

May 21, 2015

Mr. Art Skotdal Skotdal Enterprises, Inc. 2707 Colby Avenue, Suite 1200 Everett, Washington 98201

Re: Additional Subsurface Investigation and Preliminary Groundwater Interim Action Plan Snohomish Cleaners Site VCP ID No. NW2740 1419 Avenue D Snohomish, Washington

EPI Project Number: 69402.0

Dear Mr. Skotdal:

Environmental Partners, Inc. (EPI) is pleased to present this Additional Subsurface Investigation and Preliminary Groundwater Interim Action Plan letter report for addressing impacts associated with the Snohomish Square Cleaners situated within the Snohomish Square Shopping Center located at 1419 Avenue D in Snohomish, Washington (subject property). The location of the subject property is indicated on Figure 1.

The work documented in this letter report was conducted on behalf of Skotdal Enterprises, Inc. in an ongoing effort to comply with the Model Toxics Control Act (MTCA; Revised Code of Washington [RCW] Chap. 70.105D) and its implementing regulations (Washington Administrative Code [WAC] 173-340; collectively referred to as MTCA).

Based on a review of available data, tetrachloroethene (PCE) was released at the subject property, which has resultantly impacted soil and groundwater. The groundwater impacts have migrated offproperty to the south, onto a property owned by Snohomish County. The "Site", as defined by MTCA, includes portions of the subject property as well as part of the 'upper terrace' of the down-gradient impacted property owned by Snohomish County.

The Site is enrolled in the Department of Ecology's Voluntary Cleanup Program (VCP). The VCP ID No. is NW2740 and the Ecology-assigned project manager is John Guenther.

The initial focus of this letter report is to facilitate obtaining a property-specific 'No Further Action' (NFA) determination for the adjacent Snohomish County property, with a longer-term objective of obtaining an NFA determination for the remainder of the Site. The proposed treatment and data gap assessment described herein is based on input received from Ecology's VCP project manager and is intended to be

responsive to Ecology comments and expectations to facilitate issuance of a property-specific NFA determination for the upper terrace.

Prior Work

In preparation of this letter report, EPI has reviewed the following environmental investigation documents that were prepared for the Site:

- Source Area Removal and Remedial Action Pilot Study prepared by ERM-West, Inc. (ERM) and dated November 2007 (ERM Report)
- Phase II Environmental Site Assessment Data letter report prepared by CDM Smith Inc. (CDM Smith, previously Camp Dresser & McKee Inc.) and dated August 30, 2010 (CDM Smith Phase II Report)
- *Remedial Investigation and Focused Feasibility Study* prepared by CDM Smith and dated April 30, 2013 (CDM Smith RI Report)
- *Preliminary Remedial Investigation and Cleanup Action Plan* prepared by Associated Earth Sciences, Inc. (AES) dated August 12, 2014 (AES Report)

This body of work in combination with the additional investigation documented herein serves to provide sufficient information for selecting and implementing an appropriate interim action for impacts to shallow groundwater that are migrating from the Snohomish Cleaners property onto the downgradient Snohomish County property.

Setting and Brief History

The Snohomish Square Shopping Center is located in a commercially developed area within the City of Snohomish city limits. The property is currently zoned as COM for commercial development and is approximately 12 acres in size with multiple commercial buildings. The Snohomish Square Cleaners was located in the northwest corner of the main building at the subject property. The location of Snohomish Square Cleaners relative to the property boundary and the Snohomish County property is depicted on Figure 2. It should be noted that the dry cleaner has been closed and there is no current PCE use at the subject property.

According to the ERM Report, the release of PCE to soil and groundwater was identified at the subject property in 2003. The source of impact was identified as likely disposal of cleaning solvent in a planter box located to the north of the cleaners.

Based on a review of the ERM Report, impacts to soil appear to have been limited to the area surrounding the planter box. In August 2006, ERM conducted soil remediation in the source area by excavation with off-site disposal. Excavation activities occurred during four phases over an area of approximately 945 square feet to a depth of about 8.5 to 9 feet, which resulted in the removal and off-site disposal of approximately 415 tons of PCE-impacted soil. Based on EPI's review of the analytical

data for soil in the excavation bottom and sidewalls, the vast majority of impacted soil source material has been removed from the subject property and only marginal soil impacts remain.

Additional investigations performed by ERM and CDM Smith identified PCE impacts to groundwater that extend from Snohomish Square Cleaners to approximately 950 feet in a south to southwesterly direction. Impacts to groundwater have migrated off-property and have impacted the upper terrace portion of the property owned by Snohomish County ("Snohomish property") to the south of the subject property.

CDM Smith performed investigations at the Snohomish property in 2009 and 2010 in support of a planned redevelopment of that property. According to the CDM Smith RI Report, the Snohomish property is divided into two distinct geographic areas; upper (eastern) and lower (western) terraces. A discontinuous perched layer of groundwater was encountered on the upper terrace, which is where the PCE impacts to groundwater were encountered. This perched layer was demonstrated to be laterally confined to the upper terrace. Therefore, the groundwater impacts migrating onto the Snohomish property are limited to the perched layer in the upper terrace and do not extend onto the lower terrace.

Contaminants of Concern

Based on a review of the available data, the only contaminants of concern (COCs) for the Site are Tetrachloroethene (PCE) and its associated breakdown products. The list of COCs for the Site are as follows:

- PCE;
- Trichloroethene (TCE);
- cis-1,2-Dichloroethene (cis 1,2 DCE);
- trans-1,2-Dichlroroethene (trans 1,2 DCE); and,
- Vinyl chloride.

No other COCs have been identified for the Site.

DATA GAPS

In review of the above documents, EPI identified two data gaps that were necessary to investigate in order to select and design appropriate treatment of shallow groundwater impacts that extend to the upper terrace. The two identified data gaps are:

• PCE concentrations in soil within the source area – The remedial actions for soil previously conducted by ERM at the subject property were implemented to a cleanup level of 1.9 milligrams/kilogram (mg/kg). This cleanup level was based on protection of direct contact, which was in effect at the time that the remediation was performed. However, the

direct contact cleanup level is not currently considered protective of the soil leaching to groundwater exposure pathway. The extent of soil impacts at a concentration exceeding an applicable cleanup level that is protective of the soil leaching-to-groundwater exposure pathway represents a data gap. If there is an on-going soil source of PCE dissolution to groundwater, then additional actions in soil may be necessary in order to treat the resultant groundwater impacts and addressing this data gap is a critical step in understanding the extent of the source area that may require additional treatment.

 Width of groundwater impacts migrating off-site – The width of groundwater impacts migrating off-site, particularly at the property boundary, is not sufficiently defined to design an appropriate groundwater treatment system. Additional wells along the property line and to the east of the impacted area are warranted to more accurately define the width of the groundwater impacts.

It should be noted that the data gaps identified above represent only the immediate data gaps that required investigation to design and implement an appropriate interim action treatment system for groundwater impacts migrating off-site to the upper terrace property. These data gaps are not a comprehensive list of "Site-wide" data gaps that must be investigated to consider the Remedial Investigation complete at the Site. Ecology may require investigation of other data gaps for the Site as a whole before it can be considered "fully characterized".

OBJECTIVES

The general objective of the work documented herein was to sufficiently characterize the Site such that interim actions could be implemented to treat the off-property portion of impacted groundwater. The specific objectives of the investigation work were:

- Perform additional subsurface investigation and collect additional soil and groundwater samples to address the two data gaps listed above and provide a basis for an interim action design;
- Document the characterization of groundwater impacts migrating off-property;
- Select a remedial technology appropriate for addressing the off-property groundwater impacts; and,
- Propose a schedule for implementing interim actions.

ADDITIONAL SUBSURFACE INVESTIGATION

Additional subsurface activities were performed to delineate the impacts to soil in the source area at the Site, as well as confirm the width of PCE-impacts to groundwater at the downgradient property boundary for the subject property.

Soil Borings

EPI advanced three additional soil borings (SB1 through SB3) in the original PCE release area to delineate soil impacts to the cleanup level that is considered to be protective of groundwater. The three borings were advanced by ESN Northwest using direct push technology (DPT) drilling techniques. Soil boring locations are indicated on Figure 2.

EPI collected soil samples at two depth intervals at each of the three soil borings for a total of six soil samples. Each sample was collected using EPA Method 5035 to minimize volatilization and was analyzed for volatile organic compounds (VOCs) using EPA Method 8260.

Well Installation

EPI installed three new groundwater monitoring wells (MW-12 through MW-14) at the subject property in order to delineate the width of PCE-impacts to groundwater. The locations of the newly installed wells are indicated on Figure 2.

The wells were installed by Cascade Drilling, Inc. using standard hollow-stem auger (HSA) drilling techniques. The total depths of the new wells ranged from 20 to 25 feet below grade. Soils encountered during the boring advancement were described using the United Soil Classification System using ASTM Standard D2488-00, Visual-Manual Procedure. Soil descriptions are included in the borehole logs, which are included in Attachment A.

Each monitoring well was installed with 10 feet of 0.010-inch factory-slotted screen and appropriate sand filter pack, bentonite well seal, and traffic-rated flush mount monuments. The screened intervals ranged from 9 to 19 feet to 15 to 25 feet. The specific construction details of each well are included in the borehole logs in Attachment A. Following installation, each monitoring well was developed to the satisfaction of the on-site geologist.

Prior to collecting samples, the depth to groundwater was measured in all of the existing groundwater monitoring wells at the Site (including the monitoring wells located on the Snohomish County property) in order to collect sufficient data to generate a current piezometric surface map. The static depth to water of each well was measured using a Solinst electronic water level meter accurate to within 0.01 feet. To ensure reproducibility of the data, all measurements were taken at marked and surveyed measuring points on the north side of the top surface of the PVC well casing.

EPI purged each of the new monitoring wells using a peristaltic pump and standard low-flow sampling techniques until field parameters stabilized to within pre-established limits. Upon stabilization, EPI collected groundwater samples from each of the new monitoring wells. Each groundwater sample was analyzed for volatile organic compounds (VOCs) using EPA Method 8260. Single-use peristaltic pump tubing was used between each sampling location to prevent cross contamination.

Findings

Subsurface Conditions

Subsurface soils encountered during the investigation and documented herein consisted of silt and sand mixture within the upper 10 to 15 feet. Below these silt and sand mixtures was a prevalent gravel unit with varying quantities of sand and silt. These soil descriptions are consistent with conditions documented in the previously prepared reports listed above in "Prior Work". Soil boring logs are included in Attachment A.

Groundwater was encountered in MW-11 through MW-13 at depths ranging from 12 to 19 feet below ground surface (bgs) at the time of drilling.

Piezometric Conditions

On January 20, 2015, static water levels ranged from 1.68 to 21.70 feet below top of casing in all of the wells at the Site. A summary of the depth to water, and monitoring well and groundwater elevations are provided in Table 1. Figure 3 depicts groundwater elevation contours and inferred groundwater flow direction at the subject property. These data indicate that groundwater flow direction at the subject property is generally in a south-southwest direction with a gradient of 0.017 foot/foot.

Soil

A total of six soil samples were submitted for VOC analysis. Table 2 presents a summary of the resulting analytical data. Analytical results from this sampling event along with previous soil sampling results collected during the remedial excavation are presented graphically on Figure 4. Attachment B contains copies of the hardcopy analytical reports.

PCE was detected in two soil samples (SB1 [at 2 feet bgs] and SB2 [at 10 feet bgs]) at concentrations of 0.028 milligrams/kilogram (mg/kg) and 0.065 mg/kg, respectively. PCE was not detected at a concentration exceeding the method detection limit (MDL) in any other sample analyzed.

Naphthalene was detected in one soil sample (SB [at 2 feet bgs]) at a concentration of 0.096 mg/kg, which is below the MTCA Method A Soil CUL of 5 mg/kg. Naphthalene was not detected at a concentration exceeding the MDL in any other sample analyzed and is not considered a contaminant of concern for the Site.

Groundwater

A total of three groundwater samples were collected from the newly installed wells MW-11 through MW-13 and were submitted for VOC analysis. Table 3 presents a summary of the resulting analytical data. Analytical results are presented graphically on Figure 5. Attachment B contains copies of the hardcopy analytical reports. PCE was detected in two of the three samples (MW-12 and MW-13) at concentrations of 1.5 micrograms/Liter (μ g/L) and 3.6 μ g/L, respectively. PCE was not detected in the sample from MW-14 at a reporting limit of 1 μ g/L and no other COCs were detected in any of the groundwater samples.

CONCEPTUAL SITE MODEL

The conceptual site model (CSM) is based on the data collected during the investigative actions performed at the Site and identifies potential human and ecologic exposure pathways. This CSM was developed based on the investigation documented herein and a review of the reports listed in the "Prior Work" section on page 2. The elements of the CSM that are supported by these data are:

- The COCs for the Site are PCE, TCE, cis 1,2-DCE, trans 1,2-DCE, and vinyl chloride.
- The subject property and the off-site impacted property are currently zoned as COM for commercial development. Commercial development is currently planned for the Snohomish County parcel located to the south of the subject property.
- The environmental media where COCs have been detected at concentrations greater than applicable regulatory levels at the subject property are soil and groundwater.
- Uppermost groundwater at the Site is a discontinuous perched groundwater table located at depths ranging from 1.6 feet to 21.7 feet below grade. The perched groundwater is not a source of drinking water and is unlikely to be hydraulically connected to a current or potential drinking water source. The source of drinking water at the subject property and surrounding properties is a public water supply and water wells are not a component of any planned development.
- The likely source of impacts to soil are historical releases of PCE to the planter box south of the Snohomish Square Cleaners. The data indicate that impacts to soil are directly associated with this release. Substantial soil remediation has been performed in the source area and only a small quantity of residual soil impact remains at the edges of the remedial excavation. The remaining residual soil impacts are generally limited to less than 10 feet in depth.
- Since the COCs detected in soil and groundwater at the subject property are volatile, indoor air is a medium of concern for current and future buildings constructed at the subject property. For both on- and off-property areas of groundwater impacts, indoor air will be addressed through engineering controls, if necessary, to prevent vapor intrusion into buildings.
- Potential human exposure pathways to COCs are ingestion and direct contact with soil, and, conservatively, ingestion of groundwater (as drinking water).
- There are no complete potential exposure pathways for ecological receptors at the subject property. Therefore, based on WAC 173-340-7490, the subject property qualifies for a Terrestrial Ecological Evaluation (TEE) exclusion.

- Under MTCA, (WAC 173-340-740(6)(d)) the standard point of compliance for soil is 15 feet, which corresponds to direct contact for human health.
- Under MTCA, (WAC 173-340-720(8)(a)), the standard point of compliance for groundwater is the point where groundwater cleanup levels have been attained.
- For purposes of obtaining a site-specific NFA for the Snohomish County parcel to the south of the subject property, under MTCA, (WAC 173-340-720(8)(c)) a conditional point of compliance is established for groundwater at the southern property boundary of the Snohomish Square Shopping Center property.

CLEANUP LEVEL DEVELOPMENT

EPI developed appropriate cleanup levels (CULs) for the COCs to ensure protectiveness of current and potential exposure pathways as identified in the CSM in order to design an appropriate and protective interim action. The CULs to be used must be protective of human health and the environment based upon the exposure pathways that remain after completion of a selected remedial action and implementation of institutional and/or engineering controls. In some cases, protectiveness of certain exposure pathways may be addressed exclusively by implementation of engineering controls.

To evaluate soil CULs, the following potential exposure pathways were considered:

- Direct contact with soil for residential exposures; and
- Soil leaching-to-groundwater as a drinking water source.

