FOCUSED FEASIBILITY STUDY ADDENDUM

Former Walker Chevrolet

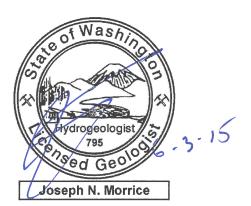
Prepared for: David Shaw, Successor to Walker Chevrolet

Project No. 080190-004-14 • June 3, 2015 Final

FOCUSED FEASIBILITY STUDY ADDENDUM


Former Walker Chevrolet

Prepared for: David Shaw, Successor to Walker


Chevrolet

Project No. 080190-004-14 • June 3, 2015 Final

Aspect Consulting, LLC

Alan Noell, PhD, PE, CHMM Associate Remediation Engineer anoell@aspectconsulting.com

Joe Morrice, LHG
Associate Hydrogeologist
jmorrice@aspectconsulting.com

V:\080190 Stadium Thriftway LLC\Deliverables\FSS Addendum\Final 6-3-15\Walker Chevrolet FFS Addendum - Revised 6.2.2015.docx

Contents

A	ronyms	iii
1	Introduction	1
	1.1 Site Definition	1
	1.2 Ecology's Opinions and Objectives of FFS Addendum	2
	1.2.1 North Gas Station	2
	1.2.2 South Gas Station	
	1.2.3 Former Paint Booth	
	1.2.4 Sub-Slab Vapor Intrusion Exposure Pathway near Entry on North of Building	
2	South Gas Station	5
3	Former Paint Booth	7
	3.1 Soil Contamination	7
	3.2 Soil Vapor Intrusion Exposure Pathway	7
	3.3 Groundwater Contamination	
4	Preferred Cleanup Alternative	10
-	4.1 Reevaluation of Cleanup Action Objectives	
	4.1.1 Soil	
	4.1.2 Groundwater	
	4.1.3 Indoor Air	
	4.2 Preferred Cleanup Alternative Components	11
Re	ferences	13
Li	nitations	14
Li	st of Tables	
2-	Soil Sample Results at South Gas Station	
3-	Soil Sample Results near Former Paint Booth	
3-	Indoor, Ambient, and Sub-Slab Air Sample Results near Former Pai Booth	int
3-	B Groundwater Elevation Data	
3-	Groundwater Volatile Organic Compound Sample Results	
3-	Groundwater Sample Results for Chemicals of Potential Concern ar Natural Attenuation Parameters	nd

List of Figures

- 1 Site Map Former Walker Chevrolet
- 2 Sample Locations and Detail at Former South Gas Station
- 3 Current Details of Building near Former Paint Booth
- 4 Interior Details of Building near Former Paint Booth

List of Appendices

- A Summarized Figures and Data Tables from 1994 Remedial Action Reports and Due Diligence Sampling from 2006 to 2008
- B Soil Boring Logs from South Gas Station
- C Soil Analytical Results from South Gas Station
- D Air Analytical Results from Former Paint Booth
- E Groundwater Analytical Results

Acronyms

Aspect Consulting, LLC

BTEX benzene, toluene, ethylbenzene, and xylenes

Bison Bison Environmental Northwest, Inc.
Ecology Washington Department of Ecology

FFS Focused Feasibility Study
HCID hydrocarbon identification
MCL maximum contaminant level

µg/m³ micrograms per cubic meter

mg/kg milligrams per kilogram

µg/L micrograms per liter

NFA no further action

MTCA Model Toxics Control Act

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PCE tetrachloroethylene

PCS petroleum-contaminated soil

RCRA Resource Conservation and Recovery Act

RI Remedial Investigation

ROW right-of-way

Site Former Walker Chevrolet Site
Stemen Stemen Environmental, Inc.

SVE soil vapor extraction

TCE trichloroethylene

TPH total petroleum hydrocarbons

TPN tax parcel number

UST underground storage tank
VCP Voluntary Cleanup Program
VOC volatile organic compound

1 Introduction

The Former Walker Chevrolet (Site) is located at 633 Division Avenue in Tacoma, Washington and is enrolled in the Voluntary Cleanup Program (VCP) with the Washington State Department of Ecology (Ecology) as VCP No. SW1040. Aspect Consulting, LLC (Aspect) submitted a Focused Feasibility Study (FFS) (Aspect, 2014a) for the Site to Ecology for review on May 16, 2014, and Ecology provided an opinion on November 17, 2014. Aspect subsequently met with the Ecology site manager on December 18, 2014 to discuss Ecology's concerns and to develop a plan to identify the remaining investigation data gaps and to identify the path necessary for Ecology to provide property-specific no further action (NFA) determinations for the Site.

This Focused Feasibility Study (FFS) Addendum defines the Site boundary, describes the Site characterization data gaps identified by Ecology, and describes the investigation to address these data gaps. The additional characterization data provided in this FFS Addendum do not impact the development and evaluation of the cleanup action alternatives, the disproportionate cost analysis, and selection of the preferred cleanup alternative presented in the FFS (Aspect, 2014a). Section 4 reviews the preferred cleanup alternative, reevaluates the cleanup action objectives, and describes the components of the preferred cleanup action alternative.

1.1 Site Definition

The Former Walker Chevrolet Site is formally distinguished from the adjacent Morrell's Dry Cleaners Site (VCP No. SW1039) located at 608 North First Street in Tacoma, Washington, as determined by Ecology (Ecology, 2014). The Former Walker Chevrolet Site consists of the following two tax parcels shown in Figure 1.

- Tax Parcel No. (TPN) 2031-13-0025: This 13,491 square foot parcel is owned by Stadium District Properties, LLC. This parcel is currently developed as a parking lot and is used primarily by the Stadium Thriftway grocery store. The north gas station operated on this parcel during the 1940s through circa 1960, and the abandoned underground storage tanks (USTs), product lines, and impacted soil were removed in 1994 (Bison, 1994b). Ecology (2014) determined that TPN 2031-13-0025 could be eligible for an unencumbered, property-specific NFA determination.
- TPN 2030-12-0032: This 29,730 square foot parcel is owned by Stadium District Properties, LLC. This parcel contains a two-story, split-level building that occupies most of the parcel. Stadium Thriftway operates a grocery store on the lower level on the north side of the parcel, CARSTAR Auto Body operates a collision repair service business on the lower level on the south side of the parcel, and Titus-Will Service and Tire operates a tire service center on the upper level of the building. Approximately 1,000 square feet of a parking lot is located at the south end of the parcel, and the remaining, approximately 800 square feet of the parking lot is located in the City of Tacoma right-of-way (ROW). Ecology (2014)

determined that additional Site characterization was necessary for the former south gas station and former paint booth on this parcel. This FFS Addendum includes additional Site characterization on this parcel. We intend to record an environmental covenant for this parcel in concurrence with a NFA determination from Ecology.

1.2 Ecology's Opinions and Objectives of FFS Addendum

This section summarizes Ecology's (2014) opinions and the investigation data gaps.

1.2.1 North Gas Station

Ecology (2014) determined that the total petroleum hydrocarbon (TPH) soil contamination on the former north gas station has been fully delineated and that the contamination was removed in 1994. Ecology concluded that the source of contamination originated on and was limited to this parcel and is not associated with contamination on the nearby parcels. The groundwater table was not encountered in MW-3 on the parcel and Ecology concluded that contamination would have been unlikely to impact groundwater. Ecology (2014) determined that TPN 2031-13-0025 could be eligible for an unencumbered, property-specific NFA separate from the other parcels.

The FFS (Aspect, 2014a) summarizes the remediation and characterization of the former north gas station, and sketches of the remediation area, features, and sample locations are summarized in that report's Appendix A; and retained as Appendix A in this report. This FFS Addendum incorporates TPN 2031-13-0025 into the Site; however, no additional investigation activities were performed for this parcel.

1.2.2 South Gas Station

The south gas station operated in the parking lot on the south side of TPN 2030-12-0032 from around 1925 until sometime in the 1940s. Figure 2 shows the locations of the former USTs, pump islands, and the soil sampling locations. Seven USTs, the pump island, and associated piping were removed in July and August 1994, and the impacted soil was characterized and removed to below the current Method A soil cleanup levels (CULs) (Bison, 1994a). Seven soil borings were sampled in the parking lot on August 31, 2006 during due-diligence sampling. Gasoline-range TPH (TPH-G) were detected above the Method A soil CUL in the 15 and 16 foot below ground surface (bgs) intervals of borings S-1 and S-7 that are respectively in the southeast and southwest corners of the parking lot in the City of Tacoma ROW. In December 2013, Aspect sampled deep soil boring AB-1 near the former pump island and detected TPH-G slightly above the Method A soil CUL at 15 feet bgs and confirmed that TPH contamination attenuates to below the detection limits in the unsaturated till.

Ecology (2014) determined that the full horizontal and vertical extent of petroleum contaminated soil (PCS) was not delineated. In the December 18, 2014 meeting, Ecology agreed that the PCS could be delineated by sampling additional soil borings on the southeast and southwest corners of the parking lot in the City of Tacoma ROW and by sampling an additional soil boring in the triangular median in the street approximately 30 feet south of the parking lot. Ecology agreed that the borings could be advanced to 15 feet deep to evaluate the presence of contamination within the standard point of compliance for the direct contact exposure pathway.

Ecology (2014) determined that groundwater has not been impacted by PCS at the south gas station based on seven rounds of groundwater sampling in MW-1 from August 2007 to January 2014. Ecology (2014) determined that although tetrachloroethylene (PCE) was detected only once, at a concentration below the Method A groundwater CUL in August 2007, and trichloroethylene (TCE) was detected only once, at a concentration below the Method A groundwater CUL in January 2014, chlorinated ethylenes were not detected in soil at the south gas station.

Section 2 of the FFS Addendum describes the additional investigation at the south gas station and Section 4 provides recommendations for well decommissioning and for an NFA with environmental covenant for the residual contamination.

1.2.3 Former Paint Booth

Ecology requested that a detailed map be developed that reconciles the location of the former paint booth, former drains, and former heating oil UST with the current site features, and historical and recent sampling locations. Figure 3 shows the location of the former paint booth and monitoring well MW-11 within the building, and Figure 4 provides greater detail of the current features, former paint booth, and sampling locations.

Ecology (2014) concluded that the soil vapor intrusion exposure pathway was inadequately characterized for the building. Ecology recommended that sub-slab vapor and indoor air be evaluated near floor drains in the produce preparation area on the north side of the produce cooler near the former paint booth. In the December 2014 meeting, the Ecology site manager agreed that the sub-slab vapor and indoor air concentrations should be compared with both Method B and Method C screening levels, and that the Method C screening levels may be appropriate with the current commercial use of the building.

Ecology (2014) determined that monitoring well MW-11 had been sampled three times and recommended that a fourth groundwater sample be collected to conclude Stage 2 monitoring. Ecology (2014) stated that the groundwater sample from MW-11 should be analyzed for gasoline-, diesel-, and oil-range TPH; chlorinated volatile organic compounds (VOCs); ethylene dibromide (EDB); and total metals. Additionally, Ecology (2014) requested that the groundwater sample from MW-11 be evaluated for 1,4-dioxane.

Section 3 of the FFS Addendum describes the additional air and groundwater sampling near the former paint booth, and Section 4 provides recommendations for well decommissioning and for an NFA with environmental covenant for the residual contamination.

1.2.4 Sub-Slab Vapor Intrusion Exposure Pathway near Entry on North End of Building

Although Ecology (2014) referenced the sub-slab vapor intrusion exposure pathway on the north side of the building, the Ecology site manager agreed that this pathway does not need to be further evaluated for the Walker Chevrolet Site. Soil vapor beneath the parking lot on the Morrell's Dry Cleaner site was evaluated by a Gore Survey in February 2010 (Aspect, 2011). The Gore Survey measured the mass of individual VOCs that were absorbed in a resin that was placed beneath the surface and sealed for 7 days. The Gore

ASPECT CONSULTING

Survey showed that VOC contamination in soil and soil vapor attenuates on the Morrell's Dry Cleaners site, and did not extend to the Former Walker Chevrolet Site. Additionally, a soil vapor extraction (SVE) system began removing accessible VOC contamination from beneath the Morrell's Dry Cleaners building and near the source of chlorinated ethylenes in October 2014 (Aspect, 2014b). Based on the December meeting with Ecology, this FFS Addendum does not include any additional evaluation of the sub-slab vapor intrusion exposure pathway on the north side of the building due to contamination on the adjoining Morrell's Dry Cleaners site.

2 South Gas Station

Aspect sampled soil borings AB-1 to AB-4 to delineate the extent of soil contamination at the south gas station. Figures 1 and 2 show the locations of the borings and the boring logs are provided in Appendix B. Soil samples were submitted for the analysis of the potential chemicals of concern for petroleum releases listed in Table 830-1 of the Model Toxics Control Act (MTCA) regulations. The analytical results are summarized in Table 2-1 and the analytical reports are provided in Appendix C. Table 2-1 also summarizes the sample locations and analytical results from the 1994 cleanup action (Bison, 1994a) and the 2006 due-diligence sampling (Aspect, 2009), and compares the analytical results to Method A soil CULs. Figure 2 shows the locations of the former USTs and pump island, excavation confirmation samples S1 to S15 and S17 to S25, due diligence samples S-1 to S-7, and soil borings AB-1 to AB-4. Sample S22 was reported to have been collected from 2 feet bgs beneath the pump island and then over-excavated, and the location was not shown in the report (Bison, 1994a).

The Aspect soil borings were placed in locations where TPH was previously detected above the Method A soil CULs. During the 1994 cleanup action TPH was detected at 39 mg/kg beneath Tank 3 at 10 feet bgs (sample S5) and at 570 mg/kg beneath the former pump island at 2 feet bgs (sample S22). Soil was then excavated to 5 feet bgs beneath the former pump island. TPH was not detected in the three final confirmation samples (S23 to S25) beneath the former pump island.

Stemen Environmental, Inc. (Stemen) sampled soil borings S-1 to S-7 on August 31, 2006 during due-diligence sampling. The analytical results are summarized and compared with Method A soil CULs in Table 2-1. TPH was detected above the Method A soil CUL at 15 feet bgs in S-1 in the southeast corner of the parking lot and at 16 feet bgs in S-7 in the southwest corner of the parking lot. Soil boring logs were not provided to evaluate the presence of contamination above 15 feet bgs. Benzene and xylenes were also detected above the Method A soil CULs at 15 feet bgs in S-1.

Boring AB-1 was advanced within the excavation footprint beneath the former pump island and soil samples were collected from 15, 25, 45, and 61 feet bgs in December 2013. Slightly gravelly sand was encountered from the surface to 15 feet bgs; silty, gravelly, sand was encountered from 15 to 40 feet bgs; and slightly gravelly sand was encountered from 40 to 61 feet bgs. The glacial till and advance outwash intervals are consistent with the monitoring wells at the Former Walker Chevrolet and Morrell's Dry Cleaners site. Although AB-1 was advanced through the excavation footprint beneath the former pump island, backfill could not be distinguished from native soil. Soil samples were collected every 5 feet in AB-1 and screened with a photoionization detector (PID). The PID detected VOCs at 15, 20, and 25 feet bgs. Soil samples submitted for laboratory analysis contained 37 mg/kg of TPH-G in the 15 feet bgs interval and 3 mg/kg of TPH-G in the 25 feet bgs interval. Contamination was not detected in the top 15 feet and was not detected below 25 feet bgs. The water table at nearby MW-1 is about 53 feet bgs. As summarized in Section 1.2.2, Ecology (2014) determined that groundwater was not impacted by petroleum releases.

ASPECT CONSULTING

Aspect sampled boring AB-2 adjacent to former boring S-1 and boring AB-3 adjacent to former boring S-7. The former boring locations were confirmed by the presence of grout in the asphalt surface. The boring logs for AB-2 and AB-3 are consistent with AB-1 and the analytical results are consistent with samples from S-1 and S-7. Soil samples were collected every 2.5 feet and screened with a PID. The PID did not elicit a response in AB-2 or AB-3 until 15 feet bgs, and the highest responses were between 16 and 16.5 feet bgs. Soil samples were collected from 16.5 feet bgs and submitted for analysis. TPH-G was detected at 1,900 mg/kg at 16.5 feet bgs in AB-2, which is comparable to the 920 mg/kg detected in the 15 foot bgs interval of S-1. Similarly, TPH-G was detected at 520 mg/kg at 16.5 feet bgs in AB-3, which is comparable to the 360 mg/kg detected in the 15 foot bgs interval of S-7. The concentration of benzene was below the detection limit in both samples, and ethylbenzene, xylenes, and naphthalene were detected below the Method A soil CULs.

Aspect sampled boring AB-4 in the triangular median south of the parking lot to further delineate the extent of soil contamination. AB-4 was advanced to 16.5 feet bgs and encountered similar lithology as AB-1 to AB-3. No contamination was identified by the PID and no petroleum hydrocarbons were detected in the soil sample collected at 16.5 feet bgs.

3 Former Paint Booth

Aspect collected additional sub-slab and indoor air samples and additional groundwater samples to characterize the former paint booth. Figure 3 shows the location of the former paint booth and MW-11 in the building. Figure 4 shows the location of the former paint booth and decommissioned drains and heating oil UST in the current grocery store and shows the locations of assessment soil borings from 1994, sub-slab vapor samples from 2008, and sub-slab vapor and indoor air samples from 2013 and 2014.

3.1 Soil Contamination

The extent of soil contamination was delineated in 1994, and no additional soil samples have been collected. Table 3-1 summarizes the soil analytical results and compares the results with Method A soil CULs. Samples D-1 and D-2 were collected from drains, and the contents were removed prior to decommissioning the drains by filling them with concrete slurry. Thus, samples D-1 and D-2 were collected from former source contamination. Sample D-1 was collected from the north drain, which received drainage from the paint booth. Several compounds were detected above Method A soil CULs in sample D-1, including benzene, toluene, ehtylbenzene, and xylene (BTEX) compounds, PCE, lead, and cadmium. Sample D-2 was collected from the south drain, which was a 4-foot-deep concrete vault above the heating oil UST. The concentrations of organic compounds were low in D2, but methylene chloride was detected above the Method A soil CUL in sample D2, but at much lower concentrations than in sample D1.

Soil samples were collected from borings B1 to B4 on August 3, 1994, and additional soil samples were then collected from borings B5 to B9 on September 6, 1994 to delineate the extent of soil contamination. Soil samples were collected from the 5, 7.5, 9, and 10 foot bgs intervals of boring B5. The concentration of TPH attenuated to below the Method A soil CUL at 10 feet bgs, and the TPH appears to be oil-range TPH associated with heating oil. The concentration of PCE was below the detection limit at 5 feet bgs and was 0.053 mg/kg at 10 feet bgs, which slightly exceeds the 0.05 mg/kg Method A soil CUL.

The lateral extent of contamination was delineated by soil borings B2, B3, and B6 to B9. The concentrations of TPH in borings B2 and B3 exceeded the 30 mg/kg Method A soil CUL for TPH-G, but were below the likely applicable 2,000 mg/kg Method A soil CUL for diesel- and oil-range TPH. In boring B5, the concentration of TPH-G and toluene were detected slightly above the Method A soil CULs at 5 feet bgs, but all compounds were well below the Method A soil CULs at 8 feet bgs. No organic compounds were detected in borings B8 and B9.

3.2 Soil Vapor Intrusion Exposure Pathway

The soil vapor intrusion exposure pathway was evaluated during due-diligence sampling in May 2008, during the FFS investigation in January 2014, and for this FFS Addendum in March 2015. Figure 4 shows the locations of the 2014 and 2015 sub-slab vapor and indoor air samples and shows estimated locations of due diligence sub-slab vapor samples GV-1 to GV-3. Additionally, Figure 1 shows the location of the ambient air

ASPECT CONSULTING

sample that was collected on the opposing side of North First Street in the Stadium Thriftway parking lot. Table 3-2 summarizes the indoor air and sub-slab vapor samples and compares the analytical results with Method B and Method C air screening levels, and applicable sub-slab vapor screening levels that are consistent Ecology (2009) guidance. Appendix D contains the analytical results for air sampling performed in March 2015.

The 2008 due diligence sub-slab vapor sampling performed by Stemen is poorly documented and is included in Appendix C of the Site Conditions Summary report (Aspect, 2009). The locations of GV-1 to GV-3 are recorded in an aerial photograph and analytical results are provided in a table. Aspect collected sub-slab vapor samples beneath the sidewalk adjacent to the former paint booth in January 2014, and beneath the slab foundation in the produce preparation area near a floor drain in March 2015.

PCE was detected above the $96.2~\mu g/m^3$ Method B sub-slab screening level in GV-1 to GV-3 and the sub-slab sample collected beneath the sidewalk, but PCE was not detected beneath the slab in the produce preparation area. PCE only exceeded the $400~\mu g/m^3$ Method C sub-slab screening level in GV-2. PCE in indoor air was detected at a concentration of $0.61~\mu g/m^3$ in the produce cooler in January 2014 and at a concentration of $2.78~\mu g/m^3$ in the produce preparation area in March 2015. These concentrations are below the Method B screening level of $9.62~\mu g/m^3$ and the Method C screening level of $40~\mu g/m^3$.

BTEX compounds and aliphatic- and aromatic-range hydrocarbons were detected in subslab and indoor air samples collected from the produce preparation area. Benzene exceeded the Method B indoor air screening level, but was below the Method C indoor air screening level. The concentrations of heavier aliphatic (EC9-12) and aromatic (EC9-10) hydrocarbons exceeded the Method C indoor air screening levels. The concentrations of these compounds were lower beneath the sub-slab, which indicates that the petroleum contamination may be due to sources inside the building. The cleanup standards for air quality (173-340-750, WAC) only apply to air originating from contaminated media on the Site. Although BTEX compounds and hydrocarbons were detected beneath the subslab, the concentrations did not exceed the Method B sub-slab screening levels. The heavier-range hydrocarbon compounds inside the produce preparation area may be released from cleaning and packaging compounds in the store; however, these products were not inventoried or evaluated.

The sub-slab vapor sample results show that PCE has been present below the slab at concentrations above the Method B and Method C screening levels, but that the indoor air samples are below the Method B and Method C screening levels. Although benzene exceeds the Method B indoor air screening level and aliphatic (EC9-12) and aromatic (EC9-10) hydrocarbons exceed the Method C indoor air screening levels, the concentrations of these compounds are lower beneath the sub-slab and do not exceed Method B sub-slab screening levels.

3.3 Groundwater Contamination

Aspect constructed MW-11 in the former paint booth area of the Site on May 12, 2009 to assess potential impacts to groundwater. The depth to groundwater is about 52 feet bgs at the former paint booth. Samples were collected from MW-11 in May 2009, December 2010, January 2014, and March 2015 and submitted for analysis of VOCs. The January 2014 and March 2015 samples were also analyzed for gasoline- and diesel-range TPH, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and lead. Additionally, the March 2015 sample was analyzed for 1,4-dioxane and Resource Conservation and Recovery Act (RCRA) metals, as requested by Ecology (2014). In response to Ecology's opinion (2014), Aspect requested the laboratory to prepare a supplemental analytical report for the January 2014 sample to report the concentration of 1.4-dioxane. An additional sample was collected in April 2015 to reevaluate the concentration of arsenic; samples were analyzed for total and dissolved RCRA metals. Table 3-3 summarizes the historical water-level measurements at the Former Walker Chevrolet and Morrell's Dry Cleaners sites, Table 3-4 summarizes the historical concentrations of VOCs in monitoring wells at the sites, and Table 3-5 summarizes the historical analytical results for MW-11. Appendix E provides the groundwater analytical data for the FFS Addendum.

No petroleum-related BTEX compounds were detected in MW-11. TCE was detected at concentrations ranging from 1.4 to 4.6 µg/L, which are below the 5 µg/L Method A groundwater CUL. Carbon tetrachloride was detected at a maximum concentration of 2.8 µg/L and chloroform was detected at a maximum concentration of 2 µg/L; Method A groundwater CULs are not established for these constituents, but all concentrations were below the 5 µg/L federal maximum contaminant level (MCL) for carbon tetrachloride and 80 µg/L federal MCL for chloroform. No TPH, PAH, or PCB compounds were detected in the January 2014 and March 2015 samples; and the concentrations of total lead ranged from 2.44 to 6.2 µg/L, which is well below the 15 µg/L Method A groundwater CUL. The concentrations of total arsenic were 5.15 µg/L and 6.29 µg/L in March and April 2015, respectively. However, arsenic was not detected when filtered through a 0.45 micron filter; thus, the concentration of dissolved arsenic was less than 1 μg/L. Although the concentration of total arsenic was detected slightly above the 5 µg/L Method A groundwater CUL, this slight exceedance is consistent with background conditions in the Puget Sound area. The former paint booth is not a source of arsenic, and arsenic was not detected in the sediment samples collected from the former drains in the paint booth or from soil boring B1 adjacent to the decommissioned heating oil UST.

4 Preferred Cleanup Alternative

The FFS (Aspect, 2014a) identified the cleanup action objectives, developed and evaluated cleanup alternatives, and performed a disproportionate cost analysis to recommend the preferred cleanup alternative. The preferred alternative included:

- Soil removal and UST closure actions completed to date;
- Decommissioning MW-1 and MW-11; and
- Institutional controls consisting of an environmental covenant to require
 maintenance of the existing building and parking lot surface cover as a cap,
 restrict future disturbance or residual impacted soil, and provide notification
 requirements to Ecology.

4.1 Reevaluation of Cleanup Action Objectives

4.1.1 Soil

The residual soil contamination beneath the former paint booth and south gas station is currently capped to prevent direct contact exposure and contamination does not pose a threat to groundwater.

Residual soil contamination beneath the former paint booth is limited to an area of less than 100 square feet and the contamination is limited to the top 10 feet. Soil contamination is beneath the slab foundation of the current grocery store and infiltration is limited by impervious cover. Approximately 30 feet of low-permeability till is present between the soil contamination and groundwater at 52 feet bgs. Removal of the residual soil contamination is impracticable and the residual contamination in the till is not readily amenable to soil vapor extraction.

Residual contamination at the south gas station is limited to the TPH contamination that was detected about 15 feet bgs in soil borings AB-1, AB-2, AB-3, S-1, and S-7. No contamination was identified in the 15-foot direct contact exposure pathway based on 23 excavation confirmation samples, 7 due diligence soil borings, and 4 FFS soil borings. Approximately 25 feet of low-permeability unsaturated till is present below the lowest detected depth of contamination, and petroleum contamination has not been detected in groundwater at about 53 feet bgs. The south gas station ceased operations in the 1940s, the residual contamination has effectively adsorbed to the unsaturated till and does not pose a threat to groundwater quality.

4.1.2 Groundwater

Ecology (2014) determined that groundwater had not been impacted by soil contamination at the south gas station and requested that a fourth groundwater sample be collected from MW-11 to confirm that soil contamination has not impacted groundwater beneath the former paint booth. Additionally, Ecology (2014) requested that 1,4-dioxane be evaluated as a chemical of concern and that metals be evaluated. 1,4-dioxane was not detected in the two groundwater samples evaluated. Total arsenic was detected at concentrations of 5.15 μ g/L in March 2015 and 6.29 μ g/L in April 2015, which slightly exceeded the 5 μ g/L Method A groundwater CUL, but dissolved arsenic was not detected

in the April 2015 sample when filtered. Arsenic was not detected in sediment from the decommissioned drains or adjacent to the decommissioned heating oil UST and arsenic is not a chemical of concern for the former paint booth. The low concentrations of arsenic in groundwater are typical of background conditions and are not associated with source contamination.

4.1.3 Indoor Air

The cleanup action objective is to prevent sub-slab vapor from intruding into the building and causing the chemicals of concern in indoor air to exceed screening levels for the current building use.

As shown in Figure 4, the former paint booth was located in the current produce and meat preparation areas and in the produce cooler. The decommissioned drain and cleanout for the former paint booth are in the meat preparation area, and the decommissioned heating oil UST is beneath the meat preparation area. PCE was detected above the Method B subslab screening level in three of five sub-slab vapor samples, and above the Method C sub-slab screening level in one sample. No other compounds were detected above the sub-slab screening levels.

The point of compliance is the indoor air within the grocery store, and MTCA regulations only apply to air originating from contaminated media on the Site (i.e., sub-slab soil vapor originating from contamination in soil and groundwater). PCE was detected at concentrations of 0.61 and $2.78~\mu g/m^3$ in the two indoor air samples, which is below the 9.62 $\mu g/m^3$ Method B screening level and the 40 $\mu g/m^3$ Method C screening level. Although benzene was detected above Method B screening levels and aliphatic (EC9-12) and aromatic (EC9-10) hydrocarbons were detected above Method C screening levels, the concentrations of these compounds were higher in indoor air than in collocated sub-slab vapor. The hydrocarbon compounds inside the produce preparation area may have been released from cleaning and packaging compounds in the store.

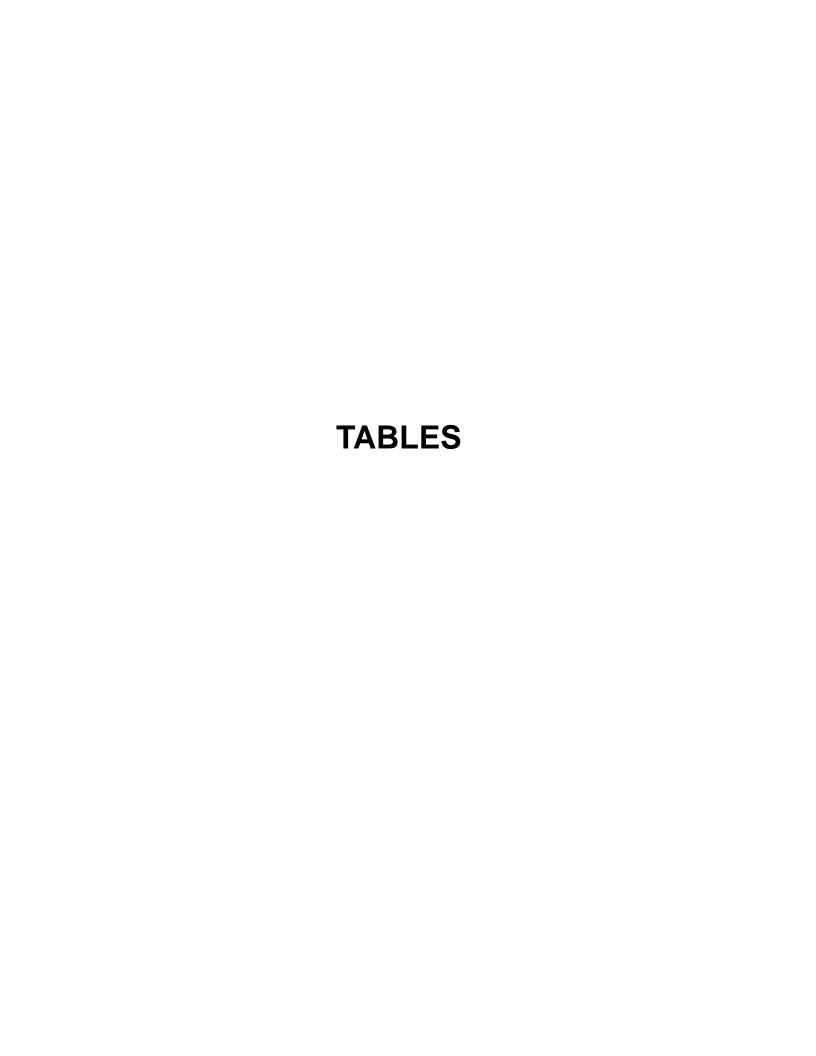
4.2 Preferred Cleanup Alternative Components

The new findings in the FFS Addendum do not impact the evaluation or recommendation of the preferred cleanup alternative identified in the FFS. The preferred cleanup alternative includes:

- Previous cleanup actions performed at the south gas station (Bison, 1994a), north gas station (Bison, 1994b), and former paint booth (Bison, 1994c and Bison, 1994d), as summarized in the FFS (Aspect, 2014a).
- Decommissioning of MW-1 and MW-11.
- An environmental covenant, consistent with Section 173-340-440(9), Washington Administrative Code (WAC), will be recorded for TPN 2030-12-0032, in coordination with a NFA determination from Ecology. The covenant will include provisions to:
 - Prohibit activities that may result in the release of hazardous substances that are contained by the foundation above the former paint booth or the

ASPECT CONSULTING

- asphalt surface at the south end of the parcel near the former south gas station.
- Require the land owner to restrict leases to commercial uses and activities consistent with the covenant and to notify all lessees of the restrictions on the use of the property.
- Require notification to and approval from Ecology for any change in Site use. Should the property owner redevelop the property for other uses (e.g., mixed-use development), the covenant will require that the design engineer be informed of the locations of residual soil contamination and the potential need to include soil vapor intrusion controls into the redevelopment design.
- o Require notification to Ecology of the owner's intent to convey any interest of the parcel.
- o Grant access to Ecology to inspect the environmental controls and to collect samples.
- Notify the City of Tacoma Department of Real Property Services of residual soil contamination in the City ROW.
- An environmental covenant is not necessary for Ecology to provide a NFA determination for TPN 2031-13-0025.


References

- Aspect Consulting, LLC (Aspect), 2009, Site Conditions Summary, Former Walker Chevrolet Property, Prepared for David Shaw, Successor to Walker Chevrolet, July 14, 2009; Stemen Environmental, Inc. data provided in Appendix C.
- Aspect Consulting, LLC (Aspect), 2011, Remedial Investigation Report, Morrell's Dry Cleaners, Prepared for David Shaw, Successor to Walker Chevrolet, February 18, 2011.
- Aspect Consulting, LLC (Aspect), 2014a, Focused Feasibility Study, Former Walker Chevrolet, Prepared for David Shaw, Successor to Walker Chevrolet, May 16, 2014.
- Aspect Consulting, LLC (Aspect), 2014b, Interim Cleanup Action Construction Completion Report, Morrell's Dry Cleaners, Prepared for David Shaw, Successor to Walker Chevrolet, December 23, 2014.
- Bison Environmental Northwest (Bison), 1994a, Underground Storage Tank Removal Site Assessment and Independent Remedial Action Report, Walker Chevrolet (South Gas Station), August 1994.
- Bison Environmental Northwest (Bison), 1994b, Underground Storage Tank Removal Site Assessment and Independent Remedial Action Report, Walker Chevrolet (North Gas Station), August 1994.
- Bison Environmental Northwest (Bison), 1994c, Phase 2 Studies, Floor Drain and Heating Oil UST Closure, Walker Chevrolet Paint Booth, August 15, 1994.
- Bison Environmental Northwest (Bison), 1994d, Phase 2B Subsurface Sampling, Walker Chevrolet Paint Booth, September 12, 1994.
- Washington State Department of Ecology (Ecology), 2014, Further Action at Bruce Titus Chevrolet, VCP No. SW1040, November 17, 2014.
- Washington State Department of Ecology (Ecology), 2009, Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action, Review Draft, Publication No. 09-09-047, October 2009.

