

14 May 2010

Laura Lee Parametrix, Inc. One Bellevue Center 411 108th Avenue NE **Suite 1800** Bellevue, WA 98004-5571

RE: Client Project No. 555-1550-052, Midway Landfill ARI Job Nos. QU99, QV22, QV41 and QV70

Dear Laura:

Please find enclosed the original Chain-of-Custody (COC) records and the final results for the samples from the project referenced above. Four water samples and one trip blank were received on May 3, 2010. Five water samples, a field blank and one trip blank were received on May 4, 2010. Two water samples and one trip blank were received on May 5, 2010. One sample and one trip blank were received on May 7, 2010. All samples were received intact. The samples were analyzed for VOAs, SIM-vinyl chloride, 1,4-dioxane, dissolved metals and conventional parameters as requested.

There were no analytical complications noted.

Copies of these reports and the associated raw data will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

TIO LA GOLD Mark D. Harris Project Manager 206/695-6210

<markh@arilabs.com>

Enclosures

cc: Min Soon Yim. Seattle Public Utilities Files QU99, QV22, QV41, QV70

MDH/esj

Chain of Custody Record & Laboratory Analysis Request	d & Laboratory	Analysis Request
ARI Assigned Number:	Turn-around Requested:	1 :

4611 South 134th Place, Suite 100 Analytical Chemists and Consultants Analytical Resources, Incorporated

앜

	Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ABI Stanford Departure Production Produc					
Date & Time:	Date & Time:	(V) 1517 Date 8	Date & Time:	アンファ		
Company:	any:	Company:	Company:	TO BOTH		
Printed Name:	Printed Name:	Mulumba Finns		GMONI DI		
(Signature)	ture)	(Signature)	(Signature)	MINISTAMIA	(Signature)	-
	Beling lished by:	Belico	Received by:		Relinguished by:	Comments/Special Instructions
	2		Ŧ	1		IND DOCK
	5 2	(<i>h</i>)	00	HOS W	73/10	MW 2015
	3 2		∞	1210 W	73/10	mw 16
	3 2		∞	0950 W	55/O	MW V
	5 2		8	0855 W	73/10	MWZ9B
t Hood	Vin	Chlo TO CC Disease	No. Containers	Time Matrix	Date	Sample ID
	yl.	ride C, DD Wed 3 Fe, M	S adam (J.F.McKenzie, I	Samplers: V. 1 None	050-1050-052
Notes/Comments	Analysis Reduested	_		11×240	1 aramp	Client Project Name:
206-695-6200 206-695-6201 (fax)		No. of Cooler Coolers: Temps:	0	MM	1 Spon	Client Contact: CMI
4611 South 134th Place, Suite 100 Tukwila, WA 98168	Yes	Date: lce Present?	6-233-2629	Phone: 100-73/	Seath	AHI Client Company;

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless afternate retention schedules have been established by work-order or contract.

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-

signed agreement between ARI and the Client.

Analytical Resource Analytical Chemis			Cooler Rec	eipt F	orm	
ARI Client: COC No(s): Assigned ARI Job No: COC No(s): Preliminary Examination Phase: Were intact, properly signed and of Were custody papers included will Were custody papers properly filled. Temperature of Cooler(s) (°C) (relif cooler temperature is out of controller Accepted by: COC No. 100 No.	th the cooler?d out (ink, signed, etc.)	hemi		Temp Gun I	YES YES YES	NA NO NO NO
Log-In Phase:	Complete custody form	ns an	nd attach all shipping documents			
Did all bottle labels and tags agree Were all bottles used correct for the	ras used? Bubble Wiriate)?	prese	vet Ice Gel Packs (Baggies) Foam r of containers received?	NA NA NA	YES Other: YES	NO
Commis ID on Dattle	Comple ID on COC		Sample ID on Pottle	Same	olo ID on CO	<u> </u>
Sample ID on Bottle	Sample ID on COC		Sample ID on Bottle	Samp	ole ID on CO	
·						
Additional Notes, Discrepancies IVIDBIOUNES = S By: Date	ppo *All in k	bai	gs, voasau in the	: Same	bag	
Small Air Bubbles Peabubble - 2mm 2-4 mm	as' CARGE Air Bubbles	s	Small → "sm"			
2,4 1111	>4 mm	l p	Peabubbles → "nb"			

0016F 3/2/10

Cooler Receipt Form

Large → "lg"

Headspace → "hs"

Revision 014

PRESERVATION VERIFICATION 05/03/10

1 of 1 Page

Inquiry Number: NONE
Analysis Requested: 05/04/10
Contact: Yim, Min-Soon
Client: City of Seattle
Logged by: AV
Sample Set Used: Yes-481
Validatable Package: No

Deliverables:

PC: Mark

ANALYTICAL RESOURCES INCORPORATED

ARI Job No: QU99

VTSR: 05/03/10

Project #: 555-1550-052 Project: Midway Landfill

Sample Site: SDG No: Analytical Protocol: In-house

:					Q		٩				Æ								
LOGNUM ARI ID	CLIENT ID	CN >12	WAD >12	NH3 <2	05 5 05 5	FOG <2	MET PHEN PHOS <2 <2	PHEN <2	 TKN 1	X023 <2	19C 42C	\$2 82	TYN NO23 TOC S2 AK102 Fe2+ DMET DOC <2 <2 <2 <2 >5 <2 >5 ELT FLT	Fe2+	DMET DO	PARAMETER	O LOT NUMBER	ADJUSTED LOT AMOUNT TO NUMBER ADDED	DATE/BY
10-10766 QU99A	MW29B				\$		DIS				82				>				
10-10767 20998	ММЗ1						s								×				
10-10768 2099C	MW16						S DI								H				
10-10769 QU99D	MW20B				\rightarrow		Sig				\				>				

QU99:00004

Data Reporting Qualifiers Effective 7/10/2009

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte

- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

ARI Job No: QU99

Parameter: Chloride-EPA 325.2

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
 MW29B	QU99A	05/03/10	05/03/10	N/A	05/06/10
MW31	QU99B	05/03/10	05/03/10	N/A	05/06/10
MW16	QU99C	05/03/10	05/03/10	N/A	05/06/10
MW20B	QU99D	05/03/10	05/03/10	N/A	05/06/10
Method Blank	MB050610	N/A	N/A	N/A	05/06/10
Standard Ref.	SRM050610	N/A	N/A	N/A	05/06/10

Preparation Summary Table

ARI Job No: QU99

Parameter: Sulfate-EPA 375.2

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client	ARI	Date	Date	Date	Date
Sample ID	Sample ID	Sampled	Received	Extracted	Analyzed
MW29B MW31 MW16 MW20B Method Blank Standard Ref.	QU99A QU99B QU99C QU99D MB051210 SRM051210	05/03/10 05/03/10 05/03/10 05/03/10 N/A N/A	05/03/10 05/03/10 05/03/10 05/03/10 N/A N/A	N/A N/A N/A N/A N/A	05/12/10 05/12/10 05/12/10 05/12/10 05/12/10 05/12/10

Preparation Summary Table

0U99:00008

ARI Job No: QU99

Parameter: Chemical Oxygen Demand-EPA 410.4

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW29B	QU99A	05/03/10	05/03/10	N/A	05/03/10
MW31	QU99B	05/03/10	05/03/10	N/A	05/03/10
MW16	QU99C	05/03/10	05/03/10	N/A	05/03/10
MW20B	QU99D	05/03/10	05/03/10	N/A	05/03/10
Method Blank	MB050310	N/A	N/A	N/A	05/03/10
Standard Ref.	SRM050310	N/A	N/A	N/A	05/03/10
MW29B	OU99ADP	05/03/10	05/03/10	N/A	05/03/10
MW29B	QU99AMS	05/03/10	05/03/10	N/A	05/03/10

Preparation Summary Table

ARI Job No: QU99

Parameter: Total Organic Carbon-EPA 415.1

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW29B	QU99A	05/03/10	05/03/10	N/A	05/03/10
MW31	QU99B	05/03/10	05/03/10	N/A	05/03/10
MW16	QU99C	05/03/10	05/03/10	N/A	05/04/10
MW20B	QU99D	05/03/10	05/03/10	N/A	05/04/10
Method Blank	MB050310	N/A	N/A	N/A	05/03/10
Method Blank	MB050410	N/A	N/A	N/A	05/04/10
Standard Ref.	SRM050310	N/A	N/A	N/A	05/03/10
Standard Ref.	SRM050410	N/A	N/A	N/A	05/04/10
MW29B	OU99ADP	05/03/10	05/03/10	N/A	05/03/10
MW29B	QU99AMS	05/03/10	05/03/10	N/A	05/03/10

Preparation Summary Table

ARI Job No: QU99

Parameter: ICP Dissolved Metals-6010B

Matrix: Water

Holding Time: 6 Months

Date Reported: 05/14/10

Client	ARI	Date	Date	Date	Date
Sample ID	Sample ID	Sampled	Received	Extracted	Analyzed
MW29B MW31 MW16 MW20B Method Blank Lab Control	QU99A	05/03/10	05/03/10	05/04/10	05/06/10
	QU99B	05/03/10	05/03/10	05/04/10	05/06/10
	QU99C	05/03/10	05/03/10	05/04/10	05/06/10
	QU99D	05/03/10	05/03/10	05/04/10	05/06/10
	MB050410	N/A	N/A	05/04/10	05/06/10
	LCS050410	N/A	N/A	05/04/10	05/06/10

Preparation Summary Table

ARI Job No: QU99

Parameter: Volatiles-SW8260B

Matrix: Water

Holding Time: 14 Days Preserved, 7 Days Unpreserved

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW29B	QU99A	05/03/10	05/03/10	05/05/10	05/05/10
MW31	QU99B	05/03/10	05/03/10	05/05/10	05/05/10
MW16	ÕU99C	05/03/10	05/03/10	05/05/10	05/05/10
MW20B	OU99D	05/03/10	05/03/10	05/05/10	05/05/10
Trip Blank	ÕU99E	05/03/10	05/03/10	05/05/10	05/05/10
Method Blank	MB050510	N/A	N/A	05/05/10	05/05/10
Lab Control	LCS050510	N/A	N/A	05/05/10	05/05/10
Lab Control Dup	LCSD050510	N/A	N/A	05/05/10	05/05/10

Preparation Summary Table

ARI Job No: QU99

Parameter: Volatiles-SIM SW8260B

Matrix: Water

Holding Time: 14 Days Preserved

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW29B	QU99A	05/03/10	05/03/10	05/05/10	05/05/10
MW31	QU99B	05/03/10	05/03/10	05/05/10	05/05/10
MW16	QU99C	05/03/10	05/03/10	05/05/10	05/05/10
MW20B	QU99D	05/03/10	05/03/10	05/05/10	05/05/10
Trip Blank	QU99E	05/03/10	05/03/10	05/05/10	05/05/10
Method Blank	MB050510	N/A	N/A	05/05/10	05/05/10
Lab Control	LCS050510	N/A	N/A	05/05/10	05/05/10
Lab Control Dup	LCSD050510	N/A	N/A	05/05/10	05/05/10

Preparation Summary Table

Volatiles by Purge & Trap GC/MS-Method SW8260C Sample ID: MB-050510

Page 1 of 1

Lab Sample ID: MB-050510

LIMS ID: 10-10766 Matrix: Water

Data Release Authorized:

Reported: 05/10/10

Instrument/Analyst: NT5/PKC Date Analyzed: 05/05/10 11:31 METHOD BLANK

QC Report No: QU99-City of Seattle Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	Ü
71-55 - 6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	Ü
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	101%
d8-Toluene	99.7%
Bromofluorobenzene	91.6%

Sample ID: MW29B Page 1 of 1 SAMPLE

Lab Sample ID: QU99A LIMS ID: 10-10766

Matrix: Water Data Release Authorized:

Instrument/Analyst: NT5/PKC

Date Analyzed: 05/05/10 16:30

Reported: 05/10/10

QC Report No: QU99-City of Seattle Project: Midway Landfill

555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	Ü
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75 - 35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	1.0	
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	4.7	
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U
	-			

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	102%
d8-Toluene	101%
Bromofluorobenzene	88.4%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

Quee: @@#15

Sample ID: MW31 Page 1 of 1 SAMPLE

Lab Sample ID: QU99B LIMS ID: 10-10767 Matrix: Water

Data Release Authorized:

Reported: 05/10/10

Sample Amount: 10.0 mL

Date Sampled: 05/03/10

Date Received: 05/03/10

QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Instrument/Analyst: NT5/PKC Purge Volume: 10.0 mL Date Analyzed: 05/05/10 16:56

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156 - 59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U.
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	Ü
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	Ü
108-88-3	Toluene	1.0	< 1.0	Ü
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	Ü
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	Ü
179601-23-1	m,p-Xylene	2.0	< 2.0	Ü
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	104%
d8-Toluene	101%
Bromofluorobenzene	88.6%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

> FORM I QU99:00016

Sample ID: MW16 SAMPLE Page 1 of 1

Lab Sample ID: QU99C LIMS ID: 10-10768

Matrix: Water

Data Release Authorized: Reported: 05/10/10

Instrument/Analyst: NT5/PKC Date Analyzed: 05/05/10 17:21 QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	Ü
156 - 60-5	trans-1,2-Dichloroethene	1.0	< 1.0	Ü
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	Ü
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56 - 23-5	Carbon Tetrachloride	1.0	< 1.0	Ü
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	Ü
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	Ü
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	Ü
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U
-	•			

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	103%
d8-Toluene	102%
Bromofluorobenzene	91.4%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

FORM I

Sample ID: MW20B SAMPLE 1 of 1 Page

Lab Sample ID: QU99D LIMS ID: 10-10769

Matrix: Water Data Release Authorized: 🗸

Reported: 05/10/10

Instrument/Analyst: NT5/PKC Date Analyzed: 05/05/10 17:47 QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	Ü
74-83-9	Bromomethane	1.0	< 1.0	Ü
75-01-4	Vinyl Chloride	1.0	< 1.0	Ü
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59 - 2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67 - 66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	Ü
78 - 93-3	2-Butanone	5.0	< 5.0	U
71 - 55-6	1,1,1-Trichloroethane	1.0	< 1.0	Ü
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	Ü
75-27 - 4	Bromodichloromethane	1.0	< 1.0	Ü
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	Ü
79 - 01-6	Trichloroethene	1.0	< 1.0	Ū
124-48-1	Dibromochloromethane	1.0	< 1.0	Ü
79 - 00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75 - 8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	
591-78-6	2-Hexanone	5.0	< 5.0	U U
127-18-4	Tetrachloroethene	1.0	< 1.0 < 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	Ū
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	Ü
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane		< 2.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	Ū
179601-23-1	m,p-Xylene	1.0	< 1.0	Ü
95-47-6	o-Xylene	T • O	× 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

	
d4-1,2-Dichloroethane	101%
d8-Toluene	102%
Bromofluorobenzene	87.8%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

> FORM I QU99:00018

Volatiles by Purge & Trap GC/MS-Method SW8260C Sample ID: Trip Blank

Page 1 of 1

Lab Sample ID: QU99E LIMS ID: 10-10770

Matrix: Water
Data Release Authorized:

Instrument/Analyst: NT5/PKC

Date Analyzed: 05/05/10 12:39

Reported: 05/10/10

: *A*

SAMPLE

QC Report No: QU99-City of Seattle Project: Midway Landfill

555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	Ū
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93 - 3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	Ū
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	Ū
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
179601 - 23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	101%
d8-Toluene	103%
Bromofluorobenzene	89.2%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 2 LAB CONTROL SAMPLE

Lab Sample ID: LCS-050510

LIMS ID: 10-10766

Matrix: Water
Data Release Authorized: /

Reported: 05/10/10.