The soil CULs used for direct contact are the MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses (MTCA Method A Soil CUL) and/or Method B Soil Cleanup Level for Direct Contact (MTCA Method B Soil CUL), which are provided in the Cleanup Levels and Risk Calculations II (CLARC; *i.e.*, book values)

In order to evaluate CULs for soil leaching-to-groundwater exposure pathways, CULs were calculated using MTCA equation 747-1. These CUL calculations are presented in Attachment C. The resultant CULs for the soil leaching to groundwater exposure pathway are presented in Table 4.

The MTCA Method A and Method B groundwater CULs are presented in Table 4 for comparative purposes.

EPI has selected the MTCA Method A CULs for groundwater and the associated soil to groundwater leaching values for CULs for the Site. If a Method A value is not available, then the MTCA Method B value is used. These cleanup levels are summarized in Table 4.

The selected soil CULs are fully protective of both the soil leaching to groundwater and direct contact exposure pathways.

DISTRIBUTION OF IMPACTS

The following sections describe the current state of the characterization of the soil source area and associated shallow groundwater impacts at the Site. The data discussed are a summary of the body of data collected during various environmental investigations at the Site, including the data gathered during this phase of work. The bibliography of the reports reviewed for this summary is included above (see page 2, "Prior Work").

Soil

The vast majority of the soil source at the Snohomish Square Cleaners was remediated through soil excavation with off-site disposal, which is documented in ERM Report. At the time of the remedial excavation, the CUL selected for PCE in soil was 1.9 mg/kg based on the MTCA Method B soil CUL for 'direct contact', which was in effect at that time. This CUL is not considered protective of the currently applicable soil leaching-to-groundwater pathway (i.e., 0.05 mg/kg). Therefore, additional soil sampling was performed during this investigation that was intended to characterize the residual soil impacts to a concentration that is considered protective of the soil leaching-to-groundwater pathway.

The only COC remaining in soil at concentrations exceeding the selected CULs presented in Table 4 is PCE. The remaining area of PCE-impacted soil and pertinent soil data is summarized on Figure 4. Based on the available data, the residual impacts to soil appear to be very limited in extent and low concentration (i.e., 0.66 mg/kg or less).

The aerial extent of PCE-impacted soil is approximately 3,090 square feet with a 4-foot thick zone of impacted soil at approximately 5 to 9 feet bgs (i.e., 4-foot thick zone of PCE-impacted soil). This equates to approximately 458 cubic yards of low concentration PCE-impacted soil, which will be left in place. The remaining impacts to soil are not expected to measurably affect the remediation of groundwater at the Site.

Groundwater

COCs for groundwater at the Site are PCE, TCE, cis 1,2-DCE, trans 1,2 DCE, and vinyl chloride. The only COC to migrate off-property to the upper terrace at a concentration exceeding the selected CUL is PCE. The extent of PCE impacts to groundwater is displayed on Figure 5. This interpretation is based on a compilation of the data collected during the various rounds of environmental sampling at the Site, which are documented in the reports noted above (see page 2, "Prior Reports").

The PCE-impacted groundwater plume is characterized and does not migrate off of the Snohomish County upper terrace property. The PCE-impacted plume is approximately 950 feet in length with the widest portion, (approximately 210 feet wide), immediately downgradient of the source area and decreasing in width downgradient, toward the Snohomish County upper terrace property. The width of the plume entering the Snohomish County upper terrace property is approximately 105 feet.

SELECTED INTERIM ACTION TECHNOLOGY

Based on the body of work performed at the Site, specifically the bench scale and pilot testing documented in the ERM report, enhanced reductive dechlorination (ERD) appears to be a viable and appropriate remediation technology to address groundwater impacts at the Site, including the upper terrace property.

ERD is an *in situ* nutrient substrate application intended to stimulate subsurface microbiological activity. Using ERD, the subsurface geochemical conditions are manipulated to preferentially promote the growth of certain anaerobic bacteria populations that are effective in the reductive dechlorination of chlorinated VOCs such as PCE and its breakdown products, which comprise the COCs for the Site. Under the proper geochemical conditions anaerobic bacteria can metabolize chlorinated VOCs by successively removing chlorine atoms from the PCE molecule and replacing them with hydrogen atoms until only non-toxic ethene remains.

Anaerobic bacteria operate in reducing (low to no dissolved oxygen and negative oxidation reduction potential) conditions in which they obtain energy by transferring electrons to the chlorinated compound (the electron acceptor) and in the course of this reaction, remove a chloride ion. ERD stimulates this anaerobic process through which certain capable bacteria (halorespirers) degrade chlorinated VOCs by successively removing chlorine atoms from the chlorinated ethene molecule. In this redox reaction, the introduction of a readily available carbon food source will stimulate the bacteria to thrive and metabolize the chlorinated compounds. Chlorinated VOCs such as PCE undergo a series of reductions through dechlorination reactions (PCE \rightarrow TCE \rightarrow cis-1,2-DCE \rightarrow VC \rightarrow ethene). Each biologically-mediated dechlorination step in the process requires stronger reducing conditions to complete than its predecessor.

Direct injection is a commonly used application method for the nutrient substrate, and site conditions and project goals drive the choice of application method. In Washington State, an Underground Injection Control (UIC) permit from the Department of Ecology is required and will be initiated following final plan approval. This is a relatively simple process and no problem is anticipated in obtaining the UIC permit. No other regulatory permits will be required and no waste products will be generated.

EPI anticipates ERD treatment within the two areas. The first area of treatment would be within, or immediately up-gradient of the soil source area to treat the highest PCE concentrations at the Site. This would serve to eliminate the source of impacts migrating down-gradient. This area of treatment is indicated on Figure 6.

There is an existing infiltration gallery that may be used for treatment in Area 1. The infiltration gallery was installed by ERM in 2006 during the soil remediation conducted at the subject property. Potential use of the infiltration gallery will be explored further prior to preparation of the Remedial Action Work Plan (RAWP), which will be prepared prior to implementation. Additional investigation will likely be performed in order to finalize the design criteria for Area 1.

The second treatment area would be within a linear alignment along Avenue D to serve as a treatment zone to impacts migrating off-property onto the Snohomish County property. This will serve as an active treatment zone that remediates contaminated groundwater immediately prior to exiting the subject property. This is an active approach that constitutes a permanent treatment to the "maximum extent practicable" of groundwater that is affecting the upper terrace property. The linear area of treatment along Avenue D is also indicated on Figure 6.

Based on the local soil conditions and the initial work performed by ERM, EPI anticipates that the injections along Avenue D will occur using pre-installed wells. By having pre-installed wells, additional nutrient substrate injections to maintain sufficiently reducing geochemical conditions would be easily implementable and cost-effective. Direct push technology is not a viable option for the subject property based upon local site conditions. EPI anticipates that the well spacing for the injection wells will be based on an approximate radius of influence ranging from 20 to 25 feet. This equates to 10 to 12 wells across this alignment.

The wells are anticipated to be either 4 or 6-inch in diameter to depths ranging from 25 to 30 feet deep to fully intersect the shallow groundwater aquifer. Additional investigation will likely be performed in order to finalize the design criteria for treatment along Avenue D.

Based on EPI's experience, it is anticipated that the injections will continue to treat groundwater for 6 months to a year after the initial application. However, groundwater monitoring will ultimately dictate the frequency of future nutrient substrate applications. Baseline parameters such as total organic carbon (TOC), dissolved oxygen (DO), and oxidation reduction potential (ORP) will be established prior to treatment. When TOC becomes depleted, further injection events will be evaluated to maintain reducing conditions. These performance criteria will be established in the RAWP, which will be completed prior to implementation.

The next logical process is to prepare the detailed RAWP that will identify specific injection products, well and gallery installation designs, estimated treatment frequencies, and groundwater performance monitoring with associated action items. The RAWP would be submitted to Ecology for approval prior to implementation.

SCHEDULE

Based on the current level of understanding, EPI anticipates the following schedule to implement remedial actions at the Site.

- June/July 2015 Prepare the RAWP and submit to the Department of Ecology for review
- September 2015 Install treatment network and begin active groundwater treatment
- January 2016 through January 2019 Perform groundwater monitoring and additional treatments as necessary.

LIMITATIONS

To the extent that preparation of this Additional Subsurface Investigation and Preliminary Remedial Plan letter report has required the application of best professional judgment and the application of scientific principles, certain results of this work have been based on subjective interpretation. EPI makes no warranties express or implied, including and without limitation, warranties as to merchantability or fitness for a particular purpose. The information provided in this Additional Subsurface Investigation and Data Summary letter report is not to be construed as legal advice.

This Additional Subsurface Investigation and Preliminary Remedial Plan was prepared solely for Skotdal Enterprises, Inc. and the contents herein may not be used or relied upon by any other person without the express written consent and authorization of EPI.

It has been a pleasure assisting you with this project. If you have any questions, please contact me at

Tables

Table 1	Survey and Depth to Groundwater Data
Table 2	Summary of Soil Analytical Results (in mg/kg)
Table 3	Summary of Groundwater Analytical Results (in µg/L)
Table 4	Summary of Cleanup Levels

Figures

Figure 1 General Vicinity Map	
-------------------------------	--

- Figure 2 Site Representation and Sampling Locations
- Figure 3 Groundwater Elevation Contour Map January 20, 2015
- Figure 4 Soil Sample Analytical Results (in mg/kg)
- Figure 5 Estimated extent of Impacts to Groundwater
- Figure 6 Approximate Treatment Areas

Attachments

Attachment A	Borehole Logs
Attachment B	Analytical Reports
Attachment C	Cleanup Level Calculations

Tables

Table 1Survey and Depth to Groundwater DataAdditional Subsurface Investigation and Preliminary Remedial PlanSnohomish Square Cleaners1419 Avenue D, Snohomish, Washington

Monitoring Well I.D.			Groundwater Elevation (feet)		
GW-1	144.8	1.68	143.12		
GW-2	144.99	NM	NM		
GW-3	144.34	3.08	141.26		
GW-4	144.24	2.04	142.2		
GW-5	144.78	4.44	140.34		
GW-6	144.78	3.79	140.99		
GW-7	147.53	2.71	144.82		
GW-8	146.3	2.48	143.82		
GW-9	146.37	2.46	143.91		
GW-10	168.38	21.7	146.68		
GW-11	164.24	18.69	145.55		
MW-1	162.2	6.83	155.37		
MW-2	164.41	8.45	155.96		
MW-3	161.57	5.45	156.12		
MW-4	161.09	5.29	155.8		
MW-5	169.51	NM	NM		
MW-6	165.61	13.8	151.81		
MW-7	163.64	10.15	153.49		
MW-8	163.75	9.94	153.81		
MW-9	163	6.98	156.02		
MW-10	NM	5.08	NM		
MW-11	NM	5.81	NM		
MW-12	NM	9.93	NM		
MW-13	NM	18.49	NM		
MW-14	NM	11.41	NM		

Notes:

All results presented in feet using North American Vertical Datum 1988 (NAVD88).

Survey data provided from Remedial Investigation and Focused Feasibility Study, Snohomish County Shop Upper Terrace, 1200 Block of Avenue D, Snohomish, Washington.

а

Surveyed by Snohomish County surveyors using State Plane Coordinate System. Benchmark for survey: brass plug in concrete on west side of Bickford Rd at SE corner of building. Snohomish County Point ID#248 Designation #5501. NAVD88, Elevation = 136.31'.

- b Depth to water measured by EPI on January 20,2015.
- TOC Top of casing.

NM Not measured.

Table 2Summary of Soil Analytical Results (in mg/kg)Additional Subsurface Investigation and Preliminary Remedial PlanSnohomish Square Cleaners1419 Avenue D, Snohomish, Washington

Sample ID	Sample Depth (feet)	Sample Date	Tetrachloroethene (PCE)ª	Naphthalene ^a
SB1	2	12/19/14	0.028	0.096
361	10	12/19/14	<0.025	<0.05
050	4	12/19/14	<0.025	<0.05
SB2	10	12/19/14	0.065	<0.05
SB3	5	12/19/14	<0.025	<0.05
565	9	12/19/14	<0.025	<0.05
	Soil Cleanup Leve	0.05 [⊳]	5 ^b	

Notes:

All results presented in milligrams/kilogram (mg/kg).

Bold Bold results indicate that the compound was detected.

Shaded cells indicate that the compound was detected at a concentration greater than the cleanup level.

a Analyzed by EPA 8260.

b MTCA Method A Soil Cleanup Level for Unrestricted Land Uses.

Table 3

Summary of Groundwater Analytical Results (in µg/L) Additional Subsurface Investigation and Preliminary Remedial Plan Snohomish Square Cleaners 1419 Avenue D, Snohomish, Washington

Sample ID	Sample Date	Tetrachloroethene (PCE)ª
MW-12	1/20/15	1.5
MW-13	1/20/15	3.6
MW-14	1/20/15	<1
MTCA Method B Groun	5	

Notes:

All results presented in microigrams/liter (µg/L).

Bold Bold results indicate that the compound was detected above the MDL.

a Analyzed by EPA Method 8260.

Table 4 Summary of Cleanup Levels Additional Subsurface Investigation and Preliminary Remedial Plan Snohomish Square Cleaners 1419 Avenue D, Snohomish, Washington

		Soil (n	Groundwater (μg/L)				
Compound of Concern	MTCA Method A Soil Cleanup Levels for			MTCA Method A Cleanup	MTCA Method B Groundwater Cleanup		
	Unrestricted Land Uses ^a	Uses) ^b	Based on MTCA Method Based on MTCA A GW CUL° B GW CUL		Levels for Ground Water ^d	Level ^e	
Tetrachloroethene (PCE)	0.05	476	0.05	0.22	5	20.8	
Trichloroethene (TCE)	0.03	12	0.03	0.003	5	0.54	
Cis 1,2 dichloroethene (cis 1,2 DCE)	NVE	160	NVE	0.08	NVE	16	
Trans 1,2 dichloroethene (trans 1,2 DCE)	NVE	1600	NVE	0.87	NVE	160	
Vinyl chloride	NVE	240	0.001	0.142	0.2	0.029	

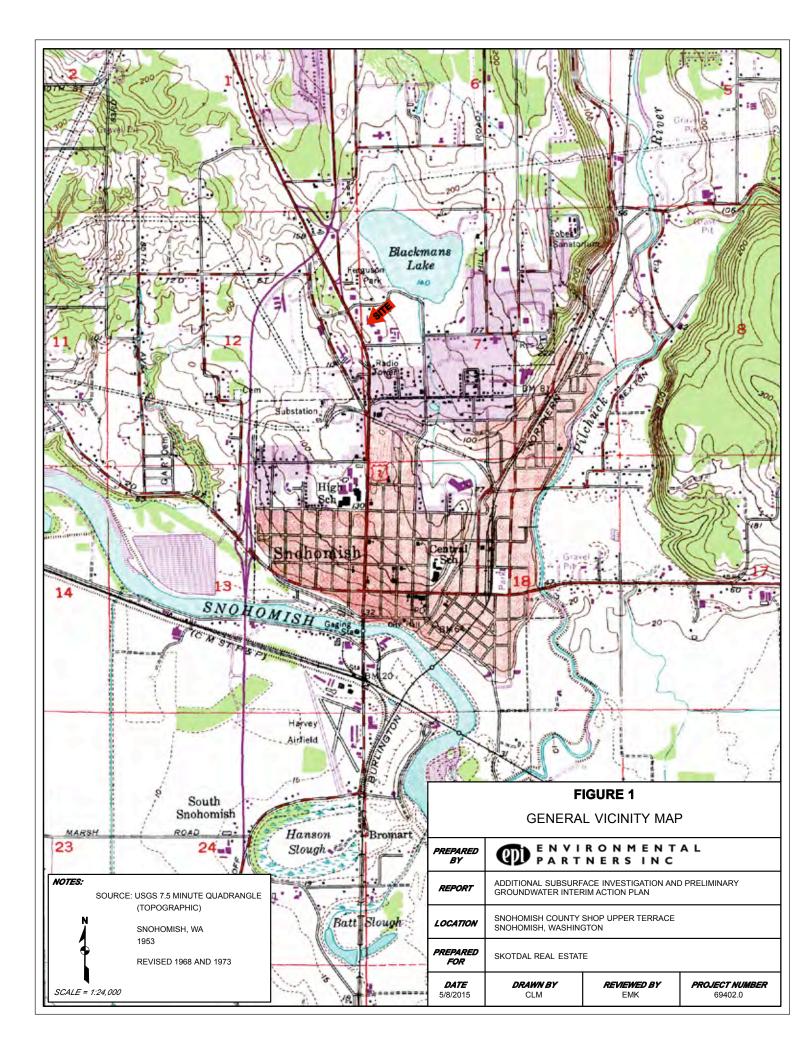
Notes:

