Cleanup Action Plan for Cleanup Action at 400 East Mountain View Avenue Ellensburg, Washington

Prepared for: State of Washington Department of Ecology Toxics Cleanup Program Central Regional Office 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902-3401

On behalf of

Kittitas Valley Fire & Rescue 102 North Pearl Street Ellensburg, Washington 98926

Prepared by: TerraGraphics Environmental Engineering, Inc. 988 South Longmont Avenue, Suite 200 Boise, Idaho 83706 www.terragraphics.com

April 2, 2015

Approval Form

Report prepared by: John Means, Mike Procsal

Project Quality Assurance/Quality Control Coordinator: Melody Studer

Technical Review by: Rachel Gibeault

Approved by:

Manfras Date: 4.2.15

Senior Reviewer, TerraGraphics Environmental Engineering, Inc. Jon Munkers

Date:

Kittitas Valley Fire & Rescue John Sinclair, Fire Chief

Date:

Washington State Department of Ecology, Toxics Cleanup Program Mary Monahan, Site Manager

Distribution List

John Sinclair Kittitas Valley Fire & Rescue

> 102 N. Pearl Street Ellensburg, WA 98926

> > ph: 509-933-7231

Sinclairj@kvfr.org

Mary Monahan

Washington State Department of Ecology

Central Regional Office 15 W. Yakima Avenue, Suite 200 Yakima, WA 98902-3452

ph: 509-575-2809

mmon461@ecy.wa.gov

Mike Procsal

TerraGraphics Environmental Eng., Inc. 988 S. Longmont Avenue, Suite 200 Boise, ID 83706

ph: 208-336-7080

mike.procsal@terragraphics.com

John Means

TerraGraphics Environmental Eng., Inc.

988 S. Longmont Avenue, Suite 200 Boise, ID 83706

ph: 208-336-7080

john.means@terragraphics.com

Contents

1	Introduct	ion	1
2	Summary	y of Site Conditions	1
	2.1 L	ocations and Site Description	1
	2.2 S	ite History	1
	2.3 S	ummary of Previous Work	2
	2.3.1	Predevelopment Site Investigations	2
	2.3.2	Site Soil Conditions	2
	2.3.3	Analytical Test Results	3
3	2015 Sup	plemental Site Characterization	3
	3.1 T	est Pits	3
	3.1.1	Test Pit Methodology	3
	3.1.2	Test Pit Soil Results	4
	3.2 T	renching	5
	3.2.1	Trenching Methodology	
	3.2.2	Trenching Soil Results	5
	3.3 B	aseline Groundwater Monitoring	6
	3.3.1	Groundwater Sampling Methodology	6
	3.3.2	Groundwater Sampling Analytical Results	
	3.3.3	Hydrogeology	7
	3.4 D	ata Evaluation	7
4	Nature an	nd Extent of Contamination	8
	4.1.1	Soil	8
	4.1.2	Groundwater	8
5	Potential	Exposure Pathways	8
	5.1 S	oil to Groundwater Pathway	8
	5.2 S	oil to Vapor Inhalation Pathway	9
	5.3 S	oil Direct Contact Pathway	9
6	Summary	y of Cleanup Standards	9
	6.1 C	leanup and Performance Standards	9
	6.2 S	ite Cleanup and Remediation Levels	9
	6.2.1	MTCA Cleanup Level Methods	9
	6.2.2	Site-Specific Cleanup Levels	0
	6.2.3	Remediation Areas	0
7	Summary	v of Selected Cleanup Action	1
	7.1 S	elected Cleanup Action 1	1
		AP Implementations 1	
	7.2.1	Applicable or Relevant and Appropriate Requirements (ARARs) 1	1

	7.2.2 Permits	12
	7.3 Cleanup Construction	12
	7.3.1 Site Preparation and Safety	12
	7.3.2 Soil Excavation, Segregation, and Stockpiling	13
	7.3.2.1 Soils Segregation	13
	7.3.2.2 Non-contaminated over burden	
	7.3.2.3 Contaminated soils	
	7.3.2.4 Temporary Stockpile Liner	
	7.3.3 Removal and Disposal of Soils Where COC Concentrations Exceed MTCA Method A Unrestricted CULs	
	7.3.4 Infiltration Gallery	13
	7.3.5 Bioremediation	14
	7.3.6 Oxidative Bioremediation Overview	14
	7.4 Engineering and Institutional Controls	15
	7.5 Groundwater Management (contingency plan)	
	7.6 Demonstration of Compliance with Cleanup Requirements	15
	7.6.1 Compliance Monitoring	15
	7.6.2 Soil Excavation/Soil Sampling and testing	16
	7.6.3 Laboratory Quality Assurance and Quality Control	16
	7.7 Institutional Controls	17
	7.7.1 Restrictive Covenants for Soil and Groundwater	17
	7.7.2 Post Construction Soil Management Plan	17
8	Rationale for Selection of the Cleanup Plan	
	8.1 Protection of Human Health and the Environment	
	8.2 Attainment of Standards	17
	8.3 Use of Permanent Solutions to the Maximum Extent Practicable	
	8.4 Compliance Monitoring	18
9	Schedule	
-	Public Notice and Public Comment	
11	Residuals Management	
12	Health and Safety Considerations	
12		
	5	
	12.3 Construction Procedures Pertinent to Health and Safety	
Ket	ferences and Resources Used	19

Figures

Figure 1.	Site Layout with Sample Locations	. 22
Figure 2.	Groundwater Contours	. 23
Figure 3.	Soil Isocontour Exceeding MTCA Method A CULs	. 24
Figure 4.	Geologic Cross Section	. 25
Figure 5.	Site Layout	. 26
Figure 6.	Excavation Area Plan	. 27
Figure 7.	Stock Pile Plan	. 28
Figure 8.	Trench Layout	. 29
Figure 9.	Infiltration Gallery Plan	. 30
Figure 10.	Project Schedule	. 31

Tables

Table 1.	Laboratory Quality Control Checks	. 17
Table 2.	Soil Analytical Results- VOCs, GRO, DRO	32
Table 3.	Soil Analytical Results- cPAHs and Metals	33
Table 4.	Soil Analytical Results- EPH-DRO and HVOCs	34
Table 5.	Groundwater Analytical Results- VOCs, GRO, DRO	35
Table 6.	Groundwater Analytical Results- cPAHs	36
Table 7.	Groundwater Analytical Results- Natural Attenuation Parameters	37

Appendices

Appendix A Photographs	A
Appendix B Test Pit Logs and Groundwater Field Sheets	В
Appendix C Laboratory Analytical Results and Chain of Custody Documentation	C
Appendix D Plans and Specifications for the Cleanup Action, Kittitas Valley Fire and Rescue	2
Station 2-9 400 East Mountain View Ellensburg, WA	D

Acronyms and Abbreviations

ARAR	Applicable or Relevant and Appropriate Requirement
ASTM	American Society for Testing and Materials
bgs	below ground surface
BTEXN	benzene, toluene, ethylbenzene, total xylenes, and naphthalene
CAP	Cleanup Action Plan
COC	contaminant of concern
cPAH	carcinogenic polycyclic aromatic hydrocarbon
CUL	Cleanup Level
DO	dissolved oxygen
DQO	Data Quality Objective
DRO	diesel range organics
Ecology	Washington State Department of Ecology
EDB	ethylene dibromide
EDC	1,2-dichloroethane
EPH	extractable aliphatic and aromatic petroleum hydrocarbons
Fulcrum	Fulcrum Environmental Consulting, Inc.
GRO	gasoline range organics
hVOC	halogenated volatile organic compounds
IRIS	Integrated Risk Information System
KVFR	Kittitas Valley Fire & Rescue
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
MTBE	methyl tertiary-butyl ether
MTCA	Model Toxics Control Act
NGA	Nelson Geotechnical Associates, Inc.
ORP	oxidation/reduction potential
PAH	polycyclic aromatic hydrocarbon
PID	photo-ionization detector
PLSA	PLSA Engineering & Surveying
PPE	personal protective equipment
PVC	poly-vinyl chloride
QA	Quality Assurance
QAO	Quality Assurance Officer
QAPP	Quality Assurance Project Plan

QC	Quality Control				
RCW	Revised Code of Washington				
RI/FS	Remedial Investigation/Feasibility Study				
RPD	relative percent difference				
SAP	Sampling Analysis Plan				
SEC	specific electrical conductance				
SEPA	State Environmental Policy Act				
SIM	Selective Ion Monitoring				
TerraGraphics	TerraGraphics Environmental Engineering, Inc.				
TestAmerica	TestAmerica Laboratories, Inc.				
TOC	top of casing				
TPH-Dx	Total Petroleum Hydrocarbons-Diesel and Oil Range Organics				
TPH-Gx	Total Petroleum Hydrocarbons-Gasoline Range Organics				
TSS	total suspended solids				
USEPA	US Environmental Protection Agency				
UST	underground storage tank				
VCP	Voluntary Cleanup Program				
VOC	volatile organic compound				
WAC	Washington Administrative Code				

Measurements

μg/L	microgram per liter
ft^2	square feet
ft ³	cubic feet
mg/kg	milligram per liter
ppm	parts per million

1 Introduction

This Cleanup Action Plan (CAP) summarizes the existing site contaminant conditions and preferred environmental remedy for the new location of the Kittitas Valley Fire and Rescue Station 2-9 located at 400 East Mountain View Avenue in Ellensburg, Washington, herein referred as the "Site". Fire Chief John Sinclair of the Kittitas Valley Fire District #2 requested this document. The CAP includes the findings of the predevelopment subsurface investigations conducted by Fulcrum Environmental Consulting, Inc. (Fulcrum) in 2012 and TerraGraphics Environmental Engineering, Inc. (TerraGraphics) in 2015. This CAP discusses the previous site investigations, preferred remedial action, the rationale for the selected remedial approach, and the project schedule. TerraGraphics understands that the CAP implementation needs to precede the May 2015 building construction and Kittitas Valley Fire District #2 desires the most expedient and permanent remedy.

2 Summary of Site Conditions

The following sections summarize the site conditions and previous assessment work that was conducted prior to February 2015.

2.1 Locations and Site Description

The Site is located at 400 East Mountain View Avenue in Ellensburg, Washington. Formerly referred to as Mackner's Transport, the Site is undergoing redevelopment plans to become the Kittitas Valley Fire District #2, commonly referred to as the Kittitas Valley Fire & Rescue (KVFR) Station 2-9.

In preparation for redevelopment, the site is currently vacant with no buildings on site and has approved construction plans for KVFR Station 2-9. All former concrete and asphalt have been removed.

2.2 Site History

The Site is located south of the downtown area and borders the east branch of Wilson Creek. Neighboring properties are mostly highway commercial with banks, retail stores, medical offices, and senior housing. The Site consists of five tax parcels and was developed in the 1950s as an agricultural business associated with local hay production. During the first site development, an adjacent off site metal barn was the center of operations. In the late 1950s and early 1960s, the business operations expanded east and north to encompass the Mountain View Brownfield site. This expansion included three pole buildings that were used primarily for covered hay storage. With the construction of a scale house and residential structure, Site business operations expanded to include an independent scale house, truck repair, fueling station, and covered hay storage. The scale house and site operations were reported to be regionally important to hay farmers and other agricultural producers (Fulcrum 2012a). Business operations continued until 2013.

2.3 Summary of Previous Work

The following sections summarize the previous assessment work prior to February 2015.

2.3.1 Predevelopment Site Investigations

In 1991, the State of Washington Department of Ecology (Ecology) completed a site visit. Review of the Ecology site file indicated that three underground storage tanks (USTs), including one gasoline, two diesel fuel tanks and associated dispensers, were present at the Site near the Scale House/Residence (Ecology 1991). In the late 1990s or early 2000s, the tanks were reportedly excavated and removed by a local contractor.

In 2005, a local investor considered acquisition of the site and PLSA Engineering & Surveying (PLSA) completed a limited investigation (PLSA 2005). The limited investigation identified one previously unknown UST associated with the diesel repair shop and reported the presence of petroleum impacted Site soils and groundwater. Investigation methods were not sufficient to conclude if contamination exceeded applicable Model Toxics Control Act (MTCA) (Washington Administration Code [WAC] 173-340) Unrestricted Land Use regulatory thresholds.

In 2012, Fulcrum completed an investigation of Site soil and groundwater. The investigation confirmed the presence of petroleum contaminated soil on site. Additionally, in March 2012, during the first of three groundwater monitoring events, gasoline-range organics (GRO) were identified at one well location (MW-02, see Figure 3) at concentrations above MTCA Method A Groundwater Cleanup Levels (CULs; Table 720-1, WAC 173-340-900). Subsequent groundwater monitoring in April and June 2012--noted in a later Remedial Investigation/Feasibility Study (RI/FS)--identified GRO at concentrations below the cleanup levels (see Section 2.3.3 of this report). Fulcrum's RI/FS documented petroleum impacts to soil and groundwater and stained surface soils. During this investigation, Fulcrum discovered a fourth UST directly north of the former mechanic's shop and the owners had it removed (Fulcrum 2012b).

In 2014, Nelson Geotechnical Associates, Inc. (NGA) completed a geotechnical engineering study. NGA summarized explorations of the surface and subsurface conditions within the Site, and provided geotechnical recommendations for the proposed site development (NGA 2014).

In 2015, TerraGraphics conducted additional soil and groundwater sampling to further characterize the vertical and horizontal extent of contamination in preparation of this CAP and to evaluate the range of remedy alternatives as described in Section 3.0.

2.3.2 Site Soil Conditions

The boring logs from the Fulcrum RI/FS report describe soils consisting of sandy clay and sandy loam to approximately 7 feet below ground surface (bgs). Clayey sandy gravel and sandy gravel extend at deeper depths with groundwater being shallow (less than 5 feet bgs). Wilson Creek is classified as a losing reach stream that influences the groundwater flow toward the west-southwest (Fulcrum 2012b).

NGA explored the onsite subsurface conditions on July 1, 2014, by excavating 13 test pits using a trackhoe to depths ranging from 7.0 to 14.0 feet bgs. The boring logs from these reports describe lithologies consistent with TerraGraphics' soil classifications in this region from nearby

areas. Although there is blue clay in this area that visually resembles petroleum-impacted soils, previous studies conducted by TerraGraphics have shown that it is a laterally continuous, naturally occurring deposit and is not necessarily petroleum-impacted

Groundwater appears to flow toward the southwest with steeper gradient influences along Wilson Creek located on the eastern portion of the property.

2.3.3 Analytical Test Results

The 2012 Fulcrum RI/FS report identified site soil contaminants of concern (COCs) that included petroleum analytes (GRO, diesel-range organics [DRO], and heavy oil-range hydrocarbons). North of the mechanic shop confirmational soil samples, collected by Fulcrum following the UST removal, indicated that the highest remaining levels of GRO (5.05 milligrams per kilogram [mg/kg]), kerosene (35.7 mg/kg), and heavy oil-range hydrocarbons (164 mg/kg) were all well below MTCA Method A Unrestricted CULs: 30mg/kg, 4,000 mg/kg, 2,000 mg/kg, respectively (Table 740-1, WAC 173-340-900). The highest heavy oil detections east of the mechanic shop were 3,370 mg/kg at ground surface. Of the nearby samples, collected between 1 and 6 feet bgs, only heavy oil was detected with a concentration of 118 mg/kg and there were no observations of staining.

Fulcrum's March, April, and June 2012 sampling events showed that only MW-02 (shown in Figure 1) had detectable concentrations of petroleum constituents. DRO had concentrations ranging between 189 and 697 micrograms per liter (μ g/L); the groundwater MTCA Method A CUL for DRO is 500 μ g/L. The seven other groundwater monitoring wells did not have detections of GRO, benzene, lead, or volatile organic compound (VOC) constituents.

Although Fulcrum's RI/FS report states that they observed stained surficial soils, they did not fully delineate the full horizontal and vertical extent of site COCs with confirmational soil sampling. Therefore, TerraGraphics conducted additional site characterization activities as summarized in Section 3.

3 2015 Supplemental Site Characterization

TerraGraphics conducted soil and groundwater assessment activities on February 11 and 12, 2015, in accordance with the Sampling Analysis Plan (SAP)/Quality Assurance Project Plan (QAPP) for Site characterization at 400 East Mountain View Avenue (TerraGraphics 2015). The purpose of these assessment activities was to further delineate the extent of petroleum impacted soil and groundwater. TerraGraphics used the results to develop this CAP and to evaluate the range of remedy alternatives. The following sections summarize the soil and groundwater assessment activities and results, and Appendix A includes photographs of these field activities.

3.1 Test Pits

3.1.1 Test Pit Methodology

Under TerraGraphics' supervision, TJ's Bulldozing completed 17 test pits at the site (Figure 1) to delineate the areal extent of petroleum impacted soils as a result of a potential release from the gasoline and diesel USTs near the Scale House/Residence. Using a tracked John Deere 590D excavator equipped with a 3-foot wide bucket, TJ's Bulldozing dug the test pits to approximately

8 feet bgs or until they encountered groundwater. Test pitting began in the vicinity of the former USTs and advanced successively outward in a rough grid until the field crew observed unimpacted soils. To determine the presence of petroleum impacts to the subsurface, the TerraGraphics field crew screened the excavated soils using a field portable photo-ionization detector (PID). In addition, the field crew conducted a visual and olfactory assessment as secondary evidence of petroleum impacts. The test pit logs show the PID readings along with visual and olfactory observations (Appendix B).

In accordance with the SAP/QAPP (TerraGraphics 2015), the TerraGraphics field crew collected a total of 13 soil samples (including one duplicate sample) on February 10, 2015, from the test pits based on either the highest PID reading or from near the saturated zone and sent the samples to TestAmerica Laboratories, Inc. (TestAmerica) in Seattle, Washington. TestAmerica analyzed the soil samples (TP-1 7', TP-2 8', TP-3 8', TP-4 7', TP-5 6', TP-6 6', TP-6 6'D, TP-8 5', TP-9 5', TP-10 6', TP-12 8', TP-13 7', and TP-16 7') for the following constituents:

- Benzene, toluene, ethylbenzene, total xylenes, and naphthalene (BTEXN) using US Environmental Protection Agency (USEPA) Method 8260 (USEPA 1996);
- Methyl tert-butyl ether (MTBE) using USPEA Method 8260 (USEPA 1996);
- Ethylene dibromide (EDB) using USEPA Method 8260 (USEPA 1996);
- 1,2-dichloroethane (EDC) using USEPA Method 8260 (USEPA 1996);
- Total Petroleum Hydrocarbons-Gasoline Range Organics (TPH-Gx, a.k.a., GRO) using Ecology's Analytical Methods for Petroleum Hydrocarbons (Ecology 1997);
- Total Petroleum Hydrocarbons-Diesel and Oil Range Organics (TPH-Dx, a.k.a., DRO), using Ecology's Analytical Methods for Petroleum Hydrocarbons (Ecology 1997);
- Total recoverable lead using USEPA Method 200.8/6020 (USEPA 1994); and
- Carcinogenic (cPAHs) using USEPA Method 8270 Selective Ion Monitoring (SIM; USEPA 1996).

In addition, TestAmerica also analyzed soil samples TP-4 7' and TP-6 6' for:

• total organic carbon using USEPA Method 9060 (USEPA 2004).

3.1.2 Test Pit Soil Results

Petroleum hydrocarbon concentrations in 4 of the 13 soil samples collected were above one or more of the MTCA Method A Unrestricted CULs. Tables 1 and 2 summarize the detected concentrations (expressed in mg/kg), and the following lists those COCs that are above the CULs:

- TP-5 (6 feet)
 - \circ DRO = 4,100 mg/kg, CUL = 2,000 mg/kg
 - Heavy Oil = 4,182 mg/kg, CUL = 2,000 mg/kg
- TP-6 (6 feet) (below lists the higher of the original and duplicate sample)
 - \circ DRO = 6,500 mg/kg, CUL = 2,000 mg/kg
 - Heavy Oil = 6,620 mg/kg, CUL = 2,000 mg/kg
 - \circ GRO = 700 mg/kg, CUL = 100 mg/kg
- TP-10 (6 feet)
 - \circ GRO = 150 mg/kg, CUL = 100 mg/kg
- TP-16 (7 feet)

- DRO = 3,500 mg/kg, CUL = 2,000 mg/kg
- Heavy Oil = 3,574 mg/kg, CUL = 2,000 mg/kg
- \circ GRO = 440 mg/kg, CUL = 100 mg/kg

Analytical results showed detections of other analytes above the laboratory reporting limits, but not above MTCA Method A Unrestricted Soil CULs (Tables 1 and 2). As noted in the test pit logs (Appendix B), PID readings and staining indicated test pits that exhibited petroleum impacts (primarily DRO). Appendix C includes the complete analytical results

3.2 Trenching

3.2.1 Trenching Methodology

Under TerraGraphics' supervision, TJ's Bulldozing excavated five trenches (A, B, C, D, and E) near the former mechanic shop to delineate the vertical and lateral extent of stained surface soils (Figure 1). The subcontractor excavated the trenches to approximately 3 feet bgs and up to approximately 30 feet in length. In accordance with the SAP/QAPP (TerraGraphics 2015), TerraGraphics' field crew collected two soil samples on February 11, 2015, from the trenches based on the visual and olfactory evidence of heavy oil impacts. PID readings were 0.0 parts per million (ppm) in all trenches. The field crew sent the samples collected from C-C', and E-E' to TestAmerica in Seattle, Washington, who analyzed them for the following:

- BTEXN using USEPA Method 8260 (USEPA 1996);
- MTBE using USPEA Method 8260 (USEPA 1996);
- EDB using USEPA Method 8260 (USEPA 1996);
- EDC using USEPA Method 8260 (USEPA 1996);
- TPH-Gx or GRO using Ecology's Analytical Methods for Petroleum Hydrocarbons (Ecology 1997);
- TPH-Dx or DRO using Ecology's Analytical Methods for Petroleum Hydrocarbons (Ecology 1997);
- Total recoverable lead using USEPA Method 200.8/6020 (USEPA 1994);
- Fractionated extractable aliphatic and aromatic petroleum hydrocarbons (EPH) for DRO and heavy fuel oils using Ecology's Analytical Methods for Petroleum Hydrocarbons (Ecology 1997);
- cPAHs using USEPA Method 8270 SIM (USEPA 1996);
- Total metals (lead, cadmium, chromium, nickel, and zinc) using USEPA Method 200.8/6020 (USEPA 1994); and
- Halogenated volatile organic compounds (hVOCs) using USEPA Method 8260B (USEPA 1996).

3.2.2 Trenching Soil Results

Field screening showed no petroleum impacts in trenches A, B, and E. Soils appeared to be comprised of fill material at the surface with native material as shallow as 6 inches bgs. Trench D showed no petroleum impacts; however, the field crew uncovered several buried items including bottles, metal pipe, cans, and cloth rags. This apparent dump area is approximately 15 square feet (ft²). Trench C had a heavy oil odor and black staining that extended from the surface to approximately 1.5 feet bgs. The subcontractor excavated this trench further to

delineate the vertical extent of the staining. Based on field observations, the upper 1.5 feet of material bound the contamination, which did not extend into the underlying silts. The apparent heavy oil impacted area is approximately 30 feet wide by 30 feet long and 1.5 feet deep (50 cubic yards). Nevertheless, analytical results showed all detected petroleum constituents were below their respective MTCA Method A Unrestricted as summarized in Tables 1 and 2. Therefore, TerraGraphics recommends no cleanup action in this area.

TestAmerica also analyzed samples for EPH for DRO to establish MTCA Method B CULs. However, since all concentrations were below their respective MTCA Method A Unrestricted CULs, TerraGraphic did not establish MTCA Method B CULs. Table 3 summarizes these results for reference only and Appendix C includes the complete analytical results.

3.3 Baseline Groundwater Monitoring

TerraGraphics collected groundwater samples from the existing groundwater monitoring wells to establish baseline (pre-remediation) groundwater quality as described in the following sections.

3.3.1 Groundwater Sampling Methodology

The TerraGraphics field crew collected groundwater samples from the existing groundwater monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, and MW-7) to establish baseline (pre-remediation) groundwater quality. Prior to collecting groundwater samples, the field crew purged the wells using a peristaltic pump until water quality parameters stabilized. The field crew measured the following water quality parameters in the field using a flow through cell: temperature, pH, dissolved oxygen (DO), oxidation/reduction potential (ORP), and specific electrical conductance (SEC). The field crew inserted disposable single use ³/₈-inch Teflon® lined tubing into the screened interval of the monitoring well. Then, TerraGraphics' field crew collected water samples employing a low-flow peristaltic pump following low-flow/minimal drawdown groundwater sample collection (USEPA 1998). The field crew used new peristaltic tubing to collect water from each monitoring well's screened deployment.

The field crew collected eight groundwater samples (including one duplicate) on February 11 and 12, 2015, in accordance with the SAP/QAPP (TerraGraphics 2015). TerraGraphics sent the samples to TestAmerica in Seattle, Washington, who analyzed them for the following:

- BTEXN using USEPA Method 8260B (USEPA 1996);
- MTBE using USPEA Method 8260B (USEPA 1996);
- EDC using USEPA Method 8260B (USEPA 1996);
- EDB using USEPA Method 8011 (USEPA 1992);
- TPH-Gx or GRO using Ecology's Analytical Methods for Petroleum Hydrocarbons (Ecology 1997);
- TPH-Dx or DRO using Ecology's Analytical Methods for Petroleum Hydrocarbons (Ecology 1997);
- Total recoverable lead using USEPA Method 200.8/6020 (USEPA 1994);
- Natural attenuation parameters: manganese using USEPA Method 300.0/9056 (USEPA 2007), sulfate using USEPA Method 200.7/6010 (USEPA 1994a), and alkalinity using USEPA Method 310.1/2320B (USEPA 1978);
- Total suspended solids (TSS) using Standard Method 2540D (SM 1997); and

- Ferrous iron and nitrates using Hach field test procedures, according to the following:
 - Following water quality parameter stabilization, the field crew conducted the ferrous iron test by collecting a small volume of purge water and mixing it with a phenanthroline indicator. The field crew recorded the ferrous iron concentration on the groundwater sampling sheet.
 - The TerraGraphics field crew measured nitrates in the field using a Hach field test: Model NI-12. Following water quality parameter stabilization, the field crew collected a small volume of purge water and mixed it with a NitraVer® 5 Nitrate Reagent Powder. The field crew recorded the nitrate concentration on the groundwater sampling sheet.

3.3.2 Groundwater Sampling Analytical Results

The analytical results showed petroleum constituents in groundwater at very low concentrations and all below their respective MTCA Method A Unrestricted Groundwater CULs. Tables 4 and 5 summarize groundwater results and Appendix C includes the complete analytical results.

3.3.3 Hydrogeology

This area is consistent with the documented local surficial terrace deposits composed of silt, sand, and gravel of diverse composition. In general, site lithology consists of silty sand from 0-2 feet bgs, silts and brown clays from 2-5 feet bgs, and sandy gravels from about 5-8 feet bgs (see Appendix B for trench and test pit logs).

TerraGraphics' field crew measured depth to groundwater within the test pits on February 10 and 11, 2015, between 7 to 8 feet bgs. Field crews encountered moist soil in all the test pits beginning in the silt/clay layer beginning around 2 feet bgs which transitioned to wet soil for the remainder of the test pits' exposed depth.

Field crews measured depth to water in seven existing wells onsite, which ranged from 0.90 feet below TOC in MW-7 to 7.85 feet below TOC in MW-1. TerraGraphics utilized previous reports for TOC elevations (Fulcrum 2012a) to calculate an approximate groundwater gradient. The field crew measured the depth to water in MW-2 at 8.26 feet below the TOC; however, MW-2 is not a flush mount well. TerraGraphics adjusted groundwater elevation at this location by subtracting 3 feet from the depth to water measurement to account for the riser. Wilson Creek, located along the east portion of the property, raises the groundwater elevation around MW-7 due to the ground saturation from the losing stream. Overall, groundwater appears to flow toward the southwest at an average gradient of 0.008 ft/ft. See Figure 2 for a groundwater contour map. Appendix B provides test pit logs with more detailed information on the subsurface conditions. Additionally, Figure 4 provides a sub-surface cross section of the site with noted lithology and groundwater information.

3.4 Data Evaluation

A Stage 2A Data Validation review was conducted on the soil and groundwater data collected at the site. Data comparability was assessed based on field collection and laboratory methods. All data were obtained using standard protocols for sample collection and laboratory analysis and are sufficient for comparison with other site data. The dataset for the site sampling is determined to be of acceptable quality.

4 Nature and Extent of Contamination

4.1.1 Soil

Petroleum hydrocarbon concentrations (DRO, GRO, and heavy oil hydrocarbons) are present at depths ranging from 6 to 7 feet bgs south of the former UST area and 4 of the 13 soil samples collected were above one or more of the MTCA Method A Unrestricted CULs. Analytical results showed other analytes detected above the laboratory reporting limits, but not above MTCA Method A Unrestricted Soil CULs. It appears that groundwater likely further distributed contamination from the former UST area to the south since the saturated zone primarily binds the impacts and groundwater flow direction is toward the southwest.

Tables 1 and 2 summarize the detected soil concentrations (expressed in mg/kg). The test pit logs indicate test pits that exhibited petroleum impacts (primarily diesel) from PID readings and noted visual staining (Appendix B). Appendix C includes the complete analytical results.

4.1.2 Groundwater

Analytical results show petroleum constituent detections in groundwater at very low concentrations; however, all are below their respective MTCA Method A Unrestricted Groundwater CULs (Tables 4 and 5). Although all monitoring wells show groundwater in compliance during this baseline monitoring event, there appears to be a groundwater data gap between wells MW-4 and MW-2. During test pitting, the field crew observed a petroleum sheen on the groundwater and noted a significant petroleum odor. TerraGraphics recommends installing additional groundwater monitoring wells to fill this data gap and to provide a point of compliance for cleanup monitoring. Appendix C includes complete analytical results.

5 Potential Exposure Pathways

The following sections discuss the exposure pathways for the Site that TerraGraphics evaluated and considered in the development of this CAP.

5.1 Soil to Groundwater Pathway

The results of the 2012 Fulcrum and the 2015 TerraGraphics RIs indicate that the Site contains soil concentrations of DRO and GRO exceeding MTCA Method A Unrestricted Soil CULs. Although groundwater is in compliance at all monitoring wells there appears to be groundwater data gap between wells MW-4 and MW-2. During test pitting petroleum sheen was observed on the groundwater and significant petroleum odor was noted. Therefore, TerraGraphics considers the soil to groundwater pathway is complete.

5.2 Soil to Vapor Inhalation Pathway

The results of the 2012 Fulcrum and 2015 TerraGraphics RIs detected no benzene in either soil or groundwater; therefore, it is unlikely that the low levels of other volatile petroleum constituents would pose a volatilization and inhalation risk.. The samples did not find any volatile constituents (e.g., toluene, total xylenes) above MTCA Method A Unrestricted CULs and do not pose a risk. During the 2012 Fulcrum RI, they did not take any indoor air samples while the Site buildings were present. In 2014, the buildings were demolished; therefore, TerraGraphics considers this pathway incomplete.

5.3 Soil Direct Contact Pathway

The 2012 Fulcrum RI noted some staining in the asphalt paved areas. Fulcrum noted that petroleum migrated through the asphalt in only a few areas and was confined to within 1 foot of the ground surface. The 2014 building demolition and asphalt removal and re-grading has disturbed the surface soils to the extant where TerraGraphics could not observe this visual staining in these areas. As a result, the 2015 TerraGraphics RI did not include surface soils samples since they considered any residual contamination insignificant. Therefore, this pathway is currently complete but is not a concern for the planned Site use because the following proposed cleanup actions will either remove or will treat *in-situ* with chemical and biological oxidants the soils exceeding MTCA Method A Unrestricted CULs.

6 Summary of Cleanup Standards

This section discusses the application of MTCA CULs, and contains an overview of the extent of soil contamination identified at the Site during investigation activities.

6.1 Cleanup and Performance Standards

The KVFR Station 2-9 will operate at the Site after remediation activities are complete. The primary requirements of this CAP developed under MTCA are to protect human health and the environment, by following these site-specific cleanup actions:

- Prevent potential receptors (e.g., general public or on-site workers) from contacting or ingesting soil with concentrations of hazardous substances exceeding CULs.
- Prevent or minimize hazardous substances in soil from potentially migrating to groundwater where groundwater is not already impacted.

6.2 Site Cleanup and Remediation Levels

This section discusses the relevant MTCA Methodology for determining cleanup levels.

6.2.1 MTCA Cleanup Level Methods

MTCA provides three methods for determining cleanup levels. The following briefly describes the three methods.

<u>Method A</u> applies to sites undergoing routine interim cleanup actions or to sites where numerical standards are available for all hazardous substances in all media of concern. MTCA tables provide predetermined CULs for approximately 25 chemicals. These cleanup levels are easy to use, but are also often extremely conservative. MTCA developed Method A CULs for both residential (unrestricted) site and industrial site exposure scenarios.

Method B is the standard approach applicable to all sites. MTCA determines CULs according to equations provided in the regulation and by using the most current toxicity data available on the USEPA Integrated Risk Information System (IRIS) database. MTCA has calculated the CULs for soil assuming accidental ingestion of contaminated soil by a young child; this represents an overly conservative scenario for an industrial site.

<u>Method C</u> applies in cases where land use meets certain criteria and can be classified as industrial, in other special cases where Method A or B CULs are below area background concentrations, or in cases where Method A or B CULs are not technically possible to achieve. As with Method B, MTCA calculated CULs by using equations provided in the regulation and by using the most current toxicity data available on USEPA's IRIS database. The equations use less conservative assumptions and in some cases allow higher risk levels that Method B. When one uses Method C CULs, it generally requires one to use institutional controls (e.g., site fence, deed restrictions).

6.2.2 Site-Specific Cleanup Levels

Based on the 2012 Fulcrum and the 2015 TerraGraphics RIs, TerraGraphics determined that DRO, GRO, and heavy oil are the site-specific COCs and will use MTCA Method A Unrestricted CULs shown below.

<u>Soil</u>

DRO is 2,000 mg/kg.

GRO (without benzene present) is 100 mg/kg.

Heavy Oil is 2,000 mg/kg.

<u>Groundwater</u>

DRO is 500 μ g/L.

GRO (without benzene present) is 1,000 μ g/L.

Heavy Oil is 500 µg/L.

6.2.3 Remediation Areas

The goal is to remove soil that is impacted where COCs are above applicable CULs to the maximum extent possible. Based on a review of laboratory results associated with the investigation activities, the following areas will require remediation.

1. COCs occur in ground water and soils at a depth of 6-7 feet bgs in a roughly rectangular area within the northwest corner at the location of TP-1 and extending into the northeast corner at TP-5. The area then extends in a south-southeasterly direction for approximately 152 feet (see Figure 3). TerraGraphics estimates this area to be 7,200 ft² with a volume of 1,600 cubic Yards (Yd³) (see Figure 5). Test pit observations indicate

and estimated 273 Yd^3 of impacted soil may also occur in the immediate area of the former UTS's at depths ranging from 3-6 bgs (see Figure 4). TerraGraphics will determine the actual quantity of soil to be removed from this area based on compliance monitoring during the source removal.

2. To bring the building site level with the street elevation of Mountain View Avenue, TerraGraphics estimates the building construction will place 4 vertical feet of structural fill above existing ground surface.

7 Summary of Selected Cleanup Action

Figure 3 shows the approximate areas of the Site where COCs in soil exceed CULS. TerraGraphics evaluated alternatives for Site soil cleanup with respect to criteria that determines if the cleanup action is permanent to the maximum extent practicable. The sections below describe the selected cleanup action:

- It is protective of human health and the environment.
- It is compliant with the cleanup standards defined in WAC 173-340-700 through -760.
- It is a permanent solution.
- It is attainable in a reasonable restoration time frame
- It is in accordance with the development goals for the Site.

7.1 Selected Cleanup Action

The selected cleanup action for soils where concentrations exceed the CULs includes:

- Excavating and stockpiling the source area soil from locations described in Section 7.2.
- Segregating non-contaminated overburden soils and contaminated source area soils.
- Removing and disposing soils where COC concentrations exceed MTCA Method A Unrestricted CULs.
- Installing a perforated pipe infiltration gallery within the groundwater saturation zone under the future building footprint for supplemental *in-situ* chemical and biological treatment of saturated soils and groundwater.
- Treating remaining impacted soils with chemical and biological treatments to reduce the potential of COCs in groundwater increasing above MCTA Method A CULs.
- Capping with asphalt and concrete in areas where contaminated material is not removed from the Site.
- Initiating monitored attenuation of groundwater.

7.2 CAP Implementations

This section presents the conceptual design, assumptions, and construction specifications for a successful cleanup action at the future KVFR Station 2-9 in Ellensburg, Washington.

7.2.1 Applicable or Relevant and Appropriate Requirements (ARARs)

The selected cleanup action plan will comply with federal, state, and local ARARs. Applicable requirements are federal and state laws or regulations that legally apply to a hazardous substance,

a cleanup action, a location, or another circumstances at the property. Relevant and appropriate requirements are those federal and state regulations that do not legally apply but address situations sufficiently similar that they may warrant application to the cleanup action.

TerraGraphics identified the following ARARs for the Site:

• MTCA 70.105D Revised Code of Washington (RCW), Chapter 173-340 WAC.

MTCA contains detailed requirements and Washington State's expectations for cleanup of contaminated sites.

• State Environmental Policy Act (SEPA) Statute RCW 43.21, SEPA Rules Chapter 197-11 WAC.

An environmental checklist is necessary as part of any permitting activity. Independent Cleanup Actions where Ecology is not the lead agency are subject to the normal SEPA process.

• Minimum Standards for Construction and Maintenance of Wells (Chapter 173-160 WAC).

This regulation contains requirements for construction and abandonment of resource protection wells (i.e., monitoring wells).

• Underground Injection Control Program (Chapter 173-218 WAC)

This includes rules and requirements for conducting *in-situ* remediation using subsurface injection of amendments.

7.2.2 Permits

TerraGraphics does not expect that Ecology and USEPA will require remediation-specific permits other than those required for Site development, underground injection, monitoring well installation, and groundwater discharge. TerraGraphics will perform the Site cleanup action as an independent remedial action under the Voluntary Cleanup Program (VCP) administered by Ecology's Toxics Cleanup Program.

7.3 Cleanup Construction

Figure 6 shows the Site areas that exceed the cleanup and remediation levels. The following sections present an overview of the sequencing and events associated with remedial activities conducted before and during construction.

7.3.1 Site Preparation and Safety

- Construct temporary erosion and sediment control measures as necessary.
- Prepare a temporary soil stockpile and segregation area that will contain contaminated soil and protect the general public from contact.
- Prepare an equipment staging area, decontamination station for workers, residual storage area, and Site ingress and egress locations.
- Delineate health and safety-regulated areas (i.e., exclusion zone, contamination reduction zone, and support zone).

7.3.2 Soil Excavation, Segregation, and Stockpiling

7.3.2.1 Soils Segregation

The subcontractor, with TerraGraphics' oversight, will remove non-contaminated overburden from the trench installation area and place it on either side of the excavation (eastern and western sides). The subcontractor will place contaminated soil on a lined stockpile area for subsequent disposal

7.3.2.2 Non-contaminated over burden

With TerraGraphics' oversight, a subcontractor will remove approximately 1,161 cubic yards of non-contaminated overburden soils to a depth of 4 feet bgs. to expose the contaminated layer, to facilitate trenching and the installation the infiltration gallery, and to ease the lance injection of chemical and biological oxidants to the source area saturated zone. The subcontractor will stockpile the soils adjacent to the excavation area as illustrated in Figure 7.

7.3.2.3 Contaminated soils

With TerraGraphics' oversight, a subcontractor will excavate the soil with documented COCs from the trench locations (see Figure 8). The subcontractor will place the contaminated soil from the excavations in a temporary lined stockpile that the subcontractor will cover and secure at the end of work each day (see Figure 8 and 9). TerraGraphics will collect soil samples from the stockpile for disposal certification requirements per Yakima County Health Department.

TerraGraphics will notify KVFR immediately and suspend excavation activities if the subcontractor encounters USTs, buried drums or other containers, unusual soil or other debris, or other unanticipated environmentally sensitive materials during site work. This is to protect site workers and to minimize potential for increased environmental risk.

7.3.2.4 Temporary Stockpile Liner

The subcontractor will construct the temporary stockpile liner using sturdy plastic sheeting that is approved by the construction engineer. The subcontractor will construct the liner so that the it will contain storm water that may infiltrate through the stockpile but will also minimize run-on water. At the end of each work day, the subcontractor will cover the stockpile with sturdy plastic sheeting and secure the cover to minimize the stockpile's potential exposure to the public. The owner and contractor will agree upon the location of the stockpile.

7.3.3 Removal and Disposal of Soils Where COC Concentrations Exceed MTCA Method A Unrestricted CULs

The subcontractor must properly dispose all removed Site soil with COC concentrations in accordance with applicable local, state, and federal laws. A waste manifest must accompany each disposal load. The soil dump trucks must cover the load during transport to the disposal facility.

7.3.4 Infiltration Gallery

The TerraGraphics will install an infiltration gallery within the groundwater saturation zone under the building footprint for chemical and biological treatment of saturated soils and groundwater should this option become necessary in the future. The infiltration gallery will consist of 5 trenches running in 20-foot parallel spacing's and 2 feet below the overburden excavation (a total of 6 feet bgs). The subcontractor will place ³/₄-inch diameter pre-pack perforated well piping in the length of each trench and surround it with 1 foot of drain rock. Each run of piping will connect to a ³/₄-inch diameter poly-vinyl chloride (PVC) feed pipe in the center of its length. The chemical and biological treatment feed piping will run north and outside of the excavation area with a monumented well opening at a location determined by the owner.

7.3.5 Bioremediation

Chemical and biological treatment of remaining impacted soils to reduce the potential of COCs in groundwater increasing above MCTA Method A CULs.

7.3.6 Oxidative Bioremediation Overview

There are several commercially available biological oxidants that are designed to enhance the natural attenuation of petroleum. The mechanism of biological oxidation determines which microbes can degrade the contaminant and through which pathways. Most broadly, these mechanisms are divided into aerobic and anaerobic. Aerobic mechanisms ultimately place electrons on to molecular oxygen to make carbon dioxide. Anaerobic mechanisms ultimately place electrons on to other oxidants except for molecular oxygen.

The selected CAP alternative (chemical and biological oxidation) includes in situ injection of chemical oxidants for the direct destruction of petroleum hydrocarbons and subsequent enhanced biological oxidation polishing.

Ion-exchange oxidants were selected as the chemical to be used at the Site, and NovIO X[™] has been selected as the preferred ion-exchange oxidant based on our experience with the product. Ion-exchange was selected based on implementability, cost, and proximity of Wilson Creek

Ion-exchange oxidants were selected as the chemical to be used at the Site, and NovIO XTM has been selected as the preferred ion-exchange oxidant.

Two distinct amendment solutions will be prepared. A chemical oxidant solution will be comprised of NovIO Xconcentrate diluted with tap water to a working solution of 1:150 in tap water, based on manufacturer's recommendation. A biological oxidant solution will be comprised of AnoxEA-aq, AM3, and ReleaSE-Dx. The biological oxidant solution will be prepared in 50-gallon batches comprised of up to 50 pounds of AnoxEA-aq, 25 grams of AM3, and 0.5 liter of ReleaSE-Dx in tap water

The excavation area within the building footprint will leave approximately one to two feet of native, fine-grained soil above the coarser gravel and cobbles encountered during the test injections. While this soil is exposed, the chemical oxidant NovIOX will be lance injected into the zone of contamination. To the extent practicable, the lance will be advanced into the gravel and a 1:150 solution of NovIOX in tap water will be introduced at the rate of approximately 10 gallons per point, totaling approximately 2,000 gallons of solution or 13.3 gallons of NovIOX product. For estimating purposes, it has been assumed that the treatment area will be approximately 80 feet by 80 feet. Using 6-foot spacing, approximately 200 injection locations

are estimated to cover the impacted area. Because NovIOX causes a visible chemical reaction upon contact with weathered petroleum, TerraGraphics may approve modifying the final treatment area based on this evidence.

The biological oxidant solution will be applied via slug injection into the infiltration gallery at a later date. The biological solution can be introduced approximately 7 or more days following the initial NovIOX treatment. The biological oxidant solution can be prepared in 50-gallon batches comprised of between 50 and 100 pounds of AnoxEA AQ, 30 grams of AM3-S, and 0.5 liter of ReleaSE-Dx in tap water. This solution can then be transferred by pump into the infiltration gallery periodically based on groundwater results. The initial slug injection include at least 2,000 pounds of biological oxidant solution at the 2 pounds of AnoxEA AQ per gallon ratio, plus AM3-S and ReleaSE-Dx based on investigation data and NovIOX pre-treatment. If needed subsequent slug injections can excluded the AM3-S product.

7.4 Engineering and Institutional Controls

TerraGraphics will contain and manage the undisturbed soils below the groundwater saturation zone with COC concentrations exceeding MTCA Method A CULs remaining on the Site by capping the area with asphalt, concrete paving, or building structures in accordance with the KVFR development plan. The Owner will file a deed restriction and develop a post-construction soil management plan that will describe how to maintain the cap or repair the cap if disturbed.

7.5 Groundwater Management (contingency plan)

Cleanup excavation and other building construction activities have the potential to bring contaminated groundwater to the ground surface. Such groundwater may require special management to minimize human and environmental exposure COCs. The field crew will store groundwater in large on-site storage tanks (such as Baker tanks) and allowed to settle following generation. TerraGraphics will collect samples from the settled groundwater for analysis of parameters specified by the City of Ellensburg Wastewater Treatment Plant. TerraGraphics will provide the results of the analysis to the Wastewater Treatment Plant personnel. If the water is clean, TerraGraphics' field crew will use the water for alternative purposes with permission from the owner such as dust suppression during site grading. However, if the water is contaminated, TerraGraphics will obtain a discharge permit, treat the water by granular activated carbon or filter it, and discharge the water to the City of Ellensburg municipal sewer system at the direction of the City. Appropriately trained personnel will remove the saturated sediment that accumulates in the large storage tanks and mix it into the dry stockpile for off-site disposal to the approved landfill.

7.6 Demonstration of Compliance with Cleanup Requirements

7.6.1 Compliance Monitoring

TerraGraphics will demonstrate compliance with soil MTCA Method A CULs by sampling and testing soil samples from the excavation sidewalls. The field crew will collect soil samples from the excavation area on a regular, non-biased 50-foot by 50-foot grid pattern in areas where they

suspect all impacted soil to remain. The field crew will collect excavation sidewall samples at the frequency of 1 sample per 100 linear feet of sidewall. TerraGraphics will submit the soil samples to TestAmerica with a rush 24- or 48-hour turnaround time. TerraGraphics will evaluate the results of the confirmation soil sampling using a statistical data evaluation method such as MTCA-Stat or other equivalent method.

TerraGraphics will also install a groundwater compliance monitoring well at the southern edge of the building footprint since this is the nearest accessible location once KVFR constructs the building. However, Ecology and KVFR will determine the actual location.

7.6.2 Soil Excavation/Soil Sampling and testing

For characterization purposes, TerraGraphics' field crew will collect composite soil samples from the soil stockpiles before removing it from the Site for disposal. TerraGraphics will submit these soil samples to TestAmerica with a rush 24-hour turnaround time. TestAmerica will analyze soil samples being disposed at the approved landfill for DRO and GRO and heavy oil as these constituents are the only COCs detected above MCTA Method A CULs. For all other soils, TestAmerica will analyze them for all COCs.

TerraGraphics' field crew will collect the composite soil samples from the soil stockpiles based on the following:

Cubic Yards of Soil	Minimum Number of Samples		
0-100	3		
101-500	5		
501-1,000	7		

7.6.3 Laboratory Quality Assurance and Quality Control

The laboratory quality control (QC) requirements will follow the guidance outlined in the *USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Data Review* (USEPA: OSRTI 2008) and the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (USEPA: OSRTI 2010). The laboratory analytical report will include QC measures such as appropriate surrogates, duplicates, laboratory control samples/duplicates (LCS/LCSDs), matrix spikes and duplicates (MS/MSDs), method blanks, and also include reporting limits, holding times, dilutions, etc. as outlined in the guidance document (Table 6).

Quality Control Check	Frequency		
Surrogates	Each organic sample prior to analysis		
MS/MSD	1:20 samples		
LCS/LCSD	1:20 samples		
Method Blank	1:20 samples (for every analytical batch)		
Laboratory Duplicate	1:20 samples		

Table 1.	Laboratory	Quality	Control	Checks
----------	------------	---------	---------	--------

7.7 Institutional Controls

7.7.1 Restrictive Covenants for Soil and Groundwater

If COCs exceeding MTCA Method A and Method B CULs remain on Site beneath paved parking lots and building structures, KVFR will implement institutional controls at the Site with a restrictive covenant in the deed, which informs potential future property users or purchasers of the presence of contamination beneath the Site and prohibits domestic use of groundwater at the Site.

7.7.2 Post Construction Soil Management Plan

If a restrictive covenant for soil is necessary, KVFR will develop a plan that specifies procedures to 1) inspect and maintain the cover (cap) over the contaminated soil, 2) notify and protect utility and other workers that might encounter contaminated soil beneath the cap, and 3) repair the cap if breached.

8 Rationale for Selection of the Cleanup Plan

The following summarizes the selected cleanup actions for the Site soil and groundwater in general accordance with WAC-173-340-360.

8.1 Protection of Human Health and the Environment

The preferred remedial action for soil and groundwater is protective of human health and the environment because it will remove and dispose the soil with COCs exceeding the cleanup levels from the Site to an appropriate landfill, and it will treat the remaining contaminated soil with chemical and biological oxidants and contain them beneath a protective cap.

8.2 Attainment of Standards

TerraGraphics expects the planned remedial actions, excavation and disposal of soils with COCs exceeding MTCA Method A CULs, chemical and biological oxidant treatment of remaining soils

impacting groundwater, and placement protective cap and institutional controls will result in a permanent elimination of risks related to direct exposure to COCs in soil and groundwater.

8.3 Use of Permanent Solutions to the Maximum Extent Practicable

Physical removal coupled with chemical and biological oxidation is a preferred technology because it permanently eliminates risk from the highest concentration source soils, converts petroleum to carbon dioxide and water as end products, and precipitates heavy metals to insoluble sulfides to reduce dissolved lead and arsenic concentrations. The preferred remedy is protective of human health and the environment, can be effectively implemented, and is cost-effective. It is the most practicable alternative for addressing the primary exposure pathways of concern.

8.4 Compliance Monitoring

During implementation of remedial actions, TerraGraphics will conduct performance monitoring to confirm that treatment compounds remain within the plume boundary, which is an underground injection control (UIC) well requirement, and that cleanup actions have attained cleanup levels and treatment goals. After TerraGraphics completes the remedial actions and injected all both of the amendments, they will conduct confirmation soil and groundwater monitoring to ensure that cleanup actions have attained cleanup levels and performance standards.

9 Schedule

TerraGraphics anticipates remediation activities will occur in April 2015and and will last approximately 2 weeks. KVFR anticipates Site development will commence in early May 2015. Final paving of the asphalt and concrete cap will occur later in the project, depending on the KFVR Station construction schedule.

10 Public Notice and Public Comment

Public notice and comment are not required as KVFR is completing remedial activities as an independent remedial action.

11 Residuals Management

TerraGraphics expects the remedial activities will generate the following residuals:

- Decontaminated wash and rinse water for personnel.
- Decontaminated wash and rinse water for heavy equipment.
- Used personal protective equipment (PPE), such as Tyvek[™], gloves, and respirator cartridges.
- Non-contaminated solid waste such as plastic bags, rope, and sheeting.

TerraGraphics will store residuals in a designated, labeled, and secured area within the Site to prevent access by unauthorized personnel. The field crew will drum and temporarily store wastewater on site. TerraGraphics personnel will sample the wastewater to determine proper disposal. The field crew will place used PPE and non-contaminated solid waste residuals in the on-site dumpster, which a licensed solid waste disposal company will dispose.

12 Health and Safety Considerations

12.1 Site Safety Plan

TerraGraphics will keep a copy of the Site Safety Plan on site and will make it available to authorized visitors to the Site for general information. The sub-contractors must maintain their own Site Safety Plan. TerraGraphics advises that site personnel are required to have 40 hours of training for hazardous waste operations to work on the contaminated site.

12.2 Protection Monitoring During Remedial Activities

TerraGraphics will monitor the excavation activities and the soil movement to and from stockpiles.

12.3 Construction Procedures Pertinent to Health and Safety

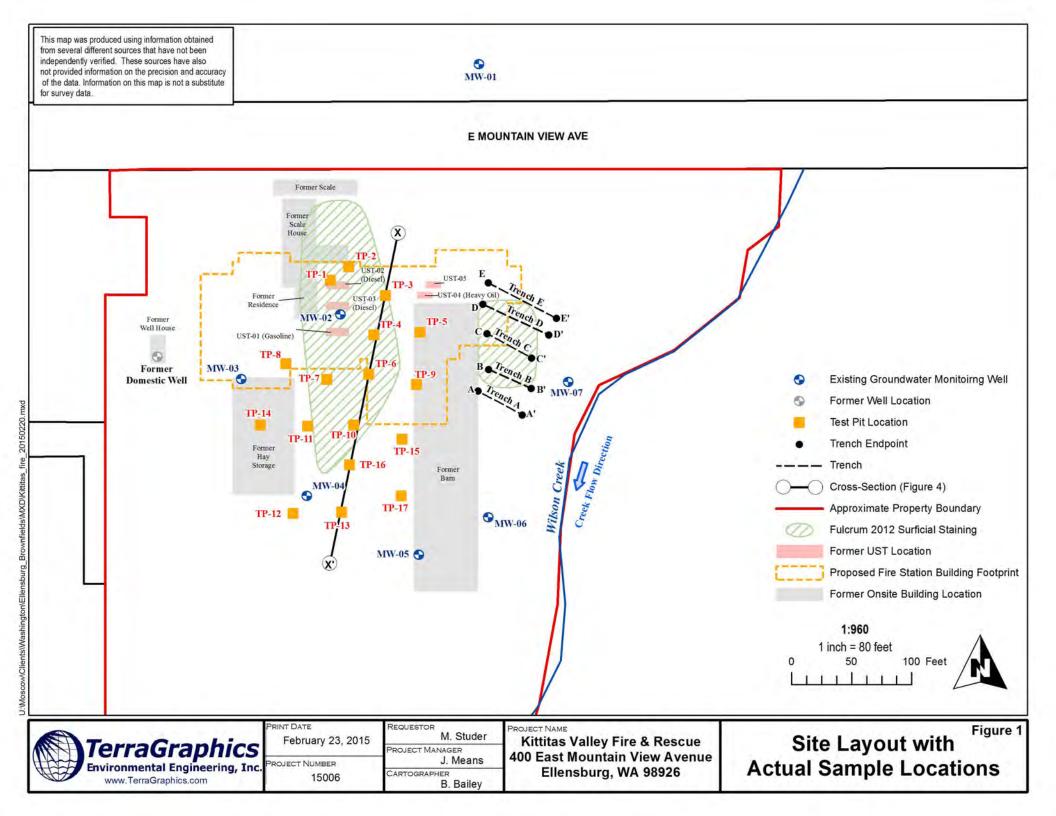
TerraGraphics will employ the following measures to assure that remedial activities conform to site health and safety requirements:

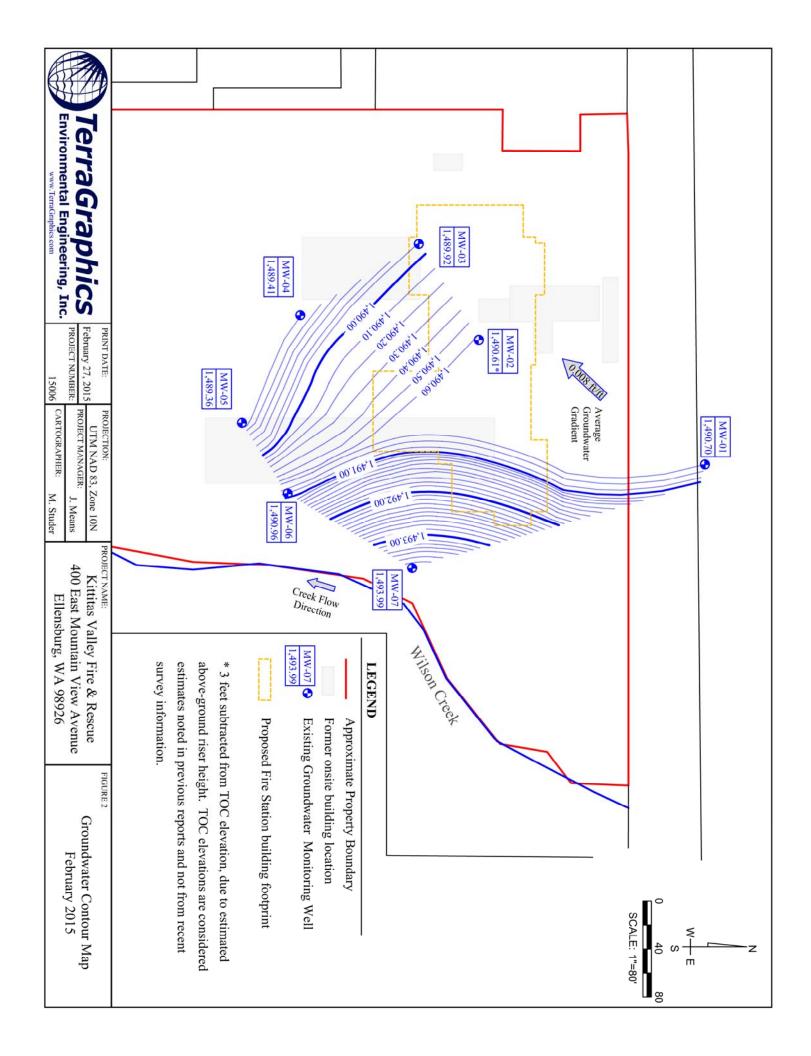
- Site workers will have training for hazardous waste operations consistent with the Washington State Industrial Safety and Health Act (WSISHA), WAC 296-62 300.
- TerraGraphics will maintain copies of the Site Safety Plan on the Site at all times during remedial activities.
- Site personnel will conduct a detailed pre-construction meeting.
- Brief tailgate safety meeting will take place before the start of work each day.
- The TerraGraphics field operations manager will prepare daily field logs that document Site safety meetings and events.