Instrument/Analyst LCS: NT5/PKC

LCSD: NT5/PKC
Date Analyzed LCS: 05/05/10 10:40

LCSD: 05/05/10 11:06

QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Sample ID: LCS-050510

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Chloromethane	9.7	10.0	97.0%	9.8	10.0	98.0%	1.0%
Bromomethane	10.4	10.0	104%	10.5	10.0	105%	1.0%
Vinyl Chloride	9.8	10.0	98.0%	9.8	10.0	98.0%	0.0%
Chloroethane	9.8	10.0	98.0%	9.9	10.0	99.0%	1.0%
Methylene Chloride	9.5	10.0	95.0%	9.6	10.0	96.0%	1.0%
Acetone	48.2	50.0	96.4%	48.7	50.0	97.4%	1.0%
Carbon Disulfide	10.2	10.0	102%	10.2	10.0	102%	0.0%
1,1-Dichloroethene	10.3	10.0	103%	10.3	10.0	103%	0.0%
1,1-Dichloroethane	9.9	10.0	99.0%	10.0	10.0	100%	1.0%
trans-1,2-Dichloroethene	10.0	10.0	100%	10.2	10.0	102%	2.0%
cis-1,2-Dichloroethene	10.2	10.0	102%	10.2	10.0	102%	0.0%
Chloroform	10.3	10.0	103%	10.2	10.0	102%	1.0%
1,2-Dichloroethane	10.0	10.0	100%	9.7	10.0	97.0%	3.0%
2-Butanone	48.9	50.0	97.8%	49.0	50.0	98.0%	0.2%
1,1,1-Trichloroethane	10.2	10.0	102%	10.3	10.0	103%	1.0%
Carbon Tetrachloride	10.5	10.0	105%	10.4	10.0	104%	1.0%
Vinyl Acetate	8.8	10.0	88.0%	9.1	10.0	91.0%	3.4%
Bromodichloromethane	10.3	10.0	103%	10.3	10.0	103%	0.0%
1,2-Dichloropropane	10.4	10.0	104%	10.2	10.0	102%	1.9%
cis-1,3-Dichloropropene	10.2	10.0	102%	10.4	10.0	104%	1.9%
Trichloroethene	10.7	10.0	107%	10.3	10.0	103%	3.8%
Dibromochloromethane	10.5	10.0	105%	10.6	10.0	106%	0.9%
1,1,2-Trichloroethane	10.4	10.0	104%	10.1	10.0	101%	2.9%
Benzene	10.9	10.0	109%	10.6	10.0	106%	2.8%
trans-1,3-Dichloropropene	10.4	10.0	104%	10.3	10.0	103%	1.0%
2-Chloroethylvinylether	9.5	10.0	95.0%	9.4	10.0	94.0%	1.1%
Bromoform	10.5	10.0	105%	10.5	10.0	105%	0.0%
4-Methyl-2-Pentanone (MIBK)	51.3	50.0	103%	49.9	50.0	99.8%	2.8%
2-Hexanone	49.2	50.0	98.4%	50.0	50.0	100%	1.6%
Tetrachloroethene	10.5	10.0	105%	10.3	10.0	103%	1.9%
1,1,2,2-Tetrachloroethane	9.4	10.0	94.0%	9.5	10.0	95.0%	1.1%
Toluene	11.0	10.0	110%	10.8	10.0	108%	1.8%
Chlorobenzene	10.6	10.0	106%	10.7	10.0	107%	0.9%
Ethylbenzene	11.2	10.0	112%	11.3	10.0	113%	0.9%
Styrene	11.4	10.0	114%	11.4	10.0	114%	0.0%
Trichlorofluoromethane	10.3	10.0	103%	10.3	10.0	103%	0.0%
1,1,2-Trichloro-1,2,2-trifluoroetha	10.0	10.0	100%	10.0	10.0	100%	0.0%
m,p-Xylene	22.8	20.0	114%	22.8	20.0	114%	0.0%
o-Xylene	11.0	10.0	110%	11.0	10.0	110%	0.0%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

LCS LCSD

M III QU99 : **0002**0

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 2 of 2

Sample ID: LCS-050510

LAB CONTROL SAMPLE

Lab Sample ID: LCS-050510 LIMS ID: 10-10766

Matrix: Water

QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Analyte	LCS	Spike Added-LCS l	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
	d4-1,2-Dichloroetha d8-Toluene	100	L% 95.4%)% 99.4%				
	Bromofluorobenzene	93.4	18 95.48				

FORM III

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MB-050510

Page 1 of 1

METHOD BLANK

Lab Sample ID: MB-050510

LIMS ID: 10-10766

Matrix: Water

Data Release Authorized:

Reported: 05/06/10

a: /#

Instrument/Analyst: NT7/MH
Date Analyzed: 05/05/10 10:23

QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 111%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MW29B SAMPLE

Page 1 of 1

Lab Sample ID: QU99A LIMS ID: 10-10766

Matrix: Water

Data Release Authorized:

Reported: 05/06/10

Instrument/Analyst: NT7/MH Date Analyzed: 05/05/10 11:50 QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number Analyte		RL	Result Q
75-01-4	Vinyl Chloride	0.20	0.65

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 95.1%

FORM I

QU99:00023

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MW31

Page 1 of 1

SAMPLE

Lab Sample ID: QU99B LIMS ID: 10-10767

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT7/MH

Date Analyzed: 05/05/10 12:16

Reported: 05/06/10

R

555-1550-052
Date Sampled: 05/03/10
Date Received: 05/03/10

QC Report No: QU99-City of Seattle

Project: Midway Landfill

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 117%

00024

ORGANICS ANALYSIS DATA SHEET
Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MW16

Page 1 of 1

SAMPLE

Lab Sample ID: QU99C LIMS ID: 10-10768

Matrix: Water

Data Release Authorized:

Reported: 05/06/10

Instrument/Analyst: NT7/MH
Date Analyzed: 05/05/10 12:42

QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 113%

FORM I

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MW20B

SAMPLE

Page 1 of 1

Lab Sample ID: QU99D LIMS ID: 10-10769

Matrix: Water

Data Release Authorized:

Reported: 05/06/10

Instrument/Analyst: NT7/MH Date Analyzed: 05/05/10 13:07 QC Report No: QU99-City of Seattle

Project: Midway Landfill 555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Sample Amount: 10.0 mL

Purge Volume: 10.0 mL

CAS Number Analyte		RL	Result Q
75-01-4	Vinyl Chloride	0.20	0.27

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane

97.0%

QU99:00026

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: Trip Blank

Page 1 of 1

SAMPLE

Lab Sample ID: QU99E LIMS ID: 10-10770

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT7/MH
Date Analyzed: 05/05/10 10:59

Reported: 05/06/10

QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Sample Amount: 10.0 mL

Purge Volume: 10.0 mL

CAS Number Analyte RL Result Q
75-01-4 Vinyl Chloride 0.20 < 0.20 U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 107%

FORM I

QU99:00027

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: LCS-050510

LAB CONTROL SAMPLE 1 of 1 Page

Lab Sample ID: LCS-050510

LIMS ID: 10-10766

Matrix: Water Data Release Authorized:

Reported: 05/06/10

Instrument/Analyst LCS: NT7/MH

LCSD: NT7/MH

Date Analyzed LCS: 05/05/10 09:32

LCSD: 05/05/10 09:58

QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA

Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Vinyl Chloride	1.06	1.00	106%	1.08	1.00	108%	1.9%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

LCSD LCS 96.6% 93.4% d4-1,2-Dichloroethane

FORM III

METHOD BLANK RESULTS-CONVENTIONALS QU99-City of Seattle

Matrix: Water

Data Release Authorized: Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052

Date Sampled: NA Date Received: NA

Analyte	Method	Date	Units	Blank ID
Chloride	EPA 325.2	05/06/10	mg/L	< 1.0 U
Sulfate	EPA 375.2	05/12/10	mg/L	< 2.0 U
Chemical Oxygen Demand	EPA 410.4	05/03/10	mg/L	< 5.00 U
Total Organic Carbon	EPA 415.1	05/03/10 05/04/10	mg/L	< 1.50 U < 1.50 U

SAMPLE RESULTS-CONVENTIONALS QU99-City of Seattle

Matrix: Water

Data Release Authorized: Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Client ID: MW29B ARI ID: 10-10766 QU99A

Analyte	Date Batch	Method	Units	RL	Sample
Chloride	05/06/10 050610#1	EPA 325.2	mg/L	5.0	32.9
Sulfate	05/12/10 051210#1	EPA 375.2	mg/L	2.0	23.0
Chemical Oxygen Demand	05/03/10 050310#1	EPA 410.4	mg/L	5.00	10.4
Total Organic Carbon	05/03/10 050310#1	EPA 415.1	mg/L	1.50	2.37

RLAnalytical reporting limit

Undetected at reported detection limit U

Water Sample Report-QU99

SAMPLE RESULTS-CONVENTIONALS QU99-City of Seattle

Matrix: Water

Data Release Authorized: Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Client ID: MW31 ARI ID: 10-10767 QU99B

Analyte	Date Batch	Method	Units	RL	Sample
Chloride	05/06/10 050610#1	EPA 325.2	mg/L	1.0	8.3
Sulfate	05/12/10 051210#1	EPA 375.2	mg/L	2.0	27.9
Chemical Oxygen Demand	05/03/10 050310#1	EPA 410.4	mg/L	5.00	< 5.00 U
Total Organic Carbon	05/03/10 050310#1	EPA 415.1	mg/L	1.50	< 1.50 U

RLAnalytical reporting limit

Undetected at reported detection limit Ü

Water Sample Report-QU99

QU99:00031

SAMPLE RESULTS-CONVENTIONALS QU99-City of Seattle

Matrix: Water

Data Release Authorized Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Client ID: MW16 ARI ID: 10-10768 QU99C

Analyte	Date Batch	Method	Units	RL	Sample
Chloride	05/06/10 050610#1	EPA 325.2	mg/L	1.0	8.4
Sulfate	05/12/10 051210#1	EPA 375.2	mg/L	2.0	28.4
Chemical Oxygen Demand	05/03/10 050310#1	EPA 410.4	mg/L	5.00	< 5.00 U
Total Organic Carbon	05/04/10 050410#1	EPA 415.1	mg/L	1.50	< 1.50 U

RL Analytical reporting limit

Undetected at reported detection limit Ü

Water Sample Report-QU99

SAMPLE RESULTS-CONVENTIONALS QU99-City of Seattle

Matrix: Water

Data Release Authorized

Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Client ID: MW20B ARI ID: 10-10769 QU99D

Analyte	Date Batch	Method	Units	RL	Sample
Chloride	05/06/10 050610#1	EPA 325.2	mg/L	10.0	44.7
Sulfate	05/12/10 051210#1	EPA 375.2	mg/L	2.0	8.9
Chemical Oxygen Demand	05/03/10 050310#1	EPA 410.4	mg/L	5.00	17.0
Total Organic Carbon	05/04/10 050410#1	EPA 415.1	mg/L	1.50	6.47

RL Analytical reporting limit

U Undetected at reported detection limit

Water Sample Report-QU99

MS/MSD RESULTS-CONVENTIONALS QU99-City of Seattle

Matrix: Water
Data Release Authorized
Reported: 05/13/10

Project: Midway Landfill

Event: 555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Analyte	Method	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: QU99A Client	ID: MW29B						
Chemical Oxygen Demand	EPA 410.4	05/03/10	mg/L	10.4	53.3	48.0	89.4%
Total Organic Carbon	EPA 415.1	05/03/10	mg/L	2.37	21.9	20.0	97.6%

Water MS/MSD Report-QU99

QU99:00034

REPLICATE RESULTS-CONVENTIONALS QU99-City of Seattle

Matrix: Water

Data Release Authorized: Reported: 05/12/10

Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052 Date Sampled: 05/03/10 Date Received: 05/03/10

Analyte	Method	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: QU99A Client	ID: MW29B					
Chemical Oxygen Demand	EPA 410.4	05/03/10	mg/L	10.4	10.1	2.9%
Total Organic Carbon	EPA 415.1	05/03/10	mg/L	2.37	2.13	10.7%

Water Replicate Report-QU99

STANDARD REFERENCE RESULTS-CONVENTIONALS QU99-City of Seattle

Matrix: Water Data Release Authorized: Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052 Date Sampled: NA

Date Received: NA

Analyte/SRM ID	Method	Date	Units	SRM	True Value	Recovery
Chloride ERA #38084	EPA 325.2	05/06/10	mg/L	4.9	5.0	98.0%
Sulfate ERA #37065	EPA 375.2	05/12/10	mg/L	27.1	25.0	108.4%
Chemical Oxygen Demand Thermo Orion #I01	EPA 410.4	05/03/10	mg/L	87.5	90.0	97.2%
Total Organic Carbon ERA 0506-09-01	EPA 415.1	05/03/10 05/04/10	mg/L	21.0 21.7	20.0	105.0% 108.5%

Water Standard Reference Report-QU99

0U99:00036

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QU99MB

LIMS ID: 10-10766

Matrix: Water

 $[\cdot], [\nabla]$

Data Release Authorized:

Reported: 05/07/10

Sample ID: METHOD BLANK

QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B 6010B	05/04/10 05/04/10	6010B 6010B	05/06/10 05/06/10	7439-89-6 7439-96-5	Iron Manganese	0.05 0.001	0.05 0.001	U

U-Analyte undetected at given RL RL-Reporting Limit

FORM-I

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QU99A

LIMS ID: 10-10766

Matrix: Water

Data Release Authorized!

Reported: 05/07/10

Sample ID: MW29B

SAMPLE

QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/03/10

Date Received: 05/03/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B	05/04/10	6010B	05/06/10	7439-89-6	Iron	0.05	15.0	
6010B	05/04/10	6010B	05/06/10	7439-96-5	Manganese	0.001	0.980	

U-Analyte undetected at given RL RL-Reporting Limit

95000:eeup

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Sample ID: MW31 SAMPLE

Lab Sample ID: QU99B

LIMS ID: 10-10767

Matrix: Water
Data Release Authorized;

Reported: 05/07/10

QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B	05/04/10	6010B	05/06/10	7439-89-6	Iron	0.05	0.25	
6010B	05/04/10	6010B	05/06/10	7439-96-5	Manganese	0.001	0.094	

 $\begin{array}{c} \mbox{U-Analyte undetected at given RL} \\ \mbox{RL-Reporting Limit} \end{array}$

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QU99C

LIMS ID: 10-10768

Matrix: Water Data Release Authorized:

Reported: 05/07/10

Sample ID: MW16 SAMPLE

QC Report No: QU99-City of Seattle

Project: Midway Landfill 555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B	05/04/10	6010В	05/06/10	7439-89-6	Iron	0.05	0.25	
6010B	05/04/10	6010В	05/06/10	7439-96-5	Manganese	0.001	0.094	

U-Analyte undetected at given RL RL-Reporting Limit

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QU99D

LIMS ID: 10-10769 Matrix: Water

Data Release Authorized

Reported: 05/07/10

Sample ID: MW20B

SAMPLE

QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/03/10 Date Received: 05/03/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L Q
6010B	05/04/10	6010B	05/06/10	7439-89-6	Iron	0.05	9.48
6010B	05/04/10	6010B	05/06/10	7439-96-5	Manganese	0.001	3.24

U-Analyte undetected at given RL RL-Reporting Limit

algo: aggui

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QU99LCS

LIMS ID: 10-10766

Matrix: Water
Data Release Authorized:

Reported: 05/07/10

Sample ID: LAB CONTROL

QC Report No: QU99-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Iron	6010B	2.04	2.00	102%	
Manganese	6010B	0.466	0.500	93.2%	

Reported in mg/L

N-Control limit not met Control Limits: 80-120%

Chair
<u>야</u>
nain of Custody
Record & Laboratory
۳ % ک
abora
atory
A
ıalysis F
Request

9447	필드네		E-6		-		_	_		_	т —	T			,	11.		1	T	
				Comments/Special Instructions				Trip Blank	Field Blank	MW 2/A	MW X B	MW IT B	MW 17B	MIN JOB	Sample ID	Client Project #: 555-1550-057	Client Project Name: MXXX	Client Contact: C MU	ARI Client Company	ARI Assigned Number:
Date & Time:	Company	Printed Name!	(Signature)	Relinducted by://m				1	11 01/HG	0/4/6	5/4/10/12	5/4/10 11	20 O/F/G	30 0/4/6	Date Ti	Samplers: V. Thoma, F.M.	1500 F	n Soon	Prone	Turn-around Requested:
777	ACCOUNT.	Thoma	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	XXXXX 1				1	Ö X	ते ≥	₹ 2	Ū ≤	N CZZ	1810 W	Time Matrix	Emckenzie, R.I	\$	MM	20-235-2620	sted:
Date & Time:	Company:	Printed Name:	(Signature)	Received by:				Ŧ	ō	8	ō	0	<u>0</u>	0	No. Containers	00/60			1629	
)				_		_	_	_	1	Sulfa Chlor Ta	a <u>ie</u> (ide C,	ر	No. of Coolers:	59°H/1	Page:
472		Son										1		_	Dissor Meta Fe,	OD Olveo IS Mn		Cooler Temps:	O Ice Present?	of
Date & Time:	Company:	Printed Name:	(Signature)	Relinquished by:				7	Ø	Ø	Ø	(n	(n	()	V	DA.	Analysis Requested	1,7,30	¥7	
			:	<i>'</i> :				4	\mathcal{U}	4	X	7	\mathcal{X}		Vin Chlo	y! oride	quested	2,0		
									2		2	2	\mathcal{Z}	7	DIOX	ane				
Date & Time:	Company:	Printed Name:	(Signature)	Received by:		·												206-695-	4611 Sou Tukwila,	Analytica Analytica
		Ë.													THE BOOK	100 00 100 00	Notes/Comments	206-695-6200 206-695-6201 (fax)	4611 South 134th Place, Suite 100 Tukwila, WA 98168	Analytical Resources, Incorporated Analytical Chemists and Consultants

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client: CHYOF	Deathle	Project Name: Mc(U)	aulan	dfill
COC No(s):	(NA)	Delivered by: Fed-Ex UPS Co	L	red Other:
Assigned ARI Job No: (V22		Tracking No:		(NA)
Preliminary Examination Phase:				
Were intact, properly signed and dated cur	stody seals attached to	the outside of to cooler?	Y	res (NO)
Were custody papers included with the co			(Y	res) NO
			\sim	ES) NO
Were custody papers properly filled out (in			•	
Temperature of Cooler(s) (°C) (recommen		111stry) <u>[] 7 </u>	Temp Gun ID#	. angullala
If cooler temperature is out of compliance	fill out form 00070F	-4:40	,	•
Cooler Accepted by:	<i></i>		ne:	-
	plete custody forms a	and attach all shipping document	<u> </u>	
Log-In Phase:				
Was a temperature blank included in the c	ooler?			YES (NO)
What kind of packing material was used	? Bubble Wrap	Wet Ice Gel Packs Baggies Foal	m Block Paper Ot	her:
Was sufficient ice used (if appropriate)?			NA	(YES) NO
Were all bottles sealed in individual plastic	bags?			YES NO
Did all bottles arrive in good condition (unl	oroken)?			YES NO
Were all bottle labels complete and legible	?			YES NO
Did the number of containers listed on CO	C match with the numb	per of containers received?		YES NO
Did all bottle labels and tags agree with cu	stody papers?			(ĀĒŠ NO
Were all bottles used correct for the reque	sted analyses?			(YES) NO
Do any of the analyses (bottles) require pr	eservation? (attach pre	eservation sheet, excluding VOCs)	NA	(ES) NO
Were all VOC vials free of air bubbles?			NA	YES NO
Was sufficient amount of sample sent in e	ach bottle?			(ES) NO
Date VOC Trip Blank was made at ARI			NA	4/20/10
Was Sample Split by ARI : (NĀ) YE	S Date/Time:	Equipment:		Split by:
·	Date	. GILIII Timos	145	
•		er of discrepancies or concerns **		
	voiny Project manage	or discrepancies or concerns		
Sample ID on Bottle S	ample ID on COC	Sample ID on Bottle	Sample	ID on COC
Cample ID on Bottle	umpio 12 011 000			
			1	
Additional Notes, Discrepancies, & Res	solutions:		_ 	
By: Date:	<u> </u>			
Small Air Bubbles Peabubbles' 2-4 mm	LARGE Air Bubbles > 4 mm	Small → "sm"		
			Trip BL	ink
	7 9 9	Large → "lg"		

