April 2013 Groundwater Monitoring

Former Irondale Iron and Steel Plant Site Irondale, Washington

for Washington State Department of Ecology

December 5, 2014

April 2013 Groundwater Monitoring

Former Irondale Iron and Steel Plant Site Irondale, Washington

for Washington State Department of Ecology

December 5, 2014

Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206-728-2674

April 2013 Groundwater Monitoring

Former Irondale Iron and Steel Plant Site Irondale, Washington

File No. 0504-042-02

December 5, 2014

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program 300 Desmond Drive Lacey, Washington 98504

Attention: Steve Teel

Prepared by:

GeoEngineers, Inc. Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206,728.2674

Neil Morton Senior Environmental Scientist and Project Lead

David A. Cook, LG, CPG Principal and Program Manager

NFM:CB:leh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2014 by GeoEngineers, Inc. All rights reserved.

Table of Contents

INTRODUCTION	1
SCOPE OF SERVICES	1
GROUNDWATER MONITORING RESULTS	2
General	2
Groundwater Conditions	2
Groundwater Sampling	2
CONCLUSIONS	3
LIMITATIONS	3
REFERENCES	3

LIST OF TABLES

Table 1. Summary of Groundwater Level Measurements

Table 2. Summary of Groundwater Chemical Analytical Data – Petroleum Hydrocarbons, cPAHs and Dissolved Metals

LIST OF FIGURES

Figure 1. Vicinity Map

- Figure 2. Groundwater Monitoring Results Dissolved Metals
- Figure 3. April 2013 Groundwater Elevation Contours

APPENDICES

Appendix A. Field Procedures

- Appendix B. Data Validation Memorandum and Chemical Analytical Results
- Appendix C. Report Limitations and Guidelines for Use

INTRODUCTION

This report summarizes the results of the April 2013 quarterly groundwater monitoring event (Round 2) at the Former Irondale Iron and Steel Plant Site (Site, also known as Irondale Beach Park) in Irondale, Washington. The Site is a 13-acre property located at 526 Moore Street in the town of Irondale, latitude 48°2'38" N longitude 122°45'60" W, approximately 5 miles south of Port Townsend, Washington (see Vicinity Map, Figure 1). The Site is owned by Jefferson County and is currently used as an undeveloped day-use park (Irondale Beach Park). It is bounded by Port Townsend Bay to the east, residential properties to the south, southwest and northwest, and parklands to the north. The Site includes both upland and aquatic land. The general site layout is shown on the attached Groundwater Monitoring Results – Dissolved Metals, Figure 2.

From 1881 to 1919, iron and steel were produced intermittently at the Site by various owners. Steel plant operations during this time resulted in metals, carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and/or petroleum contamination of soil, sediment and/or groundwater. Washington State Department of Ecology (Ecology) completed a cleanup action consisting of excavation of upland soil and marine sediment along the shoreline that contain chemicals of concern (COC) concentrations greater than Site-Specific cleanup levels, excavation of slag material outside of remedial excavations to facilitate shoreline habitat restoration, and installation of a multi-component environmental cap in two upland areas where surface soil exceeded Site-Specific cleanup levels. The cleanup action was completed in December 2012.

GeoEngineers, Inc. (GeoEngineers) has been providing site characterization, cleanup and groundwater monitoring services at the Site since 2007.

SCOPE OF SERVICES

New wells (MW-6 through MW-9) were installed following completion of remedial excavation activities. An existing monitoring well MW-5 located outside of the remedial excavation footprint was also sampled as part of the post-construction groundwater monitoring. The purpose of the groundwater monitoring program is to evaluate the effectiveness of the cleanup action, with respect to protection of groundwater. As outlined in the Engineering Design Report (GeoEngineers, 2012), post-construction groundwater monitoring is being performed on a quarterly basis for a minimum of one year.

Our specific scope of services is as follows:

- 1. Measure the depths to groundwater in each well (MW-5 through MW-9). Estimate groundwater flow direction at the site based on the groundwater depths.
- 2. Purge approximately three well volumes of water from the wells prior to sampling. Obtain groundwater samples using low-flow methodology in accordance with the field procedures outlined in Appendix A from the five wells for chemical analysis.
- 3. Submit the groundwater samples to an Ecology-certified laboratory for chemical analysis of diesel- and heavy oil-range hydrocarbons by Ecology Method NWTPH-Dx, total carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method SW 8270D-SIM, and dissolved metals by EPA Method 200.8. Ecology determined that the dissolved cPAH analyses was not required based on the chemical analytical results of January 2013 groundwater monitoring event.

4. Evaluate the chemical analytical results relative to Site-Specific groundwater cleanup levels consistent with MTCA requirements. Site-specific groundwater cleanup levels are presented in Table 2.

GROUNDWATER MONITORING RESULTS

General

Monitoring wells MW-5 through MW-9 were used to evaluate groundwater flow direction and obtain groundwater samples. Monitoring well MW-5 was installed prior to the cleanup action during the site characterization phase and is located outside of the cleanup action areas. Monitoring wells MW-6 through MW-8 were installed after cleanup action activities within the limits of petroleum- and metals-contaminated soil remedial excavation areas. Monitoring well MW-9 was installed after cleanup activities within the limits of the metals-contaminated soil remedial excavation areas. Monitoring well MW-9 was installed after cleanup action activities within the limits of the metals-contaminated soil remedial excavation area. The approximate locations of the monitoring wells are shown in Figure 2. Groundwater level measurement and sampling procedures are described in Appendix A. Depth to groundwater measurements are presented in Table 1. Groundwater chemical analytical data is summarized in Table 2. A copy of the laboratory report for the April 2013 groundwater analyses is presented in Appendix B.

Monitoring wells MW-5 through MW-9 were surveyed by Van Aller Surveying during February 2013 for creating the "As-Built Map of the Irondale Iron and Steel Plant Cleanup Action."

Groundwater Conditions

Groundwater conditions beneath the Site were evaluated by measuring groundwater levels and obtaining groundwater samples from MW-5 through MW-9 on April 10, 2013. Groundwater depths ranged from approximately 3 to 5.5 feet below ground surface (bgs) in the monitoring wells. The shallow depths to water in the monitoring wells are attributed to the proximity of Port Townsend Bay located approximately 20 to 60 feet east from the monitoring wells. Based on site topography, the ground surface is relatively flat, though the ground surface elevation is slightly higher in the southern portion of the site (near MW-6 and MW-7) compared to the ground surface in the northern portion of the site (near MW-8 and MW-9). The groundwater flow direction beneath the site based on April 2013 groundwater levels is to the east toward Port Townsend Bay (see Figure 3).

Groundwater Sampling

Groundwater samples from MW-5 through MW-9 were submitted to Analytical Resources, Inc. (ARI) an environmental laboratory in Tukwila, Washington for chemical analysis of diesel- and heavy oil-range hydrocarbons, cPAHs, and dissolved Copper and dissolved Nickel.

Diesel- and Heavy Oil-range hydrocarbons were not detected in the samples obtained from MW-5, MW-6, MW-8, and MW-9. Diesel-range hydrocarbons were detected at a concentration less than the site-specific cleanup level in the sample obtained from monitoring well MW-7. Heavy oil-range hydrocarbons were not detected in MW-7. Dissolved copper was detected in the sample from MW-9 at a concentration (7 µg/L) greater than the site-specific cleanup level of 2.4 µg/L. Dissolved copper was detected in MW-5, MW-5, MW-7, and MW-8 at concentrations less than the site-specific cleanup level. Dissolved copper was not detected in MW-6.

- Dissolved nickel was detected in the sample from MW-9 at a concentration (10 µg/L) greater than the site-specific cleanup level of 8.2 µg/L. Dissolved nickel was detected at concentrations less than the site-specific cleanup level in the samples from MW-5 though MW-8.
- cPAH constituents were not detected in any of the groundwater samples.

CONCLUSIONS

Groundwater monitoring is being conducted at the former Irondale Iron and Steel Plant site to evaluate the post-construction effectiveness of the cleanup action as outlined in the Final Engineering Design Report (GeoEngineers, 2012). Groundwater samples obtained during the April 2013 sampling event were analyzed for diesel- and heavy oil-range hydrocarbons, cPAHs, and dissolved copper and dissolved nickel. Results for April 2013 (Round 2) were generally consistent with those from January 2013 (Round 1). Dissolved copper and nickel were the only constituents that exceeded site specific cleanup levels (MW-9 only, for both Rounds). The other constituents either were not detected or were detected at concentrations less than the site-specific cleanup levels.

The April 2013 groundwater monitoring event is the second of the four planned quarterly groundwater monitoring events.

LIMITATIONS

We have prepared this report for use by the Washington State Department of Ecology. The information contained herein is not intended for use by others and it is not applicable to other sites. No other (third) party may rely on the product of our services unless we agree in advance and in writing to such reliance.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to Appendix C titled "Report Limitations and Guidelines for Use" for additional information pertaining to use of this report.

REFERENCES

- GeoEngineers, 2009, "Revised Draft Remedial Investigation/Feasibility Study Report, Irondale Iron and Steel Plant, Irondale, Washington, Ecology Facility/Site No. 95275518." GEI File No. 0504-042-01, August 13, 2009.
- GeoEngineers, 2012, "Final Engineering Design Report, Irondale Iron and Steel Plant, Irondale, Washington." GEI File No. 0504-042-02, May 1, 2012.

Table 1

Summary of Groundwater Level Measurements

Former Irondale Iron and Steel Plant Site

Irondale, Washington

Groundwater Monitoring Well ¹	Quarterly Groundwater Monitoring Event	Date Measured	Top of Casing Elevation ² (feet)	Depth to Water from Top of Casing (feet)	Groundwater Elevation ² (feet)
MW-5	Round 1	1/4/2013	13.97	5.01	8.96
10100-5	Round 2	4/10/2013	13.57	4.4	9.57
MW-6	Round 1	1/4/2013	17.04	3.23	13.81
	Round 2	4/10/2013	11.04	3.16	13.88
MW-7	Round 1	1/4/2013	15.98	5.08	10.90
	Round 2	4/10/2013	10.00	5.06	10.92
MW-8	Round 1	1/4/2013	11.93	4.00	7.93
	Round 2	4/10/2013	11.00	4.68	7.25
MW-9	Round 1	1/4/2013	11.77	4.83	6.94
10100-5	Round 2	4/10/2013	±±.//	5.52	6.25

Notes:

¹Monitoring well locations are shown on Figure 2.

²Elevation is referenced to Mean Lower Low Water (MLLW). Elevation measurements were obtained from "ASBUILT MAP" provided by Van Aller Surveying to Anderson Environmental Contracting, LLC dated February 2013. Top of casing elevations were estimated by subtracting the distance between the top of the monument and the top of the casing at each well.

Table 2

Summary of Groundwater Chemical Analytical Data - Petroleum Hydrocarbons, cPAHs and Dissolved Metals¹

Former Irondale Iron and Steel Plant Site

Irondale, Washington

			Petro Hydroca				Carcinoge	enic Polycyc	lic Aromatic	: Hydrocarbo	ons (cPAHs) ^ć	ı		Disso Met	olved als ⁵
Groundwater Sample Identification ²	Quarterly Groundwater Monitoring Event	Sample Date	Diesel-Range	Heavy Oil-Range	Total or Dissolved CPAH	Benzo[a]anthracene	Chrysene	Benzo[b]fluoranthene	Benzo[k/fluoranthene	Benzo[a]pyrene	Indeno(1,2,3-c,d)pyrene	Dibenz[a,h]anthracene	Total cPAH - TEQ ⁴	Copper	Nickel
MW05-130104	Round 1	1/4/2013	100 U	200 U			-							1.3	5.6
MW05-130410	Round 2	4/10/2013	100 U	200 U			-				-			1.5	5.1
MW06-130104 ⁶	Round 1	1/4/2013	100 U	200 U	Total	0.010 U	0.0066 J	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00757 J	0.8	5.8
MW06-130104	Round 1	1/4/2013	-		Dissolved	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	-	-
MW06-130410	Round 2	4/10/2013	100 U	200 U	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	0.5 U	4.2
MW07-130104	Round 1	1/4/2013	100 U	200 U	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	0.8	4.4
WW07-130104	Round 1	1/4/2013	-		Dissolved	0.010 U	0.0072 J	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00757 J	-	-
MW07-130410	Round 2	4/10/2013	160	200 U	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	1.4	5.1
MW08-130104	Round 1	1/4/2013	100 U	200 U	Total	0.0075 J	0.0094 J	0.0063 J	0.010 U	0.0078 J	0.010 U	0.010 U	0.0108 J	0.5 U	5
WW08-130104	Round 1	1/4/2013	-		Dissolved	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	-	-
MW08-130410	Round 2	4/10/2013	100 U	200 U	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	2.2	4.9
MW09-130104 ⁶	Round 1	1/4/2013	100 U	200 U			-	-		-	-			7	90
MW09-130410 ⁶	Round 2	4/10/2013	100 U	200 U			-	-		-	-			7	10
Site-Specific G	iroundwater Cleanup	Level ⁷	500	500	-	see TEQ	see TEQ	see TEQ	see TEQ	see TEQ	see TEQ	see TEQ	0.018	2.4	8.2

Notes:

 $^1 \text{Reported}$ results are in micrograms per liter (µg/L).

²Groundwater monitoring well locations are shown in Figure 2.

³Petroleum Hydrocarbons analyzed using NWTPH-Dx.

⁴cPAHs analyzed using EPA method 8270D-SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations. Samples analyed for dissolved cPAHs were laboratory filtered using a 0.7 µm borosilicate glass, binder free filter.

⁵Dissolved Metals analyzed using EPA method 200.8 (field filtered).

⁶A field duplicate groundwater sample was obtained from this monitoring well (diesel- and heavy oil-range and cPAHs for MW-6 and metals for MW-9). Higher of the two detected concentrations (parent and field duplicate) is reported for each of the analyte.

⁷Site-specific groundwater cleanup level is referenced from Table 1 of the Final Enigneering Design Report (GeoEngineers, 2012).

MTCA = Model Toxics Control Act

- = not analyzed. Monitoring wells are located in the area remediated due to metals contamination.

U = Laboratory qualifier indicating analyte not detected at level above listed reporting limit.

Bold indicates analyte was detected.

Chemical analyses performed by Analytical Resources. Inc., in Tukwila, Washington.

Shaded values represent concentrations greater than the Site-Specific cleanup level.

Legend Site Boundary Ordinary High Water (Estimated at Elevation 10.5 feet) Metals Area - Excavation Metals Area - Cap TPH Area - Excavation Slag Outcrop - Removal Monitoring Well Location Assumed Groundwater Flow Direction Data Box Explanation: GW Monit. = Groundwater Monitoring GW Elev = Groundwater Elevation in feet Cu = Dissolved Copper

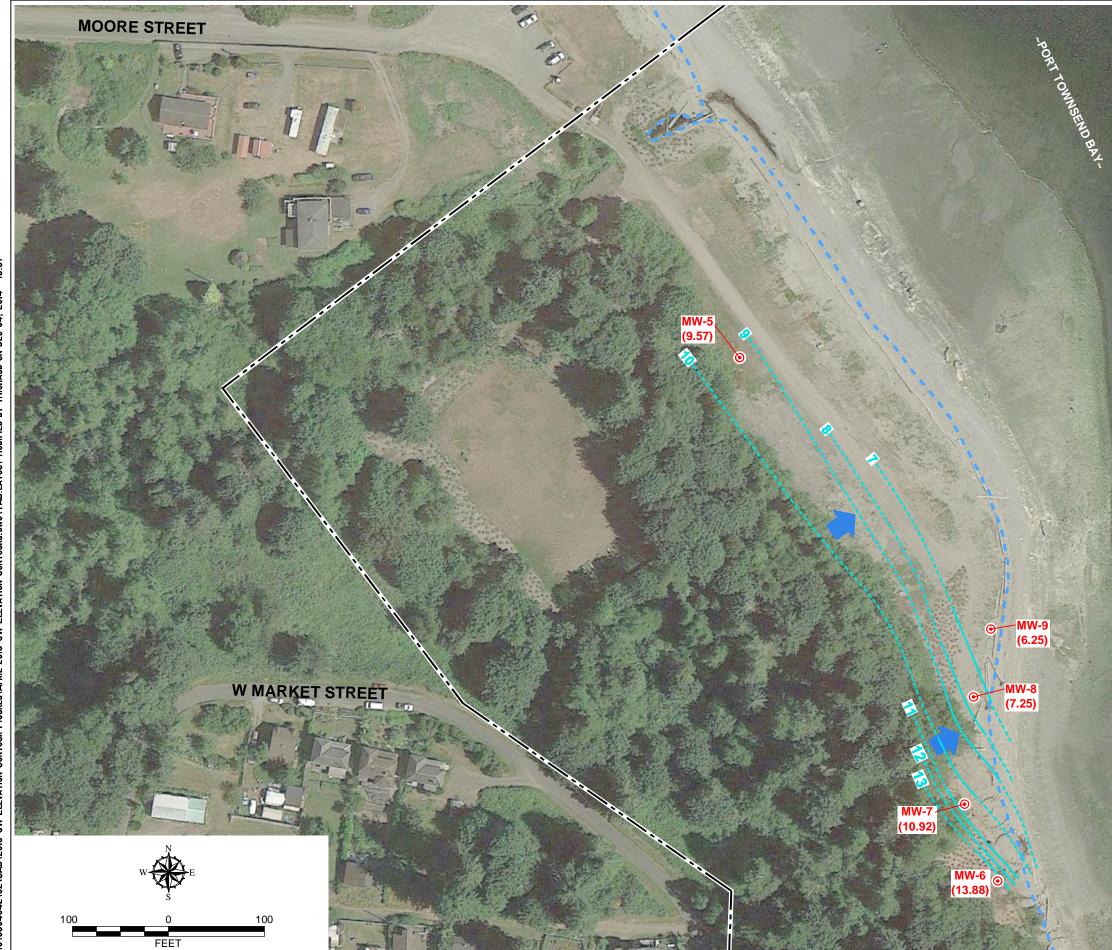
Ni = Dissolved Nickel

Exceedance of site-specific groundwater cleanup level (Cu = $2.4 \mu g/L$; Ni = $8.2 \mu g/L$)

U = Analyte not detected above method reporting limit

Groundwater results in µg/L

Notes


- 1. The locations of all features shown are approximate.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Dissolved metals (Copper and Nickel) were analyzed using EPA Method 200.8. Samples were field filtered.
 TPH and PAH results are presented in Table 2.
- Reference: Aerial photo (July 2013) from Google Earth Pro.