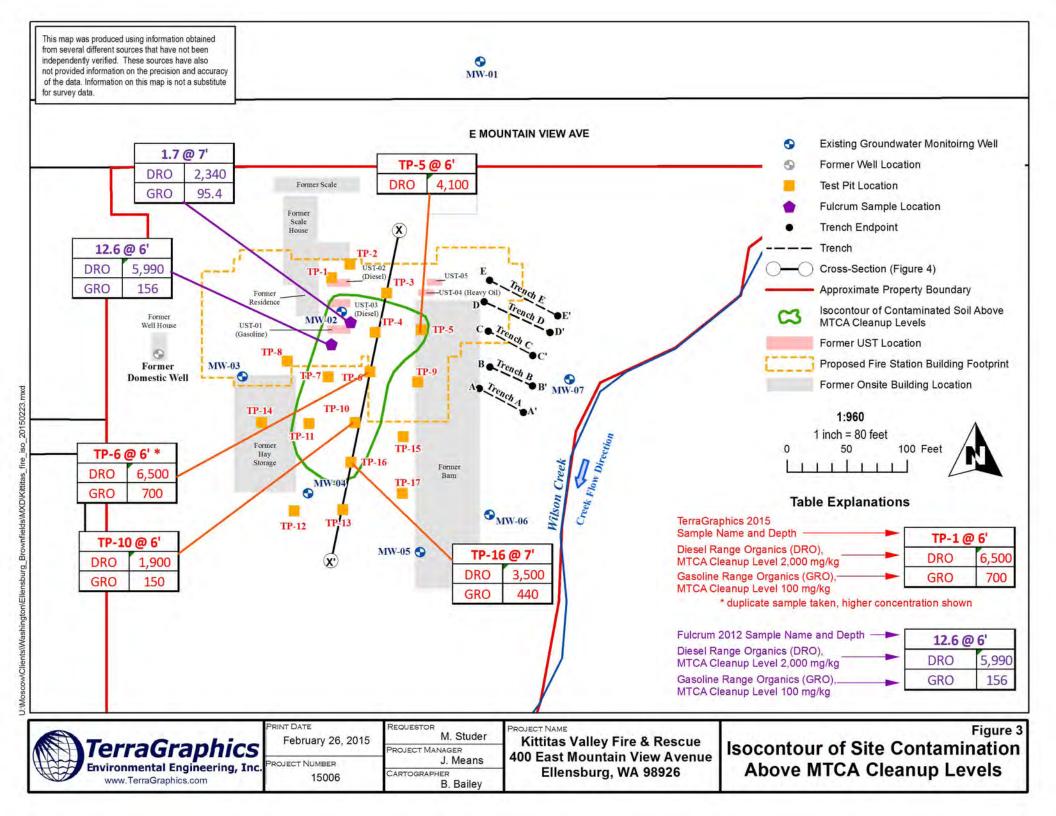
References and Resources Used

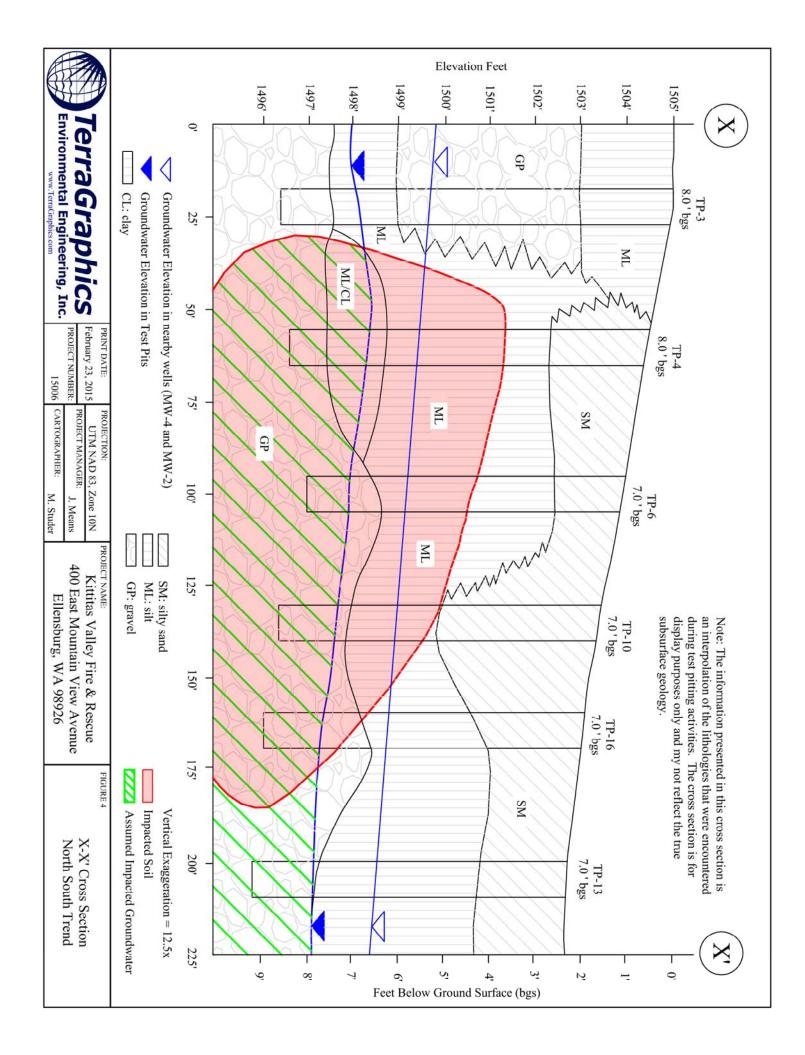
American Society for Testing and Materials (ASTM), 2004. D-4840-99, Standard Guide for Sampling Chain-of-Custody Procedures.

ASTM, 2007. D-4448-01, Standard Guide for Sampling Ground-Water Monitoring Wells.

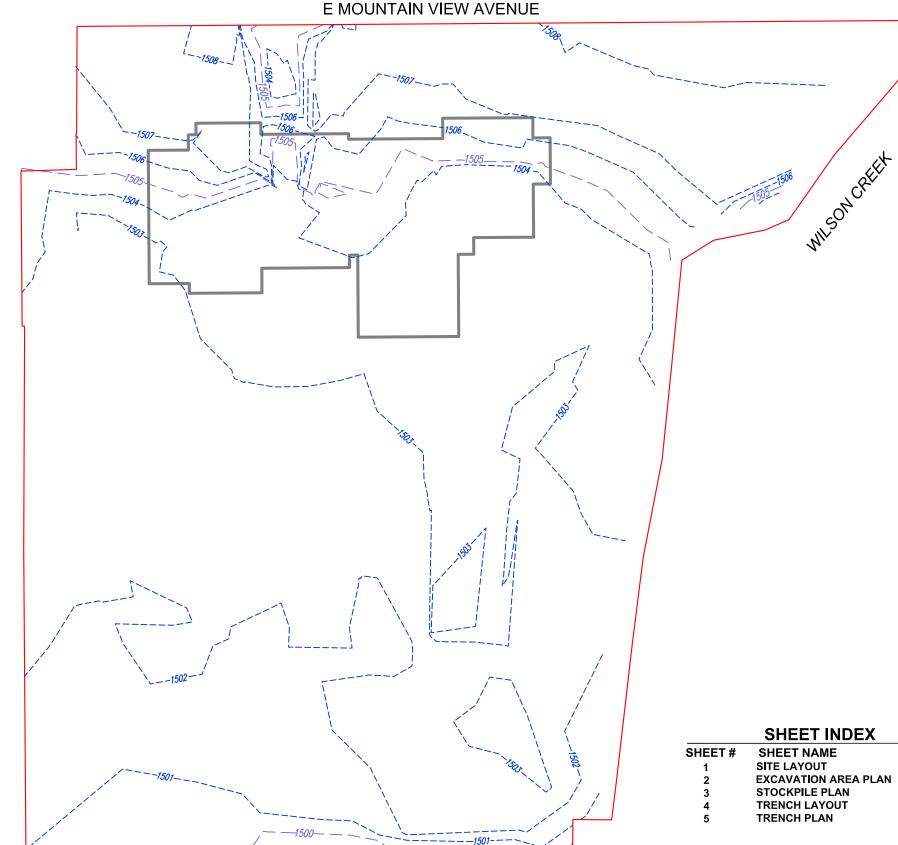

- ASTM, 2010. D-6724-04, Standard Guide for Installation of Direct Push Ground Water Monitoring Wells.
- Washington State Department of Ecology (Ecology), 1991. Site Visit Data Sheet, M. Cochran, Central Region Office Site File, April 15.


Ecology, 1997. Analytical Methods for Petroleum Hydrocarbons. ECY 97-602, June.


- Environmental Information Management (EIM) database website, http://www.ecy.wa.gov/eim/index.htm>.
- Fulcrum Environmental Consulting (Fulcrum), 2012a. Phase I Environmental Site Assessment Report, 400 East Mountain View Avenue, Ellensburg, Washington, 98926. July 6.
- Fulcrum, 2012b. Remedial Site Investigation & Characterization Report, IPG#G120098, 400 East Mountain View Avenue, Ellensburg, Washington, 98926. August 14.
- "Hazardous Waste Operations and Emergency Response," *Code of Federal Regulations* Title 29, Part 1910. https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=standards&p_id=9765>.
- Nelson Geotechnical Associates, Inc. (NGA), 2014. Geotechnical Engineering Evaluation, Kittitas Fire & Rescue Station, 400 East Mountain View Avenue, Ellensburg, Washington, 98926. July 24.
- PLSA Engineering & Surveying (PLSA), 2005. Results of Soil and Water Sampling Analysis, 400 East Mountain View Avenue, Ellensburg, WA. PLSA Engineering & Surveying. November 28.
- Puls, R.W. and Barcelona, M.J., 1996. Groundwater Issue: Low-Flow (Minimal Drawdown) Ground-water Sampling Procedures. Prepared for U.S. Environmental Protection Agency USEPA/540/S-95/504; April.
- Standard Method, 1997. Method 2540D, Total Suspended Solids.
- TerraGraphics Environmental Engineering (TerraGraphics), 2015. Sampling Analysis Plan (SAP)/Quality Assurance Project Plan (QAPP) for Site characterization at 400 East Mountain View Avenue, Ellensburg Washington. Prepared for State of Washington Department of Ecology. February 4.
- United States Environmental Protection Agency (USEPA), 1978. Method 310.1: Alkalinity by Titration.
- USEPA, 1992. Method 8011: 1,2-dibromoethane and 1,2-dibromo-3-chloropropane by microextraction and gas chromatography.
- USEPA, 1994a. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Spectrometry, Revision 4.4.
- USEPA, 1994b. Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma Mass Spectrometry, Revision 5.4.
- USEPA, 1996a. Method 5035: Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples.
- USEPA, 1996b. Method 8260B: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), Revision 2.
- USEPA, 1996c. Method 8270C SIM: Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS). Revision 3. December 1996a.USEPA, 2002a. USEPA Guidance on Environmental Data Verification and Data Validation, USEPA QA/G-8; November.

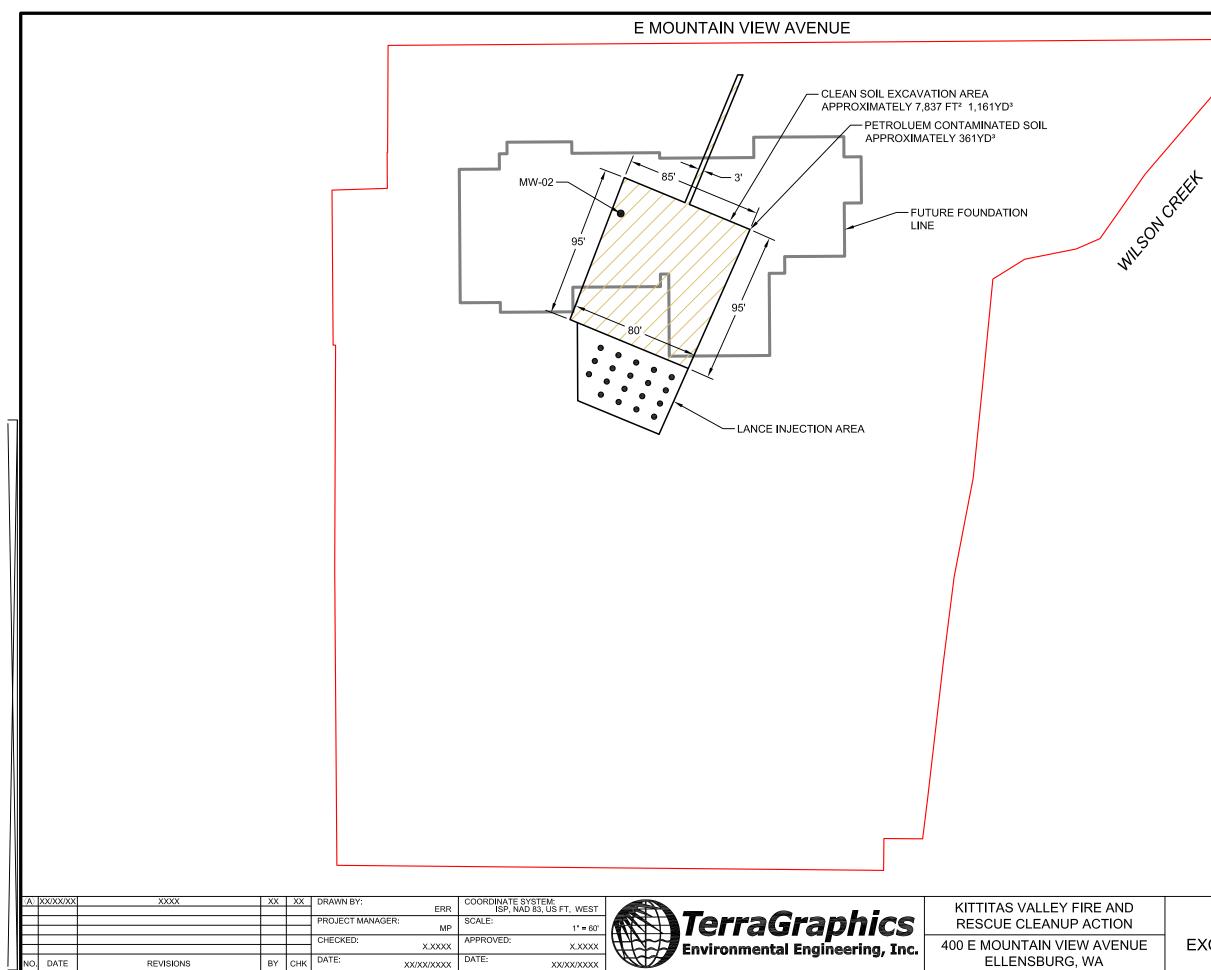

- USEPA, 1998. Ground Water Sampling Procedure Low Stress (Low Flow) Purging and Sampling, GW Sampling SOP Final, March 16, 1998.
- USEPA, 2002b. USEPA Guidance for Quality Assurance Project Plans, USEPA QA/G-5; December.
- USEPA, 2006. Guidance on Systematic Planning Using the Data Quality Objectives Process, USEPA QA/G-4; February.
- USEPA, 2007. Method 300.0/9056: Determination of Inorganic Anions by Ion Chromatography, February, Revision 1.USEPA, 2008. Method 846; Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. January 2008: Update IV, 3rd Edition.
- USEPA: Office of Superfund Remediation and Technology Innovation (OSRTI), 2008. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. OSWER 9240.1-48; USEPA 540-R-08-01; June.
- USEPA, 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use, OSWER 9200.1-85, USEPA 540-R-08-005, January 13.
- USEPA: OSRTI, 2010. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review. OSWER 9240.1-51; USEPA 540-R-10-011; January.
- Washington Administrative Code (WAC) 173-160. Title 173, Chapter 173-160: Minimum Standards for Construction and Maintenance of Wells. Last update: 12/19/08, http://apps.leg.wa.gov/wac/default.aspx?cite=173-160.
- WAC 173-340. Title 173, Chapter 173-340: Model Toxics Control Act cleanup. Last update: 10/12/07, http://apps.leg.wa.gov/wac/default.aspx?cite=173-340>.
- Wilde, F.D., ed., 2008. Field measurements: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A6, accessed July 12, 2010, http://pubs.water.usgs.gov/twri9A6/>.

<u>NOTES</u>

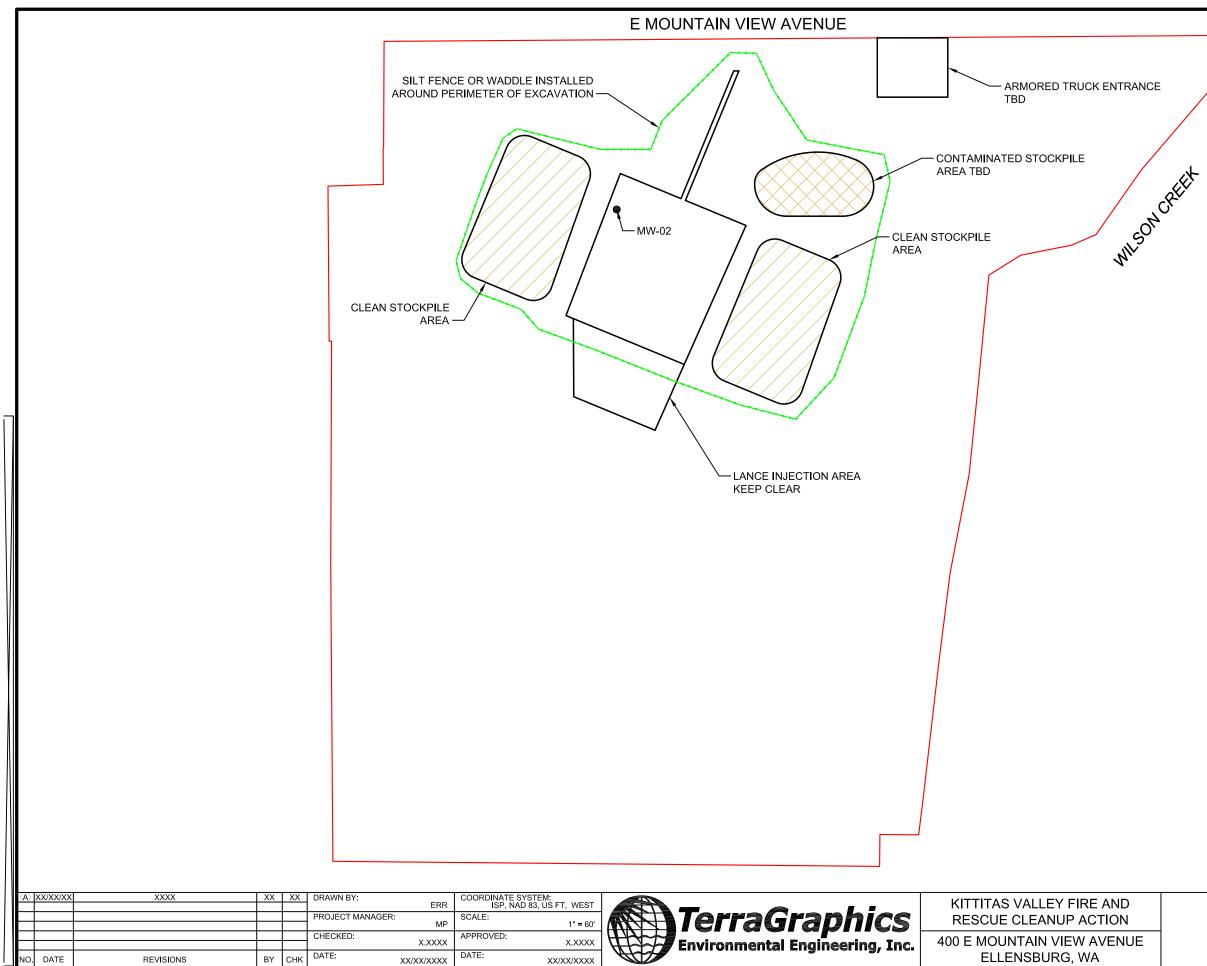

П

1.TOPOGRAPHY AND BUILDING OUTLINE INFORMATION WAS OBTAINED FROM COUGHLIN PORTER LUNDEEN.

3. HORIZONTAL EXCAVATION EXTENTS ARE APPROXIMATE AND WILL BE FIELD VERIFIED BY THE ON-SITE ENVIRONMENTAL CONSULTANT. 4. VERTICAL EXCAVATION EXTENTS ARE NOT SHOWN ON THIS MAP AND WILL BE FIELD DIRECTED BY THE ON-SITE ENVIRONMENTAL CONSULTANT BASED UPON THE FIELD SAMPLE RESULTS.

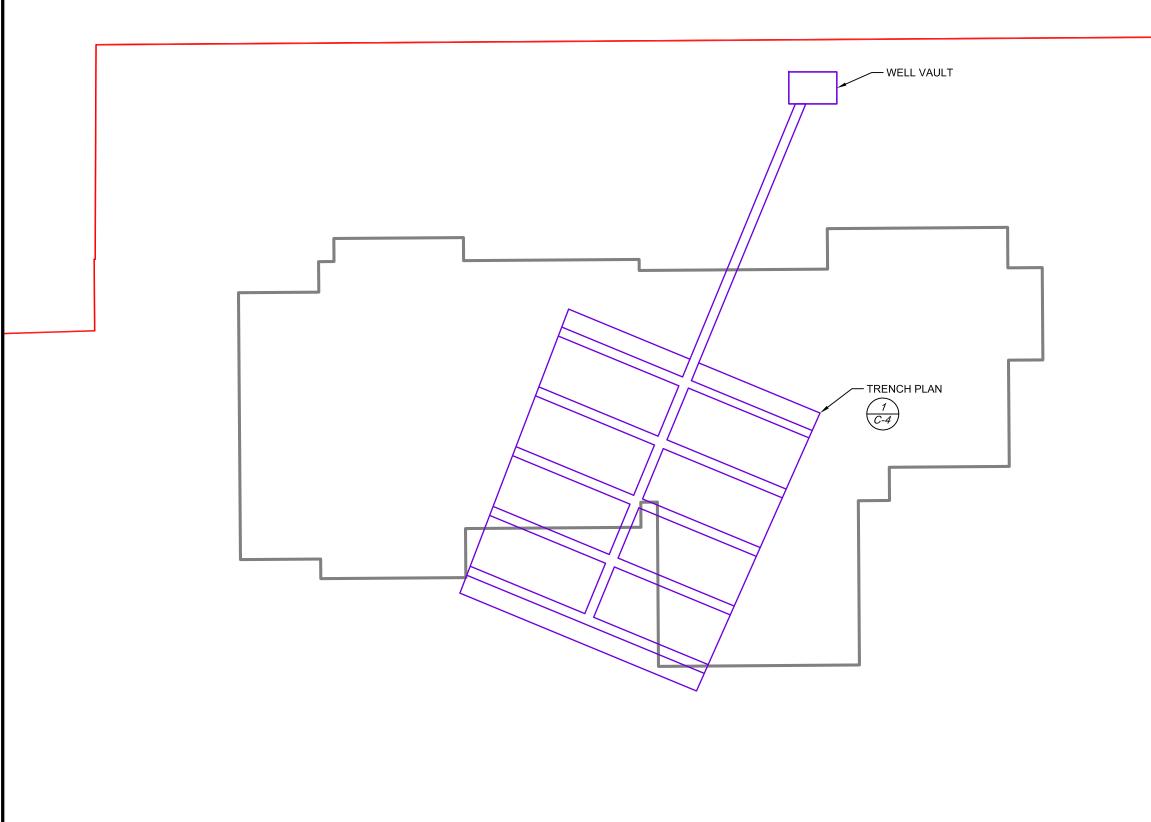

S. NO OFFSITE MATERIAL TRACKING IS ALLOWED. CONTRACTOR SHOULD MAINTAIN STABILIZED CONSTRUCTION EXIT AND SILT FENCE. 5. CLEAN FILL MATERIALS CAN BE STOCK PILED ON SITE BUT MUST BE STAGED OUTSIDE OF THE EXCAVATED AREA UNTIL ALL CONTAMINATED MATERIALS ARE REMOVED.

6. THE INFORMATION PRESENTED IN THIS SET OF DRAWINGS HAS BEEN DEVELOPED FOR REMEDIATION ACTIVITIES ONLY. ALTHOUGH SPECIFICATIONS ARE PROVIDED FOR BACKFILL MATERIALS AND COMPACTION, THE WORK BEING CONDUCTED FOR THESE REMEDIATION ACTIVITIES DO NOT REPLACE OR SUPPLEMENT IN ANY WAY PROPOSED CONSTRUCTION ACTIVITIES AND/OR FOUNDATION DESIGN REQUIREMENT FOR THE KITTITAS VALLEY FIRE STATION



</th <th>) XX/XX/X</th> <th>X XXXX</th> <th>XX</th> <th>XX</th> <th>DRAWN BY:</th> <th>RR</th> <th>COORDINATE SYSTEM: ISP, NAD 83, US FT, WEST</th> <th></th> <th>KITTITAS VALLEY FIRE AND</th>) XX/XX/X	X XXXX	XX	XX	DRAWN BY:	RR	COORDINATE SYSTEM: ISP, NAD 83, US FT, WEST		KITTITAS VALLEY FIRE AND
					PROJECT MANAGER:	MP	SCALE: 1" = 60'	TerraGraphics	RESCUE CLEANUP ACTION
					CHECKED: X.X>	<xx< th=""><th>APPROVED: X.XXXX</th><th>Environmental Engineering, Inc.</th><th>400 E MOUNTAIN VIEW AVENUE</th></xx<>	APPROVED: X.XXXX	Environmental Engineering, Inc.	400 E MOUNTAIN VIEW AVENUE
N	D. DATE	REVISIONS	BY	СНК	DATE: XX/XX/XX	<xx< th=""><th>DATE: XX/XX/XXXX</th><th>,,,,,</th><th>ELLENSBURG, WA</th></xx<>	DATE: XX/XX/XXXX	,,,,,	ELLENSBURG, WA

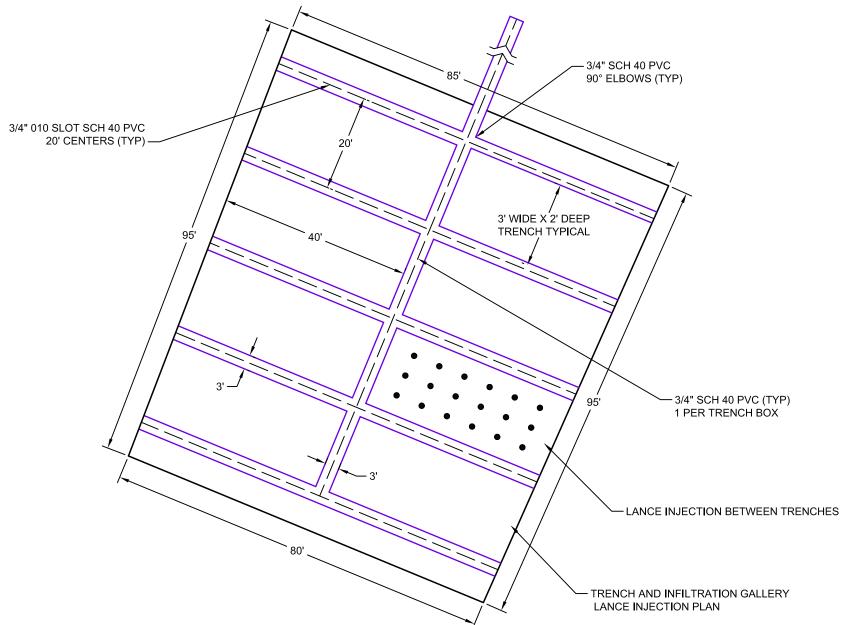
£	N W E S 0 30 60 SCALE: 1" = 60'
SHEET INDEX T-1 AN C-1 C-2 C-3 C-4	
FIGURE 5 SITE LAYOUT	SHEET NAME: T-1 DATE: 3/19/2015 PROJECT NO.: 15006 SHEET: 1 OF 5


FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN	ŧť	0 30	60
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
FIGURE 6 EXCAVATION AREA PLAN			
EXCAVATION AREA PLAN PROJECT NO.: 15006			C-1
2010			15006 2 OF 5

*	W- S 0 30 SCALE: 1"	E 60 = 60'
Ý		
FIGURE 7 STOCK PILE PLAN	SHEET NAME:	C-2
	DATE: PROJECT NO.:	3/19/2015
	SHEET:	15006 3 OF 5

E MOUNTAIN VIEW AVENUE

TerraGraphics Environmental Engineering, Inc.

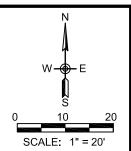

$\langle A \rangle$	XX/XX/XX	XXXX	XX	XX	DRAWN BY:	ERR	COORDINATE SYSTEM: ISP, NAD 83, US FT, WEST	
					PROJECT MANAGER:	MP	SCALE: 1" = 30	
					CHECKED:	x.xxxx	APPROVED: X.XXXX	
NO.	DATE	REVISIONS	BY	снк		x/xxxx	DATE: XX/XX/XXXX	$\neg \neg$

Π

KITTITAS VALLEY FIRE AND RESCUE CLEANUP ACTION 400 E MOUNTAIN VIEW AVENUE

ELLENSBURG, WA

	W E S 0 15 30 SCALE: 1" = 30'
	WILSONCREEK
FIGURE 8 TRENCH LAYOUT	SHEET NAME: C-3 DATE: 3/19/2015 PROJECT NO.: 15006 SHEET: 4 OF 5



<u>⟨A⟩</u>		X XXX	XX	XX	DRAWN BY: ERR	ISP, NAD 83, US FT, WEST	
					PROJECT MANAGER: MP	SCALE: 1" = 20'	TerraGraphics
					CHECKED: X.XXXX	APPROVED: X.XXXX	Environmental Engineering, Inc.
NO.	DATE	REVISIONS	BY	СНК	DATE: XX/XX/XXXX	DATE: XX/XX/XXXX	

П

KITTITAS VALLEY FIRE AND RESCUE CLEANUP ACTION

400 E MOUNTAIN VIEW AVENUE ELLENSBURG, WA

	SHEET NAME:	
		C-4
FIGURE 9	DATE:	3/19/2015
TRENCH PLAN	PROJECT NO.:	15006
	SHEET:	5 OF 5

	WBS Task Name	Duration	Start	Finish	January 2/2 2/2 1/4 1/11 1/	February 18 1/25 2/1 2/8 2	March 15 2/22 3/1 3/8 3/15 3/1	April 23/29 4/5 4/12 4/19 4/	May /26 5/3 5/10 5/17 5/2	June 45/31 6/7 6/14 6/21	July 5/28 7/5 7/12 7/19 7	August /26 8/2 8/9 8/16 8/23	September 8/30 9/6 9/13 9/20 9	October 0/27 10/4 0/1 0/1 0/2	Nov 2 11/1
	5 WORK PLAN MOUNTAIN VIEW CLEANUP ACTION PL	AN 229 days	Mon 1/19/15	Thu 12/3/15											
	5.1 Construction Documents	84 days	Mon 1/19/15	Thu 5/14/15											
	5.1.1 Kickoff Meeting	1 day	Mon 1/19/15	Mon 1/19/15	•										
	5.1.2 Sampling and Analysis Plan	14 days	Mon 1/19/15	Thu 2/5/15	E										
,	5.1.4 Quality and Assurance/Health and Safety Project Plan	14 days	Mon 1/19/15	Thu 2/5/15	G										
6	5 5.1.5 Groundwater 1st Baseline Sampling	3 days	Tue 2/10/15	Thu 2/12/15		6									
7	5.1.6 Soil Sampling and Analysis	3 days	Tue 2/10/15	Thu 2/12/15		₽ 1									
8	5 5.1.7 CAP Finalization (and Amendment if needed)	14 days	Mon 1/19/15	Ned 2/25/15	9		┉┣┐								
)	5.1.8 Plans and Specs	15 days	Wed 2/25/15	Ned 3/18/15											
10	⁰ 5.1.10 Underground Injection Control Registration	14 days	Mon 3/2/15	Thu 3/19/15											
1	1 5.1.11 Access Agreements - Permitting	14 days	Mon 3/2/15	Thu 3/19/15											
2	² 5.1.12 Ecology Review of Work Plan	14 days	Wed 3/18/15	Tue 4/7/15											
3	3 5.1.13 Ecology Concurrence(Approval) of Work Plan	1 day	Tue 4/7/15	Wed 4/8/15				4/7							
4	4 5.1.16 Yakima County PCS Data Review and Disposal/Transfer permit	3 days	Mon 3/23/15	Ned 3/25/15											
5	⁵ 5.1.15 Contractor Bidding	6 days	Fri 3/20/15	Fri 3/27/15											
6	⁶ 5.1.14 Cap Implementation Report	14 days	Mon 4/27/15	Thu 5/14/15											
7	7 5.2 Site Preparation and Mobilization	4.8 days	Wed 4/8/15	Tue 4/14/15				v =v							
8	⁸ 5.2.3 Site Preparation, Fencing, Limits of Work, BMPs, Water & Electrical	1 day	Wed 4/8/15	Wed 4/8/15				T							
9	9 5.2.4 Equipment Mobilization	2 days	Wed 4/8/15	Fri 4/10/15				F							
0	^o 5.2.5 Soil Cell Construction	2 days	Fri 4/10/15	Tue 4/14/15				5							
1	1 5.3 Shallow Soil Excavation	5 days	Tue 4/14/15	Mon 4/20/15											
2	² 5.3.1 Excavate 3' overburden	3 days	Tue 4/14/15	Thu 4/16/15											
3		3 days	Tue 4/14/15	Thu 4/16/15				_							
4	4 5.3.3 Excavate Infiltration Gallery Trenching	2 days	Fri 4/17/15	Mon 4/20/15				_							
5	5 5.3.4 Soil Haul and Disposal	3 days	Tue 4/14/15	Thu 4/16/15											
6		9 days	Tue 4/21/15	Fri 5/1/15											
7		2 days	Tue 4/21/15												
8		5 days	Thu 4/23/15					-							
9		6 days	Fri 4/24/15	Fri 5/1/15				_							
0		11 days	Fri 4/24/15	Fri 5/8/15				-							
1		4 days		Wed 5/6/15											
2		1 day	Fri 4/24/15					0	Ļ						
3		2 days	Thu 5/7/15	Fri 5/8/15					5/7						
4		112 days	Wed 7/1/15								.				
5		2 days	Wed 7/1/15												
6		1 day	Fri 7/3/15	Fri 7/3/15							T.				
7		2 days	Thu 10/1/15								*				
8		1 day	Mon 10/5/15												
39		2 days	Tue 12/1/15											Ŧ	
40	Quarterly compliance Monitoring 4	1 day	Thu 12/3/15												

Table 1 Soil Analytical Results (mg/kg) KVFR Ellensburg, Washington

Sample ID	/Sample Date	Sample Depth (feet bgs)	Oud (mg/kg)	(mg/kg) (ga/gange	*** Heavy Oil (mg/kg)	Or So (mg/kg)	Benzene (mg/kg)	gg (gg (Ethylene Dibromide (EDB)	(gm) (gm) (gm) (bm) (bm) (bm) (bm) (bm) (bm) (bm) (b	(gw/gm) (gy/gm)	(gm (MTBE) (MTBE) (gm	Naphthalene (mg/kg)	Toluene (mg/kg)	(b) Total Xylenes
TP-1 7'	2/10/2015	7	67 Y	27 J	94 J	1.2 J	<0.00031 UJ	<0.00021 UJ	<0.00041 UJ	<0.00041 UJ	<0.00031 UJ	<0.00051 UJ	<0.00031 UJ	<0.00051 UJ
TP-2 8'	2/10/2015	8	360 Y	18 J	378 J	17	<0.00035 UJ	<0.00023 UJ	<0.00047 UJ	<0.00035 UJ	<0.00035 UJ	<0.00058 UJ	<0.00035 UJ	<0.00058 UJ
TP-3 8'	2/10/2015	8	9.6 J	<13	16.1 J	3.0 J	< 0.00031	< 0.00021	< 0.00041	< 0.00041	< 0.00031	< 0.00052	< 0.00031	< 0.00052
TP-4 7'	2/10/2015	7	440 Y	<12	446	70	< 0.00035	< 0.00023	< 0.00047	< 0.00047	< 0.00035	< 0.00059	< 0.00035	< 0.00059
TP-5 6'	2/10/2015	6	4,100 Y	82 Y	4,182	1.6 J	< 0.00028	< 0.00018	< 0.00037	< 0.00037	< 0.00028	< 0.00056	< 0.00028	< 0.00046
TP-6 6'	2/10/2015	6	4,800 Y	94 Y	4,894	610	< 0.00042	< 0.00028	< 0.00056	< 0.00056	< 0.00042	< 0.00070	< 0.00042	0.0038 J
TP-6 6' D	2/10/2015	6	6,500 Y	120 Y	6,620	700	< 0.00044	< 0.00029	< 0.00059	< 0.00059	< 0.00044	< 0.00074	< 0.00044	<0.00074 J
TP-8 5'	2/10/2015	5	9.8 J	<11	15.3 J	2.8 J	< 0.00037	< 0.00024	< 0.00049	< 0.00049	< 0.00037	< 0.00061	< 0.00037	< 0.00061
TP-9 5'	2/10/2015	5	120 Y	1,600 Y	1,720	1.3 J	< 0.00042	< 0.00028	< 0.00056	< 0.00056	< 0.00042	< 0.00070	< 0.00042	< 0.00070
TP-10 6'	2/10/2015	6	1,900 Y	66 J	1,966 J	150	< 0.00034	< 0.00022	< 0.00045	< 0.00045	< 0.00034	< 0.00056	< 0.00034	< 0.00056
TP-12 8'	2/10/2015	8	7.2 J	<11	12.7 J	4.4 J	< 0.00029	<0.00020 *	<0.00039 *	< 0.00039	<0.00029 *	< 0.00049	< 0.00029	< 0.00049
TP-13 7'	2/10/2015	7	8.6 J	<12	14.6 J	16	< 0.00028	< 0.00019	< 0.00038	< 0.00038	< 0.00028	< 0.00047	< 0.00028	< 0.00047
TP-16 7'	2/10/2015	7	3,500 Y	74 Y	3,574	440	< 0.00016	<0.00011 J	<0.00022 J	< 0.00022	<0.00016 J	0.0030 J	0.00021 J	< 0.00027
C-C'	2/11/2015	1.5	21 J	66 J	87 J	<0.75 UJ	0.00044 J	< 0.00022	< 0.00045	< 0.00045	< 0.00034	0.0011 J	0.00074 J	0.0015 J
D-D'	2/11/2015	1.5	17 J	65 Y	82 J	<0.78 UJ	<0.00035	< 0.00023	< 0.00046	< 0.00046	< 0.00035	< 0.00058	< 0.00035	<0.00058
	hod A Soil Clean ricted Land Uses	-	2,000	2,000 or 4,000**	2,000	30 or 100*	0.03	0.005	-	6.0	0.1	5.0	7.0	9.0

Notes:

all concentrations reported in mg/kg = milligrams per kilogram

GRO = Gasoline Range Organics analyzed by Method NWTPH-Gx

DRO = Diesel Range Organics analyzed by Method NWTPH-Dx

MTBE = methyl tert-butyl ether

EDC = 1,2-dichloroethane

EDB = ethylene dibromide

< = less than the method detection limit

bgs = below ground surface

Concentrations in **BOLD** are above the Screening Levels as defined by Washington's Model Toxics Control Act (MTCA) (WAC 173-340) Method A unrestricted cleanup levels (Table 740-1, WAC 173-340-900). J = reported result was flagged "J" because it is an estimated value.

UJ = less than the MDL and qualified as an estimate.

Y =contained a hydrocarbon pattern in the diesel range; however, the elution pattern was earlier than the typical diesel fuel pattern used by the laboratory for quantitative purposes

* = when gasoline mixtures without benzene and the total of ethylbenzene, toluene, and xylenes are less than 1% of the gasoline mixture then the cleanup level is 100 mg/kg,

all other gasoline mixtures have a cleanup level of 30 mg/kg.

** = heavy oil cleanup level is 2,000 mg/kg, mineral oil cleanup level is 4,000 mg/kg.

*** = summation of DRO and Motor Oil values. 1/2 detection limit used where necessary in summation of heavy oil.

- = no value established

Table 3 Soil Analytical Results (mg/kg) KVFR Ellensburg, Washington

Sample II	D/Sample Date	Sample Depth (feet bgs)	(gay/ganthracene	Chrysene (mg/kg)	(b)fluoranthene	(ga/kg)	(ga/kg)	(gay by rene (1,2,3-cd) by rene	(ay/bibenz(a,h)anthrachene	[read (mg/kg)	total organic carbon	Cadmium (mg/kg)	Chromium (m2/kg)	Japan	Since Zinc (mg/kg)
TP-1 7'	2/10/2015	7	< 0.0017	<0.0017 UJ	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	3.2	NS	NS	NS	NS	NS
TP-2 8'	2/10/2015	8	0.0076	0.01 J	0.0065 J	0.0028 J	0.0061 J	0.0034 J	< 0.0022	6.3	NS	NS	NS	NS	NS
TP-3 8'	2/10/2015	8	< 0.0021	<0.0021 UJ	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	5.5	NS	NS	NS	NS	NS
TP-4 7'	2/10/2015	7	< 0.0019	<0.0019 UJ	<0.0019	<0.0019	<0.0019	< 0.0019	<0.0019	4.5	2,100	NS	NS	NS	NS
TP-5 6'	2/10/2015	6	< 0.0021	0.018 J	<0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	8.4	NS	NS	NS	NS	NS
TP-6 6'	2/10/2015	6	< 0.0021	<0.0021 UJ	<0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	8.8	7,900	NS	NS	NS	NS
TP-6 6' D	2/10/2015	6	< 0.0021	0.038 J	<0.0021	<0.0021	< 0.0021	< 0.0021	< 0.0021	9.3	NS	NS	NS	NS	NS
TP-8 5'	2/10/2015	5	< 0.0020	<0.0020 UJ	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	6.2	NS	NS	NS	NS	NS
TP-9 5'	2/10/2015	5	< 0.00017	0.045 J	0.026	< 0.00017	0.015	0.016	0.0086	12	NS	NS	NS	NS	NS
TP-10 6'	2/10/2015	6	< 0.0019	0.014 J	<0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	6.0	NS	NS	NS	NS	NS
TP-12 8'	2/10/2015	8	< 0.0018	<0.0018 UJ	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	2.4	NS	NS	NS	NS	NS
TP-13 7'	2/10/2015	7	< 0.0018	<0.0018 UJ	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	4.5	NS	NS	NS	NS	NS
TP-16 7'	2/10/2015	7	< 0.0019	0.015 J	< 0.00019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	4.5	NS	NS	NS	NS	NS
C-C'	2/11/2015	1.5	0.0028 J	0.0073	0.0063	0.0025 J	0.0035 J	0.0045 J	< 0.0018	10	NS	0.22	25	20	83
D-D'	2/11/2015	1.5	0.0067	0.01 J	0.012	0.0057 J	0.0077	0.011	<0.0019	9.8	NS	0.20	42	58	68
	MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses (mg/kg)			0.1	0.1	0.1	0.1	0.1	0.1	250	-	2	2,000	-	-

Notes:

all concentrations reported in mg/kg = milligrams per kilogram

< = less than the method detection limit

bgs = below ground surface

Concentrations in BOLD are above the Screening Levels as defined by Washington's Model Toxics Control Act (MTCA) (WAC 173-340) Method A unrestricted cleanup levels (Table 740-1, WAC 173-340-900). J = reported result was flagged "J" because it is an estimated value.

UJ = less than the MDL and qualified as an estimate.

NS = not sampled

- = no value established

Table 4 Soil Analytical Results (mg/kg) KVFR Ellensburg, Washington

Sampl	le ID/Sample Date	VPH [C8-C10 aliphatics + C10-C12 aliphatics]	VPH [C8-C10 aromatics + C10-C12 aromatics]	VPH [C12-C16 aliphatics + C16-C21 aliphatics]	VPH [C12-C16 aromatics + C16-C21 aromatics]	VPH [C21-C34 aliphatics]	VPH [C21-C34 aromatics]
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
C-C'	2/11/2015	0.75 J	0.9 J*	24.1 J	7.8 J*	420 J	23
D-D'	2/11/2015	0.105 J	<1.391 J*	<2.6 J	<2.6	7.8 J	4.2 J
MTCA Method B Soil Cleanup Levels for Unrestricted Land Uses (mg/kg)		not established	not established	not established	not established	not established	not established

Notes:

all concentrations reported in mg/kg = milligrams per kilogram

VPH = volatile petroleum hydrocarbons

< = less than the combined reporting limit of each aliphatic or aromatic range

* = Value is determined by adding the detected result from one range of aliphatic or aromatic (i.e., C5-C6 aliphatics) to 1/2 of the MDL value for the other range (i.e., C6-C8 aliphatics) that had a non-detect result

Concentrations in **BOLD** are above the Screening Levels as defined by Washington's Model Toxics Control Act (MTCA) Method B Unrestricted (residential) Table B-1 Groundwater Screening Levels

J = reported result was flagged "J" because it is an estimated value.

Table 5 Groundwater Analytical Results (mg/L) KVFR Ellensburg, Washington

Sample ID/S	Sample Date	Depth to Water (ft. bgs)	OXQ (mg/L)	(T/bu) Motor Oil Range	(mg/L)	OUD (mg/L)	(mg/L)	Benzene Benzene (mg/L)	b (T/S) (T/S) (T/B)) (T/bichloroethane (EDC)	Ethylbenzene (mg/L)	butyl ether (MTBE)	Naphthalene (T/Su)	Joinene Joinene (mg/L)	(mg/r)
MW-1	2/11/2015	7.85	0.022 J	0.010 J	0.032 J	0.033 J	< 0.00017	< 0.000025	<0.000002 J	<0.000025 UJ	< 0.00003	< 0.000025	< 0.0001	< 0.000025	< 0.00006
MW-2	2/11/2015	8.26**	0.19 Y	0.12 J	0.31 JY	0.030 J	< 0.00017	< 0.000025	<0.00002 J	<0.000025 UJ	< 0.00003	< 0.000025	< 0.0001	0.000038 J	0.000098 J
MW-2 DUP	2/11/2015	8.26**	0.19 Y	0.13 J	0.32 JY	<0.027 UJ	< 0.00017	< 0.000025	<0.00002 J	<0.000025 UJ	0.000055 J	< 0.000025	< 0.0001	0.000036 J	0.00019 J
MW-3	2/11/2015	4.46	0.037 J	0.037 J	0.074 J	<0.027 UJ	< 0.00017	< 0.000025	<0.000002 J	<0.000025 UJ	0.000056 J	< 0.000025	< 0.0001	0.000026 J	0.000096 J
MW-4	2/10/2015	4.15	0.037 J	0.042 J	0.079 J	<0.027 UJ	< 0.00017	< 0.000025	<0.000002 J	<0.000025 UJ	< 0.00003	< 0.000025	< 0.0001	< 0.000025	< 0.00006
MW-5	2/10/2015	3.56	0.03 J	0.065 J	0.095 J	<0.027 UJ	< 0.00017	< 0.000025	<0.000002 J	<0.000025 UJ	< 0.00003	< 0.000025	< 0.0001	0.000032 J	< 0.00006
MW-6	2/10/2015	3.73	0.064 J	0.20 J	0.264 J	<0.027 UJ	< 0.00017	< 0.000025	<0.000002 J	0.000038 J	< 0.00003	< 0.000025	< 0.0001	0.000047 J	0.000091 J
MW-7	2/10/2015	0.9	0.031 J	0.064 J	0.095 J	<0.027 UJ	0.00032 J	< 0.000025	<0.000002 J	<0.000025 UJ	0.000054 J	< 0.000025	< 0.0001	0.000026 J	< 0.00006
	A Groundwater evels (mg/L)	r Cleanup	0.5	0.5	500	0.8 or 1.0*	0.015	0.005	0.00001	0.005	0.7	0.020	0.16	1.0	1.0

Notes:

famsl = feet above mean sea level

all concentrations reported in $\mu g/L$ = micrograms per Liter

GRO = Gasoline Range Organics analyzed by Method NWTPH-Gx

DRO = Diesel Range Organics analyzed by Method NWTPH-Dx

MTBE = methyl tert-butyl ether

EDC = 1,2-dichloroethane

EDB = ethylene dibromide, constituent analyzed by USPEA Method 8011.

< = less than the method detection limit

Concentrations in **BOLD** are above the Screening Levels as defined by Washington's Model Toxics Control Act (MTCA) (WAC 173-340) Method A Groundwater Cleanup Levels (Table 720-1, WAC 173-340-900)

m+p-Xylene and o-Xylene results were added to represent Total Xylene concentration and compared to Total Xylene Cleanup Level.

* = cleanup level when benzene is present is 800 μ g/L , and 1,000 μ g/L when there is no detectable benzene present.

** = depth to water is measured from the top of casing; MW-2 had an above-ground riser ~3 feet above the ground surface.

*** = summation of DRO and Motor Oil values. 1/2 detection limit used where necessary in summation of heavy oil.

J = qualified as an estimate.

UJ = less than the MDL and qualified as an estimate.

Y = the chromoatographic response resembles a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes.

Table 6 Groundwater Analytical Results (mg/L) KVFR Ellensburg, Washington

Sample ID/S	Sample Date	Depth to Water (ft. bgs)	Manganese	Sulfate (T/Bu)	Alkalinity	SSL (mg/L)
MW-1	2/11/2015	7.85	0.004 J	12.0 J	170	<3.0
MW-2	2/11/2015	8.26*	0.14	7.9 J	150	<3.0
MW-2 DUP	2/11/2015	8.26*	0.15	7.8 J	140	<3.0
MW-3	2/11/2015	4.46	0.0029 J	9.7 J	150	20
MW-4	2/10/2015	4.15	0.083	11.0 J	160	<3.0
MW-5	2/10/2015	3.56	0.17	4.6 J	150	<3.0
MW-6	2/10/2015	3.73	0.31	5.3 J	58.0	<3.0
MW-7	2/10/2015	0.9	0.0180	3.9 J	160	<3.0

Notes:

famsl = feet above mean sea level

all concentrations reported in mg/L = milligrams per Liter

< = less than the reporting limit

TSS = Total Suspended Solids

J = qualified as an estimate.

* = depth to water was measured from the top of casing which is typically close to the ground surface level; MW-2 had an above-ground riser ~3 feet above the ground surface.

Table 7 Groundwater Analytical Results (mg/L) KVFR Ellensburg, Washington

		рН	Electrical Conductivity Te	mperature	Dissolved Oxygen ORP	
Well ID	Date		(µS/cm)	(degrees C)	(mg/L)	(mV)
MW-01	2/11/2015	6.69	483.9	11.5	2.23	-
		6.67	484.5	11.3	2.07	-
		6.68	484.4	11.2	2.04	-
		6.68	484.8	11.2	2.00	58.4
						56.3
						55.4
						54.2
MW-2	2/11/2015	8.19	380.3	10.5	0.80	-
		6.58	386.6	10.6	3.29	-
		6.56	394.2	10.7	0.28	-
		6.54	392.1	10.7	0.34	-
		6.54	397.4	10.7	0.28	90.4
			397.0			89.0
						88.2
MW-3	2/11/2015	6.62	410.5	9.10	1.93	-
		6.65	414.7	8.80	2.13	-
		6.64	417.0	8.80	2.18	-
		6.64	417.7	8.80	2.16	73.6
			416.5	8.70	2.17	73.2
				8.70	2.17	72.8
MW-4	2/10/2015	7.05	479.1	10.0	2.30	-
	2010/2010	7.05	466.3	10.1	2.00	-
		7.01	456.5	10.3	1.25	-
		7.03	450.5	10.5	0.92	-
		7.00	444.3	10.6	0.43	-
			442.2	10.6	0.46	67.5
			439.6	10.7	0.39	68.4
MW-5	2/10/2015	6.95	351.2	10.3	0.23	-
	2010/2010	6.95	361.1	10.2	0.51	-
		6.97	366.5	10.1	0.65	-
		6.97	372.8	10.0	0.73	62.4
			376.9	9.90	0.82	68.1
			375.4	10.0	0.90	62.8
MW-6	2/10/2015	7.05	285.5	8.10	1.18	-
		6.90	319.2	7.90	1.80	-
		6.90	326.8	7.80	1.71	-
		6.91	328.4	7.80	1.68	12.5
			329.9	7.90	1.66	7.7
				7.90	1.69	8.0
MW-7	2/10/2015	7.00	143.4	6.20	2.71	-
		6.99	142.2	5.40	2.99	-
		6.96	142.4	5.30	2.91	-
		6.91	141.7	5.50	2.98	-
		6.90	142.8	5.60	3.03	72.1
			143.1	5.50	3.16	73.1
			143.1	5.50	3.22	73.0

Notes: values listed are the final readings collected once the well stabilized μ S= micro siemens C = celcius mg/L = milligrams per Liter ORP = oxidation reduction potential mV = millivolts - = no value established ---- = stable measurements

Appendix A Photographs

Photo 1

Site facing north.

Photo 3

Site facing east near the former scales. Concrete foundation on the left is part of the former scale.

Photo 2

Site facing south.

Photo 4

Test pitting on February 10, 2015.

Æ			PROJECT MANAGER:	PROJECT NAME:	APPENDIX A, PHOTO LOG
TerraGraphic Environmental Engineering,	TerraGraphics	2-19-2015	John Means	Kittitas Valley Fire & Rescue	Kittitas Valley Fire & Rescue
WEE -	Environmental Engineering, Inc.		CREATED BY:	400 East Mountain View Avenue	Kittitas vaney File & Rescue
	www.TerrraGraphics.com	15006-03	Pete Richter	Ellensburg, WA 98926	

Photo 5

Typical test pit within petroleum impacted area showing green stained soils.

Photo 6

Photo 8

Sharp contact between stained silt and overlying un-impacted silty sand at TP-10.

Photo 7

Typical test pit advanced to approximately 8 feet bgs. Depth to groundwater in this test pit is approximately 7 feet bgs.

Trenches A through E (right to left) advanced near the former mechanic shop.

Æ		PRINT DATE:	PROJECT MANAGER:	PROJECT NAME:	APPENDIX A, PHOTO LOG
	TerraGraphics	2-19-2015	John Means	Kittitas Valley Fire & Rescue	Kittitas Vallev Fire & Rescue
	Environmental Engineering, Inc.	PROJECT NUMBER:	CREATED BY:	400 East Mountain View Avenue	Kittitas valley File & Rescue
	www.TerrraGraphics.com	15006-03	Pete Richter	Ellensburg, WA 98926	

This is a photo of a trench dug for surface sampling. Variable coloration changes can seen throughout the trench.

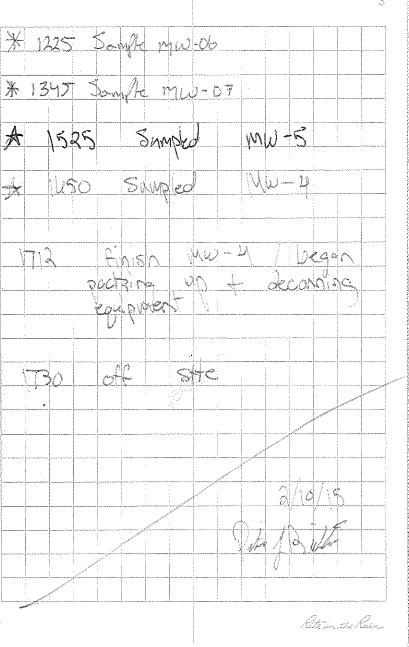
In this photo, inconsistent soil coloring can be seen indicating that the top foot or so of soil is not native.

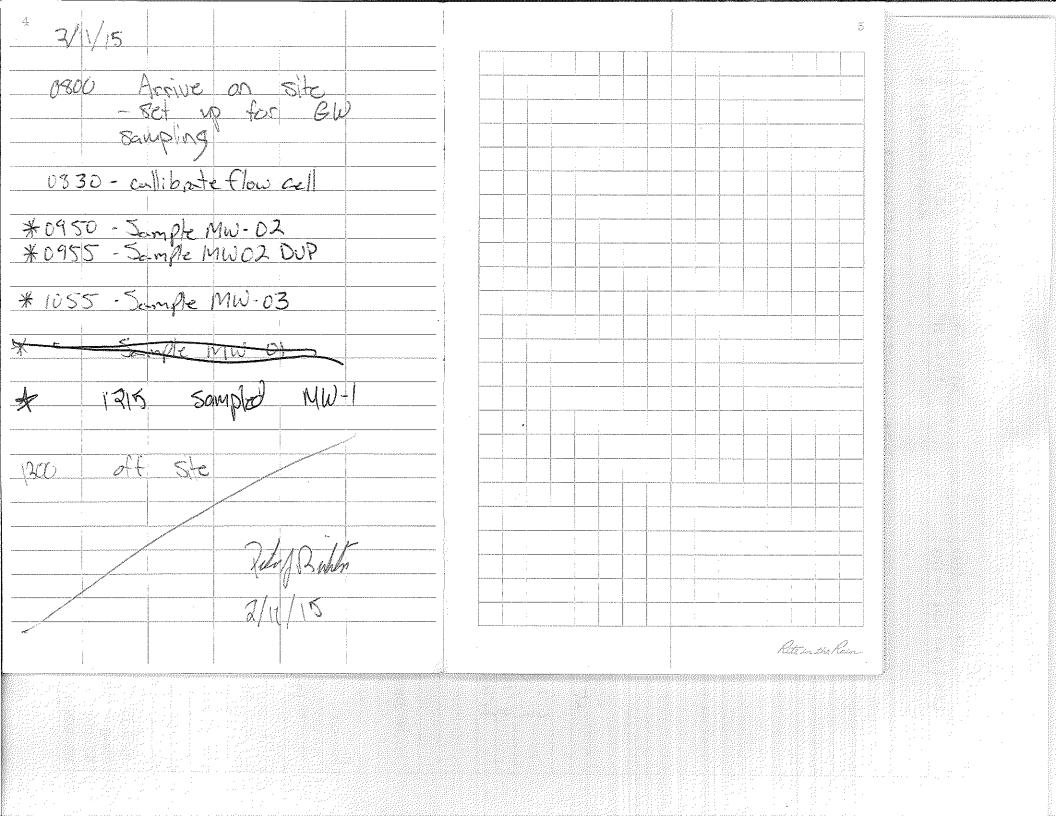
Photo 11

This is a photo of a surface trench. Variable soil coloration can be seen indicating possible, but minimal contamination.

Photo 12

In this photo a groundwater monitoring well can be seen. All but one monitoring well at the site was constructed like this.


F		PRINT DATE:	PROJECT MANAGER:	PROJECT NAME:	APPENDIX A, PHOTO LOG
	TerraGraphics Environmental Engineering, Inc.	2-19-2015	John Means	Kittitas Valley Fire & Rescue	Kittitas Vallev Fire & Rescue
	Environmental Engineering, Inc.	PROJECT NUMBER:	CREATED BY:	400 East Mountain View Avenue	Kittitas vancy File & Rescue
	www.TerrraGraphics.com	15006-03	Pete Richter	Ellensburg, WA 98926	


Appendix **B**

Test Pit Logs and Groundwater Field Sheets

2/10/15 2 Arrive on site - Meet w/ GDR Guy OFO Set up for GW Sampling 1050 - eillaute flew bell Cauge Walls 1/20 old sample tabing in wells - Remove. Wall Peoth 7,85 TOL MW-01 8-26 TOC MW-02 110-03 4.46 TOL MW -04 4015 700 3. 56 TOL MW-05 3.73 NW-06 D. 90 Tor level MW-OT

		ohics							Moscow Kellogg
									Boise Spokane
		GROU	NDW	ATER SA	MPLING RI	ECO	RD		Брокан
Project: KVF	12				Well Numb			-01	· · · · · · · · · · · · · · · · · · ·
Project Number	•				Sample Nu			ł	
Location: Ellen	sburg				Weather:			~45°F	
Date: 2.11.15	5				Sampler(s):	Rù	Inter	4 Lanta	u
Depth to Botton	n (ft):				Purge Time	•			
Depth to Water					Purge Meth		D	Halfic	
DTB-DTW (ft):	<u>(/ </u>	.) \UL			Volume Me	asure	ement	Method b	
Volume (gal):					Purge Volu	me (V	/olum	e x 3) (gal):	<u>ver-et</u>
Conversion Factors (height x factor=vol)	³ ⁄4" diameter 0.023	1" diameter 0.041		1 ½" diameter 0.092	2" dia			4" diameter 0.652	8" diamete 2.61
GROUNDWAT	FER DATA	<u>.</u>							
Purged Volume (gal)	Time	pН		Cond \\$j/cm)	Temp (°C)	<u> </u>	ssolve g/L	d Oxygen %	ORP (mV)
		6069	483,	4	11.5		13		
		6.67	484		11-3		07		········
		6.68	484		11.2	2.	04		
		6.68	484	1.8	11.2	2:	<u>oo</u> ó	5-1	58.4
	:			······································	~	-			56.3
		finderstation, -				Ļ			55.4
		**************************************			Contraction Contraction of the C	تىم .			54.2
Sampling Date:	2011-15		L Sampl	ing Metho	d: Low Flou	\	Т	ime Sample	d. 1215
Container	Volume (r	nl)	<u>F</u>	Preservat	ive	/		Containers	Other
Poly, Glass		50, 500, 1,0	000		NaThio, MeoH	, none		í	
Poly, Glass	(40, 125, 2	50, 500, 1,0	000	Hel, nitric,	NaThio, MeoH	, none			·····
Coly, Glass	40, 125, 2	50, 500, 1,0	000		NaThio, MeoH		1		
Poly? Glass		50, 500, 1,0		Hcl, nitric,	NaThio, MeoH	none	1		
Poly, Glass	40, 125, 2	50, 500, (,(000	AcDnitric,	NaThio, MeoH	, none	2		
Poly, Glass		50, 500, 1,0			NaThio, MeoH				
Poly, Glass	40, 125, 2	50, 500, 1,0	000	Hel, nitric,	NaThio, MeoH	, none			
Duplicate Sampl	le Number:								
Notor	<u></u>	<u></u>	1		~			<u> </u>	
Notes: Notes:	jete .	odbr	/ 10	sheen		294((3W	
111	rak .	D Mg	1	mg/1					
		Q	<u></u>	- vig/ P	•				
Stabilization C			T					1 1 001 ~	A -
Temperature ±			$\frac{H = \pm 0}{H = \pm 0}$					± 10% or 0	.2 mg/L
$Turbidity = \pm 1$	U%	SI	$EC = \pm$	5%			JRP :	= ± 5.0 mV	

	raGraj	Dhics TERING, INC					Moscow Kellogg Boise Spokane
		GROU	NDWATER SA	MPLING R	ECORD		Броканс
Project:	KVFR			Well Numb		· ^)	
Project Number				Sample Nu			
Location:	Ellest	уЛЧ		Weather:	Clerk	4 24	al contraction of the second s
Date:	2/11/15	the second secon		Sampler(s):	Dill		
	1.1.1.2					ra an	fair
Depth to Botton	n (ft):			Purge Time	*		
Depth to Water		126		Purge Meth		vaisbullic	۲۰۰۰
DTB-DTW (ft):				Volume Me		Method:	Right -
Volume (gal):				Purge Volu			putter-
Conversion Factors (height x factor=vol)	34" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia	ameter 0.163	4" diameter 0.652	8" diameter 2.611
GROUNDWAT	FER DATA		·				
Purged	Time	ъЦ	Cond	Taria (PC)	Dissolve	d Oxygen	000 / 75
Volume (gal)		pН	(v Jcm)	Temp (°C)	mg/L	%	ORP (mV)
		8.19	1360.3	10.5	0.80		
		4,50	38616	1016	3.29		
		6,55	394.2	10.7	0 28		······································
		6.54	592.1	10.7	0.34		
		L.SM	397.4	10.7	1) 28		00,90,4
		Manager and Provide and Provid	317.03598.	Industry 200 - March 199	Canada Can		\$4.0
		And the statical (With some	* Calendaria	Mandon State State	- Constanting		852
Sampling Date:	,		Sampling Metho	d:	T	ime Sample	d: 0950
Container	Volume (r		<u> </u>		#	Containers	Other
Poly, Glass		50, 500, 1,0		NaThio, MeoH		12	
Poly Glass		50, 500, 1,0		NaThio, MeoH		Ľ.	
Poly, Glass		50, 500, 1,0		NaThio, MeoH		had	
Poly, Glass		50, 500, 1,0		NaThio, MeoH		<u>`</u> ``	
Poly, Glass	f	50, 500, 1,0		NaThio, MeoH	- Miller and a second	5	
Poly, Glass		50, 500, 1,0		NaThio, MeoH	Community and a second s	`	
Poly, Glass	40, 125, 2	50, 500, 1,0	00 Hcl, nitric,	NaThio, MeoH,	, none		
Duplicate Sampl	e Number:	$N_{\rm U}$	2 1718	695	26		
			· · · ·				
Notes: No	Petro	des	i Clear	GW	1 NO	Sheen	
in the	1 %	mesane -	1 .		7		
- Fell	sates	Lren -	0 wg/1	2.55			
Stabilization Cr	iteria		<u>0'</u>				
Temperature \pm		nF	$I = \pm 0.1^{\circ}$			± 10% or 0.	2 mg/I
Turbidity = ± 10			$C = \pm 3\%$			$= \pm 5.0 \text{ mV}$	2 mg/L
Strating - 1		1	~ - 0 / 0			- J.U HI V	
Statement - End of A State of a	- 0/46						

ļ

	'aGra k Mental engine	Dhics TRING INC					Moscow Kellogg Boise Spokane
		GROU	NDWATER SA	MPLING RI	ECORD		
Project: 1	FB			Well Numb		MW-3	
Project Number:	• • • • • • • • • • • • • • • • • • •			Sample Nur			
Location:	Ellansa	180		Weather:	(loudy &	. 450
Date:	2/11/1	31		Sampler(s):	Ri	chiter / L	entay
Depth to Bottom				Purge Time			
Depth to Water	(ft): 너	<u>, 46'</u>		Purge Meth		cristalitic	~î
DTB-DTW (ft):				Volume Me			Bachet
Volume (gal):			l	Purge Volu	me (Volu	ume x 3) (gal):	
Conversion Factors (height x factor=vol)	34" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia	meter 0.163	4" diameter 0.652	8" diameter 2.611
GROUNDWAT	ER DATA						
Purged	Time	pН	Cond	Temp (°C)	}	ved Oxygen	ORP (mV)
Volume (gal)	TIMO	P11	(<u>uð</u> /cm)		mg/L	%	
		6.62	410,5	91	1.9	3	
		10.15	414.7	8.8	21	<u>Š</u>	
		10,64	417.0	88	218	Š	
		10.64	417.7	8.8	211	2	73,6
			4165	8:7	2.1-	7	13,2
		Carding and a little second	(IO)	8,7	21-	7	72.8
						<i>د</i>	
						,l	
Sampling Date:	2-11-15		Sampling Metho)	Time Sample	
Container	Volume (1		Preservat			# Containers	Other
Poly Glass		50, 500, 1,0		NaThio, MeoH		le	
Poly Glass	40,125,2	50, 500, 1,0		MaThio, MeoH	-	Z	
Poly, Glass		50, 500, 🏹		NaThio, MeoH		2	
Poly, Glass		<u>50, 500, 1,(</u>		NaThio, MeoH			
Poly, Glass		50, 300, 1,0		NaThio, MeoH			
Polý, Glass	<u> </u>	50, 500, d .(NaThio, MeoH	A second		
Poly, Glass	40, 125, 2	50, 500, 1,0)00 Hcl, nitric,	NaThio, MeoH	, none		
Duplicate Samp	le Number:						
Notes:	n setro	 cdos	on stre	<i>د</i> م ۱	Clear	GW	
h.	~ //		/	~ 1	~~~~		
1		F	- 12 11				
<u> </u>	Nitrat	L-ran -	- Ong/L Bhall				
Stabilization C	riteria		y h				
Temperature ±		[g	$H = \pm 0.1^{\circ}$		DO	$= \pm 10\%$ or 0	.2 mg/L
Turbidity = ± 1			$EC = \pm 3\%$			$P = \pm 5.0 \text{ mV}$	
<u> </u>	~ / V						

•

.

