January 2013 Groundwater Monitoring

Former Irondale Iron and Steel Plant Site Irondale, Washington

for Washington State Department of Ecology

December 5, 2014

January 2013 Groundwater Monitoring

Former Irondale Iron and Steel Plant Site Irondale, Washington

for Washington State Department of Ecology

December 5, 2014

Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206-728-2674

January 2013 Groundwater Monitoring

Former Irondale Iron and Steel Plant Site Irondale, Washington

File No. 0504-042-02

December 5, 2014

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program 300 Desmond Drive Lacey, Washington 98504

Attention: Steve Teel

Prepared by:

GeoEngineers, Inc. Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206.728.2674

Neil Morton Senior Environmental Scientist and Project Lead

David A. Cook, LG, CPG Principal and Program Manager

NFM:CB:leh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2014 by GeoEngineers, Inc. All rights reserved.

Table of Contents

INTRODUCTION	1
SCOPE OF SERVICES	1
GROUNDWATER MONITORING RESULTS	2
General	2
Groundwater Conditions	2
Groundwater Sampling	2
CONCLUSIONS AND RECOMMENDATIONS	3
LIMITATIONS	3
REFERENCES	4

LIST OF TABLES

- Table 1. Summary of Groundwater Level Measurements
- Table 2. Summary of Groundwater Chemical Analytical Data Petroleum Hydrocarbons, cPAHs and Dissolved Metals

LIST OF FIGURES

Figure 1. Vicinity Map

- Figure 2. Groundwater Monitoring Results Dissolved Metals
- Figure 3. January 2013 Groundwater Elevation Contours

APPENDICES

- Appendix A. Field Procedures and Monitoring Well Construction Logs
- Appendix B. Data Validation Memorandum and Chemical Analytical Results
- Appendix C. Report Limitations and Guidelines for Use

INTRODUCTION

This report summarizes the results of the January 2013 quarterly groundwater monitoring event (Round 1) at the Former Irondale Iron and Steel Plant Site (Site, also known as Irondale Beach Park) in Irondale, Washington. The Site is a 13-acre property located at 526 Moore Street in the town of Irondale, latitude 48°2' 38" N longitude 122° 45' 60" W, approximately 5 miles south of Port Townsend, Washington (see Vicinity Map, Figure 1). The Site is owned by Jefferson County and is currently used as an undeveloped day-use park (Irondale Beach Park). It is bounded by Port Townsend Bay to the east, residential properties to the south, southwest and northwest, and parklands to the north. The Site includes both upland and aquatic land. The general site layout is shown on the attached Groundwater Monitoring Results – Dissolved Metals, Figure 2.

From 1881 to 1919, iron and steel were produced intermittently at the Site by various owners. Steel plant operations during this time resulted in metals, carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and/or petroleum contamination of soil, sediment and/or groundwater. Washington State Department of Ecology (Ecology) completed a cleanup action consisting of excavation of upland soil and marine sediment along the shoreline that contain chemicals of concern (COC) concentrations greater than Site-Specific cleanup levels, excavation of slag material outside of remedial excavations to facilitate shoreline habitat restoration, and installation of a multi-component environmental cap in two upland areas where surface soil exceeded Site-Specific cleanup levels. The cleanup action was completed in December 2012.

GeoEngineers, Inc. (GeoEngineers) has been providing site characterization, cleanup and groundwater monitoring services at the Site since 2007.

SCOPE OF SERVICES

Groundwater monitoring wells (MW-1 through MW-4) in remedial excavation areas were decommissioned in accordance with the requirements of WAC 173-160, prior to excavating soil. Monitoring well MW-5 was not decommissioned because it is outside the remedial excavation footprint. New wells (MW-6 through MW-9) were installed following completion of remedial excavation activities. The purpose of the groundwater monitoring program is to evaluate the effectiveness of the cleanup action, with respect to protection of groundwater. As outlined in the Engineering Design Report (GeoEngineers, 2012), post-construction groundwater monitoring will be performed quarterly for a minimum of one year.

Our specific scope of services is as follows:

- 1. Measure the depths to groundwater in each well (MW-5 through MW-9). Estimate groundwater flow direction at the site based on the groundwater depths.
- 2. Purge approximately three well volumes of water from the wells prior to sampling. Obtain groundwater samples using low-flow methodology in accordance with the field procedures outlined in Appendix A from the five wells for chemical analysis.
- 3. Submit the groundwater samples to an Ecology-certified laboratory for chemical analysis of diesel- and heavy oil-range hydrocarbons by Ecology Method NWTPH-Dx, dissolved and total carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method SW 8270D-SIM, and dissolved metals by EPA Method

200.8. Ecology requested the additional dissolved cPAH analyses to evaluate whether particulates in groundwater adversely affect the total cPAH results.

4. Evaluate the chemical analytical results relative to Site-Specific groundwater cleanup levels consistent with MTCA requirements. Site-specific groundwater cleanup levels are presented in Table 2.

GROUNDWATER MONITORING RESULTS

General

Monitoring wells MW-5 through MW-9 were used to evaluate groundwater flow direction and obtain groundwater samples. Monitoring well MW-5 was installed prior to the cleanup action during the site characterization phase and is located outside of the cleanup action areas. Monitoring wells MW-6 through MW-8 were installed after cleanup action activities within the limits of petroleum- and metals-contaminated soil remedial excavation areas. Monitoring well MW-9 was installed after cleanup activities within the limits of the metals-contaminated soil remedial excavation area. The approximate locations of the monitoring wells are shown in Figure 2. Groundwater level measurement and sampling procedures are described in Appendix A. Depth to groundwater measurements are presented in Table 1. Groundwater chemical analytical data is summarized in Table 2. A copy of the laboratory report for the January 2013 groundwater analyses is presented in Appendix B.

Monitoring wells MW-5 through MW-9 were surveyed by Van Aller Surveying during February 2013 for creating the "As-Built Map of the Irondale Iron and Steel Plant Cleanup Action."

Groundwater Conditions

Groundwater conditions beneath the Site were evaluated by measuring groundwater levels and obtaining groundwater samples from MW-5 through MW-9 on January 4, 2013. Groundwater depths ranged from approximately 3 to 5 feet below ground surface (bgs) in the monitoring wells. The shallow depths to water in the monitoring wells are attributed to the proximity of Port Townsend Bay located approximately 20 to 60 feet east from the monitoring wells. Based on site topography, the ground surface is relatively flat, though the ground surface elevation is slightly higher in the southern portion of the site (near MW-6 and MW-7) compared to the ground surface in the northern portion of the site. The groundwater flow direction beneath the site based on January 2013 groundwater levels is to the east toward Port Townsend Bay (see Figure 3).

Groundwater Sampling

Groundwater samples from MW-5 through MW-9 were submitted to Analytical Resources, Inc. (ARI) an environmental laboratory in Tukwila, Washington for chemical analysis of diesel- and heavy oil-range hydrocarbons, cPAHs, and dissolved Copper and dissolved Nickel.

- Diesel- and Heavy Oil-range hydrocarbons were not detected in the samples from MW-5 through MW-9.
- cPAH constituents were detected in the samples from MW-6 through MW-8 at concentrations less than the Site-Specific MTCA cleanup levels.

- Dissolved copper was detected in the sample from MW-9 at a concentration (7 µg/L) greater than the site-specific cleanup level of 2.4 µg/L. Dissolved copper was detected in MW-5, MW-6, and MW-7 at concentrations less than the site-specific cleanup level. Dissolved copper was not detected in MW-8.
- Dissolved nickel was detected in the sample from MW-9 at a concentration (90 µg/L) greater than the site-specific cleanup level of 8.2 µg/L. Dissolved nickel was detected at concentrations less than the site-specific cleanup level in the samples from MW-5 though MW-8.

CONCLUSIONS AND RECOMMENDATIONS

Groundwater monitoring is being conducted at the former Irondale Iron and Steel Plant site to evaluate the post-construction effectiveness of the cleanup action as outlined in the Final Engineering Design Report (GeoEngineers, 2012). Groundwater samples obtained during the January 2013 sampling event were analyzed for diesel- and heavy oil-range hydrocarbons, cPAHs, and dissolved copper and dissolved nickel.

- Diesel-and heavy oil-range hydrocarbons were not detected in the five monitoring wells.
- CPAH constituents were detected at concentrations less than the site-specific groundwater cleanup levels in the five monitoring wells for both total and dissolved cPAHs. Because dissolved and total cPAH results were similar, we recommend only testing for total cPAHs in subsequent monitoring events.
- Dissolved copper and nickel were detected in the sample from MW-9 at concentrations greater than their respective site-specific cleanup levels. These metals were not detected or were detected at concentrations less than the site-specific cleanup levels in the other wells.

The January 2013 groundwater monitoring event is the first of the four planned quarterly groundwater monitoring events.

LIMITATIONS

We have prepared this report for use by the Washington State Department of Ecology. The information contained herein is not intended for use by others and it is not applicable to other sites. No other (third) party may rely on the product of our services unless we agree in advance and in writing to such reliance.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to Appendix C titled "Report Limitations and Guidelines for Use" for additional information pertaining to use of this report.

REFERENCES

- GeoEngineers, 2009, "Revised Draft Remedial Investigation/Feasibility Study Report, Irondale Iron and Steel Plant, Irondale, Washington, Ecology Facility/Site No. 95275518." GEI File No. 0504-042-01, August 13, 2009.
- GeoEngineers, 2012, "Final Engineering Design Report, Irondale Iron and Steel Plant, Irondale, Washington." GEI File No. 0504-042-02, May 1, 2012.

Table 1

Summary of Groundwater Level Measurements

Former Irondale Iron and Steel Plant Site

Irondale, Washington

Groundwater Monitoring Well ¹	Quarterly Groundwater Monitoring Event	Date Measured	Top of Casing Elevation ² (feet)	Depth to Water from Top of Casing (feet)	Groundwater Elevation ² (feet)
MW-5	Round 1	1/4/2013	13.97	5.01	8.96
MW-6	Round 1	1/4/2013	17.04	3.23	13.81
MW-7	Round 1	1/4/2013	15.98	5.08	10.90
MW-8	Round 1	1/4/2013	11.93	4.00	7.93
MW-9	Round 1	1/4/2013	11.77	4.83	6.94

Notes:

¹Monitoring well locations are shown on Figure 2.

²Elevation is referenced to Mean Lower Low Water (MLLW). Elevation measurements were obtained from "ASBUILT MAP" provided by Van Aller Surveying to Anderson Environmental Contracting, LLC dated February 2013. Top of casing elevations were estimated by subtracting the distance between the top of the monument and the top of the casing at each well.

Table 2

Summary of Groundwater Chemical Analytical Data - Petroleum Hydrocarbons, cPAHs and Dissolved Metals¹

Former Irondale Iron and Steel Plant Site

Irondale, Washington

			Petro Hydroca				Carcinoge	enic Polycyc	lic Aromatic	: Hydrocarbo	ons (cPAHs) ⁴	i i		Disso Met	olved tals ⁵
Groundwater Sample Identification ²	Quarterly Groundwater Monitoring Event	Sample Date	Diesel-Range	Heavy Oil-Range	Total or Dissolved cPAH	Benzo[a]anthracene	Chrysene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Indeno(1,2,3-c,d)pyrene	Dibenz[a,h]anthracene	Total cPAH - TEQ ⁴	Copper	Nickel
MW-5-130104	Round 1	1/4/2013	100 U	200 U	-						-	-		1.3	5.6
MW-6-130104 ⁶	Round 1	1/4/2013	100 U	200 U	Total	0.010 U	0.0066 J	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00757 J	0.8	5.8
(includes total cPAHs)	Round 1	1/4/2013	-		Dissolved	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	-	-
MW-7-130104	Round 1	1/4/2013	100 U	200 U	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	0.8	4.4
(includes total cPAHs)	Round 1	1/4/2013			Dissolved	0.010 U	0.0072 J	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00757 J	-	-
MW-8-130104	Round 1	1/4/2013	100 U	200 U	Total	0.0075 J	0.0094 J	0.0063 J	0.010 U	0.0078 J	0.010 U	0.010 U	0.0108 J	0.5 U	5
(includes total cPAHs)	Round 1	1/4/2013	-		Dissolved	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	-	-
MW-9-130104 ⁶	Round 1	1/4/2013	100 U	200 U										7	90
Site-Specific G	roundwater Cleanup) Level ⁷	500	500		see TEQ	see TEQ	see TEQ	see TEQ	see TEQ	see TEQ	see TEQ	0.018	2.4	8.2

Notes:

 $^1\text{Reported}$ results are in micrograms per liter (µg/L).

 $^2\mbox{Groundwater}$ monitoring well locations are shown in Figure 2.

³Petroleum Hydrocarbons analyzed using NWTPH-Dx.

⁴cPAHs analyzed using EPA method 8270D-SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations. Samples analyzed for dissolved cPAHs were laboratory filtered using a 0.7 μm borosilicate glass, binder free filter.

⁵Dissolved Metals analyzed using EPA method 200.8 (field filtered).

⁶A field duplicate groundwater sample was obtained from this monitoring well (diesel- and heavy oil-range and cPAHs for MW-6 and metals for MW-9). Higher of the two detected concentrations (parent and field duplicate) is reported for each of the analyte.

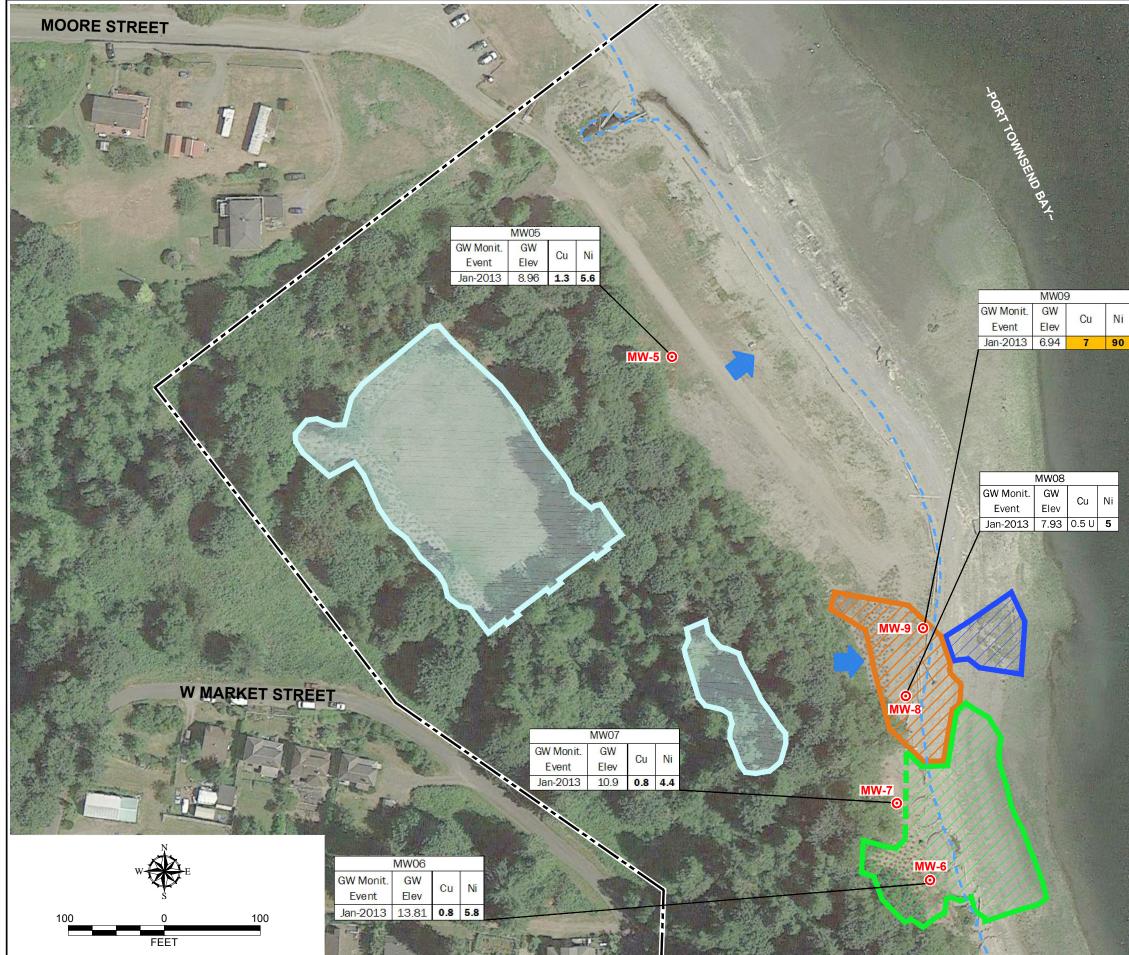
⁷Site-specific groundwater cleanup level is referenced from Table 1 of the Final Enigneering Design Report (GeoEngineers, 2012).

MTCA = Model Toxics Control Act

- = not analyzed. Monitoring wells are located in the area remediated due to metals contamination.

U = Laboratory qualifier indicating analyte not detected at level above listed reporting limit.

Bold indicates analyte was detected.


Chemical analyses performed by Analytical Resources. Inc., in Tukwila, Washington.

Shaded values represent concentrations greater than the Site-Specific cleanup level.

Legend

Site Boundary

Ordinary High Water (Estimated at Elevation 10.5 feet)

Metals Area - Excavation

Metals Area - Cap

TPH Area - Excavation

Slag Outcrop - Removal

MW-1 O

Monitoring Well Location

Assumed Groundwater Flow Direction

Data Box Explanation:

GW Monit. = Groundwater Monitoring

GW Elev = Groundwater Elevation in feet

Cu = Dissolved Copper

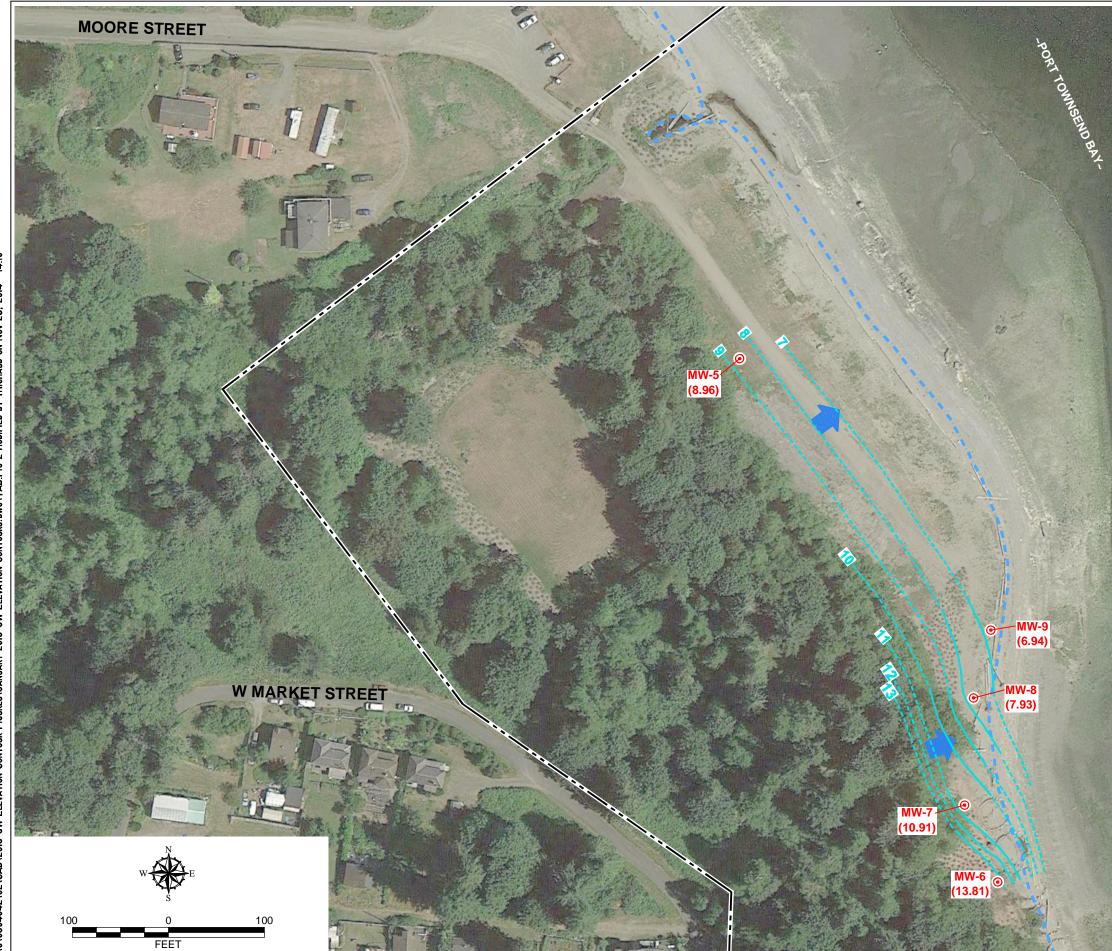
Ni = Dissolved Nickel

Exceedance of site-specific groundwater cleanup level (Cu = $2.4 \mu g/L$; Ni = $8.2 \mu g/L$)

U = Analyte not detected above method reporting limit

Groundwater results in µg/L

Notes


- 1. The locations of all features shown are approximate.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Dissolved metals (Copper and Nickel) were analyzed using EPA Method 200.8. Samples were field filtered.
- 4. TPH and PAH results are presented in Table 2. Reference: Aerial photo (July 2013) from Google Earth Pro.