Limitations

Work for this project was performed for David Shaw, Successor to Walker Chevrolet (Client), and this report was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

Table 2-1 - Soil Sample Results at South Gas Station

Project No. 080190-004-14, Former Walker Chevrolet Site (VCP No. SW1040) 633 Division Avenue, Tacoma, Washington

		1									1			1	$\overline{}$
	Soil, MTCA Method A, Unrestricted Land Use, Table Value		AB-1-25	AB-1-45	AB-1-61.5	AB-2-16.5	AB-3-16.5	AB-4-16.5	S-1	S-2	S-3	S-4	S-5	S-6	S-7
Description/Chemical Name	(mg/kg)	12/20/2013	12/20/2013	12/20/2013	12/20/2013	4/6/2015	4/6/2015	4/6/2015	8/31/2006	8/31/2006	8/31/2006	8/31/2006	8/31/2006	8/31/2006	8/31/2006
Location		Ī	•												
			Middle of (Near former	parking lot pump island)		SE corner of parking lot (5 ft from S-1)	SW corner of parking lot (1 ft from S-7)	Triangular medium south of parking lot	SE corner of parking lot (Near former Tank 5)	East boundary of parking lot (Near former Tank 7)		West boundary of parking lot (Near former Tanks 1-4)	West boundary of parking lot (Near former Tank 1)	Middle of parking lot (Near former pump island)	SW corner of parking lot (Nearest former pump island)
Sample Depth		15 ft	25 ft	45 ft	61.5 ft	16.5 ft	16.5 ft	16.5 ft	15 ft	15 ft	15 ft	15 ft	13 ft	8 ft	16 ft
Total Petroleum Hydrocarbons	1			<u>L</u>			I	I		1	I		I	1	
TPH, Gasoline-Range (WTPH-HCID, 418.1) (mg/kg)	30														
TPH, Diesel-Range (WTPH-HCID, 418.1) (mg/kg)	2,000	1													
TPH, Heavy Oil-Range (WTPH-HCID, 418.1) (mg/kg)	2,000														
TPH, undifferentiated (WTPH-418.1) (mg/kg)	30														
TPH, Gasoline-Range (NWTPH-Gx) (mg/kg)	30	37	3	2 U	2 U	1,900	520	2 U	920	ND	ND	ND	ND	ND	360
TPH, Diesel-Range (NWTPH-Dx) (mg/kg)	2.000					1.600 X	180 X	50 U	ND	ND	ND	ND	ND	ND	ND
TPH, Oil-Range (NWTPH-Dx) (mg/kg)	2,000					250 U	250 U	250 U	ND	ND	ND	ND	ND	ND	ND
Volatile Petroleum Compounds	•		•	•				•			•	•	•	•	
Benzene (mg/kg)	0.03	0.02 U	0.02 U	0.02 U	0.02 U	0.03 U	0.03 U	0.03 U	6.1	ND	ND	ND	ND	ND	
Toluene (mg/kg)	7	0.02 U	0.02 U	0.02 U	0.02 U	0.05 U	0.05 U	0.05 U	4.1	ND	ND	ND	ND	ND	
Ethylbenzene (mg/kg)	6	0.02 U	0.02 U	0.02 U	0.02 U	0.24	0.063	0.05 U	6	ND	ND	ND	ND	ND	
Xylenes,total (mg/kg)	9	0.33	0.06 U	0.06 U	0.06 U	1	0.15 U	0.15 U	12	ND	ND	ND	ND	ND	
Fuel Additives and Blending Compounds	•			•			•			•	•		•	•	
1,2-Dibromoethane (EDB; mg/kg)	0.005	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U						
1,2-Dichloroethane (EDC; mg/kg)		0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.01 U						
Methyl tert-butyl ether (MTBE; mg/kg)	0.1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U						
Lead (mg/kg)	250	1.49	2.59	2.31	1.90	3.46	7.26	1.85							
Other Petroleum Compounds	•		•				•			•		•	•	•	,
Naphthalene (mg/kg)	5	0.05 U	0.05 U	0.05 U	0.05 U	0.12	0.77	0.01 U	0.05 U						
Isopropylbenzene (mg/kg)						2.4	0.64	0.05 U	5						
n-Propylbenzene (mg/kg)						3.9	1.1	0.05 U	14						
1,2,4-Trimethylbenzene (mg/kg)						22	1.7	0.05 U	71						
1,3,5-Trimethylbenzene (mg/kg)						12	1.8	0.05 U	37						
n-Butylbenzene (mg/kg)						NR	NR	NR	6.2						
sec-Butylbenzene (mg/kg)						0.86	1.1	0.05 U	0.05 U						
tert-Butylbenzene (mg/kg)						0.05 U	0.05 U	0.05 U	0.05 U						
Isopropyltoluene (mg/kg)						NR	NR	NR	2.3						
p-Isopropyltoluene (mg/kg)						1.3	1.5	0.05 U	NR						
Other Compounds															
Chlorinated VOCs (mg/kg)						ND	ND	ND	ND						
PCB mixtures (mg/kg)	1					•			ND						
Notes:															

Notes:

 $\textbf{Bold highlighted} \ font \ indicates \ exceedance \ of \ most \ conservative \ screening \ level.$

Potential chemicals of concern include gasoline-range organics from Table 830-1 in Model Toxics Control Act.

ft = fee

mg/kg = milligrams per kilogram

MTCA = Model Toxics Control Act

NR = not reported

U = analyte was not detected at or above the reported result.

NWTPH = Northwest total petroleum hydrocarbon method

WTPH = Washington total petroleum hydrocarbon method

HCID = hydrocarbon identification analysis

Table 2-1 - Soil Sample Results at South Gas Station

Project No. 080190-004-14, Former Walker Chevrolet Site (VCP No. SW1040) 633 Division Avenue, Tacoma, Washington

		1	1			1		1	ı	ı	1			ı	1	1
Description/Chemical Name	Soil, MTCA Method A, Unrestricted Land Use, Table Value (mg/kg)	S1 8/1/1994	S2 8/1/1994	S3 8/1/1994	S4 8/1/1994	S5 8/1/1994	\$6 8/1/1994	S7 8/1/1994	S8 8/1/1994	S9 8/1/1994	S10 8/1/1994	S11 8/1/1994	S12 8/1/1994	\$13 8/1/1994	\$14 8/1/1994	\$15 8/1/1994
Location		Excavation,	Excavation,	Excavation,	Excavation,	Excavation,		Excavation,	Excavation,	Excavation,	Excavation,	Excavation,	Excavation,	Excavation,	Excavation,	Excavation,
		east wall, Tank 2-4	bottom, Tank	west wall,	south wall,	bottom, Tank	Excavation,	bottom, Tank	south wall, Tank 5-7	east wall,		bottom, Tank	east wall,	west wall,	bottom, Tank	north wall,
			2	Tank 2-4	Tank 2-4	3	Tanks 5-7	5		Tank 5-7	6	· '	Tank 5-7	Tank 5-7		Tank 2-4
Sample Depth		5 ft	10 ft	7 ft	7 ft	10 ft	Surface	9 ft	7 ft	7 ft	8 ft	8 ft	7 ft	5 ft	10 ft	8 ft
Total Petroleum Hydrocarbons									ı	ı		1		ı		
TPH, Gasoline-Range (WTPH-HCID, 418.1) (mg/kg)	30	20 U		20 U	20 U		20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U		20 U
TPH, Diesel-Range (WTPH-HCID, 418.1) (mg/kg)	2,000	50 U		50 U	50 U		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U		50 U
TPH, Heavy Oil-Range (WTPH-HCID, 418.1) (mg/kg)	2,000	100 U		100 U	100 U		100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U		100 U
TPH, undifferentiated (WTPH-418.1) (mg/kg)	30		20 U			39									20 U	
TPH, Gasoline-Range (NWTPH-Gx) (mg/kg)	30															
TPH, Diesel-Range (NWTPH-Dx) (mg/kg)	2,000															
TPH, Oil-Range (NWTPH-Dx) (mg/kg)	2,000															
Volatile Petroleum Compounds																
Benzene (mg/kg)	0.03		0.3 U			0.3 U									0.3 U	
Toluene (mg/kg)	7		0.3 U			0.3 U									0.3 U	
Ethylbenzene (mg/kg)	6		0.3 U			0.33									0.3 U	
Xylenes,total (mg/kg)	9		0.3 U			3.3									0.3 U	
Fuel Additives and Blending Compounds			•			•		•			•					•
1,2-Dibromoethane (EDB; mg/kg)	0.005															
1,2-Dichloroethane (EDC; mg/kg)																
Methyl tert-butyl ether (MTBE; mg/kg)	0.1															
Lead (mg/kg)	250		4 U			6										
Other Petroleum Compounds																
Naphthalene (mg/kg)	5															
Isopropylbenzene (mg/kg)																
n-Propylbenzene (mg/kg)																
1,2,4-Trimethylbenzene (mg/kg)																
1,3,5-Trimethylbenzene (mg/kg)																
n-Butylbenzene (mg/kg)																
sec-Butylbenzene (mg/kg)																
tert-Butylbenzene (mg/kg)																
Isopropyltoluene (mg/kg)																
p-Isopropyltoluene (mg/kg)																
Other Compounds																
Chlorinated VOCs (mg/kg)																
PCB mixtures (mg/kg)	1															

Notes:

Bold highlighted font indicates exceedance of most conservative screening level.

Potential chemicals of concern include gasoline-range organics from Table 830-1 in Model Toxics Control Act.

ft = feet

mg/kg = milligrams per kilogram

MTCA = Model Toxics Control Act

NR = not reported

U = analyte was not detected at or above the reported result.

NWTPH = Northwest total petroleum hydrocarbon method

WTPH = Washington total petroleum hydrocarbon method

HCID = hydrocarbon identification analysis

Table 2-1 - Soil Sample Results at South Gas Station

Project No. 080190-004-14, Former Walker Chevrolet Site (VCP No. SW1040) 633 Division Avenue, Tacoma, Washington

	1													l		1
Description/Chemical Name	Soil, MTCA Method A, Unrestricted Land Use, Table Value (mg/kg)	S17 8/2/1994	S18 8/2/1994	S19 8/2/1994	S20 8/2/1994	S21 8/2/1994	S22 8/2/1994 (Soil was Excavated)	\$23 8/2/1994	S24 8/2/1994	S25 8/2/1994	01 8/1/1994	02 8/1/1994	O3 8/1/1994	O4 8/1/1994	O5 8/1/1994	O6 8/2/1994
Location																
Sample Depth		Excavation, bottom, Tank 1 8 ft	Excavation, east wall, Tank 1 6 ft	Excavation, north wall, Tank 1	Excavation, west wall, Tank 1 6 ft	Excavation, south wall, Tank 1 7 ft	Excavation, pump island (Removed) 2 ft	Excavation, south wall, pump island 3 ft	Excavation, west wall, pump island 3 ft	Excavation, bottom, pump island 5 ft	Tank 2 overburden	Tank 3 Overburden	Tank 1 Overburden	Tank 5-8 Overburden	Tank 5-8 Overburden	Tank 1 Overburden
Total Petroleum Hydrocarbons																
TPH, Gasoline-Range (WTPH-HCID, 418.1) (mg/kg)	30	20 U	20 U	20 U	20 U	20 U		20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
TPH, Diesel-Range (WTPH-HCID, 418.1) (mg/kg)	2,000	50 U	50 U	50 U	50 U	50 U		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
TPH, Heavy Oil-Range (WTPH-HCID, 418.1) (mg/kg)	2,000	100 U	100 U	100 U	100 U	100 U		100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	1,900
TPH, undifferentiated (WTPH-418.1) (mg/kg)	30						570					20 U				
TPH, Gasoline-Range (NWTPH-Gx) (mg/kg)	30															
TPH, Diesel-Range (NWTPH-Dx) (mg/kg)	2,000															
TPH, Oil-Range (NWTPH-Dx) (mg/kg)	2,000															
Volatile Petroleum Compounds																
Benzene (mg/kg)	0.03						1.42					0.3 U				0.005 U
Toluene (mg/kg)	7						7.81					0.3 U				0.005 U
Ethylbenzene (mg/kg)	6						11.11					0.3 U				0.005 U
Xylenes,total (mg/kg)	9						84.2					0.3 U				0.005 U
Fuel Additives and Blending Compounds									•		-					
1,2-Dibromoethane (EDB; mg/kg)	0.005															0.01 U
1,2-Dichloroethane (EDC; mg/kg)																0.005 U
Methyl tert-butyl ether (MTBE; mg/kg)	0.1															NR
Lead (mg/kg)	250						18									34
Other Petroleum Compounds																
Naphthalene (mg/kg)	5															0.005 U
Isopropylbenzene (mg/kg)																
n-Propylbenzene (mg/kg)																
1,2,4-Trimethylbenzene (mg/kg)																
1,3,5-Trimethylbenzene (mg/kg)																
n-Butylbenzene (mg/kg)																
sec-Butylbenzene (mg/kg)																
tert-Butylbenzene (mg/kg)																
Isopropyltoluene (mg/kg)																
p-Isopropyltoluene (mg/kg)																
Other Compounds																
Chlorinated VOCs (mg/kg)																0.01 U
PCB mixtures (mg/kg)	1															0.1 U

Notes:

Bold highlighted font indicates exceedance of most conservative screening level.

Potential chemicals of concern include gasoline-range organics from Table 830-1 in Model Toxics Control Act.

ft = feet

mg/kg = milligrams per kilogram

MTCA = Model Toxics Control Act

NR = not reported

U = analyte was not detected at or above the reported result.

NWTPH = Northwest total petroleum hydrocarbon method

WTPH = Washington total petroleum hydrocarbon method

HCID = hydrocarbon identification analysis

Table 3-1 - Soil Sample Results near Former Paint Booth

Project No. 080190-004-14, Former Walker Chevrolet Site (VCP No. SW1040) 633 Division Avenue, Tacoma, Washington

	Soil, MTCA Method A, Unrestricted Land Use, Table Value	D1	D2	B1-5.5	B2-5.5	B3-2	B4-3	B5-5	B5-7.5	B5-9	B5-10	B6-5	B6-8	B7-4	B8-5	B9-5
Description/Chemical Name	(mg/kg)	7/30/1994	7/30/1994	8/3/1994	8/3/1994	8/3/1994	8/3/1994	9/6/1994	9/6/1994	9/6/1994	9/6/1994	9/6/1994	9/6/1994	9/6/1994	9/6/1994	9/6/1994
Sample Depth		Sediment Inside	Sediment	5.5 ft	5.5 ft	2 ft	3 ft	5 ft	7.5 ft	9 ft	10 ft	5 ft	8 ft	4 ft	5 ft	5 ft
		Drain	Inside Drain													
Total Petroleum Hydrocarbons (TPH)																
TPH, Gasoline-Range (WTPH-HCID, 418.1) (mg/kg)	30							20 U			20 U	100	20 U	20 U	20 U	20 U
TPH, Diesel-Range (WTPH-HCID, 418.1) (mg/kg)	2,000							50 U			50 U	50 U	50 U	50 U	50 U	50 U
TPH, Heavy Oil-Range (WTPH-HCID, 418.1) (mg/kg)	2,000							390			260	100 U	100 U	100 U	100 U	100 U
TPH, undifferentiated (WTPH-418.1) (mg/kg)	30			8,000	79	96	480		2,500	4,400						
Volatile Petroleum Compounds																
Benzene (mg/kg)	0.03	0.59	0.025 U	0.23 U		0.005 U	0.005 U	0.005 U			0.024	0.05 U	0.005 U	0.005 U	0.005 U	0.005 U
Toluene (mg/kg)	7	20	0.025 U	85		0.013	0.007	0.096 B			0.72 B	8.6	0.37	0.011 B	0.014 B	0.005 U
Ethylbenzene (mg/kg)	6	10	0.025 U	2.2		0.005 U	0.005 U	0.005 U			0.13	0.69	0.012	0.005 U	0.005 U	0.005 U
Xylenes,total (mg/kg)	9	79	0.19	143		0.005 J	0.006	0.01			0.79	7.1	0.15	0.005 U	0.005 U	0.005 U
Fuel Additives and Blending Compounds																
1,2-Dibromoethane (EDB; mg/kg)	0.005	1 U	0.05 U	0.46 U		0.01 U	0.01 U	0.01 U			0.01 U	0.1 U	0.1 U	0.01 U	0.01 U	0.01 U
1,2-Dichloroethane (EDC; mg/kg)		0.5 U	0.025 U	0.23 U		0.005 U	0.005 U	0.005 U			0.005 U	0.05 U	0.05 U	0.005 U	0.005 U	0.005 U
Methyl tert-butyl ether (MTBE; mg/kg)	0.1	NR	NR	NR		NR	NR	NR			NR	NR	NR	NR	NR	NR
Lead (mg/kg)	250	2,140	918	25												
Other Petroleum Compounds																
n-Butylbenzene (mg/kg)		17	0.025 U	0.45		0.005 U	0.005 U	0.005 U			0.015	0.19	0.005 U	0.005 U	0.005 U	0.005 U
sec-Butylbenzene (mg/kg)		14	0.025 U	0.45		0.005 U	0.005 U	0.005 U			0.022	0.066	0.005 U	0.005 U	0.005 U	0.005 U
Isopropylbenzene (mg/kg)		18	0.025 U	1.6		0.005 U	0.005 U	0.005 U			0.05	0.05 U	0.005 U	0.005 U	0.005 U	0.005 U
p-isopropyltoluene (mg/kg)		15	0.025 U	0.48		0.005 U	0.005 U	0.005 U			0.015	0.082	0.005 U	0.005 U	0.005 U	0.005 U
Methylene chloride	0.02	2 U	0.475	0.92 U		0.02 U	0.02 U	0.026 B			0.028 B	0.2 U	0.039 B	0.041 B	0.048 B	0.02 U
4-Methyl-2-pentanone (MIBK) (mg/kg)		3.8 J	0.025 U	2.3 U		0.05 U	0.05 U	0.05 U			0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U
Naphthalene (mg/kg)	5	0.93 B	0.053 B	1.1		0.005 U	0.005 U	0.005 U			0.005 U	0.19	0.005 U	0.005 U	0.005 U	0.005 U
n-Propylbenzene (mg/kg)		54	0.025 U	1.5		0.005 U	0.005 U	0.005 U			0.08	0.099	0.005 U	0.005 U	0.005 U	0.005 U
1,2,4-Trimethylbenzene (mg/kg)		175	0.072	11		0.005 U	0.005 U	0.005 U			0.13	0.79	0.013	0.005 U	0.005 U	0.005 U
1,3,5-Trimethylbenzene (mg/kg)		66	0.064	5		0.005 U	0.005 U	0.005 U			0.07	0.3	0.006	0.005 U	0.005 U	0.005 U
Chlorinated VOCs										ı						
Tetrachloroethylene (mg/kg)	0.05	2.1	0.025 U	0.21 J		0.005 U	0.005 U	0.005 U			0.053	0.05 U	0.05 U	0.005 U	0.005 U	0.005 U
Trichloroethylene (mg/kg)	0.03	0.5 U	0.025 U	0.23 U		0.005 U	0.005 U	0.005 U	İ		0.005 U	0.05 U	0.05 U	0.005 U	0.005 U	0.005 U
cis-1,2-dichloroethylene (mg/kg)	-	0.5 U	0.025 U	0.23 U		0.005 U	0.005 U	0.005 U			0.005 U	0.05 U	0.05 U	0.005 U	0.005 U	0.005 U
Vinyl chloride (mg/kg)	-	1 U	0.05 U	0.46 U		0.01 U	0.01 U	0.01 U			0.01 U	0.1 U	0.1 U	0.01 U	0.01 U	0.01 U
Chlorobenzene (mg/kg)		2.1	0.025 U	0.23 U		0.005 U	0.005 U	0.005 U			0.005 U	0.05 U	0.05 U	0.005 U	0.005 U	0.005 U
1,2-Dichlorobenzene (mg/kg)		103	0.025 U	0.23 U		0.005 U	0.005 U	0.005 U			0.005 U	0.05 U	0.05 U	0.005 U	0.005 U	0.005 U
1,4-Dichlorobenzene (mg/kg)		82	0.025 U	0.23 U		0.005 U	0.005 U	0.005 U	1	1	0.005 U	0.05 U	0.05 U	0.005 U	0.005 U	0.005 U
Metals	•															
Arsenic (mg/kg)	20	5 U	5 U	5 U				1								
Barium (mg/kg)	- 20	422	2.000	43.8												
Cadmium (mg/kg)	2	50.2	4.2	0.3 U		1		1	1	1	1				1	
Chromium (mg/kg)	2.000	110	927	18.6		 	1		 		<u> </u>				 	
Lead (mg/kg)	2,000	2.140	918	25					 	+	<u> </u>					+
Mercury (mg/kg)	230	3 U	3 U	3 U					 		<u> </u>					+
Selenium (mg/kg)		8 U	8 U	8 U	1			1	1	1	t					+
Silver (mg/kg)	<u> </u>	0.7 U	0.7 U	0.7 U	1	 		1	 	<u> </u>	 				 	+
Notes:	1	0.7 0	0.7 0	0.7 0	I .	1	l	I .	1	ı	ı	l	1		1	

Notes:

Bold highlighted font indicates exceedance of most conservative screening level.

Potential chemicals of concern include gasoline-range organics from Table 830-1 in Model Toxics Control Act.

Sediment samples from drains D1 and D2 were removed in 1994. Samples results provide an indication of source contamination.

Blank cell indicate that compound was not analyzed.

ft = fee

HCID = Hydrocarbon identification

mg/kg = milligrams per kilogram

MTCA = Model Toxics Control Act

NR = not reported

TPH = total petroleum hydrocarbon

U = analyte was not detected at or above the reported result.

Table 3-2 - Indoor, Ambient, and Sub-Slab Air Sample Results near Former Paint Booth

Project No. 080190-004-14, Former Walker Chevrolet Site (VCP No. SW1040) 633 Division Avenue, Tacoma, Washington

	Acceptable Indoor Air	Acceptable Indoor Air			
	Screening Level (SL _{IA}),	Screening Level (SL _{IA}),	Indoor Air,	Indoor Air,	
Description/	MTCA Method B,	MTCA Method C,	Above Former	Above Former	Outdoor Air,
Chemical Name	Air, Screening Level	Air, Screening Level	Paint Booth	Paint Booth	Ambient Conditions
Location			In preparation outside	Inside current produce	Parking lot on
			and north of produce	cooler and former	west side of
			cooler	paint booth area	North 1st Street
Sample ID			IA-FPB-032315	Indoor-012214	Outdoor Air-012214
Sample duration (hours)			8	8	8
Date and time collected			3/23/15 2:21 PM	1/22/14 3:55 PM	1/22/14 4:15 PM
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
PCE	9.62	40	2.78	0.61	<0.21
TCE	0.37	2	<0.0914	<0.32	<0.17
cis-1,2-DCE	-	-	<0.0793	<0.24	<0.12
trans-1,2-DCE	-	-	<0.0238	<1.2	<0.61
Vinyl chloride	0.28	2.8	<0.217	<0.077	<0.04
1,4-Dioxane	0.5	5	<3.6		
Benzene	0.321	3	2.29	NA	NA
Toluene	2,290	5,000	10.9	NA	NA
Ethylbenzene	457	1000	1.77	NA	NA
Xylenes	45.7	100	8.31	NA	NA
Naphthalene	0.0735	0.735	<1.57		
Aliphatic hydrocarbon (EC5-8)	2,700	6,000	194	NA	NA
Aliphatic hydrocarbon (EC9-12)	140	300	807	NA	NA
Aromatic hydrocarbon (EC9-10)	180	400	576	NA	NA

Notes:

Bold highlighted font indicates exceedance of most conservative screening level.

Dashes indicate no value available.

DCE = dichloroethylene

μg/m³ = micrograms per cubic meter

NA = not analyzed

PCE = tetrachloroethylene

SL_{IA} = Acceptable indoor air screening level.

SL_{SG} = Screening level in soil gas protective of indoor air.

TCE = trichloroethylene

VAF = Vapor attenuation factor (unitless); default value of 0.1 should be assumed in Tier I Evaluations (Draft Vapor Intrusion Guidance, Ecology, 2009).

SL_{SG} = SL_{IA} / VAF (Equation 2 in Draft Vapor Intrusion Guidance, Ecology, 2009).

Ecology, 2009, Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action, Publication No. 09-09-047.

Aspect Consulting Table 3-2

Table 3-2 - Indoor, Ambient, and Sub-Slab Air Sample Results near Former Paint Booth

Project No. 080190-004-14, Former Walker Chevrolet Site (VCP No. SW1040) 633 Division Avenue, Tacoma, Washington

Description/ Chemical Name	Screening Level in Soil Gas Protective of Indoor Air (SL _{SG})	Screening Level in Soil Gas Protective of Indoor Air (SL _{SG})	E	Sub-slab Air, Beneath Former Paint Boot	h	Sub-slab Air, Adjacent to Former Paint Booth	Sub-slab Air, Beneath Former Paint Booth
Location			East side	West side	Middle	Beneath concrete	Beneath concrete
			of paint booth	of paint booth	of paint booth	sidewalk adjacent to	flooring in preparation
						building and former roll-	area outside and north of
						up door for paint booth	produce cooler
Sample ID			GV-1	GV-2	GV-3	Subslab-012314	SS-FPB-032015
Sample duration (hours)						1	1
Date and time collected			5/8/2008	5/8/2008	5/8/2008	1/23/14 1:15 PM	3/20/15 7:10 AM
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
PCE	96.2	400	110	1,000	160	270	<2.03
TCE	3.7	20	<20	<20	<20	1.2	<1.07
cis-1,2-DCE	-	-	<50	<50	<50	<0.27	<0.793
trans-1,2-DCE	-	-	<50	<50	<50	<1.3	<0.793
Vinyl chloride	2.8	28	<200	<200	<200	<0.087	<0.511
1,4-Dioxane	5	50					<3.6
Benzene	3.21	30	<20	<20	<20	NA	2.09
Toluene	22,900	50,000	130	240	160	NA	3.94
Ethylbenzene	4,570	10,000	<100	<100	<100	NA	12.8
Xylenes	457	1000	<100	150	230	NA	132.3
Naphthalene	0.735	7.35					<1.57
Aliphatic hydrocarbon (EC5-8)	27,000	60,000					215
Aliphatic hydrocarbon (EC9-12)	1,400	3,000					311
Aromatic hydrocarbon (EC9-10)	1,800	4,000					221

Notes:

Bold highlighted font indicates exceedance of most conservative screening level.

Dashes indicate no value available.

DCE = dichloroethylene

 $\mu g/m^3 = micrograms per cubic meter$

NA = not analyzed

PCE = tetrachloroethylene

 SL_{IA} = Acceptable indoor air screening level.

SL_{SG} = Screening level in soil gas protective of indoor air.

TCE = trichloroethylene

VAF = Vapor attenuation factor (unitless); default value of 0.1 should be assumed in Tier I Evaluations (Draft Vapor Intrusion Guidance, Ecology, 2009).

SL_{SG} = SL_{IA} / VAF (Equation 2 in Draft Vapor Intrusion Guidance, Ecology, 2009).

Ecology, 2009, Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action, Publication No. 09-09-047.

Aspect Consulting Table 3-2

Table 3-3 - Groundwater Elevation Data

Project No. 080190-004-14, Former Walker Chevrolet Site (VCP No. SW1040)

633 Division Avenue, Tacoma, Washington

Well ID		Vertical	Screened	Top of Casing	Depth to	Groundwater
(Site Located)	Date	Angle	Interval	Elevation	Water	Elevation
			(feet bgs)	(feet, site datum)	(feet)	(feet, site datum)
Advance Outwash Wells						
MW-1	2/27/2008	0	50 to 65	275.25	52.32	222.93
Former Walker Chevrolet	10/2/2008				53.09	222.16
	5/11/2009				53.68	221.57
	12/22/2010				53.61	221.64
	2/6/2012				52.93	222.32
	1/10/2014				53.21	222.04
MW-2	2/27/2008	0	50 to 65	273.14	51.50	221.64
Morrell's Dry Cleaners	10/2/2008				51.84	221.30
	5/12/2009				52.42	220.72
	12/22/2010				52.44	220.70
	2/6/2012				51.77	221.37
	12/12/2013				52.74	220.40
	6/24/2014	Injected 500 ga	allons of biostimulant (with 4	00 lbs of 3DMe Factory	•	
	1/21/2015				58	215
MW-3	2/27/2008	0	52 to 67	272.77	dry	dry
Former Walker Chevrolet	10/2/2008				dry	dry
(Decommissioned)	5/11/2009				dry	dry
	10/25/2010				Decommissioned	
MW-4	2/27/2008	0	49 to 64	273.01	dry	dry
Morrell's Dry Cleaners	10/2/2008				dry	dry
(Decommissioned)	5/11/2009				dry	dry
	10/25/2010				Decommissioned	
MW-5	2/27/2008	0	50 to 65	273.13	50.87	222.26
Morrell's Dry Cleaners	10/2/2008				51.65	221.48
	5/11/2009				52.28	220.85
	12/22/2010				52.21	220.92
	2/6/2012				51.60	221.53
	1/9/2014				52.68	220.45
N. W. C.	4/28/2015		40.164	272.55	51.38	221.75
MW-6	2/27/2008	0	49 to 64	272.55	dry	dry
Morrell's Dry Cleaners	10/2/2008				dry	dry
(Decommissioned)	5/11/2009				dry	dry
NAVA / 7	10/25/2010	0	F0+- CF	274.44	Decommissioned	224.54
MW-7	2/27/2008	Ü	50 to 65	274.44	52.90	221.54
Morrell's Dry Cleaners	10/2/2008				53.08	221.36
	5/11/2009				53.69	220.75
	12/22/2010				53.73 52.98	220.71 221.46
	2/6/2012					
MW-8	1/7/2014 10/2/2008	0	51 to 61	273.14	54.10 52.68	220.34 220.46
Morrell's Dry Cleaners	5/12/2009	U	21 (0.01	2/3.14	52.68	220.46
worren's Dry Cleaners	12/22/2010				53.28	219.86
	2/6/2012				53.32 52.58	219.82
	12/7/2013			1	53.64	219.50
	6/23/2014	Injected 525 ga	allons of biostimulant (with 4	UU ibs of 3DMe Factory	•	
	1/20/2015				58	215

Note:

bgs = below ground surface

Page 1 of 2

Table 3-3 - Groundwater Elevation Data

Project No. 080190-004-14, Former Walker Chevrolet Site (VCP No. SW1040)

633 Division Avenue, Tacoma, Washington

Well ID	Date	Vertical	Screened Interval	Top of Casing Elevation	Depth to Water	Groundwater Elevation
(Site Located)	Date	Angle	(feet bgs)	(feet, site datum)	(feet)	(feet, site datum)
MW-9	5/11/2009	0	60 to 70	273.78	dry	dry
Morrell's Dry Cleaners	12/22/2010	O	00 to 70	2/3./6	dry	dry
(Decommissioned)	2/6/2012				dry	dry
(Decommissioned)	12/16/2013				dry	dry
	4/29/2015				Decommissioned	ui y
MW-10	5/11/2009	0	60 to 70	274.45	dry	dry
Morrell's Dry Cleaners	12/22/2010	O	00 to 70	274.43	dry	dry
(Decommissioned)	2/6/2012				dry	dry
(Decommissioned)	12/16/2013				dry	dry
	4/29/2015				Decommissioned	ary
MW-11	5/12/2009	0	53 to 63	273.52	52.20	221.32
Former Walker Chevrolet	12/22/2010	O	33 (0 03	273.32	52.24	221.32
Torrier Warker Chevrolet	1/23/2014				52.69	220.83
	3/20/2015				52.07	221.45
	4/28/2015				51.49	222.03
MW-15	12/17/2013	37	44 to 60	273.84	53.49	222.03
				•		
Morrell's Dry Cleaners	6/23/2014		allons of biostimulant (with 4			
MW-16	12/13/2013	23	41 to 60	272.88	53	220
Morrell's Dry Cleaners	6/23/2014	Injected 550 ga	allons of biostimulant (with 4	00 lbs of 3DMe Factory	•	
	1/21/2015				61	212
MW-17	12/13/2013	32	43 to 60	272.97	53	220
Morrell's Dry Cleaners	6/24/2014	Injected 550 ga	allons of biostimulant (with 4	00 lbs of 3DMe Factory	Emulsified and 30 lbs	of HRC Primer)
MW-18	12/12/2013	45	46 to 60	272.80	60	212
Morrell's Dry Cleaners	6/24/2014	Injected 550 ga	allons of biostimulant (with 4	00 lbs of 3DMe Factory	Emulsified and 30 lbs	of HRC Primer)
MW-19	1/8/2014	0	45 to 60	273.15	52.72	220.43
Morrell's Dry Cleaners	6/24/2014	Injected 550 ga	allons of biostimulant (with 4	00 lbs of 3DMe Factory	Emulsified and 30 lbs	of HRC Primer)
•	1/21/2015	,	· [ĺ	56	217
MW-20	1/8/2014	0	45 to 60	273.03	52.64	220.39
Morrell's Dry Cleaners	6/24/2014	Injected 550 ga	l Allons of biostimulant (with 4	.00 lbs of 3DMe Factory	I Emulsified and 30 lbs	of HRC Primer)
Wierren's Bry cleaners	1/20/2015	injected 550 ge			55	218
MW-21	12/17/2013	0	45 to 60	274.03	53.66	220.37
Morrell's Dry Cleaners	6/23/2014	-	allons of biostimulant (with 4	•	<u>.</u>	
Morrell's Dry Cleaners	1/20/2015	injected 550 ga	anons of biostimulant (with 4	I	57	217
Interglacial Deposit Wells	1/20/2013				37	217
MW-8D	5/11/2009	0	96 to 116	273.11	112.56	160.55
Morrell's Dry Cleaners	12/22/2010	U	90 (0 110	2/3.11	112.58	160.53
Worten's Dry Cleaners	2/6/2012				112.52	160.59
	1/10/2014				112.56	160.55
	4/28/2015				112.45	160.66
MW-12D	12/22/2010	0	113 to 123	272.72	129.96	142.76
Morrell's Dry Cleaners	2/6/2012	U	113 (0 123	212.12	129.96	142.76
WIGHTER S DI Y CIERRES	1/10/2014				129.80	142.78
	4/29/2015				129.94	142.78
MW-13D	12/22/2010	0	125 to 145	271.96	137.88	134.08
Morrell's Dry Cleaners	2/6/2012	U	123 (0 143	2/1.90	137.43	134.53
WIGHTER S DI Y CIERRES	12/16/2013				137.43	134.26
	4/29/2015				137.70	134.26
MW 14D		0	172 +- 142	272.46		
MW-14D	2/6/2012	U	123 to 143	272.46	134.02	138.44
Morrell's Dry Cleaners	1/10/2014				134.26	138.20
	4/29/2015				133.82	138.64

Note:

bgs = below ground surface

Table 3-4 - Groundwater Volatile Organic Compound Sample Results

Project No. 080190-004-14, Morrell's Dry Cleaners Site (VCP No. SW1039) and Former Walker Chevrolet Site (VCP No. SW1040) Tacoma, Washington