0016F 3/2/10 Cooler Receipt Form

Revision 014

PRESERVATION VERIFICATION 05/04/10

1 of 1 Page Inquiry Number: NONE

Analysis Requested: 05/05/10 Contact: Yim, Min-Soon Client: City of Seattle Logged by: JP Sample Set Used: Yes-481 Validatable Package: No

Deliverables:

ANALYTICAL RESOURCES INCORPORATED

ARI Job No: QV22

PC: Mark VTSR: 05/04/10

Project #: 555-1550-052 Project: Midway Landfill Sample Site: SDG No:

Analytical Protocol: In-house

DATE/BY		;				
AMOUNT						
LOT NUMBER						
ADJUSTED LOT AMOUNT TO NUMBER ADDED						
PARAMETER						
S2 AK102 Fe2+ DMET DOC >9 <2 <2 FLT FLT	>-	×	*	Y	¥	Y
e2+			-			
AK102 F						
\$2 82						
10C	PASS					783
PHOS TKN NO23 TOC <2 <2 <2						
TKN <2						
PHEN <2						
MET PHEN <2 <2	DIS PASS	SIQ	DIS	SID	SIQ	ors PASS
F0G						
COD <2	PPES					- 35
NH3						
WAD >12						
CN >12						
CLIENT ID	MW35	MW17B	MW14B	MW21B	MW21A	Field Blank
LOGNUM ARI ID	10-10945 QV22A	10-10946 QV22B	10-10947 QV 22C	10-10948 QV22D	10-10949 QV22E	10-10950 QV22F

_ Date__ Checked By

Data Reporting Qualifiers Effective 7/10/2009

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte

- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- М Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- Ν The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Υ The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- Р The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

Geotechnical Data

- Α The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

ARI Job No: QV22

Parameter: Chloride-EPA 325.2

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
 MW35	QV22A	05/04/10	05/04/10	N/A	05/06/10
MW17B	QV22B	05/04/10	05/04/10	N/A	05/06/10
MW14B	QV22C	05/04/10	05/04/10	N/A	05/06/10
MW21B	QV22D	05/04/10	05/04/10	N/A	05/06/10
MW21A	QV22E	05/04/10	05/04/10	N/A	05/06/10
Field Blank	QV22F	05/04/10	05/04/10	N/A	05/06/10
Method Blank	MB050610	N/A	N/A	N/A	05/06/10
Standard Ref.	SRM050610	N/A	N/A	N/A	05/06/10
MW35	QV22ADP	05/04/10	05/04/10	N/A	05/06/10
MW35	QV22AMS	05/04/10	05/04/10	N/A	05/06/10

Preparation Summary Table

ARI Job No: QV22

Parameter: Sulfate-EPA 375.2

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
 MW35	QV22A	05/04/10	05/04/10	N/A	05/12/10
MW17B	QV22B	05/04/10	05/04/10	N/A	05/12/10
MW14B	QV22C	05/04/10	05/04/10	N/A	05/12/10
MW21B	QV22D	05/04/10	05/04/10	N/A	05/12/10
MW21A	QV22E	05/04/10	05/04/10	N/A	05/12/10
Field Blank	OV22F	05/04/10	05/04/10	N/A	05/12/10
Method Blank	MB051210	N/A	N/A	N/A	05/12/10
Standard Ref.	SRM051210	N/A	N/A	N/A	05/12/10
MW35	QV22ADP	05/04/10	05/04/10	N/A	05/12/10
MW35	QV22AMS	05/04/10	05/04/10	N/A	05/12/10

Preparation Summary Table

ARI Job No: QV22

Parameter: Chemical Oxygen Demand-EPA 410.4

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW35	QV22A	05/04/10	05/04/10	N/A	05/11/10
MW17B	QV22B	05/04/10	05/04/10	N/A	05/12/10
MW14B	QV22C	05/04/10	05/04/10	N/A	05/12/10
MW21B	QV22D	05/04/10	05/04/10	N/A	05/12/10
MW21A	QV22E	05/04/10	05/04/10	N/A	05/12/10
Field Blank	QV22F	05/04/10	05/04/10	N/A	05/12/10
Method Blank	MB051110	N/A	N/A	N/A	05/11/10
Method Blank	MB051210	N/A	N/A	N/A	05/12/10
Standard Ref.	SRM051110	N/A	N/A	N/A	05/11/10
Standard Ref.	SRM051210	N/A	N/A	N/A	05/12/10
MW35	QV22ADP	05/04/10	05/04/10	N/A	05/11/10
MW35	QV22AMS	05/04/10	05/04/10	N/A	05/11/10

Preparation Summary Table

ARI Job No: QV22

Parameter: Total Organic Carbon-EPA 415.1

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW35	QV22A	05/04/10	05/04/10	N/A	05/06/10
MW17B	QV22B	05/04/10	05/04/10	N/A	05/06/10
MW14B	QV22C	05/04/10	05/04/10	N/A	05/06/10
MW21B	QV22D	05/04/10	05/04/10	N/A	05/06/10
MW21A	QV22E	05/04/10	05/04/10	N/A	05/06/10
Field Blank	OV22F	05/04/10	05/04/10	N/A	05/06/10
Method Blank	MB050610	N/A	N/A	N/A	05/06/10
Standard Ref.	SRM050610	N/A	N/A	N/A	05/06/10
MW35	OV22ADP	05/04/10	05/04/10	N/A	05/06/10
MW35	QV22AMS	05/04/10	05/04/10	N/A	05/06/10

Preparation Summary Table

ARI Job No: QV22

Parameter: ICP Dissolved Metals-6010B

Matrix: Water

Holding Time: 6 Months

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW35	OV22A	05/04/10	05/04/10	05/05/10	05/11/10
MW17B	OV22B	05/04/10	05/04/10	05/05/10	05/11/10
MW14B	ÕV22C	05/04/10	05/04/10	05/05/10	05/11/10
MW21B	ÕV22D	05/04/10	05/04/10	05/05/10	05/11/10
MW21A	ÕV22E	05/04/10	05/04/10	05/05/10	05/11/10
Field Blank	ÕV22F	05/04/10	05/04/10	05/05/10	05/11/10
Method Blank	MB050510	N/A	N/A	05/05/10	05/11/10
Lab Control	LCS050510	N/A	N/A	05/05/10	05/11/10

Preparation Summary Table

ARI Job No: QV22

Parameter: Volatiles-SW8260B

Matrix: Water

Holding Time: 14 Days Preserved, 7 Days Unpreserved

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW35	QV22A	05/04/10	05/04/10	05/05/10	05/05/10
MW35	QV22ADL	05/04/10	05/04/10	05/06/10	05/06/10
MW17B	QV22B	05/04/10	05/04/10	05/05/10	05/05/10
MW14B	OV22C	05/04/10	05/04/10	05/05/10	05/05/10
MW21B	OV22D	05/04/10	05/04/10	05/05/10	05/05/10
MW21B	QV22DDL	05/04/10	05/04/10	05/06/10	05/06/10
MW21A	OV22E	05/04/10	05/04/10	05/05/10	05/05/10
Field Blank	QV22F	05/04/10	05/04/10	05/05/10	05/05/10
Trip Blank	QV22G	05/04/10	05/04/10	05/05/10	05/05/10
Method Blank	MB050510	N/A	N/A	05/05/10	05/05/10
Method Blank	MB050610	N/A	N/A	05/06/10	05/06/10
Lab Control	LCS050510	N/A	N/A	05/05/10	05/05/10
Lab Control	LCS050610	N/A	N/A	05/06/10	05/06/10
Lab Control Dup	LCSD050510	N/A	N/A	05/05/10	05/05/10
Lab Control Dup		N/A	N/A	05/06/10	05/06/10

Preparation Summary Table

ARI Job No: QV22

Parameter: Volatiles-SIM SW8260B

Matrix: Water

Holding Time: 14 Days Preserved

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
 MW35	QV22A	05/04/10	05/04/10	05/05/10	05/05/10
MW17B	QV22B	05/04/10	05/04/10	05/05/10	05/05/10
MW14B	QV22C	05/04/10	05/04/10	05/05/10	05/05/10
MW21B	QV22D	05/04/10	05/04/10	05/05/10	05/05/10
MW21A	QV22E	05/04/10	05/04/10	05/05/10	05/05/10
Field Blank	QV22F	05/04/10	05/04/10	05/05/10	05/05/10
Trip Blank	QV22G	05/04/10	05/04/10	05/05/10	05/05/10
Method Blank	MB050510	N/A	N/A	05/05/10	05/05/10
Lab Control	LCS050510	N/A	N/A	05/05/10	05/05/10
Lab Control Dup	LCSD050510	N/A	N/A	05/05/10	05/05/10

Preparation Summary Table

ARI Job No: QV22

Parameter: Semivolatiles-SW8270D

Matrix: Water

Holding Time: 7 Days

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW35	QV22A	05/04/10	05/04/10	05/06/10	05/11/10
MW17B	OV22B	05/04/10	05/04/10	05/06/10	05/11/10
MW14B	OV22C	05/04/10	05/04/10	05/06/10	05/11/10
MW21B	OV22D	05/04/10	05/04/10	05/06/10	05/11/10
Field Blank	OV22F	05/04/10	05/04/10	05/06/10	05/11/10
Method Blank	мВ050610	N/A	N/A	05/06/10	05/11/10
Lab Control	LCS050610	N/A	N/A	05/06/10	05/11/10
Lab Control Dup	LCSD050610	N/A	N/A	05/06/10	05/11/10

Preparation Summary Table

0100.0072

Sample ID: MB-050510 METHOD BLANK Page 1 of 1

Lab Sample ID: MB-050510

LIMS ID: 10-10945 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT5/PKC

Date Analyzed: 05/05/10 11:31

Reported: 05/11/10

Project: Midway Landfill 555-1550-052 Date Sampled: NA

Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

QC Report No: QV22-City of Seattle

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	Ũ
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	Ü
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93 - 3	2-Butanone	5.0	< 5.0	Ü
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23 - 5	Carbon Tetrachloride	1.0	< 1.0	Ü
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87 - 5	1,2-Dichloropropane	1.0	< 1.0	Ü
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00 - 5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78 - 6	2-Hexanone	5.0	< 5.0	Ü
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75 - 69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	Ū

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	101%
d8-Toluene	99.7%
Bromofluorobenzene	91.6%

FORM I

Page 1 of 1

Matrix: Water

LIMS ID: 10-10948

Reported: 05/11/10

Sample ID: MB-050610 METHOD BLANK

QC Report No: QV22-City of Seattle Project: Midway Landfill

555-1550-052

Date Sampled: NA

Date Received: NA

Instrument/Analyst: NT5/PKC Date Analyzed: 05/06/10 11:29

Lab Sample ID: MB-050610

Data Release Authorized:

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	Ü
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75-15-0	Carbon Disulfide	1.0	< 1.0	Ū
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93 - 3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23 - 5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	Ü
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	Ū
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	Ü
79-34-5	1, 1, 2, 2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	Ü
95-47-6	o-Xylene	1.0	< 1.0	U
JJ 47 0	0 11,2010			

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	100%
d8-Toluene	99.8%
Bromofluorobenzene	89.9%

Q199:*909*57

Sample ID: MW35 1 of 1 SAMPLE Page

Lab Sample ID: QV22A LIMS ID: 10-10945

Matrix: Water Data Release Authorized:

Reported: 05/11/10

Instrument/Analyst: NT5/PKC

Date Analyzed: 05/05/10 18:13

QC Report No: QV22-City of Seattle Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75 - 00-3	Chloroethane	1.0	< 1.0	Ü
75-09-2	Methylene Chloride	2.0	< 2.0	Ü
67-64 - 1	Acetone	10	< 10	U
75-15 - 0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	3.6	
75-34-3	1,1-Dichloroethane	1.0	3.6	
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93 - 3	2-Butanone	5.0	< 5.0	Ü
71-55-6	1,1,1-Trichloroethane	1.0	3.9	
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87 - 5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01 - 6	Trichloroethene	1.0	5.1	
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	Ü
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	Ü
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591 - 78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	130	E
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	Ü
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	4.3	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	107%
d8-Toluene	101%
Bromofluorobenzene	88.0%

FORM I

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

Page 1 of 1

Lab Sample ID: QV22A LIMS ID: 10-10945

Matrix: Water

Data Release Authorized: // Reported: 05/11/10

Instrument/Analyst: NT5/PKC
Date Analyzed: 05/06/10 12:55

Sample ID: MW35

DILUTION

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 2.00 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	5.0	< 5.0	Ü
74-83-9	Bromomethane	5.0	< 5.0	U
75-01-4	Vinyl Chloride	5.0	< 5.0	U
75-00-3	Chloroethane	5.0	< 5.0	U
75-09-2	Methylene Chloride	10	< 10	Ü
67-64-1	Acetone	50	< 50	Ü
75-15-0	Carbon Disulfide	5.0	< 5.0	U
75-35-4	1,1-Dichloroethene	5.0	< 5.0	U
75-34-3	1,1-Dichloroethane	5.0	< 5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	< 5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	< 5.0	Ü
67-66-3	Chloroform	5.0	< 5.0	U
107-06-2	1,2-Dichloroethane	5.0	< 5.0	U
78-93-3	2-Butanone	25	< 25	U
71-55-6	1,1,1-Trichloroethane	5.0	< 5.0	U
56-23 - 5	Carbon Tetrachloride	5.0	< 5.0	Ü
108-05-4	Vinyl Acetate	25	< 25	U
75-27-4	Bromodichloromethane	5.0	< 5.0	U
78-87-5	1,2-Dichloropropane	5.0	< 5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	< 5.0	U
79-01-6	Trichloroethene	5.0	5.0	
124-48-1	Dibromochloromethane	5.0	< 5.0	U
79-00 - 5	1,1,2-Trichloroethane	5.0	< 5.0	U
71-43-2	Benzene	5.0	< 5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	< 5.0	Ü
110-75-8	2-Chloroethylvinylether	25	< 25	U
75-25-2	Bromoform	5.0	< 5.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	25	< 25	U
591-78-6	2-Hexanone	25	< 25	U
127-18-4	Tetrachloroethene	5.0	130	
79-34-5	1,1,2,2-Tetrachloroethane	5.0	< 5.0	U
108-88-3	Toluene	5.0	< 5.0	U
108-90-7	Chlorobenzene	5.0	< 5.0	U
100-41-4	Ethylbenzene	5.0	< 5.0	U
100-42-5	Styrene	5.0	< 5.0	U
75-69-4	Trichlorofluoromethane	5.0	< 5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	10	< 10	Ü
179601-23-1	m,p-Xylene	10	< 10	Ü
95-47-6	o-Xylene	5.0	< 5.0	Ü

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	107%
d8-Toluene	101%
Bromofluorobenzene	87.3%

FORM I

Page 1 of 1

Lab Sample ID: QV22B LIMS ID: 10-10946

Matrix: Water
Data Release Authorized:

Reported: 05/11/10

Instrument/Analyst: NT5/PKC
Date Analyzed: 05/05/10 18:38

Sample ID: MW17B

SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74 - 83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	1.4	
75 - 09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75 - 15-0	Carbon Disulfide	1.0	< 1.0	Ü
75-35-4	1,1-Dichloroethene	1.0	2.6	
75-34-3	1,1-Dichloroethane	1.0	36	
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	3.8	
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	4.4	
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	Ü
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	Ü
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00 - 5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75 - 8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25 - 2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34 - 5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	Ü
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	Ü
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0 < 2.0	Ū
179601-23-1	m,p-Xylene	2.0	< 1.0	U
95-47-6	o-Xylene	1.0	\ 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	105%
d8-Toluene	103%
Bromofluorobenzene	89.0%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

Sample ID: MW14B SAMPLE Page 1 of 1

Lab Sample ID: QV22C LIMS ID: 10-10947

Matrix: Water Data Release Authorized: 6

Reported: 05/11/10

Instrument/Analyst: NT5/PKC

Date Analyzed: 05/05/10 19:04

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	Ū
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75 - 00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	1.5	
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	4.5	
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	Ü
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	Ü
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	Ü
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	Ü
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	Ü
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47 - 6	o-Xylene	1.0	< 1.0	Ü

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	104%
d8-Toluene	100%
Bromofluorobenzene	89.3%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

Sample ID: MW21B Volatiles by Purge & Trap GC/MS-Method SW8260C SAMPLE

Page 1 of 1

Lab Sample ID: QV22D LIMS ID: 10-10948 Matrix: Water

Data Release Authorized:

Reported: 05/11/10

Instrument/Analyst: NT5/PKC Date Analyzed: 05/05/10 19:30

QC Report No: QV22-City of Seattle Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	Ü
75-01-4	Vinyl Chloride	1.0	< 1.0	Ü
75 - 00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	3.6	
75-34-3	1,1-Dichloroethane	1.0	3.6	
156-60 - 5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	3.8	
56 - 23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	Ü
78-87 - 5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01 - 5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	4.8	
124-48-1	Dibromochloromethane	1.0	< 1.0	Ü
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	Ü
71-43-2	Benzene	1.0	< 1.0	Ü
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	Ü
591 - 78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	130	E
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	Ü
108-88-3	Toluene	1.0	< 1.0	Ü
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	4.4	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0 < 1.0	Ü
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	104%
d8-Toluene	101%
Bromofluorobenzene	85.4%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

Sample ID: MW21B DILUTION Page 1 of 1

Lab Sample ID: QV22D LIMS ID: 10-10948 Matrix: Water

Data Release Authorized: /

Reported: 05/11/10

Instrument/Analyst: NT5/PKC Date Analyzed: 05/06/10 13:20 QC Report No: QV22-City of Seattle