Groundwater Monitoring Results -Dissolved Metals

> Irondale Iron and Steel Plant Irondale, Washington

GEOENGINEERS

Figure 2

Legend

	Site Boundary
	Ordinary High Water (Estimated at Elevation 10.5 feet)
MW-1 💿	Monitoring Well Location
(8.96)	Groundwater Elevation (feet)
	Groundwater Elevation Contour (feet)
	Groundwater Flow Direction

Notes

- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. Reference: Aerial photo (July 2013) from Google Earth Pro.

January 2013 **Groundwater Elevation Contours**

Former Irondale Iron and Steel Plant Irondale, Washington

GEOENGINEERS

Figure 3

APPENDIX A

Field Procedures and Monitoring Well Construction Logs

APPENDIX A FIELD PROCEDURES AND MONITORING WELL CONSTRUCTION LOGS

General

Monitoring well MW-5 was constructed at the Former Irondale Iron and Steel Plant Site (Site) in June 2007 and MW-6 through MW-9 were constructed at the Site in December 2012 after remedial activities had been completed. The monitoring well construction details for MW-5 through MW-9 are presented in this appendix.

Groundwater Monitoring Well Installation

Monitoring wells MW-6 through MW-9 were installed using direct-push drilling methods in accordance with WAC 173-160 Minimum Standards for Construction and Maintenance of Wells. The monitoring wells were constructed using 1-inch diameter, Schedule 40, threaded, polyvinyl chloride (PVC) casing with screen intervals spanning the water table. Well screens consisted of 1-inch diameter, Schedule 40, 0.010-inch machine-slotted, PVC well screens. Monitoring well construction is shown on the well construction logs presented in this appendix.

The 0.010-inch slot size was selected based on review of boring logs from the 2009 remedial investigation, which indicated that the shallow water-bearing zone consists primarily of silty, fine to medium sands with minor amounts of gravel.

The filter pack for the wells consists of 10-20 silica sand with the appropriate grain size distribution to limit entry of fine-grained particulates from the surrounding formation into the wells. The filter pack in each well extends from the bottom of the well screen to at least one foot above the top of the well screen.

The annular seal in each well consists of a 1-foot, or lesser, thick layer of hydrated bentonite pellets or chips installed between the filter pack and a 1.5-foot thick concrete surface seal. Monuments consisted of flush completions.

Monitoring Well Development

The new monitoring wells MW-6 through MW-9 were developed directly following installation to allow the sand pack to set and to establish hydraulic connection between the well and the aquifer. Prior to development, the depth to water in the well and the total well depth was measured and recorded. The wells were developed using a combination of surging and purging using a submersible pump until at least five well casing volumes are removed and discharge ran clear (free of visible turbidity).

Depth to Groundwater Measurements

The depth to groundwater was measured in the monitoring wells using an electric water level indicator. The depth to groundwater was measured relative to the top of the well casings. Water level measurement equipment was washed in a Liqui-Nox® solution, followed by a distilled water rinse prior to use in the well.

Groundwater Sample Collection and Handling

Groundwater samples were obtained from monitoring wells MW-5 through MW-9 in January 2013.

Groundwater samples were obtained from monitoring wells using a peristaltic pump and disposable polyethylene tubing. Groundwater was pumped at approximately 0.5 liter per minute using a peristaltic pump through tubing placed within the screened interval. A Horiba U-22 water quality measuring system with flow-through cell was used to monitor the following water quality parameters during purging: electrical conductivity, dissolved oxygen, pH, salinity, total dissolved solids, turbidity, and temperature. Groundwater samples were obtained once ambient groundwater conditions were reached. Groundwater conditions were considered ambient once the measured parameters varied by less than 10 percent on three consecutive measurements taken approximately 3 minutes apart. The stabilized field measurements are documented in the attached Groundwater Sample Collection Forms.

Samples for dissolved metals analysis were field filtered by pumping water through a 0.45 micron filter directly into the sample container using a peristaltic pump. Samples for dissolved cPAHs analysis were lab filtered using a 0.7 micron glass fiber filter. Groundwater samples obtained were transferred to laboratory-prepared sample jars. Sample containers were filled to minimize headspace. The samples were placed in a cooler with ice pending transport to the analytical laboratory. Samples requiring preservative (e.g., HCl for diesel- and oil-range hydrocarbon analyses) contained the proper preservative in the laboratory-prepared bottles. Chain-of-custody procedures were followed in transporting the samples to the laboratory.

Investigative Wastes

Purge water was removed from the monitoring well casings on January 4, 2013 prior to collecting groundwater samples. Approximately 4 gallons of water generated during the well sampling activities were disposed in the sanitary sewer at GeoEngineers' office in Redmond, Washington in January 2013.

Project	J. P. OKI DALLE	: Stear (PLANT	Job No.	0564-042-	Collector	FK.	Sample ID	MW	05-13	30104
					PURGE D	ATA					
Well Condi	ition: Secure	[X]Yes [] No	D	escribe Damage			JONE			
	and and number)		-		-						
Depth to W	/ater (from top	of well casing)		5.0	N PT			D' (Volume
	ase of Well		6.75		of Water Column		•	Diameter (in.)	OD	ID	Gal./ Linear Ft
	ig Type/Diamet		01710	·	INCH			2	2.375"	2.067"	0.17
	g Volume (gal.		· · · · ·	5 arr.	1000			3	3.500"	3.068"	0.17
Purge Met) Pump (type)	Ora.r.	TAL A.	Bailer (type)			4	4.500"	4.026"	0.66
Gallons Pu		-unp (type)	16K10		o S			6	6.625"	6.065"	1.5
	nimum of 3 well v	volumes or until	field parame	ters stabilize)	<u>- {/) - FQ</u>			8	8.625	7.981	2.6
	er Storage/Dis				BUCKET						
	ification, sample a		results, stor	rage location, ei		ŕ					
		·····			SAMPLING						
Date Colle	cted (mo/dy/yr)		A LU	erve							
	cation and Dep		8 B 3 B 6	WW-		-		Tim	e Collected		30
Tidal Cycle			High Tide a			Low Tide at		-	Weather	·····	RIGHST
-	e (Groundwate	er, Product, Ot	her)			\sim		-		<u> </u>	1
Sample Co	ollected with	[] Bailer	[X] Pu	mp []C	Other						
Made of [] Stainless St	eel []P\	/C [] Teflon	[X] Disposable	LDPE	[] Other				
	econ Procedur					Q. () NO	KE DIS	TILO	MAC	Ø.R.	
Sample De	escription (color	r, free product	thickness,	odor, turbidity	/, etc.)		IONE				
					FIELD PARAM	ETERS					
						Dissolved					
Time	Depth to Water (feet)	Purge Volume (gallons)	pН	Conductivity	Turbidity (NTU)	(ppm)	Temperature (F/C)	ORP (mV)	SAL	TOS	
1700.	5.01	1500	Z. La	82-8-		12.2	2519	5	0	0:55	
1705		500	3-16	80.8	512	12.56	8.8	57	\Diamond	n152	
1210		500	2.98	19.3	5.7	10.04	87	51	Ō	n: ST	
1915		500	3.8	78.5	Sie	9.6	8.7	51	0	0.5	
1720		500	3.8	18.4		9.4	C. B.	Sn	Ô	015	
								gi			
						21 1	5	· · ·			
								• •			
								÷			
				i da i	~						17
ð.						·					
Meters Use	ed for Measure	ment			HORIE	A. U	-22-		,		
pH/Con./D	O Instrument C	alibration	[义] Yes	[]No					E-Tape	Land	
				ADD	DITIONAL INFO	RMATION	-				
Samples C	composited Ove	ertime, Distand	e								
-	Number and Vo			ers						F	
		,					·······	<u> </u>			
	Sample Numbe						·				
Comments	: (Filtered, Not	t Filtered, Calc	ulations, et	ic.)							
			2 V								
<u>.</u>			<u>AND</u>	15 4						-	
Signature			2			Date	01 Al	MIQ	Page	of	
Check if add	litional informatio	n on back []			and the second sec						

्र**ः** इ.

GROUNDWATER SAMPLE COLLECTION FORM

Ĉ

GROUNDWATER SAMPLE COLLECTION FORM

Project	IRONDA	LE STEI	a N	Job No.	1504-042-	Collector	m Ka	Sample ID	MWol	6-130	104
					PURGE DA	TA					
Well Cond	ition: Secure	[∀]Yes [] No	D	escribe Damage		Norl	E.			
	and and number)		-						5. ¹ .		
Depth to W	/ater (from top	of well casing))	3.23	3 FT			Diamatan			Volume
1		11.2			of Water Column			Diameter (in.)	OD	ID	Gal./ Linear Ft
·	ig Type/Diamet		<u> </u>	- 18/4				2	2.375"	2.067"	0.17
1	g Volume (gal.)							3	3.500"	3.068"	0.38
Purge Met			Q.201	STAUTIC	Bailer (type)			4	4.500"	4.026"	0.66
Gallons PL		rump (type)	<u> Karl</u>		DIS OR			6	6.625"	6.065"	1.5
	nimum of 3 well v	volumes or until	field parame	ters stabilize)	D:5 gal			8	8.625	7.981	2.6
Purge Wat	er Storage/Dis	oosal			BUCK	4ET					
(Drum identi	ification, sample a	analysis, sample	e results, stor	rage location, et	c.)						
					SAMPLING I	DATA					
1	cted (mo/dy/yr)		DU	D6/13		-			.	and	C)
	cation and Dep		MANT			· - · · ·		- Tim	e Collected		09
Tidal Cycle			High Tide a	at	GW	Low Tide at		-	Weather	<u> </u>	BRCAST
	be (Groundwate ollected with	er, Product, Ot [] Bailer	ner) [X] Pur	mp []C							
			2 2	• • •	5.2		[] Other				
-	Stainless St econ Procedur] Teflon	[X] Disposable		DISTILL	rn . 0	13		
	econ Procedur		thickness	odor turbidity		<u>) X. K</u>	<u> 2/5//CC</u>	EN WA			
			thoratess,	•							
	1			1	FIELD PARAM						
Time	Depth to Water (feet)	Purge Volume (gallons)	pН	Conductivity	Turbidity (NTU)	Dissolved	Temperature (F/C)	ORP (mV)	SAL	TDS	
1855	3.23	1500	6.20	69.2	82.A	13.50	8:4	- 557	0	0.45	
1400	with the second	SON	616	71.3	21.3	13.11	8.3	-61	0	6.4h	
1405		500	6-21	71.9	16.1	12.5	8.3	-66	0	0.46	
1410		500	6.27	70.4	10.2	11-71	8.3	-71	0	0.45	e
1412	e ••	2.00	6.34	20.1	9.1	11.43	<u>Å.5</u>	-74	0	0.44	
1015		300	16-40	69.8	an and	11:03	83	~ 88	0	0.42	
1470		500	6.92	68.1	7:3	11:01	2.3	- 84	0	0.41	
1425		500	6 r 12-13	67.1	Jel-	10:11	6.3	- 86	0	0.41	6
			- (kaye.			
	ed for Measure		_6 £		FIR	RIBA	V-22				
pH/Con./D	O Instrument C	alibration	[义] Yes	[] No					E-Tape	A	
				ADE	ITIONAL INFO	ORMATION	4				
Samples C	Composited Ove	ertime, Distan	ce								
Analyses,	Number and Vo	olume of Sam	ple Contain	ers		NUP	FOR	TPH.			
						-	b.				
1 .	Sample Numbe			(-)							<u></u>
Comments	s: (Filtered, No	t Filtered, Cald	culations, e	tC.)							
Signature		"tze	the second			Date	DIIAU	112	Page	of	
Signature		<u> </u>				. Dale	VIJOY	112	- rage	01	

Check if additional information on back []

