

October 2013 Groundwater Monitoring

Former Irondale Iron and Steel Plant Site Irondale, Washington

for

Washington State Department of Ecology

December 5, 2014

Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206-728-2674

October 2013 Groundwater Monitoring

Former Irondale Iron and Steel Plant Site Irondale, Washington

File No. 0504-042-02

December 5, 2014

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program 300 Desmond Drive Lacey, Washington 98504

Attention: Steve Teel

Prepared by:

GeoEngineers, Inc.
Plaza 600 Building
600 Stewart Street, Suite 1700
Seattle, Washington 98101
206.728.2674

Neil Morton

Senior Environmental Scientist and Project Lead

David A. Cook, LG, CPG

Principal and Program Manager

NFM:CB:leh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2014 by GeoEngineers, Inc. All rights reserved.

Table of Contents

INTRODUCTION	1
SCOPE OF SERVICES	1
GROUNDWATER MONITORING RESULTS	2
General	2
Groundwater Conditions	2
Groundwater Sampling	3
SURFACE WATER SAMPLING RESULTS	3
SUMMARY AND CONCLUSIONS	4
Copper	4
Nickel	4
RECOMMENDATIONS	5
LIMITATIONS	6
REFERENCES	6

LIST OF TABLES

- Table 1. Summary of Groundwater Level Measurements
- Table 2. Summary of Groundwater Chemical Analytical Data Petroleum Hydrocarbons, cPAHs and Dissolved Metals

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Groundwater Monitoring Results Dissolved Metals
- Figure 3. October 2013 Groundwater Elevation Contours
- Figure 4. Proposed Surface Water Monitoring Locations

APPENDICES

- Appendix A. Field Procedures
- Appendix B. Data Validation Memorandum and Chemical Analytical Results
- Appendix C. Report Limitations and Guidelines for Use

INTRODUCTION

This report summarizes the results of the October 2013 quarterly groundwater monitoring event (Round 4), which also included surface water sampling, at the Former Irondale Iron and Steel Plant Site (Site, also known as Irondale Beach Park) in Irondale, Washington. The Site is a 13-acre property located at 526 East Moore Street in the town of Irondale, latitude 48°2' 38" N longitude 122° 45' 60" W, approximately 5 miles south of Port Townsend, Washington (see Vicinity Map, Figure 1). The Site is owned by Jefferson County and is currently used as an undeveloped day-use park (Irondale Beach Park). It is bounded by Port Townsend Bay to the east, residential properties to the south, southwest and northwest, and parklands to the north. The Site includes both upland and aquatic land. The general Site layout is shown on the attached Groundwater Monitoring Results – Dissolved Metals, Figure 2.

From 1881 to 1919, iron and steel were produced intermittently at the Site by various owners. Steel plant operations during this time resulted in metals, carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and/or petroleum contamination of soil, sediment and/or groundwater. On behalf of Washington State Department of Ecology (Ecology), GeoEngineers oversaw a cleanup action consisting of (1) excavation of upland soil and marine sediment along the shoreline that contained chemicals of concern (COC) concentrations greater than Site-Specific cleanup levels, (2) excavation of slag material outside of remedial excavations to facilitate shoreline habitat restoration, and (3) installation of a multi-component environmental cap in two upland areas where surface soil exceeded Site-Specific cleanup levels. The cleanup action was completed in December 2012.

GeoEngineers, Inc. (GeoEngineers) has been providing site characterization, cleanup and groundwater monitoring services at the Site since 2007.

SCOPE OF SERVICES

New wells (MW-6 through MW-9) were installed following completion of remedial excavation activities. An existing monitoring well MW-5 located outside of the remedial excavation footprint was also sampled as part of the post-construction groundwater monitoring. The purpose of the groundwater monitoring program is to evaluate the effectiveness of the cleanup action, with respect to protection of groundwater. As outlined in the Engineering Design Report (GeoEngineers, 2012), post-construction groundwater monitoring is being performed on a quarterly basis for a minimum of one year. Surface water sampling was performed at three locations during this monitoring event at the specific request of Ecology.

The specific scope of services for the October 2013 monitoring event included:

- 1. Measure the depths to groundwater in each well (MW-5 through MW-9). Estimate groundwater flow direction at the site based on the groundwater depths.
- 2. Purge approximately three well volumes of water from the wells prior to sampling. Obtain groundwater samples using low-flow methodology in accordance with the field procedures outlined in Appendix A from the five wells (MW-5 through MW-9) for chemical analysis.
- 3. Obtain surface water samples from three locations (SW-1, SW-2, and SW-3) in Port Townsend Bay; one near the creek at the northern end of the park and two near monitoring wells MW-9 and MW-6.

- 4. Submit the groundwater samples to an Ecology-certified laboratory for chemical analysis of diesel- and heavy oil-range hydrocarbons by Ecology Method NWTPH-Dx, total carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by U.S. Environmental Protection Agency (EPA) Method SW 8270D-SIM, and dissolved metals (copper and nickel) by EPA Method 200.8. Ecology determined that the dissolved cPAH analysis was not required for this event based on the chemical analytical results of the January 2013 groundwater monitoring event.
- 5. Submit the surface water samples to an Ecology-certified laboratory for chemical analysis of dissolved metals (copper and nickel) by EPA Method 200.8.
- 6. Evaluate the chemical analytical results relative to Site-Specific groundwater cleanup levels consistent with Model Toxics Control Act (MTCA) requirements. Site-specific groundwater cleanup levels are presented in Table 2.

GROUNDWATER MONITORING RESULTS

General

Monitoring wells MW-5 through MW-9 were used to evaluate groundwater flow direction and obtain groundwater samples. Monitoring well MW-5 was installed prior to the cleanup action during the site characterization phase and is located outside of the cleanup action areas. Monitoring wells MW-6 through MW-8 were installed after cleanup action activities within the limits of petroleum- and metals-contaminated soil remedial excavation areas. Monitoring well MW-9 was installed after cleanup action activities within the limits of the metals-contaminated soil remedial excavation area. The approximate locations of the monitoring wells are shown in Figure 2. Groundwater level measurement and sampling procedures are described in Appendix A. Depth to groundwater measurements are presented in Table 1. Groundwater chemical analytical data is summarized in Table 2. A summary of groundwater elevations and dissolved copper and nickel analytical data is shown on Figure 2. A copy of the laboratory report for the October 2013 groundwater analyses is presented in Appendix B.

Monitoring wells MW-5 through MW-9 were surveyed by Van Aller Surveying during February 2013 for creating the "As-Built Map of the Irondale Iron and Steel Plant Cleanup Action."

Groundwater Conditions

Groundwater conditions beneath the Site were evaluated by measuring groundwater levels and obtaining groundwater samples from MW-5 through MW-9 on October 4, 2013. Groundwater depths ranged from approximately 3.1 to 5.9 feet below ground surface (bgs) in the monitoring wells. The shallow depths to water in the monitoring wells are attributed to the proximity of Port Townsend Bay located approximately 20 to 60 feet east from the monitoring wells. Based on site topography, the ground surface is relatively flat, though the ground surface elevation is slightly higher in the southern portion of the site (near MW-6 and MW-7) compared to the ground surface in the northern portion of the site. The groundwater flow direction beneath the site based on October 2013 groundwater elevations is to the east toward Port Townsend Bay (see Figure 3).

Groundwater Sampling

Groundwater samples from MW-5 through MW-9 were submitted to Analytical Resources, Inc. (ARI) an environmental laboratory in Tukwila, Washington for chemical analysis of one or more of the following: diesel- and heavy oil-range hydrocarbons, cPAHs, and dissolved copper and dissolved nickel.

- Hydrocarbons. Diesel- and heavy oil-range hydrocarbons were not detected in any of the groundwater samples except one. The detected concentration of diesel-range hydrocarbons (230 micrograms per liter [μg/L]) in MW-7 is less than the site specific cleanup level of 500 μg/L.
- **cPAHs.** cPAH constituents were not detected in groundwater samples obtained from MW-6, MW-7, and MW-8. Groundwater samples obtained from MW-5 and MW-9 were not tested for cPAH constituents per Ecology's direction.
- Dissolved Copper. Dissolved copper was identified in the sample from MW-9 at an estimated concentration (5 μg/L) greater than the site-specific cleanup level of 2.4 μg/L. Dissolved copper was detected at concentrations less than the site-specific cleanup level in the remaining wells sampled (MW-5 through MW-8).
- Dissolved Nickel. Dissolved nickel was detected in the samples from MW-6 and MW-9 at a concentration (9.3 μg/L and 30 μg/L, respectively) greater than the site-specific cleanup level of 8.2 μg/L. Dissolved nickel was detected at concentrations less than the site-specific cleanup level in the samples from MW-5, MW-7, and MW-8.

A significant amount of reddish-orange precipitate (possibly ferrous oxide) resulting in increased turbidity has been observed during the four monitoring events at MW-9, but not at the other monitoring wells. This precipitate clears up with sufficient purging.

SURFACE WATER SAMPLING RESULTS

Surface water samples were collected from three locations in Port Townsend Bay upon Ecology's request. Surface water sample SW-01 was obtained near the outfall of the creek at the north-central portion of the park. This location was selected to evaluate surface water quality away from the remedial excavation areas. Surface water samples SW-02 and SW-03 were obtained from near shore of Port Townsend Bay in the vicinity of monitoring wells MW-9 and MW-6, respectively. These locations were selected to evaluate surface water quality adjacent to the remedial excavation areas.

Surface water samples obtained during the October 2013 monitoring event were analyzed only for dissolved copper and dissolved nickel.

- **Dissolved Copper.** Dissolved copper was detected in sample from SW-2 location at a concentration (30 μg/L) greater than the site-specific cleanup level of 2.4 μg/L. Dissolved copper was identified in the sample from SW-3 location at an estimated concentration (13.5 μg/L) greater than the site-specific cleanup level. The detected concentration of dissolved copper (1.3 μg/L) in the sample from SW-1 location is less than the site-specific cleanup level.
- **Dissolved Nickel.** Dissolved nickel was identified in the samples from SW-2 and SW-3 locations at estimated concentrations (8.5 μg/L and 9.0 μg/L) greater than the site-specific cleanup level of 8.2 μg/L. Dissolved nickel was detected at a concentration (5.2 μg/L) less than the site-specific cleanup level in the sample from SW-1 location.

Based on chloride levels in the groundwater and surface water samples collected in July and October 2013, it appears that the surface water samples obtained at location SW-01 are more representative of freshwater from the creek than the marine water in Port Townsend Bay. This conclusion is consistent with the copper and nickel surface water analytical results for SW-01, which are consistent with the surface water samples collected from the creek during the RI.

SUMMARY AND CONCLUSIONS

Groundwater monitoring is being conducted at the former Irondale Iron and Steel Plant site to evaluate the post-construction effectiveness of the cleanup action as outlined in the Final Engineering Design Report (GeoEngineers, 2012). Groundwater samples obtained during the October 2013 monitoring event were analyzed for diesel- and heavy oil-range hydrocarbons, cPAHs, and dissolved copper and dissolved nickel. Surface water samples also were collected during the October 2013 monitoring event upon Ecology's request. Surface water samples were analyzed for dissolved copper and dissolved nickel.

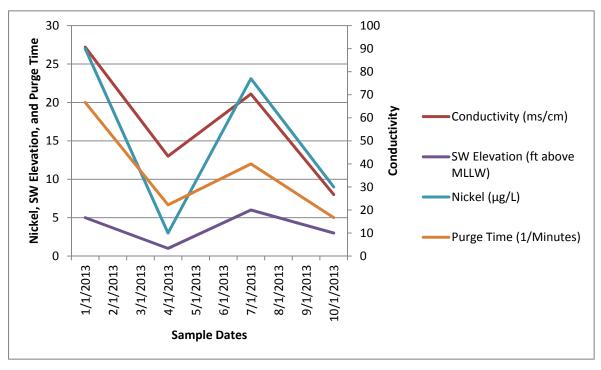
The October 2013 groundwater monitoring event is the last of the four planned quarterly groundwater monitoring events and the chemical analytical results were generally consistent with previous monitoring events.