	Screen Interval				cis-			Vinyl	Carbon		Chloro-	Naph-
Well ID	(feet bgs)	Date	PCE	TCE	1,2-DCE	trans- 1,2-DCE	1,1-DCE	Chloride	Tetrachloride	Chloroform	ethane	thalene
Method A, Groundwater CUL, Table Value (ug/L)	, ,	Dute	5	5	-	-	-	0.2	-	-	-	160
Federal and State Maximum Contaminant Level (ug/L)			5	5	70	100	7	2	5	80	-	
Groundwater CUL (ug/L)			5	5	70	100	7	0.2	5	80	-	160
Advance Outwash Wells												
MW-1	50 - 65	8/28/07	1.3	<1	<1	<1	<1	<0.2	<1	<1	<1	<1
Former Walker Chevrolet		1/30/08	<1	<1	<1	<1	<1	<0.2	<1	<1	<1	<1
		10/2/08	<1	<1	<1	<1	<1	<0.2	<1	<1	<1	<1
		5/11/09	<1	<1	<1	<1	<1	<0.2	<1	<1	<1	<1
		12/22/10	<1	<1	<1	<1	<1	<0.2	<1	<1	<1	<1
		2/6/12	<1	<1	<1	<1	<1	<0.2	<1	<1	<1	<1
		1/10/14	<0.2	0.4	<0.2	<0.2	<0.2	<0.2	<0.2	0.39	<0.2	<0.5
MW-2	50 - 65	8/28/07	2,900	1.800	7,100	7.4	<1	19	1.0	1	8.1	<1
Morrell's Dry Cleaners		1/30/08	1,400	520	2,000	3	<1	<0.2	<1	2.5	<1	<1
, , , , , , , , , , , , , , , , , , , ,		10/2/08	1,900	880	2,300	5.3	<1	3.1	1.0	3.5	1.0	<1
		5/12/09	1,600	930	2,400	5.7	ND	2.7	<1	4.0	<1	<1
		12/22/10	2,100	1,100	2,100	4.8	<1	2.7	<1	5.0	<1	<1
		2/6/12	1,600	810	1,400	<100	<100	<20	<100	<100	<100	<100
		12/12/13	1,600	840	1,100	2.7	<1	0.84	<1	3.3	<1	<1
		6/24/14		Injected	500 gallons o	f biostimulan	t (with 400 lb	of 3DMe Fact	ory Emulsified a	nd 30 lbs of HR	C Primer)	•
		1/21/15	19	25	150	<1	<1	0.77	<1	<1	<1	<1
MW-5	50 - 65	1/22/08	67	3	13	<1	<1	<0.2	3.3	2.1	<1	<1
Morrell's Dry Cleaners		1/30/08	31	1.1	4.5	<1	<1	<0.2	2.0	1.8	<1	<1
,		10/2/08	75	3.2	17	<1	<1	<0.2	1.2	1.9	<1	<1
		5/11/09	17	1.1	44	<1	<1	<0.2	<1	<1	<1	<1
		12/22/10	190	14	41	<1	<1	<0.2	3.2	2.9	<1	<1
		2/6/12	140	8.7	25	<1	<1	<0.2	<1	<1	<1	<1
		1/9/14	<0.2	0.46	<0.2	<0.2	<0.2	<0.2	<0.2	0.35	<0.2	0.14
		6/24/14							t, potentially pu		groundwater	
		4/28/15	67	6.2	6.4	<1	<1	<0.2	2.1	1.1	<1	<1
MW-7	50 - 65	1/22/08	6.6	<1	<1	<1	<1	<0.2	<1	<1	<1	<1
Morrell's Dry Cleaners	30 03	1/30/08	1.5	<1	<1	<1	<1	<0.2	1.5	<1	<1	<1
morren s bry cicaners		10/2/08	<1	<1	<1	<1	<1	<0.2	1.5	<1	<1	<1
		5/11/09	1.1	<1	<1	<1	<1	<0.2	2.0	<1	<1	<1
		12/22/10	1.4	<1	<1	<1	<1	<0.2	3.3	<1	<1	<1
		2/6/12	<1	<1	<1	<1	<1	<0.2	2.2	<1	<1	<1
		1/7/14	1.4	<1	<1	<1	<1	<0.2	1.6	<1	<1	<1
MW-8	51 - 61	4/22/08	1,300	780	2,400	6.3	<1	0.2	<1	2.5	<1	<1
Morrell's Dry Cleaners		10/2/08	680	390	3,600	7.6	10	6.9	<1	2.5	<1	<1
		5/12/09	780	370	2,600	3.7	ND	2.0	<1	2.5	<1	ND
		12/22/10	470	150	1,800	3.3	3.7	1.4	<1	2.2	<1	<1
		2/6/12	960	610	1,600	<100	<100	<20	<100	<100	<100	<100
		12/17/13	940	560	1,300	<50	<50	<10	<50	<50	<50	<50
		6/23/14			-	f biostimulan	1	of 3DMe Fact	l tory Emulsified a			•
		1/20/15	14	8.5	1,200	<5	6.4	9.4	<5	<5	<5	<5
MW-11	53 - 63	5/12/09	<1	2.3	<1	<1	<1	<0.2	1.4	1.9	<1	<1
Former Walker Chevrolet		12/22/10	<1	4.6	<1	<1	<1	<0.2	2.8	2.0	<1	<1
		1/23/14	<1	1.4	<1	<1	<1	<0.2	<1	<1	<1	0.15
		3/20/15	<1	3	<1	<1	<1	<0.2	1.2	1.1	<1	<1

BOLD Highlighted signifies exceedance of Proposed Groundwater CUL (most stringent of MTCA Method A, Table Value and Federal and State MCL).

All values are in units of milligrams per liter (ug/L).

1,1-DCE = 1,1-dichloroethylene

bgs = below ground surface

cis-1,2-DCE = cis-1,2-dichloroethylene

MCL = maximum contaminant level

MTCA = Model Toxics Control Act

ND = not determined

PCE = tetrachloroethylene

TCE = trichloroethylene

trans-1,2-DCE = trans-1,2-dichloroethylene

Aspect Consulting

Table 3-4 - Groundwater Volatile Organic Compound Sample Results

Project No. 080190-004-14, Morrell's Dry Cleaners Site (VCP No. SW1039) and Former Walker Chevrolet Site (VCP No. SW1040) Tacoma, Washington

	Screen	ı								ſ		
	Interval				cis-	trans-		Vinyl	Carbon		Chloro-	Naph-
Well ID	(feet bgs)	Date	PCE	TCE	1,2-DCE	1,2-DCE	1,1-DCE	Chloride	Tetrachloride	Chloroform	ethane	thalene
Method A, Groundwater CUL, Table Value (ug/L)			5	5	-	-	-	0.2	-	-	-	160
Federal and State Maximum Contaminant Level (ug/L)			5	5	70	100	7	2	5	80	-	-
Groundwater CUL (ug/L)			5	5	70	100	7	0.2	5	80	-	160
MW-15 (angled with 37 degree vertical angle)	44 - 60	12/17/13	460	110	380	<10	<10	<2	<10	<10	<10	<10
Morrell's Dry Cleaners		12/17/13	480	110	370	<10	<10	<2	<10	<10	<10	<10
		6/23/14		Injected	d 550 gallons o	f biostimulan	t (with 400 lbs	of 3DMe Fact	ory Emulsified a	nd 30 lbs of HR	C Primer)	
MW-16 (angled with 23 degree vertical angle)	41 - 60	12/13/13	490	98	350	<1	<1	0.49	2.2	2.5	<1	<1
Morrell's Dry Cleaners		6/23/14		Injected	d 550 gallons o	of biostimulan	t (with 400 lbs	of 3DMe Fact	ory Emulsified a	nd 30 lbs of HR	C Primer)	
		1/21/15	14	6.3	180	<5	<5	2.2	<5	<5	<5	<5
MW-17 (angled with 32 degree vertical angle)	43 - 60	12/13/13	170	24	81	<1	<1	<0.2	3	2.4	<1	<1
Morrell's Dry Cleaners		6/24/14		Injected	d 550 gallons o	of biostimulan	t (with 400 lb:	of 3DMe Fact	ory Emulsified a	nd 30 lbs of HR	C Primer)	
MW-18 (angled with 45 degree vertical angle)	46 - 60	12/12/13	490	57	350	<1	<1	0.53	<1	1.3	<1	<1
Morrell's Dry Cleaners		6/24/14		Injected	d 550 gallons o	f biostimulan	t (with 400 lbs	of 3DMe Fact	ory Emulsified a	nd 30 lbs of HR	C Primer)	
MW-19	45 - 60	1/8/14	62	4.8	20	<1	<1	<0.2	7	3.8	<1	<1
Morrell's Dry Cleaners		6/24/14		Injected	d 550 gallons o	f biostimulan	t (with 400 lbs	of 3DMe Fact	ory Emulsified a	nd 30 lbs of HR	C Primer)	
		1/21/15	9.7	<5	45	<5	<5	<1	<5	<5	<5	<5
MW-20	45 - 60	1/8/14	140	16	43	<1	<1	<0.2	3.6	2.2	<1	<1
Morrell's Dry Cleaners		6/24/14		Injected	d 550 gallons o	of biostimulan	t (with 400 lbs	of 3DMe Fact	ory Emulsified a	nd 30 lbs of HR	C Primer)	
		1/20/15	7.4	5.3	79	<1	<1	1.8	<1	<1	<1	<1
MW-21	45 - 60	12/17/13	500	130	460	<10	<10	<2	<10	<10	<10	<10
Morrell's Dry Cleaners		6/23/14		Injected	d 550 gallons o	f biostimulan	t (with 400 lbs	of 3DMe Fact	ory Emulsified a	nd 30 lbs of HR	C Primer)	
		1/20/15	15	12	270	<5	<5	<1	<5	<5	<5	<5
Interglacial Deposit Wells												
MW-8D	96 - 116	5/11/09	<1	<1	11	<1	<1	<0.2	1.9	<1	<1	<1
Morrell's Dry Cleaners		12/22/10	<1	<1	21	<1	<1	<0.2	2.0	<1	<1	<1
		2/6/12	<1	<1	26	<1	<1	<0.2	1.8	<1	<1	<1
		1/10/14	<0.2	<0.2	42	<0.2	<0.2	<0.2	1.7	0.68	<0.2	0.8
		4/28/15	<1	<1	54	<1	<1	<0.2	1.7	<1	<1	<1
MW-12D	113 - 133	12/22/10	6.1	<1	22	<1	<1	<0.2	<1	<1	<1	<1
Morrell's Dry Cleaners		2/6/12	<1	<1	17	<1	<1	<0.2	<1	<1	<1	<1
		1/10/14	0.7	0.34	22	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5
		4/29/15	<1	<1	13	<1	<1	<0.2	<1	<1	<1	<1
MW-13D	125 - 145	12/22/10	14	3.2	30	<1	<1	<0.2	<1	<1	<1	<1
Morrell's Dry Cleaners		2/6/12	4.2	2.4	28	<1	<1	<0.2	<1	<1	<1	<1
		12/16/13	5.9	3.7	32	<1	<1	<0.2	<1	<1	<1	<1
10440	422 442	4/29/15	<1	<1	14	<1	<1	<0.2	<1	<1	<1	<1
MW-14D	123 - 143	2/6/12	4.2	3.3	28	<1	<1	<0.2	<1	<1	<1	<1
Morrell's Dry Cleaners		1/10/14	2.4	1.0 <1	4.5 2.5	<1 <1	<1 <1	<0.2 <0.2	<1 <1	<1 <1	<1 <1	2.0 <1
	l	4/29/15	Z.Z	<1	2.5	<1	<1	<0.2	<1	<1	<1	<1

Notes

BOLD Highlighted signifies exceedance of Proposed Groundwater CUL (most stringent of MTCA Method A, Table Value and Federal and State MCL).

All values are in units of milligrams per liter (ug/L).

1,1-DCE = 1,1-dichloroethylene

bgs = below ground surface

cis-1,2-DCE = cis-1,2-dichloroethylene

MCL = maximum contaminant level

MTCA = Model Toxics Control Act

ND = not determined

PCE = tetrachloroethylene

TCE = trichloroethylene

trans-1,2-DCE = trans-1,2-dichloroethylene

Table 3-4

Table 3-5 - Groundwater Sample Results for Chemicals of Potential Concern and Natural Attenuation Parameters

Project No. 080190, Former Walker Chevrolet Site (VCP No. SW1040) 633 Division Avenue, Tacoma, Washington

Chemical Name	Groundwater, Method A, Table Value (µg/L)	Federal and State Maximum Contaminant Level (µg/L)	MW-11 5/12/2009	MW-11 12/22/2010	MW-11 1/23/2014	MW-11 3/20/2015	MW-11 4/28/2015
Site Name Location Description					ner Walker Chevi ner Paint Booth /		
Total Petroleum Hydrocarbons				FOII	ner Paint Booth /	Area	
Total Petroleum Hydrocarbons							
Gasoline-Range Hydrocarbons (μg/L) (no detectable benzene)	1,000				100 U	100 U	
Diesel-Range Hydrocarbons (μg/L)	500				50 U	82 X	
Oil-Range Hydrocarbons (μg/L)	500				250 U	250 U	
Volatile Organic Compounds (COPCs and O	ther Detected Comp	ounds)					
Benzene (μg/L)	5	5	1 U	0.35 U	0.35 U	0.35 U	
Toluene (μg/L)	1,000	1,000	1 U	1 U	1 U	1 U	
Ethylbenzene (μg/L)	700	700	1 U	1 U	1 U	1 U	
Xylenes, total (μg/L)	1,000	10,000	3 U	3 U	3 U	3 U	
Tetrachloroethylene (μg/L)	5	5	1 U	1 U	1 U	1 U	
Trichloroethylene (μg/L)	5	5	2.3	4.6	1.4	3	
cis-1,2-Dichloroethylene (μg/L)		70	1 U	1 U	1 U	1 U	
trans-1,2-Dichloroethylene (μg/L)		100	1 U	1 U	1 U	1 U	
1,1-Dichloroethylene (μg/L)		7	1 U	1 U	1 U	1 U	
Vinyl Chloride (μg/L)	0.2	2	0.2 U	0.2 U	0.2 U	0.2 U	
Carbon Tetrachloride (μg/L)		5	1.4	2.8	1 U	1.2	
Chloroform (μg/L)		80	1.9	2	1 U	1.1	
1,4-Dioxane					10 U	0.4 U	
Polycyclic Aromatic Hydrocarbons	1						
Benz(a)anthracene (µg/L)					0.05 U		
Benzo(a)pyrene (μg/L)	0.1	0.2			0.05 U		
Benzo(b)fluoranthene (μg/L)					0.05 U		
Benzo(k)fluoranthene (μg/L)	+				0.05 U 0.05 U		
Chrysene (μg/L) Dibenzo(a,h)anthracene (μg/L)	+						
	+				0.05 U		
Indeno(1,2,3-cd)pyrene (μg/L) Total cPAHs TEQ (μg/L; calculated)	0.1				0.03 U		
Naphthalene (µg/L)	160		1 U	1 U	0.15	1 U	
Fuel Additives & RCRA Metals	100		1 0	1 0	0.13	1 0	
1,2-Dibromethane (EDB) (µg/L)	0.01					0.01 U	
Arsenic (µg/L), total	5					5.15	6.29
Arsenic (µg/L), dissolved	5					3.13	1
Barium (µg/L), total						57.9	73.2
Barium (µg/L), dissolved						37.3	12.5
Cadmium (µg/L), total	5					1 U	1
Cadmium (µg/L), dissolved	5					_	1
Chromium (µg/L), total	50					24	26.1
Chromium (µg/L), dissolved	50						1.76
Lead (μg/L), total	15	15			2.44	4.99	6.2
Lead (µg/L), dissolved	15						1
Mercury (μg/L), total	2					1 U	1
Mercury (μg/L), dissolved	2						1
Selenium (μg/L), total						1 U	1
Selenium (μg/L), dissolved							1
Silver (μg/L), total						1 U	1
Silver (μg/L), dissolved							1
Polychlorinated Biphenyls (PCBs)	T						
PCB Mixtures (μg/L)	0.1	0.5			0.1 U		
Natural Attenuation Parameters	T				1		
Dissolved oxygen (mg/L)					2.3	2.6	
Oxidation-reduction potential (mV)					73	125	
Nitrate (mg/L)		10					
Nitrite (mg/L)		1					
Sulfate (mg/L)							
Iron, total (mg/L)	+						
Total organic carbon (TOC; mg/L)							

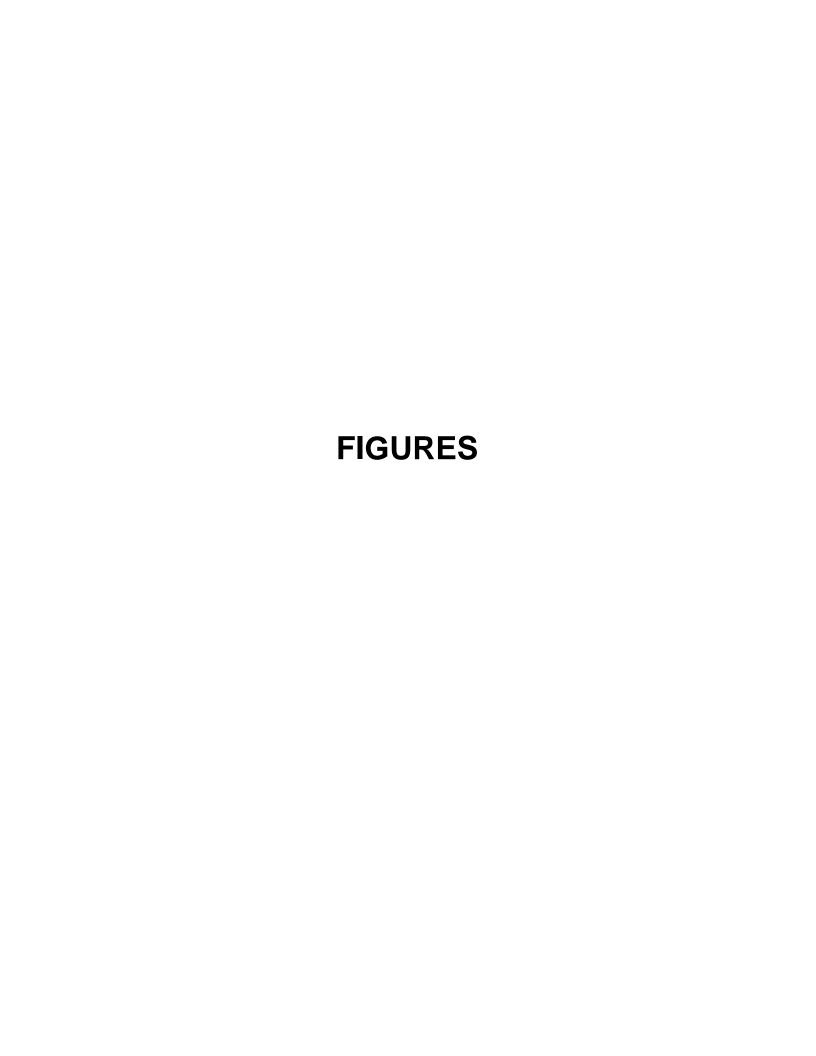
Blank cell = indicate not sampled or no standard exists

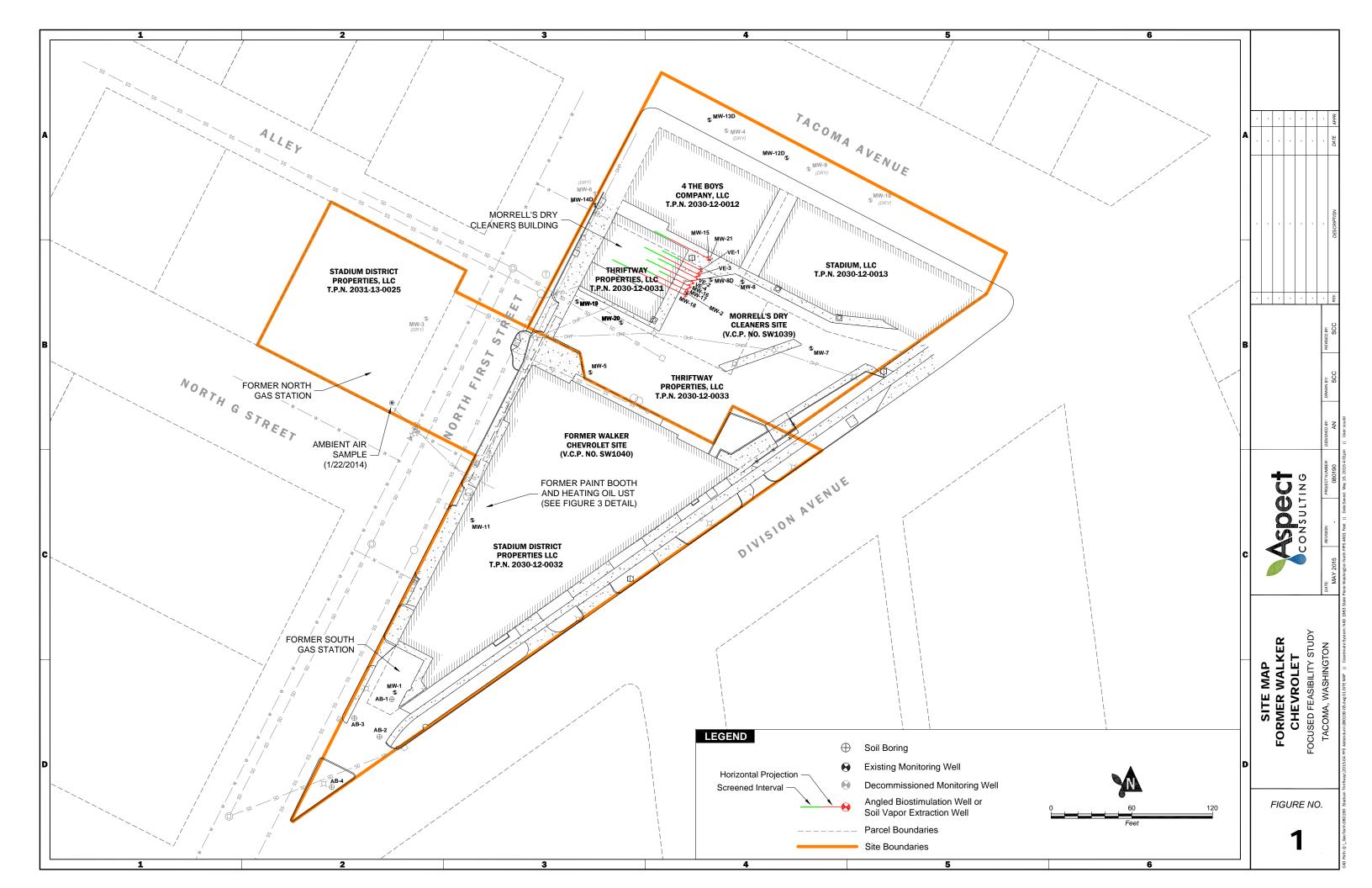
COPC = chemical of potential concern

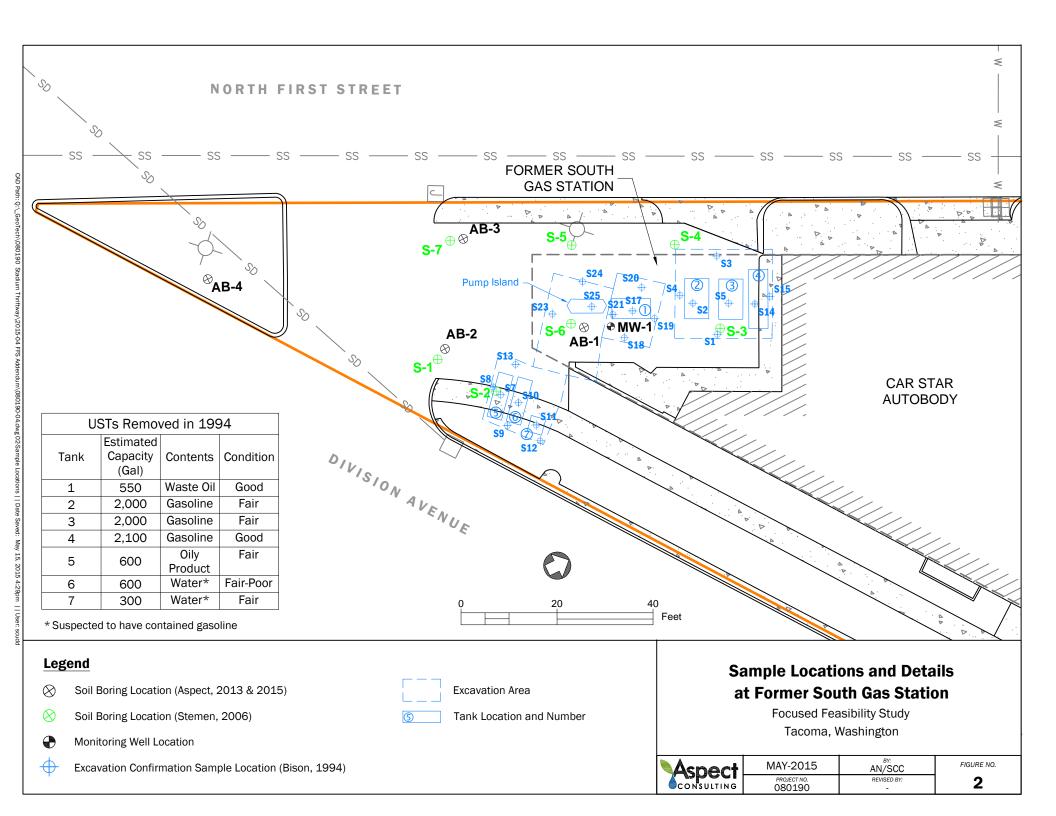
CPAH = carcinogenic polycyclic aromatic hydrocarbon

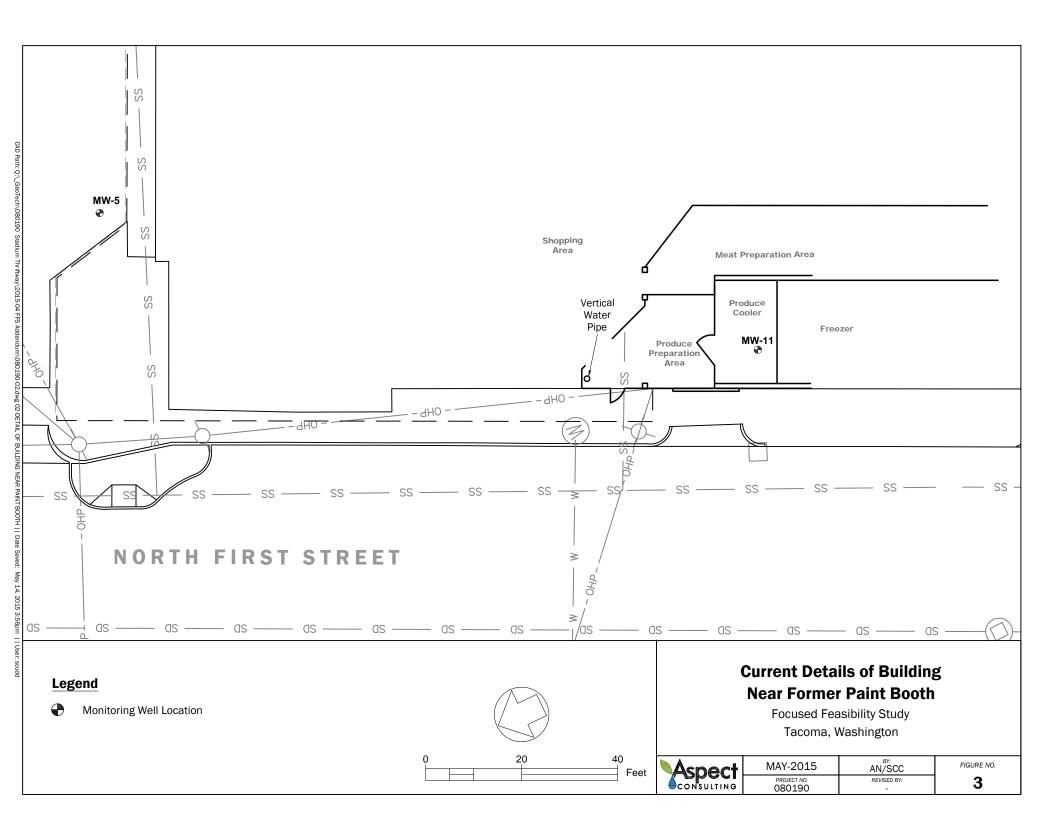
mg/L = milligrams per liter
MTCA = Model Toxics Control Act

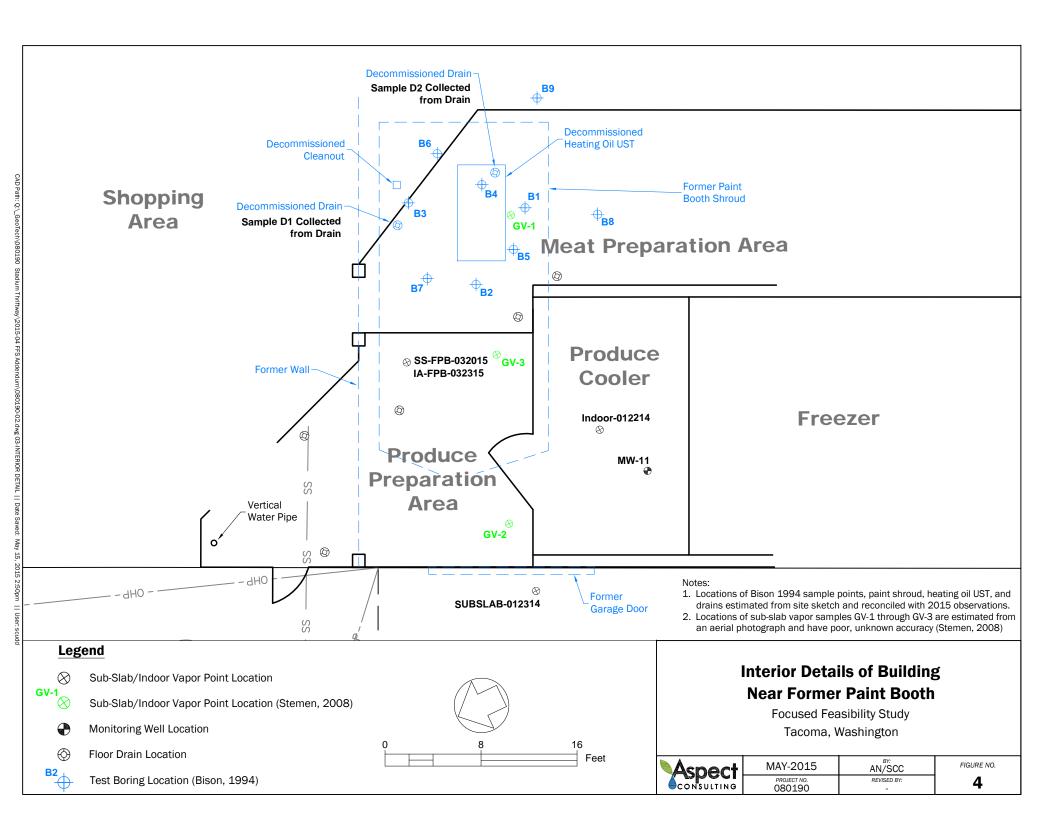
mV = millivolts

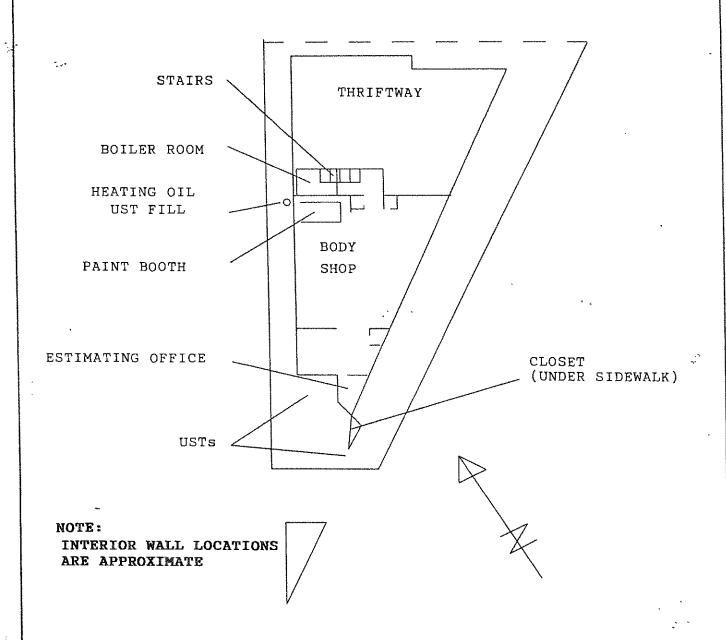

TEQ = toxic equivalent quotient

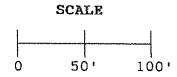

U = analyte was not detected at or above the reported result.