Project: Midway Landfill 555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 2.00 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	5.0	< 5.0	U
74-83 - 9	Bromomethane	5.0	< 5.0	U
75-01-4	Vinyl Chloride	5.0	< 5.0	U
75-00-3	Chloroethane	5.0	< 5.0	U
75-09-2	Methylene Chloride	10	< 10	U
67-64-1	Acetone	50	< 50	U
75-15-0	Carbon Disulfide	5.0	< 5.0	U
75-35-4	1,1-Dichloroethene	5.0	< 5.0	U
75-34-3	1,1-Dichloroethane	5.0	< 5.0	U
156-60 - 5	trans-1,2-Dichloroethene	5.0	< 5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	< 5.0	U
67-66-3	Chloroform	5.0	< 5.0	U
107-06-2	1,2-Dichloroethane	5.0	< 5.0	Ü
78-93-3	2-Butanone	25	< 25	U
71-55-6	1,1,1-Trichloroethane	5.0	< 5.0	U
56-23-5	Carbon Tetrachloride	5.0	< 5.0	U
108-05-4	Vinyl Acetate	25	< 25	U
75-27 - 4	Bromodichloromethane	5.0	< 5.0	U
78-87 - 5	1,2-Dichloropropane	5.0	< 5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	< 5.0	Ü
79-01-6	Trichloroethene	5.0	5.2	
124-48-1	Dibromochloromethane	5.0	< 5.0	Ü
79-00-5	1,1,2-Trichloroethane	5.0	< 5.0	Ü
71-43-2	Benzene	5.0	< 5.0	Ü
10061-02-6	trans-1,3-Dichloropropene	5.0	< 5.0	U
110-75-8	2-Chloroethylvinylether	25	< 25	U
75-25-2	Bromoform	5.0	< 5.0	Ü
108-10-1	4-Methyl-2-Pentanone (MIBK)	25	< 25	U
591-78 - 6	2-Hexanone	25	< 25	U
127-18-4	Tetrachloroethene	5.0	130	
79-34-5	1,1,2,2-Tetrachloroethane	5.0	< 5.0	U
108-88-3	Toluene	5.0	< 5.0	U
108-90-7	Chlorobenzene	5.0	< 5.0	Ü
100-41-4	Ethylbenzene	5.0	< 5.0	Ü
100-42-5	Styrene	5.0	< 5.0	U
75-69-4	Trichlorofluoromethane	5.0	< 5.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	10	< 10	U
179601-23-1	m,p-Xylene	10	< 10	U
95-47-6	o-Xylene	5.0	< 5.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	109%
d8-Toluene	101%
Bromofluorobenzene	89.2%

Page 1 of 1

Lab Sample ID: QV22E LIMS ID: 10-10949

Matrix: Water Data Release Authorized:

Reported: 05/11/10

Instrument/Analyst: NT5/PKC Date Analyzed: 05/05/10 19:55 Sample ID: MW21A SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	Ü
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00 - 3	Chloroethane	1.0	< 1.0	U
75-09 - 2	Methylene Chloride	2.0	< 2.0	Ű
67-64-1	Acetone	10	< 10	Ü
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75 - 35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156 - 60-5	trans-1,2-Dichloroethene	1.0	< 1.0	Ü
156 - 59-2	cis-1,2-Dichloroethene	1.0	< 1.0	Ü
67-66 - 3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55 - 6	1,1,1-Trichloroethane	1.0	< 1.0	Ū
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75 - 27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	Ū
79-01-6	Trichloroethene	1.0	< 1.0	Ü
124-48-1	Dibromochloromethane	1.0	< 1.0	Ü
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	Ŭ
71-43-2	Benzene	1.0	< 1.0	Ū
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	Ü
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108 - 90-7	Chlorobenzene	1.0	< 1.0	Ü
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	2.5	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
179601-23 - 1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

·	
d4-1,2-Dichloroethane	108%
d8-Toluene	104%
Bromofluorobenzene	87.2%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

Page 1 of 1

Lab Sample ID: QV22F LIMS ID: 10-10950 Matrix: Water

Data Release Authorized:

Reported: 05/11/10

Instrument/Analyst: NT5/PKC Date Analyzed: 05/05/10 13:31 Sample ID: Field Blank

SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill 555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	Ü
67-64-1	Acetone	10	< 10	U
75 - 15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34 - 3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87 - 5	1,2-Dichloropropane	1.0	< 1.0	Ū
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	Ü
79-01-6	Trichloroethene	1.0	< 1.0	Ü
124-48-1	Dibromochloromethane	1.0	< 1.0	Ü
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	Ü
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75 - 8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25 - 2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	Ü
79-34 - 5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	Ü
108-88-3	Toluene	1.0	< 1.0	Ü
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	Ü
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	Ü

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	105%
d8-Toluene	103%
Bromofluorobenzene	89.4%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

Sample ID: Trip Blank Volatiles by Purge & Trap GC/MS-Method SW8260C SAMPLE Page 1 of 1

Lab Sample ID: QV22G LIMS ID: 10-10951 Matrix: Water

Data Release Authorized: //

Reported: 05/11/10

Date Sampled: 05/04/10 Date Received: 05/04/10

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Sample Amount: 10.0 mL Instrument/Analyst: NT5/PKC Date Analyzed: 05/05/10 13:05 Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01 - 4	Vinyl Chloride	1.0	< 1.0	U
75-00 - 3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	Ü
75-15-0	Carbon Disulfide	1.0	< 1.0	Ü
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	Ü
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56 - 23-5	Carbon Tetrachloride	1.0	< 1.0	Ü
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78 - 87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	Ü
79-01-6	Trichloroethene	1.0	< 1.0	Ü
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	Ü
71-43-2	Benzene	1.0	< 1.0	Ü
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	Ū
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	-
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0 < 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	Ū
100-42-5	Styrene	1.0	< 1.0	Ü
75-69-4	Trichlorofluoromethane	1.0	< 2.0	Ü
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	Ū
179601-23-1	m,p-Xylene	2.0 1.0	< 1.0	U
95-47-6	o-Xylene	1.0	\ 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	104%
d8-Toluene	103%
Bromofluorobenzene	89.8%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

ause: 00066

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 2

Sample ID: LCS-050510

LAB CONTROL SAMPLE

Lab Sample ID: LCS-050510

LIMS ID: 10-10945 Matrix: Water

Data Release Authorized:

Reported: 05/11/10

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT5/PKC

Date Analyzed LCS: 05/05/10 10:40

LCSD: NT5/PKC

LCSD: 05/05/10 11:06

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
							4 00
Chloromethane	9.7	10.0	97.0%	9.8	10.0	98.0%	1.0%
Bromomethane	10.4	10.0	104%	10.5	10.0	105%	1.0%
Vinyl Chloride	9.8	10.0	98.0%	9.8	10.0	98.0%	0.0%
Chloroethane	9.8	10.0	98.0%	9.9	10.0	99.0%	1.0%
Methylene Chloride	9.5	10.0	95.0%	9.6	10.0	96.0%	1.0%
Acetone	48.2	50.0	96.4%	48.7	50.0	97.4%	1.0%
Carbon Disulfide	10.2	10.0	102%	10.2	10.0	102%	0.0%
1,1-Dichloroethene	10.3	10.0	103%	10.3	10.0	103%	0.0%
1,1-Dichloroethane	9.9	10.0	99.0%	10.0	10.0	100%	1.0%
trans-1,2-Dichloroethene	10.0	10.0	100%	10.2	10.0	102%	2.0%
cis-1,2-Dichloroethene	10.2	10.0	102%	10.2	10.0	102%	0.0%
Chloroform	10.3	10.0	103%	10.2	10.0	102%	1.0%
1,2-Dichloroethane	10.0	10.0	100%	9.7	10.0	97.0%	3.0%
2-Butanone	48.9	50.0	97.8%	49.0	50.0	98.0%	0.2%
1,1,1-Trichloroethane	10.2	10.0	102%	10.3	10.0	103%	1.0%
Carbon Tetrachloride	10.5	10.0	105%	10.4	10.0	104%	1.0%
Vinyl Acetate	8.8	10.0	88.0%	9.1	10.0	91.0%	3.4%
Bromodichloromethane	10.3	10.0	103%	10.3	10.0	103%	0.0%
1,2-Dichloropropane	10.4	10.0	104%	10.2	10.0	102%	1.9%
cis-1,3-Dichloropropene	10.2	10.0	102%	10.4	10.0	104%	1.9%
Trichloroethene	10.7	10.0	107%	10.3	10.0	103%	3.8%
Dibromochloromethane	10.5	10.0	105%	10.6	10.0	106%	0.9%
1,1,2-Trichloroethane	10.4	10.0	104%	10.1	10.0	101%	2.9%
Benzene	10.9	10.0	109%	10.6	10.0	106%	2.8%
trans-1,3-Dichloropropene	10.4	10.0	104%	10.3	10.0	103%	1.0%
2-Chloroethylvinylether	9.5	10.0	95.0%	9.4	10.0	94.0%	1.1%
Bromoform	10.5	10.0	105%	10.5	10.0	105%	0.0%
4-Methyl-2-Pentanone (MIBK)	51.3	50.0	103%	49.9	50.0	99.8%	2.8%
2-Hexanone	49.2	50.0	98.4%	50.0	50.0	100%	1.6%
Tetrachloroethene	10.5	10.0	105%	10.3	10.0	103%	1.9%
1,1,2,2-Tetrachloroethane	9.4	10.0	94.0%	9.5	10.0	95.0%	1.1%
Toluene	11.0	10.0	110%	10.8	10.0	108%	1.8%
Chlorobenzene	10.6	10.0	106%	10.7	10.0	107%	0.9%
Ethylbenzene	11.2	10.0	112%	11.3	10.0	113%	0.9%
Styrene	11.4	10.0	114%	11.4	10.0	114%	0.0%
Trichlorofluoromethane	10.3	10.0	103%	10.3	10.0	103%	0.0%
1,1,2-Trichloro-1,2,2-trifluoroetha	10.3	10.0	100%	10.0	10.0	100%	0.0%
	22.8	20.0	114%	22.8	20.0	114%	0.0%
m,p-Xylene	11.0	10.0	110%	11.0	10.0	110%	0.0%
o-Xylene	11.0	10.0	1100	11.0	10.0	1100	

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

LCS LCSD

QUES: 00057

Volatiles by Purge & Trap GC/MS-Method SW8260C

Bromofluorobenzene

Page 2 of 2

Sample ID: LCS-050510

LAB CONTROL SAMPLE

Lab Sample ID: LCS-050510

LIMS ID: 10-10945

Matrix: Water

QC Report No: QV22-City of Seattle

93.4% 95.4%

Project: Midway Landfill 555-1550-052

Spike LCS Spike LCSD LCS Added-LCS Recovery LCSD Added-LCSD Recovery RPD Analyte 95.1% 95.4% d4-1,2-Dichloroethane d8-Toluene 100% 99.4%

FORM III

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 2

Sample ID: LCS-050610

LAB CONTROL SAMPLE

Lab Sample ID: LCS-050610

LIMS ID: 10-10948 Matrix: Water

Data Release Authorized:

Reported: 05/11/10

QC Report No: QV22-City of Seattle

Project: Midway Landfill 555-1550-052

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT5/PKC

LCSD: NT5/PKC

Date Analyzed LCS: 05/06/10 10:38

LCSD: 05/06/10 11:04

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	9.4	10.0	94.0%	9.2	10.0	92.0%	2.2%
Bromomethane	10.2	10.0	102%	10.0	10.0	100%	2.0%
Vinyl Chloride	9.4	10.0	94.0%	9.2	10.0	92.0%	2.2%
Chloroethane	9.5	10.0	95.0%	9.3	10.0	93.0%	2.1%
Methylene Chloride	9.2	10.0	92.0%	8.9	10.0	89.0%	3.3%
Acetone	46.1	50.0	92.2%	46.9	50.0	93.8%	1.7%
Carbon Disulfide	9.9	10.0	99.0%	9.7	10.0	97.0%	2.0%
1,1-Dichloroethene	9.8	10.0	98.0%	9.7	10.0	97.0%	1.0%
1,1-Dichloroethane	9.6	10.0	96.0%	9.5	10.0	95.0%	1.0%
trans-1,2-Dichloroethene	9.7	10.0	97.0%	9.5	10.0	95.0%	2.1%
cis-1,2-Dichloroethene	9.8	10.0	98.0%	9.4	10.0	94.0%	4.2%
Chloroform	10.0	10.0	100%	9.6	10.0	96.0%	4.1%
1,2-Dichloroethane	9.7	10.0	97.0%	9.4	10.0	94.0%	3.1%
2-Butanone	47.1	50.0	94.2%	46.2	50.0	92.4%	1.9%
1,1,1-Trichloroethane	10.0	10.0	100%	9.7	10.0	97.0%	3.0%
Carbon Tetrachloride	10.3	10.0	103%	10.1	10.0	101%	2.0%
Vinyl Acetate	8.4	10.0	84.0%	8.4	10.0	84.0%	0.0%
Bromodichloromethane	10.2	10.0	102%	9.8	10.0	98.0%	4.0%
1,2-Dichloropropane	10.2	10.0	102%	9.9	10.0	99.0%	3.0%
cis-1,3-Dichloropropene	10.4	10.0	104%	9.9	10.0	99.0%	4.9%
Trichloroethene	10.4	10.0	104%	10.1	10.0	101%	2.9%
Dibromochloromethane	10.2	10.0	102%	10.1	10.0	101%	1.0%
1,1,2-Trichloroethane	10.0	10.0	100%	9.8	10.0	98.0%	2.0%
Benzene	10.5	10.0	105%	10.1	10.0	101%	3.9%
trans-1,3-Dichloropropene	10.1	10.0	101%	10.0	10.0	100%	1.0%
2-Chloroethylvinylether	9.0	10.0	90.0%	9.1	10.0	91.0%	1.1%
Bromoform	10.4	10.0	104%	10.4	10.0	104%	0.0%
4-Methyl-2-Pentanone (MIBK)	48.4	50.0	96.8%	48.4	50.0	96.8%	0.0%
2-Hexanone	46.9	50.0	93.8%	46.1	50.0	92.2%	1.7%
Tetrachloroethene	10.4	10.0	104%	10.0	10.0	100%	3.9%
1,1,2,2-Tetrachloroethane	9.3	10.0	93.0%	9.2	10.0	92.0%	1.1%
Toluene	10.8	10.0	108%	10.4	10.0	104%	3.8%
Chlorobenzene	10.4	10.0	104%	10.1	10.0	101%	2.9%
Ethylbenzene	10.7	10.0	107%	10.6	10.0	106%	0.9%
Styrene	11.1	10.0	111%	10.8	10.0	108%	2.7%
Trichlorofluoromethane	9.9	10.0	99.0%	9.8	10.0	98.0%	1.0%
1,1,2-Trichloro-1,2,2-trifluoroetha	9.8	10.0	98.0%	9.5	10.0	95.0%	3.1%
m,p-Xylene	22.2	20.0	111%	21.8	20.0	109%	1.8%
o-Xylene	10.6	10.0	106%	10.3	10.0	103%	2.9%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

LCS LCSD

FORM III

Volatiles by Purge & Trap GC/MS-Method SW8260C

d8-Toluene

Bromofluorobenzene

2 of 2 Page

Sample ID: LCS-050610

LAB CONTROL SAMPLE

Lab Sample ID: LCS-050610

LIMS ID: 10-10948

Matrix: Water

QC Report No: QV22-City of Seattle

Project: Midway Landfill 555-1550-052

101% 94.7% 95.5%

LCSD Spike LCS Spike LCSD Added-LCSD Recovery RPD LCS Added-LCS Recovery Analyte 95.6% 94.6% d4-1,2-Dichloroethane

103%

FORM III

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MB-050510

Page 1 of 1

METHOD BLANK

Lab Sample ID: MB-050510

LIMS ID: 10-10945

Matrix: Water

Data Release Authorized:

Reported: 05/06/10

Instrument/Analyst: NT7/MH

Date Analyzed: 05/05/10 10:23

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL

Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	111%
d8-Toluene	99.0%

FORM I

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MW35 SAMPLE

Page 1 of 1

Lab Sample ID: QV22A LIMS ID: 10-10945

Matrix: Water

Data Release Authorized://

Reported: 05/06/10

Instrument/Analyst: NT7/MH Date Analyzed: 05/05/10 13:33 QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	103%
d8-Toluene	92.2%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MW17B

Page 1 of 1

SAMPLE

Lab Sample ID: QV22B LIMS ID: 10-10946

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT7/MH

Date Analyzed: 05/05/10 13:59

Reported: 05/06/10

B

QC Report No: QV22-City of Seattle Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	0.22	

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	94.6%
d8-Toluene	95.8%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MW14B

Page 1 of 1

SAMPLE

Lab Sample ID: QV22C LIMS ID: 10-10947

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT7/MH

Reported: 05/06/10

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

Date Analyzed: 05/05/10 14:24

CAS Number	Analyte	RL	Result Q
75-01-4	Vinyl Chloride	0.20	0.63

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	100%
d8-Toluene	95.6%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MW21B

Page 1 of 1

SAMPLE

Lab Sample ID: QV22D LIMS ID: 10-10948

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT7/MH

Date Analyzed: 05/05/10 14:50

Reported: 05/06/10

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	103%
d8-Toluene	91.9%

FORM I

ORGANICS ANALYSIS DATA SHEET
Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MW21A

Page 1 of 1

SAMPLE

Lab Sample ID: QV22E LIMS ID: 10-10949

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT7/MH

Date Analyzed: 05/05/10 15:15

Reported: 05/06/10

18

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	118%
d8-Toluene	99.5%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: Field Blank

Page 1 of 1

SAMPLE

Lab Sample ID: QV22F LIMS ID: 10-10950

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT7/MH

Date Analyzed: 05/05/10 15:41

Reported: 05/06/10

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 112% d8-Toluene 99.6%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: Trip Blank

Page 1 of 1

SAMPLE

Lab Sample ID: QV22G LIMS ID: 10-10951

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT7/MH

Date Analyzed: 05/05/10 11:25

Reported: 05/06/10

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	115%
d8-Toluene	98.3%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: LCS-050510

