

November 9, 2012

Ms. Christina Schafer Columbia Bank 1301 A Street, MS 6110 Tacoma, Washington 98402

RE: Phase II Subsurface Investigation
Clear Lake Industrial Park
12785 State Route 9 and 12827 South Front Street
Clear Lake, Washington
RGI Project No. 2012-265A
Columbia Bank No. E2012-0202

Dear Ms. Schafer:

The Riley Group, Inc. (RGI) is pleased to present our Phase II Subsurface Investigation (Phase II) for the Clear Lake Industrial Park property located at 12785 State Route 9 and 12827 South Front Street, Clear Lake, Skagit County, Washington (hereafter referred to as the Property, Figure 1 and 2).

PROJECT BACKGROUND

On behalf of Columbia Bank, RGI completed a Phase I Environmental Site Assessment (ESA) on August 3, 2012 (RGI project number 2012-265). Based on our Phase I ESA findings, the following recognized environmental conditions (RECs) were identified:

- Historical Property use included various industrial uses dating back to as early as 1903 (primarily commercial purposes related to forestry). Georgia Pacific occupied the Property in the 1980s to 2000. Georgia Pacific's operating practices included mixing and storage of chlordane pesticide in the storage building and application to tree seedlings in the greenhouse located on the Property. Previous investigations indicated that chlordane mixing and use on the Property resulted in overspray and rinse water entering the drainage system (including dry wells). Other former improvements included various aboveground storage tanks (ASTs) and underground storage tanks (1,000- to 10,000-gallon USTs), possible buried automobiles, and a former fuel storage building (referred to as Building 2) were identified.
- In 1995 and subsequent years, a cleanup action was undertaken and at least 300 cubic yards (total volume unknown) of chlordane-contaminated soil was excavated from two former drywell/steam cleaning and associated drain line areas. Remedial excavations reached depths of up to 10 feet. Approximate remedial excavation locations are illustrated on the attached Figures 2 and 4.
- Previous reports indicated that the *in-situ* soil, following the remedial excavation efforts, had chlordane concentrations below the MTCA Method B soil cleanup level of 2.86 mg/kg (in effect at that time).

SERVING THE PACIFIC NORTHWEST

- ➤ In 2001, Georgia Pacific and their consultant reported that their cleanup and investigation of the Property was completed and had been fully remediated.
- Since 1995, several groundwater monitoring wells (MW1 to MW7) were installed on and off the Property and sampled on a periodic basis, see Figure 2. Groundwater samples collected from two monitoring wells (MW1 and MW3) regularly had chlordane concentrations ranging between 1.2 μg/L to 36 μg/L, above the MTCA Method B groundwater cleanup level of 0.25 μg/L in effect at that time. Monitoring well MW3 was located off the Property and upgradient of a former dry well and remedial excavation.
- Shallow groundwater beneath the Property was reported at depths ranging between approximately 6 feet and 12 feet below ground surface (bgs) with a groundwater flow direction to the northwest (away for Clear Lake). Based on the groundwater flow direction, it was concluded that the Property was located downgradient of Clear Lake, and, therefore, the Property was not a threat to the nearby surface water body.
- The results of an aquifer test performed on the groundwater monitoring wells indicated that the shallow groundwater was considered a potential drinking water source. Therefore, the groundwater cleanup levels selected needed to be protective of drinking water. The selected groundwater cleanup level for chlordane was the Method B groundwater cleanup level of 0.25 μg/L (which is the current Method B cleanup level for groundwater).
- Based on long-term groundwater monitoring results from 1995 through 2004, Georgia Pacific and their consultant concluded that the elevated chlordane concentrations in groundwater was limited to monitoring wells MW1 (located on the Property) and MW3 (located off the Property), immobile, naturally degrading, and would continue to degrade until concentrations were either non-detect, or reduced to concentrations below the Method B groundwater cleanup levels.
- Ecology concurred, at the time, with their interpretation of the soil and groundwater data, and issued a No Further Action letter in July 2004 (including a restrictive covenant and requirement for continued groundwater monitoring for five years).
- ➤ In 2011, Ecology performed a five-year review of the completed cleanup and the reported findings of the subsequent groundwater compliance monitoring events. Based on Ecology's review of groundwater monitoring data from 2004 to 2010, Ecology concluded the following:
 - 1. Only a moderate decline in chlordane concentrations in monitoring wells MW1 and MW3 was observed. Chlordane concentrations in groundwater still exceeded the MTCA Method B groundwater cleanup levels at monitoring wells MW1 (on the Property) and MW3 (located off the Property). During this time period, Chlordane concentrations in groundwater at MW1 and MW2 ranged from 1.5 μg/L to 2.7 μg/L and 1.0 μg/L to 4.9 μg/L, respectively. The decline in chlordane concentrations in groundwater did not occur as speculated in 2004.
 - 2. The 2004 Restrictive Covenant, part of the NFA obligation, placed on the Clear Lake Yard property only pertained to the Clear Lake yard Property. The Restrictive Covenant did not apply to any of the adjoining or other properties. Since elevated chlordane concentrations in groundwater still remained at the monitoring well MW3 (located off the Property), the existing Restrictive Covenant was no longer considered protective of human health.
 - 3. In April 2012, based on Ecology's five-year review, Ecology rescinded that 2004 No Further Action letter and placed the Property back on the Confirmed and Suspected Contaminated Sites database.

> In 2012, as part of their five year review, Ecology also requested additional downgradient and point of compliance groundwater monitoring wells to better define the nature and extent of chlordane contaminated groundwater.

At Columbia Bank's request, RGI completed this Phase II to further define the nature and extent of contamination at the Property.

SCOPE OF WORK

The scope of work for this project was performed in accordance with our Phase II Subsurface Investigation Proposal, dated August 13, 2012. Authorization for this project was provided by Mr. Bruce Farnham of Columbia Bank on August 24, 2012.

SUBSURFACE INVESTIGATION AND SAMPLING

Project Set-up: Private and Public Utility Locate

At least 48 hours prior to commencing our subsurface investigation, RGI contacted One-Call to locate known public underground utilities near, or on, the Property. Public underground utilities located included electric, natural gas, telecommunications, water, sewer, and cable.

RGI retained Underground Detection Services (UDS), a private utility locator, to locate private water, natural gas, electric, and other metallic underground utility conduits potentially in the proposed sampling areas. No potential underground utility conflicts were located.

Geophysical Survey

On September 4, 2012, UDS provided geophysical services in an attempt to identify and locate any suspect abandoned USTs, buried automobiles, or other large buried metallic objects on the Property.

The geophysical survey entailed using ground penetrating radar (GPR) and magnetic locator. Some areas within the existing building were not accessible for the geophysical survey.

The geophysical survey did not identify any abandoned USTs or large buried metallic objects. However the survey did identify apparent backfilled areas indicative of possible former UST, or remedial excavation areas. These areas were marked in the field using spray paint.

A copy of the geophysical survey is included in Appendix A.

Subsurface Investigation

On September 7, 2012, 11 test probes (B1 and B11) were advanced on the Property to depths ranging from approximately 8 to 16 feet below ground surface (bgs). Test probes were advanced using a truck-mounted, direct-push, test probe rig owned and operated by Pacific Northwest Probe & Drilling, Inc. of Milton, Washington, under subcontract to RGI. Four of the test probe locations were completed with a groundwater monitoring well (MW8 to MW11). Test probe and groundwater monitoring well locations are shown on Figure 2 and described below.

Test probes B1, B2, and B3 were located in the vicinity of the reported former location of the diesel and gasoline ASTs and a former dry well. The geophysical survey identified a subsurface area of disturbed soil. Probe B1 was placed in the center of the subsurface anomaly as it appears to have been the most likely location of a former dry well.

Test probes B4 and B5 were located in an area north of the main shop Building 1 where there was reportedly past excavation (date unknown) of petroleum hydrocarbon impacted soil.

Test probe B6 was located along the northern boundary of the Property, in the general vicinity of the reported septic drain field area.

Test probe B7 was located in an area where excavation of petroleum hydrocarbon soil was reportedly performed in 1995. The geophysical survey also identified the area as disturbed fill soil.

Test probes B8 and B11 were located in areas with past storage or use of petroleum hydrocarbons. No geophysical anomalies were identified in these locations.

Test probe B9 was located in the southeast corner of the Property to primarily check for chlordane in the soil near monitoring well MW1, which has historically exhibited elevated chlordane in groundwater concentrations.

Test probe B10 was located inside the Building 5 greenhouse area to check for chlordane in the soil associated with historical pesticide use.

Monitoring wells MW8, MW9, MW10, and MW11 were located on the Property to better define the nature and extent of chlordane and heavy metal groundwater contamination associated with the former Georgia Pacific nursery.