Contaminants of concern were either not detected or were detected at concentrations less than the site specific cleanup levels in groundwater and surface water samples with the exception of the following:

- Dissolved copper and nickel exceedances at groundwater wells MW-6, MW-9 and surface water locations SW-2 and SW-3; which are generally located in the vicinity of the total petroleum hydrocarbons (TPH) remedial excavation area (MW-6 and SW-3) and the metals remedial excavation/slag outcrop removal area (MW-9 and SW-2).
- cPAHs at groundwater well MW-7 during the July 2013 monitoring event only. MW-7 is located in the vicinity of the TPH remedial excavation area.

Copper

The dissolved copper concentrations in MW-9 from the July and October 2013 groundwater monitoring events are lower than the dissolved copper concentrations in surface water sample collected at locations SW-2 and SW-3. This indicates that, while the dissolved copper concentrations in MW-9 are greater than the site-specific groundwater cleanup level for copper, it is unlikely that site groundwater will result in higher dissolved copper concentrations than are already present in Port Townsend Bay.


Nickel

The dissolved copper and nickel concentrations in MW-9 are consistently greater than the site-specific cleanup levels and are elevated compared to the dissolved copper and nickel concentrations observed in the other site monitoring wells. In addition, the dissolved nickel concentrations in MW-9 from the July and October 2013 groundwater monitoring events are higher than the dissolved nickel concentrations in surface water samples collected at locations SW-2 and SW-3. Based on our review of the groundwater quality parameter data collected during the January, April, July, and October 2013 monitoring events, it appears that the unexpectedly higher dissolved nickel concentrations at MW-9 may be affected by the following factors (also, see chart below):

- Monitoring well purging time (longer purge times associated with lower nickel concentrations),
- Groundwater quality parameters (higher total dissolved solids, conductivity, and salinity measurements associated with higher nickel concentrations),
- Surface water elevation (higher tides associated with higher nickel concentrations), and
- Saltwater intrusion (indicators of saltwater intrusion, chloride ions in groundwater samples, were higher in MW-9 than in the other four monitoring wells). MW-9 also is the closest groundwater monitoring well to seawater during high and low tides.

MW-9 QUARTERLY GROUNDWATER MONITORING DATA (POSSIBLE RELATIONSHIP BETWEEN NICKEL CONCENTRATIONS AND CONDUCTIVITY, SURFACE WATER ELEVATION AND PURGE TIME)

RECOMMENDATIONS

We recommend Ecology further evaluate the potential effects of saltwater intrusion and its relationship to elevated copper and nickel concentrations in groundwater samples obtained primarily from the closest wells to both high and low tide cycles (MW-9). Further evaluation will help to explain the higher dissolved copper and nickel concentrations at MW-9, relative to monitoring wells MW-5 through MW-8. The scope of this recommended additional investigation is as follows:

- Collect groundwater samples on an hourly basis from MW-9 over a tidal cycle (from one hour before highest high tide to one hour after lowest low tide).
- Collect surface water samples from proposed locations SW-1A and SW-1B (see Figure 4). These locations will replace location SW-1, which was located at the outfall of a freshwater creek. Surface water samples will also be obtained at locations SW-2 and SW-3.

Submit groundwater and surface water samples to ARI Laboratory for chemical analysis of dissolved copper and nickel and conductivity. Conductivity will be analyzed to verify the relationship between saltwater and elevated nickel concentrations in groundwater. And be used to confirm field conductivity measurements.

LIMITATIONS

We have prepared this report for use by the Washington State Department of Ecology. The information contained herein is not intended for use by others and it is not applicable to other sites. No other (third) party may rely on the product of our services unless we agree in advance and in writing to such reliance.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to Appendix C titled "Report Limitations and Guidelines for Use" for additional information pertaining to use of this report.

REFERENCES

GeoEngineers, 2009, "Revised Draft Remedial Investigation/Feasibility Study Report, Irondale Iron and Steel Plant, Irondale, Washington, Ecology Facility/Site No. 95275518." GEI File No. 0504-042-01, August 13, 2009.

GeoEngineers, 2012, "Final Engineering Design Report, Irondale Iron and Steel Plant, Irondale, Washington." GEI File No. 0504-042-02, May 1, 2012.

Table 1

Summary of Groundwater Level Measurements

Former Irondale Iron and Steel Plant Site Irondale, Washington

Groundwater Monitoring Well ¹	Quarterly Groundwater Monitoring Event	Date Measured	Top of Casing Elevation ² (feet)	Depth to Water from Top of Casing (feet)	Groundwater Elevation ² (feet)
MW-5	Round 1 Round 2 Round 3 Round 4	1/4/2013 4/10/2013 7/16/2013 10/4/2013	13.97	5.01 4.4 5.2 5.51	8.96 9.57 8.77 8.46
MW-6	Round 1 Round 2 Round 3 Round 4	1/4/2013 4/10/2013 7/16/2013 10/4/2013	17.04	3.23 3.16 3.05 3.11	13.81 13.88 13.99 13.93
MW-7	Round 1 Round 2 Round 3 Round 4	1/4/2013 4/10/2013 7/16/2013 10/4/2013	15.98	5.08 5.06 5.81 5.44	10.90 10.92 10.17 10.54
MW-8	Round 1 Round 2 Round 3 Round 4	1/4/2013 4/10/2013 7/16/2013 10/4/2013	11.93	4.00 4.68 5.81 5.87	7.93 7.25 6.12 6.06
MW-9	Round 1 Round 2 Round 3 Round 4	1/4/2013 4/10/2013 7/16/2013 10/4/2013	11.77	4.83 5.52 5.51 5.81	6.94 6.25 6.26 5.96

Notes:

¹Monitoring well locations are shown on Figure 2.

²Elevation is referenced to Mean Lower Low Water (MLLW). Elevation measurements were obtained from "ASBUILT MAP" provided by Van Aller Surveying to Anderson Environmental Contracting, LLC dated February 2013. Top of casing elevations were estimated by subtracting the distance between the top of the monument and the top of the casing at each well.

Table 2

Summary of Groundwater Chemical Analytical Data - Petroleum Hydrocarbons, cPAHs and Dissolved Metals¹ Former Irondale Iron and Steel Plant Site Irondale, Washington

				oleum arbons ³			Carcinoge	enic Polycyc	lic Aromatic	Hydrocarbo	ons (cPAHs) ⁴	ı		Dissolved	l Metals ⁵
Sample Identification ²	Quarterly Groundwater Monitoring Event	Sample Date	Diesel-Range	Heavy Oil-Range	Total or Dissolved cPAHs	Benzo[a]anthracene	Chrysene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Indeno(1,2,3-c,d)pyrene	Dibenz[a,h]anthracene	Total cPAH - TEQ ⁴	Copper	Nickel
Groundwater Samples															
MW05-130104	Round 1	1/4/2013	100 U	200 U	-					-	-		-	1.3	5.6
MW05-130410	Round 2	4/10/2013	100 U	200 U	-	-		-		-	-		-	1.5	5.1
MW05-130716	Round 3	7/16/2013	100 U	200 U	-	-		-		-	-		-	0.9	4.6
MW05-131004	Round 4	10/4/2013	100 U	200 U	-			-		-	-		-	1.4	5
MW06-130104 ⁶	Round 1	1/4/2013	100 U	200 U	Total	0.010 U	0.0066 J	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00757 J	0.8	5.8
WW06-130104	Rodila 1	1/4/2013	1000	2000	Dissolved	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	0.0	5.6
MW06-130410 ⁶	Round 2	4/10/2013	100 U	200 U	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	0.5 U	4.2
MW06-130716 ⁶	Round 3	7/16/2013	100 U	200 U	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	0.6	4.9
MW06-131004 ⁶	Round 4	10/4/2013	100 U	200 U	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	0.9	9.3
MW07 120104	Dound 1	1 /4 /2012	100.11	200.11	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	0.8	4.4
MW07-130104	Round 1	1/4/2013	100 U	200 U	Dissolved	0.010 U	0.0072 J	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00757 J	-	-
MW07-130410	Round 2	4/10/2013	160	200 U	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	1.4	5.1
MW07-130716	Round 3	7/16/2013	200	200 U	Total	0.087	0.11	0.056	0.042	0.11	0.028	0.012	0.1336	0.5 U	2.7
MW07-131004	Round 4	10/4/2013	230	200 U	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	0.6	3.6
NAW00 420404	Round 1	1/4/2013	100 U	200 U	Total	0.0075 J	0.0094 J	0.0063 J	0.010 U	0.0078 J	0.010 U	0.010 U	0.0108 J	0.5 U	5
MW08-130104	Round 1	1/4/2013		-	Dissolved	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	-	-
MW08-130410	Round 2	4/10/2013	100 U	200 U	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	2.2	4.9
MW08-130716	Round 3	7/16/2013	100 U	200 U	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	0.9	4.4
MW08-131004	Round 4	10/4/2013	100 U	200 U	Total	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.00755 U	0.9	5.1
MW09-130104 ⁶	Round 1	1/4/2013	100 U	200 U	-	-	-			-	-	-		7	90
MW09-130410 ⁶	Round 2	4/10/2013	100 U	200 U	-	-	-			-	-	-		7	10
MW09-130716 ⁶	Round 3	7/16/2013	100 U	200 U	-	-	-			-	-	-		7	77
MW09-131004 ⁶	Round 4	10/4/2013	100 U	200 U										5.00 NJ	30
Surface Water Samples		•			•										
SW01-130716	Round 3	7/16/2013	-	-	-	-				-	-		-	1.4	4.8
SW01-131004	Round 4	10/4/2013	-	-	-	-				-	-		-	1.3	5.2
SW02-130716-DUP ⁷	Round 3	7/16/2013			-									13	16
SW02-131004-DUP ⁷	Round 4	10/4/2013		-	-	-	-		-	-	-	-		30	8.5 NJ
SW03-130716	Round 3	7/16/2013			-	-	-		-	-	-		-	9	16
SW03-131004	Round 4	10/4/2013		-	-	-	-		-	-	-		-	13.5 NJ	9.0 NJ
Site-Specific G	roundwater Cleanup	Level ⁸	500	500		see TEQ	see TEQ	see TEQ	see TEQ	see TEQ	see TEQ	see TEQ	0.018	2.4	8.2

Notes:

 1 Reported results are in micrograms per liter (µg/L).

²Groundwater monitoring well locations and surface water sample locations are shown in Figure 2.

 $^3\mbox{Petroleum Hydrocarbons}$ analyzed using NWTPH-Dx.

⁴cPAHs analyzed using EPA method 8270D-SIM. Total carcinogenic PAHs (cPAHs) calculated using toxic equivalent (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the reporting limit for these calculations. Samples analyzed for dissolved cPAHs were laboratory filtered using a 0.7 µm borosilicate glass, binder free filter.

⁵Dissolved Metals analyzed using EPA method 200.8 (field filtered).

⁶A field duplicate groundwater sample was obtained from this monitoring well (diesel- and heavy oil-range and cPAHs for MW-9 and metals for MW-9). Higher of the two detected concentrations (parent and field duplicate) is reported for each of the analyte.

⁷A field duplicate surface sample was obtained from SW-02 (dissolved metals). Higher of the two detected concentrations (parent and field duplicate) is reported for each of the analyte.

⁸Site-specific groundwater cleanup level is referenced from Table 1 of the Final Enigneering Design Report (GeoEngineers, 2012).