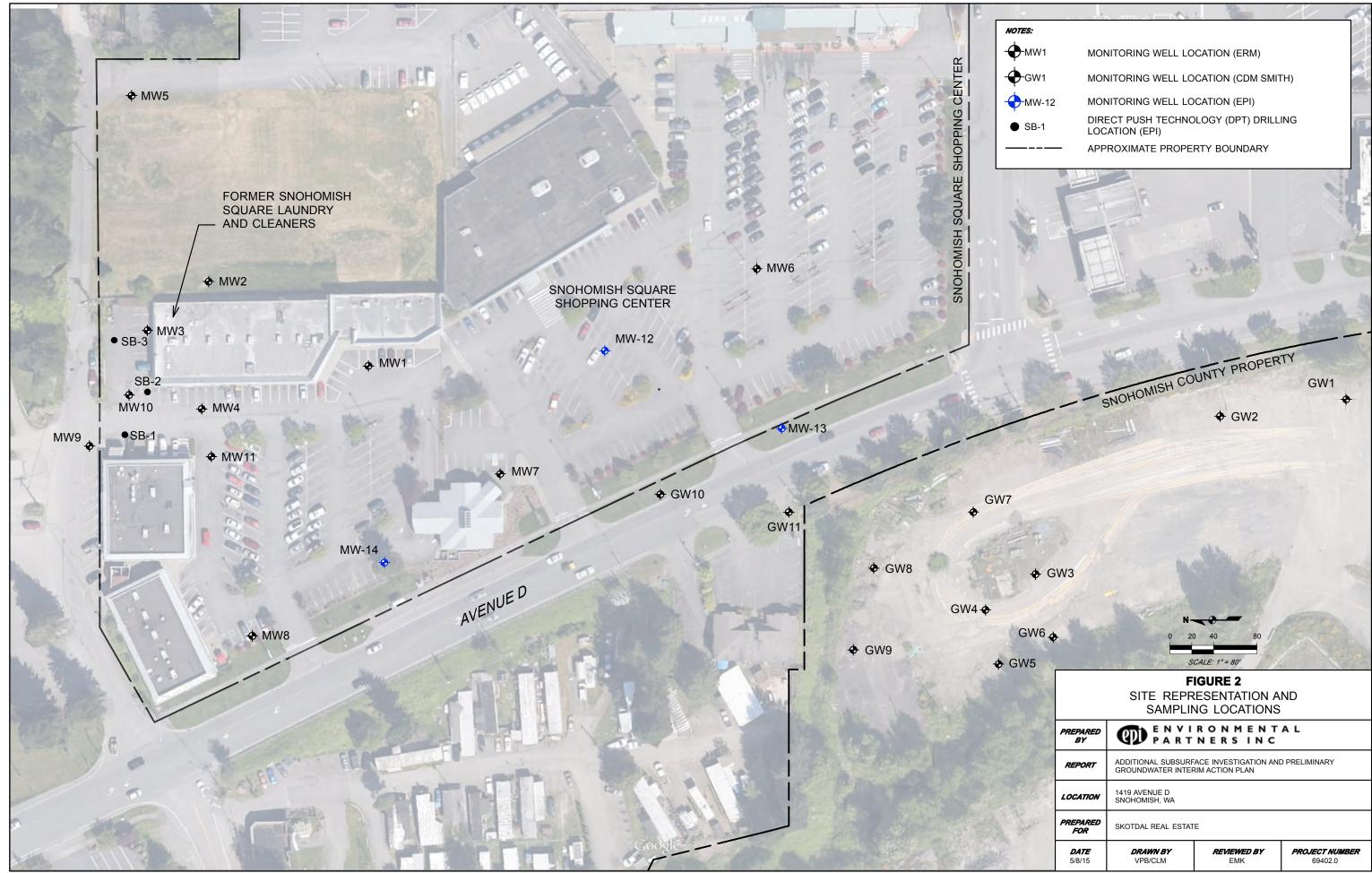
a Based on MTCA Table 740-1

b Based on MTCA CLARC Table dated May 2014, based on direct contact

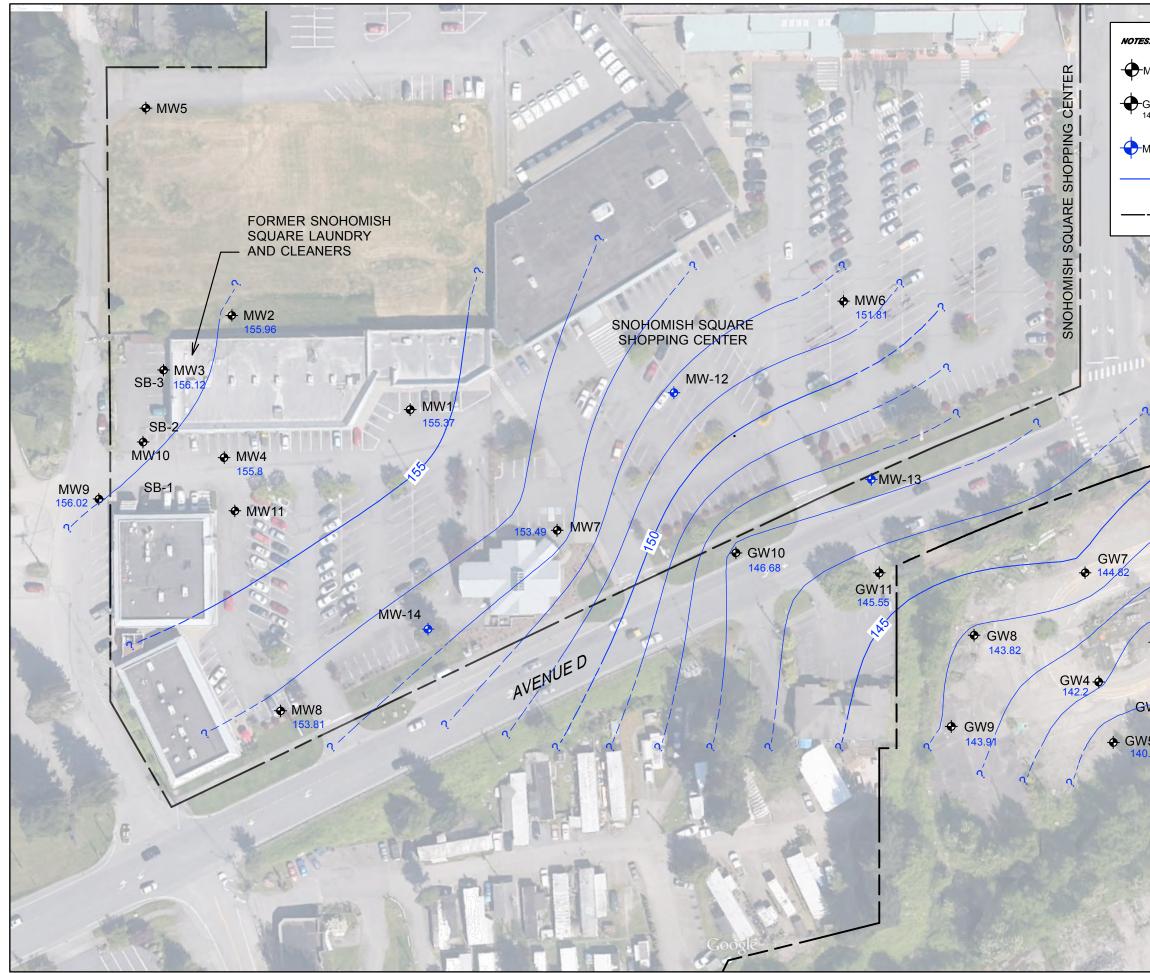
c Calculated using MTCA Equation 747-1

d Based on MTCA Table 720-1

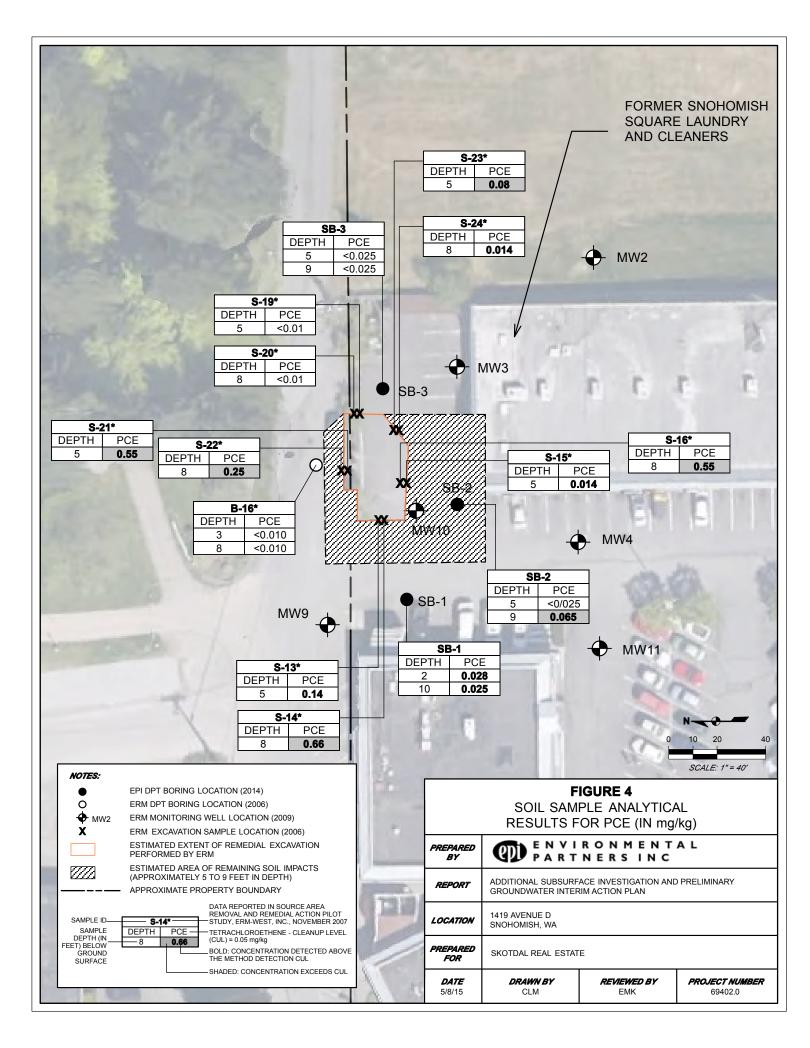

e Based on MTCA CLARC Table dated May 2014

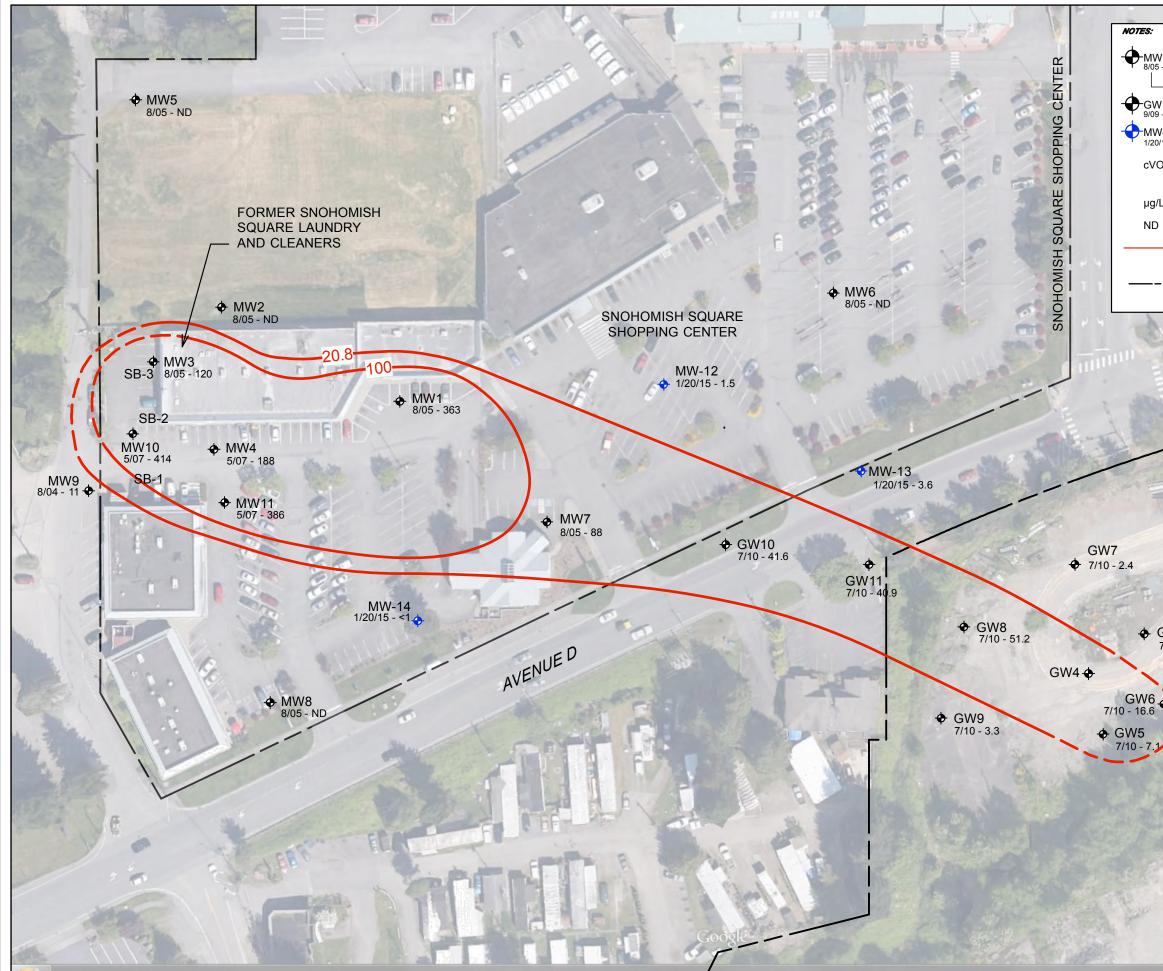

NVE No value established

Selected soil cleanup level Selected groundwater cleanup level

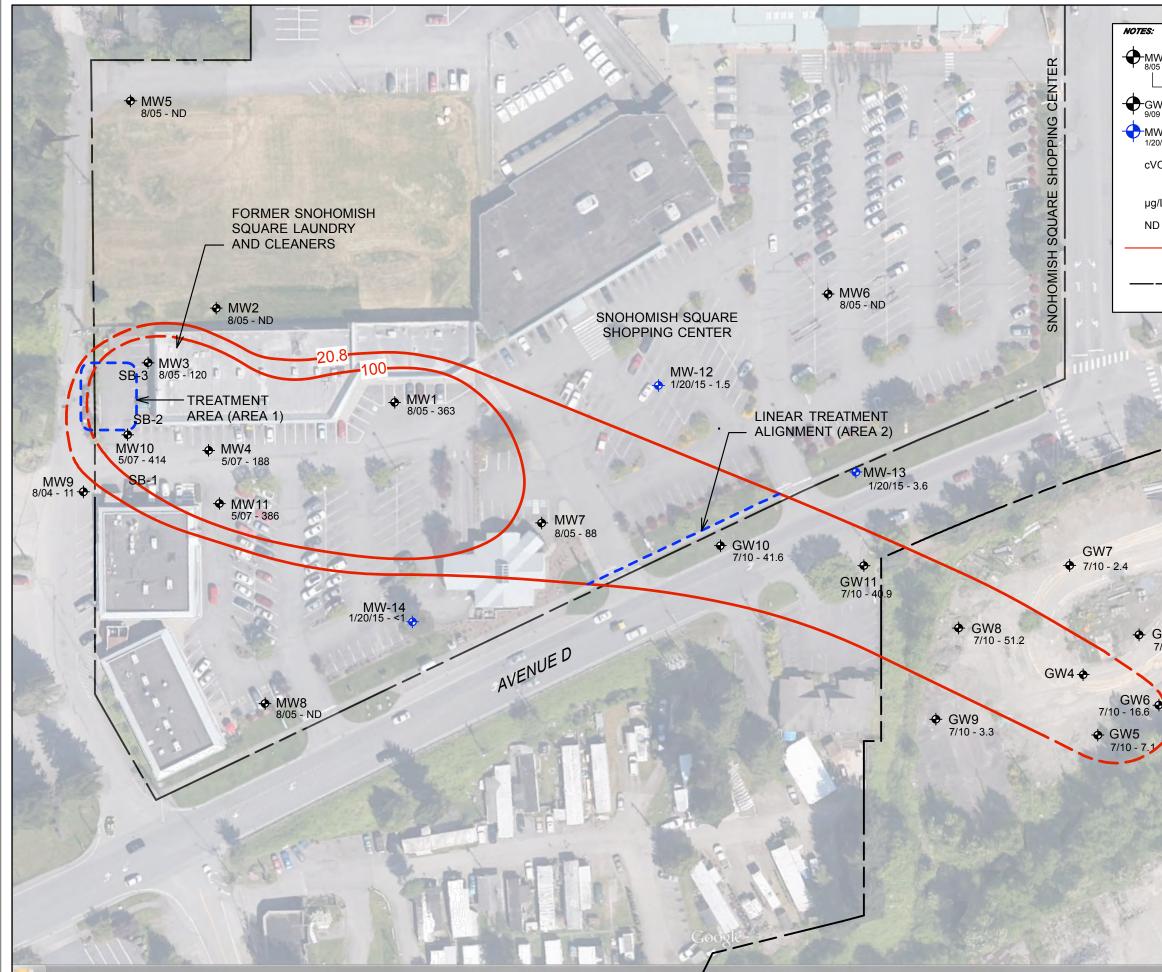


Figures





	A A A A A A A A A A A A A A A A A A A	100
ES:		
MW1	MONITORING WELL LOCATION (ERM)	-+
·GW1	MONITORING WELL LOCATION (CDM SMITH)	2
MW-12	MONITORING WELL LOCATION (EPI)	Confection .
SB-1	DIRECT PUSH TECHNOLOGY (DPT) DRILLING LOCATION (EPI)	1
	APPROXIMATE PROPERTY BOUNDARY	



			1	1 6
ES:				
-MW1	MOI	NITORING WELL LC	CATION (ERM)	est.
GW1 143.12		NITORING WELL LO		н)
MW-12	MON	NITORING WELL LO	CATION (EPI)	
		ZOMETRIC CONTOL RRIED WHERE UN		RE INFERRED,
	_ APP	ROXIMATE PROPE	RTY BOUNDARY	
100 335			the state	
a /		SNOHOMISH CO	WNTY PROPER	GW1 143.12 ?
	41.26	? N?		
W6	140.99			A
V5 0.34	GRO	F DUNDWATER E	<i>CALE: 1" = 80'</i> I GURE 3 LEVATION CON' ARY 20, 2015	TOUR MAP
	PREPARED BY	PART	RONMENT NERS INC	AL
	REPORT		ACE INVESTIGATION AND	PRELIMINARY
R	LOCATION	1419 AVENUE D SNOHOMISH, WA		
and the second	PREPARED FOR	SKOTDAL REAL ESTAT	E	
	DATE 5/8/15	DRAWN BY VPB/CLM	REVIEWED BY EMK	PROJECT NUMBER 69402.0
	-			

	1130			XI P	E.B.
W1 5 - 363 ∟	3ТОТА	NITORING WELL LC	. ,		
W1 9 - ND	MON	PLE DATE (TYP) NITORING WELL LC	OCATION (CDM SM	ITH)	
N-12 0/15 -		NITORING WELL LC	OCATION (EPI)		1
OC	CHL TET	ORINATED VOLATI RACHLOROETHEN DUCTS			3ªF
/L	MIC	ROGRAMS PER LIT	ER		1.bi
)	NOT	DETECTED			21
		ICENTRATION ISO	CONTOUR, DASHE	D	-1-
	— APP	ROXIMATE PROPE	RTY BOUNDARY		
5	100			, all it	10
			me alle	No. 1	
-/-		Sa me	and the second		and the
5		OHOMISH COU	TV PROPERT	Y	2
	14	COMISH COU	NIT	GW1	6
	- SN	OHOIMIS	1	9/09 - ND 🔶	
1		11			
			0,00 112		
GW 7/10	/3 0 - 3.0	0 2	0 40 80 5CALE: 1" = 80'		and the second
Ser al		ESTIMATED E	F IGURE 5 EXTENT OF IMI ROUNDWATER	PACTS	
12.1	PREPARED BY		RONMENT NERSINC	AL	
	REPORT	ADDITIONAL SUBSURI GROUNDWATER INTE	FACE INVESTIGATION AI RIM ACTION PLAN	ND PRELIMINARY	
3	LOCATION	1419 AVENUE D SNOHOMISH, WA			
	PREPARED FOR	SKOTDAL REAL ESTA	1	1	
	DATE 5/12/2015	DRAWN BY VPB/CLM	REVIEWED BY EK	PROJECT NUMBE 69402.0	?R

;	1000		100		
IW1 05 - 363 ∣		NITORING WELL LC			
W1 09 - ND	SAMF	PLE DATE (TYP) NITORING WELL LC		ITH)	-
IW-12	MON	NITORING WELL LC	CATION (EPI)		
20/15 - 1.5 VOC	TET	ORINATED VOLATI RACHLOROETHEN DUCTS			1
g/L	MICI	ROGRAMS PER LIT	ER		
D	NOT	DETECTED			211
		ICENTRATION ISO	CONTOUR, DASHE	D	1-1
	APP	ROXIMATE PROPE	RTY BOUNDARY		
	SNC	DHOMISH COUN	GW2 9/09 - ND	GW1 9/09 - ND	
GW3 7/10 - 3.0			0 40 80 CALE: 1"= 80'		4
C.		-	IGURE 6		
		APPROXIMATE	E TREATMENT	AREAS	
	PARED BY		RONMENT NERS INC	AL	
RE	PORT	ADDITIONAL SUBSURF GROUNDWATER INTE	FACE INVESTIGATION AN	ND PRELIMINARY	
100	ATION	1419 AVENUE D SNOHOMISH, WA			
	PARED FOR	SKOTDAL REAL ESTAT	те		
	ATE 2/2015	DRAWN BY VPB/CLM	REVIEWED BY EK	PROJECT NUME 69402.0	BER

Attachment A Borehole Logs

epi		IRONM TNERS			BORING	ID: MW-12			
SITE AL	DDRESS				CLIENT:			CASING MATERIAL AND SIZE:	
1419 Avenue D, Snohomish, WA DRILLING CONTRACTOR:				Skotdal Real Estate			2" PVC		
				PROJECT #:			SCREEN SIZE:		
Casca	ascade Drilling Inc.				69402			2" PVC 0.010"- Slot	
	NG EQUIP				DATE:			SCREEN INTERVAL:	
	Mounte				12/18/14			9'-19'	
	NG METH				GROUND SUF	RFACE ELEV. F	T AMSL:	FILTER PACK: #2/12 Sand FILTER PACK INTERVAL:	
	w-Stem	Auger				1.			
	D BY: Fiberon	Holder	BOREHOLE SIZE: 8"		TOTAL DEPTH: 21.5'		7'-20'		
				s y	2110		Ê		
Tage φ Description u O USCS name; Color; Moisture; Density; u O Uscs name; Color; Moisture; Density; v Plasticity; Dilatency; EPI description; Other		Color: Moisture: Density:	Interval & % Recovery	Blows per 6"	Sample	PID (ppm)	Well Construction		
0		Asphalt						Flush	
_	SM	sand with some	eddish brown; moist; mostly silt an few gravel	_				Monument	
5 -		SILT WITH SAN	ID; grayish brown; damp					Hydrated bentonite chips	
_	MĻ.	Decreased sand	I content; color change to gray	30	6-3-3		0.8	2" PVC	
10 -		Increased sand	content					#2/12 Sand	
10			ITH GRAVEL; reddish brown;	50	50/6"		0.8	#2/12 Sain	
_	SM	wet; very dense minor silt and fe	mostly coarse sand with						
15 -		Color change to olive brown	a mixed dark gray and light	70	50/6"		0.4	2" PVC 0.010 - Slot Scree	
_	SM	SILTY SAND; lig dense; mostly s	ont olive brown; wet; very						
20 -				40	50/6"		0.4		
_		En	d of Borehole						
25 -									
~									
-									
30									
	ES:								

RILLING EQUIPMENT: TUCK MOUNTED RIG RILLING METHOD: DIOW-Stem Auger DOREHOLE SIZE: TOTAL DEPTH: MCELIBERON Holder	epi	PAR	IRONM TNERS	ENTAL INC		BORING	ID: MW-13			
RILLING CONTRACTOR: ascade Drilling Inc. Sector Drilling Inc. S	SITE AD					CLIENT:			CASING MATERIAL AND SIZE:	
Bascade Drilling Inc. 69402 2* PVC 0.010*- Slot RILLING COUPMENT: DATE: SCREEN INTERVAL: Text Mounted Rig 12* 25* RILLING RETHOD: GROUND SURFACE ELEV. FT AMSL: FILTER PACK: INTERVAL: DOGED BY: BOREHOLE SIZE: TOTAL DEPTH: 13* 25* DOGED BY: BOREHOLE SIZE: TOTAL DEPTH: 13* 25* DOGED BY: BOREHOLE SIZE: TOTAL DEPTH: 13* 25* Description Grass and soil Grass and soil Mounnent SADDY SILT: dark brown; most: mostly sit 75 22 60* 0 14* 4* Descripting with some sit and moor gravel 50	419	Avenue	D, Snohomis	h, WA		Skotdal Re	al Estate	2" PVC		