All samples were collected in accordance with RGI's standard operating and decontamination procedures. Samples were placed in preconditioned, sterilized containers provided by an Ecology-accredited analytical laboratory. The samples were placed in a chilled cooler throughout the field program, with all subsequent transportation and transfer accomplished in accordance with RGI's chain-of-custody procedures.

Subsurface Conditions

Soil conditions encountered were described using the Unified Soil Classification System (USCS). Shallow subsurface soils encountered during drilling generally consisted of brown, generally medium dense, moist to wet, sandy silt near the surface grading to a silty sand starting at approximately 5 to 6 feet bgs to the final probe depth of 16 feet bgs. Groundwater was encountered during test probing at depths ranging from 5 to 11 feet bgs. Test probes were advanced beyond the groundwater table to allow for collection of groundwater grab samples. Test probe logs are included in Appendix B.

Soil Sampling

Continuous soil cores were collected at approximately 4-foot intervals from each probe location, except in cases where there was too little recovery or the soil core contained slough and was not representative of in situ soil.

The soil cores were inspected and field screened for the presence of volatile organic compounds (VOCs) using a portable gas photoionization detector (PID) and for total petroleum hydrocarbons (TPH) using a water sheen test. Soil samples were collected from the cores at regular intervals or where field screening results indicated that contamination may be present.

A total of 52 discrete soil samples were collected for this project. No elevated PID readings were noted at any of the sampling locations. In addition, no odors, sheens, discolorations, or other evidence of soil contamination were observed.

Soil samples tested for petroleum hydrocarbons were typically selected from the portion of the core immediately above the water saturated section as observed in the field (where migrating petroleum hydrocarbons tend to accumulate).

All test probe holes that were not converted into monitoring wells were abandoned using hydrated bentonite chips and patched to match existing grade (concrete or asphalt patch, where applicable).

Groundwater Grab Sampling

Groundwater grab samples were collected from all test probe locations. Prior to collecting groundwater samples, groundwater was purged from each test probe hole to remove turbid water to the maximum extent possible. Each test probe hole was purged until a maximum of 3 gallons of water had been removed or until the purge water was visually clear, whichever came first. The groundwater samples were collected through a 1-inch-diameter temporary well screen down the hole using a peristaltic pump and disposable plastic tubing under low-flow conditions.

Groundwater grab samples may not be representative of groundwater conditions or quality (due to the increased sample turbidity associated with the sampling method). To obtain samples that are definitively representative of groundwater would require the installation, development, and sampling of groundwater monitoring wells, which is not the objective of this study. The objective of this study was to determine whether, and in relative terms, groundwater has been adversely affected by the potential contaminants of concern. Groundwater grab sampling will satisfy this project objective as well as provide useful information regarding potential groundwater monitoring well locations, should they be required.

Groundwater Monitoring Well Sampling

On September 11, 2012, RGI collected groundwater samples from all seven groundwater monitoring wells located on the Property (MW1, MW2, MW4, and MW9 to MW11) to be tested for chlordane.

On October 4, 2012, RGI collected groundwater samples from three groundwater monitoring wells (MW1, MW2, and MW8) located on the Property in known pesticide use, or release areas, for total and dissolved heavy metal analysis (arsenic, cadmium, chromium, lead, and mercury).

During both groundwater monitoring well sampling events, groundwater was purged using low flow through Horiba water meter, recording pH, temperature, conductivity, dissolved oxygen, turbidity, and salinity readings. Groundwater samples were collected when the measured parameters stabilized to within 10 percent during two consecutive readings.

Groundwater Elevation Determination

RGI measured top of casing elevations using the optical differential measuring technique. The Ecology standard elevation (Nav 88) protocol was used to establish the reference elevation. The top of casing elevations were measured and recorded based on the Nav 88 reference elevation of 46 feet above mean sea level (AMSL) between the southeast corner of Building 4 and the southwest corner of Building 5. Depth to static water in each groundwater monitoring well was then measured using an electronic water meter.

Depth to groundwater ranged from approximately 6 feet to 11 feet bgs with a groundwater flow direction to the northwest. The average elevation of the groundwater was approximately 35.38 AMSL. Based on our measurements, the direction of groundwater flow was confirmed to be away from Clear Lake, primarily to the north-northwest. The approximate gradient was 0.0004 feet per foot. The northwest groundwater flow direction, away from Clear Lake, is consistent with previously reported groundwater flow directions.

REGULATORY FRAMEWORK

Washington's chemical release cleanup law, the Model Toxics Control Act (MTCA, RCW 70.105D) mandates that site cleanups protect human health and the environment. The MTCA Cleanup Regulation (WAC173-340) defines the approach for establishing cleanup requirements for individual sites, including the establishment of cleanup standards and selection of cleanup actions.

MTCA regulation provides three options for establishing generic and site-specific cleanup levels for soil and groundwater. MTCA Method A cleanup levels have been adopted for specific purposes and are intended to provide conservative cleanup levels for sites undergoing routine site characterization or cleanup actions for those sites with relatively few hazardous substances. MTCA Method B and C cleanup levels are set using a site risk assessment, which focus on the use of "reasonable maximum exposure" assumptions based on site-specific characteristics and toxicity of the contaminants of concern.

November 9, 2012

For purposes of general comparison, analytical laboratory data for petroleum hydrocarbons and metals were compared to the routine MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses and MTCA Method A Cleanup Levels for Ground Water. However, chlordane was determined to be the only contaminant of concern for the Property and there are no published MTCA Method A cleanup levels for chlordane. RGIs selection of the appropriate chlordane groundwater and soil cleanup level is discussed below.

Groundwater Cleanup Level for Chlordane

WAC 173-340-700(5)(a) indicates that it is acceptable to use Applicable or Relevant and Appropriate Requirements (ARARs) in conjunction with MTCA Method A cleanup levels when MTCA Method A cleanup levels have not been established for the indicated compounds, and the ARAR is sufficiently protective of human health and the environment. The ARARs selected for the Property are the State Primary Maximum Contaminant Levels (MCLs) as established under the Environmental Protection Agency (EPA) National Primary Drinking Water Regulations (NPDWRs). Therefore, the applicable groundwater cleanup level for chlordane is the State Primary MCL of 2 µg/L. This cleanup level was evaluated by RGI and does not exceed an excess cancer risk of one in one thousand (1X10E-5) and is, therefore, in compliance with WAC 173-340-705(5).

Soil Cleanup Level for Chlordane

WAC 173-340-720 requires that the soil cleanup level be protective of groundwater and its use as a source of potable drinking water. Using the Ecology Worksheet for Calculating Soil Cleanup Levels for Unrestricted Land Use, RGI calculated a Method B Soil Cleanup Level for chlordane, considered protective of groundwater and direct contact. The worksheet and details pertaining to this calculation are presented in Appendix C.

Summary of Soil and Groundwater Cleanup Levels for Chlordane

It should be noted that the soil and groundwater cleanup levels selected above for chlordane are different than the 2004 cleanup levels, as selected in previous investigations. The 2004 and current and applicable chlordane cleanup levels are summarized below.

Year	Soil Cleanup Level	Groundwater Cleanup Level
2004	2.86 mg/kg – Method B (based on direct soil contact)	0.25 μg/L – based on Method B cleanup level
2012	2.05 mg/kg (most stringent soil cleanup level based on soil direct contact and groundwater protection)	2 μg/L – ARAR*

^{*,} The ARAR is considered sufficiently protective of human health and the environment and, therefore, can be used in lieu of the MTCA Method B value.

ANALYTICAL LABORATORY ANALYSIS

A total of 53 soil samples and 15 groundwater samples were submitted to Friedman & Bruya, Inc., and Fremont Analytical, both Ecology-accredited, third-party analytical laboratories, for potential laboratory analysis or for archive.

Of the samples submitted, 17 of the soil samples and 15 of the groundwater samples were selected for laboratory analysis for one or more of the following contaminants of concern:

- Hydrocarbon identification using Ecology Test Method NWTPH-HCID.
- ➤ VOCs using EPA Test Method 8260B.
- > Chlordane (an organochlorine pesticide) using EPA Method 8081.
- MTCA 5 Metals (arsenic, lead, cadmium, chromium and mercury) using EPA Test Methods 200.8 and 1631E. In regards to groundwater, groundwater samples collected during this project were analyzed for both *dissolved* and *total* metals. Laboratory testing for dissolved metals includes the laboratory passing the groundwater sample through a 40 micron filter, to remove suspended silt from the sample, prior to analysis. Laboratory testing for total metals does not include any sample filtration to remove any suspended silt or solids from the groundwater sample prior to analysis. In practice, the presence of any suspended silt and other solids in a water sample will typically increase the metal concentrations reported. Hence, the practice of utilizing filtration and dissolved metals analysis for comparison.