Groundwater Monitoring Results -Dissolved Metals

> Irondale Iron and Steel Plant Irondale, Washington

GEOENGINEERS

Figure 2

Legend

	Site Boundary
	Ordinary High Water (Estimated at Elevation 10.5 feet)
MW-1 💿	Monitoring Well Location
(9.57)	Groundwater Elevation (feet)
	Groundwater Elevation Contour (feet)
	Groundwater Flow Direction

Notes

- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. Reference: Aerial photo (July 2013) from Google Earth Pro.

April 2013 **Groundwater Elevation Contours**

Former Irondale Iron and Steel Plant Irondale, Washington

GEOENGINEERS

Figure 3

APPENDIX A Field Procedures

APPENDIX A FIELD PROCEDURES

General

Monitoring well MW-5 was constructed at the Former Irondale Iron and Steel Plant Site (Site) in June 2007 and MW-6 through MW-9 were constructed at the Site in December 2012 after remedial activities had been completed. The monitoring well construction details for MW-5 through MW-9 are presented in Appendix A of the January 2013 Groundwater Monitoring Report.

Depth to Groundwater Measurements

The depth to groundwater was measured in the monitoring wells using an electric water level indicator. The depth to groundwater was measured relative to the top of the well casings. Water level measurement equipment was washed in a Liqui-Nox® solution, followed by a distilled water rinse prior to use in the well.

Groundwater Sample Collection and Handling

Groundwater samples were obtained from monitoring wells MW-5 through MW-9 in April 2013.

Groundwater samples were obtained from monitoring wells using a peristaltic pump and disposable polyethylene tubing. Groundwater was pumped at approximately 0.5 liter per minute using a peristaltic pump through tubing placed within the screened interval. A Horiba U-22 water quality measuring system with flow-through cell was used to monitor the following water quality parameters during purging: electrical conductivity, dissolved oxygen, pH, salinity, total dissolved solids, turbidity, and temperature. Groundwater samples were obtained once ambient groundwater conditions were reached. Groundwater conditions were considered ambient once the measured parameters varied by less than 10 percent on three consecutive measurements taken approximately 3 minutes apart. The stabilized field measurements are documented in the attached Groundwater Sample Collection Forms.

Samples for dissolved metals analysis were field filtered by pumping water through a 0.45 micron filter directly into the sample container using a peristaltic pump. Groundwater samples obtained were transferred to laboratory-prepared sample jars. Sample containers were filled to minimize headspace. The samples were placed in a cooler with ice pending transport to the analytical laboratory. Samples requiring preservative (e.g., HCl for diesel- and oil-range hydrocarbon analyses) contained the proper preservative in the laboratory-prepared bottles. Chain-of-custody procedures were followed in transporting the samples to the laboratory

Investigative Wastes

Purged groundwater (approximately 3 gallons) removed from the monitoring well casings on April 10, 2013 prior to collecting groundwater samples was stored in a 5-gallon bucket. Purged groundwater generated during the well sampling activities was disposed in the sanitary sewer at GeoEngineers' office in Redmond, Washington in April 2013.

GROUNDWATER SAMPLE COLLECTION FORM

Project IRON 2 3 TEEL PLANT Job No2 Collector K Elevation 0.325 MW ID PURGE DATA PURGE DATA Well Condition: Secure [X] Yes [] No Describe Damage	F	FORMER 1	FRONDE	ale .		504-042	· · · · · · · · · · · · · · · · · · ·	,	Casing	0.64	RIM	" L'entre
Weit Condition: Secure (X) Yes () No Describe Damage Non.e. (Pradicek brand and annihed) (1, 2, 2, 5, 4) Height of Water (from top of well cassing) (1, 2, 2, 5, 4) Depth to Base of Weil (3, 7, 5, 4) Height of Water Column (n) (n) (n) Opent collars of the elevation (gal) (1, 2, 4, 5, 4) Height of Water Column (n) (n) Open Cassing Value (gal) (2, 2, 3, 7) (2, 6, 7) (1, 7) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Project	IRON 2 3	steel (PLANT_	Job No.	-02-	Collector	<u>FK</u>	Elevation	0.35	MW ID	
Operations brand and number? April 24 OF April 2000 Volume Depth to Base of Well 18, 75 At Height of Water Column Diameter 00 Diameter Well Casing Type/Diameter 1 - 1xx h Bailer (type) 2 2.375 2.067* 0.17 One Casing Type/Diameter 1 - 1xx h Bailer (type) 2 2.375 2.067* 0.17 One Casing Type/Diameter 1 - 1xx h Bailer (type) 2 2.375 2.067* 0.17 One Casing Type/Diameter Sample State		an a		anna an an an ann an Anna	Ī	PURGE DAT	A				2012000 0000000000000000000000000000000	
Depth to Water (from top of well casing) University Operation			[X] Yes	[´] No	Desc	ribe Damage	Nor	re	•			
Depth to Water (from top of well casing) Lp. AFC Method Demote Column Demote Column Demote Column Columner		-				-		. 1	T	ntažni 8.625 nomi u munov pista Tent		Volume
Well Casing Type/Diameter 1 - 1 n/h 2 2 2375' 2 667' 0.17 One Casing Volume (gst) Purge Method Purge Method Purge Method Solor 0.12 3 3.000' 0.02 6 6 6.625' 0.06 6 6 6.625' 6.065' 1.5 8 8.025' 7.981 2.6 6 6 6.625' 6.065' 1.5 8 8.025' 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 6 6 6 6 6.625' 6.065' 1.5 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 2.6 7.981 7.981 7.981 7.98 8.655			-		6. 1		<u></u>	<u> </u>	Diameter	4	•	∵ Gal./
3 3.50° 3.066° 0.38 Purge Method Pump (type) <u>REXISTACT</u> (C Bailer (type) 4 4.00° 0.66 Galons Purged NI-0 0.66 6 6.525° 0.66° 1.5 Remove minimum of 3 well volumes or unit field parameters staffine) 8 8.625 7.081 2.6 0.66° 1.5 8 8.625 7.081 2.6 0.65° 1.5 8 8.625 7.081 2.6 0.65° 1.6 8 8.625 7.081 2.6 1.00	Depth to Ba	ase of Well	18.	+5-ft	Height of W	Vater Column						<u>'</u>
Purge Method Purpe (type) Ref_ISTALT_C Baller (type) 4 4.500° 4.026° 0.66 Gallons Purged Gallons Purged Gallons Purged Gallons Purged Gallons Gallons Gallons Gallons Gallons Gallons Gallons Gallons Gallons				1-	· Inch	······································						
Gallons Purged N 0 6 6.625* 0.605* 1.5 Purge Water Storage/Disposal 5 - 4.2 > 5 8.8.55 7.081 2.6 Purge Water Storage/Disposal 5 - 4.2 > 5 8.8.55 7.081 2.6 Comm dialification, semple analysis, sample results, storage location and Depth MW - 0.5 SAMPLING DATA 17.30 Date Collected (mold/ly/n) High Tide at <u>Free p Low Tide at [1::::::::::::::::::::::::::::::::::::</u>												
Remove millinum of 3 well volumes or until field perameters stabilize) 8 8.625 7.981 2.6 Purge Water Storage/Disposal 5 4.4 5 7.981 2.6 Chum Identification, sample mailysis, sample rosults, storage locables, dc) Time Collected [1730 1730 Sample tope (forundwater, Product, Other) Electron and Depth MW - 0.5 Time Collected [1730 Sample tope (forundwater, Product, Other) Electron and Depth MW - 0.5 Surple tope (forundwater, Product, Other) Surple tope (forundwater, Product, Other) Sample tope (forundwater, Product, Other) [10ther] Electron and Depth MW - 0.5 Surple tope (forundwater, Product, Other) Sample tope (forundwater, Product, Other) [10ther] [10ther] Surple tope (for Moster, Surple tope (for Moste												
Purge Water Storage/Disposal 5-94 $\square X \in \mathbb{C}^{+}$ SAMPLING DATA Date Collected (moldylyr) 4 10 13 Time Collected (moldylyr) 4 10 13 Time Collected (moldylyr) 4 10 13 Sample tocation and Deptin MW - 0.5 Sample tocation and Deptin MW - 0.5 Sample Collected with [] Bailer [] Yeump [] Other Sample Collected with [] Bailer [] Yeump [] Other Sample Decon Procedure										ł		
Grum Identification, semple analysis, sample results, storage localition, dic.] SAMPLING DATA Date Collected (moldy/yr) 1 [10] Time Collected Time Collected 1730 Sample tope (condukter, Podde, Other) Time Collected with [] Bailer [] /Pump [] Other Sample tope (condukter, Podde, Other) Time Collected with [] Bailer [] /Pump [] Other Sample tope (condukter, Podde, Other) Time Collected with [] Bailer [] /Pump [] Other Sample tope (condukter, Podde, Other) Other Sample tope (conduct, free product thickness, odor, turbidity, etc.) J = NONS = Time Conductivity Time Conductivity Time Conductivity Time Conductivity Time Porge Volume Conductithickness, odor, turbidity, etc.) J = NONS = WATER Time Porge Volume Time Conductithickness, odor, turbidity, etc.) J = NONS = WATER Time Porge Volume Time Conductivity Time Conductivity Time Conductivity <td <="" colspan="2" td=""><td colspan="9"></td><td></td></td>	<td colspan="9"></td> <td></td>											
Date Collected (mo/dy/yr) 41013 Time Collected 1730 Sample Location and Depth Mu) - 0.5 Time Collected 1730 Sample type (Groundwater, Product, Other) IUV Cov Tide at $1 - 0.0$ and Weather SunN Y Sample type (Groundwater, Product, Other) IUV IDSposable LDPE I Other Sample Collected with [I Bailer [YPump [] Other ALLONOX $20/0577/12250$ Sample Description (cotor, free product hickness, odor, tithidity, etc.) $2 - NON E = 0.007577/12250$ Sample Description (cotor, free product hickness, odor, tithidity, etc.) $2 - NON E = 0.007577/12250$ Sample Description (cotor, free product hickness, odor, tithidity, etc.) $2 - NON E = 0.007577/12250$ Time Purge Volume pH Conductivity Tubidity Dissolved Temperature Satinity Tos Sea Water ORP PH within the field of a fie	(Drum identification, sample analysis, sample results, storage location, etc.)											
Sample Location and Depth $M_{W} - 0.5^{\circ}$ Time Collected Time Collected Time Collected Time Collected $I_{10} > 0$ Weather Sun N Y Sample type (Groundwater, Product, Other) GUU GUU Sample type (Groundwater, Product, Other) GUU Sample type (Groundwater, Product, Other) GUU Sample Decon Procedure	•			· · · · · · · · ·			ATA					
Tida Cycle NA [] High Tide at 7.00 p.m Low Tide at 1.00 a.m Weather SUN Y Sample Collected with [] Baiter [] Purpo [] Other III other III other Sample Collected with [] Baiter [] Teffon [] Disposable LDPE [] Other IIII other Sample Collected with [] Baiter	Date Colle	cted (mo/dy/yr)	~	4110	13			ter e condition			· · ·	
Sample type (Groundwater, Product, Other)			oth Mu	1-05	-	-						
Sample Collected with []Baller [] Pump []Other Inferior []Disposable LDPE []Other Made of []Stainless Steel [] [] Pump [] Other				High Tide at	7.00 p.	m a	Low Tide at	11.00	am	Weather	SUT	JNY
Made of [] Stainless Steel [X] PVC [] Teflon [] Disposable LDPE [] 10ther Sample Description (color, free product thickness, odor, tubidity, etc.)				Other) $r \ r \ r$			$\mathcal{N}_{$			<u> </u>		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1			able I DPE	1	Other			
Sample Description (color, free product thickness, odor, turbidity, etc.) $J - NONE - free model in the interval in the interval i$				<u>ل</u>							VETIN	EA
FIELD PARAMETERS Time Purge Volume (##e), will pH Conductivity (MTU) Turbidity (WTU) Dissolved (#PC) Tos (#PC) Sea Water (#PC) ORP (#PL) PH will 1005 7.25 0.585 2.1 2.6 / 82 11.94 0.3 0.374 0.0 17 -102 1710 500 7.72 0.611 14 7.29 11.01 0.3 0.372 0.0 6 -102 1710 500 7.10 0.521 8 7.16 11.51 0.3 0.393 0.0 5 -9.7 1720 500 7.10 0.521 8 7.11 11.01 0.3 0.396 0.0 7 -9.2 1720 500 7.10 0.5617 5 7.11 11.01 0.3 0.396 0.0 7 -9.2 Meters Used for Measurement HoR1BA U-53 E-Tape Mol Distance Analyses, Number and Volume of Sample Containers MW-0.5 - 13.0410 Duplicate Sample Number					odor, turbidit	ty, etc.)	J-1	VONE	-	1		
Time Purge Volume (Heeq.vv, p) Conductivity (MS/Lvc) Turbidity (NTU) Dissolved Oxyger L Temperature (P/C) Salinity (G/I) Tos (g/I) Sea Water Potential ORP (mV) PH vial 1105 7.25 0.585 2.1 2.6.32 11.94 0.3 0.374 0.0 17 -lo2 1710 500 7.22 0.611 14 7.29 11.91 0.3 0.374 0.0 17 -lo2 1710 500 7.17 0.621 8 17.6 11.51 0.3 0.378 0.0 5 -97 1720 500 7.10 0.647 5 7.11 11.01 0.3 0.376 0.0 7 -93 1720 500 7.10 0.647 5 7.11 11.01 0.3 0.376 0.0 7 -93 1720 500 7.10 0.647 5 7.11 11.01 0.3 0.376 0.0 7 -93 pH/con/DO Instrument Calibration 1/1 Yes [] No Spectrophotometer Yes [] No M/U-0.5 -												
Time uses pH Class (init) $200 + 12$ (init) $percet$ (init) (init) 105 7.25 n :585 21 26:82 11:94 0:3 0:374 0:0 17 -102 170 500 7:22 0-611 14 7:29 11:01 $a:3$ $o:372$ $o.0$ 6 -100 1715 500 7:10 $0:521$ 8 7:16 11:51 $o:3$ $o:378$ 0.0 5 -97 1720 500 7:10 $0:547$ 5 7:11 $11:01$ $0:3$ $o:376$ $0:0$ 7 -93 1720 500 7:10 $0:547$ 5 7:11 $11:01$ $0:3$ $o:376$ $0:0$ 7 -93 Meters Used for Measurement HoRIBA U-53 U-53 U-53 U-410 U-4		Purge Volume					Temperature	Salinity	TDS	Sea Water		
105 7.25 0.585 21 26.82 11.94 0.3 0.374 0.0 17 -102 1710 500 7.22 0.611 14 7.29 11.71 0.3 0.372 0.0 6 -100 1715 500 7.17 0.621 8 7.76 11.51 0.3 0.378 0.0 5 -97 1720 500 7.10 0.647 5 7.11 11.01 0.3 0.376 0.0 7 -93 1720 500 7.10 0.647 5 7.11 11.01 0.3 0.376 0.0 7 -93 1720 500 7.10 0.647 5 7.11 11.01 0.3 0.376 0.0 7 -93 Meters Used for Measurement HoRIBA U-53	Time	(liter) vil	∘рН	(MS/Gui)	(NTU)		<i>(</i> €/C)	口题社	(g/l)	Potential	(mV)	1 11 1 1/4/
1710 500 7.22 0-611 14 7.29 11.71 0.3 0.592 0.0 6 -100 115 500 7.11 0.621 8 7.76 11.51 0.3 0.398 0.0 5 -97 1720 500 7.10 0.647 5 7.11 11.01 0.3 0.396 0.0 7 -93 1720 500 7.10 0.647 5 7.11 11.01 0.3 0.396 0.0 7 -93 1720 500 7.10 0.647 5 7.11 11.01 0.3 0.396 0.0 7 -93 1720 500 7.10 0.647 5 7.11 11.01 0.3 0.396 0.0 7 -93 Meters Used for Measurement HoRIBA U-53 <	1705		7.25	n.585	21	•	11.94	0.3	01374	010	17-	-102
1720 500 7.10 0.647 5 7.11 11.01 0.3 0.386 0.0 7 -93 Meters Used for Measurement HOR1BA U-53 0.386 0.0 7 -93 Meters Used for Measurement HOR1BA U-53 0.386 0.0 7 -93 Meters Used for Measurement HOR1BA U-53 0.386 0.0 7 -93 pH/Con./DO Instrument Calibration [½] Yes [] No Spectrophotometer E-Tape Model ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers MW-05-1304-10 Duplicate Sample Number(s) No Date _410113 Page _1 of 1	1210	500	7.22	0-611	14	7,29	11.77	0.3	0.392	0,0	6	-100
1720 500 7.10 0.647 5 7.11 11.01 0.3 0.386 0.0 7 -93 Meters Used for Measurement HORIBA U-53 pH/Con./DO Instrument Calibration [½] Yes [] No Spectrophotometer E-Tape Meters ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers MW-0.5-13.04-10 MW-0.5-13.04-10 Date4110.113 Page _1 of 1	1215	500	7.17	0.621	8	7.76	11.51	013	0.398	0.0.	5	-97
Meters Used for Measurement HoR1BA U-53 pH/Con./DO Instrument Calibration [½] Yes [] No Spectrophotometer ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers MW-05-1304-10 Signature Date Mathematical Sample Number(s) Date Mathematical Sample Number(s) Date Mathematical Sample Number(s) Date Mathematical Sample Number(s) Date Mathematical Sample Samples Date Mathematical Sample Mathematical Sample Date Mathematical Sample Mathematical Sample Mathematical Sample Signature Mathematical Sample Samples Samples Samples Samples	1720		7.10	0.647	5	7,11	11.0	0.3	0.396	0.0	7	-93
pH/Con./DO Instrument Calibration [1] Yes [] No Spectrophotometer E-Tape ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers MW-05-1304-10 Duplicate Sample Number(s) -No - Signature Date H10113 Page 1 of 1		· ·				1. 1.						
pH/Con./DO Instrument Calibration [1] Yes [] No Spectrophotometer E-Tape ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers MW-05-1304-10 Duplicate Sample Number(s) -No - Signature Date H10113 Page 1 of 1					· · ·	<u></u>						· ·
pH/Con./DO Instrument Calibration [1] Yes [] No Spectrophotometer E-Tape ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers MW-05-1304-10 Duplicate Sample Number(s) -No - Signature Date H10113 Page 1 of 1												· · · · · · · · · · · · · · · · · · ·
pH/Con./DO Instrument Calibration [1] Yes [] No Spectrophotometer E-Tape ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers MW-05-1304-10 Duplicate Sample Number(s) -No - Signature Date H10113 Page 1 of 1]		-	-	· ·
ADDITIONAL INFORMATION Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers MW-05-130410 Duplicate Sample Number(s) No Signature Date Alio113 Page of 1	Meters Us	ed for Measure	ment		HORI	BA U-!	<u> </u>			·····		
Samples Composited Overtime, Distance Analyses, Number and Volume of Sample Containers MW-05-1304-10 Duplicate Sample Number(s) -No Signature Date 4/10/13 Page 1 of 1	pH/Con./D	O Instrument C	Calibration	[[/] Yes [] No	Spect	rophotometer		<u> </u>	E-Tape	<u>^</u>	
Analyses, Number and Volume of Sample Containers MW-05-130410 Duplicate Sample Number(s) No Signature Date 410113 Page 1 of 1				<u>a Calamana an ann an Annaichteachai</u> ghteacha	ADDITI	ONAL INFO	RMATION				ر در بار رو بر این میکر است. داری د ش	
Duplicate Sample Number(s) -No - Signature Date Date A 10 13 Page 1 of 1	Samples C	Composited Ov	ertime, Dist	ance								
Signature Date Page of	Analyses,	Number and Ve	olume of Sa	ample Contain	ers	Mu	V-05-	1304	-10	~	,	
Signature Date Page of	Duplicate :	Sample Numbe	er(s)				No	<i></i>		•		
		•••••										
	Signature		1- N	A STOCKNER AVE			Date	In 1	1.112	Page	<u> </u>	 f 1
Check if additional information on back []			- 1	,					10112	- '''''''		·
	Check if add	ditional informatio	on on back []						anna milita (n - Carla (n 21 - an ana ang an	1	