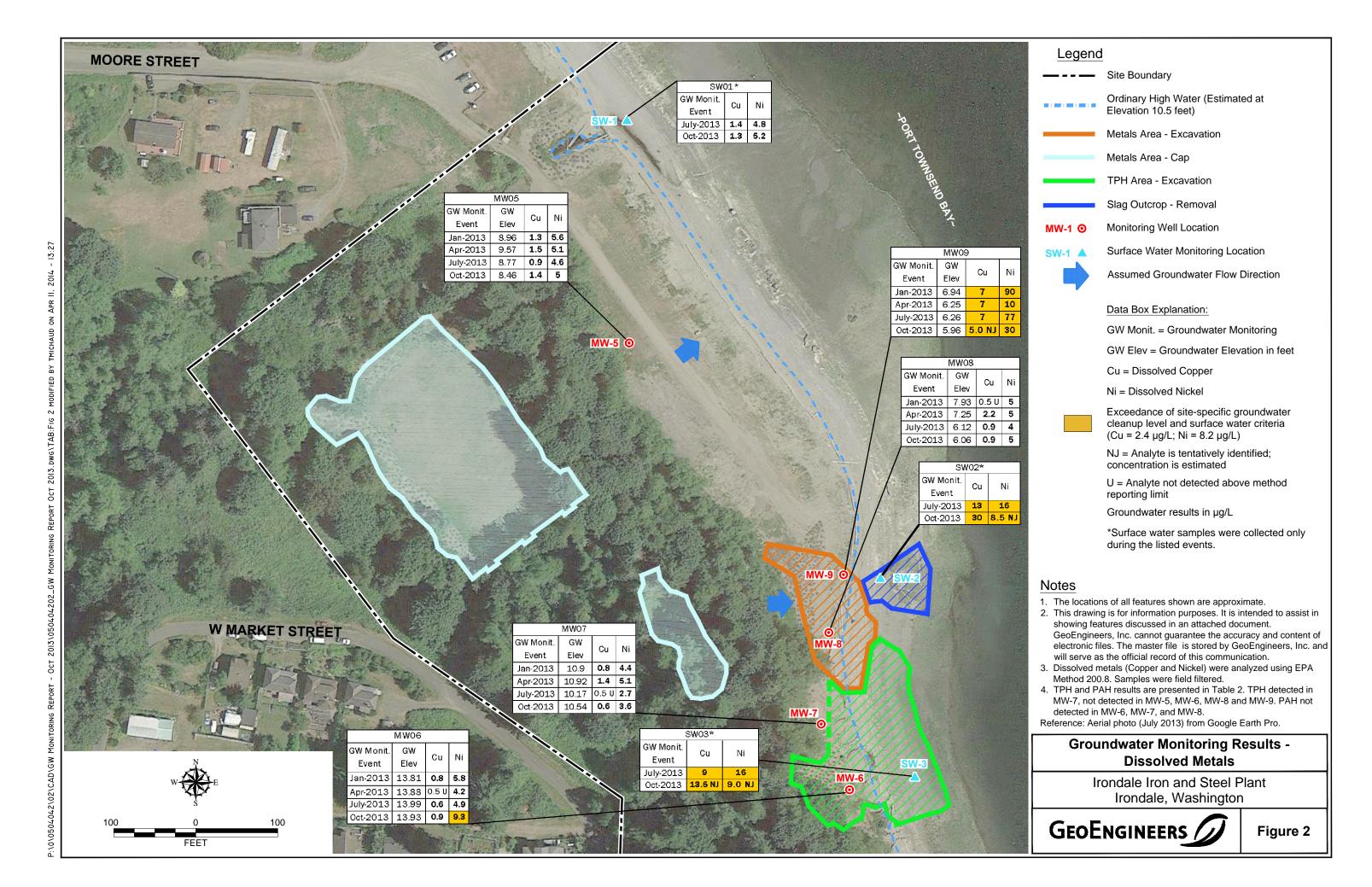
MTCA = Model Toxics Control Act

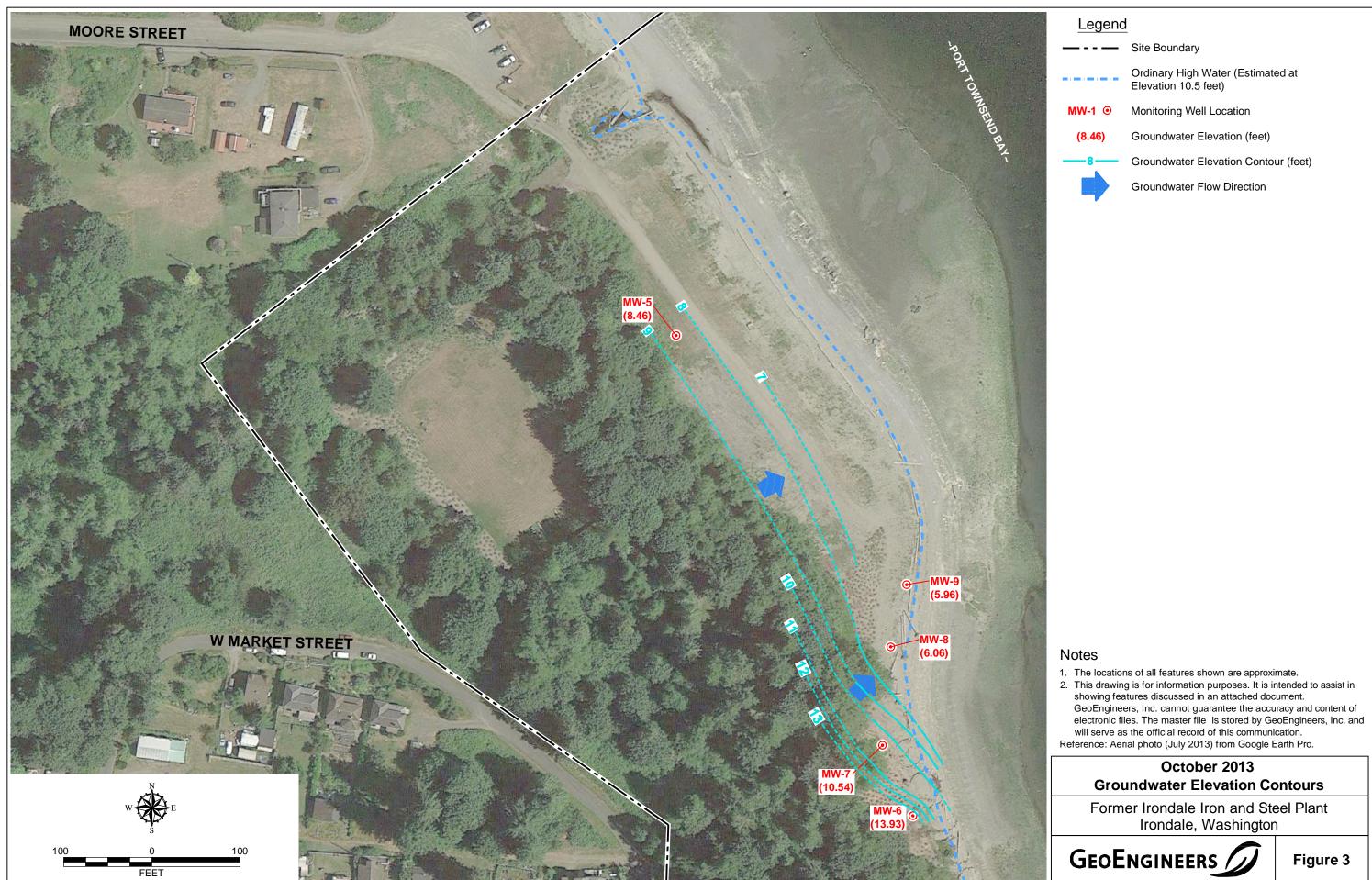
- = not analyzed. Monitoring wells are located in the area remediated due to metals contamination.

NJ = Analyte is tentatively identified and the concentration is estimated.

 $\mbox{U = Laboratory qualifier indicating analyte not detected at level above listed reporting limit.} \label{eq:U}$

Bold indicates analyte was detected.


Chemical analyses performed by Analytical Resources. Inc., in Tukwila, Washington.


Shaded values represent concentrations greater than the Site-Specific cleanup level.

APPENDIX AField Procedures

APPENDIX A FIELD PROCEDURES

General

Monitoring well MW-5 was constructed at the Former Irondale Iron and Steel Plant Site (Site) in June 2007 and MW-6 through MW-9 were constructed at the Site in December 2012 after remedial activities had been completed. The monitoring well construction details for MW-5 through MW-9 are presented in Appendix A of the January 2013 Groundwater Monitoring Report.

Depth to Groundwater Measurements

The depth to groundwater was measured in the monitoring wells using an electric water level indicator. The depth to groundwater was measured relative to the top of the well casings. Water level measurement equipment was washed in a Liqui-Nox® solution, followed by a distilled water rinse prior to use in the well.

Groundwater Sample Collection and Handling

Groundwater samples were obtained from monitoring wells MW-5 through MW-9 in October 2013.

Groundwater samples were obtained from monitoring wells using a peristaltic pump and disposable polyethylene tubing. Groundwater was pumped at approximately 0.5 liter per minute using a peristaltic pump through tubing placed within the screened interval. A Horiba U-5000 water quality measuring system with flow-through cell was used to monitor the following water quality parameters during purging: electrical conductivity, dissolved oxygen, pH, salinity, total dissolved solids, turbidity, and temperature. Groundwater samples were obtained once ambient groundwater conditions were reached. Groundwater conditions were considered ambient once the measured parameters varied by less than 10 percent on three consecutive measurements taken approximately 3 minutes apart. The stabilized field measurements are documented in the attached Groundwater Sample Collection Forms.

Samples for dissolved metals analysis were field filtered by pumping water through a 0.45 micron filter directly into the sample container using a peristaltic pump. Groundwater samples obtained were transferred to laboratory-prepared sample jars. Sample containers were filled to minimize headspace. The samples were placed in a cooler with ice pending transport to the analytical laboratory. Samples requiring preservative (e.g., HCl for diesel- and oil-range hydrocarbon analyses) contained the proper preservative in the laboratory-prepared bottles. Chain-of-custody procedures were followed in transporting the samples to the laboratory

Surface water Sample Collection and Handling

Surface water samples were collected from three locations in Port Townsend Bay upon Ecology's request during the October 2013 groundwater monitoring event. Surface water sample SW-01 was obtained from near shore in Port Townsend Bay at the northern end of the park. Surface water samples SW-02 and SW-03 were obtained near monitoring wells MW-9 and MW-6, respectively.

Surface water was collected in an amber-glass bottle provided from the laboratory by directly immersing the bottle into the surface water body. A field filtered surface water sample was then collected by pumping water from the amber-bottle through a 0.45 micron filter directly into the sample container using a

peristaltic pump. Sample containers were filled to minimize headspace. The samples were placed in a cooler with ice pending transport to the analytical laboratory.

Samples requiring preservative contained the proper preservative in the laboratory-prepared bottles. Chain-of-custody procedures were followed in transporting the samples to the laboratory.

Investigative Wastes

Purged groundwater (approximately 5 gallons) removed from the monitoring well casings on October 4, 2013 during groundwater sampling was stored in a 5-gallon bucket. Purged groundwater generated during the well sampling activities was disposed in the sanitary sewer at GeoEngineers' office in Redmond, Washington in December 2013.