_----

Depth to Water (from top of well casing) Dot of the legith of Water Column Diameter Water (from top of well casing) Diameter Water Column Vell Casing Type/Diameter 1						PURGE D						
Depth to Water (from top of well casing) 5.08 F.T Diameter Volume Gal/ Gal/ Unear F Depth to Base of Viell 11.45 Height of Water Column 0 10 Unear F Nell Casing Type/Diameter 0.00 10.00 10 Unear F One Casing Volume (gal.) 0.00 0.00 10 Unear F Purge Mathod Purm (type) 0.015 0.056 0.056 Sallons Purged 0.056 0.056 0.056 0.056 Purge Water Storage/Disposal 0.056 0.056 0.056 0.056 Dami dentification, sample analysis, sample results, storage location, etc.) 0.00 10 0.05 Date Collected (moldylyr) 01.94 12 0.00 10 0.05 Sample type (Croundwater, Product, Other) 0.00 0.00 0.00 0.00 0.00 0.00 Sample type (Croundwater, Product, Other) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Nell Cond	ition: Secure	[]Yes [] No	De	escribe Damage	9					4
Depth to Water (from top of well casing) Depth of Water Column Diameter Wollment Depth to Base of Well III S. (free product of the pro	Padlock bra	and and number)		Q (m)	5.08 F	T	100	in a second s		v 6-168 -0	NON	9
Depth to Base of Well 1125 Height of Water Column Call Well Casing Type/Diameter 1125 Height of Water Column 1 2 2.375* 2.067* 0.17 Drec Casing Volume (gal.) Diameter 1 3 3.500* 0.808* 0.888 4 4.006* 0.868* 0.888 4 4.006* 0.868* 0.888 4 4.006* 0.868 0.868* 0.888 4 4.006* 0.868 6 6.625* 6.665* 1.5 8 8.625* 7.981 2.8 7.981	Depth to W	Vater (from top	of well casing)		5.0	8 FT	Ha T				1-1	Volume
Vell Casing Type/Diameter							1	-	A set and a set of the set of the set	00	ID	100 C 101
Dec Casing Volume (gal.) Pump (type) Remove minimum of 3 wall volumes or until field parameters stabilize) Parage Match Volumes or until field parameters stabilize) Stable Pump (type) Remove minimum of 3 wall volumes or until field parameters stabilize) Pumpe Water Storage/Disposal SAMPLING DATA Drum Identification, sample analysis, sample results, storage location, etc.) SAMPLING DATA Date Collected (mod/ylyr) Image Mater Storage Toposal Time Collected Sample Location and Depth MU -7 Time Collected Mater Collected with [] Bailer [] PVC [] Teflon [] Disposable LDPE [] Other Time Collected with [] Bailer [] PVC [] Teflon [] Disposable LDPE [] Other sample Decorprocedure Sample Collected with [] Bailer [] PVC [] Teflon [] Disposable LDPE [] Other Mon.////////////////////////////////////				JUE				-				
uruge Method Purng (type) Q.Q.LSTR_TIC Bailer (type) 4 4.500 ⁺ 4.025 ⁺ 0.66 bailons Purged Service minimum of 3 well volumes or until field parameters stabilize) R.V.M. 8 8.625 7.981 2.6 uruge Water Storage/Disposal R.V.M. R.V.M. 8 8.625 7.981 2.6 varm dentification, sample analysis, sample results, storage/location, etc.) SAMPLING DATA 8 8.625 7.981 2.6 varm dentification, and Depth M.DF Low Tide at Time Collected 1.5 8 8.625 7.981 2.6 varmple Location and Depth M.DF Low Tide at Weather 0.92.4/15 0.92.4/15 ample Collected with []Bailer []/Pump []Other Low Tide at Low Tide at Weather 0.92.4/15 ample Description (color, free product thickness, odor, turbidity, etc.) N.D.M.E Imperature (iffC) 0.04.4 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1 0.24.1		• • •			1-1	iver 1		-				2 2 2 3 V
allons Purged 6 6.625° 6.065° 1.5 Benove minimum of 3 well volumes or until field parameters stabilize) 8 8.625 7.981 2.6 urged Water Storage/Disposal SAMPLING DATA 8 8.625 7.981 2.6 are Collected (moldylyr) 01 0		and the second sec		QeDICT	N. TIC	Bailer (type))					
Barbor minimum of 3 well volumes or until field parameters stabilize) B 8.625 7.981 2.6 urge Water Storage/Disposal SAMPLING DATA SAMPLING DATA Sample Jostimum demthation, sample analysis, sample results, storage location, etc.) Image: Sample Jostimum demthation, storage location, etc.) Image: Sample Jostimum demthation, storage location, etc.) Image: Sample Jostimum demthation, storage location, etc.) Image: Sample Jostimum demthation, storage location, etc.) Image: Sample Jostimum demthation, etc.) Image: Sample Jostimum demthation, etc.) Image: Collected with [] Bailer [] PVC [] Teflon [] Disposable LDPE [] Other Image: Sample Jostimum demthation, etc.) Image: Sample Jostimed Jostimum demthation, etc.) Ima	-		i amp (type)_	YTYRIZIE	The vie							100000000000
SAMPLING DATA Jate Collected (moldylyn) Operation and Depth MW			volumes or until	field parame	ters stabilize)	m Jan		246	12			
SAMPLING DATA Jate Collected (mo/dy/yr) OIL 0 13 MIN — 7 Time Collected	Purge Wat	ter Storage/Dis	posal			RUCK	T.					10
Date Collected (mo/dylyr) 010 k 13 Mix — F Time Collected Since 1 Sample Location and Depth Mix — F Low Tide at Weather Over Ref 3 Sample Collected with [] Bailer [] Purp [] Other Guide of [] Stainless Steel [] PVC [] Tefion [] Disposable LDPE [] Other Mix — F Sample Collected with [] Bailer [] PVC [] Tefion [] Disposable LDPE [] Other NOATE FIELD PARAMETERS FIELD PARAMETERS Time (feet) Gailons) Conductivity Turbidity etc.) NOATE Time (feet) Gailons) Good (100 k) 284 (200 k) Turbidity (100 k) Temperature (100 k) (100 k) Time (feet) Gailons) Good (100 k) 284 (200 k) Turbidity (100 k) Temperature (100 k) (100 k) Temperature (100 k) (100 k) Time (feet) Gailons) Good (100 k) 284 (200 k) Turbidity (100 k) Turbidity (100 k) Temperature (100 k) (100 k) Time (feet) Good (100 k) 284 (200 k) Good (100 k) 284 (200 k) Good (100 k) Good (100 k) Good (100 k) Time (feet) Good (100 k) Time (feet) Good (100 k) Good (100 k) Good (100 k	Drum identi	ification, sample	analysis, sample	results, stor	rage location, etc	c.)	1					
ample Location and Depth MLD - F Time Collected Store Idal Cycle NA [] High Tide at Low Tide at Weather ample type (forundwater, Product, Other) Guide Guide Weather Organization ample tope (forundwater, Product, Other) Guide Guide Guide Guide Guide ample tope (forundwater, Product, Other) Guide	-13					SAMPLING	DATA					
idal Cycle NA [] High Tide at	Date Colle	cted (mo/dy/yr))	011	0/13	69						
Sample type (Groundwater, Product, Other) Groundwater, Product, Other) Groundwater, Product, Other) Sample Collected with [] Bailer [] PVC [] Teflon [] Disposable LDPE [] Other John Procedure Sample Description (color, free product thickness, odor, turbidity, etc.) NONE FIELD PARAMETERS Image: Depth to Water Purge Volume [Get0] Conductivity Turbidity [Os Disposable LDPE [] Other Time (feet) Field PARAMETERS Image: Depth to Water Purge Volume [Get0] Conductivity Turbidity [Os Disposable] Disposable LDPE [] Other 1455 500 6.16 24.9 238.1 11.38 8.8 -70 0 2.44 1455 500 6.52 39.2 10.0 9.22 8.8 -100 0 2.44 1505 500 6.52 39.4 22.0 9.04 8.7 -112 0 0.24 1505 500 6.52 39.4 22.0 9.04 8.7 -112 0 0.24 1505 500 6.52 39.4 22.0 9.04 8.7 -114 0 0.24 1505 500 6.5				4	MW-	7	-		Tim	e Collected	15	10
Sample Collected with []Bailer []PVC []Teflon []Disposable LDPE []Other Made of []Stainless Steel []PVC []Teflon []Disposable LDPE []Other Sample Decon Procedure Sample Decon Procedure Bample Decon Procedure Depth to Water Purge Volume [Gellow and thickness, odor, turbidity, etc.] Image Decon Procedure Image Decon Proce					at	4	Low Tide at		_	Weather	OVE	RCAST
Adde of [] Stainless Steel [] PVC [] Teflon [] Disposable LDPE [] Other Sample Description (color, free product thickness, odor, turbidity, etc.) NOATE FIELD PARAMETERS Time Depth to Water Purge Volume (feet) Conductivity Turbidity (NTU) Dissolved (PC) Temperature (PC) ORP SAU DS Time Ceeth Colspan="2">Conductivity Turbidity (NTU) Dissolved (PC) Temperature (PC) ORP SAU DS 1455 Soo 6.15 39.2 10.38 8.8 -90 0.26 1455 Soo 6.53 39.2 10.2 8.8 -10.2 0.26 1500 Soo 6.52 39.4 22.0 9.04 8.7 -11.2 0.26 1510 Soo 6.52 39.4 22.0 9.04 8.7 -11.4 0 0.26 1510 Soo 6.52 39.4 22.0 9.04 8.7 -11.4 0 0.26 1510 Soo 6.52 39.4 22.0 9.04 8.7 -11.4 0 0.26 Meters Used for Me					A. 4	GW				a		7
Sample Decon Procedure NONE Sample Description (color, free product thickness, odor, turbidity, etc.) NONE FIELD PARAMETERS Depth to Water Purge Volume (feet) Conductivity (met) Turbidity (NTU) Dissolved (ppm) Temperature (pFC) ORP SHL DS 1455 500 6.16 29.9 238.1 138 8.18 -70 0.26 -33 1455 500 6.53 39.2 10.26 0.26 -102 -102 0.26 -102 0.26 -102 0.26 -102 -									N.			
Sample Description (color, free product thickness, odor, turbidity, etc.) NOME FIELD PARAMETERS Time Depth to Water Purge Volume (gallons) Conductivity pH Turbidity (usigm) Dissolved (mpm) Temperature (free) ORP S.4.// S.4.// (NTU) Turbidity (mpm) Dissolved (mpm) Temperature (r/c) ORP S.4.// (NTU) Turbidity (mpm) Dissolved (mom) Turbidity (mom) Dissolved (mom) Turbidity (mom) Dissolved (mom) Turbidity (mom) Turbidity (mom) Turbidity (mom) Turbidity (mom) Dissolved (mom) Turbidity (mom)	-			/C [] Teflon	[] Disposable	e LDPE	[] Other				
FIELD PARAMETERS Depth to Water Purge Volume (gallons) Conductivity pH Turbidity (MS/M) Dissolved (gpm) Temperature (fPC) ORP SAL IDS 14.55 6.08 1500 6.16 29.9 2.38.1 1.38 8.9.8 -90 0 2.4.1 14.55 500 6.53 39.2 30.0 9.22 8.8 -100 0 2.4.1 1500 500 6.52 39.4 22.0 9.924 8.7 -112 0 0.26 1500 500 6.52 39.4 22.0 9.924 8.7 -114 0 0.26 1500 500 6.52 39.4 22.0 9.924 8.7 -114 0 0.26 1510 500 6.52 39.4 22.0 9.924 8.7 -114 0 0.26 1510 500 6.52 10.1 9.0 8.7 -114 0 0.26 151 <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>8</td><td>,</td><td></td></td<>					-			-		8	,	
Depth to Water Purge Volume (deal) Discolved pH Turbidity (MS/m) Dissolved (ppm) Temperature (ppm) ORP (mV) SAL DS ////////////////////////////////////	Sample De	escription (colo	r, free product	thickness,	odor, turbidity,	etc.)		NONE				
Depth to Water Purge Volume (gallons) Conductivity (MS/M) Turbidity (NTU) Temperature (ppm) ORP (mV) SAL (M) IDS (M) 11450 6.08 1500 6.16 29.9 238.1 1138 8.9 -90 0.24 1450 500 6.39 41.1 152.2 10.2 8.8 -102 0.24 1500 500 6.53 39.2 70.0 9.22 8.8 -102 0.24 1500 500 6.53 39.4 22.0 9.04 8.7 -112 0 0.24 1500 500 6.52 39.4 22.0 9.04 8.7 -114 0 0.24 1510 500 6.52 39.4 22.0 9.04 8.7 -114 0 0.24 1510 500 6.52 39.4 22.0 9.04 8.7 -114 0 0.24 1510 500 6.52 39.4 20.0 10.0 10.0		-			F	IELD PARAN	IETERS					
Time (feel) (gallons) pH (MS/m) (NTU) (gpm) (f/C) (mV) ////////////////////////////////////	-			X			Construction of the second	and and and			150	9
International (1) In							1.		18.24 64	SAL		1
1455 500 6.39 41.1 52.2 9.02 8.8 -102 0.026 1505 500 6.52 39.4 22.0 9.04 8.7 -114 0 0.26 1505 500 6.52 39.4 22.0 9.04 8.7 -114 0 0.26 1510 500 6.51 39.3 10.1 9.01 8.7 -114 0 0.26 1510 500 6.51 39.3 10.1 9.01 8.7 -114 0 0.26 1510 500 6.51 39.3 10.1 9.01 8.7 -114 0 0.26 1510 500 6.51 39.3 10.1 9.01 8.7 -114 0 0.26 1510 6.01 1.01 1.01 9.01 8.7 -114 0 0.26 1500 1.01 1.01 1.01 1.01 1.01 1.01 1.01 16100 1.01 1.01 1.01 1.01 1.01 1.01 1.01 <td></td> <td></td> <td>- 1- 1</td> <td>pН</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(7.) -</td> <td>mgL</td> <td>1</td>			- 1- 1	pН						(7.) -	mgL	1
1500 500 6.53 39.2 70.0 9.22 8.8 110 0 0.26 1505 500 6.52 39.4 22.0 9.04 8.7 -112 0 0.26 1510 500 6.52 39.4 22.0 9.04 8.7 -114 0 0.26 1510 500 6.52 39.4 22.0 9.04 8.7 -114 0 0.26 1510 500 6.52 39.4 22.0 9.04 8.7 -114 0 0.26 1510 500 6.52 39.4 22.0 9.04 8.7 -114 0 0.26 1510 500 6.52 39.4 22.0 9.04 8.7 -114 0 0.26 1510 1.01 <t< td=""><td>IN M</td><td>5.08</td><td></td><td>0 11</td><td></td><td></td><td></td><td></td><td>19</td><td>٥</td><td></td><td>- dist</td></t<>	IN M	5.08		0 11					19	٥		- dist
150 500 6.52 39.4 22.0 9.04 8.7 -112 0 0.26 1510 500 6.51 39.3 10.1 9.01 8.7 -114 0 0.26 1510 500 6.51 39.3 10.1 9.01 8.7 -114 0 0.26 1510 500 6.51 39.3 10.1 9.01 8.7 -114 0 0.26 1510 500 6.51 39.3 10.1 9.01 8.7 -114 0 0.26 1610 161	- Ald			0121					100	0	0.26	
1510 500 6.51 39.3 10.1 9.01 8.7 -114 0 0.66 1 <td< td=""><td>1 10 10 10</td><td></td><td></td><td></td><td></td><td></td><td></td><td>67 6</td><td>-110</td><td>0</td><td>0.25</td><td>397</td></td<>	1 10 10 10							67 6	-110	0	0.25	397
Adeters Used for Measurement Meters Used for Measurement Meters Used for Measurement Moders Used for Measurement Meters Used for Measurement Multiput Multiput Multiput Multiput Multiput Multiput Multiput Multiput Mul		4					11 - 47		-112	0	0.26	1.1.1
Addition Adition Adition A	1210	a spectro and the	500	locs	37.3	1011	9.01	817	-114	0	0.26	141
Aters Used for Measurement H/Con./DO Instrument Calibration Image: Composited Overtime, Distance ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers Ouplicate Sample Number(s)		1	<i>B</i>	-	52 C							
Aters Used for Measurement H/Con./DO Instrument Calibration Image: Composited Overtime, Distance ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers Ouplicate Sample Number(s)	*			-						_		
Addition Adition Adition A	× *			100								
H/Con./DO Instrument Calibration []] Yes [] NoE-Tape		· · · · · · · · · · · · · · · · · · ·		1. 20								
DH/Con./DO Instrument Calibration [V] Yes] No E-Tape ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers Ouplicate Sample Number(s)	*										2	
DH/Con./DO Instrument Calibration [V] Yes] No E-Tape ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers Ouplicate Sample Number(s)			1									
DH/Con./DO Instrument Calibration [V] Yes [] No E-Tape ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers Duplicate Sample Number(s)	4	1										
DH/Con./DO Instrument Calibration [V] Yes [] No E-Tape ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers Duplicate Sample Number(s)	leters Lise	ed for Measure	ment			LIDDIR	A 11 2	2				
ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers Duplicate Sample Number(s)					[] No	IVAL	11 150			E Topo	1	
Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers					-					L-Tape		
Analyses, Number and Volume of Sample Containers) ama la c			7	ADD	ITIONAL INFO	JRIMATION					
Duplicate Sample Number(s)												
	maiyses, l	number and Vo	olume of Samp	ole Containe	ers _		t		X			
	Junlicate	Sample Numbe	ar(e)									1
				ulations of	c)						(
	Johnnenits		t i intereu, calc	ulations, et		-						
	ignature			7/1		1 2125	Date	01/04	1.172	Page	of	

GROUNDWATER SAMPLE COLLECTION FORM

Project	FRONDAL	E STEEL	. RANT	Job No.	0504-042-0	Collector	FK	Sample ID	MW08.	-13010	4
					PURGE DA	TA					
	lition: Secure and and number)] No	D	escribe Damage	1	NONE				
Depth to V	Vater (from top	of well casing)	4.0,	F7	M 11				1.000	Volume
	Base of Well	120	Iret		of Water Column			Diameter (in.)	OD	ID	Gal./ Linear Ft
2.1	ng Type/Diame	tor	15-5-1-					2	2.375"	2.067"	0.17
	ng Volume (gal			1-110	CH			3	3.500"	3.068"	0.17
Purge Met			200.07	PAITIC	Bailor (type)			4	4.500"	4.026"	0.38
Gallons Pu		Pump (type)	TERISI	ALTIC	Bailer (type)			6	4.500	6.065"	
	inimum of 3 well	volumes or until	field narame	tors stabiliza)	5 gul			8	8.625	7.981	1.5 2.6
	ter Storage/Dis		neiu parame	lers stabilize)				0	0.025	7.301	2.0
	tification, sample		e results sto	rade location e	BUCIRET				-		
12141114011	incation, campio	analy oro, campi		ugo location, o	SAMPLING [
Data Calla		\	01	1 - 0 1							
	ected (mo/dy/yr		O					Tim	Callested	11	2.2
	Discription and De		High Tide a	MW-1	5	Low Tide at		IIme	e Collected		20
Tidal Cycle				at	C 1 1	Low fide at			Weather	OVE	RLAST
	pe (Groundwat ollected with	[] Bailer	[X] Pu	mp [](O W						
							1.104		-		-
	[] Stainless S		/C [] letion	[X] Disposable	LDPE	[] Other				
	econ Procedurescription (colo		thickness	odor turbidity	(etc)		D CO D C	7-			
	escription (cold	n, nee product	unickness,				NON	E .			
					FIELD PARAM	ETERS					
		ml				Dissolved					
		Purge Volume		Conductivity	Turbidity	mg O2	Temperature	ORP	SAL	TDS	
Time	(feet)	(gallons)	рН	(MS/M)	(NTU)	(ppm)	(F/C)	(mV)		314	
1545	15.	1500	5186	62.9	248,1	11.36	9.0	-74	0	0.4	
1550		300	5.89	6312	123,4	10:73	9.0	-75	0	O.Lt	
1555	-	500	5-91	6315	27:2	9.82	9.0	-79	0	0.4	
1600		500	5.93	63.8	6,5	9.72	9:0	- 78	0	0:4	
					12						
											5
4						1					
							_				
						_				4	
								a			
Meters Us	ed for Measure	ement			HOR	BA L	1-22				
pH/Con./D	O Instrument C	Calibration	[X] Yes	[] No	FIGT				E-Tape	. /	/
						DMATION			=		
O		Distant		ADL	DITIONAL INFO	RMATION					
	Composited Ov										
Analyses,	Number and V	olume of Sam	ble Contain	ers .							
Duplicato	Sample Numbe								_		
	sample Numbers: (Filtered, No		ulations of	·c)							
Commente		r i mereu, calo	ulations, el)							
Signature			JAN	_		Date	ollalit	12	Page	of	
	ditional information	n on ho-l.r.	Zavi	1		Date	0404	17	1 age	U	
UNECK IT add	ditional informatio	JI OII DACK []					/ /				

GROUNDWATER SAMPLE COLLECTION FORM	

and the second second

	TRONDAL	• •		, Art	PURGE DA	ТА		** ***			
ell Condit	ion: Secure [ViYes [1 No	De	scribe Damage		NONE	,			
adlock brar	nd and number)	74 	1	. – –							
	۔ ater (from top c	f well casing)		4.8	3 7 T		·	Diameter			Volume Gal./
		17.0			Water Column			(in.)	OD	ID	Linear Fl
•	g Type/Diamete		· ^منظر	1. INCH	-		-	2	2.375"	2.067"	0.17
	y Volume (gal.)			1	· · · · · · · · · · · · · · · · · · ·			3	3.500"	3.068"	0.38
rge Meth	od	Pump (type)	PER'S	11.5.6	Bailer (type)			4	4.500"	4.026"	0.66
ilons Pu	raed	_	n.<	an i				6	6.625"	6.065"	1.5
	nimum of 3 well v) Ì	8	8.625	7.981	2.6
rge Wate	er Storage/Disp			UCKET							
rum identil	fication, sample a	nalysis, sample	results, stor	age location, etc	SAMPLING D						
to Coller	cted (mo/dy/yr)	010	11 11 2		SAMPLING L						~
	cation and Dep			W 09				Time	e Collected		<u> 515 </u>
dal Cycle	· · · · ·		High Tide a			Low Tide at			Weather	OVER	CAST_
	e (Groundwate		her)		GW		•		~		
•	llected with		[X] Pur								
] Stainless Ste		/C [] Teflon	[X] Disposable		[] Other	1. may p	<u>\</u>		
impler D	econ Procedure scription (color	e free preduct	thickness	LIQ()	NOK &	<u>VISTIC</u> N	0N/E	PICK			*
imple De	scription (color	, liee product	tinckness,				<u>ww</u>				
				1					Γ		r
		(vel)		Conductivity	Turbidity	Dissolved	Temperature	ORP	SALINITS		,
Time	Depth to Water (feet)	(gallons)	pН		(NTU)	(ppm)	(F/C)	(mV)	1.7.	81-	
	4.83	1500	413	2.81	131.0	17.59	10.0	67	1:7	. 7	and a
300	4.00	500	4.29	2.78	89:0	17,91	10.0	64	1.7	1.7-11	
310		500	4.31	2.76	75.0	19.43	10.1	58	1.7	17	
1315		500	4.31	2.72		17.18	10.0	55	1.6	17	: ·
<u> </u>									ļ	ļ	1.
					······································						<u> </u>
· · · ·						<u> </u>					
										<u> </u>	
										i	
	<u> </u>										
								Julle .	- <u>1 da</u> - 1	2	1
							⁶⁴		*	* *	
leters s	ed for Measure	ment		Ę.,	TAPE, HO	RIBA U	-22	2.			
	O Instrument C		[/] Yes	[] No				:	E-Tape	1	
					DITIONAL INF	ORMATIO	N		٠ ب		
		ertime Distar	ice								
	Composited Ov	cramo, Diotai	nple Contail	ners							
amples (Composited Ov Number and V	olume of Sam									<u> </u>
amples (Composited Ov Number and V	olume of Sam				Put		ETALS			
amples (nalyses,)uplicate	Number and V Sample Number	er(s)									
amples (nalyses,)uplicate	Number and V	er(s)		etc.)		· · · · · · · · · · · · · · · · · · ·	013, TA+1	16.12			
amples (nalyses,)uplicate	Number and V Sample Number	er(s)		etc.)			6 9, TA 1 6	JE D			
amples (nalyses, ouplicate	Number and V Sample Numbe s: (Filtered, No	er(s)		stc.)		Date			Page	e 100 .0	f.
Samples (Analyses, Duplicate Comment Signature	Number and V Sample Numbe s: (Filtered, No	er(s) It Filtered, Ca		stc.)					Page	e 20 0	f.
Samples (Analyses, Duplicate Comment Signature	Number and V Sample Numbe s: (Filtered, No	er(s) It Filtered, Ca		etc.)					Page	e	f
amples (nalyses, Duplicate Comment	Number and V Sample Numbe s: (Filtered, No	er(s) It Filtered, Ca		stc.)	3				Page	eo	f
amples (nalyses, Duplicate Comment	Number and V Sample Numbe s: (Filtered, No	er(s) It Filtered, Ca		stc.)	3				Page		f