 μ g/L = micrograms per liter


Dissolved metals were filtered through 0.45 micron filter

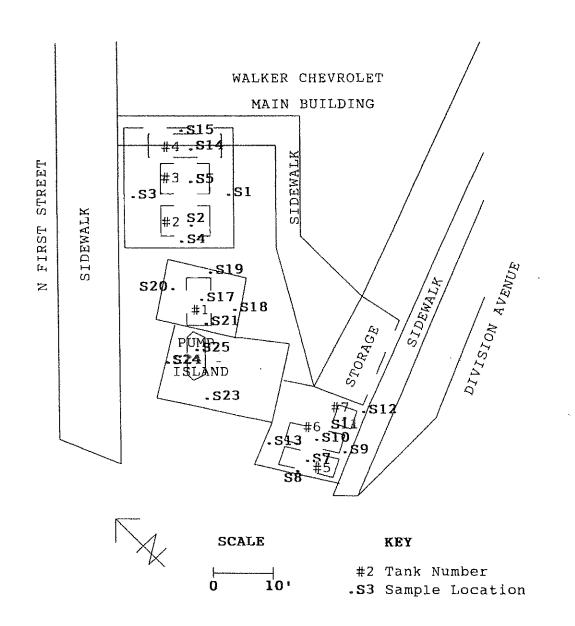

Table 3-5


APPENDIX A


Summarized Figures and Data Tables from 1994 Remedial Action Reports and Due Diligence Sampling from 2006 to 2008

South Gas Station - Figures and Data Tables

UST Removal Site Assessment and Independent Remedial Action Report for Walker Chevrolet 633 Division Avenue, Tacoma, WA 98403


Prepared by Bison Environmental Northwest, Inc. August 1994

SITE PLAN - LOWER FLOOR MAIN BUILDING BISON ENVIRONMENTAL NORTHWEST, INC. PROJECT# 94481 AUGUST 1994

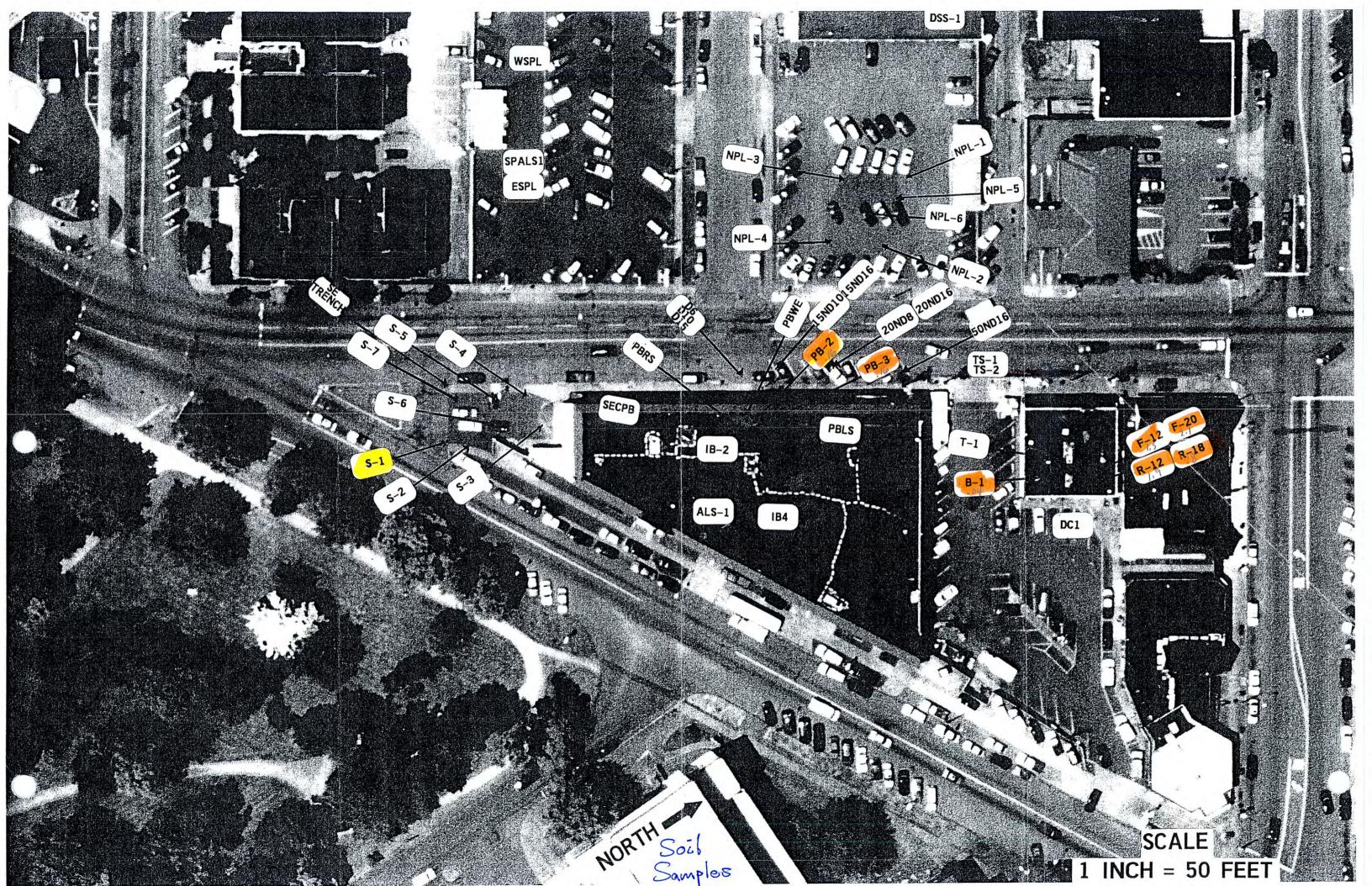
SITE PLAN BISON ENVIRONMENTAL NORTHWEST, INC. PROJECT# 94481 AUGUST 1994

SAMPLE LOG WALKER CHEVROLET PROJECT # 94481

Sample		HCID	OTHER ANALYSIS	CLEANUP LEVEL (ppm)
Number	Location		OTHER MARIOTO	
S1	E wall tank 2-4 exc, 5'	ND	Market	_
S1 S2	Bottom tank 2, 10'		Gasoline ND	-
52	Boccom came 2, 10		BTEX ND	_
			Lead ND	_
S3	W wall tank 2-4 exc, 7'	ND	-	-
S4	S wall tank 2-4 exc, 7'	ND	-	***
S5	Bottom tank 3, 10'	_	Gasoline 39 ppm	100
			B ND	0.5
			T ND	40
			E 0.33 ppm	20
			x 3.30 ppm	20
		N.D.	Lead 6 ppm	250
S6	Tanks 5-7, surface	ND		-
S7	Bottom tank 5, 9'	ND		-
S8	S wall tank 5-7 exc, 7'	ND ND		
S9	E wall tank 5-7 exc, 7'	ND	_	_
S10	Bottom tank 6, 8'	ND	- Marie	-
S11	Bottom tank 7, 8'	ND		-
S12	E wall tank 5-7 exc, 7'	ND		•••
S13	W wall tank 5-7 exc, 5'	ND	<u></u>	
S14	Bottom tank 4, 10'	***	Gasoline ND	
			BTEX ND	***
S15	N wall tank 2-4 exc, 8'	ND	****	
S17	Bottom tank 1 exc, 8'	ND	wayer	***
S18	E wall tank 1 exc, 6'	ND		-
S19	N wall tank 1 exc, 7'	ND		
S20	W wall tank 1 exc, 6'	ND	see.	-
S21	S wall tank 1 exc, 7'	ND		_
S22	Pump I exc, 2' (removed) –	Gasoline 570 ppm	1 0 0
			B 1.42 ppm	0.5
			7.81 ppm	4 0
			E 11.11 ppm	20
			X 84.20 ppm	20

SAMPLE LOG (continued) WALKER CHEVROLET PROJECT # 94481

Sample						CLEANUP LEV E L
Number	Location	HCID	OTHER	ANALYSI	.S	(mqq)
S23	S wall pump I exc, 3'	ND		-		
S24	W wall pump I exc, 3'	ND		-		•••
S25	Bottom pump I exc, 5'	ИD		-		~~
01	Tank 2 overburden	ND		-		***
02	Tank 3 overburden	ND		_		
03	Tank 1 overburden	ND		-		-
04	Tank 5-8 overburden	ND		_		
05	Tank 5-8 overburden	ND		_		•••
06	Tank l overburden	НО	Oils	1,900	ppm	200
			PCBs	ND		_
			VOCs	ND		-
		{metals}	Вa	88 .4	mqq	5,600*
			Сđ	0.4		. 2
			\mathtt{Cr}	21.1		100
			Pb		ppm	250
		As,	Hg,Se,			_


NOTES TO SAMPLE LOG

- 1) ppm denotes parts per million
- 2) B, T, E, and X denote benzene, toluene, ethylbenzene, and xylenes, respectively
 3) VOCs denote volatile organic compounds
- 4) ND denotes none detected. Refer to laboratory reports for detection limits.
- 5) HCID analysis for petroleum hydrocarbons by WTPH-HCID method. Refer to laboratory reports for other methods used during this project.
- 6) Unless indicated by asterix, cleanup levels are "Method A" values as specified in the Model Toxics Control Act (MTCA), WAC 173-340. Asterix indicates MTCA Method B value.

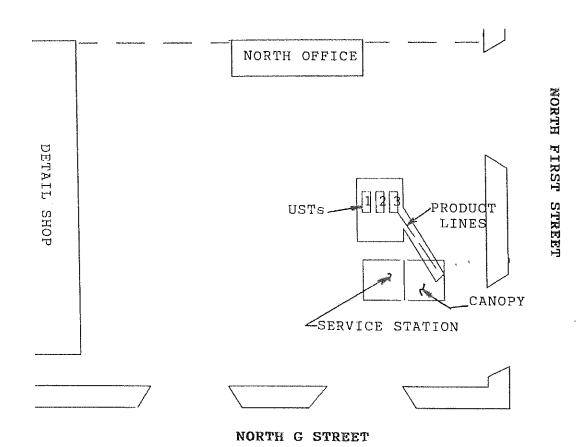
South Gas Station - Figures and Data Tables

Due Diligence Sampling for Walker Chevrolet, 633 Division Avenue, Tacoma, WA 98403

Provided by Stemen Environmental, Inc. August 2006

SOIL SEMI-VOLATILE ORGANIC CON	MPOUNDS I	BY METHOD 8270	
SAMPLE-NUMBER	S-1-15	SOIL	
		REPORTING	
SAMPLE DATE	8/31/06	LIMITS	
DEPTHS	 15	·	
DEI THO	IJ		-
	mg/kg	mg/kg	
ACENAPHTHENE	ND	0.1	
ACENAPHTHYLENE	ND	0.1	
ANTHRACENE	ND	0.1	
BENZO(a)ANTHRACENE	ND	0.1	•
BENZO(a)PYRENE	ND	0.1	•
BENZO(ghi)PERYLENE	ND	0.1	
BENZO(k)FLUORANTHENE	ND -	0.1	
CHRYSENE	. ND	0.1	* *
DIBENZO(a,h)ANTHRACENE	ND	0.1	
FLUORENE	ND	0.1	
FLUORANTHENE	ND	0.1	
INDENO(1,2,3-cd PYRENE	ND	0.1	
ANPHTHALENE	ND		
1-METHYLNAPTHALENE	ND	0.1	
2-METHYLNAPTHALENE		0.1	
PHENANTHRENE	ND .	0.1	
to the second of	ND	0.1	.
PYRENE	ND	0.1	
COH DCD INLIEUCES ED I		•	
SOIL PCB ANALYSES EPA METI	HOD 8082		
SAMPLE-NUMBER	S-1-15		
	-		
SAMPLE DATE	8/31/06		
DEPTHS	15'		
		MDL	
PCB-1016	ND	0.2	-
PCB-1221	ND	0.2	
PCB-1232	ND	0.1	-
PCB-1242	ND	0.1	
PCB-1248	ND	0.1	
PCB-1254	ND	0.1	
PCB-1260			1
1 CD-1200	ND	0.1	

ANALYSES OF SOIL FOR SPECI	FIC HALOGENA	TED			
HYDROCARBONS BY EPA 8260			-		, .
III DROCARDONS BY EPA 8200 (CHLORINATEL		-		
OAMDIE MINARED					
SAMPLE-NUMBER		PB-3-8	S-1-15	PB2-4	DC1-8
SAMPLE DATE		8/31/06	8/31/06	8/31/06	8/31/06
DEPTH		8'	15'	4'	8'
	SOIL		•		Ü
	REPORTING	• • • •			
	LIMITS	mg/kg	mg/kg	mg/kg	mg/kg
DICHLORODIFLUOROMETHANE	0.05	ND	ND .	ND	ND ,
CHLOROMETHANE	0.05	ND	ND	ND	ND
VINYL CHLORIDE	0.01	ND	ND	ND	
BROMOMETHANE	0.05	ND.	ND	ND	ND
CHLOROETHANE	0.05	ND	ND		ND
TRICHLORÖFLÜORÖMETHANE	0.05	ND.		ND	ND
ACETONE	0.5	**	ND .	ND	ND
METHYLENE CHLORIDE		ND	ND	ND	ND
METHYL-T-BUTY ETHER (MTBE)	0.5	ND	ND	ND	ND
TRANS 1,1 DICHLOROETHENE	0.05	,ND	ND	ND	ND
1,1 DICHLOROETHENE	0.05	ND	ND	ND	ND
	0.5	ND	ND	ND ·	ND
TRANS-1,2-DICHLOROETHENE	0.05	ND	ND	ND .	ND
1,1 DICHLOROETHANE	0.05	ND	ND .	ND	ND
CIS-1,2 DICHLOROETHENE	0.05	ND	ND	ND	ND
2,2-DICHLOROPROPANE	0.05	ND	ND .	ND	ND
CHLOROFORM	0.05	ND	ND	ND :	ND
BROMOCHLOROMETHANE	0.05	ИĎ	ND	ND	ND
1,1,1-TRICHLOROETHANE	0.05	ND .	ND-	ND -	ND
1,2 DICHLOROETHANE	0.05	ND	ND	ND	ND
1,1-DICHLOROPROPENE	0.05	ND	ND	ND	ND
CARBON TETRACHLORIDE	0.05	NĎ "	ND	ND "	ND
BENZENE	0.02	ND	ND	ND	ND
TRICHLOROETHENE (TCE)	0.02	ND	ND	ΝĎ	ND
1,2-DICHLOROPROPANE	0.05	ND	ND .	ND	ND
DIBROMOMETHANE	0.05	ND .	ND	ND	ND
BROMODICHLOROMETHANE	0.05	ND	ND	ND	ND
4-METHYL-2-PENANONE	0.05	ND	ND	ND	ND
CIS-1,3-DICHLOROPROPENE	0.05	ND	ND	ND	ND
TOULENE	0.05	ND	ND	ND	ND
TRANS-1,3-DICHLOROPROPENE	0.05	ND	ND	ND	ND
1,1,2,-TRICHLOROETHANE	0.05	ND	ND		ľ
2-HEXANONE	0.05	ND	ND	ND	ND
1,3-DICHLOROPROPANE	0.05	ND	ND	ND	ND
DIBROMOCHLOROMETHANE	0.05	ND	**	ND	ND
TETRACHLOROETHENE (PCE)	0.03		ND	ND 0.40	ND
1,2-DIBROMOETHANE (EDB)(*)	0.02	0.16	ND	0.16	ND
.CHLOROBENZENE		ND	ND	ND	ND
1,1,1,2-TETRACHLOROETHANE	0.05	ND	ND	ND	ND
ETHYLBENZENE	0.05	ND	ND	ND	ND
XYLENES	0.05	ND	ND.	ND	ND
	0.05	0.13	5.7	0.12	0.16

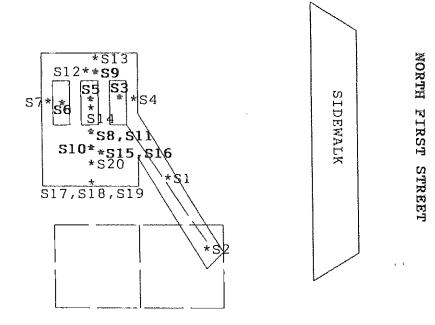

ANALYSES OF SOIL FOR SPECIFIC HALOGENATED								
HYDROCARBONS BY EPA 8260 CHLORINATED								
SAMPLE-NUMBER		PB-3-8	S-1-15	PB2-4	DC1-8			
CAMPLE DATE					:			
SAMPLE DATE		8/31/06	8/31/06	8/31/06	8/31/06			
DEPTH		8'	15'	4'	8'			
	SOIL	Ū	10	4	0			
·	REPORTING							
	LIMITS	mg/kg	mg/kg	mg/kg	mg/kg			
STYRENE	0.05	ЙD	ND	ND	ND ND			
BROMOFORM	0.05	ND	ND	ND	ND			
1,1,2,2-TETRACHLOROETHANE	0.05	ND	ND	ND	ND			
ISOPROPYLBENZENE	0.05	ŇD	5	ND .	ND			
1,2,3-TRICHCHLOROPROPANE	0.05	ND	ND	ND	ND			
BROMOBENZENE	0.05	ND	ND	ND	ND			
n-PROPYLBENZENE	0.05	ND	14	ND ,	ND			
2-CHLOROTOLUENE	0.05	ND	ND	ND	ND			
4-CHLORODOLUENE	0.05	ND.	ND	ND	ND			
1,3,5-TRIMETHYLBENZENE	0.05	ND	37	ND	ND			
TERT-BUTYLBENZENE	0.05	ND [ND	ND .	ND			
1,2,4-TRIMETHYLBENZENE	0.05	ND	71	ND	NĎ			
SEC-BUTYLBENZENE	0.05	ND	ND	ND	ND			
1,3-DICHLOROBENZENE	0.05	ND	ND	ND	ND			
1,4-DICHLOROBENZENE	0.05	ND	ND	ND	ND			
ISOPROPYLTOLUENE	0.05	ND	2.3	ND	ND			
1,2-DICHLOROBENZENE	0.05	ND	ND	ND	ND			
n-BUTYLBENZENE	0.05	ND	6.2	ND	ИО			
1,2-DIBROMO-3-CHLOROPROPANE	0.05	ND	ND	ND.	ND			
1,2,4-TRICHLOROBENZENE	0.05	ND	ND	ND	ND			
NAPHTHALENE	0.05	ND	ND	ND	ND			
HEXACHLORO-1,3-BUTADIENE	0.05	ΝĎ	ND	ND	ND			
1,2,3-TRICHLOROBENZENE	0.05	ND	ND	ND	ND			

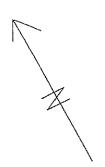
ANALYSES OF SOIL FOR TOTAL PETROLEUM HYDROCARBONS EPA METHOD NWTPH-Dx/Dx EXTENDED								:			
SAMPLE	SAMPLE		Printed house .	- Appendix to the second						1	1
NUMBER	DATE	DEPTH	DENIZENIE		ETHYL-	TOTAL	OACOLDIO	Drnen		MINERAI	·
HOMBER	DAIL		BENZENE	TOLUENE	BENZENE	XYLENES	GASOLINE	DIESEL	OIL	OIL	1 4 - Jan 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19
			mg/kg	mg/kg	mg/kg	mg/kg	ma/lea				i
S-1-15	8/31/06	15'	6.1	4.1	6	12	mg/kg 920	mg/kg ND	mg/kg ND	mg/kg ND	
S-2-15	8/31/06	15'	ND	ND	ND	ND	ND	ND	ND	ND ND	:
S-7-15	8/31/06	16'					360	ND	ND	. ND ND	
S-3-15	8/31/06	15'	ND	ND	ND	ND	ND	ND	ND	ND	
S-4-15	8/31/06	15'	ND	ND	ND	ND	ND	ND .	ND	. ND	
S-5-15	8/31/06	13'	ND	ND	ND .	ND	ND	ND .	ND	ND	
S - 6-8	8/31/06	8'	ND	ND	ND	ND	ND	ND	ND	. ND	
PB-3-8	8/31/06	8'	*	*	*	*	30	ND	ND	ND	
NPL-6-20	8/31/06	20'	ND	ND	ND	ND	ND	ND	ND .	ND	
ESPL-24	8/31/06	24	ND	ND	ND	ND	ND	ND !	ND	ND	
WSPL-20	8/31/06	20'	ND	ND	ND	ND	ND	ND	ND	ND	
NPL-1-21	8/31/06	21'	ND	ND	ND	ND	ND	ND	ND	ND	
NPL-2-19	8/31/06	19'	ND	ND	ND	ND	ND .	ND	ND	ND	[Mayor Johnson
NPL-3-19	8/31/06	19'	ND	ND	ND	ND	ND	ND	ND	ND	14 -1 41 1
NPL-4 - 19	8/31/06	19'	ND	ND	ND	ND	ND	ND :	ND	ND	
NPL-5-20	8/31/06	20'	ND .	ND	ND	ND	ND	ND	ND '	ND	T. H. H. Lee van
IB2-6	8/31/06	6'	ND	ND	ND	ND	ND	ND	94	ND	1960 p. 14
SECPB-8	8/31/06	8'	ND	ND	ND	ND	ND	ND	ND	ND	
S PALS-1	9/18/06	23.5'	*	≱ ≰ ,	*	*	ND	ND	ND	ND	***
DC PLAS-2	9/18/06	18.5-20'	*	*	*	*	ND	ND	ND	ND	
IB4	10/20/06	60"	*	*	* ;	*	ND	ND	ND	ND	
PBWE	10/20/06	24"	He .	عاد	*	*	ND	ND	87	ND	
PBLS-24	10/20/06	24"	*	*	*	*	ND	ND	ND	ND	
PBLS-36	10/20/06	36"	*	3 ¢	*	*	ND	ND	ND	ND	1
_ ALS-1	10/20/06	32"	*	3/5	*	*	ND	ND :	220	ND	*
DSS-1	10/20/06	36"	*	*	*	*	ND	ND j	ND	ND	· It when a , same
PBRS	10/20/06	30"	*	* :	*	*	ND	ND :	ND	ND	
MDL			0.02	0.05	0.05	0.05	10	30	40	40	
* = Not analyze	<u>d</u> .					1		· · · New III I I I I I I I I I I I I I I I I I		· · · · · · · · · · · · · · · · · · ·	

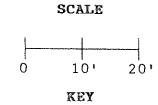
North Gas Station - Figures and Data Tables

UST Removal Site Assessment and Independent Remedial Action Report for Walker Chevrolet 633 Division Avenue, Tacoma, WA 98403

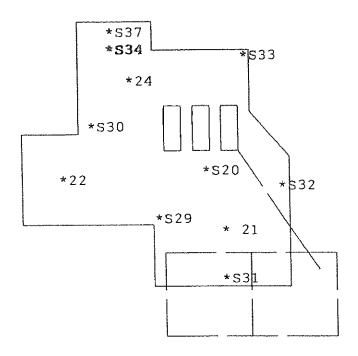
Prepared by Bison Environmental Northwest, Inc. August 1994


SCALE

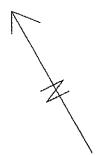

0 20

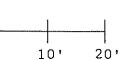

NOTE: Service Station and Canopy locations are approximate, and based on review of Sanborn Fire Insurance Maps, date 1945

SITE PLAN - WALKER CHEVROLET NORTH PARKING LOT BISON ENVIRONMENTAL NORTHWEST, INC. PROJECT# 94481-3 SEPT 1994



*S3 Sample Location-Contaminated Soil (removed)


*S18 Sample Location-"Clean" Soil


SITE PLAN - NORTH LOT on 9/2/94 BISON ENVIRONMENTAL NORTHWEST, INC. PROJECT# 94481-3 SEPT 1994

SCALE

KEY

0

*S34 Sample Location-Contaminated Soil (removed)

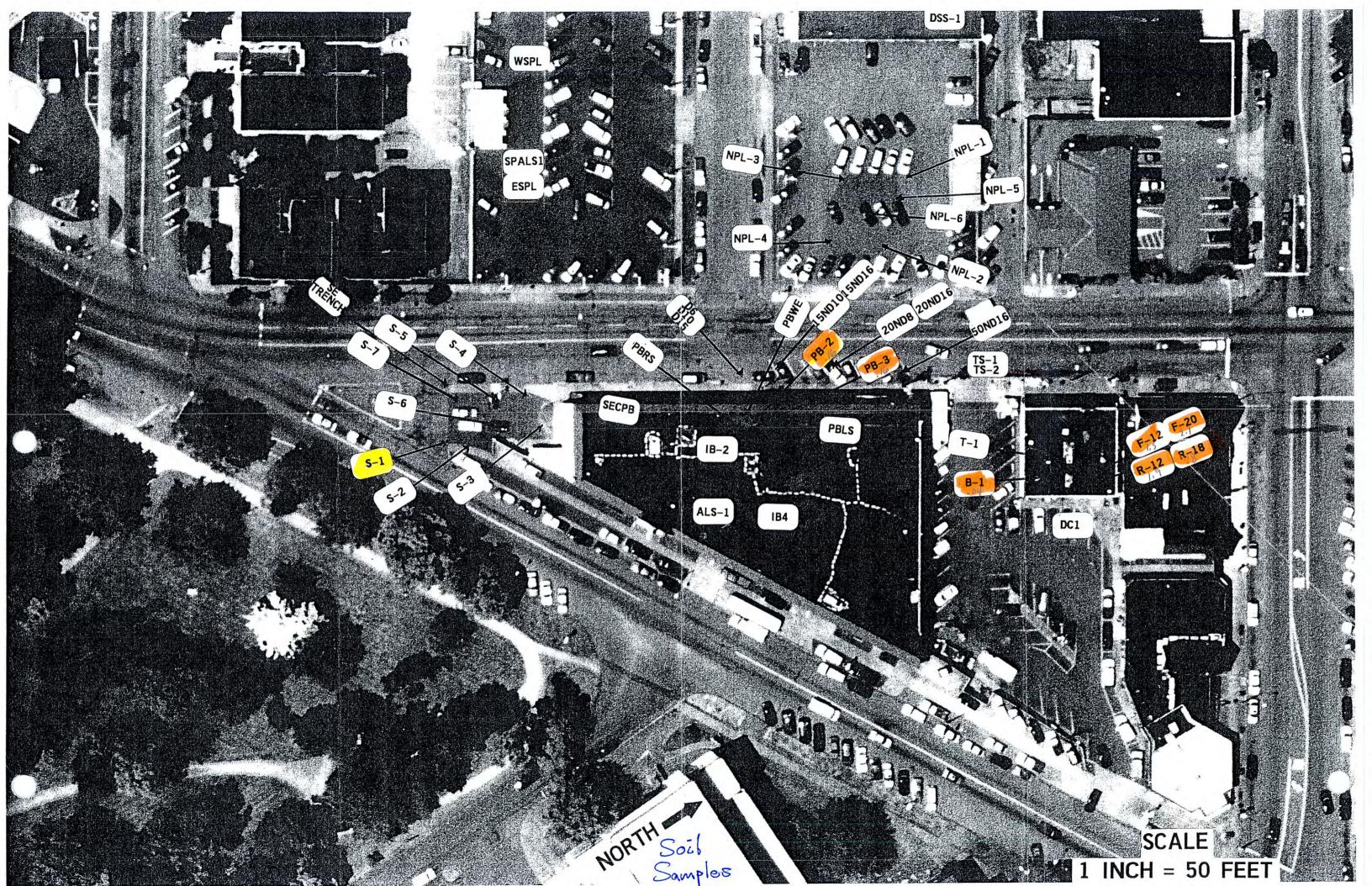
*S21 Sample Location-"Clean" Soil

SITE PLAN - NORTH LOT on 9/12/94 BISON ENVIRONMENTAL NORTHWEST, INC. PROJECT# 94481-3 SEPT 1994

SAMPLE LOG WALKER CHEVROLET - NORTH PARKING LOT PROJECT # 94481-3

Sample Number		HCID RESULTS	OTHER ANALYSES TYPE RESULTS	CLEANUP LEVEL (ppm)
MOUNDEL	200202011			
S1	Beneath Prod Lines, 3'	ND		
S2	Prob. Pump Isl Loc, 3'	ND		-
83	Bottom tank 1, 5' (8/26) G,HO	Gasoline ND	100
	, , ,	•	B ND	0.5
			T ND	40
			E ND	20
			X ND	20
			Lead 30 ppm	250
			Oils 540 ppm	200
S4	E wall, 4'	ИД		****
\$ 5	Bottom tank 2, 5' (8/26	i) HO	Oils 140 ppm	
ន6	Bottom tank 3, 5' (8/26	i) G,HO	Gasoline 298 ppm	100
			B ND	0.5
			T ND	40
			E 0.52 ppm	
			X 7.78 ppm	
			Lead 18 ppm	
			Oils 18000 ppm	200
S7	W wall, 4'	ИD		
88	S wall, 4' (8/26)	G,HO	Oils 21000 ppm	200
			B ND	
			T 0.027 ppm	
			E 0.062 ppπ	
			X 2.5 ppm	
	Se	ec-Butylb	enzene 0.32 ppπ	
		sopropylb		
	p-1:	sopropylt		
			thalene 4.4 ppm	
		n-Propylb		
		rimethylb	= -	
	1,3,5 17	rimethylb		
		other	VOCs ND	-
		(motale)	PCBs ND Ba 62 ppm	. E 600*
		(metals)		
		24 bo	Pb 27 ppm Hg,Se,&Ag ND	. 250
89	N wall, 4' (8/26)	HO	Oils 100 ppm	
	verburden Composite (8/2			
01 0	verburden compositee (0/2	o, G,110	B ND	0.5
			T ND	40
			E 0.81 ppr	
			X 2.31 ppr	
			Lead 28 ppr	
			Oils 5400 ppr	
02 0	verburden Composite (8/2	6) G,HO	- 5400 pp	
	verburden Composite (8/2			-
	1 (-/-	, ,,		

SAMPLE LOG (continued) WALKER CHEVROLET PROJECT # 94481-3

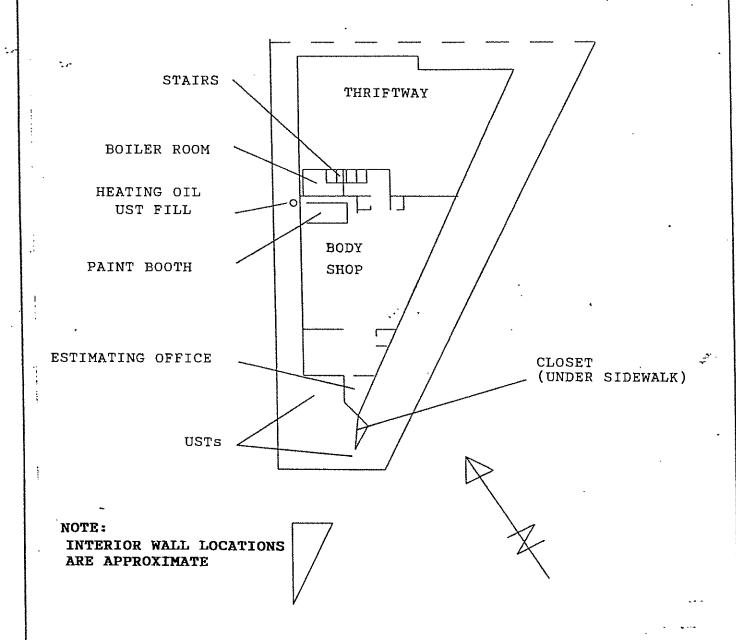

1) p - 2) H	Sampl					CLEANUP LEVEL
x 1	<u>Numbe</u>		HCID	OTHER AN		(ppm)
3) V C	S10	S wall, 4' (8/31)	HO		3400 ppm	200
4) N	Sll	S Bottom, 8' (8/31)	НО	0ils	mqq 088	200
đ ro	S12	N Bottom, 8' (8/31)	ND			4044
5) H II	S13	N Wall, 4' (8/31)	ИD	page.		-
m ·	S14	Center Bottom, 8' (8/31)	ND			
đ.	S15	South Bottom, 12' (9/2)	G,HO		mqq 0000.	200
6) U.d.	S16	S Bottom, 15' (9/2)	G,HO	Oils	560 ppm	200
7) וו	S17	S Wall, 12' (9/2)	ИD	0ils	ИD	200
V	S18	S Wall, 8' (9/2)	ND	Oils	ND	200
₩ .C	S19	S Wall, 4' (9/2)	ИD	Oils	ИD	200
	S20	S Bottom, 17' (9/2)	ИD	Oils	ИD	200
	21	Bottom, 16'(9/6)	ND		Allino .	•
	22	Bottom W arm, 20' (9/6)	ND		104	
	23	Composite, contam soil	G,HO		-	
		-	N	aphthaler	ne 1.0 ppm	320
			C	Other PAHs		
	24	Bottom NWC, 20' (9/7)	ND		-	***
	25	Overburden Composite (9/7)	ND		vision.	
	26	Overburden Composite (9/7)	ND			•••
	27	Overburden Composite (9/7)	ИD		•••	
	28	Overburden Composite (9/7)			_	_
	S29	W wall, 15' (9/8)	ND			
	S30	W wall, 16' (9/8)	ND		-	with
	S31	SE corner, 15-16' (9/8)	ND		_	_
	S32	E wall, 15' (9/8)	ND		_	
	S33	NE corner, $15-16'$ (9/8)	ND			New
	S34	N wall, 15-16'(9/8)	G,HO	0ils	2200 ppm	200
		, (-,-,	- ,	Gasoline	108 ppm	100
				BTEX	ИD	
	835	Bottom NEC, 21' (9/8)	ND	— 	-	
	\$36	"Hot Spot" in overburder		Oils	210 ppm	200
			-	Gasoline	ND PP	100
				BTEX	ND	
	S37	N Wall, 16' (9/12)	ND			***

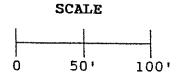
North Gas Station - Figures and Data Tables

Due Diligence Sampling for Walker Chevrolet 633 Division Avenue, Tacoma, WA 98403

Provided by Stemen Environmental, Inc. August 2006

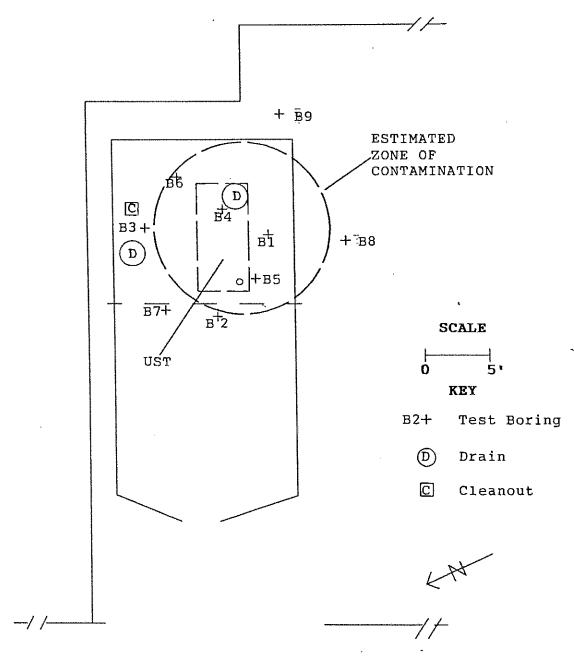
1	MINERA	# 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
TENDED		8	
Dx/Dx EX	DIESEL	36 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
EPA METHOD NWTPH-Dx/Dx EX	GASOLINE	mg/kg mg/kg	
EPA METH	TOTAL	m gg/kg 12 12 ND 12 ND	-
IYDROCARBONS	ETHYL- BENZENE	6	
	TOLUENE	### ### ### ### ### ### ### ### ### ##	
PETROLEUN	BENZENE	# # # # # # # # # # # # # # # # # # #	
TOTALI	DEPTH	15' 15' 16' 15' 15' 20' 24' 20' 21' 19' 19' 20' 20' 24'' 33'' 36'' 36'' 36''	
OF SOIL FOR	SAMPLE	8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 10/20/06 10/20/06 10/20/06 10/20/06	Da l
ANALYSES OF SOIL FOR TOTAL PETROLEUM F	SAMPLE NUMBER	S-1-15 S-2-15 S-2-15 S-7-15 S-3-15 S-4-15 S-4-15 S-6-8 PB-3-8 NPL-6-20 ESPL-24 WSPL-20 NPL-1-21 NPL-1-21 NPL-1-21 NPL-1-21 NPL-3-19 NPL-3-	- not analyzed


Former Paint Booth and Heating Oil UST - Figures and Data Tables


Phase 2 Studies, Floor Drain and Heating Oil UST Closure Walker Chevrolet Paint Booth 633 Division Avenue, Tacoma, WA 98403

Prepared by Bison Environmental Northwest, Inc. August 15, 1994

Phase 2B Subsurface Sampling, Walker Chevrolet Paint Booth, 633 Division Avenue, Tacoma, WA 98403


Prepared by Bison Environmental Northwest, Inc. September 12, 1994

SITE PLAN - LOWER FLOOR MAIN BUILDING BISON ENVIRONMENTAL NORTHWEST, INC. PROJECT# 94481 AUGUST 1994

NORTH FIRST STREET

SITE PLAN - WALKER CHEVROLET PAINT BOOTH BISON ENVIRONMENTAL NORTHWEST, INC. PROJECT# 94481-2 SEPTEMBER 1994

A CONTRACT OF THE PROPERTY OF

TABLE A:
LABORATORY RESULTS - PREVIOUS STUDY

Sample <u>Locati</u>	•	s Analyte	Results	Cleanup Level
B1-5.5'	WTPH-418.1	TPH	8,000 ppm	200 ppm
Sedivent Semple	Total Meta	ls Barium Cadmium Chromium Lead As, Cd, SE, & Ag	43.8 ppm 50.2 ppm 110 ppm 2140 ppm ND	5,600 ppm* 2 ppm 100 ppm 250 ppm
Inside Pipe Removed During Decommission	1,2,4 T 1,3,5 T	Ethylbenzene Isopropylbenzene p-Isopropyltoluene Tetrachloroethene Naphthalene n-Propylbenzne Toluene rimethylbenzene rimethylbenzene Total Xylenes Other VOCs	2,200 ppb 1,600 ppb 480 ppb 210 ppb 1,100 ppb 1,500 ppb 85,000 ppb 11,000 ppb 5,000 ppb	20,000 ppb NA NA 500 ppb 320,000 ppb* NA 40,000 ppb NA NA 20,000 ppb
B2-5.5'	WTPH-418.1	TPH	79 ppm	200 ppm
B3-2'	WTPH-418.1	TPH	96 ppm	200 ppm
	EPA 8240	Toluene Total Xylenes Other VOCs	13 ppb 5 ppb ND	40,000 ppb 20,000 ppb
B4-3'	WTPH-418.1	ТРН	480 ppm	200 ppm
	EPA 8240	Toluene Total Xylenes Other VOCs	7 ppb 6 ppb ND	40,000 ppb 20,000 ppb

5 0...