NILING EQUIPMENT: DATE: SCREEN INTERVAL: Tuck Mounted Rig 12/13/14 15'-25' INLING METHOD: BOREHOLE SIZE: GROUND SURFACE ELEV. FT ANSL: FILTER PACK: 90 BOREHOLE SIZE: TOTAL DEPTH: 13'-25' 90 90 BOREHOLE SIZE: TOTAL DEPTH: 13'-25' 90 90 BOREHOLE SIZE: TOTAL DEPTH: 13'-25' 90 90 Description 13'-25' Well Construction 90 90 Description: 13'-25' 13'-25' 90 100 - Grass and sol 13'-25' 13'-25' 13'-25' 90 100 - Grass and sol 10'- Grass an										
12/18/14 15-25" RILLING METHOD: GREDOR: GREDOR: FUTTE PACK: COUDE DAY: BOREHOLE SIZE: TOTAL DEPTH: FLIER PACK: MELING METHOD: OGED DAY: BOREHOLE SIZE: TOTAL DEPTH: FLIER PACK: MELING METHOD: OGED DAY: USCE many: Colspan="2">Colspan="2">Colspan="2">GREHOLE SIZE: TOTAL DEPTH: FLIER PACK: MELING METHOD: OGED DAY: USCE many: Colspan="2">Colspan="2">Colspan="2">GREHOLE SIZE: TOTAL DEPTH: FLIER PACK: INTERVAL: TOTAL DEPTH: Colspan="2">Colspan="2">Colspan="2">GRE DOS: Thora: Interval: TOTAL DEPTH: TOTAL DEPTH: OGED DAY: OGED DAY: MERVAL: The Thora: The Thora	Cascade Drilling Inc.					69402			2" PVC 0.010"- Slot	
RILLING METHOD: INCLUENCE METHOD: INCLUENCE METHOD: INCLUENCE METHOD: RILLING METHOD: INCLUENCE METHOD: RILLING METHOD: INCLUENCE METHOD: RILLING METHOD: INCLUENCE METHOD: RILLING MET	RILLIN	NG EQUIP	MENT:			DATE:			SCREEN INTERVAL:	
iolow-Stem Auger #2/12 Sand DOGED BY: BOREHOLE SIZE: TOTAL DEPTH: OTAL DEPTH: Colspan="2">Filter PACKINTERVAL: 38 OTAL DEPTH: Colspan="2">Colspan="2">Colspan="2" Well Construction Image: Color Moleture, Density: Blows per 6' Sample G O USCS name: Color Moleture, Density: Sample G G O Grass and soil Sample G Sample Filder Fil	ruck	Mounte	ed Rig			12/18/14			15'-25'	
DOGED BY: BOREHOLE SIZE: TOTAL DEPTH: FLTER PACK INTERVAL: 13*25* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 13*26* 13*25* 14*1 15*15* 15*15* 15*17* 10 15*17* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15* 15*15*						GROUND SUF	RFACE ELEV. F	F AMSL:		
L. McElheron Holder 8* 26.5' 13*-25' 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			Auger							
Image: Signal State			Holder				H:			
0 Grass and soll SANDY SILT; dark brown; damp; medium dense; mostly silt with some sand and gravel Flush. 5 Color change to reddish brown; increased moisture 75 22-50/6" 0 10 Silt WITH SAND, brown; moist mostly silt 50 50/5" 0 10 With sand and some gravel 50 50/5" 0 11 POORLY-GRADED SAND WITH SILT AND GRAVEL; grayish brown; weit, mostly coarse sand with some silt and minor gravel 50 50/5" 0 15 SP-5M 60 50/6" 0.1 #2/12 Sanc 20 No Recovery 0 50/6" 0.1 21 End of Borehole 0 50/6" 0					~ >	20.5		Ê	13-23	
S SANDY SILT; dark brown; damp; medium dense; mosity sit with some sand and gravel 75 22-506° 0 Flush Morument 5 Color change to reddish brown; increased moisture 75 22-506° 0 0 10 ML SiLT WITH SAND; brown; moist; mosily silt 50 50/5° 0 10 ML PORLY-GRADED SAND WITH SILT AND with sand and some gravel 50 50/5° 0 15 Fund Sol 50/6° 0.1 #2/12 Sanc 20 Fund Sol 50/6° 0.1 #2/12 Sanc 20 No Recovery 0 50/5° 0.1 21 No Recovery 0 50/6° 0.1	Depth (fee	nscs	USCS name: (Color: Moisture: Density:	Interval &	Blows per 6"	Sample	PID (ppm	Well Construction	
5 SANDY SLT; dark brown; damp; medium dense; mostly sit with some sand and gravel 75 22-50/6* 0 Hydrated behonic chips 5 Color change to reddish brown; increased moisture 75 22-50/6* 0 Hydrated behonic chips 10 SILT WITH SAND; brown; moist; mostly sitt with sand and some gravel 50 50/5* 0 0 11 SILT WITH SAND; brown; moist; mostly sitt with sand and some gravel 50 50/5* 0 0 15 F F F F 2* PVC 0 15 F F F F F 20 F F F F F 21 No Recovery 0 50/6* 0.1 F 25 End of Borehole I I F F	0		Grass and soil						Flush	
10 Color change to reddish brown; increased moisture 75 22-50/6" 0 0 Hydrated behtonite chips 10 SILT WITH SAND: brown; moist; mostly silt with sand and some gravel 50 50/5" 0 2" PVC 10 POORLY-GRADED SAND WITH SILT AND GRAVEL; grayish brown; wet; mostly coarse sand with some silt and minor gravel 50 50/6" 0.1 #2/12 Sanc 15 50 50/6" 0.1 #2/12 Sanc 20 60 50/6" 0.1 #2/12 Sanc 21 No Recovery 0 50/6" 0.1 25 No Recovery 0 50/6" 0 30 End of Borehole 0 50/6" 0	_	ML	SANDY SILT; d dense; mostly s	ark brown; damp; medium ilt with some sand and gravel					Monument	
10 WL with sand and some gravel 50 50/5" 0 2" PVC 10 POORLY-GRADED SAND WITH SILT AND GRAVEL; grayish brown; wei; mostly coarse sand with some silt and minor gravel 50 50/5" 0 0 #2/12 Sand 15 50 50/6" 0.1 #2/12 Sand #2/12 Sand 20 60 50/6" 0.1 #2/12 Sand 20 60 50/6" 0.1 #2/12 Sand 21 No Recovery 0 50/6" 0.1 25 No Recovery 0 50/6" 0 30 Interview Interview Interview	5 -			reddish brown; increased	75	22-50/6"		0	bentonite	
15 0 0 10 21 PUC 15 50 50/6" 0.1 #2/12 Sanc 20 60 50/6" 0.1 #2/12 Sanc 21 60 50/6" 0.1 #2/12 Sanc 22 End of Borehole 0 50/6" 0.1	10 -	ML	SILT WITH SAN with sand and s	ID; brown; moist; mostly silt ome gravel						
15 50 50/6" 0.1 #2/12 Sanc 20 50 50/6" 0.1 #2/12 Sanc 20 60 50/6" 0.1 #2/12 Sanc 20 60 50/6" 0.1 #2/12 Sanc 21 60 50/6" 0.1 #2/12 Sanc 25 No Recovery 0 50/6" 0.1 30 End of Borehole Image: Sanct San		Н Н Н Н Н Н Н Н Н Н Н Н	POORLY-GRAD	DED SAND WITH SILT AND	_ 50	50/5"		0	2" PVC	
60 50/6" 0.1 2" PVC 0.010 25 No Recovery 0 50/6" End of Borehole 0 50/6" 30 0 50/6"	- 15 -		GRAVEL; grayis sand with some	sh brown; wet; mostly coarse silt and minor gravel	50	50/6"		0.1	#2/12 Sand	
60 50/6" 0.1 2" PVC 0.010 25 No Recovery 0 50/6" 1 80 End of Borehole 0 50/6"	-	SP-SM								
Image: No Recovery 0 50/6" End of Borehole Image: I	20 -				60	50/6"		0.1	2" PVC 0.010 - Slot Scree	
No Recovery 0 50/6" End of Borehole I 30 I	25 -									
30			No Recovery		0	50/6"				
	_		Er	nd of Borehole						
	_									
	30									
		ES.						1	1	