			C/W	BOLS	TYPICAL	SY	MBOL
Μ	AJOR DIVIS	IONS	GRAPH		DESCRIPTIONS	GRAP	
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		-
MORE THAN 50% RETAINED ON NO.	SAND			SW	WELL-GRADED SANDS, GRAVELLY SANDS		Gr
200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	Ţ	Me exp
	MORE THAN 50% OF COARSE FRACTION PASSING NO. 4	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	Ţ	Me pie
	SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES		Gr
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY INORGANIC CLAYS OF LOW TO		Dis geo
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		Ap cha
SOILS			h	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		Ma
MORE THAN 50% PASSING NO. 200 SIEVE	011 70			МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS		Di: ge
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		Ap ch
			hinhi hinhi	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY		
	GHLY ORGANIC	SOILS	<u></u>	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		La
	2.4 Sta She Pis	mpler Symb -inch I.D. split Indard Penetra elby tube ton ect-Push lk or grab	barrel		<u>15</u>	%F AL CC DS HAC DS HAC PI PP PPM STX	Pe Att Ch Lai Co Dir Hy Mo Or Pe Pia Po Pa Sie Tri
	count is reco	orded for drive	ampler [•] 12	2 inches	(or	UC VS	Un Va Sh
of blo dista and o	drop. '' indicates sa	see exploratio	C C		-	NS SS MS HS	No Slig Mo He

AL MATERIAL SYMBOLS

SYMBOLS		TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	сс	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	TS	Topsoil/ Forest Duff/Sod

undwater Contact

- sured groundwater level in oration, well, or piezometer
- sured free product in well or ometer

phic Log Contact

nct contact between soil strata or ogic units

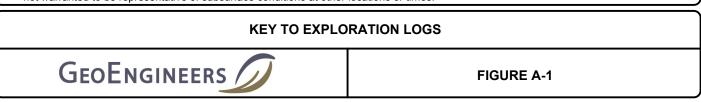
roximate location of soil strata ge within a geologic soil unit

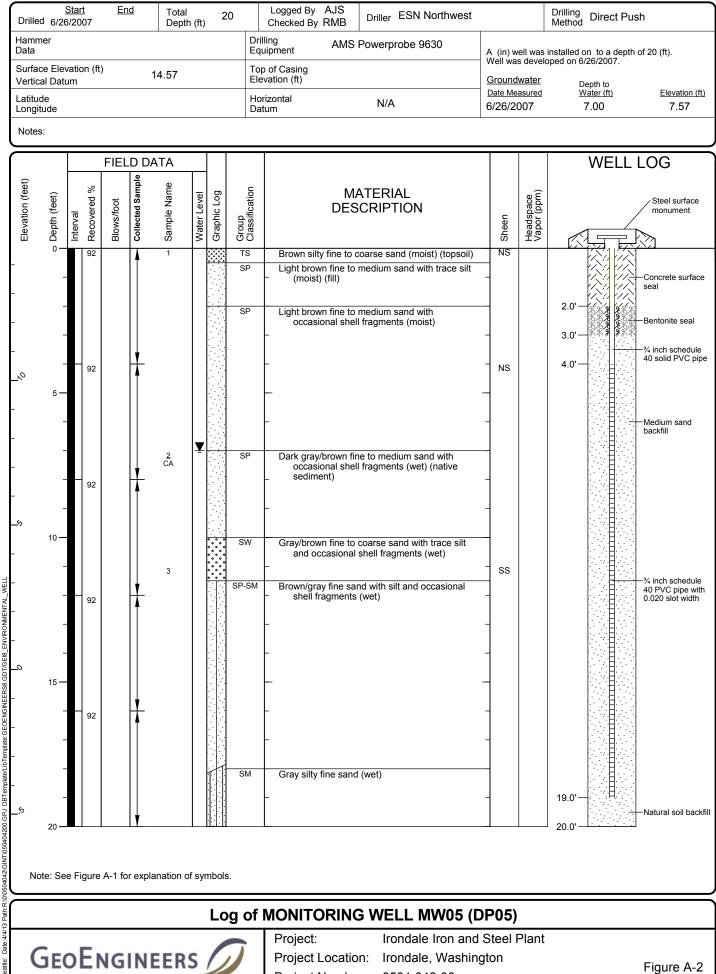
erial Description Contact

nct contact between soil strata or ogic units

roximate location of soil strata ge within a geologic soil unit

Laboratory /	/ Fiel	d Tests
--------------	--------	---------

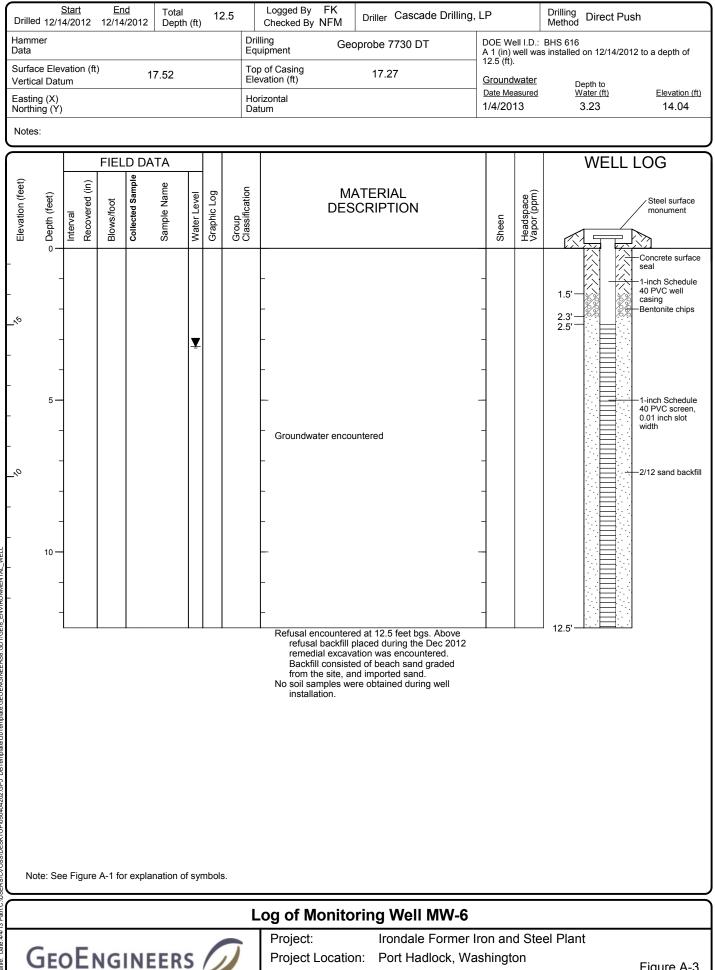

ent fines


- rberg limits
- mical analysis
- pratory compaction test
- solidation test
- ct shear
- rometer analysis
- sture content
- sture content and dry density
- anic content neability or hydraulic conductivity
- ticity index
- et penetrometer
- s per million
- e analysis
- cial compression
- onfined compression
- shear

en Classification

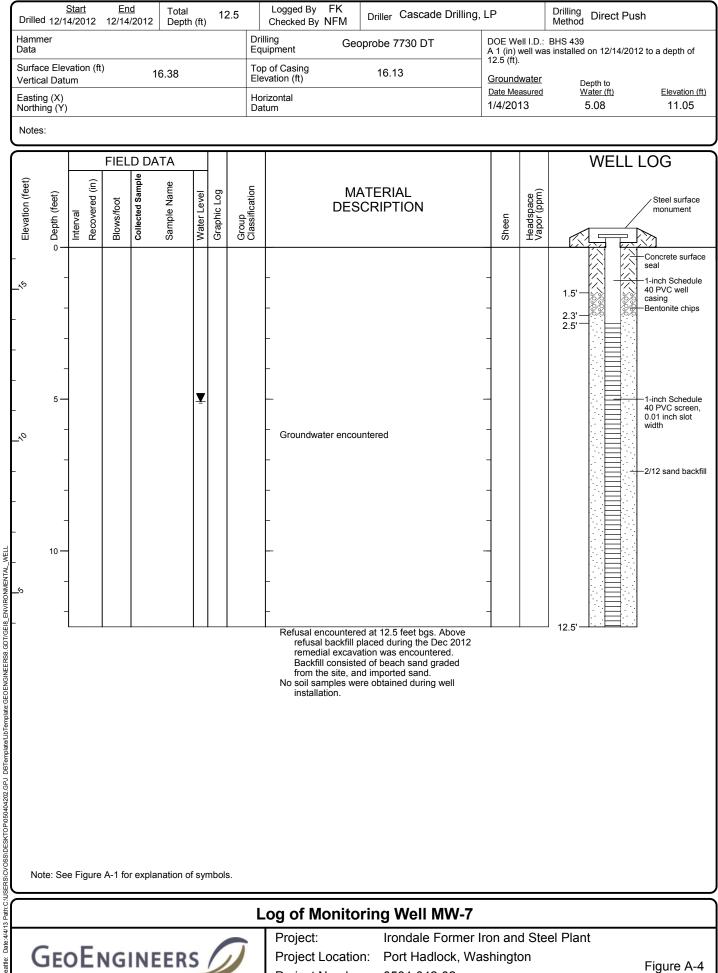
- isible Sheen
- nt Sheen
- erate Sheen /y Sheen
 - ested

er understanding of subsurface explorations were made; they are



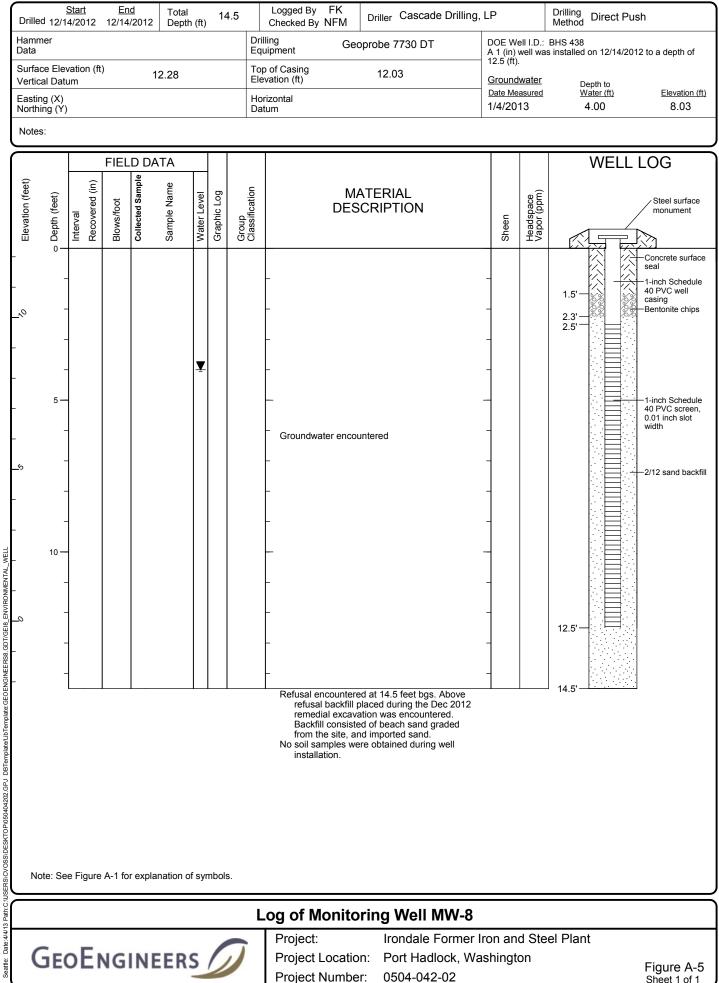
Project Number:

0504-042-00


Figure A-2 Sheet 1 of 1

Project Number:

GDT/GEI8_ENVIRONMENTAL eattle: Date: 4/4/13


Port Hadlock, Washington Figure A-3 0504-042-02 Sheet 1 of 1

Project Number:

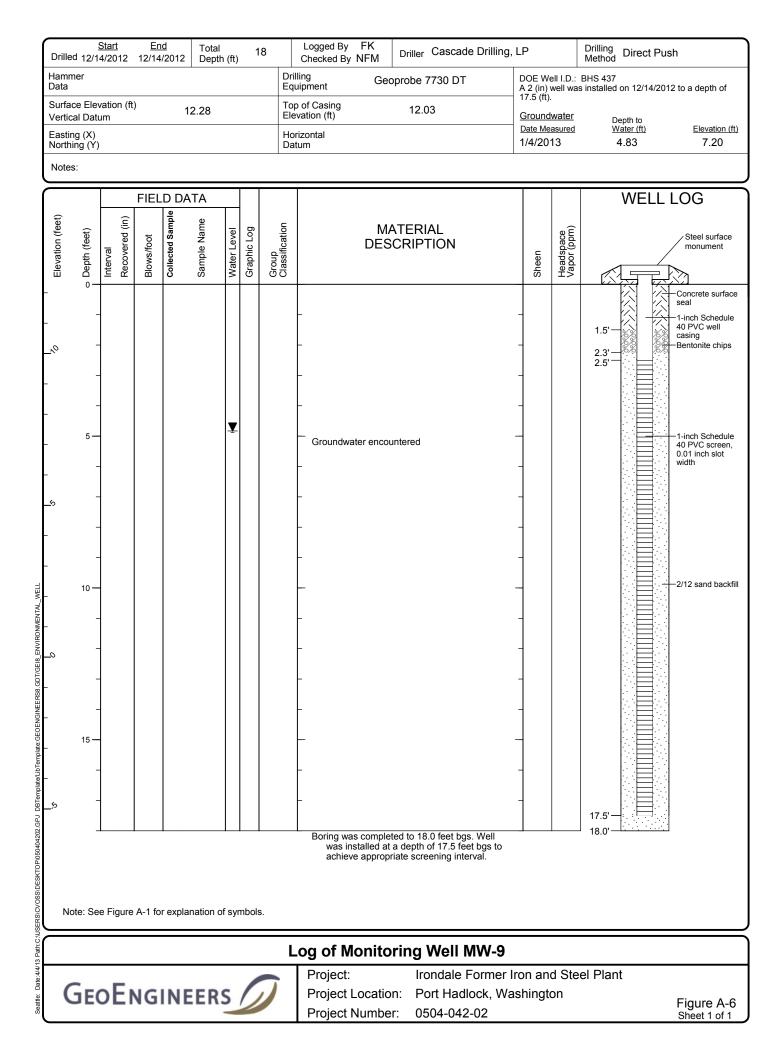

0504-042-02

Figure A-4 Sheet 1 of 1

Figui	e
Sheet	1

of 1

APPENDIX B

Data Validation Memorandum and Chemical Analytical Results

Data Validation Report

Plaza 600 Building, 600 Stewart Street, Suite 1700, Seattle, WA 98101, Telephone: 206.728.2674, Fax: 206.728.2732

www.geoengineers.com

Project:	Irondale Remedial Cleanup Action, Quarterly Groundwater Monitoring (Round 1)
File:	0504-042-02
Date:	February 21, 2013
Lab Report:	VY50 (ARI)

This report presents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2A validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of seven groundwater samples obtained from the Post-Construction Quarterly Groundwater Monitoring Event (Round 1) at the former Irondale Iron and Steel Plant site in Irondale, Washington. Samples obtained were submitted to Analytical Resources Incorporated (ARI) of Tukwila, Washington for chemical analysis of diesel- and heavy oil-range petroleum hydrocarbons (NWTPH-Dx), dissolved and total carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and dissolved metals (copper and nickel).

The objective of the data quality assessment was to review laboratory analytical procedures and QC results to evaluate whether the samples were analyzed using well-defined and acceptable methods that provide quantitation limits below applicable regulatory criteria, the precision and accuracy of the data are well defined and sufficient to provide defensible data, and the quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The ARI Sample Delivery Group (SDG; noted above) was reviewed for the following quality control (QC) elements:

- Chain of Custody
- Holding Times
- Surrogates/Labeled Compounds
- Method and Equipment Rinsate Blanks
- Laboratory Control Samples/Ongoing Precision and Recovery Samples
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in two USEPA documents: USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, 2010) and USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 2008).

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical reports. No transcription errors were found, and the appropriate signatures were applied. There were no anomalies mentioned in the sample

Data Validation Report February 21, 2013 Page 2

receipt forms, as the samples were transported to the laboratory at the appropriate temperatures of between 2 and 6 degrees Celsius.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits, with the exceptions below:

SDG VY50 (SIM-CPAHs): The laboratory had flagged several d14-dibenzo(a,h)anthracene %R values as being outside the control limit. Upon further inspection, this claim was revealed to be an error. All the associated d14-dibenzo(a,h)anthracene %R values were found to be within the laboratory prescribed control limits of 26% to 115%.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the contract required quantitation limits.

Matrix Spikes/Matrix Spike Duplicates

Because the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample") is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spike sample".

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference (RPD) values. The frequency requirements were met for all analyses and the %R/RPD values were within the proper control limits.

Data Validation Report February 21, 2013 Page 3

Laboratory Control Samples

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the RPD values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Laboratory Duplicates (Metals and Fuels only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met in all cases.

Field Replicates/Duplicates

Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates the RPD is used as the criteria for assessing precision, unless one or more of the samples used has a concentration greater than five times the reporting limit for that sample. In this case, the absolute difference is used instead of the RPD.

The following field duplicate sample sets were collected for this sampling event:

MW06-130104/MW06-130104-DUP and MW09-130104/MW09-130104-DUP

The RPD/absolute difference value for the field duplicate sample sets were within their respective control limits.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogates, LCS/LCSD, and MS/MSD %R values. Precision was acceptable, as demonstrated by the laboratory duplicate, LCS/LCSD and MS/MSD RPD and absolute difference values.

Based on the data quality review, it is our opinion that the analytical data, including data qualified as noted above, are of acceptable quality for their intended use.

Data Validation Report February 21, 2013 Page 4

REFERENCES

- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," OSWER 9240.1-51, EPA 540-R-10-011. January 2010.
- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.
- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

Client: Geoengineers

Project: 0542-042-01 Irondale Former Iron & Steel Plant

	Page From:	Page To:
Inventory Sheet		
Cover Letter		/
Chain of Custody Documentation	2	5
Case Narrative, Data Qualifiers, Control Limits	6	16
SIM PAH Analysis		
Report and Summary QC Forms	17	35
TPHD Analysis		
Report and Summary QC Forms	36	49
Metals Analysis		
Report and Summary QC Forms	50	77
Geotechnical Analysis – NA		
Report and Summary QC Forms PREP ONLY		
METALS RAW DATA	78	222

BC Signature

January-16-2013 Date

January 16, 2013

Neil Morton GeoEngineers, Inc. Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, WA 98101

RE: Client Project: Irondale Former Iron & Steel Plant, 0542-042-01 ARI Job No.: VY50

Dear Neil:

Please find enclosed the Chain of Custody record (COC), sample receipt documentation, and the final data package for samples from the project referenced above.

Sample receipt and details of these analyses are discussed in the Case Narrative.

An electronic copy of this package will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro Project Manager (206) 695-6214 <u>cheronneo@arilabs.com</u> www.arilabs.com

cc: eFile: VY50

Enclosures

Page 1 of <u>222</u>

Chain of Custody Documentation

ARI Job ID: VY50

.

Collection 2 Topoler 11 14 2006: 2006-695-6201 (Jax) Collection 2 Topoler 11 14 2006-695-6201 (Jax) Analysis Requested Analysis Requested Anal	ARI Assigned Number: V ソ S TAN DARD ARI Client Company: GEL Phone: こして、 フンピ・ フンピ・ フンピ・ フンピ・ フンピ・ フレ
Analysis Requested Analysis Requ	
All All <td></td>	
A A A A A A <td></td>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\sim
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	\smile
Note Note	
Note Note	
Relinquished by (Signature) Printed Name · Company Date & Time ·	וא
Relinquished by (Signature) Printed Name ' Company Date & Time .	
Reinquished by (Signature) Printed Name: Company Date & Time.	
Reinquished by (Signature) Printed Name: Company Date & Time.	
Printed Name Company Date & Time.	7
Company Date & Time.	51
Date & Time.	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality ASsurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or contract agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless atternate retention schedules have been established by work-order or contract.