LAB CONTROL SAMPLE Page 1 of 1

Lab Sample ID: LCS-050510

LIMS ID: 10-10945 Matrix: Water

Data Release Authorized;

Reported: 05/06/10

Instrument/Analyst LCS: NT7/MH

LCSD: NT7/MH

Date Analyzed LCS: 05/05/10 09:32

LCSD: 05/05/10 09:58

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL
Purge Volume LCS: 10.0 mL
LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Vinyl Chloride	1.06	1.00	106%	1.08	1.00	108%	1.9%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	96.6%	93.4%
d8-Toluene	99.3%	99.6%

FORM III

Page 1 of 1

Lab Sample ID: MB-050610

LIMS ID: 10-10945 Matrix: Water

Data Release Authorized:

Reported: 05/13/10

Date Extracted: 05/06/10 Date Analyzed: 05/11/10 19:54

Instrument/Analyst: NT4/JZ

Sample ID: MB-050610

METHOD BLANK

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 1.0 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
123-91-1	1,4-Dioxane	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

79.6% d8-1, 4-Dioxane

OLES: MAGEA

Page 1 of 1

Lab Sample ID: QV22A LIMS ID: 10-10945

Matrix: Water

Data Release Authorized:

Reported: 05/13/10

Date Extracted: 05/06/10
Date Analyzed: 05/11/10 21:34
Instrument/Analyst: NT4/JZ

Sample ID: MW35 SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 500 mL Final Extract Volume: 1.0 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
123-91-1	1,4-Dioxane	2.0	5.8

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

d8-1,4-Dioxane 74.8%

FORM I QU99: 00081

Page 1 of 1

Lab Sample ID: QV22B LIMS ID: 10-10946 Matrix: Water

Data Release Authorized:

Reported: 05/13/10

Date Extracted: 05/06/10 Date Analyzed: 05/11/10 22:07 Instrument/Analyst: NT4/JZ

Sample ID: MW17B SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill 555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

68.8%

Sample Amount: 500 mL Final Extract Volume: 1.0 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
123-91-1	1,4-Dioxane	 2.0	2.4

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

d8-1,4-Dioxane

FORM I

Lab Sample ID: QV22C LIMS ID: 10-10947

Matrix: Water

Data Release Authorized:

Reported: 05/13/10

Date Extracted: 05/06/10
Date Analyzed: 05/11/10 22:40

Instrument/Analyst: NT4/JZ

Sample ID: MW14B

SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 500 mL

Final Extract Volume: 1.0 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
123-91-1	1,4-Dioxane	2.0	17

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

d8-1,4-Dioxane 73.2%

FORM I

0U99:*900*83

Page 1 of 1

Lab Sample ID: QV22D LIMS ID: 10-10948

Matrix: Water

Data Release Authorized:

Reported: 05/13/10

Date Extracted: 05/06/10 Date Analyzed: 05/11/10 23:14 Instrument/Analyst: NT4/JZ

Sample ID: MW21B SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 500 mL Final Extract Volume: 1.0 mL Dilution Factor: 1.00

73.6%

CAS Number	Analyte	RL	Result
123-91-1	1,4-Dioxane	2.0	5.3

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

d8-1,4-Dioxane

Page 1 of 1

Lab Sample ID: QV22F LIMS ID: 10-10950

Matrix: Water

Data Release Authorized: /

Reported: 05/13/10

Date Extracted: 05/06/10 Date Analyzed: 05/11/10 23:47

Instrument/Analyst: NT4/JZ

Sample ID: Field Blank SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Sample Amount: 500 mL

Final Extract Volume: 1.0 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
123-91-1	1,4-Dioxane	2.0	< 2.0 U

Reported in µg/L (ppb)

Semivolatile Surrogate Recovery

d8-1,4-Dioxane

70.0%

QUee: *Dode*e

Date Extracted LCS/LCSD: 05/06/10

Page 1 of 1

Lab Sample ID: LCS-050610

LIMS ID: 10-10945 Matrix: Water

Data Release Authorized:

Reported: 05/13/10

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052 Date Sampled: 05/04/10

Date Received: 05/04/10

Sample Amount LCS: 500 mL

LCSD: 500 mL

LCS/LCSD

Sample ID: LCS-050610

Date Analyzed LCS: 05/11/10 20:27 Final Extract Volume LCS: 1.0 mL LCSD: 05/11/10 21:00

LCSD: 1.0 mL

Instrument/Analyst LCS: NT4/JZ Dilution Factor LCS: 1.00 LCSD: NT4/JZ

LCSD: 1.00

GPC Cleanup: NO

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
1,4-Dioxane	35.4	50.0	70.8%	40.2	50.0	80.4%	12.7%

Semivolatile Surrogate Recovery

LCS LCSD

d8-1,4-Dioxane71.2% 76.8%

Results reported in µg/L RPD calculated using sample concentrations per SW846.

METHOD BLANK RESULTS-CONVENTIONALS QV22-City of Seattle

Matrix: Water

Data Release Authorized: Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052

Date Sampled: NA Date Received: NA

Analyte	Method	Date	Units	Blank ID
Chloride	EPA 325.2	05/06/10	mg/L	< 1.0 U
Sulfate	EPA 375.2	05/12/10	mg/L	< 2.0 U
Chemical Oxygen Demand	EPA 410.4	05/11/10 05/12/10	mg/L	< 5.00 U < 5.00 U
Total Organic Carbon	EPA 415.1	05/06/10	mg/L	< 1.50 U

Water Method Blank Report-QV22

SAMPLE RESULTS-CONVENTIONALS QV22-City of Seattle

Matrix: Water

Data Release Authorized

Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Client ID: MW35 ARI ID: 10-10945 QV22A

Analyte	Date Batch	Method	Units	RL	Sample
Chloride	05/06/10 050610#1	EPA 325.2	mg/L	2.0	15.2
Sulfate	05/12/10 051210#1	EPA 375.2	mg/L	10.0	133
Chemical Oxygen Demand	05/11/10 051110#1	EPA 410.4	mg/L	5.00	< 5.00 U
Total Organic Carbon	05/06/10 050610#1	EPA 415.1	mg/L	1.50	< 1.50 U

RL Analytical reporting limit

U Undetected at reported detection limit

Water Sample Report-QV22

SAMPLE RESULTS-CONVENTIONALS QV22-City of Seattle

Matrix: Water

Data Release Authorized

Reported: 05/13/10

ed

Project: Midway Landfill

Event: 555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Client ID: MW17B ARI ID: 10-10946 QV22B

Analyte	Date Batch	Method	Units	RL	Sample
Chloride	05/06/10 050610#1	EPA 325.2	mg/L	1.0	9.6
Sulfate	05/12/10 051210#1	EPA 375.2	mg/L	2.0	23.7
Chemical Oxygen Demand	05/12/10 051210#1	EPA 410.4	mg/L	5.00	5.68
Total Organic Carbon	05/06/10 050610#1	EPA 415.1	mg/L	1.50	< 1.50 U

RL Analytical reporting limit

Water Sample Report-QV22

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS QV22-City of Seattle

Matrix: Water

Data Release Authorized Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Client ID: MW14B ARI ID: 10-10947 QV22C

Analyte	Date Batch	Method	Units	RL	Sample
Chloride	05/06/10 050610#1	EPA 325.2	mg/L	5.0	18.0
Sulfate	05/12/10 051210#1	EPA 375.2	mg/L	2.0	30.9
Chemical Oxygen Demand	05/12/10 051210#1	EPA 410.4	mg/L	5.00	< 5.00 U
Total Organic Carbon	05/06/10 050610#1	EPA 415.1	mg/L	1.50	2.30

RL Analytical reporting limit

Water Sample Report-QV22

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS QV22-City of Seattle

Matrix: Water

Data Release Authorized:

Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052

Date Sampled: 05/04/10

Date Received: 05/04/10

Client ID: MW21B ARI ID: 10-10948 QV22D

Analyte	Date Batch	Method	Units	RL	Sample
Chloride	05/06/10 050610#1	EPA 325.2	mg/L	2.0	15.0
Sulfate	05/12/10 051210#1	EPA 375.2	mg/L	10.0	133
Chemical Oxygen Demand	05/12/10 051210#1	EPA 410.4	mg/L	5.00	11.8
Total Organic Carbon	05/06/10 050610#1	EPA 415.1	mg/L	1.50	< 1.50 U

RL Analytical reporting limit

U Undetected at reported detection limit

Water Sample Report-QV22

SAMPLE RESULTS-CONVENTIONALS QV22-City of Seattle

Matrix: Water

Data Release Authorized Reported: 05/13/10

Project: Midway Landfill

Event: 555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Client ID: MW21A ARI ID: 10-10949 QV22E

Analyte	Date Batch	Method	Units	RL	Sample
Chloride	05/06/10 050610#1	EPA 325.2	mg/L	1.0	6.6
Sulfate	05/12/10 051210#1	EPA 375.2	mg/L	2.0	39.1
Chemical Oxygen Demand	05/12/10 051210#1	EPA 410.4	mg/L	5.00	5.36
Total Organic Carbon	05/06/10 050610#1	EPA 415.1	mg/L	1.50	< 1.50 U

RLAnalytical reporting limit

U Undetected at reported detection limit

Water Sample Report-QV22

SAMPLE RESULTS-CONVENTIONALS QV22-City of Seattle

Matrix: Water

Data Release Authorized:

Reported: 05/13/10

Project: Midway Landfill

Event: 555-1550-052
Date Sampled: 05/04/10

Date Received: 05/04/10

Client ID: Field Blank ARI ID: 10-10950 QV22F

Analyte	Date Batch	Method	Units	RL	Sample
Chloride	05/06/10 050610#1	EPA 325.2	mg/L	1.0	< 1.0 U
Sulfate	05/12/10 051210#1	EPA 375.2	mg/L	2.0	2.3
Chemical Oxygen Demand	05/12/10 051210#1	EPA 410.4	mg/L	5.00	< 5.00 U
Total Organic Carbon	05/06/10 050610#1	EPA 415.1	mg/L	1.50	< 1.50 U

RL Analytical reporting limit

U Undetected at reported detection limit

Water Sample Report-QV22

MS/MSD RESULTS-CONVENTIONALS QV22-City of Seattle

Matrix: Water
Data Release Authorized
Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Analyte	Method	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: QV22A Client	ID: MW35						
Chloride	EPA 325.2	05/06/10	mg/L	15.2	39.6	25.0	97.6%
Sulfate	EPA 375.2	05/12/10	mg/L	133	346	200	106.5%
Chemical Oxygen Demand	EPA 410.4	05/11/10	mg/L	< 5.00	106	91.0	116.5%
Total Organic Carbon	EPA 415.1	05/06/10	mg/L	< 1.50	21.6	20.0	108.0%

Water MS/MSD Report-QV22

REPLICATE RESULTS-CONVENTIONALS QV22-City of Seattle

Matrix: Water
Data Release Authorized
Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052 Date Sampled: 05/04/10 Date Received: 05/04/10

Analyte	Method	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: QV22A Client	ID: MW35		-			
Chloride	EPA 325.2	05/06/10	mg/L	15.2	15.0	1.3%
Sulfate	EPA 375.2	05/12/10	mg/L	133	133	0.0%
Chemical Oxygen Demand	EPA 410.4	05/11/10	mg/L	< 5.00	< 5.00	NA
Total Organic Carbon	EPA 415.1	05/06/10	mg/L	< 1.50	< 1.50	NA

Water Replicate Report-QV22

STANDARD REFERENCE RESULTS-CONVENTIONALS QV22-City of Seattle

Matrix: Water

Data Release Authorized Reported: 05/13/10

Project: Midway Landfill

Event: 555-1550-052
Date Sampled: NA Date Received: NA

Analyte/SRM ID	Method	Date	Units	SRM	True Value	Recovery
Chloride ERA #38084	EPA 325.2	05/06/10	mg/L	4.9	5.0	98.0%
Sulfate ERA #37065	EPA 375.2	05/12/10	mg/L	27.1	25.0	108.4%
Chemical Oxygen Demand Thermo Orion #101	EPA 410.4	05/11/10 05/12/10	mg/L	90.6 90.0	90.0 90.0	100.7% 100.0%
Total Organic Carbon ERA 0506-09-01	EPA 415.1	05/06/10	mg/L	20.6	20.0	103.0%

au99:00096

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV22MB

LIMS ID: 10-10945

Matrix: Water

Data Release Authorized

Reported: 05/17/10

Sample ID: METHOD BLANK

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B	05/05/10	6010B	05/11/10	7439-89-6	Iron	0.05	0.05	U
6010B	05/05/10	6010B	05/11/10	7439-96-5	Manganese	0.001	0.001	U

U-Analyte undetected at given RL RL-Reporting Limit

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV22A

LIMS ID: 10-10945

Matrix: Water

Data Release Authorized:

Reported: 05/17/10

Sample ID: MW35

SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B	05/05/10	6010B	05/11/10	7439-89-6	Iron	0.05	0.05	Ü
6010B	05/05/10	6010B	05/11/10	7439-96-5	Manganese	0.001	0.408	

U-Analyte undetected at given RL RL-Reporting Limit

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV22B LIMS ID: 10-10946

Matrix: Water

Data Release Authorized:

Reported: 05/17/10

Sample ID: MW17B

SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill 555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L Q
6010B	05/05/10	6010B	05/11/10	7439-89-6	Iron	0.05	0.05
6010B	05/05/10	6010B	05/11/10	7439-96-5	Manganese	0.001	0.053

U-Analyte undetected at given RL RL-Reporting Limit

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV22C LIMS ID: 10-10947

Matrix: Water

Data Release Authorized

Reported: 05/17/10

Sample ID: MW14B

SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill 555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B	05/05/10	6010B	05/11/10	7439-89-6	Iron	0.05	11.2	
6010B	05/05/10	6010B	05/11/10	7439-96-5	Manganese	0.001	0.961	

U-Analyte undetected at given RL RL-Reporting Limit

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV22D

LIMS ID: 10-10948

Matrix: Water

Data Release Authorized

Reported: 05/17/10

Sample ID: MW21B

SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill 555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B	05/05/10	6010B	05/11/10	7439-89-6	Iron	0.05	0.05	U
6010B	05/05/10	6010B	05/11/10	7439-96-5	Manganese	0.001	0.405	

 $\ensuremath{\text{U-Analyte}}$ undetected at given RLRL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV22E LIMS ID: 10-10949

Matrix: Water

Data Release Authorized:

Reported: 05/17/10

Sample ID: MW21A SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Prep Prep Analysis Analysis RLmg/L Q Meth Date Method Date CAS Number Analyte U 0.05 0.05 6010B 05/11/10 7439-89-6 Iron 6010B 05/05/10 0.001 6010B 05/05/10 6010B 05/11/10 7439-96-5 Manganese 0.016

U-Analyte undetected at given RL RL-Reporting Limit

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV22F LIMS ID: 10-10950

Matrix: Water

Data Release Authorized:

Reported: 05/17/10

Sample ID: Field Blank

SAMPLE

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/04/10 Date Received: 05/04/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B	05/05/10	6010B	05/11/10	7439-89-6	Iron	0.05	0.05	U
6010B	05/05/10	6010B	05/11/10	7439-96-5	Manganese	0.001	0.001	U

U-Analyte undetected at given RL RL-Reporting Limit

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV22LCS

LIMS ID: 10-10945

Matrix: Water

Data Release Authorized:

Reported: 05/17/10

Sample ID: LAB CONTROL

QC Report No: QV22-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Iron	6010B	2.05	2.00	102%	
Manganese	6010B	0.476	0.500	95.2%	

Reported in mg/L

N-Control limit not met Control Limits: 80-120%

FORM-VII

ajee assai

1	_
ı	2
ı	
	으
	C
l	StC
	dy
	R
	900
ļ	ă
	œ
	a
	ğ
	ato
I	Ž
i	An
	aly
	Sis
	<u> </u>
	Chain of Custody Record & Laboratory Analysis Request
	Jes
۱	÷

FR 8.23			- E	1	_	T -	1	_	_	T		1	т		$\neg \vdash$			-	_	T =
			Comments/Special Instructions							_	Trip Blank	MW 300	MW8B	Sample ID	555-1550-052	11116	Client Project Name:	Client Contact: C Min	ARI Client Company:	H H
がいって	Control C	Vaca Name:	(Signal Miles)	D							(5/5/10	5/5/10 (Date	V. Indone	Samplers	ने प्रिया	Soon	E	Turn-around Requested:
<u></u>	400	Thor	The									105	OIRC	Time	J.K.M.C		5	Um	hone: 20 6-1	equested:
ススス	多	6MG	(mua)	_								٤	V.	Matrix	L'MCKEYZE,	- 1	11:27		Phone: 706-235-2629	
Date & Time;	Company:	Printed Name:	(Signature)	:							F	∞	8	No. Containers	KLASKE	3	-			
	12	napic) 						_		_		Sut Chl	iate orio	je de		No. of Coolers:	Date:	Page:
7		risen						_						Disc	OI OV) 201		_	<u>0</u>	
Date & Time:	Company:	Printed Name:	(Signature)								<i>y</i> 1	W	(i)	me Fe	als JM IDH	'n A	Analys	Cooler Temps:	Ice Present?	of
Time:	ıy:	Name:	(Signature)								7	7	3 2	Vir Ch	nyl. Ork	` de	Analysis Requested	Ço	~	
																			4	
Date	Company:	Printe	Rece (Sign															20	46. Tul	An.
Date & Time:	oany:	Printed Name:	Received by: (Signature)											±	5±;	Me		206-695-6200 206-695-6201 (fax)	4611 South 134th Place, Suite 100 Tukwila, WA 98168	Analytical Resources, Incorporated Analytical Chemists and Consultants
		·												व	50	PO SPEC	Notes/Comments	206-695-6	4th Place, S 8168	ources, Inco
																300	ents	201 (fax)	uite 100	onsultants

retention schedules have been established by work-order or contract. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program remets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for

*said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-

signed agreement between ARI and the Client.