Project TRONDALE Job No. Collector FK Elevation MW ID	b5										
PURGE DATA											
Well Condition: Secure [] Yes [] No Describe Damage											
(Padlock brand and number)											
Depth to Water (from top of well casing) 5.5\frac{5.5}{}	Volume · Gal./										
Depth to Base of Well 18.75 the Height of Water Column (in.) OD ID	Linear Ft										
Well Casing Type/Diameter 2 2.375" 2.067" 0.17 One Casing Volume (gal.) 3 3.500" 3.068" 0.38											
One Casing Volume (gal.) 3 3.500" 3.068" 0.38											
Purge Method Pump (type) PER ISTACTIC Bailer (type) 4 4.500" 4.026" 0.66											
Gallons Purged 6 6.625" 6.065" (Remove minimum of 3 well volumes or until field parameters stabilize) 8 8.625 7.981	1.5 2.6										
Purge Water Storage/Disposal 5-galu 5000000000000000000000000000000000000	4.0										
(Drum identification, sample analysis, sample results, storage location, etc.)											
SAMPLING DATA											
Date Collected (mo/dy/yr) lo lo 4/20/3	4										
	10										
Tidal Cycle NA [] High Tide at 1630 Low Tide at 1000 Weather 400 Sample type (Groundwater, Product, Other)	<u> </u>										
Sample Collected with [] Bailer [\[\]] Pump [] Other											
Made of [] Stainless Steel [] PVC [] Teflon [] Disposable LDPE [] Other											
Sampler Decon Procedure USUNIOX & DISTILLED WATER RINSE											
Sample Description (color, free product thickness, odor, turbidity, etc.)											
FIELD PARAMETERS											
Time Purge Volume Conductivity Turbidity Dissolved Temperature Salinity TDS Sea Water ORP	COMMEN										
1545 500 7.28 0.599 4.7 6.53 11.75 NM 0.384 0.3 -33											
1550. 500 7.25 0.603 0.8 3.53 7.44 MM 0.386 0.3 -52											
1565 500 7.24 0.604 0.1 2.88 11.40 NM 0:386 0.3 -62	NM=										
1600 500 7.24 0.603 0.4 2.49 11.39 NM 0.386 0.8 -66	NOT										
1605 5no 7.23 0.603 0.1 2.47 11.37 NM 0.386 0.3 -69											
1610 500 : 7.21 0.603 0.1 2.46 11.38 NM 0.386 0.3 -68	RED										
	J										
Meters Used for Measurement HORIBA U-5000											
pH/Con./DO Instrument Calibration [] Yes [] No Spectrophotometer E-Tape											
ADDITIONAL INFORMATION											
Samples Composited Overtime, Distance											
Analyses, Number and Volume of Sample Containers MW05-13/004											
Duplicate Sample Number(s)											
Signature Date 10 04 7.013 Page o	f										
30 B / S / T											

GeoWeb > Offices > Tacoma/Pt. Orchard > Environmental Resources > Forms

-		- ^	_	n	542-042-	02	<i>~</i>	Casing			~/	
Project	<u>IRO</u>	MDALE		Job No.	310-1-	Collector	7R	Elevation		MW ID	00	
				F	PURGE DAT							
	ion: Secure [) Yes	[] No	Desc	ribe Damage _	· N	LONE	5				
-	nd and number)			- \ 1 1 L	ares .						Volume	
-	ater (from top o	-		3.11 H			•	Diameter			· Gal./	
Depth to Ba	-		25 ft	_	Vater Column		ļ	(in.)	OD	ID	Linear Ft	
	g Type/Diamete	∋ r		-INCH	. 8			3	2.375" 3.500"	2.067"	0.17	
	y Volume (gal.)		PERISTA	~ 2 qw	Bailer (type)			4	4.500"	3.068" 4.026"	0.38 0.66	
Purge Meth Gallons Pu	raed raed	mb (rybe)		6	6.625"	6.065"	1.5					
	nimum of 3 well v							8	8.625	7.981	2.6	
Purge Water Storage/Disposal 5_edm Bucks 7												
(Drum identi	(Drum identification, sample analysis, sample results, storage location, etc.)											
					AMPLING DA	ATA	~		de de la constanta de la const			
	ted (mo/dy/yr)			04/13				Time	e Collected	10.1	>	
Sample Lo	cation and Dep NA []		<u>M€</u> High Tide at	1630		Low Tide at	1000	-	Weather	- 1	25 1N Y	
	e (Groundwate		-	(<u>G</u> .X.J	(W		3 34	•			28 10 1	
	llected with		[/J] Pu	mp []	Other							
Made of [] Stainless St	eel [X	PVC [] Teflon	[] Dispos	sable LDPE		Other	<u> </u>	1		
	econ Procedure			RUINDX	4- DISTI	LIED EN	ATER	RINSE	-			
Sample De	scription (color	, free produ	uct thickness,									
FIELD PARAMETERS												
Time	Purge Volume (liter) w.l.	рН	Conductivity (<u>∕∕⁄⁄√</u> (<u>/</u> /	Turbidity (NTU)	Dissolved Oxygen	Temperature (F/C)	Salinity (%)	TDS (g/l)	Sea Water Potential	ORP (mV)	COMMENT	
1130	500	かいら	0,538	39	9110	3.62	MM	0.344	0,3	1-14		
1135.	500	6.83.	0.532	28.3	8.25	13112	NM	0343	0.3	-34	NM=	
110	500	6.71	0.535	19.1	7.31	13.02	NM	0.342	0.3	-46	NOT	
1165	500	6.63	0.534	18.8	7.25	13.12	NM	0.341	0.3	-67	MEASU	
1155	500	4.62	0.532	18.2	6.25	13.12	NW	0.341	0.3	-84	, RED	
1200	500	6.63	0.534	19.2	5,89	13.09	NM	0.342	0.3	-104	Constinu	
1205	500	6.61	0.540	15,6	6.56	12-98	NM	0-246	0.3	-110	on beca	
Meters Use	ed for Measure	ment			НС	RIBA	U-6	2000			page	
pH/Con./D	O Instrument C	Calibration	[v] Yes [] No	Spect	rophotometer			E-Tape	1		
				ADDITI	ONAL INFO	RMATION						
Samples (Composited Ove	ertime Dist	ance	ADDITI	ONAL IN O	MINATION						
	Number and V			ners		MW06-	13100	<u> </u>	CRAL	J.DX,	Netals	
Duplicate :	Sample Numbe	er(s)						·				
- STATE OF	Phone and											
Signature			Mar	,		Date	10	04/13	Page	2 / 0	f 2_	
Checkers - 1	ditional informatio	on on beat	1 1 · · · ·				!	Į.				
I DOCK'IT ON	www.near.intormatic	M OD DACK L	,									

MW06 CONTINUED

Turne	Purge Vol (msl)	PH	Conden (vas/cm)	Torb (NTU)	(mg/r) 0xa Diss:	Temp	Saluts 7.	7 DS	Sea Wat Palout	(**Y)
1210	500	6.62	0546	14.2	5.52	12.95	MM	0.350	8.3	- 100 Prince
1215	500	6.62	0.544	14.1	5,43	12.92	NM	0.348	0:3	-108
1210	500	6.64	0.538	14,0	5.19	12.99	NM	0-344	0.3	- 109
1225	600	6.65	0.539	14.1	5,28	12.92	NM	0.344	0.3	-108

Project	IRON	IDBLE.		Job No.)542-042-0	Collector_	FK	Casing Elevation		MW ID	07	
				F	URGE DATA	4						
	tion: Secure [] Yes	[] No	Desci	ribe Damage_		. Anne					
Depth to W	ater (from top o	_	19) 75 H	5.44 Height of W	/ Ater Column		•	Diameter (in.)	OD	ID .	Volume Gal./ Linear Ft	
} '	- g Type/Diamete				2	2.375"	2.067"	0.17				
1	g Volume (gal.)			3	3.500"	3.068"	0.38					
Purge Meth	nod Pu	ımp (type)	+ براهی ، مار	4 6	4.500" 6.625"	4.026" 6.065"	0.66 1.5					
Gallons Pu	rged nimum of 3 well v	olumes or ui	ntil field parame	ters stabilize)				8	8.625	7.981	2.6	
Purge Wat	er Storage/Disp	osal	,	5-90	M buck	e T						
(Drum identification, sample analysis, sample results, storage location, etc.)												
SAMPLING DATA												
1	cted (mo/dy/yr) cation and Dep	.th	10/04/	2013	<u> </u>			Time	e Collected	• Maria	340	
Tidal Cycle		ш	High Tide at	1620		Low Tide at	1000	-		SUN	NY	
Sample typ	e (Groundwate	er, Product,	Other)	mp []	GW			•				
1 '	llected with		[] Pu	mp []	Other	-LI- LDDE	F 1	Ottle				
Made of [] Stainless St econ Procedur	eel [X]	, , ,	1	F 7	able LDPE	L J Ratera	Otner Rivise				
Sample De	econ Fraceday	, free produ	ıct thickness,	odor, turbidit	y, etc.)	and the second second	mr (p		EV.			
					D PARAME	TERS						
Time	Purge Volume	рН	Conductivity (MS/an)	Turbidity (NTU)	Dissolved Oxygen	Temperature √ F/C)	Salinity (%)	TDS (g/l)	Sea Water Potential	ORP (mV)	COMMENT	
1305	560	6.98	01456	37.4	6.38	13,84	MM	0.299	0.2	-119		
1310.	500	710.	0.435	28,5	6.54	13.76	NM	0.293	0.2	-19-3	Simple Control of the	
1315	500	7.1	0.432	17.2	4.31	13.76	NM	0.295	0.2	-138	MM=	
1320	500	7.11	0.430	8.9	2.26	13,73	NM		0.2	-149	- \ NOT	
1326	500	7.03	0.430	3.7	1.64	13-69	NW	0.280	0.2	- 156	MEASL	
1330	600.	7.04	0.428	1:53	1.0	13-64	MM	0.298	0.2	-128	PEI)	
1335	500	7.02	0,428	1.43	1,60	13.71	MM	0.798	0.2	-159	A COLUMN TO STATE OF THE STATE	
Meters Us	ラッつ ed for Measure	ment 05	0.424	1.42	1.61	13.72 H	ORIBA	U = 129	三0.2	-159	·J	
	O Instrument C] No	Spect	rophotometer			E-Tape		/	
		. O to the Company of	<u> </u>	ADDITIO	ONAL INFO	RMATION	Walled the Company of					
	Composited Ov											
Analyses,	Number and V	olume of Sa	ample Contair	ners			1WO7	-13100 [[]	Î.			
Duplicate	Sample Numbe	er(s)										
					- Control Control	grade						
Signature				<u> </u>		Date		iou ils	Page	e	ıf /	
	ditional information				•						/	