TABLE B: LABORATORY RESULTS - TEST BORINGS

Sample No. Location		is Analyte	Results	Cleanup <u>Level</u>	
B5-5'	WTPH-HCID	Hydrocarbons	Gasoline - ND Diesel - ND Oil - Detected		
	WTPH-418. EPA 8240	l TPH Methylene Chloride Toluene	390 ppm	200 ppm 500 ppb 40,000 ppb	
	,	Total Xylenes Other VOCs	10 ppb ND	20,000 ppb	
B5-7.5'	WTPH-418.1	ТРН	2500 ppm	200 ppm	
B5-9'	WTPH-418.1	ТРН	4400 ppm	200 ppm	
B5-10'	WTPH-HCID	Hydrocarbons	Gasoline - ND Diesel - ND		
	WTPH-418.	1 TPH	Oil - Detected		
•	EPA 8240	Benzene	260 ppm	200 ppm	
•	EPA 0240	_ · · -	24 ppb	500 ppb	
		n-Butylbenzene	15 ppb	NA	•
		sec-Butylbenzene	22 ppb	NA	
		Ethylbenzene	130 ppb	20,000 ppb	
		Isopropylbenzene	50 ppb	NA	
		p-Isopropyltoluene	15 ppb	NA	
		Tetrachloroethene	53 ppb	500 ppb	50
		Methylene Chloric	de 28 ppb+	500 ppb	
		n-Propylbenzene	80 ppb	NA	
		Toluene	720 ppb+	40,000 ppb	
	1,2,4	Trimethylbenzene	130 ppb	NA	
		Trimethylbenzene	170 ppb	NA	
	, , ,	Total Xylenes	790 ppb	20,000 ppb	
		Other VOCs	ND	20,000 ppb	
B6-5'	WTPH-HCID	Hydrocarbons	Gas - Detected		
·			Diesel - ND Oil - ND		
	WTPH-G	Gasoline	100 ppm	100 ppm	
	EPA 8240	n-Butylbenzene	15 ppb	NA	
		sec-Butylbenzene	22 ppb	NA	
		Ethylbenzene	690 ppb	20,000 ppb	
		p-Isopropyltoluene	83 ppb	NA	
		Naphthalene	190 ppb	320,000 ppb	
		n-Propylbenzne	99 ppb	NA	
		Toluene	8,600 ppb+		
	1 2 4	Trimethylbenzene	790 ppb+	40,000 ppb	
		Trimethylbenzene		NA	
	1,0,0	Total Xylenes	300 ppb	NA	
		Other VOCs	7,100 ppb	20,000 ppb	

TABLE B (continued)

Sample No.	/			Cleanup
<u>Location</u>	<u>Analysis</u>	Analyte	Results	Level
B6-81	WTPH-HCID	Hydrocarbons	ND	
D0-0	EPA 8240	Ethylbenzene	12 ppb	20,000 ppb
	ELA 0240	Toluene	370 ppb+	40,000 ppb
	ጥ	otal Xylenes	150 ppb	20,000 ppb
	7,	Methylene Chloride	39 ppb+	500 ppb
	1 2 / Tre-	imethylbenzene	13 ppb	NA
		imethylbenzene	6 ppb	NA
	1,0,5 11.	Other VOCs	ND D	IAV
		Other vocs	MD	
B7-4'	WTPH-HCID	Hydrocarbons	ND	
	EPA 8240	Toluene	ll ppb+	40,000 ppb
		Methylene Chloride	- -	500 ppb
	•	Other VOCs	ND	
DO 51	LIMBU HOTE	V	MD	
B8-5'	WTPH-HCID	Hydrocarbons	ND	40.0001
	EPA 8240	Toluene	14 ppb+	40,000 ppb
		Methylene Chloride	48 ppb+	500 ppb
B9-5'	WTPH-HCID	Hydrocarbons	ND	
	EPA 8240	vocs	ND	

NOTES:

- + Compound also appeared in laboratory blank, suggesting cross-contamination in laboratory.
- 1) ppm indicates parts per million.
- 2) ppb indicates parts per billion.
- 3) TPH indicates total petroleum hydrocarbons. The 418.1 analysis is designed for heavy oils, but also reports lighter hydrocarbon fractions.
- 4) ND denotes none detected. Refer to laboratory reports for detection limits.
- 5) Unless indicated by asterix, cleanup levels are "Method A" values as specified in the Model Toxics Control Act (MTCA), WAC 173-340. Asterix indicates MTCA Method B value.
- 6) NA indicates a published MTCA cleanup level for this compound is not currently available.

SPECTRA Laboratories, Inc.

2221 Ross Way

Tacoma, WA 98421

(206) 272-4850

August 2, 1994

Bonneville, Viert, Morton & McGoldrick

P.O. Box 1533

Tacoma, WA 98401

Attn: Dale Schuman

Sample ID: D1

Project: Walker 94481 Sample Matrix: Sediment Date Sampled: 7-30-94

Date Received: 8-1-94 Spectra Project: S408-003

Spectra #8709

RUSH

WTPH-HCID

Sample contains gasoline, diesel and heavier than diesel range hydrocarbons.

Total Metals, mg/Kg

Arsenic	(As)	<5
Barium	(Ba)	422
Cadmium	(Cd)	50.2
Chromium	(Cr)	110
Lead	(Pb) .	2,140
Mercury	(Hg)	<3
Selenium	(Se)	<8
Silver	(Ag)	<0.7

Total Metals testing performed by EPA Method 6010

SPECTRA LABORATORIES, INC.

Steven G. Hibbs, Chemist

SPECTRA Laboratories, Inc.

2221 Ross Way •

Tacoma, WA 98421

(206) 272-4850

August 2, 1994

Bonneville, Viert, Morton & McGoldrick

P.O. Box 1533

Tacoma, WA 98401

Attn: Dale Schuman

Sample ID: D2

Project: Walker 94481 Sample Matrix: Sediment Date Sampled: 7-30-94 Date Received: 8-1-94 Spectra Project: S408-003

Spectra #8710

RUSH

WTPH-HCID

Sample contains gasoline and heavier than diesel range hydrocarbons.

Total Metals, mg/Kg

Arsenic	(As)	<5
Barium	(Ba)	2,000
Cadmium	(Cd)	4.2
Chromium	(Cr)	927
Lead	(Pb)	918
Mercury	(Hg)	<3
Selenium	(Se)	<8
Silver	(Ag)	< 0.7

Total Metals testing performed by EPA Method 6010

SPECTRA LABORATORIES, INC.

Steven G. Hibbs, Chemist

Boring logs are presented below. Depth measurements should be considered accurate to the nearest 0.5 foot.

Boring 1

3 3

Date: 08-03-94

Location: West of South Drain and UST

No groundwater encountered

Depth (feet)

(feet)	Soils	Comments	
0-1	8" concrete slab, +/- 6" gravel fill	·	
1-5.5	Light brown, fine- grained sand, moist	Solvent-like odors and black staining, 3-5.5 feet	
Auger refusal at 6 feet		Hard object or dense gravel at 6 feet	

Boring 2

Date: 08-03-94

Location: Northwest of South Drain and UST

No groundwater encountered

Depth (feet)	Soils	Comments
0-1	8" concrete slab, +/- 6" gravel fill	
1-5.5	Light brown, fine- grained sand, moist	No odors or staining noted
Auger refusal at 6 feet		Hard object or dense gravel at 6 feet

Boring 3

Date: 08-03-94

Location: South of North Drain No groundwater encountered

Depth (feet)

(feet)	Soils	Comments
0-1	8" concrete slab, +/- 6" gravel fill	
1-3	Light brown, fine- grained sand with pieces of brick, moist	No odors or staining noted
Boring terminated at 3 feet		

Boring 4

Date: 08-03-94

Location: North of South Drain No groundwater encountered

Depth (feet)

(feet)	Soils	Comments
0-1	8" concrete slab, +/- 6" gravel fill	
1-3	Light brown, fine- grained sand, moist	Faint solvent-like odor noted 1-3 feet
Boring terminated at 3 feet		

Site <u>Walker Chevrolet - Paint Boot</u>	th
Project Number 94481-2 Date 09	9/08/94
Driller <u>Burlington Environmental</u>	Logged by <u>Henry Perrin</u>
Boring# <u>B5</u>	
Location 11' W. 3' N. of SEC Paint	t Booth

Sample # Depth Symbol Soil Description

	0-1.5'	FILL	8" Concrete Slab +/- 6" Gravel Subgrade
	1.5-4'	SP-SM	Light Brown, gravelly, slightly silty SAND, moist, medium dense to very dense
B5-5'	4-10'	SP-SM	Dark Brown, gravelly, slightly silty SAND, moist, very dense Faint Hydrocarbon Odors
B5-7.5'	71	19	11
B5-9'	17	\$1	. 17
B5-10'	13	. 11	l I

Groundwater encountered? No Depth	
Monitoring Well? No ft screen/blank	
Comments Refusal at 10 feet. Boring plugged with bentonite.	

Site Walker Chevrolet - Paint Booth
Project Number 94481-2 Date 09/08/94
Driller Burlington Environmental Logged by Henry Perrin
Boring#_B6
Location 3' W, 5' S, of NEC Paint Booth

Sample #	Depth	Group Symbol	Soil Description
	0-1.5'	FILL	8" Concrete Slab +/- 6" Gravel Subgrade
	1.5-4'	SP-SM	Light Brown, gravelly, silty SAND, moist, medium dense to very dense
B6-5'	4-6'	SP-SM	Blue-gray, gravelly, silty SAND, moist, very dense Moderate hydrocarbon odors
В6-8'	6-8'	71	Light Brown, gravelly, slightly silt SAND, moist, very dense

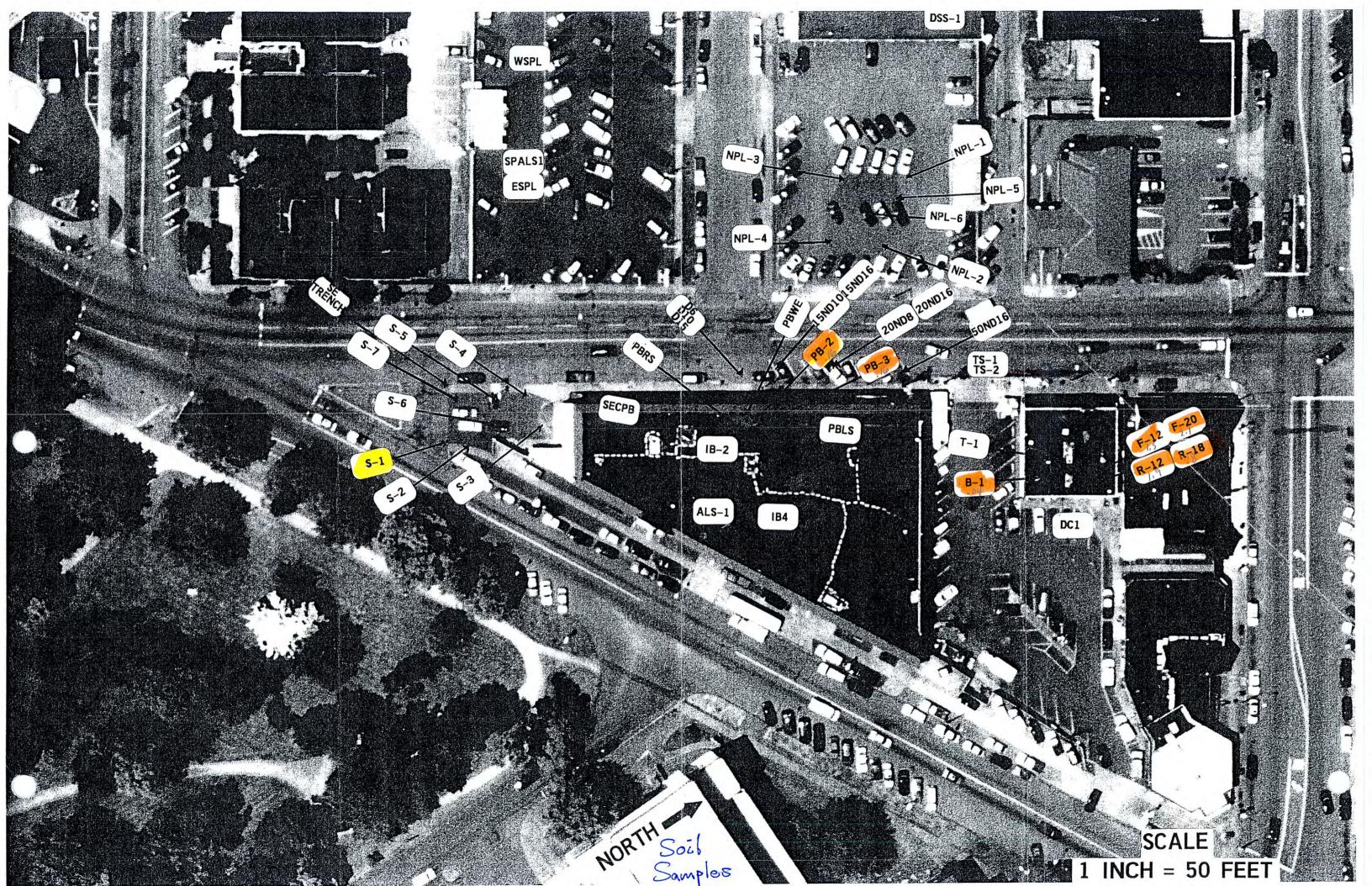
Groundwater encountered? No Depth
Monitoring Well? <u>No</u> ft screen/blank
Comments Refusal at 8 feet. Boring plugged with bentonite.

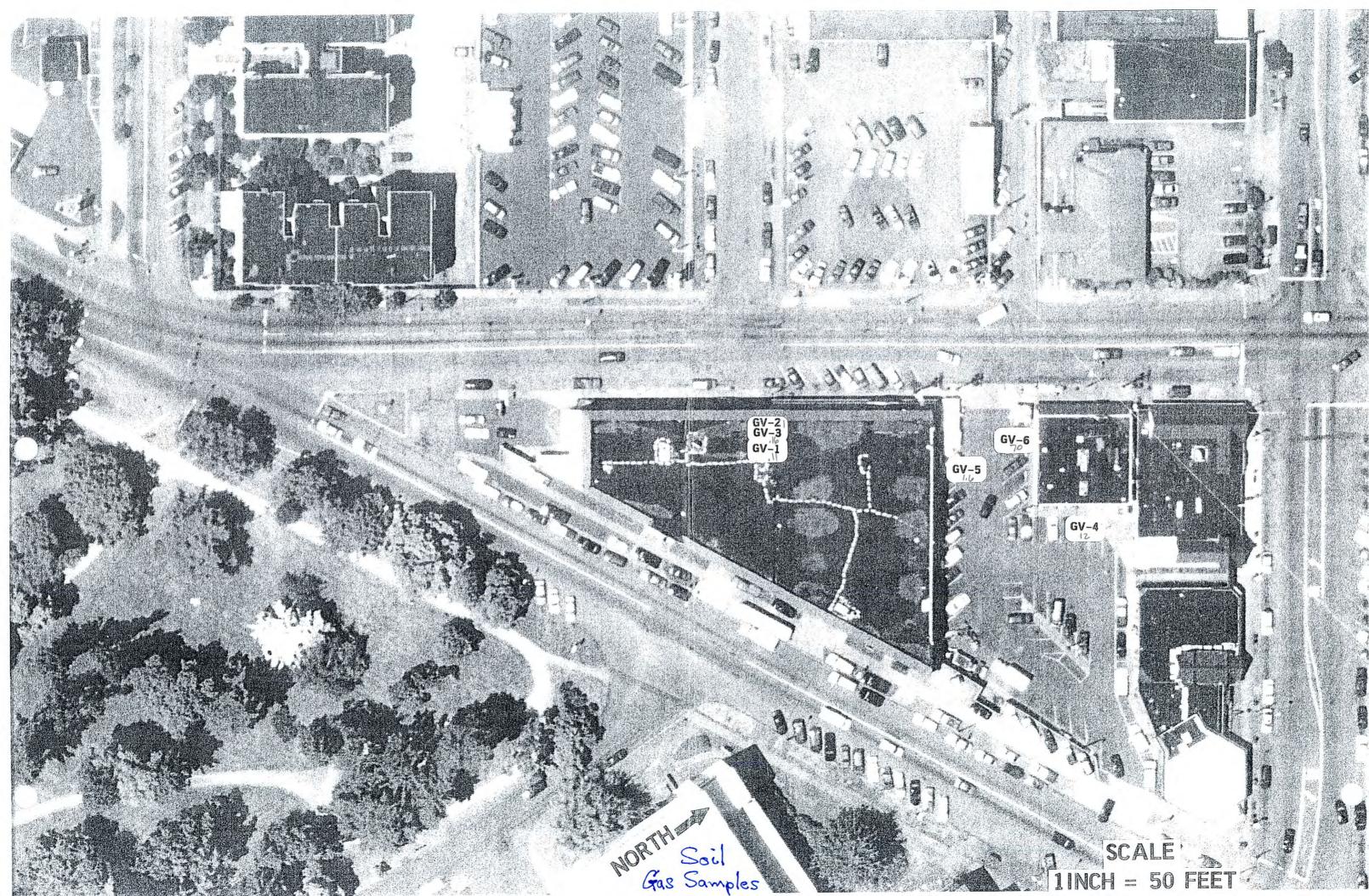
Site_Walke					
Project Nu	mber <u>944</u>	<u>81-2</u>	Date <u>09/08/94</u>		
Driller Burlington Environmental Logged by Henry Perrin					
Boring#_B7					
Location 1	3.5' W.	4' S, of	NEC Paint Booth		
		Group			
Sample #	Depth	Symbol	Soil Description		
	0-1.5'	FILL	8" Concrete Slab		
	0-1.5	LILL	+/- 6" Gravel Subgrade		
			+/- 0 Graver Subgrade		
B7-4'	1.5-4'	SP-SM	Light Brown, gravelly, slightly		
			silty SAND, moist, very dense		
L					
Groundwate	r encoun	tered? N	o Depth		
			screen/blank		
			Boring plugged with bentonite.		
COMMETICS	VETUSOT	ar a reer	. Dorring pragged wrom bemodifice.		

Site Walker Chevrolet - Paint Booth
Project Number 94481-2 Date 09/08/94
Driller Burlington Environmental Logged by Henry Perrin
Boring# B8
Location 8' W. 4' S. of SEC Paint Booth

Sample #	Depth	Group Symbol	Soil Description
	0-1.5'	FILL	6" Concrete Slab +/- 6" Gravel Subgrade
B8-5'	1.5-5'	SP	Light Brown, gravelly, SAND, moist, medium dense to very dense
B8-8'	5-8'	SP-SM	Light Brown, gravelly, silty SAND, moist, very dense

Groundwater encountered? No Depth	4
Monitoring Well? No ft screen/blank	
Comments Refusal at 8 feet. Boring plugged wit	h bentonite.


Sample #	Depth	Group Symbol	Soil Description
	0-1.5'	FILL	6" Concrete Slab +/- 6" Gravel Subgrade
в9-5'	1.5-5'	SP	Light Brown, gravelly, SAND, moist, medium dense to very dense
в9-8'	5-8'	SP-SM	Grayish Brown, gravelly, slightly silty SAND, moist, very dense



Former Paint Booth and Heating Oil UST - Figures and Data Tables

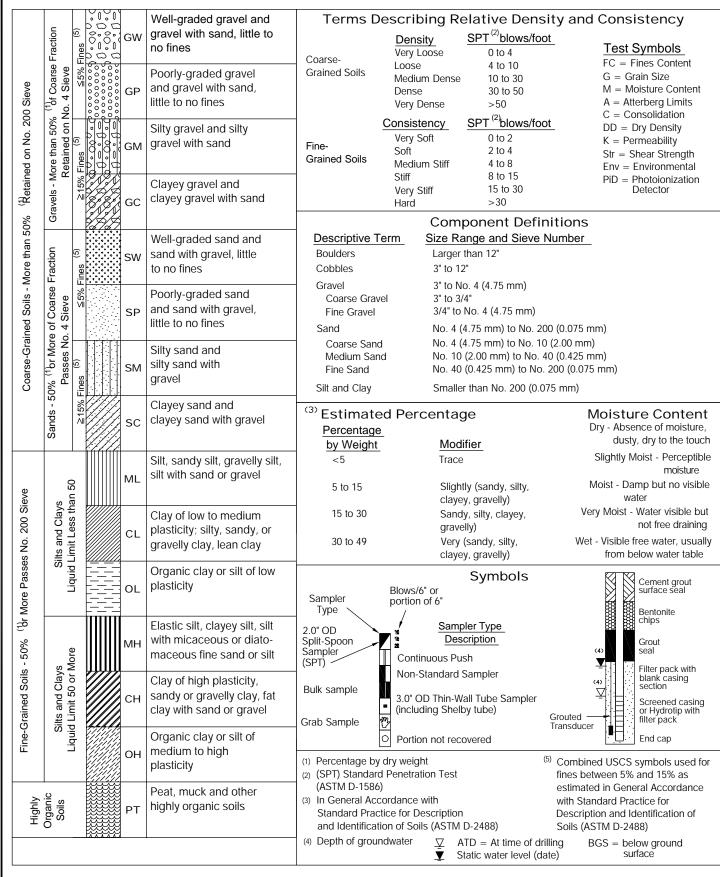
Due Diligence Sampling for Walker Chevrolet 633 Division Avenue, Tacoma, WA 98403

Provided by Stemen Environmental, Inc. August 2006 and May 2008

 $1L = 1,000 \text{ cm}^3$ $1/m^3 = (100 \text{ cm}^3 = 1,000 0,000 \text{ cm}^3 = 1,000 \text{ L}$ TITUS/THRIFTWAY : Multiply mg/L by 1,000 to get mg/m3.

'ALYSES OF SOIL GAS VAPORS	FOR SPECI	FIC HAL	OGENATI	- TD	<u>-</u>	-	
F11DROCARBONS BY EPA 8260			o_ODM111		-	•	
					-		•
SAMPLE-NUMBER		GV-1	GV-2	GV-3	GV-4	GV-5	GV-6
SAMPLE DATE	SOIL GAS	5/8/08	5/8/08	5/8/08	5/8/08	5/8/08	5/8/08
	VAPORS_		:			.t.	
	REPORTING		*			į	1
DICHLORODIFLUOROMETHANE	LIMITS 0.1	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
CHLOROMETHANE	0.1	ND	. ND	ND	,,, ,, ND	ND	: ND
VINYL CHLORIDE	0.1	ND	ND	ND	ND	ND	' ND
BROMOMETHANE	0.2	ND	ND ND	. ND	0.54	, ND	. ND
CHLOROETHANE	0.1	ND ND	ND .	ND	ND_	ND	ND
TRICHLOROFLUOROMETHANE	0.1	ND ND	ND	ND	ND	ND	ND
ACETONE	0.!		ND '	ND	ND	ND	ND
METHYLENE CHLORIDE	. 1	ND ND	ND -	ND	ND	, ND	ND
1,1 DICHLOROETHENE	0.1		ND ,	ND	ND	ND ;	ND
METHYL-T-BUTYL ETHER (MTBE)		ND ND	ND	ND.	ND.	ND	ND
TRANS-1,2-DICHLOROETHENE	0.05	ND.	ND	ND	ND	ND,	ND
1,1 DICHLOROETHANE	0.00	ND .	ND :	ND ,	ND	ND	ND
2-BUTANONE (MEK)	0.1	ND	ND ND	ND :	ND	ND .	ND
CIS-1,2 DICHLOROETHENE	0.05	ND I	ND	ND	ND	ND	ND
2,2-DICHLOROPROPANE	0.1	ND :	ND	ND I	16	0.32	2.5
CHLOROFORM	0.05	ND	, ND .	ND :	ND :	ND .	ND
BROMOCHLOROMETHANE	0.1	ND	ND.	ND .	ND	ND	ND
1,1,1- TRICHLOROETHANE	0.1	ND	ND	ND .	ND :	ND	ND
1,2 DICHLOROETHANE (EDC)	0.1	ND	ND :	ND .	ND	ND	ND
1,1-DICHLOROPROPENE	0.1	ND	ND 1	ND	ND :	ND	ND
CARBON TETRACHLORIDE	0.1	ND	ND .	ND	ND	ND :	ND
BENZENE	0.02	ND .	ND	ND	ND 0.14	ND :	ND.
TRICHLOROETHENE (TCE)	0.02	ND	ND	. ND	0.14 ND	0.39	0.23
1,2-DICHLOROPROPANE	0.1	ND	ND	ND	ND ;	2.7	7.8
DIBROMOMETHANE	0.1	ND	ND	ND	ND .	ND .	ND
BROMODICHLOROMETHANE	0.1	ND	ND .	ND	ND	ND ·	ND
4-METHYL-2-PENTANONE (MIBK)	0.1	ND	ND :	ND	ND	ND	ND
CIS-1,3-DICHLOROPROPENE	0.1	ND		ND .	ND	ND	ND
TRANS-1,3-DICHLOROPROPENE	0.1	ND	ND ND	ND .	ND : ND	ND	ND
TOULENE	0.1	0.13	0.24	0.16	-	ND 0.37	ND
TRANS-1,3-DICHLOROPROPENE	0.1	ND	ND	ND ND	0.1 ND	0.27	0.2
1,1,2,-TRICHLOROETHANE	0.1	ND	ND	ND.	ND ·	ND	ND .
2-HEXANONE	0.1	ND	ND	ND		ND	ND
				IND	ND	ND	ND

' 'ALYSES OF SOIL GAS VAPORS I	FOR SPEC	FIC HAL	OGENATE	ED		:	<u> </u>
H. DROCARBONS BY EPA 8260	-				•	1	
SAMPLE-NUMBER	:			i mengija i en		:	
SAMPLE-NOMBER		GV-1	_GV-2	GV-3	GV-4	GV-5	GV-6
SAMPLE DATE	SOIL GAS	5/8/08	5/8/08	5/8/08	5/8/08	; . · 5/8/08	5/8/08
	VAPORS				3/0/00	. 5/0/00	2/0/08
	REPORTING				-	:	
1,3-DICHLOROPROPANE	LIMITS	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
DIBROMOCHLOROMETHANE	0.1	, ND	ND _	ND	ND	ND	ND
TETRACHLOROETHENE (PCE)	0.1	ND 	ND	ND .	ND.	· ND	ND
1,2-DIBROMOETHANE	0.02	0.11	. 1	0.16	12	1.6	70
CHLOROBENZENE	0.1	. ND	ND	ND	ND	ND	. <u></u> D
1,1,1,2-TETRACHLOROETHANE	0.1	ND	ND	ND	ND	ND	ND
ETHYLBENZENE	0.1	ND	ND	йD	ND	ND	ND
XYLENES	0.1	ND	ND	ND	ND	ND :	ND
STYRENE	0.1	ND	0.15	0.23	ND	ND	ND
BROMOFORM	0.1	ND	ND .	ND	ND	ND	.ND
1,1,2,2-TETRACHLOROETHANE	0.1	ND ·	ND	ND	ND	ND :	ΝĎ
ISOPROPYLBENZENE	0.1	ND	ND	ND .	ND	ND į	ND
,2,3-TRICHCHLOROPROPANE	0.1	ND	ND	ND	ND	ND ;	ND
BROMOBENZENE	0.1	ND	ND	ND	ND	ND	ND
N-PROPYLBENZE	0.1	ND	ND	ND ·	ND	ND :	ND
2-CHLOROTOLUENE	0.1	ND	ND	ND [ЙD	ND _. :	ND
4-CHLORODOLUENE	0.1	ND	ND	ND	ND	ND	ND
1,3,5-TRIMETHYLBENZE	0.1	ND :	ND	ND	ND .	ND ,	ND
TERT-BUTYLBENZENE	0.1	ND	ND	ND i	ND i	ND	ND
1,2,4-TRIMETHYBENZENE	0.1	ND	ND	ND	ND	ND :	ND
SEC-BUTYLBENZENE	0.1	ND	ND	ND	ND ,	ND	ИD
1,3-DICHLOROBENZENE	0.1	ND	ND .	ND :	ND	ND	ND
1,4-DICHLOROBENZENE	0.1	ND	ND	ND	ND	ND	ND
ISOPROPYLTOULENE	0.1	ND	ND	ND	ND	ND	ND
1,2-DICHLOROBENZENE	0.1	ND ·	ND .	ND	ND .	ND	ND
N-BUTYLBENZENE	0.1	ND	ND	ИĎ	ND .	ND	ND
1,2-DIBROMO-3-CHLOROPROPANE	0.1	ND	ND	ND	ND .	ND	ND
· - · · · · · · · · · · · · · · · · · ·	0.1	ND	ND	ND .	ND :	ND	ND
1,2,4-TRICHLOROBENZENE NAPHTHALENE	0.1	ND	ŃД	ND	ND ,	ND :	ND
	0.1	ND	ND	ND .	ND	ND	ND
HEXACHLORO-1,3-BUTADIENE	0.1	ND	ND	ND	ND	ND	ND
1,2,3-TRICHLOROBENZENE	0.1	ND	ND	ND	ND	ND	ND


ANALYSES OF SOIL FOR SPECI	FIC HALOGENA	TED			
HYDROCARBONS BY EPA 8260			-		, .
III DROCARDONS BY EPA 8200 (CHLORINATEL		-		
OAMDIE MINARED					
SAMPLE-NUMBER		PB-3-8	S-1-15	PB2-4	DC1-8
SAMPLE DATE		8/31/06	8/31/06	8/31/06	8/31/06
DEPTH		8'	15'	4'	8'
	SOIL		•		Ü
	REPORTING	• • • •			
	LIMITS	mg/kg	mg/kg	mg/kg	mg/kg
DICHLORODIFLUOROMETHANE	0.05	ND	ND .	ND	ND ,
CHLOROMETHANE	0.05	ND	ND	ND	ND
VINYL CHLORIDE	0.01	ND	ND	ND	
BROMOMETHANE	0.05	ND.	ND	ND	ND
CHLOROETHANE	0.05	ND	ND		ND
TRICHLORÖFLÜORÖMETHANE	0.05	ND.		ND	ND
ACETONE	0.5	**	ND .	ND	ND
METHYLENE CHLORIDE		ND	ND	ND	ND
METHYL-T-BUTY ETHER (MTBE)	0.5	ND	ND	ND	ND
TRANS 1,1 DICHLOROETHENE	0.05	,ND	ND	ND	ND
1,1 DICHLOROETHENE	0.05	ND	ND	ND	ND
	0.5	ND	ND	ND ·	ND
TRANS-1,2-DICHLOROETHENE	0.05	ND	ND	ND .	ND
1,1 DICHLOROETHANE	0.05	ND	ND .	ND	ND
CIS-1,2 DICHLOROETHENE	0.05	ND	ND	ND	ND
2,2-DICHLOROPROPANE	0.05	ND	ND .	ND	ND
CHLOROFORM	0.05	ND	ND	ND :	ND
BROMOCHLOROMETHANE	0.05	ИĎ	ND	ND	ND
1,1,1-TRICHLOROETHANE	0.05	ND .	ND-	ND -	ND
1,2 DICHLOROETHANE	0.05	ND	ND	ND	ND
1,1-DICHLOROPROPENE	0.05	ND	ND	ND	ND
CARBON TETRACHLORIDE	0.05	NĎ "	ND	ND "	ND
BENZENE	0.02	ND	ND	ND	ND
TRICHLOROETHENE (TCE)	0.02	ND	ND	ΝĎ	ND
1,2-DICHLOROPROPANE	0.05	ND	ND .	ND	ND
DIBROMOMETHANE	0.05	ND .	ND	ND	ND
BROMODICHLOROMETHANE	0.05	ND	ND	ND	ND
4-METHYL-2-PENANONE	0.05	ND	ND	ND	ND
CIS-1,3-DICHLOROPROPENE	0.05	ND	ND	ND	ND
TOULENE	0.05	ND	ND	ND	ND
TRANS-1,3-DICHLOROPROPENE	0.05	ND	ND	ND	ND
1,1,2,-TRICHLOROETHANE	0.05	ND	ND		ľ
2-HEXANONE	0.05	ND	ND	ND	ND
1,3-DICHLOROPROPANE	0.05	ND	ND	ND	ND
DIBROMOCHLOROMETHANE	0.05	ND	**	ND	ND
TETRACHLOROETHENE (PCE)	0.03		ND	ND 0.40	ND
1,2-DIBROMOETHANE (EDB)(*)	0.02	0.16	ND	0.16	ND
.CHLOROBENZENE		ND	ND	ND	ND
1,1,1,2-TETRACHLOROETHANE	0.05	ND	ND	ND	ND
ETHYLBENZENE	0.05	ND	ND	ND	ND
XYLENES	0.05	ND	ND.	ND	ND
	0.05	0.13	5.7	0.12	0.16

ANALYSES OF SOIL FOR SPECIF	IC HALOGENA	ATED			 -
HYDROCARBONS BY EPA 8260 C					
SAMPLE-NUMBER		PB-3-8	S-1-15	PB2-4	DC1-8
CAMPLE DATE					:
SAMPLE DATE		8/31/06	8/31/06	8/31/06	8/31/06
DEPTH		8'	15'	4'	8'
	SOIL	Ū	10	4	0
·	REPORTING				
	LIMITS	mg/kg	mg/kg	mg/kg	mg/kg
STYRENE	0.05	ЙD	ND	ND	ND ND
BROMOFORM	0.05	ND	ND	ND	ND
1,1,2,2-TETRACHLOROETHANE	0.05	ND	ND	ND	ND
ISOPROPYLBENZENE	0.05	ŇD	5	ND .	ND
1,2,3-TRICHCHLOROPROPANE	0.05	ND	ND	ND	ND
BROMOBENZENE	0.05	ND	ND	ND	ND
n-PROPYLBENZENE	0.05	ND	14	ND ,	ND
2-CHLOROTOLUENE	0.05	ND	ND	ND	ND
4-CHLORODOLUENE	0.05	ND.	ND	ND	ND
1,3,5-TRIMETHYLBENZENE	0.05	ND	37	ND	ND
TERT-BUTYLBENZENE	0.05	ND [ND	ND .	ND
1,2,4-TRIMETHYLBENZENE	0.05	ND	71	ND	NĎ
SEC-BUTYLBENZENE	0.05	ND	ND	ND	ND
1,3-DICHLOROBENZENE	0.05	ND	ND	ND	ND
1,4-DICHLOROBENZENE	0.05	ND	ND	ND	ND
ISOPROPYLTOLUENE	0.05	ND	2.3	ND	ND
1,2-DICHLOROBENZENE	0.05	ND	ND	ND	ND
n-BUTYLBENZENE	0.05	ND	6.2	ND	ИО
1,2-DIBROMO-3-CHLOROPROPANE	0.05	ND	ND	ND.	ND
1,2,4-TRICHLOROBENZENE	0.05	ND	ND	ND	ND
NAPHTHALENE	0.05	ND	ND	ND	ND
HEXACHLORO-1,3-BUTADIENE	0.05	NĎ	ND	ND	ND
1,2,3-TRICHLOROBENZENE	0.05	ND	ND	ND	ND

1	MINERA	# 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
TENDED		8	
Dx/Dx EX	DIESEL	36 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
EPA METHOD NWTPH-Dx/Dx EX	GASOLINE	mg/kg mg/kg	
EPA METH	TOTAL	m gg/kg 12 12 ND 12 ND	-
IYDROCARBONS	ETHYL- BENZENE	6	
	TOLUENE	### ### ### ### ### ### ### ### ### ##	
PETROLEUN	BENZENE	# # # # # # # # # # # # # # # # # # #	
TOTALI	DEPTH	15' 15' 16' 15' 15' 20' 24' 20' 21' 19' 19' 20' 20' 24'' 33'' 36'' 36'' 36''	
OF SOIL FOR	SAMPLE	8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 8/31/06 10/20/06 10/20/06 10/20/06 10/20/06	Da l
ANALYSES OF SOIL FOR TOTAL PETROLEUM F	SAMPLE NUMBER	S-1-15 S-2-15 S-2-15 S-7-15 S-3-15 S-4-15 S-4-15 S-6-8 PB-3-8 NPL-6-20 ESPL-24 WSPL-20 NPL-1-21 NPL-1-21 NPL-1-21 NPL-1-21 NPL-3-19 NPL-3-19 NPL-3-19 NPL-3-19 NPL-4-19 NPL-3-19 NPL-3-	- not analyzed

APPENDIX B

Soil Boring Logs from South Gas Station

Classifications of soils in this report are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D-2487 and D-2488 were used as an identification guide for the Unified Soil Classification System.