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Receipt	Form
ARI Client	Project Name Delivered by Fed-Ex UPS Courier Hand D Tracking No	
Preliminary Examination Phase:		
Were intact, properly signed and dated custody seals attached to the	e outside of to cooler?	YES NO
Were custody papers included with the cooler?		(TES) NO
Were custody papers properly filled out (ink, signed, etc.).		(ES) NO
Temperature of Cooler(s) (°C) (recommended 2.0-6 0 °C for chemist	try) 1,1 1,4	C
If cooler temperature is out of compliance fill out form 00070F	Temp Gur	10# 908 77952
Cooler Accepted by	Date 1- 7-13 Time. 110	
Complete custody forms and	l attach all shipping documents	
Log-In Phase:		

Was a temperature blank included in the cooler?		YES	(NO)
What kind of packing material was used? . Bubble Wrap (Wet Jee Gel Packs Baggies Foam Block	Paper (Other:	\bigcirc
Was sufficient ice used (if appropriate)?	NA	YES/	NO
Were all bottles sealed in individual plastic bags?		YES	NO
Did all bottles arrive in good condition (unbroken)?		YES	NO
Were all bottle labels complete and legible?		YES	NO
Did the number of containers listed on COC match with the number of containers received?		YES	NO
Did all bottle labels and tags agree with custody papers?		YES	NO
Were all bottles used correct for the requested analyses?		YE\$	NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) .	NA	V Es	NO
Were all VOC vials free of air bubbles?	NA,	YES	NO
Was sufficient amount of sample sent in each bottle?	\bigcirc	YES	NO
Date VOC Trip Blank was made at ARI.	(NA)		
Was Sample Split by ARI : NA YES Date/Time: Equipment		Split by:	
Samples Logged by:	1241		

** Notify Project Manager of discrepancies or concerns **

Sample ID on Bottle	c	ample ID on COC	Sample ID on Bottle	Semala ID
Sample ID on bottle			Sample ID On Bottle	Sample ID on COC
Additional Notes, Discrep	ancies, & Re	solutions:		
	D /			
By	Date			
	abubbles'	LARGE Air Bubbles	Small → "sm"	
		> 4 mm	Peabubbles → "pb"	
	• • •		Large → "lg"	
N. Loris Printers and Part			Headspace → "hs"	

Revision 014

PRESERVATION VERIFICATION 01/07/13 Page 1 of 1

Analysis Requested: 01/07/13 Contact: Morton, Neil

Inquiry Number: NONE

Client: Geoengineers Logged by: TS Sample Set Used: Yes-481 Validatable Package: No

Deliverables:

ARI Job No: VY50

PC: Cheronne VTSR: 01/07/13 Project #: 0542-042-01
Project: Irondale Former Iron & Steel Plant
Sample Site:
SDG No:
Analytical Protocol: In-house

LOGNUM		CN	WAD	NH3	COD	FOG	MET	PHEN		TKN N	023	1		PHD F	e2+ F	MET DOC		AD.TUSTED	T.O.T	DMOIINT	
ARI ID	CLIENT ID	>12	>12	<2	<2	~2	<2	<2 <2 <2		<2 <2	~5	22	6 ^	<2	~27 ~27	FLT FLT	PARAMETER	TO	NUMBER	TO NUMBER ADDED	DATE/BY
13-275 VY50A	MW05-130104						C.S									X					
13-276 VY50b	MW06-130104						SID SID									X					
13-277 V¥50C	MW07-130104						P ^{IS}									X					
13-278 VY50D	MW08-130104						PIS									X				, , ,	
13-279 VY50e	MW09-130104						DIS ()									х					
13-280 VY50F	MW06-130104-DUP						•												<u>.</u>		
13-281 VY50G	MW09-130104-DUP						SID SID									л					

Case Narrative, Data Qualifiers, Control Limits

ARI Job ID: VY50

•

,

Case Narrative

Client: GeoEngineers, Inc. Project: Irondale Former Iron & Steel Plant, 0542-042-01 ARI Job No.: VY50

Sample Receipt

Seven water samples were received on 1/7/13 under ARI job VY50. The cooler temperatures measured by IR thermometer following ARI SOP were 1.1 and 1.4°C. For further details regarding sample receipt, please refer to the Cooler Receipt Form.

Select samples were requested for both total and dissolved SIM PAHs. Details regarding dissolved aliquot filtrations can be found in the Geotechnical Case Narrative. Dissolved SIM PAH results have been reported under ARI identifications 13-282-VY50H, 13-283-VY50I, 13-284-VY50J, and 13-285-VY50K

Low-Level SIM PAHs by SW8270

The samples were extracted and analyzed within the method recommended holding times.

Initial and continuing calibrations were within method requirements. Internal standard areas were within limits.

The surrogate percent recoveries of d10-2-Methylnaphthalene were outside ARI control limits high for several samples. No corrective action was taken.

The method blank was clean at the reporting limits. The LCS and LCSD percent recoveries were within control limits.

<u>NWTPH-Dx</u>

The samples were extracted and analyzed within the method recommended holding times.

Initial and continuing calibrations were within method requirements. Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits. The LCS and LCSD percent recoveries were within control limits.

Dissolved Metals by Method 200.8

The samples and associated laboratory QC were digested and analyzed within recommended holding times.

The method blank was clean at the reporting limits. The LCS percent recoveries were within control limits.

The matrix spike percent recoveries and duplicate RPDs were within control limits.

Geotechnical Parameters

A laboratory-specific case narrative follows this page.

The filtered sample blank was used as an extraction batch method blank for all SIM PAH samples.

Client: Geoengineers

ARI Job No.: VY50

Client Project: Irondale Former Iron & Steel Plant Client Project No.: 0542-042-01

Case Narrative

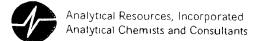
- 1. Four water samples were submitted for filtering on January 7, 2013, and were in good condition.
- 2. The samples were filtered using all glass filtering equipment.
- 3. All equipment was decontaminated prior to use.
- 4. All of the water was filtered through a 0.7µm borosilicate glass, binder free filters.
- 5. The filtered sample was decanted into 500mL amber glass sample bottles for the requested analysis.
- 6. 500mL of deionized water was filtered for a sample blank, and decanted into a 500mL amber glass bottle.
- 7. There were no other noted anomalies in the samples or methods on this project.

Released by: Title: Geotechnical Division Manager

Date: <u>//8</u>

Reviewed by: Title:

Lead Technician


Date: 1.8.2013

Sample ID Cross Reference Report

ARI Job No: VY50 Client: Geoengineers Project Event: 0542-042-01 Project Name: Irondale Former Iron & Steel Plant

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	MW05-130104	VY50A	13-275	Water	01/04/13 17:30	01/07/13 11:00
2.	MW06-130104	VY50B	13-276	Water	01/04/13 14:25	01/07/13 11:00
З.	MW07-130104	VY50C	13-277	Water	01/04/13 15:10	01/07/13 11:00
4.	MW08-130104	VY50D	13-278	Water	01/04/13 16:30	01/07/13 11:00
5.	MW09-130104	VY50E	13-279	Water	01/04/13 13:15	01/07/13 11:00
6.	MW06-130104-DUP	VY50F	13-280	Water	01/04/13 14:25	01/07/13 11:00
7.	MW09-130104-DUP	VY50G	13-281	Water	01/04/13 13:15	01/07/13 11:00
8.	MW06-130104	VY50H	13-282	Water	01/04/13 14:25	01/07/13 11:00
9.	MW07-130104	VY50I	13-283	Water	01/04/13 15:10	01/07/13 11:00
10.	MW08-130104	VY50J	13-284	Water	01/04/13 16:30	01/07/13 11:00
11.	MW06-130104-DUP	VY50K	13-285	Water	01/04/13 14:25	01/07/13 11:00

Data Reporting Qualifiers

Effective 2/14/2011

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).

Analytical Resources, Incorporated Analytical Chemists and Consultants

- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid, a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- Analyte signal includes interference from polychlorinated diphenyl ethers.
 (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions (Dioxin/Furan analysis only)

Analytical Resources, Incorporated Analytical Chemists and Consultants

Ge olechnical Data

- A The total of all fines fractions. This flag is used to report total fines when on I y sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

LOD¹, LOQ² and Control Limits Summary Analysis of Water Samples for Low Concentration PNA EPA Method 8270 – SIM ARI Analysis: PNLWSL

Separatory Funnel Extraction (EPA Method 3510C) using 500 mL sample with extract concentrated to 0.5 mL final volume. Silica gel cleanup performed on extract prior to analysis. ARI bench Sheet 3071F DL, LOD & LOQ units are nanograms per liter (ng/L) = parts-per-trillion (ppt). LOD Spike level = LOQ

Analyte	DL ¹ ng/L	LOD ¹ ng/L	LOQ ¹ ng/L	LCS Control Limit ²	Replicate RPD ³
Naphthalene	0.85	5	10	37 – 90	≤ 40
2-Methylnaphthalene	0.72	5	10	39 – 90	≤ 40
Acenaphthylene	0.81	5	10	35 – 95	≤ 40
Acenaphthene	0.83	5	10	38 – 94	≤ 40
Dibenzofuran	0.94	5	10	36 – 94	≤ 40
Fluorene	1.41	5	10	41 – 102	≤ 4 0
Phenanthrene	1.01	5	10	41 – 101	≤ 4 0
Anthracene	0.58	5	10	28 – 101	≤ 4 0
Fluoranthene	0.92	5	10	49 – 114	≤ 40
Pyrene	0.70	5	10	42 - 114	≤ 40
Benzo(a)anthracene	1.27	5	10	42 – 111	≤ 40
Chrysene	1.57	5	10	46 - 106	≤ 40
Benzo(b)fluoranthene	2.54	5	10	39 – 119	≤ 40
Benzo(k)fluoranthene	0.85	5	10	50 - 117	≤ 40
Benzo(j)fluoranthene	1.65	5	10	30 - 160 4	≤ 40
Benzo(a)pyrene	1.14	5	10	20 – 99	≤ 40
Indeno(1,2,3-cd)pyrene	1.82	5	10	32 – 113	≤ 40
Dibenz(a,h)anthracene	0.97	5	10	30 – 113	≤ 40
Benzo(g,h,i)perylene	1.87	5	10	27 – 113	≤ 40
1-Methylnaphthalene	0.88	5	10	38 – 95	≤ 40
Perylene	3.21	5	10	30 – 160 ^₄	≤ 40
Surrogate Standard Recovery			MB/LCS	Samples	RPD
2-Methylnapthalene-d ₁₀			40 – 93	35 – 94	≤ 40
Dibenzo(a,h)anthracene-d ₁₄	····		31 – 115	26 – 115	≤ 40

(1) Detection Limit (DL), Limit of Detection (LOD) and Limit of Quantitation (LOQ)are defined in ARI SOP 1018S

(2) Control limits calculated using data from all samples prepared between 4/1/11 through 3/31/12.

(3) Relative Percent Difference between analytes in replicate analyzes. If C₀ and C_D are the concentrations of the original and duplicate respectively then $|C_0 - C_0|$

2

00

hal and duplicate respectively then

$$RPD = \frac{|C_o - C_D|}{|C_o + C_D|} xI$$

(4) Default limits pending generation of historic limits for Benzo(j)fluoranthene.

Analytical Resources, Incorporated

Analytical Chemists and Consultants

Quality Control Criteria Total Petroleum Hydrocarbons (Diesel & Motor Oil)

Analysis	5	DL1	LOD1	LOQ ²	Spike % R	ecovery Cont	trol Limits ³	
Code	Analyte ⁵	ppm	ppm	ppm	LCS	MB/LCS Surrogate	Sample Surrogate	RPD⁴
HCIWVX	NWTPH-HCID – Water Samples			0.50 7			50-150	≤ 40
HCISVX	NWTPH-HCID – Solid Samples			50 ⁷			50-150	540
Aqueous Sar	nples – No Extract Clean-up – Sepa	ratory Funne	Extraction	- 500 to 1.0	mL			
DIESWI	DRO – NWTPH-Dext (C12-C24)	0.022	0.05	0.1	64-112	50-150	50-150	
AK2WSI	DRO – AK102 (C ₁₀ -C ₂₅)	0.022	0.05	0.1	75-125 ⁶	60-120	50-150	≤ 40
OILWSI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	0.044	0.1	0.2	60 – 130 ⁸	50-150	50-150	540
AK3WSI	RRO – AK103 (C ₂₅ -C ₃₆)	0.030 9	0.1	0.2	60-120 ⁶	60-120	50-150	1
Aqueous Sar	nples – With Acid and/or Silica Gel	Clean-up – S	eparatory F	unnel Extra	ction - 500 to	o 1.0 mL		
DIESWI	DRO – NWTPH-Dext (C ₁₂ -C ₂₄)	0.039	0.05	0.1	61-104	50-150	50-150	
AK2WSI	DRO – AK102 (C ₁₀ -C ₂₅)	0.042	0.05	0.1	75-125 ⁶	60-120	50-150	≤ 40
OILWSI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	0.010	0.1	0.2	60 – 130 ⁸	50-150	50-150	5 40
AK3WSI	RRO – AK103 (C ₂₅ -C ₃₆)	0.030 ⁸	0.1	0.2	60-120 ⁶	60-120	50-150	
Solid Matrix Samples – No Extract Clean-up – Microwave Extraction – 10 g to 1 mL								
DIESMI	DRO – NWTPH-Dext (C12-C24)	1.35	2.5	5	62-119	50-150	50-150	
DIESMI	DRO – NWTPH-Dext Jet A	2.22 ¹¹	2.5	5	60 - 130 ⁸	50-150	50-150	
AK2SMI	DRO – AK102 (C ₁₀ -C ₂₅)	2.43	2.5	5	75-125 ⁶	60-120	50-150	≤ 40
OILSMI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	2.48	5	10	60 – 130 ⁸	50-150	50-150	
AK3SMI	RRO – AK103 (C ₂₅ -C ₃₆)	0.665 ⁹	5	10	60-120 ⁶	60-120	50-150	
Solid Matrix	Samples – With Acid and/or Silica G	el Clean-up	- Microwave	e Extraction	- 10 g to 1 n	nL		
DIESMI	DRO – NWTPH-Dext (C ₁₂ -C ₂₄)	1.28	2.5	5	60-108	50-150	50-150	
AK2SMI	DRO – AK102 (C ₁₀ -C ₂₅)	2.06	2.5	5	75-125 ⁶	60-120	50-150	≤ 40
OILSMI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	1.57	5	10	60 – 130 ⁸	50-150	50-150	340
AK3SMI	RRO – AK103 (C ₂₅ -C ₃₆)	0.665 10	5	10	60-120 ⁶	60-120	50-150	

(1) DL (Detection Limit) and LOD (Limit of Detection) as defined in ARI SOP 1018S.

(2) Limit of Quantitation as defined in ARI SOP 1018S. The spike concentration used to determine the DL and the concentration of the lowest standard used to calibrate the GC-FID instrument.

(3) All surrogate recovery limits are specified in the published methods (AK102, AK103 & NWTPH-Dext). The surrogate standard is o-Terphenyl.

(4) Acceptance criteria for the relative percent difference (RPD) between analytes in replicate analyzes. If C₀ and C_D are the concentrations of the original and duplicate respectively then $_{RPD} = \frac{|C_o - C_D|}{x_{100}} x_{100}$

$$D = \frac{|C_o - C_b|}{\frac{C_o + C_b}{2}} \times 100$$

(5) DRO = Diesel Range Organics and RRO = Residual Range Organics as defined in the methods referenced in footnote 3.

(6) Method specified LCS acceptance limits.

(7) Method specified reporting limits

(8) Default LCS control limits pending calculation of historic limits

(9) MDL study QD55 completed 2/12/10

(10) MDL study QD35 completed 1/29/10

(11) LOD Study UI44 completed 2/28/12

3/20/12

1	1	Δαυ	eous Samp	200.8 or	·····	ecovery		Solids ²
Analyte	Mass	DL ¹ µg/L	LOD ¹ µg/L	LOQ ¹ µg/L	Matrix Spike	LCS	RPD ³	LOQ ¹ mg/kg
Aluminum	27	1.601	10	20.0	75 – 125	80 – 120	≤ 20	20.0
Antimony	121	0.010	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
1) I I I I I I I I I I I I I I I I I I I	123	0.011	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Arsenic #1	75	0.048	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Arsenic #2	75	0.092	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Barium	135	0.020	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
	137	0.019	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Beryllium	9	0.021	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Cadmium	111	0.010	0.05	0.1	75 – 125	80 – 120	≤ 20	0.1
	114	0.005	0.05	0.1	75 – 125	80 – 120	≤ 20	0.1
Calcium	43	3.983	25	50.0	75 – 125	80 – 120	≤ 20	50.0
Chromium	52	0.045	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
	53	0.118	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Cobalt	59	0.011	0.1	0.2	75 – 125	80 - 120	≤ 20	0.2
Copper	63	0.158	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
	65	0.236	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Iron	54	5.753	10	20.0	75 – 125	80 – 120	≤ 20	20.0
	57	3.876	10	20.0	75 125	80 - 120	≤ 20	20.0
Lead	208	0.046	0.05	0.1	75 – 125	80 – 120	≤ 20	0.1
Magnesium	24	0.297	10	20.0	75 – 125	80 – 120	≤ 20	20.0
Manganese	55	0.022	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Molybdenum	98	0.013	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Nickel	60	0.079	0.25	0.5	75 – 125	80 - 120	≤ 20	0.5
	62	0.089	0.25	0.5	75 – 125	80 120	≤ 20	0.5
Potassium	39	2.944	10	20.0	75 – 125	80 – 120	≤ 20	20.0
Selenium	82	0.127	0.25	0.5	75 – 125	80 - 120	≤ 20	0.5
	78	0.324	0.25	2.0	75 – 125	80 - 120	≤ 20	2.0
Silver	107	0.008	0.1	0.2	75 - 125	80 - 120	≤ 20	0.2
Sodium	23	2.833	50	100.0	75 - 125	80 - 120	≤ 20	100.0
Thorium ⁴	232	0.013	0.1	0.2	75 – 125	80 - 120	≤ 20	0.2
Thallium	205	0.004	0.1	0.2	75 - 125	80 - 120	0 ≤ 20	0.2
Uranium ⁴	238	0.003	0.1	0.2	75 - 125	80 - 120	≤ 20	0.2
Vanadium	51	0.043	0.1	0.2	75 - 125	80 - 120	<u>≤ 20</u>	0.2
Zinc	66	0.497	2	4.0	75 – 125	80 - 120	<u> </u>	4.0
	67	0.531	2	4.0	75 – 125	80 - 120	<u> </u>	4.0
	68	0.524	2	4.0	75 – 125	80 - 120	≤ 20	4.0

(1) Detection Limit (DL), Limit of Detection Limit (LOD) and Limit of Quantitation (LOQ) as defined in ARI SOP 1018S (2) 50 mL sample and 50 mL final volume Solids LOQ based on 100% solids using 1.0 g sample 100 mL final volume.

(3) Relative Percent Difference in replicate analyzes. $RPD = \frac{|C_o - C_D|}{\frac{C_o + C_D}{2}} x_{100}$ where C₀=Original, C_D=Duplicate (4) ARI has no accreditation for these elements

(4) ARI has no accreditation for these elements.