GEOENGINEERS (

					stup -to	02	، رامسور	Casing			-0
Project _	TROND	ALE.		Job No. 🤄	0542-042-	Collector_	FK_	Elevation_		MW ID	<u>08</u>
				F	PURGE DATA						
	ion: Secure [] Yes	[] No	Desc	ribe Damage		MNE	•			
•	nd and number) _		•	~ ~			ĩ				Volume
•	ater (from top o				7 pt		•	Diameter			· Gal./
Depth to Ba	se of Well	17	2.15 tt	Height of W	/ater Column_			(in ₋)	OD	ID	, Linear Ft
_	g Type/Diamete			2	2.375"	2.067"	0.17				
-	y Volume (gal. <u>)</u>			3	3.500"	3.068"	0.38				
Purge Meth		ımp (type)		4 6	4.500"	4.026" 6.065"	0.66 1.5				
Gallons Pu	ged nimum of 3 well v	olumos or III	atil field nereme	tore etahilize)		•		8	6.625 " 8.625	7.981	2.6
Remove iiii Purae Wate	er Storage/Disc	osal	illi noid paramo	toro otabilizoj	5-00/11	RUCKET	ı				
(Drum identit	er Storage/Disp ication, sample a	analysis, san	ple results, sto	rage location,	etc.) Ü	* · · · · · · · · · · · · · · · · · · ·					
	-			SA	AMPLING DA	\TA					
Date Collec	ted (mo/dy/yr)			10/04/22							
Sample Lo	cation and Dep	th			MIN 08				Collected		00
Tidal Cycle	NA[]		High Tide at	1630		Low Tide at	1000	•	Weather	10151	RCAST.
Sample typ	e (Groundwate llected with	r, Product,	Other)	mp f 1	Other	<i>j</i>					# # - BU
				inp [] `] Teflon	-	oblo I DDE	Г 1	Other		,	***
] Stainless St econ Procedure	eeı 🔣	PVC [I I Dispos				(2 IAI:	-19.5°	
Samplei De Sample De	scription (color	free produ	ıct thickness,	odor, turbidit	y, etc.)	V1.)11-6-	<u> الرجية</u> م <u>معظ</u>		per 10 Van	B Koor	
Campio 20	oon,p.a.o (*****	,	•		D PARAME	TERS					
	Purge Volume		Conductivity	Turbidity	Dissolved	Temperature	Salinity	TDS	Sea Water	ORP	Carada :
Time	(liter)	pН	(my you)	(NTU)	Oxygen	(₽/C)	(%)	(g/l)	Potential	(mV)	COMMENT
1435	1000	6.71	0.532	38 S	4.56	13.90	MM	0.34	2.3	-134	
1440	500	6,68.	01532	33.2	2.81	13 , 89	NM	0.34	013	-135	NM=
1445	500	6.67	0.531	19.6	2.0	13.89	NM	0.04	0,3	-13%	NOT
1450	500	6.65	0.531	13.	1:59	13.85	NM	0,34	0,3	-139	MEAS
1455	500	6.64	01531	.0	1.59	13.88	NM	ł	0.3	-138	RE
1500	500	6.62	0.530	52 A	1.50	13.86	NM	0.34	0.3	-139	and the second s
						·					
Meters Use	ed for Measure	ment				HORIBA	IJ-	5000			
	O Instrument C		[-/] Yes [] No		rophotometer		Total Control of the Company	E-Tape	N 25	
pr.// 0011./2	o modaliione o			-							
				ADDITI	ONAL INFO	KMAHON					
,	Composited Over										
Anaiyses,	Number and Vo	olullie oi Sa	ampie Contain	IC19			[49]	08 13	Tanu		
Dunlicate 9	Sample Numbe	or(e)					F 7 7 1	29 10	171154	*.*	
Dupiicate (Jampie Minne	(6) is				s.i					
						<u> </u>	wh.				
Signature		411	A.	···		Date		12/04/1	3 Page	2	f 1
- Ignataro		7	<u>«</u>				***************************************		₹0.		
Check if add	ditional information	on on back [7								

Project	IRONDAL	<i>E</i>		Job No.	504-042-	Collector	1K	Casing Elevation		MW ID	09
			4	P	URGE DAT	A					
Well Condit	ion: Secure [[√] Yes	[] No	Desci	ibe Damage	•	N	girl			
Depth to W	ater (from top o			5,81.	AC Vater Column			Diameter (in.)	OD	ID .	Volume · Gal./ Linear Ft
•			os ft	1-1 mil	, -			2	2.375"	2.067"	0.17
· ·	g Type/Diameto y Volume (gal.)			1-1000				3	3.500"	3.068"	0.38
Purge Meth	-		4	4.500"	4.026"	0.66					
Gallons Pu	raed		6	6.625"	6.065"	1.5					
(Remove mi	nimum of 3 well v	olumes or ui	2.25 @#/ ntil field parame	ters stabilize)	1 r			8	8.625	7.981	2.6
Purge Wate	er Storage/Disp	osal		5-90	l Bucke	<u>= 7 </u>					
(Drum identi	ication, sample a	analysis, san	ple results, sto		MPLING DA	TA					
Data Callar	tad (maldulur)		lala	4 2013	WIPLING DE	AI A					
	cted (mo/dy/yr) cation and Dep		10/0	14/2015 1W09				Time	e Collected	(03	80
Tidal Cycle			High Tide at	/ 18912 /		Low Tide at	10.0	· f a ····	Weather	CLOU	DУ
	e (Groundwate		Other)	GU	<u>J</u>						
Sample Co	llected with	[]Bailer	[X] Pui	mp []	Other	-bl- I DDC	r 1	Othor			
Made of [] Stainless St	teel [∑]	PVC [1 Letion	Ulspos		L J D Pi	Other acas			- 1000
Sampler De	econ Procedur scription (colo	r, free produ	ıct thickness,	odor, turbidit	y, etc.)	GNIE CAM	r 720	NDC NOXII	E PRE	CLPITA	TE
oumpro = -					D PARAME	······································					,
	Purge Volume		Conductivity	Turbidity	Dissolved	Temperature	Salinity	TDS	Sea Water	ORP (mV)	COMMEN
Time	∫ ۱iter)۔	pН	(vaS/can)	(NTU)	Oxygen	(F/C)	(%)	(g/l)	Potential	 	1) 7
0930	5/30	7,29	16.8	12	10.02	12.63	NM	11.7	9,5	161	₩
0935.	500	7,42	16.4	84	3.26	13.45	NM	9.93	9.4	[52	NM=
0940	500	7.45	15.8	59.1	2.97	13.57	MM	9.78	9.1	149	NOT
a445	500	7,52	13.6	37.2	2.19	13.88	Atid.	8.42	7.8	140	MEASU
0950	500	7,57	12.1	28.6	1.78	14.07	MM	7.5	69	.13 (RED
0955	500.	7.61		23.8	1.51	14.14	NM	6.33	6.2	124	Continue
1000	500	7.62	10.7	21.0	1:39	14.2	MM	6.63	6.0	120	er ben
Meters Us	ed for Measure	ment	(.See b	ack of 18	146)	HORIBA	<u> </u>	5000			ME
İ	O Instrument ([V Yes [] No		rophotometer			E-Tape	· Andrews	
				ADDITIO	ONAL INFO	DMATION					
Samples (Composited Ov	artime Dist	anco	AUUIII	UNAL INFU	KINATION					
	Number and V			ners		MW09	- 13	004			
Duplicate	Sample Numbe	er(s)									
		engay, the first the same of t			MWO	9-13/004	-DUP	D 155	つ <u>にがあり</u>	METAL	5
Cianatur			3 /	of the same of the		Date	. 10	104113	Pag	A 7	of 2
Signature				1		- Date	·1 9	<u>474 (13.</u>	_ rag	· <u> </u>	"
Chackifod	ditional informati	on on back f	7								

MW 09 CONTINUED

Turia	RORGE Vol (vul)	PH	Conduct	Torb NTO	Dissolv Orgger 	Temp	Salenty	TDS 914	Sea Woiter Potoutial	08P
1005	500	7.66	9.87	16.1	1.25	1435	MAR	£.2°2_	5.5	e constitue
	.500	7.68	9.25	(0-3	More than the second	14.47	NM	5.83	5. !	lol
1 1015						14.64		5.71	4.6	84
1010			8.18			14.68	MM	5.16	4.5	79 24
1025			8.05			14.73	1111	5.04	4.4	74
		7 7 7			6-93	14.76	NM	5.0	4.4	

APPENDIX B

Data Validation Memorandum and Chemical Analytical Results

Data Validation Report

Plaza 600 Building, 600 Stewart Street, Suite 1700, Seattle, WA 98101, Telephone: 206.728.2674, Fax: 206.728.2732

www.geoengineers.com

Project: Irondale Remedial Cleanup Action, Quarterly Groundwater Monitoring (Round 4)

File: 00504-042-02

Date: November 5, 2013

Lab Report: XI67/XI86 (ARI)

This report presents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2A validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of eleven groundwater samples obtained from the Post-Construction Quarterly Groundwater Monitoring Event (Round 4) at the former Irondale Iron and Steel Plant site in Irondale, Washington. Samples obtained were submitted to Analytical Resources Incorporated (ARI) of Tukwila, Washington for chemical analysis of diesel- and heavy oil-range petroleum hydrocarbons (NWTPH-Dx), dissolved and total carcinogenic polycyclic aromatic hydrocarbons (CPAHs), and dissolved metals (copper and nickel).

The objective of the data quality assessment was to review laboratory analytical procedures and QC results to evaluate whether the samples were analyzed using well-defined and acceptable methods that provide quantitation limits below applicable regulatory criteria, the precision and accuracy of the data are well-defined and sufficient to provide defensible data, and the quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The ARI Sample Delivery Groups (SDGs; noted above) were reviewed for the following quality control (QC) elements:

- Chain-of-Custody Documentation
- Holding Times
- Surrogates/Labeled Compounds
- Method and Equipment Rinsate Blanks
- Laboratory Control Samples/Ongoing Precision and Recovery Samples
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in two USEPA documents: USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, 2010) and USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 2008).

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical reports. No transcription errors were found, and the appropriate signatures were applied. There were no anomalies mentioned in the sample receipt forms.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries (%R) are calculated following analysis. All surrogate %R for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the contract required quantitation limits.

Matrix Spikes/Matrix Spike Duplicates

Because the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample") is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spike sample".

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference (RPD) values. The frequency requirements were met for all analyses and the %R/RPD values were within the proper control limits.

Laboratory Control Samples

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the RPD values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Laboratory Duplicates (Metals and Fuels only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met in all cases.

Field Replicates/Duplicates

Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates the RPD is used as the criteria for assessing precision, unless one or more of the samples used has a concentration greater than five times the reporting limit for that sample. In this case, the absolute difference is used instead of the RPD.

The following field duplicate sample sets were collected for this sampling event:

MW06-131004/MW06-131004-DUP, MW09-131004/MW09-131004-DUP, and SW02-131004/SW02-131004-DUP

The RPD/absolute difference values for the field duplicate sample sets were within their respective control limits.

Miscellaneous

■ SDG XI67: (Metals) Due to the presence of chloride in Samples MW09-131004, MW09-131004-DUP, SW02-131004, SW02-131004-DUP, and SW03-131004, a sample dilution (2X) was required to accurately quantify the concentrations for copper and nickel, which elevated the reporting limits. The positive results for copper in Samples MW09-131004, MW09-131004-DUP, SW02-131004, and SW03-131004 and the positive results for nickel in Samples SW02-131004, SW02-131004-DUP, and SW03-131004 were reported as estimate below the elevated reporting limits. However, due to the presence of chloride, the positive results were qualified as tentatively identified (NJ) in these samples.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogates, LCS/LCSD, and MS/MSD %R values. Precision was acceptable, as demonstrated by the field duplicate, laboratory duplicate, LCS/LCSD and MS/MSD RPD and absolute difference values.

Data were qualified as tentatively identified because of the chemical interference.

Based on this validation, the data were of acceptable quality for their intended use.

REFERENCES

- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," OSWER 9240.1-51, EPA 540-R-10-011. January 2010.
- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.
- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

Data Validation Report

Plaza 600 Building, 600 Stewart Street, Suite 1700, Seattle, WA 98101, Telephone: 206.728.2674, Fax: 206.728.2732

www.geoengineers.com

Project: Irondale Remedial Cleanup Action, Quarterly Groundwater Monitoring (Round 4)

File: 00504-042-02

Date: November 5, 2013

Lab Report: XI67/XI86 (ARI)

This report presents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2A validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of eleven groundwater samples obtained from the Post-Construction Quarterly Groundwater Monitoring Event (Round 4) at the former Irondale Iron and Steel Plant site in Irondale, Washington. Samples obtained were submitted to Analytical Resources Incorporated (ARI) of Tukwila, Washington for chemical analysis of diesel- and heavy oil-range petroleum hydrocarbons (NWTPH-Dx), dissolved and total carcinogenic polycyclic aromatic hydrocarbons (CPAHs), and dissolved metals (copper and nickel).