Analytical test certificates, including quality control, data, and chain-of-custody documentation for all samples submitted to the analytical testing laboratory by RGI as part of this Phase II are included in Appendix D.

ANALYTICAL RESULTS

Analytical results and the respective MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses, MTCA Method A Cleanup Levels for Ground Water, MTCA Method B cleanup levels and State Primary MCLs (ARARs) are summarized in the attached Tables 1 and 2, and discussed below.

All soil and groundwater samples selected for laboratory analysis had non-detectable concentrations of TPH (as gasoline, diesel and oil) and VOCs. In addition, heavy metals (arsenic, cadmium, chromium, lead, and mercury) in soil were either non-detect, or had trace concentrations considered background, or naturally occurring.

Chlordane was not detected in either of the two soil samples collected from shallow soil from areas of suspected pesticide impacts.

Chlordane was detected in groundwater in monitoring wells MW1 (6.79 μ g/L), MW4 (1.75 μ g/L), MW8 (7.7 μ g/L), MW9 (2.06 μ g/L), and MW11 (5.19 μ g/L). These concentrations exceed the State Primary MCL for chlordane in groundwater of 2.0 μ g/L. The highest chlordane concentrations in groundwater were detected at monitoring wells MW1 and MW8. Monitoring wells MW3, MW6, and MW7 (located off the Property) were not sampled during this project.

Groundwater samples collected from monitoring wells MW1, MW2, and MW8 had non-detectable concentrations of dissolved metals (arsenic, cadmium, chromium, lead, and mercury). The total metal concentrations from monitoring well MW2 and MW8 exceeded the MTCA Method A Cleanup Levels for Ground Water. However, the total metal results are considered attributed to suspended silt (turbidity) and not necessary representative of groundwater quality.

CONCLUSIONS AND RECOMMENDATIONS

The geophysical survey did not identify any abandoned USTs or large buried metallic objects. However the survey did identify apparent backfilled areas indicative of possible former UST, dry well, and/or remedial excavation locations. Based on the geophysical findings, these apparent backfilled areas were also investigated as part of this Phase II.

RGI reevaluated and selected appropriate chlordane soil and groundwater cleanup levels for the Property, protective of human health and the environment. The current chlordane soil and groundwater cleanup levels are 2.05 mg/kg and 2 μ g/L, respectively. For reference, the 2004 chlordane soil and groundwater cleanup levels were 2.85 mg/kg and 0.25 μ g/L, respectively

All soil and groundwater samples selected for laboratory analysis had non-detectable concentrations of TPH (as gasoline, diesel, and oil) and VOCs. In addition, heavy metals (arsenic, cadmium, chromium, lead, and mercury) in soil were either non-detect, or had trace concentrations considered background, or naturally occurring. Chlordane was not detected in either of the two soil samples collected from shallow soil from areas of suspected pesticide impacts.

Four of the seven monitoring wells located on the Property intercepted groundwater with chlordane concentrations ranging from 2 μ g/L to 7.7 μ g/L, above the ARAR cleanup level of 2.0 μ g/L. The highest chlordane concentrations in groundwater were detected at monitoring wells MW1 and MW8. Monitoring well MW8 is located just northwest of Building 5, and downgradient of a 1994 remedial excavation area. Monitoring well MW1 is located in the southeast portion of the Property. These findings support Ecology's opinion that the elevated chlordane concentrations in groundwater are not undergoing natural attenuation and/or degradation. Enhanced degradation of chlordane may be achieved by the injection of chemicals or nutrients that facilitate and accelerate degradation of this otherwise persistent pesticide. If groundwater remediation is required to meet the substantive requirements of MTCA, an in-situ chemical oxidation (ISCO) technology may be applicable.

During this project, three groundwater monitoring wells MW3, MW6, and MW7 (MW5 was decommissioned) were located off the Property and not accessible, therefore, not sampled and tested. However, based on the 2008 and 2010 groundwater sampling data by others, the chlordane concentrations in these wells, though above the Method B groundwater cleanup level of 0.25 $\mu g/L$, are below the currently proposed ARAR/MCL groundwater cleanup level of 2 $\mu g/L$.

RGI recommends the following:

- ➤ Submit a copy of this report to Ecology in response to Ecology's 2011/2012 five-year review and request for additional subsurface investigation.
- Prepare and submit an amended work plan to Ecology, for their review and comment, that outlines a proposed future action in an effort to obtain reinstate the No Further Action determination rescinded in 2011. An amended work plan could include, but is not necessarily limited to, (1) proposing additional points of groundwater compliance, (2) requesting Ecology's approval of the chlordane groundwater cleanup level as currently proposed, and (3) sampling and testing the existing groundwater monitoring wells located off the Property.
- If chlordane-contaminated groundwater remediation is required to meet the substantive requirements of MTCA, an ISCO technology may be appropriate and applicable. ISCO and the enhanced degradation of chlordane may be achieved by the injection of chemicals or nutrients that facilitate and accelerate degradation of this otherwise persistent organochlorine pesticide.

PROJECT LIMITATIONS

This report is the property of RGI, Columbia Bank, and their authorized representatives or affiliates and was prepared in a manner consistent with the level of skill and care ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions. This report is intended for specific application to the property located at 12785 State Route 9 and 12827 South Front Street, Clear Lake, Skagit County, Washington. No other warranty, expressed or implied, is made.

The analyses and recommendations presented in this report are based upon data obtained from our review of available information at the time of preparing this report, our test pits excavated or test borings drilled on the Property, or other noted data sources. Conditional changes may occur through time by natural or human-made process on this or adjacent properties. Additional changes may occur in legislative standards, which may or may not be applicable to this report. These changes, beyond RGI's control, may render this report invalid, partially or wholly. If variations appear evident, RGI should be requested to reevaluate the recommendations in this report.

Please contact the undersigned at (425) 415-0551 if you have any questions or need additional information.

Sincerely,

THE RILEY GROUP, INC.

Richard N. Simpson, LG, LHG

Senior Geologist

Jerry Sawetz

Senior Environmental Scientist

Paul D. Riley, LG, LHC

Principal

Paul D. Riley

Attachments:

Figure 1, Property and Surrounding Area

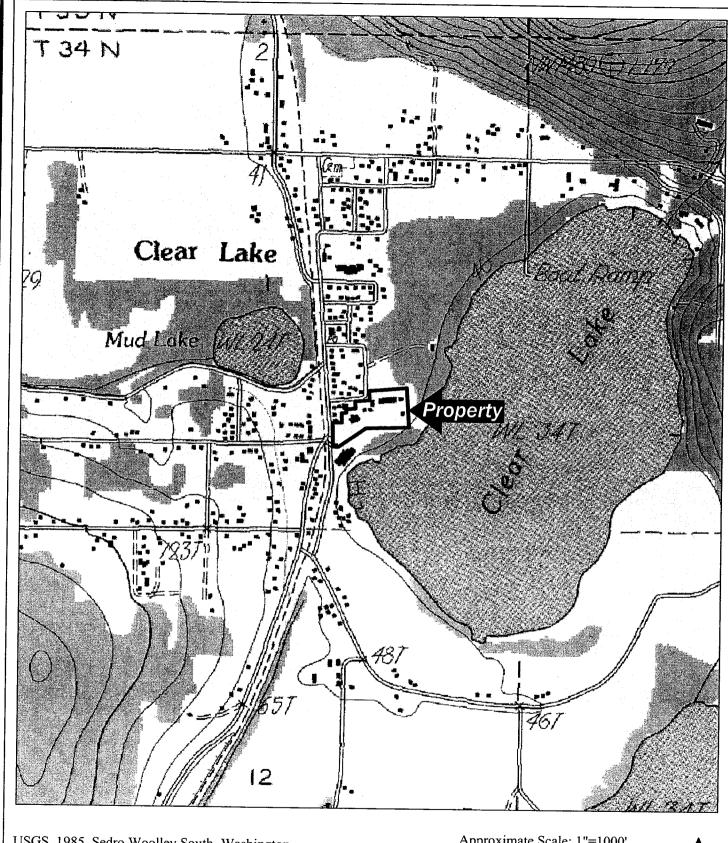
Figure 2, Property Plan with Groundwater Elevation Contours