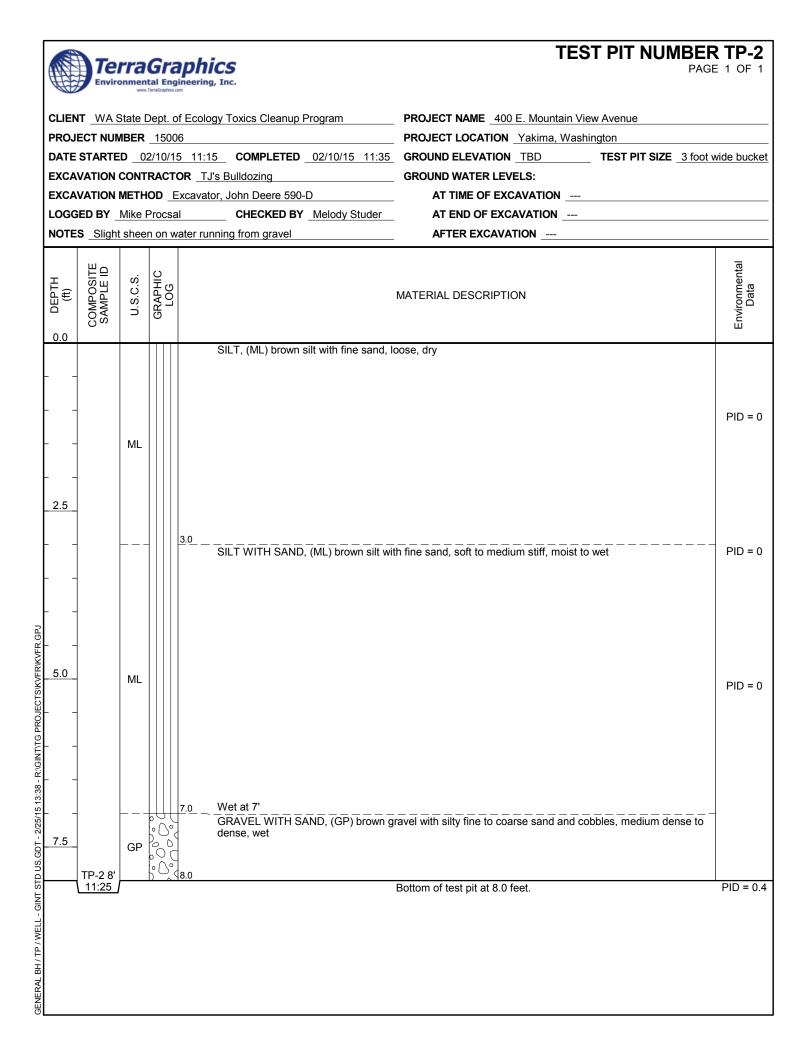
- = stable

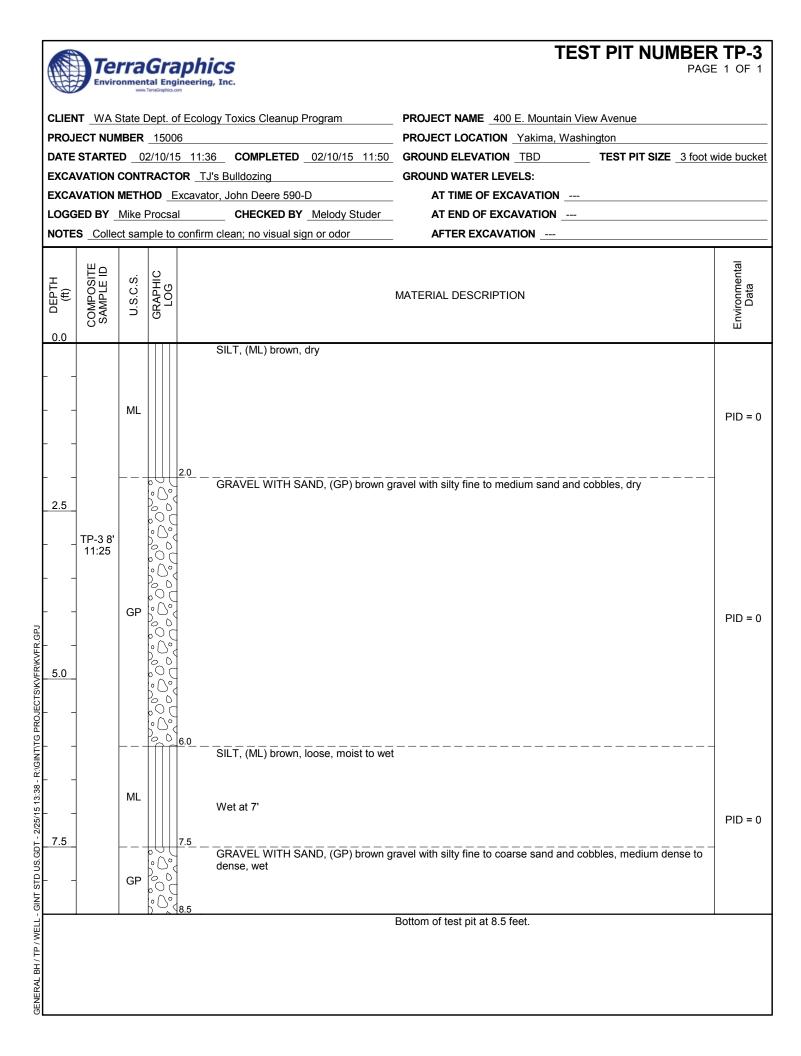
Terr	aGrap	ohics						Moscow Kellogg
	MENTAL ENGINE							Boise
								Spokane
	_	GROU	NDWATER SA	MPLING RI	ECOR	D		
Project: 1)	WFR			Well Numb	er:	Me) - 4	
Project Number:	W			Sample Nur	nber:		1	
Location:	Ellensla	101		Weather:	84	NM.	W 450	>
Date: $2/$	10/15	· · · ·		Sampler(s):	1	Richt	er/Mag	Lantqu
Depth to Bottom	(ft):			Purge Time	:			
Depth to Water ((ft): U	15		Purge Meth		Peri	static	
DTB-DTW (ft):	(•		Volume Me		nent N	Aethod:	Bycket
Volume (gal):				Purge Volu	ne (V	olume	x 3) (gal):	
Conversion Factors (height x factor=vol)	¾" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia	meter 0.163		4" diameter 0.652	8" diameter 2.611
GROUNDWAT	ER DATA		· · · · · · · · · · · · · · · · · · ·					
Purged	Time	٦Tm	Cond	Town (°C)	Diss	solved	Oxygen	ODD(mV)
Volume (gal)	TIME	pН	(<u>\(\)</u> /cm)	Temp (°C)	mg	/L	%	ORP (mV)
		7.05	479,1	10,0	2.	30)	·	
		7,05	466,3	10.1	_م. ا	v_{l}		
		7.01	456.5	10.3	$\tilde{\Lambda}$	25		
		<u> </u>	450.5	10:5	6	งๆว้		
		7,00	444.3	70.6	0.	43		Kells .
		man of the second second second	442.2	10,6		.46		67.5
_		(43906	10.7	Ø	<u> </u>		68.4
414 gal								
Sampling Date:	2410-15		Sampling Metho		,		me Sample	
Container	Volume (r		Preservat			# (Containers	Other
Poly, Glass		50, 500, 1,0		NaThio, MeoH			le	
Poly, Glass		50, 500, 1,0	مەتتىر يەتتىتىسىن	NaThio, MeoH				
Poly, Glass		50, 500, <u>(</u>		NaThio, MeoH	•	_	<u> </u>	
Poly, Glass		50, 500, 1,0		NaThio, MeoH	Current			
Poly, Glass		50, 500, 1,0		[°] NaThio, MeoH NaThio, MeoH	~			
Poly, Glass		50, 500, 1,0		NaThio, MeoH	Constant of the local division of the local			
Poly, Glass	40, 125, 2	50, 500, 1,0	JOO Hei, Intrie,		, none			:
Duplicate Sampl	e Number:							
Notes: V_0	Petro	_odor_	10 stre	en	_C\a	4 Г	θw	
	م من الحاد ا		On and I					
1.71	rays I	$-\frac{1}{2}$	K MJO MC	.71				
	120101		<u> </u>	<u>]/ www.</u>				
Stabilization C	riteria		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
Temperature ±		[g	$H = \pm 0.1^{\circ}$			$\mathbf{H} = \mathbf{O}(\mathbf{I})$	= 10% or 0	.2 mg/L
Turbidity = ± 1			$EC = \pm 3\%$				$\pm 5.0 \text{ mV}$	

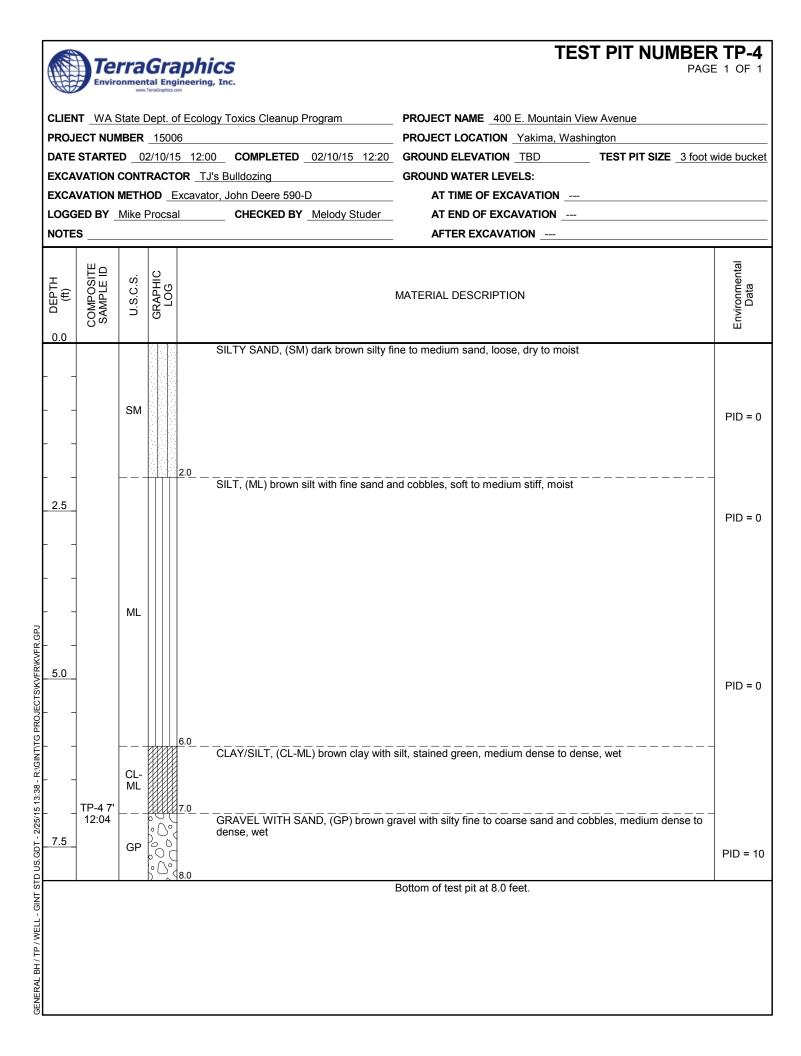
- = Jtable

Ter	raGra ț	Ohics					Moscow Kellogg Boise Spokane
		GROU	NDWATER SA	MPLING R	ECORT)	opokalic
Project: KVFF				Well Numb			
Project Number				Sample Nu	mher		
Location: Ellew	stures.		······································	Weather: S	Junny	/windy ~50 er/hantau	o E
Date: 2.10.15				Sampler(s):	P:ht	r/lantu	
						21 Van Kal	
Depth to Botton				Purge Time	•		
Depth to Water	(ft): 3 <u>_</u> 56'	TOL.		Purge Meth) I.	enistalle	
DTB-DTW (ft):						ent Method: b	weet
Volume (gal):	······································			Purge Volu	me (Vol	ume x 3) (gal):	
Conversion Factors (height x factor=vol)	34" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia		4" diameter 0.652	8" diameter 2.611
GROUNDWAT	FER DATA			.			
Purged	Time	лU	Cond	T. 2000	Disso	lved Oxygen	
Volume (gal)	TIME	pН	(NS/cm)	Temp (°C)	mg/L		ORP (mV)
		6.95	351.2	10.3	0.1		
		6.95	361.1	10.2	0.5		
		6.97	366.5	10.1	0.68		
		6,97	372.8	10.0	A.73		1024
			376 9	ä 9	0,5		1.3.1
		d Filterar Landsman	375,4	10.0	0.90	↓	
				- 1010			- 40, 0
Sampling Date:			Sampling Metho	d:		Time Sample	d:
Container	Volume (n	nl)	Preservat			# Containers	Other
Poly, Glass	(40), 125, 25	50, 500, 1,0	00 Ach nitric,	NaThio, MeoH,	none	6	
Poly, Class	A9 , 125, 25	50, 500, 1,0	00 Hcl, nitric,	NaThio, MeoH,	none	73	
Poly, class?	40, 125, 25	50, 500, 1,0	00 Mcl, nitric,	NaThio, MeoH,	none	2	
Poly, Glass		<u>9, 500, 1,0</u>	00 Hcl, hitrie, 1	NaThio, MeoH,	none	1	
Polý, Glass		Ø, 500, 1,0		NaThio, MeoH,			
Poly, Glass		50, 500, 1,0		NaThio, MeoH,		}	
Poly, Glass	40, 125, 25	$50, 500, \overline{1}, 0$	00 Hel, nitric, 1	NaThio, MeoH,	none		
Duplicate Sample	e Number:						
Notes: No					1		
	- raro	_0005	<u>م</u>	GW C	Las	-/no s	heen
		O Mg/	<u> </u>			/	
Nitro	10 ~	b, ()	Mg/L				
			<u> </u>				
Stabilization Cr	itaria						
Temperature ± (/ TT	- 1 0 10	····			
x omperature ± 1	J.4 U	pH	$=\pm 0.1^{\circ}$		- I ĐO	= ± 10% or 0.2	2 mg/I
Turbidity $= \pm 10$	0/		$C = \pm 3\%$			$\frac{10000000}{P=\pm 5.0 \text{ mV}}$	a mg/L

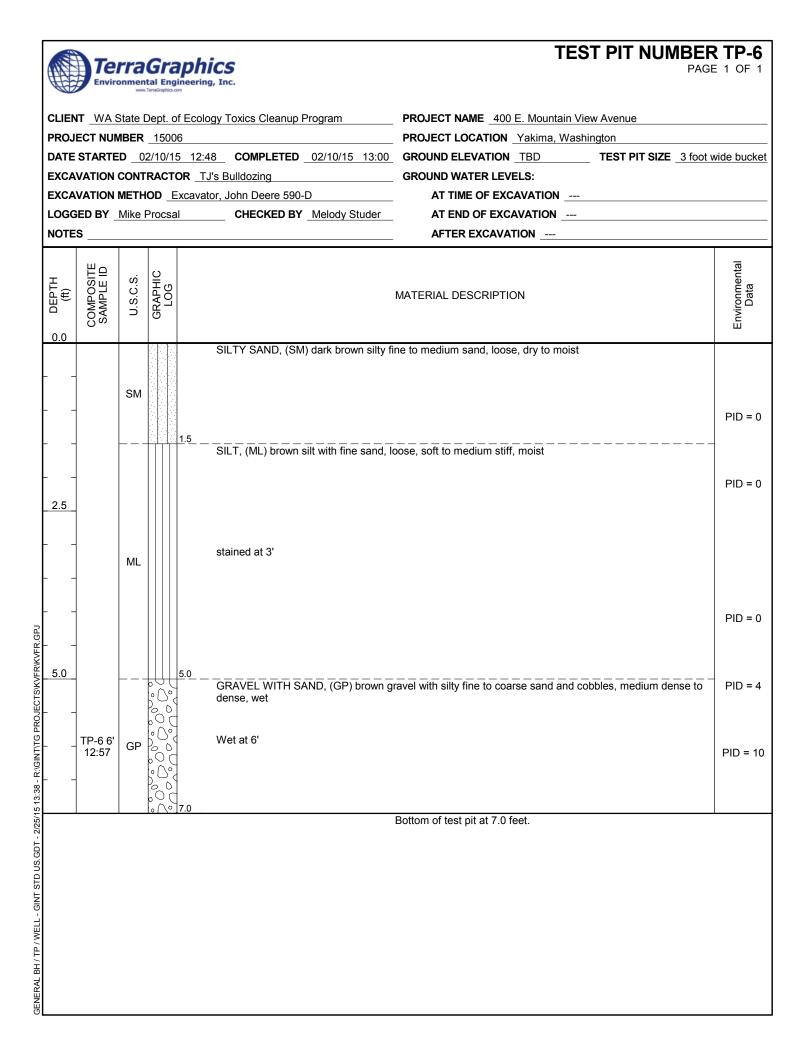
-= stable

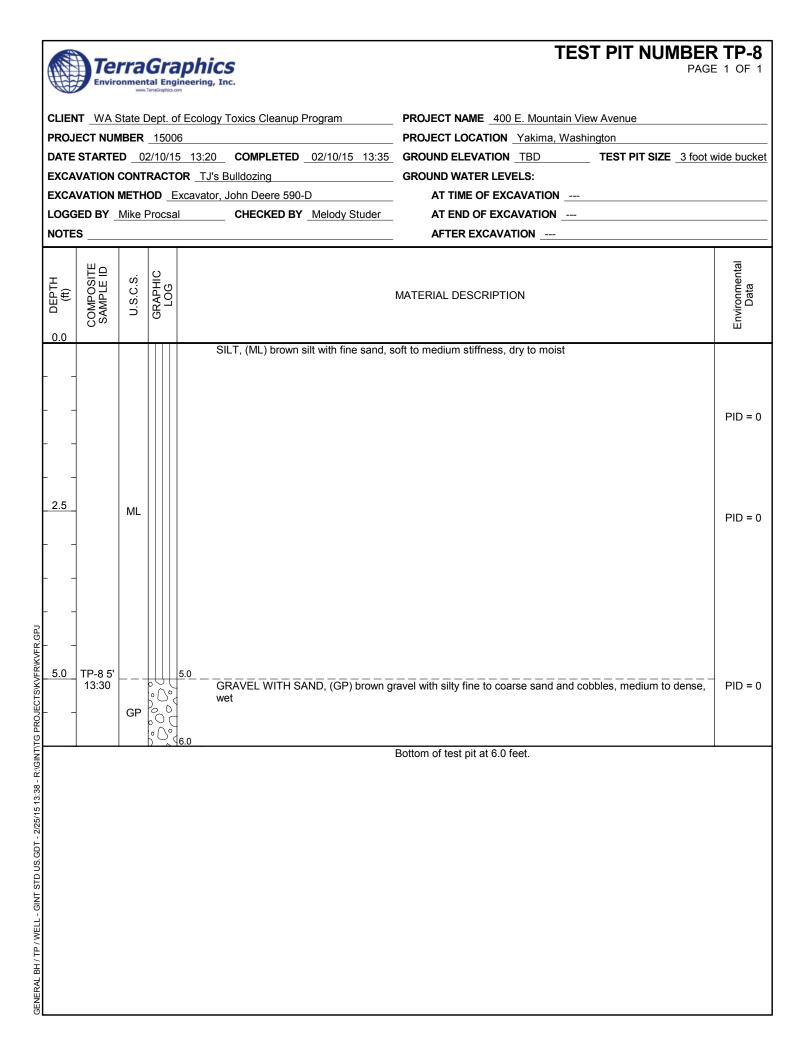

Teri	r a Grap	ohics						Moscow Kellogg
THERE INVIRON	MUNTAL ENGIÑ	IRING, INC.						Boise
		GROU	NDWATER SA	MPLINC DI	FCO	םם		Spokane
Project:	KNER		IID WATER SA	Well Numb			du-cle	
Project Number:				Sample Nu		\ :	w ve	
Location:	9	ava.	10/4	Weather:		SUMAL	1 33 90	<u>k</u>
Date:	2/10/1	5)	-0 ² · · ·	Sampler(s):		RUI	NEC	
				<u> </u>			KULCe	
Depth to Bottom	n (ft):	~		Purge Time	:			
Depth to Water	(ft): 🔨	78		Purge Meth		Peri	otaltic	
DTB-DTW (ft):	· · · · · · · · · · · · · · · · · · ·			Volume Me	asure	ement	Method:	Bucket
Volume (gal):		1.000		Purge Volu	me (V	Volum	e x 3) (gal):	Q -=
Conversion Factors (height x factor=vol)	³ 4" diameter 0.023	1" diameter 0.041	1 ½" diameter 0.092	2" dia	meter 0.163		4" diameter 0.652	8" diameter 2.611
GROUNDWAT	ER DATA	·						
Purged Volume (gal)	Time	pН	Cond (এ5/cm)	Temp (°C)			d Oxygen %	ORP (mV)
Volume (gai)		TT 16		4.1	111 i	g/L \ S	70	
		7.05 6290	269,5		<u> </u>	10 80	7: Av	
		<u><u></u></u>	326,8	78		21	, ,	
		- 10- 10-	328,4	7.8		-11-	1	11 5
			210 9	570	<u>}</u>	68		
\$ 3.5		strand and a second second	2.29,1	7.9	-	10/0_ 69		<u> </u>
<u></u>			Million de Stavilla Appaleure	<u> </u>				3,0
Sampling Date:			Sampling Metho			Т	ime Sample	4.
Container	Volume (r	 n1)	Preservat				Containers	Other
Poly, Glass		50, 500, 1,0		NaThio, MeoH	none			Ouner
Poly, Ølass	(40, 125, 2		/	NaThio, MeoH			2	
Poly, Glass		50, 500, 1,0 50, 500, 1,0		NaThio, MeoH			<u></u>	
Poly, Glass		50, 500, 1,0		NaThio, MeoH	h		· .	
(Poly), Glass		50, 500, 1,0		NaThio, MeoH				
Poly, Glass	<u> </u>	50, 500, 1,0	A DECOMPANY AND A DECOMPANY AND A DECOMPANY	NaThio, MeoH	. /	·		
Poly, Glass		50, 500, 1,0		NaThio, MeoH		1	2	
1019, 01033	10, 129, 2	50, 500, 1,0			, 110110			
Duplicate Sampl	e Number:							
Notes:	Jo Peta	e do	be	<u></u>		<u></u>		
GW	Very	cleas		shken				
- • •		10/Pres.						
	1	New man	10 1.	ng/h		·		· · · · · · · · · · · · · · · · · · ·
Stabilization Cr	utentes		V MOO W	19/ I				
Temperature ±		nl	$I = \pm 0.1^{\circ}$		·	DO =	± 10% or 0	.2 mg/I
Turbidity = ± 1			$EC = \pm 3\%$				$= \pm 5.0 \text{ mV}$	· # 1112/12
	070		<u> </u>		I	OUL .	J ₁ U III V	

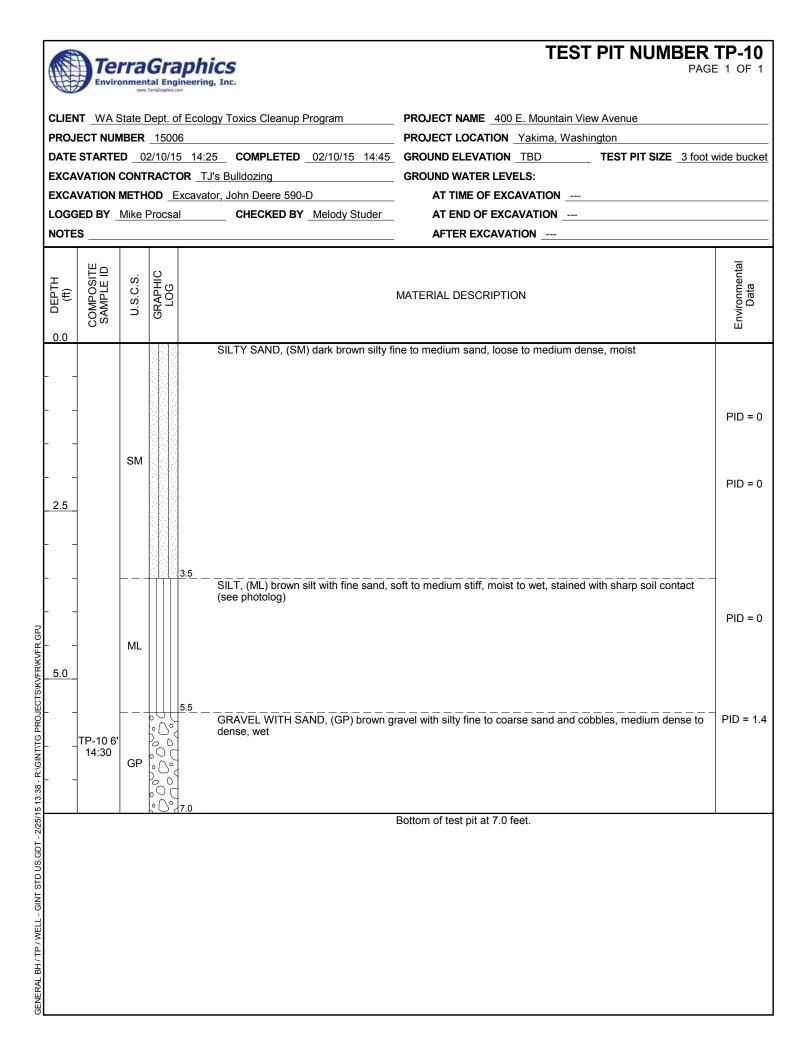

Juke entral and a second s


Ter	raGrak	Dhics							Moscow Kellogg Boise
	,								Spokane
		GROU	NDWA	ATER SA	MPLING RI	ECOR	D		X
Project: KVT	R				Well Numb	er: jv	W-	07	
Project Number					Sample Nur	mber:			
Location: Ellens	burgs				Weather: <	Samu	50°	F-	
Date: 2 - 10 - 1	5				Sampler(s):	Richt	er /	hearter	
Depth to Botton	n (ft):				Purge Time				
Depth to Water		roc			Purge Meth	od: <i>Pe</i>	pisto	Hic	
DTB-DTW (ft):					Volume Me	easuren	ient I	Method: bo	icket
Volume (gal):					Purge Volu	me (Vo	lume	x 3) (gal):	
Conversion Factors (height x factor=vol)	34" diameter 0.023	1" diameter 0.041		1 ¹ / ₂ " diameter 0.092		umeter 0.163		4" diameter 0.652	8" diamete 2.61
GROUNDWA '	FER DATA								
Purged	T			Cond	Torra (00)	Diss	olved	Oxygen	ODD (~ 10
Volume (gal)	Time	pН	()	∖_/cm)	Temp (°C)	mg/	ΊL	%	ORP (mV)
		7.0	143	<u>.</u> H	6.2	2,7			
		6.99			5,4	2.9			
		6096			5,3	2.9	1		
		6.91	141	. •	5.5	2.9			
		6.90	142		5.6	3.0			5,55 72.1
		Carata and a second second second	143		5.5	3016			73.
		Land State (Mainton of	1430		5,5	3.22			73.0
	· ·		·						
Sampling Date:	2-10-15		Sampl	ling Metho	Id: Low Flow	່. 	Ti	me Sample	d: 1345
Container	Volume (r	nl)		Preservat				Containers	Other
Poly, Glass		50, 500, 1,0	000	(Hel)nitric,	NaThio, MeoH	l, none	6		
Poly, Glass		50, 500, 1,0		Hel, nitric,	NaThid, MeoH	l, none	Ĵ		
Poly) Glass		50, 500, 1,(NaThio, MeoH		$\overline{1}$		
Poly, Glass		50, 500, 1,0		Hel, nitric,	NaThio, MeoH	l, none	1		
Poly) Glass		50, 500, (1, (Hel, nitric,	NaThio, MeoH	l, none)	17		
Poly, Glass		50, 500,(1,0		(Hc), nitric,	NaThio, MeoH	l, none	2		
Poly, Glass		50, 500, 1,0		Hcl, nitric,	NaThio, MeoH	l, none		X	
Duplicate Samp	le Number:					. <u> </u>			
r									
Notes: No pet.	al otor, (JU VER	· Clear	F, NO PO	tal shen				
Ferrors	Fet2 -> Ø	Mg/L		, .	stal shen				
Nitros	$tcs \rightarrow \emptyset$	Mg/L							
Stabilization C	riteria								
Temperature ±		la l	$H = \pm 0$	0.1°		D	0=:	± 10% or 0	.2 mg/L
· · · · · · · · · · · · · · · · · · ·	10%		$EC = \pm$					$\pm 5.0 \text{ mV}$	<u> </u>

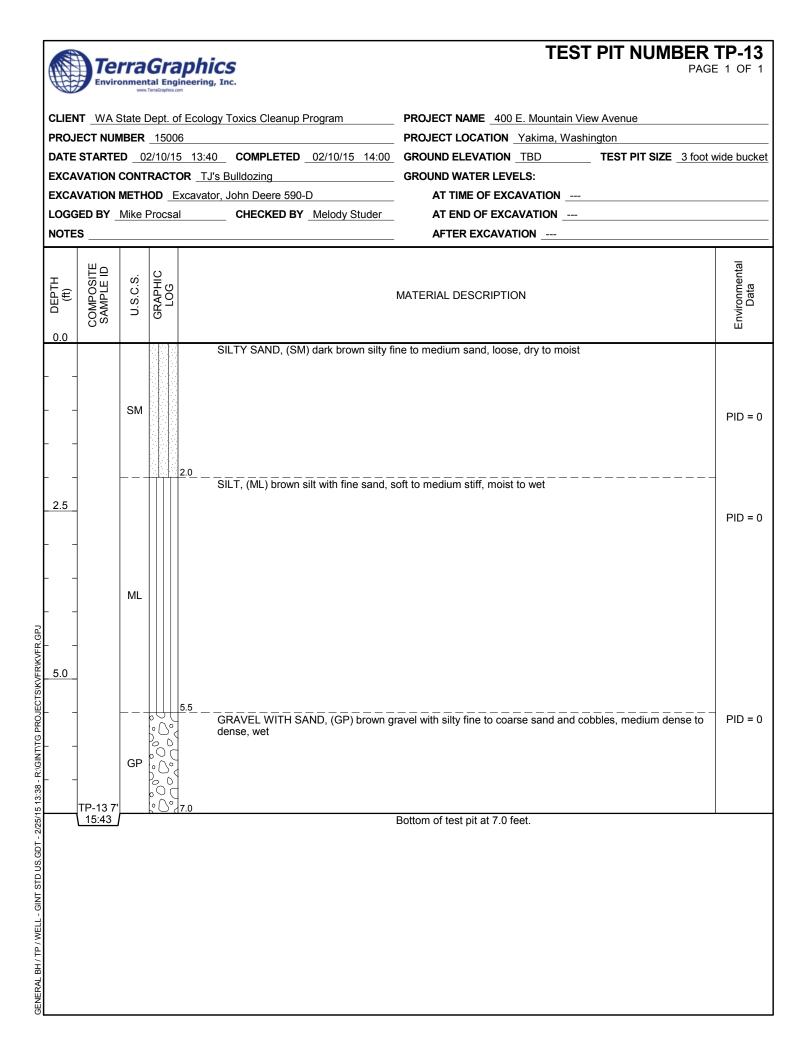
TestAmerica Seattle 5755 8th Street East				С О	ain of	Chain of Custody Record	Recorc			TestAmerico
Tacoma, WA 98424 phone 253.922.2310 fax		Regulaton	Regulatory Program:		NPDES	CRA Other:				The LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.
Client Contact		Project Manager:	er: Jun	WIENT		Site Contact:		Date:	74/15	COC No:
TerraGraphics		Tel/Fax: 次	18 536 3	1080		Lab Contact: Dov	ALLA C	Carrier:	-	of Cocs
988 S longmont ave		Anàly	Turnar	ind Time		?(sampler: Nichter
706		CALENDAR DAYS	YS UV	WORKING DAYS		13	کم مکل			For Lab Use Only:
Phone	JUS 734 7620	TAT if diffe	TAT if different from Below <u>Sすたいが</u> なく	N-T-N						Walk-in Client:
(xxx) xxx-xxxx FAX			2 weeks				<u>عرام (المج</u>			Lab Sampling:
Project Name: KVFR			1 week				र न ज		· · · · ·	
Site:			2 days			11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	n p t			Job / SDG No.:
P O #			1 day	-			3 17 R			
				ē ~			हिन् भूरि रूर		. <u> </u>	
Sample Identification		Sample San Date Ti	Time G=Grab)	o) Matrix	Cont Filter #	<u> </u> II8	15			Sample Specific Notes:
		21/15/12		11	2	い ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ ひ	1 1			
					2) () { } {				
	\$	S.	20	3	R N	3				
NEVER TO	MA P-	21115 0955	55 0	5	2	N33233				
MW-3.		3/1/15/1055	2	¥	<u>~</u>	3323				
H., - H		2/10/15/10/2	e S	1	-C	3733				
MV-5		F.	1525 0	1-1	R K	2222				
9-0m		V		13	, C	(C C C C C C C C C C C C C C C C C C C				
9		10/10		5		2 V				
f-				, [- ,	22		-			
					-					
	-									
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	204; 4=HNO3; 5	=NaOH; 6= Othe								
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste?	1	Please List any EPA Waste Codes	te Codes	for the sample in the	1	ample Disposa	I (A fee may I	e assessed i	f samples are r	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Comments Section if the lab is to dispose of the sample.										
KNon-Hazard	Skin Irritant	Poison B		Junknown		Return to Client	`	Solsposal by Lab	Darchive for	for Months
Special Instructions/QC Requirements & Comments:	comments:									
					1	HOR				
Custody Seals Intact:	No	Custody Seal No	0.1		-	Cooler	Cooler Temp. ("C): Obs/d	b'd:	Con'd:	Them ID No.:
Relinquished by:	N.J. W.W.	Company:	reduc	Date/Time:	5	Received by:		Con	Company:	Date/Time:
Relinquished by:		Company:)	Received by:		Соп	Company:	Date/Time:
Relinquished by:		Company:		Date/Time:		Received in Laboratory by:	ratory by:	Cor	Company:	Date/Time:
								-	Form No.	Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013


1		Te	rra	Gr		ics	TEST PIT NUMBER PAGE	TP-1
ľ		Envir	onmen	tal En TerraGraphi	gineering	g, Inc.		
-		T WAS	State [Dept.	of Ecolo	ogy Toxics Cleanup Program	PROJECT NAME 400 E. Mountain View Avenue	
							GROUND ELEVATION TBD TEST PIT SIZE 3 foot v	vide bucket
						J's Bulldozing		
						checked By Melody Studer	AT TIME OF EXCAVATION AT END OF EXCAVATION	
						n clean; no visual sign or odor		
	DEPTH (ft)	COMPOSITE SAMPLE ID	U.S.C.S.	GRAPHIC	2		MATERIAL DESCRIPTION	Environmental Data
		CON		Б				Envii
┝	0.0					SILT, (ML) brown silt with fine sand, lo	pose. drv	
SIKVFRIKVFR.GPJ	- - - 2.5 - - - - - 5.0		ML ML		<u>3.0</u>	SILT WITH SAND, (ML) brown silt wit	h fine sand, soft to medium stiff, moist to wet	PID = 0 PID = 0
GENERAL BH / TP / WELL - GINT STD US.GDT - 2/26/15 13:38 - R:/GINTTG PROJECTS/KVFR/WFR.GPJ	- - 7.5	TP-1 7' 11:00	GP		V	dense, wet	ravel with silty fine to coarse sand and cobbles, medium dense to	PID = 0

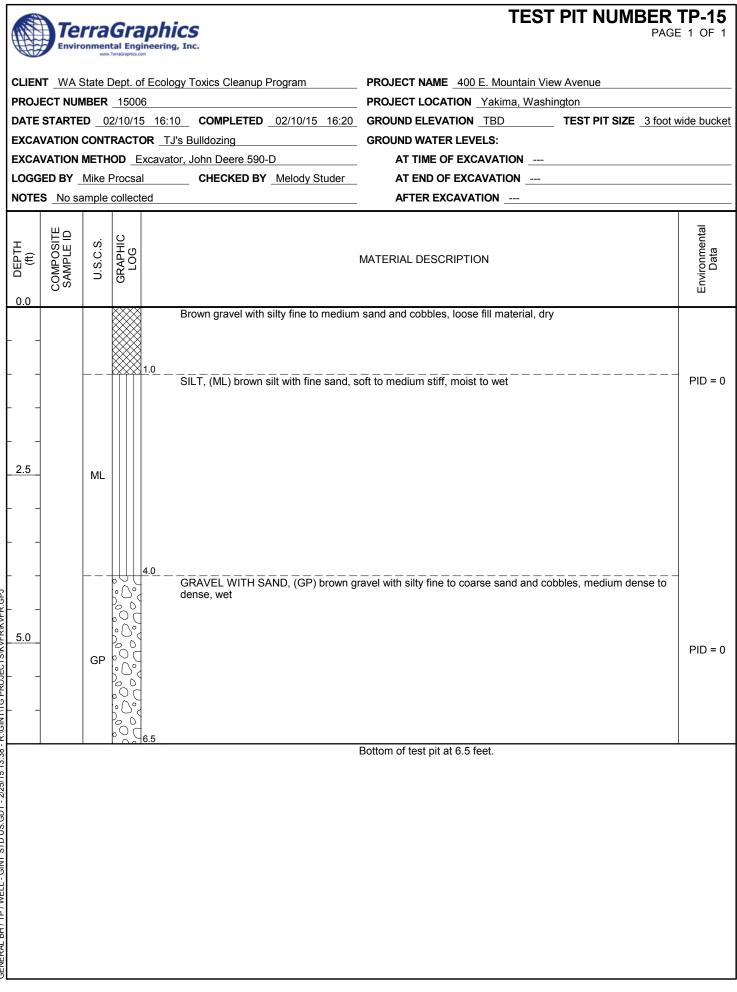



		ronmer	Grap Ital Engineer	hics ing, Inc.	TEST PIT NUMBER PAGE	TP-5
CLI	ENT WA	State	Dept. of Ec	ology Toxics Cleanup Program	PROJECT NAME 400 E. Mountain View Avenue	
	JECT NU				PROJECT LOCATION Yakima, Washington	
					GROUND ELEVATION TBD TEST PIT SIZE 3 foot w	ide bucket
				TJ's Bulldozing		
				vator, John Deere 590-D		
					AT END OF EXCAVATION	
				firm clean; no visual sign or odor		
DEPTH	<u></u> ۳۵		GRAPHIC LOG			Environmental Data
9.0 DEF		U.S.C.S.	GRAI	(SM) dark brown, silty fine to medium	MATERIAL DESCRIPTION	Environ Da
UTTG PROJECTS/WVFR/GFJ	-	SM ML		SILT, (ML) brown silt with fine sand, s	oft to medium stiff, moist	PID = 0 PID = 0 PID = 0
- R:\G			° 0° 6.5			
13:38					Bottom of test pit at 6.5 feet.	
GENERAL BH / TP / WELL - GINT STD US.GDT - 2/25/15 13:38 - R:/GINT/TG PROJECTSKVFTK/VFR.						

	TerraGraphics Environmental Engineering, Inc.							
PROJ DATE EXCA EXCA LOGG	ECT NUM STARTE VATION (VATION I GED BY	IBER D0 CONT METH Mike I		3:05 COMPLETED 02/10/15 13:15 TJ's Bulldozing rator, John Deere 590-D CHECKED BY Melody Studer				
o. (ft)	COMPOSITE SAMPLE ID	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	Environmental Data		
 2.5		SM	4.0	(SM) dark brown silty fine to medium s	at 3'			
GENERAL BH / TP / WELL - GINT STD US.GDT - 2/25/15 13:38 - R:\GINT\TG PROJECTS\KVFR\KVFR\GPJ					Bottom of test pit at 4.0 feet.	PID = 10		

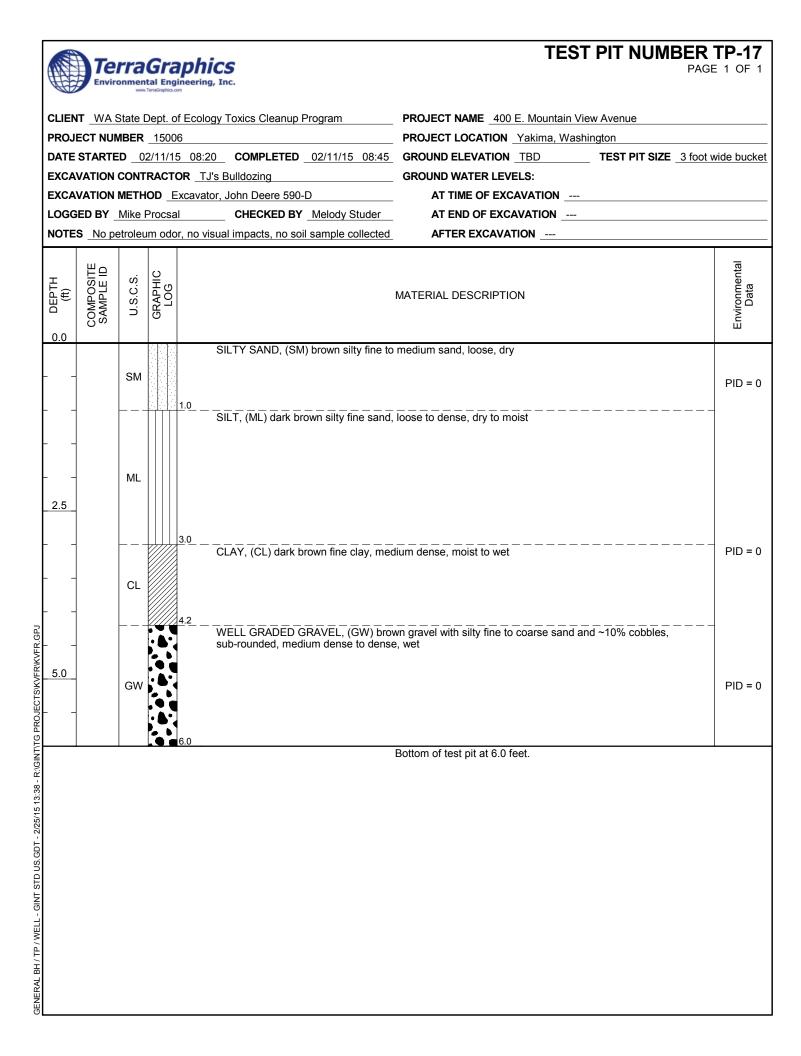


		Te	rra onmen	Gi ntal Ei «.TerraGraph	raph ngineerin	j, Inc.	GROUND ELEVATION TBD TEST PIT SIZE 3 foot wide bucket GROUND WATER LEVELS: AT TIME OF EXCAVATION		
	PROJ DATE EXCA EXCA LOGG	ECT NUM STARTE VATION VATION ED BY	MBER D 0 CONT METH Mike	150)2/10, (RAC 10D Proc	006 /15 14:(TOR <u>T</u> Excava sal				
	o DEPTH o (ft)	COMPOSITE SAMPLE ID	U.S.C.S.	GRAPHIC	LOG LOG		MATERIAL DESCRIPTION	Environmental Data	
-			ML		2.5	SILT, (ML) brown silt with silty fine sa		PID = 0	
FR\KVFR.GPJ	 5.0	TP-9 5'	GP			GRAVEL WITH SAND, (GP) brown g moist to wet	ravel with silty fine to coarse sand and ~20% coarse sand, dense,	PID = 0	
JECTS\KV		13:50		$\langle \rangle_{00}$	5.5	Wet at 5'		PID = 0	
GENERAL BH / TP / WELL - GINT STD US.GDT - 2/26/15 13:38 - R.\GINT\TG PROJECTS\KVFR\KVFR.GPJ							Bottom of test pit at 5.5 feet.		



			rra onmer		NICS ng, Inc.	TEST PIT NUMBER PAGE	TP-11 E 1 OF 1		
	PROJI	CLIENT WA State Dept. of Ecology Toxics Cleanup Program PROJECT NAME _400 E. Mountain View Avenue PROJECT NUMBER _15006 PROJECT LOCATION _Yakima, Washington DATE STARTED _02/10/15 _15:00 COMPLETED _02/10/15 _11:09 GROUND ELEVATION _TBD TEST PIT SIZE _3 foot w							
	EXCA EXCA LOGG	VATION VATION ED BY _	CONT METH Mike	RACTOR	TJ's Bulldozing ator, John Deere 590-D CHECKED BY Melody Studer	GROUND WATER LEVELS: AT TIME OF EXCAVATION			
	0. DEPTH 0. (ft)	COMPOSITE SAMPLE ID	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	Environmental Data		
			SM		SILTY SAND, (SM) dark brown, fine t	o medium silty sand, loose, dry to moist	PID = 0		
				2.2	SILT, (ML) brown silt with fine sand, s	oft to medium stiff, moist to wet	PID = 0		
JECTS\KVFR\KVFR.GPJ	 5.0		SM	4.0	SILTY SAND, (SM) silty fine to mediu dense, moist to wet	m sand, stained blue/gray, petroleum odor, loose to medium	PID = 7.8		
15 13:38 - R:\GINT\TG PRC			GP		dense, stained blue/gray, petroleum c		PID = 1.4		
GENERAL BH / TP / WELL - GINT STD US.GDT - 2/25/15 13:38 - R. GINTITG PROJECTSIKVFRIKVFR.GPJ						Bottom of test pit at 7.0 feet.			

(Te	rra onmen		hics ring, Inc.	TEST PIT NUMBER PAGE	TP-12 E 1 OF 1	
		T WAS	State	Dept. of Ec	ology Toxics Cleanup Program	PROJECT NAME 400 E. Mountain View Avenue		
F	PROJ	ECT NUM	/IBER	15006		PROJECT LOCATION _Yakima, Washington		
	DATE	STARTE	D _0	2/10/15 1		GROUND ELEVATION _TBD TEST PIT SIZE _3 foot v	wide bucket	
					TJ's Bulldozing			
					vator, John Deere 590-D			
		_			CHECKED BY Melody Studer			
H	NOTE	.5				AFTER EXCAVATION		
	O DEPTH (ft)	COMPOSITE SAMPLE ID	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	Environmental Data	
-	- - - 2.5 -	-	SM		SILTY SAND, (SM) dark brown, fine f	e to medium silty sand, loose to medium dense, dry	PID = 0	
GENERAL BH / TP / WELL - GINT STD US.GDT - 2/25/15 13:38 - R:/GINT/TG PROJECTS/WYFR/WYFR.GPJ	- 5.0 -		SM		moist to wet	and, loose to medium dense, stained blue/gray, petroleum odor,	PID = 0	
D US.GDT - 2/25/15 13:38 - R	- 7.5	TP-12 8'	GP				PID = 0	
NT STI		15:30				Bottom of test pit at 8.0 feet.	•	
GENERAL BH / TP / WELL - GI								



			onmen	tal E	ngine	phic eering, I	S nc.		TEST PIT NUMBER PAG	TP-14 E 1 OF 1
	PROJ		State MBER	15	. of E 006				PROJECT NAME 400 E. Mountain View Avenue PROJECT LOCATION Yakima, Washington GROUND ELEVATION TBD TEST PIT SIZE 3 foot	wide bucket
							Bulldozing			
							John Deere 590-D			
	NOTE	5 <u>No pe</u>	etroiel	um o	aor,	no visua	ai impacts, no soli sample	e collected	AFTER EXCAVATION	
	o DEPTH o (ft)	COMPOSITE SAMPLE ID	U.S.C.S.	GRAPHIC	LOG				MATERIAL DESCRIPTION	Environmental Data
	0.0				Т	S	ILT, (ML) dark brown silt	with fine sa	nd, soft to medium stiff, dry to moist	
										PID = 0
			ML							
FR\KVFR.GPJ	5.0				5.0	0				PID = 0
S\KVF							LAY, (CL) light brown cla	y, high plas	ticity, medium stiff, moist to wet	1
GENERAL BH / TP / WELL - GINT STD US.GDT - 2/25/15 13:38 - R.\GINT\TG PROJECTS\KVFR\KVFR.GPJ			CL							PID = 0
GINT STD US.GDT - 2/25/15			GP			G de	RAVEL WITH SAND, (G ense, wet	 P) brown gr	avel with silty fine to coarse sand and cobbles, medium dense to	-
ËLL									Bottom of test pit at 8.5 feet.	
GENERAL BH / TP / W										

GENERAL BH / TP / WELL - GINT STD US.GDT - 2/25/15 13:38 - R:\GINT\TG PROJECTS\KVFR\KVFR.GPJ

			rra nmen	Grap tal Engineer TerraGraphics.com	nics ing, Inc.	TEST PIT NUMBER TP-16 PAGE 1 OF 1
CI	IENT	WA S	state [Dept of Eco	ology Toxics Cleanup Program	PROJECT NAME 400 E. Mountain View Avenue
				15006		PROJECT LOCATION _Yakima, Washington
					3:24 COMPLETED 02/10/15 16:45	GROUND ELEVATIONTBD TEST PIT SIZE _3 foot wide bucket
					TJ's Bulldozing	
					ator, John Deere 590-D	AT TIME OF EXCAVATION
					CHECKED BY Melody Studer	
						AFTER EXCAVATION
o DEPTH		COMPOSITE SAMPLE ID	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
-	-		SM	2.0	SILTY SAND, (SM) dark brown silty f	ne to medium sand, loose, dry to moist
2.	.5		ML	4.5	SILT, (ML) brown silt with fine sand, s	
5 13:38 - R./GINTIG PROJECTSIKVFRIKVF	-		GP		GRAVEL WITH SAND, (GP) brown g	ravel with silty fine to coarse sand and cobbles, medium dense to dense, wet
2/25/1		16:30		1 / \ & 1/ \ &		Bottom of test pit at 7.0 feet.
GENERAL BH / TP / WELL - GINT STD US.GDT - 2/25/15 13:38 - R:/GINTTG PROJECTS/KVFR/KVFR.G						

Appendix C

Laboratory Analytical Results and Chain of Custody Documentation

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

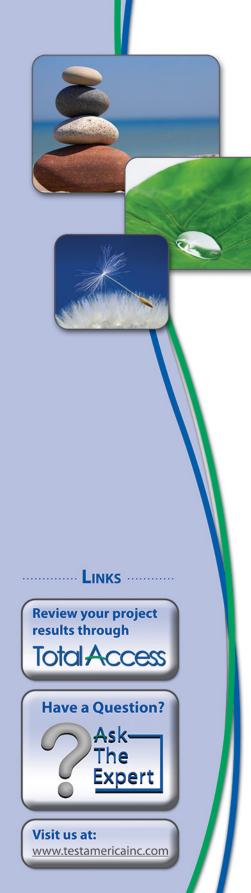
TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-47473-1 Client Project/Site: KVFR

For:

TerraGraphics Inc TerraGraphics Environmental Engineering 988 South Longmont Ave Suite 200 Boise, Idaho 83706

Attn: John Means


David Burk

Authorized for release by: 2/18/2015 6:15:13 PM

David Burk, Project Manager I (253)248-4972 david.burk@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	3
Definitions	5
Client Sample Results	6
QC Sample Results	33
Chronicle	42
Certification Summary	48
Sample Summary	49
Chain of Custody	50
Receipt Checklists	53

Case Narrative

Job ID: 580-47473-1

Laboratory: TestAmerica Seattle

Narrative

Receipt

The samples were received on 2/12/2015 9:55 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.1° C and 2.5° C.

Except:

The following sample was submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): The sample added to the bottom of the COC and placed on hold pending client notification. The client instructed to run this sample as a 3 day Rush tat.TP-12 8' (580-47473-16)

The following samples were received in pre-weighed containers with a label that was added in the field, which would cause a slight low bias in the final results. C-C' (580-47473-13), D-D' (580-47473-14), TP-17' (580-47473-1), TP-10 6' (580-47473-10), TP-12 8' (580-47473-16), TP-13 7' (580-47473-11), TP-16 7' (580-47473-12), TP-2 8' (580-47473-2), TP-3 8' (580-47473-3), TP-4 7' (580-47473-4), TP-5 6' (580-47473-5), TP-6 6' (580-47473-6), TP-6 6' D (580-47473-7), TP-8 5' (580-47473-8), TP-9 5' (580-47473-9), Trip Blank (580-47473-15).

The sitr bar vials for 8260 for the following samples C-C' (580-47473-13), D-D' (580-47473-14), TP-1 7' (580-47473-1), TP-10 6' (580-47473-10), TP-12 8' (580-47473-16), TP-13 7' (580-47473-11), TP-16 7' (580-47473-12), TP-2 8' (580-47473-2), TP-3 8' (580-47473-3), TP-4 7' (580-47473-4), TP-5 6' (580-47473-5), TP-6 6' (580-47473-6), TP-6 6' D (580-47473-7), TP-8 5' (580-47473-8), TP-9 5' (580-47473-9), Trip Blank (580-47473-15)were frozen immediately upon arrival to the laboratory.

GC/MS VOA

Method(s) 8260C: The following sample(s) was received with insufficient time remaining to freeze within 48 hours, as required for samples collected in water preserved TerraCores: TP-1 7' (580-47473-1), TP-2 8' (580-47473-2), Trip Blank (580-47473-15). The sample(s) was collected on 2/10/2015 at 11:00 and 11:25. The sample(s) was received on 2/12/2015 at 11:30 and placed immediately in the freezer.

Method(s) 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 182696 recovered outside control limits for the following analytes: 1,2-dichloroethane, ethylene dibromide, and methyl tert-butyl ether. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8260C: The following sample was reanalyzed for target analyte naphthalene due to the internal standard associated with naphthalene recovering below control limits during the original analysis: TP-16 7' (580-47473-12).

Method(s) NWTPH-Gx: The method blank for batch 182502 contained Gasoline above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) NWTPH-Gx: Surrogate recovery for the following sample was outside control limits: TP-6 6' D (580-47473-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) NWTPH-Gx: The method blank for batch 182639 contained Gasoline above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) NWTPH-Gx: AB: 182639

NWTPH_GX: The associated samples were reanalyzed due to the likelihood of carryover from a previously analyzed heavily contaminated sample in the original analysis.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method(s) NWTPH-Dx: In analysis batch 182566, for the following sample(s) from preparation batch 182463: The following sample(s) contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the

1 2 3 4 5 6 7 8 9 10

Job ID: 580-47473-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

laboratory for quantitative purposes: ST-CB-08-20150210-S (580-47459-1).

Method(s) NWTPH-Dx: In analysis batch 182566, for the following sample(s) from preparation batch 182463: The following sample(s) contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: TP-1 7' (580-47473-1), TP-9 5' (580-47473-9).

Method(s) NWTPH-Dx: In analysis batch 182566, for the following sample(s) from preparation batch 182463: The following sample(s) contained a hydrocarbon pattern in the diesel range; however, the elution pattern was earlier than the typical diesel fuel pattern used by the laboratory for quantitative purposes: TP-10 6' (580-47473-10), TP-16 7' (580-47473-12), TP-2 8' (580-47473-2), TP-4 7' (580-47473-4), TP-5 6' (580-47473-5), TP-6 6' (580-47473-6), TP-6 6' D (580-47473-7).