The objective of the data quality assessment was to review laboratory analytical procedures and QC results to evaluate whether the samples were analyzed using well-defined and acceptable methods that provide quantitation limits below applicable regulatory criteria, the precision and accuracy of the data are well-defined and sufficient to provide defensible data, and the quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The ARI Sample Delivery Groups (SDGs; noted above) were reviewed for the following quality control (QC) elements:

- Chain-of-Custody Documentation
- Holding Times
- Surrogates/Labeled Compounds
- Method and Equipment Rinsate Blanks
- Laboratory Control Samples/Ongoing Precision and Recovery Samples
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in two USEPA documents: USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, 2010) and USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 2008).

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical reports. No transcription errors were found, and the appropriate signatures were applied. There were no anomalies mentioned in the sample receipt forms.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries (%R) are calculated following analysis. All surrogate %R for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the contract required quantitation limits.

Matrix Spikes/Matrix Spike Duplicates

Because the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample") is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spike sample".

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference (RPD) values. The frequency requirements were met for all analyses and the %R/RPD values were within the proper control limits.

Laboratory Control Samples

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Data Validation Report November 5, 2013 Page 3

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the RPD values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Laboratory Duplicates (Metals and Fuels only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met in all cases.

Field Replicates/Duplicates

Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates the RPD is used as the criteria for assessing precision, unless one or more of the samples used has a concentration greater than five times the reporting limit for that sample. In this case, the absolute difference is used instead of the RPD.

The following field duplicate sample sets were collected for this sampling event:

MW06-131004/MW06-131004-DUP, MW09-131004/MW09-131004-DUP, and SW02-131004/SW02-131004-DUP

The RPD/absolute difference values for the field duplicate sample sets were within their respective control limits.

Miscellaneous

■ SDG XI67: (Metals) Due to the presence of chloride in Samples MW09-131004, MW09-131004-DUP, SW02-131004, SW02-131004-DUP, and SW03-131004, a sample dilution (2X) was required to accurately quantify the concentrations for copper and nickel, which elevated the reporting limits. The positive results for copper in Samples MW09-131004, MW09-131004-DUP, SW02-131004, and SW03-131004 and the positive results for nickel in Samples SW02-131004, SW02-131004-DUP, and SW03-131004 were reported as estimate below the elevated reporting limits. However, due to the presence of chloride, the positive results were qualified as tentatively identified (NJ) in these samples.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogates, LCS/LCSD, and MS/MSD %R values. Precision was acceptable, as demonstrated by the field duplicate, laboratory duplicate, LCS/LCSD and MS/MSD RPD and absolute difference values.

Data Validation Report November 5, 2013 Page 4

Data were qualified as tentatively identified because of the chemical interference.

Based on this validation, the data were of acceptable quality for their intended use.

REFERENCES

- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," OSWER 9240.1-51, EPA 540-R-10-011. January 2010.
- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.
- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

Table of Contents: ARI Job YA74

Client: Geoengineers Project: 0504-042-02 Former Irondale Iron & Steel Plant

	Page From:	Page To:
Inventory Sheet		
Cover Letter		
Chain of Custody Documentation	_2	7
Case Narrative, Data Qualifiers, Control Limits	_8_	_12
Metals Analysis		
Report and Summary QC Forms , RAW DATA	13	135
General Chemistry Analysis		
Report and Summary QC Forms + Law Dara	136	141
General Chemistry Raw Data		
Analyst Notes and Raw Data		

March 10, 2014

Neil Morton GeoEngineers, Inc. Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, WA 98101

RE: Client Project: Former Irondale Iron & Steel Plant, 0542-042-02

ARI Job No.: YA74

Dear Neil:

Please find enclosed the Chain of Custody records (COCs), sample receipt documentation, and the final data package for samples from the project referenced above.

Sample receipt and analytical details are discussed in the Case Narrative.

An electronic copy of this package will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro Project Manager (206) 695-6214

cheronneo@arilabs.com

www.arilabs.com

cc: eFile: YA74

Enclosures

Chain of Custody Documentation

ARI Job ID: YA74

YA74:00002

Chain of Custody Record & Laboratory Analysis Request

Analytical Resources, Incorporated Analytical Chemists and Consultants	4611 South 134th Place, Suite 100 Tukwila, WA 98168	206-695-6200 206-695-6201 (fax)	Notes/Comments				47011	4#F									Received by: (Signature)	Printed Name:	Сотралу	Date & Time:
7	Ice Present?	Cooler ()	Analysis Requested														Relinquished by (Signature)	Printed Name:	Company:	Date & Time.
Page: of	2 26 4 Pre	7			N:	INIL (NO) (SSIG	×	×	×	X	×	×	×	×	X	×		Rich Hidson	AR1	22/14 1190
	7677 8		l	KANT	KHAN	No. Containers	ER 2									→	Received by. (Signature)	Printed Name		Date & Time:
d: DARD	206.728		9	STEEL	FOSIM	Matrix	EVATER			7.0	-	0		a	0	->	<i>M</i> ;	(HAN)	GENGINEERS	0711
VAつく Turn-around Requested: STANDARD	Phone:	NEIL MORTON		IRONDALE JRON & STEEL	,	Time	1/00/	2021	1300	(315	1400	1500	009]	asel	/800	1900	To the last	Vame KHAN	COENGI	Date & Time. 2 2 7 14
Turn-arou	Phone:)W		ne 1	Samplers:	Date	4/16/14	-								>	Relinquished by (Signature)	Printed Name	Company	Date & Time
ARI Assigned Number: \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ARI Client Company:	Client Contact:	Client Project Name:	ER	Client Project #:	0504-042-02 Sample ID	MW9-1100	MW9-1200	MW9-1300	MW9-1300-DUP	MW 9-1400	MW9-1500	MW9-1600	MW9-1700	MW9-1800	00%1-PMM	Comments/Special Instructions			

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or considered agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4RD	Page:	e: 5	4		Analytical Resources, Incorporated Analytical Chemists and Consultants
ARI Client Company: 206.728.	25.82F.8		Date: Ice	Ice Present? Ye&		4611 South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact:		No. of Coolers:	4	Cooler (.7)		206-695-6200 206-695-6201 (fax)
Client Project Name:				Analysis Requested		Notes/Comments
Client Project #: Samplers: FOSIM KH	EEL ILAI KHAN	THE P	ンして、イントン			
0504 - 042 - 0 2 Date Time	Matrix No. Cor	No. Containers				
MML-2000 2/26/14 2000 4	WATER 2	X	X			(1011)
-		\times	X			ALL
SW-1A 0930		X	X		:	CHIMPLES
		\times	×			
SW-2 130		\times	×			
SW-2-DUP 1335		\times	×			
>	· *	× ↑	×			
					_	
Comments/Special Instructions Relinquished by (Signature)	Received by. (Signature)	d by.		Relinquished by. (Signature)		Received by. (Signature)
Printed Name C		Name.	Mulan	Printed Name:		Printed Name
	8	.h	S.	Company:		Сотралу:
Date	Date & Time	2/11/2	14 1140	Date & Time.		Date & Time

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for a services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or considered agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless afternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client. Geo Engineers	Project Name Formor	Irondale Iron	14 Stee
COC No(s).	Delivered by: Fed-Ex UPS Cou	rier Hand Delivered Other	. — Pla
Assigned ARI Job No.	Tracking No:		(NA)
Preliminary Examination Phase:	riacking No.		NA
Were intact, properly signed and dated custody seals attached t	to the outside of to cooler?	YES	(NO)
Were custody papers included with the cooler?		(YES)	NO
Were custody papers properly filled out (ink, signed, etc.)		YES	NO
Temperature of Cooler(s) (°C) (recommended 2 0-6.0 °C for che			1.7
If cooler temperature is out of compliance fill out form 00070F		Temp Gun ID# 908	77952
Cooler Accepted by	Date	e: <u> </u>	_
	and attach all shipping documents		·
Log-In Phase:			
Was a temperature blank included in the cooler?		YES	(NO)
What kind of packing material was used? Bubble Wra	Wet Ice Gel Packs Baggies Foam	Block Paper Other:	
Was sufficient ice used (if appropriate)?		NA YES	NO
Were all bottles sealed in individual plastic bags?		YES	(NO)
Did all bottles arrive in good condition (unbroken)?		YES	NO
Were all bottle labels complete and legible?		YES	NO
Did the number of containers listed on COC match with the num	ber of containers received?	YES	NO NO
Did all bottle labels and tags agree with custody papers?		(VES)	MO)
Were all bottles used correct for the requested analyses?		YES	NO
Do any of the analyses (bottles) require preservation? (attach pr	reservation sheet, excluding VOCs)	NA YES	NO
Were all VOC vials free of air bubbles?		(NA) YES	NO
Was sufficient amount of sample sent in each bottle?		(FEST)	NO
Date VOC Trip Blank was made at ARI		NA	
Was Sample Split by ARI (NA YES Date/Time:	Equipment:	Split by:	 -
	1/27/14 _	1220	
Samples Logged by		1300	
Notify Project manage	er of discrepancies or concerns **		
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle	Sample ID on C	OC
MW9-2000 MW-2000			
mw9-2100 mw-2100			
7110			
Additional Notes, Discrepancies, & Resolutions:			
Used 10 from Container	,2,		
By: Date: 2/27/14			
Smell Air Bubbles Peabubbles LARGE Air Bubbles	Small → "sm" (<2 mm)		
2mm 2-4 mm > 4 mm	Peabubbles -> "pb" (2 to < 4 mm)		
· · · • • • • • •	Large → "lg" (4 to < 6 mm)		
	Headspace → "hs" (>6 mm)		

0016F 3/2/10 Cooler Receipt Form

Revision 014

PRESERVATION VERIFICATION 02/27/14
Page 1 of 2

Inquiry Number: NONE Analysis Requested: 02/27/14 Contact: Morton, Neil

Client: Geoengineers

Logged by: JM Sample Set Used: Yes-481 Validatable Package: No

Deliverables:

ANALYTICAL RESOURCES INCORPORATED

ARI Job No: XA74

PC: Cheronne VTSR: 02/27/14

Project #: 0504-042-02 Project: Former Irondale Iron & Steel Plant Sample Site: SDG No:

Analytical Protocol: In-house

LOGNUM ARI ID	CLIENT ID	CN >12	WAD >12	NH3	3 COD	D FOG	MET <2	PHEN PHOS <2 <2	PHOS <2	TKN NO23	ļ	TOC <2	\$2 TE	TPHD Fe	Fe2+ DN <2	DMET DOC FLT FLT	PARAMETER	ADJUSTED TO 1	LOT NUMBER	AMOUNT ADDED	DATE/BY
14-3248 xa74a	MW9-1100														Y						
14-3249 xA74B	MW9-1200						0									¥					
14-3250 xa74c	MW9-1300					-									***						
14-3251 xA74D	MW9-1300-Dup														 						
14-3252 xa74E	MW9-1400														7	N.					
14-3253 XA74F	MW9-1500					-									X						
14-3254 xa74G	MW9-1600						Q _								7						
14-3255 XA74H	MW9-1700	_										-			X						
14-3256 XA74I	MW9-1800														¥						
14-3257 XA74J	MW9-1900						Q _								X						
14-3258 XA74K	MW9-2000														7						
4-3259	MW9-2100	-					\$								X						
44-3260 XA74M	SW-1A						Ø						-		Y					751.2	
4 -3261	SW-1B		- ((1)			_					7						
)	(`. -	_																	

PRESERVATION VERIFICATION 02/27/14 Page 2 of 2

Client: Geoengineers

ARI Job No: XA74

Project #: 0504-042-02 Project: Former Irondale Iron & Steel Plant

LOGNUM ARI ID	LOGNUM ARI ID CLIENT ID	CN >12	WAD >12	NH3 <2	CN WAD NH3 COD >12 >12 <2 <2	F0G <2	FOG MET PHEN PHOS <2 <2	PHEN <2	PHOS <2	TKN <2	N023 /	70C <2	\$2	1PHD F	'e2+ D	TKN NO23 TOC S2 TPHD Fe2+ DMET DOC <2 <2 <2 <2 FLT FLT FLT	ADJUSTED LOT AMOUNT PARAMETER TO NUMBER ADDED	ADJUSTED TO	LOT NUMBER	AMOUNT	DATE/BY
14-3262 xa740	SW-2															7					
14-3263 xa74P	SW-2-Dup						\$ C									Y					
14-3264 xa74 0	SW-3															7					

Checked By M Date 2/2/19

YATH' BEEE/

Case Narrative, Data Qualifiers, Control Limits

ARI Job ID: YA74

YA74:00008

Case Narrative

Client: GeoEngineers, Inc.