Figure 3, Property Plan with Groundwater Elevation Contours

Figure 4, Previous Sample Location Map

Table 1, Summary of Soil Sample Analytical Laboratory Results

Table 2, Summary of Groundwater Analytical Laboratory Results


Appendix A, Geophysical Survey Report

Appendix B, Test Probe and Groundwater Monitoring Well Logs

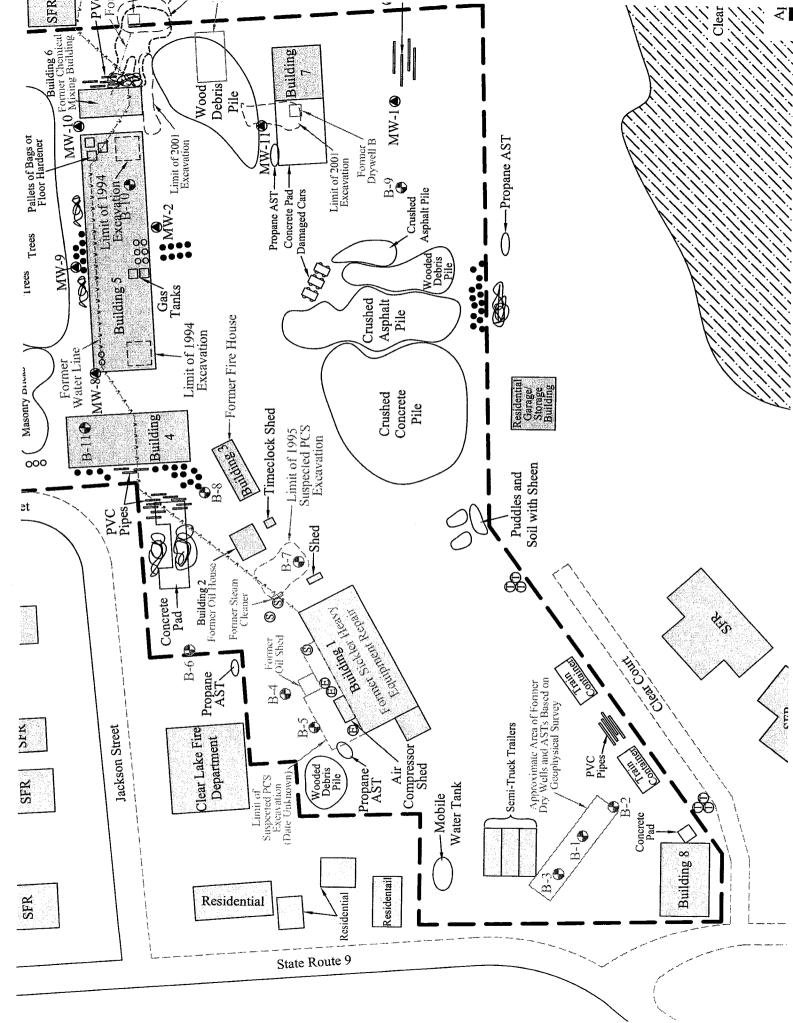
Appendix C, Ecology Worksheet for Calculating Chlordane Soil Cleanup Levels Appendix D, Analytical Laboratory Reports and Sample Chain of Custody Forms

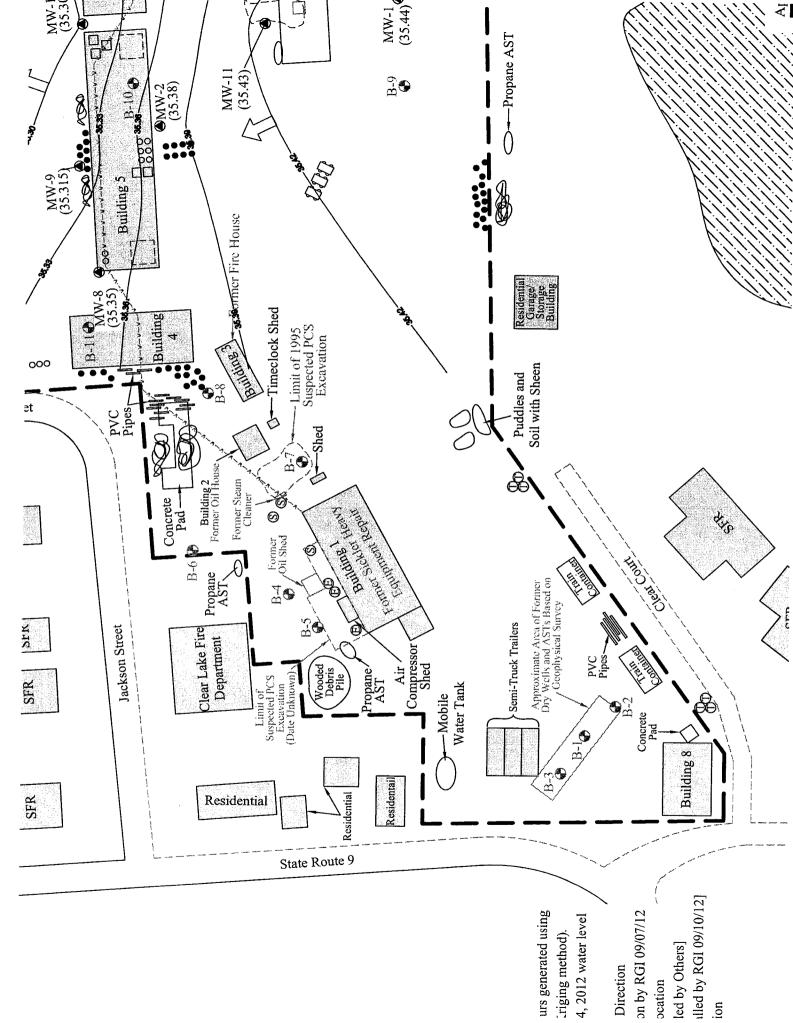
Report Distribution:

Ms. Christina Schafer (one bound copy and PDF)

USGS, 1985, Sedro Woolley South, Washington 7.5-Minute Quadrangle

Approximate Scale: 1"=1000' 2000




The Riley Group, Inc.
17522 Bothell Way Northeast, Suite A
Bothell, Washington 98011

Phone: 425.415.0551 • Fax: 425.415.0311

Clear I	ake Industrial Park	Figure 1
RGI Project Number	Property Vicinity Map	Date Drawn:
2012-265A		11/2012

Address: 12785 State Route 9 and 12827 South Front Street, Clear Lake Washington 98253

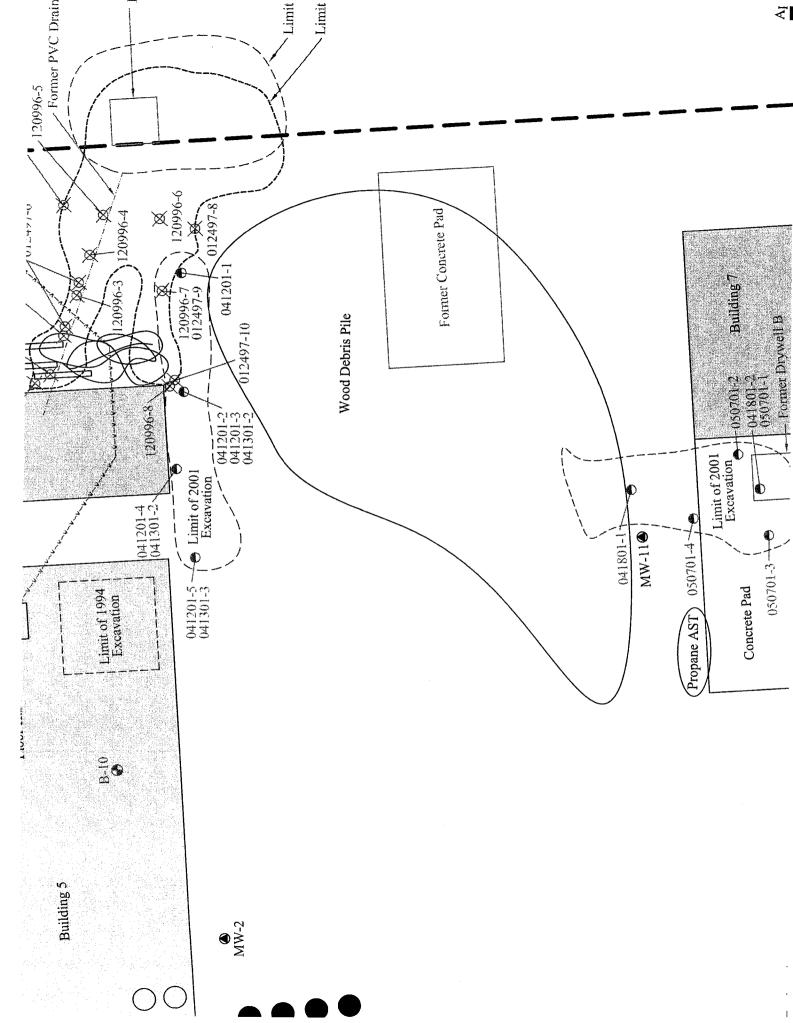


Table 1. Summary of Soil Sample Analytical Laboratory Results Clear Lake Industrial Park