Method(s) NWTPH-Dx: In analysis batch 182566, for the following sample(s) from preparation batch 182463: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision were outside control limits. The matrix spike was spilled see NCM # 98112: laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method(s) NWTPH-Dx: Surrogate recovery for the following sample(s) was outside control limits: (580-47459-1 MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3546: In preparation batch 182463, the following samples: TP-1 7' (580-47473-1), contained mud, rocks, and plant matter.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2 3 4 5 6 7

Q	ual	ifie	rs
	uui		

GC/MS VOA

GC/IVIS VUA		4
Qualifier	Qualifier Description	-
Н	Sample was prepped or analyzed beyond the specified holding time	5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
*	LCS or LCSD exceeds the control limits	
GC/MS Sem	ii VOA	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
GC VOA		8
Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	9
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	

GC Semi VOA

Surrogate is outside control limits

Х

Qualifier	Qualifier Description
Y	The chromatographic response resembles a typical fuel pattern.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

0.0010

0.0021

MDL Unit

0.00031 mg/Kg

0.00031 mg/Kg

D

₽

₽

Prepared

02/12/15 11:30

02/12/15 11:30

Analyte

Benzene

Toluene

Client Sample ID: TP-1 7'

Date Collected: 02/10/15 11:00

Date Received: 02/12/15 09:55

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND H

ND H

Lab Sample ID: 580-47473-1

Analyzed

02/17/15 13:40

02/17/15 13:40

Matrix: Solid

Dil Fac

1

1

Percent Solids: 86.1

5

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Gasoline	1.2	JB	4.7	0.58	mg/Kg	<u></u>	02/17/15 13:51	02/17/15 16:09	1
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Method: NWTPH-Gx - Northwe	est - Volatile Petre	oleum Prod	ucts (GC) - RA						
Terphenyl-d14 (Surr)	83		42 - 151				02/13/15 09:20	02/17/15 15:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND		0.0056	0.0017	mg/Kg	¢	02/13/15 09:20	02/17/15 15:24	1
Indeno[1,2,3-cd]pyrene	ND		0.0056	0.0017		¢	02/13/15 09:20	02/17/15 15:24	1
Benzo[a]pyrene	ND		0.0056	0.0017		¢	02/13/15 09:20	02/17/15 15:24	1
Benzo[k]fluoranthene	ND		0.0056	0.0017	0 0	¢	02/13/15 09:20	02/17/15 15:24	
Benzo[b]fluoranthene	ND		0.0056	0.0017	mg/Kg	₽	02/13/15 09:20	02/17/15 15:24	
Chrysene	ND		0.0056	0.0017	mg/Kg	¢	02/13/15 09:20	02/17/15 15:24	
Benzo[a]anthracene	ND		0.0056	0.0017	mg/Kg	<u>Å</u>	02/13/15 09:20	02/17/15 15:24	
Method: 8270D SIM - Semivola Analyte		n <mark>pounds (G</mark> Qualifier	C/MS SIM) _{RL}	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dibromofluoromethane (Surr)	97		75 - 132				02/12/15 11:30	02/17/15 13:40	
Trifluorotoluene (Surr)	101		65 - 140				02/12/15 11:30	02/17/15 13:40	
Toluene-d8 (Surr)	105		80 - 120				02/12/15 11:30	02/17/15 13:40	
4-Bromofluorobenzene (Surr)	93		70 - 120				02/12/15 11:30	02/17/15 13:40	
1,2-Dichloroethane-d4 (Surr)	101		71 - 136				02/12/15 11:30	02/17/15 13:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
EDB	ND	Н	0.0010	0.00021	mg/Kg	¢	02/12/15 11:30	02/17/15 13:40	-
Xylenes, Total	ND		2.1	0.51	ug/Kg	¢	02/12/15 11:30	02/17/15 13:40	•
Naphthalene	ND		0.0051	0.00051	mg/Kg	¢	02/12/15 11:30	02/17/15 13:40	
EDC	ND		0.0010	0.00041	mg/Kg	<i>₽</i>	02/12/15 11:30	02/17/15 13:40	
Methyl tert-butyl ether	ND		0.0010	0.00031	mg/Kg	¢	02/12/15 11:30	02/17/15 13:40	
o-Xylene	ND		0.0021	0.00051	mg/Kg	¢	02/12/15 11:30	02/17/15 13:40	
m-Xylene & p-Xylene	ND	Н	0.0021	0.00021	mg/Kg	₽	02/12/15 11:30	02/17/15 13:40	
Ethylbenzene	ND	Н	0.0010	0.00041	mg/Kg	¢	02/12/15 11:30	02/17/15 13:40	

Method: NWTPH-Dx - Northwest -	Semi-Volatile	e Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	67	Y	29	6.6	mg/Kg	<u></u>	02/13/15 10:52	02/17/15 13:00	1
Motor Oil (>C24-C36)	27	J	58	11	mg/Kg	₽	02/13/15 10:52	02/17/15 13:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	76		50 - 150				02/13/15 10:52	02/17/15 13:00	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	3.2		0.46	0.044	ma/Ka	\$	02/13/15 11:11	02/13/15 16:55	10

Client: TerraGraphics Inc TestAmerica Job ID: 580-47473-1 Project/Site: KVFR Client Sample ID: TP-1 7' Lab Sample ID: 580-47473-1 Date Collected: 02/10/15 11:00 Matrix: Solid Date Received: 02/12/15 09:55 **General Chemistry** Analyte Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed 0.10 % 02/14/15 18:05 Percent Solids 86 0.10 1 0.10 02/14/15 18:05 0.10 % 1 **Percent Moisture** 14

0.0012

0.0023

0.0012

MDL Unit

0.00035 mg/Kg

0.00035 mg/Kg

0.00047 mg/Kg

Analyte

Benzene

Toluene

Ethylbenzene

Client Sample ID: TP-2 8'

Date Collected: 02/10/15 11:25

Date Received: 02/12/15 09:55

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND H

ND H

ND H

Lab Sample ID: 580-47473-2

Analyzed

02/17/15 14:06

02/17/15 14:06

02/17/15 14:06

D

☆

₽

₽

Prepared

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

Matrix: Solid

Dil Fac

1

1

1

Percent Solids: 68.8

5

					0 0				
m-Xylene & p-Xylene	ND	Н	0.0023	0.00023	mg/Kg	₽	02/12/15 11:30	02/17/15 14:06	1
o-Xylene	ND	Н	0.0023	0.00058	mg/Kg	¢	02/12/15 11:30	02/17/15 14:06	1
Methyl tert-butyl ether	ND	н	0.0012	0.00035	mg/Kg	¢	02/12/15 11:30	02/17/15 14:06	1
EDC	ND	Η	0.0012	0.00047	mg/Kg	¢	02/12/15 11:30	02/17/15 14:06	1
Naphthalene	ND	н	0.0058	0.00058	mg/Kg	¢	02/12/15 11:30	02/17/15 14:06	1
Xylenes, Total	ND	н	2.3	0.58	ug/Kg	¢	02/12/15 11:30	02/17/15 14:06	1
EDB	ND	Н	0.0012	0.00023	mg/Kg	÷.	02/12/15 11:30	02/17/15 14:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		71 - 136				02/12/15 11:30	02/17/15 14:06	1
4-Bromofluorobenzene (Surr)	92		70 - 120				02/12/15 11:30	02/17/15 14:06	1
Toluene-d8 (Surr)	105		80 - 120				02/12/15 11:30	02/17/15 14:06	1
Trifluorotoluene (Surr)	97		65 - 140				02/12/15 11:30	02/17/15 14:06	1
Dibromofluoromethane (Surr)	97		75 - 132				02/12/15 11:30	02/17/15 14:06	1
Analyte		Qualifier	RL 0.0072			— <u>D</u>	Prepared 02/13/15 09:20	Analyzed 02/17/15 16:30	Dil Fac
Analyte	Result	Qualifier	RL	MDL	Unit		Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.0076				0 0	÷			1
Chrysene	0.010		0.0072	0.0022			02/13/15 09:20	02/17/15 16:30	1
Benzo[b]fluoranthene	0.0065		0.0072	0.0022		¢	02/13/15 09:20	02/17/15 16:30	1
Benzo[k]fluoranthene	0.0028		0.0072	0.0022		÷.	02/13/15 09:20	02/17/15 16:30	
Benzo[a]pyrene	0.0061	J	0.0072						1
Indeno[1,2,3-cd]pyrene				0.0022		¢	02/13/15 09:20	02/17/15 16:30	1 1
	0.0034		0.0072	0.0022	mg/Kg	¢	02/13/15 09:20	02/17/15 16:30	1 1 1
Dibenz(a,h)anthracene					mg/Kg				1 1 1
	0.0034	J	0.0072	0.0022	mg/Kg	¢	02/13/15 09:20	02/17/15 16:30	1 1 1 Dil Fac
Surrogate	0.0034 ND	J	0.0072 0.0072	0.0022	mg/Kg	¢	02/13/15 09:20 02/13/15 09:20	02/17/15 16:30 02/17/15 16:30	1 1 1 Dil Fac 1
Surrogate Terphenyl-d14 (Surr)	0.0034 ND <u>%Recovery</u> 95	J Qualifier	0.0072 0.0072 <u>Limits</u> 42 - 151	0.0022	mg/Kg	¢	02/13/15 09:20 02/13/15 09:20 Prepared	02/17/15 16:30 02/17/15 16:30 Analyzed	1 1 1 Dil Fac 1
Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwe	0.0034 ND <u>%Recovery</u> 95 est - Volatile Petro	J <u>Qualifier</u> Dleum Prod	0.0072 0.0072 <u>Limits</u> <u>42 - 151</u> ucts (GC)	0.0022	mg/Kg mg/Kg	\$	02/13/15 09:20 02/13/15 09:20 Prepared 02/13/15 09:20	02/17/15 16:30 02/17/15 16:30 Analyzed 02/17/15 16:30	1
Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwa Analyte	0.0034 ND %Recovery 95 est - Volatile Petro Result	J Qualifier Dleum Prod Qualifier	0.0072 0.0072 <u>Limits</u> 42 - 151 ucts (GC) RL	0.0022 0.0022 MDL	mg/Kg mg/Kg Unit		02/13/15 09:20 02/13/15 09:20 Prepared 02/13/15 09:20 Prepared	02/17/15 16:30 02/17/15 16:30 Analyzed 02/17/15 16:30 Analyzed	1 Dil Fac
	0.0034 ND <u>%Recovery</u> 95 est - Volatile Petro	J Qualifier Dleum Prod Qualifier	0.0072 0.0072 <u>Limits</u> <u>42 - 151</u> ucts (GC)	0.0022 0.0022 MDL	mg/Kg mg/Kg	\$	02/13/15 09:20 02/13/15 09:20 Prepared 02/13/15 09:20	02/17/15 16:30 02/17/15 16:30 Analyzed 02/17/15 16:30	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		50 - 150	02/13/15 13:00	02/13/15 19:26	1
	Semi-Volatile	Petroleum I	Products (GC)			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	360	Y	34	7.8	mg/Kg	\$	02/13/15 10:52	02/17/15 13:33	1
Motor Oil (>C24-C36)	18	J	68	12	mg/Kg	₽	02/13/15 10:52	02/17/15 13:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	72		50 - 150				02/13/15 10:52	02/17/15 13:33	1
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	6.3		0.72	0.069	mg/Kg	\$	02/13/15 11:11	02/13/15 16:59	10

		Client	Sample R	esults	;					1
Client: TerraGraphics Inc Project/Site: KVFR							TestAme	rica Job ID: 580-4	47473-1	2
Client Sample ID: TP-2 8' Date Collected: 02/10/15 11:25 Date Received: 02/12/15 09:55							Lab San	nple ID: 580-4 Matri	7473-2 ix: Solid	
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Percent Solids	69		0.10	0.10				02/14/15 18:05	1	
Percent Moisture	31		0.10	0.10	%			02/14/15 18:05	1	6
										8
										Ģ

Lab Sample ID: 580-47473-3

Matrix: Solid

Percent Solids: 71.0

5

Method: 8260C - Volatile Organic Compounds by GC/MS

Date Collected: 02/10/15 11:35 Date Received: 02/12/15 09:55

Client Sample ID: TP-3 8'

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	0.00031	mg/Kg	\ ₽	02/12/15 11:30	02/17/15 20:52	
Toluene	ND		0.0021	0.00031	mg/Kg	¢	02/12/15 11:30	02/17/15 20:52	
Ethylbenzene	ND		0.0010	0.00041	mg/Kg	₽	02/12/15 11:30	02/17/15 20:52	
m-Xylene & p-Xylene	ND		0.0021	0.00021	mg/Kg	¢	02/12/15 11:30	02/17/15 20:52	
o-Xylene	ND		0.0021	0.00052	mg/Kg	₽	02/12/15 11:30	02/17/15 20:52	
Methyl tert-butyl ether	ND		0.0010	0.00031	mg/Kg	₽	02/12/15 11:30	02/17/15 20:52	
EDC	ND		0.0010	0.00041	mg/Kg	¢	02/12/15 11:30	02/17/15 20:52	• • • • • • •
Naphthalene	ND		0.0052	0.00052	mg/Kg	₽	02/12/15 11:30	02/17/15 20:52	
Xylenes, Total	ND		2.1	0.52	ug/Kg	₽	02/12/15 11:30	02/17/15 20:52	1
EDB	ND		0.0010	0.00021	mg/Kg	¢	02/12/15 11:30	02/17/15 20:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		71 - 136				02/12/15 11:30	02/17/15 20:52	1
4-Bromofluorobenzene (Surr)	93		70 - 120				02/12/15 11:30	02/17/15 20:52	1
Toluene-d8 (Surr)	104		80 - 120				02/12/15 11:30	02/17/15 20:52	1
Trifluorotoluene (Surr)	101		65 - 140				02/12/15 11:30	02/17/15 20:52	1
Dibromofluoromethane (Surr)	99		75 - 132				02/12/15 11:30	02/17/15 20:52	1
Method: 8270D SIM - Semivol	atile Organic Con	pounds (G	C/MS SIM)						
	-			וחא	Unit	п	Prenared	Analyzed	Dil Far
Method: 8270D SIM - Semivola Analyte Benzo[a]anthracene	-	Qualifier	C/MS SIM) 	MDL 0.0021	Unit mg/Kg	D	Prepared 02/13/15 09:20	Analyzed 02/17/15 16:52	
Analyte	Result		RL						
Analyte Benzo[a]anthracene	Result ND		RL 0.0069	0.0021	mg/Kg	<u></u>	02/13/15 09:20	02/17/15 16:52	
Analyte Benzo[a]anthracene Chrysene	Result ND ND		RL 0.0069 0.0069	0.0021	mg/Kg mg/Kg	\$ \$	02/13/15 09:20 02/13/15 09:20	02/17/15 16:52 02/17/15 16:52	1 1 1
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene	Result ND ND ND ND		RL 0.0069 0.0069 0.0069	0.0021 0.0021 0.0021	mg/Kg mg/Kg mg/Kg		02/13/15 09:20 02/13/15 09:20 02/13/15 09:20	02/17/15 16:52 02/17/15 16:52 02/17/15 16:52	1 1 1 1
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene	Result ND ND ND ND		RL 0.0069 0.0069 0.0069 0.0069	0.0021 0.0021 0.0021 0.0021	mg/Kg mg/Kg mg/Kg mg/Kg	* * *	02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20	02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52	1 1 1 1 1
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene	Result ND ND ND ND ND		RL 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069	0.0021 0.0021 0.0021 0.0021 0.0021	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* *	02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20	02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52	
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene	Result ND	Qualifier	RL 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069	0.0021 0.0021 0.0021 0.0021 0.0021 0.0021	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * *	02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20	02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52	Dil Fac
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene Surrogate	Result ND	Qualifier	RL 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069	0.0021 0.0021 0.0021 0.0021 0.0021 0.0021	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * *	02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 Prepared	02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 Analyzed	
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene Surrogate Terphenyl-d14 (Surr)	Result ND	Qualifier Qualifier	RL 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 42 - 151	0.0021 0.0021 0.0021 0.0021 0.0021 0.0021	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * *	02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20	02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52	
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene Surrogate	Result ND ND	Qualifier Qualifier	RL 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 42 - 151	0.0021 0.0021 0.0021 0.0021 0.0021 0.0021	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * *	02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 Prepared	02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 Analyzed	Dil Fa
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwo	Result ND State %Recovery 87 est - Volatile Petro Result	Qualifier Qualifier	RL 0.0069 ucts (GC)	0.0021 0.0021 0.0021 0.0021 0.0021 0.0021	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 Prepared 02/13/15 09:20	02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 Analyzed 02/17/15 16:52	Dil Fa Dil Fa
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwo Analyte	Result ND State %Recovery 87 est - Volatile Petro Result	Qualifier Qualifier Dleum Prod Qualifier J B	RL 0.0069	0.0021 0.0021 0.0021 0.0021 0.0021 0.0021	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 02/13/15 09:20 Prepared 02/13/15 09:20 Prepared	02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 02/17/15 16:52 Analyzed 02/17/15 16:52	

Method: NWTPH-Dx - Northwest - S	Semi-Volatile	e Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	9.6	J	35	8.0	mg/Kg	\\\\	02/13/15 10:52	02/17/15 13:49	1
Motor Oil (>C24-C36)	ND		70	13	mg/Kg	₽	02/13/15 10:52	02/17/15 13:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	68		50 - 150				02/13/15 10:52	02/17/15 13:49	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	5.5		0.60	0.058	mg/Kg	¢	02/13/15 11:11	02/13/15 17:02	10

		Client	Sample R	esults	;					1
Client: TerraGraphics Inc Project/Site: KVFR							TestAme	rica Job ID: 580-4	47473-1	2
Client Sample ID: TP-3 8' Date Collected: 02/10/15 11:35 Date Received: 02/12/15 09:55							Lab San	nple ID: 580-4 Matri	7473-3 ix: Solid	
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Percent Solids	71		0.10	0.10				02/14/15 18:05	1	
Percent Moisture	29		0.10	0.10	%			02/14/15 18:05	1	
										8
										9

Date Collected: 02/10/15 12:04 Date Received: 02/12/15 09:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	- 7
Benzene	ND		0.0012	0.00035	mg/Kg	₩	02/12/15 11:30	02/17/15 18:20	1	Ţ
Toluene	ND		0.0023	0.00035	mg/Kg	¢	02/12/15 11:30	02/17/15 18:20	1	
Ethylbenzene	ND		0.0012	0.00047	mg/Kg	¢	02/12/15 11:30	02/17/15 18:20	1	
m-Xylene & p-Xylene	ND		0.0023	0.00023	mg/Kg	¢	02/12/15 11:30	02/17/15 18:20	1	
o-Xylene	ND		0.0023	0.00059	mg/Kg	¢	02/12/15 11:30	02/17/15 18:20	1	1
Methyl tert-butyl ether	ND		0.0012	0.00035	mg/Kg	¢	02/12/15 11:30	02/17/15 18:20	1	
EDC	ND		0.0012	0.00047	mg/Kg	¢.	02/12/15 11:30	02/17/15 18:20	1	
Naphthalene	ND		0.0059	0.00059	mg/Kg	¢	02/12/15 11:30	02/17/15 18:20	1	
Xylenes, Total	ND		2.3	0.59	ug/Kg	¢	02/12/15 11:30	02/17/15 18:20	1	
EDB	ND		0.0012	0.00023	mg/Kg	¢	02/12/15 11:30	02/17/15 18:20	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	102		71 - 136				02/12/15 11:30	02/17/15 18:20	1	
4-Bromofluorobenzene (Surr)	93		70 - 120				02/12/15 11:30	02/17/15 18:20	1	
Toluene-d8 (Surr)	99		80 - 120				02/12/15 11:30	02/17/15 18:20	1	
Trifluorotoluene (Surr)	103		65 - 140				02/12/15 11:30	02/17/15 18:20	1	
Dibromofluoromethane (Surr)	96		75 - 132				02/12/15 11:30	02/17/15 18:20	1	

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND	0.0064	0.0019	mg/Kg	₽ ₽	02/13/15 09:20	02/17/15 17:14	1
Chrysene	ND	0.0064	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 17:14	1
Benzo[b]fluoranthene	ND	0.0064	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 17:14	1
Benzo[k]fluoranthene	ND	0.0064	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 17:14	1
Benzo[a]pyrene	ND	0.0064	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 17:14	1
Indeno[1,2,3-cd]pyrene	ND	0.0064	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 17:14	1
Dibenz(a,h)anthracene	ND	0.0064	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 17:14	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

L	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzea	Dii Fac
l	Terphenyl-d14 (Surr)	95		42 - 151	02/13/15 09:20	02/17/15 17:14	1

Method: NWTPH-Gx - Northwest - Vola	tile Petroleu	um Products (GC)						
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	70 B	5.8	0.73	mg/Kg	\	02/13/15 13:00	02/13/15 20:32	1
Surrogate 9	&Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101	50 - 150				02/13/15 13:00	02/13/15 20:32	1

Method: NWTPH-Dx - Northwest -	Semi-Volatile	Petroleum	Products (G	C)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	440	Y	32	7.4	mg/Kg	¢	02/13/15 10:52	02/17/15 14:05	1
Motor Oil (>C24-C36)	ND		65	12	mg/Kg	₽	02/13/15 10:52	02/17/15 14:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	75		50 - 150				02/13/15 10:52	02/17/15 14:05	1
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.5		0.46	0.044	mg/Kg	<u></u>	02/13/15 11:11	02/13/15 17:06	10

TestAmerica Seattle

Page 12 of 53

Client: TerraGraphics Inc

TestAmerica Job ID: 580-47473-1

5

Project/Site: KVFR Client Sample ID: TP-4 7' Lab Sample ID: 580-47473-4 Date Collected: 02/10/15 12:04 Matrix: Solid Date Received: 02/12/15 09:55 **General Chemistry** Analyte RL MDL Unit Dil Fac Result Qualifier D Prepared Analyzed 2000 Total Organic Carbon 2100 44 mg/Kg 02/18/15 15:01 1 0.10 02/14/15 18:05 0.10 % **Percent Solids** 1 76 02/14/15 18:05 **Percent Moisture** 24 0.10 0.10 % 1

0.00092

0.0018

0.00092

0.0018

0.0018

0.00092

0.00092

0.0046

0.00092

1.8

MDL Unit

0.00028 mg/Kg

0.00028 mg/Kg

0.00037 mg/Kg

0.00018 mg/Kg

0.00046 mg/Kg

0.00028 mg/Kg

0.00037 mg/Kg

0.00046 mg/Kg

0.00018 mg/Kg

0.46 ug/Kg

D

₽

₽

₽

₽

₽

₽

à

₽

₽

₽

Prepared

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

Analyte

Benzene

Toluene

o-Xylene

EDC

EDB

Ethylbenzene

Naphthalene

Xylenes, Total

m-Xylene & p-Xylene

Methyl tert-butyl ether

Client Sample ID: TP-5 6'

Date Collected: 02/10/15 12:35

Date Received: 02/12/15 09:55

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

Lab Sample ID: 580-47473-5

Analyzed

02/17/15 14:58

02/17/15 14:58

02/17/15 14:58

02/17/15 14:58

02/17/15 14:58

02/17/15 14:58

02/17/15 14:58

02/17/15 14:58

02/17/15 14:58

02/17/15 14:58

Matrix: Solid

Dil Fac

1

1

Percent Solids: 69.2

5

	8
	9

1	
1	
1	
1	8
1	
1	9
1	
1	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		71 - 136	02/12/15 11:30	02/17/15 14:58	1
4-Bromofluorobenzene (Surr)	96		70 - 120	02/12/15 11:30	02/17/15 14:58	1
Toluene-d8 (Surr)	102		80 - 120	02/12/15 11:30	02/17/15 14:58	1
Trifluorotoluene (Surr)	102		65 - 140	02/12/15 11:30	02/17/15 14:58	1
Dibromofluoromethane (Surr)	99		75 _ 132	02/12/15 11:30	02/17/15 14:58	1
—						

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		0.0071	0.0021	mg/Kg	<u> </u>	02/13/15 09:20	02/17/15 17:35	1
Chrysene	0.018		0.0071	0.0021	mg/Kg	⇔	02/13/15 09:20	02/17/15 17:35	1
Benzo[b]fluoranthene	ND		0.0071	0.0021	mg/Kg	₽	02/13/15 09:20	02/17/15 17:35	1
Benzo[k]fluoranthene	ND		0.0071	0.0021	mg/Kg	¢.	02/13/15 09:20	02/17/15 17:35	1
Benzo[a]pyrene	ND		0.0071	0.0021	mg/Kg	¢	02/13/15 09:20	02/17/15 17:35	1
Indeno[1,2,3-cd]pyrene	ND		0.0071	0.0021	mg/Kg	₽	02/13/15 09:20	02/17/15 17:35	1
Dibenz(a,h)anthracene	ND		0.0071	0.0021	mg/Kg	¢	02/13/15 09:20	02/17/15 17:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

	5			•	•	
	Terphenyl-d14 (Surr)	77	42 - 151	02/13/15 09:20	02/17/15 17:35	1
1						
ĥ						

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	1.6	JB	6.5	0.81	mg/Kg	\\\	02/17/15 13:51	02/17/15 16:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		50 - 150				02/17/15 13:51	02/17/15 16:39	1
Method: NWTPH-Dx - Northwes	t - Semi-Volatile	e Petroleum	Products (GC)						
Analyta	Desult	Qualifier	ы	MDI	Unit	Б	Droporod	Analyzad	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	4100	Y	33	7.6	mg/Kg	₩ Å	02/13/15 10:52	02/17/15 14:21	1
Motor Oil (>C24-C36)	82	Y	67	12	mg/Kg	₽	02/13/15 10:52	02/17/15 14:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	62		50 - 150				02/13/15 10:52	02/17/15 14:21	1
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	8.4		0.66	0.063	mg/Kg	<u></u>	02/13/15 11:11	02/13/15 17:10	10

	Client Sample Results 1										
Client: TerraGraphics Inc TestAmerica Job ID: 58 Project/Site: KVFR										2	
Client Sample ID: TP-5 6' Date Collected: 02/10/15 12:35 Date Received: 02/12/15 09:55							Lab San	nple ID: 580-4 Matri	7473-5 ix: Solid		
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5	
Percent Solids	69		0.10	0.10				02/14/15 18:05	1		
Percent Moisture	31		0.10	0.10	%			02/14/15 18:05	1		
										8	
										9	

Lead

Client Sample ID: TP-6 6' Date Collected: 02/10/15 12:57 Date Received: 02/12/15 09:55

Method: 8260C - Volatile Organic Compounds by GC/MS

5

Lab Sample ID: 580-47473-6	
Matrix: Solid	
Percent Solids: 69.5	

Dil Fac Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed ä 02/12/15 11:30 Benzene ND 0.0014 0.00042 mg/Kg 02/17/15 19:11 02/12/15 11:30 ND Toluene 0.0028 0.00042 mg/Kg 02/17/15 19:11 1 Ethylbenzene ND 0.0014 0.00056 mg/Kg ₫ 02/12/15 11:30 02/17/15 19:11 1 ND m-Xylene & p-Xylene 0.0028 0.00028 mg/Kg 02/12/15 11:30 02/17/15 19:11 1 Ö o-Xylene 0.0038 0.0028 0.00070 ma/Ka 02/12/15 11:30 02/17/15 19:11 1 ND 0.0014 0.00042 mg/Kg 02/12/15 11:30 02/17/15 19:11 Methyl tert-butyl ether 1 EDC ND 0.0014 0.00056 02/12/15 11:30 02/17/15 19:11 mg/Kg ₽ Naphthalene ND 0.0070 0.00070 02/12/15 11:30 02/17/15 19:11 mg/Kg ¢ **Xylenes**, Total 3.8 2.8 0.70 ug/Kg 02/12/15 11:30 02/17/15 19:11 1 à EDB ND 0.0014 0.00028 mg/Kg 02/12/15 11:30 02/17/15 19:11 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 02/12/15 11:30 02/17/15 19:11 1,2-Dichloroethane-d4 (Surr) 101 71 - 136 1 4-Bromofluorobenzene (Surr) 85 70 - 120 02/12/15 11:30 02/17/15 19:11 1 115 Toluene-d8 (Surr) 80 - 120 02/12/15 11:30 02/17/15 19.11 1 Trifluorotoluene (Surr) 94 65 - 140 02/12/15 11:30 02/17/15 19:11 1 Dibromofluoromethane (Surr) 96 02/12/15 11:30 75 - 132 02/17/15 19:11 1 Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) D Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac ö ND 02/13/15 09:20 02/17/15 17:57 Benzo[a]anthracene 0.0070 0.0021 mg/Kg ¢ 02/17/15 17:57 ND 0.0070 02/13/15 09:20 Chrysene 0.0021 mg/Kg 1 ö Benzo[b]fluoranthene ND 0.0070 0.0021 mg/Kg 02/13/15 09:20 02/17/15 17:57 φ Benzo[k]fluoranthene ND 0.0070 0.0021 02/13/15 09:20 02/17/15 17:57 mg/Kg Benzo[a]pyrene ND 0.0070 0.0021 mg/Kg 02/13/15 09:20 02/17/15 17:57 0.0070 ₽ 02/13/15 09:20 Indeno[1,2,3-cd]pyrene ND 0.0021 mg/Kg 02/17/15 17:57 1 Dibenz(a,h)anthracene ND 0.0070 0.0021 mg/Kg 02/13/15 09:20 02/17/15 17:57 Qualifier Surrogate %Recovery Limits Prepared Analyzed Dil Fac Terphenyl-d14 (Surr) 89 42 - 151 02/13/15 09:20 02/17/15 17:57 Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed à 02/13/15 13:00 Gasoline 610 В 7.7 0.97 mg/Kg 02/13/15 22:11 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 02/13/15 13:00 02/13/15 22:11 137 50 - 150 Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) Analyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac RL ¢ #2 Diesel (C10-C24) 4800 36 8.1 mg/Kg 02/13/15 10:52 02/17/15 14:37 Y 1 Motor Oil (>C24-C36) 71 02/13/15 10:52 02/17/15 14:37 94 mg/Kg Y 13 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 84 50 - 150 02/13/15 10:52 02/17/15 14:37 Method: 6020A - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed

0.61 8.8 0.059 mg/Kg 02/13/15 11:11 02/13/15 17:14 10

Client: TerraGraphics Inc

TestAmerica Job ID: 580-47473-1

5

Project/Site: KVFR Client Sample ID: TP-6 6' Lab Sample ID: 580-47473-6 Date Collected: 02/10/15 12:57 Matrix: Solid Date Received: 02/12/15 09:55 **General Chemistry** Analyte RL MDL Unit Dil Fac Result Qualifier D Prepared Analyzed 2000 Total Organic Carbon 7900 44 mg/Kg 02/18/15 15:01 1 0.10 02/14/15 18:05 0.10 % **Percent Solids** 1 69 02/14/15 18:05 **Percent Moisture** 31 0.10 0.10 % 1

0.0015

0.0029

0.0015

0.0029

0.0029

0.0015

0.0015

0.0074

2.9

MDL Unit

0.00044 mg/Kg

0.00044 mg/Kg

0.00059 mg/Kg

0.00029 mg/Kg

0.00074 mg/Kg

0.00044 mg/Kg

0.00059 mg/Kg

0.00074 mg/Kg

0.74 ug/Kg

D

₽

₽

₽

₽

₽

₽

à

₽

₽

Prepared

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

Analyte

Benzene

Toluene

o-Xylene

EDC

EDB

Ethylbenzene

Naphthalene

Xylenes, Total

m-Xylene & p-Xylene

Methyl tert-butyl ether

Client Sample ID: TP-6 6' D

Date Collected: 02/10/15 13:00

Date Received: 02/12/15 09:55

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

ND

Lab Sample ID: 580-47473-7

Analyzed

02/17/15 19:36

02/17/15 19:36

02/17/15 19:36

02/17/15 19:36

02/17/15 19:36

02/17/15 19:36

02/17/15 19:36

02/17/15 19:36

02/17/15 19:36

Matrix: Solid

Dil Fac

1

1

Percent Solids: 66.9

5

1	
1	
1	
1	8
1	
1	9
1	
1	
Fac	
1	

EDB	ND		0.0015	0.00029	mg/Kg	¢	02/12/15 11:30	02/17/15 19:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		71 - 136				02/12/15 11:30	02/17/15 19:36	1
4-Bromofluorobenzene (Surr)	98		70 - 120				02/12/15 11:30	02/17/15 19:36	1
Toluene-d8 (Surr)	101		80 - 120				02/12/15 11:30	02/17/15 19:36	1
Trifluorotoluene (Surr)	106		65 - 140				02/12/15 11:30	02/17/15 19:36	1
Dibromofluoromethane (Surr)	97		75 - 132				02/12/15 11:30	02/17/15 19:36	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		0.0069	0.0021	mg/Kg	<u></u>	02/13/15 09:20	02/17/15 18:19	1
Chrysene	0.038		0.0069	0.0021	mg/Kg	₽	02/13/15 09:20	02/17/15 18:19	1
Benzo[b]fluoranthene	ND		0.0069	0.0021	mg/Kg	¢	02/13/15 09:20	02/17/15 18:19	1
Benzo[k]fluoranthene	ND		0.0069	0.0021	mg/Kg	¢.	02/13/15 09:20	02/17/15 18:19	1
Benzo[a]pyrene	ND		0.0069	0.0021	mg/Kg	₽	02/13/15 09:20	02/17/15 18:19	1
Indeno[1,2,3-cd]pyrene	ND		0.0069	0.0021	mg/Kg	¢	02/13/15 09:20	02/17/15 18:19	1
Dibenz(a,h)anthracene	ND		0.0069	0.0021	mg/Kg	¢	02/13/15 09:20	02/17/15 18:19	1
Surrogate	%Recovery	Qualifier L	imits				Prepared	Analyzed	Dil Fac

nogate	MRecovery Qu		Fiepareu	Analyzeu	DirFac
rphenyl-d14 (Surr)	79	42 - 151	02/13/15 09:20	02/17/15 18:19	1

Method: NWTPH-Gx - Northwest - V	olatile Petro	oleum Prod	ucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	700	В	7.7	0.96	mg/Kg	<u></u>	02/13/15 13:00	02/13/15 22:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	168	X	50 - 150				02/13/15 13:00	02/13/15 22:45	1

Method: NWTPH-Dx - Northwest -	Semi-Volatile	Petroleum	Products (GC))					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	6500	Y	36	8.3	mg/Kg	¢	02/13/15 10:52	02/17/15 14:54	1
Motor Oil (>C24-C36)	120	Y	73	13	mg/Kg	¢	02/13/15 10:52	02/17/15 14:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	88		50 - 150				02/13/15 10:52	02/17/15 14:54	1
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	9.3		0.66	0.063	mg/Kg	¢	02/13/15 11:11	02/13/15 17:17	10

		Client	Sample R	esults	;					
Client: TerraGraphics Inc Project/Site: KVFR							TestAme	rica Job ID: 580-4	47473-1	2
Client Sample ID: TP-6 6' D Date Collected: 02/10/15 13:00 Date Received: 02/12/15 09:55							Lab San	nple ID: 580-4 Matri	7473-7 x: Solid	
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	E
Percent Solids	67		0.10	0.10 0.10				02/14/15 18:05 02/14/15 18:05	1	
Percent Moisture	33									

0.0012

Analyte

Benzene

Lab Sample ID: 580-47473-8

Analyzed

Matrix: Solid

Dil Fac

1

Percent Solids: 74.6

5

8	

MDL Unit

0.00037 mg/Kg

D

₽

Prepared

02/12/15 11:30 02/17/15 15:23

Date Collected: 02/10/15 13:30 Date Received: 02/12/15 09:55

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

Client Sample ID: TP-8 5'

benzene	ND		0.0012	0.00037	mg/kg			02/17/15 15.23	
Toluene	ND		0.0024	0.00037	mg/Kg	₽	02/12/15 11:30	02/17/15 15:23	1
Ethylbenzene	ND		0.0012	0.00049	mg/Kg	₽	02/12/15 11:30	02/17/15 15:23	1
m-Xylene & p-Xylene	ND		0.0024	0.00024	mg/Kg	☆	02/12/15 11:30	02/17/15 15:23	1
o-Xylene	ND		0.0024	0.00061	mg/Kg	₽	02/12/15 11:30	02/17/15 15:23	1
Methyl tert-butyl ether	ND		0.0012	0.00037	mg/Kg	₽	02/12/15 11:30	02/17/15 15:23	1
EDC	ND		0.0012	0.00049	mg/Kg	¢.	02/12/15 11:30	02/17/15 15:23	1
Naphthalene	ND		0.0061	0.00061	mg/Kg	¢	02/12/15 11:30	02/17/15 15:23	1
Xylenes, Total	ND		2.4	0.61	ug/Kg	¢	02/12/15 11:30	02/17/15 15:23	1
EDB	ND		0.0012	0.00024	mg/Kg	¢	02/12/15 11:30	02/17/15 15:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		71 - 136				02/12/15 11:30	02/17/15 15:23	1
4-Bromofluorobenzene (Surr)	90		70 - 120				02/12/15 11:30	02/17/15 15:23	1
Toluene-d8 (Surr)	104		80 - 120				02/12/15 11:30	02/17/15 15:23	1
Trifluorotoluene (Surr)	106		65 - 140				02/12/15 11:30	02/17/15 15:23	1
Dibromofluoromethane (Surr)	91		75 - 132				02/12/15 11:30	02/17/15 15:23	1
Method: 8270D SIM - Semivolatile	Organic Con	npounds (G	C/MS SIM)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		0.0067	0.0020	mg/Kg	\\\\\	02/13/15 09:20	02/17/15 18:40	1
Chrysene	ND		0.0067	0.0020	mg/Kg	₽	02/13/15 09:20	02/17/15 18:40	1
Benzo[b]fluoranthene	ND		0.0067	0.0020	mg/Kg	₽	02/13/15 09:20	02/17/15 18:40	1
Benzo[k]fluoranthene	ND		0.0067	0.0020	mg/Kg	÷ • • • • • •	02/13/15 09:20	02/17/15 18:40	1
Benzo[a]pyrene	ND		0.0067	0.0020	mg/Kg	¢	02/13/15 09:20	02/17/15 18:40	1
Indeno[1,2,3-cd]pyrene	ND		0.0067	0.0020	mg/Kg	¢	02/13/15 09:20	02/17/15 18:40	1
Dibenz(a,h)anthracene	ND		0.0067	0.0020	mg/Kg		02/13/15 09:20	02/17/15 18:40	1
			0.0007						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
		Qualifier					Prepared		Dil Fac
Surrogate	%Recovery 85		Limits 42 - 151				•	Analyzed	
Surrogate Terphenyl-d14 (Surr)	%Recovery 85 Volatile Petro		Limits 42 - 151			D	•	Analyzed	
Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwest -	%Recovery 85 Volatile Petro Result	oleum Prod	Limits 42 - 151 ucts (GC) - RA	MDL		D	02/13/15 09:20	Analyzed 02/17/15 18:40	1
Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwest - Analyte	%Recovery 85 Volatile Petro Result	Dieum Prod Qualifier J B	Limits 42 - 151 ucts (GC) - RA	MDL	Unit		02/13/15 09:20 Prepared	Analyzed 02/17/15 18:40 Analyzed	1
Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwest - Analyte Gasoline	%Recovery 85 Volatile Petro Result 2.8	Dieum Prod Qualifier J B	$\frac{Limits}{42 - 151}$ $\frac{\text{ucts (GC) - RA}}{\frac{\text{RL}}{6.5}}$	MDL	Unit		02/13/15 09:20 Prepared 02/17/15 13:51	Analyzed 02/17/15 18:40 Analyzed 02/17/15 18:43	1 Dil Fac 1
Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwest - Analyte Gasoline Surrogate	%Recovery 85 Volatile Petro Result 2.8 %Recovery 109	Dieum Prod Qualifier J B Qualifier	$\frac{Limits}{42 - 151}$ $\frac{H}{6.5}$ $\frac{Limits}{50 - 150}$	MDL 0.81	Unit		02/13/15 09:20 Prepared 02/17/15 13:51 Prepared	Analyzed 02/17/15 18:40 Analyzed 02/17/15 18:43 Analyzed	Dil Fac
Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwest - Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 85 Volatile Petro Result 2.8 %Recovery 109 Semi-Volatile	Dieum Prod Qualifier J B Qualifier	$\frac{Limits}{42 - 151}$ $\frac{H}{6.5}$ $\frac{Limits}{50 - 150}$	MDL 0.81	Unit mg/Kg		02/13/15 09:20 Prepared 02/17/15 13:51 Prepared	Analyzed 02/17/15 18:40 Analyzed 02/17/15 18:43 Analyzed	Dil Fac
Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwest - Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwest - Analyte	%Recovery 85 Volatile Petro Result 2.8 %Recovery 109 Semi-Volatile	Qualifier J B Qualifier Qualifier Petroleum Qualifier	$\frac{Limits}{42 - 151}$ $\frac{42 - 151}{RL}$ $\frac{RL}{6.5}$ $\frac{Limits}{50 - 150}$ $\frac{1}{50}$	MDL 0.81	Unit mg/Kg	<u>*</u>	02/13/15 09:20 Prepared 02/17/15 13:51 Prepared 02/17/15 13:51	Analyzed 02/17/15 18:40 Analyzed 02/17/15 18:43 Analyzed 02/17/15 18:43	Dil Fac 1 Dil Fac 1 Dil Fac 1
Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwest - Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwest -	%Recovery 85 Volatile Petro Result 2.8 %Recovery 109 Semi-Volatile Result	Qualifier J B Qualifier Qualifier Petroleum Qualifier	$\frac{Limits}{42 - 151}$ $\frac{42 - 151}{RL}$ $\frac{RL}{6.5}$ $\frac{Limits}{50 - 150}$ $\frac{Products (GC)}{RL}$	MDL 0.81	Unit mg/Kg Unit	<u>*</u>	02/13/15 09:20 Prepared 02/17/15 13:51 Prepared 02/17/15 13:51 Prepared	Analyzed 02/17/15 18:40 02/17/15 18:43 02/17/15 18:43 02/17/15 18:43 Analyzed	1 Dil Fac 1 Dil Fac 1 Dil Fac
Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwest - Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwest - Analyte #2 Diesel (C10-C24)	%Recovery 85 Volatile Petro Result 2.8 %Recovery 109 Semi-Volatile Result 9.8	Qualifier J B Qualifier Qualifier Petroleum Qualifier J	$\frac{Limits}{42 - 151}$ $\frac{42 - 151}{100}$ $\frac{RL}{6.5}$ $\frac{Limits}{50 - 150}$ $\frac{RL}{31}$	MDL 0.81	Unit mg/Kg Unit mg/Kg	\alpha	02/13/15 09:20 Prepared 02/17/15 13:51 Prepared 02/17/15 13:51 Prepared 02/13/15 10:52	Analyzed 02/17/15 18:40 Analyzed 02/17/15 18:43 Analyzed 02/17/15 18:43 Analyzed 02/17/15 15:10	Dil Fac1Dil Fac1Dil Fac11
Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwest - Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwest - Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	%Recovery 85 Volatile Petro Result 2.8 %Recovery 109 Semi-Volatile Result 9.8 ND	Qualifier J B Qualifier Qualifier Petroleum Qualifier J	$\frac{Limits}{42 - 151}$ $\frac{42 - 151}{100}$ $\frac{RL}{6.5}$ $\frac{Limits}{50 - 150}$ $\frac{RL}{31}$ $\frac{RL}{31}$	MDL 0.81	Unit mg/Kg Unit mg/Kg	\alpha	02/13/15 09:20 Prepared 02/17/15 13:51 Prepared 02/17/15 13:51 Prepared 02/13/15 10:52 02/13/15 10:52	Analyzed 02/17/15 18:40 02/17/15 18:43 02/17/15 18:43 02/17/15 18:43 02/17/15 18:43 02/17/15 15:10	Dil Fac1Dil Fac1Dil Fac11
Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwest - Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwest - Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36)	%Recovery 85 Volatile Petro Result 2.8 %Recovery 109 Semi-Volatile Result 9.8 ND	Qualifier J B Qualifier Qualifier Petroleum Qualifier J	$\frac{Limits}{42 - 151}$ $\frac{42 - 151}{6.5}$ $\frac{RL}{6.5}$ $\frac{Limits}{50 - 150}$ $\frac{Products (GC)}{RL}$ $\frac{RL}{31}$ 62 $Limits$	MDL 0.81	Unit mg/Kg Unit mg/Kg	\alpha	02/13/15 09:20 Prepared 02/17/15 13:51 Prepared 02/17/15 13:51 Prepared 02/13/15 10:52 02/13/15 10:52 Prepared	Analyzed 02/17/15 18:40 02/17/15 18:43 02/17/15 18:43 02/17/15 18:43 02/17/15 18:43 02/17/15 15:10 02/17/15 15:10 02/17/15 15:10	Dil Fac 1 Dil Fac 1 Dil Fac 1 1 Dil Fac
Surrogate Terphenyl-d14 (Surr) Method: NWTPH-Gx - Northwest - Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwest - Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl	%Recovery 85 Volatile Petro Result 2.8 %Recovery 109 Semi-Volatile Result 9.8 ND %Recovery 71	Qualifier J B Qualifier Qualifier Petroleum Qualifier J	$\frac{Limits}{42 - 151}$ $\frac{42 - 151}{6.5}$ $\frac{RL}{6.5}$ $\frac{Limits}{50 - 150}$ $\frac{Products (GC)}{RL}$ $\frac{RL}{31}$ 62 $Limits$	MDL 0.81	Unit mg/Kg Unit mg/Kg mg/Kg	\alpha	02/13/15 09:20 Prepared 02/17/15 13:51 Prepared 02/17/15 13:51 Prepared 02/13/15 10:52 02/13/15 10:52 Prepared	Analyzed 02/17/15 18:40 02/17/15 18:43 02/17/15 18:43 02/17/15 18:43 02/17/15 18:43 02/17/15 15:10 02/17/15 15:10 02/17/15 15:10	Dil Fac 1 Dil Fac 1 Dil Fac 1 1 Dil Fac

Client: TerraGraphics Inc TestAmerica Job ID: 580-47473-1 Project/Site: KVFR Client Sample ID: TP-8 5' Lab Sample ID: 580-47473-8 Date Collected: 02/10/15 13:30 Matrix: Solid Date Received: 02/12/15 09:55 **General Chemistry** Analyte Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed 0.10 % 02/14/15 18:05 Percent Solids 75 0.10 1 0.10 02/14/15 18:05 25 0.10 % 1 **Percent Moisture**

TestAmerica Seattle

Lead

Client Sample ID: TP-9 5'

Date Collected: 02/10/15 13:50

Date Received: 02/12/15 09:55

Lab Sample ID: 580-47473-9

Matrix: Solid

Percent Solids: 86.4

5

Method: 8260C - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0014	0.00042	mg/Kg	<u></u>	02/12/15 11:30	02/17/15 15:48	1
Toluene	ND		0.0028	0.00042	mg/Kg	¢	02/12/15 11:30	02/17/15 15:48	1
Ethylbenzene	ND		0.0014	0.00056	mg/Kg	¢	02/12/15 11:30	02/17/15 15:48	1
n-Xylene & p-Xylene	ND		0.0028	0.00028	mg/Kg	¢	02/12/15 11:30	02/17/15 15:48	1
p-Xylene	ND		0.0028	0.00070	mg/Kg	¢	02/12/15 11:30	02/17/15 15:48	1
Methyl tert-butyl ether	ND		0.0014	0.00042	mg/Kg	¢	02/12/15 11:30	02/17/15 15:48	1
EDC	ND		0.0014	0.00056	mg/Kg	÷÷÷÷	02/12/15 11:30	02/17/15 15:48	1
Naphthalene	ND		0.0070	0.00070	mg/Kg	¢	02/12/15 11:30	02/17/15 15:48	1
Kylenes, Total	ND		2.8	0.70	ug/Kg	¢	02/12/15 11:30	02/17/15 15:48	1
ЪВ	ND		0.0014	0.00028	mg/Kg	¢	02/12/15 11:30	02/17/15 15:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		71 - 136				02/12/15 11:30	02/17/15 15:48	1
1-Bromofluorobenzene (Surr)	87		70 - 120				02/12/15 11:30	02/17/15 15:48	1
Foluene-d8 (Surr)	110		80 - 120				02/12/15 11:30	02/17/15 15:48	1
Trifluorotoluene (Surr)	102		65 - 140				02/12/15 11:30	02/17/15 15:48	1
Dibromofluoromethane (Surr)	93		75 - 132				02/12/15 11:30	02/17/15 15:48	1
Method: 8270D SIM - Semivol	-		C/MS SIM)						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
enzo[a]anthracene	ND		0.0057	0.0017	mg/Kg	<u></u>	02/13/15 09:20	02/18/15 11:48	1
Chrysene	0.045		0.0057	0.0017	mg/Kg	¢	02/13/15 09:20	02/18/15 11:48	1
enzo[b]fluoranthene	0.026		0.0057	0.0017	mg/Kg	¢	02/13/15 09:20	02/18/15 11:48	1
enzo[k]fluoranthene	ND		0.0057	0.0017	mg/Kg	¢	02/13/15 09:20	02/18/15 11:48	1
Senzo[a]pyrene	0.015		0.0057	0.0017	mg/Kg	¢	02/13/15 09:20	02/18/15 11:48	1
ndeno[1,2,3-cd]pyrene	0.016		0.0057	0.0017	mg/Kg	¢	02/13/15 09:20	02/18/15 11:48	1
Dibenz(a,h)anthracene	0.0086		0.0057	0.0017	mg/Kg	Ϋ́	02/13/15 09:20	02/18/15 11:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14 (Surr)	88		42 - 151				02/13/15 09:20	02/18/15 11:48	1
Method: NWTPH-Gx - Northw						_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Basoline	1.3	JB	6.1	0.76	mg/Kg	<u></u>	02/17/15 13:51	02/17/15 17:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		50 - 150				02/17/15 13:51	02/17/15 17:42	1
Method: NWTPH-Dx - Northw									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2 Diesel (C10-C24)	120		27	6.1	mg/Kg	\\\\	02/13/15 10:52	02/17/15 15:26	1
Notor Oil (>C24-C36)	1600	Y	53	9.7	mg/Kg	Ϋ́	02/13/15 10:52	02/17/15 15:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	73		50 - 150				02/13/15 10:52	02/17/15 15:26	1
Method: 6020A - Metals (ICP/	MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

yte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	12	0.50	0.048 mg/Kg	\$	02/13/15 11:11	02/13/15 17:25	10	

Client: TerraGraphics Inc TestAmerica Job ID: 580-47473-1 Project/Site: KVFR Client Sample ID: TP-9 5' Lab Sample ID: 580-47473-9 Date Collected: 02/10/15 13:50 Matrix: Solid Date Received: 02/12/15 09:55 **General Chemistry** Analyte Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed 0.10 % 02/14/15 18:05 Percent Solids 86 0.10 1 0.10 02/14/15 18:05 0.10 % 1 **Percent Moisture** 14

Lab Sample ID: 580-47473-10 Matrix: Solid

Percent Solids: 74.6

Method: 8260C - Volatile Organic Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.0011	0.00034	mg/Kg	— -	02/12/15 11:30	02/17/15 20:02	
Toluene	ND		0.0022	0.00034	mg/Kg	¢	02/12/15 11:30	02/17/15 20:02	
Ethylbenzene	ND		0.0011	0.00045		¢	02/12/15 11:30	02/17/15 20:02	
n-Xylene & p-Xylene	ND		0.0022	0.00022		¢.	02/12/15 11:30	02/17/15 20:02	
o-Xylene	ND		0.0022	0.00022		¢	02/12/15 11:30	02/17/15 20:02	
-						\$			
Methyl tert-butyl ether EDC	ND ND		0.0011	0.00034	mg/Kg		02/12/15 11:30	02/17/15 20:02	
	ND		0.0011	0.00045	mg/Kg	¢	02/12/15 11:30	02/17/15 20:02	
Naphthalene			0.0056	0.00056	mg/Kg	¢	02/12/15 11:30	02/17/15 20:02	
Xylenes, Total	ND		2.2	0.56	ug/Kg		02/12/15 11:30	02/17/15 20:02	
EDB	ND		0.0011	0.00022	mg/Kg	¢	02/12/15 11:30	02/17/15 20:02	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	92		71 - 136				02/12/15 11:30	02/17/15 20:02	
4-Bromofluorobenzene (Surr)	91		70 - 120				02/12/15 11:30	02/17/15 20:02	
Toluene-d8 (Surr)	105		80 - 120				02/12/15 11:30	02/17/15 20:02	
Trifluorotoluene (Surr)	101		65 - 140				02/12/15 11:30	02/17/15 20:02	
Dibromofluoromethane (Surr)	93		75 - 132				02/12/15 11:30	02/17/15 20:02	
Method: 8270D SIM - Semivolatile Analyte	-	npounds (G Qualifier	iC/MS SIM) RL	MDL	Unit	D	Prepared	Analyzad	Dil Fa
-	ND	Quaimer	0.0062	0.0019		— -	02/13/15 09:20	Analyzed 02/17/15 19:24	
Benzo[a]anthracene					mg/Kg	¢			
Chrysene	0.014		0.0062	0.0019	mg/Kg		02/13/15 09:20	02/17/15 19:24	
Benzo[b]fluoranthene	ND		0.0062	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 19:24	
Benzo[k]fluoranthene	ND		0.0062	0.0019	mg/Kg	¢.	02/13/15 09:20	02/17/15 19:24	
Benzo[a]pyrene	ND		0.0062	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 19:24	
Indeno[1,2,3-cd]pyrene	ND		0.0062	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 19:24	
Dibenz(a,h)anthracene	ND		0.0062	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 19:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14 (Surr)	101		42 - 151				02/13/15 09:20	02/17/15 19:24	
Method: NWTPH-Gx - Northwest - Analyte		Qualifier	lucts (GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	150		5.6		mg/Kg	— <u>-</u>	02/13/15 13:00	02/14/15 00:24	
Dasonne	150		0.0	0.70	ing/itg		02,10,10,10,10.00	02/11/10/00:21	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	99		50 - 150				02/13/15 13:00	02/14/15 00:24	
		_							
Method: NWTPH-Dx - Northwest -				MDI	11		Drenered	Amalyzad	
Analyte		Qualifier		MDL		— <u>D</u>	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	1900		33		mg/Kg		02/13/15 10:52	02/17/15 15:42	
Motor Oil (>C24-C36)	66	J	67	12	mg/Kg	¢	02/13/15 10:52	02/17/15 15:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	77		50 - 150				02/13/15 10:52	02/17/15 15:42	
Method: 6020A - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Client: TerraGraphics Inc TestAmerica Job ID: 580-47473-1 Project/Site: KVFR Client Sample ID: TP-10 6' Lab Sample ID: 580-47473-10 Date Collected: 02/10/15 14:30 Matrix: Solid Date Received: 02/12/15 09:55 **General Chemistry** Analyte Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed 0.10 % 02/14/15 18:05 Percent Solids 75 0.10 1 0.10 02/14/15 18:05 25 0.10 % 1 **Percent Moisture**

TestAmerica Seattle

Client Sample ID: TP-13 7'

Date Collected: 02/10/15 15:43

Lab Sample ID: 580-47473-11 Matrix: Solid

Method: 8260C - Volatile Organ Analyte		by GC/MS Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Benzene			0.00094	0.00028	mg/Kg	— -	02/12/15 11:30	02/17/15 16:14	
Toluene	ND		0.0019	0.00028	mg/Kg	¢	02/12/15 11:30	02/17/15 16:14	
Ethylbenzene	ND		0.00094	0.00038		¢	02/12/15 11:30	02/17/15 16:14	
m-Xylene & p-Xylene	ND		0.0019	0.00019			02/12/15 11:30	02/17/15 16:14	
o-Xylene	ND		0.0019	0.00047	mg/Kg	¢	02/12/15 11:30	02/17/15 16:14	
Methyl tert-butyl ether	ND		0.00094	0.00028		¢	02/12/15 11:30	02/17/15 16:14	
EDC	ND		0.00094	0.00038		¢.	02/12/15 11:30	02/17/15 16:14	
Naphthalene	ND		0.0047	0.00047		¢	02/12/15 11:30	02/17/15 16:14	
Xylenes, Total	ND		1.9		ug/Kg	¢	02/12/15 11:30	02/17/15 16:14	
EDB	ND		0.00094	0.00019			02/12/15 11:30	02/17/15 16:14	
LDD	ND		0.00094	0.00019	ilig/itg	Ť	02/12/13 11:50	02/17/13 10.14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	98		71 - 136				02/12/15 11:30	02/17/15 16:14	
4-Bromofluorobenzene (Surr)	93		70 - 120				02/12/15 11:30	02/17/15 16:14	
Toluene-d8 (Surr)	105		80 - 120				02/12/15 11:30	02/17/15 16:14	
Trifluorotoluene (Surr)	101		65 - 140				02/12/15 11:30	02/17/15 16:14	
Dibromofluoromethane (Surr)	96		75 - 132				02/12/15 11:30	02/17/15 16:14	
Method: 8270D SIM - Semivola	tile Organic Con	nounds (G	C/MS SIM)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]anthracene	ND		0.0061	0.0018	mg/Kg	— —	02/13/15 09:20	02/17/15 19:46	
Chrysene	ND		0.0061	0.0018		¢	02/13/15 09:20	02/17/15 19:46	
Benzo[b]fluoranthene	ND		0.0061		mg/Kg	¢	02/13/15 09:20	02/17/15 19:46	
Benzo[k]fluoranthene	ND		0.0061	0.0018	mg/Kg		02/13/15 09:20	02/17/15 19:46	
Benzo[a]pyrene	ND		0.0061	0.0018		¢	02/13/15 09:20	02/17/15 19:46	
Indeno[1,2,3-cd]pyrene	ND		0.0061	0.0018		¢	02/13/15 09:20	02/17/15 19:46	
Dibenz(a,h)anthracene	ND		0.0061	0.0018		¢	02/13/15 09:20	02/17/15 19:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14 (Surr)		Quanner	42 - 151				02/13/15 09:20	02/17/15 19:46	
Telphenyl-a 14 (Sull)	34		42 - 151				02/13/13 09.20	02/11/13 19.40	
Method: NWTPH-Gx - Northwe	st - Volatile Petro	oleum Prod	ucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	16	В	5.1	0.64	mg/Kg	¢	02/13/15 13:00	02/14/15 00:57	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	94		50 - 150				02/13/15 13:00	02/14/15 00:57	
Method: NWTPH-Dx - Northwe Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	8.6		33		mg/Kg		02/13/15 10:52	02/17/15 15:58	
Motor Oil (>C24-C36)	ND	°	65		mg/Kg	¢	02/13/15 10:52	02/17/15 15:58	
a	~-	.			-	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
o-Terphenyl	71		50 - 150				02/13/15 10:52	02/17/15 15:58	
Method: 6020A - Metals (ICP/M	S)								
•						_	<u> </u>		D11 E
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Client: TerraGraphics Inc TestAmerica Job ID: 580-47473-1 Project/Site: KVFR Client Sample ID: TP-13 7' Lab Sample ID: 580-47473-11 Date Collected: 02/10/15 15:43 Matrix: Solid Date Received: 02/12/15 09:55 **General Chemistry** Analyte Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed 0.10 % 02/14/15 18:05 Percent Solids 76 0.10 1 0.10 02/14/15 18:05 0.10 % 1 **Percent Moisture** 24

0.00055

0.0011

0.00055

0.0011

0.0011

0.00055

0.00055

0.00055

Limits

71 - 136

70 - 120

80 - 120

65 - 140

75 - 132

1.1

MDL Unit

0.00016 mg/Kg

0.00016 mg/Kg

0.00022 mg/Kg

0.00011 mg/Kg

0.00027 mg/Kg

0.00016 mg/Kg

0.00022 mg/Kg

0.00011 mg/Kg

0.27 ug/Kg

D

₽

₽

₽

₽

Ö

₽

à

₽

₽

Prepared

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

Prepared

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30 02/17/15 18:46

Analyte

Benzene

Toluene

o-Xylene

EDC

EDB

Ethylbenzene

Xylenes, Total

Surrogate

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

m-Xylene & p-Xylene

Methyl tert-butyl ether

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: TP-16 7'

Date Collected: 02/10/15 16:30

Date Received: 02/12/15 09:55

Lab Sample ID: 580-47473-12

Analyzed

02/17/15 18:46

02/17/15 18:46

02/17/15 18:46

02/17/15 18:46

02/17/15 18:46

02/17/15 18:46

02/17/15 18:46

02/17/15 18:46

02/17/15 18:46

Analyzed

02/17/15 18:46

02/17/15 18:46

02/17/15 18:46

02/17/15 18:46

5

Matrix: Solid

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

Percent Solids: 75.0

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

%Recovery Qualifier

88

77

110

102

91

0.00021 J

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.0030	J	0.0056	0.00056	mg/Kg	¢	02/12/15 11:30	02/18/15 13:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		71 - 136				02/12/15 11:30	02/18/15 13:22	1
4-Bromofluorobenzene (Surr)	107		70 - 120				02/12/15 11:30	02/18/15 13:22	1
Toluene-d8 (Surr)	105		80 - 120				02/12/15 11:30	02/18/15 13:22	1
Trifluorotoluene (Surr)	98		65 - 140				02/12/15 11:30	02/18/15 13:22	1
Dibromofluoromethane (Surr)	105		75 - 132				02/12/15 11:30	02/18/15 13:22	1