Exploration Log Key

DATE:	PROJECT NO
DESIGNED BY:	
DRAWNBY:	FIGURE NO.
REVISED BY:	B-1

	Aspe	ING			t Numb 0190	er	Boring Log Boring Number AB-1	Sheet 1 of 3	
Project Name: Location:	Walker Che Tacoma, WA						Ground Surface Elev.		
Driller/Method:		Hollow Stem Auge	er				Depth to Water		
Sampling Metho	od: SPT						Start/Finish Date	12/20/201	3
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Dep (ft)
5 -	Asphalt patch Hydrated bentonite chip backfill			0.0	4 10 8		Asphalt. Medium dense, moist, brown, very of fine to medium sand. Very dense, moist, gray with iron states SAND (SP); fine to medium sand.		- 5
15-			AB-1-15	96.1	20 32 50/5		Very dense, moist, gray and brown gravelly SAND (SM); fine to medium fabric.	mottled, silty, n sand, diamict	— 15 —
20-				21.1	19 50/3				-20
Sampler		PID - I	_			eadspac	ce Measurement) Logged by: A	ET	
○ No Recover	y enetration Test			c Water	Level		Approved by: A	LN	
(ASTM D15	enetration Test 86)			r Level	(ATD)		FF		
							Figure No.		

	Mana						Boring Log	
	Aspe	CI			t Numb 0190	er	Boring Number AB-1	Sheet
Project Nar	me: Walker Che			00	0190		Ground Surface Elev.	2 of 3
Location:	Tacoma, WA						Ground odnace Elev.	
Driller/Meth			uger				Depth to Water	
	Method: SPT						Start/Finish Date	12/20/2013
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description	Dept (ft)
-		O	AB-1-25	4.4	35 50/4			-
30+				0.0	33 50/4	/	Hard, gray brown, sandy, gravelly S fabric.	ILT (ML); diamict
35+				0.0	21 33 50/5		Very dense, moist, red brown, sligh SAND (SP-SM); diamict fabric.	tly silty, gravelly 35
40-				0.0	23 50/6		Very dense, moist, red brown, sligh (SP); fine to medium sand, trace sil	tly gravelly SAND 40
45-			AB-1-45	0.0	14 30 37			-45
No Rec	upler Type: covery	PII	<u>▼</u> Stat	ion Deter		eadspac	ce Measurement) Logged by: A Approved by: A	AET
(ASTM	rd Penetration Test D1586)		<u> </u> Wate	er Level	(ATD)		Apploved by. F	· · •
							Figure No.	

		200t					Boring Log	
	Z-12	Dect		Projec		er	Boring Number	Sheet
		Chevrolet		80	0190		AB-1	3 of 3
Project Na .ocation:	me: <u>vvalker</u> Tacoma						Ground Surface Elev.	
Driller/Met		ng / Hollow Stem	Auger				Depth to Water	
	Method: SPT	rig / riollow otern	Augei				Start/Finish Date	12/20/2013
Depth / Elevation	Borehole Completi	ion Sample	Tests	PID	Blows/	Material	Description	
(feet)		ion Sample Type/ID	rests	(ppm)	6"	Туре	Description	Dep (ft)
					22			
+ 1		/		0.0	40 41			†
1								
+								+
T								
55 +							Trace gravel.	-55
				0.0	22 33		Trace graver.	
†				0.0	47			<u> </u>
 								_
†								†
1								
60 							Wet.	-60
			AB-1-61.5	0.0	38 44			
Ī					50/5			
+							Bottom of boring is 61.5 feet below	ground surface.
†								Ţ
+								-
65+								 65
1								
+								+
1								
+								+
70+								70
70								- 70
+								+
†								Ī
+								-
†								
	npler Type:	Р				eadspac	ce Measurement) Logged by: A	AE I
○ No RedO Standa	covery ard Penetration Tes	t	_	ic Water			Approved by: A	ALN
(ASTM	ard Penetration Tes I D1586)		<u> </u> Wate	er Level	(ATD)			
							Figure No.	

		6					Boring Log		
	Aspe	CT		Project		er	Boring Number	Sheet	
	● CON SULT			080	0190		AB-2	1 of 1	
Project Name							Ground Surface Elev.		
_ocation: Driller/Method	Tacoma, WA		aor				 Depth to Water		
Sampling Met		iollow Stern Aug	ger				Start/Finish Date	4/6/2015	
Depth /		Sample		PID	Blows/	Material		4/0/2013	Dept
Elevation (feet)	Borehole Completion	Type/ID	Tests	(ppm)	6"	Туре	Description		(ft)
5 -	Concrete patch			0	9 9 8 2 2 2 2 2 2 2		Very loose, moist, brown, slightly sil SAND (SP-SM); fine to medium sar	ty, very gravelly d, fine gravel	- 5
10+	Cement/bentonite grou	ut O		0	2 2 5		Becomes loose, slightly gravelly		-10 -
+				0	5 12 16		Medium dense, moist, slightly grave (SM); fine to medium sand, fine gra	elly, silty SAND vel	- - -
15-			AB-2-16.5	2.1 75.8 1724	6 25 26		Very dense, wet, gray to blue gray, gravelly SAND (SP-SM); petroleum-Very dense, moist, gray to blue gray silty SAND (SP-SM); petroleum-like Bottom of boring 16.5ft below groun	like odor /, slightly gravelly, odor	-15 - /- /- - -
Service Control of the Control of th	or Type:		Dhat 1 1 1	 	4 //-		Adams of Lancadhic A	(ET	
	er Type:	PID ·	_			eadspac	ce Measurement) Logged by: A	N⊏ I	
○ No Recov Standard	very Penetration Test 1586)		\Box	: Water			Approved by: A	ALN	
Clamaara	4 = 0.0\		✓ Moto	r Level (VTD)				

		\\ana						Boring Log		
		Aspe	CT			t Numb	er	Boring Number	Sheet	
		CONSULT			08	0190		AB-3	1 of 1	
Project Na	ame:	Walker Che	vrolet					Ground Surface Elev.		
Location:		Tacoma, WA		<u> </u>				Donath to Mator		
Driller/Me		Holt Drilling / H	ollow Stem A	Auger				Depth to Water Start/Finish Date	4/6/2015	
Sampling Depth /					PID	Dlaws/	I	Start/Fillish Date	4/0/2015	1
Elevation (feet)	Bo	rehole Completion	Sample Type/ID	Tests	(ppm)	Blows/ 6"	Material Type	Description		Dept (ft)
5 -		Concrete patch Cement/bentonite grou		AB-3-16.5	1.0 0 0 0 0 0	4 6 6 6 3 4 3 0 1 4 0 1 1 1 50/5 4 4		Medium dense, moist, brown, slightly SAND (SP-SM); fine to medium sand Loose, moist, gray brown, gravelly, s fine to medium sand becomes very silty with iron staining 2-inch wet sand lens Very dense, moist, brown, gravelly, v (ML) to very silty SAND (SM); fine satisfied to the sand sand SILT (ML); petroleum-like odo	ilty SAND (SM);	
					664	8		Bottom of boring 16.5ft below ground	I surface.	† - +
-										_
_	mpler Ty	pe:	PI		tion Dete	ctor (He	eadspac	ce Measurement) Logged by: A	ET	-
○ No Re Stand	ecovery ard Pene	etration Test		\Box	tic Water			Approved by: A	LN	
(ASTN	/ D1586	etration Test)		<u>▽</u> Wat	er Level ((ATD)				
								Figure No.		

Project Number		Mana	<u></u>					Boring Log		
Project Name: Walker Chevrolet Location: Driller/Method: Sampling Method: SPT Segrith Servinde Completion Serrole Serrole Servinde Completion Se		Aspe	CT				er	Boring Number	Sheet	
Depth to Water Hot Drilling / Hollow Stem Auger		■ CONSULT	ING		080	0190			1 of 1	
Depth to Water Sampling Method: SPT Sampling Method: SPSM) Description Asphalt Very Joose, moist, brown with iron staining, slight SAND (SP-SM) Cement/bentonite grout O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-							Ground Surface Elev.		
Sampling Method: SPT Start/Finish Date 4/6 Description Bereinole Completion Sample Type/ID Tests Pilo (peri) Slowed (et al., period to the position of the pos				gor				Denth to Water		
Description Borehole Completion Sample Tests PID (gmn) Billowal Pid		•	IOIIOW SIEITI Au	y c i					4/6/201	 5
Tests (ppm) or Type Tests	Depth /		Sample		PID	Blows/	Material			Dept
Concrete patch Concrete patch Cemeritheritorite grout O O O O O O O AB-4-16.5 O AB-4-16.5 O O O Concrete patch Very loose, moist, brown with iron staining, slight SAND (SP-SM) Solid wood Solid wood Medium stiff, moist, green gray with iron staining sandy SILT (ML); trace fine gravel Medium dense/very stiff, very moist, green gray, slity SAND (SM); fine sand		ZZZZZ	Type/ID	Tests	(ppm)			,		(ft)
	5			AB-4-16.5	0 0	1 0 1 1 5 3 2 3 3 5 5 5		Very loose, moist, brown with iron st SAND (SP-SM) Solid wood Medium stiff, moist, green gray with sandy SILT (ML); trace fine gravel Medium dense/very stiff, very moist, silty SAND (SM); fine sand	iron staining,	- 5 - 10 - 15 - 15
Sampler Type: PID - Photoionization Detector (Headspace Measurement) No Recovery Standard Penetration Test PID - Photoionization Detector (Headspace Measurement) Approved by: ALN	No Rec	covery	PID	▼ Statio			eadspac	·		
Standard Penetration Test (ASTM D1586) Approved by: ALN Water Level (ATD)	(ASTM	D1586)		$^{rac{ extstyle extsty$	r Level ((ATD)		, p		

APPENDIX C

Soil Analytical Results from South Gas Station

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 14, 2015

Alan Noell, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Mr. Noell:

Included are the results from the testing of material submitted on April 7, 2015 from the Walker Chevrolet PO 080190, F&BI 504119 project. There are 23 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman, Eric Geissinger

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 7, 2015 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Walker Chevrolet PO 080190, F&BI 504119 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
504119 -01	AB-2-16.5
504119 -02	AB-3-16.5
504119 -03	AB-4-16.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/15 Date Received: 04/07/15

Project: Walker Chevrolet PO 080190, F&BI 504119

Date Extracted: 04/07/15 Date Analyzed: 04/07/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
AB-2-16.5 504119-01 1/20	1,900	ip
AB-3-16.5 504119-02 1/10	520	142
AB-4-16.5 504119-03	<2	106
Method Blank 05-0695 MB	<2	106

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/15 Date Received: 04/07/15

Project: Walker Chevrolet PO 080190, F&BI 504119

Date Extracted: 04/07/15 Date Analyzed: 04/07/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
AB-2-16.5 504119-01	1,600 x	<250	116
AB-3-16.5 504119-02	180 x	<250	112
AB-4-16.5 504119-03	< 50	<250	101
Method Blank	< 50	<250	83

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: AB-2-16.5 Client: Aspect Consulting, LLC
Date Received: 04/07/15 Project: Walker Chevrolet PO 080190

 Date Extracted:
 04/09/15
 Lab ID:
 504119-01

 Date Analyzed:
 04/10/15
 Data File:
 504119-01.052

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Dry Weight Operator: ML

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 99 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 3.46

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: AB-3-16.5 Client: Aspect Consulting, LLC
Date Received: 04/07/15 Project: Walker Chevrolet PO 080190

 Date Extracted:
 04/09/15
 Lab ID:
 504119-02

 Date Analyzed:
 04/10/15
 Data File:
 504119-02.053

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Dry Weight Operator: ML

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 98 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 7.26

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: AB-4-16.5 Client: Aspect Consulting, LLC
Date Received: 04/07/15 Project: Walker Chevrolet PO 080190

 Date Extracted:
 04/09/15
 Lab ID:
 504119-03

 Date Analyzed:
 04/10/15
 Data File:
 504119-03.054

 Matrix:
 Soil
 Instrument:
 ICPMS1

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Dry Weight Operator: ML

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 99 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 1.85

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting, LLC
Date Received: NA Project: Walker Chevrolet PO 080190

 Date Extracted:
 04/09/15
 Lab ID:
 I5-209 mb2

 Date Analyzed:
 04/10/15
 Data File:
 I5-209 mb2.050

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Dry Weight Operator: ML

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 100 60 125

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AB-2-16.5	Client:	Aspect Consulting, LLC
Date Received:	04/07/15	Project:	Walker Chevrolet PO 080190
D . D 1	04/00/15	I LID	FOA110 01 1/F

Date Extracted: Lab ID: 04/08/15 504119-01 1/5 Date Analyzed: 04/08/15 Data File: 040805.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight Operator: VM

	0/ 10	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	95 °	31	163
Benzo(a)anthracene-d12	115	24	168

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AB-3-16.5	Client:	Aspect Consulting, LLC
Date Received:	04/07/15	Project:	Walker Chevrolet PO 080190
D (D () 1	04/00/15	T L TD	FOA110 00 1/F

Date Extracted: 04/08/15 Lab ID: 504119-02 1/5 Date Analyzed: 04/08/15 Data File: 040806.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: Kecovery: Limit: Limit: Anthracene-d10 99 31 163
Benzo(a)anthracene-d12 115 24 168

Concentration Compounds: mg/kg (ppm) Naphthalene 0.64 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	AB-4-16.5	Client:	Aspect Consulting, LLC
Date Received:	04/07/15	Project:	Walker Chevrolet PO 080190
Data Estuadad.	04/00/17	I -l. ID.	FO4110 00 1/F

Date Extracted: 04/08/15 Lab ID: 504119-03 1/5 Date Analyzed: 04/08/15 Data File: 040807.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight Operator: VM

~		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	93	31	163
Benzo(a)anthracene-d12	115	24	168

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Walker Chevrolet PO 080190

Date Extracted: 04/08/15 Lab ID: 05-723 mb 1/5 Date Analyzed: 04/08/15 Data File: 040804.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: Kecovery: Limit: Limit: Anthracene-d10 95 31 163
Benzo(a)anthracene-d12 117 24 168

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: AB-2-16.5 Client: Aspect Consulting, LLC
Date Received: 04/07/15 Project: Walker Chevrolet PO 080190

Date Extracted: 04/08/15 Lab ID: 504119-01 Data File: Date Analyzed: 04/08/15 040819.D Matrix: Instrument: GCMS9 Soil mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	89	113
Toluene-d8	111	64	137
4-Bromofluorobenzene	95	81	119

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	0.24
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	1.0
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	2.4
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	3.9
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	12
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	24 ve
Trichloroethene	< 0.02	sec-Butylbenzene	0.86
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	1.3
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	0.12
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	AB-2-16.5	Client:	Aspect Consulting, LLC
Date Received:	04/07/15	Project:	Walker Chevrolet PO 080190

Date Extracted: 04/08/15 Lab ID: 504119-01 1/10 Date Analyzed: 04/08/15 Data File: 040824.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	89	113
Toluene-d8	102	64	137
4-Bromofluorobenzene	104	81	119

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	<5	1,3-Dichloropropane	< 0.5
Chloromethane	<5	Tetrachloroethene	< 0.25
Vinyl chloride	< 0.5	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	< 0.5
Chloroethane	<5	Chlorobenzene	< 0.5
Trichlorofluoromethane	<5	Ethylbenzene	< 0.5
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.5
1,1-Dichloroethene	< 0.5	m,p-Xylene	1.0
Methylene chloride	<5	o-Xylene	< 0.5
Methyl t-butyl ether (MTBE)	< 0.5	Styrene	< 0.5
trans-1,2-Dichloroethene	< 0.5	Isopropylbenzene	2.2
1,1-Dichloroethane	< 0.5	Bromoform	< 0.5
2,2-Dichloropropane	< 0.5	n-Propylbenzene	3.4
cis-1,2-Dichloroethene	< 0.5	Bromobenzene	< 0.5
Chloroform	< 0.5	1,3,5-Trimethylbenzene	10
2-Butanone (MEK)	<5	1,1,2,2-Tetrachloroethane	< 0.5
1,2-Dichloroethane (EDC)	< 0.5	1,2,3-Trichloropropane	< 0.5
1,1,1-Trichloroethane	< 0.5	2-Chlorotoluene	< 0.5
1,1-Dichloropropene	< 0.5	4-Chlorotoluene	1.1
Carbon tetrachloride	< 0.5	tert-Butylbenzene	< 0.5
Benzene	< 0.3	1,2,4-Trimethylbenzene	22
Trichloroethene	< 0.2	sec-Butylbenzene	0.67
1,2-Dichloropropane	< 0.5	p-Isopropyltoluene	1.1
Bromodichloromethane	< 0.5	1,3-Dichlorobenzene	< 0.5
Dibromomethane	< 0.5	1,4-Dichlorobenzene	< 0.5
4-Methyl-2-pentanone	<5	1,2-Dichlorobenzene	< 0.5
cis-1,3-Dichloropropene	< 0.5	1,2-Dibromo-3-chloropropane	<5
Toluene	< 0.5	1,2,4-Trichlorobenzene	< 2.5
trans-1,3-Dichloropropene	< 0.5	Hexachlorobutadiene	< 2.5
1,1,2-Trichloroethane	< 0.5	Naphthalene	< 0.5
2-Hexanone	<5	1,2,3-Trichlorobenzene	< 2.5

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: AB-3-16.5 Client: Aspect Consulting, LLC
Date Received: 04/07/15 Project: Walker Chevrolet PO 080190

Date Extracted: 04/08/15 Lab ID: 504119-02 Data File: Date Analyzed: 04/08/15 040818.D Matrix: Instrument: GCMS9 Soil mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	89	113
Toluene-d8	104	64	137
4-Bromofluorobenzene	98	81	119

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	0.063
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	0.64
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	1.1
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	1.8
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	1.7
Trichloroethene	< 0.02	sec-Butylbenzene	1.1
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	1.5
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	0.77
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: AB-4-16.5 Client: Aspect Consulting, LLC
Date Received: 04/07/15 Project: Walker Chevrolet PO 080190

Date Extracted: 04/08/15 Lab ID: 504119-03 Data File: Date Analyzed: 040817.D 04/08/15 Matrix: Instrument: GCMS9 Soil mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	89	113
Toluene-d8	99	64	137
4-Bromofluorobenzene	100	81	119

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.02	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Walker Chevrolet PO 080190

Date Extracted: 04/08/15 Lab ID: 05-0713 mb 04/08/15 Data File: Date Analyzed: 040808.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Dry Weight Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	89	113
Toluene-d8	99	64	137
4-Bromofluorobenzene	99	81	119

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.02	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/15 Date Received: 04/07/15

Project: Walker Chevrolet PO 080190, F&BI 504119

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 504119-03 (Duplicate)

Analyte	Reporting Units	Sample R (Wet W	esult	Ouplicate Result Wet Wt)	RPD (Limit 20)
Gasoline	mg/kg (ppm)	<2		<2	nm
Laboratory Code:	Laboratory Control	Sample			
			Percent		
		Spike	Recovery	y Acceptance	
Analyte	Reporting Units	Level	LCS	Criteria	_
Gasoline	mg/kg (ppm)	20	100	71-131	_

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/15 Date Received: 04/07/15

Project: Walker Chevrolet PO 080190, F&BI 504119

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 504022-07 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	108	97	64-133	11

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	107	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/15 Date Received: 04/07/15

Project: Walker Chevrolet PO 080190, F&BI 504119

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 504050-04 (Matrix Spike)

, and the second		-	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	9.90	95	95	59-148	0

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	102	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/15 Date Received: 04/07/15

Project: Walker Chevrolet PO 080190, F&BI 504119

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 504119-03 1/5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	< 0.01	87	87	44-129	0
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	90	90	52-121	0
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	90	90	51-123	0
Fluorene	mg/kg (ppm)	0.17	< 0.01	92	92	37-137	0
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	89	89	34-141	0
Anthracene	mg/kg (ppm)	0.17	< 0.01	88	89	32-124	1
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	94	94	16-160	0
Pyrene	mg/kg (ppm)	0.17	< 0.01	92	92	10-180	0
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	95	96	23-144	1
Chrysene	mg/kg (ppm)	0.17	< 0.01	93	94	32-149	1
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	109	108	23-176	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	110	111	42-139	1
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	102	104	21-163	2
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	115	114	23-170	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	108	109	31-146	1
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	103	103	37-133	0

Laboratory Code: Laboratory Control Sample 1/5

Edbordtory Code. Edbordt	Percent					
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Naphthalene	mg/kg (ppm)	0.17	92	58-121		
Acenaphthylene	mg/kg (ppm)	0.17	95	54-121		
Acenaphthene	mg/kg (ppm)	0.17	94	54-123		
Fluorene	mg/kg (ppm)	0.17	99	56-127		
Phenanthrene	mg/kg (ppm)	0.17	93	55-122		
Anthracene	mg/kg (ppm)	0.17	94	50-120		
Fluoranthene	mg/kg (ppm)	0.17	100	54-129		
Pyrene	mg/kg (ppm)	0.17	96	53-127		
Benz(a)anthracene	mg/kg (ppm)	0.17	104	51-115		
Chrysene	mg/kg (ppm)	0.17	99	55-129		
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	119	56-123		
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	112	54-131		
Benzo(a)pyrene	mg/kg (ppm)	0.17	110	51-118		
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	129	49-148		
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	123	50-141		
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	116	52-131		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/15 Date Received: 04/07/15

Project: Walker Chevrolet PO 080190, F&BI 504119

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 504123-09 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	< 0.5	21	23	10-56	9
Chloromethane	mg/kg (ppm)	2.5	< 0.5	48	52	10-90	8
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	48	50	10-91	4
Bromomethane	mg/kg (ppm)	2.5	< 0.5	56	62	10-110	10
Chloroethane	mg/kg (ppm)	2.5	< 0.5	59	63	10-101	7
Trichlorofluoromethane	mg/kg (ppm)	2.5 12.5	< 0.5	56 88	59	10-95	5 2
Acetone	mg/kg (ppm)	2.5	<0.5 <0.05	88 65	86 67	11-141	2 3
1,1-Dichloroethene Methylene chloride	mg/kg (ppm)	2.5 2.5	<0.05 <0.5	80	82	11-103 14-128	3 2
Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	81	84	17-134	4
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	73	77	13-112	5
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	77 77	79	23-115	3
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	75	79 79	18-117	5
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	81	83	25-120	2
Chloroform	mg/kg (ppm)	2.5	< 0.05	80	82	29-117	2
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.5	96	91	20-133	5
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	80	80	22-124	0
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	79	81	27-112	2
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	78	79	26-107	1
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	78	81	22-115	4
Benzene	mg/kg (ppm)	2.5	< 0.03	76	78	26-114	3
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	79	80	30-112	1
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	83	83	31-119	0
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	84	83	31-131	1
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	83	83	27-124	0
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	95	92	16-147	3
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	87	87	28-137	0
Toluene	mg/kg (ppm)	2.5	< 0.05	80	81	34-112	1
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	84	84	30-136	0
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	84	82	32-126	2
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	88	86	17-147	2
1,3-Dichloropropane	mg/kg (ppm)	2.5 2.5	<0.05 <0.025	87 79	84 79	29-125 25-114	4
Tetrachloroethene Dibromochloromethane	mg/kg (ppm)	2.5 2.5	<0.025 <0.05	79 84	79 83	25-114 32-143	1
1,2-Dibromoethane (EDB)	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	87	85	32-145	2
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	82	83	37-113	1
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	81	84	34-115	4
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	83	86	35-126	4
m,p-Xylene	mg/kg (ppm)	5	<0.1	84	87	25-125	4
o-Xylene	mg/kg (ppm)	2.5	< 0.05	84	87	27-126	4
Styrene	mg/kg (ppm)	2.5	< 0.05	87	89	39-121	2
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	86	89	34-123	3
Bromoform	mg/kg (ppm)	2.5	< 0.05	78	81	18-155	4
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	83	85	31-120	2
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	81	81	40-115	0
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	86	86	24-130	0
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	89	88	27-148	1
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	82	84	33-123	2
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	83	84	39-110	1
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	84	84	39-111	0
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	89	92	36-116	3
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	85	87	35-116	2
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	84	88	33-118	5
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	85	88	32-119	3
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	80	82	38-111	2
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	78 80	81 83	39-109 40-111	4 4
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5 2.5	<0.05 <0.5	80 89	83 88	40-111 37-122	4 1
1,2-Dibromo-3-chioropropane 1,2.4-Trichlorobenzene	mg/kg (ppm)	2.5 2.5	<0.5 <0.25	82	86	31-122	5
1.6.4- I I ICHIOI ODEHZEHE	mg/kg (ppm)						
Havachlarahutadiana	mg/kg (nnm)	9.5	∠0.95	Ω1	63	94, 199	9
Hexachlorobutadiene Naphthalene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.25 <0.05	81 86	83 90	24-128 24-139	2 5

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/15 Date Received: 04/07/15

Project: Walker Chevrolet PO 080190, F&BI 504119

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

· ·	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	58	10-76
Chloromethane	mg/kg (ppm)	2.5 2.5	76 81	34-98 42-107
Vinyl chloride Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	81 79	42-107 46-113
Chloroethane	mg/kg (ppm)	2.5	89	47-115
Trichlorofluoromethane	mg/kg (ppm)	2.5	91	53-112
Acetone	mg/kg (ppm)	12.5	110	39-147
1,1-Dichloroethene	mg/kg (ppm)	2.5	93	65-110
Methylene chloride	mg/kg (ppm)	2.5	104	50-127
Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	102 100	72-122 71-113
1.1-Dichloroethane	mg/kg (ppm)	2.5	99	74-113
2,2-Dichloropropane	mg/kg (ppm)	2.5	100	64-151
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	103	73-110
Chloroform	mg/kg (ppm)	2.5	100	76-110
2-Butanone (MEK)	mg/kg (ppm)	12.5	115	60-121
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	100	73-111
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	103	72-116
1,1-Dichloropropene	mg/kg (ppm)	2.5	101	72-112
Carbon tetrachloride Benzene	mg/kg (ppm)	2.5 2.5	101 97	67-123 72-106
Trichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5	101	72-100
1,2-Dichloropropane	mg/kg (ppm)	2.5	104	74-115
Bromodichloromethane	mg/kg (ppm)	2.5	103	75-126
Dibromomethane	mg/kg (ppm)	2.5	102	76-116
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	113	80-128
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	108	71-138
Toluene	mg/kg (ppm)	2.5	102	74-111
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	106	77-135
1,1,2-Trichloroethane	mg/kg (ppm)	2.5 12.5	102 109	77-116
2-Hexanone 1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	108	70-129 75-115
Tetrachloroethene	mg/kg (ppm)	2.5	103	73-113
Dibromochloromethane	mg/kg (ppm)	2.5	105	64-152
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	108	77-117
Chlorobenzene	mg/kg (ppm)	2.5	102	76-109
Ethylbenzene	mg/kg (ppm)	2.5	103	75-112
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	104	76-125
m,p-Xylene	mg/kg (ppm)	5	107	77-115
o-Xylene	mg/kg (ppm)	2.5 2.5	107 109	76-115 76-119
Styrene Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	110	76-119
Bromoform	mg/kg (ppm)	2.5	101	50-174
n-Propylbenzene	mg/kg (ppm)	2.5	106	77-115
Bromobenzene	mg/kg (ppm)	2.5	100	76-112
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	107	77-121
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	109	74-121
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	103	74-116
2-Chlorotoluene 4-Chlorotoluene	mg/kg (ppm)	2.5 2.5	104 104	75-113 77-115
tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	112	77-115 77-123
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	107	77-123
sec-Butylbenzene	mg/kg (ppm)	2.5	107	78-120
p-Isopropyltoluene	mg/kg (ppm)	2.5	108	77-120
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	99	76-112
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	98	74-109
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	101	75-114
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	105	68-122
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	104 102	75-122 74-130
Naphthalene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	102	74-130 73-122
1.2.3-Trichlorobenzene	mg/kg (ppm)	2.5	102	75-122
-,-,	pp (kk)	2.0		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Fax (206) 283-5044	Seattle, WA 98119-2029 Ph. (206) 285-8282	3012 16th Avenue West	Friedman & Bruya, Inc.								AB-4-16.5	AB-3-16.5	AB-2-16.5	Sample ID	
Received	Relinquished by:	Keiinquished by:	:								03/	2	21 10	Lab ID	
Received by Univ	hed by:	ned by:	SIGNAT								←		5119113,10	Date Sampled	
3	unde	Mulan	ATURE								1200	1100	950	Time Sampled	
	O										(So	Sample Type	
Ohan Phan	D. Sams	Delia Massen	PR								5	2	5	# of containers	
10	2	Sa.	PRINT NAME		-		 				×	×	×	TPH-Diesel	
2	N	28	NA		ļ	ļ	-		ļ		×	×	×	TPH-Gasoline	
\			Æ		-	-		-		ļ				BTEX by 8021B	
				-	<u> </u>						×	×	X	VOCs by8260	A
					-	-	_	ļ						SVOCs by 8270	NAI
_	1		Н										¥	HFS	ISX
77	a,	7			ļ						×	X		PAMs	SR
TZ BJ	Ex	2	8								×	×	×	Lead	ANALYSES REQUESTED
'		4	COMPANY		S										EST
	500	'	Ž		Sample										ED
	6				I 🗭										
	1/	۲	\square		Te veive										
21/4/4	1/1/15	4/7/15	DATE		2 3										
1000·	9:05	830	TIME		င်									Notes	

FORMS\COC\COC.DOC

SAMPLE DISPOSAL

☐ Dispose after 30 days

☐ Return samples
☐ Will call with instructions

APPENDIX D

Air Analytical Results from Former Paint Booth

Analytical	Fremont

Air Chain of Custody Record - Whole Air Sample

						Date/Time		e e	Relinquished x Relipquished			13/15	Date/Time 3/23/	Y.	elinquished elinquished
		Special Remarks:				() N()	Client Consult: Y() N()	Clie		N/A	r ×	Seals Intact:			ondition:
				Wrench	Flouridated Tubing		ers Helium Cylinder	Flow Controllers	Canisters F	Tedlar Bags C	Fittings Tec	Mini-Pump F	Manifold	ental Equipment (Circle all that apply):	ental Equipment (
			Fine	Timae	Regulator	Date/Time	Sale					SIMIL	Flow Reg		
			Piggsurg	Plessills	COMBINE	Pressure	Raysyare					SIRCI	SINE S		
			Time	Time	Seguision.	Datoffine	Date					Time	Flow Reg		
			Pressure	Pressure	Conterner	Pygssale	BINSBed					Cale	BISINEO		
			Hind	HILL	POTEMBER 2	Daterline	Date					Turke	Flow Reg		
			6,08834,1	7885	spintal er	F7855417	earnsseich					Date	18 SIUS 2		
(Seg	36	1421	0723	roteimber	Date/jime	3/19/15 9:00 Date		(1400	FR8-24		
5	178/60	-FULL TO-15 SIM	N N	-30 Pidessure	(Cornelled)	Pleasure	10mtorr	Summa	5	8hr	H	3/24/5	12668		
	1015	THE He -30 2	010	D610	Regulator	Date/Tirle	3/19/15 9:00 Date		6		1	0000	FR70-05 Flow Reg		
1	18 F. B	- MAKET 10-15	LISSAI.	-30	Jaurence	R. Bassule	10mtorr	Summa	2	70min	R	3/2d/2	17649		
Final (psi)	Receipt Date	Analysis Requested	Sample Pressure ("	Sample Pressure (" Hg)	Equipment Certificaton Code	Pressure at Time of Pick- up ("Hg)	Evacuation Pressure (mtorr)	Container Type **	Sample	Anticipated Fill Time	Gas Matrix Code *	Sample Date & Time	Canister / Flow Reg Serial #	Sample Name	Samp
nal	Internal		200	Field Initial	1	Internal									
				dspace Jar	HJ = Glass Headspace Jar	sure Cylinder	-	MC = 1 Liter MiniCan	0 1	BV = 1 Liter Bottle Vac	BV=	TB = Tedlar Bag		6L = Six Lite	Container Codes:
					vices)	L = LEED (Consult Client Services)	Y L=LEED (Co	Q = Fuel Gas Quality	ng Q=Fu	¥a	SG = Soil Gas M =	SG =	SS = Subslab L = Landfill	I = Indoor	Gas Matrix Codes:
		Project No: 080190			3	S, con	anoell@ispectacusulting,	aspectao	noella		Geissing Email:	Enc 6	Nocl /	n): Alan	Reports To (PM):
	1]	1	Eric C		Collected by:					Tel:					City, State, Zip:
	1	acoma, WA	-13		Location:										Address:
		her Chouselet	Wall		Project Name:								Aspect Consulting	Aspect (Client:
		Page: of:				N	1/22/2	_W		Date:		7178	Tel: 206-352-3790 Fax: 206-352-7178	ve N. 103	3600 Fremont Ave N. Seattle, WA 98103
							,	1							

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Aspect Consulting

Alan Noell 401 2nd Ave S. #201 Seattle, WA 98104

RE: Walker Chevrolet Lab ID: 1503256

April 23, 2015

Attention Alan Noell:

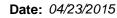
Fremont Analytical, Inc. received 2 sample(s) on 3/24/2015 for the analyses presented in the following report.

