2-Trichloroethane           | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,3-Dichloropropane             | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Dibromochloromethane            | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Tetrachloroethylene             | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,2-Dibromoethane               | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Chlorobenzene                   | ND                                                                                                              | 0.001                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,1,1,2-Tetrachloroethane       | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Ethylbenzene                    | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| m,p-Xylene                      | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Styrene                         | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| o-Xylene                        | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Bromoform                       | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,1,2,2-Tetrachloroethane       | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,2,3-Trichloropropane          | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Bromobenzene                    | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| n-Propylbenzene                 | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 2-Chlorotoluene                 | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 4-Chlorotoluene                 | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,3,5-Trimethylbenzene          | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| tert-Butylbenzene               | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,2,4-Trimethylbenzene          | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| sec-Butylbenzene                | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,3-Dichlorobenzene             | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,4-Dichlorobenzene             | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 4-Isopropyltoluene              | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,2-Dichlorobenzene             | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| n-Butylbenzene                  | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,2-Dibromo-3-chloropropane     | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 1,2,4-Trichlorobenzene          | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Naphthalene                     | ND                                                                                                              | 0.005                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Date Analyzed:                  | 7/17/2014                                                                                                       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                           |
| Analyst:                        | 125                                                                                                             |                                                                    |                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                                                                                                                 |                                                                    | Page 2 of 3                                                                                                                                                                                                                                                                                                                                                               |
|                                 |                                                                                                                 |                                                                    | Page 2 of 3                                                                                                                                                                                                                                                                                                                                                               |

#### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210

#### Yakima, WA 98902

#### (509) 575 - 3999 Fax: (509) 575 - 3068

|                               | Volatile O | rganic Coi                                               | npounds (Co | ntinued)                                           |                                                                                                                |
|-------------------------------|------------|----------------------------------------------------------|-------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| VEL Sample #                  |            |                                                          |             |                                                    |                                                                                                                |
| Sample ID                     | UST2-11    | al den and bring bringer (den set i bringer) den anne an |             | an manga san ang ang ang ang ang ang ang ang ang a | а (1996) на (1996) (1997) (1997) на брат на селото |
| Units                         |            | Limits                                                   |             |                                                    |                                                                                                                |
| 1,1,1-Trichloroethane         | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| 1,1,2,2-Tetrachloroethane     | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| 1,1-Dichloroethene            | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| 1,2,3-Trichlorobenzene        | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| 1,2-Dichloroethane            | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| 2-hexanone                    | ND         | 0.025                                                    |             |                                                    |                                                                                                                |
| Bromoform                     | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| Carbon disulfide              | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| Chlorobenzene                 | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| cis-1,2-dichloroethene        | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| cis-1,3-Dichloropropene       | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| Hexachlorobutadiene           | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| Isopropylbenzene              | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| Methyl Isobutyl ketone (MIBK) | ND         | 0.025                                                    |             |                                                    |                                                                                                                |
| methyl-t-butyl ether (MTBE)   | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| p-siopropyltoluene            | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| tert-Butylbenzene             | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| trans-1,2-Dichloroethene      | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| Trichlorofluoromethane        | ND         | 0.005                                                    |             |                                                    |                                                                                                                |
| Tetrachloroethene             | 0.00567    | 0.005                                                    |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             |                                                    |                                                                                                                |
| Date Analyzed:                | 7/17/2014  |                                                          |             |                                                    |                                                                                                                |
| Analyst:                      | 125        |                                                          |             |                                                    |                                                                                                                |
|                               |            |                                                          |             | 1                                                  |                                                                                                                |
|                               |            |                                                          | Page 3 of 3 |                                                    |                                                                                                                |

### Washington State Certified Lab #227 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

|       | Date Collecte           | d: 07/08/14                        |                |                     |            |          |                        | · · · · · · · · · · · · · · · · · · · |            |  |  |  |
|-------|-------------------------|------------------------------------|----------------|---------------------|------------|----------|------------------------|---------------------------------------|------------|--|--|--|
|       | Lab/Sample N            | o: 227-70822                       |                |                     | C          | ounty:   | YAKIMA                 |                                       |            |  |  |  |
|       | Sample Location         | n: UST2-11                         |                |                     |            |          |                        |                                       |            |  |  |  |
|       |                         |                                    |                |                     | Date Re    | ceived:  | 07/08/14               |                                       |            |  |  |  |
|       |                         |                                    |                |                     | Date Rep   | oorted:  | 07/29/14               |                                       |            |  |  |  |
|       |                         |                                    | ·              | Samp                | le Collect | -        |                        |                                       |            |  |  |  |
| Send  | Report To:              |                                    |                |                     | LE COMM    | =        | Matri                  | x: Soil                               |            |  |  |  |
|       | PLSA Engineering        |                                    |                |                     |            |          |                        |                                       |            |  |  |  |
|       | Attn: Scott Garland     |                                    |                |                     |            |          |                        |                                       |            |  |  |  |
|       | 1120 West Lincoln Aven  | ue                                 |                |                     |            |          |                        |                                       |            |  |  |  |
|       | Yakima, WA 98902        |                                    |                |                     |            |          |                        |                                       |            |  |  |  |
|       |                         |                                    |                |                     |            |          |                        | ·                                     |            |  |  |  |
|       | Polynuclear Aromatic Hy |                                    |                | BADY                | 700        | DECT     |                        |                                       |            |  |  |  |
| JOUH  | Analytes                | Results<br>ND                      | Units          | 0.01                | Trigger    | MCL      | Method<br>EPA 8270D    | Analyzed                              | ÷          |  |  |  |
|       | Acenaphthylene          | $-\frac{\mathbf{ND}}{\mathbf{ND}}$ | mg/kg          | 0.01                |            |          |                        | 07/17/14                              | 125        |  |  |  |
|       | Anthracene              | ND                                 | mg/kg          | 0.01                |            |          | EPA 8270D              | 07/17/14                              | 125        |  |  |  |
|       | Benzo(a)anthracene      | ND ND                              | mg/kg<br>mg/kg | 0.01                | ,          |          | EPA 8270D              | 07/17/14                              | 125        |  |  |  |
|       | Benzo(a)pyrene          | ND                                 | mg/kg          | 0.01                |            | +        | EPA 8270D              | 07/17/14                              | 125<br>125 |  |  |  |
| — · — | Benzo(b)fluoranthene    |                                    | mg/kg          | 0.01                |            |          | EPA 8270D              | 07/17/14                              |            |  |  |  |
|       | Benzo(ghi)perylene      | ND                                 | mg/kg          | 0.01                |            |          | EPA 8270D              | 07/17/14                              | 125        |  |  |  |
|       | Benzo(k)fluoranthene    | ND                                 | mg/kg          | 0.01                | · ~        | <u> </u> | EPA 8270D<br>EPA 8270D | 07/17/14                              | 125<br>125 |  |  |  |
|       | Chrysene                | ND                                 | mg/kg          | 0.01                |            |          | EPA 8270D<br>EPA 8270D | 07/17/14                              | 125        |  |  |  |
|       | Dibenzo(a,h)anthracene  | ND                                 | mg/kg          | 0.01                |            |          | EPA 8270D<br>EPA 8270D | 07/17/14                              | 125        |  |  |  |
|       | Fluoranthene            | ND ND                              | mg/kg          | $\frac{0.01}{0.01}$ |            |          | EPA 8270D<br>EPA 8270D | 07/17/14                              | 125        |  |  |  |
|       | Fluorene                | ND                                 | mg/kg          | 0.01                |            |          | EPA 8270D<br>EPA 8270D | 07/17/14                              | 125        |  |  |  |
| 1     | Indeno(1,2,3-cd)pyrene  | ND                                 | mg/kg          | 0.01                |            | <u> </u> | EPA 8270D<br>EPA 8270D | 07/17/14                              | 125        |  |  |  |
|       | Naphthalene             | ND                                 | mg/kg          | 0.01                |            |          | EPA 8270D              | 07/17/14                              | 125        |  |  |  |
|       | Phenanthrene            | ND ND                              | mg/kg          | 0.01                |            |          |                        | 07/17/14                              | 125        |  |  |  |
|       | Pyrene                  | ND                                 | mg/kg          | 0.01                |            |          | EPA 8270D<br>EPA 8270D | 07/17/14                              | 125        |  |  |  |
|       | 2-Methylnapthalene      | ND                                 | mg/kg          | 0.01                |            |          | EPA 8270D              | 07/17/14                              | 125        |  |  |  |
|       |                         |                                    | mg/xg          | 0.01                |            |          |                        | 0//1//14                              | 123        |  |  |  |
|       | Surrogate Std:          |                                    |                |                     |            |          |                        |                                       | · ·        |  |  |  |
|       | Terphenyl-d14           | 94.0                               | %              | 18-137              |            |          | EPA 8270D              | 07/17/14                              | 125        |  |  |  |
| -     |                         |                                    |                |                     |            |          |                        |                                       |            |  |  |  |

MCL (maximum contaminant level): Highest level recommended by the federal government for public water systems.

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

Approved By:

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068 0822-8270 pah

### Washington State Certified Lab #227 - DOE Accredited Lab C345

PCB's (Soil)

|                 | Date Collected                                                                                                                                             | l: 07/08/14                                  |                                    | CB.8 (S                                            |                                     | ·                       |                              |          |       |  |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------|----------------------------------------------------|-------------------------------------|-------------------------|------------------------------|----------|-------|--|--|--|
|                 | Lab/Sample No                                                                                                                                              | . 227-70877                                  |                                    |                                                    |                                     | auntu                   | YAKIMA                       |          |       |  |  |  |
|                 | Sample Location                                                                                                                                            |                                              |                                    |                                                    |                                     | ounty.                  |                              |          |       |  |  |  |
| euse)           | <b>F</b>                                                                                                                                                   |                                              |                                    | Date Received: 07/08/14                            |                                     |                         |                              |          |       |  |  |  |
| n soit<br>Se W  |                                                                                                                                                            |                                              |                                    | Date Reported: 07/29/14                            |                                     |                         |                              |          |       |  |  |  |
| inenan<br>La se |                                                                                                                                                            |                                              |                                    | Sample Collected By: SDG                           |                                     |                         |                              |          |       |  |  |  |
| end             | Report To:                                                                                                                                                 |                                              |                                    | SAMPI                                              | E COMM                              | ENTS                    | Matri                        | x: Soil  |       |  |  |  |
|                 | PLSA Engineering                                                                                                                                           |                                              |                                    |                                                    |                                     |                         |                              |          |       |  |  |  |
|                 | Attn: Scott Garland                                                                                                                                        |                                              |                                    |                                                    |                                     |                         |                              |          |       |  |  |  |
|                 | 1120 West Lincoln Avenu                                                                                                                                    | ie                                           |                                    |                                                    |                                     |                         |                              |          |       |  |  |  |
|                 | Yakima, WA 98902                                                                                                                                           |                                              |                                    |                                                    |                                     |                         |                              |          |       |  |  |  |
|                 | PCB's (Soil)                                                                                                                                               |                                              |                                    |                                                    |                                     |                         |                              |          |       |  |  |  |
| OH#             | Analytes                                                                                                                                                   | Results                                      | Units                              | MRL                                                | Trigger                             | MCL                     | Method                       | Analyzed | Analy |  |  |  |
|                 | Aroclor 1016                                                                                                                                               | ND                                           | mg/kg                              | 0.1                                                |                                     |                         | EPA 8082                     | 07/22/14 | 125   |  |  |  |
|                 | Aroclor 1221                                                                                                                                               | ND                                           | mg/kg                              | 0.1                                                |                                     |                         | EPA 8082                     | 07/22/14 | 125   |  |  |  |
|                 | Aroclor 1232                                                                                                                                               | ND                                           | mg/kg                              | 0.1                                                |                                     |                         | EPA 8082                     | 07/22/14 | 125   |  |  |  |
|                 | Aroclor 1242                                                                                                                                               |                                              | mg/kg                              | 0.1                                                |                                     |                         | EPA 8082                     | 07/22/14 | 125   |  |  |  |
|                 | Aroclor 1248                                                                                                                                               | ND                                           | mg/kg                              | 0.1                                                |                                     | ļ                       | EPA 8082                     | 07/22/14 | 125   |  |  |  |
|                 | Aroclor 1254<br>Aroclor 1260                                                                                                                               | ND                                           | mg/kg                              | 0.1                                                |                                     | ·-                      | EPA 8082                     | 07/22/14 | 125   |  |  |  |
|                 | PCB 8082 (total)                                                                                                                                           | ND<br>ND                                     | mg/kg                              | 0.1                                                |                                     |                         | EPA 8082                     | 07/22/14 | 125   |  |  |  |
|                 |                                                                                                                                                            |                                              | mg/kg                              | 0.1                                                |                                     |                         | EPA 8082                     | 07/22/14 | 125   |  |  |  |
|                 |                                                                                                                                                            |                                              |                                    |                                                    |                                     |                         |                              |          |       |  |  |  |
|                 | Surrogate Std:                                                                                                                                             |                                              | · . <u> </u>                       |                                                    |                                     | <u> </u>                |                              |          |       |  |  |  |
|                 | DCB                                                                                                                                                        | 85.3                                         | %                                  | 30-130                                             |                                     |                         | EPA 8082                     | 07/22/14 | 125   |  |  |  |
|                 |                                                                                                                                                            |                                              |                                    |                                                    |                                     |                         |                              |          |       |  |  |  |
|                 |                                                                                                                                                            |                                              |                                    |                                                    |                                     |                         |                              |          |       |  |  |  |
|                 |                                                                                                                                                            |                                              |                                    |                                                    |                                     |                         |                              |          |       |  |  |  |
|                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                      |                                              |                                    | ļļ                                                 |                                     |                         |                              |          |       |  |  |  |
|                 |                                                                                                                                                            |                                              |                                    |                                                    |                                     |                         |                              |          |       |  |  |  |
| · · ·           | · · · · ·                                                                                                                                                  |                                              |                                    |                                                    |                                     |                         |                              |          |       |  |  |  |
|                 |                                                                                                                                                            |                                              | ·                                  |                                                    |                                     |                         |                              |          |       |  |  |  |
|                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                      |                                              |                                    |                                                    |                                     |                         |                              |          |       |  |  |  |
|                 |                                                                                                                                                            |                                              |                                    | · · · · ·                                          |                                     |                         |                              |          |       |  |  |  |
|                 | · · · · · · ·                                                                                                                                              |                                              |                                    | -                                                  |                                     | <br>                    |                              |          |       |  |  |  |
|                 | MRL (Method Reporting Level): Indi<br>Trigger: DOH Drinking Water response<br>MCL (maximum contaminant level): F<br>ND (Not Detected): Indicates this comp | level. Public System<br>lighest level recomm | ms in excess of<br>nended by the f | this level mu<br>ederal govern<br>I at a level gro | st take addition<br>ment for public | al samples<br>water sys | s. Recommended rang<br>tems. |          |       |  |  |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

70822-pcbs

### VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

|                                                                                                  |                            | num, Ci           |                | ш, тчска         | ., <b>Z</b> .III |                   |              |          |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------------------|-------------------|----------------|------------------|------------------|-------------------|--------------|----------|--|--|--|
| Date Colle                                                                                       | ected: 07/08/14            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  | le No: 227-70822           |                   | County: YAKIMA |                  |                  |                   |              |          |  |  |  |
| Sample Loca                                                                                      | ation: UST2-11             |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                | Date Re          | ceived           | : 07/08/14        |              |          |  |  |  |
|                                                                                                  |                            |                   |                | Date Rep         | orted            | 07/29/14          |              |          |  |  |  |
|                                                                                                  |                            |                   | Sam            | ole Collect      | ted By:          | : SDG             |              |          |  |  |  |
| Send Report To:                                                                                  |                            | -                 | SAMPI          | LE COMM          | IENTS            | Matri             | x: Soil      |          |  |  |  |
| <b>PLSA Engineering</b>                                                                          |                            |                   |                |                  |                  |                   |              |          |  |  |  |
| Attn: Scott Garland                                                                              |                            |                   |                |                  |                  |                   |              |          |  |  |  |
| 1120 West Lincoln Av                                                                             | venue                      |                   |                |                  |                  |                   |              |          |  |  |  |
| Yakima, WA 98902                                                                                 |                            |                   |                |                  |                  |                   |              |          |  |  |  |
| Cadmium, Chromiun                                                                                | n, Nickel, Zinc            |                   | •              |                  |                  |                   |              |          |  |  |  |
| DOH#Analytes                                                                                     | Results                    | Units             | MRL            | Trigger          | MCL              | Method            | Analyzed     | Analys   |  |  |  |
| Cadmium                                                                                          | ND                         | mg/kg             | 0.535          |                  |                  | EPA 6020A         | 07/23/14     | 125      |  |  |  |
| Chromium                                                                                         | 21.0                       | mg/kg             | 0.535          |                  |                  | EPA 6020A         | 07/23/14     | 125      |  |  |  |
| Nickel                                                                                           | 16.1                       | mg/kg             | 0.535          |                  |                  | EPA 6020A         | 07/23/14     | 125      |  |  |  |
| Zinc                                                                                             | 52.6                       | mg/kg             | 0.535          |                  |                  | EPA 6020A         | 07/23/14     | 125      |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              | <u> </u> |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   |                |                  |                  |                   |              |          |  |  |  |
| MRL (Method Reporting Level):<br>Trigger: DOH Drinking Water res<br>MCL (maximum contaminant lev | ponse level. Public System | ns in excess of t | his level mus  | t take additiona | l samples.       | Recommended range | on packages. |          |  |  |  |
| ND (Not Detected): Indicates this                                                                |                            |                   |                |                  |                  |                   |              |          |  |  |  |
|                                                                                                  |                            |                   | Ар             | proved By:       |                  |                   |              | _        |  |  |  |

70822-cdcrni

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### **Client:** VALLEY ENVIRONMENTAL LAB Address: 15 W. YAKIMA AVE STE210

Batch #: 140714014

Project Name: VOC / METALS / PAH / PCB

Attn:

.

**YAKIMA, WA 98901** DARA OSBORNE

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID | 140714014-010<br>70822 <sup>5</sup> | Sampling Date<br>Sampling Time | 7/8/2014<br>11:07 AM | Date/Time Received | 7/ <b>11/2</b> 014 | 11:20 AM |
|-----------------------------------|-------------------------------------|--------------------------------|----------------------|--------------------|--------------------|----------|
| Matrix                            | Soil                                | Sample Location                |                      |                    |                    |          |
| Comments                          |                                     |                                |                      |                    |                    |          |

| Parameter                         | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier |
|-----------------------------------|--------|-------|-------|---------------|---------|-----------|-----------|
| 1,1,1,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,1-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-dichloropropene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichloropropane            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromo-3-chloropropane(DBCP) | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromoethane                 | ND     | mg/kg | 0.001 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3,5-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,4-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-hexanone                        | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| 4-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Acetone                           | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Acrylonitrile                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Benzene                           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromobenzene                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromochloromethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     |           |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### **Client:** VALLEY ENVIRONMENTAL LAB Address:

15 W. YAKIMA AVE STE210 **YAKIMA, WA 98901** 

Batch #: 140714014

Project Name: VOC / METALS / PAH / PCB

Attn:

DARA OSBORNE

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID | 140714014-010<br>70822 | Sampling Date<br>Sampling Time | 7/8/2014<br>11:07 AM | Date/Time Received | 7/11/2014 | 11:20 AM | - |
|-----------------------------------|------------------------|--------------------------------|----------------------|--------------------|-----------|----------|---|
| Matrix                            | Soil                   | Sample Location                |                      |                    |           |          |   |
| Comments                          |                        |                                |                      |                    |           |          |   |

| Parameter                     | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier |
|-------------------------------|--------|-------|-------|---------------|---------|-----------|-----------|
| Bromodichloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromoform                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromomethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon disulfide              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon Tetrachloride          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chlorobenzene                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroform                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloromethane                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,2-dichloroethene        | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,3-Dichloropropene       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromochloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromomethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dichlorodifluoromethane       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Ethylbenzene                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Hexachlorobutadiene           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Isopropylbenzene              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| m+p-Xylene                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl ethyl ketone (MEK)     | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl isobutyl ketone (MIBK) | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methylene chloride            | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| methyl-t-butyl ether (MTBE)   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Naphthalene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Butylbenzene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Propylbenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| o-Xylene                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| o-isopropyltoluene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| sec-Butylbenzene              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Styrene                       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:/D00013; AZ:0701; CO:/D00013; FL(NELAP):E87883; ID:/D00013; MT:CERT0028; NM: ID00013; OR:/D200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:<br>Address:                                     | VALLEY ENVIRON<br>15 W. YAKIMA AV<br>YAKIMA, WA 9890 | E STE210 | AB                                      | Batch #:<br>Project Name: |              |              | 140714014<br>VOC / METALS / PAH / PCI |          |  |  |
|---------------------------------------------------------|------------------------------------------------------|----------|-----------------------------------------|---------------------------|--------------|--------------|---------------------------------------|----------|--|--|
| Attn:                                                   | DARA OSBORNE                                         | Ar       | nalytical I                             | Result                    | s Renorf     |              |                                       |          |  |  |
| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-010<br>70822<br>Soil                       |          | Sampling D<br>Sampling Ti<br>Sample Loc | ate<br>ime                |              | ate/Time Rec | eived 7/11/2014                       | 11:20 AM |  |  |
| Parameter                                               |                                                      | Result   | Units                                   | PQL                       | Analysis Dat | e Analyst    | Method                                | Qualifie |  |  |
| tert-Butylbenz                                          | ene                                                  | ND       | mg/kg                                   | 0.005                     | 7/17/2014    | SAT          | EPA 8260B                             | -        |  |  |
| Tetrachloroet                                           | nene                                                 | 0.00567  | mg/kg                                   | 0.005                     | 7/17/2014    | SAT          | EPA 8260B                             |          |  |  |
| Toluene                                                 |                                                      | ND       | mg/kg                                   | 0.005                     | 7/17/2014    | SAT          | EPA 8260B                             |          |  |  |
| trans-1,2-Dich                                          | loroethene                                           | ND       | mg/kg                                   | 0.005                     | 7/17/2014    | SAT          | EPA 8260B                             |          |  |  |
| trans-1,3-Dich                                          | loropropene                                          | ND       | mg/kg                                   | 0.005                     | 7/17/2014    | SAT          | EPA 8260B                             |          |  |  |
| Trichloroether                                          | ne                                                   | ND       | mg/kg                                   | 0.005                     | 7/17/2014    | SAT          | EPA 8260B                             |          |  |  |
| Trichloroflourd                                         | omethane                                             | ND       | mg/kg                                   | 0.005                     | 7/17/2014    | SAT          | EPA 8260B                             |          |  |  |
| Vinyl Chloride                                          |                                                      | ND       | mg/kg                                   | 0.005                     | 7/17/2014    | SAT          | EPA 8260B                             |          |  |  |
| %moisture                                               |                                                      | 3.9      | Percent                                 |                           | 7/17/2014    | SAT          | %moisture                             |          |  |  |
|                                                         |                                                      |          | Surroga                                 | ate Dat                   | a            |              |                                       |          |  |  |
| mple Number                                             | 140714014-010                                        |          |                                         |                           |              |              |                                       |          |  |  |
| Surrogate S                                             |                                                      |          | Method                                  |                           | Perc         | cent Recover | Control Limits                        |          |  |  |
| 1,2-Dichlorol                                           |                                                      |          | EPA 826                                 |                           |              | 88.4         | 70-130                                |          |  |  |
| 4-Bromofluor<br>Toluene-d8                              | robenzene                                            |          | EPA 826<br>EPA 826                      |                           |              | 95.6<br>99.6 | 70-130<br>70-130                      |          |  |  |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:(D200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:<br>Address:<br>Attn: |               |        |             |          |                      |                 | 0714014<br>DC / METALS / PAH / PCB |          |  |
|------------------------------|---------------|--------|-------------|----------|----------------------|-----------------|------------------------------------|----------|--|
|                              |               | An     | alytical R  | esult    | s Report             |                 |                                    |          |  |
| Sample Number                | 140714014-010 |        | Sampling D  |          | 7/8/2014             | Date/Time Rece  | ived 7/11/2014                     | 11:20 AM |  |
| Client Sample ID             | 70822         |        | Sampling Ti |          | 11:07 AM             | Extraction Date | 7/17/2014                          |          |  |
| Matrix<br>Comments           | Soil          |        | Sample Loc  | ation    |                      |                 |                                    |          |  |
| Parameter                    |               | Result | Units       | PQL      | Analysis [           | Date Analyst    | Method                             | Qualifie |  |
| 2-Methylnaph                 | thalene       | ND     | mg/Kg       | 0.01     | 7/17/201             | 14 EMP          | EPA 8270D                          |          |  |
| Acenaphthene                 | e             | ND     | mg/Kg       | 0.01     | 7/17/20*             | 4 EMP           | EPA 8270D                          |          |  |
| Acenaphthyle                 | ne            | ND     | mg/Kg       | 0.01     | 7/17/201             | 4 EMP           | EPA 8270D                          |          |  |
| Anthracene                   |               | ND     | mg/Kg       | 0.01     | 7/17/20 <sup>-</sup> | I4 EMP          | EPA 8270D                          |          |  |
| Benzo(ghi)pei                | rylene        | ND     | mg/Kg       | 0.01     | 7/17/201             | I4 EMP          | EPA 8270D                          |          |  |
| Benzo[a]anthr                | racene        | ND     | mg/Kg       | 0.01     | 7/17/201             | 4 EMP           | EPA 8270D                          |          |  |
| Benzo[a]pyrer                | ne            | ND     | mg/Kg       | 0.01     | 7/17/201             | 4 EMP           | EPA 8270D                          |          |  |
| Benzo[b]fluora               | anthene       | ND     | mg/Kg       | 0.01     | 7/17/201             | 4 EMP           | EPA 8270D                          |          |  |
| Benzo[k]fluora               | anthene       | ND     | mg/Kg       | 0.01     | 7/17/201             | 4 EMP           | EPA 8270D                          |          |  |
| Chrysene                     |               | ND     | mg/Kg       | 0.01     | 7/17/201             | 4 EMP           | EPA 8270D                          |          |  |
| Dibenz[a,h]an                | thracene      | ND     | mg/Kg       | 0.01     | 7/17/201             | 4 EMP           | EPA 8270D                          |          |  |
| Fluoranthene                 |               | ND     | mg/Kg       | 0.01     | 7/17/201             | 4 EMP           | EPA 8270D                          |          |  |
| Fluorene                     |               | ND     | mg/Kg       | 0.01     | 7/17/201             | 4 EMP           | EPA 8270D                          |          |  |
| Indeno[1,2,3-c               | cd]pyrene     | ND     | mg/Kg       | 0.01     | 7/17/201             | 4 EMP           | EPA 8270D                          |          |  |
| Naphthalene                  |               | ND     | mg/Kg       | 0.01     | 7/17/201             | 4 EMP           | EPA 8270D                          |          |  |
| Phenanthrene                 |               | ND     | mg/Kg       | 0.01     | 7/17/201             | 4 EMP           | EPA 8270D                          |          |  |
| Pyrene                       |               | ND     | mg/Kg       | 0.01     | 7/17/201             | 4 EMP           | EPA 8270D                          |          |  |
| %moisture                    |               | 3.9    | Percent     |          | 7/17/201             | 4 SAT           | %moisture                          |          |  |
|                              |               |        | Surrog      | ate Da   | ta                   |                 |                                    |          |  |
| mple Number                  | 140714014-010 |        |             | <u> </u> |                      | - <u></u>       | <u> </u>                           |          |  |
| Surrogate S                  | itandard      |        | Method      |          | P                    | ercent Recovery | Control Limits                     |          |  |
| Terphenyl-d1                 | 14            |        | EPA 827     | 0D       |                      | 94.0            | 18-137                             |          |  |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C585 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

Batch #:140714014Project Name:VOC / METALS / PAH / PCB

Analytical Results Report

| Sample Number1407140Client Sample ID70822MatrixSoilComments | 14-010 | Sampling Da<br>Sampling Ti<br>Sample Loc | me      |             | Date/Time Receiv<br>Extraction Date | ved 7/11/2014<br>7/18/2014 | 11:20 AM |
|-------------------------------------------------------------|--------|------------------------------------------|---------|-------------|-------------------------------------|----------------------------|----------|
| Parameter                                                   | Result | Units                                    | PQL     | Analysis Da | ite Analyst                         | Method                     | Qualifie |
| Aroclor 1016 (PCB-1016)                                     | ND     | mg/Kg                                    | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| Aroclor 1221 (PCB-1221)                                     | ND     | mg/Kg                                    | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| Aroclor 1232 (PCB-1232)                                     | ND     | mg/Kg                                    | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| Aroclor 1242 (PCB-1242)                                     | ND     | mg/Kg                                    | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| Aroclor 1248 (PCB-1248)                                     | ND     | mg/Kg                                    | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| Aroclor 1254 (PCB-1254)                                     | ND     | mg/Kg                                    | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| Aroclor 1260 (PCB-1260)                                     | ND     | mg/Kg                                    | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| PCB 8082 (total)                                            | ND     | mg/kg                                    | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                   |          |
| %moisture                                                   | 3.9    | Percent                                  |         | 7/17/2014   | SAT                                 | %moisture                  |          |
|                                                             |        | Surroga                                  | ate Dat | a           |                                     |                            |          |
| mple Number 14071401                                        | 4-010  | · · · · · · · · · · · · · · · · · · ·    |         | <u> </u>    |                                     | · · · · · · · · ·          |          |
| Surrogate Standard                                          |        | Method                                   |         | Pe          | rcent Recovery                      | Control L                  | imits    |
| DCB                                                         |        | EPA 808                                  | 32      | 85.3        |                                     | 30-130                     |          |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200D01-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

### Washington State Certified Lab #227 - DOE Accredited Lab C345

BTEX by EPA 8260B

|                        | Date Colle                                                                                                                                                          | cted: 07/08/14            |                                    |                                | A 8200B                             |                         |                     |           |        |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------|--------------------------------|-------------------------------------|-------------------------|---------------------|-----------|--------|--|--|
|                        | Lab/Sample                                                                                                                                                          | e No: 227-70823           |                                    |                                | C                                   | ounty:                  | YAKIMA              |           |        |  |  |
|                        | Sample Loca                                                                                                                                                         | tion: UST1-2              |                                    |                                |                                     | -                       |                     |           |        |  |  |
|                        |                                                                                                                                                                     |                           |                                    |                                | Date Ree                            | ceived:                 | 07/08/14            |           |        |  |  |
|                        |                                                                                                                                                                     |                           |                                    | Date Reported: 07/29/14        |                                     |                         |                     |           |        |  |  |
| ne poses.<br>Ne compos |                                                                                                                                                                     |                           |                                    |                                | ole Collect                         |                         | SDG                 | · · · · · |        |  |  |
|                        | Report To:                                                                                                                                                          |                           |                                    | SAMPI                          | LE COMM                             | ENTS                    | Matri               | x: Soil   |        |  |  |
|                        | PLSA Engineering                                                                                                                                                    |                           |                                    |                                |                                     |                         |                     |           |        |  |  |
|                        | Attn: Scott Garland                                                                                                                                                 |                           |                                    |                                |                                     |                         |                     |           |        |  |  |
|                        | 1120 West Lincoln Av                                                                                                                                                | enue                      |                                    |                                |                                     |                         |                     |           |        |  |  |
|                        | Yakima, WA 98902                                                                                                                                                    |                           |                                    |                                |                                     |                         |                     |           |        |  |  |
|                        | BTEX by EPA 8260B                                                                                                                                                   |                           |                                    |                                |                                     |                         |                     |           | ····   |  |  |
| )OH#                   | Analytes                                                                                                                                                            | Results                   | Units                              | MRL                            | Trigger                             | MCL                     | Method              | Analyzed  | Analys |  |  |
|                        | Benzene                                                                                                                                                             | ND                        | ppm                                | 0.005                          |                                     |                         | EPA 8260B           | 07/17/14  | 125    |  |  |
|                        | Toluene                                                                                                                                                             | ND                        | ppm                                | 0.005                          |                                     |                         | EPA 8260B           | 07/17/14  | 125    |  |  |
|                        | Ethylbenzene                                                                                                                                                        | ND                        | ppm                                | 0.005                          |                                     |                         | EPA 8260B           | 07/17/14  | 125    |  |  |
|                        | Xylenes (m,p,o)                                                                                                                                                     | ND                        | ppm                                | 0.005                          |                                     |                         | EPA 8260B           | 07/17/14  | 125    |  |  |
| T<br>N                 | ARL (Method Reporting Level):         'rigger: DOH Drinking Water resp         ACL (maximum contaminant level):         'D (Not Detected):         Indicates this c | onse level. Public Systen | ns in excess of<br>ended by the fi | this level mu<br>ederal govern | st take addition<br>ment for public | al samples<br>water sys | a. Recommended rang |           |        |  |  |
| 1                      | in (iver percent). Indicates has e                                                                                                                                  | ompound was anaryzed a    | nu not defectee                    |                                | proved By:                          | ual to the f            | VIRL OF SRL.        |           |        |  |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

70823-btex

#### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Washington State DOE Accredited Lab #<br>Sampled At: UST1-2 | C345          | Date Reported: 07/29/14<br>Date Collected: 07/08/14<br>Time Collected: 11:42 AM<br>Sampled By: SDG |             |            |          |  |  |  |
|-------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------|-------------|------------|----------|--|--|--|
| PLSA Engineering                                            |               |                                                                                                    |             |            |          |  |  |  |
| Attn: Scott Garland                                         |               |                                                                                                    |             |            |          |  |  |  |
| 1120 West Lincoln Avenue                                    |               |                                                                                                    |             |            | Invoice# |  |  |  |
| Yakima, WA 98902                                            |               |                                                                                                    |             |            |          |  |  |  |
| Volatile Organic Chemicals                                  |               | Method                                                                                             | : EPA 8260B | Matrix: So | oil      |  |  |  |
| VEL Sample #                                                | 227-70823     |                                                                                                    |             |            |          |  |  |  |
| Sample ID                                                   | <b>UST1-2</b> |                                                                                                    |             |            |          |  |  |  |
| Units                                                       | ppm           | Limits                                                                                             |             |            |          |  |  |  |
| Check Standards - Ave.Recovery:                             |               |                                                                                                    |             |            |          |  |  |  |
|                                                             |               |                                                                                                    |             |            |          |  |  |  |
| 1,2-Dichlorobenzene-d4                                      | 88.40%        | (70-130)                                                                                           |             |            |          |  |  |  |
| 4-Bromofluorobenzene                                        | 94.40%        | (70-130)                                                                                           |             |            |          |  |  |  |
| Toluene-d8                                                  | 99.20%        | (70-130)                                                                                           |             |            |          |  |  |  |
| Dichlorodifluoromethane                                     | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| Chloromethane                                               | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| Vinyl chloride                                              | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| Bromomethane                                                | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| Chloroethane                                                | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| Acetonc                                                     | ND            | 0.025                                                                                              |             |            |          |  |  |  |
| Acrolein                                                    | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| 1,1-Dichloroethylene                                        | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| Methylene chloride                                          | ND            | 0.025                                                                                              |             |            |          |  |  |  |
| Acrylonitrile                                               | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| trans-1,2-Dichloroethylene                                  | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| 1,1-Dichloroethane                                          | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| Methyl ethyl ketone (MEK)                                   | ND            | 0.025                                                                                              |             |            |          |  |  |  |
| cis-1,2-Dichloroethylene                                    | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| 2,2-Dichloropropane                                         | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| Chloroform                                                  | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| Bromochloromethanc                                          | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| 1,1,1-Trichloroethane                                       | ND            | 0.005                                                                                              |             | 1          |          |  |  |  |
| 1,2-Dichloroethane                                          | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| 1,1-Dichloropropene                                         | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| Carbon tetrachloride                                        | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| Benzene                                                     | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| Trichloroethylene                                           | ND            | 0.005                                                                                              |             |            |          |  |  |  |
| Date Analyzed:                                              | 7/17/2014     |                                                                                                    |             |            |          |  |  |  |
| Analyst:                                                    | 125           |                                                                                                    |             |            |          |  |  |  |
| ND = None Detected                                          |               | Page 1 of 3                                                                                        |             |            |          |  |  |  |

#### 15 W. Yakima Ave, Ste 210

#### Yakima, WA 98902

### (509) 575 - 3999 Fax: (509) 575 - 3068

| (303) 373 - 3939 Fax: (309) 373 |           | ganic Com | pounds (Continued) |
|---------------------------------|-----------|-----------|--------------------|
| VEL Sample #                    |           |           |                    |
| Sample ID                       | UST1-2    |           |                    |
| Units                           | ppm       | Limts     |                    |
| 1,2-Dichloropropane             | ND        | 0.005     |                    |
| Dibromomethane                  | ND        | 0.005     |                    |
| Bromodichloromethane            | ND        | 0.005     |                    |
| cis-1,3-Dichloropropene         | ND        | 0.005     |                    |
| Toluene                         | ND        | 0.005     |                    |
| trans-1,3-Dichloropropene       | ND        | 0.005     |                    |
| 1,1,2-Trichloroethane           | ND        | 0.005     |                    |
| 1,3-Dichloropropane             | ND        | 0.005     |                    |
| Dibromochloromethane            | ND        | 0.005     |                    |
| Tetrachloroethylene             | ND        | 0.005     |                    |
| 1,2-Dibromoethane               | ND        | 0.003     |                    |
| Chlorobenzene                   | ND        | 0.005     |                    |
| 1,1,1,2-Tetrachloroethane       | ND        | 0.005     |                    |
| Ethylbenzene                    | ND        | 0.005     |                    |
| m,p-Xylcne                      | ND        | 0.005     |                    |
| Styrene                         | ND        | 0.005     |                    |
| o-Xylene                        | ND        | 0.005     |                    |
| Bromoform                       | ND        | 0.005     |                    |
| 1,1,2,2-Tetrachloroethane       | ND        | 0.005     |                    |
| 1,2,3-Trichloropropane          | ND        | 0.005     |                    |
| Bromobenzene                    | ND        | 0.005     |                    |
| n-Propylbenzene                 | ND        | 0.005     |                    |
| 2-Chlorotoluene                 | ND        | 0.005     |                    |
| 4-Chlorotoluene                 | ND        | 0.005     |                    |
| 1,3,5-Trimethylbenzene          | ND        | 0.005     |                    |
| tert-Butylbenzene               | ND        | 0.005     |                    |
| 1,2,4-Trimethylbenzene          | ND        | 0.005     |                    |
| sec-Butylbenzene                | ND        | 0.005     |                    |
| 1,3-Dichlorobenzene             | ND        | 0.005     |                    |
| 1,4-Dichlorobenzenc             | ND        | 0.005     |                    |
| 4-Isopropyltoluene              | ND        | 0.005     |                    |
| 1,2-Dichlorobenzene             | ND        | 0.005     |                    |
| n-Butylbenzene                  | ND        | 0.005     |                    |
| 1,2-Dibromo-3-chloropropane     | ND        | 0.005     |                    |
| 1,2,4-Trichlorobenzene          | ND        | 0.005     |                    |
| Naphthalene                     | ND        | 0.005     |                    |
| Date Analyzed:                  | 7/17/2014 |           |                    |
| Analyst:                        | 125       |           |                    |
|                                 |           |           | Page 2 of 3        |

#### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210

## Yakima, WA 98902

(509) 575 - 3999 Fax: (509) 575 - 3068

|                               | Volatile O | rganic Con                         | apounds (Cont | inued) | —————————————————————————————————————— |
|-------------------------------|------------|------------------------------------|---------------|--------|----------------------------------------|
| VEL Sample #                  |            |                                    |               |        |                                        |
| Sample ID                     | UST1-2     | ********************************** | ***           |        |                                        |
| Units                         | ppm        | Limits                             |               | _      |                                        |
| 1,1,1-Trichloroethane         | ND         | 0.005                              |               |        |                                        |
| 1,1,2,2-Tetrachloroethane     | ND         | 0.005                              |               |        |                                        |
| 1,1-Dichloroethene            | ND         | 0.005                              |               |        |                                        |
| 1,2,3-Trichlorobenzene        | ND         | 0.005                              |               |        |                                        |
| 1,2-Dichloroethane            | ND         | 0.005                              |               |        |                                        |
| 2-hexanone                    | ND         | 0.025                              |               |        |                                        |
| Bromoform                     | ND         | 0.005                              |               |        |                                        |
| Carbon disulfide              | ND         | 0.005                              |               |        |                                        |
| Chlorobenzene                 | ND         | 0.005                              |               |        |                                        |
| cis-1,2-dichloroethene        | ND         | 0.005                              |               |        |                                        |
| cis-1,3-Dichloropropene       | ND         | 0.005                              |               |        |                                        |
| Hexachlorobutadiene           | ND         | 0.005                              |               |        |                                        |
| Isopropylbenzene              | ND         | 0.005                              |               |        |                                        |
| Methyl Isobutyl ketone (MIBK) | ND         | 0.025                              |               |        |                                        |
| methyl-t-butyl ether (MTBE)   | ND         | 0.005                              |               |        |                                        |
| p-siopropyltoluene            | ND         | 0.005                              |               |        |                                        |
| tert-Butylbenzene             | ND         | 0.005                              |               |        | · .                                    |
| trans-1,2-Dichloroethene      | ND         | 0.005                              |               |        |                                        |
| Trichlorofluoromethane        | ND         | 0.005                              |               |        |                                        |
| Tetrachloroethene             | ND         | 0.005                              |               |        |                                        |
|                               |            |                                    |               |        |                                        |
|                               |            |                                    |               |        |                                        |
|                               |            |                                    |               |        |                                        |
|                               |            |                                    |               |        |                                        |
|                               |            |                                    |               |        |                                        |
|                               |            |                                    |               |        |                                        |
|                               | 20.        |                                    |               |        | Ì                                      |
|                               |            |                                    |               |        |                                        |
|                               |            |                                    |               |        |                                        |
| ·                             |            |                                    |               |        |                                        |
|                               |            |                                    |               |        |                                        |
|                               |            |                                    |               |        |                                        |
|                               |            |                                    |               |        |                                        |
|                               |            |                                    |               |        |                                        |
|                               |            |                                    |               |        |                                        |
|                               |            |                                    |               |        |                                        |
| Date Analyzed:                | 7/17/2014  |                                    |               |        |                                        |
| Analyst:                      | 125        |                                    |               |        |                                        |
|                               |            |                                    | D 2 62        |        |                                        |
|                               |            | ······                             | Page 3 of 3   |        |                                        |

## Washington State Certified Lab #227 - DOE Accredited Lab C345

Polynuclear Aromatic Hydrocarbons

|        | Lab/Sample N<br>Sample Locatio |             |              |                         | C          | ounty:  | YAKIMA                                |          |       |  |  |
|--------|--------------------------------|-------------|--------------|-------------------------|------------|---------|---------------------------------------|----------|-------|--|--|
|        | Sumple Locato                  |             |              | Date Received: 07/08/14 |            |         |                                       |          |       |  |  |
|        | · · · · · · · · · · ·          |             |              |                         |            |         | 07/29/14                              |          |       |  |  |
|        | <u> </u>                       |             | <b>-</b> • • | Sam                     | le Collect |         |                                       |          |       |  |  |
| nd Rep | oort To:                       |             | ·            |                         | Е СОММ     |         |                                       | x: Soil  |       |  |  |
| PL     | SA Engineering                 |             |              |                         | · · · · ·  |         | · · · · · · · · · · · · · · · · · · · |          |       |  |  |
| Att    | n: Scott Garland               |             |              |                         |            |         |                                       |          |       |  |  |
| 112    | 0 West Lincoln Aven            | ue          |              |                         |            |         |                                       |          |       |  |  |
| Yal    | kima, WA 98902                 |             |              |                         |            |         |                                       |          |       |  |  |
|        | ynuclear Aromatic H            | vdrocarbons |              |                         |            |         | <u></u>                               | <u> </u> |       |  |  |
| H#Ana  |                                | Results     | Units        | MRL                     | Trigger    | MCL     | Method                                | Analyzed | Analy |  |  |
|        | naphthene                      | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
|        | naphthylene                    | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
| Ant    | nracene                        | ND          | mg/kg        | 0.01                    |            | 1       | EPA 8270D                             | 07/17/14 | 125   |  |  |
| Ben    | zo(a)anthracene                | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
| Ben    | zo(a)pyrene                    | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
| Ben    | zo(b)fluoranthene              | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
| Ben    | zo(ghi)perylene                | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
| Ben    | zo(k)fluoranthene              | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
| Chry   | vsene                          | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
| Dibe   | enzo(a,h)anthracene            | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
| Fluo   | ranthene                       | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
| Fluo   | rene                           | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
|        | no(1,2,3-cd)pyrene             | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
|        | hthalene                       | ND          | mg/kg        | 0.01                    |            | <u></u> | EPA 8270D                             | 07/17/14 | 125   |  |  |
|        | anthrene                       | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
| Pyre   |                                | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
| 2-M    | ethylnapthalene                | ND          | mg/kg        | 0.01                    |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |
| Surr   | ogate Std:                     |             |              |                         |            |         |                                       | - ·      |       |  |  |
|        | henyl-d14                      | 93.7        | %            | 18-137                  |            |         | EPA 8270D                             | 07/17/14 | 125   |  |  |

Trigger: DOH Drinking Water response level. Public Systems in excess of this level must take additional samples. Recommended range on packages.

MCL (maximum contaminant level): Highest level recommended by the federal government for public water systems.

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL of SRL.