Method: 8270D SIM - Semivolatile	e Organic Compounds	(GC/MS SIM)
----------------------------------	---------------------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		0.0063	0.0019	mg/Kg	<u> </u>	02/13/15 09:20	02/17/15 20:07	1
Chrysene	0.015		0.0063	0.0019	mg/Kg	₽	02/13/15 09:20	02/17/15 20:07	1
Benzo[b]fluoranthene	ND		0.0063	0.0019	mg/Kg	₽	02/13/15 09:20	02/17/15 20:07	1
Benzo[k]fluoranthene	ND		0.0063	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 20:07	1
Benzo[a]pyrene	ND		0.0063	0.0019	mg/Kg	₽	02/13/15 09:20	02/17/15 20:07	1
Indeno[1,2,3-cd]pyrene	ND		0.0063	0.0019	mg/Kg	₽	02/13/15 09:20	02/17/15 20:07	1
Dibenz(a,h)anthracene	ND		0.0063	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 20:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Terphenyl-d14 (Surr)	105		42 _ 151				02/13/15 09:20	02/17/15 20:07	1
Method: NWTPH-Gx - Northwe	est - Volatile Petr	oleum Prod	ucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	440	В	6.9	0.86	mg/Kg	¢	02/13/15 13:00	02/14/15 01:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		50 - 150				02/13/15 13:00	02/14/15 01:30	1
		Defendence							
Method: NWTPH-Dx - Northwe		e Petroleum	Products (GC)	MDI	Unit		Bronorod	Apolyzod	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	3500 Y	32	7.3 mg/Kg	\ ↓	02/13/15 10:54	02/17/15 16:31	1

Client Sample ID: TP-16 7'

Date Collected: 02/10/15 16:30 Date Received: 02/12/15 09:55

TestAmerica Job ID: 580-47473-1

Lab Sample ID: 580-47473-12 Matrix: Solid

Percent Solids: 75.0

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	74	Y	64	12	mg/Kg		02/13/15 10:54	02/17/15 16:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	56		50 - 150				02/13/15 10:54	02/17/15 16:31	1
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.5		0.45	0.043	mg/Kg	<u></u>	02/13/15 11:11	02/13/15 17:52	10
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	75		0.10	0.10	%			02/14/15 18:05	1
Percent Moisture	25		0.10	0.10	0/_			02/14/15 18:05	1

Lab Sample ID: 580-47473-15 Matrix: Solid

5

Client Sample ID: Trip Blank
Date Collected: 02/10/15 00:00

Date Received: 02/12/15 09:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	Н	0.0010	0.00030	mg/Kg		02/12/15 11:30	02/17/15 13:15	1
Toluene	ND	Н	0.0020	0.00030	mg/Kg		02/12/15 11:30	02/17/15 13:15	1
Ethylbenzene	ND	Н	0.0010	0.00040	mg/Kg		02/12/15 11:30	02/17/15 13:15	1
m-Xylene & p-Xylene	ND	Н	0.0020	0.00020	mg/Kg		02/12/15 11:30	02/17/15 13:15	1
o-Xylene	ND	Н	0.0020	0.00050	mg/Kg		02/12/15 11:30	02/17/15 13:15	1
Methyl tert-butyl ether	ND	н	0.0010	0.00030	mg/Kg		02/12/15 11:30	02/17/15 13:15	1
EDC	ND	Η	0.0010	0.00040	mg/Kg		02/12/15 11:30	02/17/15 13:15	1
Naphthalene	ND	Н	0.0050	0.00050	mg/Kg		02/12/15 11:30	02/17/15 13:15	1
Kylenes, Total	ND	Н	2.0	0.50	ug/Kg		02/12/15 11:30	02/17/15 13:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		71 - 136				02/12/15 11:30	02/17/15 13:15	1
4-Bromofluorobenzene (Surr)	98		70 - 120				02/12/15 11:30	02/17/15 13:15	1
Toluene-d8 (Surr)	102		80 - 120				02/12/15 11:30	02/17/15 13:15	1
Trifluorotoluene (Surr)	102		65 - 140				02/12/15 11:30	02/17/15 13:15	1
Dibromofluoromethane (Surr)	95		75 - 132				02/12/15 11:30	02/17/15 13:15	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	2.1	JB	4.0	0.50	mg/Kg		02/13/15 13:00	02/13/15 17:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		50 - 150				02/13/15 13:00	02/13/15 17:48	1

RL

0.00098

0.0020

0.00098

0.0020

0.0020

0.00098

0.00098

MDL Unit

0.00029 mg/Kg

0.00029 mg/Kg

0.00039 mg/Kg

0.00020 mg/Kg

0.00049 mg/Kg

0.00029 mg/Kg

0.00039 mg/Kg

D

₽

₽

₽

₽

₽

₽

₽

Prepared

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

02/12/15 11:30

Analyte

Benzene

Toluene

o-Xylene

EDC

Ethylbenzene

m-Xylene & p-Xylene

Methyl tert-butyl ether

Client Sample ID: TP-12 8'

Date Collected: 02/10/15 15:20

Date Received: 02/12/15 09:55

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

Lab Sample ID: 580-47473-16

Analyzed

02/18/15 12:56

02/18/15 12:56

02/18/15 12:56

02/18/15 12:56

02/18/15 12:56

02/18/15 12:56

02/18/15 12:56

5

Matrix: Solid

Naphthalene	ND		0.0049	0.00049	mg/Kg	¢	02/12/15 11:30	02/18/15 12:56	1
Xylenes, Total	ND		2.0	0.49	ug/Kg	¢	02/12/15 11:30	02/18/15 12:56	1
EDB	ND	*	0.00098	0.00020	mg/Kg	¢	02/12/15 11:30	02/18/15 12:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		71 _ 136				02/12/15 11:30	02/18/15 12:56	1
4-Bromofluorobenzene (Surr)	101		70 - 120				02/12/15 11:30	02/18/15 12:56	1
Toluene-d8 (Surr)	97		80 - 120				02/12/15 11:30	02/18/15 12:56	1
Trifluorotoluene (Surr)	91		65 - 140				02/12/15 11:30	02/18/15 12:56	1
Dibromofluoromethane (Surr)	102		75 - 132				02/12/15 11:30	02/18/15 12:56	1
- Mothod: 9270D SIM Somiyold	atila Organia Com	noundo (C)							
Method: 8270D SIM - Semivola	-			MDI	Unit		Property	Applyzed	
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Analyte Benzo[a]anthracene	Result ND		RL 0.0059	0.0018	mg/Kg		02/13/15 09:34	02/17/15 21:12	Dil Fac
Analyte	Result		RL				<u> </u>		Dil Fac 1 1
Analyte Benzo[a]anthracene Chrysene	Result ND ND		RL 0.0059 0.0059	0.0018 0.0018	mg/Kg mg/Kg		02/13/15 09:34 02/13/15 09:34	02/17/15 21:12 02/17/15 21:12	Dil Fac 1 1 1 1
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene	Result ND ND ND ND		RL 0.0059 0.0059 0.0059	0.0018 0.0018 0.0018	mg/Kg mg/Kg mg/Kg mg/Kg		02/13/15 09:34 02/13/15 09:34 02/13/15 09:34	02/17/15 21:12 02/17/15 21:12 02/17/15 21:12	Dil Fac 1 1 1 1 1 1
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene	Result ND ND ND ND ND ND		RL 0.0059 0.0059 0.0059 0.0059	0.0018 0.0018 0.0018 0.0018	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	¢	02/13/15 09:34 02/13/15 09:34 02/13/15 09:34 02/13/15 09:34	02/17/15 21:12 02/17/15 21:12 02/17/15 21:12 02/17/15 21:12	Dil Fac 1 1 1 1 1 1 1
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene	Result ND ND ND ND ND		RL 0.0059 0.0059 0.0059 0.0059 0.0059	0.0018 0.0018 0.0018 0.0018 0.0018	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	02/13/15 09:34 02/13/15 09:34 02/13/15 09:34 02/13/15 09:34 02/13/15 09:34	02/17/15 21:12 02/17/15 21:12 02/17/15 21:12 02/17/15 21:12 02/17/15 21:12	Dil Fac 1 1 1 1 1 1 1 1
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene	Result ND	Qualifier	RL 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059	0.0018 0.0018 0.0018 0.0018 0.0018 0.0018	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * *	02/13/15 09:34 02/13/15 09:34 02/13/15 09:34 02/13/15 09:34 02/13/15 09:34 02/13/15 09:34	02/17/15 21:12 02/17/15 21:12 02/17/15 21:12 02/17/15 21:12 02/17/15 21:12 02/17/15 21:12	Dil Fac 1 1 1 1 1 1 1 Dil Fac
Analyte Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene	Result ND ND ND ND ND ND ND	Qualifier	RL 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059	0.0018 0.0018 0.0018 0.0018 0.0018 0.0018	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * *	02/13/15 09:34 02/13/15 09:34 02/13/15 09:34 02/13/15 09:34 02/13/15 09:34 02/13/15 09:34 02/13/15 09:34	02/17/15 21:12 02/17/15 21:12 02/17/15 21:12 02/17/15 21:12 02/17/15 21:12 02/17/15 21:12 02/17/15 21:12	1 1 1 1 1 1 1 1

etroleum Prod	lucts (GC)					
ult Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
4.4 JB	4.5	0.57 mg/Kg	g 😨	02/13/15 13:00	02/14/15 03:09	1
ery Qualifier	Limits			Prepared	Analyzed	Dil Fac
94	50 - 150			02/13/15 13:00	02/14/15 03:09	1
	Qualifier 4.4 J B very Qualifier	4.4 J B 4.5 very Qualifier Limits	Sult Qualifier RL MDL Unit 4.4 J B 4.5 0.57 mg/Kg very Qualifier Limits	Sult Qualifier RL MDL Unit D 4.4 J B 4.5 0.57 mg/Kg \$	Sult Qualifier RL MDL Unit D Prepared 4.4 J B 4.5 0.57 mg/Kg 7 02/13/15 13:00 very Qualifier Limits Prepared Prepared	Sult Qualifier RL MDL Unit D Prepared Analyzed 4.4 J B 4.5 0.57 mg/Kg 02/13/15 02/13/15 02/14/15 03:09 very Qualifier Limits Prepared Analyzed

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	7.2	J	31	7.0	mg/Kg	<u> </u>	02/13/15 10:54	02/17/15 17:19	1
Motor Oil (>C24-C36)	ND		62	11	mg/Kg	¢	02/13/15 10:54	02/17/15 17:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	73		50 - 150				02/13/15 10:54	02/17/15 17:19	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	2.4		0.44	0.043	mg/Kg	<u>¤</u>	02/13/15 11:11	02/13/15 16:24	10

Client Sample Results

Client: TerraGraphics Inc TestAmerica Job ID: 580-47473-1 Project/Site: KVFR Client Sample ID: TP-12 8' Lab Sample ID: 580-47473-16 Date Collected: 02/10/15 15:20 Matrix: Solid Date Received: 02/12/15 09:55 **General Chemistry** Analyte Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed 0.10 % 02/14/15 18:05 Percent Solids 80 0.10 1 0.10 02/14/15 18:05 0.10 % 1 **Percent Moisture** 20

MB MB

97

97

. . . - -

1

1

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 182616

Matrix: Solid Analysis Batch: 182579

Lab Sample ID: MB 580-182616/1-A

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	0.00030	mg/Kg		02/17/15 12:27	02/17/15 09:58	1
Toluene	ND		0.0020	0.00030	mg/Kg		02/17/15 12:27	02/17/15 09:58	1
Ethylbenzene	ND		0.0010	0.00040	mg/Kg		02/17/15 12:27	02/17/15 09:58	1
m-Xylene & p-Xylene	ND		0.0020	0.00020	mg/Kg		02/17/15 12:27	02/17/15 09:58	1
o-Xylene	ND		0.0020	0.00050	mg/Kg		02/17/15 12:27	02/17/15 09:58	1
Methyl tert-butyl ether	ND		0.0010	0.00030	mg/Kg		02/17/15 12:27	02/17/15 09:58	1
EDC	ND		0.0010	0.00040	mg/Kg		02/17/15 12:27	02/17/15 09:58	1
Naphthalene	ND		0.0050	0.00050	mg/Kg		02/17/15 12:27	02/17/15 09:58	1
Xylenes, Total	ND		2.0	0.50	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
EDB	ND		0.0010	0.00020	mg/Kg		02/17/15 12:27	02/17/15 09:58	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		71 - 136				02/17/15 12:27	02/17/15 09:58	1
4-Bromofluorobenzene (Surr)	97		70 - 120				02/17/15 12:27	02/17/15 09:58	1
Toluene-d8 (Surr)	103		80 - 120				02/17/15 12:27	02/17/15 09:58	1

65 - 140

75 - 132

Lab Sample ID: LCS 580-182616/2-A
Matrix: Solid
Analysis Batch: 182579

Trifluorotoluene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 182616

02/17/15 12:27 02/17/15 09:58

02/17/15 09:58

02/17/15 12:27

	Spike	LCS L	_CS				%Rec.
Analyte	Added	Result C	Qualifier	Unit	D	%Rec	Limits
Benzene	0.0100	0.0112		mg/Kg		112	70 - 128
Toluene	0.0100	0.0104		mg/Kg		104	75 - 126
Ethylbenzene	0.0100	0.0107		mg/Kg		107	78 - 126
m-Xylene & p-Xylene	0.0100	0.0108		mg/Kg		108	78 - 126
o-Xylene	0.0100	0.0107		mg/Kg		107	77 _ 127
Methyl tert-butyl ether	0.0100	0.0123		mg/Kg		123	65 - 125
EDC	0.0100	0.0106		mg/Kg		106	71 - 128
Naphthalene	0.0100	0.0119		mg/Kg		119	14 _ 170
EDB	0.0100	0.0115		mg/Kg		115	69 - 126

LCS	LCS	
%Recovery	Qualifier	Limits
106		71 - 136
98		70 - 120
97		80 - 120
99		65 - 140
103		75 - 132
	%Recovery 106 98 97 99	106 98 97 99

Lab Sample ID: LCSD 580-182616/3-A Matrix: Solid Analysis Batch: 182579

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 182616

							Batom i	
	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	t D	%Rec	Limits	RPD	Limit
Benzene	0.0100	0.0110	mg/	Kg —	110	70 - 128	2	19
Toluene	0.0100	0.0106	mg/	Kg	106	75 _ 126	1	19

Spike

Added

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

Limits

71 - 136

70 - 120

80 - 120

65 - 140

75 - 132

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LCSD LCSD

%Recovery Qualifier

101

98

100

99

101

MR MR

MB MB

Analysis Batch: 182579

Matrix: Solid

Analyte

o-Xylene

EDC

EDB

Ethylbenzene

Naphthalene

Surrogate

Toluene-d8 (Surr)

Trifluorotoluene (Surr) Dibromofluoromethane (Surr)

m-Xylene & p-Xylene

Methyl tert-butyl ether

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Lab Sample ID: LCSD 580-182616/3-A

Client Sample ID: Lab Control Sample Dup

%Rec.

Limits

78 - 126

78 - 126

77 - 127

65 - 125

71 - 128

14 - 170

69 - 126

2 3 4 5 6

RPD

Limit

23

23

22

30

18

50

21

Prep Type: Total/NA Prep Batch: 182616

RPD

2

4

4

13

4

3

5

Lab Sample ID: MB 580-182696/1-A Matrix: Solid Analysis Batch: 182694

LCSD LCSD

0.0105

0.0104

0.0104

0.0108

0.0102

0.0123

0.0109

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

%Rec

105

104

104

108

102

123

109

	IN D								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	0.00030	mg/Kg		02/18/15 10:54	02/18/15 10:37	1
Toluene	ND		0.0020	0.00030	mg/Kg		02/18/15 10:54	02/18/15 10:37	1
Ethylbenzene	ND		0.0010	0.00040	mg/Kg		02/18/15 10:54	02/18/15 10:37	1
m-Xylene & p-Xylene	ND		0.0020	0.00020	mg/Kg		02/18/15 10:54	02/18/15 10:37	1
o-Xylene	ND		0.0020	0.00050	mg/Kg		02/18/15 10:54	02/18/15 10:37	1
Methyl tert-butyl ether	ND		0.0010	0.00030	mg/Kg		02/18/15 10:54	02/18/15 10:37	1
EDC	ND		0.0010	0.00040	mg/Kg		02/18/15 10:54	02/18/15 10:37	1
Naphthalene	ND		0.0050	0.00050	mg/Kg		02/18/15 10:54	02/18/15 10:37	1
Xylenes, Total	ND		2.0	0.50	ug/Kg		02/18/15 10:54	02/18/15 10:37	1
EDB	ND		0.0010	0.00020	mg/Kg		02/18/15 10:54	02/18/15 10:37	1

Surrogate	%Recovery	Qualifier	Limits	Prepa	ared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	126		71 - 136	02/18/15	5 10:54	02/18/15 10:37	1
4-Bromofluorobenzene (Surr)	99		70 - 120	02/18/15	5 10:54	02/18/15 10:37	1
Toluene-d8 (Surr)	96		80 - 120	02/18/15	5 10:54	02/18/15 10:37	1
Trifluorotoluene (Surr)	91		65 - 140	02/18/15	5 10:54	02/18/15 10:37	1
Dibromofluoromethane (Surr)	110		75 - 132	02/18/15	5 10:54	02/18/15 10:37	1

Lab Sample ID: LCS 580-182696/2-A Matrix: Solid

Analysis Batch: 182694

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.0300	0.0354		mg/Kg		118	70 - 128	
Toluene	0.0300	0.0336		mg/Kg		112	75 - 126	
Ethylbenzene	0.0300	0.0328		mg/Kg		109	78 - 126	
m-Xylene & p-Xylene	0.0300	0.0340		mg/Kg		113	78 - 126	
o-Xylene	0.0300	0.0353		mg/Kg		118	77 _ 127	

TestAmerica Seattle

Prep Type: Total/NA

Prep Batch: 182696

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 182696

Client Sample ID: Lab Control Sample

Spike

Added

0.0300

0.0300

0.0300

0.0300

Limits

71 - 136

70 - 120

80 - 120

65 - 140 75 - 132

LCS LCS

Result Qualifier

*

0.0395

0.0391

0.0371

0.0397 *

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

%Rec

132

130

124

132

Analysis Batch: 182694

Matrix: Solid

Methyl tert-butyl ether

Analyte

Naphthalene

Surrogate

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

EDC

EDB

Lab Sample ID: LCS 580-182696/2-A

Client Sample ID: Lab Control Sample

%Rec.

Limits

65 - 125

6

71 - 128	E
14 - 170	
69 - 126	_

Prep Type: Total/NA

Prep Batch: 182696

Lab Sample ID: LCSD 580-182696/3-A Matrix: Solid

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 182694									Prep I	Batch: 1	82696
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.0300	0.0346		mg/Kg		115	70 - 128	2	19
Toluene			0.0300	0.0326		mg/Kg		109	75 _ 126	3	19
Ethylbenzene			0.0300	0.0324		mg/Kg		108	78 ₋ 126	1	23
m-Xylene & p-Xylene			0.0300	0.0336		mg/Kg		112	78 - 126	1	23
o-Xylene			0.0300	0.0344		mg/Kg		115	77 _ 127	3	22
Methyl tert-butyl ether			0.0300	0.0386	*	mg/Kg		129	65 - 125	2	30
EDC			0.0300	0.0380		mg/Kg		127	71 - 128	3	18
Naphthalene			0.0300	0.0382		mg/Kg		127	14 _ 170	3	50
EDB			0.0300	0.0390	*	mg/Kg		130	69 - 126	2	21
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	117		71 - 136								
4-Bromofluorobenzene (Surr)	104		70 - 120								
Toluene-d8 (Surr)	94		80 - 120								
Trifluorotoluene (Surr)	82		65 - 140								
Dibromofluoromethane (Surr)	106		75 - 132								

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LCS LCS Qualifier

%Recovery

118

105

96

85

105

Lab Sample ID: MB 580-182455/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 182599 Prep Batch: 182455 MB MB Analyte RL MDL Unit Prepared Result Qualifier D Analyzed Dil Fac Benzo[a]anthracene ND 0.0050 0.0015 mg/Kg 02/13/15 09:19 02/17/15 14:19 1 Chrysene ND 0.0050 0.0015 mg/Kg 02/13/15 09:19 02/17/15 14:19 1 Benzo[b]fluoranthene ND 0.0050 0.0015 mg/Kg 02/13/15 09:19 02/17/15 14:19 1 Benzo[k]fluoranthene ND 0.0050 0.0015 mg/Kg 02/13/15 09:19 02/17/15 14:19 1 Benzo[a]pyrene ND 0.0050 0.0015 mg/Kg 02/13/15 09:19 02/17/15 14:19 1 Indeno[1,2,3-cd]pyrene ND 0.0050 0.0015 mg/Kg 02/13/15 09:19 02/17/15 14:19 1

RL

0.0050

Limits

42 - 151

MDL Unit

0.0015 mg/Kg

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

MB MB

МВ МВ

%Recovery Qualifier

93

ND

Result Qualifier

Analysis Batch: 182599

Dibenz(a,h)anthracene

Terphenyl-d14 (Surr)

Matrix: Solid

Analyte

Surrogate

Lab Sample ID: MB 580-182455/1-A

Client Sample ID: Method Blank

Analyzed

02/17/15 14:19

Prepared

02/13/15 09:19

Prepared

D

Prep Type: Total/NA

Prep Batch: 182455

Dil Fac

Dil Fac

1

1 2 3 4 5 6 7 8

02/13/15 09:19	02/17/15 14:19	1
Client Sample I): Lab Control Prep Type: T	

Analyzed

Lab Sample ID: LCS 580-182455/2-A Matrix: Solid

Analysis Batch: 182599							Prep Ba	tch: 182455
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[a]anthracene	1.00	0.842		mg/Kg		84	76 _ 119	
Chrysene	1.00	0.892		mg/Kg		89	75 ₋ 114	
Benzo[b]fluoranthene	1.00	0.855		mg/Kg		86	63 - 132	
Benzo[k]fluoranthene	1.00	0.736		mg/Kg		74	63 ₋ 119	
Benzo[a]pyrene	1.00	0.822		mg/Kg		82	72 - 117	
Indeno[1,2,3-cd]pyrene	1.00	0.829		mg/Kg		83	56 ₋ 127	
Dibenz(a,h)anthracene	1.00	0.843		mg/Kg		84	56 - 134	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Terphenyl-d14 (Surr)	92		42 _ 151

Lab Sample ID: LCSD 580-182455/3-A Matrix: Solid Analysis Batch: 182599

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 182455

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[a]anthracene	1.00	0.756		mg/Kg		76	76 - 119	11	27
Chrysene	1.00	0.810		mg/Kg		81	75 _ 114	10	26
Benzo[b]fluoranthene	1.00	0.773		mg/Kg		77	63 - 132	10	30
Benzo[k]fluoranthene	1.00	0.682		mg/Kg		68	63 _ 119	8	30
Benzo[a]pyrene	1.00	0.752		mg/Kg		75	72 _ 117	9	30
Indeno[1,2,3-cd]pyrene	1.00	0.741		mg/Kg		74	56 - 127	11	29
Dibenz(a,h)anthracene	1.00	0.773		mg/Kg		77	56 _ 134	9	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Terphenyl-d14 (Surr)	86		42 - 151

Lab Sample ID: 580-47473-1 MS Matrix: Solid

Analysis Batch: 182599									Prep	Batch: 182455
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[a]anthracene	ND		1.10	0.830		mg/Kg	\ ↓	76	76 _ 119	
Chrysene	ND		1.10	0.892		mg/Kg	₽	81	75 _ 114	
Benzo[b]fluoranthene	ND		1.10	0.881		mg/Kg	☆	80	63 _ 132	
Benzo[k]fluoranthene	ND		1.10	0.729		mg/Kg	₽	66	63 - 119	
Benzo[a]pyrene	ND		1.10	0.813		mg/Kg	☆	74	72 _ 117	

TestAmerica Seattle

Client Sample ID: TP-1 7'

Prep Type: Total/NA

Spike

Added

1.10

1.10

Limits

42 - 151

MS MS

0.807

0.829

Result Qualifier

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Sample Sample

MS MS

%Recovery Qualifier

80

ND

ND

Result Qualifier

Analysis Batch: 182599

Indeno[1,2,3-cd]pyrene

Dibenz(a,h)anthracene

Terphenyl-d14 (Surr)

Analysis Batch: 182599

Matrix: Solid

Matrix: Solid

Analyte

Surrogate

Lab Sample ID: 580-47473-1 MS

Lab Sample ID: 580-47473-1 MSD

%Rec.

Limits

56 - 127

56 - 134

D

₽

₽

%Rec

73

76

Unit

mg/Kg

mg/Kg

Client Sample ID: TP-1 7'

Prep Type: Total/NA Prep Batch: 182455

6

ample ID: TP-1 7'	
p Type: Total/NA	
ep Batch: 182455	

Prep Type: Total/	NA
Prep Batch: 1824	455
%Rec. F	RPD

Prep Batc	h: 182455
%Rec.	RPD

Prep E	Batch: 1	82455
%Rec.		RPD
Limits	RPD	Limit
76 _ 119	1	27

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[a]anthracene	ND		1.08	0.836		mg/Kg	¢	78	76 _ 119	1	27
Chrysene	ND		1.08	0.886		mg/Kg	¢	82	75 - 114	1	26
Benzo[b]fluoranthene	ND		1.08	0.749		mg/Kg	¢	69	63 - 132	16	31
Benzo[k]fluoranthene	ND		1.08	0.825		mg/Kg	₽	76	63 - 119	12	31
Benzo[a]pyrene	ND		1.08	0.810		mg/Kg	¢	75	72 - 117	0	30
Indeno[1,2,3-cd]pyrene	ND		1.08	0.770		mg/Kg	¢	71	56 ₋ 127	5	29
Dibenz(a,h)anthracene	ND		1.08	0.826		mg/Kg	\$	77	56 - 134	0	30
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Terphenyl-d14 (Surr)	85		42 - 151								

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-182499/1-A Matrix: Solid	X										Client Sa	mple ID: Met Prep Type	
Analysis Batch: 182502		мв	мв									Ргер ваю	h: 182499
Analyte			Qualifier	RL		мпі	Unit		D	P	repared	Analyzed	Dil Fac
Gasoline			J	4.0					_		3/15 13:00	02/13/15 16:09	
							2 0						
			MB							_			
Surrogate	%Recov	<u> </u>	Qualifier	Limits							repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		94		50 - 150						02/1	3/15 13:00	02/13/15 16:09	9 1
- Lab Sample ID: LCS 580-182499/2-	A								С	lient	Sample	ID: Lab Contr	ol Sample
Matrix: Solid												Prep Type	
Analysis Batch: 182502												Prep Bato	h: 182499
				Spike	LCS	LCS						%Rec.	
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Gasoline				40.0	37.5			mg/Kg			94	68 - 120	
	LCS	LCS											
Surrogate %	Recovery	Quali	fier	Limits									
4-Bromofluorobenzene (Surr)	99			50 - 150									

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

	82499/3-A					Cli	ient San	nple ID: L	ab Control		
Matrix: Solid									Prep Ty	pe: To	tal/NA
Analysis Batch: 182502									Prep B	atch: 1	
			Spike		LCSD				%Rec.		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline			40.0	37.7		mg/Kg		94	68 - 120	1	25
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
4-Bromofluorobenzene (Surr)	98		50 - 150								
Lab Sample ID: MB 580-1826	632/1-A							Client S	ample ID: N	lethod	Blank
Matrix: Solid									Prep Ty		
Analysis Batch: 182639									Prep B		
		MB MB									
Analyte	Re	sult Qualifie	er l	RL	MDL Unit		DF	repared	Analyze	d	Dil Fac
Gasoline	0.	763 J		.0	0.50 mg/l	٢g	02/	17/15 13:51	02/17/15 14	4:36	1
		WD WD									
		MB MB									
Surrogate	%Recov	very Qualifie	er Limits 50 - 150	_				Prepared 17/15 13:51	Analyze		Dil Fac
4-Bromofluorobenzene (Surr) _		112	50 - 750	/			02/	17/15 13.51	02/11/15 1	4.30	1
Lab Sample ID: LCS 580-182	2632/2-A						Clien	t Sample	ID: Lab Co	ntrol S	ample
Matrix: Solid									Prep Ty		
Analysis Batch: 182639											
			Spike	LCS	LCS				Prep B %Rec.		
Analyte			Spike Added		LCS Qualifier	Unit	D	%Rec	Prep B		
			•			_ Unit mg/Kg	D	%Rec	Prep B %Rec.		
Analyte			Added	Result			D		Prep B %Rec. Limits		
Analyte Gasoline	LCS		Added 40.0	Result			D		Prep B %Rec. Limits		
Analyte Gasoline Surrogate	%Recovery	LCS Qualifier	Added 40.0	Result			<u>D</u>		Prep B %Rec. Limits		
Analyte Gasoline			Added 40.0	Result			<u>D</u>		Prep B %Rec. Limits		
Analyte Gasoline Surrogate	% <i>Recovery</i>		Added 40.0	Result		mg/Kg		108	Prep B %Rec. Limits	atch: 1	82632
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr)	% <i>Recovery</i>		Added 40.0	Result		mg/Kg		108	Prep B %Rec. Limits 68 - 120	atch: 1	82632
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580-18	% <i>Recovery</i>		Added 40.0	Result		mg/Kg		108	Prep B %Rec. Limits 68 - 120	Sampl pe: To	le Dup tal/NA
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580-18 Matrix: Solid	% <i>Recovery</i>		Added 40.0	Result 43.0		mg/Kg		108	Prep B %Rec. Limits 68 - 120	Sampl pe: To	le Dup tal/NA
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580-18 Matrix: Solid	% <i>Recovery</i>		Added 40.0 	Result 43.0	Qualifier	mg/Kg		108	Prep B %Rec. Limits 68 - 120 Ab Control Prep Ty Prep B	Sampl pe: To	le Dup tal/NA 82632
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580-18 Matrix: Solid Analysis Batch: 182639	% <i>Recovery</i>		Added 40.0 Limits 50 - 150	Result 43.0	Qualifier	mg/Kg	ient San	nple ID: L	Prep B %Rec. Limits 68 - 120 Ab Control Prep Ty Prep B %Rec.	Samp pe: To atch: 1	le Dup tal/NA 82632 RPD
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580-18 Matrix: Solid Analysis Batch: 182639 Analyte	%Recovery 113 82632/3-A	Qualifier	Added 40.0	Result 43.0 LCSD Result	Qualifier	mg/Kg Cli	ient San	108 nple ID: L %Rec	Prep B %Rec. Limits 68 - 120 .ab Control Prep Ty Prep B %Rec. Limits	Samp pe: To atch: 1 RPD	le Dup tal/NA 82632 RPD Limit
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: LCSD 580-18 Matrix: Solid Analysis Batch: 182639 Analyte	<u>%Recovery</u> 113 82632/3-A 	Qualifier	Added 40.0	Result 43.0 LCSD Result	Qualifier	mg/Kg Cli	ient San	108 nple ID: L %Rec	Prep B %Rec. Limits 68 - 120 .ab Control Prep Ty Prep B %Rec. Limits	Samp pe: To atch: 1 RPD	le Dup tal/NA 82632 RPD Limit

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-182463/1-A Matrix: Solid Analysis Batch: 182566		МВ					Client Sa	mple ID: Metho Prep Type: 1 Prep Batch:	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		25	5.7	mg/Kg		02/13/15 10:52	02/17/15 10:35	1
Motor Oil (>C24-C36)	ND		50	9.1	mg/Kg		02/13/15 10:52	02/17/15 10:35	1

Matrix: Solid

Lead

Lab Sample ID: MB 580-182463/1-A

2 3 4 5 6 7 8 9 10

Client Sa	mple ID: Metho	d Blank	
	Prep Type: T	otal/NA	
	Prep Batch:	182463	
Prepared	Analyzed	Dil Fac	
	Analyzed 02/17/15 10:35	Dil Fac	
13/15 10:52		1	
13/15 10:52	02/17/15 10:35	1 ple Dup	
13/15 10:52	02/17/15 10:35	ple Dup otal/NA	

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

											Prep	Batch: '	18246
		MB MB											
Surrogate	%Reco	overy Qualifier	Lim	its					Pr	repared	Analy	zed	Dil Fa
o-Terphenyl		56	50 -	150				(02/13	3/15 10:52	02/17/15	10:35	
Lab Sample ID: LCSD 580-182	2463/3-A						Cli	ent S	am	ple ID: La	ab Contro	ol Samp	le Du
Matrix: Solid												Type: To	
Analysis Batch: 182566												Batch:	
			Spike		LCSD	LCSD					%Rec.		RF
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Lin
#2 Diesel (C10-C24)			500		364		mg/Kg			73	70 - 125	4	
Motor Oil (>C24-C36)			502		401		mg/Kg			80	64 - 127	6	-
		LCSD											
Surrogate	%Recovery		Limits										
o-Terphenyl	56		50 - 150										
-													
Method: 6020A - Metals (IG	CP/MS)												
Lab Sample ID: MB 580-18247	71/19-A									Client Sa	mple ID:		
Matrix: Solid												Type: To	
Analysis Batch: 182582											Prep	Batch: '	18247
		MB MB											
Analyte	R	esult Qualifier		RL 0.50		MDL Unit		D — —		repared	Analy		Dil Fa
		ND							12/1.	3/15 11:11	02/13/15		
Lead				0.50	().048 mg/K	g	,				10.03	1
-	71/20-A			0.50	ſ	7.048 mg/K	g			Sample			
_ Lab Sample ID: LCS 580-1824	71/20-A			0.00	ſ	л.048 mg/К	g			Sample	ID: Lab C	ontrol S	ampl
Lab Sample ID: LCS 580-1824 Matrix: Solid	71/20-A			0.00	ſ	J.U48 mg/K	g			Sample	ID: Lab C Prep 1	ontrol S Type: To	Sampl otal/N
_ Lab Sample ID: LCS 580-1824	.71/20-A		Spike	0.00		LCS	g			Sample	ID: Lab C Prep 1	ontrol S	Sampl otal/N
Lab Sample ID: LCS 580-1824 Matrix: Solid	71/20-A		Spike Added	0.50	LCS		g Unit			Sample %Rec	ID: Lab C Prep 1 Prep	ontrol S Type: To	Sampl otal/N
Lab Sample ID: LCS 580-1824 Matrix: Solid Analysis Batch: 182582	.71/20-A		-		LCS	LCS			ent	-	ID: Lab C Prep 1 Prep %Rec.	ontrol S Type: To	ampl otal/N
Lab Sample ID: LCS 580-1824 Matrix: Solid Analysis Batch: 182582 Analyte Lead			Added		LCS Result	LCS	Unit mg/Kg	Cli	ent	%Rec	ID: Lab C Prep 1 Prep 3 %Rec. Limits 80 - 120	ontrol S Type: To Batch: [/]	Samp otal/N 18247
Lab Sample ID: LCS 580-1824 Matrix: Solid Analysis Batch: 182582 Analyte Lead Lead Sample ID: LCSD 580-182			Added		LCS Result	LCS	Unit mg/Kg	Cli	ent	%Rec	ID: Lab C Prep 1 Prep 3 %Rec. Limits 80 - 120 ab Contro	ontrol S Type: To Batch: [•] 	Sampi otal/N 18247 le Du
Lab Sample ID: LCS 580-1824 Matrix: Solid Analysis Batch: 182582 Analyte Lead Lab Sample ID: LCSD 580-182 Matrix: Solid		·	Added		LCS Result	LCS	Unit mg/Kg	Cli	ent	%Rec	ID: Lab C Prep 1 Prep 3 %Rec. Limits 80 - 120 ab Contro Prep 1	ontrol S Type: To Batch: " ol Samp Type: To	Sampl otal/N 18247 le Du otal/N
Lab Sample ID: LCS 580-1824 Matrix: Solid Analysis Batch: 182582 Analyte Lead Lead Lab Sample ID: LCSD 580-182			Added		LCS Result	LCS Qualifier	Unit mg/Kg	Cli	ent	%Rec	ID: Lab C Prep 1 Prep 3 %Rec. Limits 80 - 120 ab Contro Prep 1	ontrol S Type: To Batch: [•] 	Sampl otal/N 18247 le Du otal/N 18247
Lab Sample ID: LCS 580-1824 Matrix: Solid Analysis Batch: 182582 Analyte Lead Lab Sample ID: LCSD 580-182 Matrix: Solid			Added 50.0		LCS Result 52.9 LCSD	LCS Qualifier	Unit mg/Kg	Cli	ent	%Rec	ID: Lab C Prep 1 %Rec. Limits 80 - 120 ab Contro Prep 1 Prep 1	ontrol S Type: To Batch: " ol Samp Type: To	Sampl otal/N/ 18247 le Du otal/N/ 18247 RP
Lab Sample ID: LCS 580-1824 Matrix: Solid Analysis Batch: 182582 Analyte Lead Lab Sample ID: LCSD 580-182 Matrix: Solid Analysis Batch: 182582			Added 50.0 Spike		LCS Result 52.9 LCSD	LCS Qualifier	Unit mg/Kg Cli	Cli	D D	%Rec 106 ple ID: La	ID: Lab C Prep 1 %Rec. Limits 80 - 120 ab Contro Prep 1 Prep 3 %Rec.	ontrol S Type: Tc Batch: ' Ol Samp Type: Tc Batch: '	Sampl otal/N 18247 le Du otal/N 18247 RP Lim
Lab Sample ID: LCS 580-1824 Matrix: Solid Analysis Batch: 182582 Analyte Lead Lab Sample ID: LCSD 580-182 Matrix: Solid Analysis Batch: 182582 Analyte Lead	 2471/21-A		Added 50.0 Spike Added		LCS Result 52.9 LCSD Result	LCS Qualifier	Unit mg/Kg Cli	Cli	D D	%Rec 106 ple ID: La %Rec 104	ID: Lab C Prep 1 Prep 2 %Rec. Limits 80 - 120 ab Contro Prep 1 Prep 2 %Rec. Limits 80 - 120	ontrol S Type: To Batch: ' DI Samp Type: To Batch: ' RPD 2	Samplotal/N 18247 le Du otal/N 18247 RP Lim
Lab Sample ID: LCS 580-1824 Matrix: Solid Analysis Batch: 182582 Analyte Lead Lab Sample ID: LCSD 580-182 Matrix: Solid Analysis Batch: 182582 Analyte Lead Lead	 2471/21-A		Added 50.0 Spike Added		LCS Result 52.9 LCSD Result	LCS Qualifier	Unit mg/Kg Cli	Cli	D D	%Rec 106 ple ID: La %Rec 104	ID: Lab C Prep 7 %Rec. Limits 80 - 120 ab Contro Prep 7 %Rec. Limits 80 - 120 %Rec. Limits 80 - 120	ontrol S Type: To Batch: ' ol Samp Type: To Batch: ' RPD 2 ole ID: T	le Du btal/N 18247 le Du btal/N 18247 RP Lim 2 P-12 1
Lab Sample ID: LCS 580-1824 Matrix: Solid Analysis Batch: 182582 Analyte Lead Lab Sample ID: LCSD 580-182 Matrix: Solid Analysis Batch: 182582 Analyte Lead Lead Lead	 2471/21-A		Added 50.0 Spike Added		LCS Result 52.9 LCSD Result	LCS Qualifier	Unit mg/Kg Cli	Cli	D D	%Rec 106 ple ID: La %Rec 104	ID: Lab C Prep 7 %Rec. Limits 80 - 120 ab Contro Prep 7 %Rec. Limits 80 - 120 %Rec. Limits 80 - 120	ontrol S Type: To Batch: ' ol Samp Type: To Batch: ' <u>RPD</u> 2 ole ID: T Type: To	Sampl otal/N, 18247 le Du otal/N, 18247 RP Lim 2 P-12 (otal/N,
Lab Sample ID: LCS 580-1824 Matrix: Solid Analysis Batch: 182582 Analyte Lead Lab Sample ID: LCSD 580-182 Matrix: Solid Analysis Batch: 182582 Analyte Lead Lead Lead	2471/21-A MS		Added 50.0 Spike Added		LCS Result 52.9 LCSD Result 51.8	LCS Qualifier	Unit mg/Kg Cli	Cli	D D	%Rec 106 ple ID: La %Rec 104	ID: Lab C Prep 7 %Rec. Limits 80 - 120 ab Contro Prep 7 %Rec. Limits 80 - 120 %Rec. Limits 80 - 120	ontrol S Type: To Batch: ' ol Samp Type: To Batch: ' RPD 2 ole ID: T	otal/N/ 18247

¤.

111 80 - 120

mg/Kg

51.5

59.5

2.4

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 580-47473-16 MSD								С	lient Samp		
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 182582									Prep I	Batch: 1	82471
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	2.4		45.0	54.8		mg/Kg	<u></u>	116	80 - 120	8	20
Lab Sample ID: 580-47473-16 DU								С	lient Samp	le ID: TF	P-12 8'
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 182582									Prep I	Batch: 1	82471
	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Lead	2.4			2.58		mg/Kg	- -			8	20

Method: 9060 - Organic Carbon, Total (TOC)

Lab Sample ID: MB 580-182737/3 Matrix: Solid												Client	Sample ID: Prep 1	Method Type: To	
Analysis Batch: 182737														,,	
		ΜВ	МВ												
Analyte	Re	esult	Qualifier		RL		MDL	Unit		D	Р	repared	Analy	zed	Dil Fac
Total Organic Carbon		ND			2000		44	mg/Kg		_			02/18/15	15:01	1
Lab Sample ID: LCS 580-182737/4										С	lient	Sampl	e ID: Lab C	ontrol S	ample
Matrix: Solid													Prep 1	Type: To	tal/NA
Analysis Batch: 182737															
				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Total Organic Carbon				2850		3220			mg/Kg			113	27.8 - 170		
_ Lab Sample ID: LCSD 580-182737/5									Cli	ient	Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid													Prep 1	Type: To	tal/NA
Analysis Batch: 182737															
				Spike		LCSD	LCS	D					%Rec.		RPD
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Total Organic Carbon				2850		3240			mg/Kg			114	27.8 - 170	1	35
 Lab Sample ID: 580-47473-4 MS													Client Sam	ple ID: T	'P-4 7'
Matrix: Solid													Prep 1	Type: To	tal/NA
Analysis Batch: 182737															
	Sample	Samp	ole	Spike		MS	MS						%Rec.		
Analyte	Result	Ousli	fier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
·		Quan													
Total Organic Carbon	2100	Quan		119000		122000			mg/Kg			101	50 - 140		
·		Quan	<u> </u>			122000			mg/Kg			101	50 - 140 Client Sam	iple ID: T	'P-4 7'
Total Organic Carbon Lab Sample ID: 580-47473-4 MSD Matrix: Solid			<u> </u>			122000			mg/Kg			101	Client Sam	iple ID: T Type: To	
Total Organic Carbon Lab Sample ID: 580-47473-4 MSD	2100			119000					mg/Kg			101	Client Sam Prep 1		tal/NA
Total Organic Carbon Lab Sample ID: 580-47473-4 MSD Matrix: Solid Analysis Batch: 182737	2100 Sample	Samp	ble	119000 Spike		122000 MSD	MSD						Client Sam Prep 7 %Rec.	Гуре: То	
Total Organic Carbon Lab Sample ID: 580-47473-4 MSD Matrix: Solid	2100	Samp	ble	119000					mg/Kg Unit mg/Kg			101 %Rec 100	Client Sam Prep 1		tal/NA

Method: 9060 - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: 580-47473-4 D Matrix: Solid Analysis Batch: 182737							Client Sample ID: T Prep Type: Tot	al/NA
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Organic Carbon	2100		 1860	J	mg/Kg		10	50

Lab Sample ID: 580-47473-1 Matrix: Solid Percent Solids: 86.1

5

6 7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			182616	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C		1	182579	02/17/15 13:40	CJ	TAL SEA
Total/NA	Prep	3550B			182455	02/13/15 09:20	RMB	TAL SEA
Total/NA	Analysis	8270D SIM		1	182599	02/17/15 15:24	AHP	TAL SEA
Total/NA	Prep	5035	RA		182632	02/17/15 13:51	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx	RA	1	182639	02/17/15 16:09	TL1	TAL SEA
Total/NA	Prep	3546			182463	02/13/15 10:52	JJP	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 13:00	JJP	TAL SEA
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SEA
Total/NA	Analysis	6020A		10	182582	02/13/15 16:55	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SEA

Client Sample ID: TP-2 8' Date Collected: 02/10/15 11:25 Date Received: 02/12/15 09:55

Lab Sample ID: 580-47473-2

Matrix: Solid Percent Solids: 68.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			182616	02/12/15 11:30	SOC	TAL SE
Total/NA	Analysis	8260C		1	182579	02/17/15 14:06	CJ	TAL SE
Total/NA	Prep	3550B			182455	02/13/15 09:20	RMB	TAL SE
Total/NA	Analysis	8270D SIM		1	182599	02/17/15 16:30	AHP	TAL SE
Total/NA	Prep	5035			182499	02/13/15 13:00	IWH	TAL SE
Total/NA	Analysis	NWTPH-Gx		1	182502	02/13/15 19:26	TL1	TAL SE
Total/NA	Prep	3546			182463	02/13/15 10:52	JJP	TAL SE
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 13:33	JJP	TAL SE
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SE
Total/NA	Analysis	6020A		10	182582	02/13/15 16:59	FCW	TAL SE
Total/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SE

Client Sample ID: TP-3 8' Date Collected: 02/10/15 11:35 Date Received: 02/12/15 09:55

Lab Sample ID: 580-47473-3
Matrix: Solid
Percent Solids: 71.0

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			182616	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C		1	182579	02/17/15 20:52	CJ	TAL SEA
Total/NA	Prep	3550B			182455	02/13/15 09:20	RMB	TAL SEA
Total/NA	Analysis	8270D SIM		1	182599	02/17/15 16:52	AHP	TAL SEA
Total/NA	Prep	5035			182499	02/13/15 13:00	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182502	02/13/15 19:59	TL1	TAL SEA
Total/NA	Prep	3546			182463	02/13/15 10:52	JJP	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 13:49	JJP	TAL SEA
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SEA

Date Received: 02/	12/15 09:5	5							Percent Solids: 71.0
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	6020A		10	182582	02/13/15 17:02	FCW	TAL SEA	
Total/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SEA	

Client Sample ID: TP-4 7' Date Collected: 02/10/15 12:04 Date Received: 02/12/15 09:55

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035		· ·	182616	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C		1	182579	02/17/15 18:20	CJ	TAL SEA
Total/NA	Prep	3550B			182455	02/13/15 09:20	RMB	TAL SEA
Total/NA	Analysis	8270D SIM		1	182599	02/17/15 17:14	AHP	TAL SEA
Total/NA	Prep	5035			182499	02/13/15 13:00	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182502	02/13/15 20:32	TL1	TAL SEA
Total/NA	Prep	3546			182463	02/13/15 10:52	JJP	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 14:05	JJP	TAL SEA
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SEA
Total/NA	Analysis	6020A		10	182582	02/13/15 17:06	FCW	TAL SEA
Total/NA	Analysis	9060		1	182737	02/18/15 15:01	LKC	TAL SEA
Total/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SEA

Client Sample ID: TP-5 6' Date Collected: 02/10/15 12:35 Date Received: 02/12/15 09:55

Lab Sample ID: 580-47473-5 Matrix: Solid

Percent Solids: 69.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			182616	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C		1	182579	02/17/15 14:58	CJ	TAL SEA
Total/NA	Prep	3550B			182455	02/13/15 09:20	RMB	TAL SEA
Total/NA	Analysis	8270D SIM		1	182599	02/17/15 17:35	AHP	TAL SEA
Total/NA	Prep	5035	RA		182632	02/17/15 13:51	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx	RA	1	182639	02/17/15 16:39	TL1	TAL SEA
Total/NA	Prep	3546			182463	02/13/15 10:52	JJP	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 14:21	JJP	TAL SEA
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SEA
Total/NA	Analysis	6020A		10	182582	02/13/15 17:10	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SEA

Lab Sample ID: 580-47473-3

Lab Sample ID: 580-47473-4

Matrix: Solid

Matrix: Solid

Percent Solids: 76.1

2/18/2015

Client Sample ID: TP-6 6'

Date Collected: 02/10/15 12:57 Date Received: 02/12/15 09:55

Lab Sample ID: 580-47473-7

Lab Sample ID: 580-47473-8

Matrix: Solid

Percent Solids: 66.9

Lab Sample ID: 580-47473-6

Matrix: Solid Percent Solids: 69.5

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			182616	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C		1	182579	02/17/15 19:11	CJ	TAL SEA
Total/NA	Prep	3550B			182455	02/13/15 09:20	RMB	TAL SEA
Total/NA	Analysis	8270D SIM		1	182599	02/17/15 17:57	AHP	TAL SEA
Total/NA	Prep	5035			182499	02/13/15 13:00	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182502	02/13/15 22:11	TL1	TAL SEA
Total/NA	Prep	3546			182463	02/13/15 10:52	JJP	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 14:37	JJP	TAL SEA
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SEA
Total/NA	Analysis	6020A		10	182582	02/13/15 17:14	FCW	TAL SEA
Total/NA	Analysis	9060		1	182737	02/18/15 15:01	LKC	TAL SEA
Total/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SEA

Client Sample ID: TP-6 6' D Date Collected: 02/10/15 13:00 Date Received: 02/12/15 09:55

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			182616	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C		1	182579	02/17/15 19:36	CJ	TAL SEA
Total/NA	Prep	3550B			182455	02/13/15 09:20	RMB	TAL SEA
Total/NA	Analysis	8270D SIM		1	182599	02/17/15 18:19	AHP	TAL SEA
Total/NA	Prep	5035			182499	02/13/15 13:00	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182502	02/13/15 22:45	TL1	TAL SEA
Total/NA	Prep	3546			182463	02/13/15 10:52	JJP	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 14:54	JJP	TAL SEA
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SEA
Total/NA	Analysis	6020A		10	182582	02/13/15 17:17	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SEA

Client Sample ID: TP-8 5' Date Collected: 02/10/15 13:30 Date Received: 02/12/15 09:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			182616	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C		1	182579	02/17/15 15:23	CJ	TAL SEA
Total/NA	Prep	3550B			182455	02/13/15 09:20	RMB	TAL SEA
Total/NA	Analysis	8270D SIM		1	182599	02/17/15 18:40	AHP	TAL SEA
Total/NA	Prep	5035	RA		182632	02/17/15 13:51	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx	RA	1	182639	02/17/15 18:43	TL1	TAL SEA
Total/NA	Prep	3546			182463	02/13/15 10:52	JJP	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 15:10	JJP	TAL SEA

Matrix: Solid

Percent Solids: 74.6

Date Received:	02/12/15 09:5	55							Percent Solids: 74.6
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SEA	_
Total/NA	Analysis	6020A		10	182582	02/13/15 17:21	FCW	TAL SEA	
Total/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SEA	

Client Sample ID: TP-9 5' Date Collected: 02/10/15 13:50 Date Received: 02/12/15 09:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			182616	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C		1	182579	02/17/15 15:48	CJ	TAL SEA
Total/NA	Prep	3550B			182455	02/13/15 09:20	RMB	TAL SEA
Total/NA	Analysis	8270D SIM		1	182701	02/18/15 11:48	AHP	TAL SEA
Total/NA	Prep	5035	RA		182632	02/17/15 13:51	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx	RA	1	182639	02/17/15 17:42	TL1	TAL SEA
Total/NA	Prep	3546			182463	02/13/15 10:52	JJP	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 15:26	JJP	TAL SEA
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SEA
Total/NA	Analysis	6020A		10	182582	02/13/15 17:25	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SEA

Client Sample ID: TP-10 6' Date Collected: 02/10/15 14:30 Date Received: 02/12/15 09:55

Lab Sample ID: 580-47473-10 Matrix: Solid Percent Solids: 74.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			182616	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C		1	182579	02/17/15 20:02	CJ	TAL SEA
Total/NA	Prep	3550B			182455	02/13/15 09:20	RMB	TAL SEA
Total/NA	Analysis	8270D SIM		1	182599	02/17/15 19:24	AHP	TAL SEA
Total/NA	Prep	5035			182499	02/13/15 13:00	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182502	02/14/15 00:24	TL1	TAL SEA
Total/NA	Prep	3546			182463	02/13/15 10:52	JJP	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 15:42	JJP	TAL SEA
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SEA
Total/NA	Analysis	6020A		10	182582	02/13/15 17:44	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SEA

Lab Sample ID: 580-47473-8

Lab Sample ID: 580-47473-9

Matrix: Solid

Matrix: Solid

Percent Solids: 86.4

Client Sample ID: TP-13 7' Date Collected: 02/10/15 15:43

Date Received: 02/12/15 09:55

Lab Sample ID: 580-47473-11 Matrix: Solid Percent Solids: 75.6

_								
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			182616	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C		1	182579	02/17/15 16:14	CJ	TAL SEA
Total/NA	Prep	3550B			182455	02/13/15 09:20	RMB	TAL SEA
Total/NA	Analysis	8270D SIM		1	182599	02/17/15 19:46	AHP	TAL SEA
Total/NA	Prep	5035			182499	02/13/15 13:00	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182502	02/14/15 00:57	TL1	TAL SEA
Total/NA	Prep	3546			182463	02/13/15 10:52	JJP	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 15:58	JJP	TAL SEA
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SEA
Total/NA	Analysis	6020A		10	182582	02/13/15 17:48	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SEA

Client Sample ID: TP-16 7' Date Collected: 02/10/15 16:30 Date Received: 02/12/15 09:55

Lab Sample ID: 580-47473-12

Lab Sample ID: 580-47473-15

Matrix: Solid Percent Solids: 75.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	RA		182696	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C	RA	1	182694	02/18/15 13:22	SOC	TAL SEA
Total/NA	Prep	5035			182616	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C		1	182579	02/17/15 18:46	CJ	TAL SEA
Total/NA	Prep	3550B			182455	02/13/15 09:20	RMB	TAL SEA
Total/NA	Analysis	8270D SIM		1	182599	02/17/15 20:07	AHP	TAL SEA
Total/NA	Prep	5035			182499	02/13/15 13:00	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182502	02/14/15 01:30	TL1	TAL SEA
Total/NA	Prep	3546			182463	02/13/15 10:54	JJP	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 16:31	JJP	TAL SEA
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SEA
Total/NA	Analysis	6020A		10	182582	02/13/15 17:52	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SEA

Client Sample ID: Trip Blank Date Collected: 02/10/15 00:00

Date Received: 02/12/15 09:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			182616	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C		1	182579	02/17/15 13:15	CJ	TAL SEA
Total/NA	Prep	5035			182499	02/13/15 13:00	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182502	02/13/15 17:48	TL1	TAL SEA

TestAmerica Seattle

Matrix: Solid

Client Sample ID: TP-12 8'

Date Collected: 02/10/15 15:20

Lab Sample ID: 580-47473-16 Matrix: Solid

Date Received:	02/12/15 09:5	55							Percent Solids: 80.4
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			182696	02/12/15 11:30	SOC	TAL SEA	_
Total/NA	Analysis	8260C		1	182694	02/18/15 12:56	SOC	TAL SEA	
Total/NA	Prep	3550B			182455	02/13/15 09:34	RMB	TAL SEA	
Total/NA	Analysis	8270D SIM		1	182599	02/17/15 21:12	AHP	TAL SEA	
Total/NA	Prep	5035			182499	02/13/15 13:00	IWH	TAL SEA	
Total/NA	Analysis	NWTPH-Gx		1	182502	02/14/15 03:09	TL1	TAL SEA	
Total/NA	Prep	3546			182463	02/13/15 10:54	JJP	TAL SEA	
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 17:19	JJP	TAL SEA	
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SEA	
Total/NA	Analysis	6020A		10	182582	02/13/15 16:24	FCW	TAL SEA	
Total/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SEA	

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TestAmerica Job ID: 580-47473-1

1 2 3 4 5 6 7 8 9 10 11

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-15
California	State Program	9	2901	01-31-15 *
L-A-B	DoD ELAP		L2236	01-19-16
L-A-B	ISO/IEC 17025		L2236	01-19-16
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-15
US Fish & Wildlife	Federal		LE192332-0	02-28-16
USDA	Federal		P330-11-00222	04-08-17
Washington	State Program	10	C553	02-17-15 *

* Certification renewal pending - certification considered valid.