12785 State Route 9 and 12827 South Front Street, Clear Lake, Washington

The Riley Group, Inc. Project No. 2012-265A

Sample Sample		i	Ĭ		HCID		Т	Mρ	tals		Chlordan	e	
Number	Depth	Date	PID	Gasoline		Heavy Oil	As	Pb	Hg	Total	T		
B-1-3	3	09/07/12	0.0	ND<20	ND<50			3.38		I Utai	Gamma	Alpha	
B-1-6	6	09/07/12	0.0										
B-1-11	11	09/07/12	0.0	ND<20	ND<50	ND<250							
B-1-12.5	12.5	09/07/12	0.1										
B-2-3	3	09/07/12	0.0	ND<20	ND<50		 	<u> </u>				+	
B-2-7	7	09/07/12	0.0					 					
B-2-10	10	09/07/12	0.0	ND<20	ND<50	ND<250		<u> </u>					
B-2-12.5	12.5	09/07/12	0.0				<u> </u>						
B-3-4	4	09/07/12	0.0	ND<20	ND<50	ND<250		 					
B-3-7	7	09/07/12	0.1						 				
B-3-10	10	09/07/12	0.0	ND<20	ND<50	ND<250							
B-3-12	12	09/07/12	0.0										
B-4-3	3	09/07/12	0.0	ND<20	ND<50	ND<250	3.21	2.28					
B-4-8	8	09/07/12	0.0										
B-4-10	10	09/07/12	0.0	ND<20	ND<50	ND<250							
B-4-16	16	09/07/12	0.0										
B-5-4	4	09/07/12	0.2										
B-5-7	7	09/07/12	0.1										
B-5-11	11	09/07/12	0.0	ND<20	ND<50	ND<250							
B-5-16	16	09/07/12	0.0										
B-6-4	4	09/07/12	0.2	ND<20	ND<50	ND<250							
B-6-6	6	09/07/12	0.1										
B-6-10	10	09/07/12	0.2										
B-6-16	16	09/07/12	0.1										
B-7-4	4	09/07/12	0.2										
B-7-7	7	09/07/12	0.1										
B-7-8.5		09/07/12		ND<20	ND<50	ND<250							
B-8-4	4	09/07/12	0.0	ND<20	ND<50	ND<250							
B-8-7	7	09/07/12	0.2										
B-8-11			0.2	ND<20	ND<50	ND<250							
B-8-16	16	09/07/12	0.0										
B-9-3			0.3							ND<0.0134	ND<0.0134	ND<0.0134	
B-9-5			0.2	ND<20	ND<50	ND<250							
B-9-8	8	09/07/12	0.2										
B-10-3	3	09/07/12	0.0				7.36	3.70	ND<0.1	ND<0.0110	ND<0.0110	ND<0.0110	
B-10-6	6	09/07/12	0.3										
MTCA S	oil Clear	up Levels	s	100/30 ¹	2,	000	20	250	2	2.05 ²	2.05 ²	2.05 ²	

Table 1 Continued. Summary of Soil Sample Analytical Laboratory Results Clear Lake Industrial Park

12785 State Route 9 and 12827 South Front Street, Clear Lake, Washington

The Riley Group, Inc. Project No. 2012-265A

			T										
Sample	Sample	1 ^	PID		HCID			Met	als		Chlordane		
Number	Depth	Date		Gasoline	Diesel	Heavy Oil	As	Pb	Hg	Total	Gamma	Alpha	
B-10-10	10	09/07/12	0.2					J					
B-10-12	12	09/07/12	0.1										
B-11-4	4	09/07/12	0.3										
B-11-7	7	09/07/12	0.4	ND<20	ND<50	ND<250							
B-11 - 9	9	09/07/12	0.2										
B-11-12	12	09/07/12	0.1										
MW-8-3	3	09/10/12	0.2										
MW-8-9.5	9.5	09/10/12	0.1										
MW-9-4	4	09/10/12	0.1										
MW-9-7	7	09/10/12	0.2										
MW - 9-9	9	09/10/12	0.1										
MW-10-3	3	09/10/12	0.1										
MW-10-6	6	09/10/12	0.3										
MW-10-10	10	09/10/12	0.1										
MW-11-3	3	09/10/12	0.2										
MW-11-8	8	09/10/12	0.2										
MW-11-16	16	09/10/12	0.1										
MTCA S	Soil Clean	aup Level	s	100/30 ¹	2,	,000	20	250	2	2.05 ²	2.05 ²	2.05 ²	

All results and detection limits are given in milligrams per kilogram (mg/kg); equivalent to parts per million (ppm).

Sample Depth = Soil sample depth interval in feet below ground surface (bgs).

PID = photoionization detector.

Gasoline, Diesel, and Oil HCID (petroleum hydrocarbon identification) determined using Ecology Test Method NWTPH-HCID.

Metals (As = arsenic, Pb = lead, Hg = mercury) determined using EPA Method 200.8 and 1631E.

Chlordane (an organochlorine pesticide) determined using EPA Test Method 8081.

ND = Not detected at noted analytical detection limit.

---- = Not analyzed or not applicable.

Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A and B Soil Cleanup Levels (WAC 173-340-900, Table 740-1 and CLARC database).

Bold and yellow highlighted results indicate concentrations (if any) that exceed MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses.

The higher cleanup level is allowed if no benzene is detected in the sample and the total of toluene, ethylbenzene and xylenes is less than 1% of the gasoline mixture.

² Method A Cleanup Level was not available. Therefore, a site specific soil cleanup level, protective of groundwater quality, was calculated (see report text and Appendix C for further discussion).

_
Α,
-265A
Q
Ġ
4
=
201
~
Š.
Z
\Box
ਹ
تة
:=
5
Project
ಚ

Top of	Depth to			۲	RTEX			al On				[
Casing	Water	Groundwater				-				0.4400		1 otal	∑ _ _ _	I otal M I CA 5 Metals	S		Dissolve	d MTC.	Dissolved MTCA 5 Meta
(TOC)	(below	Elevation	В	Т	되	×	Gasoline	Diesel	Heavy Oil	Omer VOCs	As	D C	Ċ	Pb	Hg	As	P)	Ç	Pb
pling																			
-	13	1	ND<0.35	ND<1	I ND<1	1 ND<2	ND<200	ND<500	ND<500	QN ON		1	Ŀ						
	13	1		-					1		-		1				ļ		
	13	-	ND<0.35	ND<1	1 ND<1	1 ND<2		-		ND			1						
	-11	j 1 1	ND<0.35	ND<1	1 ND<1	1 ND<2		-		QN.									
	11.5	6 5 7	ND<0.35	ND<1	1 ND<1	1 ND<2	ND<200	ND<500	ND<500	QN	-		l		-				
		1	ND<0.35	ND<1	1 ND<1	1 ND<2	<u> </u>	ND<500	ND<500	QN				1			-		
8 5 2 7	11	-	ND<0.35	ND<1	I ND <i< td=""><td>I ND<2</td><td></td><td>1</td><td>1</td><td>ΩN</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></i<>	I ND<2		1	1	ΩN				-					
	5		ND<0.35	ND<1	l ND<1	1 ND<2				ND	****			1	1				
	10.5		-	-				1						-	1		1	-	
1	10.5		ND<0.35	ND<1	l ND<1	1 ND<2	ND<200	ND<500	ND<500	ND						1			1
onitoring V	onitoring Well Sampling	ßı							1										
7 to 17 feet	bgs/Total De	7 to 17 feet bgs/Total Depth 17 feet bgs																	
41.83	6.39	35.44	-	;				-		1 1 1 1 1	ND<1	ND<1	1.69	ND<	ND<0.1	ND<	ND<1	ND<1	ND<
			-	1				-	-	1	-	1	+	1					
	-		-	1	i						l]						
		4		i	!	1			1		-		-	1		1		1	
-			1	1	-	į	1			7.24		1		-	F				
			1	i	1	-		-	1	1				-					
						-	d		1				-		1		1	1	
			-						-	-			-			-		-	
		-	-					-			-	1						i	
					-	1			1			-				-		1	
	-	-			1			-	7.07.2		1	-					-	1	
1					-	!	t 1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-		1					!	
10 to 20 fee	t bgs/Total D	10 to 20 feet bgs/Total Depth 20 feet bgs																	
47.37	11.99	35.38					1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	1	-	5.97	ND<1	2.9	ND<1	ND<0.1	ND<1	ND<1	ND<1	ND<1
		1			!	-	-		l				-		1			1	
	-	1				-		-	i							1	1		
				-	-	-			-			1			-	1		1	-
-		-	2226	1					1		-					-	1		
					1	1	-	1	1	1.5.6	-			-	to de ser se				
1	1				1	-	1			1 1 2 2 1	!		1		***				
									-						-	-		-	
Cleanup Le	Cleanup Levels for Ground Water	und Water	5	1,000		813667	$800/1,000^{1}$	200	200	Analyte Specific	5	5	50	- 15	. 2	5	.5	50	15
AR - State!	AR - State/Federal Primary MCE	nary MCE		0000	700	000000	Service Co.			Satisfyrotsynology	(0)	777						000	9