GEOENGINEERS

GeoWeb > Offices > Tacoma/Pt. Orchard > Environmental Resources > Forms

GROUNDWATER SAMPLE COLLECTION FORM

<u></u>	FORMER]	CRON & S	STEEL		504-042			Casing	0.48-12		_1
Project	PLANT	IROND	<u>fus</u>	Job No.	-02-	Collector_	<u>FK</u>	∟ievation	0.40.1	MW ID	-6
				F	PURGE DAT	Ą	a station of the second se				
	tion: Secure [] Yes	[<u>X]</u> No	Desc	ribe Damage	None	1				
	and and number)				71		ſ	· · · · · · · · · · · · · · · · · · ·	<u> </u>	Ţ	Volume
	ater (from top o			3-16 f			·	Diameter			⁻ Gal./
-			25-ft		/ater Column	<u>,</u>		(in.)	OD	ID	Linear Ft
	g Type/Diamet		······································	1-1N	CH			2	2.375" 3.500"	2.067" 3.068"	0.17
-	g Volume (gal.)		Proven	TIC	Bailer (type)			4	4.500"	4.026"	0.56
Purge Meth Gallons Pu		чпь (куре) -	PERISTA					6	6.625"	6.065"	1.5
(Remove minimum of 3 well volumes or until field parameters stabilize) 8 8.625 7.981 2								2.6			
Purge Water Storage/Disposal 5-galleon buckET											
(Drum identification, sample analysis, sample results, storage location, etc.)											
					AMPLING DA						<u></u>
	cted (mo/dy/yr))th	4/10/11 GEI-ML	1 - 1 - 11	02012			Time	e Collected	12	30
Sample Lo Tidal Cycle	e NA[]		GET-MM High Tide at	7. 0.M	10/10	Low Tide at	11.00	Oqim		SUN	
Sample typ	pe (Groundwate	er, Product,	Other)	2		· · ·		'	<u></u>		
Sample Co	ollected with	[] Bailer	[√] Pu	mp []	Other						
] Stainless St		PVC [] Teflon	[] Dispos			Other	190	1/2	
Sampler D	econ Procedur	e r free prod-	Ict thicknose	Odor turbidit	0 <i>SABLG</i> ty, etc.)	UBINI	1. 2- - N/2	ME -	IX UY +	12114	WATE
Sample De	ะอบทุนบท (COlo	.,ee prodi	LOC THOMHESS,		D PARAME		140				
	Purge Volume		Conductivity	FIEL	Dissolved	Temperature	Salinity	TDS	Sea Water	ORP	
Time	Purge Volume _M (liter)	pH	(<u>MS</u> u)	(NTU)		(Ø/C)	(%)	(g/l)	Potential	(mV)	PHMU
1205		7.83	0.512	36	-2.77	16.21	0.22	0.328	.0.0	- 148	-132
1210.	500	7.76		21	1.35	16.22	0.20	0:30	0.0	-157	-131
1215	500	7.6.	0.446	10	1.77	16.18		0.29	0.0	-161	
1220	500	7.26		5	1.72	16.11	0.2	· ·	0.0	-164	- 103
1225	500		0.419	4	1.98	16.01			1	-169	-117
1220		- *	· ·	·							
THE REAL											
	ed for Measure	ment	<u>.</u>	Ho	RIBA	V-53					
	O Instrument (] No		trophotometer			E-Tape	 \ /	1
		auUII	r ¹⁴ .00 [-	-				- 1		terre money and the first of the first of the
				ADDITI	ONAL INFO			najo di manangan nga minakati si katan aka	history and a second		poy any approximation work with
	Composited Ov Number and V			iers	M	W-06-	- 130	<u>2410</u>			
Duplicate	Sample Numbe	er(s)									
	•				M	W-06-	1304	10-DU	P-for		1-1 2
			<i>6</i>							CPA	HS
Signature		- ZR	Service and a			_ Date	* <u> </u>	(10)(13)	_ Page	e <u>`\</u> o	л <u> </u>
Checkifod	iditional informati	on on back f	7				·~_	<u></u>			
JUPPEN II du		wount									

	`, W.	I	GROUND	NATER S	AMPLE C	OLLECTIO	ON FO	RM		•	. '
~ ~	FORMER	IRON	DAVE	0	504-042			Casing	, 1,9		
Project	IRON 2.	STEEL	RANT_		-02	Collector	FK	Casing Elevation	0.43	MW ID_	-7
			<u> Andre State (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997)</u>	P	URGE DAT	4					
Well Condi	tion: Secure [χ] Yes	[] No	Desci	ribe Damage	Non	۹				
	nd and number)	• •									Volume
Depth to W	ater (from top o			5.0	6			Diameter			· Gal./
Depth to B	ase of Well	11.	75 ft	Height of W	ater Column			(in.)	OD ⁻	ID	Linear Ft
Well Casin	- g Type/Diamete			1-1N	ICH			2	2.375"	2.067"	0.17
	g Volume (gal.)				<u>. </u>			3	3.500"	3.068"	0.38
Purge Metl			PERISTAN	erce	Bailer (type)			4	4.500"	4.026"	0.66
Gallons Pu	ırgeḋ	· · · -		~0	.6			6	6.625"	6.065"	1.5
(Remove mi	irgeḋ nimum of 3 well v er Storage/Disp	olumes or u	ntil field parame	ters stabilize)	A t	4		8	8.625	7.981	2.6
Purge Wat	er Storage/Disp	osal		5-,	gal bill						
(Drum identi	ification, sample a	analysis, san	ple results, sto								
				SA	MPLING DA	TA					
Date Colle	cted (mo/dy/yr)		4/10/13							45	no
Sample Lo	cation and Dep	th		1121-07					Collected		335
Tidal Cycle			High Tide at	7.00 p.	~	Low Tide at	11.00		Weather		WNY_
	pe (Groundwate	er, Product,	Other)		G L	w					
	ollected with			mp []			F 7	Other	·		
] Stainless St		PVC [] Teflon		able LDPE			. Ja	south book of	-n-
Sampler D	econ Procedur	9		<u>VIS</u>	POSABLE	5 TOBIA	16 4	- ALONE	<u> </u>	STOSE	<u>===</u>
Sample Description (color, free product thickness, odor, turbidity, etc.)											
FIELD PARAMETERS											
Time	Purge Volume	pН	Conductivity (<u>MS/UM</u>)	Turbidity (NTU)	Dissolved	Temperature (F/C)	Salinity (%)	TDS (g/l)	Sea Water Potential	ORP (mV)	PHMV
320		7.42	0.232	33	12.88	16.21	0.1	0-148	0.0	-52	-11.2
1325	500 ml	7.03	01166	16	7.83	15.97	011	0.101	0.0	-107	-84
1330	500 ml		0,154	9	7.39	15.77	01	0.101	0.0	-116	-78
1335	500 ml	6.5%	0.155	(7.0%	15:51	oil	0.105	60	-117	-63
					1 · · · ·						
Meters Us	ed for Measure	ment		Ho	RIBA	U-53					,
	00 Instrument C		[``x] Yes [] No		rophotometer	• .	5	E-Tape	Leven	ei ^g
	a to a second second and the second		-21			DIANTION	-		nan an		مند، معرف الكريم الكريم المراجع الم
<u></u>					ONAL INFO		haite and the second				
	Composited Ov					N 5	<u> </u>	- 111-			
Analyses,	Number and V	oiume of Si	ample Contair	iers	· · · · · · · · · · · · · · · · · · ·	MW-0=	T-130	2410			
Duplicate	Sample Numbe	er(s)									
	 				-N	0 -					
			~								f (
Signature		$<\!$				- Date	·4	-110/13	<u>S</u> Page	20	T
Check if an	Iditional information	on on back [7								

GeoWeb > Offices > Tacoma/Pt. Orchard > Environmental Resources > Forms

A

GROUNDWATER SAMPLE COLLECTION FORM

FORMER_TRANDATE OSOL-042 Casing Elevation O.S.F. MW ID -62 Project <u>IRON 2 STEEL PLANT</u> Job No02 Collector FK Elevation 0.3S f. MW ID -62 PURGE DATA Well Condition: Secure [X] Yes ['] No Describe Damage Venue (Padlock brand and number) Depth to Water (from top of well casing) U - 68 FE Diameter (from top of well casing) U - 68 FE Well Casing Type/Diameter Image Image Volume Callons Purged Image Image Image Image Well Casing Volume (gal.) Purpe (type) PER: STANCE Bailer (type) Image
Well Condition: Secure [\] Yes [] No Describe Damage Neuce (Padlock brand and number) Depth to Water (from top of well casing) U. 68 ft Diameter Gal./ Depth to Base of Well 12-15 ft Height of Water Column Diameter Gal./ Well Casing Type/Diameter 12-15 ft Height of Water Column 2 2.375" 2.067" 0.17 One Casing Volume (gal.) 2 2.375" 2.067" 0.17 Purge Method Pump (type) PERI STANCE Bailer (type) 4 4.500" 4.026" 0.66 Gallons Purged N 0-5 6 6.625" 6.065" 1.5 Purge Water Storage/Disposal 5-GALONS Buckett 8 8.625 7.981 2.6 SAMPLING DATA Time Collected (mo/dy/yr) Time Collected [S40
(Padlock brand and number) Volume Depth to Water (from top of well casing) U. 68 ft Depth to Base of Well 12.15 ft Well Casing Type/Diameter Image: market in the second seco
Depth to Water (from top of well casing) Use (68 ft) Diameter Volume Gal./ Depth to Base of Well 12-15 ft Height of Water Column ID Linear F Well Casing Type/Diameter - m(ft) 2 2.375" 2.067" 0.17 One Casing Volume (gal.) - 3 3.500" 3.068" 0.38 Purge Method Pump (type) PERISTANCE Bailer (type) 4 4.500" 4.026" 0.66 Gallons Purged N 0- 5 6 6.625" 6.065" 1.5 (Drum identification, sample analysis, sample results, storage location, etc.) SAMPLING DATA 3 8.625 7.981 2.6 Sample Location and Depth
Depth to Base of Well 12.15 A Height of Water Column Well Casing Type/Diameter 1-mCh 2 2.375" 2.067" 0.17 One Casing Volume (gal.) 3 3.500" 3.068" 0.38 Purge Method Pump (type) PERI STALTIC Bailer (type) 4 4.500" 4.026" 0.66 Gallons Purged N 0-5 6 6.625" 6.065" 1.5 (Remove minimum of 3 well volumes or until field parameters stabilize) 8 8.625 7.981 2.6 Purge Water Storage/Disposal 5-GALONA BUCKET 8 8.625 7.981 2.6 SAMPLING DATA Time Collected (mo/dy/yr) SAMPLING DATA
Well Casing Type/Diameter Image: Contraction of the contrecontractic of the contraction of the contr
Weil Cashing TyperDiameter Image: Construction of the constr
One Cashing Volume (gal.) Pump (type) PERISTANC Bailer (type) 4 4.026" 0.66 Gallons Purged N 0-5 6 6.625" 6.065" 1.5 (Remove minimum of 3 well volumes or until field parameters stabilize) 8 8.625 7.981 2.6 Purge Water Storage/Disposal 5-GALON Bucket 6 6.625" 6 6 6.25" 6 6 6 6 5 8 8.625 7.981 2.6 Purge Water Storage/Disposal 5-GALON Bucket 5 6 6 6.625" 6 6 6 5 7.981 2.6 Date Collected (mo/dy/yr) 4 10 13 5 5 5 6 5 6 5 5 6 5 5 6 5 4 4 5 6 6 6 6 6 6 5 7 9 1 5 6 6 6 5 7 9 1 6 6 6 6 5 7 9 1 5 7 </td
Gallons Purged N 0-5 Gallons Purged N 0-5 (Remove minimum of 3 well volumes or until field parameters stabilize) 8 Purge Water Storage/Disposal 5-GALON (Drum identification, sample analysis, sample results, storage location, etc.) 6 SAMPLING DATA Date Collected (mo/dy/yr) 4/10/13 Sample Location and Depth Mw1-08
Calloris Purged 8 8.625 7.981 2.6 Remove minimum of 3 well volumes or until field parameters stabilize) 8 8.625 7.981 2.6 Purge Water Storage/Disposal 5-GALON BUCKET 8 8.625 7.981 2.6 (Drum identification, sample analysis, sample results, storage location, etc.) SAMPLING DATA 10 13 Date Collected (mo/dy/yr) 41013 Time Collected (S4-0
Purge Water Storage/Disposal 5-GALLON BUCKET (Drum identification, sample analysis, sample results, storage location, etc.) SAMPLING DATA Date Collected (mo/dy/yr) 41013 Sample Location and Depth MW-08
(Drum identification, sample analysis, sample results, storage location, etc.) SAMPLING DATA Date Collected (mo/dy/yr) 410113 Sample Location and Depth MW-0% Time Collected (S4-0
Date Collected (mo/dy/yr) 4/10/13 Sample Location and Depth MW-08 Time Collected (S4-0
Sample type (Groundwater, Product, Other)
Sample Collected with [] Bailer [X Pump [] Other
Made of [] Stainless Steel [X] PVC [] Teflon [] Disposable LDPE [] Other
Sampler Decon Procedure DISPOSABLE TURING & ALCONOX W/DISTILLED WATER
Sample Description (color, free product thickness, odor, turbidity, etc.) SOME JEON OXIDE IN PURCED WAT
FIELD PARAMETERS
Purge Volume Conductivity Turbidity Dissolved Temperature Salinity TDS Sea Water ORP Time M (liter) pH (MS/Lm) (NTU) Oxygen (L (#/C) (%) (g/l) Potential ORP
1515 7:26 0:405 250 5:25 14:7 0:2 0:263 0:0 -101 -102
1520. 500 6:86 0.325 111 1.96 14:32 0.2 0.207 0.0 -157 -79
1525 500 6-77 0-339 76 1.84 14:13 012 01223 0.0 -264 -74
1530 500 6.70 0.319 30 2.36 13.87 0.2 0.208 0.0 -174 -7
1535 500 6.61 0.306 12 2.21 13.67 0.1 0.201 0.0 33 -6
1540 500 6.60 0.312 7 2.40 13.51 0.1 0.202 0.0 -172 -6.
Meters Used for Measurement HORIBA U-53
Meters Used for Measurement HORIBA U-53
Meters Used for Measurement HORIBA U-53 pH/Con./DO Instrument Calibration [X] Yes [] No SpectrophotometerE-Tape ADDITIONAL INFORMATION
Meters Used for Measurement HORIBA U-53 pH/Con./DO Instrument Calibration [X] Yes [] No SpectrophotometerE-Tape
Meters Used for Measurement HORIBA U-53 pH/Con./DO Instrument Calibration [X] Yes [] No Spectrophotometer E-Tape Image: Composited Overtime, Distance Analyses, Number and Volume of Sample Containers MW -07 - 1304-10
Meters Used for Measurement HORIBA U-53 pH/Con./DO Instrument Calibration [\[v]] Yes] No Spectrophotometer E-Tape ADDITIONAL INFORMATION Samples Composited Overtime, Distance
Meters Used for Measurement HORIBA U-53 pH/Con./DO Instrument Calibration [X] Yes [] No Spectrophotometer E-Tape ADDITIONAL INFORMATION Samples Composited Overtime, Distance MW -07-130410 Analyses, Number and Volume of Sample Containers MW -07-130410 Duplicate Sample Number(s) N0
Meters Used for Measurement HORIBA U-53 pH/Con./DO Instrument Calibration [\scalable] Yes [] No Spectrophotometer E-Tape

