FOCUSED REMEDIAL INVESTIGATION FORMER SEKIU LOG SORTING YARD SEKIU, WASHINGTON

AUGUST 19, 2009

FOR RAYONIER PROPERTIES, LLC

Focused Remedial Investigation Former Sekiu Log Sorting Yard Sekiu, Washington File No. 0137-018-00

August 19, 2009

Submitted to:

Rayonier Properties, LLC PO Box 728 1901 Island Walkway Fernandina Beach, Florida 32035

Prepared by:

GeoEngineers, Inc. 8410 154th Avenue NE Redmond, Washington 98052 (425) 861-6000

GeoEngineers, Inc.

al D Broth

Cindy D. Bartlett, LG Geologist

Q

Robert C. Leet, PhD, LG

Kurt S. Anderson, LG, LHG Senior Principal

CDB:bmw:lw

https://www.geoextranet.com/0013701800/GEO/Final/Final Focused RI Report/Sekiu_Final_Report.doc

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2009 by GeoEngineers, Inc. All rights reserved.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	-1 -1 -1 -2 -2
1.0 INTRODUCTION	. 1
 2.0 SITE DESCRIPTION AND BACKGROUND. 2.1 LOCATION AND DESCRIPTION. 2.2 BACKGROUND AND HISTORY. 2.2.1 Potential Historical Source Areas. 2.3 SUMMARY OF PREVIOUS SITE CHARACTERIZATION STUDIES. 2.3.1 Limited Source Removal (October 2007). 2.3.2 Limited Site Investigation (March 2008). 2.4 SITE GEOLOGY AND HYDROGEOLOGY 2.5 SITE CONTAMINANTS OF POTENTIAL CONCERN. 2.6 CONCEPTUAL SITE MODEL. 2.7 PRELIMINARY CLEANUP LEVELS. 2.7.1 Preliminary Soil Cleanup Levels. 2.7.2 Preliminary Groundwater Cleanup Levels. 2.7.3 Preliminary Sediment Cleanup Levels. 	1 1 2 2 2 2 3 3 3 4 4 5 5
3.0 FOCUSED REMEDIAL INVESTIGATION 3.1 FOCUSED REMEDIAL INVESTIGATION 3.2 SUBSURFACE INVESTIGATION 3.2.1 Soil Investigation 3.2.2 Groundwater Investigation 3.2.3 Sediment Characterization 3.3 CHEMICAL ANALYTICAL RESULTS 1 3.3.1 Soil 1 3.3.3 Sediment 1 3.3.3 Sediment 1 3.4 SUMMARY OF SITE ASSESSMENT FINDINGS 1 3.4.1 Soil 1 3.4.3 Sediment 3.4.4 Summary	5 6 8 9 10 11 12 12 12 13
4.0 LIMITATIONS 1	13
5.0 REFERENCES	13

TABLE OF CONTENTS (CONTINUED)

List of Tables

- Table 1A. Summary of Soil Analytical Results from March 2008 Site Investigation
- Table 1B. Summary of Groundwater Analytical Results from March 2008 Site Investigation
- Table 2. Groundwater Elevations and Monitoring Well Construction
- Table 3A. Summary of Soil Analytical Results Total Petroleum Hydrocarbons and Field Screening

Table 3B. Summary of Soil Analytical Results - Total Petroleum Hydrocarbons and Field Screening

- Table 4. Summary of Soil Analytical Results Polycyclic Aromatic Hydrocarbons
- Table 5. Summary of Groundwater Analytical Results Total Petroleum Hydrocarbons
- Table 6. Summary of Groundwater Analytical Results Polycyclic Aromatic Hydrocarbons
- Table 7. Summary of Sediment Analytical Results Total Petroleum Hydrocarbons

Table 8. Summary of Sediment Analytical Results - Polycyclic Aromatic Hydrocarbons

List of Figures

- Figure 1. Vicinity Map
- Figure 2. Site Plan Approximate Boring Locations March 2008
- Figure 3. Conceptual Site Model
- Figure 4. Approximate Boring Locations October 2008
- Figure 5. Approximate Sediment Sample Locations February 2009
- Figure 6. Summary of MTCA Exceedances in Soil and Bunker C Results in Sediment
- Figure 7. Summary of MTCA Method A Exceedances in Groundwater

APPENDICES

APPENDIX A - FIELD PROCEDURES AND EXPLORATION LOGS

APPENDIX B - CHEMICAL ANALYTICAL PROGRAM AND CHEMICAL ANALYTICAL DATA

APPENDIX C – REPORT LIMITATIONS AND GUIDELINES FOR USE

EXECUTIVE SUMMARY

This report presents the results of a Focused Remedial Investigation (RI) at the Rayonier Properties, LLC (Rayonier) Former Sekiu Log Sorting Yard in Sekiu, Washington (the subject property). Petroleumcontaminated soil and groundwater were discovered at the subject property in 2007, at which time it was reported to the Washington State Department of Ecology (Ecology). The petroleum impacts appear to be related to historical releases of Bunker C fuel. Rayonier performed a limited source removal action in October 2007, followed by limited site assessment activities in March 2008. GeoEngineers was retained by Rayonier to complete the Focused RI activities in October 2008 through February 2009.

The RI activities included characterization of soil, groundwater and sediment in order to evaluate the vertical and lateral extent of petroleum- and polynuclear aromatic hydrocarbons (PAH)-contaminated soil and groundwater, and to evaluate potential transport from the subject property into the adjacent marine environment. Soil was sampled from twenty test pits and eleven direct-push boring explorations. Selected borings were completed as monitoring wells (ten total), and groundwater was sampled from these monitoring wells. Sediment was sampled at four locations in Clallam Bay just off the shoreline of the subject property.

SOIL AND GROUNDWATER CONDITIONS

Subsurface conditions encountered at the site consisted of unconsolidated gravel and silt ranging from ground surface to approximately 11 to 18 feet below ground surface (bgs). Beneath the silt and gravel was a dense, consolidated silt, sand, gravel unit of varying grain-size that was interpreted to be glacial till. Depths to groundwater ranged from approximately 4 to 16 feet bgs. Based on local topography, the location of Clallam Bay adjacent and east of the subject property, and information obtained during the Focused RI, groundwater flow is toward the east.

CONCEPTUAL SITE MODEL

The conceptual site model (CSM) for the subject property was developed to show distribution of hazardous substances at the subject property and the subsequent potential migration of those hazardous substances in environmental media. Bunker C was likely released at the subject property from historical below ground tanks and/or piping. Based on contaminant distribution at greater depths in the subsurface, rather than at the ground surface, it appears that release mechanisms were likely below-ground. Over time, Bunker C potentially migrated via preferential pathways and to groundwater where it was distributed laterally at the groundwater surface as light non-aqueous phase liquids (LNAPL), at the gravel/till contact as dense non-aqueous phase liquids (DNAPL), or both, and eventually migrated towards the shoreline with the direction of groundwater flow. Mobile free product was not detected.

PRELIMINARY CLEANUP LEVELS

Based on current and likely future property use, preliminary soil cleanup levels were based on unrestricted land use. Therefore, preliminary soil cleanup levels were developed using Ecology Model Toxics Control Act (MTCA) Method A and Method B cleanup levels for Bunker C-range petroleum hydrocarbons, non-carcinogenic PAHs, and carcinogenic PAHs.

Groundwater at, or potentially affected by, the subject property is not used for drinking water at this time and is not a reasonable future source of drinking water due the availability of a municipal water supply and due to its proximity to marine surface water. Surface water criteria are not available for gasoline-, diesel, and oil-range (Bunker C) petroleum hydrocarbons; therefore, the MTCA Method A groundwater cleanup levels for gasoline-, diesel- and oil-range (Bunker C) petroleum hydrocarbons were used for comparison. For PAHs, preliminary groundwater cleanup levels were selected from available state and federal surface water criteria and the most conservative (lowest) applicable criteria were selected.

The Sediment Quality Standard (SQS) and Cleanup Screening Level (CSL) criteria established under the Sediment Management Standards (SMS) were used as the preliminary sediment cleanup levels for the subject property. No sediment cleanup levels have been established for petroleum hydrocarbons.

FOCUSED RI FINDINGS

Bunker C was detected at concentrations greater than the preliminary cleanup level in soil samples obtained from eleven explorations located in the northeastern portion of the subject property. PAHs were detected at concentrations greater than the preliminary cleanup levels in soil samples obtained at three of these explorations. Field observations and field screening in this portion of the subject property indicate the presence of NAPL in an approximately two to three foot zone above a sand/gravel and till contact. Bunker C also was detected at concentrations greater than the preliminary cleanup level in one monitoring well (MW-1) located in the northeastern portion of the subject property during the October 2008 and February 2009 groundwater sampling events. Non carcinogenic and carcinogenic PAHs, with the exception of benzo(a)pyrene, either were not detected or were detected at concentrations less than the cleanup levels in groundwater samples obtained from the monitoring wells. The method reporting limit for benzo(a)pyrene was greater than the most stringent surface water criteria.

Bunker C was detected in three sediment samples at two locations. There are no sediment cleanup levels/screening criteria for petroleum hydrocarbons. PAHs were detected in sediment samples at levels below the Sediment Management Standards (SMS) screening criteria indicating that these contaminants do not pose a threat to marine organisms.

SUMMARY

The lateral extent of Bunker C in soil at the subject property was delineated during the soil and sediment investigations. Higher concentrations of Bunker C correlated with field observations and field screening results; these data suggest the presence of NAPL in soil beneath the northeastern portion of the subject property. The apparent NAPL was observed at depths just above the sand/gravel and till contact, as conceptualized in the CSM. The distribution of observed NAPL likely indicates that residual soil and groundwater impacts identified during this study are a result of the former free product migration where petroleum (Bunker C) may have migrated as a mobile free product plume on top of groundwater and/or at the top of the till unit and from the upland source area(s) toward Clallam Bay. No evidence of continued mobility of free product was detected.

Bunker C and detected PAH concentrations did not exceed the preliminary cleanup levels at wells located downgradient of MW-1, including the shallow and deep well pairs located along the shoreline. The absence of Bunker C in downgradient wells supports the hypothesis that mobile free product currently is not present at the subject property. The detected Bunker C and PAHs in sediment likely indicate former Bunker C migration into the marine environment (as indicated in the CSM) or possibly contributions from incidental releases of Bunker C in the working harbor over time, but show that the Bunker C and PAHs have attenuated with time.

Focused Remedial Investigation Former Sekiu Log Sorting Yard Sekiu, Washington For Rayonier Properties, LLC

1.0 INTRODUCTION

This report presents the results of a Focused Remedial Investigation (RI) at the Rayonier Properties, LLC (Rayonier) Former Sekiu Log Sorting Yard in Sekiu, Washington (the subject property). Petroleumcontaminated soil and groundwater were discovered at the subject property in 2007, at which time it was reported to the Washington State Department of Ecology (Ecology). The petroleum impacts appear to be related to historical releases of Bunker C fuel. Rayonier performed a limited source removal action in October 2007, followed by limited site assessment activities in March 2008.

Rayonier's previous source removal and assessment activities provided important information about subsurface conditions beneath the site, but did not investigate or mitigate the full extent of petroleum-related impacts. GeoEngineers was retained by Rayonier to complete the Focused RI. The purpose of this Focused RI was to evaluate the entire property for impacts associated with the historical release(s) of Bunker C.

2.0 SITE DESCRIPTION AND BACKGROUND

2.1 LOCATION AND DESCRIPTION

The former Sekiu log sorting yard (subject property) is located in Clallam County, Washington, as shown on the Vicinity Map, Figure 1. The property is listed as Clallam County tax parcel 123219-210150-0000. The subject property is approximately one acre in size and is predominantly vacant gravel or grass lots, with the exception of mobile homes located along the western property boundary. An asphalt access road from Front Street connects to several gravel access roads that run the length of the subject property. The gravel and grass lots (vacant portion of the property) are used as a parking area for self-contained recreational vehicles (RV) for several months of the year. We understand that the current property owner's future plans for the subject property is for continued use as RV camping.

The subject property is bounded to the north by a RV hook-up facility (RV campground), to the east by Clallam Bay, to the south by the City of Sekiu Publicly Owned Treatment Works (POTW) facility and to the west by Front Street. The ground surface at the subject property is relatively flat, and a steep hill and ridgeline are present west of Front Street. According to the current property owner, the U.S. Army Corps of Engineers constructed a rock retaining wall along the entire eastern property boundary approximately five years ago to protect the property from ongoing tidal erosion. The rock retaining wall is approximately 10 feet in height. Two active sewer lines run parallel with each other and the shoreline approximately 5 to 10 feet west of the rock retaining wall and trend north to south along the eastern portion of the subject property. The sewer lines are eight and 12 inches in diameter and connect with the POTW south of the subject property. Site features, including the approximate location of the sewer lines, are shown in Figure 2.

2.2 BACKGROUND AND HISTORY

Based on information provided by Rayonier, the subject property was formerly owned by Rayonier Western Forest Resources and was used from the early 1900s through the early 1970s as a log sorting and transfer yard. During this time, locomotives were maintained and fueled at the subject property.

Facilities at the site included Bunker C fuel storage tanks and associated piping, as well as a boiler facility.

2.2.1 Potential Historical Source Areas

Although the petroleum impacts appear to be related to historical releases of Bunker C fuel, the exact source of the contamination at the subject property has not been confirmed. The fueling and maintenance of locomotives, the transfer of fuel, the storage of Bunker C fuel in underground and/or aboveground storage tanks and activities associated with the on-site boiler facility may have contributed to the past release or releases of petroleum. Based on historical site photographs, the majority of these operations occurred in the northern portion of the property.

2.3 SUMMARY OF PREVIOUS SITE CHARACTERIZATION STUDIES

2.3.1 Limited Source Removal (October 2007)

Rayonier completed limited soil cleanup activities in October 2007 in the northeastern portion of the property. These activities included the excavation and off-site disposal of approximately 1,250 tons of petroleum-impacted soil. The excavation extended to a depth of approximately 19 feet below the ground surface (bgs). During excavation activities, approximately 7 to 10 feet of clean overburden was observed above approximately 9 to 12 feet of petroleum-contaminated soil. Based on field screening, Rayonier reported that soil at approximately 19 feet bgs yielded no physical evidence of petroleum contamination. Because of the unknown lateral extent of petroleum contamination at the time of the limited source removal activities, excavation activities were terminated and the excavation was backfilled.

2.3.2 Limited Site Investigation (March 2008)

Rayonier returned to the subject property in March 2008 to conduct focused site assessment activities. During these site assessment activities, Rayonier completed fifteen direct-push borings and obtained soil and groundwater samples. The approximate locations of the borings are shown in Figure 2. A total of ten soil samples and two groundwater samples were submitted for chemical analysis of diesel- and oil-range petroleum hydrocarbons quantified both as diesel-range petroleum hydrocarbons and as Bunker C using Ecology Method NWTPH-Dx, polycyclic aromatic hydrocarbons (PAHs) using U.S. Environmental Protection Agency (EPA) Method 8270D and benzene, ethylbenzene, toluene and xylenes (BETX) using EPA Method 8021B.

Analytical data from this previous study identified petroleum-related contamination in soil beneath the subject property as follows:

- Bunker C-range petroleum hydrocarbons (Bunker C) were detected at concentrations greater than the MTCA Method A cleanup level in a soil sample obtained from boring PP-11 at approximately 12 to 13 feet bgs and at boring PP-13 at approximately 15 to 16 feet bgs.
- PAHs (including carcinogenic PAHs) were reported at concentrations greater than the MTCA Method A cleanup level in a soil sample obtained from boring PP-11 at approximately 12 to 13 feet bgs.
- BETX either was not detected or was detected at concentrations less than the MTCA Method A soil cleanup levels.

Diesel-range and Bunker C-range petroleum hydrocarbons appear to have been quantified and reported separately by the analytical laboratory. A review of the analytical chromatograms from the March 2008 soil sampling indicates that diesel- and oil-range petroleum hydrocarbons were detected at carbon ranges

indicative of Bunker C (C10 to C38). There does not appear to be an indication of a separate diesel-range fuel outside of the Bunker C. For the purposes of this report, detected diesel- and oil-range hydrocarbons are interpreted to be Bunker C.

Petroleum-related contamination was also identified in groundwater at one location during the March 2008 investigation, as follows:

- Grab-groundwater samples were obtained from borings PP-5 and P-11. Bunker C-range petroleum hydrocarbons were detected at PP-11 at a concentration above the MTCA Method A cleanup level. Petroleum hydrocarbons were not detected in the groundwater sample obtained at boring PP-5.
- Benzene, toluene, and ethylbenzene were not detected in the two groundwater samples tested.

Soil and groundwater chemical analytical data from the March 2008 site assessment activities are summarized in Table 1.

2.4 SITE GEOLOGY AND HYDROGEOLOGY

Information pertaining to subsurface conditions was obtained during the limited site assessments completed by Rayonier and the Focused RI explorations discussed in Section 3.0 below. In general, subsurface conditions encountered at the site consisted of an unconsolidated gravel and silt at various depths from the ground surface to depths ranging from approximately 11 to 18 feet bgs. Wooden and concrete structures and debris were observed in several test pits completed as part of Focused RI (discussed in more detail below). The silt and gravel was interpreted to be relatively recent fill material mixed and interbedded with native gravel and sand beach deposits. Beneath the silt and gravel was a dense, consolidated silt, sand, gravel unit of varying grain-size that was interpreted to be glacial till. The glacial till unit was encountered in explorations from depths of approximately 11 to 18 feet bgs.

Based on the geologic map for the area (Snavely et al., 1993) a sandstone unit (Makah Formation) and a Pleistocene glacial drift unit are mapped in the vicinity of the subject property. The very dense silty sand with gravel unit encountered at the bottom of our explorations is interpreted to be the glacial till mapped by Snavely et al. (1993).

Groundwater was encountered at depths ranging from approximately 4 to 16 feet bgs during the Focused RI. Based on local topography, the location of Clallam Bay adjacent and east of the subject property, and information obtained during the Focused RI, groundwater flow is toward the east.

2.5 SITE CONTAMINANTS OF POTENTIAL CONCERN

Contaminants of potential concern (COPCs) in soil and groundwater beneath the subject property include those constituents commonly associated with Bunker C that were previously detected at concentrations exceeding MTCA Method A cleanup levels. COPCs for the subject property include total petroleum hydrocarbons (TPH) quantified as Bunker C, and non-carcinogenic and carcinogenic PAHs.

2.6 CONCEPTUAL SITE MODEL

The conceptual site model (CSM) for the subject property was developed to show the distribution of hazardous substances at the subject property and the subsequent potential migration of those hazardous substances in environmental media. Bunker C was likely released at the subject property from historical below ground tanks and/or piping. Potential historic migration pathways were considered in development of the RI exploration program. Contaminant distribution at greater depths in the subsurface, rather than at

the ground surface, supports the model that release mechanisms were likely below-ground or at a previous working surface that was at a lower elevation and subsequently covered with clean fill material. Over time, Bunker C migrated via preferential pathways and to groundwater where it was distributed laterally at the groundwater surface as light non-aqueous phase liquids (LNAPL), at the gravel/till contact as dense non-aqueous phase liquids (DNAPL), or both, and eventually migrated towards the shoreline with the direction of groundwater flow. The CSM is presented as Figure 3. No evidence of continued mobility of free product was detected.

2.7 PRELIMINARY CLEANUP LEVELS

In accordance with MTCA, development of preliminary cleanup levels includes identifying potential exposure pathways for human and environmental impacts based on the planned land use. The subject property is currently zoned commercial, and future zoning is not anticipated to change. As noted previously (Section 2.1), the subject property is currently used for RV camping during several months of the year, and the current property owner plans to continue using the subject property for RV camping.

2.7.1 Preliminary Soil Cleanup Levels

The subject property is currently accessible to the general public. Based on current and likely future zoning and property use, preliminary soil cleanup levels were based on unrestricted land use. Therefore, preliminary cleanup levels were developed using MTCA Method A for Bunker C-range petroleum hydrocarbons, and Method B cleanup levels for non-carcinogenic PAHs and carcinogenic PAHs. During the evaluation of remedial alternatives, cleanup levels and/or risk-based remediation levels for specific land uses and associated institutional controls may be considered as a component of cleanup alternative development and evaluation.

Based on the proximity of the subject property to surface water, and because groundwater may be assumed unsuitable for use as drinking water, MTCA Method B soil cleanup levels developed for protection of surface water using MTCA's fixed-parameter three-phase partitioning model calculations (MTCASGL workbook) (WAC 173-340-747(4)(b) were considered. However, because only low levels of non-carcinogenic PAHs have been detected in groundwater at the subject property, the three-phase partitioning calculations were not completed at this time. Carcinogenic PAHs were evaluated using the total toxic equivalency concentration (TEC) method as outlined in WAC 173-340-708(8)(e).

Preliminary soil cleanup levels are presented with the analytical data obtained during the Focused RI in Tables 3 and 4.

Evaluation of the terrestrial ecological evaluation (TEE) criteria was conducted pursuant to WAC 173-340-7490. We assessed whether or not the site would qualify for an exclusion of the TEE. Based on the criteria, the subject property does not qualify for an exclusion, but can be addressed through the simplified TEE approach. Soil screening levels based on the protection of ecological receptors were obtained from MTCA 173-340-900 (Table 749-2) in accordance with the process for simplified TEEs. Because Bunker C is not a listed constituent in Table 749-1, diesel-range petroleum hydrocarbons and benzo(a)pyrene were used as surrogates for Bunker C for the TEE screening levels.

Comparison of soil analytical results to site-specific residual saturation calculations will be discussed and considered in a future feasibility study for the subject property.

2.7.2 Preliminary Groundwater Cleanup Levels

Groundwater at, or potentially affected by, the subject property is not used for drinking water at this time and is not a reasonable future source of drinking water due the availability of a municipal water supply and, in accordance with WAC 173-340-720(2)(d), due to its proximity to marine surface water. The potential exposure pathways for Site groundwater include:

- Human ingestion of marine organisms contaminated by releases of affected Site groundwater to adjacent marine surface water.
- Acute or chronic effects to aquatic organisms resulting from exposure to constituents in groundwater discharging to adjacent marine surface water.

Preliminary groundwater cleanup levels were selected from available state and federal surface water criteria according to WAC 173-340-730(3). The most conservative (lowest) applicable published values were selected from the following regulatory criteria.

- MTCA Method A Cleanup Levels Groundwater WAC 173-340-720(3) and Chapter 173-340 WAC Table 720-1 (for petroleum hydrocarbons)
- Water Quality Standards for Surface Waters of the State of Washington (Chapter 173-201A)
- National Recommended Water Quality Criteria (Section 304 of the Clean Water Act)
- National Toxics Rule (40 CFR Part 131.36)
- MTCA Method B Surface Water Cleanup Levels (WAC 173-340-730[3][b][iii])

Preliminary groundwater cleanup levels are presented with the analytical data obtained during the Focused RI in Tables 5 and 6.

Surface water criteria are not available for gasoline-, diesel, and oil-range (Bunker C) petroleum hydrocarbons. Therefore, as recommended in WAC 173-340-730(3)(b)(iii)(C), the MTCA Method A groundwater cleanup levels for gasoline-, diesel- and oil-range (Bunker C) petroleum hydrocarbons were used for comparison.

2.7.3 Preliminary Sediment Cleanup Levels

The Sediment Quality Standard (SQS) and Cleanup Screening Level (CSL) criteria established under the Sediment Management Standards (SMS) (WAC 173-204) were used as the preliminary sediment cleanup levels for the subject property. No cleanup levels have been established for petroleum hydrocarbons.

3.0 FOCUSED REMEDIAL INVESTIGATION

3.1 FOCUSED REMEDIAL INVESTIGATION

Focused RI activities were completed by GeoEngineers in October 2008 and February 2009. The RI activities included characterization of soil, groundwater and sediment to evaluate the vertical and lateral extent of petroleum- and PAH-contaminated soil and groundwater, and to evaluate potential transport from the subject property into the adjacent marine environment. Soil was sampled from the test pit and direct-push boring explorations. Selected borings were completed as monitoring wells, and groundwater was sampled from these monitoring wells. Sediment was sampled in Clallam Bay using a vibracore sampling device deployed from a 36-foot boat.

3.2 SUBSURFACE INVESTIGATION

The subsurface investigation was completed on October 20 through 25, 2008, and included:

- Completion of twenty test pits to a depth of approximately 5 to 16 feet bgs;
- Completion of eleven direct-push borings to a depth ranging between 12 and 20 feet bgs; and
- Installation of monitoring wells in ten of the eleven direct-push borings.

The approximate locations of the test pits, borings completed as monitoring wells and the boring that was not completed as a monitoring well (GEI-9) are shown in Figure 4. A sediment investigation was completed on February 19 and 20, 2009, and included:

• Completion of three sediment core samples and collection of four sediment samples.

Sediment samples were collected using a vibracore sampling device deployed from a 36-foot boat. The approximate locations of the sediment samples are shown in Figure 5.

3.2.1 Soil Investigation

3.2.1.1 Test Pits

The test pits (TP-1 through TP-20) were completed on October 21 and 22, 2008, using a backhoe operated by Bruch and Bruch Contractors. Initial test pit locations were completed in areas likely to be impacted as based on previous site explorations. Subsequent locations were stepped outward until the lateral extent of contamination was identified based on field screening results. Once the lateral extent of contamination was assessed, additional test pits were completed to fill data gaps. Access to the property to the north was not granted by the property owner.

Test pits were completed to maximum depths of approximately 16 feet bgs. Discrete soil samples were obtained from each test pit at depths between three and 16 feet bgs for field screening and possible chemical analysis, with two exceptions: soil samples were not obtained from TP-4 and TP-15 because of excessive caving of the sidewalls. Field screening was conducted on the discrete samples using visual, water sheen and headspace vapor screening methods. Field screening procedures and the field exploration program (including test pit logs) are discussed in Appendix A.

Based on field screening results, evidence of petroleum-contamination was observed in the following test pits: TP-1, TP-5, TP-6, TP-10, TP-11, TP-12, TP-16, TP-17 and TP-20. Petroleum-contamination was generally observed at depths ranging from 11 feet bgs to the base of the test pits (between 13 and 16 feet bgs), except at TP-11 and TP-12 where contamination was observed from approximately 1 foot bgs to 5 feet bgs (TP-11) and from approximately 8 feet bgs to the base of the test pit at 9.5 feet bgs (TP-12). In general, non-aqueous phase liquid (NAPL) was present in a 2- to 3-foot zone above the sand/gravel and till contact. Based on field observations of open test pits, free product was not observed seeping from test pit sidewalls or accumulating on groundwater, indicating that mobile free product is most likely not present at the subject property. Based on current distribution, it appears the NAPL was mobile historically, but was no longer mobile once equilibrium/residual saturation conditions were reached. Depths and occurrences of NAPL within the petroleum impacted area are indicated on Figure 6.

Soil samples were selected for chemical analysis from test pits based on the following guidelines:

- From soil with field screening evidence of petroleum contamination and/or NAPL.
- From the clean overburden soil to evaluate the vertical extent of petroleum contamination.

- From clean soil located beneath soil with field screening evidence of petroleum contamination to evaluate the vertical extent of petroleum contamination.
- From test pits with no field screening evidence of petroleum contamination, one soil sample was obtained from approximately the same depth, where possible, where potentially contaminated soil was observed in adjacent test pits to evaluate the lateral extent of petroleum contamination.

Soil samples were placed in two separate 4-ounce laboratory-prepared glass jars. One jar was submitted to Libby Environmental's (Libby) on-site mobile laboratory for immediate testing of Bunker C using Ecology Method NWTPH-Dx. The other 4-ounce jar was submitted to Libby's fixed laboratory located in Olympia, Washington, for chemical analysis of Total Petroleum Hydrocarbons by Ecology Method Northwest Total Petroleum Hydrocarbon Identification (NWTPH-HCID); diesel- and oil-range petroleum hydrocarbons (quantified as Bunker C) using Ecology Method NWTPH-Dx and PAHs using Ecology Method 8270C on a standard turn-around time. Analytical results are summarized in Section 3.3, "Chemical Analytical Results."

3.2.1.2 Direct-Push Borings

The direct-push borings (MW-1 through MW-5, MW-6S, MW-6D, MW-7S, MW-7D, MW-8 and GEI-9) were completed on October 23 and 24, 2008, using a direct-push drill rig operated by ESN Drilling of Olympia, Washington. The borings were completed to define the vertical extent of contaminated soil beneath the smear zone and to install groundwater monitoring wells. Boring locations were determined based on the results of test pit explorations. Ten of the eleven direct-push borings were completed as monitoring wells. Monitoring well construction details are summarized in Table 2.