Matrix

Solid

Client: TerraGraphics Inc Project/Site: KVFR

Client Sample ID

TP-1 7

TP-2 8'

TP-3 8'

TP-4 7'

TP-5 6'

TP-6 6'

TP-8 5'

TP-9 5'

TP-10 6'

TP-13 7'

TP-16 7'

TP-12 8'

Trip Blank

TP-6 6' D

Lab Sample ID

580-47473-1

580-47473-2

580-47473-3

580-47473-4

580-47473-5

580-47473-6 580-47473-7

580-47473-8

580-47473-9

580-47473-10

580-47473-11

580-47473-12

580-47473-15

580-47473-16

TestAmerica Job ID: 580-47473-1

Received

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

Collected

02/10/15 11:00

02/10/15 11:25

02/10/15 11:35

02/10/15 12:04

02/10/15 12:35

02/10/15 12:57

02/10/15 13:00

02/10/15 13:30

02/10/15 13:50

02/10/15 14:30

02/10/15 15:43

02/10/15 16:30

02/10/15 00:00

02/10/15 15:20

า รวษาเทยาบล อชสเมช 5755 8th Street East		unain	unain of Custody Record	σ	TestAmerica
Tacoma, WA 98424 phone 253.922.2310 fax	Regulatory Program:			47473	THE LEADER IN ENVIRONMENTAL TESTING TeetAmarics 1 shorstoriae Inc
Client Contact	Project Manager: J DHA	i me da	Site Contact:	Date: 2/11/25	COC Na:
TerraGraphics		C	Lab Contact: David Phore		/ of × COCs
988 S longmont ave	Analysis Turnaround Time	und Time	7		
boise idaho 83706		WORKING DAYS		20	For Lab Use Only:
(xxx) xxx-xxxx Phone	t from Be	N 3 -0AY	·		Walk-in Client:
(xxx) xxx-xxxx FAX	2 weeks		70	7.3	Lab Sampling:
Project Name: KVFR				79-	
	2 days				Job / SDG No.:
PO# 15006	1 day		76 539 757 7-7 - 0 5H 5H		
	Sample Sample		2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	X J-1 -/-1d-	
Sample Identification	Time	ab) Matrix Cont.		9	Sample Specific Notes:
1 1-1	1100				
-2 TP-28'	2/10/15/1125 6	5 75			
TP-38	1135	52 4			
-4 70-47	2/10/15 1204 G	52 4			
79-56	1235				
9 - d = 9 - 58	1257	+		580-47473 Chain of Custody	of Custody
9 TP-66'D	2/10/15 1300 G	52 4			
- 8 TP- 25	2/10/15 1330 6	51 4			
79-95'	2/10/5 1350 G	<u>Si 4</u>		Cooler/TB Dig/IR cor 2	21 unc 1,9
-10 77-106	2/10/15 1430 6	52 4		XX WetPacks Packing E	aLab
TP-137	2/10/15 1543 G	52 4			777
		52 4			m/a.S.
HCI: 3	= HZSO4; 4=HNO3; 5=NaOH; 6= Other				22
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.	se List any EPA Waste Codes f	or the sample in the		Sample Disposal (A fee may be assessed if samples are retained longer than	ed longer than 1 month)
Mon-Hazard Fammable Skin Irritant	Doison B	Unknown	Return to Client	Kpisposal by Lab	Months
Special Instructions/QC Requirements & Comments:					
Custody Seals Intact: T Yes No	Custody Seal No.:		Cooler Temp. (°C): Obs'd	Obs'd: Corr'd:	Therm ID No.:
	Company:	Date/Time:	Received by: // ///////	Compa	Date/Time; m/in/id_ngCC
drelinquished by:	Company:	Date/Time:	Received by:	Company:	Daté/Tinje:
Chelinquished by:	Company:	Date/Time:	Received in Laboratory by:	Company:	Date/Time:
			11	Eorm No. CA-C	Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

ו כטראוווטוונט סטמוווט 5755 8th Street East		Unain o	unain of Gustody Record		TestAmerica
Tacoma, WA 98424 phone 253.922 2310 fax	Regulatory Program:	DW NPDES		Stata	THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.
Client Contact	Project Manager: JOHN MEANS		Site Contact:	Date: 2/11/15	COC No:
TerraGraphics	Tel/Fax:		Lab Contact: DAVID 50RK	Carrier:	/ of Z COCs
988 S longmont ave	Turna	Time	~35 (°		Sampler:
3706	CALENDAR DAYS WOR	WORKING DAYS		20	For Lab Use Only:
α.	TAT if different		-7 (N		Walk-in Client:
(xxx) xxx-xxxx Prointed Name: 2017 (2010)		<u>(N /</u>	·1.)	72	Lab Sampling:
	- 1 week	<u>, ,) (</u>	770 770 200 200 200	9	
PO# 15006		əlqm	77 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	JOD / SUG No.:
Sample Identification	Sample Sample (C-Comp. Date Time G-Grab.	Matrix Cont	-1×1. L. Q. L. D. N. H. TU. J. W. HJJ TU J. -HJL. W. WILOUBE	1×3-18	Samole Specific Notes
, L 1-d, 1-	11	4			
79-28'	1125	52 4			
-3 TP-38	1135	52 4			
4P-47'	2/10/15 1204 G	52 4			
-5 TP-56	2/10/15 1235 G	52 4			
79-66	2/10/1257 6	52 4		X	
-7 TP-66'D	2/10/15 1300 G	52 4			
77-85	2/10/15 1330 6	52 4		X	
-9 TP-95'	2/10/6 1350 G	52 4		Cooler/TB Dig/IR cor 2.5 unc 2	or 2,5 nnc 2,5
79-106	ofthe	52 4		Cooler Dsc La Firn Blu @Lab	the allah 0955
-11 7P-137	2/10/15 1543 6	52 4		X Wey/Packs Packing	i Misbole
78-167	2/10/15 1630 G	52 9		XT Fed EX S.C.	w/ c.S.
Preservation Used: 1= Ice. 2= HCI. 3= H2SO4: 4-HNO3, 5=NaOH, 6= Other	5=NaOH: 6= Other				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample.	Please List any EPA Waste Codes for the sample in the	ne sample in the	Sample Disposal (A fee may f	Sample Disposal (A tee may be assesed if samples are retained longer than 1 month)	ed longer than 1 month)
Mon-Hazard Etammable Estin Initiant	Poison B Unknown	им	Return to Client	X Disposal by Lab	Montins
Special Instructions/QC Requirements & Comments:					
Custody Seals Intact:	Custody Seal No.:		Cooler Temp. ("C): Obs'd		Therm ID No.:
	Company:	Date/Time:	Received by:	Company:	Date/Time; 00/10/15 0955
Relinquished by:	Company:	Date/Time:	Received by:	Company:	Daté/Tinje:
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	Company:	Date/Time:
				Form No. CA-	Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

Page 51 of 53

I estAmerica Seattle 5755 8th Street East		Chair	Chain of Custody Record	cord	TestAmeric	O
						51
Tacoma, WA 98424 phone 253.922.2310 fax	Regulatory Program:	Dw TNPDFS	FS Dates	とたかたや		UNG
Client Contact	Project Manager: TOHN	2	Site Contact:	Date: 2/11/5		
TerraGraphics			01140	SURV Carrier:	J of Z COCs	Т
988 S longmont ave	Analysis Turnaround Time	nd Time				Τ
1706	CALENDAR DAYS W	WORKING DAYS	(12	.20	For Lab Use Only:	Τ
	TAT if different from Below	2 OF	2 2	7.5	Walk-in Client:	
	2 weeks	Col MARCO	7		Lab Sampling:	T
Project Name: KUFR	1 week	Oztowie		78.		Τ
	2 days		ISW	1.10	Job / SDG No.:	Τ
P0# /S006	1 day		77- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7-	- N.		
Sample Identification	Sample Sample (C=Comp. Date Time G=Grab)	e b, #of Matrix Cont.	22 b919311 14 01 3 0 4 3 14 0 1 14 0 1 14 0 1 14 0 1 1 14 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X 3-1.8 2 - 21 2 A H	Samula Snartific Nirtas]
-13 C-C	2/11/15 1030 6	Sż		XX	STANDARY 747	
-14 0-0'	2/11/5 1035 6	Si 8			1	
-15 TRIP BLANK					1	1
220		 				1
						1
53						T
						Τ
						1
Preservation Used : f= Ice 2=HCI: 3=H2SO4; A=HNO3; 5=NaCH; 6= Other						188 A
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample.	Please List any EPA Waste Codes for the sample in the	the sample in t	Sample Disposal (A fee may be assessed if he	e may be assessed if samples	samples are retained longer than 1 month)	
Kon-Hazard Etammable Eskin Irritant	Poison B Uni	Unknown	Return to Client	Disposal by Lab	Archive for Months	
Special Instructions/QC Requirements & Comments:						T
Custody Seals Intact:	Custody Seal No.:		Cooler Temp. ("C): Obs'd		Therm ID No.:	Т
Relinquished by:	Company:	Date/Time:	Received by	Company:	0.9 Date/Time. 0955	
Relinquished by:	Company;	Date/Time:	Recéived by:	Company:	Daté/Tinje:	
ry Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	by: Company:	Date/Time:	1
			6			<u>ן</u>

g

Login Sample Receipt Checklist

Client: TerraGraphics Inc

Login Number: 47473 List Number: 1

Creator: Blankinship, Tom X

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	no
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 580-47473-1

List Source: TestAmerica Seattle

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

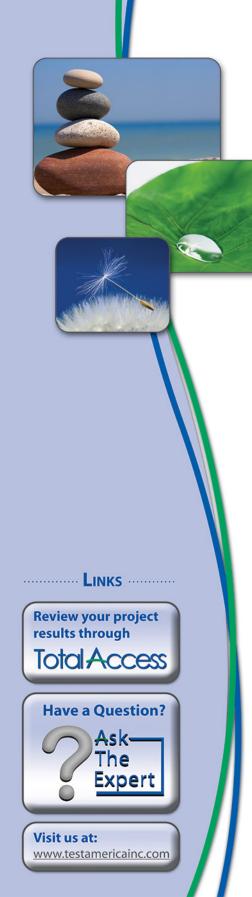
TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-47473-2 Client Project/Site: KVFR

For:

TerraGraphics Inc TerraGraphics Environmental Engineering 988 South Longmont Ave Suite 200 Boise, Idaho 83706

Attn: John Means


David Burk

Authorized for release by: 2/27/2015 2:52:04 PM

David Burk, Project Manager I (253)248-4972 david.burk@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Table of Contents2Case Narrative3Definitions5Client Sample Results6QC Sample Results12Chronicle22Certification Summary22Sample Summary22Chain of Custody24Receipt Checklists21	Cover Page	1
Definitions5Client Sample Results6QC Sample Results12Chronicle22Certification Summary22Sample Summary23Chain of Custody24		
Definitions5Client Sample Results6QC Sample Results12Chronicle22Certification Summary22Sample Summary23Chain of Custody24	Case Narrative	3
QC Sample Results12Chronicle22Certification Summary22Sample Summary23Chain of Custody24	Definitions	5
Chronicle 2 Certification Summary 2 Sample Summary 2 Chain of Custody 2	Client Sample Results	6
Certification Summary22Sample Summary23Chain of Custody24	QC Sample Results	12
Sample Summary 23 Chain of Custody 24	Chronicle	21
Chain of Custody 24	Certification Summary	22
•	Sample Summary	23
Receipt Checklists 2	Chain of Custody	24
	Receipt Checklists	27

Case Narrative

Job ID: 580-47473-2

Laboratory: TestAmerica Seattle

Narrative

Receipt

The samples were received on 2/12/2015 9:55 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.1° C and 2.5° C.

Except:

The following sample was submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): The sample added to the bottom of the COC and placed on hold pending client notification. The client instructed to run this sample as a 3 day Rush tat.TP-12 8' (580-47473-16)

The following samples were received in pre-weighed containers with a label that was added in the field, which would cause a slight low bias in the final results. C-C' (580-47473-13), D-D' (580-47473-14), TP-1 7' (580-47473-1), TP-10 6' (580-47473-10), TP-12 8' (580-47473-16), TP-13 7' (580-47473-11), TP-16 7' (580-47473-12), TP-2 8' (580-47473-2), TP-3 8' (580-47473-3), TP-4 7' (580-47473-4), TP-5 6' (580-47473-5), TP-6 6' (580-47473-6), TP-6 6' D (580-47473-7), TP-8 5' (580-47473-8), TP-9 5' (580-47473-9), Trip Blank (580-47473-15).

The sitr bar vials for 8260 for the following samples C-C' (580-47473-13), D-D' (580-47473-14), TP-1 7' (580-47473-1), TP-10 6' (580-47473-10), TP-12 8' (580-47473-16), TP-13 7' (580-47473-11), TP-16 7' (580-47473-12), TP-2 8' (580-47473-2), TP-3 8' (580-47473-3), TP-4 7' (580-47473-4), TP-5 6' (580-47473-5), TP-6 6' (580-47473-6), TP-6 6' D (580-47473-7), TP-8 5' (580-47473-8), TP-9 5' (580-47473-9), Trip Blank (580-47473-15)were frozen immediately upon arrival to the laboratory.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 182579 recovered above the upper control limit for Vinyl chloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: C-C' (580-47473-13), D-D' (580-47473-14).

Method(s) 8260C: The continuing calibration verification (CCV) analyzed in batch 182579 was outside the method criteria for the following analyte(s): chloroethane. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method(s) 8260C: The following analyte(s) recovered outside control limits for the LCSD associated with batch 182579: 1,1,2,2-tetrachloroethane. This is not indicative of a systematic control problem because these were random marginal exceedances. Qualified results have been reported.

Method(s) NWTPH-Gx: The method blank for batch 182502 contained Gasoline above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) NWTPH-Gx: The method blank for batch 182639 contained Gasoline above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method(s) NWTPH-Dx: In analysis batch 182566, for the following sample(s) from preparation batch 182463: The following sample(s) contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: ST-CB-08-20150210-S (580-47459-1).

Method(s) NWTPH-Dx: In analysis batch 182566, for the following sample(s) from preparation batch 182463: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision were outside control limits. The matrix spike was spilled: laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Job ID: 580-47473-2 (Continued)

Laboratory: TestAmerica Seattle (Continued)

Method(s) NWTPH-Dx: Surrogate recovery for the following sample(s) was outside control limits: (580-47459-1 MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) NWTPH-Dx: The following sample(s) contained a hydrocarbon pattern in the motor oil range; however, the elution pattern was /later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: C-C' (580-47473-13), D-D' (580-47473-14).

Method(s) NWTPH/EPH: In analysis batch 183163, the laboratory control sample and laboratory control sample duplicate (LCS/LCSD) for preparation batch 183135 recovered outside control limits for the following analytes: C8-C10 Aliphatics and C10-C12 Aromatics. The associated samples were re-prepared and/or re-analyzed outside holding time. Both sets of data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3550B: The following samples from preparation batch 183258 were re-prepared outside of preparation holding time due to low failing LCS/LCSD recoveries for the C8-C10 Aliphatic range in the original, in-hold batch : C-C' (580-47473-13), D-D' (580-47473-14).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

Qual	ifiers
------	--------

GC/MS VOA	
Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.
GC/MS Semi V	ΟΑ
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC VOA	
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC Semi VOA	
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Y	The chromatographic response resembles a typical fuel pattern.

Υ LCS or LCSD exceeds the control limits * В Compound was found in the blank and sample.

Н Sample was prepped or analyzed beyond the specified holding time

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: C-C'

Date Collected: 02/11/15 10:30 Date Received: 02/12/15 09:55

Method: 8260C - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.1	0.34	ug/Kg	— <u>-</u>	02/12/15 11:30	02/17/15 16:39	1
1,1,2,2-Tetrachloroethane	ND	*	2.2	1.0		¢	02/12/15 11:30	02/17/15 16:39	1
1,1,2-Trichloroethane	ND		2.2		ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
1,1-Dichloroethane	ND		1.1		ug/Kg		02/12/15 11:30	02/17/15 16:39	1
1,1-Dichloroethene	ND		5.6		ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
1,2-Dichlorobenzene	ND		2.2	0.67		¢	02/12/15 11:30	02/17/15 16:39	1
EDC	ND		1.1		ug/Kg		02/12/15 11:30	02/17/15 16:39	
1,2-Dichloropropane	ND		1.1		ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
1,3-Dichlorobenzene	ND		2.2		ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
1,4-Dichlorobenzene	ND		1.1		ug/Kg	÷	02/12/15 11:30	02/17/15 16:39	····· 1
,			1.1		ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
Benzene Bromodichloromethane	0.44 ND	J	1.1		ug/Kg ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
Bromoform	ND		1.1		ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	-
Bromomethane	ND		1.1		ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
Carbon tetrachloride	ND		1.1		ug/Kg		02/12/15 11:30	02/17/15 16:39	[.]
Chlorobenzene	ND		1.1		ug/Kg	\$ *	02/12/15 11:30	02/17/15 16:39	1
Chloroethane	ND		1.1		ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
Chloroform	ND		1.1		ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
Chloromethane	ND		1.1		ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
cis-1,2-Dichloroethene	ND		1.1		ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
cis-1,3-Dichloropropene	ND		1.1		ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
Dibromochloromethane	ND		2.2		ug/Kg	æ	02/12/15 11:30	02/17/15 16:39	1
EDB	ND		1.1		ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
Ethylbenzene	ND		1.1		ug/Kg		02/12/15 11:30	02/17/15 16:39	1
Methyl tert-butyl ether	ND		1.1		ug/Kg	₽	02/12/15 11:30	02/17/15 16:39	1
Methylene Chloride	3.5	J	17	3.4	0 0	₽	02/12/15 11:30	02/17/15 16:39	1
m-Xylene & p-Xylene	0.67	J	2.2	0.22	ug/Kg	₽ 	02/12/15 11:30	02/17/15 16:39	1
Naphthalene	1.1	J	5.6	0.56	0 0	÷‡-	02/12/15 11:30	02/17/15 16:39	1
o-Xylene	0.84	J	2.2	0.56	ug/Kg	÷.	02/12/15 11:30	02/17/15 16:39	1
Tetrachloroethene	ND		1.1	0.45	ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
Toluene	0.74	J	2.2	0.34	ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
trans-1,2-Dichloroethene	ND		1.1	0.45	ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
trans-1,3-Dichloropropene	ND		1.1	0.22	ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
Trichloroethene	ND		1.1	0.34	ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
Trichlorofluoromethane	ND		1.1	0.34	ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
Vinyl chloride	ND	٨	1.1	0.34	ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
Xylenes, Total	1.5	J	2.2	0.56	ug/Kg	¢	02/12/15 11:30	02/17/15 16:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)			80 - 120				02/12/15 11:30	02/17/15 16:39	1
4-Bromofluorobenzene (Surr)	78		70 - 120				02/12/15 11:30	02/17/15 16:39	1
Dibromofluoromethane (Surr)	95		75 - 132				02/12/15 11:30	02/17/15 16:39	1
Trifluorotoluene (Surr)	102		65 - 140				02/12/15 11:30	02/17/15 16:39	1
1,2-Dichloroethane-d4 (Surr)	95		71 - 136				02/12/15 11:30	02/17/15 16:39	1
									-
Method: 8270D SIM - Semivola				MD	Unit	~	Bronered	Analyzed	
Analyte		Qualifier	RL		Unit ma/Ka	— <u>¤</u>	Prepared 02/13/15 09:20	Analyzed	Dil Fac
Benzo[a]anthracene	0.0028	J	0.0061	0.0018				02/17/15 20:29	1
Chrysene	0.0073		0.0061	0.0018		¢	02/13/15 09:20	02/17/15 20:29	1
Benzo[b]fluoranthene	0.0063		0.0061	0.0018	mg/Kg	¢	02/13/15 09:20	02/17/15 20:29	1

TestAmerica Job ID: 580-47473-2

Lab Sample ID: 580-47473-13 Matrix: Solid

Percent Solids: 80.2

TestAmerica Seattle

Client Sample Results

1-Chlorooctadecane

lient: TerraGraphics Inc			t Sample F				TestAmeri	ca Job ID: 580-4	47473-2
roject/Site: KVFR							Lab Camp		470 40
lient Sample ID: C-C'							Lab Samp	le ID: 580-47	
ate Collected: 02/11/15 10:30									x: Solid
ate Received: 02/12/15 09:55								Percent Soli	ds: 80.2
Method: 8270D SIM - Semivolatil	e Organic Con	npounds (G(C/MS SIM) (Co	ntinued)					
Analyte	-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzo[k]fluoranthene	0.0025	J	0.0061	0.0018	mg/Kg	- 	02/13/15 09:20	02/17/15 20:29	1
Benzo[a]pyrene	0.0035	J	0.0061		mg/Kg		02/13/15 09:20	02/17/15 20:29	
Indeno[1,2,3-cd]pyrene	0.0045	J	0.0061		mg/Kg	¢	02/13/15 09:20	02/17/15 20:29	1
Dibenz(a,h)anthracene	ND		0.0061	0.0018	mg/Kg	¢	02/13/15 09:20	02/17/15 20:29	1
	% Decession	Qualifian	Limits				Dramarad	Analyzad	Dil Fac
Surrogate Terphenyl-d14 (Surr)	%Recovery 92	Quaimer	42 - 151				Prepared 02/13/15 09:20	Analyzed	
	92		42 - 151				02/13/13 09.20	02/17/13 20.29	1
Method: NWTPH-Gx - Northwest									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		6.0	0.75	mg/Kg	<u>Å</u>	02/17/15 13:51	02/17/15 18:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			50 - 150				02/17/15 13:51	02/17/15 18:12	1
Method: NWTPH/EPH - Northwes			-						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
C8-C10 Aliphatics		JB*	6.2	0.034	mg/Kg	\$	02/25/15 08:00	02/25/15 18:19	1
C10-C12 Aliphatics	0.56		6.2		mg/Kg	¢.	02/25/15 08:00	02/25/15 18:19	1
C12-C16 Aliphatics	2.1	J	6.2		mg/Kg	¢. 	02/25/15 08:00	02/25/15 18:19	•
C16-C21 Aliphatics	22		6.2		mg/Kg	¢	02/25/15 08:00	02/25/15 18:19	
C21-C34 Aliphatics	420		6.2		mg/Kg	¢	02/25/15 08:00	02/25/15 18:19	-
C8-C10 Aromatics	ND		6.2		mg/Kg	¢. 	02/25/15 08:00	02/25/15 18:19	
C10-C12 Aromatics	0.30	J *	6.2		mg/Kg	Å.	02/25/15 08:00	02/25/15 18:19	1
C12-C16 Aromatics	ND		6.2		mg/Kg	¢	02/25/15 08:00	02/25/15 18:19	1
C16-C21 Aromatics	7.2		6.2		mg/Kg	÷	02/25/15 08:00	02/25/15 18:19	1
C21-C34 Aromatics	23		6.2	1.2	mg/Kg	246	02/25/15 08:00	02/25/15 18:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	68		60 - 140				02/25/15 08:00	02/25/15 18:19	1
1-Chlorooctadecane	67		60 - 140				02/25/15 08:00	02/25/15 18:19	1
		Defector			_				
Method: NWTPH/EPH - Northwes Analyte		Qualifier	RL		L Unit	D	Prepared	Analyzed	Dil Fac
C8-C10 Aliphatics	0.081	JH	6.1	0.033	mg/Kg	<u> </u>	02/26/15 09:37	02/27/15 10:23	
C10-C12 Aliphatics		JH	6.1		mg/Kg	₽	02/26/15 09:37	02/27/15 10:23	1
C12-C16 Aliphatics	2.1	JH	6.1	1.2	mg/Kg	☆	02/26/15 09:37	02/27/15 10:23	1
C16-C21 Aliphatics	15	Н	6.1	1.2	mg/Kg	¢.	02/26/15 09:37	02/27/15 10:23	1
C21-C34 Aliphatics	230	н	6.1	1.2	mg/Kg	☆	02/26/15 09:37	02/27/15 10:23	1
C8-C10 Aromatics	ND	н	6.1	1.2	mg/Kg	¢	02/26/15 09:37	02/27/15 10:23	1
C10-C12 Aromatics	0.22	JH	6.1	0.088	mg/Kg	¢	02/26/15 09:37	02/27/15 10:23	1
C12-C16 Aromatics	ND	Н	6.1	1.2	mg/Kg	☆	02/26/15 09:37	02/27/15 10:23	1
C16-C21 Aromatics	5.8	JH	6.1		mg/Kg	☆	02/26/15 09:37	02/27/15 10:23	1
C21-C34 Aromatics	32		6.1		mg/Kg	¢	02/26/15 09:37	02/27/15 10:23	1
Surrogato	%Recovery	Qualifier	Limits				Proparad	Analuzad	Dil Fac
Surrogate o-Terphenyl	- [%] Recovery 94	quaimer	60 - 140				Prepared 02/26/15 09:37	Analyzed 02/27/15 10:23	DII Fac
1 Chlorocatodocono	94		60 140				02/20/15 09:37	02/27/15 10.23	1

02/26/15 09:37 02/27/15 10:23

60 - 140

100

Client: TerraGraphics Inc Project/Site: KVFR

Client Sample ID: C-C' Date Collected: 02/11/15 10:30

Date Received: 02/12/15 09:55

Lab Sample ID: 580-47473-13 Matrix: Solid

Percent Solids: 80.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	21	J	30	6.8	mg/Kg	\\\\	02/13/15 10:54	02/17/15 16:47	1
Motor Oil (>C24-C36)	66	Υ	60	11	mg/Kg	¢	02/13/15 10:54	02/17/15 16:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	71		50 - 150				02/13/15 10:54	02/17/15 16:47	1
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	10		0.49	0.047	mg/Kg	\\\\	02/13/15 11:11	02/13/15 17:55	10
Cadmium	0.22		0.19	0.018	mg/Kg	¢	02/13/15 11:11	02/13/15 17:55	10
Chromium	25		0.49	0.061	mg/Kg	¢	02/13/15 11:11	02/13/15 17:55	10
Nickel	20		0.49	0.079	mg/Kg	₽	02/13/15 11:11	02/13/15 17:55	10
Zinc	83		4.9	1.1	mg/Kg	₽	02/13/15 11:11	02/13/15 17:55	10
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	80		0.10	0.10	%			02/14/15 18:05	1
Percent Moisture	20		0.10	0.10	%			02/14/15 18:05	1

Client Sample ID: D-D'

Date Collected: 02/11/15 10:35 Date Received: 02/12/15 09:55

Analyte	nic Compounds Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane			1.2	0.35	ug/Kg	— -	02/12/15 11:30	02/17/15 17:04	1
1,1,2,2-Tetrachloroethane	ND	*	2.3	1.0	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
1,1,2-Trichloroethane	ND		2.3	0.58		¢	02/12/15 11:30	02/17/15 17:04	1
1,1-Dichloroethane	ND		1.2			¢.	02/12/15 11:30	02/17/15 17:04	
1,1-Dichloroethene	ND		5.8	0.40		¢	02/12/15 11:30	02/17/15 17:04	1
1,2-Dichlorobenzene	ND		2.3	0.69		¢	02/12/15 11:30	02/17/15 17:04	1
EDC	ND		1.2		ug/Kg		02/12/15 11:30	02/17/15 17:04	
1,2-Dichloropropane	ND		1.2		ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
, , , ,	ND		2.3			¢		02/17/15 17:04	1
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND		2.3		ug/Kg		02/12/15 11:30 02/12/15 11:30	02/17/15 17:04	1
,					ug/Kg	÷			
Benzene	ND		1.2		ug/Kg	÷	02/12/15 11:30	02/17/15 17:04	1
Bromodichloromethane	ND		1.2		ug/Kg		02/12/15 11:30	02/17/15 17:04	1
Bromoform	ND		1.2		ug/Kg	¢ ×	02/12/15 11:30	02/17/15 17:04	1
Bromomethane	ND		1.2		ug/Kg	¢ n	02/12/15 11:30	02/17/15 17:04	1
Carbon tetrachloride	ND		1.2		ug/Kg	÷	02/12/15 11:30	02/17/15 17:04	1
Chlorobenzene	ND		1.2		ug/Kg	¢ ×	02/12/15 11:30	02/17/15 17:04	1
Chloroethane	ND		1.2	0.23		\$	02/12/15 11:30	02/17/15 17:04	1
Chloroform	ND		1.2		ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
Chloromethane	ND		1.2		ug/Kg	\$	02/12/15 11:30	02/17/15 17:04	1
cis-1,2-Dichloroethene	ND		1.2		ug/Kg	¢.	02/12/15 11:30	02/17/15 17:04	1
cis-1,3-Dichloropropene	ND		1.2		ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
Dibromochloromethane	ND		2.3	0.58	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
EDB	ND		1.2	0.23	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
Ethylbenzene	ND		1.2	0.46	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
Methyl tert-butyl ether	ND		1.2	0.35	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
Methylene Chloride	ND		17	3.5	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
m-Xylene & p-Xylene	ND		2.3	0.23	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
Naphthalene	ND		5.8	0.58	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
o-Xylene	ND		2.3	0.58	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
Tetrachloroethene	ND		1.2	0.46	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
Toluene	ND		2.3	0.35	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
trans-1,2-Dichloroethene	ND		1.2	0.46	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
trans-1,3-Dichloropropene	ND		1.2	0.23	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
Trichloroethene	ND		1.2	0.35	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
Trichlorofluoromethane	ND		1.2	0.35	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
Vinyl chloride	ND	٨	1.2	0.35	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
Xylenes, Total	ND		2.3	0.58	ug/Kg	¢	02/12/15 11:30	02/17/15 17:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)			80 - 120				02/12/15 11:30	02/17/15 17:04	1
4-Bromofluorobenzene (Surr)	81		70 - 120				02/12/15 11:30	02/17/15 17:04	1
Dibromofluoromethane (Surr)	97		75 - 132				02/12/15 11:30	02/17/15 17:04	1
Trifluorotoluene (Surr)	98		65 - 140				02/12/15 11:30	02/17/15 17:04	1
1,2-Dichloroethane-d4 (Surr)	100		71 - 136				02/12/15 11:30	02/17/15 17:04	1
Method: 8270D SIM - Semivola	atile Organic Con	pounds (G	C/MS SIM)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.0067		0.0062	0.0019	mg/Kg		02/13/15 09:20	02/17/15 20:51	1
Chrysene	0.010		0.0062	0.0019		¢	02/13/15 09:20	02/17/15 20:51	1
Benzo[b]fluoranthene	0.012		0.0062		mg/Kg	¢	02/13/15 09:20	02/17/15 20:51	1

TestAmerica Seattle

TestAmerica Job ID: 580-47473-2

Lab Sample ID: 580-47473-14 Matrix: Solid

Percent Solids: 78.8

1-Chlorooctadecane

Lab Sample ID: 580-47473-14

5

0ate Collected: 02/11/15 10:35 0ate Received: 02/12/15 09:55								Percent Soli	x: Solid
ale Received. 02/12/13 03.33	,							Fercent Son	<u>us. 70.0</u>
Method: 8270D SIM - Semivo	olatile Organic Con	npounds (G	C/MS SIM) (Cor	ntinued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[k]fluoranthene	0.0057	J	0.0062	0.0019	mg/Kg		02/13/15 09:20	02/17/15 20:51	1
Benzo[a]pyrene	0.0077		0.0062	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 20:51	1
Indeno[1,2,3-cd]pyrene	0.011		0.0062	0.0019	mg/Kg	⇔	02/13/15 09:20	02/17/15 20:51	1
Dibenz(a,h)anthracene	ND		0.0062	0.0019	mg/Kg	¢	02/13/15 09:20	02/17/15 20:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14 (Surr)	96		42 _ 151				02/13/15 09:20	02/17/15 20:51	1
Method: NWTPH-Gx - North	west - Volatile Petro	oleum Prod	ucts (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		6.2	0.78	mg/Kg	<u></u>	02/17/15 13:51	02/17/15 17:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			50 - 150				02/17/15 13:51	02/17/15 17:11	1
-									
Method: NWTPH/EPH - North	hwest - Extractable	Petroleum	Hydrocarbons	(GC)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C8-C10 Aliphatics	0.045	JB*	6.3	0.034	mg/Kg	<u></u>	02/25/15 08:00	02/25/15 18:45	1
C10-C12 Aliphatics	ND		6.3	0.12	mg/Kg	₽	02/25/15 08:00	02/25/15 18:45	1
C12-C16 Aliphatics	ND		6.3	1.3	mg/Kg	₽	02/25/15 08:00	02/25/15 18:45	1
C16-C21 Aliphatics	ND		6.3	1.3			02/25/15 08:00	02/25/15 18:45	1
C21-C34 Aliphatics	7.8		6.3	1.3	mg/Kg	¢	02/25/15 08:00	02/25/15 18:45	1
C8-C10 Aromatics	ND		6.3	1.3		¢	02/25/15 08:00	02/25/15 18:45	1
C10-C12 Aromatics	ND	*	6.3	0.091			02/25/15 08:00	02/25/15 18:45	
C12-C16 Aromatics	ND		6.3	1.3		¢	02/25/15 08:00	02/25/15 18:45	1
C16-C21 Aromatics	ND		6.3	1.3		¢	02/25/15 08:00	02/25/15 18:45	1
C21-C34 Aromatics	4.2	J	6.3		mg/Kg	¢	02/25/15 08:00	02/25/15 18:45	····· 1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	<u>%Recovery</u> 61	Quaimer	 60 _ 140				02/25/15 08:00	02/25/15 18:45	1
1-Chlorooctadecane	65		60 - 140				02/25/15 08:00	02/25/15 18:45	1
-									
Method: NWTPH/EPH - Nortl Analyte		Petroleum Qualifier	Hydrocarbons RL		E Unit	D	Prepared	Analyzed	Dil Fac
C8-C10 Aliphatics	0.054		6.2		mg/Kg	— -	02/26/15 09:37	02/27/15 10:48	1
C10-C12 Aliphatics	0.054 ND		6.2		mg/Kg	¢	02/26/15 09:37	02/27/15 10:48	1
C12-C16 Aliphatics	ND		6.2		mg/Kg	¢	02/26/15 09:37		1
					mg/Kg			02/27/15 10:48 02/27/15 10:48	ן איייייי
C16-C21 Aliphatics		JH	6.2				02/26/15 09:37		1
C21-C34 Aliphatics	14		6.2		mg/Kg	æ n	02/26/15 09:37	02/27/15 10:48	1
C8-C10 Aromatics	ND		6.2		mg/Kg	æ	02/26/15 09:37	02/27/15 10:48	1
C10-C12 Aromatics	ND		6.2		mg/Kg	¢.	02/26/15 09:37	02/27/15 10:48	1
C12-C16 Aromatics	ND		6.2		mg/Kg	¢.	02/26/15 09:37	02/27/15 10:48	1
C16-C21 Aromatics	ND	. H	6.2		mg/Kg	₩ 	02/26/15 09:37	02/27/15 10:48	1
C21-C34 Aromatics	8.2	н	6.2	1.2	mg/Kg	¢	02/26/15 09:37	02/27/15 10:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	100		60 - 140				02/26/15 09:37	02/27/15 10:48	1

1

02/26/15 09:37 02/27/15 10:48

60 - 140

Client: TerraGraphics Inc Project/Site: KVFR

Client Sample ID: D-D' Date Collected: 02/11/15 10:35

Date Received: 02/12/15 09:55

Lab Sample ID: 580-47473-14 Matrix: Solid

Percent Solids: 78.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	17	J	31	7.0	mg/Kg	\ ₽	02/13/15 10:54	02/17/15 17:03	1
Motor Oil (>C24-C36)	65	Υ	62	11	mg/Kg	₽	02/13/15 10:54	02/17/15 17:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	71		50 - 150				02/13/15 10:54	02/17/15 17:03	1
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	9.8		0.51	0.049	mg/Kg	\\\\	02/13/15 11:11	02/13/15 17:59	10
Cadmium	0.20		0.20	0.019	mg/Kg	¢	02/13/15 11:11	02/13/15 17:59	10
Chromium	42		0.51	0.064	mg/Kg	₽	02/13/15 11:11	02/13/15 17:59	10
Nickel	58		0.51	0.082	mg/Kg	¢	02/13/15 11:11	02/13/15 17:59	10
Zinc	68		5.1	1.1	mg/Kg	¢	02/13/15 11:11	02/13/15 17:59	10
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	79		0.10	0.10	%			02/14/15 18:05	1
Percent Moisture	21		0.10	0.10	0/_			02/14/15 18:05	1

Analysis Batch: 182579

Client Sample ID: Method Blank

5

Prep Type: Total/NA Prep Batch: 182616 6

8
9

Method: 8260C - Volatile Organic Compounds by GC/MS					
	Lab Sample ID: MB 580-182616/1-A				
	Matrix: Solid				

	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.30	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
1,1,2,2-Tetrachloroethane	ND		2.0	0.90	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
1,1,2-Trichloroethane	ND		2.0	0.50	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
1,1-Dichloroethane	ND		1.0	0.40	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
1,1-Dichloroethene	ND		5.0	0.20	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
1,2-Dichlorobenzene	ND		2.0	0.60	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
EDC	ND		1.0	0.40	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
1,2-Dichloropropane	ND		1.0	0.40	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
1,3-Dichlorobenzene	ND		2.0	0.50	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
1,4-Dichlorobenzene	ND		1.0	0.20	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Benzene	ND		1.0	0.30	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Bromodichloromethane	ND		1.0	0.40	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Bromoform	ND		1.0	0.30	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Bromomethane	ND		1.0	0.40	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Carbon tetrachloride	ND		1.0	0.30	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Chlorobenzene	ND		1.0	0.40	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Chloroethane	ND		1.0	0.20	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Chloroform	ND		1.0	0.30	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Chloromethane	ND		1.0	0.30	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
cis-1,2-Dichloroethene	ND		1.0	0.30	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
cis-1,3-Dichloropropene	ND		1.0	0.20	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Dibromochloromethane	ND		2.0	0.50	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
EDB	ND		1.0	0.20	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Ethylbenzene	ND		1.0	0.40	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Methyl tert-butyl ether	ND		1.0	0.30	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Methylene Chloride	ND		15	3.0	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
m-Xylene & p-Xylene	ND		2.0	0.20	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Naphthalene	ND		5.0	0.50	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
o-Xylene	ND		2.0	0.50	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Tetrachloroethene	ND		1.0	0.40	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Toluene	ND		2.0	0.30	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
trans-1,2-Dichloroethene	ND		1.0	0.40	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
trans-1,3-Dichloropropene	ND		1.0	0.20	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Trichloroethene	ND		1.0	0.30	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Trichlorofluoromethane	ND		1.0	0.30	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Vinyl chloride	ND	^	1.0	0.30	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
Xylenes, Total	ND		2.0	0.50	ug/Kg		02/17/15 12:27	02/17/15 09:58	1
	110	MB							
	iVID	mD							

I		IVID	IVID				
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	Toluene-d8 (Surr)	103		80 - 120	02/17/15 12:27	02/17/15 09:58	1
	4-Bromofluorobenzene (Surr)	97		70 - 120	02/17/15 12:27	02/17/15 09:58	1
	Dibromofluoromethane (Surr)	97		75 - 132	02/17/15 12:27	02/17/15 09:58	1
	Trifluorotoluene (Surr)	97		65 - 140	02/17/15 12:27	02/17/15 09:58	1
	1,2-Dichloroethane-d4 (Surr)	101		71 - 136	02/17/15 12:27	02/17/15 09:58	1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analysis Batch: 182579

Matrix: Solid

Lab Sample ID: LCS 580-182616/2-A

Client Sample ID: Lab Control Sample

5 6

Prep Batch: 182616

Prep Type: Total/NA

		Spike	LCS	LCS			%Rec.
Analyte		Added	Result	Qualifier U	nit D	%Rec	Limits
1,1,1-Trichloroethane		10.0	11.3	u(g/Kg	113	63 - 135
1,1,2,2-Tetrachloroethane		10.0	12.4	uç	g/Kg	124	73 - 125
1,1,2-Trichloroethane		10.0	11.2	uç	g/Kg	112	77 _ 124
1,1-Dichloroethane		10.0	11.9	uç	g/Kg	119	70 - 128
1,1-Dichloroethene		10.0	11.3	u	g/Kg	113	70 - 133
1,2-Dichlorobenzene		10.0	10.9	u	g/Kg	109	79 ₋ 117
EDC		10.0	10.6	uç	g/Kg	106	71 - 128
1,2-Dichloropropane		10.0	11.3	u	g/Kg	113	76 - 161
1,3-Dichlorobenzene		10.0	10.9	u	g/Kg	109	79 ₋ 119
1,4-Dichlorobenzene		10.0	10.9	u	g/Kg	109	79 - 117
Benzene		10.0	11.2	u	g/Kg	112	70 - 128
Bromodichloromethane		10.0	11.3	u	g/Kg	113	58 - 133
Bromoform		10.0	10.8	u	g/Kg	108	50 _ 124
Bromomethane		10.0	12.2	u	g/Kg	122	57 _ 148
Carbon tetrachloride		10.0	11.5	u	g/Kg	115	59 - 145
Chlorobenzene		10.0	10.8	u	g/Kg	108	75 - 120
Chloroethane		10.0	10.9	u	g/Kg	109	48 - 167
Chloroform		10.0	11.5	u	g/Kg	115	78 - 125
Chloromethane		10.0	12.4	u	g/Kg	124	55 - 136
cis-1,2-Dichloroethene		10.0	11.5	u	g/Kg	115	70 - 130
cis-1,3-Dichloropropene		10.0	10.9	u	g/Kg	109	69 - 129
Dibromochloromethane		10.0	11.2	u	g/Kg	112	42 - 129
EDB		10.0	11.5	u	g/Kg	115	69 - 126
Ethylbenzene		10.0	10.7	u	g/Kg	107	78 - 126
Methyl tert-butyl ether		10.0	12.3	u	g/Kg	123	65 - 125
Methylene Chloride		10.0	11.3	J u	g/Kg	113	57 _ 146
m-Xylene & p-Xylene		10.0	10.8	u	g/Kg	108	78 - 126
Naphthalene		10.0	11.9	u	g/Kg	119	14 - 170
o-Xylene		10.0	10.7	u	g/Kg	107	77 ₋ 127
Tetrachloroethene		10.0	9.46	u	g/Kg	95	56 - 155
Toluene		10.0	10.4	u	g/Kg	104	75 - 126
trans-1,2-Dichloroethene		10.0	11.1	u	g/Kg	111	76 - 131
trans-1,3-Dichloropropene		10.0	11.0	u	g/Kg	110	72 _ 129
Trichloroethene		10.0	11.0	ų	g/Kg	110	83 - 124
Trichlorofluoromethane		10.0	11.2	u	g/Kg	112	47 _ 165
Vinyl chloride		10.0	12.4	^ u(g/Kg	124	67 _ 131
Xylenes, Total		20.0	21.5	u	g/Kg	108	70 - 130
	LCS LCS						
Surrogate	Recovery Qua						
Toluene-d8 (Surr)	97	80 - 120					
4-Bromofluorobenzene (Surr)	98	70 - 120					
Dibromofluoromethane (Surr)	103	75 - 132					
		, 0 - , 02					

Trifluorotoluene (Surr)	99	65 - 140
1,2-Dichloroethane-d4 (Surr)	106	71 - 136

1,2-Dichloroethane-d4 (Surr)

Matrix: Solid

Lab Sample ID: LCSD 580-182616/3-A

5

8
9

Method: 8260C - Volatile Organic Compounds by GC/MS	S (Continued)

Analysis Batch: 182579									Prep Batch: 182		
			Spike		LCSD				%Rec.		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
1,1,1-Trichloroethane			10.0	10.7		ug/Kg		107	63 - 135	5	20
1,1,2,2-Tetrachloroethane			10.0	12.9	*	ug/Kg		129	73 - 125	4	22
1,1,2-Trichloroethane			10.0	11.1		ug/Kg		111	77 _ 124	1	18
1,1-Dichloroethane			10.0	11.1		ug/Kg		111	70 - 128	7	21
1,1-Dichloroethene			10.0	10.5		ug/Kg		105	70 - 133	7	23
1,2-Dichlorobenzene			10.0	11.3		ug/Kg		113	79 ₋ 117	3	17
EDC			10.0	10.2		ug/Kg		102	71 - 128	4	18
1,2-Dichloropropane			10.0	11.7		ug/Kg		117	76 - 161	3	15
1,3-Dichlorobenzene			10.0	10.7		ug/Kg		107	79 ₋ 119	2	17
1,4-Dichlorobenzene			10.0	10.9		ug/Kg		109	79 - 117	0	18
Benzene			10.0	11.0		ug/Kg		110	70 - 128	2	19
Bromodichloromethane			10.0	11.6		ug/Kg		116	58 - 133	2	19
Bromoform			10.0	10.6		ug/Kg		106	50 - 124	2	25
Bromomethane			10.0	13.3		ug/Kg		133	57 - 148	8	29
Carbon tetrachloride			10.0	10.6		ug/Kg		106	59 - 145	8	19
Chlorobenzene			10.0	10.4		ug/Kg		104	75 _ 120	4	21
Chloroethane			10.0	12.9		ug/Kg		129	48 - 167	17	53
Chloroform			10.0	10.9		ug/Kg		109	78 ₋ 125	5	17
Chloromethane			10.0	13.2		ug/Kg		132	55 - 136	6	26
cis-1,2-Dichloroethene			10.0	10.8		ug/Kg		108	70 - 130	6	19
cis-1,3-Dichloropropene			10.0	11.5		ug/Kg		115	69 - 129	6	19
Dibromochloromethane			10.0	10.9		ug/Kg		109	42 - 129	3	23
EDB			10.0	10.9		ug/Kg		109	69 - 126	5	21
Ethylbenzene			10.0	10.5		ug/Kg		105	78 - 126	2	23
Methyl tert-butyl ether			10.0	10.8		ug/Kg		108	65 - 125	13	30
Methylene Chloride			10.0	10.5	J	ug/Kg		105	57 - 146	7	21
m-Xylene & p-Xylene			10.0	10.4		ug/Kg		104	78 - 126	4	23
Naphthalene			10.0	12.3		ug/Kg		123	14 _ 170	3	50
o-Xylene			10.0	10.4		ug/Kg		104	77 _ 127	4	22
Tetrachloroethene			10.0	9.34		ug/Kg		93	56 - 155	1	27
Toluene			10.0	10.6		ug/Kg		106	75 _ 126	1	19
trans-1,2-Dichloroethene			10.0	11.2		ug/Kg		112	76 - 131	0	18
trans-1,3-Dichloropropene			10.0	10.7		ug/Kg		107	72 _ 129	3	20
Trichloroethene			10.0	10.5		ug/Kg		105	83 - 124	5	17
Trichlorofluoromethane			10.0	12.5		ug/Kg		125	47 _ 165	12	54
Vinyl chloride			10.0	12.9	٨	ug/Kg		129	67 _ 131	4	22
Xylenes, Total			20.0	20.8		ug/Kg		104	70 - 130	3	30
		LCSD									
Surrogate	%Recovery	Qualifier	Limits								
Toluene-d8 (Surr)	100		80 - 120								
4-Bromofluorobenzene (Surr)	98		70 - 120								
Dibromofluoromethane (Surr)	101		75 - 132								
Trifluorotoluene (Surr)	99		65 - 140								
			=								

101 71 - 136

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

Limits

42 - 151

MDL Unit

0.0015 mg/Kg

D

Prepared

02/13/15 09:19

02/13/15 09:19

02/13/15 09:19

02/13/15 09:19

02/13/15 09:19

02/13/15 09:19

02/13/15 09:19

Prepared

02/13/15 09:19

Analysis Batch: 182599

Matrix: Solid

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[k]fluoranthene

Indeno[1,2,3-cd]pyrene

Dibenz(a,h)anthracene

Terphenyl-d14 (Surr)

Benzo[a]pyrene

Analyte

Chrysene

Surrogate

Lab Sample ID: MB 580-182455/1-A

Client Sample ID: Method Blank

Analyzed

02/17/15 14:19

02/17/15 14:19

02/17/15 14:19

02/17/15 14:19

02/17/15 14:19

02/17/15 14:19

02/17/15 14:19

Analyzed

02/17/15 14:19

Prep Type: Total/NA

Prep Type: Total/NA

30

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 182455

Dil Fac

1

1

1

1

1

1

1

1

Dil Fac

	6
	8
	9

Lab Sample ID: LCS 580-182455/2-A
Matrix: Solid
Analysis Batch: 182599

Analysis Batch: 182599							Prep B	atch: 182455
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[a]anthracene	1.00	0.842		mg/Kg		84	76 _ 119	
Chrysene	1.00	0.892		mg/Kg		89	75 ₋ 114	
Benzo[b]fluoranthene	1.00	0.855		mg/Kg		86	63 - 132	
Benzo[k]fluoranthene	1.00	0.736		mg/Kg		74	63 ₋ 119	
Benzo[a]pyrene	1.00	0.822		mg/Kg		82	72 ₋ 117	
Indeno[1,2,3-cd]pyrene	1.00	0.829		mg/Kg		83	56 ₋ 127	
Dibenz(a,h)anthracene	1.00	0.843		mg/Kg		84	56 ₋ 134	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Terphenyl-d14 (Surr)	92		42 - 151

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

MB MB Result Qualifier

ND

ND

ND

ND

ND

ND

ND

93

%Recovery

MB MB

Qualifier

Lab Sample ID: LCSD 580-182455/3-A Matrix: Solid

Analysis Batch: 182599 Prep Batch: 182455 LCSD LCSD %Rec. RPD Spike Analyte Added **Result Qualifier** %Rec Limits RPD Limit Unit D Benzo[a]anthracene 1.00 0.756 mg/Kg 76 76 - 119 11 27 1.00 0.810 81 Chrysene 75 - 114 10 26 mg/Kg Benzo[b]fluoranthene 1.00 0.773 mg/Kg 77 63 - 132 10 30 Benzo[k]fluoranthene 1.00 0.682 mg/Kg 68 63 - 119 8 30 0.752 75 Benzo[a]pyrene 1.00 mg/Kg 72 - 117 9 30 Indeno[1,2,3-cd]pyrene 1.00 0.741 mg/Kg 74 56 - 127 29 11 1.00 Dibenz(a,h)anthracene 0.773 mg/Kg 77 56 - 134 9 ICOD ICOD

	LCOD	LUGD	
Surrogate	%Recovery	Qualifier	Limits
Terphenyl-d14 (Surr)	86		42 _ 151

3 Blank 4 al/NA 5 Dil Fac 6 1 7 Dil Fac 1 1 8 1 8 1 8 1 8 1 8 1 8 1 9 32632 10 11 11

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC))
		,

Lab Sample ID: MB 580-1826	632/1-A									Client Sa	ample ID: N	lethod	Blank
Matrix: Solid											Prep Ty	pe: To	tal/NA
Analysis Batch: 182639											Prep B	atch: 1	82632
		MB MB											
Analyte	Res	sult Qualifie	r RL		MDL	Unit		D	Р	repared	Analyze	d	Dil Fac
Gasoline	0.7	763 J	4.0		0.50	mg/Kg		_	02/1	7/15 13:51	02/17/15 1	4:36	1
		MB MB											
Surrogate	%Recov	ery Qualifie	r Limits						P	repared	Analyze	d	Dil Fac
4-Bromofluorobenzene (Surr)		112	50 - 150						02/1	7/15 13:51	02/17/15 1	4:36	1
Lab Sample ID: LCS 580-182	632/2-A							с	lient	Sample	ID: Lab Co	ntrol S	ample
Matrix: Solid										- C.	Prep Ty	pe: To	tal/NA
Analysis Batch: 182639											Prep B		
			Spike	LCS	LCS						%Rec.		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Gasoline			40.0	43.0			mg/Kg			108	68 - 120		
	LCS	LCS											
Surrogate	%Recovery	Qualifier	Limits										
4-Bromofluorobenzene (Surr)	113		50 - 150										
Lab Sample ID: LCSD 580-18	32632/3-A						CI	ient	Sam	ple ID: L	ab Control	Samp	le Dup
Matrix: Solid										· · · ·	Prep Ty	pe: To	tal/NA
Analysis Batch: 182639											Prep B		
			Spike	LCSD	LCS	D					%Rec.		RPD
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline			40.0	43.7			mg/Kg			109	68 - 120	1	25
	LCSD	LCSD											
Surrogate	%Recovery	Qualifier	Limits										
4-Bromofluorobenzene (Surr)	116		50 - 150										

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC)

Lab Sample ID: MB 580-183135/1-B Matrix: Solid Analysis Batch: 183163	МВ	МВ					Client Sa	mple ID: Metho Prep Type: T Prep Batch:	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C8-C10 Aliphatics	0.133	J	5.0	0.027	mg/Kg		02/25/15 08:00	02/25/15 15:44	1
C10-C12 Aliphatics	ND		5.0	0.095	mg/Kg		02/25/15 08:00	02/25/15 15:44	1
C12-C16 Aliphatics	ND		5.0	1.0	mg/Kg		02/25/15 08:00	02/25/15 15:44	1
C16-C21 Aliphatics	ND		5.0	1.0	mg/Kg		02/25/15 08:00	02/25/15 15:44	1
C21-C34 Aliphatics	ND		5.0	1.0	mg/Kg		02/25/15 08:00	02/25/15 15:44	1
C8-C10 Aromatics	ND		5.0	1.0	mg/Kg		02/25/15 08:00	02/25/15 15:44	1
C10-C12 Aromatics	ND		5.0	0.072	mg/Kg		02/25/15 08:00	02/25/15 15:44	1
C12-C16 Aromatics	ND		5.0	1.0	mg/Kg		02/25/15 08:00	02/25/15 15:44	1
C16-C21 Aromatics	ND		5.0	1.0	mg/Kg		02/25/15 08:00	02/25/15 15:44	1
C21-C34 Aromatics	ND		5.0	1.0	mg/Kg		02/25/15 08:00	02/25/15 15:44	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	71		60 - 140				02/25/15 08:00	02/25/15 15:44	1
1-Chlorooctadecane	83		60 - 140				02/25/15 08:00	02/25/15 15:44	1

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

5

6

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: LCS 580-183135/2-B
Matrix: Solid

Matrix: Solid Analysis Batch: 183163							Prep Type: Total/NA Prep Batch: 183135
· ·····,····	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
C8-C10 Aliphatics	20.1	7.36	*	mg/Kg		37	50 - 150
C10-C12 Aliphatics	6.67	4.65	J	mg/Kg		70	70 - 130
C12-C16 Aliphatics	13.4	12.1		mg/Kg		90	70 - 130
C16-C21 Aliphatics	20.0	21.2		mg/Kg		106	70 _ 130
C21-C34 Aliphatics	40.1	49.9		mg/Kg		125	70 - 130
C8-C10 Aromatics	6.69	4.44	J	mg/Kg		66	50 _ 150
C10-C12 Aromatics	6.70	4.88	J	mg/Kg		73	70 - 130
C12-C16 Aromatics	20.1	18.3		mg/Kg		91	70 - 130
C16-C21 Aromatics	33.4	38.9		mg/Kg		116	70 _ 130
C21-C34 Aromatics	53.5	66.7		mg/Kg		125	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	103		60 - 140
1-Chlorooctadecane	98		60 - 140

Lab Sample ID: LCSD 580-183135/3-B Matrix: Solid Analysis Batch: 183163

Analysis Batch: 183163							Prep I	Batch: 1	83135
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C8-C10 Aliphatics	20.1	7.10	*	mg/Kg		35	50 - 150	4	25
C10-C12 Aliphatics	6.67	4.95	J	mg/Kg		74	70 - 130	6	25
C12-C16 Aliphatics	13.4	12.4		mg/Kg		93	70 - 130	3	25
C16-C21 Aliphatics	20.0	21.3		mg/Kg		106	70 - 130	0	25
C21-C34 Aliphatics	40.1	50.6		mg/Kg		126	70 - 130	1	25
C8-C10 Aromatics	6.69	4.19	J	mg/Kg		63	50 ₋ 150	6	25
C10-C12 Aromatics	6.70	4.56	J *	mg/Kg		68	70 - 130	7	25
C12-C16 Aromatics	20.1	16.7		mg/Kg		83	70 - 130	10	25
C16-C21 Aromatics	33.4	33.4		mg/Kg		100	70 - 130	15	25
C21-C34 Aromatics	53.5	58.2		mg/Kg		109	70 - 130	14	25

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	99		60 - 140
1-Chlorooctadecane	102		60 - 140

Lab Sample ID: MB 580-183258/1-B Matrix: Solid Analysis Batch: 183321

Analysis Batch: 183321								Prep Batch:	
-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C8-C10 Aliphatics	ND		5.0	0.027	mg/Kg		02/26/15 09:37	02/27/15 07:23	1
C10-C12 Aliphatics	ND		5.0	0.095	mg/Kg		02/26/15 09:37	02/27/15 07:23	1
C12-C16 Aliphatics	ND		5.0	1.0	mg/Kg		02/26/15 09:37	02/27/15 07:23	1
C16-C21 Aliphatics	ND		5.0	1.0	mg/Kg		02/26/15 09:37	02/27/15 07:23	1
C21-C34 Aliphatics	ND		5.0	1.0	mg/Kg		02/26/15 09:37	02/27/15 07:23	1
C8-C10 Aromatics	ND		5.0	1.0	mg/Kg		02/26/15 09:37	02/27/15 07:23	1
C10-C12 Aromatics	ND		5.0	0.072	mg/Kg		02/26/15 09:37	02/27/15 07:23	1

TestAmerica Seattle

Client Sample ID: Method Blank

Prep Type: Total/NA

5.0

5.0

5.0

Limits

60 - 140

60 - 140

MDL Unit

1.0 mg/Kg

1.0 mg/Kg

1.0 mg/Kg

D

Prepared

02/26/15 09:37

02/26/15 09:37

02/26/15 09:37

Prepared

02/26/15 09:37

02/26/15 09:37

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC) (Continued)

MB MB

ND

ND

ND

MB MB

%Recovery Qualifier

103

112

Result Qualifier

Analysis Batch: 183321

Matrix: Solid

C12-C16 Aromatics

C16-C21 Aromatics

C21-C34 Aromatics

1-Chlorooctadecane

Analyte

Surrogate

o-Terphenyl

Lab Sample ID: MB 580-183258/1-B

Client Sample ID: Method Blank

Analyzed

02/27/15 07:23

02/27/15 07:23

02/27/15 07:23

Analyzed

02/27/15 07:23

02/27/15 07:23

Prep Type: Total/NA

Prep Batch: 183258

Dil Fac

Dil Fac

1

1

1

1

1

2 3 4 5

6 7 8

Lab Sample ID: LCS 580-183258/2-B	
Matrix: Solid	
Analysis Batch: 183321	

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 183258

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
C8-C10 Aliphatics	20.1	12.1		mg/Kg		60	50 - 150
C10-C12 Aliphatics	6.67	5.84		mg/Kg		88	70 ₋ 130
C12-C16 Aliphatics	13.4	13.2		mg/Kg		99	70 - 130
C16-C21 Aliphatics	20.0	21.4		mg/Kg		107	70 _ 130
C21-C34 Aliphatics	40.1	49.5		mg/Kg		124	70 - 130
C8-C10 Aromatics	6.69	6.44		mg/Kg		96	50 ₋ 150
C10-C12 Aromatics	6.70	6.11		mg/Kg		91	70 _ 130
C12-C16 Aromatics	20.1	20.5		mg/Kg		102	70 ₋ 130
C16-C21 Aromatics	33.4	39.1		mg/Kg		117	70 ₋ 130
C21-C34 Aromatics	53.5	64.4		mg/Kg		121	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	107		60 - 140
1-Chlorooctadecane	101		60 - 140

Lab Sample ID: LCSD 580-183258/3-B Matrix: Solid

Analysis Batch: 183321							Prep I	Batch: 1	83258
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C8-C10 Aliphatics	20.1	12.8		mg/Kg		64	50 _ 150	6	25
C10-C12 Aliphatics	6.67	6.00		mg/Kg		90	70 - 130	3	25
C12-C16 Aliphatics	13.4	13.8		mg/Kg		103	70 - 130	4	25
C16-C21 Aliphatics	20.0	22.2		mg/Kg		111	70 - 130	4	25
C21-C34 Aliphatics	40.1	51.7		mg/Kg		129	70 - 130	4	25
C8-C10 Aromatics	6.69	6.24		mg/Kg		93	50 ₋ 150	3	25
C10-C12 Aromatics	6.70	5.88		mg/Kg		88	70 - 130	4	25
C12-C16 Aromatics	20.1	19.9		mg/Kg		99	70 - 130	3	25
C16-C21 Aromatics	33.4	38.0		mg/Kg		114	70 - 130	3	25
C21-C34 Aromatics	53.5	62.7		mg/Kg		117	70 ₋ 130	3	25

	LCSD LCSI	
Surrogate	%Recovery Qual	ifier Limits
o-Terphenyl	104	60 - 140
1-Chlorooctadecane	108	60 - 140

25

50

Limits

50 - 150

MDL Unit

5.7 mg/Kg

9.1 mg/Kg

D

Prepared

02/13/15 10:52

02/13/15 10:52

Prepared

02/13/15 10:52

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

MB MB Result Qualifier

MB MB %Recovery Qualifier

ND

ND

56

Analysis Batch: 182566

Matrix: Solid

#2 Diesel (C10-C24)

Motor Oil (>C24-C36)

Analyte

Surrogate

o-Terphenyl

Lab Sample ID: MB 580-182463/1-A

Client Sample ID: Method Blank

Analyzed

02/17/15 10:35

02/17/15 10:35

02/1

Prep Type: Total/NA

Prep Batch: 182463

6

Analyzed	Dil Fac	
2/17/15 10:35	1	

Dil Fac

1

1

Lab Sample ID: LCSD 580-18 Matrix: Solid Analysis Batch: 182566				Clie	nt San	nple ID:		l Sampl ype: To Batch: 1	tal/NA		
-			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
#2 Diesel (C10-C24)			500	364		mg/Kg		73	70 - 125	4	16
Motor Oil (>C24-C36)			502	401		mg/Kg		80	64 - 127	6	17
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
o-Terphenyl	56		50 _ 150								

o-Terphenyl	56
—	

Lab Sample ID: MB 580-182471/19 Matrix: Solid Analysis Batch: 182582		MD					Client Sa	mple ID: Metho Prep Type: T Prep Batch:	otal/N/
Analyte	MB Result	мв Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	ND		0.50		mg/Kg		02/13/15 11:11	02/13/15 16:09	1
Cadmium	ND		0.20	0.019	mg/Kg		02/13/15 11:11	02/13/15 16:09	1(
Chromium	ND		0.50	0.063	mg/Kg		02/13/15 11:11	02/13/15 16:09	10
Nickel	ND		0.50	0.081	mg/Kg		02/13/15 11:11	02/13/15 16:09	10
Zinc	ND		5.0	11	mg/Kg		02/13/15 11:11	02/13/15 16:09	1(

```
Lab Sample ID: LCS 580-182471/20-A
Matrix: Solid
```

Method: 6020A - Metals (ICP/MS)

Analysis Batch: 182582							Prep	Batch: 182471
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lead	50.0	52.9		mg/Kg		106	80 - 120	
Cadmium	5.00	5.04		mg/Kg		101	80 - 120	
Chromium	20.0	20.3		mg/Kg		101	80 - 120	
Nickel	50.0	50.3		mg/Kg		101	80 - 120	
Zinc	200	198		mg/Kg		99	80 - 120	

Lab Sample ID: LCSD 580-182471/21-A

Matrix: Solid

Matrix: Solid								ype: To	
Analysis Batch: 182582							Prep	Batch: 1	82471
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	50.0	51.8		mg/Kg		104	80 - 120	2	20
Cadmium	5.00	5.04		mg/Kg		101	80 - 120	0	20

TestAmerica Seattle

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 580-182471/21-A Matrix: Solid Analysis Batch: 182582				Clie	nt Sam	ple ID:		ol Sample ype: Tot Batch: 1	tal/NA
Analyte	Spike Added		LCSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Chromium	20.0	19.8		mg/Kg		99	80 - 120	2	20
Nickel	50.0	48.9		mg/Kg		98	80 - 120	3	20
Zinc	200	196		mg/Kg		98	80 - 120	1	20

Client Sample ID: C-C' Date Collected: 02/11/15 10:30 Date Received: 02/12/15 09:55

Lab Sample ID: 580-47473-14

Matrix: Solid

Lab Sample ID: 580-47473-13 Matrix: Solid Percent Solids: 80.2

6 7 8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			182616	02/12/15 11:30	SOC	TAL SEA
Total/NA	Analysis	8260C		1	182579	02/17/15 16:39	CJ	TAL SEA
otal/NA	Prep	3550B			182455	02/13/15 09:20	RMB	TAL SEA
otal/NA	Analysis	8270D SIM		1	182599	02/17/15 20:29	AHP	TAL SEA
Total/NA	Prep	5035			182632	02/17/15 13:51	IWH	TAL SEA
Fotal/NA	Analysis	NWTPH-Gx		1	182639	02/17/15 18:12	TL1	TAL SEA
Total/NA	Prep	3550B			183135	02/25/15 08:00	JJP	TAL SEA
Total/NA	Fraction	EPH Frac			183208	02/25/15 14:19	ALC	TAL SEA
otal/NA	Analysis	NWTPH/EPH		1	183163	02/25/15 18:19	EKK	TAL SEA
Total/NA	Prep	3550B	RE		183258	02/26/15 09:37	EKK	TAL SEA
Fotal/NA	Fraction	EPH Frac	RE		183298	02/26/15 13:35	ALC	TAL SEA
Total/NA	Analysis	NWTPH/EPH	RE	1	183321	02/27/15 10:23	EKK	TAL SEA
Total/NA	Prep	3546			182463	02/13/15 10:54	JJP	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182566	02/17/15 16:47	JJP	TAL SEA
Total/NA	Prep	3050B			182471	02/13/15 11:11	PAB	TAL SEA
otal/NA	Analysis	6020A		10	182582	02/13/15 17:55	FCW	TAL SEA
otal/NA	Analysis	D 2216		1	182552	02/14/15 18:05	ERZ	TAL SEA

Client Sample ID: D-D' Date Collected: 02/11/15 10:35 Date Received: 02/12/15 09:55

Percent Solids: 78.8 Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Analyst or Analyzed Lab 5035 SOC Total/NA Prep 182616 02/12/15 11:30 TAL SEA Total/NA 8260C 182579 02/17/15 17:04 Analysis 1 CJ TAL SEA Total/NA Prep 3550B 182455 02/13/15 09:20 RMB TAL SEA Total/NA 8270D SIM 182599 02/17/15 20:51 AHP TAL SEA Analysis 1 Total/NA Prep 5035 182632 02/17/15 13:51 IWH TAL SEA Total/NA Analysis NWTPH-Gx 182639 02/17/15 17:11 TL1 TAL SEA 1 Total/NA Prep 3550B 183135 02/25/15 08:00 JJP TAL SEA Total/NA Fraction EPH Frac 183208 02/25/15 14:19 ALC TAL SEA Total/NA Analysis NWTPH/EPH 1 183163 02/25/15 18:45 EKK TAL SEA Total/NA 3550B RE 02/26/15 09:37 EKK TAL SEA Prep 183258 Total/NA Fraction EPH Frac RE 183298 02/26/15 13:35 ALC TAL SEA Total/NA Analysis NWTPH/EPH RE 1 183321 02/27/15 10:48 EKK TAL SEA Total/NA Prep 3546 182463 02/13/15 10:54 JJP TAL SEA Total/NA Analysis NWTPH-Dx 182566 02/17/15 17:03 JJP TAL SEA 1 Total/NA Prep 3050B 182471 02/13/15 11:11 PAB TAL SEA

10

1

Laboratory References:

Total/NA

Total/NA

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

6020A

D 2216

Analysis

Analysis

02/13/15 17:59

02/14/15 18:05 ERZ

FCW

TAL SEA

TAL SEA

182582

182552

TestAmerica Job ID: 580-47473-2

1 2 3 4 5 6 7 8 9 10 11

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-15
California	State Program	9	2901	01-31-15 *
L-A-B	DoD ELAP		L2236	01-19-16
L-A-B	ISO/IEC 17025		L2236	01-19-16
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-15
US Fish & Wildlife	Federal		LE192332-0	02-28-16
USDA	Federal		P330-11-00222	04-08-17
Washington	State Program	10	C553	02-17-16 *

* Certification renewal pending - certification considered valid.