Helium by GC/TCD
Petroleum Fractionation by EPA Method TO-15
Volatile Organic Compounds by EPA Method TO-15
Volatile Organic Compounds-EPA Method TO-15 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.


Thank you for using Fremont Analytical.

Malchelyn.

Sincerely,

Mike Ridgeway President CC:

Eric Geissinger

03/24/2015 11:18 AM

IA-FPB-032315

CLIENT: Aspect Consulting Work Order Sample Summary

Project: Walker Chevrolet Lab Order: 1503256

1503256-002

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1503256-001
 SS-FPB-032015
 03/20/2015 7:00 AM
 03/24/2015 11:18 AM

03/23/2015 2:00 PM

Case Narrative

WO#: **1503256**Date: **4/23/2015**

CLIENT: Aspect Consulting
Project: Walker Chevrolet

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Qualifiers & Acronyms

WO#: **1503256**

Date Reported: 4/23/2015

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below LOQ
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

WO#: **1503256**

Date Reported: 4/23/2015

CLIENT: Aspect Consulting
Project: Walker Chevrolet

Lab ID: 1503256-001 **Collection Date:** 3/20/2015 7:00:00 AM

Client Sample ID: SS-FPB-032015 Matrix: Air

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Helium by GC/TCD			Batch	n ID: R2	21574 Analyst: JY
Helium	ND	32.4	ppmv	1	3/31/2015 3:52:00 PM
Petroleum Fractionation by EPA	A Method TO-15	į	Batch	n ID: R2	21569 Analyst: JY
Aliphatic Hydrocarbon (EC5-8)	215	147	μg/m³	1	3/31/2015 5:43:00 AM
Aliphatic Hydrocarbon (EC9-12)	311	94.2	µg/m³	1	3/31/2015 5:43:00 AM
Aromatic Hydrocarbon (EC9-10)	221	4.54	µg/m³	1	3/31/2015 5:43:00 AM
Surr: 4-Bromofluorobenzene	98.6	70-130	%REC	1	3/31/2015 5:43:00 AM

Lab ID: 1503256-002 **Collection Date:** 3/23/2015 2:00:00 PM

Client Sample ID: IA-FPB-032315 Matrix: Indoor Air

Analyses	Result	RL Qual	Units	DF	Date	Analyzed
Helium by GC/TCD			Batcl	n ID: R2	21574	Analyst: JY
Helium	ND	32.7	ppmv	1	3/31/2	2015 3:59:00 PM
Petroleum Fractionation by EP	A Method TO-1	<u>5</u>	Batcl	n ID: R	21569	Analyst: JY
Aliphatic Hydrocarbon (EC5-8)	194	147	μg/m³	1	3/31/2	2015 1:07:00 AM
Aliphatic Hydrocarbon (EC9-12)	807	754	µg/m³	1	3/31/2	2015 12:26:00 AM
Aromatic Hydrocarbon (EC9-10)	576	36.3	µg/m³	1	3/31/2	2015 12:26:00 AM
Surr: 4-Bromofluorobenzene	90.0	70-130	%REC	1	3/31/2	2015 1:07:00 AM

WorkOrder: 1503256

Project: Walker Chevrolet

 Client Sample ID:
 SS-FPB-032015
 Date Sampled:
 3/20/2015

 Lab ID:
 1503256-001A
 Date Received:
 3/24/2015

Analyte	Concer	ntration	Reportii	ng Limit	Qual	Method	Date/Analys	
Volatile Organic Compounds by	/ EPA Method TO	<u>D-15</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,1-Trichloroethane	<0.200	<1.09	0.200	1.09		TO-15	03/31/2015	J'
1,1,2,2-Tetrachloroethane	<0.300	<2.06	0.300	2.06		TO-15	03/31/2015	J,
CFC-113	<0.500	<3.83	0.500	3.83		TO-15	03/31/2015	J'
1,1,2-Trichloroethane (TCA)	<0.500	<2.73	0.500	2.73		TO-15	03/31/2015	J,
1,1-Dichloroethane	<0.200	<0.810	0.200	0.810		TO-15	03/31/2015	J'
1,1-Dichloroethene (DCE)	<0.200	<0.793	0.200	0.793		TO-15	03/31/2015	J'
1,2,4-Trichlorobenzene	< 0.300	<2.23	0.300	2.23		TO-15	03/31/2015	J'
1,2,4-Trimethylbenzene	14.8	72.5	2.40	11.8		TO-15	03/31/2015	J`
1,2-Dibromoethane (EDB)	<0.200	<1.54	0.200	1.54		TO-15	03/31/2015	J`
1,2-Dichlorobenzene	< 0.300	<1.80	0.300	1.80		TO-15	03/31/2015	J'
1,2-Dichloroethane	<0.200	<0.809	0.200	0.809		TO-15	03/31/2015	J
1,2-Dichloropropane	<0.500	<2.31	0.500	2.31		TO-15	03/31/2015	J
1,3,5-Trimethylbenzene	9.85	48.4	0.300	1.47		TO-15	03/31/2015	J
1,3-Butadiene	<0.500	<1.11	0.500	1.11		TO-15	03/31/2015	J
1,3-Dichlorobenzene	<0.300	<1.80	0.300	1.80		TO-15	03/31/2015	J
1,4-Dichlorobenzene	<0.300	<1.80	0.300	1.80		TO-15	03/31/2015	J
1,4-Dioxane	<1.00	<3.60	1.00	3.60		TO-15	03/31/2015	J
(MEK) 2-Butanone	1.36	4.00	0.500	1.47		TO-15	03/31/2015	J`
2-Hexanone	<1.00	<4.10	1.00	4.10		TO-15	03/31/2015	J`
sopropyl Alcohol	8.02	19.7	8.00	19.7		TO-15	03/31/2015	J
4-Methyl-2-pentanone (MIBK)	2.67	11.0	1.00	4.10		TO-15	03/31/2015	J
Acetone	87.3	207	8.00	19.0		TO-15	03/31/2015	J
Acrolein	<0.500	<1.15	0.500	1.15		TO-15	03/31/2015	J
Benzene	0.654	2.09	0.200	0.639		TO-15	03/31/2015	J
Benzyl chloride	<0.500	<2.59	0.500	2.59		TO-15	03/31/2015	J
Dichlorobromomethane	<0.300	<2.01	0.300	2.01		TO-15	03/31/2015	
Bromoform	<0.200	<2.07	0.200	2.07		TO-15	03/31/2015	J
Bromomethane	<0.500	<1.94	0.500	1.94		TO-15	03/31/2015	J
Carbon disulfide	<1.50	<4.67	1.50	4.67		TO-15	03/31/2015	J
Carbon tetrachloride	<0.200	<1.26	0.200	1.26		TO-15	03/31/2015	J

WorkOrder: 1503256

Project: Walker Chevrolet

 Client Sample ID:
 SS-FPB-032015
 Date Sampled:
 3/20/2015

 Lab ID:
 1503256-001A
 Date Received:
 3/24/2015

Analyte	Concer	ntration	Reportii	ng Limit	Qual	Method	Date/Analyst		
Volatile Organic Compounds by E	PA Method TO	<u>D-15</u>							
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)					
Chlorobenzene	<0.200	<0.921	0.200	0.921		TO-15	03/31/2015	JY	
Dibromochloromethane	< 0.500	<4.26	0.500	4.26		TO-15	03/31/2015	JY	
Chloroethane	< 0.500	<1.32	0.500	1.32		TO-15	03/31/2015	JY	
Chloroform	1.15	5.61	0.200	0.977		TO-15	03/31/2015	JY	
Chloromethane	< 0.500	<1.03	0.500	1.03		TO-15	03/31/2015	JY	
cis-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793		TO-15	03/31/2015	JY	
cis-1,3-dichloropropene	< 0.500	<2.27	0.500	2.27		TO-15	03/31/2015	JY	
Cyclohexane	<0.200	<0.688	0.200	0.688		TO-15	03/31/2015	JY	
Dichlorodifluoromethane (CFC-12)	0.426	2.11	0.300	1.48		TO-15	03/31/2015	JY	
Dichlorotetrafluoroethane (CFC-114)	< 0.500	<3.50	0.500	3.50		TO-15	03/31/2015	JY	
Ethyl acetate	<1.00	<3.60	1.00	3.60		TO-15	03/31/2015	JY	
Ethylbenzene	2.94	12.8	0.300	1.30		TO-15	03/31/2015	JY	
Heptane	< 0.500	<2.01	0.500	2.01		TO-15	03/31/2015	JY	
Hexachlorobutadiene	<1.00	<10.7	1.00	10.7		TO-15	03/31/2015	JY	
m,p-Xylene	20.7	90.0	0.200	0.868		TO-15	03/31/2015	JY	
Methyl methacrylate	< 0.300	<1.23	0.300	1.23		TO-15	03/31/2015	JY	
Methylene chloride	<1.50	<5.21	1.50	5.21		TO-15	03/31/2015	JY	
Naphthalene	< 0.300	<1.57	0.300	1.57		TO-15	03/31/2015	JY	
Hexane	0.853	3.01	0.200	0.705		TO-15	03/31/2015	JY	
o-Xylene	9.75	42.3	1.60	6.95		TO-15	03/31/2015	JY	
4-Ethyltoluene	2.56	12.6	0.300	1.47		TO-15	03/31/2015	JY	
Propylene	6.61	11.4	0.500	0.861		TO-15	03/31/2015	JY	
Styrene	< 0.300	<1.28	0.300	1.28		TO-15	03/31/2015	JY	
Methyl tert-butyl ether (MTBE)	<0.200	<0.721	0.200	0.721		TO-15	03/31/2015	JY	
Tetrachloroethene (PCE)	< 0.300	<2.03	0.300	2.03		TO-15	03/31/2015	JY	
Tetrahydrofuran	<0.500	<1.47	0.500	1.47		TO-15	03/31/2015	JY	
Toluene	1.05	3.94	0.200	0.754		TO-15	03/31/2015	JY	
trans-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793		TO-15	03/31/2015	JY	
trans-1,3-dichloropropene	<0.500	<2.27	0.500	2.27		TO-15	03/31/2015	JY	
Trichloroethene (TCE)	<0.200	<1.07	0.200	1.07		TO-15	03/31/2015	JY	

WorkOrder: 1503256

Project: Walker Chevrolet

 Client Sample ID:
 SS-FPB-032015
 Date Sampled:
 3/20/2015

 Lab ID:
 1503256-001A
 Date Received:
 3/24/2015

Analyte	Concentration Reporting Limit		ng Limit	Qual	Method	Date/Analyst		
Volatile Organic Compounds by	EPA Method TO	<u>-15</u>						_
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Trichlorofluoromethane (CFC-11)	<0.300	<1.69	0.300	1.69		TO-15	03/31/2015 JY	
Vinyl acetate	<1.00	<3.52	1.00	3.52		TO-15	03/31/2015 JY	
Vinyl chloride	<0.200	<0.511	0.200	0.511		TO-15	03/31/2015 JY	
Surr: 4-Bromofluorobenzene	98.0 %Rec		70-130			TO-15	03/31/2015 JY	

WorkOrder: 1503256

Project: Walker Chevrolet

 Client Sample ID:
 IA-FPB-032315
 Date Sampled:
 3/23/2015

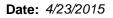
 Lab ID:
 1503256-002A
 Date Received:
 3/24/2015

Analyte	Concen	tration	Reportir	ng Limit	Qual	Method	Date/Analy	nalyst	
Volatile Organic Compounds-E	PA Method TO-1	5 (SIM)							
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)					
1,1,1-Trichloroethane	<0.00500	< 0.0273	0.00500	0.0273		TO-15	03/30/2015	J,	
1,1,2,2-Tetrachloroethane	<0.00620	< 0.0426	0.00620	0.0426		TO-15	03/30/2015	J,	
1,1,2-Trichloroethane (TCA)	<0.0200	<0.109	0.0200	0.109		TO-15	03/30/2015	J,	
1,1-Dichloroethane	<0.00800	< 0.0324	0.00800	0.0324		TO-15	03/30/2015	J,	
1,1-Dichloroethene (DCE)	< 0.00900	< 0.0357	0.00900	0.0357		TO-15	03/30/2015	J,	
1,2,4-Trichlorobenzene	< 0.0500	<0.371	0.0500	0.371		TO-15	03/30/2015	J,	
1,2,4-Trimethylbenzene	< 0.0730	< 0.359	0.0730	0.359		TO-15	03/30/2015	J,	
1,2-Dibromoethane (EDB)	<0.0200	<0.154	0.0200	0.154		TO-15	03/30/2015	J,	
1,2-Dichloroethane	1.54	6.24	0.0200	0.0809		TO-15	03/30/2015	J,	
1,4-Dioxane	<1.00	<3.60	1.00	3.60	*	TO-15	03/30/2015	J,	
Benzene	0.716	2.29	0.0400	0.128		TO-15	03/30/2015	J,	
Carbon tetrachloride	0.104	0.657	0.0200	0.126		TO-15	03/30/2015	J,	
Chlorobenzene	<0.0700	<0.322	0.0700	0.322		TO-15	03/30/2015	J,	
Chloroethane	<0.0980	<0.259	0.0980	0.259		TO-15	03/30/2015	J,	
Chloroform	0.447	2.18	0.0200	0.0977		TO-15	03/30/2015	J,	
Chloromethane	1.06	2.18	0.400	0.826		TO-15	03/30/2015	J,	
cis-1,2-Dichloroethene	<0.0200	< 0.0793	0.0200	0.0793		TO-15	03/30/2015	J,	
Ethylbenzene	0.407	1.77	0.0500	0.217		TO-15	03/30/2015	J,	
Hexachlorobutadiene	0.136	1.45	0.0166	0.177		TO-15	03/30/2015	J,	
m,p-Xylene	1.48	6.44	0.0600	0.261		TO-15	03/30/2015	J,	
Methylene chloride	0.462	1.61	0.0600	0.208		TO-15	03/30/2015	J,	
Naphthalene	<0.300	<1.57	0.300	1.57		TO-15	03/30/2015	J,	
Hexane	0.802	2.83	0.0700	0.247		TO-15	03/30/2015	J`	
o-Xylene	0.431	1.87	0.0400	0.174		TO-15	03/30/2015	J,	
Methyl tert-butyl ether (MTBE)	<0.00900	<0.0324	0.00900	0.0324		TO-15	03/30/2015	J,	
Γetrachloroethene (PCE)	0.410	2.78	0.0500	0.339		TO-15	03/30/2015	J,	
Toluene	2.88	10.9	0.0500	0.188		TO-15	03/30/2015	J,	
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238		TO-15	03/30/2015	J,	
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914		TO-15	03/30/2015	J`	
Vinyl chloride	<0.0850	<0.217	0.0850	0.217		TO-15	03/30/2015	J,	

WorkOrder: 1503256

Project: Walker Chevrolet

 Client Sample ID:
 IA-FPB-032315
 Date Sampled:
 3/23/2015


 Lab ID:
 1503256-002A
 Date Received:
 3/24/2015

Sample Type: Summa Canister

Analyte	Concent	tration	Reportii	ng Limit	Qual	Method	Date/Analyst	
Volatile Organic Compounds-El	PA Method TO-15	(SIM)						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Surr: 4-Bromofluorobenzene	95.0 %Rec		70-130			TO-15	03/30/2015 JY	Y

NOTES:

^{* -} Flagged value is not within established control limits.

QC SUMMARY REPORT

CLIENT: Aspect Consulting

Project: Walker Che	evrolet					Petro	oleum	Fractionati	on by EPA	A Method	TO-1
Sample ID 1503255-001AREP	SampType: REP			Units: µg/m³		Prep Date:	3/31/20)15	RunNo: 21	569	
Client ID: BATCH	Batch ID: R21569					Analysis Date	3/31/20)15	SeqNo: 409	9203	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	229	147						240.7	5.09	30	
Aliphatic Hydrocarbon (EC9-12)	214	94.2						209.1	2.20	30	
Aromatic Hydrocarbon (EC9-10)	153	4.54						149.1	2.27	30	
Surr: 4-Bromofluorobenzene	10.2		10.00		102	70	130		0	30	
Sample ID LCS-R21569	SampType: LCS			Units: µg/m³		Prep Date:	3/30/20)15	RunNo: 21	569	
Client ID: LCSW	Batch ID: R21569					Analysis Date	3/30/20)15	SeqNo: 40 9	9210	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	114	147	113.9	0	99.8	70	130				
Aliphatic Hydrocarbon (EC9-12)	167	94.2	177.0	0	94.3	70	130				
Aromatic Hydrocarbon (EC9-10)	119	4.54	125.8	0	94.5	70	130				
Surr: 4-Bromofluorobenzene	10.1		10.00		101	70	130				
Sample ID MB-R21569	SampType: MBLK			Units: µg/m³		Prep Date:	3/30/20)15	RunNo: 21	569	
Client ID: MBLKW	Batch ID: R21569					Analysis Date	3/30/20)15	SeqNo: 409	9211	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (EC5-8)	ND	147									
Aliphatic Hydrocarbon (EC9-12)	ND	94.2									
Aromatic Hydrocarbon (EC9-10)	ND	4.54									
Surr: 4-Bromofluorobenzene	9.28		10.00		92.8	70	130				

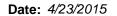
Date: 4/23/2015

Work Order: 1503256

QC SUMMARY REPORT

CLIENT: Aspect Consulting
Project: Walker Chevrolet

Helium by GC/TCD

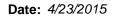

Sample ID 1503255-001AREP	SampType: REP	Units: ppmv	Prep Date: 3/31/2015	RunNo: 21574
---------------------------	----------------------	--------------------	----------------------	--------------

Client ID: BATCH Batch ID: R21574 Analysis Date: 3/31/2015 SeqNo: 409291

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Helium ND 30.2 0 30

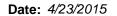
Sample ID LCS-R21574	SampType: LCS			Units: ppmv		Prep Da	te: 3/31/2015		RunNo: 215	574	
Client ID: LCSW	Batch ID: R21574					Analysis Da	te: 3/31/2015		SeqNo: 409	9295	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Helium	176,000	100	200,000	0	88.2	80	120				



QC SUMMARY REPORT

CLIENT: Aspect Consulting Project: Walker Chevrolet

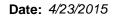
Sample ID 1503255-001AREP	SampType: REP			Units: ppbv		Prep Dat	e: 3/31/2 0	015	RunNo: 21	559	
Client ID: BATCH	Batch ID: R21559					Analysis Dat	e: 3/31/2 0	015	SeqNo: 409	9019	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Propylene	1.18	0.500						1.228	3.79	30	
Dichlorodifluoromethane (CFC-12)	0.494	0.300						0.5186	4.88	30	
Chloromethane	ND	0.500						0		30	
Dichlorotetrafluoroethane (CFC-114)	ND	0.500						0		30	
Vinyl chloride	ND	0.200						0		30	
1,3-Butadiene	ND	0.500						0		30	
Bromomethane	ND	0.500						0		30	
Trichlorofluoromethane (CFC-11)	1.69	0.300						1.705	0.990	30	
Chloroethane	ND	0.500						0		30	
Acrolein	ND	0.500						0		30	
1,1-Dichloroethene (DCE)	ND	0.200						0		30	
Acetone	315	1.00						315.0	0.0766	30	Е
Isopropyl Alcohol	15.0	1.00						13.06	13.6	30	E
Methylene chloride	ND	1.50						0		30	
Carbon disulfide	ND	1.50						0		30	
trans-1,2-Dichloroethene	ND	0.200						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.200						0		30	
Hexane	0.670	0.200						0.6649	0.824	30	
1,1-Dichloroethane	ND	0.200						0		30	
Vinyl acetate	ND	1.00						0		30	
cis-1,2-Dichloroethene	ND	0.200						0		30	
(MEK) 2-Butanone	3.35	0.500						3.677	9.31	30	
Ethyl acetate	ND	1.00						0		30	
Chloroform	0.252	0.200						0.2530	0.436	30	
Tetrahydrofuran	ND	0.500						0		30	
1,1,1-Trichloroethane	ND	0.200						0		30	
Carbon tetrachloride	ND	0.200						0		30	
1,2-Dichloroethane	ND	0.200						0		30	
Benzene	0.350	0.200						0.3556	1.47	30	
Cyclohexane	ND	0.200						0		30	
Trichloroethene (TCE)	ND	0.200						0		30	



QC SUMMARY REPORT

CLIENT: Aspect Consulting Project: Walker Chevrolet

Sample ID 1503255-001AREP	SampType: REP			Units: ppbv		Prep Dat	e: 3/31/2	015	RunNo: 21	559	
Client ID: BATCH	Batch ID: R21559					Analysis Dat	e: 3/31/2	015	SeqNo: 409	019	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichloropropane	ND	0.500						0		30	
Methyl methacrylate	ND	0.300						0		30	
Dichlorobromomethane	ND	0.300						0		30	
1,4-Dioxane	ND	1.00						0		30	
cis-1,3-dichloropropene	ND	0.500						0		30	
Toluene	3.09	0.200						3.178	2.87	30	
trans-1,3-dichloropropene	ND	0.500						0		30	
1,1,2-Trichloroethane (TCA)	ND	0.500						0		30	
Tetrachloroethene (PCE)	ND	0.300						0		30	
Dibromochloromethane	ND	0.500						0		30	
1,2-Dibromoethane (EDB)	ND	0.200						0		30	
Chlorobenzene	ND	0.200						0		30	
Ethylbenzene	0.553	0.300						0.5490	0.726	30	
m,p-Xylene	3.00	0.200						3.025	0.657	30	
o-Xylene	0.518	0.200						0.5104	1.38	30	
Styrene	ND	0.300						0		30	
Bromoform	ND	0.200						0		30	
1,1,2,2-Tetrachloroethane	ND	0.300						0		30	
1,3,5-Trimethylbenzene	ND	0.300						0		30	
1,2,4-Trimethylbenzene	1.25	0.300						1.252	0.160	30	
Benzyl chloride	ND	0.500						0		30	
4-Ethyltoluene	0.854	0.300						0.8546	0.0234	30	
1,3-Dichlorobenzene	ND	0.300						0		30	
1,4-Dichlorobenzene	ND	0.300						0		30	
1,2-Dichlorobenzene	ND	0.300						0		30	
1,2,4-Trichlorobenzene	ND	0.300						0		30	
Hexachlorobutadiene	ND	1.00						0		30	
Naphthalene	2.56	0.300						2.480	2.98	30	
2-Hexanone	ND	1.00						0		30	
4-Methyl-2-pentanone (MIBK)	ND	1.00						0		30	
CFC-113	ND	0.500						0		30	

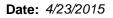


QC SUMMARY REPORT

CLIENT: Aspect Consulting Project: Walker Chevrolet

Sample ID 1503255-001AREP	SampType: REP			Units: ppbv		Prep Da	te: 3/31/2 0)15	RunNo: 21	559	
Client ID: BATCH	Batch ID: R21559				Analysis Date: 3/31/2015 SeqNo: 409019					9019	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Heptane	ND	0.500						0		30	
Surr: 4-Bromofluorobenzene	10.1		10.00		101	70	130		0		

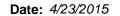
Sample ID LCS-R21559	SampType	LCS			Units: ppbv		Prep Da	te: 3/30/2 0)15	RunNo: 21:	559	
Client ID: LCSW	Batch ID:	R21559					Analysis Da	te: 3/30/2 0)15	SeqNo: 409	9025	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Propylene		4.95	0.500	5.000	0	99.1	70	130				
Dichlorodifluoromethane (CFC-12)		5.10	0.300	5.000	0	102	70	130				
Chloromethane		3.79	0.500	5.000	0	75.8	70	130				
Dichlorotetrafluoroethane (CFC-114)		3.78	0.500	5.000	0	75.6	70	130				
Vinyl chloride		3.70	0.200	5.000	0	73.9	70	130				
1,3-Butadiene		5.73	0.500	5.000	0	115	70	130				
Bromomethane		4.68	0.500	5.000	0	93.6	70	130				
Trichlorofluoromethane (CFC-11)		4.65	0.300	5.000	0	93.0	70	130				
Chloroethane		4.75	0.500	5.000	0	95.1	70	130				
Acrolein		5.47	0.500	5.000	0	109	70	130				
1,1-Dichloroethene (DCE)		5.06	0.200	5.000	0	101	70	130				
Acetone		5.16	1.00	5.000	0	103	70	130				
Isopropyl Alcohol		5.59	1.00	5.000	0	112	70	130				
Methylene chloride		4.99	1.50	5.000	0	99.7	70	130				
Carbon disulfide		4.73	1.50	5.000	0	94.6	70	130				
trans-1,2-Dichloroethene		5.02	0.200	5.000	0	100	70	130				
Methyl tert-butyl ether (MTBE)		5.49	0.200	5.000	0	110	70	130				
Hexane		5.05	0.200	5.000	0	101	70	130				
1,1-Dichloroethane		4.85	0.200	5.000	0	97.0	70	130				
Vinyl acetate		5.51	1.00	5.000	0	110	70	130				
cis-1,2-Dichloroethene		5.18	0.200	5.000	0	104	70	130				
(MEK) 2-Butanone		5.83	0.500	5.000	0	117	70	130				
Ethyl acetate		5.57	1.00	5.000	0	111	70	130				
Chloroform		4.75	0.200	5.000	0	95.1	70	130				



QC SUMMARY REPORT

CLIENT: Aspect Consulting Project: Walker Chevrolet

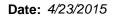
Sample ID LCS-R21559	SampType: LCS			Units: ppbv		Prep Dat	e: 3/30/2 0	15	RunNo: 21	559	
Client ID: LCSW	Batch ID: R21559					Analysis Dat	te: 3/30/2 0	15	SeqNo: 40 9	9025	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Tetrahydrofuran	5.07	0.500	5.000	0	101	70	130				
1,1,1-Trichloroethane	4.80	0.200	5.000	0	96.0	70	130				
Carbon tetrachloride	4.79	0.200	5.000	0	95.8	70	130				
1,2-Dichloroethane	4.88	0.200	5.000	0	97.5	70	130				
Benzene	5.13	0.200	5.000	0	103	70	130				
Cyclohexane	5.07	0.200	5.000	0	101	70	130				
Trichloroethene (TCE)	5.18	0.200	5.000	0	104	70	130				
1,2-Dichloropropane	5.11	0.500	5.000	0	102	70	130				
Methyl methacrylate	6.05	0.300	5.000	0	121	70	130				
Dichlorobromomethane	5.04	0.300	5.000	0	101	70	130				
1,4-Dioxane	6.08	1.00	5.000	0	122	70	130				
cis-1,3-dichloropropene	5.59	0.500	5.000	0	112	70	130				
Toluene	5.70	0.200	5.000	0	114	70	130				
trans-1,3-dichloropropene	5.81	0.500	5.000	0	116	70	130				
1,1,2-Trichloroethane (TCA)	5.18	0.500	5.000	0	104	70	130				
Tetrachloroethene (PCE)	5.50	0.300	5.000	0	110	70	130				
Dibromochloromethane	5.26	0.500	5.000	0	105	70	130				
1,2-Dibromoethane (EDB)	5.43	0.200	5.000	0	109	70	130				
Chlorobenzene	5.34	0.200	5.000	0	107	70	130				
Ethylbenzene	5.88	0.300	5.000	0	118	70	130				
m,p-Xylene	11.2	0.200	10.00	0	112	70	130				
o-Xylene	5.65	0.200	5.000	0	113	70	130				
Styrene	5.13	0.300	5.000	0	103	70	130				
Bromoform	5.44	0.200	5.000	0	109	70	130				
1,1,2,2-Tetrachloroethane	5.29	0.300	5.000	0	106	70	130				
1,3,5-Trimethylbenzene	5.69	0.300	5.000	0	114	70	130				
1,2,4-Trimethylbenzene	4.95	0.300	5.000	0	99.0	70	130				
Benzyl chloride	4.96	0.500	5.000	0	99.2	70	130				
4-Ethyltoluene	5.00	0.300	5.000	0	100	70	130				
1,3-Dichlorobenzene	5.23	0.300	5.000	0	105	70	130				
1,4-Dichlorobenzene	5.46	0.300	5.000	0	109	70	130				



QC SUMMARY REPORT

CLIENT: Aspect Consulting Project: Walker Chevrolet

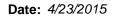
Sample ID LCS-R21559	SampType: LCS			Units: ppbv		Prep Da	te: 3/30/2 0)15	RunNo: 21	559	
Client ID: LCSW	Batch ID: R21559					Analysis Da	te: 3/30/2 0)15	SeqNo: 40	9025	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichlorobenzene	5.86	0.300	5.000	0	117	70	130				
1,2,4-Trichlorobenzene	5.55	0.300	5.000	0	111	70	130				
Hexachlorobutadiene	5.12	1.00	5.000	0	103	70	130				
Naphthalene	5.24	0.300	5.000	0	105	70	130				
2-Hexanone	5.36	1.00	5.000	0	107	70	130				
4-Methyl-2-pentanone (MIBK)	5.96	1.00	5.000	0	119	70	130				
CFC-113	4.65	0.500	5.000	0	92.9	70	130				
Heptane	5.33	0.500	5.000	0	107	70	130				
Surr: 4-Bromofluorobenzene	10.3		10.00		103	70	130				
Sample ID MB-R21559	SampType: MBLK			Units: ppbv		Prep Da	te: 3/30/2 ()15	RunNo: 21 :	559	
Client ID: MBLKW	Batch ID: R21559			••		Analysis Da	te: 3/30/2 0)15	SeqNo: 40	9026	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Propylene	ND	0.500									
Dichlorodifluoromethane (CFC-12)	ND	0.300									
Chloromethane	ND	0.500									
Dichlorotetrafluoroethane (CFC-114)	ND	0.500									
Vinyl chloride	ND	0.200									
1,3-Butadiene	ND	0.500									
Bromomethane	ND	0.500									
Trichlorofluoromethane (CFC-11)	ND	0.300									
Chloroethane	ND	0.500									
Acrolein	ND	0.500									
1,1-Dichloroethene (DCE)	ND	0.200									
Acetone	ND	1.00									
Isopropyl Alcohol	ND	1.00									
Methylene chloride	ND	1.50									
Carbon disulfide	ND	1.50									
trans-1,2-Dichloroethene	ND	0.200									
Methyl tert-butyl ether (MTBE)	ND	0.200									



QC SUMMARY REPORT

CLIENT: Aspect Consulting Project: Walker Chevrolet

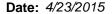
Sample ID MB-R21559	SampType: MBLK			Units: ppbv		Prep Da	te: 3/30/20	115	RunNo: 215	559	
Client ID: MBLKW	Batch ID: R21559					Analysis Da	te: 3/30/20	115	SeqNo: 409	1026	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexane	ND	0.200									
1,1-Dichloroethane	ND	0.200									
Vinyl acetate	ND	1.00									
cis-1,2-Dichloroethene	ND	0.200									
(MEK) 2-Butanone	ND	0.500									
Ethyl acetate	ND	1.00									
Chloroform	ND	0.200									
Tetrahydrofuran	ND	0.500									
1,1,1-Trichloroethane	ND	0.200									
Carbon tetrachloride	ND	0.200									
1,2-Dichloroethane	ND	0.200									
Benzene	ND	0.200									
Cyclohexane	ND	0.200									
Trichloroethene (TCE)	ND	0.200									
1,2-Dichloropropane	ND	0.500									
Methyl methacrylate	ND	0.300									
Dichlorobromomethane	ND	0.300									
1,4-Dioxane	ND	1.00									
cis-1,3-dichloropropene	ND	0.500									
Toluene	ND	0.200									
trans-1,3-dichloropropene	ND	0.500									
1,1,2-Trichloroethane (TCA)	ND	0.500									
Tetrachloroethene (PCE)	ND	0.300									
Dibromochloromethane	ND	0.500									
1,2-Dibromoethane (EDB)	ND	0.200									
Chlorobenzene	ND	0.200									
Ethylbenzene	ND	0.300									
m,p-Xylene	ND	0.200									
o-Xylene	ND	0.200									
Styrene	ND	0.300									
Bromoform	ND	0.200									



QC SUMMARY REPORT

CLIENT: Aspect Consulting Project: Walker Chevrolet

Sample ID MB-R21559	SampType: MBLK			Units: ppbv		Prep Da	te: 3/30/2	015	RunNo: 21 :	559	
Client ID: MBLKW	Batch ID: R21559					Analysis Da	te: 3/30/2	015	SeqNo: 40 9	9026	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,2,2-Tetrachloroethane	ND	0.300									
1,3,5-Trimethylbenzene	ND	0.300									
1,2,4-Trimethylbenzene	ND	0.300									
Benzyl chloride	ND	0.500									
4-Ethyltoluene	ND	0.300									
1,3-Dichlorobenzene	ND	0.300									
1,4-Dichlorobenzene	ND	0.300									
1,2-Dichlorobenzene	ND	0.300									
1,2,4-Trichlorobenzene	ND	0.300									
Hexachlorobutadiene	ND	1.00									
Naphthalene	ND	0.300									
2-Hexanone	ND	1.00									
4-Methyl-2-pentanone (MIBK)	ND	1.00									
CFC-113	ND	0.500									
Heptane	ND	0.500									
Surr: 4-Bromofluorobenzene	9.21		10.00		92.1	70	130				



QC SUMMARY REPORT

CLIENT: Aspect Consulting
Project: Walker Chevrolet

Volatile Organic Compounds-EPA Method TO-15 (SIM)

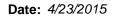
Sample ID 1503256-002AREP	SampType: REP			Units: ppbv		Prep Dat	e: 3/30/2 0)15	RunNo: 21	551	
Client ID: IA-FPB-032315	Batch ID: R21551					Analysis Dat	e: 3/30/2 0)15	SeqNo: 408	8832	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	1.16	0.400						1.056	9.21	30	
Vinyl chloride	ND	0.0850						0		30	
Chloroethane	ND	0.0980						0		30	
1,1-Dichloroethene (DCE)	ND	0.00900						0		30	
Methylene chloride	0.461	0.0600						0.4620	0.130	30	
trans-1,2-Dichloroethene	ND	0.00600						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.00900						0		30	
Hexane	0.802	0.0700						0.8025	0.0623	30	
1,1-Dichloroethane	ND	0.00800						0		30	
cis-1,2-Dichloroethene	ND	0.0200						0		30	
Chloroform	0.437	0.0200						0.4470	2.22	30	
1,1,1-Trichloroethane	ND	0.00500						0		30	
Carbon tetrachloride	0.102	0.0200						0.1044	2.33	30	
1,2-Dichloroethane	1.49	0.0200						1.542	3.70	30	
Benzene	0.714	0.0400						0.7164	0.406	30	
Trichloroethene (TCE)	ND	0.0170						0		30	
1,4-Dioxane	ND	1.00						0		30	*
Toluene	2.96	0.0500						2.882	2.66	30	
1,1,2-Trichloroethane (TCA)	ND	0.0200						0		30	
Tetrachloroethene (PCE)	0.412	0.0500						0.4100	0.559	30	
1,2-Dibromoethane (EDB)	ND	0.0200						0		30	
Chlorobenzene	ND	0.0700						0		30	
Ethylbenzene	0.434	0.0500						0.4068	6.42	30	
m,p-Xylene	1.45	0.0600						1.482	2.48	30	
o-Xylene	0.427	0.0400						0.4314	1.10	30	
1,1,2,2-Tetrachloroethane	ND	0.00620						0		30	
1,2,4-Trimethylbenzene	ND	0.0730						0		30	
1,2,4-Trichlorobenzene	ND	0.0500						0		30	
Hexachlorobutadiene	0.130	0.0166						0.1359	4.05	30	
Naphthalene	ND	0.300						0		30	
Surr: 4-Bromofluorobenzene	9.39		10.00		93.9	70	130		0		

QC SUMMARY REPORT

CLIENT: Aspect Consulting Project: Walker Chevrolet

Volatile Organic Compounds-EPA Method TO-15 (SIM)

Sample ID 1503256-002AREP SampType: REP Units: ppbv Prep Date: 3/30/2015 RunNo: 21551 Client ID: IA-FPB-032315 Batch ID: R21551


Analysis Date: 3/30/2015 SeqNo: 408832

%REC LowLimit HighLimit RPD Ref Val Analyte Result RL SPK value SPK Ref Val %RPD RPDLimit Qual

NOTES:

^{* -} Flagged value is not within established control limits.