The direct-push borings were completed to depths of up to 20 feet bgs. Discrete soil samples were obtained from each boring at depths between 2.5 and 20 feet bgs for field screening and possible chemical analysis. Field screening was conducted on the discrete samples using visual, water sheen and headspace vapor screening methods; Results are summarized in Table 3. Field screening procedures and the field exploration program (including boring logs) are discussed in Appendix A.

The field screening results indicated moderate to heavy sheens and visible evidence of petroleum contamination in boring MW-1 at a depth of approximately 12 feet bgs. Observations in MW-7S and MW-7D suggested the potential presence of residual NAPL in soil from depths of approximately 14 feet to 16 feet bgs. The NAPL appeared black and sticky and was present as interstitial coatings on sand and gravel.

A glacial till unit was observed at the base of each boring at a depth ranging between approximately 11 and 18 feet bgs. The glacial till yielded no field screening evidence of petroleum contamination. Soil samples with one or more of the following characteristics were chosen for chemical analysis:

- From each boring with field screening evidence of petroleum contamination to evaluate the lateral extent of petroleum contamination on the subject property.
- From clean soil located beneath soil with field screening evidence of petroleum contamination to evaluate the vertical extent of petroleum contamination.

Samples were placed in two separate 4-ounce laboratory-prepared glass jars. One jar of selected soil samples was submitted to Libby's on-site mobile laboratory for immediate testing of Bunker C oil using Ecology Method NWTPH-Dx. The other 4-ounce jar was submitted to Libby's fixed laboratory located in Olympia, Washington, for chemical analysis of diesel- and oil-range petroleum hydrocarbons quantified as Bunker C using Ecology Method NWTPH-Dx and/or PAHs using Ecology Method 8270

SIM on a standard turn-around time. Analytical results are summarized in Section 3.3, "Chemical Analytical Results."

3.2.2 Groundwater Investigation

The objective of the monitoring wells was to evaluate groundwater conditions within the apparent Bunker C source area, and at locations upgradient, downgradient and crossgradient of the source area. Monitoring wells were constructed in ten of the eleven direct-push soil borings using 10-foot pre-packed well screens. Monitoring wells were developed immediately after completion and sampled at least 24 hours after development. Top of casing elevations were measured using a closed loop laser level survey. Monitoring well construction logs, development and sampling procedures are described in Attachment A, and monitoring well construction details are summarized in Table 2.

The monitoring wells were installed with shallow well screen depths, and at two locations along the shoreline (downgradient), two well pairs were installed with shallow and deep well screen depths, in order to evaluate the concentration of dissolved-phase constituents in groundwater laterally and vertically within the shallow aquifer, and for assessment of vertical head gradients. Eight of the monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, MW-6S, MW-7S and MW-8) have shallow screens, which span the estimated seasonal high and low groundwater tables. The depths of the shallow well screens range from approximately 5 to 15 feet bgs. The purpose of the shallow wells is to monitor the potential presence of LNAPL and to evaluate dissolved phase petroleum concentrations within the former smear zone. The intended purpose of the well pairs is to evaluate potential dissolved-phase differences vertically within the saturated zone. Two of the monitoring wells (MW-6D and MW-7D) have deep screens that were positioned below the groundwater table at depths immediately above the glacial till unit. The base of the deep well screens ranged from 16 to 18 feet bgs and the well screens were two feet in length. The purpose of the deep wells is to monitor the potential presence of DNAPL. Furthermore, the deep borings allowed for evaluation of the soil conditions overlying the till unit. The two deep monitoring wells (MW-6D and MW-7D) are co-located with two shallow wells (MW-6S and MW-7S) along the eastern property boundary near the property boundary with Clallam Bay.

Two rounds of groundwater sampling have been completed at the subject property, one on October 24 and 25, 2008, and the other on February 18 and 19, 2009. During both sampling events, a petroleum odor was observed while sampling MW-6S and MW-6D. Petroleum odors were not noted during sampling of the other wells. The depth to groundwater in the monitoring wells ranged from approximately 3.5 to 16.3 feet bgs. Groundwater elevations were measured from the tops-of-casings and are summarized in Table 2. The predominant groundwater flow direction was to the east towards Clallam Bay. A slight vertical head gradient was observed in the MW-6S/D and MW-7S/D well pairs during the October 2008 monitoring event (slack tide moving to high tide) and at MW-6S/D during the February 2009 monitoring event (low tide).

Groundwater samples were obtained using low-flow purging and sampling methodologies. Each groundwater sample was placed directly into a laboratory-prepared, labeled sample container and was placed into a cooler with ice. The groundwater samples obtained on October 24 and 25, 2008, were submitted to Libby's laboratory in Olympia, Washington, for chemical analysis of diesel- and oil-range petroleum hydrocarbons quantified as Bunker C, and PAHs. The groundwater samples obtained on February 18 and 19, 2009, were submitted to the Analytical Resources Incorporated (ARI) laboratory in Tukwila, Washington, for analytical testing of diesel- and oil-range petroleum hydrocarbons quantified as Bunker C, and PAHs. The groundwater samples obtained on February 18 and 19, 2009, were submitted to the Analytical Resources Incorporated (ARI) laboratory in Tukwila, Washington, for analytical testing of diesel- and oil-range petroleum hydrocarbons quantified as Bunker C, and PAHs. Analytical Results are summarized in Section 3.3, "Chemical Analytical Results."

3.2.3 Sediment Characterization

The objective of the sediment investigation was to delineate the eastern extent of Bunker C and PAHs and to evaluate the potential migration of Bunker C into the marine environment. During the October 2008 upland subsurface investigation, Bunker C was observed in an approximately two to three foot zone of saturated soil at depths immediately overlying glacial till. Based on field screening and chemical analytical data at upland locations, the glacial till unit was not impacted. To evaluate the potential migration of Bunker C into the marine environment at the sediment/till contact, sediment cores were placed at locations where the till unit was anticipated to intersect bay sediment. As depicted in the CSM (Figure 3), investigation results showed that the glacial till outcropped close to the shoreline in an active tidal and wave action erosion zone. Bay sediment was encountered further off-shore where tidal and wave action allowed for sediment deposition on top of the glacial till.

Sediment cores were attempted at six general locations along a northern and southern transect at approximately 30, 60 and 120 feet from shore. The southern transect was located off-shore of monitoring well MW-7S/MW-7D well pair. Sediment coring locations were measured in the field using a hand-held Trimble global positioning system (GPS) unit with sub-meter accuracy. Sediment cores were obtained using a vibracore sediment sampling device.

Sediment samples were obtained at three general locations (R1, R2, and R3) and refusal was met at numerous locations (e.g. R1-B, R1-C, etc.). Refusal at borings attempted closest to the shoreline was caused by very hard substrates (glacial till). Refusal at other locations further off-shore was caused by hard substrates (glacial till or large gravels and cobbles), the presence of submerged wooden pilings and very dense sands. Sediment cores generally consisted of a very dense sand to silty sand, with the exception of a small section of glacial till retrieved at location R2-C. Field screening evidence of petroleum contamination was not observed in the sediment samples. Sediment coring locations are shown in Figure 5.

Sediment cores were held on the boat deck for later processing on shore (after completion of remaining coring locations). Where sufficient sample volume was obtained, sediment cores were characterized and field-screened in 1-foot sections below mudline. Sediment samples were submitted for chemical analytical testing from sediment samples immediately overlying the till contact to evaluate potential contaminant migration at the sediment/till contact (sufficient sample volume was obtained at one location only, R1-A). Samples from surface sediments (at depths of 0 to 10 centimeters below mudline) were submitted for chemical testing to evaluate potential impacts to surface sediment and invertebrate fauna.

A stainless steel trowel was used to obtain samples from the sediment cores. Samples were homogenized in a stainless steel bowl prior to placing into laboratory-supplied sample containers. Samples were placed into a cooler with ice and submitted under chain-of-custody procedures to Analytical Resources Inc. in Tukwila, Washington, for chemical analytical testing of diesel- and oil-range petroleum hydrocarbons (quantified as Bunker C), PAHs and total organic carbon (TOC). Additional sample volumes were placed on hold pending further analysis for the entire suite of SMS chemicals. Analytical results are summarized in Section 3.3, "Chemical Analytical Results."

3.3 CHEMICAL ANALYTICAL RESULTS

3.3.1 Soil

A total of forty-six soil samples were obtained from the test pits and soil borings for chemical analysis of one or more of the following:

- Gasoline, diesel-, oil- and mineral oil-range petroleum hydrocarbons using Ecology Method NWTPH-HCID;
- Bunker C-, diesel-, oil-range petroleum hydrocarbons using Ecology Method NWTPH-Dx with silica gel cleanup (quantified as Bunker C and also as heavy oil for 10 samples); and
- PAHs using EPA Method 8270C.

The results of the HCID testing indicated the presence of Bunker C-range petroleum hydrocarbons. Heavy oil range petroleum hydrocarbons were detected in one sample, TP-1-6.0. For the remaining soil samples, Bunker C either was not detected or was detected at concentrations less than the preliminary cleanup levels (the MTCA Method A cleanup level of 2,000 milligrams per kilogram [mg/kg]) with the following exceptions:

Test Pit / Boring ID	Samp	le Name	Depth
TP-1	TP-1-6.0	TP-1-12.0	6 to 7 and 11 to 12 feet bgs
TP-5	TP-5-8.0	TP-5-10.0	8 to 10.5 feet bgs
TP-6	TP-6-11.0	TP-6-13.0	11 to 13 feet bgs
TP-10	TP-10-12.5	TP-10-13.5	12.5 to 14.5 feet bgs
TP-11	TP-11-3.0		3 to 3.5 feet bgs
TP-12	TP-12-9.5		9 to 9.5 feet bgs
TP-16	TP-16-9.0	TP-16-15.0	9 to 15 feet bgs
TP-17	TP-17-9.5	TP-17-12.5	9.5 to 12.5 feet bgs
TP-20	TP-20-7.0		7 to 7.5 feet bgs
MW-1	GEI-1-12.0		12 feet bgs
MW-7D	GEI-7D-15.0		15 feet bgs

PAHs either were not detected or were detected at concentrations less than the preliminary cleanup level with the following exceptions.

- Sample TP-6-13.0 obtained from TP-6 at approximately 13 feet bgs.
- Samples TP-10-5.5 and TP-10-12.5 obtained from TP-10 at approximately 5.5 and 12.5 feet bgs.
- Sample GEI-7D-15.0 obtained from MW-7D at approximately 15 feet bgs.

The detected PAHs exceeded the preliminary TEC cleanup levels at these three locations: TP-6, TP-10, GEI-7D.

Soil chemical analytical data are presented in the laboratory reports in Appendix B and summarized in Tables 3 and 4. Figure 6 summarizes the samples with contaminant concentrations greater than the MTCA Method A cleanup levels.

3.3.2 Groundwater

Groundwater was sampled in nine of the ten monitoring wells on October 24 and 25, 2008, and February 18 and 19, 2009. At MW-6S, there was not a sufficient volume of water for sampling. The groundwater samples obtained in October 2008 were submitted to Libby and the groundwater samples obtained in February 2009 were submitted to ARI for chemical analysis of diesel- and oil-range petroleum hydrocarbons (quantified as Bunker C) using Ecology Method NWTPH-Dx and PAHs using EPA Method 8270D.

Bunker C-range petroleum hydrocarbons were not detected in the groundwater samples submitted for chemical analysis with the following exception:

- Bunker C range hydrocarbons were detected at MW-1 at concentrations greater than the MTCA Method A cleanup level. Bunker C was detected in October 2008 at a concentration of 4,400 micrograms per liter (μg/L) and in February 2009 at a concentration of 1,000 ug/L.
- Non-carcinogenic PAHs either were not detected or were detected at concentrations less than the preliminary cleanup levels in water samples submitted for chemical analysis. The detected non-carcinogenic PAHs were also below the most stringent surface water criteria.
- Carcinogenic PAHs were not detected above the method reporting limits. However, the method reporting limits are greater than the most stringent surface water standards for benzo(a)pyrene and the TEC, which is driven by the toxicity equivalency factor (TEF) for benzo(a)pyrene.

Groundwater chemical analytical data are presented in the laboratory reports in Appendix B and summarized in Tables 5 and 6. Figure 7 shows the location of the sample (MW-1) with contaminant concentrations greater than the MTCA Method A cleanup level.

3.3.3 Sediment

A total of four sediment samples (R1-S, R1-D, R2-S and R3-S) were obtained at three locations (R1-A, R2-C, and R3-A) on February 19 and 20, 2009. Sediment samples were submitted to ARI for chemical analysis of diesel- and heavy oil-range petroleum hydrocarbons quantified as Bunker C using Ecology Method NWTPH-Dx and PAHs using EPA Method 8270D.

Bunker C-range petroleum hydrocarbons were not detected in the sediment sample (R2-S), and Bunker C range hydrocarbons were detected in samples R1-S, R1-D and R3-S. There are no sediment cleanup standards for petroleum hydrocarbons in sediment.

PAH results were below the SMS and the AET screening criteria for the four sediment samples.

PAH results were normalized to the total organic carbon (TOC), in accordance with the Puget Sound Estuary Program (PSEP; 1986) and SMS guidance. PAH data were evaluated by 1) comparing the organic carbon-normalized result against the Washington State SMS SQS and CSL criteria, and 2) comparing the dry weight (non-normalized) result against the Puget Sound Estuary Program (PSEP) Apparent Effects Threshold (AET) criteria (PSEP, 1986), because an elevated TOC value was detected in one sample. The organic carbon was normalized in accordance with Ecology guidelines (Ecology 1992).

Sediment chemical analytical data are presented in the laboratory reports in Appendix B and summarized in Tables 7 and 8. Sediment sample depths and Bunker C results are summarized on Figure 6.

3.4 SUMMARY OF SITE ASSESSMENT FINDINGS

Based on the chemical analytical results of the October 2008 and February 2009 site assessment activities, the following findings are noted.

3.4.1 Soil

Bunker C was detected at concentrations greater than the preliminary cleanup level in soil samples obtained from nine of the test pits and two of the borings completed at the subject property. The test pits and borings where Bunker C oil is present in soil are located in the northeastern portion of the subject property. Additional investigations were not completed to the north because the property owner denied access. Field observations and field screening in this portion of the subject property indicate the presence of NAPL in an approximately two to three foot zone above the sand/gravel and till contact. Mobile free product was not detected. An analysis of Bunker C residual saturation will be presented in a future feasibility study for the subject property.

PAHs were detected at concentrations greater than the preliminary cleanup levels in soil samples obtained from two test pits and one boring completed at the subject property. The test pits and the boring are located in the northeastern portion of the subject property, and the PAH exceedances appear to be associated with Bunker C exceedances.

A comparison of the soil analytical data to MTCA screening values for a simplified TEE, using dieselrange petroleum hydrocarbons and benzo(a)pyrene as surrogates for Bunker C, since Bunker C is not a TEE-listed constituent, indicates that diesel-range concentrations detected on the subject property are greater than the associated TEE criterion. It is anticipated that future remedial activities will mitigate the petroleum hydrocarbon concentrations that exceed the TEE criteria.

3.4.2 Groundwater

Bunker C was detected at concentrations greater than the preliminary cleanup level in monitoring well MW-1 during the October 2008 and February 2009 sampling events. MW-1 is located in the northeastern portion of the subject property where elevated Bunker C concentrations are present in soil.

Carcinogenic PAHs were not detected above the method reporting limits. While adequate for the purpose of this site investigation, the method reporting limits were greater than the most stringent applicable surface water cleanup levels for benzo(a)pyrene and the cPAH TEC. Non-carcinogenic PAHs either were not detected or were detected at concentrations less than the cleanup levels in each of the monitoring wells sampled.

Bunker C and detected non-carcinogenic PAH concentrations did not exceed the preliminary cleanup levels at wells located downgradient of MW-1, including the shallow and deep well pairs located along the shoreline. The absence of Bunker C in downgradient wells supports the hypothesis that mobile free product currently is not present at the subject property.

3.4.3 Sediment

Bunker C was detected in three sediment samples at two locations. There are no sediment cleanup levels/screening criteria for petroleum hydrocarbons.

PAHs were detected in sediment samples at levels below the SMS and AET screening criteria indicating that these contaminants do not pose a threat to marine organisms.

The detected Bunker C and PAHs concentrations likely indicate former Bunker C migration into the marine environment (as indicated in the CSM) or possibly contributions from incidental releases of Bunker C in the working harbor over time, but show that the Bunker C and PAHs have attenuated with time. The data and field observations do not indicate the presence of mobile free product.

3.4.4 Summary

The lateral extent of Bunker C in the subsurface at the subject property was delineated during the soil, groundwater, and sediment investigations. Delineation to the north onto the adjacent property was not completed because property access was denied. Higher concentrations of Bunker C correlated with field observations and field screening results; these data suggest the presence of NAPL in soil beneath the northeastern portion of the subject property. The apparent NAPL was observed at depths just above the sand/gravel and till contact, as conceptualized in the CSM (Figure 3). The distribution of observed NAPL likely indicates that residual soil and groundwater impacts identified during this study are a result of the former free product migration where petroleum (Bunker C) may have migrated as a mobile free product plume on top of groundwater and/or at the top of the till unit and from the upland source area(s) toward Clallam Bay, and/or potentially from incidental releases into the bay. Monitoring well observations suggest that mobile free product is not currently present at the site.

4.0 LIMITATIONS

We have prepared this report for the exclusive use of Rayonier, LLC and their authorized agents. No other party may rely on the product of our services unless we agree in advance and in writing to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions.

Within the limitations of scope, schedule, and budget, our services have been executed in accordance with our Master Services Agreement with Rayonier dated June 21, 2007, and with generally accepted environmental science and engineering practices in this area at the time this document was prepared. No warranty or other conditions, express or implied, should be understood.

Please refer to Appendix C titled "Report Limitations and Guidelines for Use" for additional information pertaining to use of this report.

5.0 REFERENCES

- Geologic Map: Snavely, P.D., Jr., MacLeod, N.S. and Niem, A.R., 1993, Geologic map of the Cape Flattery, Clallam Bay, Ozette Lake, and lake Pleasant Quadrangles, Northwestern Olympic Peninsula, Washington, U.S. Geological Survey, Miscellaneous Investigations Series I-1946, with major contributions by D.L. Minasian, J.E. Pearl, and W.W. Rau; scale 1:48,000.
- Puget Sound Estuary Program Sediment Quality Values Refinement: volume 1. 1988 Update and Evaluation of Puget Sound AET, Final Report, September 1988. Prepared for U.S. Environmental Protection Agency.
- Washington State Department of Ecology (Ecology), 1992. Technical Information Memorandum. Organic Carbon Normalization of Sediment Data, December 1992.

TABLE 1A

SUMMARY OF SOIL ANALYTICAL RESULTS FROM MARCH 2008 SITE INVESTIGATION¹ RAYONIER SEKIU PROJECT SEKIU, WASHINGTON

		Sample Designation / Depth Interval (feet bgs) / Date									
	MICA Method A	PP-1	PP-3	PP-4	PP-5	PP-7	PP-7	PP-11	PP-12	PP-13	PP-15
	Soli Cleanup	15.5-16.0	13.0-14.0	15.5-16.0	15.5-16.0	12.0-12.5	15.5-16.0	12.0-13.0	12.0-16.0	15.0-16.0	12.0-13.0
	Levels (mg/kg)	2/25/09	2/25/09	2/25/09	2/25/00	2/25/09	2/25/09	2/26/09	2/26/09	2/26/09	2/26/09
Parameter (method)	(mg/kg)	3/23/08	3/23/08	3/23/08	3/23/00	3/23/08	3/23/08	3/20/08	3/20/00	3/20/08	3/20/08
			Soil An	alytical Res	sults (mg/kg	g)					
TPH ²											
Bunker C	2,000	230	250	31 U	960	840	32 U	13,000	29 U	23,000	100
Non-carcinogenic PAHs ³											
Naphthalene		0.180	0.064 U	0.066 U	0.063 U	0.065 U	0.22	3.8	0.064 U	0.19 U	0.066 U
1-Methylnaphthalene	5	0.140	0.064 U	0.066 U	0.063 U	0.065 U	0.93	16.0	0.064 U	0.35	0.066 U
2-Methylnaphthalene		0.300	0.064 U	0.066 U	0.063 U	0.065	0.057	11.0	0.064 U	0.4	0.066 U
Acenaphthylene		0.066 U	0.064 U	0.066 U	0.063 U	0.065 U	0.064 U	0.46 U	0.064 U	0.19 U	0.066 U
Acenaphthene		0.066 U	0.064 U	0.066 U	0.072	0.065 U	0.11	4.7	0.064 U	0.21	0.066 U
Fluorene		0.066 U	0.064 U	0.066 U	0.081	0.065 U	0.15	5.8	0.064 U	0.76	0.066 U
Phenanthrene		0.066 U	0.064 U	0.066 U	0.063 U	0.065 U	0.31	13	0.064 U	1.3	0.066 U
Anthracene		0.066 U	0.064 U	0.066 U	0.17	0.065 U	0.064 U	2.9	0.064 U	0.19 U	0.066 U
Fluoranthene		0.066 U	0.064 U	0.066 U	0.066	0.065 U	0.086	8.7	0.064 U	0.19 U	0.066 U
Pyrene		0.066 U	0.064 U	0.066 U	0.29	0.065 U	0.12	8.4	0.064 U	0.45	0.066 U
Benzo(g,h,i)perylene		0.066 U	0.064 U	0.066 U	0.063 U	0.065 U	0.064 U	0.46 U	0.064 U	0.19 U	0.066 U
Carcinogenic PAHs ³											
Benzo(a)anthracene		0.066 U	0.064 U	0.066 U	0.09	0.065 U	0.064 U	2.2	0.064 U	0.19 U	0.066 U
Benzo(a)pyrene	0.1	0.066 U	0.064 U	0.066 U	0.063 U	0.065 U	0.064 U	1.2	0.064 U	0.19 U	0.066 U
Benzo(b)fluoranthene		0.066 U	0.064 U	0.066 U	0.063 U	0.065 U	0.064 U	1.4	0.064 U	0.19 U	0.066 U
Benzo(k)fluoranthene		0.066 U	0.064 U	0.066 U	0.063 U	0.065 U	0.064 U	0.64	0.064 U	0.19 U	0.066 U
Chrysene		0.066 U	0.064 U	0.066 U	0.18	0.065 U	0.064 U	4.1	0.064 U	0.62	0.066 U
Dibenz(a,h)anthracene		0.066 U	0.064 U	0.066 U	0.063 U	0.065 U	0.064 U	0.46 U	0.064 U	0.19 U	0.066 U
Indeno(1,2,3-cd)pyrene		0.066 U	0.064 U	0.066 U	0.063 U	0.065 U	0.064 U	0.46 U	0.064 U	0.19 U	0.066 U
VOCs ⁴											
Benzene	0.03					0.019 U	0.023 U	0.047 U	0.023 U	0.034 U	0.033 U
Toluene	7					0.019 U	0.023 U	0.047 U	0.023 U	0.034 U	0.033 U
Ethylbenzene	6					0.019 U	0.023 U	0.047 U	0.023 U	0.034 U	0.033 U
Xylenes (total)	9					0.019 U	0.023 U	0.160	0.023 U	0.034 U	0.033 U

Notes:

¹Sample locations are shown on Figure 2. Samples were obtained by Rayonier and submitted to Analytical Resources Inc. Laboratory in Tukwila, Washington.

²Analyzed by Ecology Method NWTPH-Dx with a silica gel cleanup.

³ PAHs analyzed by EPA Method 8270D

⁴VOCs = Volatile Organic Compounds analyzed by Method 8021B.

bgs = below ground surface

U = below detection limits

-- = not analyzed

mg/kg = milligrams per kilogram

Bold text indicates detected result.

TABLE 1B SUMMARY OF GROUNDWATER ANALYTICAL RESULTS FROM MARCH 2008 SITE INVESTIGATION¹ RAYONIER SEKIU PROJECT SEKIU, WASHINGTON

				Sa	ample Desig	nation / Dep ⁻	th Interval (f	eet bgs) / Da	ate		
		PP-1	PP-3	PP-4	PP-5	PP-7	PP-7	PP-11	PP-12	PP-13	PP-15
	Cleanup Levels	15.5-16.0	13.0-14.0	15.5-16.0	15.5-16.0	12.0-12.5	15.5-16.0	12.0-13.0	12.0-16.0	15.0-16.0	12.0-13.0
Parameter (method)	(µg/l)	3/25/08	3/25/08	3/25/08	3/25/08	3/25/08	3/25/08	3/26/08	3/26/08	3/26/08	3/26/08
			Groundwa	ater Analytic	cal Results	(ug/L)					
TPH ²											
Bunker C	500				250 U			120,000			
VOCs ³											
Benzene	5				0.025 U			0.025 U			
Toluene	1,000				0.025 U			0.025 U			
Ethylbenzene	700				0.025 U			0.025 U			
Xylenes (total)	1,000				0.025 U			0.31			

Notes:

¹Sample locations are shown on Figure 2. Samples were obtained by Rayonier and submitted to Analytical Resources Inc. Laboratory in Tukwila, Washington.

²Analyzed by Ecology Method NWTPH-Dx with a silica gel cleanup.

³VOCs = Volatile Organic Compounds analyzed by Method 8021B.

bgs = below ground surface

U = below detection limits

-- = not analyzed

ug/L = micrograms per liter

Bold text indicates detected result.

TABLE 2GROUNDWATER ELEVATIONS AND MONITORING WELL CONSTRUCTIONRAYONIER SEKIU PROJECTSEKIU, WASHINGTON

Well No.	Casing Elevation ¹ (feet)	Casing Depth (feet bgs)	Date	Time ²	Depth to Water (feet bgs)	Feet of Water	Depth to Product	Product Thickness	Water Table Elevation (feet)
M\\/_1	15 74	14.00	10/25/2008	8:15	9.15	4.85	N/A	N/A	6.59
	10.74	14.00	2/18/2009	14:30	9.25	4.75	N/A	N/A	6.49
M\\/-2	15 55	15 30	10/25/2008	8:00	11.09	4.21	N/A	N/A	4.46
	10.00	10.00	2/18/2009	14:00	11.45	3.85	N/A	N/A	4.10
M\\/_3	21.80	13 /0	10/25/2008	8:10	7.87	5.53	N/A	N/A	14.02
10100-5	21.09	13.40	2/18/2009	14:20	8.35	5.05	N/A	N/A	13.54
NA\\\/_A	15 58	15 15	10/25/2008	7:30	9.91	5.24	N/A	N/A	5.67
10100-4	15.50	15.15	2/18/2009	14:40	10.36	4.79	N/A	N/A	5.22
M\\/_5	15 52	12 50	10/25/2008	8:05	3.5	9.00	N/A	N/A	12.02
10100-3	10.02	12.50	2/18/2009	14:10	5.02	7.48	N/A	N/A	10.50
M\M_6S	16 65	16.45	10/25/2008	7:35	16.33	0.12	N/A	N/A	0.32
10100-05	10.05	10.45	2/18/2009	14:45	16.20	0.25	N/A	N/A	0.45
	16 10	10.40	10/25/2008	7:40	16.14	3.35	N/A	N/A	0.05
	10.19	19.49	2/18/2009	14:50	16.03	3.46	N/A	N/A	0.16
M\\/_79	15.00	20.00	10/25/2008	7:45	15.44	4.56	N/A	N/A	0.55
10100-75	15.55	20.00	2/18/2009	14:55	15.40	4.60	N/A	N/A	0.59
	15.00	10.25	10/25/2008	7:50	15.50	2.85	N/A	N/A	0.40
	13.30	10.55	2/18/2009	15:00	15.30	3.05	N/A	N/A	0.60
M\\/_8	15 33	10.14	10/25/2008	7:55	14.15	4.99	N/A	N/A	1.18
1010.0-0	10.00	13.14	2/18/2009	13:50	15.90	3.24	N/A	N/A	-0.57

Notes:

¹Top of casing measurements were surveyed using a laser level and rod relative to an arbitrary site datum (100 feet); the arbitrary datum was adjusted to the ground surface elevation (15 feet above mean sea level) that was measured from the land survey completed on November 26, 2008.