Cooler Receipt Form

ARI Client:	Spattle	Project Name: MdWO	y Lar	dfill	
COC No(s):	(NA)	Delivered by: Fed-Ex UPS Cou	l	ivered Other:	
· · ·	1741	Tracking No:		<u>ノ</u>	NA)
Preliminary Examination Phase:		<u>-</u>			
Were intact, properly signed and		o the outside of to cooler?		YES	(NO)
Were custody papers included w				(YES)	NO
Were custody papers properly fil			(YES	NO
Temperature of Cooler(s) (°C) (re		. /1			
If cooler temperature is out of co		10	Temp Gun I	D#: <u>909</u>	41619
	k /	Date:	: <u>151</u>		 ,
Cooler Accepted by:	/ \	and attach all shipping documents	# <u></u>		
Log-In Phase:	Complete custody forms	and attach an shipping documents			
Was a temperature blank include				YES	(NO)
What kind of packing material		p Wet Ice Gel Packs Baggies Poam			
Was sufficient ice used (if approp			NA	YES	NO
Were all bottles sealed in individ				YES)	NO NO
				(YES)	NO NO
		Least containing reaching		(YES)	NO
		ber of containers received?		ES	NO
Did all bottle labels and tags agr		(FS)	NO		
		reservation sheet, excluding VOCs)	NA	(YES)	NO
Were all VOC vials free of air bu			NA NA	YES	NO
				(YES)	NO
			NA	4120	110 5/3
	~	Equipment:		Split by:_	
Trus campio opin by 7 ii ii .					
Samples Logged by:	Dat	e:5 10Time:_	153	O	
	** Notify Project Manag	er of discrepancies or concerns **			
, · · · · · · · · · · · · · · · · · ·					
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sam	ple ID on CO	<u>c</u>
	 				
Additional Notes, Discrepanci	ing & Pagalutians				
Additional Notes, Discrepanci	es, a resolutions.				
By: 1/P D	ate: 5/6/10				
Small Air Bubbles Peabub	bles' LARGE Air Bubbles	Small → "sm"			
~2mm 2-4 m	nm >4 mm	Peabubbles → "pb"			
•	• 8 9 9	Large → "lg"			
		Headspace → "hs"			

0016F 3/2/10 Cooler Receipt Form

Revision 014

PRESERVATION VERIFICATION 05/05/10

1 of 1 Page Inquiry Number: NONE

Analysis Requested: 05/05/10 Contact: Yim, Min-Soon Client: City of Seattle Logged by: JP Sample Set Used: Yes-481 Validatable Package: No

Deliverables:

ANALYTICAL RESOURCES INCORPORATED

ARI Job No: QV41

PC: Mark VTSR: 05/05/10

Project #: 555-1550-052 Project: Midway Landfill Sample Site: SDG No: Analytical Protocol: In-house

AMOUNT ADDED DATE/BY		
D LOT NUMBER		
ADJUSTED TO		
PARAMETER		
r DOC FLT		
PHOS TKN NO23 TOC S2 AK102 Fe2+ DMET DOC	×	þı
12 Fe24		
AK10 <2		
\$2 2 \		
TOC <2	A A A S	P. S. S.
NO23		
TKN <2		
PHOS <2		
FOG MET PHEN <2 <2 <2	DIS PASS	DIS PASS
F0G <2		
6 6 8 7	PASS	Pess
NH3		
WAD >12		
CN >12		
CLIENT ID	МИВВ	MW30C
LOGNUM ARI ID	10-11040 QV41A	10-11041 QV41B

Date Checked By

Data Reporting Qualifiers Effective 7/10/2009

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte

- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

ARI Job No: QV41

Parameter: Chloride-EPA 325.2

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client	ARI	Date	Date	Date	Date
Sample ID	Sample ID	Sampled	Received	Extracted	Analyzed
MW8B	QV41A	05/05/10	05/05/10	N/A	05/13/10
MW30C	QV41B	05/05/10	05/05/10	N/A	05/13/10
Method Blank	MB051310	N/A	N/A	N/A	05/13/10
Standard Ref.	SRM051310	N/A	N/A	N/A	05/13/10

ARI Job No: QV41

Parameter: Sulfate-EPA 375.2

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client	ARI	Date	Date	Date	Date
Sample ID	Sample ID	Sampled	Received	Extracted	Analyzed
MW8B	QV41A	05/05/10	05/05/10	N/A	05/13/10
MW30C	QV41B	05/05/10	05/05/10	N/A	05/13/10
Method Blank	MB051310	N/A	N/A	N/A	05/13/10
Standard Ref.	SRM051310	N/A	N/A	N/A	05/13/10

olee: voiii

ARI Job No: QV41

Parameter: Chemical Oxygen Demand-EPA 410.4

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW8B	OV41A	05/05/10	05/05/10	N/A	05/12/10
MW30C	QV41B	05/05/10	05/05/10	N/A	05/12/10
Method Blank	MB051210	N/A	N/A	N/A	05/12/10
Standard Ref.	SRM051210	N/A	N/A	N/A	05/12/10

ARI Job No: QV41

Parameter: Total Organic Carbon-EPA 415.1

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW8B	OV41A	05/05/10	05/05/10	N/A	05/06/10
MW30C	QV41B	05/05/10	05/05/10	N/A	05/06/10
Method Blank	MB050610	N/A	N/A	N/A	05/06/10
Standard Ref.	SRM050610	N/A	N/A	N/A	05/06/10

ARI Job No: QV41

Parameter: ICP Dissolved Metals-6010B

Matrix: Water

Holding Time: 6 Months

Date Reported: 05/14/10

Client	ARI	Date	Date	Date	Date
Sample ID	Sample ID	Sampled	Received	Extracted	Analyzed
MW8B	QV41A	05/05/10	05/05/10	05/06/10	05/11/10
MW30C	QV41B	05/05/10	05/05/10	05/06/10	05/11/10
Method Blank	MB050610	N/A	N/A	05/06/10	05/11/10
Lab Control	LCS050610	N/A	N/A	05/06/10	05/11/10

ARI Job No: QV41

Parameter: Volatiles-SW8260B

Matrix: Water

Holding Time: 14 Days Preserved, 7 Days Unpreserved

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW8B	QV41A	05/05/10	05/05/10	05/06/10	05/06/10
MW30C	QV41B	05/05/10	05/05/10	05/06/10	05/06/10
Trip Blank	QV41C	05/05/10	05/05/10	05/06/10	05/06/10
Method Blank	MB050610	N/A	N/A	05/06/10	05/06/10
Lab Control Dup	LCS050610 LCSD050610	N/A N/A	N/A N/A	05/06/10 05/06/10	05/06/10 05/06/10

ARI Job No: QV41

Parameter: Volatiles-SIM SW8260B

Matrix: Water

Holding Time: 14 Days Preserved

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW8B	QV41A	05/05/10	05/05/10	05/12/10	05/12/10
MW30C	QV41B	05/05/10	05/05/10	05/12/10	05/12/10
Trip Blank	QV41C	05/05/10	05/05/10	05/12/10	05/12/10
Method Blank	MB051210	N/A	N/A	05/12/10	05/12/10
Lab Control	LCS051210	N/A	N/A	05/12/10	05/12/10
Lab Control Dup	LCSD051210	N/A	N/A	05/12/10	05/12/10

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

LIMS ID: 10-11040

Matrix: Water

Data Release Authorized: Reported: 05/11/10

Lab Sample ID: MB-050610

Instrument/Analyst: NT5/PKC Date Analyzed: 05/06/10 11:29 Sample ID: MB-050610

METHOD BLANK

QC Report No: QV41-City of Seattle Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09 - 2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34 - 3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	Ü
78 - 93-3	2-Butanone	5.0	< 5.0	Ū
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	Ü
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	Ü
71-43-2	Benzene	1.0	< 1.0	Ū
10061-02 - 6	trans-1,3-Dichloropropene	1.0	< 1.0	Ü
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	Ü
75-25-2	Bromoform	1.0	< 1.0	Ü
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	Ū
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34 - 5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88 - 3	Toluene	1.0	< 1.0	Ü
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47 - 6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	100%
d8-Toluene	99.8%
Bromofluorobenzene	89.9%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: MW8B SAMPLE Page 1 of 1

Lab Sample ID: QV41A LIMS ID: 10-11040

Matrix: Water Data Release Authorized: //

Reported: 05/11/10

Instrument/Analyst: NT5/PKC Date Analyzed: 05/06/10 14:37 QC Report No: QV41-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/05/10 Date Received: 05/05/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	Ü
75-01-4	Vinyl Chloride	1.0	< 1.0	Ü
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	Ü
67-64-1	Acetone	10	< 10	Ü
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	Ų
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	Ü
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67 - 66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93 - 3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27 - 4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	Ü
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00 - 5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	Ü
127-18-4	Tetrachloroethene	1.0	< 1.0	Ü
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	Ü
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13 - 1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	110%
d8-Toluene	103%
Bromofluorobenzene	88.4%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

> FORM I QU99:00118

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Lab Sample ID: QV41B LIMS ID: 10-11041

Matrix: Water

Data Release Authorized: Reported: 05/11/10

Instrument/Analyst: NT5/PKC
Date Analyzed: 05/06/10 15:03

Sample ID: MW30C SAMPLE

QC Report No: QV41-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/05/10 Date Received: 05/05/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75 - 35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67 - 66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55 - 6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87 - 5	1,2-Dichloropropane	1.0	< 1.0	U,
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01 - 6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00 - 5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	Ü
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	Ü
591-78-6	2-Hexanone	5.0	< 5.0	Ü
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	Ü
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75 - 69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13 - 1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	109%
d8-Toluene	103%
Bromofluorobenzene	89.4%

FORM I

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

Volatiles by Purge & Trap GC/MS-Method SW8260C Sample ID: Trip Blank SAMPLE

Page 1 of 1

Lab Sample ID: QV41C LIMS ID: 10-11042 Matrix: Water

Data Release Authorized:

Reported: 05/11/10

Instrument/Analyst: NT5/PKC Date Analyzed: 05/06/10 12:03 QC Report No: QV41-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/05/10 Date Received: 05/05/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75-15 - 0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156 - 60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	Ü
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78 - 93-3	2-Butanone	5.0	< 5.0	U
71-55 - 6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	Ü
78 - 87-5	1,2-Dichloropropane	1.0	< 1.0	Ü
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	Ü
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00 - 5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591 - 78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	Ü
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	99.3%
d8-Toluene	100%
Bromofluorobenzene	87.5%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

> FORM I QU99:00120

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: LCS-050610 LAB CONTROL SAMPLE Page 1 of 2

Lab Sample ID: LCS-050610

LIMS ID: 10-11040 Matrix: Water

Data Release Authorized: //

Reported: 05/11/10

Instrument/Analyst LCS: NT5/PKC

LCSD: NT5/PKC

Date Analyzed LCS: 05/06/10 10:38 LCSD: 05/06/10 11:04

QC Report No: QV41-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS		LCSD	Added-LCSD	Recovery	RPD
Chloromethane	9.4	10.0	94.0%	9.2	10.0	92.0%	2.2%
Bromomethane	10.2	10.0	102%	10.0	10.0	100%	2.0%
Vinyl Chloride	9.4	10.0	94.0%	9.2	10.0	92.0%	2.2%
Chloroethane	9.5	10.0	95.0%	9.3	10.0	93.0%	2.1%
Methylene Chloride	9.2	10.0	92.0%	8.9	10.0	89.0%	3.3%
Acetone	46.1	50.0	92.2%	46.9	50.0	93.8%	1.7%
Carbon Disulfide	9.9	10.0	99.0%	9.7	10.0	97.0%	2.0%
1,1-Dichloroethene	9.8	10.0	98.0%	9.7	10.0	97.0%	1.0%
1,1-Dichloroethane	9.6	10.0	96.0%	9.5	10.0	95.0%	1.0%
trans-1,2-Dichloroethene	9.7	10.0	97.0%	9.5	10.0	95.0%	2.1%
cis-1,2-Dichloroethene	9.8	10.0	98.0%	9.4	10.0	94.0%	4.2%
Chloroform	10.0	10.0	100%	9.6	10.0	96.0%	4.1%
1,2-Dichloroethane	9.7	10.0	97.0%	9.4	10.0	94.0%	3.1%
2-Butanone	47.1	50.0	94.2%	46.2	50.0	92.4%	1.9%
1,1,1-Trichloroethane	10.0	10.0	100%	9.7	10.0	97.0%	3.0%
Carbon Tetrachloride	10.3	10.0	103%	10.1	10.0	101%	2.0%
Vinyl Acetate	8.4	10.0	84.0%	8.4	10.0	84.0%	0.0%
Bromodichloromethane	10.2	10.0	102%	9.8	10.0	98.0%	4.0%
1,2-Dichloropropane	10.2	10.0	102%	9.9	10.0	99.0%	3.0%
cis-1,3-Dichloropropene	10.4	10.0	104%	9.9	10.0	99.0%	4.9%
Trichloroethene	10.4	10.0	104%	10.1	10.0	101%	2.9%
Dibromochloromethane	10.2	10.0	102%	10.1	10.0	101%	1.0%
1,1,2-Trichloroethane	10.0	10.0	100%	9.8	10.0	98.0%	2.0%
Benzene	10.5	10.0	105%	10.1	10.0	101%	3.9%
trans-1,3-Dichloropropene	10.1	10.0	101%	10.0	10.0	100%	1.0%
2-Chloroethylvinylether	9.0	10.0	90.0%	9.1	10.0	91.0%	1.1%
Bromoform	10.4	10.0	104%	10.4	10.0	104%	0.0%
4-Methyl-2-Pentanone (MIBK)	48.4	50.0	96.8%	48.4	50.0	96.8%	0.0%
2-Hexanone	46.9	50.0	93.8%	46.1	50.0	92.2%	1.7%
Tetrachloroethene	10.4	10.0	104%	10.0	10.0	100%	3.9%
1,1,2,2-Tetrachloroethane	9.3	10.0	93.0%	9.2	10.0	92.0%	1.1%
Toluene	10.8	10.0	108%	10.4	10.0	104%	3.8%
Chlorobenzene	10.4	10.0	104%	10.1	10.0	101%	2.9%
Ethylbenzene	10.7	10.0	107%	10.6	10.0	106%	0.9%
Styrene	11.1	10.0	111%	10.8	10.0	108%	2.7%
Trichlorofluoromethane	9.9	10.0	99.0%	9.8	10.0	98.0%	1.0%
1,1,2-Trichloro-1,2,2-trifluoroetha	9.8	10.0	98.0%	9.5	10.0	95.0%	3.1%
m,p-Xylene	22.2	20.0	111%	21.8	20.0	109%	1.8%
o-Xylene	10.6	10.0	106%	10.3	10.0	103%	2.9%
1							

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

LCS LCSD

Volatiles by Purge & Trap GC/MS-Method SW8260C

2 of 2 Page

Sample ID: LCS-050610

LAB CONTROL SAMPLE

Lab Sample ID: LCS-050610

LIMS ID: 10-11040

Matrix: Water

QC Report No: QV41-City of Seattle

Project: Midway Landfill 555-1550-052

LCS Spike LCSD Spike LCSD Added-LCSD Recovery RPD LCS Added-LCS Recovery Analyte

95.6% 94.6% d4-1,2-Dichloroethane 101% 103% d8-Toluene Bromofluorobenzene 94.7% 95.5%

FORM III

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MB-051210

Page 1 of 1 METHOD BLANK

Lab Sample ID: MB-051210

LIMS ID: 10-11040 Matrix: Water

Data Release Authorized:

Reported: 05/14/10

Instrument/Analyst: NT7/MH

Date Analyzed: 05/12/10 08:09

QC Report No: QV41-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 110% d8-Toluene 98.5%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MW8B Page 1 of 1 SAMPLE

Lab Sample ID: QV41A LIMS ID: 10-11040 Matrix: Water

Data Release Authorized:

Reported: 05/14/10

Instrument/Analyst: NT7/MH Date Analyzed: 05/12/10 09:58 QC Report No: QV41-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/05/10 Date Received: 05/05/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	Ü

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	113%
d8-Toluene	98.6%

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MW30C SAMPLE Page 1 of 1

Lab Sample ID: QV41B LIMS ID: 10-11041

Matrix: Water

Data Release Authorized:

Reported: 05/14/10

Instrument/Analyst: NT7/MH Date Analyzed: 05/12/10 10:24 QC Report No: QV41-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/05/10

Date Received: 05/05/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	98.6%
d8-Toluene	99.0%

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: Trip Blank

Page 1 of 1

SAMPLE

Lab Sample ID: QV41C

LIMS ID: 10-11042 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT7/MH

Date Analyzed: 05/12/10 09:07

Reported: 05/14/10

B

QC Report No: QV41-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/05/10 Date Received: 05/05/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	112%
d8-Toluene	98.8%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: LCS-051210

Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-051210

LIMS ID: 10-11040 Matrix: Water

Data Release Authorized:

Reported: 05/14/10

Instrument/Analyst LCS: NT7/MH

LCSD: NT7/MH

Date Analyzed LCS: 05/12/10 07:17

LCSD: 05/12/10 07:43

QC Report No: QV41-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery		Spike Added-LCSD	LCSD Recovery	RPD
Vinyl Chloride	0.998	1.00	99.88	1.02	1.00	102%	2.2%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	91.4%	91.8%
d8-Toluene	98.9%	100%

METHOD BLANK RESULTS-CONVENTIONALS QV41-City of Seattle

Matrix: Water
Data Release Authorized:
Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052

Date Sampled: NA

Date Received: NA

Analyte	Method	Date	Units	Blank ID
Chloride	EPA 325.2	05/13/10	mg/L	< 1.0 U
Sulfate	EPA 375.2	05/13/10	mg/L	< 2.0 U
Chemical Oxygen Demand	EPA 410.4	05/12/10	mg/L	< 5.00 U
Total Organic Carbon	EPA 415.1	05/06/10	mg/L	< 1.50 U