Matrix

Solid

Solid

Client Sample ID

C-C'

D-D'

Lab Sample ID

580-47473-13

580-47473-14

02/11/15 10:30 02/12/15 09:55

Received

02/12/15 09:55

Collected

02/11/15 10:35

5
8
9

теринисти осание 5755 8th Street East		unain	unain of Custody Record	La	TestAmerica
Tacoma, WA 98424 phone 253.922.2310 fax	Regulatory Program:	: DW	RcRA Other:	5キャナシ	THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.
Client Contact	fanager:	JOHN MEANS	생	Date: 2/1/15	COC No:
TerraGraphics	Tel/Fax:		Lab Contact: 09010 502K	Carrier:	/ of X COCs
988 S longmont ave	Analysis Turnaround Time	ound Time			Sampler:
boise idaho 83706		WORKING DAYS	<i>'</i> 2.		For Lab Use Only:
(xxx) xxx-xxxx Phone	TAT if different from Below 3.0AV	W 3 -0AY	<i>.</i>		Walk-in Client:
	2 weeks		70		Lab Sampling:
Project Name: KUFR			1) (() (
	2 days		/ (7) / (7)/	X	Job / SDG No.:
PO# 15006	1 day		599 757 	6	
Samnle Identification	Sample Sample Compound	# of Cont	2, 0, 1, 7, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 0, 1, 4, 1, 0, 1, 2, 4, 1, 0, 1, 1, 2, 4, 1, 0, 1, 2, 4, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	X3-18 -14]	
TD-17'	6471	7 10			
	100	4 1			
8	1125	75			
K	2/10/15/135 G	52 4			
-4 TP-47	2/10/15 1204 G	52 4			
B TP-S 6	2/10/15 1235 G	52 4			
4 -6 FP-6 6	2/10/15 1257 6	52 4		XX 580-47473 Chain of Custody	ain of Custody
8 TP-66'D	2/10/15 1300 G	Si 4			_
1 - 8 TP- \$ 5'	2/10/15 1330 6	52 4		XX +	
70-95'	2/10/5 1350 G	52 4		XX Cooler/TB Dig/IR cor 2	or 21 unc 1,9
-10 7P-106	2/10/15 1430 G	52 4		XX WetPacks Packing 1	A @Lab
TP-137	2/10/15 1543 6	57 A			777
l		52 4		XX $f_{1} = 0$	m/a>.
Preservation Used: 1=1ce_2= HCI: 3= H2SO4; 4=HNO3_5=NaOH;6=0th6r	5=NaOH, 6= Other				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.	e List any EPA Waste Codes	for the sample in the		Sample Disposal (A fee may be assessed if samples are retained longer than	ained longer than 1 month)
Mon-Hazard Etammable Skin Infrant	Doison B	Unknown	Return to Client	Kpisposal by Lab	Months
Special Instructions/QC Requirements & Comments:					
Custody Seals Infact: T Yes No	Custody Seal No.:		Cooler Temp. (°C): Obs'd		Therm ID No.:
Relinquished by:	Company:	Date/Time:	Received by:	Company:	Date/Time: Date/Time:
Relinquished by:	Company:	Date/Time:	Received by:	Company:	Daté/Tinje:
chelinquished by:	Company:	Date/Time:	Received in Laboratory by:	Company:	Date/Time:
			11	Eorm No. C	Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

ו כטראוווטו ועם טכמוווט 5755 8th Street East		Unain o	unain or uustody Kecord	cord		TestAmerica
Tacoma, WA 98424 phone 253.922.2310 fax	Regulatory Program:		RCRA Other:		Ettty	THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.
Client Contact	Project Manager: J'04N'	SUAN MEANS	Site Contact:	Date:	2/11/15	COC No:
TerraGraphics	Tel/Fax:	_	Lab Contact: Dgv10 50 RK	ALK Carrier:		/ of <u>2</u> COCs
988 S longmont ave	Turn:	d Time	~ 		· · · · ·	Sampler:
boise idaho 83706	CALENDAR DAYS	WORKING DAYS		20 734		For Lab Use Only:
	TAT if different from Below 3 - 0 Ay		(N	13		Walk-in Client:
	2 weeks		71/-	INU		Lab Sampling:
Project Name: メッドネ		<u>/ </u>	27 4.22) at	731. 192		
Site: PO# 15606	2 days	aluu	7)* 7- 5/ X) SW/	Q 7		Job / SDG No.:
	e Sample	# of	ив реле <i>H J J</i> <i>H J J</i> <i>H J J</i> <i>H J J</i> <i>F H J J</i> <i>S M илор</i> <i>S H J J</i> <i>S H J J J J J J J J J J J J J J J J J J </i>	NX J.L. -/- K.L. K.L. Q.L.		
Sample Identification	Time	Matrix Cont.	Per · ·	0, ,		Sample Specific Notes:
-1 TP-17'	1100	F 12		XX		
77-28'	2/10/15/1125 6	51 4		XX		
- 3 TP-38	1135	52 4	XXX	XX		
79-47	2/10/15 1204 G	52 4		XXX		
-5 TP-56	2/10/15 1235 G	52 4	XXX	XX		
79-66	2/10/15 1257 6	52 4		XXX		
-7 TP-66'D	2/10/15 1300 6	52 4	XXX	XX	· · · ·	
20-22	2/10/15 1330 G	52 4		XX		
-9 TP-95'	2/10/6 1350 G	52 4		XX	Cooler/TB Dis/IR cor 2.5 nnc 2	cor 25 nnc 7 3
77-106) 02/1	52 4		XX	Cooler Dsc La Prn Blu a Lab	Blu @Lab 0955
-11 78-137	1543 1	52 4		XX	-WethPacks Packin	18 Plebble
78-167	1630	52 4		XX	- Fed EXS.C.	W/c.S.
Preservation Used: 1=1ce; z= HCI: 3= H2SO4; 4-HNO3; 5=NaOH 5= Other	=NaOH (c= Other)					
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample.	Please List any EPA Waste Codes for the sample in the	the sample in the	Sample Disposal (A fe	e may be asses	sed if samples are retai	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Kuon-Hazard Erammable Estin Liritant	Poison B Unknown	имо	Return to Client	X Disposal by Lab	ab Archive for	Montins
Special Instructions/QC Requirements & Comments:				/		
Custody Seals Intact:	Custody Seal No.:		Cooler Temp. ("C): Obs'd	. (°C): Obs'd:	Corr'd:	Therm ID No.:
	Company:	Date/Time:	Received by:		Company:	Date/Time:
Refinduished by:	Company:	Date/Time:	Received by:		Company:	Date/Time:
Refinquished by:	Company:	Date/Time:	Received in Laboratory by:	by:	Company:	Date/Time:
					Form No. CA	Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

l estAmerica Seattle		Chai	Chain of Custody Record	cord	ToctAmonion
5755 8th Street East					
Tacoma, WA 98424 phone 253.922_2310 fax	Regulatory Program:	: DW NPDES	DES RCRA Ditter:	2七ヤ七ヤ	THE LEADER IN ENVIRONMENTAL TESTING TTS TESTAMENICA LABORATORIAS Inc.
Client Contact	Project Manager: 70/4/	MEAN	Site Contact	Date: $2/n/n$	Ĕ
TerraGraphics			04110	Saller Carrier:	2 of 2 CDCs
988 S longmont ave	Analysis Turnaround Time	ound Time			1
boise idaho 83706	CALENDAR DAYS	WORKING DAYS	("	.20	For Lab Use Only:
(xxx) xxx-xxxx Phone	t from I	X HOLES M		<i>7</i>	Walk-in Client-
	2 weeks		7	7	ah Samolino
Project Name: KUFR		SANJACD		7 <i>9</i> X 1	·D
Site:					Inh / SDG No ·
P0# /S006	-			- 7x 1/X	
	Sample	ple	- 14 07 116 -14		
Sample Identification	Sample Sample Iype Date Time Gerab	Mafrix	U.IN	218 - 21 1 H	Comple Connection Moderate
-13 C-C	1030	Sż.			STANIARA PROMININAL
<t< td=""><td>1225</td><td>+-</td><td></td><td></td><td></td></t<>	1225	+-			
4 0-0	2/11/2 1055 0	Si			STANDARD TAT
-15 TRIP BLANK				XX	
230		 			
Direconstituti (Soft) 1 = 100 3 = HCl 3 = HSCA2 4 = HORD 5 = 100 4 = Chhar	SENSOLOGE GINAR				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please	Please List any EPA Waste Codes for the sample in the	for the sample ir	3	may be assessed if sample	sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Comments Section if the lab is to dispose of the sample.					
Xvon-Hazard Flammable Down Imtaint		UNKNOWN	Return to Client	K Disposal by Lab	Archive for Months
Special Instructions/QC Requirements & Comments:				/	
Custody Seals Intact:	Custody Seal No.:		Cooler Temp. ("C): Obs'd	(°C): Obs'd: Con'd:	Them ID No.:
Relinquished by:	Company:	Date/Time:	: Received by	Company:	Date/Time: Date/Time:
Relinquished by:	Company;	Date/Time:	: Recéived by:	Company:	
G Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	y: Company:	Date/Time:
				F	Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013
				8 9 10 11	1 2 3 4 5 6 7

g

Login Sample Receipt Checklist

Client: TerraGraphics Inc

Login Number: 47473 List Number: 1

Creator: Blankinship, Tom X

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	no
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 580-47473-2 List Source: TestAmerica Seattle

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

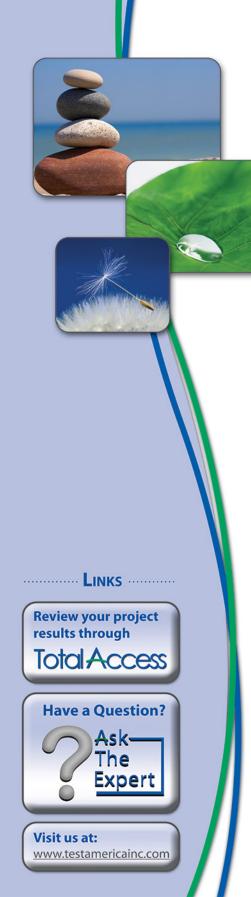
TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-47482-1 Client Project/Site: KVFR

For:

TerraGraphics Inc TerraGraphics Environmental Engineering 988 South Longmont Ave Suite 200 Boise, Idaho 83706

Attn: Mike Procsal


David Burk

Authorized for release by: 3/17/2015 9:29:44 AM

David Burk, Project Manager I (253)248-4972 david.burk@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	5
QC Sample Results	22
Chronicle	28
Certification Summary	32
Sample Summary	33
Chain of Custody	34
Receipt Checklists	35

Job ID: 580-47482-1

Laboratory: TestAmerica Seattle

Narrative

Receipt

The samples were received on 2/12/2015 9:55 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 4 coolers at receipt time were 0.0° C, 0.7° C, 1.0° C and 1.9° C.

GC/MS VOA

Method(s) NWTPH-Gx: The method blank for batch 182640 contained gasoline above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8011: The continuing calibration verification (CCV) associated with analytical batch batch 183059 recovered above the upper control limit for EDB, DBCP and 1,2-dibromopropane surrogate. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: (CCB 580-183059/13), (CCB 580-183059/16), (CCV 580-183059/12), (CCV 580-183059/15), (CCVRT 580-183059/1), (LCS 580-183140/2-A), (LCSD 580-183140/3-A), (MB 580-183140/1-A), MW-1 (580-47482-1), MW-2 (580-47482-2), MW-2 DUP (580-47482-3), MW-3 (580-47482-4), MW-4 (580-47482-5), MW-5 (580-47482-6), MW-6 (580-47482-7), MW-7 (580-47482-8).

Method(s) 8011: Surrogate recovery for the following sample(s) was outside the upper control limit: MW-1 (580-47482-1), MW-2 (580-47482-2), MW-2 DUP (580-47482-3), MW-3 (580-47482-4), MW-4 (580-47482-5), MW-5 (580-47482-6), MW-6 (580-47482-7), MW-7 (580-47482-8). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8011: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for prep batch 183140 recovered outside control limits for EDB, DBCP and 1,2-dibromopropane surrogate. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) NWTPH-Dx: In analysis batch 182753, for the following sample(s) from preparation batch 182738: The following sample(s) contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: MW-2 (580-47482-2), MW-2 DUP (580-47482-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method(s) 9056A: Reanalysis of the following samples was performed outside of the analytical holding time. : MW-1 (580-47482-1), MW-2 (580-47482-2), MW-2 DUP (580-47482-3), MW-3 (580-47482-4), MW-4 (580-47482-5), MW-5 (580-47482-6), MW-6 (580-47482-7), MW-7 (580-47482-8).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4 5

Qualifiers

CC	MC	VOA
90	IN S	VUA

GC/MS VOA		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
GC VOA		
Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
GC Semi VC	A	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
*	LCS or LCSD exceeds the control limits	
^	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.	
х	Surrogate is outside control limits	
Y	The chromatographic response resembles a typical fuel pattern.	
Metals		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	

General Chemistry

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: MW-1

Date Collected: 02/11/15 12:15 Date Received: 02/12/15 09:55

Method: 8260B - Volatile Organ	ic Compounds ((GC/MS)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m-Xylene & p-Xylene	ND		0.50	0.050	ug/L			02/17/15 14:37	1
o-Xylene	ND		0.50	0.060	ug/L			02/17/15 14:37	1
Benzene	ND		0.20	0.025	ug/L			02/17/15 14:37	1
Toluene	ND		0.20	0.025	ug/L			02/17/15 14:37	1
Naphthalene	ND		0.50	0.10	ug/L			02/17/15 14:37	1
EDC	ND		0.20	0.025	ug/L			02/17/15 14:37	1
Ethylbenzene	ND		0.20	0.030	ug/L			02/17/15 14:37	1
Methyl tert-butyl ether	ND		0.20	0.025	ug/L			02/17/15 14:37	1
Xylenes, Total	ND		0.50	0.060	ug/L			02/17/15 14:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		75 - 120			-		02/17/15 14:37	1
Trifluorotoluene (Surr)	93		80 - 127					02/17/15 14:37	1
Toluene-d8 (Surr)	95		75 - 125					02/17/15 14:37	1
1,2-Dichloroethane-d4 (Surr)	101		70 - 128					02/17/15 14:37	1
Dibromofluoromethane (Surr)	97		85 - 115					02/17/15 14:37	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.033	JB	0.10	0.027	mg/L			02/17/15 17:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		50 - 150			-		02/17/15 17:07	1
Trifluorotoluene (Surr)	110		50 - 150					02/17/15 17:07	1

Method: 8011 - EDB and DBCP in Water by Microextraction

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylene Dibromide	ND	* ^	0.010	0.0020	ug/L		02/24/15 16:45	02/24/15 18:26	1
1,2-Dibromo-3-Chloropropane	ND	* Λ	0.010	0.0030	ug/L		02/24/15 16:45	02/24/15 18:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dibromopropane	180	X ^	70 - 130				02/24/15 16:45	02/24/15 18:26	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Qualifier					·		
0.022	J	0.12	0.014	mg/L		02/18/15 15:40	02/19/15 10:56	1
0.010	J	0.24	0.0094	mg/L		02/18/15 15:40	02/19/15 10:56	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
81		50 - 150				02/18/15 15:40	02/19/15 10:56	1
Total Recov	erable							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.0020	0.00017	mg/L		02/17/15 16:56	02/18/15 18:44	5
4.0	J	10	1.8	ug/L		02/17/15 16:56	02/18/15 18:44	5
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
12000	Н	1200	400	ug/L			03/16/15 15:01	1
170		5.0	5.0	mg/L			02/18/15 13:01	1
170		5.0	5.0	mg/L			02/18/15 13:01	1
	0.022 0.010 %Recovery 81 Total Recover Result ND 4.0 Result 12000 170	0.022 J 0.010 J %Recovery Qualifier 81 Total Recoverable Qualifier ND 4.0 J Result Qualifier 12000 H 170 170	0.022 J 0.12 0.010 J 0.24 %Recovery Qualifier Limits 81 50 - 150 Total Recoverable RL ND 0.0020 4.0 J 10 Result Qualifier RL 12000 H 1200 170 5.0	0.022 J 0.12 0.014 0.010 J 0.24 0.0094 %Recovery Qualifier Limits 0.12 0.0094 %Recovery Qualifier Limits 0.0094 0.0094 Total Recoverable Result Qualifier RL MDL 0.00017 0.00017 0.00017 0.00017 0.00017 1.8 MDL 0.00017 1.8 MDL 0.00017 1.8 MDL 0.00017 1.8 MDL 0.00017 0.00017 1.8 MDL 0.00017 1.8 MDL 0.00017 1.8 MDL 0.00017 1.8 0.00017 1.8 0.00017 </td <td>0.022 J 0.12 0.014 mg/L 0.010 J 0.24 0.0094 mg/L %Recovery Qualifier Limits 0.0094 mg/L %Recovery Qualifier Limits 0.0004 mg/L Total Recoverable Result Qualifier RL MDL Unit ND 0.0020 0.00017 mg/L mg/L 4.0 J 10 1.8 ug/L Result Qualifier RL MDL Unit 12000 H 1200 400 ug/L 170 5.0 5.0 mg/L</td> <td>0.022 J 0.12 0.014 mg/L - 0.010 J 0.24 0.0094 mg/L - %Recovery Qualifier Limits - <</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	0.022 J 0.12 0.014 mg/L 0.010 J 0.24 0.0094 mg/L %Recovery Qualifier Limits 0.0094 mg/L %Recovery Qualifier Limits 0.0004 mg/L Total Recoverable Result Qualifier RL MDL Unit ND 0.0020 0.00017 mg/L mg/L 4.0 J 10 1.8 ug/L Result Qualifier RL MDL Unit 12000 H 1200 400 ug/L 170 5.0 5.0 mg/L	0.022 J 0.12 0.014 mg/L - 0.010 J 0.24 0.0094 mg/L - %Recovery Qualifier Limits - <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Lab Sample ID: 580-47482-1 Matrix: Water

5

Lab Sample ID: 580-47482-1

Matrix: Water

Client Sample ID: MW-1 Date Collected: 02/11/15 12:15

Client: TerraGraphics Inc

Project/Site: KVFR

Date	Received:	02/12/15	09:55

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbonate Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Hydroxide Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Total Suspended Solids	ND		3000	3000	ug/L			02/17/15 11:01	1

0.50

0.50

0.20

0.20

0.50

0.20

0.20

0.20

MDL Unit

0.050 ug/L

0.060 ug/L

0.025 ug/L

0.025 ug/L

0.10 ug/L

0.025 ug/L

0.030 ug/L

0.025 ug/L

D

Prepared

Client: TerraGraphics Inc Project/Site: KVFR

Analyte

o-Xylene

Benzene

Toluene

EDC

Naphthalene

Ethylbenzene

Methyl tert-butyl ether

m-Xylene & p-Xylene

Client Sample ID: MW-2

Date Collected: 02/11/15 09:50 Date Received: 02/12/15 09:55

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

0.098 J

ND

ND

0.038 J

ND

ND

ND

ND

Lab Sam	ple ID:	580-47482-2

TestAmerica Job ID: 580-47482-1

Analyzed

02/17/15 15:05

02/17/15 15:05

02/17/15 15:05

02/17/15 15:05

02/17/15 15:05

02/17/15 15:05

02/17/15 15:05

02/17/15 15:05

Matrix: Water

Dil Fac

1

1

1

1

1

1

1

1

1

1 1

	Dil Fac	
05	1	
05	1	
05	1	

Xylenes, Total	0.098	J	0.50	0.060 ug/L		02/17/15 15:05	
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Di
4-Bromofluorobenzene (Surr)	96		75 - 120			02/17/15 15:05	
Trifluorotoluene (Surr)	97		80 - 127			02/17/15 15:05	
Toluene-d8 (Surr)	97		75 - 125			02/17/15 15:05	
1,2-Dichloroethane-d4 (Surr)	102		70 - 128			02/17/15 15:05	
Dibromofluoromethane (Surr)	100		85 - 115			02/17/15 15:05	

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.030	JB	0.10	0.027	mg/L			02/17/15 17:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		50 - 150			-	<u> </u>	02/17/15 17:40	1

Method: 8011 - EDB and DBCP in Water by Microextraction

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylene Dibromide	ND	* ^	0.010	0.0020	ug/L		02/24/15 16:45	02/24/15 18:52	1
1,2-Dibromo-3-Chloropropane	ND	* ^	0.010	0.0030	ug/L		02/24/15 16:45	02/24/15 18:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dibromopropane	232	X ^	70 - 130				02/24/15 16:45	02/24/15 18:52	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.19	Y	0.13	0.015	mg/L		02/18/15 15:40	02/19/15 11:15	1
Motor Oil (>C24-C36)	0.12	J	0.26	0.010	mg/L		02/18/15 15:40	02/19/15 11:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	78		50 - 150				02/18/15 15:40	02/19/15 11:15	1
_ Method: 6020A - Metals (ICP/MS)	- Total Recov	erable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0020	0.00017	mg/L		02/17/15 16:56	02/18/15 18:48	5
Manganese	140		10	1.8	ug/L		02/17/15 16:56	02/18/15 18:48	5
– General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	7900	Н	1200	400	ug/L			03/16/15 15:15	1
Alkalinity	150		5.0	5.0	mg/L			02/18/15 13:01	1
Bicarbonate Alkalinity as CaCO3	150		5.0	5.0	mg/L			02/18/15 13:01	1

Client Sample ID: MW-2 Date Collected: 02/11/15 09:50

Client: TerraGraphics Inc

Project/Site: KVFR

Lab Sample ID: 580-47482-2 Matrix: Water

Date Received: 02/12/15 09:55

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbonate Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Hydroxide Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Total Suspended Solids	ND		3000	3000	ug/L			02/17/15 11:01	1

0.50

0.50

0.20

0.20

0.50

0.20

0.20

0.20

0.50

Limits

75 - 120

80 - 127

75 - 125

70 - 128

85 - 115

MDL Unit

0.050 ug/L

0.060 ug/L

0.025 ug/L

0.025 ug/L

0.10 ug/L

0.025 ug/L

0.030 ug/L

0.025 ug/L

0.060 ug/L

D

Prepared

Client: TerraGraphics Inc Project/Site: KVFR

Analyte

o-Xylene

Benzene

Toluene

EDC

Naphthalene

Ethylbenzene

Xylenes, Total

Surrogate

Methyl tert-butyl ether

Trifluorotoluene (Surr)

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

m-Xylene & p-Xylene

Client Sample ID: MW-2 DUP

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

0.099 J

0.089 J

ND

0.036 J

ND

ND

ND

0.19 J

%Recovery Qualifier

92

101

97

102

98

J

0.055

Date Collected: 02/11/15 09:55 Date Received: 02/12/15 09:55

	1.15	
Lab Sa	mple ID:	580-47482-3

TestAmerica Job ID: 580-47482-1

Analyzed

02/17/15 15:32

02/17/15 15:32

02/17/15 15:32

02/17/15 15:32

02/17/15 15:32

02/17/15 15:32

02/17/15 15:32

02/17/15 15:32

02/17/15 15:32

02/17/15 15:32

Matrix: Water

Dil Fac

1

1

1

1

1

1

1

1

1

1

Prepared	Analyzed	Dil Fac	
	02/17/15 15:32	1	
	02/17/15 15:32	1	
	02/17/15 15:32	1	
	02/17/15 15:32	1	

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.10	0.027	mg/L			02/17/15 18:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)		Qualifier	Limits 50 - 150			-	Prepared	Analyzed 02/17/15 18:12	Dil Fac

Method: 8011 - EDB and DBCP in Water by Microextraction

A	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Et	hylene Dibromide	ND	* ^	0.010	0.0020	ug/L		02/24/15 16:45	02/24/15 19:17	1
1,	2-Dibromo-3-Chloropropane	ND	* ^	0.010	0.0030	ug/L		02/24/15 16:45	02/24/15 19:17	1
Si	urrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac
I —	2-Dibromopropane		<u>X</u> ^	70 - 130				02/24/15 16:45	02/24/15 19:17	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.19	Y	0.12	0.014	mg/L		02/18/15 15:40	02/19/15 11:34	1
Motor Oil (>C24-C36)	0.13	J	0.24	0.0095	mg/L		02/18/15 15:40	02/19/15 11:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	74		50 - 150				02/18/15 15:40	02/19/15 11:34	1
_ Method: 6020A - Metals (ICP/MS) - Total Recov	erable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0020	0.00017	mg/L		02/17/15 16:56	02/18/15 18:51	5
Manganese	150		10	1.8	ug/L		02/17/15 16:56	02/18/15 18:51	5
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	7800	Н	1200	400	ug/L			03/16/15 15:29	1
Alkalinity	140		5.0	5.0	mg/L			02/18/15 13:01	1
Bicarbonate Alkalinity as CaCO3	140		5.0	5.0	mg/L			02/18/15 13:01	1

Client Sample ID: MW-2 DUP

Lab Sample ID: 580-47482-3 Matrix: Water

5

Date Collected: 02/11/15 09:55 Date Received: 02/12/15 09:55

Client: TerraGraphics Inc

Project/Site: KVFR

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbonate Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Hydroxide Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Total Suspended Solids	ND	;	3000	3000	ug/L			02/17/15 11:01	1

0.50

0.50

0.20

0.20

0.50

0.20

0.20

0.20

0.50

Limits

75 - 120

80 - 127

75 - 125

70 - 128

85 - 115

MDL Unit

0.050 ug/L

0.060 ug/L

0.025 ug/L

0.025 ug/L

0.10 ug/L

0.025 ug/L

0.030 ug/L

0.025 ug/L

0.060 ug/L

D

Prepared

Prep

Analyte

o-Xylene

Benzene

Toluene

EDC

Naphthalene

Ethylbenzene

Xylenes, Total

Surrogate

Methyl tert-butyl ether

Trifluorotoluene (Surr)

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

m-Xylene & p-Xylene

Client Sample ID: MW-3

Date Collected: 02/11/15 10:55

Date Received: 02/12/15 09:55

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

0.096 J

ND

ND

0.026 J

ND

ND

ND

0.096 J

%Recovery Qualifier

91

100

98

101

99

J

0.056

TestAmerica Job ID: 580-47482-1

Lab Sample ID: 580-47482-4

Analyzed

02/17/15 16:00

02/17/15 16:00

02/17/15 16:00

02/17/15 16:00

02/17/15 16:00

02/17/15 16:00

02/17/15 16:00

02/17/15 16:00

Matrix: Water

Dil Fac

1

1

1

1

1

1

1

5

	02/17/15 16:00	1	9
	02/17/15 16:00	1	
ared	Analyzed	Dil Fac	
	02/17/15 16:00	1	
	02/17/15 16:00	1	
	02/17/15 16:00	1	
	02/17/15 16:00	1	

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline		ND		0.10	0.027	mg/L			02/17/15 18:46	1
Surrogate		%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromoflu	orobenzene (Surr)	94		50 - 150					02/17/15 18:46	1
Trifluorotol	uene (Surr)	108		50 - 150					02/17/15 18:46	1

Method: 8011 - EDB and DBCP in Water by Microextraction

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylene Dibromide	ND	* ^	0.010	0.0020	ug/L		02/24/15 16:45	02/24/15 19:43	1
1,2-Dibromo-3-Chloropropane	ND	* ^	0.010	0.0030	ug/L		02/24/15 16:45	02/24/15 19:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dibromopropane	244	X ^	70 - 130				02/24/15 16:45	02/24/15 19:43	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.037	J	0.12	0.014	mg/L		02/18/15 15:40	02/19/15 11:53	1
Motor Oil (>C24-C36)	0.037	J	0.24	0.0095	mg/L		02/18/15 15:40	02/19/15 11:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	83		50 - 150				02/18/15 15:40	02/19/15 11:53	1
_ Method: 6020A - Metals (ICP/MS) - Total Recov	erable							
Analyte	· · · · · · · · · · · · · · · · · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0020	0.00017	mg/L		02/17/15 16:56	02/18/15 18:55	5
Manganese	2.9	J	10	1.8	ug/L		02/17/15 16:56	02/18/15 18:55	5
– General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	9700	Н	1200	400	ug/L			03/16/15 15:44	1
Alkalinity	150		5.0	5.0	mg/L			02/18/15 13:01	1
Bicarbonate Alkalinity as CaCO3	150		5.0	5.0	mg/L			02/18/15 13:01	1

Project/Site: KVFR Client Sample ID: MW-3

Date Collected: 02/11/15 10:55

Date Received: 02/12/15 09:55

Client: TerraGraphics Inc

Lab Sample ID: 580-47482-4 Matrix: Water

Wallix. Walei

5

General Chemistry (Continued) Analyte Result Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbonate Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Hydroxide Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Total Suspended Solids	20000	30	000	3000	ug/L			02/17/15 11:01	1

MDL Unit

D

Prepared

Analyte

Client Sample ID: MW-4

Date Collected: 02/10/15 16:50 Date Received: 02/12/15 09:55

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

Analyzed

Matrix: Water

Dil Fac

Analyto	Rooun	quannor			onne		Tioparoa	Analyzou	Diriao
m-Xylene & p-Xylene	ND		0.50	0.050	ug/L			02/17/15 16:27	1
o-Xylene	ND		0.50	0.060	ug/L			02/17/15 16:27	1
Benzene	ND		0.20	0.025	ug/L			02/17/15 16:27	1
Toluene	ND		0.20	0.025	ug/L			02/17/15 16:27	1
Naphthalene	ND		0.50	0.10	ug/L			02/17/15 16:27	1
EDC	ND		0.20	0.025	ug/L			02/17/15 16:27	1
Ethylbenzene	ND		0.20	0.030	ug/L			02/17/15 16:27	1
Methyl tert-butyl ether	ND		0.20	0.025	ug/L			02/17/15 16:27	1
Xylenes, Total	ND		0.50	0.060	ug/L			02/17/15 16:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		75 - 120					02/17/15 16:27	1
Trifluorotoluene (Surr)	97		80 - 127					02/17/15 16:27	1
Toluene-d8 (Surr)	96		75 - 125					02/17/15 16:27	1
1,2-Dichloroethane-d4 (Surr)	104		70 - 128					02/17/15 16:27	1
Dibromofluoromethane (Surr)	99		85 - 115					02/17/15 16:27	1
Method: NWTPH-Gx - Northwe	st - Volatile Petr	oleum Prod	ucts (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.10	0.027	mg/L			02/17/15 19:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		50 - 150					02/17/15 19:18	1
Trifluorotoluene (Surr)	107		50 - 150					02/17/15 19:18	1
Method: 8011 - EDB and DBCP	in Water by Mic	roextractio	n						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylene Dibromide	ND	* ٨	0.010	0.0020	ug/L		02/24/15 16:45	02/24/15 20:08	1
1,2-Dibromo-3-Chloropropane	ND	* ^	0.010	0.0030	ug/L		02/24/15 16:45	02/24/15 20:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dibromopropane	222	X ^	70 - 130				02/24/15 16:45	02/24/15 20:08	1
Method: NWTPH-Dx - Northwes	st - Semi-Volatile	e Petroleum	Products (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.037	J	0.13	0.015	mg/L		02/18/15 15:40	02/19/15 12:11	1
Motor Oil (>C24-C36)	0.042	J	0.25	0.0099	mg/L		02/18/15 15:40	02/19/15 12:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		50 - 150				02/18/15 15:40	02/19/15 12:11	1
Method: 6020A - Metals (ICP/M	S) - Total Recov	erable							
Analyta	· ·	Qualifier	ы	МП	Unit		Dremered	Analyzad	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0020	0.00017	mg/L		02/17/15 16:56	02/18/15 19:11	5
Manganese	83		10	1.8	ug/L		02/17/15 16:56	02/18/15 19:11	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	11000	н	1200	400	ug/L			03/16/15 15:58	1
Alkalinity	160		5.0	5.0	mg/L			02/18/15 13:01	1
Bicarbonate Alkalinity as CaCO3	160		5.0	5.0	mg/L			02/18/15 13:01	1

Client Sample ID: MW-4 Date Collected: 02/10/15 16:50

Lab Sample ID: 580-47482-5 Matrix: Water

5

Date Received: 02/12/15 09:55

Client: TerraGraphics Inc

Project/Site: KVFR

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbonate Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Hydroxide Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Total Suspended Solids	ND		3000	3000	ug/L			02/17/15 11:01	1

0.50

0.50

0.20

0.20

0.50

0.20

0.20

0.20

Analyte

o-Xylene

Benzene

Toluene

EDC

Naphthalene

Ethylbenzene

Xylenes, Total

Surrogate

Methyl tert-butyl ether

4-Bromofluorobenzene (Surr) Trifluorotoluene (Surr) Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr)

m-Xylene & p-Xylene

Client Sample ID: MW-5

Date Collected: 02/10/15 15:25 Date Received: 02/12/15 09:55

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

.1

ND

ND

ND

ND

ND

ND

ND

0.032

Analyzed

02/17/15 16:55

02/17/15 16:55

02/17/15 16:55

02/17/15 16:55

02/17/15 16:55

02/17/15 16:55

02/17/15 16:55

02/17/15 16:55

Dil Fac

1

1

1

1

1

1

1

1

ND		0.50	0.060 ug/L		02/17/15 16:55	1	
%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
93		75 - 120			02/17/15 16:55	1	
99		80 - 127			02/17/15 16:55	1	
96		75 - 125			02/17/15 16:55	1	
103		70 - 128			02/17/15 16:55	1	
99		85 - 115			02/17/15 16:55	1	

MDL Unit

0.050 ug/L

0.060 ug/L

0.025 ug/L

0.025 ug/L

0.10 ug/L

0.025 ug/L

0.030 ug/L

0.025 ug/L

D

Prepared

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.10	0.027	mg/L			02/17/15 19:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		50 - 150			-		02/17/15 19:52	1
Trifluorotoluene (Surr)	105		50 - 150					02/17/15 19:52	1

Method: 8011 - EDB and DBCP in Water by Microextraction

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylene Dibromide	ND	* ^	0.010	0.0020	ug/L		02/24/15 16:45	02/24/15 20:34	1
1,2-Dibromo-3-Chloropropane	ND	* ^	0.010	0.0030	ug/L		02/24/15 16:45	02/24/15 20:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dibromopropane	206	X ^	70 - 130				02/24/15 16:45	02/24/15 20:34	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.030	J	0.12	0.014	mg/L		02/18/15 15:40	02/19/15 12:30	1
Motor Oil (>C24-C36)	0.065	J	0.24	0.0096	mg/L		02/18/15 15:40	02/19/15 12:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91		50 - 150				02/18/15 15:40	02/19/15 12:30	1
_ Method: 6020A - Metals (ICP/MS) - Total Recov	erable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0020	0.00017	mg/L		02/17/15 16:56	02/18/15 19:15	5
Manganese	170		10	1.8	ug/L		02/17/15 16:56	02/18/15 19:15	5
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	4600	Н	1200	400	ug/L			03/16/15 16:13	1
Alkalinity	150		5.0	5.0	mg/L			02/18/15 13:01	1
Bicarbonate Alkalinity as CaCO3	150		5.0	5.0	mg/L			02/18/15 13:01	1

Client Sample ID: MW-5 Date Collected: 02/10/15 15:25

Lab Sample ID: 580-47482-6 Matrix: Water

5

Date Received: 02/12/15 09:55

Client: TerraGraphics Inc

Project/Site: KVFR

ī

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbonate Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Hydroxide Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Total Suspended Solids	ND		3000	3000	ug/L			02/17/15 11:01	1

0.50

0.50

0.20

Analyte

o-Xylene

Benzene

4-Bromofluorobenzene (Surr) Trifluorotoluene (Surr)

m-Xylene & p-Xylene

Client Sample ID: MW-6

Date Collected: 02/10/15 12:25

Date Received: 02/12/15 09:55

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

0.091 J

ND

ND

109

TestAmerica Job ID: 580-47482-1

Lab Sample ID: 580-47482-7

Analyzed

02/17/15 17:22

02/17/15 17:22

02/17/15 17:22

02/17/15 20:57

Matrix: Water

Dil Fac

1

1

1

5

1

Toluene	0.047	· · <mark>·</mark> · · · · · · · · · ·	0.20	0.025				02/17/15 17:22		
Naphthalene	ND	5	0.50		ug/L			02/17/15 17:22	1	
					0				1	
EDC	0.038	J	0.20	0.025	ug/L			02/17/15 17:22	1	
Ethylbenzene	ND		0.20	0.030	ug/L			02/17/15 17:22	1	
Methyl tert-butyl ether	ND		0.20	0.025	ug/L			02/17/15 17:22	1	
Xylenes, Total	0.091	J	0.50	0.060	ug/L			02/17/15 17:22	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	91		75 - 120			-		02/17/15 17:22	1	
Trifluorotoluene (Surr)	94		80 - 127					02/17/15 17:22	1	
Toluene-d8 (Surr)	94		75 - 125					02/17/15 17:22	1	
1,2-Dichloroethane-d4 (Surr)	104		70 - 128					02/17/15 17:22	1	
Dibromofluoromethane (Surr)	100		85 - 115					02/17/15 17:22	1	
Method: NWTPH-Gx - Northwest -	Volatile Petro	oleum Prod	ucts (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline	ND		0.10	0.027	mg/L			02/17/15 20:57	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	92		50 - 150			-		02/17/15 20:57	1	

MDL Unit

0.050 ug/L

0.060 ug/L

0.025 ug/L

D

Prepared

Method: 8011 - EDB and DBCP in Water by Microextraction

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylene Dibromide	ND	* ^	0.010	0.0020	ug/L		02/24/15 16:45	02/24/15 20:59	1
1,2-Dibromo-3-Chloropropane	ND	* Λ	0.010	0.0030	ug/L		02/24/15 16:45	02/24/15 20:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dibromopropane	212	<u>x</u> ^	70 - 130				02/24/15 16:45	02/24/15 20:59	1

50 - 150

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.064	J	0.12	0.014	mg/L		02/18/15 15:40	02/19/15 12:49	1
Motor Oil (>C24-C36)	0.20	J	0.25	0.0097	mg/L		02/18/15 15:40	02/19/15 12:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	93		50 - 150				02/18/15 15:40	02/19/15 12:49	1
Method: 6020A - Metals (ICP/MS)	- Total Recov	erable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0020	0.00017	mg/L		02/17/15 16:56	02/18/15 19:19	5
Manganese	310		10	1.8	ug/L		02/17/15 16:56	02/18/15 19:19	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	5300	Н	1200	400	ug/L			03/16/15 16:27	1
Alkalinity	58		5.0	5.0	mg/L			02/18/15 13:01	1
Bicarbonate Alkalinity as CaCO3	58		5.0	5.0	mg/L			02/18/15 13:01	1

Client Sample ID: MW-6 Date Collected: 02/10/15 12:25

Client: TerraGraphics Inc

Project/Site: KVFR

Lab Sample ID: 580-47482-7 Matrix: Water

5

Date Received: 02/12/15 09:55

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbonate Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Hydroxide Alkalinity as CaCO3	ND		5.0	5.0	mg/L			02/18/15 13:01	1
Total Suspended Solids	ND		3000	3000	ug/L			02/17/15 11:02	1

0.50

0.50

0.20

0.20

0.50

0.20

0.20

0.20

0.50

Limits

75 - 120

80 - 127

75 - 125

70 - 128

85 - 115

MDL Unit

0.050 ug/L

0.060 ug/L

0.025 ug/L

0.025 ug/L

0.10 ug/L

0.025 ug/L

0.030 ug/L

0.025 ug/L

0.060 ug/L

D

Prepared

Prepared

Analyte

o-Xylene

Benzene

Toluene

EDC

Naphthalene

Ethylbenzene

Xylenes, Total

Surrogate

Methyl tert-butyl ether

Trifluorotoluene (Surr)

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

m-Xylene & p-Xylene

Client Sample ID: MW-7

Date Collected: 02/10/15 13:45 Date Received: 02/12/15 09:55

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

91

95

94

103

101

Qualifier

%Recovery

0.054

0.026 J

Lab Sample ID: 580-47482-8 Matrix: Water

Analyzed

02/17/15 17:50

02/17/15 17:50

02/17/15 17:50

02/17/15 17:50

02/17/15 17:50

02/17/15 17:50

02/17/15 17:50

02/17/15 17:50

02/17/15 17:50

02/17/15 17:50

5

Dil Fac

1

1

1

1

1

1

1

1

1

Analyzed	Dil Fac	
02/17/15 17:50	1	
02/17/15 17:50	1	
02/17/15 17:50	1	
02/17/15 17:50	1	

Method: NWTPH-Gx -	Northwest - \	Volatile Petroleum	Products ((GC)
			i iouuoto (

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.10	0.027	mg/L			02/17/15 21:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 93	Qualifier	Limits 50 - 150				Prepared	Analyzed 02/17/15 21:30	Dil Fac

Method: 8011 - EDB and DBCP in Water by Microextraction

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylene Dibromide	ND	* ^	0.010	0.0020	ug/L		02/24/15 16:45	02/24/15 22:15	1
1,2-Dibromo-3-Chloropropane	ND	* ^	0.010	0.0030	ug/L		02/24/15 16:45	02/24/15 22:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dibromopropane	202	X ^	70 - 130				02/24/15 16:45	02/24/15 22:15	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Pro	oducts (GC)
--	-------------

Analyte	Posult	Qualifier	RL	, MDI	Unit	D	Prepared	Analyzed	Dil Fac
-							·		
#2 Diesel (C10-C24)	0.031	J	0.13	0.015	mg/L		02/18/15 15:40	02/19/15 13:27	1
Motor Oil (>C24-C36)	0.064	J	0.25	0.0098	mg/L		02/18/15 15:40	02/19/15 13:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	92		50 - 150				02/18/15 15:40	02/19/15 13:27	1
_ Method: 6020A - Metals (ICP/MS) - Total Recov	erable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	0.00032	J	0.0020	0.00017	mg/L		02/17/15 16:56	02/18/15 19:23	5
Manganese	18		10	1.8	ug/L		02/17/15 16:56	02/18/15 19:23	5
– General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	3900	Н	1200	400	ug/L			03/16/15 16:42	1
Alkalinity	160		5.0	5.0	mg/L			02/18/15 13:01	1
Bicarbonate Alkalinity as CaCO3	160		5.0	5.0	mg/L			02/18/15 13:01	1
-									

Client Sample ID: MW-7 Date Collected: 02/10/15 13:45 Date Received: 02/12/15 09:55

Client: TerraGraphics Inc

Project/Site: KVFR

Lab Sample ID: 580-47482-8 Matrix: Water

Dil Fac

1

1

1

5

General Chemistry (Continued) RL Analyte Result Qualifier MDL Unit D Prepared Analyzed Carbonate Alkalinity as CaCO3 ND 5.0 5.0 mg/L 02/18/15 13:01 5.0 02/18/15 13:01 Hydroxide Alkalinity as CaCO3 ND 5.0 mg/L Total Suspended Solids 3000 02/17/15 11:02 ND 3000 ug/L

Client Sample ID: TB

Date Collected: 02/10/15 00:00 Date Received: 02/12/15 09:55

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 580-47482-9

Matrix: Wate

r	
_	
C	5
1	
1	
1	
1	
1	
1	8
1	
1	9
1	
C	
1 1	
1	

Method. 0200D - Volatile Orga	inc compounds								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m-Xylene & p-Xylene	ND		0.50	0.050	ug/L			02/17/15 14:09	1
o-Xylene	ND		0.50	0.060	ug/L			02/17/15 14:09	1
Benzene	ND		0.20	0.025	ug/L			02/17/15 14:09	1
Toluene	ND		0.20	0.025	ug/L			02/17/15 14:09	1
Naphthalene	ND		0.50	0.10	ug/L			02/17/15 14:09	1
EDC	0.038	J	0.20	0.025	ug/L			02/17/15 14:09	1
Ethylbenzene	ND		0.20	0.030	ug/L			02/17/15 14:09	1
Methyl tert-butyl ether	ND		0.20	0.025	ug/L			02/17/15 14:09	1
Xylenes, Total	ND		0.50	0.060	ug/L			02/17/15 14:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		75 - 120			-		02/17/15 14:09	1
Trifluorotoluene (Surr)	96		80 - 127					02/17/15 14:09	1
Toluene-d8 (Surr)	95		75 - 125					02/17/15 14:09	1
1,2-Dichloroethane-d4 (Surr)	102		70 - 128					02/17/15 14:09	1
Dibromofluoromethane (Surr)	99		85 - 115					02/17/15 14:09	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-182580/5 Matrix: Water Analysis Batch: 182580							Client Sa	ample ID: Metho Prep Type: T	
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m-Xylene & p-Xylene	ND		0.50	0.050	ug/L			02/17/15 10:22	1
o-Xylene	ND		0.50	0.060	ug/L			02/17/15 10:22	1
Benzene	ND		0.20	0.025	ug/L			02/17/15 10:22	1
Toluene	ND		0.20	0.025	ug/L			02/17/15 10:22	1
Naphthalene	ND		0.50	0.10	ug/L			02/17/15 10:22	1
EDC	ND		0.20	0.025	ug/L			02/17/15 10:22	1
Ethylbenzene	ND		0.20	0.030	ug/L			02/17/15 10:22	1
Methyl tert-butyl ether	ND		0.20	0.025	ug/L			02/17/15 10:22	1
Xylenes, Total	ND		0.50	0.060	ug/L			02/17/15 10:22	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		75 - 120			_		02/17/15 10:22	1
Trifluorotoluene (Surr)	98		80 - 127					02/17/15 10:22	1
Toluene-d8 (Surr)	95		75 - 125					02/17/15 10:22	1
1,2-Dichloroethane-d4 (Surr)	104		70 - 128					02/17/15 10:22	1

Lab Sample ID: LCS 580-182580/14 Matrix: Water

Analysis Batch: 182580

Dibromofluoromethane (Surr)

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene	5.00	4.85		ug/L		97	80 - 130	
o-Xylene	5.00	5.23		ug/L		105	80 - 120	
Benzene	5.00	5.80		ug/L		116	80 - 120	
Toluene	5.00	5.46		ug/L		109	80 - 120	
Naphthalene	5.00	3.79		ug/L		76	45 - 130	
EDC	5.00	5.18		ug/L		104	80 - 140	
Ethylbenzene	5.00	5.11		ug/L		102	80 - 125	
Methyl tert-butyl ether	5.00	4.02		ug/L		80	75 - 120	

85 - 115

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		75 - 120
Trifluorotoluene (Surr)	93		80 - 127
Toluene-d8 (Surr)	99		75 - 125
1,2-Dichloroethane-d4 (Surr)	99		70 - 128
Dibromofluoromethane (Surr)	97		85 - 115

100

Lab Sample ID: LCSD 580-182580/15

Matrix: Water Analysis Batch: 182580

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	5.00	4.74		ug/L		95	80 - 130	2	20
o-Xylene	5.00	5.12		ug/L		102	80 - 120	2	20
Benzene	5.00	5.76		ug/L		115	80 - 120	1	20
Toluene	5.00	5.32		ug/L		106	80 - 120	3	20

TestAmerica Seattle

5 6

Client Sample ID: Lab Control Sample Prep Type: Total/NA

02/17/15 10:22

1

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Analysis Batch: 182580

Matrix: Water

Lab Sample ID: LCSD 580-182580/15

1 2 3 4 5 6 7 8

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA %Rec. RPD D %Rec Limits RPD Limit

Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene			5.00	4.31		ug/L		86	45 _ 130	13	20
EDC			5.00	5.40		ug/L		108	80 - 140	4	20
Ethylbenzene			5.00	4.99		ug/L		100	80 - 125	2	20
Methyl tert-butyl ether			5.00	4.27		ug/L		85	75 - 120	6	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	101		75 - 120								
Trifluorotoluene (Surr)	94		80 - 127								
Toluene-d8 (Surr)	97		75 - 125								
1,2-Dichloroethane-d4 (Surr)	99		70 - 128								
Dibromofluoromethane (Surr)	99		85 - 115								

LCSD LCSD

Spike

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-1820	640/4								C	Client S	ample ID: I	Method	Blank
Matrix: Water											Prep T	ype: To	tal/NA
Analysis Batch: 182640													
		в мв											
Analyte		It Qualifier				Unit		D	Pre	epared	Analyz		Dil Fac
Gasoline	0.044	4 J	0.10	(0.027	mg/L					02/17/15	14:54	1
	М	B MB											
Surrogate	%Recove	ry Qualifier	Limits						Pre	epared	Analyz	ed	Dil Fac
4-Bromofluorobenzene (Surr)	<u></u>	93	50 - 150							-	02/17/15	14:54	1
Trifluorotoluene (Surr)	10	08	50 - 150								02/17/15	14:54	1
Lab Sample ID: LCS 580-182	2640/5							Clie	nt	Sample	ID: Lab Co	ontrol S	ample
Matrix: Water											Prep T		
Analysis Batch: 182640													
			Spike	LCS	LCS						%Rec.		
Analyte			Added	Result	Qua	ifier	Unit	I	D	%Rec	Limits		
Gasoline			1.00	0.830			mg/L		_	83	79 - 110		
	LCS L	cs											
Surrogate	%Recovery Q	ualifier	Limits										
4-Bromofluorobenzene (Surr)	97		50 - 150										
Trifluorotoluene (Surr)	98		50 - 150										
Lab Sample ID: LCSD 580-1	82640/6						CI	ient Sa	amp	ple ID: I	_ab Contro	I Samp	le Dup
Matrix: Water											Prep T	ype: To	tal/NA
Analysis Batch: 182640													
			Spike	LCSD	LCS	D					%Rec.		RPD
Analyte			Added	Result	Qua	ifier	Unit	I	D	%Rec	Limits	RPD	Limit
Gasoline			1.00	0.831			mg/L			83	79 - 110	0	20
	LCSD LO	CSD											
Surrogate	%Recovery Q	ualifier	Limits										
4-Bromofluorobenzene (Surr)	98		50 - 150										
Trifluorotoluene (Surr)	97		50 - 150										

TestAmerica Seattle

Lab Sample ID: MB 580-183140/1-A

5
6
8
9

Method: 8011 - E	B and DBCP in	Noter by Micro	pextraction

Las campio ini me coo ico												•			-
Matrix: Water													Prep T	ype: To	tal/NA
Analysis Batch: 183059													Prep E	Batch: 1	83140
	I	мв г	ИВ												
Analyte	Res	sult (Qualifier		RL		MDL	Unit		D	Pr	epared	Analyz	ed	Dil Fa
Ethylene Dibromide		ND 7	\	0.0	010	0.0	0020	ug/L		_	02/24	4/15 16:45	02/24/15	17:10	
1,2-Dibromo-3-Chloropropane	I	ND /	N	0.0	010	0.0	0030	ug/L			02/24	4/15 16:45	02/24/15	17:10	
		мв I	ИВ												
Surrogate	%Recov	ery (Qualifier	Limits	;						Pi	repared	Analyz	ed	Dil Fa
1,2-Dibromopropane	2	259 7	`X	70 - 13	30						02/24	4/15 16:45	02/24/15	17:10	
Lak Camala ID: 1 00 500 400	4.40/0.4									~		0			
Lab Sample ID: LCS 580-183	140/2-A									C	lient	Sample	ID: Lab Co		
Matrix: Water														ype: To	
Analysis Batch: 183059														Batch: 1	83140
				Spike		LCS							%Rec.		
Analyte				Added		esult		ifier	Unit		D	%Rec	Limits		
Ethylene Dibromide				0.0574		0.113			ug/L			198	70 - 130		
1,2-Dibromo-3-Chloropropane				0.0573	C	0.160	* ^		ug/L			279	70 - 130		
	LCS I	LCS													
Surrogate	%Recovery (Qualif	ïer	Limits											
1,2-Dibromopropane	185 >	٢^		70 - 130											
Lab Sample ID: LCSD 580-18	3140/3-4								CI	ient	Sam	nle ID: I	ab Contro	l Samn	le Dur
Matrix: Water														ype: To	
Analysis Batch: 183059														Batch: 1	
Analysis Baten. 100000				Spike	L	CSD	LCS	D					%Rec.	Juten. I	RPE
Analyte				Added		esult			Unit		D	%Rec	Limits	RPD	Limi
Ethylene Dibromide				0.0574	(0.118	* ^		ug/L		· _ ·	206	70 - 130	4	20
1,2-Dibromo-3-Chloropropane				0.0573	C	0.173	* ^		ug/L			302	70 ₋ 130	8	20
	LCSD I	LCSD													
Surrogate	%Recovery	Qualif	ïer	Limits											
1,2-Dibromopropane	192	٢^		70 - 130											

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-182738/1-A										Client Sa	mple ID: Metho	d Blank
Matrix: Water											Prep Type: 1	Fotal/NA
Analysis Batch: 182753											Prep Batch	: 182738
	MB	MB										
Analyte	Result	Qualifier	RL	N	IDL	Unit		D	P	repared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		0.13	0.	015	mg/L		_	02/1	8/15 15:40	02/19/15 10:00	1
Motor Oil (>C24-C36)	ND		0.25	0.0	098	mg/L			02/1	8/15 15:40	02/19/15 10:00	1
	МВ	МВ										
Surrogate	%Recovery	Qualifier	Limits						P	repared	Analyzed	Dil Fac
o-Terphenyl	88		50 - 150						02/1	8/15 15:40	02/19/15 10:00	1
- Lab Sample ID: LCS 580-182738/2-/	4							С	lient	Sample	ID: Lab Control	Sample
Matrix: Water											Prep Type: 1	rotal/NA
Analysis Batch: 182753											Prep Batch	: 182738
			Spike	LCS	LCS						%Rec.	
Analyte			Added	Result	Qual	ifier	Unit		D	%Rec	Limits	
			0.500	0.435			mg/L			87	59 - 120	

TestAmerica Seattle

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

2 3 4 5 6 7 8

Lab Sample ID: LCS 580-1827	38/2-A						Client	Sample	D: Lab Co	ontrol S	ample
Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 182753									Prep I	Batch: 1	82738
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Motor Oil (>C24-C36)			0.502	0.482		mg/L		96	71 _ 140		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
o-Terphenyl	83		50 - 150								
Lab Sample ID: LCSD 580-182	720/2 4										
	1 30/ 3- A					Clie	nt Sam	iple ID:	Lab Contro Prep T		
Matrix: Water	.1 30/3-A					Clie	nt Sam	iple ID:	Prep T	ype: To	tal/NA
	.130/3-A		Spike	LCSD	LCSD	Clie	nt Sam	ipie ID:	Prep T		tal/NA
Matrix: Water	.130/3-A		Spike Added		LCSD Qualifier	Unit	nt Sam D	%Rec	Prep T Prep I	ype: To	tal/NA 82738
Matrix: Water Analysis Batch: 182753			•						Prep T Prep I %Rec.	ype: To Batch: 1	tal/NA 82738 RPD
Matrix: Water Analysis Batch: 182753 Analyte			Added	Result		Unit		%Rec	Prep T Prep I %Rec. Limits	ype: To Batch: 1	tal/NA 82738 RPD Limit
Matrix: Water Analysis Batch: 182753 Analyte #2 Diesel (C10-C24)		LCSD	Added	Result 0.423		Unit mg/L		%Rec 85	Prep T Prep I %Rec. Limits 59 - 120	Sype: To Batch: 1 RPD 3	tal/NA 82738 RPD Limit 27
Matrix: Water Analysis Batch: 182753 Analyte #2 Diesel (C10-C24)			Added	Result 0.423		Unit mg/L		%Rec 85	Prep T Prep I %Rec. Limits 59 - 120	Sype: To Batch: 1 RPD 3	tal/NA 82738 RPD Limit 27

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 580-182655/20-A Matrix: Water Analysis Batch: 182767								mple ID: Metho /pe: Total Reco Prep Batch:	overable
		MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0020	0.00017	mg/L		02/17/15 16:56	02/18/15 17:33	5
Manganese	ND		10	1.8	ug/L		02/17/15 16:56	02/18/15 17:33	5
Lab Sample ID: LCS 580-182655/21-A Matrix: Water						C		D: Lab Control /pe: Total Reco	
Analysis Batch: 182767								Prep Batch:	
•			Spike	LCS LCS				%Rec.	