²Depths to water measured on October 25, 2008 were approximately during slack tide. Tidal information from local tide charts indicated Low Tide at 5:03 (0.89') and High Tide at 11:45 (7.14'). Depths to water measured on February 18, 2009 were approximately during low tide. Tidal information from local tide charts indicated Low Tide at 14:24 (1.8') and High Tide at 21:11 (5.4').

bgs = below ground surface

TABLE 3A SUMMARY OF SOIL ANALYTICAL RESULTS - TOTAL PETROLEUM HYDROCARBONS AND FIELD SCREENING RAYONIER SEKIU PROJECT SEKIU, WASHINGTON

				_		Petroleum Hydrocarbons ³ (mg/kg)								
		Sample	Field So	Field Screening ²										
Sample		Depth	Choon	Headspace	Sample	Gasoline Range	Diesel Range	Heavy Oil Range	Bunker C Range	Mineral Oil Range				
Location	Sample Name	(feet bgs)	Sneen	(ppm)	Date	Hydrocarbons	Hydrocarbons	Hydrocarbons	Hydrocarbons	Hydrocarbons				
TP-2	TP-2-4.0	4	MS	0	10/22/2008	20.0 U	50.0 U	100.0 U		100.0 U				
TP-6	TP-6-13.0	13	HS	0	10/21/2008	20.0 U	50.0 U	100.0 U	>100					
TP-10	TP-10-12.5	12.5	HS	4	10/21/2008	20.0 U	50.0 U	100.0 U	100.0 U					
TP-11	TP-11-3.0	3	HS	6	10/21/2008	20.0 U	50.0 U	100.0 U	>100					

Notes:

¹Sample locations are shown on the attached site plan. Samples submitted to Libby Environmental Chemistry Laboratory in Olympia, Washington.

²Field Screening Methods are described in Attachment A

³Petroleum hydrocarbons analyzed by Northwest Total Petroleum Hydrocarbon Idenfication (NWTPH-HCID).

mg/kg = milligrams per kilogram

bgs = below ground surface

NS = no sheen, SS = slight sheen, MS = moderate sheen, HS = heavy sheen

Bold text indicates analyte was detected

ppm = parts per million

U = anlayte was not detected at method reporting limit

'-- = Not analyzed for specified analyte

TABLE 3B

SUMMARY OF SOIL ANALYTICAL RESULTS - TOTAL PETROLEUM HYDROCARBONS AND FIELD SCREENING¹ RAYONIER SEKIU PROJECT SEKIU, WASHINGTON

			Field S	Screening ²		Petroleum Hydr	rocarbons (mg/kg) ³
Sample		Sample Depth		Headspace		Bunker C Range	Heavy Oil Range
Location ²	Sample Name	(feet bgs)	Sheen	(ppm)	Sample Date	Hydrocarbons	Hydrocarbons
TP-1	TP-1-6.0 ³	6	HS	0	10/21/2008	25,200	
TP-1	TP-1-6.0 ³	6	HS	0	10/21/2008	40 U	16,000
TP-1	TP-1-10.0 ³	10	NS	0	10/21/2008	40 U	
TP-1	TP-1-10.0 ³	10	NS	0	10/21/2008	40 U	40 U
TP-1	TP-1-10.0 DUP	10	NS	0	10/21/2008	40 U	
TP-1	TP-1-12.0	12	HS	4	10/21/2008	16,400	
TP-2	TP-2-4.0	4	MS	0	10/22/2008		
TP-2	TP-2-12.0	12	SS	0	10/22/2008	40 U	
TP-3	TP-3-3.0	3	NS	0	10/21/2008	1,100	
TP-3	TP-3-8.0	8	NS	0	10/21/2008	40 U	
TP-5	TP-5-8.0	8	MS	0	10/21/2008	7,160	
TP-5	TP-5-10.0	10	HS	0	10/21/2008	8,160	
TP-6	TP-6-9.0	9	NS	0	10/21/2008	40 U	
TP-6	TP-6-11.0	11	MS	0	10/21/2008	18,900	
TP-6	TP-6-13.0	13	HS	0	10/21/2008	136,000	
TP-7	TP-7-6.0	6	NS	0	10/22/2008		
TP-8	TP-8-10.0	10	NS	0	10/22/2008		
TP-9	TP-9-7.5	8	NS	0	10/21/2008	40 U	
TP-9	TP-9-10.5	10.5	NS	0	10/21/2008	40 U	
TP-10	TP-10-5.5	6	NS	0	10/21/2008	40 U	
TP-10	TP-10-12.5	13	HS	4	10/21/2008	19,300	
TP-10	TP-10-13.5	14	HS	4	10/21/2008	2,460	
TP-11	TP-11-3.0	3	HS	6	10/21/2008	103,000	
TP-11	TP-11-14.0	14	HS	2	10/21/2008	710	
TP-11	TP-11-16.0	16	NS	0	10/21/2008	40 U	
TP-12	TP-12-9.5	10	HS	6	10/21/2008	37,400	
TP-13	TP-13-11.0	11	NS	0	10/22/2008	40 U	
TP-13	TP-13-7.0	7	NS	0	10/22/2008	40 U	
TP-14	TP-14-12.5	13	NS	0	10/22/2008	40 U	
TP-16	IP-16-4.0	4	SS	0	10/22/2008	40 U	
TP-16	TP-16-15.0	15	HS	2	10/22/2008	2,740	
TP-16	TP-16-9.0	9 10	HS	11	10/22/2008	7,710	
1P-17	TP-17-9.5	10	MS	0	10/22/2008	/5,800	
TP-17	TP-17-12.5	13	HS	2	10/22/2008	58,700	
	TP-18-11.5	12	INS NC	0	10/22/2008	40 U	
1P-18 TD 10	TP 10 2 0	10	INS NC	0	10/22/2008		
1P-19 TD 20	TP-19-3.0	3	INS MC	0	10/22/2008		
TP 20	TP-20-7.0	10	IVIS MS	0	10/22/2008	0,700	
16-20	17-20-10.0	10	IVIO		10/22/2000		

			Field S	Screening ²		Petroleum Hydi	rocarbons (mg/kg) ³
Sample		Sample Depth		Headspace		Bunker C Range	Heavy Oil Range
Location ²	Sample Name	(feet bgs)	Sheen	(ppm)	Sample Date	Hydrocarbons	Hydrocarbons
MW-1	GEI-1-12.0	12	MS	0	10/24/2008	3,210	40 U
MW-1	GEI-1-16.0	16	NS	0	10/24/2008	40 U	40 U
MW-2	GEI-2-12.0	12	NS	0	10/23/2008	40 U	
MW-2	GEI-2-17.0	17	NS	0	10/23/2008	40 U	
MW-3	GEI-3-12.0	12	NS	0	10/23/2008	40 U	40 U
MW-3	GEI-3-19.0	19	NS	0	10/23/2008	40 U	40 U
MW-4	GEI-4-11.0	11	NS	0	10/23/2008	40 U	
MW-4	GEI-4-16.0	16	NS	0	10/23/2008	40 U	
MW-5	GEI-5-10.0	10	NS	0	10/23/2008	40 U	
MW-5	GEI-5-14.0	14	NS	0	10/23/2008	40 U	
MW-6S	GEI-6S-11.0	11	SS	0	10/24/2008	40 U	40 U
MW-6D	GEI-6D-17.0	17	NS	0	10/24/2008	40 U	40 U
MW-7D	GEI-7D-15.0	15	HS	0	10/24/2008	8,820	40 U
MW-7D	GEI-7D-18.0	18	NS	0	10/24/2008	40 U	40 U
MW-8	GEI-8-15.0	15	NS	0	10/23/2008	40 U	
GEI-9	GEI-9-10.0	10	NS	0	10/23/2008	40 U	
	M	TCA Method A Clea	nup Levels			2,000	2,000

Notes:

¹Sample locations are shown on the attached site plan. Samples were submitted to Libby Environmental Chemistry Laboratory in Olympia, Washington.

²Field Screening Methods are described in Attachment A

³Analyzed by Ecology Method NWTPH-Dx with a silica gel cleanup and quantified as Bunker C. Samples with heavy oil reported also were analyzed by Method NWTPH-Dx quantified as both Bunker C and oil-range petroleum hydrocarbons.

U = anlayte was not detected at method reporting limit

'-- = Not analyzed for specified analyte

mg/kg = milligrams per kilogram

bgs = below ground surface

NS = no sheen, SS = slight sheen, MS = moderate sheen, HS = heavy sheen

Bold text indicates analyte was detected

ppm = parts per million

TABLE 4 SUMMARY OF SOIL ANALYTICAL RESULTS - POLYCYCLIC AROMATIC HYDROCARBONS¹ RAYONIER SEKIU PROJECT SEKIU, WASHINGTON

					Non-Carcinogenic PAHs ² (mg/kg) Carcinogenic PAHs ² (mg/kg)																	
Sample		Sample Depth		1-Methyl	2-Methyl	Assessed		Anthony	Benzo(g,h,i)		-	Newbilizer	Dhannathana	0	Benzo(a)		Benzo(b)	Benzo(k)	Ohman	Dibenz(a,h)	Indeno(1,2,3-	
Location	Sample Name	(feet bgs)	Sample Date	naphthalene	naphthalene	Acenaphthene	Acenaphthylene	Anthracene	perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	anthracene	Benzo(a)pyrene	fluoranthene	fluoranthene	Chrysene	anthracene	cd)pyrene	TEC
TP-2	TP-2-4.0	4	10/22/2008	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.0604 U
TP-2	TP-2-12.0	12	10/22/2008	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.0604 U
TP-6	TP-6-9.0	9	10/21/2008	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.0604 U
TP-6	TP-6-13.0	13	10/21/2008	1	1.6	1.1	1.3	1.9	0.2	2.6	2.2	1	2.1	2.6	2.3	0.7	1.7	1.2	0.5	0.08 U	0.08 U	1.233
TP-9	TP-9-7.5	7.5	10/21/2008	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.0604 U
TP-9	TP-9-10.5	10.5	10/21/2008	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.0604 U
TP-10	TP-10-5.5	5.5	10/21/2008	1.2	0.1 U	0.2	0.1 U	3.2	0.1 U	6.4	4.4	0.1 U	3.4	6.4	3.4	1	2.5	0.6	1.9	0.08 U	0.5	1.723
TP-10	TP-10-12.5	12.5	10/21/2008	2.3	0.1 U	0.1 U	0.1 U	0.6	0.2	0.4	0.1 U	0.1 U	1.1	1.6	1	0.5	0.9	0.7	0.8	0.1	0.1	0.788
TP-13	TP-13-7.0	7	10/22/2008	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.0604 U
TP-13	TP-13-11.0	11	10/22/2008	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.0604 U
MW-1	GEI-1-12.0	12	10/24/2008	1.4	0.1 U	0.1 U	0.1 U	0.2	0.1 U	0.1 U	0.5	0.1 U	0.5	0.3	0.1	0.08 U	0.09	0.08 U	0.08 U	0.08 U	0.08 U	0.0714
MW-6S	GEI-6S-11.0	11	10/24/2008	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.0604 U
MW-6D	GEI-6D-17.0	17	10/24/2008	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.0604 U
MW-7D	GEI-7D-15.0	15	10/24/2008	0.1 U	1.5	0.1 U	0.1 U	17	0.3	2.2	0.1 U	0.1	5.2	1.3	1.6	2.1	1.4	1.2	0.8	0.08 U	0.08 U	2.536
MW-7D	GEI-7D-18.0	18	10/24/2008	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U	0.0604 U
	MTCA M	ethod B Soil ³			320	4,800		24,000		3,200	3,200	1,600*		2,400								0.14

Notes:

¹Sample locations are shown on the attached site plan. Samples submitted to Libby Environmental Chemistry Laboratory in Olympia, Washington.

²PAHs = Polycyclic aromatic hydrocarbons analyzed by Method 8270 D.

³MTCA Method B standard formula value [WAC 173-340-740(3)(b)(iii)]

bgs = below ground surface

Bold text indicates analyte was detected

U = anlayte was not detected at method reporting limit

mg/kg = milligrams per kilogram

-- = No cleanup criteria established

MTCA = Model Toxics Control Act

TEC = total toxic equivalent concentration. Calculated using one-half non-detect values (method reporting limit). cPAH cleanup level based on total TEC methodology for cPAHs.

TABLE 5 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - TOTAL PETROLEUM HYDROCARBONS¹ RAYONIER SEKIU PROJECT SEKIU, WASHINGTON

			Petroleum Hydrocarbons (ug/L) ²						
			Bunker C Range	Diesel Range	Heavy Oil Range				
Sample Location	Sample Name	Sample Date	Hydrocarbons	Hydrocarbons	Hydrocarbons				
M\\\/_1	MW-1	10/25/2008	4,400						
10100-1	MW-1-090219	02/19/2009	1,000	250 U	500 U				
M\\\/ 2	MW-2	10/25/2008	200 U						
	MW-2-090219	02/19/2009	500 U	250 U	500 U				
M\\\/ 2	MW-3	10/25/2008	200 U						
10100-3	MW-3-090219	02/19/2009	500 U	250 U	500 U				
	MW-4	10/25/2008	200 U						
10100-4	MW-4-090219	02/19/2009	500 U	250 U	500 U				
	MW-5	10/25/2008	200 U						
10100-5	MW-5-090219	02/19/2009	500 U	250 U	500 U				
	MW-6D	10/25/2008	200 U						
	MW-6D-090219	02/19/2009	500 U	250 U	500 U				
MW 79	MW-7S	10/25/2008	200 U						
10100-73	MW-7S-090219	02/19/2009	500 U	250 U	500 U				
	MW-7D	10/25/2008	200 U						
	MW-7D-090219	02/19/2009	500 U	250 U	500 U				
M\\/_8	MW-8	10/25/2008	200 U						
	MW-8-090219	02/19/2009	500 U	250 U	500 U				
MT	CA Method A Cleanup Lev	vels	500	500	500				

Notes:

¹Sample locations are shown on the attached site plan. Samples obtained in October 2008 were submitted to Libby Environmental Chemistry Laboratory in Olympia, Washington, and in February 2009 were submitted to Analytical Resources Inc. Laboratory in Tukwila, Washington. ²Analyzed by Ecology Method NWTPH-Dx with a silica gel cleanup and quantified as Bunker C. Samples with diesel and heavy oil reported also were

analyzed by Method NWTPH-Dx quantified as diesel- and oil-range petroleum hydrocarbons.

MTCA = Model Toxics Control Act

U = anlayte was not detected at method reporting limit

ug/L = micrograms per liter

Bold text indicates analyte was detected

-- = Not analyzed for specified analyte

TABLE 6 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - POLYCYCLIC AROMATIC HYDROCARBONS¹ RAYONIER SEKIU PROJECT SEKIU, WASHINGTON

Non-Carcinogenic PAHs ² (ug/L) Carcinogenic PAHs ² (ug/L)																					
		Dibenzofuran	1-Methyl	2-Methyl	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo(a)	Benzo(a)	Benzo(b)	Benzo(k)	Chrysene	Dibenz(a,h)	Indeno(1,2,3-cd)	T .
Sample Location	Sample Date		naphthalene	naphthalene	•	. ,		perylene					,	anthracene	pyrene	fluoranthene	fluoranthene	,	anthracene	pyrene	TEC
M\\/-1	10/25/2008		4.4	3.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.8	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
	02/19/2009	0.1 U	0.78	0.1	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.11	0.23	0.1 U	0.12	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
M/M/_2	10/25/2008		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
10100-2	02/19/2009	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
M/M/ 2	10/25/2008		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
10100-3	02/19/2009	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
	10/25/2008		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
10100-4	02/19/2009	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
	10/25/2008		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
10100-5	02/19/2009	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
	10/25/2008		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
10100-00	02/19/2009	0.1 U	0.1 U	0.1 U	0.19	0.1 U	0.1 U	0.1 U	0.1 U	0.1	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
	10/25/2008		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
10100-70	02/19/2009	0.16	0.1	0.1 U	0.97	0.1 U	0.24	0.1 U	0.1 U	0.41	0.1 U	0.1 U	0.16	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
	10/25/2008		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
10100-75	02/19/2009	0.11	0.1 U	0.1 U	0.8	0.1 U	0.14	0.1 U	0.1 U	0.25	0.1 U	0.1 U	0.11	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
N/14/ 0	10/25/2008		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
IVIVV-8	02/19/2009	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0
Aquatic Life Marin	e Chronic ³																				
Human Health Ma	rine ⁴				990		40,000		140	5,300			4,000	4,000 0.018							
MTCA Method B S	Surface Water ⁵				640		26,000		90	3,500	4,900*		2,600				0.0	3			

Notes:

¹Sample locations are shown on the attached site plan. Samples obtained in October 2008 were submitted to Libby Environmental Chemistry Laboratory in Olympia, Washington, and in February 2009 were submitted to Analytical Resources Inc. Laboratory in Tukwila, Washington. ²PAHs = Polycyclic aromatic hydrocarbons analyzed by Method 8270 D.

³Lowest available aquatic life marine chronic criteria from Chapter 173-201A, Clean Water Act Section 304, and National Toxics Rule (40 CFR 131)

⁴Surface water criteria are the lowest available human health marine criteria from Clean Water Act Section 304 and National Toxics Rule (40 CFR 131).

⁵MTCA Method B surface water standard formula value [WAC 173-340-730(3)(b)(iii)]

ug/L = micrograms per liter

U = anlayte was not detected at method reporting limit

Bold text indicates analyte was detected

-- = Not analyzed for specified analyte or cleanup criteria not established

MTCA = Model Toxics Control Act

* = cleanup level based on total naphthalenes, which is the sum of 1-methylnaphthalene, 2-methylnaphthalene, and naphthalenes.

TEC = total toxic equivalent concentration . cPAH cleanup level based on TEC methodology for cPAHs.

TABLE 7 SUMMARY OF SEDIMENT ANALYTICAL RESULTS TOTAL PETROLEUM HYDROCARBONS¹ RAYONIER SEKIU PROJECT SEKIU, WASHINGTON

		Sample Depth		Petroleum Hydrocarbons ² (mg/kg)								
Sample	Sample	(feet below		Diesel Range	Heavy Oil Range	Bunker C Range						
Location	Name	mudline)	Sample Date	Hydrocarbons	Hydrocarbons	Hydrocarbons						
R1-A	R1-S	0-1	02/20/2009	15	41	80						
R1-A	R1-D	3-4	02/20/2009	7.9	14	33						
R2-C	R2-S	0-1	02/20/2009	6.0 U	12 U	12 U						
R3-A	R3-S	0-1	02/20/2009	17	30	68						

Notes:

¹Sample locations are shown on the attached site plan. Samples were submitted to Analytical Resources Inc. Laboratory in Tukwila, Washington.

²Analyzed by Ecology Method NWTPH-Dx with a silica gel cleanup and quantified as Bunker C. Samples also were analyzed by Method NWTPH-Dx quantified as diesel- and oil-range petroleum hydrocarbons.

mg/kg = milligrams per kilogram

U = anlayte was not detected at method reporting limit

Bold text indicates analyte was detected

TABLE 8 SUMMARY OF SEDIMENT ANALYTICAL RESULTS - POLYCYCLIC AROMATIC HYDROCARBONS RAYONIER SEKIU PROJECT SEKIU, WASHINGTON

Sample Name	R1-D norm	R1-S norm		R1-S-Dil norm		R2-s norm		R3-S norm		R3-S-Dil norm		Sediment Managem	ent Standards (SMS)
Sample Locations	R1-A	R1-A	R1-A		R1-A		R2-C			R3-A		Codimont Quality	Sediment Cleanup
Sample Date	02/20/2009	02/20/2009	02/20/2009		02/20/2009		02/20/2009		9	02/20/2009		Sediment Quality Standards (SQS) WAC 173-204-320)	Screening Level
	mg/kg OC	mg/kg OC	mg/kg OC		mg/kg OC		mg/kg OC		;	mg/kg OC 2.17			(CSL)
Total organic carbon (%) ³	1.78	9.64	9.64		9.64		0.28						WAC 173-204-520
LPAH ⁴													
Total LPAH ⁴	16.70	1.75		1.74		11.15		14.01		66.36		370	780
Acenaphthylene	0.29	0.05	U	0.10	U	1.69	U	2.26	U	11.06	U	66	66
Acenaphthene	3.03	0.20		0.19		1.69	U	2.26	U	11.06	U	16	57
Anthracene	1.85	0.94		0.88		1.69	U	2.26	U	11.06	U	220	1,200
Fluorene	0.67	0.08		0.10	U	1.69	U	2.26	U	11.06	U	23	79
Naphthalene	8.99	0.18		0.17		2.70		2.26	U	11.06	U	99	170
Phenanthrene	1.85	0.30		0.30		1.69	U	2.72		11.06	U	100	480
2-Methylnaphthalene	1.46	0.08		0.10	U	1.69	U	2.26	U	11.06	U	38	64
HPAH⁵													
Total HPAH ⁵	49.12	19.34		19.36		16.91		23.92		110.60		960	5,300
Benz[a]anthracene	4.66	1.02		0.93		1.69	U	2.26	U	11.06	U	110	270
Benzo(a)pyrene	1.24	0.24		0.22		1.69	U	2.26	U	11.06	U	99	210
Benzo(b)fluoranthene	1.35	0.29		0.25		1.69	U	2.26	U	11.06	U		
Benzo(k)fluoranthene	1.35	0.29		0.25		1.69	U	2.26	U	11.06	U		
Total Benzofluoranthenes ⁶	2.70	0.58		0.50		3.38		4.52		22.12		230	450
Benzo(ghi)perylene	0.32	0.06		0.10	U	1.69	U	2.26	U	11.06	U	31	78
Chrysene	3.71	0.64		0.60		1.69	U	2.26	U	11.06	U	110	460
Dibenzo(a,h)anthracene	0.27	U 0.05	U	0.10	U	1.69	U	2.26	U	11.06	U	12	33
Fluoranthene	19.10	8.61	Е	8.71		1.69	U	3.59		11.06	U	160	1,200
Indeno(1,2,3-cd)pyrene	0.27	0.05	U	0.10	U	1.69	U	2.26	U	11.06	U	34	88
Pyrene	16.85	8.09	Е	8.09		1.69		2.26	U	11.06	U	1,000	1,400
1-Methylnaphthalene	0.96	0.06		0.10	U	1.69	U	2.26	U	11.06	U		
Dibenzofuran	0.67	0.07		0.10	U	1.69	U	2.26	U	11.06	U	15	58

Notes:

¹Sample locations are shown on the attached site plan. Samples obtained in February 2009 were submitted to Analytical Resources Inc. Laboratory in Tukwila, Washington.

²This table summarizes sediment sample analytical results with reference to the Sediment Management Standards (SMS) Sediment Quality Standards (SQS) and/or Cleanup Screening Level (CSL).

³The listed chemical parameter criteria represent concentrations in parts per million, "normalized," or expressed, on a total organic carbon basis. To normalize to total organic carbon, the dry weight concentration for each parameter is divided by the decimal fraction representing the percent total organic carbon content of the sediment.

⁴The LPAH criterion represents the sum of the following "low molecular weight polynuclear aromatic hydrocarbon" compounds: Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, and Anthracene. The LPAH criterion is not the sum of the criteria values for the individual LPAH compounds as listed.

⁵The HPAH criterion represents the sum of the following "high molecular weight polynuclear aromatic hydrocarbon" compounds: Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Total Benzofluoranthenes, Benzo(a)pyrene, Indeno(1,2,3,-c,d)pyrene, Dibenz(a,h) anthracene, and Benzo(g,h,i)perylene. The HPAH criterion is not the sum of the criteria values for the individual HPAH compounds as listed.

⁶The benzofluoranthenes criterion represents the sum of the concentrations of the "B," and "K" isomers.

mg/kg OC = milligrams per kilogram normalized to organic carbon

Bold text indicates analyte was detected

U = Compound was not deteteced at reporting limit

E = Value was estimated and reanalyzed

Note: These boring locations were obtained with a hand-held global positioning system (GPS) unit with an accuracy of $\pm 30^{\circ}$.

- -ss- Existing Sanitary Sewer
 - Approximate Location of Manhole

60 0 60 FEET

Notes

S

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Reference: Drawing NTI-2000-RAYO0803-ROS.dwg, received via email on 11/26/2008.

Site PlanApproximate Boring Locations - March 2008Former Sekiu Log Sorting Yard
Sekiu, WashingtonGEOENGINEERS OFigure 2

Legend

Zone where residual Bunker C observed in soil

LNAPL = Light Non-Aqueous Phase Liquids

DNAPL = Dense Non-Aqueous Phase Liquids

AST = Above ground Storage Tank

Notes

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Aug 19, 2009 No CHAUD Ξ ž 8 ECTS\0\0137018\00\CAD\TASK 310\013701800 T310 FIG 3.pwG\TAB:FIG 3

- 8:52

Legend

— SS—

 (\mathbb{S})

GEI-9Approximate Direct Push Boring Location (completed by GeoEngineers in October 2008)MW-1Approximate Monitoring Well Location (completed by GeoEngineers in October 2008)TP-1Approximate Test Pit Location (completed by GeoEngineers in October 2008)

Approximate Location of Manhole

POTW Publicly Owned Treatment Works

Existing Sanitary Sewer

Notes

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Reference: Drawing NTI-2000-RAYO0803-ROS.dwg, received via email on 11/26/2008.

 Approximate Boring Locations

 October 2008
 October 2008

 Former Sekiu Log Sorting Yard Sekiu, Washington
 Figure 4

Legend

- R2-C 🔴 Approximate Sediment Sample Location (completed by GeoEngineers in February 2009)
- R2-A Approximate Location of Sediment Cores where refusal was met (completed by GeoEngineers in February 2009)
- MW-1 -Approximate Monitoring Well Location (completed by GeoEngineers in October 2008)
- TP-1 📲 Approximate Test Pit Location (completed by GeoEngineers in October 2008)

30 30

- SS— Existing Sanitary Sewer
- Publicly Owned Treatment Works POTW

Notes

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Reference: Drawing NTI-2000-RAYO0803-ROS.dwg, received via email on 11/26/2008.

- than detection limits or detected at a concentration less than the MTCA cleanup level and no NAPL observed
 - Soil sample with field screeing evidence of Bunker C and/or
- sample depth (Feet)
- Total carcinogenic polycyclic aromatic 1.79(6') hydrocarbons (cPAHs) concentration in soil (mg/Kg TEC) and sample depth (Feet)

constituent detected at a concentration greater than the MTCA cleanup level (Bunker C = 2,000 mg/Kg; cPAHs TEC = 0.14 mg/Kg)

- GEI-9 🕂 Approximate Direct Push Boring Location
- MW-1 👈 Approximate Monitoring Well Location
- TP-1 🖶 Approximate Test Pit Location
- R2-C 🔴 Approximate Sediment Sample Location
 - milligrams/Kilogram mg/Kg
 - Approximate extent of Bunker C exceeding MTCA Method A cleanup levels in soil

Notes

2

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Reference: Drawing NTI-2000-RAYO0803-ROS.dwg, received via email on 11/26/2008.

- Bunker C concentration in sediment (mg/Kg) <12(0-1') and sample depth (feet) below mudline
 - Approximate depth interval (Feet) where residual 11'-13' Bunker C (NAPL) observed in soil
 - Bunker C (NAPL) not observed N.O.
 - ss Existing Sanitary Sewer
 - MTCA Model Toxics Control Act
 - NAPL Non-aqueous phase liquid
 - TEC Total toxic equivalent concentration
 - POTW Publicly Owned Treatment Works

GEI-9 🔶 Approximate Direct Push Boring Location

MW-1 🔶 Approximate Monitoring Well Location

TP-1 🖶 Approximate Test Pit Location

µg/L micrograms/Liter

- **—** ? Approximate extent of Bunker C in soil
- 4,400 Bunker C concentration in groundwater (µg/L)
- -ss-**Existing Sanitary Sewer**
- MTCA Model Toxics Control Act
- POTW Publicly Owned Treatment Works

Approximate Groundwater Flow Direction Measured October 2008 and February 2009

Notes

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- Reference: Drawing NTI-2000-RAYO0803-ROS.dwg, received via email on 11/26/2008.

APPENDIX A FIELD PROCEDURES AND EXPLORATION LOGS

APPENDIX A FIELD PROCEDURES AND EXPLORATION LOGS

FIELD SCREENING AND SOIL SAMPLING PROCEDURES

Subsurface conditions at the subject property were evaluated by drilling eleven borings using a truck-mounted direct-push drilling equipment operated by ESN Drilling of Olympia, Washington, and completing 20 test pits using equipment operated by Burch and Burch. A representative from our staff selected the boring and test pit locations, and observed and classified the soil encountered. Soil in the borings was visually classified in general accordance with American Society for Testing and Materials (ASTM) D-2488-90, which is described in Figure A-1. A key to the boring log symbols also is presented in Figure A-1. A detailed log was prepared for each soil boring and test pit. The boring and test pit logs are presented in Figures A-2 through A-35.