Project: Former Irondale Iron & Steel Plant, 0542-042-02

ARI Job No.: YA74

Sample Receipt

Seventeen water samples were received on February 27, 2014 under ARI job YA74. The cooler temperature measured by IR thermometer following ARI SOP was 1.7°C. For further details regarding sample receipt, please refer to the Cooler Receipt Form.

Dissolved Metals by Method 200.8

The samples and associated laboratory QC were digested and analyzed within recommended holding times.

Samples were analyzed using a UCT (Universal Cell Technology) ICP-MS instrument which includes the capability to run DRC (Dynamic Reaction Cell), KED (Kinetic Energy Discrimination), or standard ICP-MS mode.

The method blank was clean at the reporting limits. The LCS percent recoveries were within control limits.

The matrix spike percent recoveries and duplicate RPDs were within control limits.

General Chemistry Parameters (Conductivity)

The samples and associated laboratory QC were prepared and analyzed within recommended holding times.

The method blank was clean at the reporting limit. The SRM percent recovery was within control limits.

The replicate RPD was within the control limit.

Case Narrative YA74 Page 1 of 1

COUNTY PAY

Sample ID Cross Reference Report

ARI Job No: YA74 Client: Geoengineers Project Event: 0504-042-02

Project Name: Former Irondale Iron & Steel Plant

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	MW9-1100	YA74A	14-3248	Water	02/26/14 11:00	02/27/14 11:40
2.	MW9-1200	YA74B	14-3249	Water	02/26/14 12:00	
3.	MW9-1300	YA74C	14-3250	Water	02/26/14 13:00	02/27/14 11:40 02/27/14 11:40
4.	MW9-1300-Dup	YA74D	14-3251	Water	02/26/14 13:15	02/27/14 11:40
5.	MW9-1400	YA74E	14-3252	Water	02/26/14 14:00	02/27/14 11:40
6.	MW9-1500	YA74F	14-3253	Water	02/26/14 15:00	02/27/14 11:40
7.	MW9-1600	YA74G	14-3254	Water	02/26/14 16:00	02/27/14 11:40
8.	MW9-1700	YA74H	14-3255	Water	02/26/14 17:00	02/27/14 11:40
9.	MW9-1800	YA74I	14-3256	Water	02/26/14 18:00	02/27/14 11:40
10.	MW9-1900	YA74J	14-3257	Water	02/26/14 19:00	02/27/14 11:40 02/27/14 11:40
11.	MW9-2000	YA74K	14-3258	Water	02/26/14 20:00	
12.		YA74L YA74M	14-3259 14-3260	Water Water	02/26/14 20:00 02/26/14 21:00 02/26/14 09:30	02/27/14 11:40 02/27/14 11:40 02/27/14 11:40
14.	SW-1B SW-2	YA74N YA74O	14-3261 14-3262	Water	02/26/14 09:45	02/27/14 11:40
16.	SW-2-Dup SW-3	YA74P YA74Q	14-3263 14-3264	Water Water Water	02/26/14 13:10 02/26/14 13:25 02/26/14 10:15	02/27/14 11:40 02/27/14 11:40 02/27/14 11:40

Printed 02/27/14 Page 1 of 1

YATU: OFFIG

Indium Terbium

Analytical Method Information

Blank Spike / LCS Reporting Surrogate Duplicate **Matrix Spike MDL** %R RPD %R Analyte RPD **RPD** Limit %R Met Diss 200.8 (EPA 200.8) in Water Preservation: pH<2; HNO3, Cool <6°C Container: HDPE NM, 500 mL Amount Required: 500 mL Hold Time: 180 days Aluminum-27 0.00160 0.0200 mg/L20 75 - 12520 80 - 120 20 20 20 80 - 12020 Antimony-121 0.0000100 .000200 mg/L 75 - 1250.0000110 .000200 mg/L 20 75 - 12520 80 - 12020 Antimony-123 20 20 Arsenic-75a 0.0000480 .000200 mg/L 75 - 125 80 - 12020 .000200 mg/L 20 75 - 125 20 80 - 120 20 Arsenic-75b 0.0000480 0.0000200 .000500 mg/L 20 75 - 125 20 80 - 12020 Barium-135 .000500 mg/L 20 75 - 125 20 80 - 120 20 Barium-137 0.0000190 Beryllium-9 0.0000210 .000200 mg/L 20 75 - 125 20 80 - 12020 .000100 mg/L 20 20 80 - 12020 Cadmium-111 0.000100 75 - 125 Cadmium-114 0.00000500 .000100 mg/L 20 75 - 12520 80 - 12020 20 20 80 - 120 Calcium-43 0.00398 0.0500 mg/L 75 - 125 20 0.0000450 .000500 mg/L 20 75 - 12520 80 - 12020 Chromium-52 .000500 mg/L 20 75 - 125 20 80 - 120 20 Chromium-53 0.000118Cobalt-59 20 75 - 125 20 80 - 120 20 0.0000110 .000200 mg/L Copper-63 0.000158 .000500 mg/L 20 75 - 12520 80 - 12020 20 20 80 - 120 Copper-65 0.000236 .000500 mg/L 75 - 12520 0.00575 0.0200 mg/L 20 75 - 125 20 80 - 12020 Iron-54 Iron-57 0.00388 0.0200 mg/L 20 75 - 12520 80 - 12020 Lead-208 0.0000460 .000100 mg/L 20 75 - 125 20 80 - 12020 80 - 120 20 20 0.000297 0.0200 mg/L 75 - 12520 Magnesium-24 20 75 - 125 20 80 - 120Manganese-55 0.0000220.000500 mg/L 20 .000200 mg/L 20 75 - 125 20 80 - 120 20 Molybdenum-98 0.0000130 Nickel-60 0.0000790 .000500 mg/L 20 75 - 12520 80 - 12020 20 20 80 - 120Nickel-62 0.0000890 .000500 mg/L 75 - 12520 Potassium-39 0.00294 0.0200 mg/L20 75 - 125 20 80 - 12020 Selenium-82 0.000127 .000500 mg/L 20 75 - 12520 80 - 12020 20 Selenium-78 0.000324 0.00200 mg/L20 75 - 125 80 - 120 20 20 20 80 - 120 Silver-107 0.00000800 .000200 mg/L 75 - 125 20 20 20 Sodium-23 0.00283 0.100 mg/L75 - 12580 - 12020 Thorium-232 0.0000130 .000200 mg/L 20 75 - 12520 80 - 12020 Thallium-205 0.00000400 .000200 mg/L 20 75 - 125 20 80 - 12020 20 Uranium-238 0.00000300 .000200 mg/L 20 75 - 12580 - 12020 Vanadium-51a 0.0000430 .000200 mg/L 20 75 - 12520 80 - 12020 Vanadium-51b 0.0000430 .000200 mg/L 20 75 - 12520 80 - 120 20 20 75 - 125 20 80 - 120 Zinc-66 0.000497 0.00400 mg/L 20 0.000531 0.00400 mg/L 20 75 - 12520 80 - 120 20 Zinc-67 0.000524 0.00400 mg/L 20 75 - 125 20 80 - 120 20 Zinc-68 Lithium Scandium Germanium

Page 1 of 1

Printed: 3/6/2014

7674: 22333

Spike Recovery Control Limits for Conventional Wet Chemistry Effective 5/1/09

Control limits are updated periodically. Assure that you have ARI's current control limits by downloading the files at the time of use. http://www.arilabs.com/portal/downloads/ARI-CLs.zip

	ARI's Co	ntrol Limits
Sample Matrix:	Water	Soil / Sediment
Matrix Spike Recoveries	% Recovery	% Recovery
Ammonia	75 - 125	75 - 125
Bromide	75 125	75 - 125
Chloride	75 125	75 - 125
Cyanide	75 - 125	75 - 125
Ferrous Iron	75 - 125	75 - 125
Fluoride	75 - 125	75 - 125
Formaldehyde	75 - 125	75 - 125
Hexane Extractable Material		78 - 114
Hexavalent Chromium	75 - 125	75 - 125
Nitrate/Nitrite	75 - 125	75 - 125
Oil and Grease	75 - 125	75 - 125
Phenol	75 - 125	75 - 125
Phosphorous	75 - 125	75 - 125
Sulfate	75 - 125	75 - 125
Sulfide	75 - 125	75 - 125
Total Kjeldahl Nitrogen	75 - 125	75 - 125
Total Organic Carbon	75 - 125	75 - 125
Duplicate RPDs		
Acidity	±20%	±20%
Alkalinity	±20%	±20%
BOD	±20%	±20%
Cation Exchange	±20%	±20%
COD	±20%	±20%
Conductivity	±20%	±20%
Salinity	±20%	±20%
Solids	±20%	±20%
Turbidity	±20%	±20%

Metals Analysis Report and Summary QC Forms

ARI Job ID: YA74

YA74:00013

Cover Page

INORGANIC ANALYSIS DATA PACKAGE

CLIENT: Geoengineers

PROJECT: Former Irondale Iron

SDG: YA74

CLIENT ID	ARI ID	ARI LIMS ID	REPREP	
MW9-1100	YA74A	14-3248		
MW9-1100D	YA74ADUP	14-3248		
MW9-1100S	YA74ASPK	14-3248		
MW9-1200	YA74B	14-3249		
PBW	YA74MB1	14-3249		
LCSW	YA74MB1SPK	14-3249		
MW9-1300	YA74C	14-3250		
MW9-1300-Dup	YA74D	14-3251		
MW9-1400	YA74E	14-3252		
MW9-1500	YA74F	14-3253		
MW9-1600	YA74G	14-3254		
MW9-1700	YA74H	14-3255		
MW9-1800	YA74I	14-3256		
MW9-1900	YA74J	14-3257		
MW9-2000	YA74K	14-3258		
MW9-2100	YA74L	14-3259		
SW-1A	YA74M	14-3260		
SW-1B	YA74N	14-3261		
SW-2	YA740	14-3262		
SW-2-Dup	YA74P	14-3263		
SW-3	YA74Q	14-3264		
ere ICP interelemen	t corrections ap	oplied ?	Yes/No	YES
ere ICP background f yes – were raw da			Yes/No	YES
pplication of backg			Yes/No	ИО
comments:				
				-
HIS DATA PACKAGE/HA	S BEEN REVIEWED	AND AUTHORIZED F	OR RELEAS	E BY:
An .	di (1).			
Signature: $////$	Iller	_ Name: Jay Kul	ממ	

COVER PAGE

Page 1 of 1

Lab Sample ID: YA74A

LIMS ID: 14-3248

Matrix: Water

Data Release Authorized:

Reported: 03/06/14

Sample ID: MW9-1100 SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	1.6	5	6
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	0.8	5	8