**Approved By:** 

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-306870823-8270pah

Washington State Certified Lab #227 - DOE Accredited Lab C345

PCB's (Soil)

|                                   |                          | · 1              | CB.8 (8                               |                 |             |                                       | <u></u>        |       |  |  |
|-----------------------------------|--------------------------|------------------|---------------------------------------|-----------------|-------------|---------------------------------------|----------------|-------|--|--|
| Date Colle                        | ected: 07/08/14          |                  |                                       |                 | . <u></u>   | · · · · · · · · · · · · · · · · · · · |                |       |  |  |
| Lab/Sampl                         | e No: 227-70823          |                  |                                       | C               | ounty:      | YAKIMA                                |                |       |  |  |
| Sample Loca                       | tion: UST1-2             |                  |                                       |                 |             |                                       |                |       |  |  |
|                                   |                          |                  |                                       | Date Re         | ceived:     | 07/08/14                              |                |       |  |  |
|                                   |                          |                  | Date Reported: 07/29/14               |                 |             |                                       |                |       |  |  |
|                                   |                          |                  | Sam                                   | le Collect      | ed By:      | SDG                                   |                |       |  |  |
| Send Report To:                   |                          |                  | SAMPI                                 | <b>E COMM</b>   | ENTS        | Matri                                 | x: Soil        |       |  |  |
| PLSA Engineering                  |                          |                  |                                       |                 |             |                                       |                |       |  |  |
| Attn: Scott Garland               |                          |                  |                                       |                 |             |                                       |                |       |  |  |
| 1120 West Lincoln Av              | venue                    |                  |                                       |                 |             |                                       |                |       |  |  |
| Yakima, WA 98902                  |                          |                  |                                       |                 |             |                                       |                |       |  |  |
| PCB's (Soil)                      |                          |                  |                                       |                 |             | <u> </u>                              |                |       |  |  |
| OH# Analytes                      | Results                  | Units            | MRL                                   | Trigger         | MCL         | Method                                | Analyzed       | Analy |  |  |
| Aroclor 1016                      | ND                       | mg/kg            | 0.1                                   |                 |             | EPA 8082                              | 07/22/14       | 125   |  |  |
| Aroclor 1221                      | ND                       | mg/kg            | 0.1                                   |                 |             | EPA 8082                              | 07/22/14       | 125   |  |  |
| Aroclor 1232                      | ND                       | mg/kg            | 0.1                                   |                 |             | EPA 8082                              | 07/22/14       | 125   |  |  |
| Aroclor 1242                      | ND                       | mg/kg            | 0.1                                   |                 |             | EPA 8082                              | 07/22/14       | 125   |  |  |
| Aroclor 1248                      | ND                       | mg/kg            | 0.1                                   |                 |             | EPA 8082                              | 07/22/14       | 125   |  |  |
| Aroclor 1254                      | ND                       | mg/kg            | 0.1                                   |                 |             | EPA 8082                              | 07/22/14       | 125   |  |  |
| Aroclor 1260                      | ND                       | mg/kg            | 0.1                                   |                 |             | EPA 8082                              | 07/22/14       | 125   |  |  |
| PCB 8082 (total)                  | ND                       | mg/kg            | 0.1                                   |                 |             | EPA 8082                              | 07/22/14       | 125   |  |  |
|                                   |                          |                  |                                       |                 |             |                                       |                |       |  |  |
| Surrogate Std:                    |                          |                  |                                       |                 |             | · ·                                   |                | ·     |  |  |
| DCB                               | 55.8                     | %                | 30-130                                |                 |             | EPA 8082                              | 07/22/14       | 125   |  |  |
|                                   |                          |                  |                                       |                 |             |                                       |                |       |  |  |
|                                   |                          |                  | · · · · · · · · · · · · · · · · · · · | ·               |             |                                       |                |       |  |  |
|                                   |                          |                  | · · ·                                 |                 |             |                                       |                |       |  |  |
|                                   |                          |                  |                                       | ·····           |             |                                       |                |       |  |  |
|                                   | ·                        |                  |                                       |                 |             |                                       |                |       |  |  |
| · · · ·                           |                          |                  | <u> </u>                              |                 |             | <u></u>                               |                |       |  |  |
|                                   |                          |                  | <u> </u>                              |                 |             |                                       |                | ····  |  |  |
| ···· · ·                          |                          |                  |                                       |                 |             |                                       |                |       |  |  |
|                                   |                          |                  |                                       |                 |             | ·                                     |                |       |  |  |
|                                   | ····                     |                  | -                                     | ·               |             | <u> </u>                              |                |       |  |  |
| MRL (Method Reporting Level)      | Indicates the minimum r  | enorting level : | equirod and a                         | htainad hy the  | lahoratorra |                                       |                |       |  |  |
| Trigger: DOH Drinking Water res   |                          |                  |                                       |                 | -           | -                                     |                |       |  |  |
| MCL (maximum contaminant lev      |                          |                  |                                       |                 |             |                                       | e on packages. |       |  |  |
| ND (Not Detected): Indicates this |                          |                  |                                       | -               | -           |                                       |                |       |  |  |
|                                   | composite nul usayizee e |                  | a a a level gr                        | sater man or eq |             | VICE OF SILE.                         |                |       |  |  |
|                                   |                          |                  | Ар                                    | proved By:      |             |                                       |                |       |  |  |
|                                   |                          |                  |                                       |                 |             | 17                                    |                |       |  |  |

70823-pcbs

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

### Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

|      | Date Collected                                                                                                        | l: 07/08/14                               |                                       |                                                   |                      |                           |                   |              |         |
|------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------------------|----------------------|---------------------------|-------------------|--------------|---------|
|      | Lab/Sample No                                                                                                         | : 227-70823                               | }                                     |                                                   | C                    | ounty:                    | YAKIMA            |              |         |
|      | Sample Location                                                                                                       |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      | ······································                                                                                |                                           |                                       |                                                   | Date Re              | ceived:                   | 07/08/14          |              |         |
|      |                                                                                                                       |                                           |                                       |                                                   | Date Rep             | orted:                    | 07/29/14          |              |         |
|      |                                                                                                                       |                                           |                                       | Samp                                              | le Collect           | ted By:                   | SDG               |              |         |
| Send | Report To:                                                                                                            |                                           |                                       | SAMPI                                             | LE COMM              | ENTS                      | Matri             | x: Soil      |         |
|      | PLSA Engineering                                                                                                      |                                           |                                       |                                                   |                      | ·                         |                   |              |         |
|      | Attn: Scott Garland                                                                                                   |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      | 1120 West Lincoln Avenu                                                                                               | e                                         |                                       |                                                   |                      |                           |                   |              |         |
|      | Yakima, WA 98902                                                                                                      |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      | Cadmium, Chromium, N                                                                                                  | ckel, Zinc                                |                                       | <u></u>                                           |                      |                           | ·····             | <u> </u>     |         |
| DOH# | Analytes                                                                                                              | Results                                   | Units                                 | MRL                                               | Trigger              | MCL                       | Method            | Analyzed     | Analyst |
|      | Cadmium                                                                                                               | ND                                        | mg/kg                                 | 0.535                                             |                      |                           | EPA 6020A         | 07/23/14     | 125     |
|      | Chromium                                                                                                              | 14.7                                      | mg/kg                                 | 0.535                                             |                      |                           | EPA 6020A         | 07/23/14     | 125     |
|      | Nickel                                                                                                                | 13.4                                      | mg/kg                                 | 0.535                                             |                      |                           | EPA 6020A         | 07/23/14     | 125     |
|      | Zinc                                                                                                                  | 49.6                                      | mg/kg                                 | 0.535                                             |                      |                           | EPA 6020A         | 07/23/14     | 125     |
|      |                                                                                                                       |                                           |                                       |                                                   |                      | ļ                         |                   |              |         |
|      |                                                                                                                       |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      |                                                                                                                       |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      |                                                                                                                       |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      |                                                                                                                       |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      |                                                                                                                       | <u></u> -                                 |                                       |                                                   |                      |                           |                   |              |         |
|      |                                                                                                                       |                                           |                                       |                                                   |                      |                           |                   |              | · · ·   |
|      |                                                                                                                       |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      |                                                                                                                       | -                                         |                                       |                                                   |                      |                           |                   |              |         |
|      | ····                                                                                                                  |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      |                                                                                                                       |                                           |                                       |                                                   |                      |                           | c<br>             |              |         |
|      |                                                                                                                       |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      | · · ·                                                                                                                 |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      |                                                                                                                       |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      |                                                                                                                       |                                           | ·                                     |                                                   |                      | ļ                         |                   |              |         |
|      |                                                                                                                       |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      |                                                                                                                       |                                           |                                       |                                                   |                      |                           |                   |              |         |
|      |                                                                                                                       |                                           |                                       |                                                   |                      |                           | l                 |              |         |
|      | MRL (Method Reporting Level): Indic                                                                                   | ateo the minimum                          | onorting lavel                        | uirod and -1                                      | atningd hur the 1    |                           |                   |              |         |
| 1    | Frigger: DOH Drinking Water response<br>MCL (maximum contaminant level): H<br>ND (Not Detected): Indicates this compo | level. Public Syste<br>ghest level recomm | ms in excess of the nended by the fea | nis level mus<br>leral governr<br>ut a level grea | t take additionation | l samples.<br>water syste | Recommended range | on packages. |         |

70823-cdcrni

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

## Client:VALLEY ENVIRONMENTAL LABAddress:15 W. YAKIMA AVE STE210

Batch #: 14 Project Name: VC

140714014 VOC / METALS / PAH / PCB

Attn:

YAKIMA, WA 98901 DARA OSBORNE

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID | 140714014-011<br>70823 | Sampling Date<br>Sampling Time | 7/8/2014<br>11:42 AM | Date/Time Received | 7/11/2014 | 11:20 AM |
|-----------------------------------|------------------------|--------------------------------|----------------------|--------------------|-----------|----------|
| Matrix                            | Soil                   | Sample Location                |                      |                    |           |          |
| Comments                          |                        |                                |                      |                    |           |          |

| Parameter                     | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifie |
|-------------------------------|--------|-------|-------|---------------|---------|-----------|----------|
| Bromodichloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Bromoform                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Bromomethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Carbon disulfide              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Carbon Tetrachloride          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Chlorobenzene                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Chloroethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Chloroform                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Chloromethane                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| cis-1,2-dichloroethene        | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| cis-1,3-Dichloropropene       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Dibromochloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Dibromomethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Dichlorodifluoromethane       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Ethylbenzene                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Hexachlorobutadiene           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| sopropylbenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| n+p-Xylene                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Methyl ethyl ketone (MEK)     | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |          |
| Methyl isobutyl ketone (MIBK) | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |          |
| Viethylene chloride           | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |          |
| nethyl-t-butyl ether (MTBE)   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| Naphthalene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| n-Butylbenzene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| I-Propylbenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| -Xylene                       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| -isopropyltoluene             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| ec-Butylbenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |
| tyrene                        | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |          |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C586; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |
|          |                          | · · · ·       |                          |

#### **Analytical Results Report**

| mple Number<br>ient Sample ID<br>atrix<br>omments | 140714014-011<br>70823<br>Soil |        | Sampling D<br>Sampling T<br>Sample Loc | ime   | 7/8/2014 [<br>11:42 AM | Date/Time Recei | ved 7/11/2014 | 11:20 AM  |
|---------------------------------------------------|--------------------------------|--------|----------------------------------------|-------|------------------------|-----------------|---------------|-----------|
| Parameter                                         |                                | Result | Units                                  | PQL   | Analysis Da            | te Analyst      | Method        | Qualifier |
| tert-Butylbenze                                   | ne                             | ND     | mg/kg                                  | 0.005 | 7/17/2014              | SAT             | EPA 8260B     |           |
| Tetrachloroethe                                   | ene                            | ND     | mg/kg                                  | 0.005 | 7/17/2014              | SAT             | EPA 8260B     |           |
| Toluene                                           |                                | ND     | mg/kg                                  | 0.005 | 7/17/2014              | SAT             | EPA 8260B     |           |
| trans-1,2-Dichle                                  | proethene                      | ND     | mg/kg                                  | 0.005 | 7/17/2014              | SAT             | EPA 8260B     |           |
| trans-1,3-Dichk                                   | propropene                     | ND     | mg/kg                                  | 0.005 | 7/17/2014              | SAT             | EPA 8260B     |           |

0.005

0.005

7/17/2014

7/17/2014

SAT

SAT

EPA 8260B

EPA 8260B

mg/kg

mg/kg

ND

ND

| Vinyl Chloride<br>%moisture | ND<br>1.9 | mg/kg C<br>Percent |      | 2014 SAT<br>2014 SAT | EPA 8260B<br>%moisture |
|-----------------------------|-----------|--------------------|------|----------------------|------------------------|
|                             |           | Surrogate          | Data |                      |                        |
| Sample Number 140714014-011 |           |                    |      | <u></u>              |                        |
| Surrogate Standard          |           | Method             |      | Percent Recover      | y Control Limits       |
| 1,2-Dichlorobenzene-d4      |           | EPA 8260B          | ł    | 88.4                 | 70-130                 |
| 4-Bromofluorobenzene        |           | EPA 8260B          | 1    | 94.4                 | 70-130                 |
| Toluene-d8                  |           | EPA 8260B          |      | 99.2                 | 70-130                 |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: (D00013; OR:ID200001-002; WA:C595) Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Trichloroethene

Trichloroflouromethane

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:                | VALLEY ENVIRON   | MENTAL L | AB          |        | Batch #                              | Batch #: 140714014 |                                       |          |  |  |  |  |
|------------------------|------------------|----------|-------------|--------|--------------------------------------|--------------------|---------------------------------------|----------|--|--|--|--|
| Address:               | 15 W. YAKIMA AVI | E STE210 |             |        | Project Name: VOC / METALS / PAH / F |                    |                                       |          |  |  |  |  |
|                        | YAKIMA, WA 9890  | 1        |             |        |                                      |                    |                                       |          |  |  |  |  |
| Attn:                  | DARA OSBORNE     |          |             |        |                                      |                    |                                       |          |  |  |  |  |
|                        |                  | An       | alytical R  | lesult | s Report                             |                    |                                       |          |  |  |  |  |
| Sample Number          | 140714014-011    |          | Sampling D  | ate    | 7/8/2014                             | Date/Time Recei    | ived 7/11/2014                        | 11:20 AM |  |  |  |  |
| Client Sample ID 70823 |                  |          | Sampling Ti | me     | 11:42 AM                             | Extraction Date    | 7/17/2014                             |          |  |  |  |  |
| Matrix                 | Soil             |          | Sample Loc  | ation  |                                      |                    |                                       |          |  |  |  |  |
| Comments               |                  |          |             |        |                                      |                    |                                       |          |  |  |  |  |
| Parameter              |                  | Result   | Units       | PQL    | Analysis D                           | ate Analyst        | Method                                | Qualifi  |  |  |  |  |
| 2-Methylnaph           | thalene          | ND       | mg/Kg       | 0.01   | 7/17/201                             | 4 EMP              | EPA 8270D                             |          |  |  |  |  |
| Acenaphthene           | e                | ND       | mg/Kg       | 0.01   | 7/17/201                             | 4 EMP              | EPA 8270D                             |          |  |  |  |  |
| Acenaphthyle           | ne               | ND       | mg/Kg       | 0.01   | 7/17/201                             | 4 EMP              | EPA 8270D                             |          |  |  |  |  |
| Anthracene             |                  | ND       | mg/Kg       | 0.01   | 7/17/2014                            | 4 EMP              | EPA 8270D                             |          |  |  |  |  |
| Benzo(ghi)per          | rylene           | ND       | mg/Kg       | 0.01   | 7/17/201                             | 4 EMP              | EPA 8270D                             |          |  |  |  |  |
| Benzo[a]anthr          | racene           | ND       | mg/Kg       | 0.01   | 7/17/2014                            | 4 EMP              | EPA 8270D                             |          |  |  |  |  |
| Benzo[a]pyrer          | 1e               | ND       | mg/Kg       | 0.01   | 7/17/201                             | 4 EMP              | EPA 8270D                             |          |  |  |  |  |
| Benzo[b]fluora         | anthene          | ND       | mg/Kg       | 0.01   | 7/17/2014                            | 4 EMP              | EPA 8270D                             |          |  |  |  |  |
| Benzo[k]fluora         | anthene          | ND       | mg/Kg       | 0.01   | 7/17/2014                            | 4 EMP              | EPA 8270D                             |          |  |  |  |  |
| Chrysene               |                  | ND       | mg/Kg       | 0.01   | 7/17/2014                            | 4 EMP              | EPA 8270D                             |          |  |  |  |  |
| Dibenz[a,h]an          | thracene         | ND       | mg/Kg       | 0.01   | 7/17/2014                            | 4 EMP              | EPA 8270D                             |          |  |  |  |  |
| Fluoranthene           |                  | ND       | mg/Kg       | 0.01   | 7/17/2014                            | 1 EMP              | EPA 8270D                             |          |  |  |  |  |
| Fluorene               |                  | ND       | mg/Kg       | 0.01   | 7/17/2014                            | ¥ EMP              | EPA 8270D                             |          |  |  |  |  |
| Indeno[1,2,3-c         | d]pyrene         | ND       | mg/Kg       | 0.01   | 7/17/2014                            | EMP                | EPA 8270D                             |          |  |  |  |  |
| Naphthalene            |                  | ND       | mg/Kg       | 0.01   | 7/17/2014                            | EMP                | EPA 8270D                             |          |  |  |  |  |
| Phenanthrene           |                  | ND       | mg/Kg       | 0.01   | 7/17/2014                            | EMP                | EPA 8270D                             |          |  |  |  |  |
| Pyrene                 |                  | ND       | mg/Kg       | 0.01   | 7/17/2014                            | EMP                | EPA 8270D                             |          |  |  |  |  |
| %moisture              |                  | 1.9      | Percent     |        | 7/17/2014                            | SAT                | %moisture                             |          |  |  |  |  |
|                        |                  |          | Surrog      | ate Da | ta                                   |                    |                                       |          |  |  |  |  |
| nple Number            | 140714014-011    |          |             |        | - 1                                  |                    | • • • • • • • • • • • • • • • • • • • |          |  |  |  |  |
| Surrogate S            | tandard          |          | Method      |        | Pe                                   | rcent Recovery     | Control Li                            | imits    |  |  |  |  |
| Terphenyl-d1           | 4                |          | EPA 827     | 'OD    |                                      | 93,7               | 18-13                                 |          |  |  |  |  |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87883; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

Batch #: 140714014 Project Name: VOC / METALS / PAH / PCB

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-011<br>70823<br>Soil |        | Sampling Da<br>Sampling Ti<br>Sample Loca | ne      |             | Date/Time Receiv<br>Extraction Date | ed 7/11/2014<br>7/18/2014 | 11:20 AM  |
|---------------------------------------------------------|--------------------------------|--------|-------------------------------------------|---------|-------------|-------------------------------------|---------------------------|-----------|
| Parameter                                               |                                | Result | Units                                     | PQL     | Analysis Da | ite Analyst                         | Method                    | Qualifier |
| Aroclor 1016 (P                                         | CB-1016)                       | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                  |           |
| Arocior 1221 (P                                         | CB-1221)                       | ND     | mg/Kg                                     | 0.1     | 7/22/2014   |                                     | EPA 8082                  |           |
| Aroclor 1232 (P                                         | CB-1232)                       | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                  |           |
| Aroclor 1242 (P                                         | CB-1242)                       | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                  |           |
| Aroclor 1248 (P                                         | CB-1248)                       | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                  |           |
| Arocior 1254 (P                                         | CB-1254)                       | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                  |           |
| Aroclor 1260 (P                                         | CB-1260)                       | ND     | mg/Kg                                     | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                  |           |
| PCB 8082 (total                                         | I)                             | ND     | mg/kg                                     | 0.1     | 7/22/2014   | SAT                                 | EPA 8082                  |           |
| %moisture                                               |                                | 1.9    | Percent                                   |         | 7/17/2014   | SAT                                 | %moisture                 |           |
|                                                         |                                |        | Surroga                                   | ite Dat | ta          |                                     |                           |           |
| mple Number                                             | 140714014-011                  |        |                                           |         | ·           |                                     |                           |           |
| Surrogate Sta                                           | andard                         |        | Method                                    |         | Per         | cent Recovery                       | Control L                 | imits     |
| DCB                                                     |                                |        | EPA 808                                   | 2       |             | 55.8                                | 30-13                     | 0         |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87693; ID:ID00013; MT:CERT0026; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

## VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

BTEX by EPA 8260B

|             | Lab/Sample              | No: 227-70824                         |                                       |                                                                     | C       | ounty        | : YAKIMA                              |          |          |
|-------------|-------------------------|---------------------------------------|---------------------------------------|---------------------------------------------------------------------|---------|--------------|---------------------------------------|----------|----------|
| 201310      | Sample Locati           | ion: UST1-10                          | · · · · · · · · · · · · · · · · · · · |                                                                     | ····    |              | ····                                  |          |          |
|             |                         |                                       |                                       |                                                                     |         |              | : 07/08/14                            |          |          |
|             |                         | · · · · · · · · · · · · · · · · · · · |                                       |                                                                     |         |              | : 07/29/14                            |          | <u> </u> |
| nd Report   | Tat                     |                                       |                                       | Sample Collected By: SDG         SAMPLE COMMENTS       Matrix; Soil |         |              |                                       |          |          |
|             | Ingineering             | · · · · · · · · · · · · · · · · · · · |                                       | SAMPI                                                               |         | LNIS         | Matri                                 | x: Soll  |          |
|             | cott Garland            |                                       |                                       |                                                                     |         |              |                                       |          |          |
|             | est Lincoln Ave         | nue                                   |                                       |                                                                     |         |              |                                       |          |          |
|             | , WA 98902              | nuc                                   |                                       |                                                                     |         |              |                                       |          |          |
|             | by EPA 8260B            | <u></u>                               |                                       | <u> </u>                                                            |         | ···          |                                       | ······   |          |
| H# Analytes |                         | Results                               | Units                                 | MRL                                                                 | Trigger | MCL          | Method                                | Analyzed | Anal     |
| Benzene     |                         | ND                                    | ppm                                   | 0.005                                                               |         |              | EPA 8260B                             | 07/17/14 | 125      |
| Toluene     |                         | ND                                    | ppm                                   | 0.005                                                               |         |              | EPA 8260B                             | 07/17/14 | 125      |
| Ethylben    |                         | ND                                    | ppm                                   | 0.005                                                               |         |              | EPA 8260B                             | 07/17/14 | 125      |
| Xylenes     | (m,p,o)                 | ND                                    | ppm                                   | 0.005                                                               |         |              | EPA 8260B                             | 07/17/14 | 125      |
|             |                         |                                       |                                       |                                                                     |         |              | ·                                     |          |          |
|             |                         |                                       |                                       |                                                                     |         | <u> </u>     |                                       |          | Ļ        |
|             |                         |                                       |                                       |                                                                     |         |              |                                       |          |          |
|             |                         |                                       |                                       |                                                                     | ·       |              | · · · · · · · · · · · · · · · · · · · |          |          |
|             |                         | · · · · · · · · · · · · · · · · · · · |                                       |                                                                     |         |              |                                       |          | Ì        |
|             |                         |                                       |                                       |                                                                     |         |              |                                       |          |          |
|             |                         | ·                                     |                                       | ·                                                                   |         |              | ·                                     |          |          |
|             |                         |                                       |                                       |                                                                     |         | <u> </u><br> |                                       |          | -        |
|             |                         |                                       |                                       |                                                                     |         | ÷            | ·                                     |          |          |
|             |                         |                                       |                                       |                                                                     |         | · · · ·      | · · · · · ·                           |          |          |
|             |                         |                                       |                                       |                                                                     | ·       |              |                                       |          |          |
|             |                         |                                       |                                       |                                                                     |         |              |                                       |          |          |
|             |                         |                                       |                                       |                                                                     |         |              |                                       |          |          |
|             |                         |                                       |                                       |                                                                     |         |              | · · · · · · ·                         |          |          |
|             | × +                     |                                       |                                       | ļ                                                                   |         |              |                                       |          |          |
|             |                         |                                       |                                       |                                                                     |         |              |                                       | ·<br>    |          |
|             |                         |                                       |                                       | <u> </u>                                                            |         |              |                                       |          |          |
| <u></u>     | od Reporting Level): In |                                       |                                       | <u> </u>                                                            |         | <u> </u>     |                                       |          | <u>i</u> |

ļ

70824-btex

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

#### VALLEY Environmental Laboratory 15 W. Yakima Ave, Ste 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Washington State DOE Accredited Lab #4<br>Sampled At: UST1-10 | C345      | Date Reported: 07/29/14<br>Date Collected: 07/08/14<br>Time Collected: 11:31 AM<br>Sampled By: SDG |             |           |                                         |  |
|---------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------|-------------|-----------|-----------------------------------------|--|
| PLSA Engineering                                              |           |                                                                                                    | Sumplea Dyr | 520       |                                         |  |
| Attn: Scott Garland                                           |           |                                                                                                    |             |           |                                         |  |
| 1120 West Lincoln Avenue                                      |           |                                                                                                    |             |           | T                                       |  |
| Yakima, WA 98902                                              |           |                                                                                                    |             |           | Invoice#                                |  |
| Volatile Organic Chemicals                                    |           | Nf-41-1                                                                                            | EDA 80C0D   |           | 27700                                   |  |
|                                                               | 227 70924 | Method                                                                                             | : EPA 8260B | Matrix: S | 011                                     |  |
| VEL Sample #                                                  | 227-70824 | ana iku arin masi dan kuri kuri kuri dulaku da 1995). An me                                        |             |           | -Unad heranovska in a heranovska a star |  |
| Sample ID                                                     | UST1-10   | <b></b>                                                                                            |             |           |                                         |  |
| Units                                                         | ppm       | Limits                                                                                             |             |           |                                         |  |
| Check Standards - Ave.Recovery:                               |           |                                                                                                    |             |           |                                         |  |
| 1,2-Dichlorobenzene-d4                                        | 88.80%    | (70-130)                                                                                           |             |           |                                         |  |
| 4-Bromofluorobenzene                                          | 94.40%    | (70-130)                                                                                           |             |           |                                         |  |
| Toluene-d8                                                    | 98.40%    | (70-130)                                                                                           |             |           |                                         |  |
| Dichlorodifluoromethane                                       | ND        | 0.005                                                                                              |             |           |                                         |  |
| Chloromethane                                                 | ND        | 0.005                                                                                              |             |           |                                         |  |
| Vinyl chloride                                                | ND        | 0.005                                                                                              |             |           |                                         |  |
| Bromomethane                                                  | ND        | 0.005                                                                                              |             |           |                                         |  |
| Chloroethane                                                  | ND        | 0.005                                                                                              |             |           |                                         |  |
| Acetone                                                       | ND        | 0.025                                                                                              |             |           |                                         |  |
| Acrolein                                                      | ND        | 0.005                                                                                              |             |           | :                                       |  |
| 1,1-Dichloroethylene                                          | ND        | 0.005                                                                                              |             |           |                                         |  |
| Methylene chloride                                            | ND        | 0.025                                                                                              |             |           |                                         |  |
| Acrylonitrile                                                 | ND        | 0.005                                                                                              |             |           |                                         |  |
| trans-1,2-Dichloroethylene                                    | ND        | 0.005                                                                                              |             |           |                                         |  |
| 1,1-Dichloroethane                                            | ND        | 0.005                                                                                              |             |           |                                         |  |
| Methyl ethyl ketone (MEK)                                     | ND        | 0.025                                                                                              |             |           |                                         |  |
| cis-1,2-Dichloroethylene                                      | ND        | 0.005                                                                                              |             |           |                                         |  |
| 2,2-Dichloropropane                                           | ND        | 0.005                                                                                              |             |           |                                         |  |
| Chloroform                                                    | ND        | 0.005                                                                                              |             |           |                                         |  |
| Bromochloromethane                                            | ND        | 0.005                                                                                              |             |           |                                         |  |
| 1,1,1-Trichloroethane                                         | ND        | 0.005                                                                                              |             |           |                                         |  |
| 1,2-Dichloroethane                                            | ND        | 0.005                                                                                              | <br>•       |           |                                         |  |
| 1,1-Dichloropropene                                           | ND        | 0.005                                                                                              |             |           |                                         |  |
| Carbon tetrachloride                                          | ND        | 0.005                                                                                              |             |           |                                         |  |
| Benzene                                                       | ND        | 0.005                                                                                              |             |           |                                         |  |
| Trichloroethylene                                             | ND        | 0.005                                                                                              |             | 1         |                                         |  |
| Date Analyzed:                                                | 7/17/2014 |                                                                                                    |             |           |                                         |  |
| Analyst:                                                      | 125       |                                                                                                    |             |           |                                         |  |

ND = None Detected

Page 1 of 3

.

#### 15 W. Yakima Ave, Ste 210

#### Yakima, WA 98902

### (509) 575 - 3999 Fax: (509) 575 - 3068

|                             | Volatile Or | ganic Com                               | pounds (Continued) |
|-----------------------------|-------------|-----------------------------------------|--------------------|
| VEL Sample #                |             |                                         |                    |
| Sample ID                   |             | איז |                    |
| Units                       | ppm         | Limts                                   |                    |
| 1,2-Dichloropropane         | ND          | 0.005                                   |                    |
| Dibromomethane              | ND          | 0.005                                   |                    |
| Bromodichloromethane        | ND          | 0.005                                   |                    |
| cis-1,3-Dichloropropene     | ND          | 0.005                                   |                    |
| Toluene                     | ND          | 0.005                                   |                    |
| trans-1,3-Dichloropropene   | ND          | 0.005                                   |                    |
| 1,1,2-Trichloroethane       | ND          | 0.005                                   |                    |
| 1,3-Dichloropropane         | ND          | 0.005                                   |                    |
| Dibromochloromethane        | ND          | 0.005                                   |                    |
| Tetrachloroethylene         | ND          | 0.005                                   |                    |
| 1,2-Dibromoethane           | ND          | 0.001                                   |                    |
| Chlorobenzene               | ND          | 0.001                                   |                    |
| 1,1,1,2-Tetrachloroethane   | ND          | 0.005                                   |                    |
| Ethylbenzene                | ND          | 0.005                                   |                    |
| m,p-Xylene                  | ND          | 0.005                                   |                    |
| Styrene                     | ND          | 0.005                                   |                    |
| o-Xylene                    | ND          | 0.005                                   |                    |
| Bromoform                   | ND          | 0.005                                   |                    |
| 1,1,2,2-Tetrachloroethane   | ND          | 0.005                                   |                    |
| 1,2,3-Trichloropropane      | ND          | 0.005                                   |                    |
| Bromobenzene                | ND          | 0.005                                   |                    |
| n-Propylbenzene             | ND          | 0.005                                   |                    |
| 2-Chlorotoluene             | ND          | 0.005                                   |                    |
| 4-Chlorotoluene             | ND          | 0.005                                   |                    |
| 1,3,5-Trimethylbenzene      | ND          | 0.005                                   |                    |
| tert-Butylbenzene           | ND          | 0.005                                   |                    |
| 1,2,4-Trimethylbenzene      | ND          | 0.005                                   |                    |
| sec-Butylbenzene            | ND          | 0.005                                   |                    |
| 1,3-Dichlorobenzene         | ND          | 0.005                                   |                    |
| 1,4-Dichlorobenzene         | ND          | 0.005                                   |                    |
| 4-Isopropyltoluene          | ND          | 0.005                                   |                    |
| 1,2-Dichlorobenzene         | ND          | 0.005                                   |                    |
| n-Butylbenzene              | ND          | 0.005                                   |                    |
| 1,2-Dibromo-3-chloropropane | ND          | 0.005                                   |                    |
| 1,2,4-Trichlorobenzene      | ND          | 0.005                                   |                    |
| Naphthalene                 | ND          | 0.005                                   |                    |
| Date Analyzed:              | 7/17/2014   |                                         |                    |
| Analyst:                    | 125         |                                         |                    |
|                             |             |                                         |                    |
|                             | <u> </u>    |                                         | Page 2 of 3        |

### Washington State Certified Lab #227 - DOE Accredited Lab C345

**Polynuclear Aromatic Hydrocarbons** 

|         |                                       |             |       |                                                     |                                       |                                       | ·           |          |             |  |  |
|---------|---------------------------------------|-------------|-------|-----------------------------------------------------|---------------------------------------|---------------------------------------|-------------|----------|-------------|--|--|
|         | Lab/Sample N                          |             |       |                                                     | C                                     | ounty:                                | YAKIMA      |          |             |  |  |
|         | Sample Locatio                        | n: UST1-10  |       |                                                     |                                       |                                       |             |          |             |  |  |
|         |                                       |             |       |                                                     | Date Re                               | ceived:                               | 07/08/14    |          |             |  |  |
| -Canine |                                       |             |       |                                                     | · · · · · · · · · · · · · · · · · · · |                                       | 07/29/14    |          |             |  |  |
|         |                                       |             |       | Sample Collected By: SDGSAMPLE COMMENTSMatrix: Soil |                                       |                                       |             |          |             |  |  |
| Send    | Report To:                            |             | ····  |                                                     |                                       |                                       |             |          |             |  |  |
|         | PLSA Engineering                      |             |       |                                                     |                                       |                                       |             |          |             |  |  |
|         | Attn: Scott Garland                   |             |       |                                                     |                                       |                                       |             |          |             |  |  |
|         | 1120 West Lincoln Aven                | ue          |       |                                                     |                                       |                                       |             |          |             |  |  |
|         | Yakima, WA 98902                      |             |       |                                                     |                                       |                                       |             |          |             |  |  |
|         | Polynuclear Aromatic Hy               | vdrocarbons |       | ·····                                               |                                       | · · · · · · · · · · · · · · · · · · · | <del></del> | <u></u>  |             |  |  |
| DOH     | Analytes                              | Results     | Units | MRL                                                 | Trigger                               | MCL                                   | Method      | Analyzed | Analys      |  |  |
|         | Acenaphthene                          | ND          | mg/kg | 0.01                                                |                                       |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Acenaphthylene                        | ND          | mg/kg | 0.01                                                |                                       | -                                     | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Anthracene                            | ND          | mg/kg | 0.01                                                |                                       |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Benzo(a)anthracene                    | ND          | mg/kg | 0.01                                                |                                       |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Benzo(a)pyrene                        | ND          | mg/kg | 0.01                                                |                                       | +<br>                                 | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Benzo(b)fluoranthene                  | ND          | mg/kg | 0.01                                                | <u></u>                               |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Benzo(ghi)perylene                    | ND          | mg/kg | 0.01                                                |                                       |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Benzo(k)fluoranthene                  | ND          | mg/kg | 0.01                                                |                                       |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Chrysene                              | ND          | mg/kg | 0.01                                                | ·                                     |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Dibenzo(a,h)anthracene                | ND          | mg/kg | 0.01                                                |                                       |                                       | EPA 8270D   | 07/17/14 | 1 <b>25</b> |  |  |
|         | Fluoranthene                          | ND          | mg/kg | 0.01                                                |                                       |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Fluorene                              | ND          | mg/kg | 0.01                                                |                                       | _                                     | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Indeno(1,2,3-cd)pyrene                | ND          | mg/kg | 0.01                                                |                                       |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Naphthalene                           | ND          | mg/kg | 0.01                                                |                                       |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Phenanthrene                          | ND          | mg/kg | 0.01                                                |                                       |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | Pyrene                                | ND          | mg/kg | 0.01                                                |                                       |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | 2-Methylnapthalene                    | ND          | mg/kg | 0.01                                                |                                       |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         |                                       |             |       |                                                     |                                       |                                       |             |          |             |  |  |
|         |                                       |             | ·     | 1                                                   |                                       |                                       |             |          |             |  |  |
| ·       | Surrogate Std:                        |             |       |                                                     |                                       |                                       |             |          |             |  |  |
|         | Terphenyl-d14                         | 92.4        | %     | 18-137                                              |                                       |                                       | EPA 8270D   | 07/17/14 | 125         |  |  |
|         | · · · · · · · · · · · · · · · · · · · |             |       | 1                                                   |                                       |                                       |             |          |             |  |  |
|         |                                       |             |       |                                                     |                                       |                                       |             | 1        |             |  |  |

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

Approved By:

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068 70824 -8270 pah

Washington State Certified Lab #227 - DOE Accredited Lab C345

PCB's (Soil)

| Date Colle                            | cted: 07/08/14             |                  |                                                                                                                | )                |                                       | · · · · · · · · · · · · · · · · · · ·                        |                                       |            |  |
|---------------------------------------|----------------------------|------------------|----------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|--------------------------------------------------------------|---------------------------------------|------------|--|
|                                       | e No: 227-70824            |                  |                                                                                                                | C                | ounty:                                | YAKIMA                                                       | · · · · · · · · · · · · · · · · · · · |            |  |
| Sample Loca                           | ition: UST1-10             |                  | Date Received: 07/08/14<br>Date Reported: 07/29/14                                                             |                  |                                       |                                                              |                                       |            |  |
|                                       |                            |                  | Same                                                                                                           |                  |                                       |                                                              |                                       |            |  |
| Send Report To:                       |                            |                  | The second s | e Collect        | -                                     |                                                              |                                       |            |  |
| PLSA Engineering                      |                            | ··· · · ·        | SAMITI                                                                                                         |                  | LEIN IS                               | Matri                                                        | x: Soil                               |            |  |
| Attn: Scott Garland                   |                            |                  |                                                                                                                |                  |                                       |                                                              |                                       |            |  |
| 1120 West Lincoln Ay                  | 20 <b>3</b> 11.0           |                  |                                                                                                                |                  |                                       |                                                              |                                       |            |  |
|                                       | enue                       |                  |                                                                                                                |                  |                                       |                                                              |                                       |            |  |
| Yakima, WA 98902                      |                            |                  |                                                                                                                | <u> </u>         | <del></del>                           |                                                              |                                       |            |  |
| PCB's (Soil)                          |                            |                  | 1.2.5.7.1                                                                                                      |                  |                                       |                                                              |                                       | <u></u>    |  |
| OH# Analytes                          | Results                    | Units            | MRL                                                                                                            | Trigger          | MCL                                   | Method                                                       | Analyzed                              |            |  |
| Aroclor 1016                          | ND                         | mg/kg            | 0.1                                                                                                            |                  | -                                     | EPA 8082                                                     | 07/22/14                              | 125        |  |
| Aroclor 1221<br>Aroclor 1232          | ND                         | mg/kg            | 0.1                                                                                                            |                  | + •                                   | PA 8082                                                      | 07/22/14                              | 125        |  |
| Aroclor 1232<br>Aroclor 1242          | ND<br>ND                   | mg/kg            | $\frac{0.1}{0.1}$                                                                                              |                  |                                       | EPA 8082                                                     | 07/22/14                              | 125        |  |
| Aroclor 1242                          | ND                         | mg/kg            | 0.1                                                                                                            |                  | -                                     | PA 8082                                                      | 07/22/14                              | 125        |  |
| Aroclor 1248                          | ND<br>ND                   | mg/kg            | 0.1                                                                                                            |                  |                                       | PA 8082                                                      | 07/22/14                              | 125        |  |
| Aroclor 1254                          |                            | mg/kg            | 0.1                                                                                                            |                  | +                                     | PA 8082                                                      | 07/22/14                              | 125        |  |
| PCB 8082 (total)                      | ND<br>ND                   | mg/kg            | 0.1                                                                                                            |                  | +                                     | PA 8082                                                      | 07/22/14                              | 125        |  |
|                                       |                            | mg/kg            | 0.1                                                                                                            |                  | E                                     | PA 8082                                                      | 07/22/14                              | 125        |  |
| Surrogate Std:                        |                            |                  | ·                                                                                                              | <u> </u>         |                                       |                                                              |                                       |            |  |
| DCB                                   | 85.9                       | %                | 30-130                                                                                                         |                  |                                       | PA 8082                                                      | 07/22/14                              | 105        |  |
|                                       | 0.5.7                      |                  | 30-130                                                                                                         | ·                |                                       | PA 8082                                                      | 07/22/14                              | 125        |  |
|                                       |                            |                  |                                                                                                                |                  |                                       |                                                              |                                       |            |  |
| ·· ······                             |                            |                  |                                                                                                                | ·                | · · · · · · · · · · · · · · · · · · · |                                                              |                                       | <u> </u>   |  |
|                                       |                            | - *              |                                                                                                                | ·                |                                       |                                                              | ·                                     |            |  |
|                                       |                            |                  |                                                                                                                |                  |                                       |                                                              |                                       |            |  |
| · · · · · · · · · · · · · · · · · · · |                            |                  |                                                                                                                |                  |                                       |                                                              |                                       |            |  |
|                                       |                            |                  | ·                                                                                                              |                  | ·                                     |                                                              |                                       | • <u>-</u> |  |
|                                       |                            |                  |                                                                                                                |                  |                                       |                                                              |                                       |            |  |
|                                       |                            |                  |                                                                                                                |                  |                                       |                                                              |                                       |            |  |
|                                       |                            |                  |                                                                                                                | ·.               |                                       |                                                              |                                       |            |  |
|                                       |                            |                  |                                                                                                                |                  | ·                                     |                                                              |                                       | •          |  |
| MRL (Method Reporting Level):         | Indicates the minimum r    | eporting level i | required and o                                                                                                 | btained by the   | laboratory (N                         | 1DL <mrl<srl).< td=""><td></td><td><u></u></td></mrl<srl).<> |                                       | <u></u>    |  |
| Trigger: DOH Drinking Water res       | ponse level. Public System | ns in excess of  | this level mus                                                                                                 | st take addition | al samples. F                         | Recommended rang                                             | ge on packages.                       |            |  |
| MCL (maximum contaminant lev          | el): Highest level recomm  | nended by the f  | ederal govern                                                                                                  | ment for public  | water system                          | ns.                                                          |                                       |            |  |
| ND (Not Detected): Indicates this     | compound was analyzed a    | nd not detected  | l at a level gre                                                                                               | ater than or eq  | ual to the MF                         | RL or SRL.                                                   |                                       |            |  |
|                                       |                            |                  | An                                                                                                             | proved By:       |                                       | 1/                                                           |                                       |            |  |
|                                       |                            |                  | <u></u>                                                                                                        | noveu by:        |                                       |                                                              |                                       |            |  |

Į

70824-pcbs

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

### VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

| Date Collect                                                                                                                                        | ted: 07/08/14                                   |                          |                                |                  |                           |                                       |              |         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------|--------------------------------|------------------|---------------------------|---------------------------------------|--------------|---------|--|--|
| Lab/Sample                                                                                                                                          | No: 227-70824                                   |                          |                                | C                | ounty                     | YAKIMA                                |              |         |  |  |
| Sample Locati                                                                                                                                       | on: UST1-10                                     |                          |                                |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          | Date Received: 07/08/14        |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          | Date Reported: 07/29/14        |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          | Samp                           | ole Collect      | ted By:                   | SDG                                   |              |         |  |  |
| Send Report To:                                                                                                                                     |                                                 |                          | SAMPI                          | LE COMM          | IENTS                     | Matri                                 | x: Soil      |         |  |  |
| PLSA Engineering                                                                                                                                    |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
| Attn: Scott Garland                                                                                                                                 |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
| 1120 West Lincoln Ave                                                                                                                               | nue                                             |                          |                                |                  |                           |                                       |              |         |  |  |
| Yakima, WA 98902                                                                                                                                    |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
| Cadmium, Chromium,                                                                                                                                  | Nickel, Zinc                                    |                          |                                |                  |                           | •                                     |              |         |  |  |
| DOH# Analytes                                                                                                                                       | Results                                         | Units                    | MRL                            | Trigger          | MCL                       | Method                                | Analyzed     | Analyst |  |  |
| Cadmium                                                                                                                                             | ND                                              | mg/kg                    | 0.535                          |                  |                           | EPA 6020A                             | 07/23/14     | 125     |  |  |
| Chromium                                                                                                                                            | 17.5                                            | mg/kg                    | 0.535                          |                  |                           | EPA 6020A                             | 07/23/14     | 125     |  |  |
| Nickel                                                                                                                                              | 14.2                                            | mg/kg                    | 0.535                          |                  |                           | EPA 6020A                             | 07/23/14     | 125     |  |  |
| Zinc                                                                                                                                                | 45.4                                            | mg/kg                    | 0.535                          |                  |                           | EPA 6020A                             | 07/23/14     | 125     |  |  |
|                                                                                                                                                     |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          |                                |                  | <br>                      |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
| ···· •                                                                                                                                              |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 | · · · ·                  |                                | • ·              |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          |                                |                  |                           |                                       |              | ·       |  |  |
|                                                                                                                                                     |                                                 |                          |                                | <u> </u>         |                           | · · · · · · · · · · · · · · · · · · · |              |         |  |  |
|                                                                                                                                                     |                                                 |                          |                                |                  |                           |                                       |              |         |  |  |
|                                                                                                                                                     |                                                 |                          |                                | <b>.</b>         |                           | <u>-</u>                              |              |         |  |  |
|                                                                                                                                                     |                                                 |                          | -                              |                  |                           |                                       |              |         |  |  |
| MRL (Method Reporting Level): In<br>Trigger: DOH Drinking Water respor<br>MCL (maximum contaminant level):<br>ND (Not Detected): Indicates this con | se level. Public System<br>Highest level recomm | ns in excess of the feet | his level mus<br>leral governn | t take additiona | l samples.<br>vater syste | Recommended range                     | on packages. |         |  |  |
|                                                                                                                                                     |                                                 |                          | <b>A</b>                       | proved By:       |                           |                                       |              |         |  |  |

Approved By:

70824-cdcrni

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014          |
|----------|--------------------------|---------------|--------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH |
|          | YAKIMA, WA 98901         |               |                    |
| Attn:    | DARA OSBORNE             |               |                    |
|          | A sealed a star          |               |                    |

#### **Analytical Results Report**

| Sample Number    | 140714014-012 | Sampling Date   | 7/8/2014 | Date/Time Received | 7/11/2014 | 11:20 AM |
|------------------|---------------|-----------------|----------|--------------------|-----------|----------|
| Client Sample ID | 70824         | Sampling Time   | 11:31 AM |                    |           |          |
| Matrix           | Soil          | Sample Location |          |                    |           |          |
| Comments         |               |                 |          |                    |           |          |

| Parameter                         | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier |
|-----------------------------------|--------|-------|-------|---------------|---------|-----------|-----------|
| 1,1,1,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,1-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2,2-Tetrachloroethane         | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1,2-Trichloroethane             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,1-dichloropropene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichloropropane            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trichlorobenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromo-3-chloropropane(D8CP) | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromoethane                 | ND     | mg/kg | 0.001 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloroethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3,5-Trimethylbenzene            | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1,4-Dichlorobenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2,2-Dichloropropane               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-Chlorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 2-hexanone                        | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| 4-Chiorotoluene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Acetone                           | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Acrylonitrile                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Benzene                           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromobenzene                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromochloromethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099 / PCB

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

# Client:VALLEY ENVIRONMENTAL LABAddress:15 W. YAKIMA AVE STE210

 Batch #:
 140714014

 Project Name:
 VOC / MET.