GROUNDWATER SAMPLE COLLECTION FORM

Project 1	RONDQUE	FOR		0 Job No.	504-042-	02 Collector	FK	Casing Elevation	0.51		
					PURGE DAT				- H		
Well Condi	tion: Secure [] Yes	[乂] No		ribe Damage		NE	• •			- -
	nd and number)		· · ·				ľ		T		Volume
Depth to W	ater (from top o			5.52			·	Diameter		. [· Gal./
Depth to Ba	ase of Well	17	-105 ft	Height of W	later Column			(in.)	OD		Linear Ft
Well Casin	g Type/Diamete			1-11	JCH			2	2.375"	2.067"	0.17
One Casing	g Volume (gal.)		P			· · · · · · · · · · · · · · · · · · ·	-	3	3.500" 4.500"	3.068" 4.026"	0.38
-	Purge Method Pullip (type) terbiraci (c Sandi (type)									0.66	
(Remove minimum of 3 well volumes or until field parameters stabilize) 8 8.625 7.981 2.6									2.6		
Purge Water Storage/Disposal 5-exal bucker											
(Drum identi	fication, sample a	analysis, sam	ple results, sto								
				S	AMPLING DA	ATA					
	cted (mo/dy/yr)		4/10/15	3	~~~			T:	Callested	113	30 a.u
, .	cation and Dep	oth		MW-C		Low Tide at	11 00		Collected Weather		
Tidal Cycle	e NA [] be (Groundwate	Product	High Tide at	7.00 pi	M qu)	11:00 /	\$(-00)	Weather		575 7
Sample type Sample Co	e (Groundwate	Bailer	[] Pui	mp []	Other						
1 -] Stainless St	ieel [VÎ	PVC [] Teflon	[] Dispos	able LDPE	[]	Other			
Sampler D	econ Procedur	e í	DISPOSAB	LE TUE	BING	2 ALCON	JOK	wlois	TILLED	wR7	ER
Sample De	escription (color	r, free produ	ict thickness,	odor, turbidi	ty, etc.) <i>' Sl</i>	GNIFICANT	Ron	DOLYDE	PRECIPI	TATE I	M
	· · · · ·			FIEI	LD PARAME						UATER
Time	Purge Volume	рН	Conductivity (<u>MS/m</u>)	Turbidity (NTU)	Dissolved Oxygen	Temperature (F/C)	Salinity (%)+	TDS (g/l)	Sea Water Potential	ORP (mV)	phar
1095		7.3	21.4	300	17:23	11.65	12.7	13.3	·*··*.4		-60
1055	600	6.54	18.3	240	9:32	13.2	2.01	11.4	7.6	165	-61
1100	.500	6.47	16.4	181	8,63	13.90	9.5	10.2	6.7	93	-58
1105	500	6:32	15.1	75	8,41	13.92	8.7	9.36	6.0	85	-49
1110	500	6.60	13.2	43	8.25	14.51	7.5	8.13	5.1	65	-65
1115	500	7.14	13.1	25	8.11	14,52	1	8,82	501	27	-96
1120	500	7.01	13.01	a juneos	8:01	14.50	8:2	8.28	512	-2:6	-92
	ed for Measure		.13.12	· &	8.16	14,46	S.D	5.12	510	-28	-99
1131	$n \leq nn$	4.24	12.0	le l	81.12	14.2	8 310	2 810	1 513	2 - 2	7 - 7
pH/Con./D	O Instrument (4] No	Speci	trophotometer		<u>.</u>	E-Tape		
		HORI	BA U-	<u>성공</u> ADDITI	ONAL INFO	RMATION					
Samples (Composited Ov	ertime. Dist	ance	anne ar film ann an ar Chail Sin			na ann an an an ann				
	Number and V			iers		MW	-09	- 130	4-10		
Duplicate	Sample Numbe	er(s)									
				DU	PLICATE		STAL.		01.450	1	· · · · · · · · · · · · · · · · · · ·
				2	MW)-C	9-1304-1	1.1		·	<u> </u>	
Signature	·····	- Fr	An and a second			_ Date	- Alm	10/13	– Page	ee	of
Charlet	ldition of informer-t		7	•	an a	<u></u>	1	7 			
Uneck'if ad	ditional informati	UN UN DACK [1		•						

APPENDIX B

Data Validation Memorandum and Chemical Analytical Results

Data Validation Report

Plaza 600 Building, 600 Stewart Street, Suite 1700, Seattle, WA 98101, Telephone: 206.728.2674, Fax: 206.728.2732

www.geoengineers.com

Project:	Irondale Remedial Cleanup Action, Quarterly Groundwater Monitoring (Round 2)
File:	0504-042-02
Date:	June 21, 2013
Lab Report:	WL62 (ARI)

This report presents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2A validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of five groundwater samples obtained from the Post-Construction Quarterly Groundwater Monitoring Event (Round 2) at the former Irondale Iron and Steel Plant site in Irondale, Washington. Samples obtained were submitted to Analytical Resources Incorporated (ARI) of Tukwila, Washington for chemical analysis of diesel- and heavy oil-range petroleum hydrocarbons (NWTPH-Dx), dissolved and total carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and dissolved metals (copper and nickel).

The objective of the data quality assessment was to review laboratory analytical procedures and QC results to evaluate whether the samples were analyzed using well-defined and acceptable methods that provide quantitation limits below applicable regulatory criteria, the precision and accuracy of the data are well defined and sufficient to provide defensible data, and the quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The ARI Sample Delivery Group (SDG; noted above) was reviewed for the following quality control (QC) elements:

- Chain of Custody
- Holding Times
- Surrogates/Labeled Compounds
- Method and Equipment Rinsate Blanks
- Laboratory Control Samples/Ongoing Precision and Recovery Samples
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in two USEPA documents: USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, 2010) and USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 2008).

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical reports. No transcription errors were found, and the appropriate signatures were applied. There were no anomalies mentioned in the sample

Data Validation Report June 21, 2013 Page 2

receipt forms, as the samples were transported to the laboratory at the appropriate temperatures of between 2 and 6 degrees Celsius.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the contract required quantitation limits.

Matrix Spikes/Matrix Spike Duplicates

Because the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample") is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spike sample".

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference (RPD) values. The frequency requirements were met for all analyses and the %R/RPD values were within the proper control limits.

Laboratory Control Samples

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and

Data Validation Report June 21, 2013 Page 3

precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the RPD values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Laboratory Duplicates (Metals and Fuels only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met in all cases.

Field Replicates/Duplicates

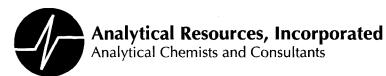
Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates the RPD is used as the criteria for assessing precision, unless one or more of the samples used has a concentration greater than five times the reporting limit for that sample. In this case, the absolute difference is used instead of the RPD.

The following field duplicate sample sets were collected for this sampling event:

MW06-130410/MW06-130410-DUP and MW09-130410/MW09-130410-DUP

The RPD/absolute difference value for the field duplicate sample sets were within their respective control limits.

OVERALL ASSESSMENT


As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogates, LCS/LCSD, and MS/MSD %R values. Precision was acceptable, as demonstrated by the field duplicate, laboratory duplicate, LCS/LCSD and MS/MSD RPD and absolute difference values.

Based on the data quality review, it is our opinion that the analytical data, including data qualified as noted above, are of acceptable quality for their intended use.

Data Validation Report June 21, 2013 Page 4

REFERENCES

- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," OSWER 9240.1-51, EPA 540-R-10-011. January 2010.
- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.
- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

April 25, 2013

Neil Morton GeoEngineers, Inc. Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, WA 98101

RE: Client Project: Former Irondale Iron & Steel Plant, 0542-042-01 ARI Job No.: WL62

Dear Neil:

Please find enclosed the Chain of Custody record (COC), sample receipt documentation, and the final data package for samples from the project referenced above.

Sample receipt and details of these analyses are discussed in the Case Narrative.

An electronic copy of this package will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro Project Manager (206) 695-6214 <u>cheronneo@arilabs.com</u> <u>www.arilabs.com</u>

cc: eFile: WL62

Enclosures

Page 1 of _____

Chain of Custody Documentation

ARI Job ID: WL62

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: [\] [\D] STANDARD	Page: of)	Analytical Resources, Incorporated Analytical Chemists and Consultants
GEOENGI	United Presents YES	4611 South 134th Place, Suite 100 Tukwila, WA 98168
	No. of Cooler Cooler Coolers:	206-695-6200 206-695-6201 (fax)
•	Analysis Requested	Notes/Comments
FORMER LRONDALE LRON & STEEL ILANT Client Project #: Samplers:	SATO SHT-HAL	
Sample ID Date Time Matrix No. Containers	DX 10 10 10 10 10 10 10 10 10 10 10 10 10 1	
MW-05-130410 4/10/13 1720 W 3		No SILICA GER
	Ø Ø	LLEAN UP
1335	Ø Ø Ø	FOR DX
1540	\otimes	ANALYSIS
MW-09-130410 1120 3	8	
MW-06-130410-DUP 1220 5	8	
MW-09-130410-DUP V 1120 V 1	Ø	
Comments/Special Instructions Relinquished by: Received by: (Simplify Comments)	Relinquished by: (Signature)	Received by: (Simmature)
Primed Name: C PAS IN KHAN	Streeter	Printed Name:
	-	Comparty:
Date & Time: Ut (3, 1345 Date & Time: Ut (13, 1345	$\zeta \ell \zeta \ell \zeta$ Date & Time:	Date & Time:
Limits of Liability: ABI will perform all requested services in accordance with appropriate methodology following ABI Standard Operating Procedures and the ABI Quality Assurance Program. This program	odology following ARI Standard Operating Procedures and	he ABI Quality Assurance Prooram. This program

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Receipt Form
ARI Client:	Project Name: Former Irondale Strampla Delivered by: Fed-Ex UPS Courier Hand Delivered Other: Tracking No: (NA)
Preliminary Examination Phase:	
Were intact, properly signed and dated custody seals attached to	the outside of to cooler? YES NB
Were custody papers included with the cooler?	NO NO
Were custody papers properly filled out (ink, signed, etc.)	
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for cher	mistry)
If cooler temperature is out of compliance fill out form 00070F	Temp Gun ID#: GOS7702L
Cooler Accepted by:	
Complete custody forms	and attach all shipping documents
Log In Phase	

Log-In Phase:

Was a temperature blank included in the cooler?	YES	NÒ					
What kind of packing material was used? Bubble Wran Wet Ice Gel Packs Baggies Foam Block Paper Other:							
Was sufficient ice used (if appropriate)? NA	(YE)	NO					
Were all bottles sealed in individual plastic bags?	YES	NO					
Did all bottles arrive in good condition (unbroken)?	E\$	NO					
Were all bottle labels complete and legible?	(FES	NO					
Did the number of containers listed on COC match with the number of containers received?	YES	NO					
Did all bottle labels and tags agree with custody papers?	ES	NO					
Were all bottles used correct for the requested analyses?	KES	NO					
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) NA	(ES	NO					
Were all VOC vials free of air bubbles?	YEŞ	NO					
Was sufficient amount of sample sent in each bottle?	(ES	NO					
Date VOC Trip Blank was made at ARI	<u> </u>						
Was Sample Split by ARI : NA YES Date/Time: Equipment:	Split by:						
Samples Logged by: AV Date: Time:							
** Notify Project Manager of discrepancies or concerns **							

Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on COC Additional Notes, Discrepancies, & Resolutions; MW-06-130410-00P has 4 bottles = 4 500m1 ambers Date: 4/(1 A 12 By: LARGE Air Bubbles Small Air Bubbles Peabubbles Small \rightarrow "sm" - 2000 2-4 mm > 4 mm Peabubbles \rightarrow "pb" ۲ Large → "lg" Headspace \rightarrow "hs"

Cooler Receipt Form

Revision 014

PRESERVATION VERIFICATION 04/11/13 Page 1 of 1

Inquiry Number: NONE Analysis Requested: 04/11/13 Contact: Morton, Neil Client: Geoengineers Logged by: AV Sample Set Used: Yes-481 Validatable Package: Lv4 Deliverables:

ARI Job No: WL62

PC: Cheronne VTSR: 04/11/13 Project #:
Project: Former Irondale Iron & Steel Plant
Sample Site:
SDG No:
Analytical Protocol: In-house

LOGNUM ARI ID	CLIENT ID	CN >12	WAD >12	NH3 <2	соD <2	FOG <2	MET PHEN PHOS <2 <2 <2	HEN I	 TKN NO23 <2 <2	223 1 <2 <	TOC S <2 >	S2 TPH >9 <2	HD Fe	2+ DM 2 FL	TPHD Fe2+ DMET DOC <2 <2 FLT FLT	<i>F</i> PARAMETER	ADJUSTED LOT TO NUMBER	LOT UMBER	AMOUNT ADDED	DATE/BY
13-7770 WL62A	MW-05-130410							 				 		х						
13-7771 WL62B	MW-06-130410						Duis							Т						
13-7772 WL62C	MW-07-130410						bis O		 					Х						
13-7773 Wl.62D	MW-08-130410								 					Х						
13-7774 WL62E	MW-09-130410						Dis							х						
13-7775 WL62F	MW-06-130410-DUP						-													
13-7776 WL62G	MW-09-130410-DUF						Pi ^s		 					Т						

7= Pass

Case Narrative, Data Qualifiers, Control Limits

ARI Job ID: WL62

Case Narrative

Client: GeoEngineers, Inc. Project: Former Irondale Iron & Steel Plant, 0542-042-01 ARI Job No.: WL62

Sample Receipt

Seven water samples were received on April 11, 2013 under ARI job WL62. The cooler temperature measured by IR thermometer following ARI SOP was 5.1°C. For further details regarding sample receipt, please refer to the Cooler Receipt Form.

Low-Level SIM PAHs by SW8270

The samples were extracted and analyzed within the method recommended holding times.

Initial and continuing calibrations were within method requirements. Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits. The LCS and LCSD percent recoveries were within control limits.

NWTPH-Dx

The samples were extracted and analyzed within the method recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits. The LCS and LCSD percent recoveries were within control limits.

Dissolved Metals by Method 200.8

The samples and associated laboratory QC were digested and analyzed within recommended holding times.

The method blank was clean at the reporting limits. The LCS percent recoveries were within control limits.

The matrix spike percent recoveries and duplicate RPDs were within control limits.

Case Narrative WL62

Page 1 of 1

ARI Job No: WL62 Client: Geoengineers Project Event: N/A Project Name: Former Irondale Iron & Steel Plant

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	MW-05-130410	WL62A	13-7770	Water	04/10/13 17:20	04/11/13 13:45
2.	MW-06-130410	WL62B	13-7771	Water	04/10/13 12:20	04/11/13 13:45
з.	MW-07-130410	WL62C	13-7772	Water	04/10/13 13:35	04/11/13 13:45
· 4.	MW-08-130410	WL62D	13-7773	Water	04/10/13 15:40	04/11/13 13:45
5.	MW-09-130410	WL62E	13-7774	Water	04/10/13 11:20	04/11/13 13:45
6.	MW-06-130410-DUP	WL62F	13-7775	Water	04/10/13 12:20	04/11/13 13:45
7.	MW-09-130410-DUP	WL62G	13-7776	Water	04/10/13 11:20	04/11/13 13:45

Printed 04/11/13 Page 1 of 1

Analytical Resources, Incorporated Analytical Chemists and Consultants

Data Reporting Qualifiers

Effective 2/14/2011

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but \geq the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).