Continuous soil samples were obtained from the soil borings. Soil samples were obtained for characterization from the direct-push borings at selected depth intervals. Representative soil from each sampling interval was retained for field screening and potential chemical analysis. Selected samples were placed in laboratory-prepared jars, completely filled to eliminate headspace. Samples were kept cool during transport to the testing laboratory. Chain-of-custody procedures were observed during transport of the samples.

Soil samples obtained from the explorations were obtained using either a stainless steel trowel or a clean nitrile disposable glove to collect soil and place it in a 4-ounce (oz) laboratory prepared jar, filled to minimize headspace. The samples were placed in an iced cooler pending transport to the analytical laboratory. All sample containers were submitted to either Libby Environmental's mobile laboratory located on the site or to their fixed laboratory in Olympia, Washington, for analysis. Samples were kept cool during transport to the testing laboratory. Chain-of-custody procedures were observed during transport of the samples to the testing laboratory. Equipment used to obtain soil samples was decontaminated prior to each use using a Liqui-Nox[®] solution and a distilled water rinse.

Soil samples were obtained in the field for screening of potential petroleum-related contamination using visual examination and sheen screening. Visual screening consists of observing the soil for stains indicative of petroleum-related contamination. Visual screening generally is more effective when contamination is present in high concentrations or when it is related to heavy petroleum hydrocarbons. Water sheen screening involves placing soil in water and observing the water surface for signs of sheen. Sheen classifications are as follows:

No Sheen (NS)	No visible sheen on water surface.
Slight Sheen (SS)	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil may produce a slight sheen.
Moderate Sheen (MS)	Light to heavy sheen; may have some color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on water surface.
Heavy Sheen (HS)	Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

Field screening results are site-specific. The effectiveness of field screening results will vary with temperature, moisture content, organic content, soil type, and type and age of contaminant. The presence or absence of a sheen does not necessarily indicate the presence or absence of petroleum hydrocarbons.

GROUNDWATER MONITORING

Monitoring Well Completion

Each well is a one-inch-diameter, schedule 40 polyvinyl chloride (PVC) well casing in the direct-push borings. The eight shallow wells have approximately 10-foot-long, machine-slotted (0.010-inch slot width), pre-packed screens positioned within the zone of seasonal groundwater fluctuation. The two deep wells have shorter screens (approximately 5 feet long) positioned at the bottom of the casings, directly on top of the glacial till. The pre-packed sand filter adjacent to the well screen were comprised of 10/20 silica sand. When necessary, additional 10/20 silica sand was placed around the filter pack and solid well casing to a depth approximately 2 feet above the top of the screen. Hydrated bentonite was placed above the sand pack to form a surface seal. A traffic-rated, above-ground or a flush-mount monument was placed at the top of the casing, depending on the location of the well on the subject property. Protective bollards were placed around each above-ground monument.

Monitoring Well Development

Each of the monitoring wells was developed immediately after completion by purging with a submersible pump and dedicated tubing. Development activities at each well were continued until at least 10 well volumes of water were purged, turbidity was less than 50 nephelometric turbidity unit (NTU) or the well went dry, whichever occurred first. Following development the wells were allowed to sit for at least 24 hours before they were sampled.

Depth to Groundwater

The depths to the groundwater table relative to ground surface were measured using an electric water level indicator. The electric indicator was cleaned with a Liqui-Nox® solution wash and a distilled water rinse prior to use in each well. The presence or absence of free product was noted in each well and used a stainless steel rod or plugged dedicated tubing for dense non-aqueous phase liquids (DNAPL).

Groundwater Sampling

Groundwater samples were obtained with a peristaltic pump, new plastic tubing, a flow-through cell and water parameter analyzer after at least three well volumes of water were removed from each well casing, the well was purged dry or monitored parameters such as dissolved oxygen, temperature and conductivity stabilized over time indicating that groundwater from outside of the well casing is being removed from the well. The water samples were transferred in the field to laboratory-prepared sample containers and kept cool during transport to the testing laboratory. The sample containers were filled completely to eliminate headspace in the container. Chain-of-custody procedures were followed in transporting the water samples to the testing laboratory.

MONITORING WELL SURVEYING

The elevation of each monitoring well casing was surveyed relative to an assumed site datum (the top of the sewer cap) using a laser level (not a licensed professional survey).

SEDIMENT SAMPLING PROCEDURES

Sediment coring locations were measured in the field using a handheld Trimble GPS unit. Sediment cores were obtained using a vibracore sediment sampling device.

Sediment samples were obtained in one-foot sections below mudline for characterization and field screening. Sediment cores were held on the boat deck for later processing on shore (following completion of remaining coring locations).

A stainless steel trowel was used to obtain samples from the sediment cores. Samples were homogenized in a stainless steel bowl prior to placing into laboratory-supplied sample containers. Samples were placed into a cooler with ice and submitted under chain-of-custody procedures to Analytical Resources Inc. (Tukwila, Washington) for chemical analytical testing.

	SO	IL CLASSIF	ICATIO	N CHA	ART	ADDIT	ADDITIONAL MATERIAL SYMBOLS			
М	AJOR DIVISI	ONS	SYME GRAPH	BOLS LETTER	TYPICAL DESCRIPTIONS	SYM GRAPH	BOLS	TYPICAL DESCRIPTIONS		
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		сс	Cement Concrete		
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		AC	Asphalt Concrete		
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		CR	Crushed Rock/ Quarry Spalls		
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		тѕ	Topsoil/		
IORE THAN 50%	SAND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS					
200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND		Measure	d groundwater level in on, well, or piezometer		
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES		Groundw	ater observed at time of		
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES		Perched v	water observed at time of		
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY		Measured	d free product in well or		
FINE	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		piezomet			
SOILS	OLATO		h	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		Stratigra	aphic Contact		
IORE THAN 50% ASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS]]	Distinct of geologic	contact between soil strat units		
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		Gradual o geologic	change between soil stra units		
			High	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY]	Approxim change w	nate location of soil strata vithin a geologic soil unit		
н	GHLY ORGANIC	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS					
DTE: Multiple	e symbols are u	sed to indicate bo	rderline or o	dual soil c	lassifications	<u>La</u>	aborator	y / Field Tests		
	Sample	r Symbol De	escripti	ons		%F AL	Percent f Atterberg	ines limits analysis		
	Sta	ndard Penetrat	tion Test	(SPT)		CP CS	Laborato Consolid	ry compaction test ation test		
	She	elby tube		(-)		DS HA MC	Direct sh Hydrome Moisture	ear ter analysis content		
	Pis	ton				MD OC	Moisture Organic o	content and dry density		
	Dire	ect-Push				PM PP	Permeab Pocket p	ility or hydraulic conducti enetrometer		
	Bul	k or grab				SA TX UC	Sieve and Triaxial c Unconfin	alysis ompression ed compression		
Blow	count is reco	rded for driver	n sampler	s as the	number	VS	Vane she	ar		
dista	nce noted).	See exploration	n log for h	ammer	weight	NS	oneen C No Visibl	assification e Sheen		
	indicates s	mplor pucked	ucina 46 -	woicht	of the	SS MS	Slight Sh Moderate	een 9 Sheen		
drill r	ig.	mplet pustied	using the	weignt		HS NT	Heavy Sh Not Teste	een ed		
	rodar	ofor to the -li	olon in the	ronort t-	t and the lass of automation	for a propagate to	rotopdica			
Description representat	e reader must re s on the logs ap ive of subsurfac	eier to the discuss oply only at the sp ce conditions at o	sion in the becific explo other locatio	port tex oration loc ons or time	cand the logs of explorations cations and at the time the explose.	of a proper unde plorations were m	ade; they a	re not warranted to be		
				KEY T	O EXPLORATION L	OGS				
C		GINEE		1		F	IGURF	A-1		
		GINEL				•				

REDMOND/PROJECTS/0/0137018/00/GINT/013701800.GPJ GEIV6 1.GDT 8/14/09 ENVTPIT W:

REDMOND/PROJECTS/0/0137018/00/GINT/013701800.GPJ GEIV6 1.GDT 8/14/09 ENVTPIT W

≥ ENVTPIT

Date Excavated: _ Equipment:	10/22/08 Backhoe	Logged by: Surface Ele	Logged by: JAS Surface Elevation (ft):							
Depth Depth Sample Sample Number Analytical Testing	Di do Bol Skupol ML Brown si	MATERIAL DESCRIPTION	Sheen	Headspace Vapor TLV (ppm)	OTHER TESTS AND NOTES					
	ML Brown si ML Brown si Black silt pieces Black silt pieces Brown si Wood del Brown gr GP Brown gr Gray grav Gray grav Gray grav Gray grav Gray grav Caving of	It with fine sand t with fine sand with occasional gravel, concrete s (gravel size approximately 6 to 8 inches) and meta s (dry) It with fine sand and gravel ibris and concrete pieces ravel with silt (wet) vel with silt and wood debris vating gravel (dry) vel with silt (very wet) rompleted at 14.5 feet vater seepage observed at approximately 13 feet bgs bserved	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(strong petroleum odor) (strong petroleum odor)					
20 – Notes: See Figure A-1 The depths on the test p	20 Notes: See Figure A-1 for explanation of symbols. The denths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot									
		LOG OF TEST PIT TP-10								
GeoEngin		Project:Rayonier, Former SProject Location:Sekiu, WashingtonProject Number:0137-018-00	Sekiu Log	Sortin	ng Yard Figure A-11 Sheet 1 of 1					

V6_ENVTPIT W: REDMOND/PROJECTS/0/0137018/00/GINT/013701800.GPJ GEIV6_1.GDT 8/17/09

	Date Ex	Date Excavated: 10/22/08				/22/08		Logged by	/:		J	AS
	Equipm	ent:			Backł	100		Surface E	levation	(ft):		
	Depth feet	Sample Number	Analytical Testing	Graphic -og	Group Symbol		MATERIAL DI	ESCRIPTION		Sheen	Headspace Vapor FLV (ppm)	OTHER TESTS AND NOTES
COJECTS/0/0137018/00/GINT/013701800.GPJ GEIV6_1.GDT 8/14/09		▼ 2 3 See Figu	re A-		SP SP SP	Brown si Black silt NAPL Very stro Black silt Black silt Gray silt Gray fine Test pit c Groundw Caving o	It with NAPL intermixed vong petroleum odor the with NAPL (very strong the with NAPL (very strong the with NAPL (very strong with occasional gravel (see a sand with occasional gravel (see a sand with occasional gravel at beserved at beserveed at beserveed at beserveed at beserveed	with brown silt with no g odor) (dry) trong odor) (wet) avel approximately 13 feet		HS	6 2 0	Soil mixing may be due to former excavation activities
	The dep	ths on th	ie test	pit lo	gs are ba	sed on an av	verage of measurements a	cross the test pit and sho	uld be cor	nside	red acc	surate to 0.5 foot.
T W:\RE							LOG OF TEST	Ravonier Former	Sekiul	00.5	Sortin	g Yard
V6_ENVTPI	Geo	ENG	SIN	IEE	RS	D	Project Location: Project Number:	Sekiu, Washingtor 0137-018-00	1 1			Figure A-12 Sheet 1 of 1

REDMOND/PROJECTS/0/0137018/00/GINT/013701800.GPJ GEIV6 1.GDT 8/14/09 ENVTPIT W:

	Date Excavated: Equipment:	10/22/08 Backhoe	Logged by: JAS Surface Elevation (ft):			
	Depth feet Sample Sample Number Analytical Testing	Graphic Log Group Symbol	MATERIAL DESCRIPTION	Sheen	Headspace Vapor TLV (ppm) TLV (ppm) Headspace Vapor Headspace Vapor	
	5-	ML Brown silt	with gravel and subangular cobbles zel with silt (round, coarse gravel) (dry)	NS	0	
OJECTS\0\0137018\00\GINT\013701800.GPJ GEIV6_1.GDT 8/14/09	10- - - - - - - - - - - - - - - - - - -	Test pit con No groundy Caving obse	npleted at 8 feet due to caving water seepage observed erved			
	The depths on the test	t pit logs are based on an aver	LOG OF TEST PIT TP-15	d be conside	red accurate to 0.5 foot.	
V6_ENVTPIT M	GEOENGIN		Project: Rayonier, Former S Project Location: Sekiu, Washington Project Number: 0137-018-00	Sekiu Log S	Sorting Yard Figure A-16 Sheet 1 of 1	

	Date Exc Equipme	cavate ent:	avated: <u>10/22</u> nt: <u>Backhoe</u>					Logged by: Surface Elev	vation (ft)	JA :	AS
	O Depth feet Sample	Sample Number	Analytical Testing	Graphic	Log Symbol MT	Brown silt	MATERIAL DI	ESCRIPTION	Sheen	Headspace Vapor TLV (ppm)	OTHER TESTS AND NOTES
	5-	1			- ML	- Gray silt v debris (-	vith gravel, glass pieces, (strong petroleum odor)	concrete pieces and wood	SS	0	
		2			GM GM	Gray silty Black silty odor)	gravel with metal pipes y gravel with wood debr	(very strong petroleum odor) - HS	11	
INT/013701800.GPJ GEIV6_1.GDT 8/14/09	15	⊻ 3			GM	- Approxim Gray silty Test pit cc Groundwa Caving ob	ately 6 foot long piece o gravel with NAPL (wet ompleted at 15 feet ater seepage observed at oserved at 15 feet	f wood coated in NAPL) 14 feet	HS	2	
EDMOND/PROJECTS/0/0137018/00/GII	20 – Notes: S The dept	ee Figu hs on th	re A- ne test	1 for t pit 1	explanatic logs are ba	on of symbols sed on an ave	s. erage of measurements a	cross the test pit and should	be conside	ered accu	rate to 0.5 foot.
/6_ENVTPIT_W:\RE	Geol	ENG	GIN	١E	ERS	Ø	Project: Project Location: Project Number:	Rayonier, Former Sekiu, Washington 0137-018-00	ekiu Log	Sorting	Yard Figure A-17 Sheet 1 of 1

ſ

	Date Excavated: Equipment:	10/22/08 Backhoe	Logged by: Surface Eleva	JAS
	Depth feet Sample Sample Number Analytical Testing	Graphic Log Symbol	IATERIAL DESCRIPTION	Sheen Sheen TLV (ppm) TTV (ppm) TTV (ppm) Sheen
	0 0 0 2	Image: Constraint of symbols.	th gravel (dry) rganic matter ravel with small cobbles (dry) avel with wood debris (strong odor) (moist) in NAPL avel with NAPL (strong petroleum odor) leted at 12½ feet ter seepage observed /ed	be considered accurate to 0.5 foot.
/TPIT W:\RE	GroEver		roject: Rayonier, Former Sel	kiu Log Sorting Yard
V6_ENV	GEOENGI	NEEKS	roject Number: 0137-018-00	Figure A-18 Sheet 1 of 1

Date Excavated: Equipment:	10/22/08 Backhoe		Logged by: Surface Elevatio	on (ft)	JA :	<u>S</u>			
Depth feet Sample Sample Number	Symbol	MATERIAL DE	ESCRIPTION	Sheen	Headspace Vapor TLV (ppm)	OTHER TESTS AND NOTES			
	ML Light bro	own silt with occasional g		-					
5			-	-					
10	- - Brown g	ravelly silt	-	-					
	Brownisl	h gray gravelly silt h gray gravelly silt with fi	- ne sand	NS	0				
	Test pit of No groun Caving o	completed at 16 feet ndwater seepage observed bbserved at 16 feet	_	NS	0				
20- Notes: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot.									
GeoEngi		Project: Project Location:	PIT TP-18 Rayonier, Former Sekiu Sekiu, Washington	Log S	Sorting	Yard Figure A-19			

WTPIT W:/REDMOND/PROJECTS/0/0137018/00/GINT/013701800.GPJ C

ENVTPIT W:

0137-018-00

9

9

9

Sheet 1 of 1

ENVWELL 9

9

Sheet 1 of 1

Project Number:

0137-018-00

9

Sheet 1 of 1

Sheet 1 of 1

APPENDIX B CHEMICAL ANALYTICAL PROGRAM AND CHEMICAL ANALYTICAL DATA

Libby Environmental, Inc.

4139 Libby Road N.E., Olympia, WA 98506-2518

GeoEngineers

NOV 12 2008 Routing

November 7, 2008

Cindy Bartlett GeoEngineers 8410 154TH Avenue NE Redmond, WA 98052

Dear Ms. Bartlett:

Please find enclosed the analytical data report for the Rayonier - Sekiu Project located in Sekiu, Washington. Mobile Lab Services were conducted on October 21 - 23, 2008. Soil samples were received and analyzed for Diesel by NWTPH-Dx and Hydrocarbon Identification by NWTPH-HCID.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed. All soil samples are reported on a dry weight basis.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

My 26A

Sherry L. Chilcutt President Libby Environmental, Inc.

Phone (360) 352-2110 . Fax (360) 352-4154 . libbyenv@aol.com

SEKIU PROJECT Sekiu, Washington GeoEngineers, Inc. Client Project #0137-018-00 Libby Project No.L-081021-10

Hydrocarbon Identification by NWTPH-HCID for Soil

Sample	Date	Surrogate	Gasoline	Diesel	Mineral Oil	Heavy Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	10/22/2008	99.1	nd	nd	nd	nd
TP-2-4.0	10/22/2008	101	nd	nd	nd	nd
Practical Quant	titation Limit		20	50	100	100

"nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

Sekiu PROJECT Sekiu, WA GeoEngineers Client Project #0137-018-00 Libby Project No.L-081021-10

Analyses of Bunker C (NWTPH-Dx) in Soil

Sample	Date	Surrogate	Bunker C
Number	Analyzed	Recovery (%)	(mg/kg)
Method Blank	10/21/2008	94.3	nd
Method Blank	10/22/2008	99.1	nd
TP-9-7.5	10/21/2008	86.4	nd
TP-9-10.5	10/21/2008	99.7	nd
TP-10-5.5	10/21/2008	87.6	nd
TP-10-12.5	10/21/2008	int	19300
TP-10-13.5	10/21/2008	int	2460
TP-6-11.0	10/21/2008	int	18900
TP-6-13.0	10/21/2008	int	136000
TP-6-9.0	10/21/2008	125	nd
TP-6-9.0 dup	10/22/2008	111	nd
TP-12-9.5	10/21/2008	int	37400
TP-11-3.0	10/21/2008	int	103000
TP-11-14.0	10/21/2008	125	710
TP-11-16.0	10/21/2008	115	nd
TP-5-8.0	10/21/2008	int	7160
TP-5-10.0	10/21/2008	int	8160
TP-3-3.0	10/21/2008	int	1100
TP-3-8.0	10/21/2008	100	nd
TP-1-6.0	10/22/2008	int	25200
TP-1-10.0	10/21/2008	103	nd
TP-1-10.0 dup	10/22/2008	104	nd
TP-1-12.0	10/21/2008	int	16400
Practical Quantitat	ion Limit		40

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

Sekiu PROJECT Sekiu, WA GeoEngineers Client Project #0137-018-00 Libby Project No.L-081021-10

Analyses of Bunker C (NWTPH-Dx) in Soil

Sample	Date	Surrogate	Bunker C
Number	Analyzed	Recovery (%)	(mg/kg)
Method Blank	10/22/2008	99.1	nd
TP-2-12.0	10/22/2008	100	nd
TP-16-4.0	10/22/2008	81.7	nd
TP-16-9.0	10/22/2008	int	7710
TP-16-15.0	10/22/2008	int	2740
Duplicate-1	10/22/2008	int	17300
TP-17-9.5	10/22/2008	int	75800
TP-17-12.5	10/22/2008	int	58700
TP-18-11.5	10/22/2008	120	nd
TP-20-7.0	10/22/2008	int	6750
TP-20-7.0 dup	10/22/2008	int	5670
Practical Quantitat	ion Limit		40

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

Sekiu PROJECT Sekiu, WA GeoEngineers Client Project #0137-018-00 Libby Project No.L-081021-10

Analyses of Bunker C (NWTPH-Dx) in Soil

Sample	Date	Surrogate	Bunker C
Number	Analyzed	Recovery (%)	(mg/kg)
Method Blank	10/23/2008	110	nd
GEI-3-12.0	10/23/2008	109	nd
GEI-3-19.0	10/23/2008	117	nd
GEI-4-11.0	10/23/2008	109	nd
GEI-4-16.0	10/23/2008	88	nd
GEI-5-10.0	10/23/2008	103	nd
GEI-5-14.0	10/23/2008	95	nd
GEI-8-15.0	10/23/2008	107	nd
GEI-8-15.0 Dup	10/23/2008	96	nd
GEI-2-12.0	10/23/2008	115	nd
GEI-2-17.0	10/23/2008	100	nd
GEI-2-17.0 Dup	10/23/2008	110	nd
GEI-9-10.0	10/23/2008	112	nd
Practical Quantitation	on Limit		40

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

	page: 1 of Z	t			f Collection: 10-21-08	11111	1111	111	Field Note/# Containare		Propixi xap 1 Se																ł	Remarks:				TAT 24HR 48HR Day
rd	38	ady Bartlet	16t - Seku	LUA	Smith Date of	11111	11111	or or or or as as	ALAN SOLON SOLON																			Sample Receipt	Good Condition?	Cold?	Seals Intact?	Total Number of Containers
of Custody Reco	Date: 10-21-200	Project Manager.	Project Name: Zaulov	Location: Se CO	Collector: Co SI CD	1111	1/10/	10 100 00 00 00 00	A 20 00 00 00 00 00 00 00 00 00 00 00 00		×	×	×	×	×	7		×	>	7	< ×	×		'X	×	~	×	- 10/21/08 1700	Date / Time		Date / Time	
Chain			E. Vermond	5.861.6050					ample Container		-	0	V	No No	S	V	v			1	v	U	N	u	~	~	-	Marwell DNL	Received by		Received by	
nental, Inc.	Pn 360-352-2110 Fax 360-352-4154	gineers	3447 Ave. N	6000 Fax: 42	57.018.00				Depth Time 7	20101	10.5 8'LO	55 855	12.5 915	13.5 9 30)	9.0 100S	2101 0-11	13.01025	3.0 1110	14.0 1125	16.0 1135	9.X 1100	8.0 1130	10.01	3.0 12.55	8.0 17 57	6.0.1:76	10.01:30	Date/Time	Date / Time		Date / Time	nk - Originator
Libby Environr	4 139 LIDDY KOAD NE Olympia, WA 98506	Client. Croth	Address: 2410 15	Phone: UZS 261-	Client Project # 0/5				Sample Number	172-9-7.5	272-9-10.5	3 72-10-5.5	4 TP-10-17 S	5 TP-10-13 S	6 TP-6-9.0	7 TP-6-11.0	8 TV-6-13.0	9 TP.11 - 3.0	10 TP-11-14.0	11 TP-11 - 16.0	12 TP-17 - 9.5	13 77-5-8.0	14 TP- S-10.0	15 TV-3-3.0	16 70.3.2.0	17 TP-1- 4.0	18 772 1-10.0	Keimquished by	Relinquished by:		Reinquished by:	Distribution White A Yellow - File Pil

	age: Z of Z				Collection: 10.71. ZCCR		Field Note/# Containers	and indam																	Remarks:			-		IAI 24HK 48HK Jay
p	4	4. Partlett	Nor - Sekin	Cod.	Shitty Date of	1000 100 100 100 100 100 100 100 100 10	1 1 1 10 100																		Sample Receipt:		Good Condition?	Cold?	Seals Intact?	I otal number of Containers
f Custody Recoi	Date: 10 21 20	Project Manager:	Project Name: 2000	Location: Selection	Collector: Cossico	00100 00100 00000000000000000000000000	222225	<																	Date / Time	ant and is at	Date / Time	Date / Time		
Chain o				861 6050		ole Container	e lype 444	. 201																	Received by	MANNIN MANNING	Received by	Damined his	Keceived by	
ental, Inc.	Ph: 360-352-2110 Fax 360-352-4154	1 1100 55	Ath Aup NF	6000 Fax: 425.	018 00	Sam	Upptn lime lyp	1111111110																	Date / Time	NO. A.UX HUU	Date / Time	Data / Tima	המות / וווות	- Originator
Libby Environm	4139 Libby Road NE Olympia, WA 98506	Client: Geo Eno	Address: Suito 15	Phone: UZS &61	Client Project # CI30	Cample Mumber	1 TO 1 1	2	3	4	5	9	7	8	8	10	11	12	13	14	15	16	17	18	Relinquished by:	Delinomitation hu	Keimquished by.	Ralinnuished hv	- Company of	Distribution White o Yellow - File, Pink

	Page: of	TT	0		of Collection: 10. 7.7.2.00		Field Note/# Containers		4	1	1 rain on 10/23	Raw HCID 10/22	N. S.													Remarks:			TAT OULD AOUD Davi	1 1 1 2411K 4011K
	43	In Bart	erte seri	WA.	Von The Date o	100 miles	241 25 25 250 Me	X	×	X	X									1	X	XI	X		X	ample Receipt:	ood Condition?	čpiq	als Intact?	Idi Number UL COmplete
stody Record	10 11 10	Manager:	Name: HOUDA	" Selvin O I	with a street	2000 CIO	ALT AL AL AL AL			1	The second	XX	X	×	×	X	X	~	×	×		1		X	2	Inhalme 1920 S	Date / Time Go	0	Date / Time Se	n.
Chain of Cus	Date:	Project	Project	S.O. Location	Collecto	18000	101 101 101 001 001				A Store and a store		1													Paril MANIA	PV Change and the		by	T
	2-2110	j	P X F	425.861.60	0		Sample Contair Type Type	N N 1.01	- V	- 0	-	0	2			10			V	10			V	~	t t	Received Received	Received		Received	
mental. Inc.	Ph: 360-352 Fax 360-352	29120055	INUES HU	SCCO Fax:	37.0.2.0		Depth Time	7.0 8:34	TAOT	5 12.5 09.11	0 10 0 10:01	CI 4. CI 1030	0 12-0 104	NI OH C	0 7.01130	5.0 15.0 15'	11	9.5 12:41	12-512-5	12121	2 16.0 13.	0 3 0 215	0.7 2.3	0 7 6 3 0	0 10.0315	VO 12	Date / Time		Date / Time	Pink - Onginator
Libby Environ	4139 Libby Road NE Olympia, WA 98506	Client: Table	Address. 2410	Phone: 425 %6	Client Project # OI	br	Sample Number	179-13-7.0	2 72.12.11.12	3 TP-14-12.5	4 17-8-10	5 TD-7-4	6 70-2-17	7. 79-16-4.0	8 TO-16-9	1-91-01 6	10 Dedlicat	11 77-17-9-5	12 TP-17-17 S	13 70-18-11 5	14 TP-18-16-C	15 -72-19-5	16 17-7-6	17 11-20-7	18 7 - 20 - 10	ixellinguished by:	Relinquished by		Kelinquished by:	Distribution While A Yellow - File

1. . 64

4 1 .