VOC / METALS / PAH / PCB

Attn:

YAKIMA, WA 98901 DARA OSBORNE

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID | 140714014-012<br>70824 | Sampling Date<br>Sampling Time | 7/8/2014<br>11:31 AM | Date/Time Received | 7/11/2014 | 11:20 AM |
|-----------------------------------|------------------------|--------------------------------|----------------------|--------------------|-----------|----------|
| Matrix                            | Soil                   | Sample Location                |                      |                    |           |          |
| Comments                          |                        |                                |                      |                    |           |          |

| Parameter                     | Result | Units | PQL   | Analysis Date | Analyst | Method    | Qualifier |
|-------------------------------|--------|-------|-------|---------------|---------|-----------|-----------|
| Bromodichloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromoform                     | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Bromomethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon disulfide              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Carbon Tetrachloride          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chlorobenzene                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroethane                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloroform                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Chloromethane                 | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,2-dichloroethene        | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| cis-1,3-Dichloropropene       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromochloromethane          | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dibromomethane                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Dichlorodifluoromethane       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Ethylbenzene                  | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Hexachlorobutadiene           | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Isopropylbenzene              | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| m+p-Xylene                    | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl ethyl ketone (MEK)     | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methyl isobutyl ketone (MIBK) | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| Methylene chloride            | ND     | mg/kg | 0.025 | 7/17/2014     | SAT     | EPA 8260B |           |
| methyl-t-butyl ether (MTBE)   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Naphthalene                   | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| n-Butylbenzene                | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| 1-Propylbenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| o-Xylene                      | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| -isopropyltoluene             | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| ec-Butylbenzene               | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |
| Styrene                       | ND     | mg/kg | 0.005 | 7/17/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; iD:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014                |
|----------|--------------------------|---------------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC / METALS / PAH / PCB |
|          | YAKIMA, WA 98901         |               |                          |
| Attn:    | DARA OSBORNE             |               |                          |

#### **Analytical Results Report**

| tert-Butylbenzene         ND         mg/kg         0.005         7/17/2014         SA           Tetrachloroethene         ND         mg/kg         0.005         7/17/2014         SA           Toluene         ND         mg/kg         0.005         7/17/2014         SA           trans-1,2-Dichloroethene         ND         mg/kg         0.005         7/17/2014         SA | nalyst Metho<br>SAT EPA 826 | • • • • • • • |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|
| Tetrachloroethene         ND         mg/kg         0.005         7/17/2014         SA           Toluene         ND         mg/kg         0.005         7/17/2014         SA           trans-1,2-Dichloroethene         ND         mg/kg         0.005         7/17/2014         SA                                                                                                 | SAT EDA 826                 | 200           |
| Toluene         ND         mg/kg         0.005         7/17/2014         SA           trans-1,2-Dichloroethene         ND         mg/kg         0.005         7/17/2014         SA                                                                                                                                                                                                 |                             | one           |
| trans-1,2-Dichloroethene ND mg/kg 0.005 7/17/2014 SA                                                                                                                                                                                                                                                                                                                               | SAT EPA 826                 | 30B           |
|                                                                                                                                                                                                                                                                                                                                                                                    | SAT EPA 826                 | 60B           |
|                                                                                                                                                                                                                                                                                                                                                                                    | SAT EPA 826                 | 50B           |
| trans-1,3-Dichloropropene ND mg/kg 0.005 7/17/2014 SA                                                                                                                                                                                                                                                                                                                              | SAT EPA 826                 | 50B           |
| Trichloroethene ND mg/kg 0.005 7/17/2014 SA                                                                                                                                                                                                                                                                                                                                        | SAT EPA 826                 | 30B           |
| Trichloroflouromethane ND mg/kg 0.005 7/17/2014 SA                                                                                                                                                                                                                                                                                                                                 | SAT EPA 826                 | 30B           |
| Vinyl Chloride ND mg/kg 0.005 7/17/2014 SA                                                                                                                                                                                                                                                                                                                                         | SAT EPA 826                 | 50B           |

#### Surrogate Data

7/17/2014

SAT

%moisture

Percent

| ample Number | 140714014-012 |           |                  |                |
|--------------|---------------|-----------|------------------|----------------|
| Surrogate    | Standard      | Method    | Percent Recovery | Control Limits |
| 1,2-Dichlor  | obenzene-d4   | EPA 8260B | 88.8             | 70-130         |
| 4-Bromoflu   | orobenzene    | EPA 8260B | 94.4             | 70-130         |
| Toluene-d8   | 3             | EPA 8260B | 98.4             | 70-130         |

Authorized Signature

%moisture

5.2

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs JD: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-802; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:<br>Address:<br>Attn:                            | VALLEY ENVIRONM<br>15 W. YAKIMA AVE<br>YAKIMA, WA 98901<br>DARA OSBORNE | STE210 | AB<br>alytical R                          | esult | Batch #<br>Project<br>s Report | -   |             | '14014<br>/ METALS / P     | 11:20 AM  |
|---------------------------------------------------------|-------------------------------------------------------------------------|--------|-------------------------------------------|-------|--------------------------------|-----|-------------|----------------------------|-----------|
| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-012<br>70824<br>Soil                                          |        | Sampling Da<br>Sampling Ti<br>Sample Loca | me    | 7/8/2014<br>11:31 AM           |     | Time Receiv | /ed 7/11/2014<br>7/17/2014 | 11:20 AM  |
| Parameter                                               |                                                                         | Result | Units                                     | PQL   | Analysis E                     | ate | Analyst     | Method                     | Qualifier |
| 2-Methylnaph                                            | thalene                                                                 | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Acenaphthen                                             | e                                                                       | NÐ     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Acenaphthyle                                            | ne                                                                      | ND     | mg/Kg                                     | 0.01  | <b>7/17/20</b> 1               | 4   | EMP         | EPA 8270D                  |           |
| Anthracene                                              |                                                                         | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Benzo(ghi)pe                                            | rylene                                                                  | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Benzo[a]anth                                            | racene                                                                  | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Benzo[a]pyrei                                           | ne                                                                      | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Benzo[b]fluora                                          | anthene                                                                 | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Benzo[k]fluora                                          | anthene                                                                 | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Chrysene                                                |                                                                         | ND     | mg/K <b>g</b>                             | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Dibenz[a,h]an                                           | thracene                                                                | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Fluoranthene                                            |                                                                         | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Fluorene                                                |                                                                         | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Indeno[1,2,3-0                                          | cd]pyrene                                                               | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Naphthalene                                             |                                                                         | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Phenanthrene                                            | •                                                                       | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| Pyrene                                                  |                                                                         | ND     | mg/Kg                                     | 0.01  | 7/17/201                       | 4   | EMP         | EPA 8270D                  |           |
| %moisture                                               |                                                                         | 5.2    | Percent                                   |       | 7/17/201                       | 4   | SAT         | %moisture                  |           |

#### Surrogate Data

| Sample Number      | 140714014-012 |           |                  |                |  |
|--------------------|---------------|-----------|------------------|----------------|--|
| Surrogate Standard |               | Method    | Percent Recovery | Control Limits |  |
| Terphenyl-d14      |               | EPA 8270D | 92.4             | 18-137         |  |

Authorized Signature

ohn. Conthe

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C586; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

Batch #: 140714014 Project Name: VOC / METALS / PAH / PCB

85.9

#### **Analytical Results Report**

| Sample Number 140714014-012<br>Client Sample ID 70824<br>Matrix Soil<br>Comments<br>Parameter |               |        | Sampling Date<br>Sampling Time<br>Sample Location |               |             | Date/Time Receiv<br>Extraction Date | ved 7/11/2014<br>7/18/2014 | 11:20 AM  |
|-----------------------------------------------------------------------------------------------|---------------|--------|---------------------------------------------------|---------------|-------------|-------------------------------------|----------------------------|-----------|
|                                                                                               |               | Result | Units                                             | PQL           | Analysis Da | ate Analyst                         | Method                     | Qualifier |
| Aroclor 1016 (PCB-1016)                                                                       |               | ND     | mg/Kg                                             | 0.1           | 7/22/2014   | 4 SAT                               | EPA 8082                   |           |
| Aroclor 1221 (PCB-1221)                                                                       |               | ND     | mg/Kg                                             | 0.1           | 7/22/2014   | 4 SAT                               | EPA 8082                   |           |
| Aroclor 1232 (PCB-1232)                                                                       |               | ND     | mg/Kg                                             | 0.1           | 7/22/2014   | 4 SAT                               | EPA 8082                   |           |
| Aroclor 1242 (PCB-1242)                                                                       |               | ND     | mg/Kg                                             | 0.1           | 7/22/2014   | \$ SAT                              | EPA 8082                   |           |
| Aroclor 1248 (PCB-1248)                                                                       |               | ND     | mg/Kg                                             | 0.1           | 7/22/2014   | 4 SAT                               | EPA 8082                   |           |
| Aroclor 1254 (PCB-1254)                                                                       |               | ND     | mg/Kg                                             | 0.1           | 7/22/2014   | 1 SAT                               | EPA 8082                   |           |
| Aroclor 1260 (F                                                                               | PCB-1260)     | ND     | mg/Kg                                             | 0.1           | 7/22/2014   | 1 SAT                               | EPA 8082                   |           |
| PCB 8082 (tota                                                                                | al)           | ND     | mg/kg                                             | 0.1           | 7/22/2014   | SAT                                 | EPA 8082                   |           |
| %moisture                                                                                     |               | 5.2    | Percent                                           |               | 7/17/2014   | SAT                                 | %moisture                  |           |
|                                                                                               |               |        | Surroga                                           | ite Da        | ta          |                                     |                            |           |
| nple Number                                                                                   | 140714014-012 |        |                                                   | <del></del> . |             | <u>,</u>                            |                            |           |
| Surrogate Standard                                                                            |               |        | Method                                            |               | Pe          | rcent Recovery                      | Control L                  | imits     |

EPA 8082

Authorized Signature

DCB

lohn. Coult

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

30-130

## JUNE 2014 GROUNDWATER ANALYTICAL RESULTS

### VALLEY Environmental Laboratory 15 W Yakima Ave Ste. 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Washington State DOE Accredited Lab #<br>Sampled At: W1 | C345                                  | Date Reported: 07/15/14<br>Date Collected: 06/23/14<br>Time Collected: 2:22 PM<br>Sampled By: Brad Card./Scott Garland |                                                                              |                                       |                                                            |  |  |
|---------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------|--|--|
| PLSA Engineering                                        |                                       |                                                                                                                        | <u></u>                                                                      |                                       |                                                            |  |  |
| Attn: Scott Garland                                     |                                       |                                                                                                                        |                                                                              |                                       |                                                            |  |  |
| 1120 West Lincoln Avenue                                |                                       |                                                                                                                        |                                                                              |                                       | Invoice#                                                   |  |  |
| Yakima, WA 98902                                        |                                       |                                                                                                                        |                                                                              |                                       | 27602                                                      |  |  |
| Volatile Organic Chemicals                              | · · · · · · · · · · · · · · · · · · · | Method                                                                                                                 | : EPA 8260B                                                                  | Matrix:                               |                                                            |  |  |
| VEL Sample #                                            | 62315                                 | . Informou                                                                                                             |                                                                              |                                       |                                                            |  |  |
| -                                                       | 140623-W1                             |                                                                                                                        | алты шатарта такулы калана каларуу (т) (такула такана такулартан каларуу (т) |                                       | 1977 - 277 A. D. M. B. |  |  |
| Units                                                   | ug/L                                  | Limits                                                                                                                 |                                                                              |                                       |                                                            |  |  |
| Check Standards - Ave.Recovery:                         | ugʻD                                  | Linnits                                                                                                                |                                                                              |                                       |                                                            |  |  |
|                                                         |                                       |                                                                                                                        |                                                                              | · · · · · · · · · · · · · · · · · · · |                                                            |  |  |
| 1,2-Dichlorobenzene-d4                                  | 107.6%                                | (70-130)                                                                                                               |                                                                              |                                       |                                                            |  |  |
| 4-Bromofluorobenzene                                    | 100.4%                                | (70-130)                                                                                                               |                                                                              |                                       |                                                            |  |  |
| Toluene-d8                                              | 101.2%                                | (70-130)                                                                                                               |                                                                              |                                       |                                                            |  |  |
| Dichlorodifluoromethane                                 | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Chloromethane                                           | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Vinyl chloride                                          | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Bromomethane                                            | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Chloroethane                                            | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Acetone                                                 | ND                                    | 5.00                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Acrolein                                                | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| 1,1-Dichloroethylene                                    | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Methylene chloride                                      | ND                                    | 5.00                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Acrylonitrile                                           | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| trans-1,2-Dichloroethylene                              | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| 1,1-Dichloroethane                                      | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Methyl ethyl ketone (MEK)                               | ND                                    | 5.00                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| cis-1,2-Dichloroethylene                                | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| 2,2-Dichloropropane                                     | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Chloroform                                              | 2.70                                  | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Bromochloromethane                                      | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| 1,1,1-Trichloroethane                                   | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| 1,2-Dichloroethane                                      | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| 1,1-Dichloropropene                                     | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Carbon tetrachloride                                    | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Benzene                                                 | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Trichloroethylene                                       | ND                                    | 0.50                                                                                                                   |                                                                              |                                       |                                                            |  |  |
| Date Analyzed:                                          | 6/30/2014                             |                                                                                                                        |                                                                              |                                       |                                                            |  |  |
| Analyst:                                                | AAL                                   |                                                                                                                        |                                                                              |                                       |                                                            |  |  |
| ND = None Detected                                      | ]                                     | Page 1 of 3                                                                                                            |                                                                              |                                       |                                                            |  |  |

### VALLEY Environmental Laboratory 15 W Yakima Ave Ste. 210

### Yakima, WA 98902

### (509) 575 - 3999 Fax: (509) 575 - 3068

|                             | Volatile Organic Compounds (Continued) |                                            |             |  |  |  |  |
|-----------------------------|----------------------------------------|--------------------------------------------|-------------|--|--|--|--|
| VEL Sample #                |                                        |                                            |             |  |  |  |  |
| Sample ID                   | 140623-W1                              | 01036360149)47(1)+37(1710810)8181818181818 |             |  |  |  |  |
| Units                       | ug/L                                   | Limts                                      |             |  |  |  |  |
| 1,2-Dichloropropane         | ND                                     | 0.50                                       |             |  |  |  |  |
| Dibromomethane              | ND                                     | 0.50                                       |             |  |  |  |  |
| Bromodichloromethane        | ND                                     | 0.50                                       |             |  |  |  |  |
| cis-1,3-Dichloropropene     | ND                                     | 0.50                                       |             |  |  |  |  |
| Toluene                     | ND                                     | 0.50                                       |             |  |  |  |  |
| trans-1,3-Dichloropropene   | ND                                     | 0.50                                       |             |  |  |  |  |
| 1,1,2-Trichloroethane       | ND                                     | 0.50                                       |             |  |  |  |  |
| 1,3-Dichloropropane         | ND                                     | 0.50                                       |             |  |  |  |  |
| Dibromochloromethane        | ND                                     | 0.50                                       |             |  |  |  |  |
| Tetrachloroethylene         | 1.02                                   | 0.50                                       |             |  |  |  |  |
| 1,2-Dibromoethane           | ND                                     | 0.50                                       |             |  |  |  |  |
| Chlorobenzene               | ND                                     | 0.50                                       |             |  |  |  |  |
| 1,1,1,2-Tetrachloroethane   | ND                                     | 0.50                                       |             |  |  |  |  |
| Ethylbenzene                | ND                                     | 0.50                                       |             |  |  |  |  |
| m,p-Xylene                  | ND                                     | 0.50                                       |             |  |  |  |  |
| Styrene                     | ND                                     | 0.50                                       |             |  |  |  |  |
| o-Xylene                    | ND                                     | 0.50                                       |             |  |  |  |  |
| Bromoform                   | ND                                     | 0.50                                       |             |  |  |  |  |
| 1,1,2,2-Tetrachloroethane   | ND                                     | 0.50                                       |             |  |  |  |  |
| 1,2,3-Trichloropropane      | ND                                     | 0.50                                       |             |  |  |  |  |
| Bromobenzene                | ND                                     | 0.50                                       |             |  |  |  |  |
| n-Propylbenzene             | ND                                     | 0.50                                       |             |  |  |  |  |
| 2-Chlorotoluene             | ND                                     | 0.50                                       |             |  |  |  |  |
| 4-Chlorotoluene             | ND                                     | 0.50                                       |             |  |  |  |  |
| 1,3,5-Trimethylbenzene      | ND                                     | 0.50                                       |             |  |  |  |  |
| tert-Butylbenzene           | ND                                     | 0.50                                       |             |  |  |  |  |
| 1,2,4-Trimethylbenzene      | ND                                     | 0.50                                       |             |  |  |  |  |
| sec-Butylbenzene            | ND                                     | 0.50                                       |             |  |  |  |  |
| 1,3-Dichlorobenzene         | ND                                     | 0.50                                       |             |  |  |  |  |
| 1,4-Dichlorobenzene         | ND                                     | 0.50                                       |             |  |  |  |  |
| 4-Isopropyltoluene          | ND                                     | 0.50                                       |             |  |  |  |  |
| 1,2-Dichlorobenzene         | ND                                     | 0.50                                       |             |  |  |  |  |
| n-Butylbenzene              | ND                                     | 0.50                                       |             |  |  |  |  |
| 1,2-Dibromo-3-chloropropane | ND                                     | 0.50                                       |             |  |  |  |  |
| 1,2,4-Trichlorobenzene      | ND                                     | 0.50                                       |             |  |  |  |  |
| Naphthalene                 | ND                                     | 0.50                                       |             |  |  |  |  |
| Date Analyzed:              | 6/30/2014                              |                                            |             |  |  |  |  |
| Analyst:                    | AAL                                    |                                            |             |  |  |  |  |
|                             |                                        |                                            |             |  |  |  |  |
|                             |                                        |                                            | Page 2 of 3 |  |  |  |  |

### VALLEY Environmental Laboratory 15 W Yakima Ave Ste. 210 Yakima, WA 98902

| (509) 575 - 3999 Fax: (509) 575 - 3068 |
|----------------------------------------|
|----------------------------------------|

|                                   | Volatile Organic Compounds (Continued) |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|-----------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|--------|--|--|--|
| VEL Sample #                      | 62315                                  |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   | 140623-W1                              | nen o mana na anta a ser a | anan manan kanan kanan kanan manan (d) sa celakara jara sa kanan kasa | u meter presentation a conduction (million according to a manier or |        |  |  |  |
| Units                             | ug/L                                   | Limits                                                                                                         |                                                                       |                                                                     |        |  |  |  |
| 1,1,1-Trichloroethane             | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| 1,1,2,2-Tetrachloroethane         | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| 1,1-Dichloroethene                | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| 1,2,3-Trichlorobenzene            | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| 1,2-Dichloroethane                | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| 2-hexanone                        | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| Bromoform                         | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| Carbon disulfide                  | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| Chlorobenzene                     | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| cis-1,2-dichloroethene            | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| cis-1,3-Dichloropropene           | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| Hexachlorobutadiene               | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| Isopropylbenzene                  | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| Methyl Isobutyl ketone (MIBK)     | ND                                     | 5.00                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| methyl-t-butyl ether (MTBE)       | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| p-siopropyltoluene                | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| tert-Butylbenzene                 | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| trans-1,2-Dichloroethene          | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
| Trichlorofluoromethane            | ND                                     | 0.50                                                                                                           |                                                                       |                                                                     |        |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
| · · · · · · · · · · · · · · · · · |                                        |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
| ·                                 |                                        |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   | 4                                      |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     | ·      |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   | ļ                                      |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     | l<br>I |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     | Ì      |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     | 1      |  |  |  |
| Date Analyzed:                    | 6/30/2014                              |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
| Analyst:                          | AAL                                    |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   |                                        |                                                                                                                |                                                                       |                                                                     |        |  |  |  |
|                                   |                                        |                                                                                                                | Page 3 of 3                                                           | Q ~                                                                 |        |  |  |  |

### VALLEY Environmental Laboratory 15 W. Yakima Ave Ste 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Sampled A                              | At: W1         | Date Reported: 07/15/14<br>Date Collected: 06/23/14<br>Time Collected: 2:22 PM<br>Sampled By: Brad Card./Scott Garland |              |           |         |          |  |
|----------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------|--------------|-----------|---------|----------|--|
| PLSA Engineering                       |                |                                                                                                                        |              |           |         |          |  |
| Attn: Scott Garland                    |                |                                                                                                                        |              |           |         |          |  |
| 1120 West Lincoln Avenue               |                |                                                                                                                        |              |           |         | Invoice# |  |
| Yakima, WA 98902                       | <u> </u>       |                                                                                                                        |              |           |         | 27607    |  |
| Priority pollutants-SOC's              |                | (0015                                                                                                                  | Method       | EPA 8270C | Matrix: | Water    |  |
|                                        | VEL Sample #   | 62315                                                                                                                  |              |           |         |          |  |
|                                        | Sample ID      | 140623-W1                                                                                                              |              |           |         |          |  |
| Surrogate Standards                    |                | Results                                                                                                                |              |           | ·       |          |  |
| ·<br>                                  |                |                                                                                                                        |              |           |         |          |  |
|                                        | w              |                                                                                                                        |              |           |         |          |  |
| p-Terphenyl-d14                        |                | 98%                                                                                                                    | 10-125       |           |         |          |  |
| Acenaphthylene                         |                | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| Acenaphthene                           |                | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| Fluorene                               |                | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| Phenanthrene                           |                | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| Anthracene                             |                | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| Fluoranthene                           |                | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| Pyrene                                 |                | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| 2-Methylphenol                         |                | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| Benzo(a)anthracene                     |                | ND@0.01                                                                                                                | ug/L         |           |         | ;        |  |
| Chrysene                               | - ·            | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| Benzo(b)fluoranthene                   |                | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| Benzo(k)fluoranthene                   |                | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| Benzo(a)pyrene                         |                | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| Indeno(1,2,3-cd)pyrene                 |                | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| Dibenzo(a,h)anthracene                 |                | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
| Benzo(ghi)perylene                     |                | ND@0.01                                                                                                                | ug/L<br>ug/L |           |         |          |  |
| Naphthalene                            | ·              | ND@0.01                                                                                                                | ug/L         |           |         |          |  |
|                                        |                | 115/0/0101                                                                                                             | ug/L         |           |         |          |  |
|                                        | ·              |                                                                                                                        |              |           |         |          |  |
| · . <u> </u>                           |                |                                                                                                                        |              |           |         |          |  |
| ···                                    |                |                                                                                                                        |              |           |         |          |  |
| •••••••••••••••••••••••••••••••••••••• |                |                                                                                                                        |              |           |         |          |  |
|                                        |                |                                                                                                                        |              |           |         |          |  |
| · · · · · · · · · · · · · · · · · · ·  | Date Analyzed: | 7/14/2014                                                                                                              |              |           |         |          |  |
|                                        | Analyst:       | 125                                                                                                                    |              |           |         |          |  |
| ND = None Detected                     | · · · · · ·    | · · · · · · · · · · · · · · · · · · ·                                                                                  | Page 1 of 1  | <u> </u>  |         |          |  |

62315-8270

# VALLEY Environmental Laboratory

Washington State Certified Lab #227 - DOE Accredited Lab C345

**IOC PP Metals** 

|               | Date Colle                                                                                                                            | ected: 06/23/14                                         |                                     |                                                   |                                     |                         |                              |          | <b>-</b> n |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------|---------------------------------------------------|-------------------------------------|-------------------------|------------------------------|----------|------------|--|
|               |                                                                                                                                       | e No: 227-62315                                         |                                     |                                                   | C                                   | ounty:                  | YAKIMA                       |          |            |  |
|               | Sample Loca                                                                                                                           | tion: W1                                                |                                     |                                                   |                                     |                         |                              | ·        |            |  |
|               | ··· ···                                                                                                                               |                                                         |                                     |                                                   | Date Ree                            | ceived:                 | 06/23/14                     |          |            |  |
|               |                                                                                                                                       |                                                         |                                     |                                                   | Date Rep                            | orted:                  | 07/15/14                     |          |            |  |
|               | Send Report To:         Sample Collected By: Brad Card./Scott Garl           Send Report To:         SAMPLE COMMENTS                  |                                                         |                                     |                                                   |                                     |                         |                              |          |            |  |
| Send          | Report To:                                                                                                                            |                                                         |                                     | SAMPI                                             | LE COMM                             | ENTS                    | Matri                        | x: Water |            |  |
|               | PLSA Engineering                                                                                                                      |                                                         |                                     |                                                   |                                     |                         |                              |          |            |  |
|               | Attn: Scott Garland                                                                                                                   |                                                         |                                     |                                                   |                                     |                         |                              |          |            |  |
|               | 1120 West Lincoln Av                                                                                                                  | /enue                                                   |                                     |                                                   |                                     |                         |                              |          |            |  |
|               | Yakima, WA 98902                                                                                                                      |                                                         |                                     |                                                   |                                     |                         |                              |          |            |  |
|               | IOC PP Metals                                                                                                                         |                                                         |                                     | <u> </u>                                          | <u> </u>                            |                         |                              | <u></u>  |            |  |
| )OH#          | Analytes                                                                                                                              | Results                                                 | Units                               | MRL                                               | Trigger                             | MCL                     | Method                       | Analyzed | Analys     |  |
| 9             | Lead                                                                                                                                  | ND                                                      | mg/L                                | 0.001                                             |                                     |                         | EPA 6020A                    | 07/07/14 | AAL        |  |
| 24            | Zinc                                                                                                                                  | ND                                                      | mg/L                                | 0.001                                             |                                     |                         | EPA 6020A                    | 07/07/14 | AAL        |  |
| 6             | Cadmium                                                                                                                               | ND                                                      | mg/L                                | 0.001                                             |                                     |                         | EPA 6020A                    | 07/07/14 | AAL        |  |
|               | Chromium                                                                                                                              | ND                                                      | mg/L                                | 0.001                                             |                                     |                         | EPA 6020A                    | 07/07/14 | AAL        |  |
| <u>11</u> 1 . | Nickel                                                                                                                                | ND                                                      | mg/L                                | 0.001                                             |                                     |                         | EPA 6020A                    | 07/07/14 | AAL        |  |
|               |                                                                                                                                       |                                                         |                                     |                                                   |                                     |                         |                              |          |            |  |
|               |                                                                                                                                       |                                                         |                                     |                                                   |                                     |                         |                              |          |            |  |
|               |                                                                                                                                       |                                                         |                                     |                                                   |                                     |                         |                              |          |            |  |
| 1             | MRL (Method Reporting Level):<br>Frigger: DOH Drinking Water res<br>MCL (maximum contaminant lev<br>ND (Not Detected): Indicates this | ponse level. Public Syster<br>el): Highest level recomm | ns in excess of<br>lended by the fi | this level mu<br>ederal govern<br>l at a level gr | st take addition<br>ment for public | al samples<br>water sys | s. Recommended rang<br>tems. |          |            |  |

### 15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-30692315-ppmetals

### VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

|          | Date Collect                                                                                                                                        | ed: 06/23/14                                    |                                    |                                                                                |                                     |                         |                                       |          |          |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|-------------------------|---------------------------------------|----------|----------|--|--|
|          |                                                                                                                                                     | No: 227-62315                                   |                                    |                                                                                | C                                   | County:                 | YAKIMA                                |          |          |  |  |
| Carlor I | Sample Location                                                                                                                                     | ·                                               | _                                  |                                                                                |                                     |                         |                                       |          |          |  |  |
|          |                                                                                                                                                     | · · ·                                           | <u> </u>                           |                                                                                |                                     |                         | 06/23/14                              |          |          |  |  |
|          |                                                                                                                                                     |                                                 |                                    | Some                                                                           |                                     | -                       | 07/15/14                              |          | ,        |  |  |
| end      | Report To:                                                                                                                                          |                                                 |                                    | Sample Collected By: Brad Card./Scott Garland<br>SAMPLE COMMENTS Matrix: Water |                                     |                         |                                       |          |          |  |  |
|          | PLSA Engineering<br>Attn: Scott Garland<br>1120 West Lincoln Aver<br>Yakima, WA 98902                                                               | iue                                             |                                    |                                                                                |                                     |                         |                                       |          |          |  |  |
|          | PCB's Analytes                                                                                                                                      | Results                                         | Units                              | MRL                                                                            | Trigger                             | MCL                     | Method                                | Analyzed | Analy    |  |  |
|          | PCB's                                                                                                                                               | ND                                              | ug/L                               | 0.1                                                                            | Inggei                              | MICL                    | EPA 8082                              | 07/09/14 |          |  |  |
|          | · · · · · · · · · · · · · · · · · · ·                                                                                                               |                                                 |                                    |                                                                                |                                     |                         |                                       |          |          |  |  |
|          |                                                                                                                                                     |                                                 |                                    |                                                                                |                                     |                         |                                       |          |          |  |  |
|          |                                                                                                                                                     |                                                 |                                    |                                                                                | <u></u> _                           |                         | · · · · · · · · · · · · · · · · · · · |          |          |  |  |
|          |                                                                                                                                                     |                                                 |                                    | -                                                                              |                                     |                         | ···· ·                                |          | <u> </u> |  |  |
|          |                                                                                                                                                     |                                                 |                                    |                                                                                |                                     | ·   ·                   |                                       |          |          |  |  |
|          |                                                                                                                                                     |                                                 |                                    |                                                                                |                                     |                         |                                       |          |          |  |  |
|          |                                                                                                                                                     |                                                 | <u></u>                            |                                                                                |                                     |                         |                                       |          |          |  |  |
|          | ·                                                                                                                                                   |                                                 |                                    |                                                                                | <u>.</u>                            |                         | · · · · · · · · · · · · · · · · · · · |          | i        |  |  |
|          |                                                                                                                                                     |                                                 |                                    |                                                                                |                                     |                         | · · · · · · · · · · · · · · · · · · · |          | <u></u>  |  |  |
|          | · <b></b>                                                                                                                                           |                                                 |                                    |                                                                                |                                     |                         |                                       |          |          |  |  |
|          | ·                                                                                                                                                   |                                                 |                                    | <u> </u>                                                                       | ,                                   |                         |                                       |          |          |  |  |
|          |                                                                                                                                                     |                                                 |                                    |                                                                                |                                     |                         |                                       |          |          |  |  |
|          |                                                                                                                                                     |                                                 |                                    |                                                                                | ·                                   |                         |                                       |          |          |  |  |
|          | <u> </u>                                                                                                                                            |                                                 |                                    |                                                                                | ·                                   |                         | ·                                     |          |          |  |  |
|          | ·····                                                                                                                                               | -                                               |                                    | + +                                                                            |                                     |                         |                                       |          |          |  |  |
|          |                                                                                                                                                     |                                                 |                                    | -                                                                              |                                     |                         | ···· ·                                |          |          |  |  |
|          |                                                                                                                                                     |                                                 |                                    |                                                                                |                                     |                         |                                       |          |          |  |  |
|          |                                                                                                                                                     | 4                                               |                                    |                                                                                |                                     |                         | ·                                     |          |          |  |  |
| ]        |                                                                                                                                                     |                                                 |                                    |                                                                                |                                     |                         |                                       |          |          |  |  |
| <u> </u> |                                                                                                                                                     |                                                 |                                    |                                                                                |                                     |                         |                                       |          |          |  |  |
| ר<br>א   | WRL (Method Reporting Level): In<br>Frigger: DOH Drinking Water respon<br>MCL (maximum contaminant level):<br>MD (Not Detected): Indicates this com | sc level. Public Syster<br>Highest level recomm | ns in excess of<br>tended by the f | this level mu                                                                  | st take additior<br>ment for public | al samples<br>water sys | s. Recommended rang                   |          |          |  |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

62315-pcbs

1282 Alturas Drive • Moscow, iD 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

Batch #: Project Name:

140630030

MONITORING WELLS

#### **Analytical Results Report**

| Sample Number 140630030-001<br>Client Sample ID 62315<br>Matrix Water<br>Comments |        | Sampling Da<br>Sampling Ti<br>Sample Loc | me   | 6/23/2014 Date<br>2:22 PM | e/Time Recei | ved 6/26/2014 | 11:50 AM |
|-----------------------------------------------------------------------------------|--------|------------------------------------------|------|---------------------------|--------------|---------------|----------|
| Parameter                                                                         | Result | Units                                    | PQL  | Analysis Date             | Analyst      | Method        | Qualifie |
| 1,1,1,2-Tetrachloroethane                                                         | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,1,1-Trichloroethane                                                             | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,1,2,2-Tetrachloroethane                                                         | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,1,2-Trichloroethane                                                             | ND     | ug/L.                                    | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,1-Dichloroethane                                                                | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,1-Dichloroethene                                                                | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,1-dichloropropene                                                               | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,2,3-Trichlorobenzene                                                            | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,2,3-Trichloropropane                                                            | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,2,4-Trichlorobenzene                                                            | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,2,4-Trimethylbenzene                                                            | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,2-Dibromo-3-chloropropane(DBCP)                                                 | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,2-Dibromoethane                                                                 | ND     | ug/L                                     | 0.01 | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,2-Dichlorobenzene                                                               | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,2-Dichloroethane                                                                | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,2-Dichloropropane                                                               | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,3,5-Trimethylbenzene                                                            | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,3-Dichlorobenzene                                                               | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,3-Dichloropropane                                                               | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 1,4-Dichlorobenzene                                                               | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 2,2-Dichloropropane                                                               | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 2-Chlorotoluene                                                                   | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 2-hexanone                                                                        | ND     | ug/L                                     | 2.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| 4-Chlorotoluene                                                                   | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| Acetone                                                                           | ND     | ug/L                                     | 2.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| Acrylonitrile                                                                     | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| Benzene                                                                           | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |
| Bromobenzene                                                                      | ND     | ug/L                                     | 0.5  | 6/30/2014                 | SAT          | EPA 8260B     |          |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C585 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cen0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### Client: VALLEY ENVIRONMENTAL LAB

Address: 15

15 W. YAKIMA AVE STE210 YAKIMA, WA 98901 Batch #: Project Name:

140630030 MONITORING WELLS

Attn: DARA OSBORNE

#### **Analytical Results Report**

| Sample Number    | 140630030-001 | Sampling Date   | 6/23/2014 | Date/Time Received | 6/26/2014 | 11:50 AM |
|------------------|---------------|-----------------|-----------|--------------------|-----------|----------|
| Client Sample ID | 62315         | Sampling Time   | 2:22 PM   |                    |           |          |
| Matrix           | Water         | Sample Location |           |                    |           |          |
| Comments         |               |                 |           |                    |           |          |

| Parameter                     | Result | Units | PQL | Analysis Date | Analyst | Method    | Qualifier |
|-------------------------------|--------|-------|-----|---------------|---------|-----------|-----------|
| Bromochloromethane            | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B | · ···     |
| Bromodichloromethane          | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Bromoform                     | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Bromomethane                  | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Carbon disulfide              | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Carbon Tetrachloride          | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Chlorobenzene                 | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Chloroethane                  | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Chloroform                    | 2.70   | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Chloromethane                 | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| cis-1,2-dichloroethene        | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| cis-1,3-Dichloropropene       | ND     | ug/L. | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Dibromochloromethane          | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Dibromomethane                | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Dichlorodifluoromethane       | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Ethylbenzene                  | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Hexachlorobutadiene           | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Isopropylbenzene              | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| m+p-Xylene                    | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Methyl ethyl ketone (MEK)     | ND     | ug/L  | 2.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Methyl isobutyl ketone (MIBK) | ND     | ug/L  | 2.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Methylene chloride            | ND     | ug/L  | 2.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| methyl-t-butyl ether (MTBE)   | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Naphihalene                   | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| n-Butylbenzene                | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| n-Propylbenzene               | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| o-Xylene                      | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| p-isopropyltoluene            | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| sec-Butylbenzene              | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cen0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

# Client:VALLEY ENVIRONMENTAL LABAddress:15 W. YAKIMA AVE STE210

**YAKIMA, WA 98901** 

DARA OSBORNE

Batch #: 14063
Project Name: MON

140630030 MONITORING WELLS

Attn:

#### **Analytical Results Report**

| ample Number 140630030-00 <sup>-</sup><br>lient Sample ID 62315<br>atrix Water<br>omments |           |        | Sampling D.<br>Sampling Ti<br>Sample Loc | me  | 6/23/2014 Da<br>2:22 PM | ate/Time Rece | ived 6/26/2014 | 11:50 AM  |
|-------------------------------------------------------------------------------------------|-----------|--------|------------------------------------------|-----|-------------------------|---------------|----------------|-----------|
| Parameter                                                                                 |           | Result | Units                                    | PQL | Analysis Date           | Analyst       | Method         | Qualifier |
| Styrene                                                                                   |           | ND     | ug/L                                     | 0.5 | 6/30/2014               | SAT           | EPA 8260B      |           |
| tert-Butylbenze                                                                           | ne        | ND     | ug/L                                     | 0.5 | 6/30/2014               | SAT           | EPA 8260B      |           |
| Tetrachloroethe                                                                           | ene       | 1.02   | ug/L                                     | 0.5 | 6/30/2014               | SAT           | EPA 8260B      |           |
| Toluene                                                                                   |           | ND     | ug/L                                     | 0.5 | 6/30/2014               | SAT           | EPA 8260B      |           |
| trans-1,2-Dichlo                                                                          | proethene | ND     | ug/L                                     | 0.5 | 6/30/2014               | SAT           | EPA 8260B      |           |
| trans-1,3-Dichlo                                                                          | ropropene | ND     | ug/L                                     | 0.5 | 6/30/2014               | SAT           | EPA 8260B      |           |
| Trichlorcethene                                                                           |           | ND     | ug/L                                     | 0.5 | 6/30/2014               | SAT           | EPA 8260B      |           |
| Trichloroflouron                                                                          | nethane   | ND     | ug/L                                     | 0.5 | 6/30/2014               | SAT           | EPA 8260B      |           |
| Vinyl Chloride                                                                            |           | ND     | ug/L                                     | 0.5 | 6/30/2014               | SAT           | EPA 8260B      |           |

|                             | Surrogate Data |                  |                |  |
|-----------------------------|----------------|------------------|----------------|--|
| Sample Number 140630030-001 |                | ·                | <u></u>        |  |
| Surrogate Standard          | Method         | Percent Recovery | Control Limits |  |
| 1,2-Dichlorobenzene-d4      | EPA 8260B      | 107.6            | 70-130         |  |
| 4-Bromofluorobenzene        | EPA 8260B      | 100.4            | 70-130         |  |
| Toluene-d8                  | EPA 8260B      | 101.2            | 70-130         |  |

Certifications held by Anatek Labs JD: EPA:JD00013; AZ:0701; CO:JD00013; FL(NELAP):E87693; JD:JD00013; MT:CERT0028; NM: JD00013; OR:JD200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; JD:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: VALLEY ENVIRONMENTAL LAB Address: 15 W. YAKIMA AVE STE210 YAKIMA, WA 98901 Attn: DARA OSBORNE

Batch #: 140
Project Name: MC

140630030 MONITORING WELLS

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140630030-001<br>62315<br>Water | <u>, , , , , , , , , , , , , , , , , , , </u> | Sampling D<br>Sampling Ti<br>Sample Loc | ime  | 6/23/2014<br>2:22 PM |      | /Time Recei<br>action Date | ived | 6/26/2014<br>6/30/2014 | 11:50 AM  |
|---------------------------------------------------------|---------------------------------|-----------------------------------------------|-----------------------------------------|------|----------------------|------|----------------------------|------|------------------------|-----------|
| Parameter                                               |                                 | Result                                        | Units                                   | PQL  | Analysis             | Date | Analyst                    | ſ    | lethod                 | Qualifier |
| 2-Methylnaphth                                          | alene                           | ND                                            | ug/L                                    | 0.01 | 7/14/2               | 014  | EMP                        | EP   | a 8270D                |           |
| Acenaphthene                                            |                                 | ND                                            | ug/L                                    | 0.01 | 7/14/2               | 014  | EMP                        | EP   | A 8270D                |           |
| Acenaphthylen                                           | e                               | ND                                            | ug/L                                    | 0.01 | 7/14/2               | 014  | EMP                        | ĒΡ   | A 8270D                |           |
| Anthracene                                              |                                 | ND                                            | ug/L                                    | 0.01 | 7/14/2               | 014  | EMP                        | EP   | A 8270D                |           |
| Benzo(ghi)pery                                          | lene                            | ND                                            | ug/L                                    | 0.01 | 7/14/2               | 014  | EMP                        | EP   | 4 8270D                |           |
| Benzo[a]anthra                                          | cene                            | ND                                            | ug/L                                    | 0.01 | 7/14/2               | D14  | EMP                        | EP   | 4 8270D                |           |
| Benzo[a]pyrene                                          | )                               | ND                                            | ug/L                                    | 0.01 | 7/14/20              | 014  | EMP                        | EP/  | 4 8270D                |           |
| Benzo(b)fluoran                                         | thene                           | ND                                            | ug/L                                    | 0.01 | 7/14/2               | 014  | EMP                        | EP   | 4 8270D                |           |
| Benzo[k]fluoran                                         | thene                           | ND                                            | ug/L                                    | 0.01 | 7/14/2               | 014  | EMP                        | EP   | A 8270D                |           |
| Chrysene                                                |                                 | ND                                            | ug/L                                    | 0.01 | 7/14/20              | 014  | EMP                        | EP/  | 4 8270D                |           |
| Dibenz[a,h]anth                                         | racene                          | ND                                            | ug/L                                    | 0.01 | 7/14/20              | 014  | EMP                        | EPA  | A 8270D                |           |
| Fluoranthene                                            |                                 | ND                                            | ug/L                                    | 0.01 | 7/14/20              | )14  | EMP                        | EPA  | 4 8270D                |           |
| Fluorene                                                |                                 | ND                                            | ug/L                                    | 0.01 | 7/14/20              | )14  | EMP                        | EP#  | \ 8270D                |           |
| Indeno[1,2,3-cd]                                        | ]pyrene                         | ND                                            | ug/L                                    | 0.01 | 7/14/20              | )14  | EMP                        | EPA  | A 8270D                |           |
| Naphthalene                                             |                                 | ND                                            | ug/L                                    | 0.01 | 7/14/2(              | )14  | EMP                        | EPA  | 8270D                  |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140630030        |
|----------|--------------------------|---------------|------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | MONITORING WELLS |
|          | YAKIMA, WA 98901         |               |                  |
| Attn:    | DARA OSBORNE             |               |                  |
|          |                          |               |                  |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140630030-001<br>62315<br>Water |        | Sampling D<br>Sampling Ti<br>Sample Loc | ime    | 6/23/2014<br>2:22 PM |      | /Time Receiv<br>action Date       | ved 6/26/2014<br>6/30/2014 | 11:50 AM  |
|---------------------------------------------------------|---------------------------------|--------|-----------------------------------------|--------|----------------------|------|-----------------------------------|----------------------------|-----------|
| Parameter                                               |                                 | Result | Units                                   | PQL    | Analysis             | Date | Analyst                           | Method                     | Qualifier |
| Phenanthrene                                            |                                 | ND     | ug/L                                    | 0.01   | 7/14/20              | 14   | EMP                               | EPA 8270D                  |           |
| Pyrene                                                  |                                 | ND     | ug/L                                    | 0.01   | 7/1 <b>4/2</b> 0     | 14   | EMP                               | EPA 8270D                  |           |
|                                                         |                                 |        | Surrog                                  | ate Da | ta                   | ·    |                                   | · · · · ·                  |           |
| ample Number                                            | 140630030-001                   |        |                                         | ·      |                      | ·    |                                   |                            |           |
| Surrogate Si<br>Terphenyl-d1                            |                                 |        | Method<br>EPA 82                        |        | I                    |      | n <mark>t Recovery</mark><br>98.4 | Control L<br>10-12         |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87693; ID:ID00013; MT:CERT0026; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140630030        |
|----------|--------------------------|---------------|------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | MONITORING WELLS |
|          | YAKIMA, WA 98901         |               |                  |
| Attn:    | DARA OSBORNE             |               |                  |

#### Analytical Results Report

| Sample Number<br>Client Sample ID<br>Aatrix<br>Comments | 140630030-001<br>62315<br>Water | Samp   | ling Date<br>ling Time<br>le Location | 6/23/2014<br>2:22 PM | Date/Time Received |         | 6/26/2014 | 11:50 AM  |
|---------------------------------------------------------|---------------------------------|--------|---------------------------------------|----------------------|--------------------|---------|-----------|-----------|
| Parameter                                               |                                 | Result | Units                                 | PQL                  | Analysis Date      | Analyst | Method    | Qualifier |
| Cadmium                                                 |                                 | ND     | mg/L                                  | 0.001                | 7/7/2014           | ETL     | EPA 6020A |           |
| Chromium                                                |                                 | ND     | mg/L                                  | 0.001                | 7/7/2014           | ETL     | EPA 6020A |           |
| Lead                                                    |                                 | ND     | mg/L                                  | 0.001                | 7/7/2014           | ETI.    | EPA 6020A |           |
| Nickel                                                  |                                 | ND     | mg/L                                  | 0.001                | 7/7/2014           | ETL     | EPA 6020A |           |
| Zinc                                                    |                                 | ND     | mg/L                                  | 0.001                | 7/7/2014           | ETL     | EPA 6020A |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comment <del>s</del> | 140630030-001<br>62315<br>Water |        | Sampling D<br>Sampling Ti<br>Sample Loc | ime    | 6/23/2014<br>2:22 PM |        | /Time Receive<br>action Date | d 6/26/2014<br>6/30/2014 | 11:50 AM  |
|---------------------------------------------------------------------|---------------------------------|--------|-----------------------------------------|--------|----------------------|--------|------------------------------|--------------------------|-----------|
| Parameter                                                           |                                 | Result | Units                                   | PQL    | Analysis             | Date   | Analyst                      | Method                   | Qualifier |
| Aroclor 1016 (F                                                     | PCB-1016)                       | ND     | ug/L                                    | 0.1    | 7/9/20               | 14     | MAH                          | EPA 8082                 | S4        |
| Aroclor 1221 (F                                                     | PCB-1221)                       | ND     | ug/L                                    | 0.1    | 7/9/201              | 14     | MAH                          | EPA 8082                 | S4        |
| Aroclor 1232 (F                                                     | PCB-1232)                       | ND     | ug/Ł                                    | 0.1    | 7/9/201              | 14     | МАН                          | EPA 8082                 | S4        |
| Araclor 1242 (F                                                     | PCB-1242)                       | ND     | ug/L                                    | 0.1    | 7/9/201              | 14     | MAH                          | EPA 8082                 | S4        |
| Aroclor 1248 (F                                                     | PCB-1248)                       | ND     | ug/L                                    | 0.1    | 7/9/201              | 14     | MAH                          | EPA 8082                 | S4        |
| Araclor 1254 (F                                                     | °CB-1254)                       | ND     | ug/L                                    | 0.1    | 7/9/201              | 14     | MAH                          | EPA 8082                 | S4        |
| Aroclor 1260 (F                                                     | °CB-1260)                       | ND     | ug/L                                    | 0.1    | 7/9/20               | 14     | MAH                          | EPA 8082                 | S4        |
| PCB (total)                                                         |                                 | ND     | ug/L                                    | 0.1    | 7/9/201              | 14     | MAH                          | EPA 8082                 | S4        |
|                                                                     |                                 |        | Surrog                                  | ate Da | ta                   |        |                              |                          |           |
| nple Number                                                         | 140630030-001                   |        |                                         |        |                      |        | · · ····                     |                          |           |
| Surrogate St                                                        | andard                          |        | Method                                  |        | F                    | Percen | t Recoverv                   | Control L                | imits     |