	VIRONM RTNERS			BORING	ID: MW-14			
TE ADDRESS				CLIENT:			CASING MATERIAL AND SIZE:	
1419 Avenue D, Snohomish, WA				Skotdal Re	al Estate	2" PVC		
RILLING CONT				PROJECT #:			SCREEN SIZE:	
ascade Dril	ling Inc.			69402			2" PVC 0.010"- Slot	
RILLING EQUIF	PMENT:			DATE:			SCREEN INTERVAL:	
ruck Mount	ed Rig			12/23/14			10'-20'	
RILLING METH	IOD:			GROUND SUI	RFACE ELEV. FT	AMSL:	FILTER PACK:	
ollow-Stem	Auger						#2/12 Sand	
OGGED BY:		BOREHOLE SIZE:		TOTAL DEPTI	H:		FILTER PACK INTERVAL:	
. McElheron	n Holder	8"		21.5'			8'-20'	
Depth (feet)	USCS name; C	scription color; Moisture; Density; icy; EPI description; Other	Interval & % Recovery	Blows per 6"	Sample	PID (ppm)	Well Construction	
0	Soil and Landsca	aping					Flush	
-	SANDY SILT WI moist; dense; mo minor gravel; org	TH GRAVEL; dark brown; ostly silt with some sand and ganic					Hydrated bentonite chips	
5 - ML			50	4-3-4				
-	Color change to	light brown	50	4-3-4			2" PVC	
0 SM:	SILTY SAND WI brown; moist; mo gravel	TH GRAVEL; light olive ostly sand with silt and few	80	Soft			#2/12 San	
5 -	POORLY-GRAD brown; wet; mos	ED GRAVEL; light olive — — tly gravel with few sand and silt	80	22-27-30			2" PVC 0.01	
'GP	Color change to	light gray; very wet					- Slot Scree	
20 -	-	d of Borehole	80	53-35-50/6"				
- 25 -								
0								
OTES:							1 of 1	

PARTNERS INC			BORING ID: SB-1											
DRILLING CONTRACTOR:			CLIENT: Skotdal Real Estate PROJECT #:											
										694	02			
										DRILLING EC			DAT	
			Truck Mou		-		19/14		1					
			GRC	UND SURFA	ACE ELEV. FT AMSL:	DECOMMISSIONIN								
JIRECT-PUS		chnology	TOT	AL DEPTH:		Bentonite + As BOREHOLE SIZE:	phait							
Mary McE		n Holder	10'	AL DEF III.		2"								
Depth (feet)	CS	Description USCS name; Color; Moisture; Density; Plasticity; Dilatency; EPI description; Other	Interval & % Recovery	PID (ppm)	Sample	Sheen	Notes							
0		4" Asphalt												
-[]]]		SILT WITH SAND; dark brown; damp; mostly silt												
1 -		with some sand		0										
']				0										
-		Color change to light olive brown; trace gravel												
2 -				0.2	SB1:2'									
			67											
3 - M	L	Decreased sand and gravel content		0										
_		-												
4 -														
-														
5 -			\mid											
		SILTY SAND; light olive brown; mostly sand with some silt												
6 – S	M													
		POORLY-GRADED GRAVEL WITH SILT AND		0										
7 -		SAND; damp; mostly gravel (rocks) with sand and												
		silt; broken gravel or cobble pieces												
-			75											
8 - GP-	UNI.			0										
9		SILTY SAND WITH GRAVEL; salt and pepper												
- S	M	(dark gray and light olive brown); wet; mostly coarse sand with minor silt and few gravel												
10		-		0.1	CD4.40									
10 1000		End of Borehole		0.1	SB1:10'									
-														
11 -														
10														
12 NOTEO:														
NOTES:														
							1 of 1							

SITE ADDRESS	TNERS INC	i.								
	SITE ADDRESS			CLIENT:						
1419 Avenue D, Snohomish, WA			Skotdal Real Estate							
RILLING CONTRA	CTOR:		JECT #:							
ESNNW		6940								
DRILLING EQUIPM		DATE								
Fruck Mounted	-		9/14		-1					
DRILLING METHOD		GRO	UND SURFA	CE ELEV. FT AMSL:	DECOMMISSIONIN					
Direct-Push Te	chnology				Bentonite + As	phalt				
OGGED BY:	n Helder		AL DEPTH:		BOREHOLE SIZE: 2"					
Mary McElhero		10' 즈			2					
Depth (feet)	Description USCS name; Color; Moisture; Density; Plasticity; Dilatency; EPI description; Other	Interval & % Recovery	PID (ppm)	Sample	Sheen	Notes				
0	Asphalt									
1 -	SILT WITH SAND; dark brown; damp; mostly silt with minor sand and few gravel									
2 -	Increased silt content; light brown									
- 3 - _ 4 - _	Increased sand content mixed with hard silt layer	80	0.1	SB-2:4'						
5 - - 6 - 7 - 8 -	SILTY SAND WITH GRAVEL; salt and pepper (dark gray and light olive brown) coloring; mostly sand with minor silt and minor coarse gravel	80								
9 - - - 10 - - 11 -	End of Borehole		0.9	SB2:10'						
40										
12 NOTES:										

e di		IRONMENTAL TNERSINC	во): SB-3												
SITE ADDRESS 1419 Avenue D, Snohomish, WA DRILLING CONTRACTOR: ESNNW			CLIENT: Skotdal Real Estate PROJECT #:														
										694	69402						
										DRILLII	NG EQUIPM	ENT:	DAT	E:			
			Truck	Mounted	l Rig	12/1	19/14										
DRILLII	NG METHO	D:	GRC	UND SURF	ACE ELEV. FT AMSL:	DECOMMISSIONIN	G MATERIAL:										
Direct	t-Push Te	chnology				Bentonite + As	phalt										
OGGE				AL DEPTH:		BOREHOLE SIZE:											
	McElhero	n Holder	10'			2"											
Depth (feet)	USCS	Description USCS name; Color; Moisture; Density; Plasticity; Dilatency; EPI description; Other	Interval & % Recovery	PID (ppm)	Sample	Sheen	Notes										
0		Asphalt															
-		SILT WITH SAND; dark brown; damp; mostly silt with minor some sand and few gravel															
1 -	ML	Silt with Sand; reddish brown; damp		0													
2 -	GP	POORLY-GRADED GRAVEL; white and gray; dry; very coarse gravel		0.2													
- 3 -	SM	SILTY SAND; gray; moist; mostly coarse sand with few silt and few gravel	75														
4 -	ML	SILT WITH SAND; light olive brown; moist; mostly silt with sand															
-	● ● ● ○ ○ ○ ○ ○ GM⊋	SILTY GRAVEL; light olive brown; moist; mostly gravel with sand and silt; mixed color gravel															
5 -		SILTY SAND WITH GRAVEL; salt and pepper		0	SB3:5'												
6 -		(dark gray and light olive brown); wet; mostly sand with silt and gravel		0													
1																	
7 -				0													
-	SM		75														
8 -																	
9 -				0	SB3:9'												
- -				Ŭ	020.0												
10 -		End of Borehole															
_																	
11 -																	
-																	
12																	
NOT	ES:						1 of 1										

Attachment B Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 26, 2014

Eric Koltes, Project Manager Environmental Partners, Inc. 1180 NW Maple St, Suite 310 Issaquah, WA 98027

RE: 69402, F&BI 412352

Dear Mr. Koltes:

Included are the results from the testing of material submitted on December 19, 2014 from the 69402, F&BI 412352 project. There are 11 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Cynthia Moon EPI1226R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 19, 2014 by Friedman & Bruya, Inc. from the Environmental Partners 69402, F&BI 412352 project. Samples were logged in under the laboratory ID's listed below.

Environmental Partners
SB1:2'
SB1:10'
SB2:4'
SB2:10'
SB3:5'
SB3:9'

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:SB1:2'Date Received:12/19/14Date Extracted:12/19/14Date Analyzed:12/23/14Matrix:SoilUnits:mg/kg (pp)	om) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partn 69402, F&BI 412352 412352-01 122315.D GCMS9 SP	ers
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	% Recovery: 103 102 99	Lower Limit: 90 64 81	Upper Limit: 111 137 119	
Compounds:	Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Methylene chloride Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethene Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane 4-Methyl-2-pentanone cis-1,3-Dichloropropene Toluene	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	1,3-Dich Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobo 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,4-Dich 1,2-Dich 1,2-Dibr	loropropane loroethene ochloromethane omoethane (EDB) enzene nzene 'etrachloroethane ene ' vlbenzene rm lbenzene enzene imethylbenzene 'etrachloroethane chloropropane otoluene	$\begin{array}{c} < 0.05 \\ 0.028 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \end{array}$
trans-1,3-Dichloropropene 1,1,2-Trichloroethane 2-Hexanone	<0.05 <0.05 <0.5	Naphtha	orobutadiene alene ichlorobenzene	<0.25 0.096 <0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:SB1:10'Date Received:12/19/14Date Extracted:12/19/14Date Analyzed:12/19/14Matrix:SoilUnits:mg/kg (p)	pm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partn 69402, F&BI 412352 412352-02 121932.D GCMS9 SP	ers
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	% Recovery: 100 98 98	Lower Limit: 90 64 81	Upper Limit: 111 137 119	
Compounds:	Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Methylene chloride Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethene Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane 4-Methyl-2-pentanone cis-1,3-Dichloropr opene Toluene	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	1,3-Dich Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri	loropropane loroethene ochloromethane omoethane (EDB) enzene "zerachloroethane ene "dbenzene me henzene imethylbenzene "cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene identylbenzene identylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene identylbenzene imethylbenzene imethylbenzene identylbenzene identylbenzene iorobenzene lorobenzene iorobenzene iorobenzene iorobenzene iorobenzene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \end{array}$
trans-1,3-Dichloropropene 1,1,2-Trichloroethane 2-Hexanone	<0.05 <0.05 <0.5	Naphtha	orobutadiene alene ichlorobenzene	<0.25 <0.05 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SB2:4' 12/19/14 12/19/14 12/19/14 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partn 69402, F&BI 412352 412352-03 121933.D GCMS9 SP	ers
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenzo		% Recovery: 98 99 99	Lower Limit: 90 64 81	Upper Limit: 111 137 119	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluoromer Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometh Acetone 1,1-Dichloroethene Methyl ene chloride Methyl t-butyl ether trans-1,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 1,1-Dichloroethane 1,1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropane Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane 4-Methyl-2-pentanc cis-1,3-Dichloroprop Toluene trans-1,3-Dichloroprop	nane r (MTBE) thene e ne (EDC) ne e ane ane one	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibry Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tri	nzene Petrachloroethane ene Plbenzene rm Ibenzene enzene imethylbenzene Petrachloroethane ichloropropane otoluene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.25 \end{array}$
1,1,2-Trichloroethar 2-Hexanone		<0.03 <0.05 <0.5	Naphtha		<0.25 <0.05 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SB2:10' 12/19/14 12/19/14 12/19/14 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partn 69402, F&BI 412352 412352-04 121934.D GCMS9 SP	ers
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze		% Recovery: 100 100 100	Lower Limit: 90 64 81	Upper Limit: 111 137 119	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluoromet Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometh Acetone 1,1-Dichloroethene Methyl ene chloride Methyl t-butyl ether trans-1,2-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethe Chloroform 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropane Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane 4-Methyl-2-pentano cis-1,3-Dichloroprop Toluene	nane c (MTBE) thene e ne (EDC) ne e ane ane ne	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibry Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromofo 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tri	Azene Setrachloroethane ene vilbenzene rm Ibenzene enzene imethylbenzene Setrachloroethane chloropropane otoluene ylbenzene imethylbenzene vibenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene	$\begin{array}{c} < 0.05 \\ 0.065 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05$
trans-1,3-Dichlorop 1,1,2-Trichloroethau 2-Hexanone		$< 0.05 \\ < 0.05 \\ < 0.5$	Naphtha	orobutadiene alene ichlorobenzene	<0.25 <0.05 <0.25