U-Analyte undetected at given DL

J-Analyte detected between DL and LOQ

DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

INORGANICS ANALYSIS DATA SHEET

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: YA74B

LIMS ID: 14-3249

Matrix: Water Data Release Authorize

Reported: 03/06/14

Sample ID: MW9-1200 SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	0.8	2	4
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	0.4	2	6

U-Analyte undetected at given DL

J-Analyte detected between DL and LOQ

DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

Page 1 of 1

Lab Sample ID: YA74C LIMS ID: 14-3250

Matrix: Water Data Release Authorized

Reported: 03/06/14

Sample ID: MW9-1300 SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	1.6	5.0	3.9 Ј
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	0.8	5	5

U-Analyte undetected at given DL

J-Analyte detected between DL and LOQ

DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

Page 1 of 1

Lab Sample ID: YA74D

LIMS ID: 14-3251

Matrix: Water

Data Release Authorized Reported: 03/06/14

Sample ID: MW9-1300-Dup

SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	1.6	5.0	4.7 J
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	0.8	5	5

U-Analyte undetected at given DL J-Analyte detected between DL and LOQ DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

Page 1 of 1

Lab Sample ID: YA74E

LIMS ID: 14-3252

Matrix: Water Data Release Authorized

Reported: 03/06/14

ed

Sample ID: MW9-1400 SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	0.8	2	5
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	0.4	2	6

U-Analyte undetected at given DL J-Analyte detected between DL and LOQ DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

YA74: 00013

Page 1 of 1

Lab Sample ID: YA74F LIMS ID: 14-3253

Matrix: Water Data Release Authorized

Reported: 03/06/14

Sample ID: MW9-1500 SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	0.8	2	6
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	0.4	2	5

U-Analyte undetected at given DL

J-Analyte detected between DL and LOQ

DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

Page 1 of 1

Lab Sample ID: YA74G LIMS ID: 14-3254

Matrix: Water Data Release Authorized:

Reported: 03/06/14

Sample ID: MW9-1600 SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	: Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	0.4	1	4
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	0.2	1	6

U-Analyte undetected at given DL J-Analyte detected between DL and LOQ DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

Page 1 of 1

Lab Sample ID: YA74H

LIMS ID: 14-3255 Matrix: Water

Data Release Authorized: Reported: 03/06/14

d:

Sample ID: MW9-1700 SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	0.4	1	3
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	0.2	1	7

U-Analyte undetected at given DL J-Analyte detected between DL and LOQ

DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

YA74:00022

Page 1 of 1

Lab Sample ID: YA74I

LIMS ID: 14-3256

Matrix: Water
Data Release Authorized
Reported: 03/06/14

Sample ID: MW9-1800 SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	0.4	1	3
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	0.2	1	7

U-Analyte undetected at given DL J-Analyte detected between DL and LOQ DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

Page 1 of 1

Lab Sample ID: YA74J

LIMS ID: 14-3257

Matrix: Water

Data Release Authorized: Reported: 03/06/14

Sample ID: MW9-1900 SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	0.4	1	3
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	0.2	1	8

U-Analyte undetected at given DL J-Analyte detected between DL and LOQ DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

Page 1 of 1

Lab Sample ID: YA74K LIMS ID: 14-3258

Matrix: Water

Data Release Authorized Reported: 03/06/14

Sample ID: MW9-2000 SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	0.4	1	3
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	0.2	1	5

U-Analyte undetected at given DL J-Analyte detected between DL and LOQ DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

7674:00025

Page 1 of 1

Lab Sample ID: YA74L LIMS ID: 14-3259

Matrix: Water Data Release Authorized:

Reported: 03/06/14

Sample ID: MW9-2100 SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	0.4	1	3
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	0.2	1	5

U-Analyte undetected at given DL J-Analyte detected between DL and LOQ DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

7A74: 22025

Page 1 of 1

Lab Sample ID: YA74M LIMS ID: 14-3260

Matrix: Water Data Release Authorized Reported: 03/06/14

Sample ID: SW-1A SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	4	10	10 U
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	2	10	10 U

U-Analyte undetected at given DL J-Analyte detected between DL and LOQ DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

INORGANICS ANALYSIS DATA SHEET

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: YA74N

LIMS ID: 14-3261 Matrix: Water

Data Release Authorized Reported: 03/06/14

Sample ID: SW-1B SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	4	10	10 U
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	2	12	4 J

U-Analyte undetected at given DL

J-Analyte detected between DL and LOQ

DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

Page 1 of 1

Lab Sample ID: YA740 LIMS ID: 14-3262

Matrix: Water Data Release Authorized

Reported: 03/06/14

Sample ID: SW-2 SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L	Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	4	10	10 (U
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	2	12	4 .	J

U-Analyte undetected at given DL J-Analyte detected between DL and LOQ DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

Page 1 of 1

Lab Sample ID: YA74P

LIMS ID: 14-3263

Matrix: Water

Data Release Authorized Reported: 03/06/14

Sample ID: SW-2-Dup SAMPLE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	4	10	10 U
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	2	10	10 U

U-Analyte undetected at given DL J-Analyte detected between DL and LOQ DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

Page 1 of 1

Lab Sample ID: YA74Q

LIMS ID: 14-3264

Matrix: Water

Data Release Authorized

Reported: 03/06/14

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

SAMPLE

0504-042-02

Sample ID: SW-3

Date Sampled: 02/26/14 Date Received: 02/27/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	4	12	4 J
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	2	10	10 U

U-Analyte undetected at given DL J-Analyte detected between DL and LOQ DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

Page 1 of 1

Lab Sample ID: YA74A LIMS ID: 14-3248

Matrix: Water Data Release Authorized Reported: 03/06/14

Sample ID: MW9-1100 MATRIX SPIKE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	8	
Analyte	Method	Sample	Spike	Added	Recovery	<u>Q</u>
Copper	200.8	6	29	25.0	92.0%	
Nickel	200.8	8	34	25.0	104%	

Reported in µg/L

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

FORM-V

TAPE PAGE

INORGANICS ANALYSIS DATA SHEET

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: YA74A

LIMS ID: 14-3248

Matrix: Water
Data Release Authorized

Reported: 03/06/14

Sample ID: MW9-1100

DUPLICATE

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: 02/26/14 Date Received: 02/27/14

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
Copper	200.8	6	6	0.0%	+/- 5	L	
Nickel	200.8	8	8	0.0%	+/- 5	L	

Reported in µg/L

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

EEDOD: PYAY

Page 1 of 1

Lab Sample ID: YA74LCS

LIMS ID: 14-3249

Matrix: Water

Data Release Authorized Reported: 03/06/14

Sample ID: LAB CONTROL

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Copper Nickel	200.8	25.6 26.0	25.0 25.0	102% 104%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

YAZII MANGIL

Page 1 of 1

Lab Sample ID: YA74MB

LIMS ID: 14-3249

Matrix: Water
Data Release Authorized:

Reported: 03/06/14

Sample ID: METHOD BLANK

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	DL	LOQ	μg/L Q
200.8	02/28/14	200.8	03/04/14	7440-50-8	Copper	0.16	0.5	0.5 U
200.8	02/28/14	200.8	03/04/14	7440-02-0	Nickel	0.08	0.5	0.5 U

U-Analyte undetected at given DL

J-Analyte detected between DL and LOQ

DL-Detection Limit

Results reported below the LOQ are for statistical purposes only and have not been evaluated by either an analyst or data reviewer.

General Chemistry Analysis Report and Summary QC Forms

ARI Job ID: YA74

YA74:00136

INORGANICS ANALYSIS DATA SHEET Conductivity by Method EPA 120.1

Data Release Authorized: Reported: 03/03/14

Date Received: 02/27/14

Page 1 of 1

QC Report No: YA74-Geoengineers

Project: Former Irondale Iron & Steel Plant

0504-042-02

Client/ ARI ID	Date Sampled	Matrix	Analysis Date & Batch	RL	Result
MW9-1100 YA74A 14-3248	02/26/14	Water	02/28/14 022814#1	1.00	39,900
MW9-1200 YA74B 14-3249	02/26/14	Water	02/28/14 022814#1	1.00	12,400
MW9-1300 YA74C 14-3250	02/26/14	Water	02/28/14 022814#1	1.00	15,600
MW9-1300-Dup YA74D 14-3251	02/26/14	Water	02/28/14 022814#1	1.00	42,100
MW9-1400 YA74E 14-3252	02/26/14	Water	02/28/14 022814#1	1.00	14,600
MW9-1500 YA74F 14-3253	02/26/14	Water	02/28/14 022814#1	1.00	16,300
MW9-1600 YA74G 14-3254	02/26/14	Water	02/28/14 022814#1	1.00	8,230
MW9-1700 YA74H 14-3255	02/26/14	Water	02/28/14 022814#1	1.00	4,640
MW9-1800 YA74I 14-3256	02/26/14	Water	02/28/14 022814#1	1.00	3,850
MW9-1900 YA74J 14-3257	02/26/14	Water	02/28/14 022814#1	1.00	3,550
MW9-2000 YA74K 14-3258	02/26/14	Water	02/28/14 022814#1	1.00	3,270
MW9-2100 YA74L 14-3259	02/26/14	Water	02/28/14 022814#1	1.00	3,340
SW-1A YA74M 14-3260	02/26/14	Water	02/28/14 022814#1	1.00	44,700
SW-1B YA74N 14-3261	02/26/14	Water	02/28/14 022814#1	1.00	45,200
SW-2 YA740 14-3262	02/26/14	Water	02/28/14 022814#1	1.00	43,200
SW-2-Dup YA74P 14-3263	02/26/14	Water	02/28/14 022814#1	1.00	43,100
SW-3 YA74Q 14-3264	02/26/14	Water	02/28/14 022814#1	1.00	45,300

Reported in umhos/cm

RL-Analytical reporting limit U-Undetected at reported detection limit Report for YA74

1474:20137

REPLICATE RESULTS-CONVENTIONALS YA74-Geoengineers

Matrix: Water

Data Release Authorized

Reported: 03/03/14

Project: Former Irondale Iron & Steel

Event: 0504-042-02 Date Sampled: 02/26/14 Date Received: 02/27/14

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: YA74A	Client ID: MW9-1100				
Conductivity	02/28/14	umhos/cm	39,900	40,000	0.3%

Water Replicate Report-YA74

BEIGG: PTAY

METHOD BLANK RESULTS-CONVENTIONALS YA74-Geoengineers

Matrix: Water

Data Release Authorized Reported: 03/03/14

Project: Former Irondale Iron & Steel

Event: 0504-042-02

Date Sampled: NA Date Received: NA

Analyte	Date/Time	Units	Blank
Conductivity	02/28/14 12:28	umhos/cm	< 1.00 U

STANDARD REFERENCE RESULTS-CONVENTIONALS YA74-Geoengineers

Matrix: Water

Data Release Authorized Reported: 03/03/14

Project: Former Irondale Iron & Steel Event: 0504-042-02 Date Sampled: NA

Date Received: NA

Analyte/SRM ID	Date/Time	Units	SRM	True Value	Recovery
Conductivity Ricca #4110724	02/28/14 12:28	umhos/cm	985	1,000	98.5%

APPENDIX C Report Limitations and Guidelines for Use

APPENDIX C REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This Appendix provides information to help you manage your risks with respect to the use of this report.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Environmental Services Are Performed For Specific Purposes, Persons And Projects

This report has been prepared for the exclusive use by the Washington Department of Ecology. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report Is Based On A Unique Set Of Project-Specific Factors

This report has been prepared for the former Irondale Iron and Steel Plant site at the intersection of East Moore Street and 1st Avenue in Irondale, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

Reliance Conditions For Third Parties

No other party may rely on the product of our services unless we agree in advance and in writing to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations Are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance change, or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Study Is Completed

No environmental assessment can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely-spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil And Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Have we delivered World Class Client Service?

Please let us know by visiting **www.geoengineers.com/feedback**.