SIM PAH Analysis Report and Summary QC Forms

ARI Job ID: VY50

•

Sample ID: MW06-130104 SAMPLE

Lab Sample ID: VY50B LIMS ID: 13-276 Matrix: Water Data Release Authorized: MAN Reported: 01/14/13 QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant Event: 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

Date Extracted: 01/09/13 Date Analyzed: 01/11/13 13:49 Instrument/Analyst: NT11/VTS Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.020	< 0.020 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 86.7% d14-Dibenzo(a,h)anthracene 56.0% Q

Sample ID: MW07-130104 SAMPLE

Lab Sample ID: VY50C LIMS ID: 13-277 Matrix: Water Data Release Authorized: WWW Reported: 01/14/13

Date Extracted: 01/09/13 Date Analyzed: 01/11/13 14:18 Instrument/Analyst: NT11/VTS QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant Event: 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.020	< 0.020 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 97.3% d14-Dibenzo(a,h)anthracene 64.7% Q

Sample ID: MW08-130104 SAMPLE

Lab Sample ID: VY50D LIMS ID: 13-278 Matrix: Water Data Release Authorized: NWW Reported: 01/14/13

Date Extracted: 01/09/13 Date Analyzed: 01/11/13 14:47 Instrument/Analyst: NT11/VTS

QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant Event: 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

> Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo (a) anthracene	0.010	0.0075 J
218-01-9	Chrysene	0.010	0.00 94 J
205-99-2	Benzo (b) fluoranthene	0.010	0.0063 J
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo (a) pyrene	0.010	0.0078 J
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.010	0.0063 J

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 87.3% d14-Dibenzo(a,h)anthracene 34.3% Q

INCORPORATED Sample ID: MW06-130104-DUP SAMPLE

ANALYTICAL RESOURCES

Lab Sample ID: VY50F LIMS ID: 13-280 Matrix: Water Data Release Authorized: Www Reported: 01/14/13

Date Extracted: 01/09/13 Date Analyzed: 01/11/13 15:16 Instrument/Analyst: NT11/VTS QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant Event: 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	0.0066 J
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.020	< 0.020 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 94.3% d14-Dibenzo(a,h)anthracene 60.3% Q

Sample ID: MW06-130104 SAMPLE

Lab Sample ID: VY50H LIMS ID: 13-282 Matrix: Water Data Release Authorized: WWW Reported: 01/14/13

Date Extracted: 01/09/13 Date Analyzed: 01/11/13 15:45 Instrument/Analyst: NT11/VTS

QC Report No:	VY50-Geoengineers				
Project:	Irondale Former	Iron	&	Steel	Plant
Event:	0542-042-01				
Date Sampled:	01/04/13				
Date Received:	01/07/13				

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a, h) anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.020	< 0.020 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 93.3% d14-Dibenzo(a,h)anthracene 65.0% Q

Sample ID: MW07-130104 SAMPLE

Lab Sample ID: VY50I LIMS ID: 13-283 Matrix: Water Data Release Authorized: WW Reported: 01/14/13

Date Extracted: 01/09/13 Date Analyzed: 01/11/13 16:18 Instrument/Analyst: NT11/VTS QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant Event: 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

> Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	0.0072 J
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.020	< 0.020 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 98.3% d14-Dibenzo(a,h)anthracene 71.3% Q

Sample ID: MW08-130104 SAMPLE

Lab Sample ID: VY50J LIMS ID: 13-284 Matrix: Water Data Release Authorized: NWV Reported: 01/14/13

Date Extracted: 01/09/13 Date Analyzed: 01/11/13 16:47 Instrument/Analyst: NT11/VTS QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant Event: 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.020	< 0.020 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 107% d14-Dibenzo(a,h)anthracene 72.3% Q

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS Extraction Method: SW3510C Page 1 of 1

SAMPLE

Sample ID: MW06-130104-DUP

Lab Sample ID: VY50K LIMS ID: 13-285 Matrix: Water Data Release Authorized: Reported: 01/14/13 QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant Event: 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

Date Extracted: 01/09/13 Date Analyzed: 01/11/13 17:16 Instrument/Analyst: NT11/VTS Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.020	< 0.020 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 96.3% d14-Dibenzo(a,h)anthracene 63.7% Q

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant 0542-042-01

Client ID	MNP	DBA	TOT OUT
MB-010913	92.7%	65.0%	0
LCS-010913	93.7%*	72.0%	1
LCSD-010913	97.0%*	75.3%	1
MW06-130104	86.7%	56.0%	0
MW07-130104	97.3%*	64.7%	1
MW08-130104	87.3%	34.3%	0
MW06-130104-DUP	94.3%*	60.3%	1
MW06-130104	93.3%	65.0%	0
MW07-130104	98.3%*	71.3%	1
MW08-130104	107%*	72.3%	1
MW06-130104-DUP	96.3%*	63.7%	1

LCS/MB	LIMITS	QC	LIMITS
--------	--------	----	--------

(MNP)	=	d10-2-Methylnaphthalene	(40-93)	(35-94)
(DBA)	=	d14-Dibenzo(a,h)anthracene	(31-115)	(26-115)

Prep Method: SW3510C Log Number Range: 13-276 to 13-285

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS Page 1 of 1

Sample ID: LCS-010913 LAB CONTROL SAMPLE

Lab Sample ID: LCS-010913 LIMS ID: 13-276 Matrix: Water Data Release Authorized: WWW Reported: 01/14/13 QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant Event: 0542-042-01 Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 01/09/13

Date Analyzed LCS: 01/11/13 12:51 LCSD: 01/11/13 13:20 Instrument/Analyst LCS: NT11/VTS LCSD: NT11/VTS Sample Amount LCS: 500 mL LCSD: 500 mL Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL Dilution Factor LCS: 1.00 LCSD: 1.00

	Spike	LCS		Spike	LCSD	
LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
0.281	0.300	93.7%	0.299	0.300	99.7%	6.2%
0.270	0.300	90.0%	0.290	0.300	96.7%	7.18
0.278	0.300	92.7%	0.306	0.300	102%	9.6%
0.291	0.300	97.0%	0.312	0.300	1048	7.0%
0.225	0.300	75.0%	0.238	0.300	79.3%	5.6%
0.250	0.300	83.3%	0.267	0.300	89.0%	6.6%
0.250	0.300	83.3%	0.265	0.300	88.3%	5.8%
0.829	0.900	92.1%	0.896	0.900	99.6%	7.8%
	0.281 0.270 0.278 0.291 0.225 0.250 0.250	LCS Added-LCS 0.281 0.300 0.270 0.300 0.278 0.300 0.291 0.300 0.225 0.300 0.250 0.300 0.250 0.300	LCSAdded-LCSRecovery0.2810.30093.7%0.2700.30090.0%0.2780.30092.7%0.2910.30097.0%0.2250.30075.0%0.2500.30083.3%0.2500.30083.3%	LCSAdded-LCSRecoveryLCSD0.2810.30093.7%0.2990.2700.30090.0%0.2900.2780.30092.7%0.3060.2910.30097.0%0.3120.2250.30075.0%0.2380.2500.30083.3%0.265	LCSAdded-LCSRecoveryLCSDAdded-LCSD0.2810.30093.7%0.2990.3000.2700.30090.0%0.2900.3000.2780.30092.7%0.3060.3000.2910.30097.0%0.3120.3000.2250.30075.0%0.2380.3000.2500.30083.3%0.2670.3000.2500.30083.3%0.2650.300	LCSAdded-LCSRecoveryLCSDAdded-LCSDRecovery0.2810.30093.7%0.2990.30099.7%0.2700.30090.0%0.2900.30096.7%0.2780.30092.7%0.3060.300102%0.2910.30097.0%0.3120.300104%0.2250.30075.0%0.2380.30079.3%0.2500.30083.3%0.2670.30088.3%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	93.7%	97.0%
d14-Dibenzo(a, h) anthracene	72.0%	75.3%

SEMIVOLATILE METHOD BLANK SUMMARY

VY50MBW1

Lab Name: ANALYTICAL RESOURCES INC Client: GEOENGINEERS

ARI Job No: VY50

Lab File ID: VY50MB

Instrument ID: NT11

Matrix: LIQUID

Client: GEOENGINEERS Project: IRONDALE FORMER IRON

Date Extracted: 01/09/13

Date Analyzed: 01/11/13

Time Analyzed: 1223

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		TAD	7.3.0	DAME
	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
		================	==========	******
01	VY50LCSW1	VY50LCSW1	VY50SB	01/11/13
02	VY50LCSDW1	VY50LCSDW1	VY50SBD	01/11/13
03	MW06-130104	VY50B	VY50B	01/11/13
04	MW07-130104	VY50C	VY50C	01/11/13
05	MW08-130104	VY50D	VY50D	01/11/13
06	MW06-130104-DUP	VY50F	VY50F	01/11/13
07	MW06-130104	VY50H	VY50H	01/11/13
08	MW07-130104	VY50I	VY50I	01/11/13
09	MW08-130104	VY50J	VY50J	01/11/13
10	MW06-130104-DUP	VY50K	VY50K	01/11/13
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30	· · · · · · · · · · · · · · · · · · ·			
		·	·	

Sample ID: MB-010913 METHOD BLANK

Lab Sample ID: MB-010913 LIMS ID: 13-276 Matrix: Water Data Release Authorized: NNN Reported: 01/14/13 QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant Event: 0542-042-01 Date Sampled: NA Date Received: NA

Date Extracted: 01/09/13 Date Analyzed: 01/11/13 12:23 Instrument/Analyst: NT11/VTS

	Sample	Amount:	500 mL
Final	Extract	Volume:	0.5 mL
]	Dilution	Factor:	1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193 - 39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a, h) anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.020	< 0.020 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 92.7% d14-Dibenzo(a,h)anthracene 65.0% Q

5B SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ANALYTICAL RESOURCES INCClient: GEOENGINEERSInstrument ID: NT11Project: IRONDALE FORMER IRONDFTPP Injection Date: 10/11/12DFTPP Injection Time: 0858

% RELATIVE m/e ION ABUNDANCE CRITERIA ABUNDANCE _____ _____ 51 10.0 - 80.0% of mass 198 55.1 Less than 2.0% of mass 69 0.9 (2.0)168 47.3 0.4 (0.8)1 Mass 69 relative abundance_____ 69 Less than 2.0% of mass 69_____ 70 10.0 - 80.0% of mass 198 59.4 127 197 Less than 2.0% of mass 198 0.6 Base Peak, 100% relative abundance 198 100.0 5.0 to 9.0% of mass 198 199 6.9 10.0 - 60.0% of mass 19825.9 275 365 | Greater than 1.0% of mass 198_____ 4.52 0.0 - 24.0% of mass 442_____ 27.8 (14.5)2441

 442
 50.0 - 200.0% of mass 198

 443
 15.0 - 24.0% of mass 442

 50.0 - 200.0% of mass 198_____ 191.6 37.3 (19.5)2

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
1	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	==================	=============		===========	==========
01		SIM250	IC1011A	10/11/12	0912
02		SIM1000	IC1011B	10/11/12	0941
03		SIM10	IC1011C	10/11/12	1010
04		SIM500	IC1011D	10/11/12	1039
05		SIM50	IC1011E	10/11/12	1108
06		SIM100	IC1011F	10/11/12	1137
07		DIMIOU	TOTATI	10/11/12	1137
08					
08					
10					
11					
12		<u> </u>			
13					
14	• • · · · · · ·				
15					
16					
17		······································			
18					
19					
20		·			
21					
22					
22					

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ANALYTICAL RESOURCES INC Client: GEOENGINEERS

Instrument ID: NT11

Project: IRONDALE FORMER IRON

DFTPP Injection Date: 01/11/13

DFTPP Injection Time: 1117

% RELATIVE m/e | ION ABUNDANCE CRITERIA ABUNDANCE 51 10.0 - 80.0% of mass 198 31.5 0.0 (0.0)1 68 | Less than 2.0% of mass $6\overline{9}$ 36.6 0.1 (0.3)1 Mass 69 relative abundance 69 Less than 2.0% of mass 69_____ 70 49.9 _____ 127 10.0 - 80.0% of mass 198 Less than 2.0% of mass 198 0.0 197 _____ 198 Base Peak, 100% relative abundance_____ 100.0 199 5.0 to 9.0% of mass 198 7.0 10.0 - 60.0% of mass 198 275 25.0 365 Greater than 1.0% of mass 198_____ 3.14

 441
 0.0 - 24.0% of mass 442

 442
 50.0 - 200.0% of mass 198

 12.9 (14.7)287.9 443 | 15.0 - 24.0% of mass 442 16.5 (18.8)2 1-Value is % mass 69 2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		============	========	========	==========
01		SIM 250	CC0111	01/11/13	1132
02	VY50MBW1	VY50MBW1	VY50MB	01/11/13	1223
03	VY50LCSW1	VY50LCSW1	VY50SB	01/11/13	1251
04	VY50LCSDW1	VY50LCSDW1	VY50SBD	01/11/13	1320
05	MW06-130104	VY50B	VY50B	01/11/13	1349
06	MW07-130104	VY50C	VY50C	01/11/13	1418
07	MW08-130104	VY50D	VY50D	01/11/13	1447
08	MW06-130104-DUP	VY50F	VY50F	01/11/13	1516
09	MW06-130104	VY50H	VY50H	01/11/13	1545
10	MW07-130104	VY50I	VY50I	01/11/13	1618
11	MW08-130104	VY50J	VY50J	01/11/13	1647
12	MW06-130104-DUP	VY50K	VY50K	01/11/13	1716
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
		· ·	· ·		I

page 1 of 1

SEMIVOLATILE 8270-D INITIAL CALIBRATION DATA

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: VY50

Instrument ID: NT11

Client: GEOENGINEERS

Project: IRONDALE FORMER IRON

Calibration Date: 10/11/12

00=IC1011B		
		8RSD
1000	RRF	/R^2
== ====== =	=====	====
27 0.924	0.951	2.
04 0.616	0.602	3.
75 1.604	1.476	6.
49 0.986	0.983	2.
	1.532	1
64 1.127	1.078	5.
06 1.124	1.170	3.
81 1.084	0.930	
48 1.112	1.025	1
91 1.377	1.291	1
59 1.139	1.078	6.
51 1.181	1.204	3.
62 1.287	1.244	5.
40 1.398	1.317	6.
90 1.547	1.522	1
95 1.263	1.151	
72 1.643	1.483	
		1
45 0.555		
12 1.252	1.196	'
== ====== =		!
		1
90 1.006		
05 0.873	0.780	9.
[]	<u> </u>	
-		¦
!!-		¦
		¦
		¦
-	<u> </u>	
-		!
!!-		
-		

FORM VI SV-1

SEMIVOLATILE 8270-D CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES INC

Client: GEOENGINEERS

ARI Job No: VY50

Instrument ID: NT11

Init. Calib. Date: 10/11/12

Project: IRONDALE FORMER IRON Cont. Calib. Date: 01/11/13

Cont. Calib. Time: 1132

	CalAmt	CC Amt	MIN	CURVE	
COMPOUND	or ARF	or RF	RRF	TYPE	Drift
***************************************	======				=====
Naphthalene	0.951		0.700	AVRG	6.2
2-Methylnaphthalene	0.602				13.4
Acenaphthylene	1.476	1.484	0.900	AVRG	0.5
Acenaphthene	0.983			AVRG	
Dibenzofuran	1.532	1.463	0.800	AVRG	
Fluorene	1.078		0.900	AVRG	5.4
Phenanthrene	1.170	1.052	0.700	AVRG	-10.1
Anthracene	0.930	1.049	0.700	AVRG	12.8
Fluoranthene	1.025	1.089	0.600	AVRG	6.2
Pyrene	1.291	1.443	0.600	AVRG	11.8
Benzo(a)anthracene	1.078	1.220	0.800	AVRG	13.2
Chrysene	1.204	1.274	0.700	AVRG	5.8
Benzo(b) fluoranthene	1.244		0.700	AVRG	2.5
Benzo(k)fluoranthene	1.317	1.521	0.700	AVRG	15.5
Benzo(j)fluoranthene	1.522	1.714	0.010	AVRG	12.6
Benzo(a)pyrene	1.151	1.284	0.700	AVRG	11.6
Indeno(1,2,3-cd)pyrene	1.483	1.406	0.500	AVRG	-5.2
Dibenzo(a,h)anthracene	1.171	1.115	0.400	AVRG	-4.8
Benzo(g,h,i)perylene	1.356	1.254	0.500	AVRG	-7.5
1-methylnaphthalene	0.546	0.624	0.010	AVRG	14.3
Perylene	1.196	1.313	0.010	AVRG	9.8
=======================================	=====	======	=====	=====	=====
2-Methylnaphthalene-d10	0.484	0.554	0.010	AVRG	14.5
Dibenzo(a, h) anthracene- $\overline{d14}$	0.988	0.751	0.010	AVRG	-24.0
Fluoranthene-d10	0.780	0.847	0.010	AVRG	8.6

<- Exceeds QC limit of 20% D

* RF less than minimum RF

FORM VII SV-1

8B

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC

Client: GEOENGINEERS

ARI Job No: VY50

Ical Midpoint ID: IC1011A

Instrument ID: NT11

Ical Date: 10/11/12

Cont. Cal Date: 01/11/13

Project: IRONDALE FORMER IRON

		IS1(NPT)	·· · · ·	IS2(ANT)		IS3(PHN)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	==============	=========	======	==========	======	=========	======
	ICAL MIDPT	341693	6.30	165641	9.29	224673	11.95
	UPPER LIMIT	683386		331282		449346	
	LOWER LIMIT	170846		82820		112336	
	=======================================		======	========	======	========	======
	CCAL	281783	6.24	157807	9.22	262925	11.86
	UPPER LIMIT		6.74		9.72		12.36
	LOWER LIMIT		5.74		8.72		11.36
01	VY50MBW1	245478	6.24	137244	9.22	232867	11.87
02	VY50LCSW1	243527	6.24	137174	9.22	226655	11.86
03	VY50LCSDW1	240059	6.24	136358	9.22	228184	11.86
04	MW06-130104	249332	6.24	141701	9.22	236910	11.86
05	MW07-130104	237486	6.24	135303	9.22	222638	11.86
06	MW08-130104	235531	6.24	134682	9.22	231578	11.86
07	MW06-130104-	249078	6.24	139571	9.22	228906	11.86
08	MW06-130104	251511	6.24	141159	9.22	227685	11.86
09	MW07-130104	246799	6.24	139891	9.22	226933	11.86
10	MW08-130104	236215	6.24	134835	9.22	227423	11.86
11	MW06-130104-	238004	6.24	136558	9.22	225257	11.86
12 13						·	
$13 \\ 14$							
14							·
16	·		<u> </u>				
17							
18			i				
19							
20							
21							
22							
23							
24							
25					l		I

IS1 = Naphthalene-d8
IS2 = Acenaphthene-d10

IS3 = Phenanthrene-d10

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = -0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits. page 1 of 2

FORM VIII SV-1

8B

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC

Client: GEOENGINEERS

ARI Job No: VY50

Ical Midpoint ID: IC1011A

Project: IRONDALE FORMER IRON

Ical Date: 10/11/12

Instrument ID: NT11

Cont. Cal Date: 01/11/13

		IS4(CRY)		IS5(PRY)			
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	============		======	==========	======	==========	======
	ICAL MIDPT	181470	16.67	169742	19.34		
	UPPER LIMIT	362940		339484			
	LOWER LIMIT	90735		84871			
	=======================================	===========	======		======	=========	======
	CCAL	202143	16.58	171468	19.21		
	UPPER LIMIT		17.08		19.71		
	LOWER LIMIT		16.08		18.71		
01	VY50MBW1	169446	16.58	140873	19.22		
02	VY50LCSW1	165145	16.57	137267	19.21		
03	VY50LCSDW1	168139	16.57	138631	19.21		
04	MW06-130104	173011	16.57	148905	19.21		
05	MW07-130104	160336	16.57	134389	19.21		
06	MW08-130104	175448	16.57	153681	19.20		
07	MW06-130104-	167857	16.57	148297	19.20		
08	MW06-130104	168405	16.57	143247	19.20		
09	MW07-130104	169556	16.57	143224	19.21		
10	MW08-130104	162207	16.57	137187	19.21		
11	MW06-130104-	165160	16.57	137378	19.21		
12							
13							
14							
15							
16							
17							
18	<u> </u>						
19							
20							
21							
22							
23							
24							
25		·			I		