Analytical Resources, Incorporated Analytical Chemists and Consultants

- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Page 2 of 3

Analytical Resources, Incorporated Analytical Chemists and Consultants

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

LOD¹, LOQ² and Control Limits Summary Analysis of Water Samples for Low Concentration PNA EPA Method 8270 – SIM ARI Analysis: PNLWSL

Separatory Funnel Extraction (EPA Method 3510C) using 500 mL sample with extract concentrated to 0.5 mL final volume. Silica gel cleanup performed on extract prior to analysis. ARI bench Sheet 3071F DL, LOD & LOQ units are nanograms per liter (ng/L) = parts-per-trillion (ppt). LOD Spike level = LOQ

Analyte	DL ¹ ng/L	LOD ¹ ng/L	LOQ ¹ ng/L	LCS Control Limit ²	Replicate RPD ³
Naphthalene	0.85	5	10	37 – 90	≤ 40
2-Methylnaphthalene	0.72	5	10	39 – 90	≤ 40
Acenaphthylene	0.81	5	10	35 – 95	≤ 40
Acenaphthene	0.83	5	10	38 – 94	≤ 40
Dibenzofuran	0.94	5	10	36 – 94	≤ 40
Fluorene	1.41	5	10	41 – 102	≤ 40
Phenanthrene	1.01	5	10	41 – 101	≤ 40
Anthracene	0.58	5	10	28 - 101	≤ 40
Fluoranthene	0.92	5	10	49 - 114	≤ 40
Pyrene	0.70	5	10	42 - 114	≤ 40
Benzo(a)anthracene	1.27	5	10	42 – 111	≤ 40
Chrysene	1.57	5	10	46 – 106	≤ 40
Benzo(b)fluoranthene	2.54	5	10	39 – 119	≤ 40
Benzo(k)fluoranthene	0.85	5	10	50 - 117	≤ 40
Benzo(j)fluoranthene	1.65	5	10	30 – 160 ⁴	≤ 40
Benzo(a)pyrene	1.14	5	10	20 – 99	≤ 40
Indeno(1,2,3-cd)pyrene	1.82	5	10	32 – 113	≤ 40
Dibenz(a,h)anthracene	0.97	5	10	30 – 113	≤ 40
Benzo(g,h,i)perylene	1.87	5	10	27 – 113	≤ 40
1-Methylnaphthalene	0.88	5	10	38 – 95	≤ 40
Perylene	3.21	5	10	30 - 160 4	≤ 40
Surrogate Standard Recovery			MB/LCS	Samples	RPD
2-Methylnapthalene-d ₁₀			40 – 93	35 – 94	≤ 40
Dibenzo(a,h)anthracene-d ₁₄			31 – 115	26 – 115	≤ 40

(1) Detection Limit (DL), Limit of Detection (LOD) and Limit of Quantitation (LOQ)are defined in ARI SOP 1018S

(2) Control limits calculated using data from all samples prepared between 4/1/11 through 3/31/12.

(3) Relative Percent Difference between analytes in replicate analyzes. If C_0 and C_D are the concentrations of the original and duplicate respectively then $|C_0 - C_0|$

$$RPD = \frac{\left|C_o - C_D\right|}{\frac{C_o + C_D}{2}} x100$$

(4) Default limits pending generation of historic limits for Benzo(j)fluoranthene.

		Aqu	queous Samples ² Spike Recovery		Aqueous Samples ²			Solids
Analyte	Mass	DL ¹ µg/L	LOD ¹ µg/L	LOQ ¹ µg/L	Matrix Spike	LCS	RPD ³	LOQ ¹ mg/kg
Aluminum	27	1.601	10	20.0	75 – 125	80 – 120	≤ 20	20.0
Antimony	121	0.010	0.1	0.2	75 – 125	80 - 120	≤ 20	0.2
<u> </u>	123	0.011	0.1	0.2	75 – 125	80 - 120	≤ 20	0.2
Arsenic #1	75	0.048	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Arsenic #2	75	0.092	0.25	0.5	75 – 125	80 - 120	≤ 20	0.5
Barium	135	0.020	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
	137	0.019	0.25	0.5	75 – 125	80 - 120	≤ 20	0.5
Beryllium	9	0.021	0.1	0.2	75 – 125	80 - 120	≤ 20	0.2
Cadmium	111	0.010	0.05	0.1	75 – 125	80 – 120	≤ 20	0.1
	114	0.005	0.05	0.1	75 – 125	80 – 120	≤ 20	0.1
Calcium	43	3.983	25	50.0	75 – 125	80 – 120	≤ 20	50.0
Chromium	52	0.045	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
	53	0.118	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Cobalt	59	0.011	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Copper	63	0.158	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
	65	0.236	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Iron	54	5.753	10	20.0	75 – 125	80 - 120	≤ 20	20.0
	57	3.876	10	20.0	75 – 125	80 – 120	≤ 20	20.0
Lead	208	0.046	0.05	0.1	75 – 125	80 – 120	≤ 20	0.1
Magnesium	24	0.297	10	20.0	75 – 125	80 – 120	≤ 20	20.0
Manganese	55	0.022	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Molybdenum	98	0.013	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Nickel	60	0.079	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
······································	62	0.089	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Potassium	39	2.944	10	20.0	75 – 125	80 – 120	≤ 20	20.0
Selenium	82	0.127	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
	78	0.324	0.25	2.0	75 – 125	80 – 120	≤ 20	2.0
Silver	107	0.008	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Sodium	23	2.833	50	100.0	75 – 125	80 – 120	≤ 20	100.0
Thorium ⁴	232	0.013	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Thallium	205	0.004	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Uranium ⁴	238	0.003	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Vanadium	51	0.043	0.1	0.2	75 – 125	80 - 120	≤ 20	0.2
Zinc	66	0.497	2	4.0	75 – 125	80 – 120	≤ 20	4.0
	67	0.531	2	4.0	75 – 125	80 – 120	≤ 20	4.0
	68	0.524	2	4.0	75 – 125	80 – 120	≤ 20	4.0

(1) Detection Limit (DL), Limit of Detection Limit (LOD) and Limit of Quantitation (LOQ) as defined in ARI SOP 1018S (2) 50 mL sample and 50 mL final volume Solids LOQ based on 100% solids using 1.0 g sample 100 mL final volume.

(3) Relative Percent Difference in replicate analyzes. $RPD = \frac{|C_o - C_D|}{\frac{C_o + C_D}{2}} x_{100}$ where C₀=Original, C_D=Duplicate

(4) ARI has no accreditation for these elements.

Analytical Resources, Incorporated

Quality Control Criteria Total Petroleum Hydrocarbons (Diesel & Motor Oil)

Ampliation	Champioto amo	Consultants
Anaivucai	Unemisis and	i Consultants -
7 wilds y cical	Chemioto and	oonouncance

Analysis	5	DL ¹	LOD ¹	LOQ ²	Spike % R	ecovery Cont	trol Limits ³	RPD ⁴
Code	Analyte ⁵	ppm	ppm	ppm	LCS	MB/LCS Surrogate	Sample Surrogate	RPD
HCIWVX	NWTPH-HCID – Water Samples		-	0.50 7			50-150	≤ 40
HCISVX	NWTPH-HCID – Solid Samples			50 ⁷	-		50-150	- 40
Aqueous San	nples – No Extract Clean-up – Separ	atory Funne	I Extraction	- 500 to 1.0	l mL			
DIESWI	DRO – NWTPH-Dext (C ₁₂ -C ₂₄)	0.022	0.05	0.1	64-112	50-150	50-150	
AK2WSI	DRO – AK102 (C ₁₀ -C ₂₅)	0.022	0.05	0.1	75-125 ⁶	60-120	50-150	≤ 40
OILWSI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	0.044	0.1	0.2	60 – 130 ⁸	50-150	50-150	340
AK3WSI	RRO – AK103 (C ₂₅ -C ₃₆)	0.030 ⁹	0.1	0.2	60-120 ⁶	60-120	50-150	
Aqueous San	ples - With Acid and/or Silica Gel (Clean-up – S	eparatory Fi	unnel Extra	ction - 500 to	o 1.0 mL		
DIESWI	DRO – NWTPH-Dext (C ₁₂ -C ₂₄)	0.039	0.05	0.1	61-104	50-150	50-150	
AK2WSI	DRO – AK102 (C ₁₀ -C ₂₅)	0.042	0.05	0.1	75-125 ⁶	60-120	50-150	≤ 40
OILWSI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	0.010	0.1	0.2	60 – 130 ⁸	50-150	50-150	340
AK3WSI	RRO – AK103 (C ₂₅ -C ₃₆)	0.030 8	0.1	0.2	60-120 ⁶	60-120	50-150	
Solid Matrix S	Samples – No Extract Clean-up – Mic	crowave Ext	raction - 10	g to 1 mL				
DIESMI	DRO – NWTPH-Dext (C12-C24)	1.35	2.5	5	62-119	50-150	50-150	
DIESMI	DRO – NWTPH-Dext Jet A	2.22 ¹¹	2.5	5	60 – 130 ⁸	50-150	50-150	
AK2SMI	DRO – AK102 (C ₁₀ -C ₂₅)	2.43	2.5	5	75-125 ⁶	60-120	50-150	≤ 40
OILSMI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	2.48	5	10	60 – 130 ⁸	50-150	50-150	
AK3SMI	RRO – AK103 (C ₂₅ -C ₃₆)	0.665 ⁹	5	10	60-120 ⁶	60-120	50-150	
Solid Matrix 8	Samples – With Acid and/or Silica G	el Clean-up	- Microwave	Extraction	- 10 g to 1 n	nL		
DIESMI	DRO – NWTPH-Dext (C12-C24)	1.28	2.5	5	60-108	50-150	50-150	
AK2SMI	DRO – AK102 (C ₁₀ -C ₂₅)	2.06	2.5	5	75-125 ⁶	60-120	50-150	≤ 40
OILSMI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	1.57	5	10	60 – 130 ⁸	50-150	50-150	
AK3SMI	RRO – AK103 (C ₂₅ -C ₃₆)	0.665 ¹⁰	5	10	60-120 ⁶	60-120	50-150	

(1) DL (Detection Limit) and LOD (Limit of Detection) as defined in ARI SOP 1018S.

(2) Limit of Quantitation as defined in ARI SOP 1018S. The spike concentration used to determine the DL and the concentration of the lowest standard used to calibrate the GC-FID instrument.

(3) All surrogate recovery limits are specified in the published methods (AK102, AK103 & NWTPH-Dext). The surrogate standard is o-Terphenyl.

(4) Acceptance criteria for the relative percent difference (RPD) between analytes in replicate analyzes. If Co and Co are the concentrations of the original and duplicate respectively then 10 CI

$$RPD = \frac{|C_o - C_b|}{\frac{C_o + C_b}{2}} x100$$

(5) DRO = Diesel Range Organics and RRO = Residual Range Organics as defined in the methods referenced in footnote 3.

(6) Method specified LCS acceptance limits.

(7) Method specified reporting limits

(8) Default LCS control limits pending calculation of historic limits

(9) MDL study QD55 completed 2/12/10

(10) MDL study QD35 completed 1/29/10

(11) LOD Study UI44 completed 2/28/12

SIM PAH Analysis Report and Summary QC Forms

ARI Job ID: WL62

Lab Sample ID: WL62B LIMS ID: 13-7771 Matrix: Water Data Release Authorized: WWW Reported: 04/23/13

Date Extracted: 04/15/13 Date Analyzed: 04/19/13 17:53 Instrument/Analyst: NT11/VTS Sample ID: MW-06-130410 SAMPLE

QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant Event: NA Date Sampled: 04/10/13 Date Received: 04/11/13

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53 - 70-3	Dibenz(a, h) anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.020	< 0.020 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 57.0% d14-Dibenzo(a,h)anthracene 62.7%

Lab Sample ID: WL62C LIMS ID: 13-7772 Matrix: Water Data Release Authorized: WWW Reported: 04/23/13

Date Extracted: 04/15/13 Date Analyzed: 04/19/13 18:22 Instrument/Analyst: NT11/VTS Sample ID: MW-07-130410 SAMPLE

QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant Event: NA Date Sampled: 04/10/13 Date Received: 04/11/13

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50 - 32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a, h) anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.020	< 0.020 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 74.3% d14-Dibenzo(a,h)anthracene 76.7%

Lab Sample ID: WL62D LIMS ID: 13-7773 Matrix: Water Data Release Authorized: NNN Reported: 04/23/13 QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant Event: NA Date Sampled: 04/10/13 Date Received: 04/11/13

Sample ID: MW-08-130410

SAMPLE

Date Extracted: 04/15/13 Date Analyzed: 04/19/13 18:51 Instrument/Analyst: NT11/VTS Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a, h) anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.020	< 0.020 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 69.3% d14-Dibenzo(a,h)anthracene 68.3%

Lab Sample ID: WL62F LIMS ID: 13-7775 Matrix: Water Data Release Authorized: WW Reported: 04/23/13

Date Extracted: 04/15/13 Date Analyzed: 04/19/13 19:20 Instrument/Analyst: NT11/VTS Sample ID: MW-06-130410-DUP SAMPLE

QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant Event: NA Date Sampled: 04/10/13 Date Received: 04/11/13

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a, h) anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.020	< 0.020 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 66.3%

d14-Dibenzo(a,h)anthracene 68.0%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant

Client ID	MNP	DBA	TOT OUT
MB-041513	71.38	74.0%	0
LCS-041513	71.0%	73.0%	0
LCSD-041513	68.3%	74.78	0
MW-06-130410	57.0%	62.7%	0
MW-07-130410	74.38	76.7%	0
MW-08-130410	69.38	68.3%	0
MW-06-130410-DUP	66.3%	68.0%	0

	LCS/MB LIMITS	QC LIMITS
(MNP) = d10-2-Methylnaphthalene	(40-93)	(35-94)
(DBA) = d14-Dibenzo(a,h)anthracene	(31-115)	(26-115)

Prep Method: SW3510C Log Number Range: 13-7771 to 13-7775

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS Page 1 of 1

Lab Sample ID: LCS-041513 LIMS ID: 13-7771 Matrix: Water Data Release Authorized: WW Reported: 04/23/13 QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant Event: NA Date Sampled: NA Date Received: NA

LAB CONTROL SAMPLE

Sample ID: LCS-041513

Date Extracted LCS/LCSD: 04/15/13

Date Analyzed LCS: 04/19/13 16:55 LCSD: 04/19/13 17:24 Instrument/Analyst LCS: NT11/VTS LCSD: NT11/VTS Sample Amount LCS: 500 mL LCSD: 500 mL Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL Dilution Factor LCS: 1.00 LCSD: 1.00

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Benzo(a)anthracene	0.212	0.300	70.7%	0.215	0.300	71.7%	1.4%
Chrysene	0.208	0.300	69.3%	0.216	0.300	72.0%	3.8%
Benzo(b)fluoranthene	0.201	0.300	67.0%	0.214	0.300	71.3%	6.3%
Benzo(k)fluoranthene	0.204	0.300	68.0%	0.213	0.300	71.0%	4.3%
Benzo(a)pyrene	0.170	0.300	56.7%	0.172	0.300	57.3%	1.2%
Indeno(1,2,3-cd)pyrene	0.209	0.300	69.7%	0.219	0.300	73.0%	4.7%
Dibenz(a,h)anthracene	0.205	0.300	68.3%	0.215	0.300	71.78	4.8%
Total Benzofluoranthenes	0.609	0.900	67.7%	0.638	0.900	70.98	4.78

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	71.0%	68.3%
d14-Dibenzo(a, h) anthracene	73.0%	74.78

BLANK NO.