		3ge: Z of Z		6110	tes	Collection: 10.77.08	11111	1111	111			Field Note/# Containers	true on 10/23 DWD					5.08								1					Remarks:					IAT 24HR 48HR Jay
p		Pa	ad . Printle	saloh - Sel	Work noo	San Date of C	111111	11111	1/1/1/1	the of a late of	A Color Color Color	10/00/00/00/	×			Mar and A		TOT LA PADA	F												Sample Receipt:		Good Condition?	Cold?	Seals Intact?	I otal Number of Containers
of Custody Recor		Date: 10.27.0	Project Manager.	Project Name: Zavis	Location: Selin	Collector, Kasico	11111	1 1000	1 120 120/01	8/80/ 00/00/ 00/00/00/00/00/00/00/00/00/00/	181 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X	X		SI hun the		3													Date / Time	N- 10/ 20/ 21/ 20/	Date / Time	Date / Time		
Chain o				ME	5.261 6050					1	mple Container	ype Type July	5 402.																	0	Received by	A PARAVALL O WW	Received by	Decented hu	ערטער הא	
imental, Inc.	Ph: 360-352-2110	/ Fax 360-352-4154	FAGUNORES	ISUHAN AVP.	1-6000 Fax: 42.4	37.018.00					Sar	Depth Time T	5 4 5																		Date / Time	W. LAUSIUS M	Date / Time	Data / Time	7010	, Pink - Originator
Libby Environ	4139 Libby Road NE	Olympia, WA 98506	Client:	Address: SHID	Phone: 425 86	Client Project #						Sample Number	1 TV-4-7.5	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	Relinquished by:		Kelinquished by.	Relinquished hv	i fan menumbu man h	Distribution While of Yellow - File

			-		9	1		-	-	T	-	-	-	-	-	-	-	T-	1	-	-	-			-		_	-		7
	ade. of			2	Collection: 10 7 3, 170			Field Note/# Containers													-					Remarks:				TAT 24HR 48HR Day
	۵.	Zon Hart	Calu		the Date of		Steam 252	1 Ja	×7			×					×		×	X					_	Receipt:	tion?			er of Containers
ecord	27008	C. a.d.	Turca Car	D 1.10	Con Smi		A C L O L O L O L O L O L O L O L O L O L	x x y y																		183 Sample I	ne Good Condi	Cold?	ne Seals Intact	I otal Numbe
ustody R	10.2	ect Manager.	ect Name:	ation:	actor: Pssi	1 AND TO	CLASS CONTRACT	1 1 2 la		>			~	X	×	×		×			×	, 7	×			Uu loft 768	Date / Tin		Date / Tin	
Chain of C	Date	Proj	Proj	TO Loca	Coll		ac 200 100				3															WILLING	A		Y	
	0 4		Wall 47	5.861-60			ample Contain	odí · odí	1 1													+	+		2	7.35 Received t	Received b		Received b	
tal, Inc.	Ph: 360-352-211 Fax 360-352-415	5230	the Ave	OC Fax: 47	218.00		time S	1 220	0.01	20.01 D	0 10-15	07-11-0	0 11 35	0 11 155	2 1 000	0 2 40	2 1456	VAN O	0 1500	5 16:28	D 16:40	0111.20	0		-	13 CS CS IS	Date & Time		Date / Time	or
vironment	NE 06	ar Forma	Ho is H-	5.861.60	0137.1	-	mber	202	-4.6 6	10.01	A O A	7.0.7	11 0 21	NO N.	16.0 161	17.0.1	7.0 7.0	150.15	No or Si	15 7	12 0 12	10.0 10.	11011			7 10				(ellow - File, Pink - Original
Libby Env	4139 Libby Road Olympia, WA 985	Client:	Address: >u	Phone: UZ<	Client Project #		Sample Nu	1 351-5	2 GENS	3 361 - 5-	4 (3E1 - 5 -	5051-3-	6 66 9-3-	7 661-4	8 661-4	6	10 -18-	1166-8-	12 661-2-	13 GF1-2-	14 95-2-	15 91-1-9-	16 GE1-7	17	Dolinariahad hur	A name of	Relinquished by:	Deliveration of the	Kelitiduished by	Destribution Win. b. V

1111 ----

They want

Libby Environmental, Inc.

4139 Libby Road N.E., Olympia, WA 98506-2518

November 12, 2008

Cindy Bartlett GeoEngineers 8410 154TH Avenue NE Redmond, WA 98052

Dear Ms. Bartlett:

Please find enclosed the analytical data report for the Rayonier - Sekiu Project located in Sekiu, Washington. Soil and water samples were received and analyzed for Hydrocarbon Identification by NWTPH-HCID, Diesel & Oil by NWTPH-Dx/Dx Extended, and Polyaromatic Hydrocarbons by 8270C on November 3 - 7, 2008.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed. All soil samples are reported on a dry weight basis.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt President Libby Environmental, Inc.

SEKIU PROJECT Sekiu, Washington GeoEngineers Client Project #0137-018-00 Libby Project No.L-081030-1

Hydrocarbon Identification by NWTPH-HCID for Soil

Sample	Date	Surrogate	Gasoline	Diesel	Bunker C	Heavy Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	11/4/2008	116	nd	nd	nd	nd
TP-10-12.5	11/4/2008	int	nd	nd	D	nd
TP-6-13.0	11/4/2008	int	nd	nd	D	nd
TP-11-3.0	11/4/2008	int	nd	nd	D	nd
TP-11-3.0 Dup	11/4/2008	int	nd	nd	D	nd
Reporting Limit			20	50	100	100

"nd" Indicates not detected at listed detection limits.

"D" Indicates detected above the listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

SEKIU PROJECT Sekiu, Washington GeoEngineers Client Project #0137-018-00 Libby Project No.L-081030-1

Analyses of Bunker C & Oil (NWTPH-Dx Extended) in Soil

Sample	Date	Surrogate	Bunker C	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	11/3/2008	108	nd	nd
Method Blank	11/4/2008	95	nd	nd
Method Blank	11/6/2008	113	nd	nd
TP-1-10.0	11/3/2008	105	nd	nd
GEI-1-16.0	11/3/2008	107	nd	nd
GEI-6S-11.0	11/3/2008	106	nd	nd
GEI-6D-17.0	11/3/2008	102	nd	nd
GEI-7D-18.0	11/3/2008	111	nd	nd
GEI-7D-18.0 Dup	11/3/2008	91	nd	nd
GEI-1-12.0	11/4/2008	int	3210	nd
GEI-7D-15.0	11/4/2008	int	8820	nd
TP-1-6.0	11/6/2008	133	nd	16000
Practical Quantitati	on Limit		40	40

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

SEKIU PROJECT Sekiu, Washington GeoEngineers Client Project #0137-018-00 Libby Project No.L-081030-1

Analyses of Bunker C (NWTPH-Dx) in Water

Sample	Date	Surrogate	Bunker C
Number	Analyzed	Recovery (%)	(ug/l)
Method Blank	11/4/2008	95	nd
MW-3	11/4/2008	123	nd
MW-4	11/4/2008	96	nd
MW-6D	11/4/2008	113	nd
MW-7D	11/4/2008	84	nd
MW-7S	11/4/2008	123	nd
MW-8	11/4/2008	84	nd
Practical Quantita	tion Limit		400

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

SEKIU PROJECT Sekiu, Washington GeoEngineers Client Project #0137-018-00 Libby Project No.L-081030-1

Analyses of Bunker C (NWTPH-Dx) in Water

Sample	Date	Surrogate Recovery (%)	Bunker C
Mathod Plank	11/7/2008	120	(ug/1)
MW 1	11/7/2008	129	4400
MW-2	11/7/2008	108	nd
MW-5	11/7/2008	130	nd
Dreatical Quantity	tion Limit		400

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Attn: Sherry Chilcutt 4139 Libby Road NE Olympia, WA 98506

RE: Rayonier - Sekiu Fremont Project No: CHM081027-2

November 7th, 2008

Sherry:

Enclosed are the analytical results for the Rayonier - Sekiu soil & water samples submitted to Fremont Analytical on October 28th, 2008.

The samples were received in good condition –in the proper containers, properly sealed, labeled and within holding time. The soil samples were contained 4oz jars and the water samples in 1L Ambers. The cooler temperatures upon receipt were 6.4° C, 6.0° C & 5.5° C, which is within the laboratory recommended cooler temperature range (<4°C - 10°C). The samples were analyzed and stored in a refrigeration unit at the USEPA-recommended temperature of 4°C ± 2°C. There were no sample receipt issues to report.

Examination of these soil samples was conducted for the presence of the following:

Polyaromatic Hydrocarbons in Soil & Water by EPA Method 8270C

This application was performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

Notations for Method 8270C - Surrogate Recoveries:

- Sample ID: TP-2-12.0 2-Fluorobiphenyl: The surrogate recovery slightly exceed the laboratory control limits. However the Laboratory Control Sample (LCS), the Matrix Spike (MS), Matrix Spike Duplicate (MSD) & the second surrogate were all within range, demonstrating the analysis in control. In addition, the sample was "non-detect." No further action is required.
- Sample ID: TP-9-7.50 p-Terphenyl: The surrogate recovery slightly exceed the laboratory control limits. However the Laboratory Control Sample (LCS), the Matrix Spike (MS), Matrix Spike Duplicate (MSD) & the second surrogate were all within range, demonstrating the analysis in control. In addition, the sample was "non-detect." No further action is required.

Please contact the laboratory if you should have any questions about the report.

Thank you for using Fremont Analytical!

Sincerely,

16p

Michael Dee Sr. Chemist / Principal

mikedee@fremontanalytical.com

www.fremontanalytical.com

Analysis of Polyaromatic Hydrocarbons in Soil by EPA Method 8270C

Project: Sekiu - Rayonier Client: Libby Environmental Client Project #: N/A Lab Project #: CHM081027-2

						Duplicate		
EPA 8270C	MRL	Method	LCS	GEI-1-12.0	GEI-1-16.0	GEI-1-16.0	RPD %	GEI-6S-11.0
Date Extracted		11/4/08	11/4/08	11/4/08	11/4/08	11/4/08		11/4/08
Date Analyzed		11/4/08	11/4/08	11/4/08	11/4/08	11/4/08		11/4/08
Matrix			_	Soil	Soil	Soil		Soil
Naphthalene	0.1	nd		nd	0.5	0.5	9%	nd
1 Methylpaphthalene	0.1	nd		1.4	0.1	0.1	26%	nd
2 Methylnaphthalene	0.1	nd		nd	0.1	0.1	0%	nd
Acepaphthene	0.1	nd	135%	nd	nd	nd		nd
Acenaphthelene	0.1	nd	10070	nd	nd	nd		nd
Eluoropo	0.1	nd		0.5	nd	nd		nd
Phonesthrops	0.1	nd		0.5	nd	nd		nd
Anthracence	0.1	nd		0.2	nd	nd		nd
Elugraphana	0.1	nd		nd	nd	nd		nd
Puropo	0.1	nd	125%	0.3	nd	nd		nd
Repzo(a)anthracene	0.08	nd	12070	0.10	nd	nd		nd
Charactere	0.00	nd		nd	nd	nd		nd
Renze/b)fluoranthono	0.00	nd		0.09	nd	nd		nd
Benzo(b)fluoranthene	0.00	nd		nd	nd	nd		nd
Benzo(a)ourope	0.00	nd		nd	nd	nd		nd
ledepo(1.2.3.ed)ouropo	0.00	nd		nd	nd	nd		nd
Dihanza(a h)anthracana	0.00	nd		nd	nd	nd		nd
Benzo(a hi)pep/lene	0.00	nd		nd	nd	nd		nd
benzo(g,n,n)perviene	0.1	na		0.0	0.0	0.0		0.0
Total PAH Carcinog	ens			0.2	0.0	0.0		0.0
Total PAH Carcinogens Defined as: Benzo(a)anthracene, Chrysene, Benzo(b)fli Benzo(k)fluoranthene, Benzo(a)pyrene, Ideno(1,2,3-cd)pyrene & Dibenzo(a,h)anthr	uoranthene. acene							
Surrogate Recovery								
(Surr 1) 2-Fluorobiphenyl		112%	109%	100%	79%	77%		127%
(Surr 2) p-Terphenyl		124%	89%	129%	107%	127%		127%
"nd" Indicates not detected at listed reporti "int" Indicates that interference prevents de "J" Indicates estimated value "MRL" Indicates Method Reporting Limit "LCS" Indicates Laboratory Control Sample "MS" Indicates Matrix Spike "MSD" Indicates Matrix Spike Duplicate "RPD" Indicates Relative Percent Difference	ng limits atermination a							
Samples may be run under SIM Acceptable RPD is determined to be less th Acceptable Recovery Limits: Surrogates = 65% to 135%	nan 30%							

LCS, LCSD = 50% to 150% Surrogates and Spike Concentration = 25 ug/L

Analysis of Polyaromatic Hydrocarbons in Soil by EPA Method 8270C

Project: Sekiu - Rayonier Client: Libby Environmental Client Project #: N/A Lab Project #: CHM081027-2

						Duplicate	
EPA 8270C	MRL	GEI-6D-17.0	GEI-7D-15.0	GEI-7D-18.0	TP-13-7.0	TP-13-7.0	TP-13-11.0
(mg/kg)							
Date Extracted		11/4/08	11/4/08	11/4/08	11/4/08	11/4/08	11/4/08
Date Analyzed		11/4/08	11/4/08	11/4/08	11/4/08	11/4/08	11/4/08
Matrix		Soil	Soil	Soil	Soil	Soil	Soil
Nanhthalene	0.1	nd	0.1	nd	nd	nd	nd
1-Methylnanhthalene	0.1	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene	0.1	nd	1.5	nd	nd	nd	nd
Acenanothene	0.1	nd	nd	nd	nd	nd	nd
Acanaphthylene	0.1	nd	nd	nd	nd	nd	nd
Eluorano	0.1	nd	nd	nd	nd	nd	nd
Phoneanthropo	0.1	nd	5.2	nd	nd	nd	nd
Asthrasses	0.1	nd	17	nd	nd	nd	nd
Anthracene Elucrosthere	0.1	nd	2.2	nd	nd	nd	nd
Fluoranthene	0.1	nd	1.2	nd	nd	nd	nd
Pyrene	0.1	na	1.5	nd	nd	nd	nd
Benzo(a)anthracene	0.08	na	1.0	nd	nd	nd	nd
Chrysene	0.08	na	0.8	nd	nd	nd	nd
Benzo(b)fluoranthene	0.08	na	1.4	na	nd	nd	nd
Benzo(k)fluoranthene	0.08	na	1.2	na	na	nd	nd
Benzo(a)pyrene	0.08	nd	2.1	na	na	na	nd
Indeno(1,2,3-cd)pyrene	0.08	nd	nd	na	na	na	nd
Dibenzo(a,h)anthracene	0.08	nd	nd	nd	nd	na	na
Benzo(g,h,i)perylene	0.1	nd	0.3	nd	nd	na	na
Total PAH Carcinogens		0.0	7.1	0.0	0.0	0.0	0.0
Total PAH Carcinogens Defined as: Benzo(a)anthracene, Chrysene, Benzo(b)fluoran Benzo(k)fluoranthene, Benzo(a)pyrene, Ideno(1,2,3-cd)pyrene & Dibenzo(a,h)anthracene	thene,						
Surrogate Recovery						7044	1000/
(Surr 1) 2-Fluorobiphenyl		106%	135%	134%	106%	79%	132%
(Surr 2) p-Terphenyl		133%	95%	113%	120%	122%	131%
"nd" Indicates not detected at listed reporting lim "int" Indicates that interference prevents determi "J" Indicates estimated value "MRL" Indicates Method Reporting Limit "LCS" Indicates Laboratory Control Sample "MS" Indicates Matrix Spike "MSD" Indicates Matrix Spike Duplicate "RPD" Indicates Relative Percent Difference	nits ination						
Samples may be run under SIM Acceptable RPD is determined to be less than 3 Acceptable Recovery Limits: Surrogates = 65% to 135% LCS, LCSD = 50% to 150%	0%						

Surrogates and Spike Concentration = 25 ug/L

Analysis of Polyaromatic Hydrocarbons in Soil by EPA Method 8270C

Project: Sekiu - Rayonier Client: Libby Environmental Client Project #: N/A Lab Project #: CHM081027-2

EPA 8270C	MRL	TP-2-4.0	TP-2-12.0	TP-9-7.5	TP-9-10.5	TP-10-5.5	TP-10-12.5
(mg/kg)							
Date Extracted		11/4/08	11/4/08	11/4/08	11/4/08	11/4/08	11/4/08
Date Analyzed		11/4/08	11/4/08	11/4/08	11/4/08	11/4/08	11/4/08
Matrix		Soil	Soil	Soil	Soil	Soil	Soil
Naphthalana	0.1	nd	nd	nd	nd	nd	nd
1 Methylaephthelene	0.1	nd	nd	nd	nd	12	2.3
2 Methylaphthalene	0.1	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene	0.1	na	nd	nd	nd	0.2	nd
Acenaphthene	0.1	na	na	nd	nd	o.z	nd
Acenaphthylene	0.1	na	na	na	na	10	nd
Fluorene	0.1	nd	na	na	na	4.4	10
Phenanthrene	0.1	nd	na	na	na	3.4	1.1
Anthracene	0.1	nd	nd	nd	nd	3.2	0.6
Fluoranthene	0.1	nd	nd	nd	nd	6.4	0.4
Pyrene	0.1	nd	nd	nd	nd	6.4	1.6
Benzo(a)anthracene	0.08	nd	nd	nd	nd	3.4	1.0
Chrysene	0.08	nd	nd	nd	nd	1.9	0.8
Benzo(b)fluoranthene	0.08	nd	nd	nd	nd	2.5	0.9
Benzo(k)fluoranthene	0.08	nd	nd	nd	nd	0.6	0.7
Benzo(a)pyrene	0.08	nd	nd	nd	nd	1.0	0.5
Indeno(1,2,3-cd)pyrene	0.08	nd	nd	nd	nd	0.5	0.1
Dibenzo(a,h)anthracene	0.08	nd	nd	nd	nd	nd	0.1
Benzo(g,h,i)perylene	0.1	nd	nd	nd	nd	nd	0.2
Total PAH Carcinogens		0.0	0.0	0.0	0.0	9.9	4.1
Total PAH Carcinogens Defined as: Benzo(a)anthracene, Chrysene, Benzo(b)fluoran Benzo(k)fluoranthene, Benzo(a)pyrene, Ideno(1,2,3-cd)pyrene & Dibenzo(a,h)anthracene	thene,						
Surrogate Recovery							
(Surr 1) 2-Fluorobiphenyl		117%	138%	70%	135%	78%	78%
(Surr 2) p-Terphenyl		118%	125%	136%	134%	130%	126%
"nd" Indicates not detected at listed reporting lim "int" Indicates that interference prevents determi "J" Indicates estimated value "MRL" Indicates Method Reporting Limit "LCS" Indicates Laboratory Control Sample "MS" Indicates Matrix Spike "MSD" Indicates Matrix Spike Duplicate "RPD" Indicates Relative Percent Difference	iits nation						
Samples may be run under SIM Acceptable RPD is determined to be less than 30 <u>Acceptable Recovery Limits</u> Surrogates = 65% to 135%	0%						

LCS, LCSD = 50% to 150% Surrogates and Spike Concentration = 25 ug/L

Analysis of Polyaromatic Hydrocarbons in Soil by EPA Method 8270C

Project: Sekiu - Rayonier Client: Libby Environmental Client Project #: N/A Lab Project #: CHM081027-2

				MS	MSD	
EPA 8270C	MRL	TP-6-9.0	TP-6-13.0	TP-13-7.0	TP-13-7.0	RPD
(mg/kg)						%
Date Extracted		11/4/08	11/4/08	11/4/08	11/4/08	
Date Analyzed		11/4/08	11/4/08	11/5/08	11/5/08	
Matrix		Soil	Soil	Soil	Soil	
Nachthalana	0.1	nd	10			
1 Methylaephthalana	0.1	nd	1.0			
2 Methylaephthalene	0.1	nd	1.6			
2-methylhaphthalene	0.1	nd	1.0	77%	88%	13%
Acenaphthene	0.1	nd	1.1	1110	0070	1070
Acenaphthylene	0.1	nd	1.5			
Fluorene	0.1	na	2.2			
Phenanthrene	0.1	na	2.1			
Anthracene	0.1	nd	1.9			
Fluoranthene	0.1	nd	2.6		1000/	704
Pyrene	0.1	nd	2.6	116%	108%	1%
Benzo(a)anthracene	0.08	nd	2.3			
Chrysene	0.08	nd	0.5			
Benzo(b)fluoranthene	0.08	nd	1.7			
Benzo(k)fluoranthene	0.08	nd	1.2			
Benzo(a)pyrene	0.08	nd	0.7			
Indeno(1,2,3-cd)pyrene	0.08	nd	nd			
Dibenzo(a,h)anthracene	0.08	nd	nd			
Benzo(g,h,i)perylene	0.1	nd	0.2			
Total PAH Carcinogens	f.	0.0	6.4			
Total PAH Carcinogens Defined as: Benzo(a)anthracene, Chrysene, Benzo(b)fluorar Benzo(k)fluoranthene, Benzo(a)pyrene, Ideno(1.2.3-cd)pyrene & Dibenzo(a,h)anthracen	nthene, e					
Surrogate Recovery				000/	2004	
(Surr 1) 2-Fluorobiphenyl		133%	66%	88%	89%	
(Surr 2) p-Terphenyl		125%	96%	134%	123%	
"nd" Indicates not detected at listed reporting lin "int" Indicates that interference prevents determ "J" Indicates estimated value "MRL" Indicates Method Reporting Limit "LCS" Indicates Laboratory Control Sample "MS" Indicates Matrix Spike "MSD" Indicates Matrix Spike Duplicate "RPD" Indicates Relative Percent Difference	nits nination					
Samples may be run under SIM Acceptable RPD is determined to be less than 3 <u>Acceptable Recovery Limits</u> Surrogates = 65% to 135% LCS, LCSD = 50% to 150% Surrogates and Spike Concentration = 25 ug/L	30%					

Analysis of Polyaromatic Hydrocarbons in Soil by EPA Method 8270C

Project: Sekiu - Rayonier Client: Libby Environmental Client Project #: N/A Lab Project #: CHM081027-2

Lab Project #. Office roz 2		MS	MSD	
EPA 8270C	MRL	GEI-6S-11.0	GEI-6S-11.0	RPD
(mg/kg)				%
Date Extracted		11/4/08	11/4/08	
Date Analyzed		11/5/08	11/5/08	
Matrix		Soil	Soil	
Nashthalasa	0.1			
1 Methyleephthologo	0.1			
	0.1			
2-Methylhaphthalene	0.1	80%	85%	5%
Acenaphthelee	0.1	0070	0070	070
Acenaphthylene	0.1			
Fluorene	0.1			
Phenanthrene	0.1			
Anthracene	0.1			
Fluoranthene	0,1		2221	070/
Pyrene	0.1	68%	89%	21%
Benzo(a)anthracene	0.08			
Chrysene	0.08			
Benzo(b)fluoranthene	0.08			
Benzo(k)fluoranthene	0.08			
Benzo(a)pyrene	0.08			
Indeno(1,2,3-cd)pyrene	0.08			
Dibenzo(a,h)anthracene	0.08			
Benzo(g,h,i)perylene	0.1			
Total PAH Carcinogens	S			
Total PAH Carcinogens Defined as: Benzo(a)anthracene, Chrysene, Benzo(b)fluora Benzo(k)fluoranthene, Benzo(a)pyrene.	nthene,			
Ideno(1,2,3-cd)pyrene & Dibenzo(a,h)anthracen	ne			
Surrogate Recovery				
(Surr 1) 2-Fluorobiphenyl		89%	93%	
(Surr 2) p-Terphenyl		114%	119%	
"od" Indicates not detected at listed reporting li	mits			
"int" Indicates that interference prevents determ	nination			
"J" Indicates estimated value				
"MRL" Indicates Method Reporting Limit				
"LCS" Indicates Laboratory Control Sample				
"MSD" Indicates Matrix Spike Duplicate				
"RPD" Indicates Relative Percent Difference				
Contraction of the City				
Samples may be run under SIM Acceptable RPD is determined to be less than	30%			
Acceptable Recovery Limits:				
Surrogates = 65% to 135%				
LCS, LCSD = 50% to 150%				
Surrogates and Spike Concentration = 25 ug/L				

Analysis of Polyaromatic Hydrocarbons in Water by EPA Method 8270C

Project: Sekiu - Rayonier Client: Libby Environmental Client Project #: N/A Lab Project #: CHM081027-2

EPA 8270C	MRL	Method	LCS	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6D
(ug/L)		Blank							
Date Extracted		11/3/08	11/3/08	11/3/08	11/3/08	11/3/08	11/3/08	11/3/08	11/3/08
Date Analyzed		11/3/08	11/3/08	11/3/08	11/3/08	11/3/08	11/3/08	11/3/08	11/3/08
Matrix				Water	Water	Water	Water	Water	Water
1. 1. A. T	0.5	53		22		nd	nd	nd	nd
Naphthalene	0.5	na		na	nd	nd	nd	nd	nd
1-Methylnaphthalene	0.5	na		4.4	na	na	nu	nd	nd
2-Methylnaphthalene	0.5	na	4400/	3.5	na	nd	nd	nd	nd
Acenaphthene	0.5	na	110%	na	na	nd	nd	nd	nd
Acenaphthylene	0.5	na		na	na	nd	nd	nd	nd
Fluorene	0.5	na		1.8	na	na	nd	nd	nd
Phenanthrene	0.5	nd		na	na	nd	na	nd	nu
Anthracene	0.5	nd		nd	na	na	na	na	nd
Fluoranthene	0.5	nd		nd	nd	nd	na	na	na
Pyrene	0.5	nd	95%	nd	nd	nd	na	na	na
Benzo(a)anthracene	0.1	nd		nd	nd	nd	nd	nd	na
Chrysene	0.1	nd		nd	nd	nd	nd	nd	na
Benzo(b)fluoranthene	0.1	nd		nd	nd	nd	nd	nd	nd
Benzo(k)fluoranthene	0.1	nd		nd	nd	nd	nd	nd	nd
Benzo(a)pyrene	0.1	nd		nd	nd	nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene	0.1	nd		nd	nd	nd	nd	nd	nd
Dibenzo(a,h)anthracene	0.1	nd		nd	nd	nd	nd	nd	nd
Benzo(g,h,i)perylene	0.5	nd		nd	nd	nd	nd	nd	nd
Total PAH Carcinogens				0.0	0.0	0.0	0.0	0.0	0.0
Total PAH Carcinogens Defined as: Benzo(a)anthracene. Chrysene, Benzo(b)fluorant Benzo(k)fluoranthene, Benzo(a)pyrene, Ideno(1,2,3-cd)pyrene & Dibenzo(a,h)anthracene	hene,								
Surrogate Recovery									
(Surr 1) 2-Fluorobiphenyl		112%	120%	109%	114%	99%	101%	135%	98%
(Surr 2) p-Terphenyl		125%	113%	115%	120%	121%	127%	119%	117%
"Ind" Indicates not detected at listed reporting lim "Ind" Indicates that interference prevents determin "J" Indicates estimated value "MRL" Indicates Method Reporting Limit "LCS" Indicates Laboratory Control Sample "MS" Indicates Matrix Spike "MSD" Indicates Matrix Spike "RDD" Indicates Relative Percent Difference	its nation								
Samples may be run under SIM Acceptable RPD is determined to be less than 30 <u>Acceptable Recovery Limits</u> Surrogates = 65% to 135% LCS_LCSD_= 50% to 150%	%								

Surrogates and Spike Concentration = 25 ug/L

Analysis of Polyaromatic Hydrocarbons in Water by EPA Method 8270C

Project: Sekiu - Rayonier Client: Libby Environmental Client Project #: N/A Lab Project #: CHM081027-2

ate MS	MSD	
-8 MW-8	MW-8	RPD
_		%
08 11/3/08	11/3/08	
08 11/3/08	11/3/08	
er Soil	Soil	
106%	121%	13%
102%	99%	3%
1		
1049/	120%	
70 10470 0/ 1047/	120%	
70 12470	12070	

LCS, LCSD = 50% to 150% Surrogates and Spike Concentration = 25 ug/L

Libby Environm	tental, Inc.	Chain of Cu	stody Record	
4 139 Libby Road NE Olympia, WA 98566	Ph 330.352210 Fax 350-3524154	Date	Salielar	Page, Z of Z
Cient Lohn	Con Our	Project	Manager, ' Sherry Un	Par Ut
Phone	Fax	Jie Coast	n	
Cient Project #		Colect	0. 01	ate of Collection.
Sample Number	Deph Time Type	Container JOP 20 10 10 10	CF 553 CF 553	Field Note/# Containers
5-MM 1	\$125 Heo	Dulac [
2 MW-4				
1 MW - 6D				
6 MW-70				
2 M.W-8				
80				
15				
6.) 4 6.) 4				
15 6				
Var avertand by	Date / Time	Received by	Date (Tune Sample Receipt	Romarks
AN NAN	10/11/04 11.25m			
Reinquished by	Abrief Turree	Receivers by	Date / Time Good Condition?	A S
	1.1. Spectra registration of the second se Second second se Second second se Second second s Second second seco	артон национальной области на получи може данных от ото ИСОО СОСТИСКИИ ССССИИ И ПОЛИМИИ И И ОТОРИИ И И ОТОРИИ И В 1999 година и политики и политики и политики и политики и политики и политики и ПОЛИМИИ И И И И И И И И И И И	Call	
		REPORTION OF TWO	LARCE LITTY SEAS INTACT STATE	
Check Control White 1 at 1 and 2 to 9 to	1999 - Contraction and the second	An and a second or an and the second s	1 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	ACT 4014 4014 5.00

³ aje 1 of 1 2 1 Collection 1 0, 2,5 0,8	Freid Note# Contairers									21A1 24HK 48HR S.Day
stody Record Manager Conduction Dark Ust Name Routoned - Separit								Davi Lare Sample Receipt	Date / mo Date / mo Costron?	Eader / 1 mpc Secars Interface / 7 Y
22110 22110 224154 224154 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sample Container	227						PHEREMAN IN	a satisfield	Hecewell by
Nironmental, Inc. NE Ph 360.35 200 E. David Ph 360.35 200 Eax 100 Exc. 10 15 (2005 Fax 11 0 15 (2005 Fax	untior Depth Time		25-21 0 11 0 11-1 32-10 0 12 0 11-1	12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	82:91 54 S-1-7	1-10-0 10.0 17-2	ntiperante e a conset e conset e conset e a conset e a conset e a conset e a	10.03(4-21)(1)(4)	Date i inde	Bater - Bater
Libby Er 41391 bby Roa Olympia WA 98 Olympia WA 98 Client Phone Phone Client Project A	Sample N				1 001-10	10 COCOL		Reference	Marked IV	References for