EPA 8082

147.2

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

DCB

30-130

### VALLEY Environmental Laboratory 15 W. Yakima Ave Ste. 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Washington State DOE Accredited Lab #<br>Sampled At: W2 | C345                                                                                                            | Date Reported: 07/15/14<br>Date Collected: 06/23/14<br>Time Collected: 2:30 PM<br>Sampled By: Brad Card./Scott Garland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |         |                                        |  |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------|----------------------------------------|--|--|
| PLSA Engineering                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                          |         |                                        |  |  |
| Attn: Scott Garland                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |         |                                        |  |  |
| 1120 West Lincoln Avenue                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |         | Invoice#                               |  |  |
| Yakima, WA 98902                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |         | 27607                                  |  |  |
| Volatile Organic Chemicals                              |                                                                                                                 | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : EPA 8260B                                       | Matrix: | Water                                  |  |  |
| VEL Sample #                                            | 62316                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |         |                                        |  |  |
| Sample ID                                               | In the second | NAMEN INTERNATIONALISING CONCERNING INTERNATIONALISING CONCERNING CO | 1884 (1128) I I I I I I I I I I I I I I I I I I I |         |                                        |  |  |
| Units                                                   | ug/L                                                                                                            | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |         |                                        |  |  |
| Check Standards - Ave.Recovery:                         | u                                                                                                               | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |         |                                        |  |  |
|                                                         |                                                                                                                 | ··· ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |         | -                                      |  |  |
| 1,2-Dichlorobenzene-d4                                  | 104.8%                                                                                                          | (70-130)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   | -       |                                        |  |  |
| 4-Bromofluorobenzene                                    | 99.2%                                                                                                           | (70-130)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |         |                                        |  |  |
| Toluene-d8                                              | 101.2%                                                                                                          | (70-130)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |         |                                        |  |  |
| Dichlorodifluoromethane                                 | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Chloromethane                                           | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Vinyl chloride                                          | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Bromomethane                                            | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Chloroethane                                            | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Acetone                                                 | ND                                                                                                              | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Acrolein                                                | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | ł       |                                        |  |  |
| 1,1-Dichloroethylene                                    | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Methylene chloride                                      | ND                                                                                                              | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Acrylonitrile                                           | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| trans-1,2-Dichloroethylene                              | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| 1,1-Dichloroethane                                      | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Methyl ethyl ketone (MEK)                               | ND                                                                                                              | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| cis-1,2-Dichloroethylene                                | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| 2,2-Dichloropropane                                     | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Chloroform                                              | 2.74                                                                                                            | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Bromochloromethane                                      | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| 1,1,1-Trichloroethane                                   | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| 1,2-Dichloroethane                                      | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| 1,1-Dichloropropene                                     | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Carbon tetrachloride                                    | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Benzene                                                 | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Frichloroethylene                                       | ND                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |         |                                        |  |  |
| Date Analyzed:                                          | 6/30/2014                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |         | ······································ |  |  |
| Analyst:                                                | AAL                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |         |                                        |  |  |
| ND = None Detected                                      | ]                                                                                                               | Page 1 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • • • • • • • • • • • • • • • • •                 |         |                                        |  |  |

### VALLEY Environmental Laboratory

### 15 W. Yakima Ave Ste. 210

### Yakima, WA 98902

### (509) 575 - 3999 Fax: (509) 575 - 3068

| (509) 575 - 5999 Fax: (509) 573 | T THE REAL PROPERTY OF THE REA | ganic Com                                           | pounds (Continued) |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------|
| VEL Sample #                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                    |
| Sample ID                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN (MID) DINI DINI (D(D(M) (MULIK) K) K) K) K(K) K |                    |
| Units                           | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limts                                               |                    |
| 1,2-Dichloropropane             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| Dibromomethane                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| Bromodichloromethane            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| cis-1,3-Dichloropropene         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| Toluene                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| trans-1,3-Dichloropropene       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 1,1,2-Trichloroethane           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 1,3-Dichloropropane             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| Dibromochloromethane            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| Tetrachloroethylene             | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50                                                |                    |
| 1,2-Dibromoethane               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| Chlorobenzene                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 1,1,1,2-Tetrachloroethane       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| Ethylbenzene                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| m,p-Xylene                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| Styrene                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| o-Xylene                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| Bromoform                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 1,1,2,2-Tetrachloroethane       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 1,2,3-Trichloropropane          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| Bromobenzene                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| n-Propylbenzene                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 2-Chlorotoluene                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 4-Chlorotoluene                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 1,3,5-Trimethylbenzene          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| tert-Butylbenzene               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 1,2,4-Trimethylbenzene          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| sec-Butylbenzene                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 1,3-Dichlorobenzene             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 1,4-Dichlorobenzene             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 4-Isopropyltoluene              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 1,2-Dichlorobenzene             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| n-Butylbenzene                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 1,2-Dibromo-3-chloropropane     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| 1,2,4-Trichlorobenzene          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| Naphthalene                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                |                    |
| Date Analyzed:                  | 6/30/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                    |
| Analyst:                        | AAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                    |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · ·                   |                    |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | Page 2 of 3        |

### VALLEY Environmental Laboratory

### 15 W. Yakima Ave Ste. 210

### Yakima, WA 98902

| ( | (509) | 575 - | 3999 | Fax: | (509) | ) 575 - 3068 |
|---|-------|-------|------|------|-------|--------------|
|   |       |       |      |      |       |              |

|                               | <u>Volatile Or</u> | ganic Cor                             | npounds (C                                        | Continued)                              |                                                     |  |
|-------------------------------|--------------------|---------------------------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------------------------|--|
| VEL Sample #                  | 62316              |                                       |                                                   |                                         |                                                     |  |
|                               | 140623-W2          | 8883838181818181818181818181818181818 | arra guarana ana ang kang kang kang kang kang kan | 1999-9999 1999 1999 1999 1999 1999 1999 | 21 Mainin (7797979797999193019191919197970103010101 |  |
| Units                         |                    | Limits                                |                                                   |                                         |                                                     |  |
| 1,1,1-Trichloroethane         | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| 1,1,2,2-Tetrachloroethane     | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| 1,1-Dichloroethene            | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| 1,2,3-Trichlorobenzene        | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| 1,2-Dichloroethane            | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| 2-hexanone                    | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| Bromoform                     | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| Carbon disulfide              | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| Chlorobenzene                 | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| cis-1,2-dichloroethene        | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| cis-1,3-Dichloropropene       | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| Hexachlorobutadiene           | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| Isopropylbenzene              | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| Methyl Isobutyl ketone (MIBK) | ND                 | 5.00                                  |                                                   |                                         |                                                     |  |
| methyl-t-butyl ether (MTBE)   | ND                 | 0.50                                  |                                                   |                                         | -                                                   |  |
| p-siopropyltoluene            | ND                 | 0.50                                  |                                                   | 1                                       |                                                     |  |
| tert-Butylbenzene             | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| trans-1,2-Dichloroethene      | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
| Trichlorofluoromethane        | ND                 | 0.50                                  |                                                   |                                         |                                                     |  |
|                               |                    |                                       | :                                                 |                                         |                                                     |  |
|                               |                    |                                       |                                                   |                                         |                                                     |  |
|                               |                    |                                       |                                                   |                                         |                                                     |  |
|                               |                    |                                       |                                                   |                                         |                                                     |  |
|                               |                    |                                       |                                                   |                                         |                                                     |  |
|                               | -                  |                                       |                                                   |                                         |                                                     |  |
|                               |                    |                                       |                                                   |                                         |                                                     |  |
|                               |                    |                                       |                                                   |                                         |                                                     |  |
|                               |                    |                                       |                                                   |                                         |                                                     |  |
|                               |                    |                                       |                                                   |                                         | 3                                                   |  |
|                               | 4                  |                                       |                                                   |                                         |                                                     |  |
|                               |                    |                                       |                                                   |                                         |                                                     |  |
|                               |                    |                                       |                                                   |                                         |                                                     |  |
|                               |                    |                                       |                                                   |                                         |                                                     |  |
|                               |                    |                                       |                                                   |                                         |                                                     |  |
|                               |                    |                                       | 4                                                 |                                         |                                                     |  |
|                               |                    |                                       |                                                   |                                         |                                                     |  |
| Date Analyzed:                | 6/30/2014          |                                       |                                                   |                                         |                                                     |  |
| Analyst:                      | AAL                |                                       |                                                   |                                         |                                                     |  |
|                               | <u></u>            |                                       |                                                   |                                         |                                                     |  |
|                               |                    |                                       | Page 3 of 3                                       | A                                       |                                                     |  |

### VALLEY Environmental Laboratory 15 W. Yakima Ave. Ste. 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Sampled At: W2                                                        | Date Reported: 07/15/14<br>Date Collected: 06/23/14<br>Time Collected: 2:30 PM<br>Sampled By: Brad Card./Scott Garland |             |             |              |          |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------|-------------|--------------|----------|--|
| PLSA Engineering                                                      |                                                                                                                        |             | <u> </u>    |              | <u></u>  |  |
| Attn: Scott Garland                                                   |                                                                                                                        |             |             |              |          |  |
| 1120 West Lincoln Avenue                                              |                                                                                                                        |             |             |              | Invoice# |  |
| Yakima, WA 98902                                                      |                                                                                                                        |             |             |              | 27607    |  |
| Priority pollutants-SOC's                                             |                                                                                                                        | Method      | : EPA 8270C | Matrix:      | Water    |  |
| VEL Sample #                                                          | 62316                                                                                                                  |             |             |              |          |  |
| Sample ID                                                             | 140623-W2                                                                                                              |             |             |              |          |  |
| Surrogate Standards                                                   | Results                                                                                                                |             | -           |              |          |  |
|                                                                       |                                                                                                                        |             |             |              |          |  |
|                                                                       |                                                                                                                        |             |             |              |          |  |
| p-Terphenyl-d14                                                       | 98.2%                                                                                                                  | 10-125      |             |              |          |  |
| Acenaphthylene                                                        | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Acenaphthene                                                          | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Fluorene                                                              | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Phenanthrene                                                          | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Anthracene                                                            | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Fluoranthene                                                          | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Pyrene                                                                | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| 2-Methylphenol                                                        | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Benzo(a)anthracene                                                    | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Chrysene                                                              | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Benzo(b)fluoranthene                                                  | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Benzo(k)fluoranthene                                                  | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Benzo(a)pyrene                                                        | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Indeno(1,2,3-cd)pyrene                                                | ND@0.01                                                                                                                | ug/L        | :           |              |          |  |
| Dibenzo(a,h)anthracene                                                | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Benzo(ghi)perylene                                                    | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
| Naphthalene                                                           | ND@0.01                                                                                                                | ug/L        |             |              |          |  |
|                                                                       |                                                                                                                        | U           |             |              |          |  |
| — · · · · · · · · · · · · · · · · · · ·                               |                                                                                                                        |             |             |              |          |  |
| · _ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · |                                                                                                                        |             |             |              |          |  |
| · · · ·                                                               |                                                                                                                        |             |             |              |          |  |
| · · · · · · · · · · · · · · · · · · ·                                 |                                                                                                                        |             |             |              |          |  |
| ······································                                |                                                                                                                        |             |             |              |          |  |
| Date Analyzed:                                                        | 7/14/2014                                                                                                              |             |             |              |          |  |
| Analyst:                                                              | 125                                                                                                                    |             |             |              |          |  |
| VD = None Detected                                                    |                                                                                                                        | Page 1 of 1 | ·           | 0            |          |  |
| ND = None Detected                                                    | <u></u>                                                                                                                | Page 1 of 1 |             | <del>\</del> |          |  |

62316-8270

# VALLEY Environmental Laboratory

### Washington State Certified Lab #227 - DOE Accredited Lab C345

**IOC PP Metals** 

|                                       | Date Colle                            | cted: 06/23/14          |         | <u>)                                    </u> |                                       |          |                                        |            |          |  |  |  |
|---------------------------------------|---------------------------------------|-------------------------|---------|----------------------------------------------|---------------------------------------|----------|----------------------------------------|------------|----------|--|--|--|
| <u> </u>                              |                                       |                         |         |                                              |                                       |          |                                        |            |          |  |  |  |
|                                       |                                       | e No: 227-62316         |         |                                              | C                                     | ounty:   | YAKIMA                                 |            |          |  |  |  |
|                                       | Sample Loca                           | tion: W2                |         |                                              |                                       |          |                                        |            |          |  |  |  |
|                                       |                                       |                         | -       |                                              |                                       |          | 06/23/14                               |            |          |  |  |  |
| 1975375<br>1975375                    |                                       |                         |         |                                              |                                       |          | 07/15/14                               | <u>_</u> _ | ·        |  |  |  |
| (12)/3/<br>(12)/3/                    |                                       |                         |         | _                                            |                                       |          | Brad Card./                            |            | lí       |  |  |  |
|                                       | Report To:                            |                         | SAMPI   | LE COMM                                      | ENTS                                  | Matri    | x: Water                               |            |          |  |  |  |
|                                       | PLSA Engineering                      |                         |         |                                              |                                       |          |                                        |            |          |  |  |  |
|                                       | Attn: Scott Garland                   |                         |         |                                              |                                       |          |                                        |            |          |  |  |  |
|                                       | 1120 West Lincoln Av                  | venue                   |         |                                              |                                       |          |                                        |            |          |  |  |  |
|                                       | Yakima, WA 98902                      |                         |         |                                              |                                       |          |                                        |            |          |  |  |  |
|                                       | IOC PP Metals                         |                         |         |                                              |                                       |          |                                        |            |          |  |  |  |
|                                       | Analytes                              | Results                 | Units   | MRL                                          | Trigger                               | MCL      | Method                                 | Analyzed   | Analys   |  |  |  |
|                                       | Lead                                  | ND                      | mg/L    | 0.001                                        |                                       |          | EPA 6020A                              | 07/07/14   | AAL      |  |  |  |
|                                       | Zinc                                  | ND                      | mg/L    | 0.001                                        |                                       |          | EPA 6020A                              | 07/07/14   | AAL      |  |  |  |
|                                       | Cadmium                               | ND                      | mg/L    | 0.001                                        |                                       |          | EPA 6020A                              | 07/07/14   | AAL      |  |  |  |
| · · · —                               | Chromium                              | ND                      | mg/L    | 0.001                                        |                                       |          | EPA 6020A                              | 07/07/14   | AAL      |  |  |  |
| <u>111   N</u>                        | Nickel                                | ND                      | mg/L    | 0.001                                        |                                       |          | EPA 6020A                              | 07/07/14   | AAL      |  |  |  |
|                                       |                                       |                         | <u></u> |                                              | ·                                     | <u> </u> |                                        | _          |          |  |  |  |
|                                       |                                       | · • ·                   |         |                                              |                                       |          |                                        |            | <u> </u> |  |  |  |
|                                       |                                       |                         |         |                                              | · · · · · · · · · · · · · · · · · · · |          |                                        | ·          |          |  |  |  |
| ·                                     | ···                                   |                         |         |                                              |                                       |          |                                        |            |          |  |  |  |
|                                       | ·                                     | ·                       | · .     | -                                            |                                       |          | ·                                      |            | ·        |  |  |  |
|                                       | <u></u> <u></u>                       | - *                     |         | -                                            |                                       |          |                                        |            |          |  |  |  |
|                                       | ·                                     |                         |         |                                              | <u> </u>                              |          |                                        |            |          |  |  |  |
|                                       | ······                                |                         |         |                                              |                                       |          | ·                                      |            |          |  |  |  |
|                                       |                                       |                         |         |                                              |                                       | · · · ·  |                                        |            |          |  |  |  |
|                                       |                                       | · · · · · · · · · · _ / |         | +                                            |                                       |          | ·····                                  |            |          |  |  |  |
|                                       | ·                                     |                         |         |                                              |                                       |          |                                        |            |          |  |  |  |
|                                       | · · · · · · · · · · · · · · · · · · · |                         |         |                                              | -                                     |          |                                        |            |          |  |  |  |
|                                       |                                       |                         | - · ·   | ł                                            |                                       | — ·      |                                        |            |          |  |  |  |
|                                       |                                       |                         |         |                                              |                                       |          |                                        |            |          |  |  |  |
|                                       |                                       |                         |         |                                              |                                       |          |                                        | -          |          |  |  |  |
|                                       |                                       |                         |         |                                              |                                       |          | ···                                    |            |          |  |  |  |
| · · · · · · · · · · · · · · · · · · · |                                       |                         |         |                                              |                                       |          | ······································ |            |          |  |  |  |

# 15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-30692316-ppmetals

p.1

62316-pcbs

# VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

|                                                            |                   | <u> </u>                              | $\mathbf{D} \mathbf{S}(\mathbf{W})$ | ater)                                 |                |                                         |                                       |     |  |  |
|------------------------------------------------------------|-------------------|---------------------------------------|-------------------------------------|---------------------------------------|----------------|-----------------------------------------|---------------------------------------|-----|--|--|
| Date Col                                                   | llected: 06/23/14 |                                       |                                     |                                       |                |                                         |                                       |     |  |  |
| Lab/Sam                                                    | ple No: 227-62316 |                                       |                                     |                                       | 'ounte-        | YAKIMA                                  |                                       |     |  |  |
|                                                            | cation: W2        |                                       |                                     |                                       | <u>, опптъ</u> |                                         |                                       |     |  |  |
|                                                            |                   |                                       | Date Received: 06/23/14             |                                       |                |                                         |                                       |     |  |  |
|                                                            |                   |                                       |                                     |                                       |                | 07/15/14                                |                                       |     |  |  |
|                                                            |                   |                                       | Sam                                 | ple Collect                           | ted By:        | Brad Card./See                          | ott Garland                           |     |  |  |
| Send Report To:                                            |                   |                                       | SAMP                                | LE COMM                               | ENTS           | Matri                                   | x: Water                              |     |  |  |
| PLSA Engineering                                           |                   |                                       |                                     |                                       |                |                                         |                                       |     |  |  |
| Attn: Scott Garland                                        |                   |                                       | 5                                   |                                       |                |                                         |                                       |     |  |  |
| 1120 West Lincoln &                                        |                   |                                       |                                     |                                       |                |                                         |                                       |     |  |  |
| Yakima, WA 98902<br>PCB's                                  | ·                 |                                       |                                     |                                       |                |                                         |                                       |     |  |  |
| DOH# Analytes                                              | Draulte           | TT .**                                | D.CDT                               | ar •                                  | 1101           |                                         |                                       |     |  |  |
| PCB's                                                      | Results ND        | Units                                 |                                     | Trigger                               | MCL            | Method                                  | Analyzed                              |     |  |  |
|                                                            |                   | ug/L                                  | 0.1                                 | L                                     |                | EPA 8082                                | 07/09/14                              | AAL |  |  |
| • • • <u></u> • • • • • • • • • • • • • • • • • •          |                   | ····                                  |                                     | · · · · · · · · · · · · · · · · · · · |                | · · · - · · · · · · · · · · · · · · · · | · ·                                   |     |  |  |
|                                                            |                   |                                       |                                     | · ·                                   |                | ·····                                   |                                       |     |  |  |
| · · · · · · · · · · · · · · · · · · ·                      | · · · ·           |                                       |                                     |                                       |                |                                         |                                       | •   |  |  |
|                                                            |                   |                                       |                                     |                                       |                |                                         |                                       |     |  |  |
|                                                            |                   | ·                                     |                                     |                                       |                |                                         | i                                     |     |  |  |
| ·····                                                      |                   |                                       | I                                   |                                       |                | ···                                     |                                       |     |  |  |
|                                                            | <u> </u>          |                                       | ·                                   |                                       |                |                                         |                                       | · · |  |  |
| ·····                                                      | ·                 | · · · · · · · · · · · · · · · · · · · |                                     | · · · · · · · · · · · · · · · · · · · |                |                                         |                                       |     |  |  |
|                                                            |                   |                                       | +                                   |                                       | ··· —          |                                         | · · · · · · · · · · · · · · · · · · · |     |  |  |
|                                                            |                   |                                       | 1                                   |                                       | • •            | ········                                |                                       |     |  |  |
| · · · · · · · · · · · · · · · · ·                          |                   | ·                                     | 1                                   | · · ·                                 |                |                                         |                                       |     |  |  |
| ······································                     | · · ·             |                                       |                                     |                                       | ···            |                                         | · · · ·                               |     |  |  |
|                                                            |                   |                                       |                                     | ·                                     |                | ·                                       |                                       | · · |  |  |
| ······································                     |                   |                                       |                                     |                                       | •••••          |                                         |                                       |     |  |  |
| · · · <b></b> · · · · · · · · · · · · · · · · ·            |                   |                                       |                                     |                                       |                | ··                                      |                                       |     |  |  |
|                                                            |                   | · · ·                                 |                                     |                                       |                | ······································  |                                       |     |  |  |
|                                                            |                   |                                       |                                     |                                       |                |                                         |                                       |     |  |  |
| :<br>                                                      |                   |                                       |                                     |                                       |                |                                         |                                       |     |  |  |
|                                                            |                   |                                       | <u> </u>                            |                                       |                |                                         |                                       |     |  |  |
| MRL (Method Reporting Leve<br>Trianery DOVI Drinking Weers |                   |                                       |                                     |                                       |                |                                         |                                       |     |  |  |
| Trigger: DOH Drinking Water<br>MCL (maximum contaminant l  |                   |                                       |                                     |                                       |                |                                         | se on packages.                       |     |  |  |
| ND (Not Detected): Indicates th                            |                   |                                       |                                     |                                       |                |                                         |                                       |     |  |  |
|                                                            |                   |                                       |                                     |                                       |                | _5                                      |                                       |     |  |  |
|                                                            | ·                 | -                                     | Ap                                  | proved By:                            |                | 9                                       |                                       |     |  |  |

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anatektabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anatektabs.com

# Client:VALLEY ENVIRONMENTAL LABAddress:15 W. YAKIMA AVE STE210

Batch #: 140 Project Name: MC

140630030 MONITORING WELLS

#### Attn:

YAKIMA, WA 98901 DARA OSBORNE

#### **Analytical Results Report**

 Sample Number
 140630030-002
 Sampling Date
 6/23/2014
 Date/Time Received
 6/26/2014
 11:50 AM

 Client Sample ID
 62316
 Sampling Time
 2:30 PM

 Matrix
 Water
 Sample Location

| Parameter                         | Result | Units | PQL  | Analysis Date | Analyst | Method    | Qualifier |
|-----------------------------------|--------|-------|------|---------------|---------|-----------|-----------|
| 1,1,1,2-Tetrachloroethane         | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,1,1-Trichloroethane             | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,1,2,2-Tetrachloroethane         | NĎ     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,1,2-Trichloroethane             | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethane                | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethene                | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,1-dichloropropene               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichlorobenzene            | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichloropropane            | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trichlorobenzene            | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trimethylbenzene            | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromo-3-chloropropane(DBCP) | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromoethane                 | ND     | ug/L  | 0.01 | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichlorobenzene               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloroethane                | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloropropane               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,3,5-Trimethylbenzene            | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichlorobenzene               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichloropropane               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,4-Dichlorobenzene               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 2,2-Dichloropropane               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 2-Chlorotoluene                   | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 2-hexanone                        | ND     | ug/L  | 2.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 4-Chlorotoluene                   | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| Acetone                           | ND     | ug/L  | 2.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| Acrylonitrile                     | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| Benzene                           | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| Bromobenzene                      | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| Bromochloromethane                | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: (D00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### Client: VALLEY ENVIRONMENTAL LAB Address: 15 W. YAKIMA AVE STE210

DARA OSBORNE

Attn:

YAKIMA, WA 98901

**Analytical Results Report** 

Batch #:

Project Name:

140630030

MONITORING WELLS

| Sample Number    | 140630030-002 | Sampling Date   | 6/23/2014 | Date/Time Received | 6/26/2014 | 11:50 AM |
|------------------|---------------|-----------------|-----------|--------------------|-----------|----------|
| Client Sample ID | 62316         | Sampling Time   | 2:30 PM   |                    |           |          |
| Matrix           | Water         | Sample Location |           |                    |           |          |
| Comments         |               |                 |           |                    |           |          |

| Parameter                     | Result | Units | PQL | Analysis Date | Analyst | Method    | Qualifier |
|-------------------------------|--------|-------|-----|---------------|---------|-----------|-----------|
| Bromodichloromethane          | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Bromoform                     | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Bromomethane                  | NĎ     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Carbon disulfide              | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Carbon Tetrachloride          | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Chlorobenzene                 | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Chloroethane                  | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Chloroform                    | 2.74   | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Chloromethane                 | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| cis-1,2-dichloroethene        | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| cis-1,3-Dichloropropene       | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Dibromochloromethane          | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Dibromomethane                | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Dichlorodifluoromethane       | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Ethylbenzene                  | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Hexachlorobutadiene           | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Isopropylbenzene              | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| m+p-Xylene                    | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Methyl ethyl ketone (MEK)     | ND     | ug/L  | 2.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Methyl isobutyl ketone (MIBK) | ND     | ug/L  | 2.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Methylene chloride            | ND     | ug/L  | 2.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| methyl-t-butyl ether (MTBE)   | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Naphthalene                   | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| n-Butylbenzene                | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| n-Propylbenzene               | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| o-Xylene                      | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| p-isopropyltoluene            | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| sec-Butylbenzene              | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Styrene                       | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cent0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

# Client:VALLEY ENVIRONMENTAL LABBatch #:Address:15 W. YAKIMA AVE STE210Project Name:YAKIMA, WA 98901DARA OSBORNE

#### **Analytical Results Report**

140630030

MONITORING WELLS

| mple Number<br>ient Sample ID<br>itrix<br>mments | 140630030-002<br>62316<br>Water |        | Sampling Date<br>Sampling Time<br>Sample Location |     | 6/23/2014 E<br>2:30 PM | Date/Time Rece | ived 6/26/2014 | 11:50 AM  |
|--------------------------------------------------|---------------------------------|--------|---------------------------------------------------|-----|------------------------|----------------|----------------|-----------|
| Parameter                                        |                                 | Result | Units                                             | PQL | Analysis Dat           | te Analyst     | Method         | Qualifier |
| tert-Butylbenze                                  | ne                              | ND     | ug/L                                              | 0.5 | 6/30/2014              | SAT            | EPA 8260B      |           |
| Tetrachloroeth                                   | ene                             | 1.98   | ug/L                                              | 0.5 | 6/30/2014              | SAT            | EPA 8260B      |           |
| Toluene                                          |                                 | ND     | ug/L                                              | 0.5 | 6/30/2014              | SAT            | EPA 8260B      |           |
| trans-1,2-Dichle                                 | proethene                       | ND     | ug/L                                              | 0.5 | 6/30/2014              | SAT            | EPA 8260B      |           |
| trans-1,3-Dichle                                 | propropene                      | ND     | ug/L                                              | 0.5 | 6/30/2014              | SAT            | EPA 8260B      |           |
| Trichloroethene                                  | ÷                               | ND     | ug/L                                              | 0.5 | 6/30/2014              | SAT            | EPA 8260B      |           |
| Trichloroflouror                                 | nethane                         | ND     | ug/L                                              | 0.5 | 6/30/2014              | SAT            | EPA 8260B      |           |
| Vinyl Chloride                                   |                                 | ND     | ug/L                                              | 0.5 | 6/30/2014              | SAT            | EPA 8260B      |           |

| Surrogate Data |                                  |                                                                                                    |
|----------------|----------------------------------|----------------------------------------------------------------------------------------------------|
|                |                                  | · · · · · · · · · · · · · · · · · · ·                                                              |
| Method         | Percent Recovery                 | Control Limits                                                                                     |
| EPA 8260B      | 104.8                            | 70-130                                                                                             |
| EPA 8260B      | 99.2                             | 70-130                                                                                             |
| EPA 8260B      | 101.2                            | 70-130                                                                                             |
|                | Method<br>EPA 8260B<br>EPA 8260B | Method         Percent Recovery           EPA 8260B         104.8           EPA 8260B         99.2 |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C586; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

Batch #: 1406 Project Name: MON

140630030 MONITORING WELLS

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140630030-002<br>62316<br>Water |        | Sampling D<br>Sampling T<br>Sample Loc | ime  | 6/23/2014<br>2:30 PM |      | e/Time Rece<br>action Date |           |           |
|---------------------------------------------------------|---------------------------------|--------|----------------------------------------|------|----------------------|------|----------------------------|-----------|-----------|
| Parameter                                               |                                 | Result | Units                                  | PQL  | Analysis             | Date | Analyst                    | Method    | Qualifier |
| 2-Methylnaphth                                          | alene                           | ND     | ug/L                                   | 0.01 | 7/14/2               | 2014 | EMP                        | EPA 8270D | 996       |
| Acenaphthene                                            |                                 | ND     | ug/L                                   | 0.01 | 7/14/2               | 014  | EMP                        | EPA 8270D |           |
| Acenaphthylena                                          | •                               | ND     | ug/L                                   | 0.01 | 7/14/2               | 014  | EMP                        | EPA 8270D |           |
| Anthracene                                              |                                 | ND     | ug/L                                   | 0.01 | 7/14/2               | 014  | EMP                        | EPA 8270D |           |
| Benzo(ghi)peryl                                         | ene                             | ND     | ug/L                                   | 0.01 | 7/14/2               | 014  | EMP                        | EPA 8270D |           |
| Benzo[a]anthrac                                         | cene                            | ND     | ug/L                                   | 0.01 | 7/14/2               | 014  | EMP                        | EPA 8270D |           |
| Benzo[a]pyrene                                          |                                 | ND     | ug/L                                   | 0.01 | 7/14/2               | 014  | EMP                        | EPA 8270D |           |
| Benzo[b]fluoran                                         | thene                           | ND     | ug/L                                   | 0.01 | 7/14/2               | 014  | EMP                        | EPA 8270D |           |
| Benzo[k]fluoran                                         | hene                            | ND     | ug/L                                   | 0.01 | 7/14/2               | 014  | EMP                        | EPA 8270D |           |
| Chrysene                                                |                                 | ND     | ug/L                                   | 0.01 | 7/14/2               | 014  | EMP                        | EPA 8270D |           |
| Dibenz[a,h]anth                                         | racene                          | ND     | ug/L                                   | 0.01 | 7/14/2               | 014  | EMP                        | EPA 8270D |           |
| Fluoranthene                                            |                                 | ND     | ug/L                                   | 0.01 | 7/14/20              | 014  | EMP                        | EPA 8270D |           |
| Fluorene                                                |                                 | ND     | ug/L                                   | 0.01 | 7/14/20              | 014  | EMP                        | EPA 8270D |           |
| Indeno[1,2,3-cd]                                        | pyrene                          | ND     | ug/L                                   | 0.01 | 7/14/20              | )14  | EMP                        | EPA 8270D |           |
| Naphthalene                                             |                                 | ND     | ug/L                                   | 0.01 | 7/14/20              | )14  | EMP                        | EPA 8270D |           |

Cartifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Cartifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

**Client:** VALLEY ENVIRONMENTAL LAB Address: 15 W. YAKIMA AVE STE210 **YAKIMA, WA 98901** Attn: DARA OSBORNE

Batch #: 140630030 **Project Name:** 

MONITORING WELLS

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140630030-002<br>62316<br>Water | ·                      | Sampling D<br>Sampling Ti<br>Sample Loc | me     | 6/23/2014<br>2:30 PM |          | e/Time Receinaction Date | ved 6/26/2014<br>6/30/2014 | 11:50 AM  |
|---------------------------------------------------------|---------------------------------|------------------------|-----------------------------------------|--------|----------------------|----------|--------------------------|----------------------------|-----------|
| Parameter                                               |                                 | Result                 | Units                                   | PQL    | Analysis [           | Date     | Analyst                  | Method                     | Qualifier |
| Phenanthrene                                            |                                 | ND                     | ug/L                                    | 0.01   | 7/14/20              | 14       | EMP                      | EPA 8270D                  |           |
| Pyrene                                                  |                                 | ND                     | ug/L                                    | 0.01   | 7/14/201             | 2014 EMP |                          | EPA 8270D                  |           |
|                                                         |                                 | ·       .   - <u>-</u> | Surrog                                  | ate Da | ta                   |          |                          |                            |           |
| mple Number                                             | 140630030-002                   | ·                      |                                         |        |                      |          | - <u></u>                |                            |           |
| Surrogate St<br>Terphenyl-d1                            |                                 |                        | Method<br>EPA 82                        |        | P                    |          | nt Recovery<br>98.2      | Control L<br>10-12         |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:<br>Address: | VALLEY ENVIRONMENTAL LAB<br>15 W. YAKIMA AVE STE210 | Batch #:<br>Project Name: | 140630030<br>MONITORING WELLS |
|---------------------|-----------------------------------------------------|---------------------------|-------------------------------|
|                     | YAKIMA, WA 98901                                    |                           |                               |
| Attn:               | DARA OSBORNE                                        | . <u> </u>                |                               |
|                     | Analytical Res                                      | ults Report               |                               |

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140630030-002<br>62316<br>Water | Sampling Date 6/23/2014<br>Sampling Time 2:30 PM<br>Sample Location |       | Date/ | 6/26/2014     | 11:50 AM |           |           |
|---------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|-------|-------|---------------|----------|-----------|-----------|
| Parameter                                               |                                 | Result                                                              | Units | PQL   | Analysis Date | Analyst  | Method    | Qualifier |
| Cadmium                                                 |                                 | ND                                                                  | mg/L  | 0.001 | 7/7/2014      | ETL      | EPA 6020A |           |
| Chromium                                                |                                 | ND                                                                  | mg/L  | 0.001 | 7/7/2014      | ETL      | EPA 6020A |           |
| Lead                                                    |                                 | ND                                                                  | mg/L  | 0.001 | 7/7/2014      | ETL      | EPA 6020A |           |
| Nickel                                                  |                                 | ND                                                                  | mg/L  | 0.001 | 7/7/2014      | ETL      | EPA 6020A |           |
| Zinc                                                    |                                 | ND                                                                  | mg/L  | 0.001 | 7/7/2014      | ETL      | EPA 6020A |           |

Certifications held by Anatek Labs ID: EPA:ID00013; A2:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

Batch #: 140630030 **Project Name:** 

MONITORING WELLS

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140630030-002<br>62316<br>Water |        | Sampling D<br>Sampling Ti<br>Sample Loc | me     | 6/23/2014<br>2:30 PM | Date/Time Receive<br>Extraction Date | ed 6/26/2014<br>6/30/2014 | 11:50 AM   |
|---------------------------------------------------------|---------------------------------|--------|-----------------------------------------|--------|----------------------|--------------------------------------|---------------------------|------------|
| Parameter                                               |                                 | Result | Units                                   | PQL    | Analysis D           | ate Analyst                          | Method                    | Qualifier  |
| Aroclor 1016 (F                                         | PCB-1016)                       | ND     | ug/L                                    | 0.1    | 7/9/2014             | 4 MAH                                | EPA 8082                  | S4         |
| Aracior 1221 (F                                         | PCB-1221)                       | ND     | ug/L                                    | 0.1    | 7/9/2014             | 4 MAH                                | EPA 8082                  | S4         |
| Arocior 1232 (F                                         | PCB-1232)                       | ND     | ug/L                                    | 0.1    | 7/9/2014             | 4 MAH                                | EPA 8082                  | S4         |
| Arocior 1242 (F                                         | <sup>o</sup> CB-1242)           | ND     | ug/L                                    | 0.1    | 7/9/2014             | 4 MAH                                | EPA 8082                  | S4         |
| Aroclor 1248 (F                                         | PCB-1248)                       | ND     | ug/L                                    | 0.1    | 7/9/2014             | 4 MAH                                | EPA 8082                  | S4         |
| Aroclor 1254 (F                                         | PCB-1254)                       | ND     | ug/L                                    | 0.1    | 7/9/2014             | 1 MAH                                | EPA 8082                  | S4         |
| Aroclor 1260 (F                                         | PCB-1260)                       | ND     | ug/L                                    | 0.1    | 7/9/2014             | MAH                                  | EPA 8082                  | <b>S</b> 4 |
| PCB (total)                                             |                                 | ND     | ug/L                                    | 0.1    | 7/9/2014             | MAH                                  | EPA 8082                  | S4         |
|                                                         |                                 |        | Surroga                                 | ate Da | ta                   |                                      |                           |            |
| mple Number                                             | 140630030-002                   |        |                                         | ·      | . <u> </u>           |                                      | <b></b>                   |            |
| Surrogate St                                            | andard                          |        | Method                                  |        | Pe                   | ercent Recovery                      | Control L                 | .imits     |
| DCB                                                     |                                 |        | EPA 80                                  | 82     |                      | 141.6                                | 30-13                     | 0          |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

### VALLEY Environmental Laboratory 15 W Yakima Ave Ste. 210 Yakima, WA 98902 (509) 575 - 3999 Fax: (509) 575 - 3068

| Washington State DOE Accredited Lab #<br>Sampled At: W3 | Date Reported: 07/15/14<br>Date Collected: 06/23/14<br>Time Collected: 2:52 PM<br>Sampled By: Brad Card./Scott Garland |             |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLSA Engineering                                        |                                                                                                                        |             |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Attn: Scott Garland                                     | -                                                                                                                      |             |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1120 West Lincoln Avenue                                |                                                                                                                        |             |                                                                      |                                               | Invoice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Yakima, WA 98902                                        |                                                                                                                        |             |                                                                      |                                               | 2760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Volatile Organic Chemicals                              |                                                                                                                        | Method      | : EPA 8260B                                                          | Matrix:                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VEL Sample #                                            | 62317                                                                                                                  |             |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         | 140623-W3                                                                                                              |             | 1816 (H)(%) 9 / ALMINI MINES (TELEMENT BELOW)   BERNEL WOLLD   LINKE | ana si ja | 11. (136) 18 (1) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16.(1)) (16. |
| Units                                                   | ug/L                                                                                                                   | Limits      |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Check Standards - Ave.Recovery:                         | ugri                                                                                                                   |             |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         |                                                                                                                        |             |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichlorobenzene-d4                                  | 106.4%                                                                                                                 | (70-130)    |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4-Bromofluorobenzene                                    | 101.2%                                                                                                                 | (70-130)    |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene-d8                                              | 100.8%                                                                                                                 | (70-130)    |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dichlorodifluoromethane                                 | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chloromethane                                           | ND                                                                                                                     | 0.50        | -                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vinyl chloride                                          | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bromomethane                                            | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chloroethane                                            | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acetone                                                 | ND                                                                                                                     | 5.00        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acrolein                                                | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1-Dichloroethylene                                    | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Methylene chloride                                      | ND                                                                                                                     | 5.00        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acrylonitrile                                           | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rans-1,2-Dichloroethylene                               | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1-Dichloroethane                                      | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Methyl ethyl ketone (MEK)                               | ND                                                                                                                     | 5.00        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cis-1,2-Dichloroethylene                                | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,2-Dichloropropane                                     | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chloroform                                              | 2.57                                                                                                                   | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bromochloromethane                                      | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,1,1-Trichloroethane                                    | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,2-Dichloroethane                                       | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,1-Dichloropropene                                      | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Carbon tetrachloride                                    | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzene                                                 | ND                                                                                                                     | 0.50        |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Frichloroethylene                                       | ND                                                                                                                     | 0.50        |                                                                      |                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Date Analyzed:                                          | 6/30/2014                                                                                                              |             |                                                                      |                                               | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Analyst:                                                | AAL                                                                                                                    |             |                                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND = None Detected                                      | F                                                                                                                      | Page 1 of 3 |                                                                      | 1                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### VALLEY Environmental Laboratory

### 15 W Yakima Ave Ste. 210

### Yakima, WA 98902

### (509) 575 - 3999 Fax: (509) 575 - 3068

|                             | Volatile Or | ganic Com                                    | 1pounds (Continued) |
|-----------------------------|-------------|----------------------------------------------|---------------------|
| VEL Sample #                |             |                                              |                     |
|                             | 140623-W3   | an manun manun manun (14,14634)) natru manun |                     |
| Units                       | ug/L        | Limts                                        |                     |
| 1,2-Dichloropropane         | ND          | 0.50                                         |                     |
| Dibromomethane              | ND          | 0.50                                         |                     |
| Bromodichloromethane        | ND          | 0.50                                         |                     |
| cis-1,3-Dichloropropene     | ND          | 0.50                                         |                     |
| Toluene                     | ND          | 0.50                                         |                     |
| trans-1,3-Dichloropropene   | ND          | 0.50                                         |                     |
| 1,1,2-Trichloroethane       | ND          | 0.50                                         |                     |
| 1,3-Dichloropropane         | ND          | 0.50                                         |                     |
| Dibromochloromethane        | ND          | 0.50                                         |                     |
| Tetrachloroethylene         | 1.73        | 0.50                                         |                     |
| 1,2-Dibromoethane           | ND          | 0.50                                         |                     |
| Chlorobenzene               | ND          | 0.50                                         |                     |
| 1,1,1,2-Tetrachloroethane   | ND          | 0.50                                         |                     |
| Ethylbenzene                | ND          | 0.50                                         |                     |
| m,p-Xylene                  | ND          | 0.50                                         |                     |
| Styrene                     | ND          | 0.50                                         |                     |
| o-Xylene                    | ND          | 0.50                                         |                     |
| Bromoform                   | ND          | 0.50                                         |                     |
| 1,1,2,2-Tetrachloroethane   | ND          | 0.50                                         |                     |
| 1,2,3-Trichloropropane      | ND          | 0.50                                         |                     |
| Bromobenzene                | ND          | 0.50                                         |                     |
| n-Propylbenzene             | ND          | 0.50                                         |                     |
| 2-Chlorotoluene             | ND          | 0.50                                         |                     |
| 4-Chlorotoluene             | ND          | 0.50                                         |                     |
| 1,3,5-Trimethylbenzene      | ND          | 0.50                                         |                     |
| tert-Butylbenzene           | ND          | 0.50                                         |                     |
| 1,2,4-Trimethylbenzene      | ND          | 0.50                                         |                     |
| sec-Butylbenzene            | ND          | 0.50                                         |                     |
| 1,3-Dichlorobenzene         | ND          | 0.50                                         |                     |
| 1,4-Dichlorobenzene         | ND          | 0.50                                         |                     |
| 4-Isopropyltoluene          | ND          | 0.50                                         |                     |
| 1,2-Dichlorobenzene         | ND          | 0.50                                         |                     |
| n-Butylbenzene              | ND          | 0.50                                         |                     |
| 1,2-Dibromo-3-chloropropane | ND          | 0.50                                         |                     |
| 1,2,4-Trichlorobenzene      | ND          | 0.50                                         |                     |
| Naphthalene                 | ND          | 0.50                                         |                     |
| Date Analyzed:              | 6/30/2014   |                                              |                     |
| Analyst:                    | AAL         |                                              |                     |
|                             |             |                                              | h-                  |
|                             |             | ·                                            | Page 2 of 3         |

1

### VALLEY Environmental Laboratory

### 15 W Yakima Ave Ste. 210

### Yakima, WA 98902

(509) 575 - 3999 Fax: (509) 575 - 3068

| Volatile Organic Compounds (Continued) |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
|----------------------------------------|------------------|--------|-------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|
| VEL Sample #                           |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
|                                        | 140623-W3        |        |             | al (Alexan) Madela (ni ini) (nomini perina ini caro no si co se provinci perina i co | an a na shekara na she |  |  |  |
| Units                                  |                  | Limits |             |                                                                                      |                                                                                                                |  |  |  |
| 1,1,1-Trichloroethane                  | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| 1,1,2,2-Tetrachloroethane              | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| 1,1-Dichloroethene                     | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| 1,2,3-Trichlorobenzene                 | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| 1,2-Dichloroethane                     | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| 2-hexanone                             | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| Bromoform                              | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| Carbon disulfide                       | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| Chlorobenzene                          | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| cis-1,2-dichloroethene                 | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| cis-1,3-Dichloropropene                | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| Hexachlorobutadiene                    | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| sopropylbenzene                        | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| Methyl Isobutyl ketone (MIBK)          | ND               | 5.00   |             |                                                                                      | ł                                                                                                              |  |  |  |
| nethyl-t-butyl ether (MTBE)            | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| o-siopropyltoluene                     | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| ert-Butylbenzene                       | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| rans-1,2-Dichloroethene                | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
| Frichlorofluoromethane                 | ND               | 0.50   |             |                                                                                      |                                                                                                                |  |  |  |
|                                        |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
|                                        |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
|                                        | ļ                |        |             |                                                                                      |                                                                                                                |  |  |  |
|                                        |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
|                                        |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
| ·····                                  |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
|                                        |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
|                                        |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
|                                        |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
|                                        |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
|                                        |                  |        | }           |                                                                                      |                                                                                                                |  |  |  |
| ·                                      |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
|                                        |                  |        |             |                                                                                      | ĺ                                                                                                              |  |  |  |
|                                        | -                |        |             |                                                                                      |                                                                                                                |  |  |  |
|                                        |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
| · · · · · · · · · · · · · · · · · · ·  |                  |        |             |                                                                                      |                                                                                                                |  |  |  |
| Date Analyzed:                         | 6/30/2014        |        |             |                                                                                      |                                                                                                                |  |  |  |
| Date Analyzeu:<br>Analyst:             | 6/30/2014<br>AAL |        |             |                                                                                      |                                                                                                                |  |  |  |
| Analyst:                               | AAL              |        |             |                                                                                      | <u>_</u>                                                                                                       |  |  |  |
|                                        |                  |        | Page 3 of 3 | <b>`</b>                                                                             | \                                                                                                              |  |  |  |
|                                        |                  |        |             | <u>}</u>                                                                             |                                                                                                                |  |  |  |