4B

WL62MBW1

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: WL62

Lab File ID: WL62MB

Instrument ID: NT11

Matrix: LIQUID

Client: GEOENGINEERS

Project: FORMER IRONDALE IRON

Date Extracted: 04/15/13

Date Analyzed: 04/19/13

Time Analyzed: 1626

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	*************	===============	#==========	==========
01	WL62LCSW1	WL62LCSW1	WL62SB	04/19/13
02	WL62LCSDW1	WL62LCSDW1	WL62SBD	04/19/13
03	MW-06-130410	WL62B	WL62B	04/19/13
04	MW-07-130410	WL62C	WL62C	04/19/13
05	MW-08-130410	WL62D	WL62D	04/19/13
06	MW-06-130410-DUP	WL62F	WL62F	04/19/13
07				
08				
09				
10				
11				
12 13		<u></u>	·	
13 14				
$14 \\ 15$	· · · · · · · · · · · · · · · · · · ·			
16				
17				
18				
19	,,,,,			
20		<u></u>	<u> </u>	
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

Lab Sample ID: MB-041513 LIMS ID: 13-7771 Matrix: Water Data Release Authorized: MA Reported: 04/23/13 QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant Event: NA Date Sampled: NA Date Received: NA

METHOD BLANK

Sample ID: MB-041513

Date Extracted: 04/15/13 Date Analyzed: 04/19/13 16:26 Instrument/Analyst: NT11/VTS Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a, h) anthracene	0.010	< 0.010 U
TOTBFA	Total Benzofluoranthenes	0.020	< 0.020 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 71.3% d14-Dibenzo(a,h)anthracene 74.0%

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ANALYTICAL RESOURCES INC Client: GEOENGINEERS

Project: FORMER IRONDALE

Instrument ID: NT11

DFTPP Injection Date: 02/23/13 DFTPP Injection Time: 0936

% RELATIVE m/e | ION ABUNDANCE CRITERIA ABUNDANCE 10.0 - 80.0% of mass 198 51 32.0 68 | Less than 2.0% of mass $6\overline{9}$ 0.0 (0.0)1Mass 69 relative abundance_____ 69 37.1 0.2 (0.5)1 Less than 2.0% of mass 69_____ 70 48.3 10.0 - 80.0% of mass 198 127 Less than 2.0% of mass 198 197 0.0 198 Base Peak, 100% relative abundance 100.0 5.0 to 9.0% of mass 198 199 6.9 275 10.0 - 60.0% of mass 198 23.6 Greater than 1.0% of mass 198_____ 2.90 365 0.0 - 24.0% of mass 442_____ 13.0 (14.7)2441 50.0 - 200.0% of mass 198 442 88.6 _____ 443 | 15.0 - 24.0% of mass 442 17.0 (19.1)21-Value is % mass 69 2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
					ANALYZED
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALIZED
			================		
01		SIM 250	IC0223A	02/23/13	0951
02		SIM 1000	IC0223B	02/23/13	1020
03		SIM 10	IC0223C	02/23/13	1050
04		SIM 500	IC0223D	02/23/13	1119
05		SIM 50	IC0223E	02/23/13	1148
06		SIM 100	IC0223F	02/23/13	1217
07					
08					
09					
10					
11					
12		*			
13					
14			· ·		
$14 \\ 15$					
			<u> </u>		
16					
17	·			·	
18					
19					
20					
21					
22					

5B SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ANALYTICAL RESOURCES INC

Client: GEOENGINEERS

Instrument ID: NT11

Project: FORMER IRONDALE

DFTPP Injection Date: 04/19/13 DFTPP Injection Time: 1510

% RELATIVE m/e | ION ABUNDANCE CRITERIA ABUNDANCE 51 10.0 - 80.0% of mass 198 33.6 68 Less than 2.0% of mass 69 0.0 (0.0)1Mass 69 relative abundance_____ 69 40.3 Less than 2.0% of mass 69_____ 0.3 (0.7)1 70 49.5 _____ 127 10.0 - 80.0% of mass 198 197 Less than 2.0% of mass $1\overline{98}$ 0.0 Less than 2.0% of mass 198_____ Base Peak, 100% relative abundance_____ 198 100.0 5.0 to 9.0% of mass 198 199 6.6 10.0 - 60.0% of mass 198 275 24.6 Greater than 1.0% of mass 198_____ 365 3.01 0.0 - 24.0% of mass 442_____ 13.0 (14.7)2441 50.0 - 200.0% of mass 198_____ 442 88.4 17.4 (19.7)2 15.0 - 24.0% of mass 442_____ 443 2-Value is % mass 442 1-Value is % mass 69

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		===============	=============	==========	========
01		SIM 250	CC0419	04/19/13	1526
02	WL62MBW1	WL62MBW1	WL62MB	04/19/13	1626
03	WL62LCSW1	WL62LCSW1	WL62SB	04/19/13	1655
04	WL62LCSDW1	WL62LCSDW1	WL62SBD	04/19/13	1724
05	MW-06-130410	WL62B	WL62B	04/19/13	1753
06	MW-07-130410	WL62C	WL62C	04/19/13	1822
07	MW-08-130410	WL62D	WL62D	04/19/13	1851
	MW-06-130410-DUP	WL62F	WL62F	04/19/13	1920
09					
10					
11					
12					
13					
14		·			
15					·
16					
17					<u> </u>
18	· · · · · · · · · · · · · · · · · · ·				
19					
20					
21				<u> </u>	
22	l		l <u></u> ,		

page 1 of 1

FORM V SV

LIEP DADE

SEMIVOLATILE 8270-D INITIAL CALIBRATION DATA

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: WL62

Instrument ID: NT11

Client: GEOENGINEERS Project: FORMER IRONDALE

Calibration Date: 02/23/13

LAB FILE ID: RRF10 =IC0223C RRF50 =1C0223E RRF100=IC0223F RRF250=IC0223A RRF500=IC0223D RRF1000=IC0223B

	RRF	RRF	RRF	RRF	RRF	RRF		%RSD
COMPOUND	10	50	100	250	500	1000	RRF	/R^2
	1 - 1					======	I	1
Naphthalene	1.180	1						
2-Methylnaphthalene	0.700							•
Acenaphthylene	1.840							
Acenaphthene	1.228							
Dibenzofuran	1.818	1						
Fluorene	1.337	1	1.283	1.270				
Phenanthrene	1.291							
Anthracene	1.162							•
Fluoranthene	1.216			1.236				
Pyrene	1.744	,		1.674	1.700	1.699		•
Benzo(a)anthracene	1.430	1.292	1.401	1.399	1.379	1.402	1.384	3.4
Chrysene	1.514	1.356	1.486	1.406	1.411	1.408	1.430	4.:
Benzo(b)fluoranthene	1.639	1.535	1.649	1.505	1.610	1.572	1.585	3.0
Benzo(k)fluoranthene	1.829	1.548	1.664	1.774	1.758	1.769	1.724	5.9
Benzo(j)fluoranthene	1.711	1.801	1.886	1.701	1.704	1.693	1.749	4.!
Benzo(a)pyrene	1.375		1.359	1.348	1.342	1.352	1.338	3.3
Indeno(1,2,3-cd)pyrene	1.643	1.524	1.703	1.647	1.676	1.686	1.646	3.9
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	1.423	1.201	1.366	1.301	1.324	1.329	1.324	5.0
Benzo(g,h,i)perylene	1.637	1.395	1.504	1.428	1.448	1.427	1.473	6.0
1-methylnaphthalene	0.740	0.654	0.700	0.684	0.672	0.684	0.689	4.3
Perylene	1.606		1.575	1.502	1.503	1.508	1.524	3.
***********************	======	======	======		======	======	======	=====
	0.630							
Dibenzo(a, h) anthracene- $\overline{d14}$	1.083	1.081	1.180	1.163	1.172	1.179	1.143	4.:
Fluoranthene-d10	0.998	0.959	1.044	1.065	1.060	1.094		
								[
						Ì]
	.							

<- Outside QC limits: %RSD <20% or R^2 > 0.990

FORM VI SV-1

7B

SEMIVOLATILE 8270-D CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: WL62

Instrument ID: NT11

Init. Calib. Date: 02/23/13

Client: GEOENGINEERS Project: FORMER IRONDALE Cont. Calib. Date: 04/19/13 Cont. Calib. Time: 1526

	CalAmt	CC Amt	MIN	CURVE	%D or
COMPOUND	or ARF	or RF	RRF	TYPE	Drift
	======	=====	Į	1	=====
Naphthalene	1.095		0.700		-5.9
2-Methylnaphthalene	0.685	0.644		J	-6.0
Acenaphenytene	1.786	1.711	0.900	AVRG	-4.2
Acenaphthene	1.179	1.093	0.900	AVRG	-7.3
Dibenzofuran	1.717	1.548	0.800	AVRG	-9.8
Fluorene	1.282	1.227		•	-4.3
Phenanthrene	1.235	1.116	0.700	AVRG	-9.6
Anthracene	1.159	1.091	0.700	AVRG	-5.9
Fluoranthene	1.221	1.193	0.600	AVRG	-2.3
Pyrene	1.675	1.500	0.600	AVRG	-10.4
Benzo(a)anthracene	1.384	1.281	0.800	AVRG	-7.4
Chrysene	1.430	1.282	0.700	AVRG	-10.3
Benzo(b)fluoranthene	1.585	1.347	0.700	AVRG	-15.0
Benzo(k)fluoranthene	1.724	1.564	0.700	AVRG	-9.3
Benzo(j)fluoranthene	1.749	1.546			-11.6
Benzo(a)pyrene	1.338	1.210	0.700	AVRG	-9.6
Indeno(1,2,3-cd)pyrene	1.646	1.534	0.500	AVRG	-6.8
Dibenzo(a,h)anthracene	1.324	1.217	0.400	AVRG	-8.1
Benzo(g,h,i)perylene	1.473	1.317	0.500	AVRG	-10.6
1-methylnaphthalene	0.689	0.638	0.010	AVRG	-7.4
Perylene	1.524	1.337	0.010	AVRG	-12.3
=======================================	======	======		=====	=====
2-Methylnaphthalene-d10	0.633		0.010		-5.8
Dibenzo(a,h)anthracene-d14	1.143	1.058	0.010	AVRG	-7.4
Fluoranthene-d10	1.037	1.013	0.010	AVRG	-2.3
- Exceeds OC limit of 20% D					

<- Exceeds QC limit of 20% D

* RF less than minimum RF

FORM VII SV-1

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

8B

Lab Name: ANALYTICAL RESOURCES INC ARI Job No: WL62

Ical Midpoint ID: IC0223A

Instrument ID: NT11

Client: GEOENGINEERS

Project: FORMER IRONDALE

Ical Date: 02/23/13

Cont. Cal Date: 04/19/13

	· · · · · · · · · · · · · · · · · · ·	IS1(NPT)		IS2(ANT)		IS3(PHN)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	==========	=========	======		=======	===========	=======
	ICAL MIDPT	255285	6.13	142891	9.11	220853	11.76
	UPPER LIMIT	510570		285782		441706	
	LOWER LIMIT	127642		71446		110426	
	============	*=======	=======	========	=======	==========	======
	CCAL	221636	6.19	126615	9.16	207851	11.81
	UPPER LIMIT		6.69		9.66		12.31
	LOWER LIMIT		5.69		8.66		11.31
01	WL62MBW1	216319	6.19	122810	9.16	203960	11.82
02	WL62LCSW1	217333	6.19	127416	9.16	209207	11.81
03	WL62LCSDW1	217401	6.19	126884	9.16	209496	11.81
04	MW-06-130410	218861	6.19	128256	9.16	213884	11.81
05	MW-07-130410	218650	6.19	125036	9.16	204538	11.81
06	MW-08-130410	222717	6.19	130476	9.16	213752	11.81
07	MW-06-130410	220894	6.19	129335	9.16	216936	11.81
08							
09	·						
10	·						
11	·						
12 13	·						
14							
$14 \\ 15$							
16	<u> </u>						
17	·		· /				
18	·						
19	······						
20							
21							
22							
23							
24							
25							

IS1 = Naphthalene-d8 IS2 = Acenaphthene-d10 IS3 = Phenanthrene-d10

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = -0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits. page 1 of 2

FORM VIII SV-1

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

8B

Lab Name: ANALYTICAL RESOURCES INC ARI Job No: WL62 Ical Midpoint ID: IC0223A

Instrument ID: NT11

Client: GEOENGINEERS

Project: FORMER IRONDALE

Ical Date: 02/23/13

Cont. Cal Date: 04/19/13

	1	IS4 (CRY)		IS5(PRY)			· · · · · · · · · · · · · · · · · · ·
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	*========	=========	======		======	==========	======
	ICAL MIDPT	162525	16.47	139028	19.06		
	UPPER LIMIT	325050		278056			
	LOWER LIMIT	81262		69514			
	CCAL	162027	16.52	142004	=======	========	
	UPPER LIMIT	163937	17.02	143004	19.13 19.63		[
	LOWER LIMIT		16.02		19.63		
	LOWER DIMII		10.02		10.03		
01	WL62MBW1	162533	16.52	140454	19.14		
02	WL62LCSW1	164185	16.52	143352	19.13	······································	
03	WL62LCSDW1	159374	16.52	136632	19.13		
04	MW-06-130410	157086	16.52	135145	19.13		
05	MW-07-130410	156486	16.52	136312	19.13		
06	MW-08-130410	164096	16.52	142137	19.13		
07	MW-06-130410	160632	16.52	139815	19.13		
08							
09							
10 11							
12	·	(
13							
14	·					<u> </u>	
15	·						
16							[
17				· · · · · · · · · · · · · · · · · · ·			
18	·			·			
19				······································			
20							
21							
22							
23							
24				· · · · · · · · · · · · · · · · · · ·			
25	······						

IS4 = Chrysene-d12
IS5 = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = -0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits. page 2 of 2

FORM VIII SV-2

TPHD Analysis Report and Summary QC Forms

ARI Job ID: WL62

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID Extraction Method: SW3510C Page 1 of 1 QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel P

Matrix: Water

Date Received: 04/11/13

Data Release Authorized: NW Reported: 04/22/13

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DF	Range/Surrogate	RL	Result
MB-041513 13-7770	Method Blank HC ID:	04/15/13	04/18/13 FID3B	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 104%
WL62A 13-7770	MW-05-130410 HC ID:	04/15/13	04/18/13 FID3B	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 99.6%
WL62B 13-7771	MW-06-130410 HC ID:	04/15/13	04/18/13 FID3B	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 101%
WL62C 13-7772	MW-07-130410 HC ID: DIESEL	04/15/13	04/18/13 FID3B	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	0.16 < 0.20 U 104%
WL62D 13-7773	MW-08-130410 HC ID:	04/15/13	04/18/13 FID3B	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 105%
WL62E 13-7774	MW-09-130410 HC ID:	04/15/13	04/18/13 FID3B	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 105%
WL62F 13-7775	MW-06-130410-DUP HC ID:	04/15/13	04/18/13 FID3B	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 93.8%

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant

Client ID	OTER	TOT OUT
MB-041513	104%	0
LCS-041513	106%	0
LCSD-041513	102%	0
MW-05-130410	99.6%	0
MW-06-130410	101%	0
MW-07-130410	1048	0
MW-08-130410	105%	0
MW-09-130410	105%	0
MW-06-130410-DUP	93.8%	0

LCS/MB	LIMITS	QC LIMITS
--------	--------	-----------

(OTER) = o-Terphenyl

(50-150) (50-150)

Prep Method: SW3510C Log Number Range: 13-7770 to 13-7775

Mes opas

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID Page 1 of 1

Sample ID: LCS-041513 LCS/LCSD

Lab Sample ID: LCS-041513 LIMS ID: 13-7770 Matrix: Water Data Release Authorized: Reported: 04/22/13

Project: Former Irondale Iron & Steel Plant Date Sampled: NA

QC Report No: WL62-Geoengineers

Date Received: NA

Date Extracted LCS/LCSD: 04/15/13

Date Analyzed LCS: 04/18/13 03:05 LCSD: 04/18/13 03:23 Instrument/Analyst LCS: FID3B/JLW LCSD: FID3B/JLW Sample Amount LCS: 500 mL LCSD: 500 mL Final Extract Volume LCS: 1.0 mL LCSD: 1.0 mL Dilution Factor LCS: 1.00 LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	2.87	3.00	95.7%	2.66	3.00	88.7%	7.6%

TPHD Surrogate Recovery

	LCS	LCSD
o-Terphenyl	106%	1028

Results reported in mg/L RPD calculated using sample concentrations per SW846.

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: WL62

Matrix: Water Date Received: 04/11/13 Project: Former Irondale Iron & Steel Plant

ARI ID	Client ID	Samp Amt	Final Vol	Prep Date
13-7770-041513MB1	Method Blank	500 mL	1.00 mL	04/15/13
13-7770-041513LCS1	Lab Control	500 mL	1.00 mL	04/15/13
13-7770-041513LCSD1	Lab Control Dup	500 mL	1.00 mL	04/15/13
13-7770-WL62A	MW-05-130410	500 mL	1.00 mL	04/15/13
13-7771-WL62B	MW-06-130410	500 mL	1.00 mL	04/15/13
13-7772-WL62C	MW-07-130410	500 mL	1.00 mL	04/15/13
13-7773-WL62D	MW-08-130410	500 mL	1.00 mL	04/15/13
13-7774-WL62E	MW-09-130410	500 mL	1.00 mL	04/15/13
13-7775-WL62F	MW-06-130410-DUP	500 mL	1.00 mL	04/15/13

4 TPH METHOD BLANK SUMMARY

WL67MBS1

Lab Name: ANALYTICAL RESOURCES INC Client: GEOENGINEERS

SDG No.: WL62

Date Extracted: 04/15/13

Date Analyzed : 04/17/13

.

Project No.: FORMER IRONDALE

Matrix: SOLID

Instrument ID : FID3B

Time Analyzed : 1158

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
	===========		=========
01	IDW-SOIL	WK89I	04/17/13
02	WL67LCSS1	WL67LCSS1	04/17/13
03	GR-CB-07-201	WL67A	04/17/13
04	GR-CB-07-201	WL67AMS	04/17/13
05	GR-CB-07-201		04/17/13
06	GR-WS-05-201	WL67B	04/17/13
07	GR-CB-07-201	WL67A	04/17/13
80	GR-CB-07-201	WL67AMS	04/17/13
09	GR-CB-07-201	WL67AMSD	04/17/13
10	MW-05-130410	WL62A	04/18/13
11	MW-06-130410	WL62B	04/18/13
12	MW-07-130410	WL62C	04/18/13
13	MW-08-130410	WL62D	04/18/13
14	MW-09-130410	WL62E	04/18/13
15	MW-06-130410	WL62F	04/18/13
16	NWES-MW11	WL71A	04/18/13
17	NWES-MW8	WL71B	04/18/13
18	NWES-MW20	WL71C	04/18/13
19	NWES-MW9	WL71D	04/18/13
20	NWES-MW4R	WL71E	04/18/13
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			

page 1 of 1

6a DIESEL INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC.

Instrument: FID3B.I

Calibration Date: 22-MAR-2013

Client: GEOENGINEERS

Project: FORMER IRONDALE

SDG No.: WL62

Diesel Range	RF1 50	RF2 100	RF3 250	RF4 500	RF5 1000	RF6 2500	Ave RF	%RSD
WA Diesel AK Diesel	11942	11745 14402	11577 14061	11280 13657	10897 13217	10565 12780	11334 13810	4.6
OR Diesel Cal Diesel	14785 14785	14402	14081 14109 14041	13705 13635	13264 13196	12780 12828 12760	13810 13857 13789	5.3
o-Terph	15493	15300	15046	14446	14040	12750	14512	7.0

<- Indicates %RSD outside limits Surrogate areas are not included in Diesel RF calculation.