ENVIRONMENTAL CHEMISTS

Date Received:12Date Extracted:12Date Analyzed:12Matrix:Second Second S	B3:5' 2/19/14 2/19/14 2/19/14 oil ng/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partn 69402, F&BI 412352 412352-05 121935.D GCMS9 SP	ers
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	100	Lower Limit: 90 64 81	Upper Limit: 111 137 119	
Compounds:	Concentration mg/kg (ppm)	Compour	nds:	Concentration mg/kg (ppm)
Dichlorodifluorometha Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethan Acetone 1,1-Dichloroethene Methyl ethouyl ether (1 trans-1,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (E 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane 4-Methyl-2-pentanone cis-1,3-Dichloropropene	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1,3-Dich Tetrachl Dibromo 1,2-Dibro Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibro	loropropane oroethene ochloromethane omoethane (EDB) enzene izerachloroethane ene vibenzene rm ibenzene enzene methylbenzene ietrachloroethane chloropropane otoluene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.$
trans-1,3-Dichloroproj 1,1,2-Trichloroethane 2-Hexanone		Hexachl Naphtha	orobutadiene	<0.25 <0.05 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SB3:9' 12/19/14 12/19/14 12/19/14 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partn 69402, F&BI 412352 412352-06 121936.D GCMS9 SP	ers
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze		% Recovery: 100 100 99	Lower Limit: 90 64 81	Upper Limit: 111 137 119	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluoromet Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometh Acetone 1,1-Dichloroethene Methyl ene chloride Methyl t-butyl ether trans-1,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,2-Dichloropropene Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane 4-Methyl-2-pentano cis-1,3-Dichloroprop Toluene	ane (MTBE) chene ne (EDC) ne e ane ane ne	< 0.5 < 0.5 < 0.05 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <	1,3-Dich Tetrachl Dibromo 1,2-Dibro Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2-Dibr 1,2,4-Tri	loropropane loroethene ochloromethane omoethane (EDB) enzene "etrachloroethane ene "etrachloroethane ene "etrachloroethane enzene "methylbenzene "etrachloroethane ichloropropane otoluene ylbenzene methylbenzene doluene ylbenzene methylbenzene methylbenzene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichloropropane	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \end{array}$
trans-1,3-Dichloropi 1,1,2-Trichloroethar 2-Hexanone		$< 0.05 \\ < 0.05 \\ < 0.5$	Naphtha	orobutadiene alene achlorobenzene	<0.25 <0.05 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 12/19/14 12/19/14 Soil mg/kg (ppn		Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partn 69402, F&BI 412352 04-2526 mb 121908.D GCMS9 SP	ers
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 100 99	Lower Limit: 90 64 81	Upper Limit: 111 137 119	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane 1,1-Dichloroethane 2,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1-Dichloropethane 1,1-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 4-Methyl-2-pentane cis-1,3-Dichloropeo Toluene trans-1,3-Dichlorope	hane r (MTBE) thene e ene (EDC) ne e de e hane pene	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0$	1,3-Dich Tetrachl Dibromo 1,2-Dibro Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2-Dibr 1,2,4-Tri	loropropane oroethene ochloromethane omoethane (EDB) enzene nzene retrachloroethane ene vibenzene rm benzene enzene methylbenzene retrachloroethane chloropropane otoluene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.25 \end{array}$
1,1,2-Trichloroetha 2-Hexanone		<0.05 <0.5	Naphtha		<0.05 <0.25

ENVIRONMENTAL CHEMISTS

Date of Report: 12/26/14 Date Received: 12/19/14 Project: 69402, F&BI 412352

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 412334-01 (Matrix Spike)

	Percent Recovery MS 24 53 54 76 67 62 81 70 73 84 84 84 84 84 81 83 81 80 82 80	Recovery MSD 28 57 59 81 71 66 87 74 76 86 80 83 83 83 83 83 83 83 83 83 83 83 83 83	$\begin{array}{c} Acceptance\\ \hline Criteria\\ 10-56\\ 10-90\\ 10-91\\ 10-110\\ 10-95\\ 11-141\\ 11-103\\ 14-128\\ 17-134\\ 13-112\\ 23-115\\ 18-117\\ 12-120\\ 29-117\\ 20-133\\ 22-124\\ \end{array}$	RPD (Limit 20) 15 7 9 6 6 6 6 4 2 6 5 2 4 5 2 4 5 2 4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MS 24 53 54 76 67 62 81 70 73 84 75 79 81 84 84 84 84 83 81 83 81 83 81 80 82	MSD 28 57 59 81 71 66 87 74 76 86 80 83 83 83 83 83 83 83 83 83 85	Criteria 10-56 10-90 10-91 10-110 10-101 10-95 11-141 11-103 14-128 17-134 13-112 23-115 18-117 25-120 29-117 20-133	(Limit 20) 15 7 9 6 6 6 6 7 6 4 2 6 5 2 4 5 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 53 54 76 67 81 70 73 84 75 79 81 84 84 84 84 84 83 81 83 81 80 82	28 57 59 81 71 66 87 74 76 86 80 83 83 83 83 83 83 83 87 88 83 85	$\begin{array}{c} 10{\text{-}}56\\ 10{\text{-}}90\\ 10{\text{-}}91\\ 10{\text{-}}110\\ 10{\text{-}}101\\ 10{\text{-}}95\\ 11{\text{-}}141\\ 11{\text{-}}103\\ 14{\text{-}}128\\ 17{\text{-}}134\\ 13{\text{-}}112\\ 23{\text{-}}115\\ 18{\text{-}}117\\ 25{\text{-}}120\\ 29{\text{-}}117\\ 20{\text{-}}133\\ \end{array}$	15 7 9 6 6 6 7 6 4 2 6 5 2 4 5 2 4 5 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54 76 67 62 81 70 73 84 75 79 81 84 84 84 81 83 81 83 81 80 82	59 81 71 66 87 74 76 86 80 83 83 83 83 83 83 87 88 83 85	$\begin{array}{c} 10\text{-}91\\ 10\text{-}110\\ 10\text{-}101\\ 10\text{-}95\\ 11\text{-}141\\ 11\text{-}103\\ 14\text{-}128\\ 17\text{-}134\\ 13\text{-}112\\ 23\text{-}115\\ 18\text{-}117\\ 25\text{-}120\\ 29\text{-}117\\ 20\text{-}133\\ \end{array}$	9 6 6 7 6 4 2 6 5 2 4 5 2 4 5 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76 67 81 70 73 84 75 79 81 84 84 84 84 83 81 83 81 80 82	81 71 66 87 74 76 86 80 83 83 83 83 83 87 88 83 83 85	$\begin{array}{c} 10\ 110\\ 10\ 101\\ 10\ 95\\ 11\ 141\\ 11\ 103\\ 14\ 128\\ 17\ 134\\ 13\ 112\\ 23\ 115\\ 18\ 117\\ 25\ 120\\ 29\ 117\\ 20\ 133\\ \end{array}$	6 6 7 6 4 2 6 5 2 4 5 2 4 5 2
$\begin{array}{c c} Chloroethane & mg/kg (ppm) & 2.5 & <0.5 \\ Trichlorofluoromethane & mg/kg (ppm) & 2.5 & <0.5 \\ Acetone & mg/kg (ppm) & 2.5 & <0.5 \\ 1,1-Dichloroethene & mg/kg (ppm) & 2.5 & <0.5 \\ 1,1-Dichloroethene & mg/kg (ppm) & 2.5 & <0.5 \\ Methylene chloride & mg/kg (ppm) & 2.5 & <0.05 \\ Methylene chloride & mg/kg (ppm) & 2.5 & <0.05 \\ I,1-Dichloroethene & mg/kg (ppm) & 2.5 & <0.05 \\ 1,1-Dichloroethene & mg/kg (ppm) & 2.5 & <0.05 \\ 1,2-Dichloroptopane & mg/kg (ppm) & 2.5 & <0.05 \\ 2,2-Dichloroptopane & mg/kg (ppm) & 2.5 & <0.05 \\ Chloroform & mg/kg (ppm) & 2.5 & <0.05 \\ 2-Butanone (MEK) & mg/kg (ppm) & 2.5 & <0.05 \\ 2-Butanone (MEK) & mg/kg (ppm) & 2.5 & <0.05 \\ 1,2-Dichloroethane (EDC) & mg/kg (ppm) & 2.5 & <0.05 \\ \end{array}$	67 62 81 70 73 84 75 79 81 84 84 84 84 83 81 83 81 83 81 80 82	71 66 87 74 76 80 83 83 83 83 87 88 88 83 85	10-101 10-95 11-141 11-103 14-128 17-134 13-112 23-115 18-117 25-120 29-117 20-133	6 6 4 2 6 5 2 4 5 2 4 5 2
$\begin{array}{cccc} Trichlorofluoromethane & mg/kg (ppm) & 2.5 & <0.5 \\ Acctone & mg/kg (ppm) & 12.5 & <0.5 \\ 1,1-Dichloroethene & mg/kg (ppm) & 2.5 & <0.05 \\ Methylene chloride & mg/kg (ppm) & 2.5 & <0.05 \\ Methyl t-butyl ether (MTBE) & mg/kg (ppm) & 2.5 & <0.05 \\ trans-1,2-Dichloroethene & mg/kg (ppm) & 2.5 & <0.05 \\ 1,1-Dichloroethane & mg/kg (ppm) & 2.5 & <0.05 \\ 2,2-Dichloropropane & mg/kg (ppm) & 2.5 & <0.05 \\ cis-1,2-Dichloroethene & mg/kg (ppm) & 2.5 & <0.05 \\ Chloroform & mg/kg (ppm) & 2.5 & <0.05 \\ Chloroform & mg/kg (ppm) & 2.5 & <0.05 \\ 2Butanne (MEK) & mg/kg (ppm) & 12.5 & <0.5 \\ 1,2-Dichloroethane (EDC) & mg/kg (ppm) & 2.5 & <0.05 \\ \end{array}$	62 81 70 73 84 75 79 81 84 81 83 81 83 81 80 82	66 87 74 76 80 83 83 83 87 88 83 88 83 86 85	$\begin{array}{c} 10\text{-}95\\ 11\text{-}141\\ 11\text{-}103\\ 14\text{-}128\\ 17\text{-}134\\ 13\text{-}112\\ 23\text{-}115\\ 18\text{-}117\\ 25\text{-}120\\ 29\text{-}117\\ 20\text{-}133\\ \end{array}$	6 7 4 2 6 5 2 4 5 2 4 5 2
Acetone mg/kg (ppm) 12.5 <0.5 1,1-Dichloroethene mg/kg (ppm) 2.5 <0.05	81 70 73 84 75 79 81 84 84 81 83 81 83 81 80 82	87 74 86 80 83 83 83 87 88 88 83 86 85	11-141 11-103 14-128 17-134 13-112 23-115 18-117 25-120 29-117 20-133	7 6 4 2 6 5 2 4 5 2 4 5 2
1,1-Dichloroethene mg/kg (ppm) 2.5 <0.05 Methylene chloride mg/kg (ppm) 2.5 <0.5	70 73 84 75 79 81 84 84 84 83 81 83 81 80 82	74 76 80 83 83 83 87 88 88 83 86 85	11-103 14-128 17-134 13-112 23-115 18-117 25-120 29-117 20-133	6 4 2 6 5 2 4 5 2 4 5 2
Methylene chloride mg/kg (ppm) 2.5 <0.5 Methyl t-butyl ether (MTBE) mg/kg (ppm) 2.5 <0.05	73 84 75 79 81 84 81 83 81 83 81 80 82	76 86 80 83 83 87 88 88 83 86 85	14-128 17-134 13-112 23-115 18-117 25-120 29-117 20-133	4 2 6 5 2 4 5 2
Methyl t-butyl ether (MTBE) mg/kg (ppm) 2.5 <0.05 trans-1,2-Dichloroethene mg/kg (ppm) 2.5 <0.05	84 75 79 81 84 81 83 81 83 81 80 82	86 80 83 83 87 88 83 86 85	17-134 13-112 23-115 18-117 25-120 29-117 20-133	2 6 5 2 4 5 2
trans-1,2-Dichloroethene mg/kg (ppm) 2.5 <0.05 1,1-Dichloroethane mg/kg (ppm) 2.5 <0.05	79 81 84 81 83 81 80 82	83 83 87 88 83 86 86 85	23-115 18-117 25-120 29-117 20-133	5 2 4 5 2
2.2-Dichloropropane mg/kg (ppm) 2.5 <0.05	81 84 81 83 81 80 82	83 87 88 83 86 85	18-117 25-120 29-117 20-133	2 4 5 2
cis 1,2-Dichloroethene mg/kg (ppm) 2.5 <0.05 Chloroform mg/kg (ppm) 2.5 <0.05	84 84 81 83 81 80 82	87 88 83 86 85	25-120 29-117 20-133	4 5 2
Chloroform mg/kg (ppm) 2.5 <0.05 2-Butanone (MEK) mg/kg (ppm) 12.5 <0.5	84 81 83 81 80 82	88 83 86 85	29-117 20-133	5 2
2-Butanone (MEK) mg/kg (ppm) 12.5 <0.5 1,2-Dichloroethane (EDC) mg/kg (ppm) 2.5 <0.05	81 83 81 80 82	83 86 85	20-133	2
1,2-Dichloroethane (EDC) mg/kg (ppm) 2.5 <0.05	83 81 80 82	86 85		
	81 80 82	85	66°164	
	80 82		27-112	5
1,1-Dichloropropene mg/kg (ppm) 2.5 <0.05	82		26-107	5
Carbon tetrachloride mg/kg (ppm) 2.5 <0.05		84	22-115	2
Benzene mg/kg (ppm) 2.5 <0.03	80	83	26-114	4
Trichloroethene mg/kg (ppm) 2.5 <0.03	84	88	30-112	5
1,2-Dichloropropane mg/kg (ppm) 2.5 <0.05	86	89	31-119	3
Bromodichloromethane mg/kg (ppm) 2.5 <0.05	88	91	31-131	3
Dibromomethane mg/kg (ppm) 2.5 <0.05	89	90	27-124	1
4-Methyl-2-pentanone mg/kg (ppm) 12.5 <0.5	95	93	16-147	2
cis-1,3-Dichloropropene mg/kg (ppm) 2.5 <0.05 Toluene mg/kg (ppm) 2.5 <0.05	87 82	87 86	28-137 34-112	0 5
Toluene mg/kg (ppm) 2.5 <0.05 trans-1,3-Dichloropropene mg/kg (ppm) 2.5 <0.05	82 86	80 89	30-136	3
1,1,2-Trichloroethane mg/kg (ppm) 2.5 <0.05	89	91	32-126	2
2-Hexanone mg/kg (ppm) 12.5 <0.5	86	87	17-147	
1,3-Dichloropropane mg/kg (ppm) 2.5 <0.05	87	91	29-125	4
Tetrachloroethene mg/kg (ppm) 2.5 <0.03	80	85	27-110	6
Dibromochloromethane mg/kg (ppm) 2.5 <0.05	85	87	32-143	2
1,2-Dibromoethane (EDB) mg/kg (ppm) 2.5 <0.05	89	92	32-126	3
Chlorobenzene mg/kg (ppm) 2.5 <0.05	84	87	37-113	4
Ethylbenzene mg/kg (ppm) 2.5 <0.05 1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05	85 90	88 93	38-111 35-126	3 3
1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05 m,p-Xylene mg/kg (ppm) 5 <0.1	87	90	38-112	3
o-Xylene mg/kg (ppm) 2.5 <0.05	89	91	38-112	2
Styrene mg/kg (ppm) 2.5 <0.05	90	93	38-118	3
Isopropylbenzene mg/kg (ppm) 2.5 <0.05	89	92	37-114	3
Bromoform mg/kg (ppm) 2.5 <0.05	78	77	18-155	1
n-Propylbenzene mg/kg (ppm) 2.5 <0.05	91	93	36-114	2
Bromobenzene mg/kg (ppm) 2.5 <0.05	88	90	40-115	2
1,3,5-Trimethylbenzene mg/kg (ppm) 2.5 <0.05 1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05	91 89	95 93	35-116 33-128	4 4
1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 <0.05 1,2,3-Trichloropropane mg/kg (ppm) 2.5 <0.05	86	93 89	33-123	4
2-Chlorotoluene mg/kg (ppm) 2.5 <0.05	87	90	39-110	3
4-Chlorotoluene mg/kg (ppm) 2.5 <0.05	88	91	39-111	3
tert-Butylbenzene mg/kg (ppm) 2.5 <0.05	95	98	36-116	3
1,2,4 Trimethylbenzene mg/kg (ppm) 2.5 <0.05	89	93	35-116	4
sec-Butylbenzene mg/kg (ppm) 2.5 <0.05	91	95	33-118	4
p-Isopropyltoluene mg/kg (ppm) 2.5 <0.05	88	92	32-119	4
1,3-Dichlorobenzene mg/kg (ppm) 2.5 <0.05	89	91	38-111	2
1,4-Dichlorobenzene mg/kg (ppm) 2.5 <0.05	84	86	39-109	2
1,2-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 <0.5	89 83	91 86	40-111 34-134	2 4
1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 <0.5 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 <0.25	83	86 94	34-134 31-117	4 7
Hexachlorobutadiene mg/kg (ppm) 2.5 <0.25	91	94 95	25-122	4
Naphthalene mg/kg (ppm) 2.5 <0.25	92	95	39-120	3
1,2,3-Trichlorobenzene mg/kg (ppm) 2.5 <0.25	92	96	35-117	4