Clent.	XU 	360-352-4	154		Date			Page	
terrorsen stateda suddallan Malan internet i 5	91.002	2.2			Project Man.	iger. C.D.		Low T'S and	
Address: NALD	Cutho	Alle	4	water and the second of the second of the second of the second of the	Project Nam	· Survey		ormur Selau	Log salved
mone: Star 261	0000	Fax	N ST	l-boso	Location	Xr kaul	- V		102 D
Client Project #	LOUP	00			Collector	Persion	Neg /	Con Date of Co	Rection: 10.26.0
Sample Number	CO	dan Antonio An	Sample	Container Type	10 10 10 10 10 10 10 10 10 10 10 10 10 1		CC: CC: CC: CC: CC: CC: CC: CC: CC: CC:		Field Note# Contain
1 GENERE O	10.7	07.426	szo G	2 402.		X			Z vaxs
2 66121210 0	16-0	05300							un O
3 68-65-50	99	03:00							
4 G.C. 455 - 1.D	0.11	06:30				×			
5 GEL 65 -12.0	16.0	05:50		• 1), seen					
9 (ACL-ED-12.0)	12.0	10:00							And a manufacture of the AMMAN AMMAN AND A MANAGEMENT AND A MANAGEMENT AND A MANAGEMENT AND A MANAGEMENT AND A
7.G21-60-77-0	2 62 - 63	07.11	1. Ar here			X			
B G G I - 75 - 7.0	07.	12:5D				\$ 			
99661-75 -150	0.22	1.05				×			
0 G C L - 75 - 17 - 6	0.2								
0-1-20-1-0-1		08-2							
2 8 2 - 7 0 - 2 3 0							6		
3 (161 × 10 × 15 × 0	0.5					X			
1 00 20-8 c	0	ð**							and the second
10								(a)	
								оного сарана Констанция 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	
19							****		
de la constante la c	Date/			Harmont W		Date Terre S	ample R		emarks
Contraction in the	Control of	I mary		and the second	N N	SUS MIL		1	
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			and Condition	> >	
ent segment when they	1. July -	**************************************		1494, 21 Sec. 28		Cate / Tane Sa	clocked 200	>	

di wasi ji ji Ma	
Page 1 of 2 	Field Notain Containers Freid Notain Containers Remarks Remarks
ody Record 10 21 0.7 anagor Circly Partly ame Easter South Dr.	Control of the second s
Chain of Cust Date Project Ni <i>Keil Lord</i> Project Ni <i>Keil Lord</i> Location	mpie Container
Onmental, Inc. Ph 369-352-2110 Fax 360-352-4114 Fax 40-352-4114 Ph 5-7-01-25-212 Ph 5-7-01-25-212	Opplith Time Sa 7 7 7 5 3 7 7 7 5 3 3 7 7 7 5 3 3 3 7 7 7 5 7 5 3 <td< td=""></td<>
LIDDY ENVIY 4139 Libby Road NE Olympia, WA 98506 Citent Carc I Address Scul LC Phone U.C.S. St Chent Project #	Sample Numb 1 The Sample Numb 2 TR-2-10 3 D-0-15 5 TD-10-11 1 TT-10-11 1

Page 1 of Land	Field Mate/H Containers	Evot w/surges	Remarks Remarks Cester Paups Cester Paups Cester Paups
OF Custody Record			$\frac{1}{1000} \int \frac{1}{1000} \int \frac{1}{1000} \int \frac{1}{10000} \int \frac{1}{10000000000000000000000000000000000$
, Inc. Chain 360-352-2110 360-352-2110 360-352-2154 50-5-25 50-5-55 50-5-55 50-5-55 50-5-55 50-5-55 50-5-55 50-5-55 50-50 50 50-50 50 50-50 50 50-50 50 50-50 50 50 50-50 50 50 50-50 50 50 50 50 50 50 50 50 50 50 50 50 5	Time Sample Container Type Type Type AMTEr & 5.00		1 Inter 1250 And 14
Libby Environmental 4139 Libby Road NE Pri Olympia, WA 98506 Fix Client Crof Frour 20 Address Sull 0 (5047) Pitune 4255, Sull 60	Sample Number Depth 2 M.U. 2 2 M.U. 2	4 MW 4 5 MW 5 6 6 MW 5 7 10 20 9 MW - 75 10 MW 8 11 12 12	15 15 18 18 18 18 19 10 10 20 10 20 10 20

é.

0

-8

Libby Environmental, Inc.

4139 Libby Road N.E., Olympia, WA 98506-2518

December 10, 2008

Cindy Bartlett GeoEngineers 8410 154TH Avenue NE Redmond, WA 98052

Dear Ms. Bartlett:

Please find enclosed the analytical data report for the Rayonier - Sekiu Project located in Sekiu, Washington. Soil samples were received on October 22, 2008, extracted on November 26, 2008 and analyzed for Diesel & Oil by NWTPH-Dx/Dx Extended on December 4, 2008.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed. All soil samples are reported on a dry weight basis.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt President Libby Environmental, Inc.

Phone (360) 352-2110 . Fax (360) 352-4154 . libbyenv@aol.com

LIBBY ENVIRONMENTAL CHEMISTRY LABORATORY

RAYONIER SEKIU PROJECT Sekiu, Washington GeoEngineers, Inc. Client Project #0137.018.00

Analyses of Bunker C (NWTPH-Dx/Dx Extended) in Soil

Sample Number	Date Analyzed	Surrogate Recovery (%)	Bunker C (mg/kg)
Method Blank	12/4/2008	98.9	nd
TP-13-7.0	12/4/2008	106.1	nd
TP-13-7.0 Dup	12/4/2008	89.6	nd
TP-13-11.0	12/4/2008	103.6	nd
TP-14-12.5	12/4/2008	85.2	nd
Practical Quantita	ation Limit		40

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Athanasius

	Page: 1 of 24		of Collection: 10. 22.200		Field Note/# Containers			6 - 1	12 11/10 12/27	KOM TICILI W/ KA											Remarks					TAT 24HR 48H 24HR
rd	ook Part	WA.	whith Date	site of the state	21/20/20/20/20	× •	X		×								×	\times	X		X X		Good Condition?	Cold?	Seals Intact?	Total Number of Containers
of Custody Reco	Project Manager:	Location: Se LU O	Collector: Sessico	101 101 101 101 101 101 101 101 101 101	10/ 20/ 50/ 20/ 20/ 05			8		X	× ;	× >	×	X	*				`	×	Date / Time	MMILLIO12109 1832	Contraction of the Date / Time		Date / Time	
Chain o		S. Put Loso		ample Container	Type Type Jor	20.4.5	-														A Doctor	MINNX VE:81	Received by Low		Received by	
nental, Inc.	Ph: 360-352-2110 Fax: 360-352-4154	6000 Fax 420	7.018.00		Depth Time T	7.0 8:35	11.0 2.45	12.5 09:10	10.010.00	4.01 1030	12 0 1045	1-0 HS	1 1 1 1 2 N	12511 7-51	9-5 12:40	12.5 12:55	VAL OF	212 0.20	0 6.0 2.35	76 3:05	0 10.03.15	10.27.0X	Date / Time		Date / Time	
Libby Environm	1139 Libby Road NE Diympia. WA 98506 Client: 020 Enco	Phone 425 861	Client Project # 013		Sample Number	1- P-13-7.0	2-12-13-11-0	3 71-14-12.5	4 12-8-10-0	5 TU-2-4.0	0.21-2-02 0	0 TV-16-4.0	0 11-11-15	10 Districta	11 77-17-9-5	12 TO-17-12.5	14 70-14-16-10	15 77-19-3.1	16 TP-7-6.1	17 TP-ZO-7.C	18 TV-20-10.	Relinquished by:	Relinquished by	5	Relinquished by	

March 9, 2009

Cindy Bartlett GeoEngineers, Inc. Plaza 600 Building 600 Stewart Suite 1700 Seattle, WA 98101

RE: Project: Sekui – Former Log Sorting Yard, 0137.018.00 ARI Job No.: ON75

Dear Cindy:

Please find enclosed the original Chain-of-Custody (COC) record, sample receipt documentation, and the final analytical results from the project referenced above.

Analytical Resources Inc. (ARI) accepted nine water samples on February 23, 2009 under the ARI job number referenced above. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for SIM PAH and NWTPH-Dx, as requested on the COC.

The LCS percent recovery of Benzo(a)anthracene was outside the control limits high for LCS-022509. The LCSD percent recovery was within control limits. No corrective action was required.

There were no other anomalies associated with the analyses of these samples.

An electronic copy of this report and all supporting raw data will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro Project Manager -For-Susan D. Dunnihoo Director, Client Services 206-695-6207 sue@arilabs.com

Enclosures

cc: eFile ON75

Request
Analysis
Laboratory
20
Record
Custody
of of
Chain

4611 South 134th Place, Suite 100 Tukwila, WA 98168 206-695-6200 206-695-6201 (fax) Notes/Comments
206-695-6200 206-695-6201 (fax) Notes/Comments
Notes/Comments
Received by: (Signature)
Printed Name:
Company:
Date & Time:
Receiver (Signatur Printed P Company Date & T

said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for signed agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless afternate retention schedules have been established by work-order or contract.

Analytical Chemists and Consultants	Coo	ler Receip	ot Forn	n ·	
ARI Client: <u>Geo Engineers</u> COC No: <u>N75</u>	Project Name: <u>Se</u> Delivered by: <u>Ha</u> Tracking No:	kiv - Forma	<u>er lag Se</u>	rting	lard
Proliminant Examination Phases		,			
					- -
Were intact, properly signed and dated custody Were custody papers included with the cooler? Were custody papers properly filled out (ink, sig Record cooler temperature (recommended 2.0-	y seals attached to th gned, etc.) 6.0 °C for chemistry	e outside of to coole	r? YES YES YES 13.1-13.4	NO NO NO _°C / 7.	8-19.9
Cooler Accepted by:		Date: 2123/01	Time:/	415	
Complete custody for	ms and attach all sh	nipping documents			
Log-In Phase:					
Log-In Phase: Was a temperature blank included in the cooler	?		YES (NO	
What kind of packing material was used?			Bu)	
Was sufficient ice used (if appropriate)?			YES	NO	
Were all bottles sealed in individual plastic bags	\$?	·	YES (NO	
Did all bottle arrive in good condition (unbroken)?		(YES	NO	•
Were all bottle labels complete and legible?	· · · · · · · · · · · · · · · · · · · ·		YES	NO	·
Did all bottle labels and tags agree with custody	/ papers?		YES	NO	
Were all bottles used correct for the requested a	analyses?		(YF\$	NO	
Do any of the analyses (bottles) require preserv	ation? (attach preser	vation checklist)	YES	NO OM	
Were all VOC vials free of air hubbles?	dion. (didon propor				
Was sufficient amount of sample sent in each be	ottle?		(YES	NO	
Samples Logged by:	Date: 2	2123/09 Time			
** Notify Project Mana	ager of discrepancie	es or concerns **	· · · ·		
Explain discrepancies or negative responses:			<u> </u>		
en e					
				-	· . ·
	By:	Da	ate:		
		· · · · · · · · · · · · · · · · · · ·		I	

Lab Sample ID: ON75A LIMS ID: 09-5216 Matrix: Water Data Release Authorized: Reported: 03/04/09

Date Extracted: 02/25/09 Date Analyzed: 03/02/09 14:41 Instrument/Analyst: NT1/YZ Sample ID: MW-1 SAMPLE

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard Event: 0137.018.00 Date Sampled: 02/19/09 Date Received: 02/23/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result		
91-20-3	Naphthalene	0.10	0.23		
91-57 - 6	2-Methylnaphthalene	0.10	0.10		
90-12-0	1-Methylnaphthalene	0.10	0.78		
208-96-8	Acenaphthylene	0.10	< 0.10 U		
83-32-9	Acenaphthene	0.10	< 0.10 U		
86-73-7	Fluorene	0.10	0.11		
85-01-8	Phenanthrene	0.10	< 0.10 U		
120-12-7	Anthracene	0.10	< 0.10 U		
206-44-0	Fluoranthene	0.10	< 0.10 U		
129-00-0	Pyrene	0.10	0.12		
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U		
218-01-9	Chrysene	0.10	< 0.10 U		
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U		
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U		
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U		
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U		
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U		
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U		
132-64-9	Dibenzofuran	0.10	< 0.10 U		

Reported in $\mu g/L$ (ppb)

d10-2-Methylnaphthalene	73.0%
d14-Dibenzo (a, h) anthracene	49.3%

Lab Sample ID: ON75B LIMS ID: 09-5217 Matrix: Water Data Release Authorized: Reported: 03/04/09

Date Extracted: 02/25/09 Date Analyzed: 03/02/09 15:04 Instrument/Analyst: NT1/YZ Sample ID: MW-2 SAMPLE

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard Event: 0137.018.00 Date Sampled: 02/19/09 Date Received: 02/23/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in $\mu g/L$ (ppb)

d10-2-Methylnaphthalene	71.7%
d14-Dibenzo(a, h) anthracene	85.3%

Lab Sample ID: ON75C LIMS ID: 09-5218 Matrix: Water Data Release Authorized: Reported: 03/04/09

Date Extracted: 02/25/09 Date Analyzed: 03/02/09 15:27 Instrument/Analyst: NT1/YZ Sample ID: MW-3

SAMPLE

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard Event: 0137.018.00 Date Sampled: 02/19/09 Date Received: 02/23/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in $\mu g/L$ (ppb)

d10-2-Methylnaphthalene	72.3%
d14-Dibenzo (a, h) anthracene	85.3%

Lab Sample ID: ON75D LIMS ID: 09-5219 Matrix: Water Data Release Authorized: A Reported: 03/04/09

Date Extracted: 02/25/09 Date Analyzed: 03/02/09 15:50 Instrument/Analyst: NT1/YZ Sample ID: MW-4 SAMPLE

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard Event: 0137.018.00 Date Sampled: 02/19/09 Date Received: 02/23/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in $\mu g/L$ (ppb)

d10-2-Methylnaphthalene	74.3%
d14-Dibenzo (a, h) anthracene	86.3%

Lab Sample ID: ON75E LIMS ID: 09-5220 Matrix: Water Data Release Authorized: Reported: 03/04/09

Date Extracted: 02/25/09 Date Analyzed: 03/02/09 16:12 Instrument/Analyst: NT1/YZ Sample ID: MW-5 SAMPLE

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard Event: 0137.018.00 Date Sampled: 02/19/09 Date Received: 02/23/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno (1,2,3-cd) pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in $\mu g/L$ (ppb)

d10-2-Methylnaphthalene	70.7%
d14-Dibenzo (a, h) anthracene	85.7%

Lab Sample ID: ON75F LIMS ID: 09-5221 Matrix: Water Data Release Authorized: Reported: 03/04/09

Date Extracted: 02/25/09 Date Analyzed: 03/02/09 16:35 Instrument/Analyst: NT1/YZ Sample ID: MW-6D SAMPLE

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard Event: 0137.018.00 Date Sampled: 02/19/09 Date Received: 02/23/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	0.19
86-73-7	Fluorene	0.10	0.10
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in $\mu g/L$ (ppb)

d10-2-Methylnaphthalene	67.3%
d14-Dibenzo(a, h) anthracene	90.38

Lab Sample ID: ON75G LIMS ID: 09-5222 Matrix: Water Data Release Authorized; Reported: 03/04/09

Date Extracted: 02/25/09 Date Analyzed: 03/02/09 16:58 Instrument/Analyst: NT1/YZ Sample ID: MW-7S SAMPLE

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard Event: 0137.018.00 Date Sampled: 02/19/09 Date Received: 02/23/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	0.80
86-73-7	Fluorene	0.10	0.25
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	0.14
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	0.11
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	0.11

Reported in μ g/L (ppb)

d10-2-Methylnaphthalene	67.3%
d14-Dibenzo(a,h)anthracene	87.0%

Lab Sample ID: ON75H LIMS ID: 09-5223 Matrix: Water Data Release Authorized:

Date Extracted: 02/25/09 Date Analyzed: 03/02/09 17:21 Instrument/Analyst: NT1/YZ Sample ID: MW-7D SAMPLE

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard Event: 0137.018.00 Date Sampled: 02/19/09 Date Received: 02/23/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	0.10
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	0.97
86-73-7	Fluorene	0.10	0.41
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	0.24
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	0.16
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i) perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	0.16

Reported in $\mu g/L$ (ppb)

d10-2-Methylnaphthalene	70.3%
d14-Dibenzo(a,h)anthracene	91.7%

Lab Sample ID: ON75I LIMS ID: 09-5224 Matrix: Water Data Release Authorized: Reported: 03/04/09

Date Extracted: 02/25/09 Date Analyzed: 03/02/09 17:44 Instrument/Analyst: NT1/YZ Sample ID: MW-8 SAMPLE

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard Event: 0137.018.00 Date Sampled: 02/19/09 Date Received: 02/23/09

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in $\mu g/L$ (ppb)

d10-2-Methylnaphthalene	67.7%
d14-Dibenzo(a, h) anthracene	86.0%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard 0137.018.00

Client ID	MNP	DBA	TOT OUT
MB-022509	71.7%	93.7%	0
LCS-022509	71.7%	1078	0
LCSD-022509	73.7%	93.38	0
MW-1	73.0%	49.3%	0
MW-2	71.7%	85.3%	0
MW - 3	72.3%	85.3%	0
MW - 4	74.3%	86.3%	0
MW-5	70.78	85.7%	0
MW-6D	67.3%	90.38	0
MW-75	67.3%	87.0%	0
MW-7D	70.38	91.7%	0
MW - 8	67.7%	86.0%	0

LCS/MB LIMITS QC LIMITS

(MNP)	= d10-2-Methylnaphthalene	(49-113)	(44-112)
(DBA)	= d14-Dibenzo(a,h)anthracene	(49-132)	(10-138)

Prep Method: SW3520C Log Number Range: 09-5216 to 09-5224

Lab Sample ID: LCS-022509 LIMS ID: 09-5216 Matrix: Water Data Release Authorized:

Date Extracted LCS/LCSD: 02/25/09

Date Analyzed LCS: 03/02/09 13:33 LCSD: 03/02/09 13:56 Instrument/Analyst LCS: NT1/YZ LCSD: NT1/YZ

Sample ID: LCS-022509 LAB CONTROL SAMPLE

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard Event: 0137.018.00 Date Sampled: NA Date Received: NA

Sample Amount LCS: 500 mL LCSD: 500 mL Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL Dilution Factor LCS: 1.00 LCSD: 1.00

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LC:	S Recovery	LCSD	Added-LCSD	Recovery	RPD
Naphthalene	2.08	3.00	69.3%	2.21	3.00	73.7%	6.1%
2-Methylnaphthalene	2.06	3.00	68.7%	2.22	3.00	74.0%	7.5%
1-Methylnaphthalene	2.03	3.00	67.7%	2.18	3.00	72.7%	7.1%
Acenaphthylene	2.31	3.00	77.0%	2.41	3.00	80.3%	4.2%
Acenaphthene	2.27	3.00	75.7%	2.37	3.00	79.0%	4.3%
Fluorene	2.51	3.00	83.7%	2.65	3.00	88.3%	5.4%
Phenanthrene	2.71	3.00	90.3%	2.61	3.00	87.0%	3.8%
Anthracene	2.81	3.00	93.7%	2.67	3.00	89.0%	5.1%
Fluoranthene	3.24	3.00	108%	3.10	3.00	1038	4.4%
Pvrene	3.28	3.00	109%	2.95	3.00	98.38	10.6%
Benzo(a)anthracene	3.36	3.00	112%	3.10	3.00	1038	8.0%
Chrysene	3.12	3.00	104%	2.82	3.00	94.0%	10.1%
Benzo(b)fluoranthene	3.44	3.00	115%	3.23	3.00	108%	6.3%
Benzo(k)fluoranthene	3.13	3.00	104%	2.62	3.00	87.3%	17.78
Benzo (a) pyrene	2.78	3.00	92.7%	2.44	3.00	81.3%	13.0%
Indeno(1,2,3-cd)pyrene	2.70	3.00	90.0%	2.45	3.00	81.7%	9.7%
Dibenz(a,h)anthracene	2.99	3.00	99.7%	2.60	3.00	86.7%	14.0%
Benzo(q,h,i)pervlene	3.08	3.00	103%	2.75	3.00	91.7%	11.3%
Dibenzofuran	2.32	3.00	77.3%	2.41	3.00	80.3%	3.8%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d10-2-Methylnaphthalene	71.7%	73.7%
d14-Dibenzo(a,h)anthracene	1078	93.3%

Lab Sample ID: MB-022509 LIMS ID: 09-5216 Matrix: Water Data Release Authorized: Reported: 03/04/09

Date Extracted: 02/25/09 Date Analyzed: 03/02/09 13:10 Instrument/Analyst: NT1/YZ Sample ID: MB-022509 METHOD BLANK

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard Event: 0137.018.00 Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 Ŭ
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in $\mu g/L$ (ppb)

d10-2-Methylnaphthalene	71.7%
d14-Dibenzo(a,h)anthracene	93.7%

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned Page 1 of 2 Matrix: Water

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yarc 0137.018.00

Data Release Authorized:

ARI ID	Sample	ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MB-022508 09-5216	Method HC ID:	Blank 	02/25/08	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	0.25 0.50 0.50	< 0.25 U < 0.50 U < 0.50 U 78.9%
ON75A 09-5216	MW-1 HC ID:	DRO/MOTOR OIL	02/25/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	0.25 0.50 0.50	< 0.25 U < 0.50 U 1.0 54.2%
ON75B 09-5217	MW-2 HC ID:		02/25/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	0.25 0.50 0.50	< 0.25 U < 0.50 U < 0.50 U 86.7%
ON75C 09-5218	MW-3 HC ID:		02/25/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	0.25 0.50 0.50	< 0.25 U < 0.50 U < 0.50 U 84.7%
ON75D 09-5219	MW-4 HC ID:		02/25/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	0.25 0.50 0.50	< 0.25 U < 0.50 U < 0.50 U 89.6%
ON75E 09-5220	MW-5 HC ID:		02/25/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	0.25 0.50 0.50	< 0.25 U < 0.50 U < 0.50 U 84.9%
ON75F 09-5221	MW-6D HC ID:		02/25/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	0.25 0.50 0.50	< 0.25 U < 0.50 U < 0.50 U 77.6%
ON75G 09-5222	MW-7S HC ID:		02/25/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	0.25 0.50 0.50	< 0.25 U < 0.50 U < 0.50 U 75.6%
ON75H 09-5223	MW-7D HC ID:		02/25/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oíl Bunker C o-Terphenyl	0.25 0.50 0.50	< 0.25 U < 0.50 U < 0.50 U 74.2%
ON751 09-5224	MW-8 HC ID:		02/25/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	0.25 0.50 0.50	< 0.25 U < 0.50 U < 0.50 U 82.4%

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned Page 2 of 2 Matrix: Water QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yarc 0137.018.00

Data Release Authorized Reported: 03/05/09

		Extraction	Analysis	EFV			
ARI ID	Sample ID	Date	Date	DL	Range	RL	Result
						·····	

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. Bunker C quantitation on total peaks in the range from C10 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

7°C 3/5/09

1. 1. j. 44

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid4a.i/20090304.b/0304a033.dARI ID: ON75MBW1Method: /chem3/fid4a.i/20090304.b/ftphfid4a.mClient ID: ON75MBW1Instrument: fid4a.iInjection: 04-MAR-2009 17:48Operator: JRDilution Factor: 1Macro: 04-MAR-2009Dilution Factor: 1Macro: 04-MAR-2009Diesel:04-MAR-2009 M.Oil:04-MAR-2009

			F	D:4A RESUL	TS				
Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc	
Toluene	1.404	0.003	26433	56869	GAS	(Tol-C12)	275351	9	
C8	1.491	-0.028	15544	18859	DIESEL	(C12-C24)	575440	49	
C10	2.187	0.007	22447	14332	M.OIL	(C24-C38)	413652	44*	
C12	2.702	0.000	1771	1200	AK-102	(C10-C25)	653716	46	
C14	3.134	0.007	2622	4495	AK-103	(C25-C36)	372530	65*	
C16	3.488	-0.008	3743	5617	OR.DIES	(C10-C28)	765522	53	
C18	3.845	-0.002	5597	4097	OR.MOIL	(C28-C40)	319294	44*	
C20	4.260	-0.008	77923	86549	1				
C22	4.638	-0.009	4762	4373	1				
C24	4.959	-0.001	3415	1960	1				
C25	5.086	-0.008	3370	2508	1				
C26	5.209	-0.009	2986	3795	1				
C28	5.436	-0.004	4051	2645	1		. 38		
C32	5.837	-0.004	5465	6249					1610
C34	6.060	-0.008	5632	7735	BUNKERC	(C10-C38)	1058211	146*	an george
Filter Peak	6.346	-1.364	972673	1038776				1 (A)	
C36	6.296	-0.044	5780	11307					
C38	6.673	-0.010	2328	9309					1.000 · · · ·
C40	7.139	-0.001	936	1441					
o-terph	4.028	-0.002	998576	551450	JET-A	(C10-C18)	425815	34	
Triacon Surr	5.639	-0.004	1205099	585119	I .		1.00		
		81. 5			* Indic	cates Filte	er Peak subtract	ed ș	·
Range Times:	NW Die NW M.	esel(2.70 Oil(4.96	2 - 4.960) - 6.68)	AK102(AK103(5.	2.18 - 5 09 - 6.34	.09) Jet 4) OR Die	A(2.18 - 3.85) sel(2.18 - 5.44	L)	n (1) 4 (1)
Surrogate		Area	Amount	%Rec					
o-Terphen	yl 5	551450	35.5	78.9					
Triaconta	ne 5	585119	36.6	81.2					
Analy	te	RF	Curve	Date					
o-Ternh	Surr	15529.5	04-MAR-	-2009					
Triacon	Surr	16008.5	04-MAR-	-2009					
Gas		29969.0	27-JAN-	-2009					

o-Terph Surr	15529.5	04-MAR-2009
Triacon Surr	16008.5	04-MAR-2009
Gas	29969.0	27-JAN-2009
Diesel	11833.0	04-MAR-2009
Motor Oil	9446.0	04-MAR-2009
AK102	14323.0	04-MAR-2009
AK103	5772.2	06-FEB-2009
JetA	12632.0	07-JAN-2009
OR Diesel	14494.0	
OR M.Oil	7304.0	

7267.4 04-MAR-2009

Bunker C

12 27/09

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid4a.i/20090304.b/0304a036.dARI ID: ON75AMethod: /chem3/fid4a.i/20090304.b/ftphfid4a.mClient ID: MW-1Instrument: fid4a.iInjection: 04-MAR-2009 18:30Operator: JRDilution Factor: 1Report Date: 03/05/2009Dilution Factor: 1Macro: 04-MAR-2009Calibration Dates: Gas:27-JAN-2009 Diesel:04-MAR-2009 M.Oil:04-MAR-2009