Quant	Ranges	:	WA Diesel	C12-C24	(3.112 - 5.835)
	-		AK Diesel	C10-C25	(2.342 - 6.010)
			OR Diesel	C10-C28	(2.342-6.502)
			Cal Diesel	C10-C24	(2.342-5.835)

Calibration Files Analysis Time

22-MAR-2013	12:48
22-MAR-2013	13:07
22-MAR-2013	13:27
22-MAR-2013	13:46
22-MAR-2013	14:05
22-MAR-2013	14:25
	22-MAR-2013 22-MAR-2013 22-MAR-2013 22-MAR-2013 22-MAR-2013 22-MAR-2013 22-MAR-2013

p1 of 1

6a NW MOTOR OIL RANGE INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC.

Instrument: FID3B.I

Calibration Date: 13-APR-2013

Client: GEOENGINEERS

Project: FORMER IRONDALE

SDG No.: WL62

Product Range	RF1 100	RF2 250	RF3 500	RF4 1000	RF5 2500	RF6 5000	Ave RF	%RSD
WA M.Oil C24-C38	11213	11384	11352	11114	10744	10361	11028	3.6
Triac Surr	15652	15497	15248	15442	15268	14582	15281	2.4

<- Indicates %RSD outside limits Surrogate areas are not included in Motor Oil RF calculation.

Calibration Files	Analysis Time
0413b006.d	13-APR-2013 11:55
0413b007.d	13-APR-2013 12:13
0413b008.d	13-APR-2013 12:32
0413b009.d	13-APR-2013 12:51
0413b010.d	13-APR-2013 13:11
0413b011.d	13-APR-2013 13:30

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. ICal Date: 22-MAR-2013 CCal Date: 18-APR-2013 Analysis Time: 02:09 Instrument: FID3B.I

Client: GEOENGINEERS Project: FORMER IRONDALE SDG No.: WL62 Lab ID: DIESEL#5

Lab File Name: 0417b051.d

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24)	2932749	258.6	250	$ \begin{array}{c} 3.4 \\ 0.2 \\ 0.0 \\ 14.2 \end{array} $
AK102 (C10-C25)	3455501	250.5	250	
ITDIES (C10-C24)	3447908	250.0	250	
Terphenyl	745834	51.4	45	

- Surrogate areas are subtracted from range areas Indicates a %D outside QC limits *
- < -

Quant	Ranges	:	WA	Diesel	C12-C24
			AK	Diesel	C10-C25
			\mathbf{IT}	Diesel	C10-C24

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. ICal Date: 13-APR-2013 CCal Date: 18-APR-2013 Analysis Time: 02:27 Instrument: FID3B.I

Client: GEOENGINEERS Project: FORMER IRONDALE SDG No.: WL62 Lab ID: MOIL#5 Lab File Name: 0417b052.d

M.oil Range	Area*	CalcAmnt	NomAmnt	% D
WAMoil(C24-C38)	4928304	446.9	500	-10.6
AK103 (C25-C36)	4404236	601.9	500	20.4
n-Triacontane	714169	46.7	45	3.9

* Surrogate areas are subtracted from range areas <- Indicates a %D outside QC limits

Quant Rang	ges :	WA M.Oil	C24-C38
		AK M.Oil	C25-C36

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. ICal Date: 22-MAR-2013 CCal Date: 18-APR-2013 Analysis Time: 05:32

Instrument: FID3B.I

Client: GEOENGINEERS

Project: FORMER IRONDALE

SDG No.: WL62

Lab ID: DIESEL#6

Lab File Name: 0417b062.d

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24)	2930474	258.4	250	3.4
AK102 (C10-C25)	3463259	251.1	250	0.4
ITDIES (C10-C24)	3455159	250.6	250	0.2
Terphenyl	743196	51.2	45	13.8

Surrogate areas are subtracted from range areas Indicates a %D outside QC limits *

< -

Quant	Ranges	:	WA	Diesel	C12-C24
			AK	Diesel	C10-C25
			\mathbf{IT}	Diesel	C10-C24

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. ICal Date: 13-APR-2013 CCal Date: 18-APR-2013 Analysis Time: 05:51 Instrument: FID3B.I

Client: GEOENGINEERS Project: FORMER IRONDALE SDG No.: WL62 Lab ID: MOIL#6 Lab File Name: 0417b063.d

M.oil Range	Area*	CalcAmnt	NomAmnt	% D
WAMoil(C24-C38)	4873478	441.9	500	-11.6
AK103 (C25-C36)	4368171	597.0	500	19.4
n-Triacontane	728015	47.6	45	5.9

* Surrogate areas are subtracted from range areas <- Indicates a %D outside QC limits

Quant Ranges	:	WA M.Oil	C24-C38
		AK M.Oil	C25-C36

TPH ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC

Client: GEOENGINEERS

SDG No.: WL62

Project: FORMER IRONDALE

Instrument ID: FID3B

GC Column: RTX-1

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE RT FROM DAILY STANDARD TERPH: 4.76 TRIAC: 6.79					
	CLIENT	LAB	DATE	TIME	TERPH	TRIAC
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01		======================================	03/22/13	1131	======= 4.76	6.80
02		RINSE	03/22/13	1150	4.76	6.80
03		RT0322	03/22/13	1209	4.76	6.79
04		IB0322	03/22/13	1229	4.75	6.78
05		DIESEL50	03/22/13	1248	4.74	6.79
06		DIESEL100	03/22/13	1307	4.74	6.79
07		DIESEL250	03/22/13	1327	4.74	6.79
08		DIESEL500	03/22/13	1346	4.75	6.80
09 10		DIESEL1000 DIESEL2500	03/22/13 03/22/13 03/22/13	1405 1425	4.76 4.78	6.79
11 12		DIESELICV250 MOIL100	03/22/13 03/22/13	1444 1504	4.74	6.79
13 14		MOIL250 MOIL500	03/22/13 03/22/13	1523 1543	4.78	6.78 6.78
15		MOIL1000	03/22/13	1602	4.77	6.79
16		MOIL2500	03/22/13	1622	4.78	6.81
17		MOIL5000	03/22/13	1641	4.78	6.83
18		MOILICV500	03/22/13	1701	4.78	6.79

				QC	LIM:	ITS
TERPH	=	o-terph				MINUTES)
TRIAC	=	Triacon	Surr	(+/-	0.05	MINUTES)

* Values outside of QC limits.

FORM VIII TPH

TPH ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC

Client: GEOENGINEERS

SDG No.: WL62

Project: FORMER IRONDALE

Instrument ID: FID3B

GC Column: RTX-1

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE I TERPH: 4.6					
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	TERPH RT #	TRIAC RT #
	*=========	==============	======================================	==========	=======	=======
01		RINSE	04/13/13	0944	4.67	6.72
02		RT0413	04/13/13	1002	4.68	6.73
03		IB0413	04/13/13	1021	4.68	6.73
04		DIESEL#1	04/13/13	1040	4.68	6.73
05		MOIL#1	04/13/13	1059	4.67	6.73
06		MOIL100	04/13/13	1155	4.68	6.72
07		MOIL250	04/13/13	1213	4.68	6.72
08		MOIL500	04/13/13	1232	4.69	6.73
09		MOIL1000	04/13/13	1251	4.68	6.74
10		MOIL2500	04/13/13	1311	4.68	6.76
11		MOIL5000	04/13/13	1330	4.67	6.76
12		MOILICV500	04/13/13	1349	4.67	6.73
	4 <u></u>					

TERPH = o-terph TRIAC = Triacon Surr QC LIMITS (+/- 0.05 MINUTES) (+/- 0.05 MINUTES)

* Values outside of QC limits.

FORM VIII TPH

TPH ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC

Client: GEOENGINEERS

SDG No.: WL62

Project: FORMER IRONDALE

Instrument ID: FID3B

GC Column: RTX-1

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

		RT FROM DAILY STA			Ι.	
	TERPH: 4.6	59 TRIAC:	6.73		, ,	
	CLIENT	LAB	DATE	TIME	TERPH	TRIAC
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	===========	=========================	==========		========	=======
01		RT0417	04/17/13	1007	4.69	6.73
02	ZZZZZ	ZZZZZ	04/17/13	1026	4.69	6.73
03	ZZZZZ	ZZZZZ	04/17/13	1045	4.69	6.74
04	ZZZZZ	ZZZZZ	04/17/13	1105	4.69	6.73
05	ZZZZZ	ZZZZZ	04/17/13	1138	4.68	6.72
06	ZZZZZ	ZZZZZ	04/17/13	1158	4.69	6.73
07	ZZZZZ	ZZZZZ	04/17/13	1217	4.69	6.73
08	ZZZZZ	ZZZZZ	04/17/13	1237	4.69	6.73
09	ZZZZZ	ZZZZZ	04/17/13	1257	4.69	6.73
10	ZZZZZ	ZZZZZ	04/17/13	1317	4.69	6.74
11	ZZZZZ	ZZZZZ	04/17/13	1338	4.68	
12	ZZZZZ	ZZZZZ	04/17/13	1358	4.68	
13	ZZZZZ	ZZZZZ	04/17/13	1418	4.68	
14	ZZZZZ	ZZZZZ	04/17/13	1438	4.68	
15	ZZZZZ	ZZZZZ	04/17/13	1458	4.69	6.72
16	ZZZZZ	ZZZZZ	04/17/13	1517	4.68	6.74
17	ZZZZZ	ZZZZZ	04/17/13	1537	4.69	6.73
18	ZZZZŻ	ZZZZZ	04/17/13	1557	4.69	6.73
19	ZZZZZ	ZZZZZ	04/17/13	1617	4.69	6.74
20	ZZZŻŻ	ZZZŻŻ	04/17/13	1636	4.69	6.74
21	ZZZZZ	ZZZZZ	04/17/13	1656	4.68	6.73
22	ZZZZZ	ZZZZZ	04/17/13	1716	4.69	6.73
23	ZZZZZ	ZZZZZ	04/17/13	1736	4.69	6.73
24	ZZZZZ	ZZZZZ	04/17/13	1755	4.69	6.74
25	ZZZZZ	ZZZZZ	04/17/13	1814	4.68	6.74
26	ZZZZZ	ZZZZZ	04/17/13	1834	4.69	6.74
27	ZZZZZ	ZZZZZ	04/17/13	1853	4.69	6.74
28	ZZZZZ	ZZZZZ	04/17/13	1913	4.69	6.73
29	ZZZZZ	ZZZZZ	04/17/13	1932	4.69	6.73
30	ZZZZZ	ZZZZZ	04/17/13	1952	4.69	6.73
31	ZZZZZ	ZZZZZ	04/17/13	2011	4.69	6.73
32	ZZZZZ	ZZZZZ	04/17/13	2030	4.69	6.73
					ll	

TERPH	=	o-terph	
		Triacon	Surr

QC LIMITS (+/- 0.05 MINUTES) (+/- 0.05 MINUTES)

* Values outside of QC limits.

page 1 of 3

FORM VIII TPH

TPH ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC

Client: GEOENGINEERS

SDG No.: WL62

Project: FORMER IRONDALE

Instrument ID: FID3B

GC Column: RTX-1

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

		RT FROM DAILY STA				
	TERPH: 4.6	59 TRIAC:	6.73		ł	
	CLIENT	LAB	DATE	TIME	TERPH	TRIAC
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	=======================================	==================			========	=======
01	ZZZZZ	ZZZZZ	04/17/13	2049	4.69	6.73
02	ZZZZZ	ZZZZZ	04/17/13	2108	4.69	6.73
03	ZZZZZ	ZZZZZ	04/17/13	2127	4.69	6.73
04	ZZZZZ	ZZZZZ	04/17/13	2146	4.69	6.74
05	ZZZZZ	ZZZZZ	04/17/13	2205	4.69	6.73
06	ZZZZZ	ZZZZZ	04/17/13	2224	4.69	6.73
07	ZZZZZ	ZZZZZ	04/17/13	2243	4.69	6.73
08	ZZZZZ	ZZZZZ	04/17/13	2302	4.68	6.74
09	ZZZZZ	ZZZZZ	04/17/13	2320	4.69	6.74
10	ZZZZZ	ZZZZZ	04/17/13	2339	4.69	6.73
11	ZZZZZ	ZZZZZ	04/17/13	2358	4.69	6.74
12	ZZZZZ	ZZZZZ	04/18/13	0017	4.69	6.73
13	ZZZZZ	ZZZZZ	04/18/13	0035	4.69	6.73
14	ZZZZZ	ZZZZZ	04/18/13	0054	4.69	6.73
15	ZZZZZ	ZZZZZ	04/18/13	0113	4.69	6.73
16	ZZZZZ	ZZZZZ	04/18/13	0131	4.69	6.73
17	ZZZZZ	ZZZZZ	04/18/13	0150	4.69	6.73
18	FORMER IROND	DIESEL#5	04/18/13	0209	4.69	6.74
19	FORMER IROND	MOIL#5	04/18/13	0227	4.68	6.74
20	ZZZZZ	ZZZZZ	04/18/13	0246	4.69	6.73
21	ZZZZZ	ZZZZZ	04/18/13	0305	4.69	6.74
22	ZZZZZ	ZZZZZ	04/18/13	0323	4.69	6.73
23	MW-05-130410	WL62A	04/18/13	0342	4.69	6.73
24	MW-06-130410	WL62B	04/18/13	0400	4.69	6.73
25	MW-07-130410	WL62C	04/18/13	0419	4.69	6.73
26	MW-08-130410	WL62D	04/18/13	0437	4.69	6.73
27	MW-09-130410	WL62E	04/18/13	0456	4.69	6.73
28	MW-06-130410	WL62F	04/18/13	0514	4.69	6.73
29	FORMER IROND	DIESEL#6	04/18/13	0532	4.69	6.72
30	FORMER IROND	MOIL#6	04/18/13	0551	4.68	6.74
31	ZZZZZ	ZZZZZ	04/18/13	0609	4.69	6.73
32	ZZZZZ	ZZZZZ	04/18/13	0628	4.69	6.73

TERPH	Ξ	o-terph	
TRIAC	=	Triacon	Surr

QC LIMITS (+/- 0.05 MINUTES) (+/- 0.05 MINUTES)

* Values outside of QC limits.

page 2 of 3

FORM VIII TPH

TPH ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC

Client: GEOENGINEERS

SDG No.: WL62

Project: FORMER IRONDALE

Instrument ID: FID3B

GC Column: RTX-1

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE RT FROM DAILY STANDARD TERPH: 4.69 TRIAC: 6.73									
CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	TERPH RT #	TRIAC RT #					
01 ZZZZZ 02 ZZZZZ 03 ZZZZZ 04 ZZZZZ 05 ZZZZZ 06 ZZZZZ 07 ZZZZZ 08 ZZZZZ 09 FUEL FARM SA 10 ZZZZZ	ZZZZZ ZZZZZ ZZZZZ ZZZZZ ZZZZZ ZZZZZ ZZZZ	======== 04/18/13 04/18/13 04/18/13 04/18/13 04/18/13 04/18/13 04/18/13 04/18/13 04/18/13	======================================	4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69	====== 6.73 6.74 6.74 6.73 6.74 6.74 6.74 6.74 6.72 6.74					

TERPH = o-terph(+/- 0.05 MINUTES)TRIAC = Triacon Surr(+/- 0.05 MINUTES)

QC LIMITS

* Values outside of QC limits.