Water Method Blank Report-QV41

SAMPLE RESULTS-CONVENTIONALS QV41-City of Seattle

Matrix: Water

Data Release Authorized: Reported: 05/13/10

Project: Midway Landfill

Event: 555-1550-052

Date Sampled: 05/05/10 Date Received: 05/05/10

Client ID: MW8B ARI ID: 10-11040 QV41A

Analyte	Date Batch	Method	Units	RL	Sample
Chloride	05/13/10 051310#1	EPA 325.2	mg/L	1.0	5.3
Sulfate	05/13/10 051310#1	EPA 375.2	mg/L	2.0	17.9
Chemical Oxygen Demand	05/12/10 051210#1	EPA 410.4	mg/L	5.00	< 5.00 U
Total Organic Carbon	05/06/10 050610#1	EPA 415.1	mg/L	1.50	< 1.50 U

RLAnalytical reporting limit

U Undetected at reported detection limit

Water Sample Report-QV41

SAMPLE RESULTS-CONVENTIONALS QV41-City of Seattle

Matrix: Water

Data Release Authorized:

Reported: 05/13/10

1:1

Project: Midway Landfill Event: 555-1550-052

Date Sampled: 05/05/10 Date Received: 05/05/10

Client ID: MW30C ARI ID: 10-11041 QV41B

Analyte	Date Batch	Method	Units	RL	Sample
Chloride	05/13/10 051310#1	EPA 325.2	mg/L	5.0	12.9
Sulfate	05/13/10 051310#1	EPA 375.2	mg/L	2.0	12.9
Chemical Oxygen Demand	05/12/10 051210#1	EPA 410.4	mg/L	5.00	6.00
Total Organic Carbon	05/06/10 050610#1	EPA 415.1	mg/L	1.50	< 1.50 U

RL Analytical reporting limit

Water Sample Report-QV41

U Undetected at reported detection limit

STANDARD REFERENCE RESULTS-CONVENTIONALS QV41-City of Seattle

Matrix: Water

Data Release Authorized: Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052 Date Sampled: NA

Date Received: NA

Analyte/SRM ID	Method	Date	Units	SRM	True Value	Recovery
Chloride ERA #38084	EPA 325.2	05/13/10	mg/L	5.0	5.0	100.0%
Sulfate ERA #37065	EPA 375.2	05/13/10	mg/L	25.2	25.0	100.8%
Chemical Oxygen Demand Thermo Orion #I01	EPA 410.4	05/12/10	mg/L	90.0	90.0	100.0%
Total Organic Carbon ERA 0506-09-01	EPA 415.1	05/06/10	mg/L	20.6	20.0	103.0%

Water Standard Reference Report-QV41

OUGG: DOIG1

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV41MB LIMS ID: 10-11040

Matrix: Water

Data Release Authorized: Reported: 05/17/10

Sample ID: METHOD BLANK

QC Report No: QV41-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B	05/06/10	6010B	05/11/10	7439-89-6	Iron	0.05	0.05	U
6010B	05/06/10	6010B	05/11/10	7439-96-5	Manganese	0.001	0.001	U

U-Analyte undetected at given RL RL-Reporting Limit

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV41A

LIMS ID: 10-11040

Matrix: Water

Data Release Authorized

Reported: 05/17/10

Sample ID: MW8B

SAMPLE

QC Report No: QV41-City of Seattle

Project: Midway Landfill 555-1550-052

Date Sampled: 05/05/10 Date Received: 05/05/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B	05/06/10	6010B	05/11/10	7439-89-6	Iron	0.05	0.05	U
6010B	05/06/10	6010B	05/11/10	7439-96-5	Manganese	0.001	0.004	

U-Analyte undetected at given RL RL-Reporting Limit

FORM-I

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV41B

LIMS ID: 10-11041

Matrix: Water

Data Release Authorized:

Reported: 05/17/10

Sample ID: MW30C SAMPLE

QC Report No: QV41-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/05/10 Date Received: 05/05/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B	05/06/10	6010B	05/11/10	7439-89-6	Iron	0.05	2.74	
6010B	05/06/10	6010B	05/11/10	7439-96-5	Manganese	0.001	0.706	

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

DISSOUVED WETAI

Page 1 of 1

Lab Sample ID; QV41LCS

LIMS ID: 10-11040 Matrix: Water

Data Release Authorized:

Reported: 05/17/10

Sample ID: LAB CONTROL

QC Report No: QV41-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	<u>Q</u>
Iron	6010B	2.04	2.00	102%	
Manganese	6010B	0.476	0.500	95.2%	

Reported in mg/L

N-Control limit not met Control Limits: 80-120%

FORM-VII

Citalli of Custody Record & Laboratory Analysis Request	a Laboratory	Ahalysis Kequesi
ARI Assigned Number:	Turn-around Requested:	

Turn-around Requested:

Page:

으

Client Contact: Client Project Name: Client Project #: Sample ID Trip Blank	MIN SOON MIN Sample is: V. Thoma Finding R. Looke Pitho 0855 W 8 4	No. Containers	Sulfate, Chloride Coolers: Cooler Toc, Cooler Temps: An
000	From F	ate,	C, D olved
Sample ID	Date Time	No. Containers SUF	TO CO Diss
MW 200	01/7	-00	_
Inp blank		Ŧ	
Comments/Special Instructions	Heimelian edby:	Received by:	7.1.
		(Signature)	elesson
	CONTRACTOR TO THE PARTY OF THE	Printed Names	3
· Sor	THE PROPERTY	Company:	
	15 NO 100	Date & lime:	[35]

(Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program processes the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate signed agreement between ARI and the Client. said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-

retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client: City & Seattle	Project Name: Midwa	y landfill	
COC No(s):	Delivered by: Fed-Ex UPS Courie	Hand Delivered Other:_	
Assigned ARI Job No:	Tracking No:		NA
Preliminary Examination Phase:			
Were intact, properly signed and dated custody seals attached to	o the outside of to cooler?	YES	NO
Were custody papers included with the cooler?		YES)	NO
Were custody papers properly filled out (ink, signed, etc.)		ES	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for che			
If cooler temperature is out of compliance fill out form 00070F		Temp Gun ID#: 90941	619
Cooler Accepted by:	Date: 5/7)10 Time:	1350	
	and attach all shipping documents		
Log-In Phase:			
Was a temperature blank included in the cooler?		YES /	NO
What kind of packing material was used? Bubble Wrap	Wet Ice Gel Packs Baggies Foam B	lock Paper Other:	
Was sufficient ice used (if appropriate)?		NA (YES)	NO
Were all bottles sealed in individual plastic bags?		YES	(NO)
Did all bottles arrive in good condition (unbroken)?			NO
Were all bottle labels complete and legible?		(YES)	NO
Did the number of containers listed on COC match with the number			NO
Did all bottle labels and tags agree with custody papers?			NO NO
Were all bottles used correct for the requested analyses?			NO NO
Do any of the analyses (bottles) require preservation? (attach pro-		NA MES	NO
Was sufficient amount of sample sent in each bottle?		(ES)	NO .
Date VOC Trip Blank was made at ARI		NA 514/10	6/5/10
Was Sample Split by ARI : 🗚 YES Date/Time:		Split by:	
Samples Logged by:Date	12/10	1500	
** Notify Project Manage	er of discrepancies or concerns **		
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle	Sample ID on CO	
Additional Notes, Discrepancies, & Resolutions:			
By: Date:			
Small Air Bubbles Peabubbles' LARGE Air Bubbles	Small → "sm"		
-2mm 2-4 mm > 4 mm	Peabubbles → "pb"		-
	Large → "lg"		
	Headspace → "hs"		

0016F 3/2/10 Cooler Receipt Form

Revision 014

PRESERVATION VERIFICATION 05/07/10 1 of 1 Page

Inquiry Number:
Analysis Requested: 05/07/10
Contact: Yim, Min-Soon
Client: City of Seattle
Logged by: MM
Sample Set Used: Yes-050
Validatable Package: No
Deliverables:

ANALYTICAL RESOURCES INCORPORATED

ARI Job No: QV70

PC: Mark VTSR: 05/07/10

Project #: 555-1550-052 Project: Midway Landfill

Sample Site: SDG No: Analytical Protocol: In-house

DATE/BY		
AMOUNT		
DJUSTED LOT TO NUMBER		
ADJUSTED LOT TO NUMBER		
PARAMETER		ı
S2 AK102 Fe2+ DMET DOC >9 <2 FLT FLT		
DME	¥	
2 Fe2+		
AK10		
\$2 82	\sim	
NO23 TOC S2 <2 <2 >9	Sol	_
NO23		
PHOS TKN NO23		
PHOS <2		
PHEN <2		
FOG MET PHEN <2 <2		_
FOG <2		
CN WAD NH3 COD	Silve	_
NH3	-0	
WAD >12		
CN >12		
CLIENT ID	MW23B	
LOGNUM ARI ID	10-11174 QV70A	

Checked By $\boldsymbol{\lambda}$

Data Reporting Qualifiers Effective 7/10/2009

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte

- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

ARI Job No: QV70

Parameter: Chloride-EPA 325.2

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client	ARI	Date	Date	Date	Date
Sample ID	Sample ID	Sampled	Received	Extracted	Analyzed
MW23B	QV70A	05/07/10	05/07/10	N/A	05/13/10
Method Blank	MB051310	N/A	N/A	N/A	05/13/10
Standard Ref.	SRM051310	N/A	N/A	N/A	05/13/10

ARI Job No: QV70

Parameter: Sulfate-EPA 375.2

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client	ARI	Date	Date	Date	Date
Sample ID	Sample ID	Sampled	Received	Extracted	Analyzed
MW23B	QV70A	05/07/10	05/07/10	N/A	05/13/10
Method Blank	MB051310	N/A	N/A	N/A	05/13/10
Standard Ref.	SRM051310	N/A	N/A	N/A	05/13/10

ARI Job No: QV70

Parameter: Chemical Oxygen Demand-EPA 410.4

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client	ARI	Date	Date	Date	Date
Sample ID	Sample ID	Sampled	Received	Extracted	Analyzed
MW23B	QV70A	05/07/10	05/07/10	N/A	05/12/10
Method Blank	MB051210	N/A	N/A	N/A	05/12/10
Standard Ref.	SRM051210	N/A	N/A	N/A	05/12/10

ARI Job No: QV70

Parameter: Total Organic Carbon-EPA 415.1

Matrix: Water

Holding Time: 28 Days

Date Reported: 05/14/10

Client	ARI	Date	Date	Date	Date
Sample ID	Sample ID	Sampled	Received	Extracted	Analyzed
MW23B	QV70A	05/07/10	05/07/10	N/A	05/10/10
Method Blank	MB051010	N/A	N/A	N/A	05/10/10
Standard Ref.	SRM051010	N/A	N/A	N/A	05/10/10
MW23B	QV70ADP	05/07/10	05/07/10	N/A	05/10/10
MW23B	QV70AMS	05/07/10	05/07/10	N/A	05/10/10

Client Project ID: 555-1550-052, Midway Landfill

ARI Job No: QV70

Parameter: ICP Dissolved Metals-6010B

Matrix: Water

Holding Time: 6 Months

Date Reported: 05/14/10

Client	ARI	Date	Date	Date	Date
Sample ID	Sample ID	Sampled	Received	Extracted	Analyzed
MW23B	QV70A	05/07/10	05/07/10	05/10/10	05/11/10
Method Blank	MB051010	N/A	N/A	05/10/10	05/11/10
Lab Control	LCS051010	N/A	N/A	05/10/10	05/11/10

Client Project ID: 555-1550-052, Midway Landfill

ARI Job No: QV70

Parameter: Volatiles-SW8260B

Matrix: Water

Holding Time: 14 Days Preserved, 7 Days Unpreserved

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW23B	QV70A	05/07/10	05/07/10	05/10/10	05/10/10
Trip Blank	QV70B	05/07/10	05/07/10	05/10/10	05/10/10
Method Blank	MB051010	N/A	N/A	05/10/10	05/10/10
Lab Control	LCS051010	N/A	N/A	05/10/10	05/10/10
Lab Control Dup	LCSD051010	N/A	N/A	05/10/10	05/10/10

Client Project ID: 555-1550-052, Midway Landfill

ARI Job No: QV70

Parameter: Volatiles-SIM SW8260B

Matrix: Water

Holding Time: 14 Days Preserved

Date Reported: 05/14/10

Client Sample ID	ARI Sample ID	Date Sampled	Date Received	Date Extracted	Date Analyzed
MW23B	QV70A	05/07/10	05/07/10	05/12/10	05/12/10
Trip Blank	QV70B	05/07/10	05/07/10	05/12/10	05/12/10
Method Blank	MB051210	N/A	N/A	05/12/10	05/12/10
Lab Control	LCS051210	N/A	N/A	05/12/10	05/12/10
Lab Control Dup	LCSD051210	N/A	N/A	05/12/10	05/12/10

Q199:00147

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Matrix: Water

Sample ID: MB-051010 METHOD BLANK

QC Report No: QV70-City of Seattle Lab Sample ID: MB-051010 LIMS ID: 10-11174 Project: Midway Landfill

555-1550-052

Date Sampled: NA

Data Release Authorized: Reported: 05/12/10 Date Received: NA

Instrument/Analyst: NT5/PKC Sample Amount: 10.0 mL Purge Volume: 10.0 mL Date Analyzed: 05/10/10 11:18

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	Ü
75-01-4	Vinyl Chloride	1.0	< 1.0	Ü
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	Ü
75-15-0	Carbon Disulfide	1.0	< 1.0	Ü
75 - 35-4	1,1-Dichloroethene	1.0	< 1.0	Ü
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156 - 60-5	trans-1,2-Dichloroethene	1.0	< 1.0	Ü
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	Ü
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	Ü
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25 - 2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	Ū
127-18-4	Tetrachloroethene	1.0	< 1.0	Ü
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	Ü
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	101%
d8-Toluene	98.9%
Bromofluorobenzene	90.4%

FORM I QUee:00148

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

LIMS ID: 10-11174 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT5/PKC

Date Analyzed: 05/10/10 13:32

Reported: 05/12/10

Lab Sample ID: QV70A

QC Report No: QV70-City of Seattle Project: Midway Landfill

555-1550-052

Sample ID: MW23B

SAMPLE

Date Sampled: 05/07/10 Date Received: 05/07/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00 - 3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75-15 - 0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	3.4	
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	2.7	
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75 - 27-4	Bromodichloromethane	1.0	< 1.0	U
78 - 87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00 - 5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	Ū
108-90-7	Chlorobenzene	1.0	< 1.0	Ū
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13 - 1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	U
179601-23-1	m,p-Xylene	2.0	< 2.0	Ü
95-47-6	o-Xylene	1.0	< 1.0	Ü

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	105%
d8-Toluene	100%
Bromofluorobenzene	91.8%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

> FORM I 0199 00119

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 1 of 1

Data Release Authorized: 0

Reported: 05/12/10

Sample ID: Trip Blank SAMPLE

Lab Sample ID: QV70B

LIMS ID: 10-11175

Matrix: Water

QC Report No: QV70-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/07/10 Date Received: 05/07/10

Instrument/Analyst: NT5/PKC Sample Amount: 10.0 mL Date Analyzed: 05/10/10 13:07 Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	Ü
75-01-4	Vinyl Chloride	1.0	< 1.0	Ü
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	10	< 10	U
75 - 15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93 - 3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23 - 5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	Ū
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	Ü
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	Ü
75-25 - 2	Bromoform	1.0	< 1.0	Ü
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	Ü
591-78-6	2-Hexanone	5.0	< 5.0	Ü
127-18-4	Tetrachloroethene	1.0	< 1.0	Ü
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	Ü
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	Ü
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	Ü
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.0	Ü
179601-23-1	m,p-Xylene	2.0	< 2.0	Ü
95-47-6	o-Xylene	1.0	< 1.0	Ü

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	104%
d8-Toluene	103%
	90.2%
Bromofluorobenzene	90.26

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

G199:00150

Volatiles by Purge & Trap GC/MS-Method SW8260C

Sample ID: LCS-051010 LAB CONTROL SAMPLE Page 1 of 2

Lab Sample ID: LCS-051010

LIMS ID: 10-11174 Matrix: Water

Data Release Authorized:

Reported: 05/12/10

Instrument/Analyst LCS: NT5/PKC

LCSD: NT5/PKC

Date Analyzed LCS: 05/10/10 10:26

LCSD: 05/10/10 10:52

QC Report No: QV70-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL Purge Volume LCS: 10.0 mL LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	9.6	10.0	96.0%	9.4	10.0	94.0%	2.1%
Bromomethane	8.5 Q	10.0	85.0%	8.8 Q		88.0%	3.5%
Vinyl Chloride	9.5	10.0	95.0%	9.5	10.0	95.0%	0.0%
Chloroethane	10.0	10.0	100%	9.9	10.0	99.0%	1.0%
Methylene Chloride	9.4	10.0	94.0%	9.2	10.0	92.0%	2.2%
Acetone	42.4	50.0	84.8%	42.4	50.0	84.8%	0.0%
Carbon Disulfide	10.1	10.0	101%	10.0	10.0	100%	1.0%
1,1-Dichloroethene	10.2	10.0	102%	10.0	10.0	100%	2.0%
1,1-Dichloroethane	9.6	10.0	96.0%	9.6	10.0	96.0%	0.0%
trans-1,2-Dichloroethene	9.9	10.0	99.0%	9.8	10.0	98.0%	1.0%
cis-1,2-Dichloroethene	9.8	10.0	98.0%	9.9	10.0	99.0%	1.0%
Chloroform	10.0	10.0	100%	10.0	10.0	100%	0.0%
1,2-Dichloroethane	9.6	10.0	96.0%	9.6	10.0	96.0%	0.0%
2-Butanone	44.9	50.0	89.8%	44.9	50.0	89.8%	0.0%
1,1,1-Trichloroethane	10.2	10.0	102%	10.2	10.0	102%	0.0%
Carbon Tetrachloride	10.4	10.0	104%	10.4	10.0	104%	0.0%
Vinyl Acetate	8.4	10.0	84.0%	8.5	10.0	85.0%	1.2%
Bromodichloromethane	10.2	10.0	102%	10.1	10.0	101%	1.0%
1,2-Dichloropropane	10.0	10.0	100%	10.2	10.0	102%	2.0%
cis-1,3-Dichloropropene	10.2	10.0	102%	10.5	10.0	105%	2.9%
Trichloroethene	10.4	10.0	104%	10.7	10.0	107%	2.8%
Dibromochloromethane	10.1	10.0	101%	10.4	10.0	104%	2.9%
1,1,2-Trichloroethane	10.1	10.0	101%	10.5	10.0	105%	3.9%
Benzene	10.4	10.0	104%	10.6	10.0	106%	1.9%
trans-1,3-Dichloropropene	10.2	10.0	102%	10.3	10.0	103%	1.0%
2-Chloroethylvinylether	9.0	10.0	90.0%	9.2	10.0	92.0%	2.2%
Bromoform	10.0	10.0	100%	10.6	10.0	106%	5.8%
4-Methyl-2-Pentanone (MIBK)	48.1	50.0	96.2%	49.1	50.0	98.2%	2.1%
2-Hexanone	43.9	50.0	87.8%	44.2	50.0	88.4%	0.7%
Tetrachloroethene	10.1	10.0	101%	10.3	10.0	103%	2.0%
1,1,2,2-Tetrachloroethane	8.8	10.0	88.0%	9.0	10.0	90.0%	2.2%
Toluene	10.6	10.0	106%	11.0	10.0	110%	3.7%
Chlorobenzene	10.2	10.0	102%	10.5	10.0	105%	2.9%
Ethylbenzene	10.7	10.0	107%	11.0	10.0	110%	2.8%
Styrene	10.9	10.0	109%	11.1	10.0	111%	1.8%
Trichlorofluoromethane	10.2	10.0	102%	10.0	10.0	100% .	2.0%
1,1,2-Trichloro-1,2,2-trifluoroetha	10.0	10.0	100%	9.6	10.0	96.0%	4.1%
m,p-Xylene	21.9	20.0	110%	22.2	20.0	111%	1.4%
o-Xylene	10.4	10.0	104%	10.6	10.0	106%	1.9%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

LCS LCSD

FORM III

Volatiles by Purge & Trap GC/MS-Method SW8260C

Page 2 of 2

Sample ID: LCS-051010

LAB CONTROL SAMPLE

Lab Sample ID: LCS-051010

LIMS ID: 10-11174

Matrix: Water

QC Report No: QV70-City of Seattle

Project: Midway Landfill 555-1550-052

Spike LCS Spike LCSD Analyte LCS Added-LCS Recovery LCSD Added-LCSD Recovery RPD

d4-1,2-Dichloroethane 94.1% 93.6% d8-Toluene 99.7% 104% Bromofluorobenzene 96.3% 96.2%

FORM III

augo:*0015*2

Data File: /chem1/nt5.i/10MAY10.b/05101002.d

Report Date: 10-May-2010 10:54

Analytical Resources, Inc.

CONTINUING CALIBRATION COMPOUNDS

]	1	MIN	 	XAM	
COMPOUND	RRF / AMOUNT	RF10		%D / %DRIFT		
						========
1 Dichlorodifluoromethane	0.86026	,	•	•		_
2 Chloromethane	1.29032	1.20603	0.100	-6.53223		_
3 Vinyl Chloride	1.29275	•	•	•		
4 Bromomethane	0.52080	•	•	•		
5 Chloroethane	0.77495	•	•	•		
6 Trichlorofluoromethane	1.11523	•	,	•		. –
12 Acrolein	0.10331	•	,			
9 112Trichloro122Trifluoroeth	0.81428	•	•	•		
14 Acetone	0.12079	•			•	
7 1,1-Dichloroethene	0.78057	•	•	•		
11 Bromoethane	0.56646	T .	•	•	•	
10 Iodomethane	0.87873	•			:	
13 Methylene Chloride	0.89317	0.85750	0.010	-3.99391	•	-
18 Acrylonitrile	0.19242	0.16080	0.010	-16.43603	•	-
16 Methyl tert butyl ether	1.83610	1.70690	0.010	•	•	-
8 Carbon Disulfide	3.26512	3.36318	0.010	3.00319	•	
15 Trans-1,2-Dichloroethene	0.84758	0.83315	0.010	-1.70243	•	•
19 Vinyl Acetate	1.28904	1.07362	0.010	-16.71165	•	
17 1,1-Dichloroethane	1.73216	1.66311	0.200	-3.98633	•	
29 2-Butanone	0.05875	0.05361	0.010	-8.74907	20.00000	•
21 2,2-Dichloropropane	1.33306	1.37396	0.010	3.06801	20.00000	
20 Cis-1,2-Dichloroethene	0.87212	0.86033	0.010	-1.35193	•	•
23 Chloroform	1.41676	1.43086	0.200	0.99468	20.00000	
22 Bromochloromethane	0.31440	0.32346	0.010	2.88187	20.00000	
\$ 25 Dibromofluoromethane	0.48148	0.49707	0.010	3.23686	•	
26 1,1,1-Trichloroethane	1.22600	1.25676	0.100	2.50910	•	
28 1,1-Dichloropropene	0.63547	0.62779	0.010	-1.20847	•	
24 Carbon Tetrachloride	0.51002	0.54079	0.100	6.03296	•	. –
\$ 31 d4-1,2-Dichloroethane	0.61759	0.58281	0.010	-5.63221	20.00000	-
33 1,2-Dichloroethane	0.48931	0.48966	0.100	0.07177	•	
30 Benzene	1.87312	1.95122	0.500	4.16931	•	•
34 Trichloroethene	0.38412	0.40866	0.200	6.38950	•	
38 1,2-Dichloropropane	0.48204	0.49095	0.100	1.84811	,	
39 Bromodichloromethane	0.50102	0.52585	0.200	4.95577		
37 Dibromomethane	0.18511	0.18394	0.010	-0.63421	20.00000	Average
	İ	1	1	1	l	l

ouee:*00*152

Data File: /chem1/nt5.i/10MAY10.b/05101002.d Report Date: 10-May-2010 10:54

Analytical Resources, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: nt5.i

Injection Date: 10-MAY-2010 10:01
Init. Cal. Date(s): 20-APR-2010 20-APR-2010
Init. Cal. Times: 11:22 14:22
Quant Type: ISTD Lab File ID: 05101002.d

Analysis Type: WATER Init. Cal. Times: Lab Sample ID: CC0510 Quant Type: ISTD Method: /chem1/nt5.i/10MAY10.b/8260c042010L.m

	1		MIN	1	MAX	
COMPOUND	RRF / AMOUNT	RF10	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
=======================================					=========	========
40 2-Chloroethyl Vinyl Ether	0.19393	0.17099				
45 4-Methyl-2-Pentanone	0.09416	0.09103	0.010	-3.32599	20.00000	Averaged
41 Cis 1,3-dichloropropene	0.69771	0.71045	0.200	1.82539	20.00000	Averaged
\$ 42 d8-Toluene	1.20089	1.23961	0.010	3.22403	20.00000	Averaged
43 Toluene	1.11036	1.21736	0.400	9.63644	20.00000	Averaged
46 Trans 1,3-Dichloropropene	0.56743	0.57800	0.100	1.86254	20.00000	Averaged
51 2-Hexanone	0.17825	0.15738	0.010	-11.70847	20.00000	Averaged
47 1,1,2-Trichloroethane	0.26415	0.27224	0.100	3.06575	20.00000	Averaged
49 1,3-Dichloropropane	0.60274	0.57412	0.010	-4.74869	20.00000	Average
44 Tetrachloroethene	0.38674	0.38537	0.200	-0.35482	20.00000	Average
48 Chlorodibromomethane	0.29402	0.29258	0.010	-0.49156	20.00000	Average
50 1.2-Dibromoethane	0.24368	0.24917	0.010	2.25512	20.00000	Average
53 Chlorobenzene	1.20049	1.19363	0.500	-0.57199	20.00000	Average
54 Ethyl Benzene	2.44004	2.57654	0.100	5.59430	20.00000	Average
55 1,1,1,2-Tetrachloroethane	0.37718	0.38473	0.010	2.00198	20.00000	Average
56 m,p-xylene	0.81839	0.87405	0.100	6.80126	20.00000	Average
57 o-Xylene	0.78525	0.79696	0.300	1.49083	20.00000	Average
58 Styrene	1.28124	1.37186	0.300	7.07329	20.00000	Average
60 Isopropyl Benzene	4.41171	4.42696	0.010	0.34557	20.00000	Average
59 Bromoform	0.28578	0.29525	0.100	3.31235	20.00000	Average
64 1,1,2,2-Tetrachloroethane	0.67348	0.61169	0.300	-9.17420	20.00000	Average
\$ 61 4-Bromofluorobenzene	0.49264	0.46002	0.010	-6.62172	20.00000	Average
66 1,2,3-Trichloropropane	0.17703	0.16108	0.010	-9.00653	20.00000	Average
68 Trans-1,4-Dichloro 2-Butene	0.25822	0.23559	0.010	-8.76441	20.00000	Average
63 N-Propyl Benzene	5.52855	5.57347	0.010	0.81253	20.00000	Average
62 Bromobenzene	0.87209	0.82195	0.010	-5.74903	20.00000	Average
67 1,3,5-Trimethyl Benzene	3.70735	3.64204	0.010	-1.76162	20.00000	Average
65 2-Chloro Toluene	3.35314	3.24273	0.010	-3.29261	20.00000	Average
69 4-Chloro Toluene	3.49318	3.36891	10.010	-3.55738	20.00000	Average
70 T-Butyl Benzene	3.05539	2.96901	0.010	-2.82709	•	-
71 1,2,4-Trimethylbenzene	3.71638	3.74466	0.010	0.76072	20.00000	•
72 S-Butyl Benzene	4.83267	4.77272	0.010	-1.24047	•	
73 4-Isopropyl Toluene	3.72440	3.68127	0.010	-1.15815	,	•
74 1,3-Dichlorobenzene	1.84116	1.82290	0.600	-0.99215	•	•
76 1,4-Dichlorobenzene	1.87531	1.79374	0.400	-4.34936	20.00000	Average
. , ==:	1 1		.	.1	.	.

ajog.*no*151

Page 3

Data File: /chem1/nt5.i/10MAY10.b/05101002.d

Report Date: 10-May-2010 10:54

Analytical Resources, Inc.

CONTINUING CALIBRATION COMPOUNDS

	1			MIN	1	MAX	İ
COMPOUND	RRF /	TOUNT	RF10	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	= =====	======	=======================================	=====		========	_========
77 N-Butyl Benzene	ĺ	3.97986	3.83269	0.010	-3.69784	20.00000	Averaged
s 78 d4-1,2-Dichlorobenzene	j	0.88966	0.86723	0.010	-2.52100	20.00000	Averaged
79 1.2-Dichlorobenzene	i	1.67243	1.56599	0.400	-6.36486	20.00000	Averaged
81 1,2-Dibromo 3-Chloropropane	i	0.13591	0.10962	0.010	-19.34525	20.00000	Averaged
83 1,2,4-Trichlorobenzene	i	1.03307	0.88011	0.010	-14.80665	20.00000	Averaged
82 Hexachloro 1,3-Butadiene		0.43478		0.010	-16.09141	20.00000	Averaged
	1	2.07811			:	20.00000	Averaged
84 Naphthalene	,	0.84646			•	20.00000	Averaged
85 1,2,3-Trichlorobenzene	-	0.01010	1	, 		I	i -

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MB-051210

Page 1 of 1

METHOD BLANK

Lab Sample ID: MB-051210

LIMS ID: 10-11174 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT7/MH

Date Analyzed: 05/12/10 08:09

Reported: 05/14/10

QC Report No: QV70-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

110% d4-1,2-Dichloroethane

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MW23B Page 1 of 1 SAMPLE

Lab Sample ID: QV70A LIMS ID: 10-11174 Matrix: Water

Data Release Authorized:

Reported: 05/14/10

Instrument/Analyst: NT7/MH
Date Analyzed: 05/12/10 09:33

QC Report No: QV70-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/07/10 Date Received: 05/07/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result Q
75-01-4	Vinyl Chloride	0.20	0.27

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 93.8%

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: Trip Blank SAMPLE

Page 1 of 1

Lab Sample ID: QV70B LIMS ID: 10-11175 Matrix: Water

Data Release Authorized:

Reported: 05/14/10

Instrument/Analyst: NT7/MH Date Analyzed: 05/12/10 08:41 QC Report No: QV70-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/07/10 Date Received: 05/07/10

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.20	< 0.20	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 110%

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: LCS-051210

1 of 1 LAB CONTROL SAMPLE Page

Lab Sample ID: LCS-051210

LIMS ID: 10-11174 Matrix: Water

Data Release Authorized:

Date Analyzed LCS: 05/12/10 07:17

Reported: 05/14/10

Project: Midway Landfill 555-1550-052

Date Sampled: NA

Date Received: NA

Sample Amount LCS: 10.0 mL Instrument/Analyst LCS: NT7/MH LCSD: NT7/MH

LCSD: 10.0 mL Purge Volume LCS: 10.0 mL LCSD: 10.0 mL

QC Report No: QV70-City of Seattle

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Vinyl Chloride	0.998	1.00	99.8%	1.02	1.00	102%	2.2%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

LCSD: 05/12/10 07:43

Volatile Surrogate Recovery

LCS LCSD d4-1,2-Dichloroethane 91.4% 91.8%

FORM III

METHOD BLANK RESULTS-CONVENTIONALS QV70-City of Seattle

Matrix: Water

Data Release Authorized

Reported: 05/13/10

Project: Midway Landfill

Event: 555-1550-052
Date Sampled: NA
Date Received: NA

Analyte	Method	Date	Units	Blank	ID
Chloride	EPA 325.2	05/13/10	mg/L	< 1.0 U	
Sulfate	EPA 375.2	05/13/10	mg/L	< 2.0 U	
Chemical Oxygen Demand	EPA 410.4	05/12/10	mg/L	< 5.00 U	
Total Organic Carbon	EPA 415.1	05/10/10	mg/L	< 1.50 U	

Water Method Blank Report-QV70

SAMPLE RESULTS-CONVENTIONALS QV70-City of Seattle

Matrix: Water

Data Release Authorized

Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052 Date Sampled: 05/07/10 Date Received: 05/07/10

Client ID: MW23B ARI ID: 10-11174 QV70A

Analyte	Date Batch	Method	Units	RL	Sample
Chloride	05/13/10 051310#1	EPA 325.2	mg/L	5.0	14.8
Sulfate	05/13/10 051310#1	EPA 375.2	mg/L	2.0	33.0
Chemical Oxygen Demand	05/12/10 051210#1	EPA 410.4	mg/L	5.00	5.68
Total Organic Carbon	05/10/10 051010#1	EPA 415.1	mg/L	1.50	1.90

Analytical reporting limit RL

Water Sample Report-QV70

U Undetected at reported detection limit

STANDARD REFERENCE RESULTS-CONVENTIONALS QV70-City of Seattle

Matrix: Water

Data Release Authorized: Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052 Date Sampled: NA Date Received: NA

Analyte/SRM ID	Method	Date	Units	SRM	True Value	Recovery
Chloride ERA #38084	EPA 325.2	05/13/10	mg/L	5.0	5.0	100.0%
Sulfate ERA #37065	EPA 375.2	05/13/10	mg/L	25.2	25.0	100.8%
Chemical Oxygen Demand Thermo Orion #101	EPA 410.4	05/12/10	mg/L	90.0	90.0	100.0%
Total Organic Carbon ERA 0506-09-01	EPA 415.1	05/10/10	mg/L	21.4	20.0	107.0%

Water Standard Reference Report-QV70

REPLICATE RESULTS-CONVENTIONALS QV70-City of Seattle

Matrix: Water

Data Release Authorized Reported: 05/13/10

Project: Midway Landfill

Event: 555-1550-052 Date Sampled: 05/07/10

Date Received: 05/07/10

Analyte	Method	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: QV70A Client	ID: MW23B					
Total Organic Carbon	EPA 415.1	05/10/10	mg/L	1.90	1.62	15.9%

Water Replicate Report-QV70

MS/MSD RESULTS-CONVENTIONALS QV70-City of Seattle

Matrix: Water
Data Release Authorized:
Reported: 05/13/10

Project: Midway Landfill Event: 555-1550-052

Date Sampled: 05/07/10 Date Received: 05/07/10

Analyte	Method	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: QV70A Client	ID: MW23B						
Total Organic Carbon	EPA 415.1	05/10/10	mg/L	1.90	21.4	20.0	97.5%

Water MS/MSD Report-QV70

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV70MB

LIMS ID: 10-11174

Matrix: Water

Data Release Authorized Reported: 05/17/10

QC Report No: QV70-City of Seattle Project: Midway Landfill

555-1550-052

Sample ID: METHOD BLANK

Date Sampled: NA

Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B	05/10/10	6010B	05/11/10	7439-89-6	Iron	0.05	0.05	U
6010B	05/10/10	6010B	05/11/10	7439-96-5	Manganese	0.001	0.001	

U-Analyte undetected at given RL RL-Reporting Limit

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV70A

LIMS ID: 10-11174 Matrix: Water

Data Release Authorized:

Reported: 05/17/10

Sample ID: MW23B

SAMPLE

QC Report No: QV70-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: 05/07/10 Date Received: 05/07/10

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
6010B	05/10/10	6010B	05/11/10	7439-89-6	Iron	0.05	8.67	
6010B	05/10/10	6010B	05/11/10	7439-96-5	Manganese	0.001	0.153	

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: QV70LCS LIMS ID: 10-11174

Matrix: Water Data Release Authorized:

Reported: 05/17/10

Sample ID: LAB CONTROL

QC Report No: QV70-City of Seattle

Project: Midway Landfill

555-1550-052

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Iron	6010B	2.03	2.00	102%	
Manganese	6010B	0.461	0.500	92.2%	

Reported in mg/L

N-Control limit not met Control Limits: 80-120%

FORM-VII