			FI	D:4A RESUI	JTS					
Compound	RT	Shift	Height	Area	Ra	ange	То	tal Area	Conc	
Toluene	======================================	0.002	21476	44735	GAS	(Tol-C12)		238709	====== 8	
C8	1.541	0.023	5634	11826	DIESEL	(C12-C24)		1368719	116	
C10	2.186	0.006	20583	12379	M.OIL	(C24-C38)		2344921	248*	
C12	2.701	-0.001	2336	1749	AK-102	(C10-C25)		1464951	102	
C14	3.131	0.003	5891	5633	AK-103	(C25-C36)		1989282	345*	
C16	3.493	-0.003	8173	7951	OR.DIES	(C10-C28)		2093100	144	
C18	3.843	-0.003	12643	10672	OR.MOIL	(C28-C40)		1774826	243*	
C20	4.256	-0.011	78117	74164	1					
C22	4.647	0.000	14326	6778						
C24	4.958	-0.002	17265	12057						
C25	5.087	-0.007	19487	19159						
C26	5.213	-0.005	22414	29993	1					
C28	5.439	-0.001	30381	24134						
C32	5.839	-0.002	30511	45096						
C34 655	6.062	-0.006	22894	44430	BUNKERC	(C10-C38)		3769916	519*	de la
Filter Peak	6.349	-1.360	1110691	1215733		- 		69.23		с., - •
C36	6.296	-0.044	17832	23051						
C38	6.677	-0.006	10343	38722		1990 B	s û.			
C40	7.123	-0.017	4135	9321			$\{(f_{i})\}_{i\in I}$			
o-terph	4.025	-0.005	700410	379730	JET-A	(C10-C18)	Ó	622694	49	
Triacon Surr	5.640	-0.003	876227	393111			S. Same	-1		
177 T. J.	ارمی اور دستان بالعاد از می می در از این				* India	cates Filt	er Pea	k subtrac	ted	
Range Times:	NW Die	sel(2.70	2 - 4.960)	AK102	(2.18 - 5	.09) Jet	A(2.1	8 - 3.85)		en e
	NW M.	Oil(4.96	- 6.68)	AK103(5.	09 - 6.34	4) OR Die	esel(2	.18 - 5.4	4) 🖓	225
	$C_{i} = \begin{pmatrix} e^{i\theta} & e^{-i\theta} \\ e^{i\theta} & e^{-i\theta} \\ e^{i\theta} & e^{-i\theta} \\ e^{i\theta} & e^{-i\theta} \\ e^{i\theta} & e^{-i\theta} \end{pmatrix}$	4.	n de la companya de La companya de la comp							· · · ·
Surrogate	e .	Area	Amount	%Rec						
o-Terpher	nvl 3	79730	24.5	54.3						
Triaconta	ane 3	93111	24.6	54.6						
مم	ate	סס	Curre	Date						

o-Terph Surr	15529.5	04-MAR-2009
Triacon Surr	16008.5	04-MAR-2009
Gas	29969.0	27-JAN-2009
Diesel	11833.0	04-MAR-2009
Motor Oil	9446.0	04-MAR-2009
AK102	14323.0	04-MAR-2009
AK103	5772.2	06-FEB-2009
JetA	12632.0	07-JAN-2009
OR Diesel	14494.0	
OR M.Oil	7304.0	
Bunker C	7267.4	04-MAR-2009

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard 0137.018.00

Client ID	OTER	TOT OUT
MB-022508	78.98	0
LCS-022508	78.4%	0
LCSD-022508	81.6%	0
MW - 1	54.2%	0
MW-2	86.7%	0
MW - 3	84.7%	0
MW - 4	89.6%	0
MW - 5	84.9%	0
MW-6D	77.6%	0
MW-7S	75.6%	0
MW-7D	74.2%	0
MW - 8	82.4%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(49-118) (45-112)

Prep Method: SW3510C Log Number Range: 09-5216 to 09-5224

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned Page 1 of 1

Sample ID: LCS-022508 LCS/LCSD

Lab Sample ID: LCS-022508 LIMS ID: 09-5216 Matrix: Water Data Release Authorized: M Reported: 03/05/09 QC Report No: ON75-GeoEngineers Project: Sekiu- Former Log Sorting Yard 0137.018.00 Date Sampled: 02/19/09 Date Received: 02/23/09

Date Extracted LCS/LCSD: 02/25/08 Date Analyzed LCS: 03/04/09 18:02

LCSD: 03/04/09 18:16 Instrument/Analyst LCS: FID/PKC LCSD: FID/PKC Sample Amount LCS: 500 mL LCSD: 500 mL Final Extract Volume LCS: 1.0 mL LCSD: 1.0 mL Dilution Factor LCS: 1.00 LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	1.82	3.00	60.7%	1.96	3.00	65.3%	7.4%

TPHD Surrogate Recovery

	LCS	LCSD
o-Terphenyl	78.4%	81.6%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

ГС 3]5/09

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid4a.i/20090304.b/0304a034.dARI ID: ON75LCSW1Method: /chem3/fid4a.i/20090304.b/ftphfid4a.mClient ID: ON75LCSW1Instrument: fid4a.iInjection: 04-MAR-2009 18:02Operator: JRDilution Factor: 1Macro: 04-MAR-2009Dilution Factor: 1Macro: 04-MAR-2009Dissel:04-MAR-2009 M.Oil:04-MAR-2009

				F	ID:4A RESU	LTS			
Co	mpound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
 То	luene	1.405	0.004	34757	49289	I GAS	(Tol-C12)	2353557	79
св Св	lucine	1.521	0.002	17984	18875	DIESEL	(C12-C24)	10768303	910
C1	0	2,181	0.001	167179	122790	M.OIL	(C24-C38)	477311	51*
C1	2	2.704	0.002	357511	190829	AK-102	(C10-C25)	12599257	880
C1	4	3,128	0.000	542862	235264	AK-103	(C25 - C36)	417092	72*
C1	6	3.496	0.000	632491	329224	OR.DIES	(C10-C28)	12811919	884
C1	8	3 852	0 005	434820	235759	OR MOTI	(C28 - C40)	236514	32*
C2	0	4.271	0.004	284865	265202		(/		
C2	2	4 649	0 001	112000	100147	ł			
C2	4	4.960	0.000	48448	39759	i i			
C2	5	5.093	-0.001	29853	23701	i			
C2	5	5 217	-0.001	17849	15199			*	
C2	8	5 442	0 002	6514	10851	ł			
C2	2	5 835	-0.006	3478	3440	e 4	a to the second s		1 617
C3	4	6 072	0.005	4391	5989	BUNKERC	(C10 - C38)	13033368	1793*
E i	ı lter Deak	6 357	-1.352	789557	834058	1 2.25	(010 050)	21 	
сл Сл	6	6 309	-0.032	4566	6803	1			
C3	8	6 688	0.005	1752	8236				
- C4	0	7 148	0.005	752	530	'ı			
0-	ternh	4 036	0.000	1026928	547849		(C10 - C18)	9463978	749
ט ידיר	iacon Surr	5 649	0.006	1207826	586299		(010 010)		
	Tacon barr	5.042	0.000	120,020	000200	* India	ates Filte	r Peak subtract	ced
. ===			; ====================================	*********		==========	==================	=========================	
Ra	nge Times:	NW Di	esel(2.70)	2 - 4.960)	AK102	(2.18 - 5)	.09) Jet	A(2.18 - 3.85)	
		NW M	.Oil(4.96	- 6.68)	AK103(5	.09 - 6.34	1) OR Die	sel(2.18 - 5.44	4)
	1 2 w C 7.2	Ξ.						and the second second	a de la companya de la
	- 18 71	25	,					Υ	2 · · · ·
	Surrogate		Area	Amount	*ReC				
	o-Terphen	vl	547849	35.3	78.4				
	Triaconta	ine	586299	36.6	81.4				
	Analy	te	RF	Curve	Date				
	o-Terph	Surr	15529 5	04-MAR					
	Triacon	Surr	16008.5	04-MAR	-2009				
	Gag	Curr	29969 0	27-1741	-2009				
	Diegel		11833 0	04-MAR	-2009				
	Motor Oi	1	9446 0	04-MAR	-2009				
	AK102	· -	14323 0	04-MAR	-2009				
	AK102		5772 2	06-FEB	-2009				
	Jet D		12632 0	07- TAN	-2009				
	OR Diese	<u>`</u>]	14494 0	5, 01H	2002				

OR M.Oil

Bunker C

7304.0

7267.4 04-MAR-2009

Analytical Resources Inc. TPH Quantitation Report

PC 3]5]09

Data file: /chem3/fid4a.i/20090304.b/0304a035.dARI ID: ON75LCSDW1Method: /chem3/fid4a.i/20090304.b/ftphfid4a.mClient ID: ON75LCSDW1Instrument: fid4a.iInjection: 04-MAR-2009 18:16Operator: JRDilution Factor: 1Macro: 04-MAR-2009Dilution Factor: 1Macro: 04-MAR-2009Dissel:04-MAR-2009 M.Oil:04-MAR-2009

		FI	D:4A RESUI	TS			
Compound RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene 1.40	0.004	39828	53570	GAS	(Tol-C12)	2520504	84
C8 1.52	2 0.003	19161	20347	DIESEL	(C12-C24)	11581621	979
C10 2.18	32 0.002	179042	130392	M.OIL	(C24-C38)	604496	64*
C12 2.70	0.002	382972	204215	AK-102	(C10-C25)	13535209	945
C14 3.12	28 0.001	593201	250318	AK-103	(C25-C36)	566982	98*
C16 3.49	0.001	685317	299780	OR.DIES	(C10-C28)	13815898	953
C18 3.85	0.006	454283	252547	OR.MOIL	(C28-C40)	321641	44*
C20 4.27	0.004	301239	296442	İ			
C22 4.65	50 0.002	116403	100381				
C24 4.96	51 0.002	52058	41718	j –			
C25 5.09	0.000	31482	24040	Í			
C26 5.21	.8 0.000	19437	17260	1		12	
C28 5.44	2 0.002	7415	10601			a la	
C32 5.84	5 0.004	4900	5490			C ²	
C34 6.06	0.001	5732	7552	BUNKERC	(C10-C38)	14122613	1943*
Filter Peak 6.35	58 -1.351	1069081	1169360		5.2.3		
C36 6.30	6 -0.034	5840	9805				
C38 6.68	0.001	2187	10169				
C40 7.13	8 -0.002	884	915		9-() ()		
o-terph 4.03	0.006	1061606	569803	JET-A	(C10-C18)	10203912	808
Triacon Surr 5.64	7 0.004	1238066	601019			Sec. Sec.	
				* India	cates Filt	er Peak subtract	ed
		=======================================					*****
Range Times: NW L	M od 1 (4 oc	2 - 4.960)	AKIU2 (2.10 - 5		A(2.10 - 3.03)	7.947 7. 1
	M.OII(4.96	- 0.00)	AKIU3(5.	09 - 0.34	I) OR DI	esei(2.10 - 5.44	tya≓ Antina at
પ્રચાર કે કોઈ છે. તે પર પર કે છે છે. કે કે ક							1411 H 전
Surrogate	Area	Amount	%Rec				
o-Terphenyl	569803	36.7	81.5				
Triacontane	601019	37.5	83.4				
Analyte	RF	Curve	Date				
o-Terph Surr	15529.5	04-MAR-	-2009				
Triacon Surr	16008.5	04-MAR-	-2009				
Gas	29969.0	27-JAN-	-2009				
Diesel	11833.0	04-MAR-	-2009				
Motor Oil	0446 0	04 143 5	2009				
	9446.0	04-MAR-	-2009				
AK102	9446.0 14323.0	04-MAR- 04-MAR-	-2009				
AK102 AK103	9446.0 14323.0 5772.2	04-MAR- 04-MAR- 06-FEB-	-2009 -2009 -2009				
AK102 AK103 JetA	9446.0 14323.0 5772.2 12632.0	04-MAR- 04-MAR- 06-FEB- 07-JAN-	-2009 -2009 -2009 -2009				

OR M.Oil

Bunker C

7304.0

7267.4 04-MAR-2009

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job:ON75Matrix: WaterProject:Sekiu- Former Log Sorting YardDate Received:02/23/090137.018.00

		Samp	Final	Prep
ARI ID	Client ID	Amt	VOL	Date
09-5216-022508MB1 09-5216-022508LCS1	Method Blank Lab Control	500 mL 500 mL	1.00 mL 1.00 mL	02/25/08 02/25/08
09-5216-022508LCSD1	Lab Control Dup	500 mL	1.00 mL	02/25/08
09-5216-ON75A	MW-1	500 mL	1.00 mL	02/25/09
09-5217-ON75B	MW - 2	500 mL	1.00 mL	02/25/09
09-5218-ON75C	MW - 3	500 mL	1.00 mL	02/25/09
09-5219-ON75D	MW - 4	500 mL	1.00 mL	02/25/09
09-5220-ON75E	MW - 5	500 mL	1.00 mL	02/25/09
09-5221-ON75F	MW-6D	500 mL	1.00 mL	02/25/09
09-5222-ON75G	MW-7S	500 mL	1.00 mL	02/25/09
09-5223-ON75H	MW-7D	500 mL	1.00 mL	02/25/09
09-5224-ON75I	MW - 8	500 mĽ	1.00 mL	02/25/09

March 11, 2009

Cindy Bartlett GeoEngineers, Inc. Plaza 600 Building 600 Stewart Suite 1700 Seattle, WA 98101

RE: Project: Sekui ARI Job No.: ON71

Dear Cindy:

Please find enclosed the original Chain-of-Custody (COC) record, sample receipt documentation, and the final analytical results from the project referenced above.

Analytical Resources Inc. (ARI) accepted four sediment samples on February 20, 2009 under the ARI job number referenced above. Please note that select sample containers were archived upon receipt, as requested on the COC. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for SIM PAHs, NWTPH-Dx, and TOC, as requested on the COC.

The internal standard area of Chrysene-d12 was outside the control limit high for sample **R3-S** at a ten fold dilution. The sample was re-analyzed at a fifty fold dilution and all internal standard areas were within control limits. Both sets of results have been submitted in this report for review. No further corrective action was required.

There were no other anomalies associated with the analyses of these samples.

An electronic copy of this report and all supporting raw data will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

1/1/1/1/1 Cheronne Oreiro

Project Manager -For-Susan D. Dunnihoo Director, Client Services 206-695-6207 sue@arilabs.com

Enclosures

cc: eFile ON71

Chain of Custody Recc	ord & Laboratory Analy	sis Request				
ARI Assigned Number: NTI	Turn-around Requested: No	1 ~ 1 1	Page:	oţ		Analytical Resources, Incorporated Analytical Chemists and Consultants
ARI Client Company:	Phone: 503- 0.24	ナンビカーナ	Date: 2/2 1/09	Ice Preser	115	4611 South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact: Chuld a Kat	1164		No. of Coolers:	Cooler Temps		206-695-6200 206-695-6201 (fax)
Client Project Name:					Analysis Requested	Notes/Comments
Client Project #:	Samplers		2015. Xq.	,Л.Г. р	5 MU9H	
Sample ID	Date Time	fatrix No. Containers	854C 14477 1711217	1994 94-1	הנטתנט בפנון זיי	
RIS	2/20/64 1330	¢ d (,	$X \mid X$	λ	0	
RI-D	- 3751		XX	$\boldsymbol{\lambda}$	0	
s-ta	K/1/5~	15	\times	\times	0	
R3-S	Unhi r	7 7	XX	X	0	
			•			
Comments/Special Instructions	Relinquished by: (Signature)	Received by: (Signature)	dan 22		Relinquished by: (Signature)	Received by: (Sionature)
0: Hold 1 Aminul Sample material	Printed Name	Printed Name:	Maria		Printed Name:	Printed Name:
	Company:	Company:			Company:	Company:
	Date & Time: 2/2/1/C/1 1204:	Date & Time: $\mathcal{P}[\mathcal{D}_1]$	09 RC		Date & Time:	Date & Time:

said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for signed agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Resources, Incorporated Analytical Chemists and Consultants

Cooler Receipt Form

	n	6		
ARI Client:	67 LO	Cno	Iners.	
			,	
COC No: _				

Assigned ARI Job No: 0N71

	Salar	
Project Name:_	JEKIS	
Delivered by:	Hand	
Tracking No:		

Preliminary Examination Phase:

Were intact, properly signed and dated custody seals attached to	o the outside of to cooler?	YES	(NO)
Were custody papers included with the cooler?		YES	NO
Were custody papers properly filled out (ink, signed, etc.)		(YES)	NO
Record cooler temperature (recommended 2.0-6.0 °C for chemis	stry	_7.7	²℃
Cooler Accepted by:		'ime: _//	.'55

Cooler Accepted by:

Complete custody forms and attach all shipping documents

Log-In Phase:

Was a temperature blank included in the cooler?	YES	NO
What kind of packing material was used?	The	E/BN
Was sufficient ice used (if appropriate)?	YES	NO I
Were all bottles sealed in individual plastic bags?	YES	NO
Did all bottle arrive in good condition (unbroken)?	YES	NO
Were all bottle labels complete and legible?	YES	NO
Did all bottle labels and tags agree with custody papers?	YES	NÒ
Were all bottles used correct for the requested analyses?	YES	NO
Do any of the analyses (bottles) require preservation? (attach preservation checklist)	YES	NO
Were all VOC vials free of air bubbles?	YES	NO
Was sufficient amount of sample sent in each bottle?	(YES	NO

_Date: <u>2/23/09</u> Time: <u>0745</u> Samples Logged by:

** Notify Project Manager of discrepancies or concerns **

RZ-S had no preserved sulfide jar. COC also roads RZ-S while jars labeled as RZ. Explain discrepancies or negative responses: R3-S seven jurs provided Bix listed on COC. Sample split from R2-S TOC jur and preserved for total sulfide. Client left dirt all over the outside of the jars. Date: 2/23/09 By:- Tw

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Lab Sample ID: ON71A LIMS ID: 09-5188 Matrix: Sediment Data Release Authorized: WW Reported: 03/09/09

Date Extracted: 02/26/09 Date Analyzed: 03/02/09 18:53 Instrument/Analyst: NT1/YZ GPC Cleanup: No Silica Gel Cleanup: Yes Alumina Cleanup: No QC Report No: ON71-GeoEngineers Project: Sekiu Event: NA Date Sampled: 02/20/09 Date Received: 02/21/09

Sample Amount: 10.1 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 40.9%

Sample ID: R1-S

SAMPLE

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	5.0	17
91-57-6	2-Methylnaphthalene	5.0	7.4
90-12-0	1-Methylnaphthalene	5.0	5.9
208-96-8	Acenaphthylene	5.0	< 5.0 U
83-32-9	Acenaphthene	5.0	19
86-73-7	Fluorene	5.0	7.9
85-01-8	Phenanthrene	5.0	29
120-12-7	Anthracene	5.0	91
206-44-0	Fluoranthene	5.0	830 E
129-00-0	Pyrene	5.0	780 E
56-55-3	Benzo(a) anthracene	5.0	98
218-01-9	Chrysene	5.0	62
205-99-2	Benzo(b) fluoranthene	5.0	28
207-08-9	Benzo(k) fluoranthene	5.0	28
50-32-8	Benzo(a)pyrene	5.0	23
193-39-5	Indeno(1,2,3-cd)pyrene	5.0	< 5.0 U
53-70-3	Dibenz(a,h)anthracene	5.0	< 5.0 U
191-24-2	Benzo(g,h,i)perylene	5.0	5.4
132-64-9	Dibenzofuran	5.0	6.4

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 89.7% d14-Dibenzo(a,h)anthracen 93.0%

Date Extracted: 02/26/09 Date Analyzed: 03/04/09 13:10 Instrument/Analyst: NT1/YZ GPC Cleanup: No Silica Gel Cleanup: Yes Alumina Cleanup: No

Sample ID: R1-S DILUTION

QC Report No: ON71-GeoEngineers Project: Sekiu Event: NA Date Sampled: 02/20/09 Date Received: 02/21/09

Sample Amount: 10.1 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 2.00 Percent Moisture: 40.9%

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	9.9	16
91-57-6	2-Methylnaphthalene	9.9	< 9.9 U
90-12-0	1-Methylnaphthalene	9.9	< 9.9 U
208-96-8	Acenaphthylene	9.9	< 9.9 U
83-32-9	Acenaphthene	9.9	18
86-73-7	Fluorene	9.9	< 9.9 U
85-01-8	Phenanthrene	9.9	29
120-12-7	Anthracene	9.9	85
206-44-0	Fluoranthene	9.9	840
129-00-0	Pyrene	9.9	780
56-55-3	Benzo(a) anthracene	9.9	90
218-01-9	Chrysene	9.9	58
205-99-2	Benzo(b) fluoranthene	9.9	24
207-08-9	Benzo(k) fluoranthene	9.9	24
50-32-8	Benzo(a)pyrene	9.9	21
193-39-5	Indeno(1,2,3-cd)pyrene	9.9	< 9.9 U
53-70-3	Dibenz(a,h)anthracene	9.9	< 9.9 U
191-24-2	Benzo(g,h,i)perylene	9.9	< 9.9 U
132-64-9	Dibenzofuran	9.9	< 9.9 U

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 84.7% d14-Dibenzo(a,h)anthracen 85.3%

Lab Sample ID: ON71B LIMS ID: 09-5189 Matrix: Sediment Data Release Authorized: WWW Reported: 03/09/09

Date Extracted: 02/26/09 Date Analyzed: 03/02/09 19:15 Instrument/Analyst: NT1/YZ GPC Cleanup: No Silica Gel Cleanup: Yes Alumina Cleanup: No QC Report No: ON71-GeoEngineers Project: Sekiu Event: NA Date Sampled: 02/20/09 Date Received: 02/21/09

Sample Amount: 10.5 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 25.9%

Sample ID: R1-D

SAMPLE

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	4.8	160
91-57-6	2-Methylnaphthalene	4.8	26
90-12-0	1-Methylnaphthalene	4.8	17
208-96-8	Acenaphthylene	4.8	5.2
83-32-9	Acenaphthene	4.8	54
86-73-7	Fluorene	4.8	12
85-01-8	Phenanthrene	4.8	33
120-12-7	Anthracene	4.8	33
206-44-0	Fluoranthene	4.8	340
129-00-0	Pyrene	4.8	300
56-55-3	Benzo (a) anthracene	4.8	83
218-01-9	Chrysene	4.8	66
205-99-2	Benzo(b)fluoranthene	4.8	24
207-08-9	Benzo(k) fluoranthene	4.8	24
50-32-8	Benzo(a)pyrene	4.8	22
193-39-5	Indeno(1,2,3-cd)pyrene	4.8	4.8
53-70-3	Dibenz(a,h)anthracene	4.8	< 4.8 U
191-24-2	Benzo(g,h,i) perylene	4.8	5.7
132-64-9	Dibenzofuran	4.8	12

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 91.0% d14-Dibenzo(a,h)anthracen 92.3%

Lab Sample ID: ON71C LIMS ID: 09-5190 Matrix: Sediment Data Release Authorized: WW Reported: 03/09/09

Date Extracted: 02/26/09 Date Analyzed: 03/02/09 19:38 Instrument/Analyst: NT1/YZ GPC Cleanup: No Silica Gel Cleanup: Yes Alumina Cleanup: No

ANALYTICAL RESOURCES INCORPORATED

Sample ID: R2-S SAMPLE

QC Report No: ON71-GeoEngineers Project: Sekiu Event: NA Date Sampled: 02/20/09 Date Received: 02/21/09

Sample Amount: 10.7 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 17.6%

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	4.7	7.5
91-57-6	2-Methylnaphthalene	4.7	< 4.7 Ŭ
90-12-0	1-Methylnaphthalene	4.7	< 4.7 U
208-96-8	Acenaphthylene	4.7	< 4.7 U
83-32-9	Acenaphthene	4.7	< 4.7 U
86-73-7	Fluorene	4.7	< 4.7 Ŭ
85-01-8	Phenanthrene	4.7	< 4.7 Ŭ
120-12-7	Anthracene	4.7	< 4.7 U
206-44-0	Fluoranthene	4.7	< 4.7 U
129-00-0	Pyrene	4.7	4.7
56-55-3	Benzo(a)anthracene	4.7	< 4.7 U
218-01-9	Chrysene	4.7	< 4.7 U
205-99-2	Benzo(b)fluoranthene	4.7	< 4.7 U
207-08-9	Benzo(k)fluoranthene	4.7	< 4.7 U
50-32-8	Benzo(a)pyrene	4.7	< 4.7 U
193-39-5	Indeno(1,2,3-cd)pyrene	4.7	< 4.7 U
53-70-3	Dibenz(a,h)anthracene	4.7	< 4.7 U
191-24-2	Benzo(g,h,i)perylene	4.7	< 4.7 U
132-64-9	Dibenzofuran	4.7	< 4.7 U

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 95.0% d14-Dibenzo(a,h)anthracen 96.3%

Lab Sample ID: ON71D LIMS ID: 09-5191 Matrix: Sediment Data Release Authorized: WW Reported: 03/09/09

Date Extracted: 02/26/09 Date Analyzed: 03/04/09 13:32 Instrument/Analyst: NT1/YZ GPC Cleanup: No Silica Gel Cleanup: Yes Alumina Cleanup: No

Sample ID: R3-S SAMPLE

QC Report No: ON71-GeoEngineers Project: Sekiu Event: NA Date Sampled: 02/20/09 Date Received: 02/21/09

Sample Amount: 10.2 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 10.0 Percent Moisture: 41.1%

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	49	< 49 U
91-57-6	2-Methylnaphthalene	49	< 49 U
90-12-0	1-Methylnaphthalene	49	< 49 U
208-96-8	Acenaphthylene	49	< 49 U
83-32-9	Acenaphthene	49	< 49 U
86-73-7	Fluorene	49	< 49 U
85-01-8	Phenanthrene	49	59
120-12-7	Anthracene	49	< 49 U
206-44-0	Fluoranthene	49	78
129-00-0	Pyrene	49	< 49 U
56-55-3	Benzo(a)anthracene	49	< 49 U
218-01-9	Chrysene	49	< 49 U
205-99-2	Benzo(b)fluoranthene	49	< 49 U
207-08-9	Benzo(k)fluoranthene	49	< 49 U
50-32-8	Benzo(a)pyrene	49	< 49 U
193-39-5	Indeno(1,2,3-cd)pyrene	49	< 49 U
53-70-3	Dibenz(a,h)anthracene	49	< 49 U
191-24-2	Benzo(g,h,i)perylene	49	< 49 U
132-64-9	Dibenzofuran	49	< 49 U

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 86.7% d14-Dibenzo(a,h)anthracen 86.7%

Lab Sample ID: ON71D LIMS ID: 09-5191 Matrix: Sediment Data Release Authorized: WW Reported: 03/09/09

Date Extracted: 02/26/09 Date Analyzed: 03/04/09 14:07 Instrument/Analyst: NT1/YZ GPC Cleanup: No Silica Gel Cleanup: Yes Alumina Cleanup: No

Sample ID: R3-S DILUTION

QC Report No: ON71-GeoEngineers Project: Sekiu Event: NA Date Sampled: 02/20/09 Date Received: 02/21/09

Sample Amount: 10.2 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 50.0 Percent Moisture: 41.1%

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	240	< 240 U
91-57-6	2-Methylnaphthalene	240	< 240 U
90-12-0	1-Methylnaphthalene	240	< 240 U
208-96-8	Acenaphthylene	240	< 240 U
83-32-9	Acenaphthene	240	< 240 U
86-73-7	Fluorene	240	< 240 U
85-01-8	Phenanthrene	240	< 240 U
120-12-7	Anthracene	240	< 240 U
206-44-0	Fluoranthene	240	< 240 U
129-00-0	Pyrene	240	< 240 U
56-55-3	Benzo(a)anthracene	240	< 240 U
218-01-9	Chrysene	240	< 240 U
205-99-2	Benzo(b)fluoranthene	240	< 240 U
207-08-9	Benzo(k)fluoranthene	240	< 240 U
50-32-8	Benzo(a)pyrene	240	< 240 U
193-39-5	Indeno(1,2,3-cd)pyrene	240	< 240 U
53-70-3	Dibenz(a,h)anthracene	240	< 240 U
191-24-2	Benzo(g,h,i)perylene	240	< 240 U
132-64-9	Dibenzofuran	240	< 240 U

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene D d14-Dibenzo(a,h)anthracen D

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: ON71-GeoEngineers Project: Sekiu

Client ID	MNP	DBA	TOT OUT
MB-022609	97.3%	111%	0
LCS-022609	87.3%	102%	0
R1-S	89.7%	93.0%	0
R1-S DL	84.7%	85.3%	0
R1-D	91.0%	92.3%	0
R2-S	95.0%	96.3%	0
R3-S	86.7%	86.7%	0
R3-S DL	D	D	0

		LCS/MB LIMITS	QC LIMITS
(MNP)	= d10-2-Methylnaphthalene	(44-100)	(37-106)
(DBA)	= d14-Dibenzo(a,h)anthracene	(46-121)	(16-118)

Prep Method: SW3546 Log Number Range: 09-5188 to 09-5191

Sample ID: LCS-022609 LAB CONTROL SAMPLE

Lab Sample ID: LCS-022609 LIMS ID: 09-5188 Matrix: Sediment Data Release Authorized: WW Reported: 03/09/09

Date Extracted: 02/26/09 Date Analyzed LCS: 03/02/09 18:30 Instrument/Analyst LCS: NT1/YZ QC Report No: ON71-GeoEngineers Project: Sekiu Event: NA Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 g-dry-wt Final Extract Volume LCS: 0.50 mL Dilution Factor LCS: 1.00