c. Project No. 2012-265A			-																
Top of Casing	Depth to	Groundwater		BTEX	EX L			HCID				Total	MTC,	Total MTCA 5 Metals	s		Dissol	Dissolved MTCA 5 Meta	A 5 Me
(TOC)	(below	Elevation	В	T	H	×	Gasoline	Diesel	Heavy Oil	Other VOCs	As	β	Ċ	Pb	Hg	As	S.	Ċŗ	Pb
10 to 20 fee	t bgs/Total L	10 to 20 feet bgs/Total Depth 20 feet bgs																	
44.49	9.21	35.28	-		1					1	-			-		L			
1		1 1 7 2 6						1		B 11 11 11 11 11 11 11 11 11 11 11 11 11	-		-		-				
		1111	-		-		1	1	1										
	2	1			;		-	1	-	*			-						
-			-		!			1			1		1	-	1				!
		1	1		1]]]						-	-				
	1		-	1			1	-				1			-				
			1		-	-		-			-				4111		l		
****			-		1		-				1	1					ļ		!
-		1 1 1 1				1	1												
		1	-		-		2	;				-	Ŀ	-					
-		1			-						1	ļ			ļ		1		
5.5 to 11.5 t	eet bgs/Tota	5.5 to 11.5 feet bgs/Total Depth 12 feet bgs																	
45.70	10.35	35.35		-			1) 1 1	87.0	11.9	782	098	1.3	ND<1	ND<1	NDA	NP
1		:							-	1		2	-	· I					
7 to 12 feet	ogs/Total De	7 to 12 feet bgs/Total Depth 12 feet bgs																	
44.775	9.46	35.315		-		-			1										1
al 7 to 12 feet	bgs/Total D	1 7 to 12 feet bgs/Total Depth 12 feet bgs																	
43.15	7.85	35.30					1												
									# ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !					-					
al 11 to 15 fe	et bgs/Total I	al 11 to 15 feet bgs/Total Depth 15 feet bgs																	
46.42	10.99	35.43											l	-					
-			1	.	-								i						
Ionitoring Well Sampling	'ell Samplin	<u> </u>																	
/Total Depth Unknown	Unknown																		
:									-										,
1	-	,	-4	-												i			
-		1		-	1		1	-			-								
1	-			-		-	-		1		1		1						
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-	-				-		-		-			ļ	1	i		1	
			1								-		1	-		l		1	
				1	:	-				t				-	111				-
-	-					-									1				
	;	1	-	1	-			1	-							1111	1	1	1
			-		1					1		į							
Cleanup Levels for Ground Water	els for Gro	und Water 5	5	1,000	700	1,000	1,000 700 1,000 800/1,000 ¹	200	500	Analyte Specific	2	S	20	15	2	5	2	20	15

c. Project No. 2012-265A Top of Depth to

Casing	Water	Groundwater		DIEA	<u> </u>			HCID				Total MTCA 5 Metals	CA 5 N	1etals		_	Dissolved MTCA 5 Mers	MTCA	5 Mets
(TOC)	(below	Elevation	B	Ļ	된	×	Gasoline	Diesel	Heavy	Other VOCs	As	Cd Cr	ئ	\vdash	Hg	\ V V	7	7	ďď
/Total Dent	Unknown (V	Total Denth Unknown (Well Decommissioned in 2002)	(5005 ni ber									1		-11	a	21,	,,	5	2.0
		IOISCHIII III OOO III III III III III III III	7007 111 7007																
1 1 1			1	-		-	1		-	1		╟	⊩	L		ŀ			
1													-			1	1	!	-
				-	-	1	;	1	į	!						-	-		
ļ	-										1	┪	4			-		i	;
				-		!	!	ļ	!	-	i	-	-			-	_	\mid	
-	-	1	1									\dagger	+	+					! 1
								!				!	-	-	:	-	-	ŀ	-
			!		i	-	;	;				H		-		+	\dagger		T
												-					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	-
			-	:	1	-	-	-	-		į				L	-			
							•												

Total Depth Unknown

		-	_	_	-				_	_												
	1		-			-			-	-		1	ļ						-		CT	4
	-		1	-		2111	-			-		-	1		-	1 2 2				60	ne	dily.
									****	1			-				1			Y	n A	
				-									-				-		1	4	•	
	****						-		•	!			-				,			6	,	
	!	-		1	-					1			1			i	į			9		
\downarrow	!				-											-	Ì			80	00 mg	
		-			į		1									-	1 1 1			\$		Ĭ,
		ļ		1	!		-							-			ļ			v	ı	:
	****	j			-						•			-			1			Analyte Specific	N. CHOOLE OF LONGING TO SEE LINE AND ADDRESS OF THE PARTY	A Anni ly (a Speedfile)
		-			-			i			1		-	!					ACOMORDINA BASISTAN	500		
					-			-			1			1				1	* 0% No. 10 (1) (1) (1)	200		
					-			-			;			-						800/1,000		
														!			-	-		1,000		
		-	-		-			-						i	1			1		700	200	
į		!	-		1			-			ļ				ļ				1	1,000	0.00	1,111
		!	1									-		-				1		C		6
:			1						1700			1 1 1 1			1				nd W/atan	III Water	art. MCI	
!			-			Unknown			-		-	-		-	-	1			role for Gron	70 TO 101 CT	aderal Prim	
			1 1			/Total Depth Unknown					1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1			-	1			Cleanin I evels for Cround Woter	Cicanap ac	AR = State/Recleral Primary MC1	7 A

MW7 installed by others. Monitoring wells MW8 to MW11 installed by RGI.

field staff using a peristaltic pump under low-flow conditions.

l analytical results are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

ethyl benzene, and xylenes) and VOCs (volatile organic compounds) determined using EPA Test Method 8260C.

HCID (Hydrocarbon Identification) determined using Ecology Test Method NWTPH-HCID.

enic, Cd = cadmium, Cr = chromium, Pb = lead, Hg = mercury) determined using EPA Method 200.8 and 1631E. Total metals represent unfiltered samples. Dissolved metals represent samples filtered by the laboratory prio rine pesticide) determined using EPA Test Method 8081.

d analytical detection limit.

applicable.

is applicable if no benzene is detected in groundwater.

nent of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A Cleanup Levels for Ground Water (WAC 173-340-900, Table 720-1).

Underground Detection Services, Inc.

> 6809 North 56th Ave. Glendale, AZ 85301

623/939-4690, tel 602/955-3146, fex 888/622-4999, toll-free August 5, 2012

Richard Simpson The Riley Group 17522 Bothell Way NE Suite A Bothell, WA 98011

Dear Richard:

This is a report on the equipment, procedures, and results of the geophysical survey performed at Clear Lake Heavy Equipment 12785 State Route 9, Clear Lake, WA. The purpose of the survey was to identify possible UST's at the site.

The site was a Weyerhaeuser Co. facility. The site is currently occupied by a trucking firm. Information on the UST's and size was limited.

The equipment that was used for the survey included, but was not limited to a GSSI GEM-300 Electromagnetic (EM) multi-frequency profiler, GSSI Sir 3000 System ground penetrating radar (GPR) with 270 MHz antenna, Schonstedt GA-52 magnetic locator and a MetroTech 810 pipe and cable locator.

The EM produces a sinusoidal signal that is transmitted into the subsurface. This transmitted signal induces a flow of electrical current into the soil. These currents in turn induce a secondary electromagnetic field. The presence or absence of metallic objects and voids affects this secondary field. The secondary electromagnetic field is measured, collected, interpreted and stored for later processing.

The GPR utilizes high frequency radio waves to probe the subsurface. A radio wave is emitted from the antenna and travels through the soil, if there is an anomaly below the antenna; the radio wave is reflected back. The data that is collected is displayed in real time, through a color display.

The data that is produced is a cross section of the geology directly below the antenna. The top of the data represents the ground surface while the bottom of the page is a reading depth of the equipment. The data is collected and displayed from left to right, with left being the beginning and right being the end of the particular survey line. Anomalies typically appear white on a color screen.

The depth of the signal penetration is dependent upon geological factors beyond the control of the surveyor. Conductive soils, clays, and saturated soils, do not allow the GPR signal to penetrate as deeply as less resistive sandy soil.