ENVIRONMENTAL CHEMISTS

Date of Report: 12/26/14 Date Received: 12/19/14 Project: 69402, F&BI 412352

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory Con	ittoi Sampie		Percent	
	Demention	Culler		A
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	63	10-76
Chloromethane Vinyl chloride	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	81 87	34-98 42-107
Bromomethane	mg/kg (ppm)	2.5	105	46-113
Chloroethane	mg/kg (ppm)	2.5	97	47-115
Trichlorofluoromethane	mg/kg (ppm)	2.5	99	53-112
Acetone	mg/kg (ppm)	12.5	108	39-147
1,1-Dichloroethene	mg/kg (ppm)	2.5 2.5	98 97	65-110 62-119
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2.5	102	72-122
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	71-113
1,1-Dichloroethane	mg/kg (ppm)	2.5	99	76-109
2,2-Dichloropropane	mg/kg (ppm)	2.5	103	64-151
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	103	77-110
Chloroform 2-Butanone (MEK)	mg/kg (ppm)	2.5 12.5	103 97	78-108 60-121
1,2-Dichloroethane (EDC)	mg/kg (ppm) mg/kg (ppm)	2.5	102	80-121
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	102	72-116
1,1-Dichloropropene	mg/kg (ppm)	2.5	101	77-108
Carbon tetrachloride	mg/kg (ppm)	2.5	106	67-123
Benzene	mg/kg (ppm)	2.5	97	75-107
Trichloroethene	mg/kg (ppm)	2.5 2.5	103 103	72-107 78-111
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm) mg/kg (ppm)	2.5	103	75-126
Dibromomethane	mg/kg (ppm)	2.5	106	80-111
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	113	80-128
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	104	71-138
Toluene	mg/kg (ppm)	2.5	100	79-112
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	mg/kg (ppm)	2.5 2.5	103 104	77-135 84-115
2-Hexanone	mg/kg (ppm) mg/kg (ppm)	12.5	104	71-129
1,3-Dichloropropane	mg/kg (ppm)	2.5	101	82-113
Tetrachloroethene	mg/kg (ppm)	2.5	98	77-110
Dibromochloromethane	mg/kg (ppm)	2.5	102	64-152
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	104	83-116
Chlorobenzene Ethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	100 102	82-113 81-114
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	102	76-125
m,p-Xylene	mg/kg (ppm)	5	104	82-115
o-Xylene	mg/kg (ppm)	2.5	107	81-116
Styrene	mg/kg (ppm)	2.5	107	81-118
Isopropylbenzene	mg/kg (ppm)	2.5	108	81-117
Bromoform n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	92 106	50-174 82-116
Bromobenzene	mg/kg (ppm)	2.5	100	82-118
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	108	83-120
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	105	83-125
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	100	79-116
2-Chlorotoluene 4-Chlorotoluene	mg/kg (ppm)	2.5 2.5	101 102	80-114
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	102	82-114 82-116
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	105	82-116
sec-Butylbenzene	mg/kg (ppm)	2.5	108	81-123
p-Isopropyltoluene	mg/kg (ppm)	2.5	105	82-124
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	103	80-118
1,4-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	97 104	79-117
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	104	80-118 71-131
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	100	75-122
Hexachlorobutadiene	mg/kg (ppm)	2.5	109	74-130
Naphthalene	mg/kg (ppm)	2.5	107	83-128
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	108	80-126

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Send Report To ent	Ren	-10.0	\sim	SAM	PLERS (sign	atur	e) (h	41			-					#	of JN <u>D TIME</u>
Company <u>Env</u> Address 118	ironmenta	al Partners	, Inc		ECT NAME				•		69	ро 7 40 .)# 2.		□ S □ R Rus	tandar USA_ h char	s provinsi se	eks YS pleas horized by
City, State, ZIP <u>Issa</u> Phone # (425) 395-00	quah, WA	98027		REM	ARKS						<u> </u>					Dispose Return s	after 3 samples	
		T				[ANA	LYS	ES RI	EQUE	ESTE	ED			
Sample ID	Lab ID	Date Sampled	Time Sampled		# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS							Notes
SB1:2'	OI D	12/19/14	0822	soil	4				X									
SBI:10'	02		0830	1	i				X									
SB2:41	03		0849						X									
532:10	04		0856						X									
5B3:5'	05		0933						X									
SB3:9'	06	V	0940	\checkmark	\mathbf{V}				Х									
·																		
Friedman & Bruya, Inc 3012 16th Avenue West	. Relinqui	shed hv	IATURE							[MPA	NY		DATH	
3012 16th Avenue West Seattle, WA 98119-2029		JV 40) fel		MaryMa					ter	-	El Fe		7			419/1 2/19	t.
Ph. (206) 285-8282	Relinqui	shed by:	14/1ai	N	Nhan	t	γ_{hc}	īV	١		_	1- 2	<i>ν_</i>	<u>.</u>			419	/1413:C

Fax (206) 283-5044
FORMS\COC\COC.DOC

NAO DE	Mary McElheron Holder	FPL	1419/14 13:00
Received by: May aut	Nhan Phan	FEBI	12/19/1013:00
Relinquished by:	-		
Received by:		Samples received	at_4_°C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 28, 2015

Eric Koltes, Project Manager Environmental Partners, Inc. 1180 NW Maple St, Suite 310 Issaquah, WA 98027

RE: 69402, F&BI 501259

Dear Mr. Koltes:

Included are the results from the testing of material submitted on January 20, 2015 from the 69402, F&BI 501259 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Cynthia Moon EPI0128R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 20, 2015 by Friedman & Bruya, Inc. from the Environmental Partners 69402, F&BI 501259 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Environmental Partners
501259-01	MW-12
501259-02	MW-13
501259-03	MW-14

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-12 01/20/15 01/22/15 01/22/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partn 69402, F&BI 501259 501259-01 012209.D GCMS9 JS	ers	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 100 98	Lower Limit: 85 93 76	Upper Limit: 117 107 126		
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)	
Dichlorodifluorome	thane	<1	1,3-Dich	loropropane	<1	
Chloromethane		<10	Tetrachl	oroethene	1.5	
Vinyl chloride		< 0.2	Dibromo	ochloromethane	<1	
Bromomethane		<1	1,2-Dibro	omoethane (EDB)	<1	
Chloroethane		<1	Chlorobe	<1		
Trichlorofluoromet	hane	<1	Ethylber	<1		
Acetone		<10		etrachloroethane	<1	
1,1-Dichloroethen e		<1	m,p-Xyle		<2	
Methylene chloride		<5	o-Xylene	•	<1 <1	
Methyl t-butyl ether (MTBE)		<1	Styrene			
trans-1,2-Dichloroethene		<1	Isopropy	<1		
1,1-Dichloroethane		<1	Bromofo	<1 <1		
2,2-Dichloropropan		<1		n-Propylbenzene		
cis-1,2-Dichloroethe	ene	<1	Bromobe		<1	
Chloroform		<1		methylbenzene	<1	
2-Butanone (MEK)		<10		etrachloroethane	<1	
1,2-Dichloroethane		<1		chloropropane	<1	
1,1,1-Trichloroetha		<1	2-Chloro		<1	
1,1-Dichloropropen		<1	4-Chloro		<1	
Carbon tetrachlorio	de	<1		ylbenzene	<1	
Benzene		< 0.35		methylbenzene	<1	
Trichloroethene		<1	5	lbenzene	<1	
1,2-Dichloropropan		<1		pyltoluene	<1	
Bromodichlorometh Dibromomethane	nane	<1		lorobenzene	<1	
		<1 <10		lorobenzene lorobenzene	<1 <1	
4-Methyl-2-pentance		<10 <1		omo-3-chloropropane	<10	
cis-1,3-Dichloroproj Toluene	pene	<1 <1		chlorobenzene	<10	
trans-1,3-Dichlorop	ronene	<1 <1		orobutadiene	<1	
1,1,2-Trichloroetha		<1	Naphtha		<1	
2-Hexanone		<10		chlorobenzene	<1	
~ IICAUIUIIC		~10	1,~,0 111		N I	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-13 01/20/15 01/22/15 01/22/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partn 69402, F&BI 501259 501259-02 012210.D GCMS9 JS	ers
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 98 100 99	Lower Limit: 85 93 76	Upper Limit: 117 107 126	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome	ethane	<1		loropropane	<1
Chloromethane		<10		oroethene	3.6
Vinyl chloride		<0.2		ochloromethane	<1
Bromomethane		<1		omoethane (EDB)	<1
Chloroethane	_	<1	Chlorobe		<1
Trichlorofluoromet	hane	<1	Ethylber		<1
Acetone		<10		etrachloroethane	<1
1,1-Dichloroethene Methylene chloride		<1	m,p-Xyle		<2
Methylene chloride Methyl t-butyl ether (MTBE)		<5	o-Xylene		<1
trans-1,2-Dichloroe		<1 <1	Styrene	Ibanzana	<1 <1
1,1-Dichloroethane		<1 <1	Bromofo	vlbenzene	<1 <1
2,2-Dichloropropan		<1 <1	n-Propyl		<1 <1
cis-1,2-Dichloroeth		<1	Bromobe		<1
Chloroform	ciic	<1		methylbenzene	<1
2-Butanone (MEK)		<10		'etrachloroethane	<1
1,2-Dichloroethane	(EDC)	<1		chloropropane	<1
1,1,1-Trichloroetha		<1	2-Chloro		<1
1,1-Dichloropropen		<1	4-Chloro	toluene	<1
Carbon tetrachlorio		<1	tert-But	ylbenzene	<1
Benzene		< 0.35	1,2,4-Tri	methylbenzene	<1
Trichloroethene		<1	sec-Buty	lbenzene	<1
1,2-Dichloropropan		<1		pyltoluene	<1
Bromodichlorometh	nane	<1		lorobenzene	<1
Dibromomethane		<1		lorobenzene	<1
4-Methyl-2-pentan		<10		lorobenzene	<1
cis-1,3-Dichloropro	pene	<1		omo-3-chloropropane	<10
Toluene		<1		chlorobenzene	<1
trans-1,3-Dichlorop		<1		orobutadiene	<1
1,1,2-Trichloroetha	ine	<1	Naphtha		<1
2-Hexanone		<10	1,2,3-111	chlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-14 01/20/15 01/22/15 01/22/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partn 69402, F&BI 501259 501259-03 012211.D GCMS9 JS	ers
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 103 100 100	Lower Limit: 85 93 76	Upper Limit: 117 107 126	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome	ethane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10		oroethene	<1
Vinyl chloride		< 0.2	Dibromo	chloromethane	<1
Bromomethane		<1	1,2-Dibro	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluoromet	hane	<1	Ethylber	nzene	<1
Acetone		<10	1,1,1,2-T	etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xylene		<2
Methylene chloride		<5	o-Xylene	;	<1
Methyl t-butyl ethe	er (MTBE)	<1	Styrene		<1
trans-1,2-Dichloroe	ethene	<1	Isopropy	lbenzene	<1
1,1-Dichloroethane		<1	Bromofo	rm	<1
2,2-Dichloropropan		<1	n-Propyl		<1
cis-1,2-Dichloroeth	ene	<1	Bromobe		<1
Chloroform		<1		methylbenzene	<1
2-Butanone (MEK)		<10		etrachloroethane	<1
1,2-Dichloroethane		<1		chloropropane	<1
1,1,1-Trichloroetha		<1	2-Chloro		<1
1,1-Dichloropropen		<1	4-Chloro		<1
Carbon tetrachlori	de	<1		ylbenzene	<1
Benzene		< 0.35		methylbenzene	<1
Trichloroethene		<1	0	lbenzen e	<1
1,2-Dichloropropan		<1		pyltoluene	<1
Bromodichlorometh	nane	<1		lorobenzene	<1
Dibromomethane		<1		lorobenzene	<1
4-Methyl-2-pentan		<10		lorobenzene	<1
cis-1,3-Dichloropro	pene	<1		omo-3-chloropropane	<10
Toluene		<1		chlorobenzene	<1
trans-1,3-Dichlorop		<1		orobutadiene	<1
1,1,2-Trichloroetha	me	<1	Naphtha		<1
2-Hexanone		<10	1,2,3-111	chlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 01/22/15 01/22/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partn 69402, F&BI 501259 05-0109 mb 012208.D GCMS9 JS	ers
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 101 100	Lower Limit: 85 93 76	Upper Limit: 117 107 126	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome	ethane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.2	Dibromo	ochloromethane	<1
Bromomethane		<1	1,2-Dibr	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluoromet	hane	<1	Ethylber		<1
Acetone		<10		etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle		<2
Methylene chloride		<5	o-Xylene	•	<1
Methyl t-butyl ethe		<1	Styrene		<1
trans-1,2-Dichloroe	ethene	<1	•	lbenzene	<1
1,1-Dichloroethane		<1	Bromofo		<1
2,2-Dichloropropan		<1	n-Propyl		<1
cis-1,2-Dichloroeth	ene	<1	Bromobe		<1
Chloroform		<1		methylbenzene	<1
2-Butanone (MEK)		<10		etrachloroethane	<1
1,2-Dichloroethane		<1		chloropropane	<1
1,1,1-Trichloroetha		<1	2-Chloro		<1
1,1-Dichloropropen		<1	4-Chloro		<1
Carbon tetrachlorie	de	<1		ylbenzene	<1
Benzene		< 0.35		methylbenzene	<1
Trichloroethene	_	<1		vlbenzene	<1
1,2-Dichloropropan		<1		pyltoluene	<1
Bromodichlorometh Dibromomethane	lane	<1 <1		lorobenzene lorobenzene	<1 <1
4-Methyl-2-pentan	000	<1		lorobenzene	<1 <1
cis-1,3-Dichloropro		<10 <1		omo-3-chloropropane	<10
Toluene	pene	<1		chlorobenzene	<10
trans-1,3-Dichlorop	ronene	<1 <1		orobutadiene	<1
1,1,2-Trichloroetha		<1	Naphtha		<1
2-Hexanone	inc.	<10		chlorobenzene	<1
~ IICAUIUIIC		~10	1,~,0 111		N