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Lead	1.00	0.916		mg/L	_	92	80 - 120		_
Manganese	1000	972		ug/L		97	80 - 120		

Lab Sample ID: LCSD 580-182655/22-A Matrix: Water				Cli	ient Sam		Lab Contro Type: Tota		
Analysis Batch: 182767								Batch: 1	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	1.00	0.947		mg/L		95	80 - 120	3	20
Manganese	1000	992		ug/L		99	80 - 120	2	20

2 3 4 5 6 7 8 9 10 11

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 580-184511/1 Matrix: Water										С	lient S	Sample ID: M Prep Ty		
Analysis Batch: 184511														
	М	B MB												
Analyte		It Qualifier		RL		MDL	Unit		D	Pre	pared	Analyzeo	I	Dil Fac
Sulfate	N	D		1200		400	ug/L					03/16/15 10	:31	1
Lab Sample ID: LCS 580-184511/2									Clie	nt S	ample	e ID: Lab Cor	trol Sa	ample
Matrix: Water												Prep Ty	be: To	al/NA
Analysis Batch: 184511														
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qual	ifier	Unit	[D	%Rec	Limits		
Sulfate			12000		11500			ug/L			96	90 - 110		
Lab Sample ID: LCSD 580-184511/3								C	lient Sa	amp	le ID:	Lab Control	Sampl	e Dup
Matrix: Water												Prep Ty	be: Tot	
Analysis Batch: 184511														al/NA
-														al/NA
			Spike		LCSD	LCS	5					%Rec.		RPD
Analyte			Spike Added		LCSD Result			Unit	ſ	D	%Rec		RPD	
Analyte Sulfate								Unit ug/L	[D (% Rec 96	%Rec.		RPD
			Added		Result					D (%Rec. Limits 90 - 110	RPD	RPD Limit 15
Sulfate			Added		Result				[D 9		%Rec. Limits	RPD 0	RPD Limit 15
Sulfate			Added		Result				[<u> </u>		%Rec. Limits 90 - 110 Client Samp	RPD 0	RPD Limit 15
Sulfate Lab Sample ID: 580-47482-8 MS Matrix: Water Analysis Batch: 184511	ample Sa	ample	Added		Result 11500				I	<u>D</u>		%Rec. Limits 90 - 110 Client Samp	RPD 0	RPD Limit 15
Sulfate Lab Sample ID: 580-47482-8 MS Matrix: Water Analysis Batch: 184511	ample Sa Result Q	•	Added 12000		Result 11500	Qual	ifier					%Rec. Limits 90 - 110 Client Samp Prep Ty	RPD 0	RPD Limit 15

Method: SM 2320B - Alkalinity

Lab Sample ID: LCS 580-18274	3/2						Client	Sample	e ID: Lab Co	ontrol S	ample
Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 182743											
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Alkalinity			100	101		mg/L		101	85 - 115		
- Lab Sample ID: 580-47482-1 DL	J								Client San	nple ID:	MW-1
Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 182743											
-	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Alkalinity	170			191		mg/L				11	17
Bicarbonate Alkalinity as CaCO3	170			191		mg/L				11	20
Carbonate Alkalinity as CaCO3	ND			ND		mg/L				NC	20
Hydroxide Alkalinity as CaCO3	ND			ND		mg/L				NC	20

2 3 4 5 6 7 8 9 10 11

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 580-182559/1 Matrix: Water											CI	lient S	Sample ID: Method Prep Type: To	
Analysis Batch: 182559														
		MB	МВ											
Analyte	Re	esult	Qualifier		RL		MDL	Unit		D	Prep	ared	Analyzed	Dil Fac
Total Suspended Solids		ND			1200		1200	ug/L					02/16/15 10:58	1
Lab Sample ID: LCS 580-182559/2										Clie	nt S	ample	e ID: Lab Control S	Sample
Matrix: Water													Prep Type: To	otal/NA
Analysis Batch: 182559														
				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qual	ifier	Unit	I	D %	%Rec	Limits	
Total Suspended Solids				30000		26800			ug/L		_	89	70.6 - 120	
- Lab Sample ID: 580-47482-8 DU													Client Sample ID	: MW-7
Matrix: Water													Prep Type: To	otal/NA
Analysis Batch: 182559														
-	Sample	Samp	le			DU	DU							RPD
Analyte	Result	Quali	fier			Result	Qual	ifier	Unit	I	D		RPD	Limit
Total Suspended Solids	ND					ND			ug/L				NC	20

Dilution

Factor

1

1

1

1

5

1

1

1

Batch

Number

182580

182640

183140

183059

182738

182753

182655

182767

184511

182743

182559

Prepared

or Analyzed

02/17/15 14:37

02/17/15 17:07

02/24/15 16:45

02/24/15 18:26

02/18/15 15:40

02/19/15 10:56

02/17/15 16:56

02/18/15 18:44

03/16/15 15:01

02/18/15 13:01

02/17/15 11:01

Analyst

CJ

CJ

CGM

CGM

RBL

JJP

PAB

FCW

RSB

JLS

LKC

Lab

TAL SEA

TAL SEA

TAL SEA

TAL SEA TAL SEA

TAL SEA

TAL SEA

TAL SEA

TAL SEA

TAL SEA

TAL SEA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total Recoverable

Total Recoverable

Client Sample ID: MW-1

Date Collected: 02/11/15 12:15

Date Received: 02/12/15 09:55

Batch

Туре

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Prep

Prep

Prep

Batch

Method

NWTPH-Gx

8260B

8011

8011

3520C

3005A

6020A

9056A

SM 2320B

SM 2540D

NWTPH-Dx

Lab Sample ID: 580-47482-1

Matrix: Water

7	
8	
9	

Run

Client Sample ID: MW-2 Date Collected: 02/11/15 09:50 Date Received: 02/12/15 09:55

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	182580	02/17/15 15:05	CJ	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182640	02/17/15 17:40	CJ	TAL SEA
Total/NA	Prep	8011			183140	02/24/15 16:45	CGM	TAL SEA
Total/NA	Analysis	8011		1	183059	02/24/15 18:52	CGM	TAL SEA
Total/NA	Prep	3520C			182738	02/18/15 15:40	RBL	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182753	02/19/15 11:15	JJP	TAL SEA
Total Recoverable	Prep	3005A			182655	02/17/15 16:56	PAB	TAL SEA
Total Recoverable	Analysis	6020A		5	182767	02/18/15 18:48	FCW	TAL SEA
Total/NA	Analysis	9056A		1	184511	03/16/15 15:15	RSB	TAL SEA
Total/NA	Analysis	SM 2320B		1	182743	02/18/15 13:01	JLS	TAL SEA
Total/NA	Analysis	SM 2540D		1	182559	02/17/15 11:01	LKC	TAL SEA

Client Sample ID: MW-2 DUP

Date Collected: 02/11/15 09:55 Date Received: 02/12/15 09:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	182580	02/17/15 15:32	CJ	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182640	02/17/15 18:12	CJ	TAL SEA
Total/NA	Prep	8011			183140	02/24/15 16:45	CGM	TAL SEA
Total/NA	Analysis	8011		1	183059	02/24/15 19:17	CGM	TAL SEA
Total/NA	Prep	3520C			182738	02/18/15 15:40	RBL	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182753	02/19/15 11:34	JJP	TAL SEA
Total Recoverable	Prep	3005A			182655	02/17/15 16:56	PAB	TAL SEA
Total Recoverable	Analysis	6020A		5	182767	02/18/15 18:51	FCW	TAL SEA

Lab Sample ID: 580-47482-2 Matrix: Water

Lab Sample ID: 580-47482-3

Matrix: Water

TestAmerica Seattle

Date Collected: 02/11/15 09:55 Date Received: 02/12/15 09:55

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1	184511	03/16/15 15:29	RSB	TAL SEA
Total/NA	Analysis	SM 2320B		1	182743	02/18/15 13:01	JLS	TAL SEA
Total/NA	Analysis	SM 2540D		1	182559	02/17/15 11:01	LKC	TAL SEA

Client Sample ID: MW-3 Date Collected: 02/11/15 10:55 Date Received: 02/12/15 09:55

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	182580	02/17/15 16:00	CJ	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182640	02/17/15 18:46	CJ	TAL SEA
Total/NA	Prep	8011			183140	02/24/15 16:45	CGM	TAL SEA
Total/NA	Analysis	8011		1	183059	02/24/15 19:43	CGM	TAL SEA
Total/NA	Prep	3520C			182738	02/18/15 15:40	RBL	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182753	02/19/15 11:53	JJP	TAL SEA
Total Recoverable	Prep	3005A			182655	02/17/15 16:56	PAB	TAL SEA
Total Recoverable	Analysis	6020A		5	182767	02/18/15 18:55	FCW	TAL SEA
Total/NA	Analysis	9056A		1	184511	03/16/15 15:44	RSB	TAL SEA
Total/NA	Analysis	SM 2320B		1	182743	02/18/15 13:01	JLS	TAL SEA
Total/NA	Analysis	SM 2540D		1	182559	02/17/15 11:01	LKC	TAL SEA

Client Sample ID: MW-4 Date Collected: 02/10/15 16:50 Date Received: 02/12/15 09:55

Lab Sample ID: 580-47482-5 Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	182580	02/17/15 16:27	CJ	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182640	02/17/15 19:18	CJ	TAL SEA
Total/NA	Prep	8011			183140	02/24/15 16:45	CGM	TAL SEA
Total/NA	Analysis	8011		1	183059	02/24/15 20:08	CGM	TAL SEA
Total/NA	Prep	3520C			182738	02/18/15 15:40	RBL	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182753	02/19/15 12:11	JJP	TAL SEA
Total Recoverable	Prep	3005A			182655	02/17/15 16:56	PAB	TAL SEA
Total Recoverable	Analysis	6020A		5	182767	02/18/15 19:11	FCW	TAL SEA
Total/NA	Analysis	9056A		1	184511	03/16/15 15:58	RSB	TAL SEA
Total/NA	Analysis	SM 2320B		1	182743	02/18/15 13:01	JLS	TAL SEA
Total/NA	Analysis	SM 2540D		1	182559	02/17/15 11:01	LKC	TAL SEA

Lab Sample ID: 580-47482-3

Lab Sample ID: 580-47482-4

Matrix: Water

Matrix: Water

Dilution

Factor

1

1

1

1

5

1

1

1

Run

Batch

Number

182580

182640

183140

183059

182738

182753

182655

182767

184511

182743

182559

Prepared

or Analyzed

02/17/15 16:55

02/17/15 19:52

02/24/15 16:45

02/24/15 20:34

02/18/15 15:40

02/19/15 12:30

02/17/15 16:56

02/18/15 19:15

02/18/15 13:01

03/16/15 16:13 RSB

02/17/15 11:01 LKC

Analyst

CJ

CJ

CGM

CGM

RBL

JJP

PAB

FCW

JLS

TAL SEA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total Recoverable

Total Recoverable

Client Sample ID: MW-5

Date Collected: 02/10/15 15:25 Date Received: 02/12/15 09:55

Batch

Туре

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Prep

Prep

Prep

Batch

Method

NWTPH-Gx

8260B

8011

8011

3520C

3005A

6020A

9056A

SM 2320B

SM 2540D

NWTPH-Dx

Matrix: Water	
	4
Lab	5
TAL SEA	6
TAL SEA TAL SEA	7
TAL SEA	1
TAL SEA TAL SEA	8
TAL SEA	9
TAL SEA TAL SEA	10
TAL SEA	

Lab Sample ID: 580-47482-7

Lab Sample ID: 580-47482-8

Matrix: Water

Matrix: Water

Client Sample ID: MW-6

Date Collected: 02/10/15 12:25 Date Received: 02/12/15 09:55

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	182580	02/17/15 17:22	CJ	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182640	02/17/15 20:57	CJ	TAL SEA
Total/NA	Prep	8011			183140	02/24/15 16:45	CGM	TAL SEA
Total/NA	Analysis	8011		1	183059	02/24/15 20:59	CGM	TAL SEA
Total/NA	Prep	3520C			182738	02/18/15 15:40	RBL	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182753	02/19/15 12:49	JJP	TAL SEA
Total Recoverable	Prep	3005A			182655	02/17/15 16:56	PAB	TAL SEA
Total Recoverable	Analysis	6020A		5	182767	02/18/15 19:19	FCW	TAL SEA
Total/NA	Analysis	9056A		1	184511	03/16/15 16:27	RSB	TAL SEA
Total/NA	Analysis	SM 2320B		1	182743	02/18/15 13:01	JLS	TAL SEA
Total/NA	Analysis	SM 2540D		1	182559	02/17/15 11:02	LKC	TAL SEA

Client Sample ID: MW-7 Date Collected: 02/10/15 13:45 Date Received: 02/12/15 09:55

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	182580	02/17/15 17:50	CJ	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	182640	02/17/15 21:30	CJ	TAL SEA
Total/NA	Prep	8011			183140	02/24/15 16:45	CGM	TAL SEA
Total/NA	Analysis	8011		1	183059	02/24/15 22:15	CGM	TAL SEA
Total/NA	Prep	3520C			182738	02/18/15 15:40	RBL	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	182753	02/19/15 13:27	JJP	TAL SEA
Total Recoverable	Prep	3005A			182655	02/17/15 16:56	PAB	TAL SEA
Total Recoverable	Analysis	6020A		5	182767	02/18/15 19:23	FCW	TAL SEA

TestAmerica Seattle

Prep Type

Total/NA

Total/NA

Total/NA

Client Sample ID: MW-7

Date Collected: 02/10/15 13:45

Date Received: 02/12/15 09:55

Batch

Туре

Analysis

Analysis

Analysis

Batch

Method

SM 2320B

SM 2540D

9056A

TAL SEA

Lab Sample ID: 580-47482-8 Matrix: Water 5 Dilution Prepared Batch Run Factor Number or Analyzed Analyst Lab 6 7 8 9 10 1 184511 03/16/15 16:42 RSB TAL SEA 1 182743 02/18/15 13:01 JLS TAL SEA

02/17/15 11:02 LKC

Client Sam	ple ID: TB					Lab Sample ID: 580-47482-9	
Date Collecte						Matrix: Water	
Date Received	d: 02/12/15 09: Batch	55 Batch	Dilution	Batch	Prepared		

182559

1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	182580	02/17/15 14:09	CJ	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TestAmerica Job ID: 580-47482-1

1 2 3 4 5 6 7 8 9 10 11

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-02-16
California	State Program	9	2901	01-31-15 *
L-A-B	DoD ELAP		L2236	01-19-16
L-A-B	ISO/IEC 17025		L2236	01-19-16
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-15
US Fish & Wildlife	Federal		LE192332-0	02-28-16
USDA	Federal		P330-11-00222	04-08-17
Washington	State Program	10	C553	02-17-16

* Certification renewal pending - certification considered valid.

Matrix

Water

Water

Water

Water

Water

Water

Water

Water

Water

Client: TerraGraphics Inc Project/Site: KVFR

Client Sample ID

MW-1

MW-2

MW-3

MW-4

MW-5

MW-6

MW-7

ΤВ

MW-2 DUP

Lab Sample ID

580-47482-1

580-47482-2

580-47482-3

580-47482-4

580-47482-5

580-47482-6

580-47482-7

580-47482-8

580-47482-9

TestAmerica Job ID: 580-47482-1

Received

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

02/12/15 09:55

Collected

02/11/15 12:15

02/11/15 09:50

02/11/15 09:55

02/11/15 10:55

02/10/15 16:50

02/10/15 15:25

02/10/15 12:25

02/10/15 13:45

02/10/15 00:00

5
8
9

TestAmerica Seattle

Relinguished by:	Relinguished by:	Custody Seals Intact: Yes Relinquished hv-		Special instructions/QC Requirements & Comments:	XNon-Hazard	Comments Section if the lab is to dispose of the sample.	Possible Hazard Identification:	Preservation Used: 1= Incelor Horn			TB TB	8- MW-7	1- WW-6	6- MN-2.	2- MN2-H	4- MW-3	3- WARNER H	2-14/2-2	1~ Mw-1	Sample Identification	÷ (Site:	et Name: KVFR	(XXX) XXX-XXXX FAX	706	988 S longmont ave		Client Contact	acoma, WA 98424 shone 253.922.2310 fax	estAmerica Seattle IIII 755 8th Street East 580	
	tec/ the Muller			ts & Comments:	Skin Irijiant	zardous waste? Please List		TOTIS - HUSELEVEL - HUNELEVEL				2		e	0		w-2 WP b	2	۸. 		~ .			(Dal \$5 100)	1000			-		-47482 Chain of Custody	
Company:	Company:	Custody Seal No.:			Poisan B Dakaowa	Please List any EPA Waste Codes for the sample in the						10/15/1345 6	16/15/1275 B.	10/15/1/525 G	14/15/1650 6			his opsol G	2/11/13/5 6	Sample Sample Type Date Time General		2 days		TAT if different from Below	CALENDAR DAYS	Analysis Turnaround Time	21	1	Regulatory Program: [, ,
Date/Time: Rece	Date/Time: Received	H	- 1400								WT NU	WT 13NW3	WT B NN 3	WT 13 N/13	WT 13 W13	WH IS WW3	t	W.	UTT 13 WWB	Matrix Cont. Filtered S Perform F				stendard =	AXs A			Site Site	DW TNPDES TRCRA	Chain of Cu	
Received in Laboratory by:	Med by:	Cooler Temp. (°C): Obs'd:	-	1	Return to Client		Sample Disposal (A fee may be a					3221111	3221111	11/11/26/21	3221111	322	322111	322111	320111	Total	- ABALLEN	e/	Br Ma All Per	Solution of the second	ED I NOT	上した	Arna Curry		Diher	Chain of Custody Record	
Company:	Company: TH_SU Company:			of KURI SO M	al by Lab Wel Packs Packi	Cooler Dsc 16 G	ssessed Contar/TR Dig/TR			WetPacks Packing Bischle	Cooler/TB Dig(IR) cor			Wel/Packs Packing	. i			- Well achos I aching	Cooler Dsc Ut h/W	Cooler/TB Dig/Bcor							Carrier:		Tehth		
Date/Time:	Date/Time: 12/12/15 D955 Date/Time:	Therm (D No.:		FROX SO -	ng BUBBAR	6 @Lab	$\sin n \sin n \sin n$	"~	0.S	she	f unc h.5		FUPUX SO	pubble	Lab		- <u>¢</u>	CANAL CU		I unc_l-7 ic Notes		Job/SDG No.:	Lab Sampling:	Walk-in Client:	For Lab Use Only:	· •	of C mm	ICOC No:	THE LEADER IN ENVIRONMENTAL TESTING	TestAmerica	

2223

5

9 10 11

Login Sample Receipt Checklist

Client: TerraGraphics Inc

Login Number: 47482 List Number: 1 Creator: Abello, Andrea N

Creator: Abello, Andrea	N

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a<br survey meter.	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Seattle

TestAmerica Se	attle
----------------	-------

5755 8th Street East

.....

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

Tacoma, WA 98424		Ð1	- 4		F		-														THE CEADER IN ENVIRONMENTAL TES	
phone 253.922.2310 fax			atory Pro	gram: L)ther:					~ 7	1. 7				TestAmerica Laboratories,	inc.
Client Contact	······································	Project M		<u>ppo</u>		ans.		Con			{. ?	<u>~ 1</u>)		Da		2/	<u>\</u>	15				
TerraGraphics 988 S longmont ave			<u></u>				Lab	Con	tact:		<u>vanjić</u>	2 12	ন হ লিয়া	2 108	rrier:	-	1 1			-ł	of <u>COCs</u>	
boise idaho 83706					KING DAY	\$			ED 6		l l`	신드	R							Re Re	Sampler: Richtes For Lab Use Only:	—
	583367680		if different fr				1 M	-	$[\mathcal{Y}]$		Roll	5	2								Walk-in Client:	
(xxx) xxx-xxxx FAX	<u>, , , , , , , , , , , , , , , , , , , </u>			weeks	<u>, , , , , , , , , , , , , , , , , , , </u>	ş	⊊l:	-	3		φ	Š,	13								Lab Sampling:	
Project Name: KVFR				week			17	t x	18	\mathbf{V}		쾨크	₫ 8	-								
Site:			2	days			le (MTR	A	- X		1-3								Job / SDG No.:	
PO#			1	day			d une	-PH Cx		- 1	NE	يد. ايچ	50									
		ĺ		Sample			d Si		E	1 T	A.	최구	15									
		Sample	Sample	Type (C=Comp,		# of	tere	命	12	(Μ_	1,7	25									
Sample Identification		Date	Time	G¤Grab)	Matrix	Cont.	Ë		\approx	, i											Sample Specific Notes:	
Nw-1		2/11/15	1215	G	WT	13	ΙÛΛ	∕B	3	2	21	1										
146-2		2/1/15	0950	G	WT	13	W	3	3	2	21	i۱										
MORENT MW	-2 MP	pin/15	0955	G	WT	ß	N	3	3	2	21		\mathbf{b}									
MW-3.		2/W/S	1055	G	W	13	ΥY	13	Ŋ	اي ا	2	11										
141,2-4		5/10/13	1650	Ģ	WT	13	N/	3	3	2	2	11	(\square							
MW-5		2/10/5	1525	G	ŴŢ	13	N	NR NR	3	2	2	11	l									<u> </u>
NW-E		2/10/15	1225	<u>c</u>	WT	IN IN	N	5	Ŕ	2	2	11	1									
MW-7		RIDIS		G	WT	13		3	R		21	1 1	1									
TR					WT	<u>_</u>	ŇΝ).	Ň			1 19										
							Ì															
								-														
Preservation Used: 1= Ice, 2= HCI; 3= H2	SO4; 4=HNO3; 5	=NaOH; 6=	Other	ennes Varagen	del via den registra	1179 1179 1179	NER O	(S 250)	19752)		(siðis 18					548 (M)					ener ing alle neveral som den starten. Frankliker	1914 upwed
Possible Hazard Identification: Are any samples from a listed EPA Hazardon Comments Section if the lab is to dispose of	is Waste? Please the sample.	List any EF	A Waste C	odes for th	ne samp	le in the	\$ }	Samp	le D	lspo	osal (A fe	e ma	y be a	ssess	ed if :	samp	les a	re reta	aine	d longer than 1 month)	
Non-Hazard Flammable	Skin Irritant	Poison	В	Unkno	wn			D	tetum	n to C	lient		Ł		al by L	ab			thive for	r	Months	
Special Instructions/QC Requirements & 0	comments:						¥															
							ĩ	ιw)													
							<u> </u>	400	/													
Custody Seals Intact: Yes	No	Custody S	eal No :							Coc	oler T	emp.	. (°C):	Obs'd	:		Сол	'd:			Therm ID No.:	
Relinquished by: Pote Richter	1010-19	Company:		Jave	Date/Ti	ime: /\S		Recei	ved	by:						Comp	any:				Date/Time:	
Relinquished by:	(Jan 1) Jan 1	Company:		V KLA	Date/Ti			Received by:							Company:					Date/Time:		
Dalia suiskart hu								Received in Laboratory by:														
Relinquished by:		Company:			Date/Ti	me:	F	kecei	ved	in La	abora	itory l	by:			Comp	any:				Date/Time:	
		•															F	orm	No. C	A-C	-WI-002, Rev. 4.3, dated 12/05/2	2013

·······

.

Appendix D

Plans and Specifications for the Cleanup Action, Kittitas Valley Fire and Rescue Station 2-9 400 East Mountain View Ellensburg, WA

DRAFT

Plans and Specifications for Cleanup Action at 400 East Mountain View Avenue

Ellensburg, WA

Kittitas Valley Fire & Rescue 102 N. Pearl Street Ellensburg, Washington 98926

Prepared by:

TerraGraphics Environmental Engineering, Inc.

988 S. Longmont Avenue, Suite 200

Boise, Idaho 83706

www.terragraphics.com

March 20, 2015

© 2015 TerraGraphics Environmental Engineering, Inc.

Table of Contents

Section	01 11 00 Summary of Work	4
Part 1.0	General	4
1.1	Project Entities	5
1.2	Project Description	5
1.3	Permits	6
1.4	Construction Sequencing	6
1.5	Contract Drawings and Specifications	6
1.6	Work Scheduling	6
1.7	Quantities Specified	6
1.8	Location of Underground Facilities	6
1.9	Notification Prior to Excavation	7
Part 2.0	Products	7
Part 3.0	Execution	7
Section	01 33 00 Submittal Procedures	7
Part 1.0	General	7
1.1	Submittals	7
1.2	Preparation	8
1.3	Variations	8
1.4	Review Notations	8
1.5	Disapproved or Rejected Submittals	8
1.6	Approved/Accepted Submittals	8
Part 2.0	Products	9
Part 3.0	Execution	9
Section	01 45 00 Construction Quality Control	9
Part 1.0	General	9
1.1	References	9
1.2	Submittals	9
Part 2.0	Products	10
Part 3.0	Execution	10
3.1	Pre-Construction	10
3.2	Construction	10
3.3	Post Construction	11
Section	01 57 23 Environmental Protection	11
Part 1.0	General	11

1.1	Work Description	11
1.2	References	11
1.3	Submittals	12
1.4	General Environmental Controls	12
1.5	Site Control Plan	13
1.6	Dewatering, Collection and Disposal Plan	14
1.7	Disposal Requirements	14
Part 2.0	Products	14
2.1	Silt Fences	14
Part 3.0	Execution	14
3.1	Work Area Limits	14
3.2	Erosion and Sediment Controls	14
3.3	Waste Materials Management and Disposal	15
3.4	Post-Construction Cleanup	15
3.5	Environmental Oversight	
Section	01 57 23.01 Silt Fence	15
Part 1.0	General	15
1.1	References	16
1.2	Submittals	16
Part 2.0	Products	16
2.1	Components for Silt Fences	
Part 3.0	Execution	
3.1	Installation of Silt Fences	
3.2	Clean-Up	
	02 61 13 Excavation of Contaminated Material, Handling and Disposal	17
	General	17
1.1	Description of Work	
1.2	References	
1.3	Scheduling	
1.4	Work Plan	
1.5	Regulatory Requirements	
Part 2.0	Products	
2.1	Spill Response Materials	
Part 3.0	Execution	
3.1	Existing Structures and Utilities	
3.2	Contaminated Material Removal	18

3.3	Confirmation Sampling and Analysis	19
Section	31 23 00.00 21 Backfill and Surface Aggregate	19
Part 1.0	General	19
1.1	Description of Work	19
1.2	References	19
1.3	Definitions	20
1.4	Submittals	20
1.5	Delivery, Storage, and Handling	20
Part 2.0	Products	20
Part 2.0 2.1	Products	
		20
2.1	Soil Materials	20 21
2.1 Part 3.0 3.1 3.2	Soil Materials Execution Drainage and Dewatering Filling and Backfilling	20 21 21 21
2.1 Part 3.0 3.1 3.2	Soil Materials Execution Drainage and Dewatering	20 21 21 21
2.1 Part 3.0 3.1 3.2	Soil Materials Execution Drainage and Dewatering Filling and Backfilling	20 21 21 21 21

Section 01 11 00 Summary of Work

Part 1.0 General

The work involves petroleum impacted soil remediation at the future Kittitas Valley Fire and Rescue Station 2-9 located at 400 East Mountain View Avenue Ellensburg, Washington. Work is generally expected to include earthwork including excavation and segregation of non-contaminated overburden soils and contaminated source area soils, removal and offsite disposal of petroleum impacted soils; trenching for the installation of a perforated pipe infiltration gallery within the groundwater saturation zone under the building footprint for supplemental chemical and biological treatment of saturated soils and groundwater, dewatering and collection and offsite disposal of contaminated water (if necessary); purchase, placement, and compaction of drain rock (in trenches) and imported backfill; and replacement of overburden soils and grading surface to existing surrounding grade level. Dewatering and disposing of potentially contaminated decant water is anticipated as part of the work. Required site controls include Best Management Practices (BMPs) for erosion and sediment controls, and traffic controls that follow Manual on Uniform Traffic Control Devices (MUTCD) standards.

The Construction Drawings and these project specifications provide the intent of the project. Excavation limits and material requirements may be adjusted in the field as authorized by the Owner. All construction work shall occur by May 1, 2015. Project roles and responsibilities, project description, and project components are described in this section.

The information presented in these plans and specifications have been developed for remediation activities only. Although specifications are provided for backfill materials and compaction, the work being

conducted for these remediation activities do not replace or supplement in any way proposed construction activities and/or foundation design requirements for the Kittitas County Valley Fire Station.

1.1 **Project Entities**

The following table outlines the project entities involved in the Kittitas Valley Fire and Rescue Cleanup Action and referred to in this specification as indicated.

Table 1. Project Responsibilities

Specification Reference						
Owner	Kittitas Valley fire and Rescue #2	Site owner's representative responsible for construction oversight and Contractor selection.	John Sinclair, Fire Chief (509)-933-7231			
Regulatory Point of Contact	Washington State Department of Ecology	Manager and coordinator between Department of Ecology and TerraGraphics Environmental Engineering, Inc.	May Monahan (509)575-2809			
Environmental Consultant Environmental Engineering, Inc.		Responsible for submittal approval, construction oversight, and construction quality control.	Mike Procsal (208)336-7080			
Contractor	To be determined	Selected by and under the oversight of TerraGraphics Environmental Engineering Inc., responsible for implementing cleanup and construction activities at the Kittitas Valley Fire and Rescue Cleanup Action site in adherence to the Construction Drawings and these project specifications.	To be determined			

1.2 **Project Description**

The work required under this contract includes, but is not limited to, environmental protection including installation of site BMPs; earthwork including excavation and segregation of non-contaminated overburden soils and contaminated source area soils, removal and offsite disposal of petroleum impacted soils; trenching for the installation of a perforated pipe infiltration gallery within the groundwater saturation zone under the building footprint for supplemental chemical and biological treatment of saturated soils and groundwater, dewatering and collection and offsite disposal of contaminated water (if necessary); purchase, placement, and compaction of drain rock (in trenches) and imported backfill; and replacement of overburden soils and grading surface to existing surrounding grade level. The Contractor shall provide all labor, equipment, materials, supervision, transportation, operating supplies, and incidentals to perform

© 2015 TerraGraphics Environmental Engineering, Inc.

all work specified herein. Perforated pipe and fittings will be supplied by the Environmental Consultant. The attached Cleanup Action Plan (CAP) provides more detail on the project.

All site construction work specified herein shall follow these specifications, the Construction Drawings, and with approval of the on-site Environmental Consultant.

1.3 Permits

The Contractor is responsible to acquire all construction permits, permit application packages, approvals to construct, notifications, certifications, reports, and termination documents as well as adhere to all environmental regulations.

1.4 Construction Sequencing

The Work Plan provides a general list of construction phase tasks and project milestones. The Contractor shall complete all construction to the satisfaction of the Regulatory Point of Contact, Owner, and Environmental Consultant. The Environmental Consultant will be onsite during construction. Upon completion, the Contractor shall notify the Regulatory Point of Contact, Owner, and Environmental Consultant and conduct a construction completion inspection as detailed in SECTION 01 45 00 CONSTRUCTION QUALITY CONTROL.

1.5 Contract Drawings and Specifications

The Contract drawings and specifications will be furnished to the project Contractor without charge. Reference publications will not be furnished. The Contractor shall check furnished drawings and specifications and notify the Environmental Consultant of any discrepancies.

1.6 Work Scheduling

The Contractor shall provide a project schedule that demonstrates the work will be accomplished by the Owner's desired completion date. Restrictions shall be imposed on construction activity if weather prevents proper construction and quality control as indicated in these specification sections.

Construction activity may occur Monday through Saturday from 7:00 am to 6:00 pm local time. Work outside of these times is not authorized unless approved in writing by the Owner.

1.7 Quantities Specified

Material quantities indicated on the Construction Drawings are estimates and site construction conditions will determine the final quantities. The Contractor is responsible for determining actual quantities of materials necessary to complete the work to the neat-line finished elevations and limits shown on the Construction Drawings in accordance with the specifications.

1.8 Location of Underground Facilities

The Contractor shall obtain digging permits prior to start of excavation. The Contractor shall verify actual locations of existing utilities prior to construction. The Contractor shall contact the One-Call Underground Service Alert by calling One-Call at 1-800-424-5555 at least two (2) working days prior to starting construction.

The Contractor shall verify the elevations of existing piping, utilities, and any type of underground obstructions not indicated to be specified or removed but indicated or discovered during the utility locate in areas to be traversed by any specified work to be conducted or installed. The Contractor shall protect and maintain all existing underground utilities and overhead utilities in areas of construction improvements or modifications.

1.9 Notification Prior to Excavation

Notify the Owner at least 48 hours prior to starting excavation work.

Part 2.0 Products

Not used.

Part 3.0 Execution

Not used.

Section 01 33 00 Submittal Procedures

Part 1.0 General

All submittals require the Environmental Consultant's approval and must be submitted and approved prior to the acquisition of materials or commencement of construction.

Each submittal is to be complete and in sufficient detail to allow the Environmental Consultant a rapid determination of compliance with contract requirements.

Units of weights and measures used on all submittals are to be the same as those used in each technical section, the Work Plan, and on the Construction Drawings.

1.1 Submittals

1.1.1 Submittal Descriptions

Submittals requirements are specified below. Submittals are identified by Submittal Description (SD) numbers and titles as follows:

SD-01 Pre-Construction Submittals

Submittals which are required prior to start of commencing work on site.

SD-03 Product Data

- > For these, submit the following prior to commencement of work:
- Catalog cuts; illustrations; schedules; diagrams; performance charts; instructions and brochures illustrating size, physical appearance, and other characteristics of materials; and systems or equipment for some portion of the work.
- Samples of warranty language when the contract requires extended product warranties.

SD-06 Test Reports

- > For all materials specified in the technical sections, submit the following:
- Report signed by authorized official of testing laboratory that a material, product or system identical to the material, product or system to be provided has been tested in accordance with specified requirements.
- Report that includes findings of a test required to be performed by the Contractor on an actual portion of the work or prototype prepared for the project before shipment to job site.

SD-11 Closeout Submittals

Provide documentation to record compliance with technical or administrative requirements or to establish an administrative mechanism.

© 2015 TerraGraphics Environmental Engineering, Inc.

1.1.2 Approving Authority

The Environmental Consultant is the approving authority for all submittals.

1.1.3 Work

Work, as used in this section, includes on- and off-site construction required by contract documents, including labor necessary to produce submittals, construction, materials, products, equipment, and systems incorporated or to be incorporated in such construction.

1.2 Preparation

As soon as practicable after award of contract, and before procurement of fabrication, the Contractor shall forward submittals to Mr. Mike Procsal, P.G., TerraGraphics Environmental Engineering, Inc., 988 Longmont Avenue Ste 200, Boise, ID 83706, mike.procsal@terragraphics.com.

1.2.1 Transmittal Format and Identification

Transmit each submittal to Mr. Mike Procsal, P.G., TerraGraphics Environmental Engineering, Inc., in accordance with the standard for the project. Each transmittal shall clearly identify the Contractor, indicate date of submittal, and include the following information:

- Project title and location
- Construction contract number
- Date
- Submittal description and product description of each component of submittal
- Name, address, and telephone number of subcontractor, supplier, manufacturer, and any other subcontractor associated with the submittal

1.3 Variations

Variations from contract requirements require Environmental Consultant and Owner approval.

1.4 Review Notations

Environmental Consultant review will be completed within five (5) calendar days after date of submission. The Contractor will be notified whether the submittal is approved or not approved.

1.5 Disapproved or Rejected Submittals

The Contractor shall make corrections required by the Environmental Consultant. If the Contractor considers any correction or notation on the returned submittals to constitute a change to the Construction Drawings or specifications, notice as required under the clause entitled "Changes" is to be given to the Environmental Consultant. The Contractor is responsible for the dimensions and design of connection details and construction of work. Failure to point out deviations may result in the Environmental Consultant requiring rejection and removal of such work at the Contractor's expense.

If changes are necessary to submittals, the Contractor shall make such revisions and submission of the submittals in accordance with the procedures above. No item of work requiring a submittal change is to be accomplished until the changed submittals are approved by the Environmental Consultant.

1.6 Approved/Accepted Submittals

The Environmental Consultant's approval or acceptance of submittals is not to be construed as a complete check.

Approval or acceptance will not relieve the Contractor of the responsibility for any error, which may exist, for which the Contractor under the Construction Quality Control requirements of this contract is responsible for.

After submittals have been approved or accepted by the Environmental Consultant, no resubmittal for the purpose of substituting materials or equipment will be considered unless accompanied by an explanation of why a substitution is necessary.

Part 2.0 Products

Not used.

Part 3.0 Execution

Not used.

Section 01 45 00 Construction Quality Control

Part 1.0 General

This section describes the Construction Quality Control (CQC) measures necessary to construct all work as intended as described herein. The Contractor is responsible for compliance with the CQC measures described herein. The Contractor must submit a Construction Quality Control Plan and Traffic Control Plan prior to commencing construction as described in this section.

The Environmental Consultant will provide a full-time Owners representative (Resident Project Representative or RPR) during construction. The RPR shall observe CQC measures and witness testing.

1.1 References

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

- > U.S. FEDERAL HIGHWAY ADMINISTRATION (FHWA)
- > 2009 Manual of Uniform Traffic Control Devices (MUTCD)

1.2 Submittals

Environmental Consultant approval is required for all submittals in accordance with Section 01 33 00 SUBMITTAL PROCEDURES. Submittals that are required include:

SD-01 Pre-Construction Submittals

- Construction Quality Control Plan: Submit a CQC plan within 7 days prior to commencing construction. The CQC plan requirements are detailed in this section.
- Traffic Control Plan: Submit a traffic control plan identifying procedures, warning signs, and barricades in accordance with MUTCD standards to safely control traffic entering and exiting the site.

Part 2.0 Products

Not used.

Part 3.0 Execution

The Regulatory Point of Contact, Owner, and Environmental Consultant shall provide varying degrees of oversight of the Contractor throughout cleanup and construction. The Contractor will be held responsible for the quality of work and is subject to removal by the Owner for non-compliance with the terms of the contract.

3.1 **Pre-Construction**

3.1.1 Construction Quality Control Plan

The Contractor shall submit to the Environmental Consultant for approval a Construction Quality Control Plan that includes the following:

- NAMES: For each person involved in both on-site and off-site construction: Include the name of the Contractor's on-site construction superintendent and other persons performing site construction work.
- SUBMITTALS: Provide the name(s) of the person(s) authorized to review, produce, and certify submittals prior to approval.
- > CONSTRUCTION SCHEDULE: Proposed work hours and dates.
- > LIST OF PROPOSED SUBCONTRACTORS: Companies, names, and duties of subcontractors.

3.1.2 Traffic Control Plan

The Contractor shall submit to the Environmental Consultant for approval a Traffic Control Plan that includes the procedures for controlling truck and equipment traffic entering and exiting the site. The Plan shall also provide warning signs and barricades for proper traffic control in accordance with MUTCD.

3.1.3 Submittals and Deliverables

All submittals shall comply with the requirements in Section 1.1 SUBMITTAL PROCEDURES. The Contractor is responsible for certifying that all submittals and deliverables are in compliance with the contract requirements.

3.1.4 Pre-Construction Meeting and Walk-Through

The Contractor shall attend a pre-construction meeting and site-walk (can be completed via teleconference) with the Owner and Environmental Consultant. The Contractor shall provide a project schedule at the pre-construction meeting. The meeting will be held to clarify any questions or concerns the Contractor may have, answer questions, and transmit Contractor submittals including shop drawings, product data, test reports, and vendor certificates.

3.2 Construction

During the Construction phase, on-site project oversight by the Regulatory Point of Contact, Owner, and Environmental Consultant may occur at any time. The Environmental Consultant or Consultant's representative will be onsite to observe that the work is conducted in conformance with the plans and specifications.

3.2.1 Notification of Noncompliance

At any time during construction, the Environmental Consultant will notify the Contractor of any detected noncompliance with the foregoing requirements. The Contractor shall take immediate corrective action after receipt of such notice. Such notice, when delivered to the Contractor at the work site, will be deemed sufficient for the purpose of notification. If the Contractor fails or refuses to comply promptly, the Owner may issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of the time lost due to such stop orders will be made the subject of claim for extension of time or for excess costs or damages by the Contractor.

3.3 Post Construction

3.3.1 Completion Inspection

The Contractor shall participate in a project completion meeting that shall be attended by the Owner and the Environmental Consultant prior to final acceptance of the project by the Owner. The final acceptance inspection will be formally scheduled once agreement is reached between the Contractor and the Environmental Consultant that all contract requirements are met. The Contractor's assurance that all specific items previously identified to the Contractor as being unacceptable, along with all remaining work performed under the contract, will be complete and acceptable by the date scheduled for the final acceptance inspection. At that time, the Contractor shall present to the Regulatory Point of Contact and Owner any outstanding questions and deviation explanations that were made from the Construction Drawings. The Regulatory Point of Contact and the Owner will also identify any unsatisfactory or outstanding issues that the Contractor must resolve before final construction is approved. In addition, the Contractor shall identify any deviations made from the Construction Drawings or modifications during the final inspection.

Section 01 57 23 Environmental Protection

Part 1.0 General

1.1 Work Description

Work described under this section includes the site controls necessary for construction to be completed in a manner that prevents offsite contamination from petroleum impacted materials. The Contractor shall be responsible for performing all work in compliance with the National Pollutant Discharge Requirements (NPDES) of the United States Environmental Protection Agency (USEPA) under the Construction General Permit. The Contractor is responsible for selection, furnishing, installing, and maintaining erosion and sediment controls in accordance with the City of Ellensburg, City Standards Section 4 Storm Drainage Standards and the Washington State Department of Ecology Stormwater Management Manual for Eastern Washington. In addition, the Contractor is responsible for protection of cultural resources and maintaining Occupational Safety and Health Administration (OSHA) health and safety requirements.

1.2 References

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

- CITY OF ELLENSBURG
 - o (2011)City Standards, Section 4, Storm Drainage Standards
- > WASHINGTON STATE DEPARTMENT OF ECOLOGY
 - o (2004) Stormwater Management Manual for Eastern Washington.
- > U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)
 - 40 CFR 279:Standards for the Management of Used Oil

1.3 Submittals

Environmental Consultant approval is required for submittals. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Pre-Construction Submittals

- Site Control Plan: The Contractor shall submit, 15 days prior to starting work, a completed Site Control Plan as outlined in this section.
- Dewatering, Collection and Disposal Plan: The Contractor shall submit, 15 days prior to starting work, a completed Dewatering, Collection and Disposal Plan.
- Decant Water Disposal Location: The Contractor shall submit, 15 days prior to starting work, the name and location of the designated regulated disposal facility where the Contractor selects to dispose of petroleum impacted decant water generated during construction.

SD-07 Certificates

- Certification of Disposal for Impacted Soils: Upon completion of all construction, submit a certification from Anderson Rock and Demolition Landfill Yakima, Washington illustrating acceptance of the petroleum impacted soils and what tonnage was disposed.
- Certification of Disposal for Contaminated Water: Upon completion of all construction, submit a certification from a regulated disposal facility illustrating acceptance of the petroleum impacted water and the volume disposed.

1.4 General Environmental Controls

The Contractor shall minimize environmental pollution and damage that may occur as the result of construction operations. The environmental resources within the project boundaries and those affected outside the limits of permanent work must be protected during the entire duration of this contract. Comply with all applicable environmental federal, state, and local laws and regulations. Any delays resulting from failure to comply with environmental laws and regulations will be the Contractor's responsibility.

1.4.1 Permits

The Contractor is responsible to acquire and comply with all environmental permits, permit application packages, approvals to construct, notifications, certifications, reports, and termination documents to adhere to environmental regulations.

1.4.2 Health and Safety

It is the responsibility of the Contractor to maintain a safe work environment and comply with all health and safety regulations and requirements of OSHA.

1.4.3 Historical and Archaeological Resources

The Contractor is responsible for preservation of any historical, cultural, and archaeological resources discovered onsite. If the Contractor encounters any historical and archaeological items or human skeletal remains discovered in the course of work, the Contractor shall notify the site Owner and stop work in the immediate area of the discovery until directed by the Owner to resume work.

1.4.4 Compliance

No requirement in this Section will relieve the Contractor of any applicable federal, state, and local environmental protection laws and regulations. During construction, the Contractor will be responsible for identifying, implementing, and submitting for approval any additional requirements to be included in the Site Control Plan.

1.4.5 Stormwater Pollution Prevention

The Contractor is responsible for following all federal, state and local regulations regarding stormwater pollution prevention.

1.4.6 Protection Features

The Contractor must protect all environmental features within and outside the project extents indicated on the Construction Drawings regardless of interference, which their preservation may cause to the work under the contract.

1.4.7 Environmental Assessment of Contract Deviations

Any deviations from the drawings, plans, and specifications, requested by the Contractor and that may have an environmental impact, will be subject to approval by the Environmental Consultant, and may require an extended review, processing, and approval time. The Environmental Consultant reserves the right to disapprove alternate methods, even if they are more cost effective, if the Owner determines that the proposed alternate method will have an adverse environmental impact.

1.4.8 Notification

The Contractor shall notify the Environmental Consultant of any observed noncompliance with federal, state or local environmental laws or regulations, permits, and other elements. It is the responsibility of the Contractor to inform the Environmental Consultant of the proposed corrective action and take such action when approved by the Environmental Consultant. The Owner may issue an order stopping all or part of the work until a satisfactory corrective action has been taken. No time extensions will be granted or equitable adjustments allowed for any such suspensions. This is in addition to any other actions the Owner may take under the contract, or in accordance with the Federal Acquisition Regulation or Federal Law.

1.5 Site Control Plan

Prior to commencing construction activities or delivery of materials to the site, the Contractor shall submit a Site Control Plan for review and approval by the Environmental Consultant. The purpose of the plan is to present a comprehensive overview of known or potential environmental issues that the Contractor must address during construction. At a minimum, the Contractor shall submit a Site Control Plan to the Environmental Consultant that includes the following information:

- Name(s) of on-site person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Site Control Plan and a schedule of activities.
- Selection of site erosion and sediment controls, BMPs, and locations where the control will be placed.
- ▹ Haul routes.
- Decontamination procedures.
- Spill contingency plan.
- Dust control plan consisting of application of water to the disturbed surfaces during the entire construction period.
- Disposal plans for petroleum impacted waste soils and contaminated water identifying methods and locations for waste disposal including schedules for disposal.

© 2015 TerraGraphics Environmental Engineering, Inc.

Environmental Engineering, Inc.

[erraGraphics

Plans and Specifications for the Kittitas Valley Fire and Rescue Cleanup Action

- Identify any Subcontractors responsible for the transportation and disposal of solid waste. Petroleum impacted solid waste shall be disposed of at Anderson Rock and Demolition Landfill Yakima, Washington. Petroleum impacted decant water shall be disposed of at a regulated disposal facility. Submit licenses or permits for solid and liquid waste disposal sites that are not a commercial operating facility.
- Evidence of the disposal facility's acceptance of the petroleum impacted solid waste and the petroleum impacted decant water must be attached to this plan during construction. Attach a copy of the disposal receipts from each regulated disposal facility.
- Indicate in the report the total amount of solid and liquid waste generated and disposed of at the regulated facility(ies).

1.6 Dewatering, Collection and Disposal Plan

There will be no discharge of water that comes in contact with petroleum impacted soils. This means that all storm water, ground water, and water used for decontamination during construction must be collected by the Contractor and properly disposed of at an offsite regulated disposal facility. The Contractor must submit procedures for accomplishing dewatering work, including onsite collection and storage methods of petroleum impacted ground and surface water encountered during construction.

1.7 Disposal Requirements

Offsite disposal of petroleum impacted soils shall be disposed of at Anderson Rock and Demolition Landfill Yakima, Washington. Prior to commencing excavation, the Contractor shall submit to the Environmental Consultant the Decant Water Disposal Location for petroleum impacted decant waters that will be generated during construction. The location must be a commercially available regulated disposal facility and must be approved by the Environmental Consultant 15 days prior to commencing work.

Part 2.0 Products

2.1 Silt Fences

The Contractor shall install a silt fence or equivalent best management practice as a sediment and erosion control barrier around the perimeter of the contaminated excavation area as well as any onsite stockpile areas. The approximate location of the permit control is located on the Construction Drawings and Section 01 57 23.01 SILT FENCE specification is included to provide the Contractor with product information and installation details.

Part 3.0 Execution

3.1 Work Area Limits

Prior to commencing construction, install the silt fence or use an equivalent BMP to prevent off-site sediment migration and delineate the work area in the locations shown in the Construction Drawings. Areas outside the silt fence should not be disturbed. If the Contractor would like to stockpile clean imported materials to use as fill after all contaminated materials are removed, a silt fence or perimeter BMP should also be installed around the stockpile.

3.2 Erosion and Sediment Controls

The Contractor shall implement all sediment and erosion control BMPs that are included in the Site Control Plan in a timely manner during the construction process to minimize erosion and sediment runoff and spread of off-site contamination from impacting areas outside the active construction area.

3.2.1 Dust Control

The Contractor shall be responsible for fugitive dust suppression by application of water and the methods identified out in the Site Control Plan. No particulate discharges shall be allowed from the site.

3.2.2 Supplemental BMPs

The Contractor shall identify and implement any other BMPs necessary to protect against off-site discharge from exposed areas of the site. Additional BMPs can be selected from the IDEQ Stormwater BMPs Manual and included in the Site Control Plan.

3.2.3 Field Quality Control

The Contractor shall maintain all erosion and sediment control measures and other protective measures in good and effective operating condition by performing routine inspections to determine condition and effectiveness. The Contractor shall repair erosion and sediment control measures and other protective measures as necessary to prevent pollutant discharge. All inspections shall be carried out and reported by the procedures and schedules identified in the Site Control Plan.

3.3 Waste Materials Management and Disposal

The Contractor is responsible for proper waste disposal of petroleum impacted soils and waters. Upon completion of all construction, the Contractor shall submit a Certification of Disposal for Petroleum Impacted Soils from Anderson Rock and Demolition Landfill Yakima, Washington indicating acceptance of petroleum impacted soils and what tonnage was disposed. In addition, the Contractor shall also submit a Certification of Disposal for Petroleum Impacted Water from a regulated disposal facility able to accept the petroleum impacted decant water and the volume of liquid that was disposed.

3.3.1 Fuel and Lubricants

Storage, fueling, and lubrication of equipment and motor vehicles must be conducted in a manner that affords the maximum protection against spills and evaporation. The Contractor shall manage and store fuel, lubricants, and oil in accordance with all federal, state, regional, and local laws and regulations. Used lubricants and used oil to be discarded must be stored in marked corrosion-resistant containers and recycled or disposed in accordance with 40 CFR 279, state, and local laws and regulations. Storage of fuel on the project site will be in accordance with all federal, state, and local laws and regulations.

3.4 Post-Construction Cleanup

The Contractor will clean up all areas used for construction. Unless otherwise instructed in writing by the Owner, the Contractor will remove all signs of temporary construction facilities such as haul roads, work area, structures, foundations of temporary structures, stockpiles of excess or waste materials, and other vestiges of construction prior to final acceptance of the work.

3.5 Environmental Oversight

At any time during construction, the Environmental Consultant, Owner, or Regulatory Point of Contact may inspect site BMPs and shall make correction recommendations to the Contractor or site personnel to assure no spread of contamination off site occurs.

Section 01 57 23.01 Silt Fence

Part 1.0 General

This silt fencing specification is provided as a supplemental specification in the event the Contractor would like to install silt fencing to facilitate the environmental protection requirements in Section 01 57 23 © 2015 TerraGraphics Environmental Engineering, Inc.

ENVIRONMENTAL PROTECTION. If used as a perimeter BMP, silt fencing shall be installed prior to all construction work that occurs on-site.

1.1 References

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

- > ASTM INTERNATIONAL (ASTM)
 - o ASTM D 4439 (2004) Geosynthetics
 - ASTM D 4491 (1999a; R 2004) Water Permeability of Geotextiles by Permittivity
 - o ASTM D 4533 (2004) Trapezoid Tearing Strength of Geotextiles
 - ASTM D 4632 (2008) Grab Breaking Load and Elongation of Geotextiles
 - o ASTM D 4751 (2004) Determining Apparent Opening Size of a Geotextile

1.2 Submittals

Environmental Consultant approval is required for submittals. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Filter Fabric:

Include manufacturer information, material properties, and warranties.

Part 2.0 Products

2.1 Components for Silt Fences

2.1.1 Filter Fabric

Provide geotextile that complies with the requirements of ASTM D 4439 and consists of polymeric filaments, which are formed into a stable network such that filaments retain their relative positions. The filament shall consist of a long-chain synthetic polymer composed of at least 85 percent (85%) by weight of ester, propylene, or amide, and contains stabilizers and/or inhibitors added to the base plastic to make the filaments resistant to deterioration due to ultraviolet and heat exposure. Provide synthetic filter fabric that contains ultraviolet ray inhibitors and stabilizers to assure a minimum of six months of expected usable construction life at a temperature range of 0 to 120 degrees F. The filter fabric shall meet the following requirements:

Table 2. Filter Fabric for Silt Screen Fence

Physical Property	Test Procedure	Requirement				
Grab Tensile Elongation (percent)	ASTM D 4632	100 lbs. min.; 30 percent max				
Trapezoid Tear	ASTM D 4533	55 lbs. min.				
Permittivity	ASTM D 4491	0.2 sec-1				
AOS (U.S. Std Sieve)	ASTM D 4751	20-100				

2.1.2 Silt Fence Stakes and Posts

Use either wooden stakes or steel posts for fence construction. Wooden stakes utilized for silt fence construction shall have a minimum cross section of 2 inches by 2 inches and have a minimum length of 3

feet. Steel posts (standard "U" or "T" section) utilized for silt fence construction shall have a minimum weight of 1.33 pounds per lineal foot and a minimum length of 3 feet.

Part 3.0 Execution

3.1 Installation of Silt Fences

Silt fencing shall be installed according to these specifications and locations in the Construction Drawings. Extend silt fences a minimum of 24 inches above the ground surface without exceeding 34 inches above the ground surface. Provide filter fabric from a continuous roll cut to the length of the barrier to avoid the use of joints. When joints are unavoidable, splice together filter fabric at a support post, with a minimum 6 inch overlap, and seal securely. Excavate trench approximately 4 inches wide and 4 inches deep on the up-slope side of the location of the silt fence. The 4 inch by 4 inch trench shall be backfilled and the soil compacted over the filter fabric.

3.2 Clean-Up

The Contractor is responsible for disposal of excess materials, debris, and waste materials.

Section 02 61 13 Excavation of Contaminated Material, Handling and Disposal

Part 1.0 General

1.1 Description of Work

The work described in this section consists of excavating, removing and temporarily stockpiling approximately 1161 cubic yards of non-contaminated overburden soil from surface to approximately 4 feet bgs and approximately 361 cubic yards of petroleum contaminated soil underlying the overburden soil , material, handling, and disposing of contaminated materials. Trenching for the installation of a ¾" PVC perforated pipe infiltration gallery (consultant will supply piping material) within the groundwater saturation zone under the building footprint for supplemental chemical and biological treatment of soils and groundwater, dewatering and collection and offsite disposal of contaminated water (if necessary); purchase, placement, and compaction of imported backfill; and placement and grading surface gravel existing surrounding grade level. The approximate extent of the contaminated zone is shown on the Construction Drawings. Subsurface conditions and the nature and extent of the contaminated material are described in the Work Plan. The Environmental Consultant will be on site during construction to field-verify the extents of contamination. Groundwater is approximately 6 feet below pre-excavation ground surface. Confirmation sampling will be performed by the Environmental Consultant.

1.2 References

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)
 40 CFR 302: Designation, Reportable Quantities, and Notification

1.3 Scheduling

Notify the Owner and Environmental Consultant seven (7) calendar days prior to the start of excavation of contaminated material. The Contractor shall be responsible for contacting regulatory agencies in <u>accordance with the applicable reporting requirements</u>.

© 2015 TerraGraphics Environmental Engineering, Inc.

1.4 Work Plan

The Work Plan will be provided to the Contractor. The Contractor shall notify the Environmental Consultant of any discrepancies between the Work Plan, Construction Drawings, and the Specifications.

1.5 Regulatory Requirements

1.5.1 Permits and Licenses

The Contractor shall obtain all required federal, state, and local permits for excavation and disposal of contaminated material. Permits shall be obtained at no additional cost to the Owner.

Part 2.0 Products

2.1 Spill Response Materials

Provide and maintain onsite appropriate spill response materials including, but not limited to the following: containers, adsorbents, shovels, and personal protective equipment. Spill response materials shall be available at all times when contaminated materials/wastes are being handled or transported. Spill response materials shall be compatible with the type of materials and contaminants being handled.

Part 3.0 Execution

3.1 Existing Structures and Utilities

No excavation shall be performed until site utilities have been field located. Take the necessary precautions to ensure no damage occurs to existing structures and utilities. Damage to existing structures and utilities resulting from the Contractor's operations shall be repaired at no additional cost to the Owner. Utilities encountered that were not previously shown or otherwise located shall not be disturbed without approval from the Owner and the city of Ellensburg.

3.2 Contaminated Material Removal

3.2.1 Excavation

Areas of contamination shall be excavated to the depth and extent shown described in Section 02 61 13 and as directed by the Environmental Consultant sufficient to remove all petroleum impacted soils. Excavation shall be performed in a manner that will limit spills and the potential for contaminated material to be mixed with uncontaminated material.

3.2.2 Shoring

The Contractor shall excavate in such a way that shoring is not required.

3.2.3 Dewatering

Surface water shall be diverted to prevent entry into the excavation. Dewatering shall be performed as necessary within the work area to ensure adequate access, a safe excavation, prevent the spread of contamination, and to ensure that compaction requirements can be met.

3.2.4 Contaminated Material Storage

The Contractor may choose to stockpile or stage excavated contaminated soil material until loading on haul trucks for offsite disposal. The staged material must be stockpiled within the perimeter of the contaminated excavation area to prevent polluting surrounding areas.

3.2.5 Contaminated Liquid Storage

The Contractor shall collect all contaminated surface water from both run on and dewatering during excavations. The contaminated water shall be temporarily stored by the Contractor until disposed in a regulated offsite facility. Liquid storage containers shall be water-tight and shall be inspected daily for leaks

3.2.6 Spills

In the event of a spill or release of a hazardous substance (as designated in 40 CFR 302), pollutant, contaminant, or oil (as governed by the Oil Pollution Act [OPA], 33 U.S.C. 2701 et seq.), the Contractor shall notify the Environmental Consultant immediately. The Contractor shall take immediate containment actions to minimize the effect of any spill or leak. Cleanup shall be in accordance with applicable federal, state, and local regulations. As directed by the Environmental Consultant, additional sampling and testing shall be performed to verify spills have been cleaned up. Spill cleanup and testing shall be done at no additional cost to the Owner.

3.3 Confirmation Sampling and Analysis

The Contractor shall work with the on-site Environmental Consultant collect soil samples used for confirmation of cleanup. Excavation of additional material shall be completed as directed by the Environmental Consultant. After all suspected contaminated material is removed, confirmation samples shall be collected by the Environmental Consultant who will report the results to the Owner.

Section 31 23 00.00 21 Backfill and Surface Aggregate

Part 1.0 General

1.1 Description of Work

The work described in this section consists of furnishing imported materials, placement and compaction of backfill and surface aggregate to reconstruct the area to existing grade. Fill materials will be placed in the void created by removal of contaminated materials. Surfacing aggregate will be placed and compacted to match the grade of the existing parking area. Dewatering is likely to occur until fill placement is achieved above the ground water table.

1.2 References

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

- > ASTM INTERNATIONAL (ASTM)
 - ASTM C136:(2006) Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates
 - ASTM D1140:(2000; R 2006) Amount of Material in Soils Finer than the No. 200 (75micrometer) Sieve
 - ASTM D1556(2007) Density and Unit Weight of Soil in Place by the Sand-Cone Method
 - ASTM D1557(2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3) (2700 kN-m/m3)
 - ASTM D2487(2011) Soils for Engineering Purposes (Unified Soil Classification System)
 - o ASTM D4318(2010) Liquid Limit, Plastic Limit, and Plasticity Index of Soils

- ASTM D6938(2010) Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)
- ASTM D698(2012) Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/cu. ft. (600 kN-m/cu. m.))

1.3 Definitions

1.3.1 Degree of Compaction

Degree of compaction is expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D1557, for general soil types, abbreviated as percent laboratory maximum density.

1.4 Submittals

Environmental Consultant approval is required for submittals. The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-06 Test Reports

Backfill test:

Submit the borrow source and testing results indicated in this section 7 days prior to commencing construction.

- Surface Aggregate test: Submit the borrow source and testing results indicated in this section 7 days prior to commencing construction.
- Density tests: Submit copies of all laboratory and fiel

Submit copies of all laboratory and field test reports within 24 hours of the completion of the test and conduct testing to the frequency described in this section.

1.5 Delivery, Storage, and Handling

Perform in a manner to prevent contamination or segregation of materials.

Part 2.0 Products

2.1 Soil Materials

2.1.1 Satisfactory Materials

Any materials classified by ASTM D2487 as GW, GP, GM, GP-GM, GW-GM, GC, GP-GC, GM-GC, SW, SP, is acceptable and shall be free of debris, roots, wood, scrap material, vegetation, refuse, soft unsound particles, and deleterious or objectionable materials. The maximum particle diameter shall be one-half the lift thickness at the intended location.

2.1.2 Unsatisfactory Materials

Materials which do not comply with the requirements for satisfactory materials include man-made fills, trash, refuse, or backfills from previous construction. Unsatisfactory materials also include material classified as satisfactory which contains root and other organic matter, frozen material, and stones larger than 4 inches. The Environmental Consultant shall be notified of any contaminated materials.

2.1.3 Backfill Material

Approximately 361 cubic yards of backfill material shall be furnished by the Contractor from offsite sources. Furnish aggregates that consist of 3-inch minus hard, durable particles or fragments of crushed stone, free from organic matter and lumps or balls of clay. ASTM D2487, classification GW, GP, GM, GC,

SW, SP, SM, SC with a maximum ASTM D4318 Liquid Limit of 35, maximum ASTM D4318 Plasticity Index of 12, and a maximum of 25 percent (25%) by weight passing ASTM D1140, No. 200 sieve may be used as long as 95 percent (95%) compaction is achieved during placement.

Part 3.0 Execution

3.1 Drainage and Dewatering

Provide for the collection and disposal of surface and subsurface water encountered during construction.

3.1.1 Dewatering

Operate dewatering system continuously as needed until construction work below existing water levels is complete. The Contractor shall collect and dispose of petroleum impacted water during construction as indicated in SECTION 01 57 23 and report to the Environmental Consultant if there are any issues.

3.2 Filling and Backfilling

Fill and backfill in 8-inch loose lifts and compact each lift to 95 percent (95%) of ASTM D1557 before placing overlaying lift. Continue to place and compact subsequent lifts until finished grade.

3.3 Compaction

Compact all materials to 95 percent of ASTM D1557.

3.4 Finish Operations

3.4.1 Grading

Grade areas to match existing surrounding grade level.

3.5 Field Quality Control

3.5.1 Sampling

Take the number and size of samples required to perform the following tests.

3.5.2 Testing

Perform one of each of the following tests for each material used. Provide additional tests for each source change.

3.5.2.1 Backfill Testing

Test backfill material in accordance with ASTM C136 for conformance to ASTM D2487 gradation limits; ASTM D1140 for material finer than the No. 200 sieve; ASTM D4318 for liquid limit and for plastic limit; ASTM D698 or ASTM D1557 for moisture density relations, as applicable.

3.5.2.2 Density Tests

Test density in accordance with ASTM D1556, or ASTM D6938. When ASTM D6938 density tests are used, verify density test results by performing an ASTM D1556 density test at a location already ASTM D6938 tested as specified herein. Perform an ASTM D1556 density test at the start of the job, and for every ten (10) ASTM D6938 density tests thereafter. Test each lift at randomly selected locations every 2,500 square feet. Include density test results in daily report to the Environmental Consultant.