The magnetic locator measures the magnetic field simultaneously from two separate elevations within the same piece of equipment. A high pitch sound is emitted from the equipment when in the proximity of ferrous material. The equipment is carried over the survey area and swung back and forth to cover as much area as possible in a reasonable time frame.

The pipe and cable locator uses a defined radio frequency induced on the line from a transmitter attached to the line at the surface. The frequency travels the length of the line and acts as an antenna below the surface. A receiver tuned to that frequency is carried above the surface and locates the line with that frequency.

The EM survey was setup on the west side of the property. The size of the survey area was 180' X 115'. There were numerous pieces of equipment within the survey area including semi-trailer, bulldozer, and sweeper. The soil below these pieces of equipment could not be surveyed. The survey area was setup with grid lines 10' apart. The EM was carried over the survey area walking a snake line grid 5' apart.

The EM data did not show any unknown anomalies.

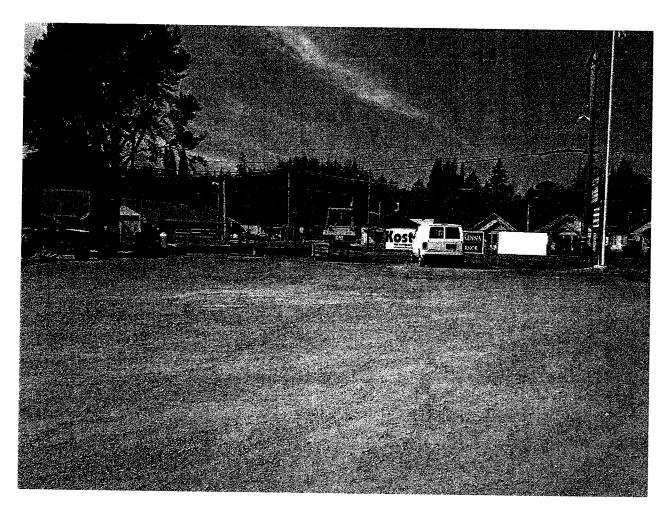
Due to the large amount of equipment, material, buildings, and debris in the other 2 survey areas, the EM was only used on the west side of the site.

The GPR survey was setup around the other 2 areas indicated for the geophysical survey. The GPR antenna was pushed along the surface and data was collected continually. Due to the large amount of equipment, material, buildings, and debris the GPR survey could not be conducted over the entire areas requested.

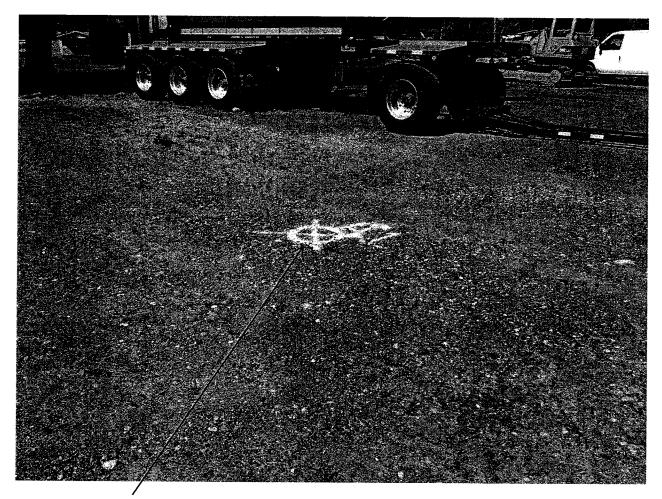
The GPR data showed an anomaly in the west survey area. Line # 3 appears to be a possible excavation. The map shows that there were 2 former dry wells in the area. The anomaly could be one of the former dry wells.

The MAG was not used on this site due to the lack of metallic objects found in the EM and GPR surveys.

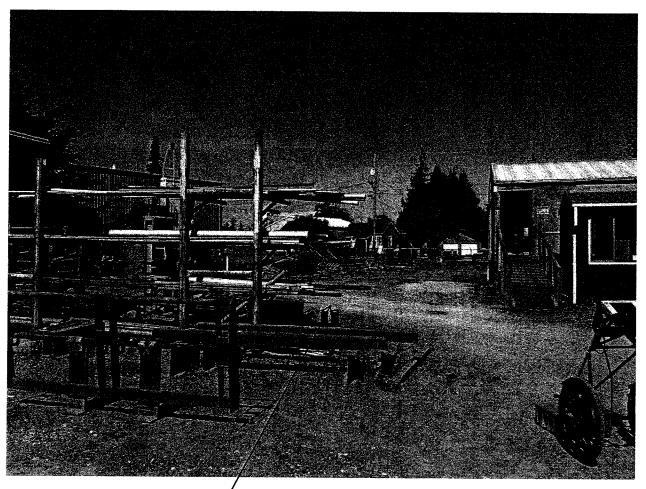
The pipe and cable locator was used to locate metallic lines in the areas of the proposed soil borings. There appears to be several water and gas lines that are non-metallic. The lines do not have tracer wires attached to the risers and were not located. Please use extreme caution when drilling; hand auguring should be used when possible. Less than all lines may have been located at this site.

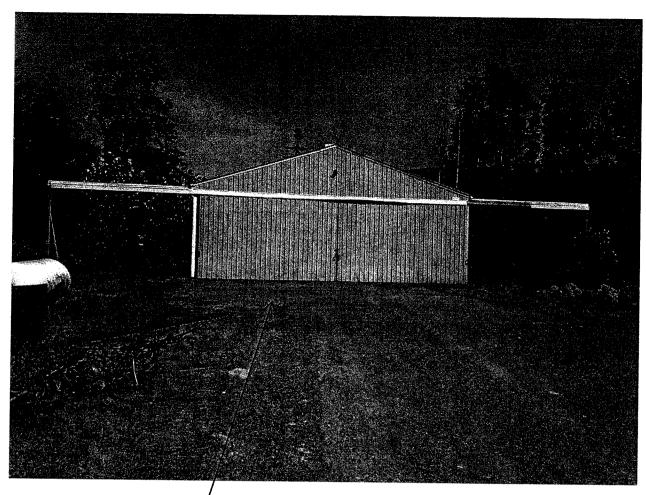

The EM survey area and GPR lines are marked on the CAD drawing provided. The start of the GPR survey line corresponds to the number marked on the line.

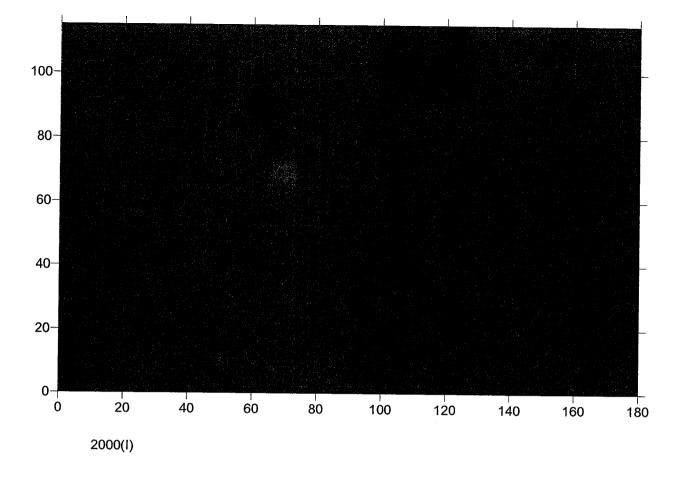
UST's on the site may not have been located due to tank material, depth of tank, the tank collapsed and filled with native soil, and tanks that were not within the geophysical survey area.