IS4 = Chrysene-d12
IS5 = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = -0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits. page 2 of 2

FORM VIII SV-2

TPHD Analysis Report and Summary QC Forms

ARI Job ID: VY50

ı

•

•

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned Extraction Method: Page 1 of 1 QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Pl 0542-042-01

Matrix: Water Data Release Authorized: *B* Reported: 01/09/13

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range/Surrogate	RL	Result
MB-010813 13-275	Method Blank HC ID:	01/08/13	01/08/13 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 90.2%
VY50A 13-275	MW05-130104 HC ID:	01/08/13	01/08/13 FID4A	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 90.3%
VY50B 13-276	MW06-130104 HC ID:	01/08/13	01/08/13 FID4A	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 90.8%
VY50C 13-277	MW07-130104 HC ID:	01/08/13	01/08/13 FID4A	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 76.4%
VY50D 13-278	MW08-130104 HC ID:	01/08/13	01/08/13 FID4A	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 80.1%
VY50E 13-279	MW09-130104 HC ID:	01/08/13	01/08/13 FID4A	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 81.1%
VY50F 13-280	MW06-130104-DUP HC ID:	01/08/13	01/08/13 FID4A	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 89.3%

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant 0542-042-01

Client ID	OTER	TOT OUT
MB-010813	90.2%	0
LCS-010813	83.4%	0
LCSD-010813	81.9%	0
MW05-130104	90.3%	0
MW06-130104	90.8%	0
MW07-130104	76.4%	0
MW08-130104	80.1%	0
MW09-130104	81.1%	0
MW06-130104-DUP	89.3%	0

	LCS/MB LIMITS	QC LIMITS	
(OTER) = o-Terphenyl	(50-150)	(50-150)	
	Prep Method: SW3510C		

Log Number Range: 13-275 to 13-280

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned Page 1 of 1

Sample ID: LCS-010813 LCS/LCSD

Lab Sample ID: LCS-010813 LIMS ID: 13-275 Matrix: Water Data Release Authorized: Reported: 01/09/13 QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

Date Extracted LCS/LCSD: 01/08/13

Date Analyzed LCS: 01/08/13 18:28 LCSD: 01/08/13 18:48 Instrument/Analyst LCS: FID/JGR LCSD: FID/JGR

	Sample	Amount	LCS:	500	mL
]	LCSD:	500	mL
Final	Extract	Volume	LCS:	1.0	mL
]	LCSD:	1.0	mL
	Dilution	Factor	LCS:	1.00)
]	LCSD:	1.00)

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	2.24	3.00	74.78	2.28	3.00	76.0%	1.8%

TPHD Surrogate Recovery

	LCS	LCSD
o-Terphenyl	83.4%	81.9%

Results reported in mg/L

RPD calculated using sample concentrations per SW846.

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

Matrix: Water Date Received: 01/07/13	ARI Job: Project:	VY50 Irondale 0542-042-		on & Steel Plant
ARI ID	Client ID	Samp Amt	Final Vol	Prep Date
13-275-010813MB1 13-275-010813LCS1 13-275-010813LCSD1 13-275-VY50A 13-276-VY50B 13-277-VY50C 13-278-VY50D 13-279-VY50E 13-280-VY50F	Method Blank Lab Control Lab Control Dup MW05-130104 MW06-130104 MW07-130104 MW08-130104 MW09-130104 MW06-130104-DUP	500 mL 500 mL 500 mL 500 mL 500 mL 500 mL 500 mL 500 mL 500 mL	1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL	01/08/13 01/08/13 01/08/13 01/08/13 01/08/13 01/08/13 01/08/13 01/08/13 01/08/13

VY50MBW1

Lab Name: ANALYTICAL RESOURCES INC Client: GEOENGINEERS

SDG No.: VY50

Date Extracted: 01/08/13

Date Analyzed : 01/08/13

Matrix: LIQUID

Project No.: IRONDALE

Instrument ID : FID4A

Time Analyzed : 1808

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
	================	=================	==========
01	VY50LCSW1	VY50LCSW1	01/08/13
02	VY50LCSDW1	VY50LCSDW1	01/08/13
03	MW05-130104	VY50A	01/08/13
04	MW06-130104	VY50B	01/08/13
05	MW07-130104	VY50C	01/08/13
06	MW08-130104	VY50D	01/08/13
07	MW09-130104	VY50E	01/08/13
80	MW06-130104-	VY50F	01/08/13
09			
	·		I

page 1 of 1

FORM IV TPH

DIESEL INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC.

Instrument: FID4A.I

Calibration Date: 05-JAN-2013

Client: GEOENGINEERS

Project: IRONDALE FORMER IRON

SDG No.: VY50

Diesel Range	RF1 50	RF2 100	RF3 250	RF4 500	RF5 1000	RF6 2500	Ave RF	%RSD
WA Diesel	11335	10789	10056	10522	9933	10117	10458	5.1
AK Diesel	13067	12501	11657	12220	11622	11749	12136	4.7
OR Diesel	13241	12592	11722	12282	11679	11804	12220	5.0
Cal Diesel	13016	12449	11633	12203	11602	11716	12103	4.7
				İ				
o-Terph	12713	12144	12109	12921	12751	13461	12683	4.0

<- Indicates %RSD outside limits Surrogate areas are not included in Diesel RF calculation.

Quant	Ranges	:	WA Diesel AK Diesel		(4.052-7.519) (3.127-7.768)
			OR Diesel		(3.127-8.466)
			Cal Diesel	C10-C24	(3.127-7.519)

Calibration Files Analysis Time

0105a020.d 0105a021.d 0105a022.d 0105a023.d 0105a024.d	05-JAN-2013 05-JAN-2013 05-JAN-2013 05-JAN-2013 05-JAN-2013	17:01 17:21 17:41
0105a024.d 0105a025.d	05-JAN-2013 05-JAN-2013	

6a

6a NW MOTOR OIL RANGE INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC.

Instrument: FID4A.I

Calibration Date: 05-JAN-2013

Client: GEOENGINEERS

Project: IRONDALE FORMER IRON

SDG No.: VY50

Product Range	RF1 100	RF2 250	RF3 500	RF4 1000	RF5 2500	RF6 5000	Ave RF	%RSD
WA M.Oil C24-C38	8641	8346	7827	8197	8415	8686	8352	3.8
Triac Surr	9375	9943	9918	11207	11601	12000	10674	10.0

<- Indicates %RSD outside limits Surrogate areas are not included in Motor Oil RF calculation.

Calibration Files	Analysis Time
0105a027.d	05-JAN-2013 19:00
0105a028.d	05-JAN-2013 19:20
0105a029.d	05-JAN-2013 19:40
0105a030.d	05-JAN-2013 20:00
0105a031.d	05-JAN-2013 20:20
0105a032.d	05-JAN-2013 20:20

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. ICal Date: 05-JAN-2013 CCal Date: 08-JAN-2013 Analysis Time: 17:27 Instrument: FID4A.I Client: GEOENGINEERS Project: IRONDALE FORMER SDG No.: VY50 Lab ID: DIESEL#1 Lab File Name: 0108a005.d

Diesel Range	Area*	CalcAmnt	NomAmnt	₿ D	
WADies(C12-C24)	2620079	250.5	250	0.2	<-
AK102 (C10-C25)	3036495	250.2	250	0.1	
NASDies(C10-C24)	3031551	192.3	250	-23.1	
Terphenyl	556086	43.8	45	-2.6	

- * Surrogate areas are subtracted from range areas
- <- Indicates a %D outside QC limits

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC.ClientICal Date: 05-JAN-2013ProjectCCal Date: 08-JAN-2013SDG NoAnalysis Time: 17:47Lab IDInstrument: FID4A.ILab Fil

Client: GEOENGINEERS Project: IRONDALE FORMER SDG No.: VY50 Lab ID: MOIL#1 Lab File Name: 0108a006.d

M.oil Range	Area*	CalcAmnt	NomAmnt	% D
WAMoil(C24-C38)	4211354	504.2	500	0.8
AK103 (C25-C36)	3535346	384.2	500	-23.2
OR MOIL(C28-C40)	3544550	469.3	500	-6.1
CRUDE(Tol-C40)	5173662	685.0	500	37.0
n-Triacontane	500502	46.9	45	4.2

- * Surrogate areas are subtracted from range areas
- <- Indicates a %D outside QC limits

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. ICal Date: 05-JAN-2013 CCal Date: 08-JAN-2013 Analysis Time: 21:31 Instrument: FID4A.I

Client: GEOENGINEERS Project: IRONDALE FORMER SDG No.: VY50 Lab ID: DIESEL#2 Lab File Name: 0108a017.d

Diesel Range	Area*	CalcAmnt	NomAmnt	% D	
WADies(C12-C24)	2699087	258.1	250	3.2	< -
AK102 (C10-C25)	3134731	258.3	250	3.3	
NASDies(C10-C24)	3126648	198.4	250	-20.7	
Terphenyl	578614	45.6	45	1.4	

- * Surrogate areas are subtracted from range areas<- Indicates a %D outside QC limits

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. ICal Date: 05-JAN-2013 CCal Date: 08-JAN-2013 Analysis Time: 21:51 Instrument: FID4A.I Client: GEOENGINEERS Project: IRONDALE FORMER SDG No.: VY50 Lab ID: MOIL#2 Lab File Name: 0108a018.d

M.oil Range	Area*	CalcAmnt	NomAmnt	% D
WAMoil(C24-C38)	4458801	533.9	500	6.8
AK103 (C25-C36)	3800999	413.1	500	-17.4
OR MOIL(C28-C40)	3784995	501.1	500	0.2
CRUDE(Tol-C40)	5419470	717.5	500	43.5
n-Triacontane	526327	49.3	45	9.6

* Surrogate areas are subtracted from range areas

<- Indicates a %D outside QC limits

TPH ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC	Client: GEOENGINEERS
SDG No.: VY50	Project: IRONDALE
Instrument ID: FID4A	GC Column: RTX-1

8

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE H TERPH: 6.0		ANDARD 8,90			
	1BRIII. 0.0	JZ INIAC.	0.90			
	CLIENT	LAB	DATE	TIME	TERPH	TRIAC
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	===============	=========================	========	=========	=======	=======
01	ZZZZZ	ZZZZZ	01/08/13	1605	6.03	8.88
02	ZZZZZ	ZZZZZ	01/08/13	1625	6.02	8.90
03	RT	RT	01/08/13	1646	6.02	8.90
04	IB	IB	01/08/13	1706	6.02	8.90
05	DIESEL#1	DIESEL#1	01/08/13	1727	6.02	8.91
06	MOIL#1	MOIL#1	01/08/13	1747	6.03	8.90
07	VY50MBW1	VY50MBW1	01/08/13	1808	6.02	8.89
08	VY50LCSW1	VY50LCSW1	01/08/13	1828	6.02	8.89
09	VY50LCSDW1	VY50LCSDW1	01/08/13	1848	6.02	8.89
10	ZZZZZ	ZZZZZ	01/08/13	1909	6.02	8.90
11	MW05-130104	VY50A	01/08/13	1929	6.02	8.89
12	MW06-130104	VY50B	01/08/13	1949	6.02	8.89
13	MW07-130104	VY50C	01/08/13	2010	6.02	8.88
14	MW08-130104	VY50D	01/08/13	2030	6.02	8.89
15	MW09-130104	VY50E	01/08/13	2050	6.02	8.89
16	MW06-130104-	VY50F	01/08/13	2110	6.02	8.88
17	DIESEL#2	DIESEL#2	01/08/13	2131	6.02	8.90
18	MOIL#2	MOIL#2	01/08/13	2151	6.02	8.89

					Q	C LIM:	ITS
TERPH	=	o-terph		(+/-	0.05	MINUTES)
TRIAC	=	Triacon	Surr	(+/-	0.05	MINUTES)

* Values outside of QC limits.

TPH ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC	Client: GEOENGINEERS
SDG No.: VY50	Project: IRONDALE
Instrument ID: FID4A	GC Column: RTX-1

8

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE I TERPH: 6.(
	CLIENT	LAB	DATE	TIME	TERPH	TRIAC
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	=============	==============================	=========	=======================================	=======	======
01		RT	01/05/13	1602	6.02	8.90
02		IB	01/05/13	1621	6.02	8.89
03		DIES 50	01/05/13	1641	6.02	8.89
04		DIES 100	01/05/13	1701	6.01	8.90
05		DIES250	01/05/13	1721	6.02	8.90
06		DIES500	01/05/13	1741	6.03	8.89
07		DIES1000	01/05/13	1801	6.04	8.91
08		DIES2500	01/05/13	1821	6.06	8.89
09		DIES250-ICV	01/05/13	1840	6.02	8.90
10		MOIL 100	01/05/13	1900	6.03	8.88
11		MOIL 250	01/05/13	1920	6.03	8.88
12		MOIL 500	01/05/13	1940	6.02	8.89
13		MOIL 1000	01/05/13	2000	6.02	8.90
14		MOIL 2500	01/05/13	2020	6.02	8.92
15		MOIL 5000	01/05/13	2040	6.02	8.95*
16		M OIL500-ICV	01/05/13	2101	6.02	8.89
т6			01/05/13		6.02	8.85

	QC LIMITS
TERPH = o-terph	(+/- 0.05 MINUTES)
TRIAC = Triacon Surr	(+/- 0.05 MINUTES)

* Values outside of QC limits.

Metals Analysis Report and Summary QC Forms

ARI Job ID: VY50

.

,

Cover Page

INORGANIC ANALYSIS DATA PACKAGE

CLIENT: Geoengineers

PROJECT: Irondale Former Iron

SDG: VY50

-

CLIENT ID	ARI ID	ARI LIMS ID REPREP	
MW05-130104	VY50A	13-275	
MW05-130104D	VY50ADUP	13-275	
MW05-130104S	VY50ASPK	13-275	
MW06-130104	VY50B	13-276	
PBW	VY50MB1	13-276	
LCSW	VY50MB1SPK	13-276	
MW07-130104	VY50C	13-277	
MW08-130104	VY50D	13-278	
MW09-130104	VY50E	13-279	
MW09-130104-DUP	VY50G	13-281	

Were ICP interelement corrections applied ?	Yes/No	YES
Were ICP background corrections applied ? If yes - were raw data generated before	Yes/No	YES
application of background corrections ?	Yes/No	NO
Comments:		

	 	 -

THIS DATA	PACKAGE I	HAS BEEN	REVIEWED	AND	AUTHORIZED	FOR	RELEASE	BY:
Signature	Ja	y/cc			Name: Jay K	luhn		
Dates		1/15/	13	_ Ti	tle: Inorga	nics	Directo	r

COVER PAGE

VY50:00051

Page 1 of 1

Sample ID: MW05-130104 SAMPLE

Lab Sample ID: VY50A QC LIMS ID: 13-275 Matrix: Water Data Release Authorized: Reported: 01/15/13

QC Report No: VY50-Geoengineers
 Project: Irondale Former Iron & Steel Plant
 0542-042-01
 Date Sampled: 01/04/13
 Date Received: 01/07/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	<u>Q</u>
200.8	01/08/13	200.8	01/10/13	7440-50-8	Copper	0.5	1.3	
200.8	01/08/13	200.8	01/10/13	7440-02-0	Nickel	0.5	5.6	

Sample ID: MW06-130104 SAMPLE

Lab Sample ID: VY50B LIMS ID: 13-276 Matrix: Water Data Release Authorized: Reported: 01/15/13 QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg∕L	Q
200.8	01/08/13	200.8	01/10/13	7440-50-8	Copper	0.5	0.8	
200.8	01/08/13	200.8	01/10/13	7440-02-0	Nickel	0.5	5.8	

Page 1 of 1

Sample ID: MW07-130104 SAMPLE

Lab Sample ID: VY50CQC Report No: VY50-GeoengineersLIMS ID: 13-277Project: Irondale Former Iron & Steel PlantMatrix: Water0542-042-01Data Release AuthorizedDate Sampled: 01/04/13Reported: 01/15/13Date Received: 01/07/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	01/08/13	200.8	01/10/13	7440-50-8	Copper	0.5	0.8	
200.8	01/08/13	200.8	01/10/13	7440-02-0	Nickel	0.5	4.4	

Page 1 of 1

Sample ID: MW08-130104 SAMPLE

Lab Sample ID: VY50D LIMS ID: 13-278 Matrix: Water Data Release Authorized: 01/15/13 Reported: 01/15/13 QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	01/08/13	200.8	01/10/13	7440-50-8	Copper	0.5	0.5	U
200.8	01/08/13	200.8	01/10/13	7440-02-0	Nickel	0.5	5.0	

Page 1 of 1

Sample ID: MW09-130104 SAMPLE

Lab Sample ID: VY50E LIMS ID: 13-279 Matrix: Water Data Release Authorized: Reported: 01/15/13 QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	01/08/13	200.8	01/14/13	7440-50-8	Copper	20	20	U
200.8	01/08/13	200.8	01/14/13	7440-02-0	Nickel	20	90	

Sample ID: MW09-130104-DUP SAMPLE

Lab Sample ID: VY50G LIMS ID: 13-281 Matrix: Water Data Release Authorized: Reported: 01/15/13 QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	01/08/13	200.8	01/10/13	7440-50-8	Copper	5	7	
200.8	01/08/13	200.8	01/10/13	7440-02-0	Nickel	5	83	

Page 1 of 1

Sample ID: MW05-130104 MATRIX SPIKE

Lab Sample ID: VY50A LIMS ID: 13-275 Matrix: Water Data Release Authorized Reported: 01/15/13 QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

MATRIX SPIKE QUALITY CONTROL REPORT

Analysis				Spike	ક	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Copper	200.8	1.3	26.6	25.0	101%	
Nickel	200.8	5.6	30.2	25.0	98.4%	

Reported in µg/L

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Lab Sample ID: VY50A LIMS ID: 13-275 Matrix: Water Data Release Authorized: Reported: 01/15/13 Sample ID: MW05-130104 DUPLICATE

QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant 0542-042-01 Date Sampled: 01/04/13 Date Received: 01/07/13

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis		Control					
Analyte	Method	Sample	Duplicate	RPD	Limit	Q		
Copper	200.8	1.3	1.3	0.0%	+/- 0.5	L		
Nickel	200.8	5.6	5.3	5.5%	+/- 20%			

Reported in $\mu g/L$

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

Page 1 of 1

Lab Sample ID: VY50LCS LIMS ID: 13-276 Matrix: Water Data Release Authorized Reported: 01/15/13 Sample ID: LAB CONTROL

QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant 0542-042-01 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	۶ Recovery	Q
Copper Nickel	200.8	26.5 25.9	25.0 25.0	106% 104%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

Sample ID: METHOD BLANK

Page 1 of 1

Lab Sample ID: VY50MB LIMS ID: 13-276 Matrix: Water Data Release Authorized Reported: 01/15/13 QC Report No: VY50-Geoengineers Project: Irondale Former Iron & Steel Plant 0542-042-01 Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	01/08/13	200.8	01/10/13	7440-50-8	Copper	0.5	0.5	U
200.8	01/08/13	200.8	01/10/13	7440-02-0	Nickel	0.5	0.5	U