FORM VIII TPH

Metals Analysis Report and Summary QC Forms

ARI Job ID: WL62

Cover Page

INORGANIC ANALYSIS DATA PACKAGE

CLIENT: Geoengineers PROJECT: Former Irondale Iron **SDG:** WL62

 CLIENT ID	ARI ID	ARI LIMS ID REPREP
MW-05-130410	WL62A	13-7770
MW-05-130410D	WL62ADUP	13-7770
MW-05-130410S	WL62ASPK	13-7770
MW-06-130410	WL62B	13-7771
PBW	WL62MB1	13-7771
LCSW	WL62MB1SPK	13-7771
MW-07-130410	WL62C	13-7772
MW-08-130410	WL62D	13-7773
MW-09-130410	WL62E	13-7774
MW-09-130410-DUP	WL62G	13-7776

0			
applicati	on of background corrections ?	Yes/No	NO
If yes -	were raw data generated before		
Were ICP	background corrections applied ?	Yes/No	YES
Were ICP	interelement corrections applied ?	Yes/No	YES

Comments:

THIS DATA	PACKAGE	HAS	BEEN	REVIEWED	AND	AUTH	ORIZED	FOR	RELEASE	BY:
Signature:		Key	la	~	-	Name	: Jay K	uhn		
Date:		1.	i 13	13	_ Ti	tle:	Inorga	nics	Directo	r

Page 1 of 1

Sample ID: MW-05-130410 SAMPLE

Lab Sample ID: WL62A LIMS ID: 13-7770 Matrix: Water Data Release Authorized: Reported: 04/18/13 QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant

Date Sampled: 04/10/13 Date Received: 04/11/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	04/15/13 04/15/13	200.8 200.8	04/17/13	7440-50-8 7440-02-0	Copper Nickel	0.5	1.5 5.1	

Page 1 of 1

Sample ID: MW-06-130410 SAMPLE

Lab Sample ID: WL62B LIMS ID: 13-7771 Matrix: Water Data Release Authorized: Reported: 04/18/13 QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant

Date Sampled: 04/10/13 Date Received: 04/11/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	04/15/13 04/15/13	200.8 200.8	04/17/13 04/17/13	7440-50-8 7440-02-0	Copper Nickel	0.5 0.5	0.5 4.2	U

Page 1 of 1

Sample ID: MW-07-130410 SAMPLE

Lab Sample ID: WL62C LIMS ID: 13-7772 Matrix: Water Data Release Authorized: Reported: 04/18/13 QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant

Date Sampled: 04/10/13 Date Received: 04/11/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	<u>Q</u>
200.8	04/15/13	200.8	04/17/13	7440-50-8	Copper	0.5	1.4	
200.8	04/15/13	200.8	04/17/13	7440-02-0	Nickel	0.5	5.1	

Page 1 of 1

Sample ID: MW-08-130410 SAMPLE

Lab Sample ID: WL62D LIMS ID: 13-7773 Matrix: Water Data Release Authorized Reported: 04/18/13 QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant

Date Sampled: 04/10/13 Date Received: 04/11/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L (2
200.8	04/15/13	200.8	04/17/13	7440-50-8	Copper	0.5	2.2	
200.8	04/15/13	200.8	04/17/13	7440-02-0	Nickel	0.5	4.9	

Page 1 of 1

Sample ID: MW-09-130410 SAMPLE

Lab Sample ID: WL62E LIMS ID: 13-7774 Matrix: Water Data Release Authorized Reported: 04/18/13 QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant

Date Sampled: 04/10/13 Date Received: 04/11/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	04/15/13	200.8	04/17/13	7440-50-8	Copper	5	7	
200.8	04/15/13	200.8	04/17/13	7440-02-0	Nickel	5	10	

Page 1 of 1

Sample ID: MW-09-130410-DUP SAMPLE

Lab Sample ID: WL62G LIMS ID: 13-7776 Matrix: Water Data Release Authorized Reported: 04/18/13 QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant

Date Sampled: 04/10/13 Date Received: 04/11/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	04/15/13	200.8	04/17/13	7440-50-8	Copper	5	7	
200.8	04/15/13	200.8	04/17/13	7440-02-0	Nickel	5	10	

Page 1 of 1

Lab Sample ID: WL62A LIMS ID: 13-7770 Matrix: Water Data Release Authorized Reported: 04/18/13 Sample ID: MW-05-130410 MATRIX SPIKE

QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant

Date Sampled: 04/10/13 Date Received: 04/11/13

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	8	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Copper	200.8	1.5	26.4	25.0	99.6%	
Nickel	200.8	5.1	30.8	25.0	103%	

Reported in $\mu g/L$

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Sample ID: MW-05-130410 DUPLICATE

Lab Sample ID: WL62A LIMS ID: 13-7770 Matrix: Water Data Release Authorized Reported: 04/18/13 QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant

Date Sampled: 04/10/13 Date Received: 04/11/13

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
Copper	200.8	1.5	1.4	6.98	+/- 0.5	L	
Nickel	200.8	5.1	5.1	0.0%	+/- 20%		

Reported in µg/L

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

Page 1 of 1

Lab Sample ID: WL62LCS LIMS ID: 13-7771 Matrix: Water Data Release Authorized: Reported: 04/18/13 Sample ID: LAB CONTROL

QC Report No: WL62-Geoengineers Project: Former Irondale Iron & Steel Plant

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Copper	200.8	27.2	25.0	109%	
Nickel	200.8	26.8	25.0	107%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

Sample ID: METHOD BLANK

Page 1 of 1

Lab Sample ID: WL62MBQC Report No: WL62-GeoengineersLIMS ID: 13-7771Project: Former Irondale Iron & Steel PlantMatrix: WaterData Release AuthorizedData Release AuthorizedDate Sampled: NAReported: 04/18/13Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	µg/L	Q
200.8	04/15/13	200.8	04/17/13	7440-50-8	Copper	0.5	0.5	บ
200.8	04/15/13	200.8	04/17/13	7440-02-0	Nickel	0.5	0.5	บ

			8R	
RESOURCES	1	ug/L	CCV5	
ANAL RESC INCO		UNITS:ug/L	CCV4 %R	51.09 102.2 51.31 102.6
			CCV3 &R	51.11 102.2 52.46 104.9
			CCV2 &R	52.18 104.4 51.38 102.8
			CCV1 %R	49.69 99.4 50.97 101.9
			CCVTV	50.0 50.0
ILION			ICV %R	52.50 105.0 51.58 103.2
i fi cë	Iron		ICVTV	50.0 50.0
Calibration Verificati CLIENT: Geoengineers	PROJECT: Former Irondale Iron		RUN	PMS MS041711 PMS MS041711
ratı Jeoeng:	Forme.	<u> </u>	EL M	CU PM NI PM
Calibration V CLIENT: Geoengineers	PROJECT:	SDG: WL62	ANALYTE	Copper Nickel

Control Limits: Mercury 80-120; Other Metals 90-110

lard
tand
R N
8

CLIENT: Geoengineers

PROJECT: Former Irondale Iron

SDG: WL62

ANALYTICAL RESOURCES

UNITS: ug/L

%R	l
CR-6	
8R	
CR-5	
8 R	
CR-4	
8R	
CR-3	
8R	
CR-2	
% R	106.0 102.0
CR-1	0.53 106.0 0.51 102.0
CRA/I TV	0.5 0.5
RUN	PMS MS041711 PMS MS041711 PMS MS041711
W	M SM4 M SM4
EL M	CUNI
ANALYTE	Copper Nickel

no control limits have been established by the EPA at this time. Control Limits:

FORM II (2)

Ŋ
- M
- <u>-</u>
C
7
Q
-
~
Щ
~
R
Ω
×.
· el l
Ц
Ξ.
Q
Ĥ
Ξ.
Ω
.ц
r-f
أسر ا
Ű
7)

CLIENT: Geoengineers

PROJECT: Former Irondale Iron

SDG: WL62

C		G
TICAL	RCES	ORAT
ANALY	RESOU	INCORI

UNITS: ug/L

ى د			
CCB5			
U	Þ	Þ	
CCB4	0.5	0.5	
υ	Þ	Þ	
CCB3	0.5	0.5	
υ	Þ	Þ	
CCB2	0.5	0.5	
υ	D	Þ	
CCB1	0.5	0.5	
υ	Þ	Þ	
ICB	0.5	0.5	
IDI	0.5	0.5	
CRDL	25.0	40.0	
RUN	MS041711	MS041711	
EL METH	CU PMS	SMG	
EL	сu	IN	
ANALYTE	Copper	Nickel	

ICSAB1 &R ICSA2 ICSAB2 &R 0.1 19.5 97.5 19.9 99.5 19.9 99.5 19.8 99.0 20.5 102.5 18.8 94.0 459.3 114.8 20.1 100.5 -0.1 20.6 103.0	IENT: Geoengineers OJECT: Former Iron G: WL62 MLXTE ICSA TV timonv	 								INCORPORATED
Former Irondale Iron ICSA TV ICSA IV ICSAL ICSAL R ICSA2 %R ICSA TV ICSA IV ICSA1 ICSA1 ICSA2 ICSA2 %R ICSA TV ICSA IV ICSA1 ICSA2 ICSA2 %R ICSA TV ICSA ICSA1 ICSA2 %R ICSA ICSA3 ICSA3 ICSA2 %R ICSA ICSA3 ICSA3 ICSA3 %R ICSA ICSA3 ICSA3 ICSA3 ICSA3 ICSA3 ICSA3 ICSA3 ICO 0.0 IO.0 IO.0 IO.0 ICO.0 ICSA3 ICA33 ICA33 ICA33 ICA33 ICA33 </td <td>OJECT: Former Iron G: WL62 MLTE ICSA TV MLITE ICSA TV</td> <td>ß</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ICS</td> <td>SOURCE: I.V.</td>	OJECT: Former Iron G: WL62 MLTE ICSA TV MLITE ICSA TV	ß							ICS	SOURCE: I.V.
ICSA TV ICSA TV ICSAL IC 20 0.1 19.5 97.5 97.5 90.0 0 20 20 20.5 19.9 90.0 0 20 20 20.5 10.2 50.0 20.0 20.0 20.0 20.0 20.0 20.0 20.1 100.5 20.1 100.5 20.1 20.0 20.		ndale I	ron							RUNID: MS041711
I ICSA TV ICSA									INSTRUM	INSTRUMENT ID: NEXION 300D
I CSA TV ICSA TV ICSA1 TV ICSA1 TV ICSA1 TV ICSA1 TV ICSA2 TV ICSA2 TV ICSA3 TV ICT ICT <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>UNITS: ug/L</th></th<>										UNITS: ug/L
IV 0.1 0.1 0.1 1 20 0.1 19.5 1 20 0.1 19.5 1 20 0.1 19.5 1 20 0.1 19.5 1 20 0.1 19.5 1 20 0.7 20.5 19.9 20 20 0.7 20.5 19.8 1 20 0.1 18.8 18.8 1 20 0.1 18.8 18.8 1 10 453.3 459.3 1459.3 1 10 20 0.3 20.1 1 1 20 0.3 20.1 1 20.6 1 1 20 1 20 0.0 20.6 1 1	itimonv	ICSAB T	>	ICSAL		ICSA2	ICSAB2	8R	ICSA3	ICSAB3 &R
:: 20 0.1 19.5 in 20 0.1 19.5 im 20 0.1 19.5 im 20 0.5 19.9 in 20 0.5 19.9 in 20 0.7 20.5 1 in 20 0.1 18.8 18.8 inum 400 400 453.3 459.3 1 in 20 0.3 20.1 1 18.8 in 20 0.3 20.1 1 20.1 1 in 20 20 0.3 20.1 1 20.1 1				0.1	0.1					
1 20 0.1 19.5 m 20 0.5 19.9 m 20 0.0 19.8 20 20 0.7 20.5 20 20 0.1 18.8 see 20 0.1 18.8 :m 400 400 453.3 459.3 m 20 0.3 20.1 1	'senic	2(0.1						
Im 20 0.5 19.9 20 20 0.0 19.8 20 20 0.7 20.5 20 20 0.1 18.8 20 20 0.1 18.8 20 20 0.1 18.8 20 20 0.3 459.3 20 20 0.3 20.1 10 20 0.3 20.1 11 20 0.0 20.6	dmium	2(0.1						
20 0.0 19.8 20 0.1 19.8 20 0.1 18.8 20 400 453.3 459.3 20 20 0.3 20.1 20 20.6	romium	2(0.5						
20 0.7 20.5 J ise 20 0.1 18.8 inum 400 400 453.3 459.3 J inum 20 0.3 20.1 J inum 20 0.3 20.1 J	\balt	2(0.0						
se 20 0.1 18.8 num 400 400 453.3 459.3 1 20 20 0.3 20.1 1 m 20 0.0 20.6 1	hper	2(-	0.7	20.5 102.5					
400 400 453.3 459.3 459.3 20.1 20 20.1 20.1 20.1 20.1 20.1 20.1 2	nganese	2(-	0.1						
20 0.3 um -0.2 20 0.0		40(453.3	459.3 114.8					
um –0.2 20 0.0	ckel	2(0.3	20.1 100.5					
20 0.0	lenium			-0.2	-0.1					
	lver	20		0.0	20.6103.0					
Zinc 20 0.9 19.4 97.0	nc	2(0.9						

IDLs and ICP Linear Ranges

CLIENT: Geoengineers PROJECT: Former Irondale Iron **SDG:** WL62

UNITS: ug/L

ANALYTE	EL	Meth	INSTRUMENT	WAVELENTH (nm)	GFA BACK- GROUND	CLP CRDL	RL		ICP LINEAR ANGE (ug/L)	ICP LR DATE
Copper	CU	PMS	NEXION 300D MS	0.00		25	0.5	4/1/2012		
Nickel	NI	PMS	NEXION 300D MS	0.00		40	0.5	4/1/2012		

Preparation Log

CLIENT: Geoengineers

PROJECT: Former Irondale Iron

SDG: WL62

ANALYSIS METHOD: PMS

ARI PREP CODE: REN

PREPDATE: 4/15/2013

CLIENT ID	ARI ID	MASS (g)	INITIAL VOLUME (mL)	FINAL VOLUME (mL)
MW-05-130410	WL62A	0.000	50.0	25.0
MW-05-130410D	WL62ADUP	0.000	50.0	25.0
MW-05-130410S	WL62ASPK	0.000	50.0	25.0
MW-06-130410	WL62B	0.000	50.0	25.0
MW-07-130410	WL62C	0.000	50.0	25.0
MW-08-130410	WL62D	0.000	50.0	25.0
MW-09-130410	WL62E	0.000	50.0	25.0
MW-09-130410-DUP	WL62G	0.000	50.0	25.0
PBW	WL62MB1	0.000	50.0	25.0
LCSW	WL62MB1SPK	0.000	50.0	25.0

Бо
Run I
sis I
aly
AI

ANALYTICAL RESOURCES

4/17/2013 4/17/2013

oengineers	
NT: Ge	
CLIE	

Iron	
Irondale	
Former	
ICT:	WL62
PROJECT:	SDG:

START DATE:	DATE:	B SB SE SI S				
STAR	END	K MG MIN MO NA NI F		×	X	>
NEXION 300D MS	METHOD: PMS	& R. A.G. A.L. A.S. B. B.A. B.E. C.A. C.D. C.O. C.R. C.U. F.E. H.G. K. M.G. M.N. MO. N.A. N.I. P.B. S.B. S.E. S.I.		×	X	×
INSTRUMENT ID:	RUNID: MS041711	&R AG AL AS B BA				
Iron		DIL. TIME	1.00 09070	1.00 09110	1.00 09150	1.00 09190
Irondale Iron		ARI ID	so	S1	S2	S3

CLIENT ID	ARI ID	DIL. TIME	³ R AG AL AS B BA BE CA CD CO CR CUFE HG K MG MN MO NA NI PB SB SE SI SN TI TL U V ZN
so	so	1.00 09070	
S1	S1	1.00 09110	
S2	S2	1.00 09150	
S3	S3	1.00 09190	
S4	S4	1.00 09240	
S5	S5	1.00 09300	
222222	Rinse sampl	1.00 09370	
ICV	MICV	1.00 09440	
ICB	ICB	1.00 09510	
ccv	MCCV1	1.00 09550	
CCB	CCB1	1.00 10010	
CRI	MCRI	1.00 10050	
ICSA	ICSAI	1.00 10100	
ICSAB	ICSABI	1.00 10160	
22222	LR200	1.00 10230	
222222	LR300	1.00 10300	
222222	B1	1.00 10370	
ccv	MCCV2	1.00 10430	
CCB	CCB2	1.00 10500	X
PBW	WL62MB1	2.00 10570	
MW-06-130410	WL62B	2.00 11010	
MW-07-130410	WL62C	2.00 11050	
MW-08-130410	WL62D	2.00 11090	
MW-09-130410	WL62E	2.00 11130	
MW-09-130410-DUP	WL62G	2.00 11170	
MW-05-130410D	WL62ADUP	2.00 11220	
MW-05-130410	WL62A	2.00 11260	
MW-05-130410S	WL62ASPK	2.00 11300	
LCSW	WL62MB1SPK	2.00 11340	X
CCV	MCCV3	1.00 11390	
CCB	CCB3	1.00 11460	
222222	WL35MB1	2.00 11520	
MW-05-130410D	WL62ADUP	2.00 11560	
MW-05-130410	WL62A	2.00 12000	X
MW-05-130410S	WL62ASPK	2.00 12040	

Log
Run
Analysis

ANALYTICAL RESOURCES	4/17/2013	4/17/2013
	START DATE:	END DATE:
	00D MS	D: PMS

CLIENT: Geoengineers	lneers					INCORPORATED
PROJECT: Former Irondale Iron	r Irondale	Iron	INSTRUMENT ID:	NEXION 300D MS	START DATE:	4/17/2013
SDG: WL62			RUNID: MS041711	METHOD: PMS	END DATE:	4/17/2013
CLIENT ID	ARI ID	DIL, TIME	&R AG AL AS B BA	BE CA CD CO CR CU FE HG	³ R AG AL AS B BA BE CA CD CO CR CUFE HG K MG MN MO NA NI PB SB SE SI SN TI TL U V ZN	NZ A D TL IL NS :
222222	WL35ADUP	2.00 12090				
222222	WL35A	2.00 12130				
222222	WL35ASPK	2.00 12170				
MW-09-130410	WL62E	20.00 12210		×	x	
MW-09-130410-DUP	WL62G	20.00 12260		×	×	
222222	WL35MB1SPK	2.00 12300				
CCV	MCCV4	1.00 12340		×	×	
CCB	CCB4	1.00 12410		X	×	

APPENDIX C Report Limitations and Guidelines for Use

APPENDIX C REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This Appendix provides information to help you manage your risks with respect to the use of this report.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Environmental Services Are Performed For Specific Purposes, Persons And Projects

This report has been prepared for the exclusive use by the Washington Department of Ecology. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report Is Based On A Unique Set Of Project-Specific Factors

This report has been prepared for the former Irondale Iron and Steel Plant site at the intersection of East Moore Street and 1st Avenue in Irondale, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

Reliance Conditions For Third Parties

No other party may rely on the product of our services unless we agree in advance and in writing to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations Are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance change, or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Study Is Completed

No environmental assessment can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely-spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil And Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