### VALLEY Environmental Laboratory 201 East D Street Yakima, WA 98901 (509) 575 - 3999 Fax: (509) 575 - 3068

| Sampled At: W3                                                                          |             | Date Reported: 07/15/14<br>Date Collected: 06/23/14<br>Time Collected: 2:52 PM<br>Sampled By: Brad Card./Scott Garland |           |         |                          |  |
|-----------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------|-----------|---------|--------------------------|--|
| PLSA Engineering<br>Attn: Scott Garland<br>1120 West Lincoln Avenue<br>Yakima, WA 98902 | <u> </u>    |                                                                                                                        | <u> </u>  |         | <u>Invoice#</u><br>27607 |  |
| Priority pollutants-SOC's                                                               |             | Method                                                                                                                 | EPA 8270C | Matrix: |                          |  |
| VEL Sample<br>Sample I                                                                  | D 140623-W3 |                                                                                                                        |           |         |                          |  |
| Surrogate Standards                                                                     | Results     | -                                                                                                                      |           |         |                          |  |
| p-Terphenyl-d14                                                                         | <br>        | 10-125                                                                                                                 |           |         |                          |  |
| Acenaphthylene                                                                          | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Acenaphthene                                                                            | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Fluorene                                                                                | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Phenanthrene                                                                            | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Anthracene                                                                              | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Fluoranthene                                                                            | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Pyrene                                                                                  | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| 2-Methylphenol                                                                          | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Benzo(a)anthracene                                                                      | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Chrysene                                                                                | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Benzo(b)fluoranthene                                                                    | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Benzo(k)fluoranthene                                                                    | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Benzo(a)pyrene                                                                          | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Indeno(1,2,3-cd)pyrene                                                                  | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Dibenzo(a,h)anthracene                                                                  | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| Benzo(ghi)perylene<br>Naphthalene                                                       | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
|                                                                                         | ND@0.01     | ug/L                                                                                                                   |           |         |                          |  |
| · · · · · · · · · · · · · · · · · · ·                                                   | -1          |                                                                                                                        |           |         |                          |  |
|                                                                                         |             |                                                                                                                        |           |         |                          |  |
| ·····                                                                                   | -           |                                                                                                                        |           | ļ       |                          |  |
|                                                                                         |             |                                                                                                                        |           |         |                          |  |
|                                                                                         | -           |                                                                                                                        |           |         |                          |  |
| Date Analyzed                                                                           | 7/14/2014   |                                                                                                                        |           |         | <u> </u>                 |  |
| Analyst                                                                                 |             |                                                                                                                        | k         |         |                          |  |
| ND = None Detected                                                                      |             | Page 1 of 1                                                                                                            | 4         |         |                          |  |

# 62317-8270

### VALLEY Environmental Laboratory

Washington State Certified Lab #227 - DOE Accredited Lab C345

**IOC PP Metals** 

|          | Date Col                                                                                                                 | lected: 06/23/14                                              |                                       |                                       |                                        |                         |                     |                                       |           |
|----------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|-------------------------|---------------------|---------------------------------------|-----------|
|          |                                                                                                                          | ple No: 227-62317                                             |                                       |                                       | C                                      | ounty:                  | YAKIMA              |                                       |           |
| AN PARA  | Sample Lo                                                                                                                | cation: W3                                                    |                                       |                                       |                                        |                         |                     | · · · · ·                             |           |
|          |                                                                                                                          |                                                               |                                       |                                       |                                        |                         | 06/23/14            |                                       |           |
|          |                                                                                                                          |                                                               |                                       | ļ                                     |                                        |                         | 07/15/14            |                                       |           |
|          |                                                                                                                          |                                                               |                                       |                                       | Brad Card./Sco                         |                         |                     |                                       |           |
| end      | Report To:                                                                                                               |                                                               |                                       | SAMPI                                 | E COMM                                 | ENTS                    | Matri               | : Water                               |           |
|          | PLSA Engineering                                                                                                         |                                                               |                                       |                                       |                                        |                         |                     |                                       |           |
|          | Attn: Scott Garland                                                                                                      |                                                               |                                       |                                       |                                        |                         |                     |                                       |           |
|          | 1120 West Lincoln A                                                                                                      | Avenue                                                        |                                       |                                       |                                        |                         |                     |                                       |           |
|          | Yakima, WA 98902                                                                                                         |                                                               |                                       |                                       |                                        |                         |                     |                                       |           |
|          | IOC PP Metals                                                                                                            |                                                               | · · · · ·                             |                                       |                                        |                         |                     |                                       |           |
| OH#      | Analytes                                                                                                                 | Results                                                       | Units                                 | MRL                                   | Trigger                                | MCL                     | Method              | Analyzed                              | Analys    |
| 9        | Lead                                                                                                                     | ND                                                            | mg/L                                  | 0.001                                 |                                        |                         | EPA 6020A           | 07/07/14                              | AAL       |
| 24       | Zinc                                                                                                                     | 0.00116                                                       | mg/L                                  | 0.001                                 |                                        |                         | EPA 6020A           | 07/07/14                              | AAL       |
| 6        | Cadmium                                                                                                                  | ND                                                            | mg/L                                  | 0.001                                 |                                        |                         | EPA 6020A           |                                       | AAL       |
|          | Chromium                                                                                                                 | ND                                                            | mg/L                                  | 0.001                                 |                                        |                         | EPA 6020A           |                                       | AAL       |
| 111      | Nickel                                                                                                                   | 0.00153                                                       | mg/L                                  | 0.001                                 |                                        |                         | EPA 6020A           | 07/07/14                              | AAL       |
|          |                                                                                                                          |                                                               |                                       |                                       | ······································ |                         |                     |                                       |           |
|          |                                                                                                                          |                                                               |                                       |                                       |                                        |                         |                     |                                       |           |
|          |                                                                                                                          |                                                               |                                       | · · · · · · · · ·                     |                                        |                         |                     | · · · · · · · · · · · · · · · · · · · |           |
|          | · · ·                                                                                                                    |                                                               |                                       |                                       |                                        |                         |                     |                                       |           |
|          |                                                                                                                          |                                                               |                                       | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · ·      |                         | · ·                 |                                       | · · · · · |
| ··· · —- |                                                                                                                          |                                                               |                                       |                                       | ·                                      |                         |                     |                                       |           |
| ,        | MRL (Method Reporting Leve<br>Trigger: DOH Drinking Water<br>MCL (maximum contaminant<br>ND (Not Detected): Indicates th | response level. Public Syster<br>level): Highest level recomm | ns in excess of t<br>rended by the fe | this level mu<br>deral govern         | st take addition<br>ment for public    | al samples<br>water sys | s. Recommended rang | e on packages.                        | <u> </u>  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-30692317-ppmetals

62317-pcbs

# VALLEY Environmental Laboratory

# Washington State Certified Lab #227 - DOE Accredited Lab C345

PCB's (Water)

| Date Colle                                                                                                                                  | ected: 06/23/14                                        |                                      |                                |                      |                            |                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------|----------------------|----------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Lab/Sampl                                                                                                                                   | e No: 227-63217                                        |                                      |                                | (                    | County:                    | YAKIMA                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Sample Loca                                                                                                                                 | tion: W3                                               |                                      | у - торолов в в                |                      |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                             |                                                        | ·/                                   |                                |                      |                            | 06/23/14                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                             |                                                        |                                      |                                | Date Re              | ported:                    | 07/15/14                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| nd Report To:                                                                                                                               |                                                        | ·                                    | Sam                            | ple Collec           | ted By:                    | Brad Card./Sc                          | ott Garland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| PLSA Engineering                                                                                                                            |                                                        |                                      | SAMPI                          | LE COMM              | <b>ENTS</b>                | Matri                                  | x: Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Attn: Scott Garland                                                                                                                         |                                                        |                                      | Į                              |                      |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1120 West Lincoln Av                                                                                                                        | 07110                                                  |                                      |                                |                      |                            |                                        | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Yakima, WA 98902                                                                                                                            | enue                                                   |                                      |                                |                      |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| PCB's                                                                                                                                       |                                                        |                                      | <u> </u>                       |                      |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                             |                                                        |                                      |                                |                      |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| H#Analytes<br>PCB's                                                                                                                         | Results                                                | Units                                | MRL                            | Trigger              | MCL                        | Method                                 | Analyzed Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                             |                                                        | ug/L                                 | 0.1                            |                      |                            | EPA 8082                               | 07/09/14 AAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                             |                                                        |                                      | İ                              |                      | <u> </u>                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                             |                                                        |                                      | <u> </u>                       |                      |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                             |                                                        | _ ·                                  | <u> </u>                       |                      | <u> </u>                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                             | —— j <del>—</del> —                                    |                                      | ļ                              |                      | L                          | ······································ | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                             | i i                                                    |                                      |                                |                      |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| ·                                                                                                                                           | [                                                      | · ·                                  | <u> </u>                       |                      | i [                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| -                                                                                                                                           | · · ·····                                              |                                      |                                |                      | '                          |                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| · - · · · · · · · · · · · · · · · · · ·                                                                                                     | ···                                                    |                                      | Ļ                              |                      | i<br>                      |                                        | I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                             |                                                        |                                      |                                |                      | ļ                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                             |                                                        |                                      |                                |                      |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                             |                                                        |                                      | ···                            |                      |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                             |                                                        |                                      |                                |                      |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                             |                                                        |                                      |                                | ·····                | i                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| <u> </u>                                                                                                                                    |                                                        | · · · ·                              | ·                              | ······               |                            |                                        | ⊨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| ······································                                                                                                      |                                                        |                                      |                                |                      |                            |                                        | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                       |                                                        | ·····                                |                                | —- <del>— "</del> —i |                            |                                        | · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                       | — — — …                                                |                                      | -•                             | ···· ·               |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| ······                                                                                                                                      |                                                        |                                      | i                              |                      |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| · · ·                                                                                                                                       | ····                                                   | · · ·                                | · ·                            |                      |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                             |                                                        |                                      |                                |                      |                            |                                        | · / · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                             |                                                        |                                      |                                |                      |                            | ·                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| MRL (Method Reporting Level):<br>Trigger: DOH Drinking Water rosp<br>MCL (maximum contaminant level<br>ND (Not Detected): Indicates this or | onse level. Public System<br>I): Highest level recomme | s in excess of t<br>ended by the fea | his level mus<br>deral governr | t take additionation | ll samples.<br>water syste | Recommended range                      | າ on packages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                             |                                                        |                                      | Арр                            | roved By:            |                            | A                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### **Client:** VALLEY ENVIRONMENTAL LAB Address:

15 W. YAKIMA AVE STE210

Attn:

**YAKIMA, WA 98901** 

Batch #: Project Name:

140630030 MONITORING WELLS

DARA OSBORNE

#### **Analytical Results Report**

| Sample Number    | 140630030-003 | Sampling Date   | 6/23/2014 | Date/Time Received | 6/26/2014 | 11:50 AM |
|------------------|---------------|-----------------|-----------|--------------------|-----------|----------|
| Client Sample ID | 62317         | Sampling Time   | 2:52 PM   |                    |           |          |
| Matrix           | Water         | Sample Location |           |                    |           |          |
| Comments         |               |                 |           |                    |           |          |

| Parameter                         | Result | Units | PQL  | Analysis Date | Analyst | Method    | Qualifier |
|-----------------------------------|--------|-------|------|---------------|---------|-----------|-----------|
| 1,1,1,2-Tetrachloroethane         | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,1,1-Trichloroethane             | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,1,2,2-Tetrachloroethane         | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,1,2-Trichloroethane             | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethane                | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,1-Dichloroethene                | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,1-dichloropropene               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichlorobenzene            | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2,3-Trichloropropane            | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trichlorobenzene            | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2,4-Trimethylbenzene            | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromo-3-chloropropane(DBCP) | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2-Dibromoethane                 | ND     | ug/L  | 0.01 | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichlorobenzene               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloroethane                | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,2-Dichloropropane               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,3,5-Trimethylbenzene            | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichlorobenzene               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,3-Dichloropropane               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 1,4-Dichlorobenzene               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 2,2-Dichloropropane               | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 2-Chlorotoluene                   | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 2-hexanone                        | ND     | ug/L  | 2.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| 4-Chlorotoluene                   | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| Acetone                           | ND     | ug/L  | 2.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| Acrylonitrile                     | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| Benzene                           | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| Bromobenzene                      | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |
| Bromochloromethane                | ND     | ug/L  | 0.5  | 6/30/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

### Client:VALLEY ENVIRONMENTAL LABAddress:15 W. YAKIMA AVE STE210

: 15 W. YAKIMA AVE STE210 YAKIMA, WA 98901 Batch #: Project Name:

140630030 MONITORING WELLS

Attn: DARA OSBORNE

#### **Analytical Results Report**

|                  |               |                 |           |                    |           |          | - |
|------------------|---------------|-----------------|-----------|--------------------|-----------|----------|---|
| Sample Number    | 140630030-003 | Sampling Date   | 6/23/2014 | Date/Time Received | 6/26/2014 | 11:50 AM |   |
|                  | 000/7         | , .             |           |                    | **==***   |          |   |
| Client Sample ID | 62317         | Sampling Time   | 2:52 PM   |                    |           |          |   |
| Matrix           | Water         | 0               |           |                    |           |          |   |
| WATTIX           | vvaler        | Sample Location |           |                    |           |          |   |
| Comments         |               |                 |           |                    |           |          |   |

| Parameter                     | Result | Units | PQL | Analysis Date | Analyst | Method    | Qualifier |
|-------------------------------|--------|-------|-----|---------------|---------|-----------|-----------|
| Bromodichloromethane          | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Bromoform                     | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Bromomethane                  | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Carbon disulfide              | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Carbon Tetrachloride          | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Chlorobenzene                 | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Chloroethane                  | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Chloroform                    | 2.57   | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Chloromethane                 | ND     | ug/L. | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| cis-1,2-dichloroethene        | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| cis-1,3-Dichloropropene       | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Dibromochloromethane          | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Dibromomethane                | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Dichlorodifluoromethane       | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Ethylbenzene                  | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Hexachlorobutadiene           | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Isopropylbenzene              | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| m+p-Xylene                    | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Methyl ethyl ketone (MEK)     | ND     | ug/L  | 2.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Methyl isobutyl ketone (MIBK) | ND     | ug/L  | 2.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Methylene chloride            | ND     | ug/L  | 2.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| methyl-t-butyl ether (MTBE)   | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Naphthalene                   | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| n-Butylbenzene                | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| n-Propylbenzene               | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| D-Xylene                      | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| p-isopropyltoluene            | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| sec-Butylbenzene              | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |
| Styrene                       | ND     | ug/L  | 0.5 | 6/30/2014     | SAT     | EPA 8260B |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

#### Client: VALLEY ENVIRONMENTAL LAB Address: 15 W. YAKIMA AVE STE210 YAKIMA, WA 98901

Batch #: 1400 Project Name: MON

140630030 MONITORING WELLS

Attn: DARA OSBORNE

#### **Analytical Results Report**

| ample Number<br>ient Sample ID<br>atrix<br>omments | 140630030-003<br>62317<br>Water |        | Sampling Date<br>Sampling Time<br>Sample Location |     | 6/23/2014<br>2:52 PM | Date/Time Received |      | 6/26/2014 | 11:50 AM  |
|----------------------------------------------------|---------------------------------|--------|---------------------------------------------------|-----|----------------------|--------------------|------|-----------|-----------|
| Parameter                                          |                                 | Result | Units                                             | PQL | Analysis (           | )ate Ana           | lyst | Method    | Qualifier |
| tert-Butylbenze                                    | ne                              | ND     | ug/L                                              | 0.5 | 6/30/201             | 14 SA              | T El | PA 8260B  |           |
| Tetrachloroeth                                     | эле                             | 1.73   | ug/L                                              | 0.5 | 6/30/201             | 14 SA              | T EI | PA 8260B  |           |
| Toluene                                            |                                 | ND     | ug/L                                              | 0.5 | 6/30/201             | I4 SA              | T EI | PA 8260B  |           |
| trans-1,2-Dichloroethene                           |                                 | ND     | ug/Ł                                              | 0.5 | 6/30/201             | 14 SA              | T EI | PA 8260B  |           |
| trans-1,3-Dichloropropene                          |                                 | ND     | ug/L                                              | 0.5 | 6/30/201             | 14 SA              | T El | PA 8260B  |           |
| Trichloroethene                                    |                                 | ND     | ug/L                                              | 0.5 | 6/30/201             | 14 SA              | T El | PA 8260B  |           |
| Trichloroflouromethane                             |                                 | ND     | ug/L                                              | 0.5 | 6/30/201             | I4 SA              | T EI | PA 8260B  |           |
| Vinyl Chloride                                     |                                 | ND     | ug/L                                              | 0.5 | 6/30/201             | 4 SA               | T EI | PA 8260B  |           |

#### Surrogate Data

| e Number 140630030-003 |           |                  |                |  |
|------------------------|-----------|------------------|----------------|--|
| Surrogate Standard     | Method    | Percent Recovery | Control Limits |  |
| 1,2-Dichlorobenzene-d4 | EPA 8260B | 106.4            | 70-130         |  |
| 4-Bromofluorobenzene   | EPA 8260B | 101.2            | 70-130         |  |
| Toluene-d8             | EPA 8260B | 100.8            | 70-130         |  |

Authorized Signature

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Analek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

Batch #: 14063 Project Name: MONT

140630030 MONITORING WELLS

#### **Analytical Results Report**

| Sample Number     140630030-003       Client Sample ID     62317       Matrix     Water       Comments     Parameter |                    |        | Sampling Date<br>Sampling Time<br>Sample Location |      |                        |               | te/Time Received<br>traction Date |           | 6/26/2014<br>6/30/2014 | 11:50 AM  |
|----------------------------------------------------------------------------------------------------------------------|--------------------|--------|---------------------------------------------------|------|------------------------|---------------|-----------------------------------|-----------|------------------------|-----------|
|                                                                                                                      |                    | Result | Units                                             | PQL  | Analysis               | Date Analyst  |                                   | Meth      | bd                     | Qualifier |
| 2-Methyinaphthalene                                                                                                  |                    | ND     | ug/L                                              | 0.01 | 7/14/2014              |               | EMP                               | EPA 8270D |                        |           |
| Acenaphthene                                                                                                         |                    | ND     | ug/L                                              | 0.01 | 7/14/2014              |               | EMP                               | EPA 8270D |                        |           |
| Acenaphthylene                                                                                                       |                    | NÐ     | ug/L                                              | 0.01 | 7/14/2                 | 7/14/2014 EMI |                                   | EPA 82    | 70D                    |           |
| Anthracene                                                                                                           | Anthracene         |        | ug/L                                              | 0.01 | 7/14/2014              |               | EMP                               | EPA 8270D |                        |           |
| Benzo(ghi)pery                                                                                                       | Benzo(ghi)perylene |        | ug/L                                              | 0.01 | 7/14/2014              |               | EMP                               | EPA 8270D |                        |           |
| Benzo[a]anthracene                                                                                                   |                    | ND     | ug/L                                              | 0.01 | 7/14/2014              |               | EMP                               | EPA 8270D |                        |           |
| Benzo[a]pyrene                                                                                                       | 9                  | ND     | ug/L                                              | 0.01 | 7/14/2014 EMP          |               | EPA 827                           | '0D       |                        |           |
| Benzo[b]fluoran                                                                                                      | ithene             | ND     | ug/L                                              | 0.01 | 7/14/2014              |               | EMP                               | EPA 8270D |                        |           |
| Benzo[k]fluoranthene                                                                                                 |                    | ND     | ug/L                                              | 0.01 | 7/14/2014              |               | EMP                               | EPA 8270D |                        |           |
| Chrysene                                                                                                             | Chrysene           |        | ug/L                                              | 0.01 | 7/14/2                 | 7/14/2014 EMP |                                   | EPA 827   | '0D                    |           |
| Dibenz[a,h]anth                                                                                                      | racene             | ND     | ug/L                                              | 0.01 | 7/14/2014 EMP          |               | EMP                               | EPA 827   | '0D                    |           |
| Fluoranthene                                                                                                         |                    | ND     | ug/L                                              | 0.01 | 7/14/2014 EMF          |               | EMP                               | EPA 8270D |                        |           |
| Fluorene                                                                                                             |                    | ND     | ug/L                                              | 0.01 | 7/14/2014 EMP          |               | EPA 827                           | 0D        |                        |           |
| Indeno[1,2,3-cd]                                                                                                     | pyrene             | ND     | ug/L                                              | 0.01 | 7/14/2014 EMP EPA 8270 |               | 0D                                |           |                        |           |
| Naphthalene                                                                                                          |                    | ND     | ug/L                                              | 0.01 | 7/14/2014              |               | EMP                               | EPA 827   | 0D                     |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

Batch #: 140630030 **Project Name:** 

MONITORING WELLS

#### **Analytical Results Report**

| nple Number<br>ent Sample ID<br>trix<br>mments | 140630030-003<br>62317<br>Water |        | Sampling D<br>Sampling Ti<br>Sample Loc | me   |            |       | ne Recei<br>on Date | ved 6/26/2014<br>6/30/2014 | 11:50 AM  |
|------------------------------------------------|---------------------------------|--------|-----------------------------------------|------|------------|-------|---------------------|----------------------------|-----------|
| Parameter                                      |                                 | Result | Units                                   | PQL  | Analysis D | ate A | nalyst              | Method                     | Qualifier |
| Phenanthrene                                   |                                 | ND     | ug/L                                    | 0.01 | 7/14/201   | 4     | EMP                 | EPA 8270D                  |           |
| Pyrene                                         |                                 | ND     | ug/L                                    | 0.01 | 7/14/201   | 4     | EMP                 | EPA 8270D                  |           |

| Sample Number | 140630030-003 |           |                  |                |
|---------------|---------------|-----------|------------------|----------------|
| Surrogate S   | tandard       | Method    | Percent Recovery | Control Limits |
| Terphenyl-d   | 14            | EPA 8270D | 101.7            | 10-125         |

Authorized Signature

ohn, Cath John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:<br>Address: | VALLEY ENVIRONMENTAL LAB<br>15 W. YAKIMA AVE STE210 | Batch #:<br>Project Name: | 140630030<br>MONITORING WELLS |
|---------------------|-----------------------------------------------------|---------------------------|-------------------------------|
| Attn:               | YAKIMA, WA 98901<br>DARA OSBORNE                    |                           |                               |
| <b>~</b> un         |                                                     |                           |                               |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140630030-003<br>62317<br>Water | Samp    | ling Date<br>ling Time<br>le Locatior | 6/23/2014<br>2:52 PM<br>1 | Date/         | Time Received | 6/26/2014 | 11:50 AM  |
|---------------------------------------------------------|---------------------------------|---------|---------------------------------------|---------------------------|---------------|---------------|-----------|-----------|
| Parameter                                               |                                 | Result  | Units                                 | PQL                       | Analysis Date | Analyst       | Method    | Qualifier |
| Cadmium                                                 |                                 | ND      | mg/L                                  | 0.001                     | 7/7/2014      | ETL           | EPA 6020A |           |
| Chromium                                                |                                 | ND      | mg/L                                  | 0.001                     | 7/7/2014      | ETL           | EPA 6020A |           |
| Lead                                                    |                                 | ND      | mg/L                                  | 0.001                     | 7/7/2014      | ETL           | EPA 6020A |           |
| Nickel                                                  |                                 | 0.00153 | mg/L                                  | 0.001                     | 7/7/2014      | ETL           | EPA 6020A |           |
| Zinc                                                    |                                 | 0.00116 | mg/L                                  | 0.001                     | 7/7/2014      | ETL           | EPA 6020A |           |

Authorized Signature

w. Carth

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C595; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
| 1        | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

Batch #: 140630030 **Project Name:** 

MONITORING WELLS

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140630030-003<br>62317<br>Water |        | Sampling D<br>Sampling Ti<br>Sample Loc | ime    | 6/23/2014<br>2:52 PM | Date/Time Receiv<br>Extraction Date | red 6/26/2014<br>6/30/2014 | 11:50 AM  |
|---------------------------------------------------------|---------------------------------|--------|-----------------------------------------|--------|----------------------|-------------------------------------|----------------------------|-----------|
| Parameter                                               |                                 | Result | Units                                   | PQL    | Analysis D           | ate Analyst                         | Method                     | Qualifier |
| Aroclor 1016 (I                                         | PCB-1016)                       | ND     | ug/L                                    | 0.2    | 7/9/2014             | MAH                                 | EPA 8082                   | S4        |
| Aroclor 1221 (I                                         | PCB-1221)                       | ND     | ug/L                                    | 0.1    | 7/9/2014             | MAH                                 | EPA 8082                   | S4        |
| Aroclor 1232 (F                                         | PCB-1232)                       | ND     | ug/L                                    | 0.1    | 7/9/2014             | MAH                                 | EPA 8082                   | S4        |
| Aroclor 1242 (F                                         | PCB-1242)                       | ND     | ug/L                                    | 0.1    | 7/9/2014             | MAH                                 | EPA 8082                   | S4        |
| Aroclor 1248 (F                                         | PCB-1248)                       | ND     | ug/L                                    | 0.1    | 7/9/2014             | MAH                                 | EPA 8082                   | S4        |
| Aroclor 1254 (F                                         | PCB-1254)                       | ND     | ug/L                                    | 0.1    | 7/9/2014             | MAH                                 | EPA 8082                   | S4        |
| Aroclor 1260 (F                                         | PCB-1260)                       | ND     | ug/L                                    | 0.1    | 7/9/2014             | MAH                                 | EPA 8082                   | S4        |
| PCB (total)                                             | · ··· ··· ··· ··· ··· ···       | ND     | ug/L                                    | 0.1    | 7/9/2014             | MAH                                 | EPA 8082                   | S4        |
|                                                         |                                 |        | Surrog                                  | ate Da | ta                   |                                     |                            |           |
| mple Number                                             | 140630030-003                   |        |                                         |        |                      |                                     |                            |           |
| Surrogate St                                            | andard                          |        | Method                                  |        | Pe                   | ercent Recovery                     | Control L                  | imits     |
| DCB                                                     |                                 |        | EPA 80                                  | 82     |                      | 152.8                               | 30-13                      | 0         |

ohn. Cath

Authorized Signature

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

Not Detected ND

PQL Practical Quantitation Limit

Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the sample S4

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

| התחתים כלותאתאה אתיותר יווווישיות והאה ומאיר יות את אתמונהיו נה משורת. את האורה את האורה את האורים וווויש |                                                                                                                                  | 1. USE ONE LINE PER SAMPLE<br>2. BE SPECIFIC INTEST REQUESTS<br>4. CHECK OFF TESTS TO BE PERFORMED<br>FOR EACH SAMPLE | hervise marked. B. The                                                                                                                                                                        |  |  | {<br>//                                 | 140072 1211 0723/11 VIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | TELEPHONE: 509 575 6990 FAX: 575 699.3 | ATTENTION: Brad Card  | ADORRESS 1120 W. Lincaln Aver, | CLIENT: DIAL SA                       |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|-----------------------|--------------------------------|---------------------------------------|
|                                                                                                           | 6-23-14<br>3:55 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                              | Eugeneerving + Surnervandmanderving by Low color 4 or 4                                                               | aboratory may not be responsible for missed holding time for samplas received with less than 50% of the analytical hold time remaining. Please contact the laboratory for further information |  |  | × × F T T T T T T T T T T T T T T T T T | So and the for the for the 1 and the | A CAR A A A A A | S S S S S S S S S S S S S S S S S S S  | PAGEOF                |                                | CHAIN OF CUSTODY RECORD               |
|                                                                                                           | Ally 2 15:56                                                                                                                     | * RUSH TURNAROUND IS<br>SUBJECT TO PRIOR                                                                              | of the analytical hold time remaining. Please contact                                                                                                                                         |  |  |                                         | A THE REAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 6             |                                        | 上的 Pretoon            | (509) 5                        | 201 Ea                                |
|                                                                                                           | <ul> <li>Std. 10-14 Business Days</li> <li>24-48 Hirs. 100% Rush</li> <li>3-Day Rush – 80%</li> <li>1 week Rush – 50%</li> </ul> |                                                                                                                       | the laboratory for further information                                                                                                                                                        |  |  | 反対                                      | OBSERVATIONS<br>COMMENTS SRECIAL<br>INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | *                                      | rax. (202) 272 - 3068 | (509) 575 - 3999               | 201 East D Street<br>Yakima. WA 98901 |

.

# NOVEMBER 2014 GROUNDWATER ANALYTICAL RESULTS

### VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

**NWTPH-HCID** 

| Date Collected:                                                                                                           | 11/20/14                              |                  |               |                                |             |                     |                                       |                                       |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|---------------|--------------------------------|-------------|---------------------|---------------------------------------|---------------------------------------|
| Lab/Sample No:                                                                                                            |                                       |                  |               | C                              | ounty:      | YAKIMA              | · · · · · · · · · · · · · · · · · · · |                                       |
| Sample Location:                                                                                                          | 141120-W                              | 2                |               |                                |             | 11/21/14            |                                       |                                       |
|                                                                                                                           |                                       |                  |               |                                |             | 12/15/14            |                                       |                                       |
|                                                                                                                           |                                       |                  |               | le Collect                     |             | Scott               |                                       |                                       |
| end Report To:                                                                                                            | · · · · · · · · · · · · · · · · · · · | ·····            | SAMPI         | LE COMIV                       | IENTS       | Matrix              | : Water                               |                                       |
| PLSA Engineering                                                                                                          |                                       |                  | Tidrie        | -                              |             |                     |                                       |                                       |
| Attn: Scott Garland                                                                                                       |                                       |                  |               | .n                             |             |                     |                                       |                                       |
| 1120 West Lincoln Avenue                                                                                                  |                                       |                  |               |                                |             |                     |                                       |                                       |
| Yakima, WA 98902                                                                                                          |                                       |                  |               |                                |             |                     |                                       |                                       |
| NWTPH-HCID                                                                                                                |                                       |                  |               |                                |             |                     |                                       | · · · · · · · · · · · · · · · · · · · |
| OH# Analytes                                                                                                              | Results                               | Units            | MRL           | Trigger                        | MCL         | Method              | Analyzed                              | Analys                                |
| Hydrocarbon ID                                                                                                            | NONE                                  |                  |               |                                |             | WATPH-HCID          | 12/09/14                              | 125                                   |
| % Surrogate Recovery                                                                                                      | 108.8                                 | %                |               |                                |             | (50 - 150)          | 12/09/14                              | 125                                   |
| Diesel                                                                                                                    | <0.63                                 | mg/L             | 0.63          |                                |             | WATPH-HCID          | 12/09/14                              | 125                                   |
| Gasoline                                                                                                                  | <0.25                                 | mg/L             | 0.25          |                                |             | WATPH-HCID          | 12/09/14                              | 125                                   |
| Lube Oil                                                                                                                  | <0.63                                 | mg/L             | 0.63          |                                |             | WATPH-HCID          | 12/09/14                              | 125                                   |
|                                                                                                                           |                                       | Diesel           | True          |                                | •           | %                   |                                       |                                       |
| QC ID                                                                                                                     | Units                                 | Results          | Value         | Recovery                       | Limits      | RPD                 | -                                     |                                       |
| LCS (lab Control Sample)                                                                                                  | mg/L                                  | 0.276            | 0.5           | 55.2                           | 50-150      |                     |                                       |                                       |
| MB (method blank)                                                                                                         | mg/L                                  | ND               | ND            |                                |             |                     |                                       |                                       |
| LCSD(Lab Control Sample Duplicate                                                                                         | mg/L                                  | 0.3              | 0.5           | 60.6                           | 0-50        | 9.3                 |                                       | ·                                     |
|                                                                                                                           |                                       |                  |               |                                |             |                     |                                       |                                       |
| MRL (Method Reporting Level): Indicat<br>Trigger: DOH Drinking Water response lev<br>MCL (maximum contaminant level): Hig | vel. Public Syste                     | ms in excess of  | this level mu | st take addition               | nal samples | . Recommended range | on packages.                          |                                       |
| ND (Not Detected): Indicates this compound                                                                                | nd was analyzed                       | and not detected |               | eater than or eq<br>proved By: |             | MRL or SRL.<br>∫    |                                       |                                       |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

05205-hcid

### VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345 VOLATILE ORGANIC CHEMICALS (VOCs) ANALYSIS REPORT

F

| Lab/Sample No:                          | 227-05205                              | Date C | ollected:   | 11/20/14  | - <u> </u> |            | ,           |
|-----------------------------------------|----------------------------------------|--------|-------------|-----------|------------|------------|-------------|
|                                         | · · · · · · · · · · · · · · · · · · ·  |        |             |           |            |            |             |
| Date Received:                          | 11/21/14                               |        |             | 12/15/14  | ·          | Supervisor |             |
| · · · · · · · · · · · · · · · · · · ·   | •••••••••••••••••••••••••••••••••••••• |        | · · · · · · | 12/04/14  |            | Analyst    | : 125       |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                        |        | pled By:    | Scott     |            | . <u></u>  | <del></del> |
| Sample Location:                        | 141120-W2                              |        |             |           | <u> </u>   | Invoice#   |             |
| Send Report To:                         |                                        |        | Sample      | e Informa | tion       | Matrix     | Water       |
| PLSA Engineering                        |                                        |        | Tidri       | rk        |            |            |             |
| Attn: Scott Garland                     |                                        |        |             | CA        |            |            |             |
| 1120 West Lincoln Avenue                |                                        |        |             |           |            |            |             |
| Yakima, WA 98902                        |                                        |        |             |           |            |            |             |
| Volatile Organic Chemical               | S                                      |        |             | ·         |            |            |             |
| OOH# Analytes                           | Results                                | Units  | MRL         | Trigger   | MCL        | Excee      | ds?         |
| DIPA RIBICIPILA IDED                    |                                        |        |             |           |            | Trigger?   | MCL?        |
| 45 Vinyl chloride                       | ND                                     | μg/L   | 0.50        | 0.50      | 2.0        | N          | N           |
| 46 1,1-Dichloroethylene                 | ND                                     | μg/L   | 0.50        | 0.50      | 7.0        | N          | N           |
| 47 1,1,1-Trichloroethane                | ND                                     | μg/L   | 0.50        | 0.50      | 200        | N          | N           |
| 48 Carbon tetrachloride                 | ND                                     | μg/L   | 0.50        | 0.50      | 5.0        | N          | N           |
| 49 Benzene                              | ND                                     | μg/L   | 0.50        | 0.50      | 5.0        | N          | Ν           |
| 50 1,2-Dichloroethane                   | ND                                     | μg/L   | 0.50        | 0.50      | 5.0        | N          | N           |
| 51 Trichloroethylene                    | ND                                     | μg/L   | 0.50        | 0.50      | 5.0        | Ν          | N           |
| 52 1,4-Dichlorobenzene                  | ND                                     | μg/L   | 0.50        | 0.50      | 75         | N          | N           |
| 56 Dichloromethane                      | ND                                     | μg/L   | 0.50        | 0.50      | 5.0        | <u>N</u>   | N           |
| 57 trans-1,2-Dichloroethylene           | ND                                     | μg/L   | 0.50        | 0.50      | 100        | N          | N           |
| 60 cis-1,2-Dichloroethylene             | 1.1                                    | μg/L   | 0.50        | 0.50      | 70         | Ν          | N           |
| 63 1,2-Dichloropropane                  | ND                                     | μg/L   | 0.50        | 0.50      | 5.0        | <u>N</u>   | N           |
| 66 Toluene                              | ND                                     | μg/L   | 0.50        | 0.50      | 1000       | N          | N           |
| 67 1,1,2-Trichloroethane                | ND                                     | μg/L   | 0.50        | 0.50      | 5.0        | N          | N           |
| 68 Tetrachloroethene                    | 2.46                                   | μg/L   | 0.50        | 0.50      | 5.0        | N          | N           |
| 71 Chlorobenzene                        | ND                                     | μg/L   | 0.50        | 0.50      | 100        | <u>N</u>   | N           |
| 73 Ethylbenzene                         | ND                                     | μg/L   | 0.50        | 0.50      | 700        | Ν          | N           |
| 76 Styrene                              | ND                                     | μg/L   | 0.50        | 0.50      | 100        | N          | N           |
| 84 1,2-Dichlorobenzene                  | ND                                     | μg/L   | 0.50        | 0.50      | 600        | <u>N</u>   | N           |
| 95 1,2,4-Trichlorobenzene               | ND                                     | μg/L   | 0.50        | 0.50      | 70         | N          | N           |
| 160 Total Xylenes                       | ND                                     | μg/L   | 0.50        | 0.50      | 10000      | N          | N           |
| 74 m,p-Xylenes (MCL for Total)          | ND<br>ND                               | μg/L   | 0.50        | 0.50      |            | <u>N</u>   | N           |
| 75 o-Xylene (MCL for Total)             |                                        | μg/L   | 0.50        | 0.50      | 1          | Ν          |             |

MCL (maximum contaminant level): Highest level recommended by the federal government for public water systems.

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

05205-voc

#### MNat5 W Yanima Avgister 210 WA 98902 509-575-3999 Fax: 509-875-3068

### VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

|      | Lab Sample No:            | 22705205 |              | alysis Repor | t - Page 2                             |      |
|------|---------------------------|----------|--------------|--------------|----------------------------------------|------|
| DOH# | Analytes                  | Results  | Units        | SRL          | Trigger                                | MCL  |
|      | EPA UNREGULATED           |          |              |              |                                        |      |
| 27   | Chloroform                | 3.00     | μg/L         | 0.50         |                                        |      |
| 28   | Bromodichloromethane      | ND       | μg/L         | 0.50         |                                        |      |
| 29   | Dibromochloromethane      | ND       | μg/L         | 0.50         |                                        |      |
| 30   | Bromoform                 | ND       | μg/L         | 0.50         | ······································ |      |
| 53   | Chloromethane             | ND       | μg/L         | 0.50         | 0.50                                   |      |
| 54   | Bromomethane              | ND       | μg/L         | 0.50         | 0.50                                   |      |
| 55   | Chloroethane              | ND       | μg/L         | 0.50         | 0.50                                   |      |
| 58   | 1,1-Dichloroethane        | ND       | μg/L         | 0.50         | 0.50                                   |      |
| 59   | 2,2-Dichloropropane       | ND       | μg/L         | 0.50         | 0.50                                   |      |
| 62   | 1,1-Dichloropropene       | ND       | μg/L         | 0.50         | 0.50                                   |      |
| 64   | Dibromomethane            | ND       | μg/L         | 0.50         | 0.50                                   |      |
| 70   | 1,3-Dichloropropane       | ND       | μg/L         | 0.50         |                                        |      |
| 70   | 1,1,1,2-Tetrachloroethane | ND ND    |              |              | 0.50                                   | ·    |
| 72   | Bromobenzene              | ND<br>ND | μg/L         | 0.50         | 0.50                                   | ·    |
| 78   | 1,2,3-Trichloropropane    | ND<br>ND | μg/L<br>μg/I | 0.50         | 0.50                                   |      |
| 80   | 1,1,2,2-Tetrachloroethane | ND<br>ND | μg/L<br>μg/L | 0.50         | 0.50                                   |      |
| 81   | o-Chlorotoluene           | ND       | μg/L<br>μg/L | 0.50         | 0.50                                   |      |
| 82   | p-Chlorotoluene           | ND       | μg/L<br>μg/L | 0.50         | 0.50                                   |      |
|      | m-Dichlorobenzene         | NĐ       | μg/L<br>μg/L | 0.50         | 0.50                                   |      |
|      | Dichlorodifluoromethane   | ND ND    | μg/L<br>μg/L | 0.50         | 0.50                                   |      |
|      | STAFE UNRECULATED         |          |              |              |                                        |      |
| 65   | cis-1,3-Dichloropropene   | ND       | μg/L         | 0.50         | 0.50                                   |      |
|      | trans-1,3-Dichloropropene | ND       | μg/L         | 0.50         | 0.50                                   |      |
|      | Fluorotrichloromethane    | ND       | μg/L         | 0.50         | 0.50                                   |      |
|      | Bromochloromethane        | ND       | μg/L         | 0.50         | 0.50                                   |      |
|      | Isopropylbenzene          | ND       | μg/L         | 0.50         | 0.50                                   |      |
|      | n-Propylbenzene           | NÐ       | μg/L         | 0.50         | 0.50                                   |      |
| 89   | 1,3,5-Trimethylbenzene    | ND       | μg/L         | 0.50         | 0.50                                   |      |
| 90   | tert-Butylbenzene         | ND       | μg/L         | 0.50         | 0.50                                   |      |
| 91   | 1,2,4-Trimethylbenzene    | ND       | μg/L         | 0.50         | 0.50                                   |      |
| 92   | sec-Butylbenzene          | ND       | μg/L         | 0.50         | 0.50                                   |      |
| 93   | p-Isopropyltoluene        | NÐ       | μg/L         | 0.50         | 0.50                                   |      |
| 94   | n-Butylbenzene            | ND       | µg/L         | 0.50         | 0.50                                   |      |
| 96   | Naphthalene               | ND       | µg/L         | 0.50         | 0.50                                   |      |
|      | Hexachlorobutadiene       | ND       | µg/L         | 0.50         | 0.50                                   |      |
| 98   | 1,2,3-Trichlorobenzene    | ND       | μg/L         | 0.50         | 0.50                                   |      |
| 102  | EDB                       | ND       | μg/L         | 0.50         | 0.02                                   | 0.05 |
| 103  | DBCP                      | ND       | μg/L         | 0.50         | 0.04                                   | 0.20 |
|      | Methyl Tert-Butyl Ether   | ND       | μg/L         | 0.50         | 0.50                                   |      |

Approved By:

| THIS INFORMAT                          | THIS INFORMATION WILL BE FOR REPORTING RILLING. (SEE BELOW)                                                    | NG: (SEE BEROM)                                                                                                 |              | CHAIN OF CUSTODY RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>TODY RE</b>                                                                                                  | CORD            |                                          |                                     |                     | A                | 15 W.          | 15 W. Yakima Ave.   | Ave.                                                                                                                                                                                                                                                                                                                                                                      |          |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|-------------------------------------|---------------------|------------------|----------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| CLIENT                                 | PLSA Engineering & Surveying                                                                                   | Surveying                                                                                                       | ,            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                 |                                          |                                     |                     |                  | Ste. 210       | 0                   |                                                                                                                                                                                                                                                                                                                                                                           |          |
| , ADDRESS                              | <b>1120 West Lincoln</b>                                                                                       |                                                                                                                 |              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71 V 1 V                                                                                                        | 200             |                                          |                                     | J.                  |                  | Yakin          | Yakima, WA 98902    | 98902                                                                                                                                                                                                                                                                                                                                                                     | -        |
|                                        | Yakima, WA 98902                                                                                               |                                                                                                                 | WORK O       | WORK ORDER ID # LLJAI 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOA14                                                                                                           |                 |                                          | ,                                   | J                   | λ                | (60c)          | (209) 575 – 3999    | ,<br>,                                                                                                                                                                                                                                                                                                                                                                    |          |
| ATTENTION .                            | Scott                                                                                                          |                                                                                                                 | PAGE         | <u>1</u> oF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                 |                                          |                                     | TESTS TC            | TESTS TO PERFORM |                |                     |                                                                                                                                                                                                                                                                                                                                                                           |          |
| PROJECT NAME.                          | Tidrick                                                                                                        |                                                                                                                 |              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                               |                 |                                          |                                     |                     |                  |                |                     |                                                                                                                                                                                                                                                                                                                                                                           |          |
| PROJECT CONTACT                        | - Scott                                                                                                        |                                                                                                                 |              | 2345 - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · ·                                                                                                         |                 | ••••                                     | America - A                         |                     |                  |                |                     |                                                                                                                                                                                                                                                                                                                                                                           |          |
| TELEPHONE                              | <u>509-575-6990 FAX: 5</u>                                                                                     | FAX: 509-575-6993                                                                                               |              | WININ<br>10 TIOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m                                                                                                               | 0978            |                                          |                                     |                     |                  |                |                     | 1                                                                                                                                                                                                                                                                                                                                                                         |          |
| Sampled By:                            | SDG                                                                                                            | bi van van sere tekster in de sere ander sere en sere e |              | 2 UN PU UN P | T UN ANDIN                                                                                                      | Don             |                                          |                                     |                     |                  |                |                     |                                                                                                                                                                                                                                                                                                                                                                           |          |
| LAB SA#                                | SMMPLE ID / LOCATION                                                                                           | DATE TIME                                                                                                       | THEN         | CD A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 'o. ``                                                                                                          | · · · ·         | na a na a a a a a a a a a a a a a a a a  | A and a second                      |                     |                  |                |                     | OBSERVATIONS.<br>MMENTS SPECIAL                                                                                                                                                                                                                                                                                                                                           | 5 - A-   |
|                                        | 141120-W2                                                                                                      | 11-20 1345                                                                                                      | W 4 2        | 11 . 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                                                                               |                 |                                          |                                     |                     |                  |                |                     | INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                              |          |
|                                        | 141120-W3                                                                                                      |                                                                                                                 | ×   ×        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <                                                                                                               |                 |                                          |                                     |                     |                  |                |                     |                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                        |                                                                                                                |                                                                                                                 | uipn)        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | -               |                                          |                                     |                     |                  |                |                     |                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                        |                                                                                                                |                                                                                                                 | işni<br>İ    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                               |                 |                                          |                                     |                     |                  |                |                     |                                                                                                                                                                                                                                                                                                                                                                           | ſ        |
|                                        |                                                                                                                |                                                                                                                 |              | <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |                 |                                          |                                     |                     |                  |                |                     |                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                        |                                                                                                                |                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                 | · · · · · · · · · · · · · · · · · · ·    |                                     |                     |                  |                |                     |                                                                                                                                                                                                                                                                                                                                                                           | T        |
|                                        |                                                                                                                | -                                                                                                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                               |                 |                                          |                                     |                     |                  |                |                     | -                                                                                                                                                                                                                                                                                                                                                                         |          |
|                                        |                                                                                                                |                                                                                                                 |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                 | · · ·                                    | ·                                   |                     | -                | • • •          | -                   |                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                        |                                                                                                                |                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                 |                                          |                                     |                     |                  |                | -                   |                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                        |                                                                                                                |                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                 |                                          |                                     |                     | •                |                | æ                   |                                                                                                                                                                                                                                                                                                                                                                           | 1        |
|                                        | and a second second second second second second second second second second second second second second second |                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                 |                                          |                                     |                     |                  |                |                     |                                                                                                                                                                                                                                                                                                                                                                           | 1        |
|                                        |                                                                                                                |                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | <sup>1</sup>    |                                          |                                     |                     |                  |                | ,                   |                                                                                                                                                                                                                                                                                                                                                                           | T        |
|                                        |                                                                                                                |                                                                                                                 | -            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                 |                                          |                                     |                     |                  |                |                     |                                                                                                                                                                                                                                                                                                                                                                           |          |
| -                                      |                                                                                                                |                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                 |                                          |                                     |                     | ·····            |                |                     |                                                                                                                                                                                                                                                                                                                                                                           | 1        |
| A. A slandard tumarou                  | A slandard tumaround time is assumed unless otherwise marked, B.                                               | ed. B. The taboratory may not                                                                                   | not he verve | this for micros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                 |                                          |                                     |                     |                  |                |                     |                                                                                                                                                                                                                                                                                                                                                                           | 17       |
| SN                                     | INSTRUCTIONS                                                                                                   |                                                                                                                 | NGINFORME    | INFORMATION VEB DISSECTATION OF THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR THE RELEASED FOR T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and and a c                                                                                                     | r samples rec   | ened with less the                       | an 50% of the a                     | nalyziczeł hokć n   | me remaining     | L Please contr | ici the laborator   | intervention without a measure of the second with less than 50% of the analytical hold time remaining. Please contact the laboratory for further information, intervention of the second second second second second second second second second second second second second second second second second second second second second second second second second second s | ç        |
| 1. USE ONE LINE I<br>2. BE SPECIFIC IN | 1. USE ONE LINE PER SAMPLE.<br>2. BE SPECIFIC IN TEST REQUESTS.                                                | Same                                                                                                            |              | ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                 |                                          |                                     | RUSH TURNAROUND IS  | NAROUI           | SI ON          | TOTAL NO. OF        | IO. OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                         | 2.72     |
| 3. CHECK OFF TEX<br>FOR EACH SAM       | STS TO BE PERFORMED                                                                                            | And a second second second second second second second second second second second second second second second  |              | CITY STATE ZIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.2IP                                                                                                           | *****           | tinis a character and printing and print | • • •                               | SUBJECT TO PRIOR    | T TO PRIC        |                | 5                   |                                                                                                                                                                                                                                                                                                                                                                           | 1        |
|                                        | RELIVOUISHED BY /SIGN_AND SEVEN                                                                                | 高いたいには彼られた                                                                                                      | DATE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                 |                                          | A<br>T                              | LABORATORY APPROVAL | R APPR           |                | <u>M</u> Std. 10-14 | 🗴 Std. 10-14 Business Days                                                                                                                                                                                                                                                                                                                                                |          |
|                                        |                                                                                                                |                                                                                                                 | 1-2 C)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | CENED /         | CNA NOIS) 28                             | PRINT)                              |                     |                  | A DATE AND     | J 3-Day Ri          | 3-Day Rush – 100%                                                                                                                                                                                                                                                                                                                                                         |          |
| Je.                                    | at I alm                                                                                                       |                                                                                                                 | 122/         | $\mathbf{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A                                                                                                               | $\langle      $ | $\langle \rangle$                        |                                     |                     |                  | 2-1            | ] 1 week F          | 1 week Rush – 80% `                                                                                                                                                                                                                                                                                                                                                       |          |
| ٥.                                     |                                                                                                                |                                                                                                                 |              | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | À.                                                                                                              |                 | an                                       | e vedan men en en el el en en en en |                     |                  | 7              |                     |                                                                                                                                                                                                                                                                                                                                                                           |          |
| Finance channel within or              | AND THAT WE REAL WAR ARE AND AND AND AND AND AND AND AND AND AND                                               |                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e la superior de la company de la company de la company de la company de la company de la company de la company |                 | ann mannin feann ann a mar a sair a      |                                     | 1                   |                  |                |                     |                                                                                                                                                                                                                                                                                                                                                                           | <b> </b> |

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 141203033  |
|----------|--------------------------|---------------|------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | HCID / VOC |
|          | YAKIMA, WA 98901         |               |            |
| Attn:    | DARA OSBORNE             |               |            |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 141203033-001<br>/5205<br>Water |        | Sampling Da<br>Sampling Ti |        | 11/20/2014<br>1:45 PM  |       | Time Rece<br>action Date |            | 11:50 AM  |
|---------------------------------------------------------|---------------------------------|--------|----------------------------|--------|------------------------|-------|--------------------------|------------|-----------|
| Parameter                                               |                                 | Result | Units                      | PQL    | Analysis               | Date  | Analyst                  | Method     | Qualifier |
| Diesel                                                  |                                 | <0.63  | mg/L                       | 0.63   | 12/9/2                 | 014   | KFG                      | WATPH-HCID |           |
| Gasoline                                                |                                 | <0.25  | mg/L                       | 0.25   | 12/9/2                 | 014   | KFG                      | WATPH-HCID |           |
| Lube Oil                                                |                                 | <0.63  | mg/L                       | 0.63   | 12/9/2                 | 014   | KFG                      | WATPH-HCID |           |
|                                                         |                                 |        | Surrog                     | ate Da | ta                     |       |                          |            |           |
| ample Number                                            | 141203033-001                   |        | <u> </u>                   |        | ···· · - · · · · · · · |       | <u>_</u>                 | <u> </u>   |           |
| Surrogate S                                             | Standard                        |        | Method                     | ł      |                        | Perce | nt Recovery              | Control L  | imits     |
| hexacosane                                              | hexacosane                      |        | WATPH                      |        | 108.8                  |       |                          | 50-150     |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

...