~
H
0
٠Ē
ii
—
đ
Õ
Y.
· •
4
÷Ĥ
н
0
ž
c
c
c
c
c
c
c
c
c
c
libration
c

CLIENT: Geoengineers

PROJECT: Irondale Former Iron

SDG: VY50

r iron

UNITS: ug/L

8R	05.1	.04.6
CCV5	52.56 105.1	52.30 104.6
&R	01.9	02.0
CCV4	50.94 101.9	49.10 98.2 50.98 102.0
\$R	100.3	98.2
CCV3	50.13 100.3	49.10
\$R	101.7	100.4
CCV2	50.0 50.76 101.5 50.87 101.7	50.22 100.4
%R	101.5	98.86
CCV1	50.76	49.42 98.8
CCVTV	50.0	50.0
%R	102.1	102.2
ICV	51.05 102.1	50.0 51.08 102.2
ICVTV	50.0	50.0
RUN	CU PMS MS011081	NI PMS MS011081
Σ	PMS	SMA
EL	cu	IN
ANALYTE EL M RUN	Copper	Nickel

FORM II (1)

Calibration Verification CLIENT: Geoengineers	ratio Geoengin	n Ver eers	ifica	ation					ANALYTICAL RESOURCES
PROJECT: Irondale Former Iron	Irondal	e Former	: Iron						[]NTTS: 110/1.
SDG: VY50	0								
ANALYTE	EL M	RUN	CCVTV	CCV6 &R	CCV7 %R	CCV8 %R	CCV9 &R	CCV10 %R	CCV11 %R
Copper Nickel	CU PMS MSOI1081 NI PMS MSOI1081	PMS MS011081 PMS MS011081	50.0	53.23 106.5	53.44 106.9 53.44 106.9	53.31 106.6 52.52 105.0			
Control Limits:	Limits:	Mercur	Mercury 80-120;); Other Metals	als 90-110				

		œ	
		'5 &R	
ANALYTICAL RESOURCES	UNITS:ug/L	CCV5	
	NITS	8R	9.99.6
		CCV4	49.96 49.81
		% R	4.1 2.0
		CCV3	52.07 104.1 51.00 102.0
		2 &R	59 99.4 50 99.2
		CCV2	49.69 49.60
		% R	100.8 101.6
		CCV1	50.40 100.8 50.80 101.6
		CCVTV	50.0 50.0
			ωn
u		8R	2 100.8 6 101.5
ati.		ICV	50.42 50.76
ific	r Iron	ICVTV	50.0 50.0
n Ver ers	Former	RUN	PMS MS011481 PMS MS011481
ijon	ndale	Σ	PMS MS PMS MS
rat Geoer	Iroi	li	CU
Calibration Verificatio CLIENT: Geoengineers	PROJECT: Irondale Former Iron SDG : VY50	ANALYTE	Copper Nickel

Control Limits: Mercury 80-120; Other Metals 90-110

гq
nda:
Stai
Ц И
CRI

CLIENT: Geoengineers

PROJECT: Irondale Former Iron

SDG: VY50

UNITS: ug/L

8R					
CR-6 %R					
8.К					
CR-5					
8R					
CR-4					
\$R					
CR-2 &R CR-3					
% R					
CR-2					
åR	110.0	106.0	108.0	108.0	
CR-1	0.55	0.53	0.54	0.54	
CRA/I TV		0.5			
RUN	PMS MS011081	MS011081	PMS MS011481	PMS MS011481	
X	PMS	I SM4	PMS	PMS	
13	cu	IN	сu	IN	
ANALYTE EL M	Copper	Nickel	Copper	Nickel	

no control limits have been established by the EPA at this time. Control Limits:

FORM II (2)

Calibration Blanks

CLIENT: Geoengineers

PROJECT: Irondale Former Iron

SDG: VY50

	.	_
U 10	D	0.5 U
CCB5	0.5	0
υ	Þ	D
CCB4 C	0.5	0.5
υ	Þ	Þ
CCB3	0.5	0.5 U
υ	Þ	Þ
CCB2	0.5 U	0.5 U
υ	Þ	Þ
CCB1 C	0.5	0.5
υ	Þ	Ð
ICB	0.5	0.5
IDI	0.5	0.5
CRDL	25.0	40.0
RUN	CU PMS MS011081	MS011081
METH	PMS	SMG
EL	сŋ	IN
ANALYTE EL METH	Copper	Nickel

CLIENT: Geoengineers

PROJECT: Irondale Former Iron

SDG: VY50

υ	
CCB11 C	
υ	
C CCB10 C	
υ	
CCB9	
υ	D D
CCB8 C	0.5 1 0.5 1
υ	מם
CCB7 C	0.5 0.5
U	p p
CCB6	0.5 0.5
IDI	0.5 0.5
CRDL	25.0 40.0
RUN	MS011081 MS011081
METH	SMA
EL	CU
ANALYTE	Copper Nickel

S
<u> </u>
σ
0
R
Ο
<u> </u>
· eff.
÷
, and
σ
Я
-
0
_
đ
Ö
$\mathbf{\tilde{\mathbf{v}}}$

CLIENT: Geoengineers

PROJECT: Irondale Former Iron

SDG: VY50

U			
CCB5			
U	Þ	Þ	
CCB4 C	0.5	0.5	
U	Þ	Þ	
CCB3	0.5	0.5	
υ	Þ	Þ	
CCB2	0.5	0.5	
υ	D	Þ	
CCB1	0.5	0.5	
υ	Ð	Þ	
ICB	0.5	0.5	
IDL	0.5	0.5	
CRDL	25.0	40.0	
RUN	PMS MS011481	PMS MS011481	
МЕТН	SMG	SMG	
ТЗ	ca	IN	
ANALYTE EL METH	Copper	Nickel	

ICP Interference Check Sample	rfer(mple	ance								RES	ANALYTICAL RESOURCES
CLIENT: Geoen	Geoengineers								ICS	SOURCE: I.V	ν.
PROJECT: Irondale Former Iron	dale Fc	rmer Iron								RUNID: MS011081	1801108
SDG: VY50									INSTRUM	INSTRUMENT ID: PE	PE ELAN 6000
										UNITS: ug/L	і/Т
ANALYTE	ICSA TV	ICSAB TV	ICSA1	ICSAB1 8	8R I	ICSA2	ICSAB2	åR	ICSA3	ICSAB3	\$R
Antimony			0.1	0.1							
Arsenic		20	0.1	19.4 9	97.0						
Cadmium		20	0.1	19.9	99.5						
Chromium		20	0.5	20.3 101.5	1.5						
Cobalt		20	0.0	20.0 100.0	0.0						
Copper		20	0.4	20.0 100.0	0.0						
Manganese		20	0.1	20.1 10	100.5						
Molybdenum	400	400	390.1	397.2 9	59.3						
Nickel		20	0.5		98.5						
Silver		20	0.0	19.6 9	98.0						
Vanadium			0.1	-0.4							
zinc		20	1.7	20.4 102.0	2.0						
ZINC		07	Τ.Υ	71.4.70	N . Z						

FORM IV

CLIENT: Geoengineers PROJECT: Irondale Former Iron SDG: VY50 AMALYTE ICSA TV ICSAB TV ICSA1 I ANALYTE ICSA TV ICSAB TV ICSA1 I Antimony 0.1 Arsenic 20 0.1 Cadmium 20 0.0							ICORPC	INCORPORATED
Irondale Former Iron Icsa TV ICSAB TV ICSAB 10.1 20 0.1 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					ICS	SOURCE: I.V	Ι.ν.	
ICSA TV ICSAB TV ICSA1 0.1 20 0.1						RUNID: MS011481	MS011	481
ICSA TV ICSAB TV ICSA1 0.1 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					INSTRUM	INSTRUMENT ID:	PE ELAN	AN 6000
ICSA TV ICSAB TV ICSA1 0.1 20 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0						UNITS: ug/L	ug/L	
20 20	ICSAB1 %R	ICSA2	ICSAB2	% R	ICSA3	ICSAB3	\$R	
20	0.1							
20	19.7 98.5							
	19.5 97.5							
Chromium 20 0.4	20.6 103.0							
Cobalt 20 0.0	19.7 98.5							
Copper 20 0.4	19.8 99.0							
Manganese 20 0.1	20.2 101.0							
Molybdenum 400 400 414.3	413.0 103.3							
Nickel 20 0.5	20.1 100.5							
Silver 20 0.0	19.5 97.5							
ш	-0.3							
ŝ	-0.3							

IDLs and ICP Linear Ranges

CLIENT: Geoengineers

PROJECT: Irondale Former Iron

SDG: VY50

ANALYTE	EL	METH	INSTRUMENT	WAVELENTH (nm)	GFA BACK- GROUND	CLP CRDL	RL	RL ICP LINEAR ICP LR DATE RANGE (ug/L) DATE
Copper	CU	PMS	PE ELAN 6000 M	s 0.00		25	0.5	4/1/2012
Nickel	NI	PMS	PE ELAN 6000 M	s 0.00		40	0.5	4/1/2012

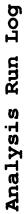
Preparation Log

CLIENT: Geoengineers PROJECT: Irondale Former Iron **SDG:** VY50

ANALYSIS METHOD: PMS

ARI PREP CODE: REN PREPDATE: 1/8/2013

CLIENT ID	ARI ID	MASS (g)	INITIAL VOLUME (mL)	FINAL VOLUME (mL)
MW05-130104	VY50A	0.000	50.0	25.0
MW05-130104D	VY50ADUP	0.000	50.0	25.0
MW05-1301045	VY50ASPK	0.000	50.0	25.0
MW06-130104	VY50B	0.000	50.0	25.0
MW07-130104	VY50C	0.000	50.0	25.0
MW08-130104	VY50D	0.000	50.0	25.0
MW09-130104	VY50E	0.000	50.0	25.0
MW09-130104-DUP	VY50G	0.000	50.0	25.0
PBW	VY50MB1	0.000	50.0	25.0
LCSW	VY50MB1SPK	0.000	50.0	25.0


σ
0
H.
<u>E</u>
Ru
щ
S
·H
S
N
-
Q
R
4

ſ
neers
5
U.
a,
P
•
Geoenain
ē
6
č
2
4
Ċ
•
F
5
÷
TRNT
L.
Ē
C

CLIENT: Geoengineers	ineers					
PROJECT: Irondale	Former	Iron	INSTRUMENT ID: PE	ELAN 6000 MS	START DATE:	1/10/2013
SDG: VY50			RUNID: MS011081	METHOD: PMS	END DATE:	1/10/2013
CLIENT ID	ARI ID	DIL. TIME	&R AG AL AS B BA BE	CA CD CO CR CU FE HG K M	MG MN MO NA NI PB SB SE SI	SN TI TL U V ZN
SO	so	1.00 09120		x	X	
S1	S1	1.00 09180		×	X	
S2	S2	1.00 09240		×	×	
S3	S3	1.00 09300		×	X	
S4	S4	1.00 09360		×	×	
222222	Rinse Sampl	1.00 09430				
ICV	MICV	1.00 09500		×	×	
ICB	ICB	1.00 09570		×	X	
CCV	MCCV1	1.00 10030		×	×	
CCB	CCB1	1.00 10090		×	×	
CRI	MCRI	1.00 10150		x	×	
ICSA	ICSAI	1.00 10210		×	×	
ICSAB	ICSABI	1.00 10270		×	×	
222222	LR200	1.00 10330				
222222	LR300	1.00 10400				
CCV	MCCV2	1.00 10470		x	×	
CCB	CCB2	1.00 10530		×	×	
222222	VR65MB1	20.00 10590				
222222	VR65ADUP	100.00 11050		· · · · · · · · · · · · · · · · · · ·		
222222	VR65A	100.00 11120				
222222	VR65ASPK	100.00 11180				
222222	VR65B	50.00 11240				
222222	VR65C	50.00 11310				
222222	VR65D	100.00 11370				
222222	VR65G	50.00 11430				
222222	VR651	50.00 11490				
222222	VY32MB1SPK	20.00 11560				
CCV	MCCV3	1.00 12020		×	×	
CCB	CCB3	1.00 12090		×	×	
PBW	VY50MB1	2.00 12170		×	×	
222222	VR65J	50.00 12230				
222222	VR65L	50.00 12300				
MW05-130104D	VY50ADUP	2.00 12360		×	×	
MW05-130104	VY50A	2.00 12420		×	×	
MW05-130104S	VY50ASPK	2.00 12480		×	X	

FORM XIV

1/10/2013

START DATE:

INSTRUMENT ID: PE ELAN 6000 MS PROJECT: Irondale Former Iron CLIENT: Geoengineers

SDG: VY50			RUNID: MS011081	METHOD: PMS	END DATE: 1/10/2013
CLIENT ID	ARI ID	DIL. TIME	&R AG AL AS B BA BE	CA CD CO CR CU FE HG K	MG MN MO NA NI PB SB SB SI SN TI TI U V ZN
22222	22222	2.00 12550			
MW06-130104	VY50B	2.00 13010		×	x
MW07-130104	VY50C	2.00 13070		×	x
ICSW	VY50MB1SPK	2.00 13130		×	×
CCV	MCCV4	1.00 13190		×	×
CCB	CCB4	1.00 13260		×	×
22222	22222	1.00 13330			
22222	VY68MB1	2.00 13380			
MW08-130104	VY50D	2.00 13450		×	x
MW09-130104	VY50E	2.00 13510			
MW09-130104-DUP	VY50G	2.00 13570			
22222	VY68ADUP	2.00 14040			
222222	VY68A	2.00 14110			
222222	VY68ASPK	2.00 14170			
222222	VY68B	2.00 14230			
222222	VY68MB1SPK	2.00 14280			
CCV	MCCV5	1.00 14350		×	×
CCB	CCB5	1.00 14410		×	x
222222	VY 68MB2	2.00 14500			
MW09-130104	VY50E	20.00 14560			
MW09-130104-DUP	VY50G	20.00 15030		×	×
222222	VY68D	2.00 15090			
222222	VY 68CDUP	2.00 15150			
222222	VY68C	2.00 15220			
222222	VY68CSPK	2.00 15280			
222222	VY 68MB2SPK	2.00 15340			
CCV	MCCV6	1.00 15400		×	×
CCB	CCB6	1.00 15470		×	×
CRI	MCRI	1.00 15530		×	x
222222	VY78MB1	2.00 15590			
222222	VY44RMB1	2.00 16050			
222222	VY78A-L	10.00 16110			
222222	VY78A	2.00 16180			
222222	VY78ADUP	2.00 16240			
222222	VY78ASPK	2.00 16300			

FORM XIV

CLIENT: Geoengineers	neers		INCORPORATED
PROJECT: Irondale Former Iron	ale Former	Iron	INSTRUMENT ID: PE ELAN 6000 MS START DATE: 1/10/2013
SDG: VY50			RUNID: MS011081 METHOD: PMS END DATE: 1/10/2013
CLIENT ID	ARI ID	DIL. TIME	&r ag al as be be be co co co co co te be co no no mo na ni pe se se si sn ti tl u v zn
222222	222222	2.00 16370	
222222	VY78MB1SPK	2.00 16430	
222222	VY44RMB1SPK	2.00 16490	
ccv	MCCV7	1.00 16560	
CCB	CCB7	1.00 17020	x
MW09-130104	VY50E	50.00 17080	
222222	VY44RA-L	25.00 17140	
222222	VY44RA	5.00 17210	
222222	VY44RADUP	5.00 17270	
222222	VY44RASPK	5.00 17330	
22222	222222	5.00 17390	
222222	VY78B	5.00 17460	
222222	VY78C	50.00 17520	
222222	VY78D	50.00 17580	
MW09-130104-DUP	VY50G	50.00 18050	
CCV	MCCV8	1.00 18110	X
CCB	CCB8	1.00 18180	

Log
Run
Analysis

U,)
ہے م	1
neers	2
aine	
d	Ì
ď)
0	
Ę	
NEFIC	
5	1

	SNI	
	Iron	
۲ ۵	Former	
e taalit hilanan	Irondale	
	PROJECT:	

TRUMENT ID: PE ELAN 6000 MS

1/14/2013 START DATE:

		TT OIL	THE FEATURE CONTRACTOR	
SDG: VY5U			KUNID: MSUI1481 METHOD: PMS	ENU UATE: 1/14/2013
CLIENT ID	ARI ID	DIL. TIME	& R AG AL AS B BA BE CA CD CO CR CU FE HG K MG MN	N MO NA NI PB SB SE SI SN TI TL U V ZN
so	so	1.00 09070		
S 1	Sl	1.00 09130	×	×
S2	S2	1.00 09190	X	x
S3	S3	1.00 09250	×	×
S4	S4	1.00 09310	×	x
222222	Rinse Sampl	1.00 09380		
222222	ZZZZZ	1.00 09450		
22222	22222	1.00 09520		
SO	so	1.00 10000	X	X
ICV	MICV	1.00 10060	X	X
ICB	ICB	1.00 10130	X	X
ccv	MCCV1	1.00 10190	X	X
CCB	CCB1	1.00 10250	X	X
CRI	MCRI	1.00 10310	X	X
ICSA	ICSAI	1.00 10370	X	X
ICSAB	ICSABI	1.00 10430	X	X
22222	LR200	1.00 10500		
22222	LR300	1.00 10560		
CCV	MCCV2	1.00 11030	X	×
CCB	CCB2	1.00 11090	×	X
222222	VZ05A-L	250.00 11190		
22222	VZ05A	50.00 11250		
222222	VZ05ADUP	50.00 11310		
222222	VZ05ASPK	50.00 11380		
222222	222222	50.00 11440		
CCV	MCCV3	1.00 11500	X	X
CCB	CCB3	1.00 11570	X	X
22222	VY37MB	1.00 12080		
MW09-130104	VY50E	100.00 12140	×	X
222222	VY83A	100.00 12210		
222222	VY37ADUP	1.00 12270		
222222	VY37A	1.00 12330		
222222	VY37ASPK	1.00 12390		
222222	VY37B	1.00 12460		
222222	VY37C	1.00 12520		
			FORM XIV	

C		D
YTICAL	URCES	RPORATI
ANAL	RESO	INCOR

START DATE: 1/14/2013 END DATE: 1/14/2013

CLIENT: Geoengineers	jineers					
PROJECT: Irondale Former Iron	dale Former	Iron		INSTRUMENT J	D: PE	INSTRUMENT ID: PE ELAN 6000 MS
SDG: VY50				RUNID: MS011481	481	METHOD: PMS
CI INII ID	ARI ID	DIL.	DIL. TIME	&R AG AL AS]	B BA BE (&R AG AL AS B BA BE CA CD CO CR CU FE HG K M

CLIENT ID	ARI ID	DIL. TIME 8	& R A G ALL AS B BA BE CA CD CO CR CUFE HG K MG MN MO NA NI PB SB SE SI SN TI TL U V ZN
22222	VY37D	1.00 12580	
22222	VY37MBSPK	1.00 13040	
ccv	MCCV4	1.00 13100	
CCB	CCB4	1.00 13170	

APPENDIX C Report Limitations and Guidelines for Use

APPENDIX C REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This Appendix provides information to help you manage your risks with respect to the use of this report.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Environmental Services Are Performed For Specific Purposes, Persons And Projects

This report has been prepared for the exclusive use by the Washington Department of Ecology. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report Is Based On A Unique Set Of Project-Specific Factors

This report has been prepared for the former Irondale Iron and Steel Plant site at the intersection of East Moore Street and 1st Avenue in Irondale, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

Reliance Conditions For Third Parties

No other party may rely on the product of our services unless we agree in advance and in writing to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations Are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance change, or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Study Is Completed

No environmental assessment can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely-spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil And Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