Analyte	LCS	Spike Added	Recovery
	<u> </u>		
Naphthalene	124	150	82.7%
2-Methylnaphthalene	129	150	86.0%
1-Methylnaphthalene	126	150	84.0%
Acenaphthylene	137	150	91.3%
Acenaphthene	132	150	88.0%
Fluorene	143	150	95.3%
Phenanthrene	128	150	85.3%
Anthracene	143	150	95.3%
Fluoranthene	144	150	96.0%
Pyrene	142	150	94.7%
Benzo(a)anthracene	151	150	101%
Chrysene	135	150	90.0%
Benzo(b)fluoranthene	158	150	105%
Benzo(k)fluoranthene	132	150	88.0%
Benzo(a)pyrene	142	150	94.7%
Indeno(1,2,3-cd)pyrene	128	150	85.3%
Dibenz(a,h)anthracene	137	150	91.3%
Benzo(q,h,i)perylene	148	150	98.7%
Dibenzofuran	132	150	88.0%

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 87.3% d14-Dibenzo(a,h)anthracen 102%

Date Extracted: 02/26/09 Date Analyzed: 03/02/09 18:07 Instrument/Analyst: NT1/YZ GPC Cleanup: No Silica Gel Cleanup: Yes Alumina Cleanup: No

Sample ID: MB-022609 METHOD BLANK

ANALYTICAL RESOURCES

INCORPORATED

QC Report No: ON71-GeoEngineers Project: Sekiu Event: NA Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	5.0	< 5.0 Ŭ
90-12-0	1-Methylnaphthalene	5.0	< 5.0 U
208-96-8	Acenaphthylene	5.0	< 5.0 U
83-32-9	Acenaphthene	5.0	< 5.0 U
86-73-7	Fluorene	5.0	< 5.0 U
85-01-8	Phenanthrene	5.0	< 5.0 Ŭ
120-12-7	Anthracene	5.0	< 5.0 Ŭ
206-44-0	Fluoranthene	5.0	< 5.0 U
129-00-0	Pyrene	5.0	< 5.0 Ŭ
56-55-3	Benzo(a)anthracene	5.0	< 5.0 Ŭ
218-01-9	Chrysene	5.0	< 5.0 Ŭ
205-99-2	Benzo(b)fluoranthene	5.0	< 5.0 Ŭ
207-08-9	Benzo(k)fluoranthene	5.0	< 5.0 U
50-32-8	Benzo(a)pyrene	5.0	< 5.0 Ŭ
193-39-5	Indeno(1,2,3-cd)pyrene	5.0	< 5.0 Ŭ
53-70-3	Dibenz(a,h)anthracene	5.0	< 5.0 U
191-24-2	Benzo(g,h,i)perylene	5.0	< 5.0 U
132-64-9	Dibenzofuran	5.0	< 5.0 Ŭ

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 97.3% d14-Dibenzo(a,h)anthracen 111%

ORGANICS ANALYSIS DATA SHEET

TOTAL DIESEL RANGE HYDROCARBONS NWTPHD by GC/FID-Silica and Acid Cleaned Page 1 of 1 Matrix: Sediment

QC Report No: ON71-GeoEngineers Project: Sekiu

Data Release Authorized: Reported: 03/05/09

ARI ID	Sample	ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MB-030309 09-5188	Method HC ID:	Blank 	03/03/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	5.0 10 10	< 5.0 U < 10 U < 10 U 104%
ON71A 09-5188	R1-S HC ID:	DRO/MOTOR OII	03/03/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	8.4 17 17	15 41 80 106%
ON71B 09-5189	R1-D HC ID:	DRO/RRO	03/03/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	6.4 13 13	7.9 14 33 95.6%
ON71C 09-5190	R2-S HC ID:		03/03/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	6.0 12 12	< 6.0 U < 12 U < 12 U 105%
ON71D 09-5191	R3-S HC ID:	DRO/RRO	03/03/09	03/04/09 FID4A	1.00 1.0	Diesel Motor Oil Bunker C o-Terphenyl	7.8 16 16	17 30 68 105%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. Bunker C quantitation on total peaks in the range from C10 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

190 3/5×1

1

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid4a.i/20090304.b/0304a049.dARI ID: ON71MBS1Method: /chem3/fid4a.i/20090304.b/ftphfid4a.mClient ID: ON71MBS1Instrument: fid4a.iInjection: 04-MAR-2009 21:33Operator: JRDilution Factor: 1Macro: 04-MAR-2009Dilution Factor: 1Calibration Dates: Gas:27-JAN-2009 Diesel:04-MAR-2009 M.Oil:04-MAR-2009

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.453	0.056	12269	18468	GAS	(Tol-C12)	371016	12
C8	1.506	5 -0.013	12103	26135	DIESEL	(C12-C24)	79224	7
C10	2.172	2 -0.008	4227	8328	M.OIL	(C24-C38)	51601	5
C12	2.702	0.000	3411	3235	AK-102	(C10-C25)	165318	12
C14	3.131	0.003	945	554	AK-103	(C25-C36)	45893	8
C16	3.502	0.006	1756	1427	OR.DIES	(C10-C28)	170468	12
C18	3.844	-0.002	536	329	OR.MOIL	(C28-C40)	52007	7
C20	4.265	5 -0.002	374	251	j			
C22	4.651	0.004	449	353	j.			
C24	4.956	-0.004	270	134	Ì			
C25	5.101	0.007	274	408	1			
C26	5.219	0.001	404	332				
C28	5.440	0.001	1045	804	1		an gan	
C32	5.850	0.009	1042	2076			1	
C34	6.075	0.008	529	350	BUNKERC	(C10-C38)	216414	30
Filter Peak	7.705	5 -0.005	129	194				. 7
C36	6.343	0.002	415	186				
C38	6.677	/ -0.006	327	325				
C40	7.133	-0.008	223	122				
o-terph	4.030	0.000	1189157	730573	JET-A	(C10-C18)	152349	12
Triacon Surr	5.645	0.002	1446080	721639			21 A.	
=======================================	======		=======	==========				=====
Range Times:	NW DI	esel(2.70	2 - 4.960) AK102	(2.18 - 5.	.09) Jet	A(2.18 - 3,85)	<u>م</u>
	NW N	1.011(4.96	- 6.68)	AK103 (5	.09 - 6.34	I) OR Die	esel(2.18 - 5.44) e - 2 - 1
1	ang mi						· · · · · · · · · · · · · · · · · · ·	4 C C C
0	ية معيد. مرد كورون	·	Amount	*Dog				
Surrogate		Area		*ReC				
o-Terphen	yl	730573	47.0	104.5				
Triaconta	ne	721639	45.1	100.2				
_								
Analy	te	RF	Curve	Date				
o-Terph	 Surr	15529 5	04-MAR	-2009				
Triacon	Gurr	16008 5	04-MAR	-2009				
Gag	Durr	29969 0	27-JAN	-2009				
Diegel		11833 0	04-MAR	-2009				
Motor Oi	1	9446 0	04-MAR	-2009				
AK102	-	14323 0	04-MAR	-2009				
AK103		5772 2	06-FEB	-2009				
Jet A		12632 0	07-,74N	-2009				
OR Diese	1	14494.0	0, 51M					

OR M.Oil

Bunker C

7304.0

7267.4 04-MAR-2009

рС 3/5-109

Data file: /chem3/fid4a.i/20090304.b/0304a051.dARI ID: ON71AMethod: /chem3/fid4a.i/20090304.b/ftphfid4a.mClient ID: R1-SInstrument: fid4a.iInjection: 04-MAR-2009 22:02Operator: JRDilution Factor: 1Report Date: 03/05/2009Dilution Factor: 1Macro: 04-MAR-2009Dilution Factor: 1

FID:4A RESULTS									
Compound	RT	Shift	Height	Area	Range	Total Area	Conc		
	========	=========			===============================	===================			
Toluene	1.408	0.007	22537	61846	GAS (Tol-C12)	380205	13	nr	
C8	1.500	-0.019	12437	30376	DIESEL (C12-C24)	1052779	89 /	SICC.	
C10	2.184	0.004	3697	3873	M.OIL (C24-C38)	2290793	243 /	phi	
C12	2.703	0.002	5995	3759	AK-102 (C10-C25)	1170020	82		
C14	3.133	0.005	4750	4885	AK-103 (C25-C36)	2109189	365		
C16	3.496	0.000	8195	6447	OR.DIES (C10-C28)	1909762	132		
C18	3.845	-0.001	10292	13485	OR.MOIL (C28-C40)	1606820	220		
C20	4.269	0.001	9887	10740	1				
C22	4.647	-0.001	14269	24092					
C24	4.960	0.000	15129	11147					
C25	5.093	-0.001	21045	22645	1				
C26	5.230	0.012	16922	12860					
C28	5.455	0.015	28422	25608	and the second sec	· ·			
C32	5.844	0.003	25185	43239	P.43	ţ.			
C34	6.062	-0.006	16334	36290	BUNKERC (C10-C38)	3438920	473		
Filter Peak	7.730	0.020	995	567	1	. 61.			
C36	6.362	0.021	10363	34772					
C38	6.651	-0.032	7616	27436		$t = \sqrt{t}$	et de la companya		
C40	7.135	-0.005	3074	5459	-	- 44 -	2.8		
o-terph	4.031	0.001	1318335	740880	JET-A (C10-C18)	463578			
Triacon Surr	5.647	0.004	1485367	736070					

Range Times: NW Diesel(2.702 - 4.960) AK102(2.18 - 5.09) Jet A(2.18 - 3.85) NW M.Oil(4.96 - 6.68) AK103(5.09 - 6.34) OR Diesel(2.18 - 5.44)

Surrogate	Area	Amount	%Rec
o-Terphenyl	740880	47.7	106.0
Triacontane	736070	46.0	102.2

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JetA OR Diesel	15529.5 16008.5 29969.0 11833.0 9446.0 14323.0 5772.2 12632.0 14494.0	04-MAR-2009 04-MAR-2009 27-JAN-2009 04-MAR-2009 04-MAR-2009 04-MAR-2009 06-FEB-2009 07-JAN-2009
Bunker C	7267.4	04-MAR-2009

3/5/09

Data file: /chem3/fid4a.i/20090304.b/0304a052.dARI ID: ON71BMethod: /chem3/fid4a.i/20090304.b/ftphfid4a.mClient ID: R1-DInstrument: fid4a.iInjection: 04-MAR-2009 22:16Operator: JRDilution Factor: 1Macro: 04-MAR-2009Dilution Factor: 1Macro: 04-MAR-2009Dilution Factor: 1

FID:4A RESULTS									
Compound	RT	Shift	Height	Area	Ra	inge	Total Area	Conc	
	=======			============	=========				
Toluene					GAS	(101-012)	266358	s bhl	<u>,</u>
C8	1.498	-0.020	11525	33915	DIESEL	(C12-C24)	717083	61 0/20	1
C10	2.183	0.003	3866	4237	M.OIL	(C24-C38)	1043123	110 RM	2
C12	2.702	0.000	5840	4385	AK-102	(C10-C25)	842190	59	
C14	3.133	0.006	4373	7958	AK-103	(C25-C36)	1005771	174	
C16	3.499	0.003	8415	6809	OR.DIES	(C10-C28)	1393532	96	
C18	3.850	0.004	7703	9029	OR.MOIL	(C28-C40)	507543	69	
C20	4.273	0.006	6565	6535	1				
C22	4.650	0.003	7936	10990	1				
C24	4.963	0.003	10201	7275	1				
C25	5.094	0.000	13620	11926	1				
C26	5.198	-0.020	495171	218170	İ				
C28	5.456	0.016	12968	34835	i		/ CL:		
C32	5.839	-0.002	9128	14851	İ		i.C.		
C34					BUNKERC	(C10-C38)	1877464	258	
Filter Peak	7,729	0.019	313	673	1			- 1 E.S.	
C36	6.357	0.017	3213	14853				2.1 1.1 2	
C38	6.633	-0.050	1927	6209				1813 4	1
C40	7.138	-0.002	761	1115	1				192
o-terph	4.036	0.006	1191806	667608	JET-A	(C10-C18)	396477	31	
Triacon Surr	5.642	-0.001	1335960	635538	į			1945 -	1. S. S. S. S. S. S. S. S. S. S. S. S. S.
Range Times:	NW Die	======================================	======== 2 - 4.960) AK102(========= 2.18 - 5.	.=====================================	A(2.18 - 3.85)		i antinen. Bridder
	NW M.	Oil(4.96	- 6.68)	AK103(5.	09 - 6.34) OR Die	esel(2.18 - 5.44	1) 🤫 🛒	1

Surrogate	Area	Amount	*Rec
o-Terphenyl	667608	43.0	95.5
Triacontane	635538	39.7	88.2

Analyte	RF	Curve Date
o-Terph Surr	15529.5	04-MAR-2009
Gas	29969.0	27-JAN-2009
Diesel	11833.0	04-MAR-2009
Motor Oil	9446.0	04-MAR-2009
AK102	14323.0	04-MAR-2009
AK103	5772.2	06-FEB-2009
JetA OD Diesel	12632.0	07-JAN-2009
OR Diesel	14494.0	
Bunker C	7267.4	04-MAR-2009
Dunner c	, 20,	01

PZ 3)5/04

Data file: /chem3/fid4a.i/20090304.b/0304a053.dARI ID: ON71CMethod: /chem3/fid4a.i/20090304.b/ftphfid4a.mClient ID: R2-SInstrument: fid4a.iInjection: 04-MAR-2009 22:30Operator: JRDilution Factor: 1Macro: 04-MAR-2009Dilution Factor: 1Macro: 04-MAR-2009Diesel:04-MAR-2009 M.Oil:04-MAR-2009

FID:4A RESULTS									
Compound	RT	Shift	Height	Area	Ra	ange	Tota	al Area	Conc
			=============		=========		=====		
Toluene	1.406	0.005	21618	46842	GAS	(Tol-C12)		376717	13
C8	1.500	-0.018	10602	29297	DIESEL	(C12-C24)		247924	21
C10	2.184	0.004	4104	3826	M.OIL	(C24-C38)		258009	27
C12	2.703	0.001	4814	3932	AK-102	(C10-C25)		355033	25
C14	3.136	0.008	2736	3639	AK-103	(C25-C36)		240050	42
C16	3.503	0.007	3467	6350	OR.DIES	(C10-C28)		426597	29
C18	3.851	0.005	3354	4026	OR.MOIL	(C28-C40)		194135	27
C20	4.273	0.006	2819	2886					
C22	4.652	0.005	2530	3557]				
C24	4.966	0.006	2767	3292					
C25	5.097	0.003	3623	4939					
C26	5.219	0.001	3900	5111	1.5				
C28	5.439	-0.001	5412	6966					
C32	5.839	-0.002	4438	7295					
C34	6.034	-0.033	3318	21280	BUNKERC	(C10÷C38)		609485	84
Filter Peak	7.717	0.008	210	193					
C36	6.338	-0.003	1438	600					
C38	6.697	0.014	888	1532					
C40	7.143	0.003	420	336	1				
o-terph	4.037	0.007	1269108	736297	JET-A	(C10-C18)		256850	20
Triacon Surr	5.642	-0.001	1441366	740214	1.			- 11 - 10	
			==============						=====

 Range Times:
 NW Diesel(2.702 - 4.960)
 AK102(2.18 + 5.09)
 Jet A(2.18 - 3.85)

 NW M.Oil(4.96 + 6.68)
 AK103(5.09 - 6.34)
 OR Diesel(2.18 - 5.44)

Surrogate	Area	Amount	%Rec
o-Terphenyl	736297	47.4	105.4
Triacontane	740214	46.2	102.8

20

Analyte	RF	Curve Date
o-Terph Surr	15529.5	04-MAR-2009
Triacon Surr	16008.5	04-MAR-2009
Gas	29969.0	27-JAN-2009
Diesel	11833.0	04-MAR-2009
Motor Oil	9446.0	04-MAR-2009
AK102	14323.0	04-MAR-2009
AK103	5772.2	06-FEB-2009
JetA	12632.0	07-JAN-2009
OR Diesel	14494.0	
OR M.Oil	7304.0	
Bunker C	7267.4	04-MAR-2009

3/5/09

Data file: /chem3/fid4a.i/20090304.b/0304a054.dARI ID: ON71DMethod: /chem3/fid4a.i/20090304.b/ftphfid4a.mClient ID: R3-SInstrument: fid4a.iInjection: 04-MAR-2009 22:44Operator: JRDilution Factor: 1Macro: 04-MAR-2009Dilution Factor: 1Macro: 04-MAR-2009Diesel:04-MAR-2009 M.Oil:04-MAR-2009

			FI	D:4A RESUL	TS		
Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.407	0.006	24433	33245	GAS (Tol-C12)	329742	
C8	1.544	0.026	5329	5914	DIESEL (C12-C24)	1275782	108 ph C
C10	2.183	0.003	3023	3338	M.OIL (C24-C38)	1788964	189 ppl
C12	2.702	0.001	3751	2379	AK-102 (C10-C25)	1393521	97
C14	3.134	0.006	2825	2969	AK-103 (C25-C36)	1691495	293
C16	3.496	0.000	5932	4281	OR.DIES (C10-C28)	2018007	139
C18	3.845	-0.001	8592	9417	OR.MOIL (C28-C40)	1198054	164
C20	4.267	0.000	9043	8519			
C22	4.647	0.000	14133	16100	ĺ		
C24	4.960	0.000	12947	14459	ĺ		
C25	5.093	-0.001	19324	21355	ĺ		
C26	5.197	-0.021	370251	189647	ĺ		
C28	5.423	-0.017	198499	149044			. Q.,
C32	5.840	-0.001	16302	11469	− − − − − − − − − − − − − − − − − − −		6 5
C34	6.098	0.030	8530	11419	BUNKERC (C10-C38)	3169818	436
Filter Peak	7.764	0.054	416	707		t, rå	
C36	6.359	0.019	6267	28809	1		
C38				ا	I		
C40						(
o-terph	4.031	0.002	1304461	731490	JET-A (C10-C18)	331274	26
Triacon Surr	5.644	0.001	1448208	695704			
		===========		==========	, ====================================		
Range Times:	NW Die	sel(2.70	2 - 4.960)	AK102 (2.18 - 5.09) Jet A	(2.18 - 3.85)	1
	NW M.	Oil(4.96	- 6.68)	AK103(5.	09 - 6.34) OR Dies	el(2.18 - 5.44	1)

Surrogate	Area	Amount	%Rec
o-Terphenyl	731490	47.1	104.7
Triacontane	695704	43.5	96.6

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JetA OR Diesel	15529.5 16008.5 29969.0 11833.0 9446.0 14323.0 5772.2 12632.0 14494.0	04-MAR-2009 04-MAR-2009 27-JAN-2009 04-MAR-2009 04-MAR-2009 04-MAR-2009 06-FEB-2009 07-JAN-2009
Bunker C	7267.4	04-MAR-2009

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: ON71-GeoEngineers Project: Sekiu

Client ID	OTER	TOT OUT
MB-030309	104%	0
LCS-030309	74.28	0
R1-S	106%	0
R1-D	95.6%	0
R2-S	105%	0
R3-S	105%	0

LCS/MB	LIMITS	QC LIMI	ΤS
--------	--------	---------	----

(OTER) = o-Terphenyl

(62-118) (49-125)

Prep Method: SW3510C Log Number Range: 09-5188 to 09-5191

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned Page 1 of 1

Lab Sample ID: LCS-030309 LIMS ID: 09-5188 Matrix: Sediment Data Release Authorized: Reported: 03/11/09

Date Extracted: 03/03/09 Date Analyzed: 03/04/09 21:48 Instrument/Analyst: FID/PKC

Sample ID: LCS-030309 LAB CONTROL

QC Report No: ON71-GeoEngineers Project: Sekiu

Date Sampled: 02/20/09 Date Received: 02/21/09

Sample Amount: 10.0 g Final Extract Volume: 1.0 mL Dilution Factor: 1.0

Range	Lab Control	Spike Added	Recovery
Diesel	96.4	150	64.3%

TPHD Surrogate Recovery

o-Terphenyl 74.2%

Results reported in mg/kg

3/5/09

Data file: /chem3/fid4a.i/20090304.b/0304a050.dARI ID: ON71LCSS1Method: /chem3/fid4a.i/20090304.b/ftphfid4a.mClient ID: ON71LCSS1Instrument: fid4a.iInjection: 04-MAR-2009 21:48Operator: JRDilution Factor: 1Macro: 04-MAR-2009Dilution Factor: 1Macro: 04-MAR-2009Diesel:04-MAR-2009 M.Oil:04-MAR-2009

			FI	D:4A RESUL	TS			
Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Tolvene	====== 1 410		30668	=======================================	======== Gag	(Tol-C12)	2640464	====== 88
Co	1 525	0.007	15154	27801	DIESEL	(C12 - C24)	11409811	964
C10	2 183	0.007	175210	104741		(C12 C24) (C24-C38)	237894	25
C10 C12	2 702	0.000	386464	195301	AK-102	$(C_{10} - C_{25})$	13427022	937
C12	3 125	-0 002	537454	228980	AK-103	(C25 - C36)	232163	40
C16	3 493	-0.003	611834	278019	OR DIES	(C10-C28)	13613870	939
C18	3 846	0.000	409981	230039	OR MOTI	(C28 - C40)	57585	8
C20	4 266	-0.002	252308	184866		(020 010)	5,505	0
C22	4.645	-0.002	104362	91834	1			
C24	4.959	0.000	45041	45176				
C25	5.093	-0.001	26405	32647				
C26	5.218	0.000	15986	18355				24.
C28	5.443	0.003	5231	6139				1 4 4
C32	5.838	-0.004	1414	1168				
C34	6.114	0.046	1072	2394	BUNKERC	(C10-C38)	13664917	1880
Filter Peak	7.715	0.006	110	184		(,		
C36	6.325	-0.016	634	1538	1			
C38	6.681	-0.002	376	429			1	
C40	7.153	0.012	212	307	T			1
o-terph	4.030	0.000	991911	519366	JET-A	(C10-C18)	10183304	806
Triacon Surr	5.649	0.006	999514	518528		. ,	a ada a a	1997 - C. 1997 -
					===========	.==============		===== ¹ . 75 * * * *
Range Times:	NW Die	sel(2.702	- 4.960)	AK102(2.18 - 5.	09) Jet A((2.18 ^{-73.85})	ં તેવું તે આવે
	NW M.	Oil(4.96	- 6.68)	AK103(5.	09 - 6.34	l) OR Diese	2.18 - 5.44	L) 🗄

Surrogate	Area	Amount	%Rec
o-Terphenyl	519366	33.4	74.3
Triacontane	518528	32.4	72.0

د. هيه

Analyte	RF	Curve Date
o-Terph Surr	15529.5	04-MAR-2009
Triacon Surr	16008.5	04-MAR-2009
Gas	29969.0	27-JAN-2009
Diesel	11833.0	04-MAR-2009
Motor Oil	9446.0	04-MAR-2009
AK102	14323.0	04-MAR-2009
AK103	5772.2	06-FEB-2009
JetA	12632.0	07-JAN-2009
OR Diesel	14494.0	
OR M.Oil	7304.0	
Bunker C	7267.4	04-MAR-2009

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

	ARI Job:	ON71
Matrix: Sediment	Project:	Sekiu
Date Received: 02/21/09		

		Client	Final		Prep
ARI ID	Client ID	Amt	Vol	Basis	Date
09-5188-030309MB1	Method Blank	10.0 g	1.00 mL	_	03/03/09
09-5188-030309LCS1	Lab Control	10.0 g	1.00 mL	-	03/03/09
09-5188-0N71A	R1-S	5.93 g	1.00 mL	D	03/03/09
09-5189-ON71B	R1-D	7.75 g	1.00 mL	D	03/03/09
09-5190-0N71C	R2-S	8.31 g	1.00 mL	D	03/03/09
09-5191-ON71D	R3-S	6.38 g	1.00 mL	D	03/03/09

Basis: D=Dry Weight W=As Received Diesel Extraction Report

Matrix: Sediment Data Release Authorized Reported: 02/26/09 Project: Sekiu Event: NA Date Sampled: 02/20/09 Date Received: 02/21/09

Client ID: R1-S ARI ID: 09-5188 ON71A

Analyte	Date	Method	Units	RL	Sample
Total Solids	02/23/09 022309#1	EPA 160.3	Percent	0.01	58.10
Total Organic Carbon	02/24/09 022409#1	Plumb,1981	Percent	0.198	9.64

RL Analytical reporting limit

Matrix: Sediment Data Release Authorized () Reported: 02/26/09 Project: Sekiu Event: NA Date Sampled: 02/20/09 Date Received: 02/21/09

Client ID: R1-D ARI ID: 09-5189 ON71B

Analyte	Date	Method	Units	RL	Sample
Total Solids	02/23/09 022309#1	EPA 160.3	Percent	0.01	72.50
Total Organic Carbon	02/24/09 022409#1	Plumb,1981	Percent	0.020	1.78

RL Analytical reporting limit

Matrix: Sediment Data Release Authorized Reported: 02/26/09 Project: Sekiu Event: NA Date Sampled: 02/20/09 Date Received: 02/21/09

Client ID: R2-S ARI ID: 09-5190 ON71C

Analyte	Date	Method	Units	RL	Sample
Total Solids	02/23/09 022309#1	EPA 160.3	Percent	0.01	78.50
Total Organic Carbon	02/24/09 022409#1	Plumb,1981	Percent	0.020	0.278

RL Analytical reporting limit

Matrix: Sediment Data Release Authorized: Reported: 02/26/09 Project: Sekiu Event: NA Date Sampled: 02/20/09 Date Received: 02/21/09

Client ID: R3-S ARI ID: 09-5191 ON71D

Analyte	Date	Method	Units	RL	Sample
Total Solids	02/23/09 022309#1	EPA 160.3	Percent	0.01	57.40
Total Organic Carbon	02/24/09 022409#1	Plumb,1981	Percent	0.020	2.17

RL Analytical reporting limit

Matrix: Sediment Data Release Authorized Reported: 02/26/09 Project: Sekiu Event: NA Date Sampled: 02/20/09 Date Received: 02/21/09

Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: ON71A Client ID: R1	-S					
Total Organic Carbon 0	2/24/09 H	Percent	9.64	20.1	9.72	107.6%

Matrix: Sediment Data Release Authorized Reported: 02/26/09 Project: Sekiu Event: NA Date Sampled: 02/20/09 Date Received: 02/21/09

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: ON71A Client ID: I	R1-S				
Total Solids	02/23/09	Percent	58.10	58.00 58.20	0.2%
Total Organic Carbon	02/24/09	Percent	9.64	9.54 9.38	1.4%

Matrix: Sediment Data Release Authorized: M Reported: 02/26/09

Project: Sekiu Event: NA Date Sampled: NA Date Received: NA

Analyte	Date	Units	LCS	Spike Added	Recovery
Total Organic Carbon	02/24/09	Percent	0.539	0.500	107.8%

Matrix: Sediment Data Release Authorized Reported: 02/26/09 Project: Sekiu Event: NA Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank
Total Solids	02/23/09	Percent	< 0.01 U
Total Organic Carbon	02/24/09	Percent	< 0.020 U

Matrix: Sediment Data Release Authorized: Reported: 02/26/09 Project: Sekiu Event: NA Date Sampled: NA Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
Total Organic Carbon NIST #8704	02/24/09	Percent	3.24	3.35	96.7%

APPENDIX C REPORT LIMITATIONS AND GUIDELINES FOR USE

APPENDIX C REPORT LIMITATION AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

READ THESE PROVISIONS CLOSELY

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Environmental Services Are Performed For Specific Purposes, Persons And Projects

This report has been prepared for the exclusive use by Rayonier, their authorized agents and regulatory agencies as part of their evaluation of environmental conditions at the subject site. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment or remedial action study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except Rayonier should rely on this environmental report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

THIS ENVIRONMENTAL REPORT IS BASED ON A UNIQUE SET OF PROJECT-SPECIFIC FACTORS

This report applies to the former Sekiu log sorting yard located in Clallam County, Sekiu, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

RELIANCE CONDITIONS FOR THIRD PARTIES

No other party may rely on the product of our services unless we agree in advance and in writing to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions.

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the GeoSciences, www.asfe.org.

RELIANCE CONDITIONS FOR THIRD PARTIES

No other party may rely on the product of our services unless we agree in advance and in writing to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions.

ENVIRONMENTAL REGULATIONS ARE ALWAYS EVOLVING

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

SUBSURFACE CONDITIONS CAN CHANGE

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

MOST ENVIRONMENTAL FINDINGS ARE PROFESSIONAL OPINIONS

Our interpretations of subsurface conditions, remedial alternatives and remedial costs are based on field observations and chemical analytical data from the sampling locations at the site documented in this report. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. There is always a potential that areas of contamination exist in portions of the site that were not sampled or tested during site characterization studies. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions or related remedial costs.