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:VALLEY ENVIRONMENTAL LABBatch #:141203033Address:15 W. YAKIMA AVE STE210Project Name:HCID / VOCYAKIMA, WA 98901YAKIMA OSBORNEFrom the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Natrix<br>Comments | 141203033-001<br>5205<br>Water |        | Sampling Date<br>Sampling Tim |     | 11/20/2014<br>1:45 PM | Date/Time I | Received | 1 <b>2/2/</b> 2014 | 11:50 AM |
|---------------------------------------------------------|--------------------------------|--------|-------------------------------|-----|-----------------------|-------------|----------|--------------------|----------|
| Parameter                                               |                                | Result | Units                         | PQL | Analysis D            | ate Ana     | lyst     | Method             | Qualifie |
| 1,1,1,2-Tetrack                                         | hloroethane                    | ND     | ug/L                          | 0.5 | 12/4/201              | 14 SA       | T EF     | PA 8260B           |          |
| 1,1,1-Trichloro                                         | ethane                         | ND     | ug/L                          | 0.5 | 12/4/201              | 14 SA       | T EF     | PA 8260B           |          |
| 1,1,2,2-Tetracl                                         | hloroethane                    | ND     | ug/L                          | 0.5 | 12/4/201              | 14 SA       | T EF     | A 8260B            |          |
| 1,1,2-Trichloro                                         | ethane                         | ND     | ug/L                          | 0.5 | 12/4/201              | 14 SA       | T EF     | PA 8260B           |          |
| 1,1-Dichloroet                                          | hane                           | ND     | ug/L                          | 0.5 | 12/4/201              | 14 SA       | T EF     | PA 8260B           |          |
| 1,1-Dichloroet                                          | hene                           | ND     | ug/L                          | 0.5 | 12/4/20               | 14 SA       | T EF     | PA 8260B           |          |
| 1,1-dichloropro                                         | opene                          | ND     | ug/L                          | 0.5 | 12/4/20               | 14 SA       | AT EF    | PA 8260B           |          |
| 1,2,3-Trichloro                                         | benzene                        | ND     | ug/L                          | 0.5 | 12/4/20               | 14 SA       | T EF     | PA 8260B           |          |
| 1,2,3-Trichloro                                         | propane                        | ND     | ug/L                          | 0.5 | 12/4/201              | 14 SA       | AT EF    | PA 8260B           |          |
| 1,2,4-Trichloro                                         | benzene                        | ND     | ug/L                          | 0.5 | 12/4/20               | 14 SA       | AT ÉF    | PA 8260B           |          |
| 1,2,4-Trimethy                                          | lbenzene                       | ND     | ug/L                          | 0.5 | 12/4/20               | 14 SA       | AT EF    | PA 8260B           |          |
| 1,2-Dibromo-3                                           | -chloropropane(DBCP)           | ND     | ug/L                          | 0.5 | 12/4/20               | 14 SA       | AT EF    | PA 8260B           |          |
| 1,2-Dlbromoet                                           | lhane                          | ND     | ug/L                          | 0,5 | 12/4/20               | 14 S/       | λT EF    | PA 8260B           |          |
| 1,2-Dichlorobe                                          | enzene                         | ND     | ug/L                          | 0.5 | 12/4/20               | 14 S/       | AT EI    | PA 8260B           |          |
| 1,2-Dichloroet                                          | hane                           | ND     | ug/L                          | 0.5 | 12/4/20               | 14 S/       | AT EI    | PA 8260B           |          |
| 1,2-Dichloropr                                          | opane                          | ND     | ug/L                          | 0.5 | 12/4/20               | 14 S/       | AT EI    | PA 8260B           |          |
| 1,3,5-Trimethy                                          | lbenzene                       | ND     | ug/L                          | 0.5 | 12/4/20               | 14 S/       | AT EI    | PA 8260B           |          |
| 1,3-Dichlorobe                                          | enzene                         | ND     | ug/L                          | 0.5 | 12/4/20               | 14 S/       | AT EI    | PA 8260B           |          |
| 1,3-Dichloropr                                          | ropane                         | ND     | ug/L                          | 0.5 | 12/4/20               | 14 S/       | AT EI    | PA 8260B           |          |
| 1,4-Dichlorobe                                          | enzene                         | ND     | ug/L                          | 0.5 | 12/4/20               | 14 S/       | AT EI    | PA 8260B           |          |
| 2,2-Dichloropr                                          | ropane                         | ND     | ug/L                          | 0.5 | 12/4/20               | 14 S/       | AT EI    | PA 8260B           |          |
| 2-Chlorotoluer                                          | ne                             | NÐ     | ug/L                          | 0.5 | 12/4/20               | 14 S/       | AT EI    | PA 8260B           |          |
| 2-hexanone                                              |                                | ND     | ug/L                          | 2.5 | 12/4/20               | 14 S/       | AT EI    | PA 8260B           |          |
| 4-Chlorotoluer                                          | ne                             | ND     | ug/L                          | 0.5 | 12/4/20               | 14 S/       | AT EI    | PA 8260B           |          |
| Acetone                                                 |                                | ND     | ug/L                          | 2.5 | 12/4/20               | 14 S/       | AT E     | PA 8260B           |          |
| Acrylonitrile                                           |                                | ND     | ug/L                          | 0.5 | 12/4/20               | 14 S/       | AT E     | PA 8260B           |          |
| Benzene                                                 |                                | ND     | ug/L                          | 0.5 | 12/4/20               | 14 S/       | AT E     | PA 8260B           |          |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-092; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: VALLEY ENVIRONMENTAL LAB Address: 15 W. YAKIMA AVE STE210 YAKIMA, WA 98901 Attn: DARA OSBORNE 
 Batch #:
 141203033

 Project Name:
 HCID / VOC

**Analytical Results Report** 

| Sample Number141203033-001Client Sample ID5205MatrixWaterComments |        | Sampling Da<br>Sampling Ti |     | 11/20/2014 Date<br>1:45 PM | /Time Recei | ved 12/2/2014 | 11:50 AM  |
|-------------------------------------------------------------------|--------|----------------------------|-----|----------------------------|-------------|---------------|-----------|
| Parameter                                                         | Result | Units                      | PQL | Analysis Date              | Analyst     | Method        | Qualifier |
| Bromobenzene                                                      | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Bromochloromethane                                                | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Bromodichloromethane                                              | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Bromoform                                                         | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Bromomethane                                                      | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Carbon disulfide                                                  | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Carbon Tetrachloride                                              | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Chlorobenzene                                                     | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Chioroethane                                                      | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Chloroform                                                        | 3.00   | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Chloromethane                                                     | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| cis-1,2-dichloroethene                                            | 1.10   | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| cis-1,3-Dichloropropene                                           | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Dibromochloromethane                                              | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Dibromomethane                                                    | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Dichlorodifluoromethane                                           | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Ethylbenzene                                                      | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Hexachlorobutadiene                                               | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Isopropylbenzene                                                  | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| m+p-Xylene                                                        | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Methyl ethyl ketone (MEK)                                         | ND     | ug/L                       | 2.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Methyl isobutyl ketone (MIBK)                                     | ND     | ug/L                       | 2.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Methylene chloride                                                | ND     | ug/L                       | 2.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| methyl-t-butyl ether (MTBE)                                       | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| Naphthalene                                                       | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| n-Butylbenzene                                                    | ND     | ug/L                       | 0,5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| n-Propylbenzene                                                   | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |
| o-Xylene                                                          | ND     | ug/L                       | 0.5 | 12/4/2014                  | SAT         | EPA 8260B     |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID08013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA0D169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 141203033  |
|----------|--------------------------|---------------|------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | HCID / VOC |
|          | YAKIMA, WA 98901         |               |            |
| Attn:    | DARA OSBORNE             |               |            |
|          |                          |               |            |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 141203033-001<br>5205<br>Water |        | Sampling Di<br>Sampling Ti |     | 11/20/2014 D<br>1:45 PM | ate/Time Recel | ved 12/2/2014 | 11:50 AM |
|---------------------------------------------------------|--------------------------------|--------|----------------------------|-----|-------------------------|----------------|---------------|----------|
| Parameter                                               |                                | Result | Units                      | PQL | Analysis Dat            | e Analyst      | Method        | Qualifie |
| p-isopropyltolue                                        | ne                             | ND     | ug/L                       | 0.5 | 12/4/2014               | SAT            | EPA 8260B     |          |
| sec-Butylbenzen                                         | e                              | ND     | ug/L                       | 0.5 | 12/4/2014               | SAT            | EPA 8260B     |          |
| Styrene                                                 |                                | ND     | ug/L                       | 0.5 | 12/4/2014               | SAT            | EPA 8260B     |          |
| tert-Butylbenzen                                        | e                              | ND     | ug/L                       | 0.5 | 12/4/2014               | SAT            | EPA 8260B     |          |
| Tetrachloroether                                        | ié                             | 2.46   | ug/L                       | 0.5 | 12/4/2014               | SAT            | EPA 8260B     |          |
| Toluene                                                 |                                | ND     | ug/L                       | 0.5 | 12/4/2014               | SAT            | EPA 8260B     |          |
| trans-1,2-Dichlor                                       | oethene                        | ND     | ug/L                       | 0.5 | 12/4/2014               | SAT            | EPA 8260B     |          |
| trans-1,3-Dichtor                                       | opropene                       | ND     | ug/L                       | 0.5 | 12/4/2014               | SAT            | EPA 8260B     |          |
| Trichloroethene                                         |                                | ND     | ug/L                       | 0.5 | 12/4/2014               | SAT            | EPA 8260B     |          |
| Trichloroflourom                                        | ethane                         | ND     | ug/L                       | 0.5 | 12/4/2014               | SAT            | EPA 8260B     |          |
| Vinyl Chloride                                          |                                | ND     | ug/L                       | 0.5 | 12/4/2014               | SAT            | EPA 8260B     |          |

| le Number 141203033-001 |           |                  |                       |  |
|-------------------------|-----------|------------------|-----------------------|--|
| Surrogate Standard      | Method    | Percent Recovery | <b>Control Limits</b> |  |
| 1,2-Dichlorobenzene-d4  | EPA 8260B | 101.6            | 70-130                |  |
| 4-Bromofluorobenzene    | EPA 8260B | 102.4            | 70-130                |  |
| Toluene-d8              | EPA 8260B | 95.6             | 70-130                |  |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT;CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871089

141203033-001

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 141203033 |
|----------|--------------------------|---------------|-----------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: |           |
|          | YAKIMA, WA 98901         | •             |           |
| Attn:    | DARA OSBORNE             |               |           |

### **Analytical Results Report**

Quality Control Data

### Lab Control Sample

| Parameter<br>Trichloroethene<br>Toluene<br>Tetrachloroethene<br>o-Xylene<br>Ethylbenzene<br>Chlorobenzene<br>Benzene | LCS Result<br>9.85<br>10.2<br>9.66<br>11.6<br>10.8<br>10.5<br>9.79 | Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | LCS Spike<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | %Rec<br>98.5<br>102.0<br>96.6<br>116.0<br>108.0<br>105.0<br>97.9 | AR %Rec<br>72-125<br>76-123<br>64-132<br>83-117<br>84-115<br>85-115<br>75-125 | Prep Date<br>12/4/2014<br>12/4/2014<br>12/4/2014<br>12/4/2014<br>12/4/2014<br>12/4/2014<br>12/4/2014 | Analysis Date<br>12/4/2014<br>12/4/2014<br>12/4/2014<br>12/4/2014<br>12/4/2014<br>12/4/2014<br>12/4/2014<br>12/4/2014 |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Benzene<br>1,1-Dichloroethene                                                                                        | 9.79<br>9.70                                                       | ug/L<br>ug/L                                          | 10<br>10                                            | 97.9<br>97.0                                                     | 75-125<br>68-127                                                              |                                                                                                      |                                                                                                                       |

#### Lab Control Sample Duplicate

| Parameter          | LCSD<br>Result | Units | LCSD<br>Spike | %Rec  | %RPD | AR<br>%RPD | Prep Date | Analysis Date          |
|--------------------|----------------|-------|---------------|-------|------|------------|-----------|------------------------|
| Trichloroethene    | 9.79           | ug/L  | 10            | 97.9  | 0.6  | 0-20       | 12/4/2014 | 12/4/2014              |
| Toluene            | 10.2           | ug/L  | 10            | 102.0 | 0.0  | 0-20       | 12/4/2014 | 12/4/2014              |
| Tetrachloroethene  | 9.64           | ug/L  | 10            | 96.4  | 0.2  | 0-20       | 12/4/2014 | 12/4/2014              |
| o-Xylene           | 11.5           | ug/L  | 10            | 115.0 | 0.9  | 0-20       | 12/4/2014 | 12/4/2014              |
| Ethylbenzene       | 10.7           | ug/L  | 10            | 107.0 | 0.9  | 0-20       | 12/4/2014 | 12/4/2014              |
| Chlorobenzene      | 10.5           | ug/L  | 10            | 105.0 | 0.0  | 0-20       | 12/4/2014 | 12/4/2014              |
| Benzene            | 9.74           | ug/L  | 10            | 97.4  | 0.5  | 0-20       | 12/4/2014 |                        |
| 1,1-Dichloroethene | 9.14           | ug/L  | 10            | 91.4  | 5.9  | 0-20       | 12/4/2014 | 12/4/2014<br>12/4/2014 |

#### Matrix Spike

| Sample Number | Parameter         | Sample<br>Result | MS<br>Result | Units | MS<br>Spike | %Rec  | AR<br>%Rec | Prep Date | Analysis Date |
|---------------|-------------------|------------------|--------------|-------|-------------|-------|------------|-----------|---------------|
| 141203033-001 | Trichloroethene   | ND               | 10.5         | ug/L  | 10          | 105.0 | 56-143     | 12/4/2014 | 12/4/2014     |
| 141203033-001 | Toluene           | ND               | 10.5         | ug/L  | 10          | 105.0 | 66-136     | 12/4/2014 | 12/4/2014     |
| 141203033-001 | Tetrachloroethene | 2.46             | 13.5         | ug/L  | 10          | 110.4 | 64-132     | 12/4/2014 | 12/4/2014     |
| 141203033-001 | o-Xylene          | ND               | 12.0         | ug/L  | 10          | 120.0 | 68-134     | 12/4/2014 | 12/4/2014     |
| 141203033-001 | Ethylbenzene      | ND               | 11.1         | ug/L  | 10          | 111.0 | 70-137     | 12/4/2014 | 12/4/2014     |
| 141203033-001 | Chlorobenzene     | ND               | 10.9         | ug/L  | 10          | 109.0 | 68-136     | 12/4/2014 | 12/4/2014     |

#### **Comments:**

Certifications held by Anatek Labs ID: EPA:ID00013: AZ:0701; CO:ID00013: FL(NELAP):E87693; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099 ł

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:                   | VALLEY ENVIRONMENTAL LAB | Batch #:      | 141203033  |  |  |  |
|---------------------------|--------------------------|---------------|------------|--|--|--|
| Address:                  | 15 W. YAKIMA AVE STE210  | Project Name: | HCID / VOC |  |  |  |
|                           | YAKIMA, WA 98901         |               |            |  |  |  |
| Attn:                     | DARA OSBORNE             |               |            |  |  |  |
| Analytical Basults Papart |                          |               |            |  |  |  |

### Analytical Results Report

Quality Control Data

| Matrix Spike  |                    | Sample | MS     |       | MS    |       | AR     |           |               |
|---------------|--------------------|--------|--------|-------|-------|-------|--------|-----------|---------------|
| Sample Number | Parameter          | Result | Result | Units | Spike | %Rec  |        | Prep Date | Analysis Date |
| 141203033-001 | Benzene            | ND     | 10.0   | ug/L  | 10    | 100.0 | 63-139 | 12/4/2014 | 12/4/2014     |
| 141203033-001 | 1,1-Dichloroethene | ND     | 10.1   | ug/L  | 10    | 101.0 | 59-144 | 12/4/2014 | 12/4/2014     |

| Method Blank                      |        |       |     |                    |                    |
|-----------------------------------|--------|-------|-----|--------------------|--------------------|
| Parameter                         | Result | Units | PQL | Prep Date          | Analysis Date      |
| 1,1,1,2-Tetrachloroethane         | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,1,1-Trichloroethane             | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,1,2,2-Tetrachloroethane         | ND     | ug/L  | 0,5 | 12/4/2014          | 12/4/2014          |
| 1,1,2-Trichloroethane             | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,1-Dichloroethane                | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,1-Dichloroethene                | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,1-dichloropropene               | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,2,3-Trichlorobenzene            | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,2,3-Trichloropropane            | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,2,4-Trichlorobenzene            | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,2,4-Trimethylbenzene            | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,2-Dibromo-3-chloropropane(DBCP) | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,2-Dibromoethane                 | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,2-Dichlorobenzene               | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,2-Dichloroethane                | ND     | ug/L  | 0.5 | 1 <b>2/4</b> /2014 | 12/4/2014          |
| 1,2-Dichloropropane               | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,3,5-Trimethylbenzene            | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,3-Dichlorobenzene               | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,3-Dichloropropane               | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 1,4-Dichlorobenzene               | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 2,2-Dichloropropane               | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| 2-Chiorotoluene                   | ND     | ug/L  | 0.5 | 12/4/2014          | 1 <b>2/4</b> /2014 |
| 2-hexanone                        | ND     | ug/L  | 2.5 | 12/4/2014          | 1 <b>2/4/2</b> 014 |
| 4-Chlorotoluene                   | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |
| Acetone                           | ND     | ug/L  | 2.5 | 12/4/2014          | 12/4/2014          |
| Acrylonitríle                     | ND     | ug/L  | 0.5 | 12/4/2014          | 12/4/2014          |

#### Comments:

Gertifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E07693; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 141203033  |
|----------|--------------------------|---------------|------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | HCID / VOC |
|          | YAKIMA, WA 98901         |               |            |
| Attn:    | DARA OSBORNE             |               |            |
|          |                          |               |            |

#### **Analytical Results Report**

**Quality Control Data** 

| Method Blank                  |        |       |     |           |               |
|-------------------------------|--------|-------|-----|-----------|---------------|
| Parameter                     | Result | Units | PQL | Prep Date | Analysis Date |
| Benzene                       | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Bromobenzene                  | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Bromochloromethane            | NÐ     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Bromodichloromethane          | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Bromoform                     | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Bromomethane                  | NĎ     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Carbon disulfide              | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Carbon Tetrachloride          | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Chlorobenzene                 | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Chloroethane                  | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Chloroform                    | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Chloromethane                 | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| cis-1,2-dichloroethene        | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| cis-1,3-Dichloropropene       | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Dibromochloromethane          | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Dibromomethane                | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Dichlorodifluoromethane       | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Ethylbenzene                  | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Hexachlorobutadiene           | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Isopropylbenzene              | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| m+p-Xylene                    | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Methyl ethyl ketone (MEK)     | ND     | ug/L  | 2.5 | 12/4/2014 | 12/4/2014     |
| Methyl isobutyl ketone (MIBK) | ND     | ug/L  | 2.5 | 12/4/2014 | 12/4/2014     |
| Methylene chloride            | ND     | ug/L  | 2.5 | 12/4/2014 | 12/4/2014     |
| methyl-t-butyl ether (MTBE)   | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Naphthalene                   | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| n-Butylbenzene                | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| n-Propylbenzene               | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| o-Xylene                      | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| p-isopropyltoluene            | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| sec-Butylbenzene              | NÐ     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Styrene                       | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| tert-Butylbenzene             | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |

#### Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 141203033  |
|----------|--------------------------|---------------|------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | HCID / VOC |
|          | YAKIMA, WA 98901         |               |            |
| Attn:    | DARA OSBORNE             |               |            |
|          | Analytical Results R     | anart         |            |

### Analytical Results Report

Quality Control Data

| Parameter                 | Result | Units | PQL | Prep Date | Analysis Date |
|---------------------------|--------|-------|-----|-----------|---------------|
| Tetrachloroethene         | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Toluene                   | NĎ     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| trans-1,2-Dichloroethene  | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| trans-1,3-Dichloropropene | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Trichloroethene           | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Trichloroflouromethane    | ND     | ug/L  | 0.5 | 12/4/2014 | 12/4/2014     |
| Vinyl Chloride            | ND     | ug/L  | 0,5 | 12/4/2014 | 12/4/2014     |

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0025; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 141203033  |
|----------|--------------------------|---------------|------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | HCID / VOC |
|          | YAKIMA, WA 98901         |               |            |
| Attn:    | DARA OSBORNE             |               |            |

### Analytical Results Report

Quality Control Data

| Lab Control Sample           |                |             |             |           |      |                |                        |                            |
|------------------------------|----------------|-------------|-------------|-----------|------|----------------|------------------------|----------------------------|
| Parameter                    | LCS Result     | t 1         | Units       | LCS Spike | %Rec | AR %Rec        | Prep Date              | Analysis Date              |
| Diesel                       | 0.276          |             | mg/L        | 0.5       | 55.2 | 50-150         | 12/3/2014              | 12/9/2014                  |
| Lab Control Sample Duplicate |                |             | . <u>.</u>  |           |      |                |                        | ······                     |
| Parameter                    | LCSD<br>Result | Units       | LCS         |           | %RPD |                | Bran Defe              | Analysia Data              |
| Diesel                       | 0.303          | mg/L        | Spik<br>0.5 |           | 9.3  | ) %RPD<br>0-50 | Prep Date<br>12/3/2014 | Analysis Date<br>12/9/2014 |
|                              |                | - THE STATE |             |           |      |                |                        | 12/3/2014                  |
| Method Blank                 |                |             |             |           |      |                |                        |                            |
| Parameter                    |                |             | Result      | U         | nits | PQL            | Prep Date              | Analysis Date              |
| Diesel                       |                |             | ND          | п         | ıg/L | 0.1            | 12/3/2014              | 12/9/2014                  |
| Lube Oil                     |                |             | ND          | r         | ng/L | 0.5            | 12/3/2014              | 12/9/2014                  |

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

### Login Report

| Customer Name: VALLEY ENVIRONM<br>15 W. YAKIMA AVE S<br>YAKIMA<br>Contact Name: DARA OSBORNE | STE210                               | AB<br>/A 98901 | Order ID<br>Order Date<br>Project Name: HCID    | : 12/3/2014                                                                               |
|----------------------------------------------------------------------------------------------|--------------------------------------|----------------|-------------------------------------------------|-------------------------------------------------------------------------------------------|
| Comment:                                                                                     |                                      |                |                                                 |                                                                                           |
| Sample #: 141203033-001 Customer Samp                                                        | ole#: 52(                            | 05             | ang ang ang ang ang ang ang ang ang ang         |                                                                                           |
|                                                                                              | ector:<br>2014 11:50:(               | 00 AM          | Date Collected: 11/20<br>Time Collected: 1:45   | /2014<br>PM                                                                               |
| Test                                                                                         | Lab                                  | Method         | Due Date                                        | Priority                                                                                  |
| HCID                                                                                         | М                                    | WATPH-HCID     |                                                 | Normal (~10 Days)                                                                         |
| VOLATILES 8260                                                                               | М                                    | EPA 8260B      |                                                 | Normal (~10 Days)                                                                         |
| <u>.</u>                                                                                     | ole #: 520<br>ector:<br>2014 11:50:0 |                | Date Collected: 11/20<br>Time Collected: 2:05 F | /2014<br>⊃M                                                                               |
| Test                                                                                         | Lab                                  | Method         | Due Date                                        | Priority                                                                                  |
| HCID                                                                                         | М                                    | WATPH-HCID     | 12/15/2014                                      | Normal (~10 Days)                                                                         |
| VOLATILES 8260                                                                               | М                                    | EPA 8260B      | 12/15/2014                                      | Normal (~10 Davs)                                                                         |
| Sample #: 141203033-003 Customer Samp                                                        | le#: TRI                             | P BLANK 5205   |                                                 | ana 1914 - Januar Andrewski, propriodal († 1946)<br>1999 - Januar Maria, skriger († 1946) |
|                                                                                              | ector:<br>2014 11:50:0               | 00 AM          | Date Collected: 11/20<br>Time Collected:        | /2014                                                                                     |
| Test                                                                                         | Lab                                  | Method         | Due Date f                                      | Priority                                                                                  |
| VOLATILES 8260                                                                               | М                                    | EPA 8260B      | 12/15/2014                                      | Normal (~10 Davs)                                                                         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.127 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S3 VAEL bast 12<br>I201201 1st RCVD<br>Bast 12<br>I201201 1st RCVD<br>HINDPEC International<br>Comparison Control of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of the table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>24-40 Hrs. 100% Rush</li> <li>2 3-Day Rush - 80%</li> <li>4 week Rush - 50%</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 141203 0:<br>141203 0:<br>141203 0:<br>111 Standard Contraction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AN OF CUSTODY RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Children Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLUENT<br>CLIENT<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTORS<br>PORTO | How we want to be a set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the se |

.

et de la companya de la companya de la companya de la companya de la companya de la companya de la companya de

#### Customer Name: VALLEY ENVIRONMENTAL LAB Order ID: 141203033 15 W. YAKIMA AVE STE210 **Order Date:** 12/3/2014 YAKIMA WA 98901 Contact Name: DARA OSBORNE Project Name: HCID / VOC Comment: Sample #: 141203033-004 Customer Sample #: **TRIP BLANK 5206** Recv'd: V Matrix: Water Collector: **Date Collected:** 11/20/2014 Quantity: 1 Date Received: 12/2/2014 11:50:00 AM Time Collected: Comment: Test Lab Method Due Date Priority VOLATILES 8260 М EPA 82608 12/15/2014 Normal (~10 Days) SAMPLE CONDITION RECORD Samples received in a cooler? Yes Samples received intact? Yes What is the temperature inside the cooler? 2.9 Samples received with a COC? Yes Samples received within holding time? Yes Are all sample bottles properly preserved? No Are VOC samples free of headspace? Yes Is there a trip blank to accompany VOC samples? Yes Labels and chain agree? Yes

### VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

**NWTPH-HCID** 

|                                                                                                                                                                                                                                    | Date Collected:                                                                                                                                                           | 11/20/14                                                                                                        |                                     |                                |                                     |                                       |                                                                                                                 |                      |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|-------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|------------|
|                                                                                                                                                                                                                                    | Lab/Sample No:                                                                                                                                                            | the second second second second second second second second second second second second second second second se |                                     |                                | C                                   | County:                               | YAKIMA                                                                                                          |                      |            |
|                                                                                                                                                                                                                                    | Sample Location:                                                                                                                                                          | 141120-W                                                                                                        | 3                                   | <b>.</b>                       |                                     | <u> </u>                              |                                                                                                                 |                      |            |
|                                                                                                                                                                                                                                    |                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                           |                                     |                                |                                     |                                       | 11/21/14                                                                                                        |                      |            |
| a san ang san ang san ang san ang san ang san ang san ang san ang san ang san ang san ang san ang san ang san a<br>San ang san ang |                                                                                                                                                                           |                                                                                                                 |                                     | <u> </u>                       |                                     |                                       | 12/15/14                                                                                                        |                      |            |
| in d                                                                                                                                                                                                                               | l<br>Report To:                                                                                                                                                           |                                                                                                                 |                                     |                                | ole Collect<br>LE COMM              |                                       | and the second second second second second second second second second second second second second second secon | <b>XX</b> 7 4        |            |
| senu                                                                                                                                                                                                                               | PLSA Engineering                                                                                                                                                          |                                                                                                                 | · · · · ·                           | SAMP                           | LE COMIN                            | <u>ENIS</u>                           | Matrix                                                                                                          | : Water              |            |
|                                                                                                                                                                                                                                    | Attn: Scott Garland                                                                                                                                                       |                                                                                                                 |                                     | Tidrie                         | ek                                  |                                       |                                                                                                                 |                      |            |
|                                                                                                                                                                                                                                    | 1120 West Lincoln Avenue                                                                                                                                                  |                                                                                                                 |                                     |                                |                                     |                                       |                                                                                                                 |                      |            |
|                                                                                                                                                                                                                                    | Yakima, WA 98902                                                                                                                                                          |                                                                                                                 |                                     |                                |                                     |                                       |                                                                                                                 |                      |            |
|                                                                                                                                                                                                                                    | waa ah ah ah ah ah ah ah ah ah ah ah ah a                                                                                                                                 |                                                                                                                 |                                     | <u> </u>                       |                                     |                                       |                                                                                                                 |                      |            |
|                                                                                                                                                                                                                                    | NWTPH-HCID                                                                                                                                                                |                                                                                                                 |                                     | <u> </u>                       |                                     | · · · · · · · · · · · · · · · · · · · |                                                                                                                 | ·                    |            |
| H#                                                                                                                                                                                                                                 | Analytes                                                                                                                                                                  | Results                                                                                                         | Units                               | MRL                            | Trigger                             | MCL                                   |                                                                                                                 | Analyzed             |            |
|                                                                                                                                                                                                                                    | Hydrocarbon ID                                                                                                                                                            | NONE                                                                                                            |                                     |                                |                                     |                                       | WATPH-HCID                                                                                                      | 12/09/14             | 125        |
|                                                                                                                                                                                                                                    | % Surrogate Recovery                                                                                                                                                      | 105                                                                                                             | %                                   |                                |                                     |                                       | ( 50 - 150)                                                                                                     | 12/09/14             | 125        |
|                                                                                                                                                                                                                                    | Diesel<br>Gasoline                                                                                                                                                        | <0.63<br><0.25                                                                                                  | mg/L                                | 0.63                           |                                     |                                       | WATPH-HCID                                                                                                      | 12/09/14             | 125        |
|                                                                                                                                                                                                                                    | Lube Oil                                                                                                                                                                  | <0.25                                                                                                           | mg/L<br>mg/L                        | 0.25                           |                                     |                                       | WATPH-HCID<br>WATPH-HCID                                                                                        | 12/09/14<br>12/09/14 | 125<br>125 |
|                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                                                                                                 |                                     |                                |                                     |                                       |                                                                                                                 |                      |            |
|                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                                                                                                 |                                     |                                |                                     |                                       |                                                                                                                 |                      |            |
|                                                                                                                                                                                                                                    | QC ID                                                                                                                                                                     | Units                                                                                                           | Diesel<br>Results                   | True<br>Value                  | %<br>Recovery                       | Limits                                | %<br>RPD                                                                                                        |                      |            |
|                                                                                                                                                                                                                                    | LCS (lab Control Sample)                                                                                                                                                  | mg/L                                                                                                            | 0.276                               | 0.5                            | 55.2                                | 50-150                                |                                                                                                                 |                      |            |
|                                                                                                                                                                                                                                    | MB (method blank)                                                                                                                                                         | mg/L                                                                                                            | ND                                  | ND                             |                                     | ļ                                     |                                                                                                                 |                      |            |
|                                                                                                                                                                                                                                    | LCSD(Lab Control Sample Duplicate                                                                                                                                         | mg/L                                                                                                            | 0.3                                 | 0.5                            | 60.6                                | 0-50                                  | 9.3                                                                                                             |                      |            |
|                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                                                                                                 |                                     |                                |                                     |                                       |                                                                                                                 |                      |            |
| i                                                                                                                                                                                                                                  | MRL (Method Reporting Level): Indicate<br>Trigger: DOH Drinking Water response leven<br>MCL (maximum contaminant level): Hig<br>ND (Not Detected): Indicates this compour | vel. Public Syste<br>hest level recom                                                                           | ems in excess of<br>mended by the f | this level mu<br>ederal govern | ist take addition<br>ment for publi | nal samples<br>c water sys            | s. Recommended range tems.                                                                                      | on packages.         |            |
|                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                                                                                                 |                                     |                                |                                     |                                       |                                                                                                                 |                      |            |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

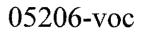
05206-hcid

### VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345 VOLATILE ORGANIC CHEMICALS (VOCs) ANALYSIS REPORT

| Lab/Sample No:                 | 227-05206 | Date C | ollected:                                | 11/20/14  |                                       |            |         |
|--------------------------------|-----------|--------|------------------------------------------|-----------|---------------------------------------|------------|---------|
| Date Received:                 | 11/21/14  | Date R | eported:                                 | 12/15/14  |                                       | Supervisor | : DCO   |
|                                |           | Date A | nalyzed:                                 | 12/04/14  |                                       | Analyst    |         |
|                                |           |        | pled By:                                 |           |                                       |            |         |
| Sample Location:               | 141120-W3 |        | ÷                                        |           |                                       | Invoice#   | : 28371 |
| Send Report To:                |           |        | Sample                                   | e Informa | tion                                  | Matrix     | : Water |
| PLSA Engineering               |           |        |                                          |           | · · · · · · · · · · · · · · · · · · · |            |         |
| Attn: Scott Garland            |           |        | Tidrio                                   | CK        |                                       |            |         |
| 1120 West Lincoln Avenue       |           |        |                                          |           |                                       |            |         |
| Yakima, WA 98902               |           |        |                                          |           |                                       |            |         |
| Volatile Organic Chemical      | <u>s</u>  |        |                                          |           | ·                                     | <u></u>    |         |
| OH# Analytes                   | Results   | Units  | MRL                                      | Trigger   | MCL                                   | Excee      | ds?     |
| BPA REGULATION                 |           |        | n an |           |                                       | Trigger?   | MCL?    |
| 45 Vinyl chloride              | ND        | μg/L   | 0.50                                     | 0.50      | 2.0                                   | N          | N       |
| 46 1,1-Dichloroethylene        | ND        | μg/L   | 0.50                                     | 0.50      | 7.0                                   | N          | N       |
| 47 1,1,1-Trichloroethane       | ND        | μg/L   | 0.50                                     | 0.50      | 200                                   | N          | N       |
| 48 Carbon tetrachloride        | ND        | μg/L   | 0.50                                     | 0.50      | 5.0                                   | N          | N       |
| 49 Benzene                     | ND        | μg/L   | 0.50                                     | 0.50      | 5.0                                   | N          | N       |
| 50 1,2-Dichloroethane          | ND        | μg/L   | 0.50                                     | 0.50      | 5.0                                   | N          | N       |
| 51 Trichloroethylene           | ND        | μg/L   | 0.50                                     | 0.50      | 5.0                                   | N          | N       |
| 52 1,4-Dichlorobenzene         | ND        | μg/L   | 0.50                                     | 0.50      | 75                                    | N          | N       |
| 56 Dichloromethane             | ND        | μg/L   | 0.50                                     | 0.50      | 5.0                                   | N          | N       |
| 57 trans-1,2-Dichloroethylene  | ND        | μg/L   | 0.50                                     | 0.50      | 100                                   | Ν          | N       |
| 60 cis-1,2-Dichloroethylene    | ND        | μg/L   | 0.50                                     | 0.50      | 70                                    | N          | N       |
| 63 1,2-Dichloropropane         | 0.94      | μg/L   | 0.50                                     | 0.50      | 5.0                                   | N          | N       |
| 66 Toluene                     | ND        | μg/L   | 0.50                                     | 0.50      | 1000                                  | N          | N       |
| 67 1,1,2-Trichloroethane       | ND        | μg/L   | 0.50                                     | 0.50      | 5.0                                   | N          | N       |
| 68 Tetrachloroethene           | 2.23      | μg/L   | 0.50                                     | 0.50      | 5.0                                   | N          | N       |
| 71 Chlorobenzene               | ND        | μg/L   | 0.50                                     | 0.50      | 100                                   | N          | N       |
| 73 Ethylbenzene                | ND        | μg/L   | 0.50                                     | 0.50      | 700                                   | N          | N       |
| 76 Styrene                     | ND        | μg/L   | 0.50                                     | 0.50      | 100                                   | N          | N       |
| 84 1,2-Dichlorobenzene         | ND        | μg/L   | 0.50                                     | 0.50      | 600                                   | N          | N       |
| 95 1,2,4-Trichlorobenzene      | ND        | μg/L   | 0.50                                     | 0.50      | 70                                    | N          | N       |
| 160 Total Xylenes              | ND        | μg/L   | 0.50                                     | 0.50      | 10000                                 | N          | N       |
| 74 m,p-Xylenes (MCL for Total) | ND        | μg/L   | 0.50                                     | 0.50      | ļl .                                  | N          | N       |
| 75 o-Xylene (MCL for Total)    | ND -      | μg/L   | 0.50                                     | 0.50      |                                       | N          | N       |

Trigger: DOH Drinking Water response level. Public Systems in excess of this level must take additional samples. Recommended range on packages.

05206-voc


MCL (maximum contaminant level): Highest level recommended by the federal government for public water systems.

ND (Not Detected): Indicates this compound was analyzed and not detected at a level greater than or equal to the MRL or SRL.