ENVIRONMENTAL CHEMISTS

Date of Report: 01/28/15 Date Received: 01/20/15 Project: 69402, F&BI 501259

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laborat	tory control Sample		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	113	114	54-149	1
Chloromethane	ug/L (ppb)	50	94	98	67-133	4
Vinyl chloride	ug/L (ppb)	50	98	101	73-132	3
Bromomethane Chloroethane	ug/L (ppb) ug/L (ppb)	50 50	112 102	117 105	69-123 68-126	4 3
Trichlorofluoromethane	ug/L (ppb)	50 50	102	105	70-132	4
Acetone	ug/L (ppb)	250	102	108	44-145	4
1,1-Dichloroethene	ug/L (ppb)	50	97	99	75-119	2
Methylene chloride	ug/L (ppb)	50	98	101	63-132	3
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	96	99	70-122	3
trans-1,2-Dichloroethene	ug/L (ppb)	50	95	96	76-118	1
1,1-Dichloroethane	ug/L (ppb)	50	97	99	80-116	2
2,2-Dichloropropane	ug/L (ppb)	50	99	104	62-141	5
cis-1,2-Dichloroethene Chloroform	ug/L (ppb) ug/L (ppb)	50 50	96 96	99 100	81-111 81-109	3 4
2-Butanone (MEK)	ug/L (ppb)	250	97	97	53-140	4
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	98	102	79-109	4
1,1,1-Trichloroethane	ug/L (ppb)	50	101	102	80-116	3
1,1-Dichloropropene	ug/L (ppb)	50	98	100	78-112	2
Carbon tetrachloride	ug/L (ppb)	50	105	108	72-128	3
Benzene	ug/L (ppb)	50	93	95	81-108	2
Trichloroethene	ug/L (ppb)	50	95	97	77-108	2
1,2-Dichloropropane	ug/L (ppb)	50	103	105	82-109	2
Bromodichloromethane	ug/L (ppb)	50	107	110	76-120	3
Dibromomethane 4-Methyl-2-pentanone	ug/L (ppb) ug/L (ppb)	50 250	98 107	102 108	80-110 59-142	4 1
cis-1,3-Dichloropropene	ug/L (ppb)	230 50	112	115	76-128	3
Toluene	ug/L (ppb)	50	96	98	83-108	2
trans-1,3-Dichloropropene	ug/L (ppb)	50	109	111	76-128	2
1,1,2-Trichloroethane	ug/L (ppb)	50	104	105	82-110	1
2-Hexanone	ug/L (ppb)	250	106	106	53-145	0
1,3-Dichloropropane	ug/L (ppb)	50	101	103	83-110	2
Tetrachloroethene	ug/L (ppb)	50	100	100	78-109	0
Dibromochloromethane	ug/L (ppb)	50	112	114	63-140	2
1,2-Dibromoethane (EDB) Chlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	102 96	104 98	85-113 84-108	2 2
Ethylbenzene	ug/L (ppb)	50 50	90 95	98 98	84-108	2 3
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	107	108	76-125	1
m,p-Xylene	ug/L (ppb)	100	99	100	84-112	1
o-Xylene	ug/L (ppb)	50	99	101	82-113	2
Styrene	ug/L (ppb)	50	102	103	84-116	1
Isopropylbenzene	ug/L (ppb)	50	98	100	81-122	2
Bromoform	ug/L (ppb)	50	107	110	40-161	3
n-Propylbenzene	ug/L (ppb)	50 50	95 95	95 96	81-115	0 1
Bromobenzene 1,3,5-Trimethylbenzene	ug/L (ppb)	50 50	95 100	96 100	80-113 83-117	1 0
1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	103	100	79-118	1
1,2,3-Trichloropropane	ug/L (ppb)	50	96	97	74-116	1
2-Chlorotoluene	ug/L (ppb)	50	95	95	79-112	0
4-Chlorotolu ene	ug/L (ppb)	50	97	97	81-113	0
tert-Butylbenzene	ug/L (ppb)	50	101	101	81-119	0
1,2,4-Trimethylbenzene	ug/L (ppb)	50	100	101	83-116	1
sec-Butylbenzene	ug/L (ppb)	50	97	97	83-116	0
p-Isopropyltoluene	ug/L (ppb)	50	100	101	82-119	1
1,3-Dichlorobenzene 1.4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	93 97	95 96	83-111 82-109	2 1
1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	97 91	90 92	83-111	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	105	107	62-133	2
1.2.4-Trichlorobenzene	ug/L (ppb)	50	91	94	77-117	3
Hexachlorobutadiene	ug/L (ppb)	50	86	89	74-118	3
Naphthalene	ug/L (ppb)	50	100	103	75-131	3
1,2,3-Trichlorobenzene	ug/L (ppb)	50	91	94	82-115	3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

							ſ	FORMS\COC\COC.DOC
	Samples rect					by:	Received by:	Fax (206) 283-5044
						hed by:	Relinquished by:	Ph. (206) 285-8282
112011215:15	F8		n find		M	by: 6	Received by:	Seattle, WA 98119-2029
1/20/15 15:15	ept	Mctadden	Charles 1		Jul 1		nemiquished by:	STATE IN OUT AVENUE West
DATE TIME	COMPANY	PRINT NAME	PRINT		SIGNATURE	SIGN/	Dalinguio	Friedman & Bruya, Inc.
•								
		X	*	4	14:12	51/02/15	03 (hl-MW
		X				1/20/15	02	MW-13
		X	~	When	12:38	1/20/15	di A-C	MW-p
Notes		TPH-Gasoline BTEX by 8021B VOCs by8260 SVOCs by 8270 HFS	Contain of ners TPH-Diesel	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID
	ANALYSES REQUESTED	ANALYS						
 Return samples Will call with instructions 	Retur Will c				395-0011	Fax # (425) 395-0011		Phone # (425) 395-0010
SAMPLE DISPOSAL	S,		RKS	- REMARKS		WA 98027	Issaquah, WA	City, State, ZIP <u>Issac</u>
Rush charges authorized by	Rush ch		69402		e 310	1180 NW Maple St Suite 310	NW Ma	Address 1180
□ Standard (2 Weeks)	PO#	9.	PROJECT NAME/NO.	PROJE	, Inc	Environmental Partners, Inc	ronmenta	
Page #of		re) (I. Mar	SAMPLERS (signature)	SAMP			•	Send Report To
VI	E 01-20-15	CUSTODY HE	SAMPLE CHAIN OF CUSTO	SAMPLE				501259

ŧ

÷ .

Attachment C Cleanup Level Calculations

Cleanup Level Calculations Snohomish Square Cleaners 1419 Avenue D, snohomish, Washington Tetrachloroethene

Soil Cleanup Level for Protection of Ground Water Equation 747-1

Soil CUL =	$C_w(UCF)DF\left[K_d \cdot \frac{(\theta_w + \theta_d)}{\rho_b}\right]$	<u>а^н)</u>]
CUL	Units	
0.05	mg/kg	
Variable	Units	Value
C _w	µg/L	5.0
UCF	1 mg/1,000 μg	0.001
DF	Unitless	20
K _d	L/Kg	0.3
θ _w	ml water/ml soil	0.3
θ _a	ml air/ml soil	0.13
H _{cc}	dimensionless	0.754
ρ _b	Kg/L	1.5

Notes:

- C_w MTCA Method A Ground water cleanup level
- UCF Unit Conversion Factor
- DF Dilution Factor
- K_d Distribution Coeffecient
- θ_w Water-filled soil porosity
- θ_a Air-filled soil porosity
- H_{cc} Henry's Law Constant
- ρ_b Dry soil bulk density

Distribution Coefficient (Kd) (for use in Equation 747-1) Equation 747-2

K _d =	$K_{oc} \propto f_{oc}$	
Coefficient	Units	
0.3	L/kg	
Variable	Unit	Value
K _{oc}	ml/g	265
f _{oc}	g/g	0.001

_

Notes:

κ _{oc}	Soil organic carbon partitioning coefficient (from AK Dept. of Environmental Conservation,
	Cleanup Levels Guidance, June 9, 2008)
f _{oc}	Soil fraction of organic carbon

CUL	Units
476	mg/kg

Cleanup Level Calculations Snohomish Square Cleaners 1419 Avenue D, snohomish, Washington Trichloroethene

Soil Cleanup Level for Protection of Ground Water Equation 747-1

Soil CUL =	$C_w(UCF)DF\left[K_d \cdot \frac{(\theta_w + \theta_z)}{\rho_b}\right]$	^{"H} ^{cc)}]
CUL	Units	
0.03	mg/kg	
Variable	Units	Value
C _w	µg/L	5
UCF	1 mg/1,000 μg	0.001
DF	Unitless	20
K _d	L/Kg	0.1
θ _w	ml water/ml soil	0.3
θ _a	ml air/ml soil	0.13
H _{cc}	dimensionless	0.422
ρ _b	Kg/L	1.5

Notes:

- C_w MTCA Method A Ground water cleanup level
- UCF Unit Conversion Factor
- DF Dilution Factor
- K_d Distribution Coeffecient
- θ_w Water-filled soil porosity
- θ_a Air-filled soil porosity
- H_{cc} Henry's Law Constant
- ρ_b Dry soil bulk density

Distribution Coefficient (Kd) (for use in Equation 747-1) Equation 747-2

K _d =	K _{oc} x f _{oc}	
Coefficient	Units	
0.1	L/kg	
Variable	Unit	Value
K _{oc}	ml/g	94
f _{oc}	g/g	0.001

Notes:

K _{oc}	Soil organic carbon partitioning coefficient (from AK Dept. of Environmental Conservation, <i>Cleanup Levels Guidance</i> , June 9, 2008)
f _{oc}	Soil fraction of organic carbon

CUL	Units
12	mg/kg

Cleanup Level Calculations Snohomish Square Cleaners 1419 Avenue D, snohomish, Washington Cis 1,2 Dichloroethene

Soil Cleanup Level for Protection of Ground Water Equation 747-1

Soil CUL =	$C_w(UCF)DF\left[K_d \cdot \frac{(\theta_w + \theta_a)}{\rho_b}\right]$	H _{cc})]
CUL	Units	
0.08	mg/kg	
Variable	Units	Value
C _w	µg/L	16.0
UCF	1 mg/1,000 μg	0.001
DF	Unitless	20
K _d	L/Kg	0.0
θ _w	ml water/ml soil	0.3
θ _a	ml air/ml soil	0.13
H _{cc}	dimensionless	0.167
$ ho_b$	Kg/L	1.5

Notes:

- C_w MTCA Method B Ground water cleanup level
- UCF Unit Conversion Factor
- DF Dilution Factor
- K_d Distribution Coeffecient
- θ_w Water-filled soil porosity
- θ_a Air-filled soil porosity
- H_{cc} Henry's Law Constant
- ρ_b Dry soil bulk density

Distribution Coefficient (Kd) (for use in Equation 747-1) Equation 747-2

K _d =	K _{oc} x f _{oc}	
Coefficient	Units	
0.0	L/kg	
Variable	Unit	Value
K _{oc}	ml/g	36
f _{oc}	g/g	0.001

_

Notes:

K _{oc}	Soil organic carbon partitioning coefficient (from AK Dept. of Environmental Conservation,
	Cleanup Levels Guidance, June 9, 2008)
f _{oc}	Soil fraction of organic carbon

CUL	Units
160	mg/kg

Cleanup Level Calculations Snohomish Square Cleaners 1419 Avenue D, snohomish, Washington Trans 1,2 Dichloroethene

Soil Cleanup Level for Protection of Ground Water Equation 747-1

Soil CUL =	$C_w(UCF)DF\left[K_d \cdot \rho_b\right]$	θ _a H _{cc})
CUL	Units	
0.87	mg/kg	
Variable	Units	Value
C _w	µg/L	160.0
UCF	1 mg/1,000 μg	0.001
DF	Unitless	20
K _d	L/Kg	0.0
θ _w	ml water/ml soil	0.3
θa	ml air/ml soil	0.13
H _{cc}	dimensionless	0.385
$ ho_b$	Kg/L	1.5

Notes:

- C_w MTCA Method B Ground water cleanup level
- UCF Unit Conversion Factor
- DF Dilution Factor
- K_d Distribution Coeffecient
- θ_w Water-filled soil porosity
- θ_a Air-filled soil porosity
- H_{cc} Henry's Law Constant
- ρ_b Dry soil bulk density

Distribution Coefficient (Kd) (for use in Equation 747-1) Equation 747-2

K _d =	$K_{oc} \propto f_{oc}$	
Coefficient	Units	
0.04	L/kg	
Variable	Unit	Value
K _{oc}	ml/g	38
f _{oc}	g/g	0.001

Notes:

	Soil organic carbon partitioning coefficient
K _{oc}	(from AK Dept. of Environmental Conservation,
	Cleanup Levels Guidance, June 9, 2008)
f _{oc}	Soil fraction of organic carbon

1.600	ma/ka
1.600	mg/kg

Cleanup Level Calculations Snohomish Square Cleaners 1419 Avenue D, snohomish, Washington Vinyl Chloride

Soil Cleanup Level for Protection of Ground Water Equation 747-1

Soil CUL =	$C_w(UCF)DF\left[K_d \cdot \frac{(\theta_w + \theta_a)}{\rho_b}\right]$	<u>н)</u>]
CUL	Units	
0.001	mg/kg	
Variable	Units	Value
C _w	µg/L	0.2
UCF	1 mg/1,000 μg	0.001
DF	Unitless	20
K _d	L/Kg	0.0
θ _w	ml water/ml soil	0.3
θ _a	ml air/ml soil	0.13
H _{cc}	dimensionless	1.1
ρ _b	Kg/L	1.5

Notes:

- C_w MTCA Method A Ground water cleanup level
- UCF Unit Conversion Factor
- DF Dilution Factor
- K_d Distribution Coeffecient
- θ_w Water-filled soil porosity
- θ_a Air-filled soil porosity
- H_{cc} Henry's Law Constant
- ρ_b Dry soil bulk density

Distribution Coefficient (Kd) (for use in Equation 747-1) Equation 747-2

K _d =	K _{oc} x f _{oc}	
Coefficient	Units	
0.02	L/kg	
Variable	Unit	Value
K _{oc}	ml/g	19
f _{oc}	g/g	0.001

Notes:

K _{oc}	Soil organic carbon partitioning coefficient (from AK Dept. of Environmental Conservation,
	Cleanup Levels Guidance, June 9, 2008)
f _{oc}	Soil fraction of organic carbon

CUL	Units
240	mg/kg