Sample ID LCS-R21551	SampType: LCS			Units: ppbv		Prep Dat	te: 3/30/20)15	RunNo: 21	551	
Client ID: LCSW	Batch ID: R21551					Analysis Da	te: 3/30/2 0	15	SeqNo: 408	3834	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	10.1	0.400	10.00	0	101	70	130				
Vinyl chloride	10.7	0.0850	10.00	0	107	70	130				
Chloroethane	9.04	0.0980	10.00	0	90.4	70	130				
1,1-Dichloroethene (DCE)	9.58	0.00900	10.00	0	95.8	70	130				
Methylene chloride	10.6	0.0600	10.00	0	106	70	130				
trans-1,2-Dichloroethene	9.01	0.00600	10.00	0	90.1	70	130				
Methyl tert-butyl ether (MTBE)	9.73	0.00900	10.00	0	97.3	70	130				
Hexane	10.0	0.0700	10.00	0	100	70	130				
1,1-Dichloroethane	9.97	0.00800	10.00	0	99.7	70	130				
cis-1,2-Dichloroethene	9.83	0.0200	10.00	0	98.3	70	130				
Chloroform	10.5	0.0200	10.00	0	105	70	130				
1,1,1-Trichloroethane	10.3	0.00500	10.00	0	103	70	130				
Carbon tetrachloride	10.6	0.0200	10.00	0	106	70	130				
1,2-Dichloroethane	10.7	0.0200	10.00	0	107	70	130				
Benzene	9.51	0.0400	10.00	0	95.1	70	130				
Trichloroethene (TCE)	10.5	0.0170	10.00	0	105	70	130				
1,4-Dioxane	11.2	1.00	20.00	0	55.8	70	130				S
Toluene	10.4	0.0500	10.00	0	104	70	130				
1,1,2-Trichloroethane (TCA)	10.4	0.0200	10.00	0	104	70	130				
Tetrachloroethene (PCE)	10.1	0.0500	10.00	0	101	70	130				
1,2-Dibromoethane (EDB)	10.4	0.0200	10.00	0	104	70	130				
Chlorobenzene	10.2	0.0700	10.00	0	102	70	130				
Ethylbenzene	10.6	0.0500	10.00	0	106	70	130				
m,p-Xylene	21.6	0.0600	20.00	0	108	70	130				
o-Xylene	11.0	0.0400	10.00	0	110	70	130				

QC SUMMARY REPORT

CLIENT: Aspect Consulting Walker Chevrolet Project:

Volatile Organic Compounds-EPA Method TO-15 (SIM)

Sample ID LCS-R21551	mple ID LCS-R21551 SampType: LCS				Units: ppbv			015	RunNo: 21551		
Client ID: LCSW	Batch ID: R21551					Analysis Da	te: 3/30/2 0	015	SeqNo: 408	3834	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	10.4	0.0500	10.00	0	104	70	130				
Hexachlorobutadiene	9.93	0.0166	10.00	0	99.3	70	130				
Surr: 4-Bromofluorobenzene	42.7		40.00		107	70	130				
NOTES:											

S - Outlying spike recovery observed for 1,4-Dioxane (low bias). Sample will be qualified with an *.

Sample ID MB-R21551	SampType: MBLK			Units: ppbv		Prep Date:	3/30/20)15	RunNo: 21	551	
Client ID: MBLKW	Batch ID: R21551					Analysis Date:	3/30/20)15	SeqNo: 408	3835	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	ND	0.400									
Vinyl chloride	ND	0.0850									
Chloroethane	ND	0.0980									
1,1-Dichloroethene (DCE)	ND	0.00900									
Methylene chloride	ND	0.0600									
trans-1,2-Dichloroethene	ND	0.00600									
Methyl tert-butyl ether (MTBE)	ND	0.00900									
Hexane	ND	0.0700									
1,1-Dichloroethane	ND	0.00800									
cis-1,2-Dichloroethene	ND	0.0200									
Chloroform	ND	0.0200									
1,1,1-Trichloroethane	ND	0.00500									
Carbon tetrachloride	ND	0.0200									
1,2-Dichloroethane	ND	0.0200									
Benzene	ND	0.0400									
Trichloroethene (TCE)	ND	0.0170									
1,4-Dioxane	ND	1.00									*
Toluene	ND	0.0500									
1,1,2-Trichloroethane (TCA)	ND	0.0200									
Tetrachloroethene (PCE)	ND	0.0500									
1,2-Dibromoethane (EDB)	ND	0.0200									
Chlorobenzene	ND	0.0700									

Date: 4/23/2015

Work Order: 1503256

QC SUMMARY REPORT

CLIENT: Aspect Consulting
Project: Walker Chevrolet

Volatile Organic Compounds-EPA Method TO-15 (SIM)

Sample ID MB-R21551 SampType: MBLK			Units: ppbv			Prep Date:	3/30/20	15	RunNo: 21551		
Client ID: MBLKW	Batch ID: R21551					Analysis Date:	3/30/20	15	SeqNo: 408	8835	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	ND	0.0500									
m,p-Xylene	ND	0.0600									
o-Xylene	ND	0.0400									
1,2,4-Trichlorobenzene	ND	0.0500									
Hexachlorobutadiene	ND	0.0166									
Surr: 4-Bromofluorobenzene	9.86		10.00		98.6	70	130				
NOTES:											

NOTES:

^{* -} Flagged value is not within established control limits.

Sample Log-In Check List

С	lient Name:	AC	Work Order Number	er: 1503256	
Lo	ogged by:	Clare Griggs	Date Received:	3/24/2015	11:18:00 AM
Cha	in of Cust	<u>ody</u>			
1.	Is Chain of C	ustody complete?	Yes 🗹	No \square	Not Present
2.	How was the	sample delivered?	<u>Client</u>		
Log	<u>In</u>				
	Coolers are p	present?	Yes	No 🗸	NA 🗌
			Air Samples		
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No \square	
5.	Custody seal	s intact on shipping container/cooler?	Yes	No \square	Not Required ✓
6.	Was an atten	npt made to cool the samples?	Yes	No 🗌	NA 🗹
7.	Were all cool	ers received at a temperature of >0°C to 10.0°C	Yes	No 🗌	NA 🗸
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗌	
9.	Sufficient sar	mple volume for indicated test(s)?	Yes 🗸	No 🗌	
10.	Are samples	properly preserved?	Yes 🗹	No \square	
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA 🗌
12.	Is the headsp	pace in the VOA vials?	Yes	No 🗆	NA 🔽
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗹	No \square	
14.	Does paperw	ork match bottle labels?	Yes 🗹	No \square	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗹	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes 🗹	No 🗌	
17.	Were all hold	ling times able to be met?	Yes 🗹	No 🗌	
Spe	cial Handl	ing (if applicable)			
		otified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
	Person	Notified: Date			
	By Who	m: Via:	eMail Pho	ne 🗌 Fax 🏻	In Person
	Regardi	ng:			
	Client Ir	nstructions:			
10	Additional rer	marke:			

19. Additional remarks:

Per client request, analyte 1,4 Dioxane added to TO15 SIM analysis.

Item Information

Reli	* 7	Con	Ren	- 0	*	-	-	9			T	6			~	(je to	
Relinquished	Relinquished	Conditions	Rental Equipment (Circle all that apply):			C10760-041-H	John over	כושכם מזיוני	A TOTAL PROPERTY.	Sample Name	Container codes: of a striffer of	100	Reports To (PM): Alico	Address:		3600 Framont Ave N. Senttle, WA 98103	Fre
Date/Time	Date/Time 5/		Manifold			FR8-24	12668	FR70-05	17649	Carrister / Flow Reg Serial #	or = ox rise character (primms)	SS=Subslab L=Lan	Note N		Aspect Consulting	Tel: 206-352-3790 Fax: 206-352-7178	
	3/24/5	Seals Intact:	Mini-Pump			1965	3/29/15	Oto	1/2/1	Sample Date &	Ten ampair and	L=Landfill SG = Soll Gas	Perice 1			8790	
		A N	Fittings Tes			+	+	Z.		Gas Matrix Code *			Course Penalt				
		N/A	Tedlar Bags C			800		- Consti		Anticipated Fill Time	BA = This add a Asc	M = Plume Mapping Q = Fuel Gas Quality		Tel:		Date	
Relinquished	Relinquished		Canisters I			8	-	6		Sample	_	M C.R	anadhara			1	
, par	å	Ω	Flow Controllers			emmus		- Continue		Container Type **	MIC = 1 Litter Minecan	ani Gas Quali	CONTRACTOR	١,	1	20	
		Clent Consult: Y() N()				30.851.61/E	10mton	3/19/15 9:00	10mtor	Everantion Pressure (mtorr)			wester			124	
Date/Timp	Date/Time	()N()	Helium Oylinder Flo			0		0		Pressure at. Time of Pick- up (" Hg)	HP - High Pressure Cylinder	L = LSED (Consult Client Services)	12.60			3	Air chain or
)		Flouridated Tubing							Equipment Certification Code	HI = Glass Headspace Jar	1.28	- To assessment	Location:	Project Names		
			Wrench			0923	8	ENGIN	02-	Field initial Sample Pressure ("Hg)	adspace Jar		i	1		1	cust
			İ			1991	ČK.	0110	15	Sample Pressure (*	-			-	3		ody K
		Special Remarks:				-Heby &	NG 51-2 1174-	He -3C	S1-21 1174-	Analysis Requested			Project No: 090190	ACUATION, WA	ker Cheriole +	Pages of: Of:	Custody Record - Whole Air Sample
						2005	11/160	5	OR F-	Receipt Date	inte		0	+		1	ur san
						C	-	1		(ps)	internal					*	mple

APPENDIX E

Groundwater Analytical Results

	Spec			Sample number	MW-	-11-0	3201	5		-
GROUI	NDWATER	SAMPLING	RECORD			WELL NUM	BER: M	(W-11		Page: of
Sampled Measurin Screened	by: g Point of Wo I Interval (ft	ell: TOC <u>)</u>	Chevro - Tec	le+		Project Nur Starting Wa Casing Stic Total Depth Casing Diar	ter Level (ft kup (ft): (ft TOC <u>):</u>		52.07	F
Casing V	olumes: 3/4	(ft Wate '= 0.02 gpf	2" = 0.16 gp	f 4"		6" = 1.47	gpf		Sample Int	ake Depth (ft TOC):
PURGII	NG MEASU	JREMENTS			-			-		
Criteria Time	Cumul. Volume (gal or L)	Typical 0.1-0.5 Lpm Purge Rate (gpm or Lpm)	Stable Water Level (ft)	Temp.	± 3% Specific Conductance (µS/cm)	± 10% Dissolved Oxygen (mg/L)	± 0.1	± 10 mV ORP (mv)	± 10% Turbidity (NTU)	Comments
880Z 0807		0.30	52,07	17.8	368.7	3,02	6.17	125.2	1,0	Start,
0817				12.9	368.0 360.2	2.58	6.21			
		TOC):	,			Z . 54		-		Sampled
	Volume		Quantity	Filtration	Preservation	Appear	ance			
0825	40ml 40ml 500ml 500ml	VOA VOA Poly Amber	2 2 1	2	HC1 N N	Color	Turbidity & Sediment			TIVITIGINO
urging Eq	measured wuipment:	vith (instrument r	200	m		Pre:	+ 12	K 101	171 V cono	x wash

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 3, 2015

Alan Noell, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Mr. Noell:

Included are the results from the testing of material submitted on March 20, 2015 from the Walker Chevrolet 080190, F&BI 503392 project. There are 18 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman ASP0403R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 20, 2015 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Walker Chevrolet 080190, F&BI 503392 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Aspect Consulting, LLC</u>

503392 -01 MW-11-032015

Chromium in the 200.8 matrix spike and the associated relative percent difference exceeded the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results are likely due to matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15

Project: Walker Chevrolet 080190, F&BI 503392

Date Extracted: 03/23/15 Date Analyzed: 03/23/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW-11-032015 503392-01	<100	100
Method Blank 05-564 MB	<100	93

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15

Project: Walker Chevrolet 080190, F&BI 503392

Date Extracted: 03/25/15 Date Analyzed: 03/25/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 41-152)
MW-11-032015 503392-01	82 x	<250	86
Method Blank 05-616 MB	<50	<250	98

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	MW-11-032015	Client:	Aspect Consulting, LLC
------------	--------------	---------	------------------------

Date Received: 03/20/15 Project: Walker Chevrolet 080190, F&BI 503392

Date Extracted: 03/24/15 Lab ID: 503392-01 Data File: Date Analyzed: 03/25/15 503392-01.028 Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: ML

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	107	60	125
Indium	92	60	125
Holmium	95	60	125

Concentration

<1

Analyte:	ug/L (ppb)
Arsenic	5.15
Barium	57.9
Cadmium	<1
Chromium	24.0
Lead	4.99
Mercury	<1
Selenium	<1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Aspect Consulting,	LI	L	C	
--	----	---	---	--

Date Received: NA Project: Walker Chevrolet 080190, F&BI 503392

Date Extracted: 03/24/15 Lab ID: I5-176 mb Data File: I5-176 mb.023 Date Analyzed: 03/25/15 Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: ML

		Lower	∪pper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	98	60	125
Indium	91	60	125
Holmium	95	60	125

Concentration

Analyte: ug/L (ppb)

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C SIM

Client Sample ID: MW-11-032015 Client: Aspect Consulting, LLC

Date Received: 03/20/15 Project: Walker Chevrolet 080190, F&BI 503392

Date Extracted: 03/31/15 Lab ID: 503392-01 Data File: Date Analyzed: 03/31/15 033118.D Matrix: GCMS7 Water Instrument: Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 50 150 65 Toluene-d8 65 50 150 4-Bromofluorobenzene 64 50 150

Concentration

Compounds: ug/L (ppb)

1,4-dioxane <0.4

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C SIM

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Walker Chevrolet 080190, F&BI 503392

Date Extracted: 03/31/15 Lab ID: 05-0643 mb 03/31/15 Data File: Date Analyzed: 033117.D Matrix: Water Instrument: GCMS7 Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 50 150 75 Toluene-d8 75 50 150 4-Bromofluorobenzene 73 50 150

Concentration

Compounds: ug/L (ppb)

1,4-dioxane <0.4

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-11-032015 Client: Aspect Consulting, LLC

Date Received: 03/20/15 Project: Walker Chevrolet 080190, F&BI 503392

Date Extracted: 03/23/15 Lab ID: 503392-01 03/23/15 Data File: 032324.D Date Analyzed: Matrix: Water Instrument: GCMS4 Operator: Units: ug/L (ppb) JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	103	57	121
Toluene-d8	105	63	127
4-Bromofluorobenzene	95	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	1.1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	1.2	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	3.0	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Walker Chevrolet 080190, F&BI 503392

Date Extracted: 03/23/15 Lab ID: 05-0548 mb 03/23/15 Date Analyzed: Data File: 032308.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	57	121
Toluene-d8	106	63	127
4-Bromofluorobenzene	97	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15

Project: Walker Chevrolet 080190, F&BI 503392

Date Extracted: 03/23/15 Date Analyzed: 03/23/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED

Results Reported as µg/L (ppb)

Sample ID
Laboratory ID

MW-11-032015
503392-01

Method Blank

<0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15

Project: Walker Chevrolet 080190, F&BI 503392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 503389-01 (Duplicate)

-	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	97	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15

Project: Walker Chevrolet 080190, F&BI 503392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

·	v	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	87	93	63-142	7

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15

Project: Walker Chevrolet 080190, F&BI 503392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 503418-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	15.5	94	88	60-150	7
Barium	ug/L (ppb)	50	68.2	99	94	79-126	5
Cadmium	ug/L (ppb)	5	<1	93	92	80-124	1
Chromium	ug/L (ppb)	20	<1	189 vo	107	64-132	55 vo
Lead	ug/L (ppb)	10	<1	93	91	79-121	2
Mercury	ug/L (ppb)	10	<1	92	91	50-150	1
Selenium	ug/L (ppb)	5	1.35	97	98	68-142	1
Silver	ug/L (ppb)	5	<1	92	90	60-121	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	95	80-111
Barium	ug/L (ppb)	50	93	83-117
Cadmium	ug/L (ppb)	5	92	83-113
Chromium	ug/L (ppb)	20	96	80-119
Lead	ug/L (ppb)	10	98	83-115
Mercury	ug/L (ppb)	10	95	70-130
Selenium	ug/L (ppb)	5	96	81-119
Silver	ug/L (ppb)	5	98	75-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15

Project: Walker Chevrolet 080190, F&BI 503392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C SIM

Laboratory Code: 503392-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
1,4-dioxane	ug/L (ppb)	2	< 0.4	105	50-150

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
1,4-dioxane	ug/L (ppb)	2	99	105	70-130	6

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15

Project: Walker Chevrolet 080190, F&BI 503392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503392-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	113	10-172
Chloromethane	ug/L (ppb)	50	<10	117	25-166
Vinyl chloride	ug/L (ppb)	50	<0.2	123	36-166
Bromomethane Chloroethane	ug/L (ppb)	50 50	<1	108 121	47-169
Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	121	46-160 44-165
Acetone	ug/L (ppb)	250	<10	116	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	119	60-136
Methylene chloride	ug/L (ppb)	50	< 5	114	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	108	74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	110	72-129
1,1-Dichloroethane 2,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	110 101	70-128 36-154
cis-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50	<1	113	71-127
Chloroform	ug/L (ppb)	50	1.1	106	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	127	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	106	69-133
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	105	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	114	69-133
Carbon tetrachloride Benzene	ug/L (ppb) ug/L (ppb)	50 50	1.2 <0.35	107 111	56-152 76-125
Trichloroethene	ug/L (ppb)	50	3.0	115	66-135
1,2-Dichloropropane	ug/L (ppb)	50	<1	114	78-125
Bromodichloromethane	ug/L (ppb)	50	<1	111	61-150
Dibromomethane	ug/L (ppb)	50	<1	110	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	128	10-185
cis-1,3-Dichloropropene Toluene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	116 105	72-132 76-122
trans-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	50	<1	105	76-122 76-130
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	104	68-131
2-Hexanone	ug/L (ppb)	250	<10	108	10-185
1,3-Dichloropropane	ug/L (ppb)	50	<1	108	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	107	10-226
Dibromochloromethane	ug/L (ppb)	50 50	<1	105 106	70-139
1,2-Dibromoethane (EDB) Chlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	104	69-134 77-122
Ethylbenzene	ug/L (ppb)	50	<1	102	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	104	73-137
m,p-Xylene	ug/L (ppb)	100	<2	102	69-135
o-Xylene	ug/L (ppb)	50	<1	103	60-140
Styrene	ug/L (ppb)	50 50	<1	105 99	71-133 65-142
Isopropylbenzene Bromoform	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	102	65-142
n-Propylbenzene	ug/L (ppb)	50	<1	100	58-144
Bromobenzene	ug/L (ppb)	50	<1	106	75-124
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	100	66-137
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	101	51-154
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	101	53-150
2-Chlorotoluene 4-Chlorotoluene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	98 96	66-127 65-130
tert-Butylbenzene	ug/L (ppb) ug/L (ppb)	50	<1	101	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	97	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	100	64-140
p-Isopropyltoluene	ug/L (ppb)	50	<1	98	65-141
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	100	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	100	69-126
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1 <10	102 94	69-128 32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	99	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	96	60-143
Naphthalene	ug/L (ppb)	50	<1	105	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	102	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15

Project: Walker Chevrolet 080190, F&BI 503392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	119	123	25-158	3
Chloromethane	ug/L (ppb)	50	122	119	45-156	2
Vinyl chloride	ug/L (ppb)	50	121	120	50-154	1
Bromomethane Chloroethane	ug/L (ppb) ug/L (ppb)	50 50	112 120	115 123	55-143 58-146	3 2
Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	250	118	117	50-150	1
Acetone	ug/L (ppb)	250	117	116	53-131	i
1,1-Dichloroethene	ug/L (ppb)	50	115	118	67-136	3
Methylene chloride	ug/L (ppb)	50	108	109	39-148	1
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	108	109	64-147	1
trans-1,2-Dichloroethene	ug/L (ppb)	50	110	111	68-128	1
1,1-Dichloroethane 2,2-Dichloropropane	ug/L (ppb)	50 50	108 107	109 110	79-121 55-143	1 3
cis-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	110	111	80-123	3 1
Chloroform	ug/L (ppb)	50	104	104	80-121	0
2-Butanone (MEK)	ug/L (ppb)	250	115	116	57-149	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	104	103	73-132	1
1,1,1-Trichloroethane	ug/L (ppb)	50	105	105	83-130	0
1,1-Dichloropropene	ug/L (ppb)	50	111	110	77-129	1
Carbon tetrachloride Benzene	ug/L (ppb)	50 50	108 108	108 108	75-158 69-134	0
Trichloroethene	ug/L (ppb) ug/L (ppb)	50 50	112	112	80-120	0
1,2-Dichloropropane	ug/L (ppb)	50	111	111	77-123	0
Bromodichloromethane	ug/L (ppb)	50	110	110	81-133	Õ
Dibromomethane	ug/L (ppb)	50	109	107	82-125	2
4-Methyl-2-pentanone	ug/L (ppb)	250	126	122	65-138	3
cis-1,3-Dichloropropene	ug/L (ppb)	50	114	112	82-132	2
Toluene	ug/L (ppb)	50 50	101	101	72-122	0
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	102 100	101 100	80-136 75-124	1
2-Hexanone	ug/L (ppb)	250	104	103	60-136	1
1,3-Dichloropropane	ug/L (ppb)	50	103	104	76-126	i
Tetrachloroethene	ug/L (ppb)	50	103	103	76-121	0
Dibromochloromethane	ug/L (ppb)	50	104	105	84-133	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	103	102	82-125	1
Chlorobenzene	ug/L (ppb)	50	101	101	83-114	0
Ethylbenzene 1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	98 103	100 105	77-124 84-127	2 2
m,p-Xylene	ug/L (ppb)	100	100	102	83-125	2
o-Xylene	ug/L (ppb)	50	100	102	81-121	2
Styrene	ug/L (ppb)	50	102	102	84-119	0
Isopropylbenzene	ug/L (ppb)	50	98	99	85-117	1
Bromoform	ug/L (ppb)	50	103	103	74-136	0
n-Propylbenzene Bromobenzene	ug/L (ppb)	50 50	98 103	96 101	74-126 80-121	2 2
1,3,5-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	103	97	78-123	3
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	99	97	66-126	2
1,2,3-Trichloropropane	ug/L (ppb)	50	100	96	67-124	4
2-Chlorotoluene	ug/L (ppb)	50	96	94	77-127	2
4-Chlorotoluene	ug/L (ppb)	50	94	93	78-128	1
tert-Butylbenzene	ug/L (ppb)	50	100	99	80-123	1
1,2,4-Trimethylbenzene	ug/L (ppb)	50	97 99	95 97	79-122 80-125	2 2
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	50 50	99 98	97 96	80-125 81-123	2 2
1.3-Dichlorobenzene	ug/L (ppb)	50	99	97	85-116	2
1,4-Dichlorobenzene	ug/L (ppb)	50	99	97	84-121	2
1,2-Dichlorobenzene	ug/L (ppb)	50	102	101	85-116	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	97	96	57-141	1
1,2,4-Trichlorobenzene	ug/L (ppb)	50	101	98	72-130	3
Hexachlorobutadiene	ug/L (ppb)	50	101	97	53-141	4
Naphthalene 1,2,3-Trichlorobenzene	ug/L (ppb)	50 50	105 102	104 102	64-133 65-136	1
1,2,3-11 ICHIOI ODEHZEHE	ug/L (ppb)	30	102	102	03-130	U

ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15

Project: Walker Chevrolet 080190, F&BI 503392

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED

Laboratory Code: 503392-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 10)
1,2-Dibromoethane	ug/L (ppb)	< 0.01	< 0.01	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
1,2-Dibromoethane	ug/L (ppb)	0.10	98	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COC.DOC Friedman & Bruya, Inc. 3012 16th Avenue West Fax (206) 283-5044 Ph. (206) 285-8282 Seattle, WA 98119-2029 City, State, ZIP _ Address___ Send Report To Phone # Company __ MW-11-032015 Sample ID Aspect Consulting Seattle Received by: Received by: -Relinquished by: Relinquished by: OIR! Lab ID Fax # Ave (3.#20) Sampled Sampled WA 98104 Kric Gerssmaga SIGNATURE 2280 Time Sample Type SAMPLE CHAIN OF CUSTODY HE 03-20-15 water SAMPLERS (signature) REMARKS PROJECT NAME/NO. Walker Cherrilet Jason Kobs containers Eric Geissimpy $\bar{\omega}$ PRINT NAME TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by8260 ANALYSES REQUESTED SVOCs by 8270 HFS
1.4 dioxane
BELOCK SIM
1.2 dibromoethane
8011 080190 F+3I tryent PO# COMPANY RCRA Metals Samples received at ☐ Return samples
☐ Will call with instructions Page # Rou Dispose after 30 days Rush charges authorized by C RUSH_ Standard (2 Weeks) TURNAROUND TIME SAMPLE DISPOSAL 3/20/15 DATE ~ Notes 1.4500 TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 14, 2015

Alan Noell, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Mr. Noell:

Included are the additional results from the testing of material submitted on January 23, 2014 from the Walker Chevrolet 080190-004-11, F&BI 401273 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman ASP0114R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 23, 2015 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Walker Chevrolet 080190-004-11, F&BI 401273 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
401273 -01	MW-11-012314
401273 -02	MW14D-012314

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-012314	Client:	Aspect Consulting, LLC
Date Received:	01/23/14	Project:	Walker Chevrolet 080190-004-11

Project: 01/23/14 Date Extracted: 01/24/14 Lab ID: 401273-01 Data File: Date Analyzed: 012412.D 01/24/14 Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	94	63	127
4-Bromofluorobenzene	95	60	133

Concentration

Compounds: ug/L (ppb)

1,4-Dioxane <10 L

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW14D-012314	Client:	Aspect Consulting, LLC
T . T . 1	04/00/44	-	*** 11 61 1 000404

Date Received: 01/23/14 Project: Walker Chevrolet 080190-004-11 Date Extracted: 01/24/14 Lab ID: 401273-02 Data File: Date Analyzed: 01/24/14 012413.D Matrix: Water Instrument: GCMS4

Units: ug/L (ppb) Operator: JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	95	63	127
4-Bromofluorobenzene	95	60	133

Concentration

Compounds: ug/L (ppb)

1,4-Dioxane <10 L

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Walker Chevrolet 080190-004-11

Date Extracted: 01/24/14 Lab ID: 04-0055 mb 01/24/14 Data File: Date Analyzed: 012407.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

Lower Upper Limit: Surrogates: % Recovery: Limit: 1,2-Dichloroethane-d4 104 57 121 Toluene-d8 95 63 127 4-Bromofluorobenzene 95 60 133

Concentration

Compounds: ug/L (ppb)

1,4-Dioxane <10 L

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS/COC/COC/DOC

Fax (206) 283-5044

Received by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 8, 2015

Alan Noell, Project Manager Aspect Consulting, LLC 401 2nd Ave S, Suite 201 Seattle, WA 98104

Dear Mr. Noell:

Included are the results from the testing of material submitted on April 30, 2015 from the Walker Chevrolet, PO 080190, F&BI 504573 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: data@aspectconsulting.com, Parker Wittman ASP0508R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 30, 2015 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Walker Chevrolet, PO 080190, F&BI 504573 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Aspect Consulting, LLC</u>

504573 -01 MW-11-042815

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	MW-11-042815	Client:	Aspect Consulting, LLC
Date Received:	04/30/15	Project:	Walker Chevrolet, PO 080190
Date Extracted:	05/04/15	Lab ID:	5045763-01
Date Analyzed:	05/04/15	Data File:	5045763-01.059

Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: SP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	98	60	125
Indium	81	60	125
Holmium	90	60	125

	Concentration
Analyte:	ug/L (ppb)

Arsenic	6.29
Barium	73.2
Cadmium	<1
Chromium	26.1
Lead	6.20
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Walker Chevrolet, PO 080190
Date Extracted:	05/04/15	Lab ID:	I5-274 mb
Date Analyzed:	05/04/15	Data File:	I5-274 mb.010

Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: SP

Lower Upper **Internal Standard:** % Recovery: Limit: Limit: Germanium 96 60 125 Indium 94 60 125 Holmium 94 60 125

Concentration Analyte: ug/L (ppb)

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID:	MW-11-042815	Client:	Aspect Consulting, LLC
Date Received:	04/30/15	Project:	Walker Chevrolet, PO 080190
Date Extracted:	05/06/15	Lab ID:	504573-01
Date Analyzed:	05/06/15	Data File:	504573-01.065
Matrix:	Water	Instrument:	ICPMS1
Units:	ug/L (ppb)	Operator:	SP

		Lower	Opper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	84	60	125
Indium	83	60	125
Holmium	88	60	125

Analyte: ug/L (pp	
Arsenic <1	
Barium 12.5	
Cadmium <1	
Chromium 1.76	
Lead <1	
Mercury <1	
Selenium <1	
Silver <1	

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Walker Chevrolet, PO 080190
Date Extracted:	05/06/15	Lab ID:	I5-282 mb
Date Analyzed:	05/06/15	Data File:	I5-282 mb.056
Matrix:	Water	Instrument:	ICPMS1
Units:	ug/L (ppb)	Operator:	SP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	93	60	125
Indium	91	60	125
Holmium	93	60	125

Analyte:	Concentration ug/L (ppb)
Arsenic	<1
Barium	<1
Cadmium	<1
Chromium	<1
Lead	<1
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 05/08/15 Date Received: 04/30/15

Project: Walker Chevrolet, PO 080190, F&BI 504573

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 504568-08 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	<1	104	106	60-150	2
Barium	ug/L (ppb)	50	3.72	101	102	79-126	1
Cadmium	ug/L (ppb)	5	<1	100	101	80-124	1
Chromium	ug/L (ppb)	20	4.97	91	91	64-132	0
Lead	ug/L (ppb)	10	<1	98	99	79-121	1
Mercury	ug/L (ppb)	10	<1	102	102	50-150	0
Selenium	ug/L (ppb)	5	<1	106	106	68-142	0
Silver	ug/L (ppb)	5	<1	99	101	60-121	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	110	80-111
Barium	ug/L (ppb)	50	96	83-117
Cadmium	ug/L (ppb)	5	111	83-113
Chromium	ug/L (ppb)	20	91	80-119
Lead	ug/L (ppb)	10	99	83-115
Mercury	ug/L (ppb)	10	112	70-130
Selenium	ug/L (ppb)	5	143 vo	81-119
Silver	ug/L (ppb)	5	96	75-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/08/15 Date Received: 04/30/15

Project: Walker Chevrolet, PO 080190, F&BI 504573

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 505058-02 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	3.71	97	100	60-150	3
Barium	ug/L (ppb)	50	55.9	101	103	79-126	2
Cadmium	ug/L (ppb)	5	<1	99	103	80-124	4
Chromium	ug/L (ppb)	20	<1	86	88	64-132	2
Lead	ug/L (ppb)	10	<1	97	97	79-121	0
Mercury	ug/L (ppb)	10	<1	100	100	50-150	0
Selenium	ug/L (ppb)	5	2.63	100	101	68-142	1
Silver	ug/L (ppb)	5	<1	94	96	60-121	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	100	80-111
Barium	ug/L (ppb)	50	102	83-117
Cadmium	ug/L (ppb)	5	104	83-113
Chromium	ug/L (ppb)	20	100	80-119
Lead	ug/L (ppb)	10	102	83-115
Mercury	ug/L (ppb)	10	102	70-130
Selenium	ug/L (ppb)	5	102	81-119
Silver	ug/L (ppb)	5	100	75-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Seattle, WA 98119-2029 Friedman & Bruya, Inc. City, State, ZIP SOUTHE WA 98104 company Aspect Consulting Address 401 and Aut S, Ste, 201 Send Report To Alan Nocl FORMS\COC\COC.DOC Ph. (206) 285-8282 Fax (206) 283-5044 Phone # 200-838-6592 Fax #200-838-5853 MW-11-042815 Sample ID Received by: Relinquished by or 184/28/15/09:40 groundwater Lab ID Date Sampled SIGNATURE Time Sampled 分的分 Sample Type SAMPLERS (signature) Eugeny Po# Walker Chevrolet | 080190 PROJECT NAME/NO. containers # of PRINT NAME TPH-Diesel TPH-Gasoline VOCs by8260 ANALYSES REQUESTED HFS
TOTAL RCPA
METALS
DISS. RCPA
METALS FOR topec: COMPANY Samples received at Rush charges authorized by Kstandard (2 Weeks) □ RUSH_ TURNAROUND TIME Notes

50457

SAMPLE CHAIN OF CUSTODY

ME 04/30/1S