### VALLEY Environmental Laboratory Washington State Certified Lab #227 - DOE Accredited Lab C345

|                                         | Lab Sample No:            | 22705206 | VOC's Analysis Report - Page 2 |      |         |            |  |  |
|-----------------------------------------|---------------------------|----------|--------------------------------|------|---------|------------|--|--|
| DOH#                                    | Analytes                  | Results  | Units                          | SRL  | Trigger | MCL        |  |  |
|                                         | EPA UNRICOULATED          |          |                                |      |         |            |  |  |
| 27                                      | Chloroform                | 2.79     | μg/L                           | 0.50 |         |            |  |  |
| 28                                      | Bromodichloromethane      | ND       | μg/L                           | 0.50 |         |            |  |  |
| 29                                      | Dibromochloromethane      | ND       | μg/L                           | 0.50 |         |            |  |  |
| 30                                      | Bromoform                 | ND       | μg/L                           | 0.50 |         |            |  |  |
| 53                                      | Chloromethane             | ND       | µg/L                           | 0.50 | 0.50    |            |  |  |
| 54                                      | Bromomethane              | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 55                                      | Chloroethane              | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 58                                      | 1,1-Dichloroethane        | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 59                                      | 2,2-Dichloropropane       | ND       | µg/L                           | 0.50 | 0.50    |            |  |  |
| 62                                      | 1,1-Dichloropropene       | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 64                                      | Dibromomethane            | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 70                                      | 1,3-Dichloropropane       | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 70                                      | 1,1,1,2-Tetrachloroethane | ND<br>ND |                                |      |         |            |  |  |
| 72                                      | Bromobenzene              | ND<br>ND | μg/L<br>μg/L                   | 0.50 | 0.50    |            |  |  |
| 78                                      | 1,2,3-Trichloropropane    | ND<br>ND | $\frac{\mu g/L}{\mu g/L}$      | 0.50 | 0.50    |            |  |  |
| 80                                      | 1,1,2,2-Tetrachloroethane | ND       | μg/L<br>μg/L                   | 0.50 | 0.50    |            |  |  |
| 81                                      | o-Chlorotoluene           | ND       | μg/L<br>μg/L                   | 0.50 | 0.50    |            |  |  |
| 82                                      | p-Chlorotoluene           | ND       | μg/L<br>μg/L                   | 0.50 | 0.50    |            |  |  |
| 83                                      | m-Dichlorobenzene         | ND       | μg/L<br>μg/L                   | 0.50 | 0.50    |            |  |  |
| 104                                     | Dichlorodifluoromethane   | ND       | μg/L<br>μg/L                   | 0.50 | 0.50    |            |  |  |
|                                         | STATEUNREGULATED          |          | <u> </u>                       | 0.50 | 0.50    |            |  |  |
| 65                                      | cis-1,3-Dichloropropene   | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 69                                      | trans-1,3-Dichloropropene | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 85                                      | Fluorotrichloromethane    | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 86                                      | Bromochloromethane        | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 87                                      | Isopropylbenzene          | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 88                                      | n-Propylbenzene           | ND       | μg/L                           | 0,50 | 0.50    |            |  |  |
| 89                                      | 1,3,5-Trimethylbenzene    | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 90                                      | tert-Butylbenzene         | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 91                                      | 1,2,4-Trimethylbenzene    | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 92                                      | sec-Butylbenzene          | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 93                                      | p-Isopropyltoluene        | ND       | µg/L                           | 0.50 | 0.50    | ·_ ·_ ·_ · |  |  |
| 94                                      | n-Butylbenzene            | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 96                                      | Naphthalene               | ND       | μg/L                           | 0.50 | 0.50    | . /        |  |  |
| 97                                      | Hexachlorobutadiene       | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 98                                      | 1,2,3-Trichlorobenzene    | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |
| 102                                     | EDB                       | ND       | μg/L                           | 0.50 | 0.02    | 0.05       |  |  |
| 103                                     | DBCP                      | ND       | µg/L                           | 0.50 | 0.04    | 0.20       |  |  |
| 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | Methyl Tert-Butyl Ether   | ND       | μg/L                           | 0.50 | 0.50    |            |  |  |

Approved By:



1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 141203033  |
|----------|--------------------------|---------------|------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | HCID / VOC |
|          | YAKIMA, WA 98901         |               |            |
| Attn:    | DARA OSBORNE             |               |            |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 141203033-002<br>5206<br>Water |        | Sampling Da<br>Sampling Ti |        | 11/20/2014<br>2:05 PM |        | /Time Rece<br>action Date |            | 11:50 AM  |
|---------------------------------------------------------|--------------------------------|--------|----------------------------|--------|-----------------------|--------|---------------------------|------------|-----------|
| Parameter                                               |                                | Result | Units                      | PQL    | Analysis              | Date   | Analyst                   | Method     | Qualifier |
| Diesel                                                  |                                | <0.63  | mg/L                       | 0.63   | 12/9/20               | 014    | KFG                       | WATPH-HCID |           |
| Gasoline                                                |                                | <0.25  | mg/L                       | 0.25   | 12/9/20               | 014    | KFG                       | WATPH-HCID |           |
| Lube Oil                                                |                                | <0.63  | mg/L                       | 0.63   | 12/9/20               | 014    | KFG                       | WATPH-HCID |           |
|                                                         |                                |        | Surrog                     | ate Da | ta                    |        |                           |            |           |
| ample Number                                            | 141203033-002                  |        |                            |        |                       |        |                           |            |           |
| Surrogate S                                             | tandard                        |        | Method                     | I      |                       | Percei | nt Recovery               | Control I  | .imits    |

WATPH-HCID

105.0

Authorized Signature

hexacosane

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERY0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

50-150

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

 Batch #:
 141203033

 Project Name:
 HCID / VOC

#### **Analytical Results Report**

| Sample Number 141203033-002<br>Client Sample ID :5206<br>Matrix Water<br>Comments |        | Sampling D<br>Sampling Ti |     | 11/20/2014 Date<br>2:05 PM | /Time Receiv | ved 12/2/2014 | 11;50 AM  |
|-----------------------------------------------------------------------------------|--------|---------------------------|-----|----------------------------|--------------|---------------|-----------|
| Parameter                                                                         | Result | Units                     | PQL | Analysis Date              | Analyst      | Method        | Qualifier |
| 1,1,1,2-Tetrachloroethane                                                         | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,1,1-Trichloroethane                                                             | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,1,2,2-Tetrachloroethane                                                         | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,1,2-Trichloroethane                                                             | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,1-Dichloroethane                                                                | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,1-Dichloroethene                                                                | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,1-dichloropropene                                                               | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,2,3-Trichlorobenzene                                                            | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,2,3-Trichloropropane                                                            | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,2,4-Trichlorobenzene                                                            | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,2,4-Trimethylbenzene                                                            | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,2-Dibromo-3-chloropropane(DBCP)                                                 | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,2-Dibromoethane                                                                 | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,2-Dichlorobenzene                                                               | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,2-Dichloroethane                                                                | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,2-Dichloropropane                                                               | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,3,5-Trimethylbenzene                                                            | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,3-Dichlorobenzene                                                               | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,3-Dichloropropane                                                               | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 1,4-Dichlorobenzene                                                               | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 2,2-Dichloropropane                                                               | ND     | ug/L                      | 0,5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 2-Chlorotoluene                                                                   | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 2-hexanorie                                                                       | ND     | ug/L                      | 2.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| 4-Chlorotoluene                                                                   | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| Acetone                                                                           | ND     | ug/L                      | 2.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| Acrylonitrile                                                                     | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| Benzene                                                                           | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |
| Bromobenzene                                                                      | ND     | ug/L                      | 0.5 | 12/4/2014                  | SAT          | EPA 8260B     |           |

Certifications held by Anatek Labs ID: EPA:ID00013; A2:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C595; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, iD 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anatekiabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anatekiabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

 Batch #:
 141203033

 Project Name:
 HCID / VOC

### **Analytical Results Report**

| Sample Number 141203033-002<br>Client Sample ID 5206<br>Natrix Water<br>Comments |        | Sampling Date<br>Sampling Time |     | 11/20/2014 Da<br>2:05 PM | ate/Time Received 12/2/2014 |                        | 11:50 AM  |
|----------------------------------------------------------------------------------|--------|--------------------------------|-----|--------------------------|-----------------------------|------------------------|-----------|
| Parameter                                                                        | Result | Units                          | PQL | Analysis Date            | Analyst                     | Method                 | Qualifier |
| Bromochloromethane                                                               | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Bromodichloromethane                                                             | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Bromoform                                                                        | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Bromomethane                                                                     | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Carbon disulfide                                                                 | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Carbon Tetrachloride                                                             | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Chlorobenzene                                                                    | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Chloroethane                                                                     | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Chloroform                                                                       | 2.79   | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Chloromethane                                                                    | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| cis-1,2-dichloroethene                                                           | 0.94   | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| cis-1,3-Dichloropropene                                                          | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Dibromochloromethane                                                             | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Dibromomethane                                                                   | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Dichlorodifluoromethane                                                          | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Ethylbenzene                                                                     | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Hexachlorobutadiene                                                              | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Isopropylbenzene                                                                 | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| m+p-Xylene                                                                       | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Methyl ethyl ketone (MEK)                                                        | ND     | ug/L                           | 2.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Methyi isobutyi ketone (MIBK)                                                    | ND     | ug/L                           | 2.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Methylene chloride                                                               | ND     | ug/L                           | 2.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| methyl-t-butyl ether (MTBE)                                                      | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| Naphthalene                                                                      | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         |                        |           |
| n-Bulylbenzene                                                                   | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| n-Propylbenzene                                                                  | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT                         | EPA 8260B              |           |
| o-Xylene                                                                         | ND     | ug/L                           | 0.5 | 12/4/2014                |                             | EPA 8260B              |           |
| p-isopropyltoluene                                                               | ND     | ug/L                           | 0.5 | 12/4/2014                | SAT<br>SAT                  | EPA 8260B<br>EPA 8260B |           |
|                                                                                  |        |                                |     |                          |                             |                        |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: VALLEY ENVIRONMENTAL LAB Address: 15 W. YAKIMA AVE STE210 YAKIMA, WA 98901 Attn: DARA OSBORNE

Batch #: 1412
Project Name: HCII

141203033 HCID / VOC

### **Analytical Results Report**

| ample Number<br>ient Sample ID<br>atrix<br>omments | 141203033-002<br>5206<br>Water |        | Sampling Date<br>Sampling Time |     | 11/20/2014<br>2:05 PM | Date/Time Rece | 11:50 AM               |          |
|----------------------------------------------------|--------------------------------|--------|--------------------------------|-----|-----------------------|----------------|------------------------|----------|
| Parameter                                          |                                | Result | Units                          | PQL | Analysis Da           | ite Analyst    | Method                 | Quality  |
| sec-Butylbenze                                     | ne                             | ND     | ug/L                           | 0.5 | 12/4/2014             |                | EPA 8260B              | Qualifie |
| Styrene                                            |                                | ND     | ug/L                           | 0.5 | 12/4/2014             |                | EPA 8260B              |          |
| tert-Butylbenze                                    | ne                             | ND     | ug/L                           | 0.5 | 12/4/2014             |                | EPA 8260B              |          |
| Tetrachloroethe                                    | ne                             | 2.23   | ug/L                           | 0.5 | 12/4/2014             |                | EPA 8260B              |          |
| Toluene                                            |                                | ND     | ug/L                           | 0.5 | 12/4/2014             |                | EPA 8260B              |          |
| Irans-1,2-Dichlo                                   | roethene                       | ND     | ug/L                           | 0.5 | 12/4/2014             | 0/11           |                        |          |
| trans-1,3-Dichlo                                   | ropropene                      | ND     | ug/L                           | 0.5 | 12/4/2014             |                | EPA 8260B              |          |
| Trichloroethene                                    |                                | NÐ     | ug/L                           | 0.5 | 12/4/2014             |                | EPA 8260B              |          |
| Trichloroflouron                                   | ethane                         | ND     | ug/L                           | 0.5 | 12/4/2014             |                | EPA 8260B              |          |
| Vinyl Chloride                                     |                                | ND     | ug/L                           | 0.5 | 12/4/2014             |                | EPA 8260B<br>EPA 8260B |          |

| Sample Number                                            | 141203033-002 |                                               |                                            |                                                        |
|----------------------------------------------------------|---------------|-----------------------------------------------|--------------------------------------------|--------------------------------------------------------|
| Surrogate 3<br>1,2-Dichlorc<br>4-Bromofluc<br>Toluene-d8 | benzene-d4    | Method<br>EPA 8260B<br>EPA 8260B<br>EPA 8260B | Percent Recovery<br>101.6<br>101.2<br>95.6 | Control Limits<br>70-130<br>70-130<br>70-130<br>70-130 |

Surrogate Data

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87693; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C595; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

141203033 Batch #: Project Name:

HCID / VOC

### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Aatrix<br>Comments | 141203033-003<br>TRIP BLANK 5205<br>Water |        | Sampling Da<br>Sampling Ti |     | 11/20/2014 | Date | /Time Receiv | <b>ved</b> 12/2/2014 | 11:50 AM |
|---------------------------------------------------------|-------------------------------------------|--------|----------------------------|-----|------------|------|--------------|----------------------|----------|
| Parameter                                               |                                           | Result | Units                      | PQL | Analysis   | Date | Analyst      | Method               | Qualifie |
| 1,1,1,2-Tetrack                                         | nloroethane                               | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,1,1-Trichloro                                         | ethane                                    | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,1,2,2-Tetracl                                         | nloroethane                               | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,1,2-Trichloro                                         | ethane                                    | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,1-Dichloroeth                                         | nane                                      | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,1-Dichloroeti                                         | nene                                      | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,1-dichloropro                                         | opene                                     | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,2,3-Trichloro                                         | benzene                                   | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,2,3-Trichloro                                         | propane                                   | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,2,4-Trichloro                                         | benzene                                   | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,2,4-Trimethy                                          | lbenzene                                  | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,2-Dibromo-3                                           | -chloropropane(DBCP)                      | ND     | ug/L                       | 0.5 | 12/4/20    | 014  | SAT          | EPA 8260B            |          |
| 1,2-Dibromoet                                           | hane                                      | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,2-Dichlorobe                                          | nzene                                     | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,2-Dichloroetl                                         | hane                                      | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,2-Dichloropre                                         | opane                                     | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,3,5-Trimethy                                          | lbenzene                                  | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,3-Dichlorobe                                          | nzene                                     | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,3-Dichloropr                                          | opane                                     | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 1,4-Dichlorobe                                          | nzene                                     | ND     | ug/L                       | 0,5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 2,2-Dichloropr                                          | opane                                     | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 2-Chlorotoluen                                          | le                                        | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 2-hexanone                                              |                                           | ND     | ug/L                       | 2.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| 4-Chlorotoluen                                          | IE                                        | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| Acetone                                                 |                                           | 15.8   | ug/L                       | 2.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| Acrylonitrile                                           |                                           | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| Benzene                                                 |                                           | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |
| Bromobenzen                                             | 9                                         | ND     | ug/L                       | 0.5 | 12/4/20    | )14  | SAT          | EPA 8260B            |          |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID08013; FL(NELAP):E87693; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

Batch #: 141203033 Project Name:

HCID / VOC

### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Aatrix<br>Comments | 141203033-003<br>TRIP BLANK 5205<br>Water |        | Sampling Da<br>Sampling Ti |     | 11/20/2014 | Date | /Time Receiv | /ed: 12/2/2014 | 11:50 AM  |
|---------------------------------------------------------|-------------------------------------------|--------|----------------------------|-----|------------|------|--------------|----------------|-----------|
| Parameter                                               |                                           | Result | Units                      | PQL | Analysis   | Date | Analyst      | Method         | Qualifie  |
| Bromochlorom                                            | ethane                                    | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      | · · · · · |
| Bromodichloro                                           | methane                                   | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      |           |
| Bromoform                                               |                                           | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      |           |
| Bromomethane                                            | 9                                         | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      |           |
| Carbon disulfid                                         | le                                        | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      |           |
| Carbon Tetrac                                           | hloride                                   | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      |           |
| Chlorobenzene                                           | <b>;</b>                                  | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      |           |
| Chloroethane                                            |                                           | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      |           |
| Chloroform                                              |                                           | ND     | ug/L                       | 0,5 | 12/4/20    | 014  | SAT          | EPA 8260B      |           |
| Chloromethan                                            | ð                                         | ND     | ug/L                       | 0.5 | 12/4/20    | 014  | SAT          | EPA 8260B      |           |
| cis-1,2-dichlord                                        | bethene                                   | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      |           |
| cis-1,3-Dichlor                                         | opropene                                  | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      |           |
| Dibromochloro                                           | methane                                   | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      |           |
| Dibromometha                                            | ne                                        | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      |           |
| Dichlorodifluor                                         | omethane                                  | ND     | ug/L                       | 0.5 | 12/4/20    | 014  | SAT          | EPA 8260B      |           |
| Ethylbenzene                                            |                                           | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      |           |
| Hexachlorobut                                           | adiene                                    | ND     | ug/L                       | 0.5 | 12/4/20    | 014  | SAT          | EPA 8260B      |           |
| Isopropylbenze                                          | ene                                       | ND     | ug/L                       | 0.5 | 12/4/20    | 014  | SAT          | EPA 8260B      |           |
| m+p-Xylene                                              |                                           | ND     | ug/L                       | 0.5 | 12/4/2     | 014  | SAT          | EPA 8260B      |           |
| Methyl ethyl ke                                         | tone (MEK)                                | ND     | ug/L                       | 2.5 | 12/4/20    | 014  | SAT          | EPA 8260B      |           |
| Methyl isobutyl                                         | ketone (MIBK)                             | ND     | ug/L                       | 2.5 | 12/4/20    | 014  | SAT          | EPA 8260B      |           |
| Methylene chlo                                          | ride                                      | ND     | ug/L                       | 2.5 | 12/4/20    | 014  | SAT          | EPA 8260B      |           |
| methyl-t-butyl e                                        | ther (MTBE)                               | ND     | ug/L                       | 0.5 | 12/4/20    | 014  | SAT          | EPA 8260B      |           |
| Naphthalene                                             |                                           | ND     | ug/L                       | 0.5 | 12/4/20    |      | SAT          | EPA 8260B      |           |
| n-Butylbenzene                                          | 9                                         | ND     | ug/L                       | 0.5 | 12/4/20    |      | SAT          | EPA 8260B      |           |
| n-Propylbenzer                                          | 10                                        | ND     | սց/Լ                       | 0.5 | 12/4/20    | 014  | SAT          | EPA 8260B      |           |
| o-Xylene                                                |                                           | ND     | ug/L                       | 0.5 | 12/4/20    | 014  | SAT          | EPA 8260B      |           |
| p-isopropyltolu                                         | ene                                       | ND     | ug/L                       | 0.5 | 12/4/20    |      | SAT          | EPA 8260B      |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C595; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

> 141203033 HCID / VOC

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      |
|----------|--------------------------|---------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: |
|          | YAKIMA, WA 98901         | -             |
| Attn:    | DARA OSBORNE             |               |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 141203033-003<br>TRIP BLANK 5205<br>Water |        | Sampling D<br>Sampling Ti |     | 11/20/2014 D | ate/Time Rece | ived 12/2/2014 | 11:50 AM |
|---------------------------------------------------------|-------------------------------------------|--------|---------------------------|-----|--------------|---------------|----------------|----------|
| Parameter                                               |                                           | Result | Units                     | PQL | Analysis Dat | e Analyst     | Method         | Qualifie |
| sec-Butylbenze                                          | ene                                       | ND     | ug/L                      | 0.5 | 12/4/2014    | SAT           | EPA 8260B      |          |
| Styrene                                                 |                                           | ND     | ug/L                      | 0.5 | 12/4/2014    | SAT           | EPA 8260B      |          |
| tert-Butylbenze                                         | ne                                        | ND     | ug/L                      | 0.5 | 12/4/2014    | SAT           | EPA 8260B      |          |
| Tetrachloroethe                                         | e                                         | ND     | ug/L                      | 0.5 | 12/4/2014    | SAT           | EPA 8260B      |          |
| Toluene                                                 |                                           | ND     | ug/L                      | 0.5 | 12/4/2014    | SAT           | EPA 8260B      |          |
| trans-1,2-Dichk                                         | proethene                                 | ND     | ug/L                      | 0.5 | 12/4/2014    | SAT           | EPA 8260B      |          |
| trans-1,3-Dichle                                        | propropene                                | ND     | ug/L                      | 0.5 | 12/4/2014    | SAT           | EPA 8260B      |          |
| Trichloroethene                                         | )                                         | ND     | ug/L                      | 0.5 | 12/4/2014    | SAT           | EPA 8260B      |          |
| Trichloroflouron                                        | nethane                                   | ND     | ug/L                      | 0.5 | 12/4/2014    | SAT           | EPA 8260B      |          |
| Vinyl Chloride                                          |                                           | ND     | ug/L                      | 0.5 | 12/4/2014    | SAT           | EPA 8260B      |          |

| Sample Number 141203033-003                                                        |                                               | · · · · · · · · · · · · · · · · · · ·      |                                                        |
|------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------------------------------|
| Surrogate Standard<br>1,2-Dichlorobenzene-d4<br>4-Bromofluorobenzene<br>Toluene-d8 | Method<br>EPA 8260B<br>EPA 8260B<br>EPA 8260B | Percent Recovery<br>101.2<br>100.8<br>95.6 | Control Limits<br>70-130<br>70-130<br>70-130<br>70-130 |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87693; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

. .

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

Batch #: 141203033 Project Name: HCID / VOC

#### **Analytical Results Report**

| ample Number<br>lient Sample ID<br>atrix<br>omments | 141203033-004<br>TRIP BLANK 5206<br>Water |        | Sampling Da<br>Sampling Ti |     | 11/20/2014 | Date         | /Time Receiv | ed 12/2/2014 | 11:50 AM |
|-----------------------------------------------------|-------------------------------------------|--------|----------------------------|-----|------------|--------------|--------------|--------------|----------|
| Parameter                                           |                                           | Result | Units                      | PQL | Analysis   | Date         | Analyst      | Method       | Qualifie |
| 1,1,1,2-Tetrack                                     | loroethane                                | ND     | ug/L                       | 0.5 | 12/4/2     | 014          | SAT          | EPA 8260B    |          |
| 1,1,1-Trichloro                                     | ethane                                    | ND     | ug/L                       | 0.5 | 12/4/2     | 014          | SAT          | EPA 8260B    |          |
| 1,1,2,2-Tetrack                                     | nioroethane                               | ND     | ug/L                       | 0.5 | 12/4/20    | 014          | SAT          | EPA 8260B    |          |
| 1,1,2-Trichloro                                     | ethane                                    | ND     | ug/L                       | 0.5 | 12/4/20    | 014          | SAT          | EPA 8260B    |          |
| 1,1-Dichloroeth                                     | nane                                      | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | ŠAT          | EPA 8260B    |          |
| 1,1-Dichloroeth                                     | lene                                      | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 1,1-dichloropro                                     | pene                                      | ND     | ug/L                       | 0.5 | 12/4/20    | ) <b>1</b> 4 | SAT          | EPA 8260B    |          |
| 1,2,3-Trichlorol                                    | benzene                                   | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 1,2,3-Trichloro                                     | propane                                   | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 1,2,4-Trichlorol                                    | benzene                                   | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 1,2,4-Trimethyl                                     | benzene                                   | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 1,2-Dibromo-3-                                      | -chloropropane(DBCP)                      | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 1,2-Dibromoeth                                      | nane                                      | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 1,2-Dichlorober                                     | nzene                                     | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 1,2-Dichloroeth                                     | iane                                      | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 1,2-Dichloropro                                     | pane                                      | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 1,3,5-Trimethyl                                     | benzene                                   | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 1,3-Dichlorobei                                     | nzene                                     | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 1,3-Dichloropro                                     | ppane                                     | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 1,4-Dichlorober                                     | nzene                                     | ND     | ug/L                       | 0.5 | 12/4/20    | )14          | SAT          | EPA 8260B    |          |
| 2,2-Dichloropro                                     | pane                                      | ND     | ug/L                       | 0.5 | 12/4/20    | 14           | SAT          | EPA 8260B    |          |
| 2-Chlorotoluen                                      | e                                         | ND     | ug/L                       | 0.5 | 12/4/20    | 14           | SAT          | EPA 8260B    |          |
| 2-hexanone                                          |                                           | ND     | ug/L                       | 2.5 | 12/4/20    | 14           | SAT          | EPA 8260B    |          |
| 4-Chlorotoluene                                     | e                                         | ND     | ug/L                       | 0.5 | 12/4/20    | 14           | SAT          | EPA 8260B    |          |
| Acetone                                             |                                           | 11.7   | ug/L                       | 2.5 | 12/4/20    | 14           | SAT          | EPA 8260B    |          |
| Acrylonitrile                                       |                                           | ND     | ug/L                       | 0.5 | 12/4/20    | 14           | SAT          | EPA 8260B    |          |
| Benzene                                             |                                           | ND     | ug/L                       | 0.5 | 12/4/20    | 14           | SAT          | EPA 8260B    |          |
| Bromobenzene                                        |                                           | ND     | ug/L                       | 0.5 | 12/4/20    | 14           | SAT          | EPA 8260B    |          |

Certifications held by Analek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Analek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

141203033

HCID / VOC

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      |
|----------|--------------------------|---------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: |
|          | YAKIMA, WA 98901         | -             |
| Attn:    | DARA OSBORNE             |               |

### **Analytical Results Report**

| imple Number<br>lent Sample ID<br>atrix<br>omments | 141203033-004<br>TRIP BLANK 5206<br>Water |        | Sampling Da<br>Sampling Ti |     | 11/20/2014 | Date       | /Time Recei | ived 12/2/2014 | 11:50 AM  |
|----------------------------------------------------|-------------------------------------------|--------|----------------------------|-----|------------|------------|-------------|----------------|-----------|
| Parameter                                          |                                           | Result | Units                      | PQL | Analysis   | Date       | Analyst     | Method         | Qualifier |
| Bromochlorom                                       | ethane                                    | ND     | ug/L                       | 0.5 | 12/4/20    | )14        | SAT         | EPA 8260B      |           |
| Bromodichloro                                      | methane                                   | ND     | ug/L                       | 0.5 | 12/4/20    | )14        | SAT         | EPA 8260B      |           |
| Bromoform                                          |                                           | ND     | ug/L                       | 0.5 | 12/4/20    | <b>)14</b> | SAT         | EPA 8260B      |           |
| Bromomethane                                       | 9                                         | ND     | ug/L                       | 0.5 | 12/4/20    | )14        | SAT         | EPA 8260B      |           |
| Carbon disulfid                                    | le                                        | ND     | ug/L                       | 0.5 | 12/4/20    | )14        | SAT         | EPA 8260B      |           |
| Carbon Tetraci                                     | hloride                                   | ND     | ug/L                       | 0.5 | 12/4/20    | )14        | SAT         | EPA 8260B      |           |
| Chlorobenzene                                      | 1                                         | ND     | ug/L.                      | 0.5 | 12/4/20    | )14        | SAT         | EPA 8260B      |           |
| Chloroethane                                       |                                           | ND     | ug/L                       | 0.5 | 12/4/20    | )14        | SAT         | EPA 8260B      |           |
| Chloroform                                         |                                           | ND     | ug/L                       | 0.5 | 12/4/20    | 14         | SAT         | EPA 8260B      |           |
| Chloromethane                                      | •                                         | ND     | ug/L                       | 0.5 | 12/4/20    | 114        | SAT         | EPA 8260B      |           |
| cis-1,2-dichloro                                   | ethene                                    | ND     | ug/L                       | 0.5 | 12/4/20    | 14         | SAT         | EPA 8260B      |           |
| cis-1,3-Dichloro                                   | propene                                   | ND     | ug/L                       | 0.5 | 12/4/20    | 14         | SAT         | EPA 8260B      |           |
| Dibromochloror                                     | methane                                   | ND     | ug/L                       | 0.5 | 12/4/20    | 14         | SAT         | EPA 8260B      |           |
| Dibromomethar                                      | ne                                        | ND     | ug/L                       | 0.5 | 12/4/20    | 14         | SAT         | EPA 8260B      |           |
| Dichlorodifluoro                                   | methane                                   | ND     | ug/L                       | 0.5 | 12/4/20    | 14         | SAT         | EPA 8260B      |           |
| Ethylbenzene                                       |                                           | ND     | ug/L                       | 0.5 | 12/4/20    | 14         | SAT         | EPA 8260B      |           |
| Hexachlorobuta                                     | diene                                     | ND     | ug/L                       | 0.5 | 12/4/20    | 14         | SAT         | EPA 8260B      |           |
| Isopropylbenze                                     | ne                                        | ND     | ug/L                       | 0.5 | 12/4/20    | 14         | SAT         | EPA 8260B      |           |
| m+p-Xylene                                         |                                           | ND     | ug/L                       | 0,5 | 12/4/20    | 14         | SAT         | EPA 8260B      |           |
| Methyl ethyl ket                                   | ione (MEK)                                | ND     | ug/L                       | 2.5 | 12/4/20    | 14         | SAT         | EPA 8260B      |           |
| Methyl isobutyl                                    | ketone (MIBK)                             | ND     | ug/L                       | 2.5 | 12/4/20    | 14         | SAT         | EPA 8260B      |           |
| Methylene chlor                                    | ride                                      | ND     | ug/L                       | 2.5 | 12/4/20    | 14         | SAT         | EPA 8260B      |           |
| methyl-t-butyl el                                  | lher (MTBE)                               | ND     | ug/L                       | 0.5 | 12/4/20    |            | SAT         | EPA 8260B      |           |
| Naphthalene                                        |                                           | ND     | ug/L                       | 0.5 | 12/4/20    |            | SAT         | EPA 8260B      |           |
| n-Butylbenzene                                     |                                           | ND     | ug/L                       | 0.5 | 12/4/20    |            | SAT         | EPA 8260B      |           |
| n-Propylbenzen                                     | e                                         | ND     | ug/L                       | 0.5 | 12/4/20    |            | SAT         | EPA 8260B      |           |
| o-Xylene                                           |                                           | ND     | ug/L                       | 0.5 | 12/4/20    |            | SAT         | EPA 8260B      |           |
| p-isopropyltolue                                   | ne                                        | ND     | ug/L                       | 0.5 | 12/4/20    |            | SAT         | EPA 8260B      |           |

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00D13; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB |
|----------|--------------------------|
| Address: | 15 W. YAKIMA AVE STE210  |
|          | YAKIMA, WA 98901         |
| Attn:    | DARA OSBORNE             |

Batch #: 141203033 Project Name:

HCID / VOC

### **Analytical Results Report**

| mple Number<br>ient Sample ID<br>itrix<br>mments | 141203033-004<br>TRIP BLANK 5206<br>Water |        | Sampling D<br>Sampling T |     | 11/20/2014 Da | ate/Time Rece | lived 12/2/2014 | 11:50 AM  |
|--------------------------------------------------|-------------------------------------------|--------|--------------------------|-----|---------------|---------------|-----------------|-----------|
| Parameter                                        |                                           | Result | Units                    | PQL | Analysis Date | A             |                 |           |
| sec-Butylbenze                                   | ne                                        | ND     | ug/L_                    | 0.5 | 12/4/2014     |               | Method          | Qualifier |
| Styrene                                          |                                           | ND     | ug/L                     | 0.5 |               | SAT           | EPA 8260B       |           |
| tert-Butylbenzer                                 | ne                                        | ND     | ug/L                     |     | 12/4/2014     | SAT           | EPA 8260B       |           |
| Tetrachloroethe                                  | ne                                        | ND     | -                        | 0.5 | 12/4/2014     | SAT           | EPA 8260B       |           |
| Toluene                                          |                                           | ND     | ug/L                     | 0.5 | 12/4/2014     | SAT           | EPA 8260B       |           |
| trans-1,2-Dichlo                                 | roothona                                  |        | ug/L                     | 0.5 | 12/4/2014     | SAT           | EPA 8260B       |           |
|                                                  |                                           | ND     | ug/L                     | 0.5 | 12/4/2014     | SAT           | EPA 8260B       |           |
| trans-1,3-Dichlo                                 | ropropene                                 | ND     | ug/L                     | 0.5 | 12/4/2014     | SAT           | EPA 8260B       |           |
| Trichloroethene                                  |                                           | ND     | ug/L                     | 0.5 | 12/4/2014     |               |                 |           |
| Trichloroflourom                                 | ethane                                    | ND     | ug/L                     | 0.5 |               | SAT           | EPA 8260B       |           |
| Vinyl Chloride                                   |                                           |        |                          |     | 12/4/2014     | SAT           | EPA 8260B       |           |
|                                                  |                                           | ND     | ug/L                     | 0.5 | 12/4/2014     | SAT           | EPA 8260B       |           |

#### Surrogate Data

| Sample Number               | 141203033-004                          |                     | ······································ | ······           |
|-----------------------------|----------------------------------------|---------------------|----------------------------------------|------------------|
| Surrogate :<br>1,2-Dichloro | Standard<br>obenzene-d4                | Method<br>EPA 8260B | Percent Recovery                       | Control Limits   |
| 4-Bromofluc<br>Toluene-d8   | probenzene                             | EPA 8260B           | 100.4<br>100.4                         | 70-130<br>70-130 |
|                             | ······································ | EPA 8260B           | 95.6                                   | 70-130           |

Authorized Signature

oln. Call John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL **Practical Quantitation Limit** 

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87693; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

### VALLEY Environmental Laboratory

## Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

| Date Co                                                     | Nected: 07/08/14                                                                                                                        |                                  |                                                     |                   |                                          | <u> </u>                       |          |            |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------|-------------------|------------------------------------------|--------------------------------|----------|------------|--|--|
|                                                             | ple No: 227-70813                                                                                                                       |                                  | ·                                                   | C                 | ounty:                                   | YAKIMA                         |          |            |  |  |
| K45 X                                                       | ocation: OWS2                                                                                                                           |                                  | Date Received: 07/08/14                             |                   |                                          |                                |          |            |  |  |
|                                                             |                                                                                                                                         | <u></u>                          | 1                                                   | Date Rep          |                                          |                                |          |            |  |  |
| n hada-er<br>Manazar<br>Baharar                             | 4                                                                                                                                       |                                  | Samp                                                | le Collect        |                                          |                                |          |            |  |  |
| nd Report To:                                               | <u> </u>                                                                                                                                |                                  |                                                     | E COMM            |                                          | Matrix                         | k: Soil  | - <u></u>  |  |  |
| PLSA Engineering<br>Attn: Scott Garlan<br>1120 West Lincoln | d<br>Avenue                                                                                                                             | <u></u>                          |                                                     |                   | <u> </u>                                 |                                |          |            |  |  |
| Yakima, WA 9890<br>Cadmium, Chromi                          |                                                                                                                                         |                                  |                                                     |                   |                                          |                                |          |            |  |  |
| )H# Analytes                                                | Results                                                                                                                                 | Units                            | MRL                                                 | Trigger           | MCL                                      | Method                         | Analyzed | Anal       |  |  |
| Cadmium                                                     | 0.890                                                                                                                                   | mg/kg                            | 0.507                                               |                   | T                                        | EPA 6020A                      | 07/23/14 |            |  |  |
| Chromium                                                    | 21.7                                                                                                                                    | mg/kg                            | 0.507                                               |                   |                                          | EPA 6020A                      | 07/23/14 |            |  |  |
| Nickel                                                      | 21.6                                                                                                                                    | mg/kg                            | 0.507                                               |                   |                                          | EPA 6020A                      |          | 125        |  |  |
| Zinc                                                        | 151<br>123                                                                                                                              | mg/kg<br>mg/kg                   | 0.507                                               | ·.···             |                                          | EPA 6020A<br>EPA 6020A         | 07/23/14 | 125<br>125 |  |  |
|                                                             |                                                                                                                                         |                                  |                                                     |                   |                                          |                                |          |            |  |  |
| Trigger: DOH Drinking Wa<br>MCL (maximum contanias          | evel): Indicates the minimum<br>ter response level. Public System<br>(net level): Highest level recom<br>(s) this compound was analyzed | ems in excess t<br>mended by the | of this level m<br>federal gover<br>ed at a level g | ust take addition | nal sampli<br>ic water sy<br>qual to the | es. Recommended far<br>/stems. |          |            |  |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

70813-cdcrni

### VALLEY Environmental Laboratory

# Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

| <u> </u>                                           | Date Collected                                                                                                           |                                                  | lium, Co                         |                                                    |                                                                                             | .,                                         | ,<br>                        | <u></u>  |               |  |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------|----------|---------------|--|
|                                                    |                                                                                                                          |                                                  |                                  |                                                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                     |                                            |                              |          |               |  |
| Lab/Sample No: 227-70814<br>Sample Location: OWS13 |                                                                                                                          |                                                  |                                  |                                                    | County: YAKIMA                                                                              |                                            |                              |          |               |  |
| Sample Location, Owors                             |                                                                                                                          |                                                  |                                  |                                                    | Date Received: 07/08/14                                                                     |                                            |                              |          |               |  |
|                                                    |                                                                                                                          |                                                  |                                  |                                                    | Date Reported: 07/29/14                                                                     |                                            |                              |          |               |  |
|                                                    |                                                                                                                          |                                                  |                                  |                                                    | Sample Collected By: SDG                                                                    |                                            |                              |          |               |  |
| end Report To:                                     |                                                                                                                          |                                                  |                                  |                                                    | E COMM                                                                                      | ENTS                                       | Matrix                       | :: Soil  | <u></u>       |  |
| PLSA                                               | Engineering                                                                                                              |                                                  |                                  |                                                    |                                                                                             |                                            |                              |          |               |  |
|                                                    | Scott Garland                                                                                                            |                                                  |                                  |                                                    |                                                                                             |                                            |                              |          |               |  |
| 1120                                               | West Lincoln Aven                                                                                                        | ue                                               |                                  |                                                    |                                                                                             |                                            |                              |          |               |  |
| Yakin                                              | na, WA 98902                                                                                                             | ····                                             |                                  | <u> </u>                                           |                                                                                             |                                            |                              |          |               |  |
| Cadm                                               | ium, Chromium, N                                                                                                         | lickel, Zinc                                     |                                  |                                                    |                                                                                             |                                            |                              |          |               |  |
| OH# Analy                                          |                                                                                                                          | Results                                          | Units                            | MRL                                                | Trigger                                                                                     | MCL                                        | Method                       | Analyzed |               |  |
| Cadmi                                              |                                                                                                                          | ND                                               | mg/kg                            | 0.472                                              |                                                                                             | i                                          | EPA 6020A                    | 07/23/14 | <u></u>       |  |
| Chrom                                              |                                                                                                                          | 17.0                                             | mg/kg                            | 0.472                                              |                                                                                             |                                            | EPA 6020A<br>EPA 6020A       | 07/23/14 | 125           |  |
| Nickel                                             |                                                                                                                          | <u>  13.9</u><br>  48.6                          | mg/kg<br>mg/kg                   | 0.472                                              |                                                                                             |                                            | EPA 6020A                    | 07/23/14 | 125           |  |
| Zinc<br>Lead                                       | <u></u>                                                                                                                  | 3.31                                             | mg/kg                            | 0.507                                              |                                                                                             |                                            | EPA 6020A                    | 07/23/14 | 125           |  |
|                                                    |                                                                                                                          |                                                  |                                  |                                                    |                                                                                             | 1                                          |                              |          | T             |  |
|                                                    |                                                                                                                          |                                                  |                                  |                                                    | ~                                                                                           |                                            |                              | f        | L             |  |
|                                                    |                                                                                                                          |                                                  | <u></u>                          |                                                    |                                                                                             |                                            | ;                            |          | <u> </u>      |  |
|                                                    | _,                                                                                                                       |                                                  |                                  |                                                    |                                                                                             | <u> </u>                                   |                              |          | <u> </u>      |  |
|                                                    |                                                                                                                          |                                                  |                                  |                                                    |                                                                                             |                                            |                              |          |               |  |
|                                                    |                                                                                                                          |                                                  |                                  |                                                    |                                                                                             |                                            | ·                            |          |               |  |
|                                                    |                                                                                                                          |                                                  |                                  |                                                    |                                                                                             |                                            | <b></b>                      |          |               |  |
|                                                    |                                                                                                                          |                                                  |                                  | 4                                                  | <u> </u>                                                                                    |                                            |                              |          |               |  |
|                                                    |                                                                                                                          |                                                  |                                  | -                                                  |                                                                                             |                                            |                              |          |               |  |
|                                                    |                                                                                                                          |                                                  |                                  |                                                    |                                                                                             |                                            |                              |          |               |  |
|                                                    |                                                                                                                          |                                                  |                                  |                                                    |                                                                                             | ·                                          | ·                            |          | <del> -</del> |  |
|                                                    |                                                                                                                          |                                                  |                                  |                                                    |                                                                                             |                                            |                              |          |               |  |
|                                                    |                                                                                                                          |                                                  |                                  |                                                    |                                                                                             | ļ                                          |                              | ·····    |               |  |
|                                                    |                                                                                                                          |                                                  |                                  |                                                    |                                                                                             | <b>.</b>                                   |                              |          |               |  |
|                                                    |                                                                                                                          |                                                  | <b>.</b>                         | · · · · · · · · · · · · · · · · · · ·              |                                                                                             |                                            | <u> </u>                     |          |               |  |
|                                                    |                                                                                                                          |                                                  | wr                               |                                                    |                                                                                             |                                            |                              |          |               |  |
| Trigger:<br>MCL (m                                 | lethod Reporting Level): In<br>DOH Drinking Water respon<br>haximum contuminant level):<br>Detected): Indicates this con | ise level. Public Syste<br>: Highest level recom | ems in excess o<br>mended by the | d this level m<br>federal gover<br>ed at a level g | ust take addition<br>nment for public<br>reater than or e                                   | onal sample<br>ic water sy<br>equal to the | s. Recommended ran<br>stems. |          |               |  |
|                                                    |                                                                                                                          |                                                  |                                  | A                                                  | proved By                                                                                   | •                                          |                              |          |               |  |
| 15 W \                                             | Yakima Ave Ste 210 `                                                                                                     | Yakima. WA 98                                    | 902 509-5                        | 75-3999                                            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 75-3068                                    | ∦<br>70814                   | -cdcrr   | ni            |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

# Washington State Certified Lab #227 - DOE Accredited Lab C345 Cadmium, Chromium, Nickel, Zinc

| T ak/Samala Nos          | 07/08/14     |        |                         |                                               | -         |                                                                                                                  |               |                                       |  |  |
|--------------------------|--------------|--------|-------------------------|-----------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------|--|--|
| Lan/Sample 1995          | 227-70815    |        |                         | Co                                            | ounty:    | YAKIMA                                                                                                           |               |                                       |  |  |
| Sample Location:         | DRUM2        |        |                         |                                               |           |                                                                                                                  |               |                                       |  |  |
|                          |              | _      |                         | Date Rec                                      |           |                                                                                                                  | <u></u>       | · · · · · · · · · · · · · · · · · · · |  |  |
|                          |              |        | Date Reported: 07/29/14 |                                               |           |                                                                                                                  |               |                                       |  |  |
|                          |              |        |                         | le Collecte                                   |           |                                                                                                                  |               |                                       |  |  |
| and Report To:           |              |        | SAMPL                   | E COMM                                        | ENTS      | Matrix                                                                                                           | :: Soil       | <u></u>                               |  |  |
| PLSA Engineering         |              |        |                         |                                               |           |                                                                                                                  |               |                                       |  |  |
| Attn: Scott Garland      |              |        | 1                       |                                               |           |                                                                                                                  |               |                                       |  |  |
| 1120 West Lincoln Avenue | •            |        |                         |                                               |           | -                                                                                                                |               |                                       |  |  |
| Yakima, WA 98902         |              |        | <u> </u>                |                                               |           |                                                                                                                  |               |                                       |  |  |
| Cadmium, Chromium, Nic   | kel, Zinc:   |        |                         |                                               |           |                                                                                                                  |               |                                       |  |  |
| OH# Analytes             | Results      | Units  | MRL                     | Trigger                                       | MCL       | and the second second second second second second second second second second second second second second second | Analyzed      |                                       |  |  |
| Cadmium                  | ND           | mg/kg  | 0.557                   |                                               | ļ         | EPA 6020A                                                                                                        | 07/23/14      | 125                                   |  |  |
| Chromium                 | 20.6         | mg/kg  | 0.557                   |                                               | <u> </u>  | EPA 6020A                                                                                                        |               | 125                                   |  |  |
| Nickel                   | 19.2         | mg/kg  | 0.557                   |                                               | – ─       | EPA 6020A                                                                                                        |               | 125                                   |  |  |
| Zinc                     | 72.0         | mg/kg  | 0.577                   |                                               |           | EPA 6020A                                                                                                        |               | 125                                   |  |  |
| Lead                     | 5.67         | mg/kg  | 0.507                   |                                               | 1         |                                                                                                                  | ····   ······ | i                                     |  |  |
|                          |              |        |                         |                                               |           | <u> </u>                                                                                                         |               | <u> </u>                              |  |  |
|                          |              |        |                         |                                               | 1         |                                                                                                                  |               |                                       |  |  |
|                          | <u> </u>     |        |                         |                                               | 1         |                                                                                                                  |               | 1<br>∔                                |  |  |
|                          |              |        |                         |                                               | :         |                                                                                                                  |               | <u> </u>                              |  |  |
|                          | i            |        |                         | F                                             |           |                                                                                                                  |               | ·<br>· [                              |  |  |
|                          |              |        | <u> </u>                | <u> </u>                                      |           | !<br>                                                                                                            |               | <u> </u>                              |  |  |
|                          |              | I · ·  | · <b>į</b>              | · · · · ·                                     |           | =                                                                                                                |               |                                       |  |  |
|                          | , <b></b> ,, |        |                         |                                               | _ <u></u> | · ···                                                                                                            |               | 1                                     |  |  |
|                          |              | ·      | _ ]                     |                                               |           |                                                                                                                  |               |                                       |  |  |
|                          |              | <br>   |                         |                                               |           |                                                                                                                  |               | +                                     |  |  |
|                          |              |        |                         |                                               |           |                                                                                                                  | <u>. l</u>    |                                       |  |  |
|                          |              | · ···  |                         |                                               |           |                                                                                                                  |               |                                       |  |  |
|                          |              |        |                         | <u> </u>                                      |           |                                                                                                                  |               | 1                                     |  |  |
| ······                   | <u>+</u>     | ┼── ── |                         |                                               |           |                                                                                                                  | !             | 1                                     |  |  |
|                          | ··           |        |                         |                                               |           |                                                                                                                  |               |                                       |  |  |
|                          |              |        | l                       | . <u>.                                   </u> |           |                                                                                                                  | ļ             |                                       |  |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068 //0815-cdcrn1

70816-cdcrni

#### **VALLEY Environmental Laboratory**

#### Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

|                                        |                                                                                                                      |                                                      |                                   |                                                  | 1, 110K0                             | ,                                          |                                       |                        |         |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------------|---------------------------------------|------------------------|---------|--|--|
|                                        | Date Collect                                                                                                         | ted: 07/08/14                                        |                                   | <b> </b>                                         |                                      |                                            | <u></u> ,                             |                        |         |  |  |
|                                        | т., Е./61                                                                                                            | No. 117 70016                                        |                                   |                                                  | <u>C</u>                             | nuntv                                      | YAKIMA                                |                        |         |  |  |
|                                        |                                                                                                                      | No: 227-70816<br>ion: DRUM-14                        | <u></u>                           | <u> </u>                                         |                                      | Juniyi                                     |                                       |                        |         |  |  |
|                                        | Sample Locat                                                                                                         | on. Dicolar at                                       |                                   |                                                  | Date Rec                             | eived:                                     | 07/08/14                              |                        |         |  |  |
|                                        |                                                                                                                      |                                                      | <u></u>                           | Date Reported: 07/29/14                          |                                      |                                            |                                       |                        |         |  |  |
|                                        | . <u></u>                                                                                                            |                                                      |                                   |                                                  | le Collect                           |                                            |                                       |                        |         |  |  |
| end Repo                               | ort To:                                                                                                              |                                                      |                                   | SAMPI                                            | E COMM                               | ENTS                                       | Matri                                 | c: Soil                |         |  |  |
| PLS.                                   | A Engineering                                                                                                        |                                                      |                                   |                                                  |                                      |                                            |                                       |                        |         |  |  |
| Aftn                                   | : Scott Garland                                                                                                      |                                                      |                                   | 1                                                |                                      |                                            |                                       |                        |         |  |  |
| 1120                                   | West Lincoln Ave                                                                                                     | enue                                                 |                                   |                                                  |                                      |                                            |                                       |                        |         |  |  |
| Yak                                    | ima, WA 98902                                                                                                        |                                                      |                                   |                                                  |                                      |                                            |                                       |                        |         |  |  |
| Cad                                    | mium, Chromium,                                                                                                      | Nickel, Zinc                                         |                                   |                                                  |                                      |                                            |                                       |                        |         |  |  |
| OH#Anal                                | ytes                                                                                                                 | Results                                              | Units                             | MRL                                              | Trigger                              | MCL                                        | · · · · · · · · · · · · · · · · · · · | Analyzed               |         |  |  |
| Cadn                                   | and the second second second second second second second second second second second second second second second     | ND !                                                 | mg/kg                             | 0.54                                             |                                      | !                                          | EPA 6020A                             | 07/23/14               |         |  |  |
| ···· ·· · ···························· | mium                                                                                                                 | 16.1                                                 | mg/kg                             | 0.54                                             |                                      | <u> </u>                                   | EPA 6020A                             | 07/23/14               | 125     |  |  |
| Nick                                   |                                                                                                                      | 14.1                                                 | mg/kg                             | 0.54                                             |                                      | +                                          | EPA 6020A                             | 07/23/14               |         |  |  |
| Zinc                                   |                                                                                                                      | 62.0                                                 | mg/kg                             | 0.54                                             |                                      |                                            | EPA 6020A                             |                        | 125     |  |  |
| Lead                                   |                                                                                                                      | 25.8                                                 | mg/kg                             | 0.507                                            |                                      | !                                          | EPA 0020A                             | 0//23/14               |         |  |  |
|                                        |                                                                                                                      |                                                      |                                   |                                                  |                                      |                                            |                                       |                        |         |  |  |
|                                        |                                                                                                                      |                                                      |                                   |                                                  |                                      |                                            |                                       |                        | +       |  |  |
| Trigg<br>MCL                           | (Method Reporting Level):<br>er: DOH Drinking Water res<br>(waximum contaminant lev<br>Not Defected): Indicates this | ponse level. Public Syst<br>cl): Highest level recom | ents in excess o<br>mended by the | of this level n<br>federal gove<br>ed at a level | nust take addition<br>mment for publ | onal sampl<br>lic water sy<br>equal to the | es. Recommended ra<br>ystems.         | ).<br>nge on packages. | <u></u> |  |  |

### Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

|     | Date Colle                                                                                | ected: 07/08/14                                             |                                  |                                                     |                                       |                                           |                                 |                  |                                       |  |  |
|-----|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|-----------------------------------------------------|---------------------------------------|-------------------------------------------|---------------------------------|------------------|---------------------------------------|--|--|
|     |                                                                                           | le No: 227-70817                                            |                                  |                                                     | С                                     | ounty:                                    | YAKIMA                          |                  |                                       |  |  |
|     | Sample Loc                                                                                | ation: UST3-2                                               |                                  | D-4- D                                              |                                       |                                           |                                 |                  |                                       |  |  |
|     | ······································                                                    |                                                             |                                  | Date Received: 07/08/14                             |                                       |                                           |                                 |                  |                                       |  |  |
|     | :<br>                                                                                     |                                                             |                                  | Date Reported: 07/29/14<br>Sample Collected By: SDG |                                       |                                           |                                 |                  |                                       |  |  |
|     |                                                                                           |                                                             | <u> </u>                         |                                                     |                                       |                                           | SDG<br>Matrix                   | e Cail           |                                       |  |  |
|     | Report To:                                                                                | <u></u>                                                     |                                  | SAMPL                                               | E COMM                                | ENIS                                      |                                 | C 2011           | <u> </u>                              |  |  |
|     | PLSA Engineering                                                                          | :                                                           |                                  |                                                     |                                       |                                           |                                 |                  |                                       |  |  |
|     | Attn: Scott Garland                                                                       |                                                             |                                  |                                                     |                                       |                                           |                                 |                  |                                       |  |  |
|     | 1120 West Lincoln A                                                                       | venue                                                       |                                  |                                                     |                                       |                                           |                                 |                  |                                       |  |  |
|     | Yakima, WA 98902                                                                          |                                                             |                                  |                                                     |                                       |                                           |                                 |                  | <u></u>                               |  |  |
|     | Cadmium, Chromiu                                                                          | m, Nickel, Zinc                                             |                                  |                                                     | <u></u>                               |                                           |                                 |                  |                                       |  |  |
| юH# | Analytes                                                                                  | Results                                                     | Units                            | MRL !                                               | Trigger                               | MCL                                       |                                 | Analyzed         |                                       |  |  |
|     | Cadmium                                                                                   | 0.595                                                       | mg/kg                            | 0.531                                               |                                       | ·····                                     | EPA 6020A                       | 07/23/14         |                                       |  |  |
|     | Chromium                                                                                  | 21.0                                                        | mg/kg                            | 0.531                                               | · · · · · · · · · · · · · · · · · · · |                                           | EPA 6020A                       | 07/23/14         | · · · · · · · · · · · · · · · · · · · |  |  |
|     | Nickel                                                                                    | 18.6                                                        | mg/kg                            | 0.531                                               |                                       |                                           | EPA 6020A                       | 07/23/14         | <u> </u>                              |  |  |
|     | Zinc                                                                                      | 138                                                         | mg/kg                            | 0.531                                               |                                       | !<br>                                     | EPA 6020A                       |                  | 125                                   |  |  |
|     | Lead                                                                                      | 153                                                         | mg/kg                            | 0.507                                               |                                       | <u> </u>                                  | EPA 6020A                       | 0//25/14         | 12.5                                  |  |  |
|     | MRL (Method Reporting Lev                                                                 | rel): Indicates the minimum                                 | A reporting love                 | l required and                                      | <br> <br> <br>  obtained by th        |                                           |                                 |                  |                                       |  |  |
|     | Trigger: DOH Drinking Water<br>MCL (maximum contaminant<br>ND (Nor Detected): Indicates t | response level. Public Syst<br>(level): Highest level recon | ems in excess (<br>mended by the | of this level n<br>federal gove<br>ed at a level p  | ust take addition<br>rament for pub   | onal sampl<br>lic water s<br>equal to the | ies, Recommended rai<br>ystems. | nge on packages. |                                       |  |  |

70818-cdcmi

#### VALLEY Environmental Laboratory

#### Washington State Certified Lab #227 - DOE Accredited Lab C345 Cadmium, Chromium, Nickel, Zinc

|                                                                                                                   |                                                                                                                  | ium, en                         | 1                                                    |                                     |                                          |                                        |                                       |          |  |  |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------|-------------------------------------|------------------------------------------|----------------------------------------|---------------------------------------|----------|--|--|
| Date Coll                                                                                                         | ected: 07/08/14                                                                                                  | <u></u>                         |                                                      |                                     |                                          |                                        |                                       |          |  |  |
| T                                                                                                                 | le No: 227-70818                                                                                                 |                                 |                                                      | Co                                  | unty:                                    | YAKIMA                                 | <u> </u>                              |          |  |  |
| Lap/Samp<br>Samula Loc                                                                                            | ation: UST3-12                                                                                                   |                                 | <b> </b>                                             |                                     |                                          |                                        |                                       |          |  |  |
| Sample Lite                                                                                                       |                                                                                                                  | <u></u>                         |                                                      | Date Rec                            | eived:                                   | 07/08/14                               |                                       |          |  |  |
|                                                                                                                   |                                                                                                                  |                                 | Date Reported: 07/29/14                              |                                     |                                          |                                        |                                       |          |  |  |
|                                                                                                                   |                                                                                                                  |                                 | Samp                                                 | le Collect                          | ed By:                                   | SDG                                    |                                       |          |  |  |
| d Report To:                                                                                                      |                                                                                                                  |                                 | SAMPL                                                | E COMM                              | ENTS                                     | Matrix                                 | : Soil                                | <u></u>  |  |  |
| PLSA Engineering                                                                                                  |                                                                                                                  |                                 |                                                      |                                     |                                          |                                        |                                       |          |  |  |
| Attn: Scott Garland                                                                                               |                                                                                                                  |                                 |                                                      |                                     |                                          |                                        |                                       |          |  |  |
| 1120 West Lincoln A                                                                                               | venue                                                                                                            |                                 |                                                      |                                     |                                          |                                        |                                       |          |  |  |
| Yakima, WA 98902                                                                                                  |                                                                                                                  |                                 | <u> </u>                                             |                                     |                                          |                                        | · · · · · · · · · · · · · · · · · · · |          |  |  |
| Cadmium, Chromiu                                                                                                  | and the second second second second second second second second second second second second second second second |                                 |                                                      |                                     |                                          | ······································ |                                       |          |  |  |
| 1#Analytes                                                                                                        | Results                                                                                                          | Units                           | MRL                                                  | Trigger                             | MCL                                      |                                        | Analyzed                              |          |  |  |
| Cadmium                                                                                                           | ND                                                                                                               | mg/kg                           | 0.531                                                |                                     |                                          | EPA 6020A                              | 07/23/14                              |          |  |  |
| Chromium                                                                                                          | 19.1                                                                                                             | mg/kg                           | 0.531                                                |                                     | 1                                        | EPA 6020A                              | 07/23/14                              |          |  |  |
| Nickel                                                                                                            | 17.4                                                                                                             | mg/kg                           | 0.531                                                |                                     | <u> </u>                                 | EPA 6020A                              |                                       | 125      |  |  |
| Zinc                                                                                                              | 56.0                                                                                                             | mg/kg                           | 0.531                                                |                                     |                                          | EPA 6020A                              | 07/23/14                              | 125      |  |  |
| Lead                                                                                                              | 19.2                                                                                                             | mg/kg                           | 0.507                                                |                                     | <br>                                     | EPA 6020A                              | 10//25/14                             | 125      |  |  |
|                                                                                                                   |                                                                                                                  |                                 |                                                      |                                     |                                          |                                        |                                       |          |  |  |
|                                                                                                                   |                                                                                                                  |                                 | <br>                                                 | [<br>                               |                                          |                                        |                                       | <u>+</u> |  |  |
| MRL (Method Reporting La<br>Trigger: DOH Drinking Wat<br>MCI. (maximum contaminar<br>ND (Not Detected): Indicates | er response level, Public Sys<br>nt level): Highest level recor                                                  | tems in excess<br>mmended by th | of this level r<br>e federal gove<br>sted at a level | nust take additi<br>ernment for put | onal samp<br>elic water s<br>equal to th | ites, Recommended ra<br>systems.       | .).<br>nge on packages.               |          |  |  |

### Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

|              | Date Collect                                                                                                                 | ed: 07/08/14                                         | ····                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                                |                                          |     |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------|------------------------------------------|-----|--|--|
|              | Lab/Sample I                                                                                                                 | No: 227-70819                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                   | ounty:                     | YAKIMA                         |                                          |     |  |  |
|              | Sample Location                                                                                                              | on: DWI-3                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                                | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> |     |  |  |
| 17 A         |                                                                                                                              |                                                      |                                    | Date Received: 07/08/14<br>Date Reported: 07/29/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                            |                                |                                          |     |  |  |
| 53           |                                                                                                                              |                                                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                                |                                          |     |  |  |
|              |                                                                                                                              | -                                                    |                                    | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | le Collect                          |                            |                                | 0.1                                      |     |  |  |
| nd Repo      | ort To:                                                                                                                      |                                                      |                                    | SAMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E COMM                              | ENTS                       | Matrix                         | <u>t: Soli</u>                           |     |  |  |
| PLS.         | A Engineering                                                                                                                |                                                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                                |                                          |     |  |  |
| Attn         | : Scott Garland                                                                                                              |                                                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | ,                          |                                |                                          |     |  |  |
| 1120         | West Lincoln Ave                                                                                                             | nue                                                  |                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                            |                                |                                          |     |  |  |
| Yak          | ima, WA 98902                                                                                                                |                                                      |                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                            |                                |                                          |     |  |  |
| Cad          | mium, Chromium,                                                                                                              | Nickel, Zinc                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                                |                                          |     |  |  |
| OH#Anal      |                                                                                                                              | Results                                              | Units                              | MRL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trigger                             | MCL                        | Method                         | Analyzed                                 |     |  |  |
| Cadn         |                                                                                                                              | ND                                                   | mg/kg                              | 0.511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                            | EPA 6020A                      | 07/23/14                                 | 125 |  |  |
|              | mium                                                                                                                         | 19.9                                                 | mg/kg                              | 0.511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                            | EPA 6020A                      | 07/23/14                                 | 125 |  |  |
| Nick         | el                                                                                                                           | 17.2                                                 | mg/kg                              | 0.511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | <u> </u>                   | EPA 6020A                      | · ·                                      | 125 |  |  |
| Zinc         |                                                                                                                              | 62.2                                                 | mg/kg                              | 0.511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                   | ļ,                         | EPA 6020A                      | 07/23/14                                 | 125 |  |  |
| Lead         | l                                                                                                                            | 4.97                                                 | mg/kg                              | 0.507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | <u> </u>                   | EPA 6020A                      | 07/23/14                                 | 125 |  |  |
|              |                                                                                                                              |                                                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                                |                                          |     |  |  |
| Trigg<br>MCL | (Method Reporting Level);<br>per: DOII Drinking Water resp.<br>(maximum contaminant leve<br>Not Detected): Indicates this of | panse level. Public Syst<br>el): Highest level recon | tems in excess on<br>mended by the | of this level m<br>e federal gove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ust take addition<br>rnment for pub | onal sampl<br>lic water sj | les. Recommended ra<br>ystems. | .).<br>nge on packages.                  |     |  |  |
|              |                                                                                                                              |                                                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pproved By                          |                            | <u> </u>                       | 1                                        |     |  |  |
|              |                                                                                                                              | ł                                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                                |                                          |     |  |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

70819-cdcrni

70820-cdcrni

#### VALLEY Environmental Laboratory

#### Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

| Date Colle                                                                              | ected: 07/08/14                       |                                        |                         |                   |              |                                                        |           | <u></u> |  |  |
|-----------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|-------------------------|-------------------|--------------|--------------------------------------------------------|-----------|---------|--|--|
| Lab/Sampl                                                                               | e No: 227-70820                       | ······································ |                         | C                 | ounty:       | YAKIMA                                                 |           |         |  |  |
| Sample Loca                                                                             | ation: DWI-13                         |                                        | Date Received: 07/08/14 |                   |              |                                                        |           |         |  |  |
| 8644<br>8688                                                                            |                                       |                                        | Date Reported: 07/29/14 |                   |              |                                                        |           |         |  |  |
|                                                                                         |                                       |                                        |                         | le Collect        |              |                                                        |           |         |  |  |
| end Report To:                                                                          | · · · · · · · · · · · · · · · · · · · |                                        |                         | E COMM            |              | Matri                                                  | c: Soil   |         |  |  |
| PLSA Engineering                                                                        |                                       |                                        | Dinin 1                 |                   |              | <u> </u>                                               |           |         |  |  |
| Attn: Scott Garland                                                                     |                                       |                                        |                         |                   |              |                                                        |           |         |  |  |
| 1120 West Lincoln A                                                                     | venue                                 |                                        |                         |                   |              |                                                        |           |         |  |  |
| Yakima, WA 98902                                                                        | :                                     |                                        |                         |                   |              |                                                        |           |         |  |  |
| dmium, Chromium, N                                                                      | Nickel, Zinc                          |                                        |                         |                   |              |                                                        |           |         |  |  |
| OH#Analytes                                                                             | Results                               | Units                                  | MRL                     | Trigger           | MCL          |                                                        | Analyzed  |         |  |  |
| Cadmium                                                                                 | ND                                    | mg/kg                                  | 0.535                   |                   | 1<br>        | EPA 6020A                                              | 07/23/14  |         |  |  |
| Chromium                                                                                | 20.0                                  | mg/kg                                  | 0.535                   |                   | <u>.</u>     | EPA 6020A                                              | 07/23/14  |         |  |  |
| Nickel                                                                                  | 18.7                                  | mg/kg                                  | 0.535                   |                   |              | EPA 6020A                                              | 07/23/14  |         |  |  |
| Zinc                                                                                    | 68.7                                  | mg/kg                                  | 0.535                   |                   |              | EPA 6020A                                              | .07/23/14 |         |  |  |
| Lead                                                                                    | 49.3                                  | mg/kg                                  | 0.507                   | <u> </u>          | !<br>        | EPA 6020A                                              | 07/23/14  | 125     |  |  |
| MRL (Method Reporting Leve<br>Trigger: DOH Drinking Water                               | cl): Indicates the minimum            | reporting love                         |                         | L obtained by the |              | y (MDL <mrl<sri< th=""><th>).</th><th></th></mrl<sri<> | ).        |         |  |  |
| MCL (maximum contaminant<br>MCL (maximum contaminant<br>ND (Not Detected): Indicates th | level): Highest level recon           | mended by the                          | e federal gove          | rament for pub    | lic water sy | ystems.                                                |           |         |  |  |
|                                                                                         |                                       |                                        |                         | pproved By        |              |                                                        |           |         |  |  |

# Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

| ate Rece<br>ate Repo<br>Collecte<br>COMMI | sived:<br>orted:<br>d By:<br>ENTS<br>MCL         | YAKIMA<br>07/08/14<br>07/29/14<br>SDG<br>Matrix<br>EPA 6020A<br>EPA 6020A | Analyzed<br> 07/23/14                                                                                              | Analys                               |
|-------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| ate Rece<br>ate Repo<br>Collecte<br>COMMI | sived:<br>orted:<br>d By:<br>ENTS<br>MCL         | 07/08/14<br>07/29/14<br>SDG<br>Matrix<br>Matrix<br>EPA 6020A              | Analyzed<br> 07/23/14                                                                                              |                                      |
| ate Repo<br>Collecte<br>COMME             | orted:<br>d By:<br>ENTS<br>MCL                   | 07/29/14<br>SDG<br>Matrix<br>Method<br>EPA 6020A                          | Analyzed<br> 07/23/14                                                                                              |                                      |
| ate Repo<br>Collecte<br>COMME             | orted:<br>d By:<br>ENTS<br>MCL                   | 07/29/14<br>SDG<br>Matrix<br>Method<br>EPA 6020A                          | Analyzed<br> 07/23/14                                                                                              |                                      |
| COMME                                     | MCL                                              | Matrix<br>Method<br>EPA 6020A                                             | Analyzed<br> 07/23/14                                                                                              |                                      |
|                                           | MCL                                              | Method<br>EPA 6020A                                                       | Analyzed<br> 07/23/14                                                                                              |                                      |
| ['rigger                                  |                                                  | EPA 6020A                                                                 | 07/23/14                                                                                                           |                                      |
| l'rigger                                  |                                                  | EPA 6020A                                                                 | 07/23/14                                                                                                           |                                      |
| [rigger                                   |                                                  | EPA 6020A                                                                 | 07/23/14                                                                                                           |                                      |
| [rigger                                   |                                                  | EPA 6020A                                                                 | 07/23/14                                                                                                           |                                      |
| [rigger                                   |                                                  | EPA 6020A                                                                 | 07/23/14                                                                                                           |                                      |
| [rigger                                   |                                                  | EPA 6020A                                                                 | 07/23/14                                                                                                           |                                      |
|                                           |                                                  |                                                                           |                                                                                                                    | 1140                                 |
|                                           |                                                  | : H P A MU / H A                                                          | 107/32/14                                                                                                          | ·                                    |
|                                           |                                                  | EPA 6020A                                                                 | 07/23/14                                                                                                           |                                      |
|                                           |                                                  | EPA 6020A                                                                 | 107/23/14                                                                                                          |                                      |
| · i                                       |                                                  | EPA 6020A                                                                 | 07/23/14                                                                                                           | 125                                  |
|                                           |                                                  |                                                                           |                                                                                                                    | <u>}</u> .                           |
|                                           |                                                  |                                                                           |                                                                                                                    | <br>I                                |
|                                           |                                                  |                                                                           | í                                                                                                                  |                                      |
|                                           |                                                  | <u> </u>                                                                  |                                                                                                                    | ]                                    |
|                                           |                                                  |                                                                           |                                                                                                                    |                                      |
| ^                                         |                                                  |                                                                           |                                                                                                                    | :<br>.                               |
|                                           |                                                  |                                                                           |                                                                                                                    | }<br>                                |
|                                           |                                                  | <br>                                                                      |                                                                                                                    |                                      |
|                                           |                                                  | <u> </u>                                                                  |                                                                                                                    | ·                                    |
|                                           | ļ                                                | - <b> </b>                                                                | <u> </u>                                                                                                           |                                      |
|                                           | +                                                | . <u> </u>                                                                | •                                                                                                                  |                                      |
|                                           | <u>.                                    </u>     |                                                                           |                                                                                                                    | +                                    |
|                                           |                                                  | <u> </u>                                                                  |                                                                                                                    |                                      |
|                                           | 1                                                |                                                                           |                                                                                                                    | -                                    |
|                                           | ÷                                                |                                                                           | i                                                                                                                  |                                      |
|                                           | <u>+</u>                                         |                                                                           |                                                                                                                    |                                      |
|                                           |                                                  |                                                                           |                                                                                                                    |                                      |
| t<br>r<br>a                               | take additio<br>nent for publi<br>iter than or c | take additional sample<br>tent for public water s                         | take additional samples. Recommended rate<br>the for public water systems.<br>ter than or equal to the MRL or SRL. | ter than or equal to the MRL or SRL. |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

70821-cdcrni

# Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

| Date Coll                                                                                                         | ected: 07/08/14                                                  |                |                                   |                                    |                          |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------|-----------------------------------|------------------------------------|--------------------------|---------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Lab/Samp                                                                                                          | le No: 227-70822                                                 |                |                                   | C                                  | ounty:                   | YAKIMA                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Sample Loc                                                                                                        | ation: UST2-11                                                   |                |                                   |                                    |                          |                                 | ·····                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                   |                                                                  |                | Date Received: 07/08/14           |                                    |                          |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                            |                | Date Reported: 07/29/14           |                                    |                          |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                   |                                                                  |                |                                   | le Collect                         |                          |                                 | <u> </u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| end Report To:                                                                                                    | :                                                                |                | SAMPL                             | E COMM                             | ENTS                     | Matri                           | (; S0II                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| PLSA Engineering<br>Attn: Scott Garland<br>1120 West Lincoln A<br>Yakima, WA 98902                                | Avenue                                                           | ·              |                                   |                                    |                          |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Cadmium, Chromiu                                                                                                  | m, Nickel, Zinc                                                  |                |                                   |                                    |                          |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| OH# Analytes                                                                                                      | Results                                                          | Units          | MRL                               | Trigger                            | MCL                      |                                 | Analyzed                | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |  |  |
| Cadmium                                                                                                           | ND                                                               | mg/kg          | 0.535                             |                                    |                          | EPA 6020A                       | 07/23/14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Chromium                                                                                                          | 21.0                                                             | mg/kg          | 0.535                             |                                    | <u> </u>                 | EPA 6020A                       |                         | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Nickel                                                                                                            | 16.1                                                             | mg/kg          | 0.535                             | ···· ·                             | <u> </u>                 | EPA 6020A                       | 07/23/14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Zinc                                                                                                              | 52.6                                                             | mg/kg          | 0.535                             |                                    | !<br>                    | EPA 6020A                       |                         | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Lead                                                                                                              | 3.16                                                             | mg/kg          | 0.507                             |                                    | ļ                        | EPA 6020A                       | 07/23/14                | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                                                                                   |                                                                  |                |                                   |                                    |                          |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                   |                                                                  | <u> </u>       | <u> </u>                          |                                    | _ <u></u>                |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                   |                                                                  |                |                                   |                                    |                          |                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| MRL (Method Reporting Le<br>Trigger: DOH Drinking Wate<br>MCL (maximum contaminan<br>ND (Not Detected): Indicates | er response level. Public Syst<br>at level): Highest level recom | tems in excess | of this level n<br>e federal gove | nust take additi<br>rament for pub | onal samp<br>die water s | les. Recommended ra<br>systems. | .).<br>nge on packages. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068 '70822-cdcrni

Washington State Certified Lab #227 - DOE Accredited Lab C345

Cadmium, Chromium, Nickel, Zinc

|                         | ted: 07/08/14  | ·                                     |          |            | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·          |            |
|-------------------------|----------------|---------------------------------------|----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| Lab/Sample              | No: 227-70823  |                                       |          | C          | ounty:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YAKIMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |            |
| Sample Locati           |                |                                       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |
|                         |                |                                       |          | Date Rec   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |            |            |
|                         |                |                                       |          | Date Rep   | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |
|                         |                | ·                                     |          | le Collect |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.11       |            |
| d Report To:            |                |                                       | SAMPL    | E COMM     | ENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a Sou      |            |
| <b>PLSA Engineering</b> | ł              |                                       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |
| Attn: Scott Garland     |                |                                       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |
| 1120 West Lincoln Ave   | enue           |                                       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |
| Yakima, WA 98902        |                |                                       | <u> </u> |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u></u>    |            |
| Cadmium, Chromium       | , Nicket, Zinc |                                       |          |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A          | ( <b>A</b> |
| l# Analytes             | Results        | Units                                 | MRL      | Trigger    | MCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in the second second second second second second second second second second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i Analyzed |            |
| Cadmium                 | ND             | mg/kg                                 | 0.535    |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EPA 6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07/23/14   |            |
| Chromium                | 14.7           | mg/kg                                 | 0.535    |            | ┨────                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EPA 6020A<br>EPA 6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .07/23/14  | 125        |
| Nickel                  | 13.4<br>49.6   | mg/kg<br>mg/kg                        | 0.535    |            | <u>!</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07/23/14   | k          |
| Zinc                    | 3.51           | mg/kg                                 | 0.507    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EPA 6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07/23/14   |            |
| Lead                    | L 1.25         | - Gu Bub                              |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |            |
| ,                       |                | ·                                     |          | ······     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i></i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |
|                         |                |                                       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | <u> </u>   |
|                         |                | ·                                     |          |            | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 1          |
|                         |                | ,                                     |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Ţ          |
|                         |                |                                       | ·        | <b>↓</b>   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |
|                         | l              | · · · · · · · · · · · · · · · · · · · |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | !<br>      |
| · · · · ·               |                |                                       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | <u> </u>   |
|                         |                |                                       |          | <br>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · ···    | •<br>      |
|                         |                |                                       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | <u> </u>   |
|                         |                |                                       |          | =          | }<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |
|                         |                |                                       | <u> </u> |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | Ī          |
| <br>                    | · ·            |                                       |          | !          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | +          |
|                         |                |                                       | <u> </u> | ļ          | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |
|                         |                | · · · · · · · · · · · · · · · · · · · |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | +          |
|                         |                | <u>+</u>                              |          | <u> </u>   | :<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |
|                         |                | i                                     |          | ·i         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·          |            |

15 W. Yakima Ave Ste 210 Yakima, WA 98902 509-575-3999 Fax: 509-575-3068

p.13

#### **VALLEY Environmental Laboratory**

Washington State Certified Lab #227 - DOE Accredited Lab C345 Cadmium, Chromium, Nickel, Zinc

|             |                                                                                                                | 0                                                                                                                                                                       |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|             | 1                                                                                                              | <b>^</b>                                                                                                                                                                |                                                         | **                                                       |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                                                                                                                | U                                                                                                                                                                       | ounty:                                                  | YAKIMA                                                   |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                                                                                                                | D / D.                                                                                                                                                                  |                                                         | 07/09/14                                                 |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             | Date Received: 07/08/14<br>Date Reported: 07/29/14                                                             |                                                                                                                                                                         |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                                                                                                                |                                                                                                                                                                         |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             | Samp                                                                                                           | E COMM                                                                                                                                                                  | EU Dy.                                                  | Matri                                                    | x: Soil                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             | SADIF L                                                                                                        | E COMM                                                                                                                                                                  |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                                                                                                                |                                                                                                                                                                         |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                                                                                                                |                                                                                                                                                                         |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                                                                                                                |                                                                                                                                                                         |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             | <u> </u>                                                                                                       |                                                                                                                                                                         |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                                                                                                                | Tuinen                                                                                                                                                                  | MCT                                                     | Method                                                   | i Analyzed                                                                                                                                                                                                                                                                                                                     | Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|             | the second second second second second second second second second second second second second second second s | t rigger                                                                                                                                                                | IVICL                                                   |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             | ·· · · · · · · · · · · · · · · · · · ·                                                                         | · · ·                                                                                                                                                                   |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             | .~ <b> </b> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                   |                                                                                                                                                                         |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                                                                                                                |                                                                                                                                                                         |                                                         | EPA 6020A                                                | 07/23/14                                                                                                                                                                                                                                                                                                                       | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|             |                                                                                                                |                                                                                                                                                                         |                                                         | EPA 6020A                                                | 07/23/14                                                                                                                                                                                                                                                                                                                       | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|             |                                                                                                                |                                                                                                                                                                         | i                                                       |                                                          |                                                                                                                                                                                                                                                                                                                                | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|             |                                                                                                                |                                                                                                                                                                         | . <u>.</u>                                              | <u> </u>                                                 |                                                                                                                                                                                                                                                                                                                                | !<br>.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|             |                                                                                                                |                                                                                                                                                                         |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                                                                                                                | · ·                                                                                                                                                                     | -+                                                      |                                                          |                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|             | -1                                                                                                             |                                                                                                                                                                         | <u> </u>                                                |                                                          |                                                                                                                                                                                                                                                                                                                                | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|             |                                                                                                                | <br>                                                                                                                                                                    |                                                         | ·<br>                                                    |                                                                                                                                                                                                                                                                                                                                | ,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|             |                                                                                                                | <u> </u>                                                                                                                                                                |                                                         | <u> </u>                                                 |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                                                                                                                | <br>                                                                                                                                                                    |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                | <u>!</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|             | !<br>                                                                                                          |                                                                                                                                                                         | <br>                                                    | <u> </u>                                                 |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             | <u> </u>                                                                                                       |                                                                                                                                                                         | <u> </u>                                                |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                                                                                                                | . <b> </b>                                                                                                                                                              |                                                         | ·<br>                                                    |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| · <u> </u>  | ļ                                                                                                              | <u>-</u>                                                                                                                                                                | _ <u>  </u>                                             |                                                          |                                                                                                                                                                                                                                                                                                                                | - <u>†</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|             |                                                                                                                | <u> </u>                                                                                                                                                                |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|             |                                                                                                                | - <u> </u>                                                                                                                                                              |                                                         | <u></u>                                                  |                                                                                                                                                                                                                                                                                                                                | -+                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             |                                                                                                                |                                                                                                                                                                         |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                                                                                                                |                                                                                                                                                                         | _ <u>_</u>                                              | ·                                                        |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| <u></u> ,,, |                                                                                                                | 1                                                                                                                                                                       |                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                | <u>i</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|             | l cognicad an                                                                                                  | J -heatond but t                                                                                                                                                        | ho laborate                                             | ory (MDL <mrl<sr< td=""><td>1.).</td><td></td></mrl<sr<> | 1.).                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             | Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                                      | Units         MRL           mg/kg         0.535           mg/kg         0.535           mg/kg         0.535           mg/kg         0.535           mg/kg         0.535 | UnitsMRLTriggesmg/kg0.535mg/kg0.535mg/kg0.535mg/kg0.535 | Units     MRL     Trigger     MCL       mg/kg     0.535  | Units         MRL         Trigger         MCL         Method           mg/kg         0.535         EPA 6020A         EPA 6020A           mg/kg         0.535         EPA 6020A           mg/kg         0.535         EPA 6020A           mg/kg         0.535         EPA 6020A           mg/kg         0.535         EPA 6020A | SAMPLE COMMENTS         Matrix: Soil           Units         MRL         Trigger         MCL         Method         Analyzed           mg/kg         0.535         EPA 6020A         07/23/14           mg/kg         0.535         EPA 6020A         07/23/14 |  |  |

5095753068

p.15

#### Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:<br>Address:<br>Attn:                            | VALLEY ENVIRONME<br>15 W. YAKIMA AVE S<br>YAKIMA, WA 98901<br>DARA OSBORNE |        | ;                      |                     | Batch #:<br>Project Name: | 14071401<br>VOC / ME | 4<br>TALS / PAł | + / PCB   |
|---------------------------------------------------------|----------------------------------------------------------------------------|--------|------------------------|---------------------|---------------------------|----------------------|-----------------|-----------|
|                                                         | :                                                                          | Analy  | ytical R               | esults F            | leport                    |                      |                 |           |
| Sample Number<br>Client Sample ID<br>Matrix<br>Comments |                                                                            | •      | ling Date<br>ling Time | 7/8/2014<br>8:34 AM | Datef                     | Time Received        | 7/11/2014       | 11;20 AM  |
| Parameter                                               | ÷                                                                          | Result | Units                  | PQL                 | Analysis Date             | Analyst              | Method          | Qualifier |
| Lead                                                    |                                                                            | 123    | mg/Kg                  | 0.507               | 7/23/2014                 | ETL                  | EPA 6020A       |           |
| Sample Number                                           | 140714014-002                                                              | Samj   | pling Date             | 7/8/2014            | Date                      | Time Receive         | 5 7/11/2014     | 11:20 AM  |
| Client Sample II<br>Matrix                              |                                                                            | Sam    | pling Time             | 8:29 AM             |                           |                      |                 |           |

ParameterResultUnitsPQLAnalysis DateAnalystMethodQualifierLead3.31mg/Kg0.4727/23/2014ETLEPA 6020A

Certifications held by Anatek Labs ID: EPA1060013; AZ-0701; CO:ID00013; FLINELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA-WA00169; ID:WA00169; WA:C595; MT:Cert0066; FL(NELAP): E671099

Wednesday, August 06, 2014

Comments

Page 1 of 6

Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:<br>Address:<br>Attn:                            |                                                                        | AOSBORNE           |                        |                     |                          |                 |              | I / PCB   |
|---------------------------------------------------------|------------------------------------------------------------------------|--------------------|------------------------|---------------------|--------------------------|-----------------|--------------|-----------|
|                                                         | i                                                                      | Analy              | tical R                | esults R            | leport                   |                 |              |           |
| Sample Number<br>Client Sample ID<br>Matrix<br>Comments |                                                                        |                    | ling Date<br>ling Time | 7/8/2014<br>9:10 AM | Date/                    | Time Receive    | id 7/11/2014 | 11:20 AM  |
| Parameter                                               |                                                                        | Result             | Units                  | PQL                 | Analysis Date            | Analyst         | Method       | Qualifier |
| Lead                                                    |                                                                        | 5,67               | mg/Kg                  | 0.557               | 7/23/2014                | ETL             | EPA 6020A    |           |
| Sample Number<br>Client Sample II<br>Matrix<br>Comments |                                                                        |                    | ling Date<br>ling Time | 7/8/2014<br>8:59 AM | Date                     | /Time Receive   | ad 7/11/2014 | 11:20 AM  |
| Borometer                                               |                                                                        | Result             | Units                  | PQL                 | Analysis Date            | Analyst         | Method       | Qualifie  |
| Parameter<br>Lead                                       | · · · · · · · · · · · · · · · · · · ·                                  | 25.8               | mg/Kg                  |                     | 7/23/2014                | ETL             | EPA 6020A    |           |
|                                                         |                                                                        |                    |                        |                     |                          |                 |              |           |
| Continuing baid by An                                   | atok Laba iD: EPAJD00013; AZ:0701;<br>atak Laba WA: EPA:WA00169; ID:WA | CO:1000013; FL(N   | ELAP):E67853           | ; (D:)D60013; MT    | CERT0028; NM: (D00013; C | R:10200001-002; | WA:C595      |           |
| Certifications held by An<br>Wednesday, Augu            |                                                                        | 400189; WA:C585( ) | 4T:Cer(0095; F         | L(NELAP): E871      | 099                      |                 | Page 2       | of 6      |

p.16

5095753068

p.17

Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 863-2839 • Fax (208) 862-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane.WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:<br>Address: | VALLEY ENVIRONMENTAL LAB<br>15 W. YAKIMA AVE STE210 | Batch #:<br>Project Name; | 140714014<br>VOC / METALS / PAH / PCB |
|---------------------|-----------------------------------------------------|---------------------------|---------------------------------------|
|                     | YAKIMA, WA 98901                                    |                           |                                       |
| Attn:               | DARA OSBORNE                                        |                           |                                       |

#### **Analytical Results Report**

| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-005<br>70817<br>Soil | •      | ling Date<br>ling Time | 7/8/2014<br>9:53 AM | Dater                  | Time Receive            | 9 7/11/2014           | 11:20 AM             |
|---------------------------------------------------------|--------------------------------|--------|------------------------|---------------------|------------------------|-------------------------|-----------------------|----------------------|
| Parameter                                               |                                | Result | Units                  | PQL                 | Analysis Date          | Analyst                 | Method                | Qualifier            |
| Lead                                                    |                                | 153    | mg/Kg                  | 0.531               | 7/23/2014              | ETL                     | EPA 6020A             |                      |
| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-006<br>70818<br>Soil | Samp   | ling Date<br>ling Time | 7/8/2014<br>9:40 AM | Date/<br>Analysis Date | Time Receive<br>Analyst | d 7/11/2014<br>Method | 11:20 AM<br>Qualifie |
| Parameter                                               |                                | Result | Units                  | PQL                 |                        |                         |                       |                      |
| Lead                                                    |                                | 19.2   | mg/Kg                  | 0.477               | 7/23/2014              | ETL                     | EPA 6020A             |                      |

Certifications held by Anatek Labs ID: EPA:IDC0013; AZ:0701; CO::D00013; FL(NELAP):E87893; ID:ID00013; MY:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871089

Wednesday, August 06, 2014

,

Page 3 of 6

5095753068

p.18

Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 863-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

| Client:  | VALLEY ENVIRONMENTAL LAB | Batch #:      | 140714014          |
|----------|--------------------------|---------------|--------------------|
| Address: | 15 W. YAKIMA AVE STE210  | Project Name: | VOC/METALS/PAH/PCB |
|          | YAKIMA, WA 98901         |               |                    |
| Attn:    | DARA OSBORNE             |               |                    |
|          |                          |               |                    |

**Analytical Results Report** 

| 0714014-008<br>320<br>i |                                                    | Units<br>mg/Kg<br>ling Date   | PQL<br>0.511                          | Analysis Date<br>7/23/2014   | Analyst<br>ETL             | Method<br>EPA 6020A            | Qualifie                                                                                                                                                                                                                                                                                                                             |
|-------------------------|----------------------------------------------------|-------------------------------|---------------------------------------|------------------------------|----------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 320                     | Sampl                                              |                               | 0.511                                 | 7/23/2014                    | ETL                        | EPA 6020A                      | <u> </u>                                                                                                                                                                                                                                                                                                                             |
| 320                     |                                                    | Ling Date                     |                                       |                              |                            |                                |                                                                                                                                                                                                                                                                                                                                      |
|                         |                                                    | ling Time                     | 7/8/2014<br>10:15 AM                  | Datei                        | Time Receive               | od 7/11/2014                   | 11:20 AM                                                                                                                                                                                                                                                                                                                             |
|                         |                                                    |                               |                                       |                              |                            |                                |                                                                                                                                                                                                                                                                                                                                      |
|                         | Result                                             | Units                         | PQL                                   | Analysis Date                | Analyst                    | Method                         | Qualifie                                                                                                                                                                                                                                                                                                                             |
|                         | 49.3                                               | mg/Kg                         | 0.535                                 | 7/23/2014                    | ETL                        | EPA 6020A                      |                                                                                                                                                                                                                                                                                                                                      |
|                         | ·                                                  |                               |                                       |                              |                            |                                |                                                                                                                                                                                                                                                                                                                                      |
| EDA: DOD013: A7:0702:00 | 0:1000013; FL(NE)<br>0169; WA:C585; M1             | AP):E87893; I<br>Cert0095; FL | ID:ID00013; MT:CE<br>(NELAP): E871099 | RT0028; NM: (D00013; OR<br>) | ::10200001-002; W          | JA:C595                        |                                                                                                                                                                                                                                                                                                                                      |
| 14                      |                                                    |                               |                                       |                              |                            | Page 4 (                       | nf 6                                                                                                                                                                                                                                                                                                                                 |
| 2                       | ) EPA:ID00013; A2:070;;<br>(A: EPA:WA00160; ID:WAX | 49.3                          | 49.3 mg/Kg                            | 49.3 mg/Kg 0.535             | 49.3 mg/Kg 0.535 7/23/2014 | 49.3 mg/Kg 0.535 7/23/2014 ETL | 49.3         mg/Kg         0.535         7/23/2014         ETL         EPA 6020A           6. EPA: IDD0013; A2:070: [C0:ID00013; FL(NELAP): E87893; ID: ID00013; MT:CERTC028; NM* (ID00013; OR:ID200001-002; WA:C595         A: EPA: WA00169; ID: WA:C685; MT:Cert0095; FL(NELAP): E871099         D00013; A2:070; ID000169; WA:C595 |

### Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 683-2839 • Fax (208) 682-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:<br>Address: | VALLEY ENVIRONMENTAL LAB<br>15 W. YAKIMA AVE STE210<br>YAKIMA, WA 98901 | Batch #:<br>Project Name: | 140714014<br>VOC / METALS / PAH / PCB |
|---------------------|-------------------------------------------------------------------------|---------------------------|---------------------------------------|
| Attn:               | DARA OSBORNE                                                            |                           |                                       |

#### Analytical Results Report

| Sample Number<br>Cilent Sample ID<br>Matrix<br>Comments | 140714014-009<br>70821<br>Soil | •      | ling Date<br>ling Tima                       | 7/8/2014<br>11:16 AM | Date/         | Time Received | 7/11/2014 | 11:20 AM |
|---------------------------------------------------------|--------------------------------|--------|----------------------------------------------|----------------------|---------------|---------------|-----------|----------|
| Parameter                                               |                                | Result | Units                                        | PQL                  | Analysis Date | Analyst       | Method    | Quailfie |
| Lead                                                    |                                | 5.01   | mg/Kg                                        | 0.525                | 7/23/2014     | ETL           | EPA 6020A | <u> </u> |
|                                                         |                                |        | <u>.                                    </u> |                      | <u></u>       |               |           |          |
| Sample Number<br>Client Sample ID<br>Matrix<br>Comments | 140714014-010<br>70822<br>Soti | •      | oling Date<br>oling Time                     | 7/8/2014<br>11:07 AM | Datei         | Time Received | 7/11/2014 | 11:20 AN |
| Parameter                                               |                                | Result | Units                                        | PQI.                 | Analysis Date | Analyst       | Method    | Qualifie |
| Lead                                                    |                                | 3.16   | mg/Kg                                        | 0.503                | 7/23/2014     | ETL           | EPA 6020A | <b></b>  |

Certifications held by Anatek Labs ID: EPA-ICc0013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID:0013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cen0095; FL(NELAP): E871099

Wednesday, August 06, 2014

Page 5 of 6

#### Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

| Client:<br>Address: | VALLEY ENVIRONMENTAL LAB<br>15 W. YAKIMA AVE STE210<br>YAKIMA, WA 98901 | Batch #:<br>Project Name: | 140714014<br>VOC / METALS / PAH / PCB |
|---------------------|-------------------------------------------------------------------------|---------------------------|---------------------------------------|
| Attn:               | DARA OSBORNE                                                            |                           |                                       |

#### **Analytical Results Report**

| 140714014-011<br>70823 | •            | -                            | 7/8/2014<br>11:42 AM                        | Date/                                                    | Time Received                                                          | 7/11/2014                                                                                                                                                       | 11:20 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|--------------|------------------------------|---------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil                   |              |                              |                                             |                                                          |                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |              |                              |                                             |                                                          |                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | Result       | Units                        | PQL                                         | Analysis Date                                            | Analyst                                                                | Method                                                                                                                                                          | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | <b>3</b> .51 | mg/Kg                        | 0.46                                        | 7/23/2014                                                | ETL                                                                    | EPA 6020A                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |              | 70823 Samp<br>Soil<br>Result | 70823 Sampling Time<br>Soil<br>Result Units | 70823 Sampling Time 11:42 AM<br>Soil<br>Result Units PQL | 70823 Sampling Time 11:42 AM<br>Soil<br>Result Units PQL Analysis Date | T40/14014-011     Sampling Data     House Hall       70823     Sampling Time     11:42 AM       Soil     Result     Units     PQL     Analysis Date     Analyst | 140/14014-011     Sampling Date     House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House House H |

| Sample Number<br>Client Sample ID | 140714014-012<br>70824 |      | iampling Date<br>Sampling Time | 7/8/2014<br>11:31 AM | Date/         | Time Received | 7/11/2014 | 11:20 AM  |
|-----------------------------------|------------------------|------|--------------------------------|----------------------|---------------|---------------|-----------|-----------|
| Matrix<br>Comments                | Soil                   | ÷    |                                |                      |               |               |           |           |
| Parameter                         |                        | Resu | lt Units                       | PQL                  | Analysis Date | Analyst       | Method    | Qualifier |
| Lead                              |                        | 16.7 | / mg/Kg                        | 0.441                | 7/23/2014     | ETL           | EPA 6020A |           |

lola. Call Authorized Signature John Goddington, Lab Manager EPA's Maximum Contaminant Level MCL ND Not Detected Practical Quantilation Limit POL This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted. Certifications held by Anatex Labs ID: EPA-ID00013; A2:0701; CO:ID00013; FL(NELAP):E87693; ID:ID00013; MT CERT0028; NM: ID00013; OR:ID200001-002; WA C595 Cartifications held by Anatex Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT.Cert0095; FL(NELAP): E871099 Page 6 of 6 Wednesday, August 06, 2014

#### APPENDIX "E"

**TTEC** Calculations

|           |                        | Total Toxicity Equivalenc          | <b>Toxicity Equivalence Concentration (TTEC)</b> |                                                              |      |
|-----------|------------------------|------------------------------------|--------------------------------------------------|--------------------------------------------------------------|------|
| Sample ID |                        |                                    |                                                  |                                                              |      |
|           |                        | <b>Measured Soil Concentration</b> | <b>Toxicity Equivalency Factor</b>               | Toxicity Equivalent Soil                                     |      |
| 2-6700    | CLAN                   | (mg/kg)                            | (TEF, unitless)                                  | Concentration (mg/kg)                                        |      |
|           | benzo(a)pyrene         | 0.005                              | 1.00                                             | 0.005                                                        |      |
|           | benzo(a)anthracene     | 0.0186                             | 0.10                                             | 0.00186                                                      |      |
|           | benzo(b)fluoranthene   | 0.0122                             | 0.10                                             | 0.00122                                                      |      |
|           | benzo(k)fluoranthene   | 0.005                              | 0.10                                             | 0.0005                                                       |      |
|           | chrysene               | 0.005                              | 0.01                                             | 0.00005                                                      |      |
|           | dibenzo(a,h)anthracene | 0.005                              | 0.10                                             | 0.0005                                                       |      |
|           | indeno(1,2,3cd)pyrene  | 0.0124                             | 0.10                                             | 0.00124                                                      |      |
|           |                        |                                    |                                                  |                                                              |      |
|           | Sum                    | 0.0632                             |                                                  | 0.01037 = TTEC                                               | TTEC |
|           |                        |                                    | Compare TTEC to Method B CU                      | Compare TTEC to Method B CUL for benzo(a)pyrene: 0.137 mg/kg | 8    |
|           |                        |                                    | compare i i ec to ivietnoa A cu                  | сотраге ПЕСТО Метлоа А СОГТОГ репго(а)ругеле: О.1 mg/kg      |      |