Respectfully,

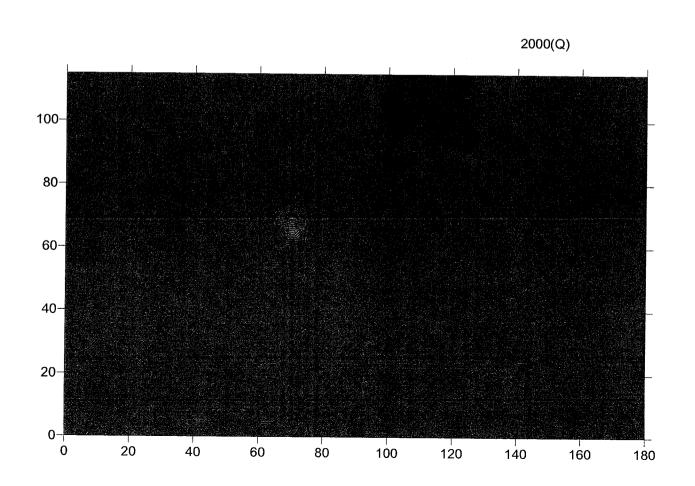
Richard A. Lund

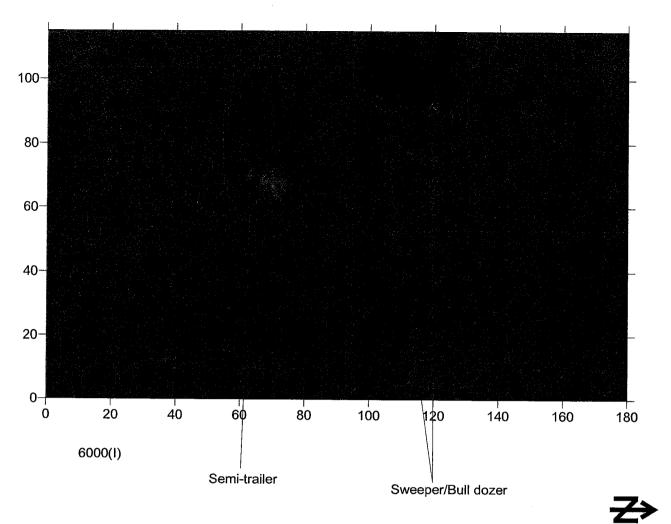

Richard G. Jund

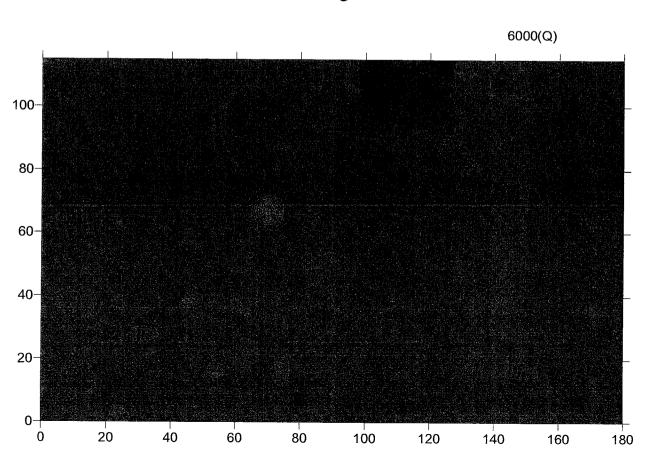

West geophysical survey area

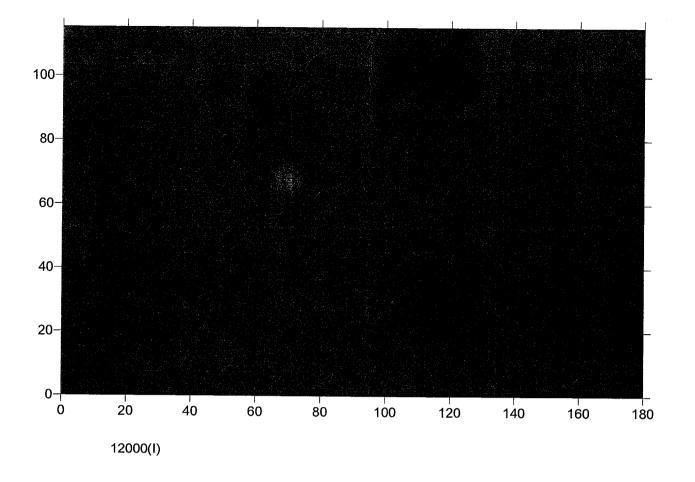

Unknown anomaly A1, possible former dry well, GPR data line # 3

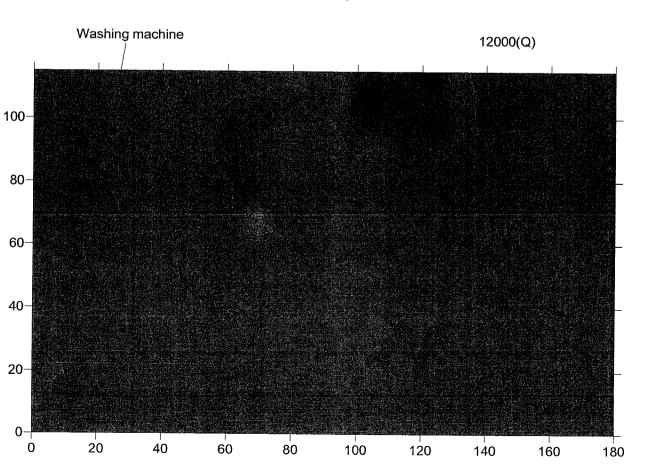
North geophysical survey area, excavation, GPR data line # 19

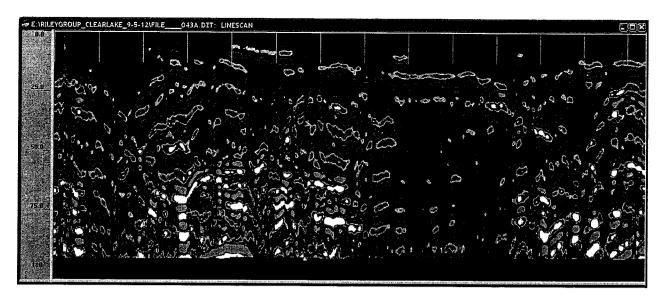


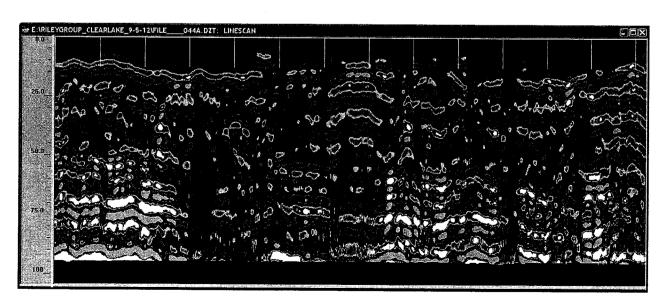

East geophysical survey area, excavation, GPR data line # 32


West Parking Area

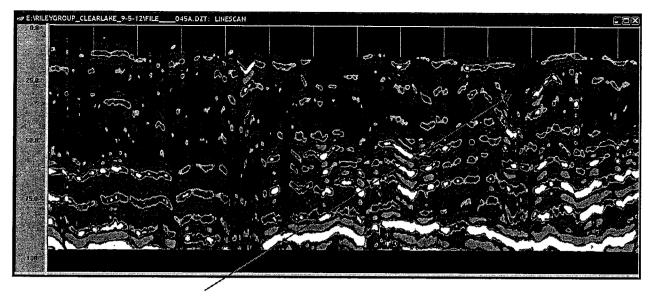


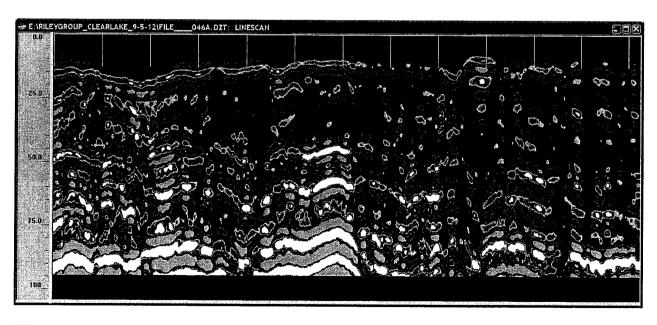


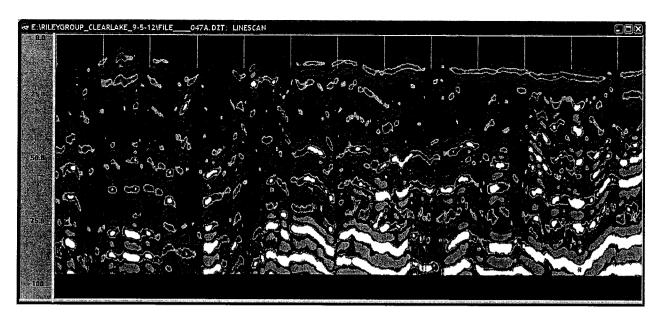

West Parking Area

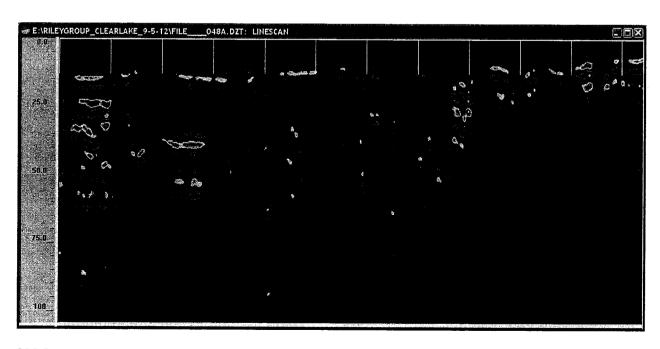


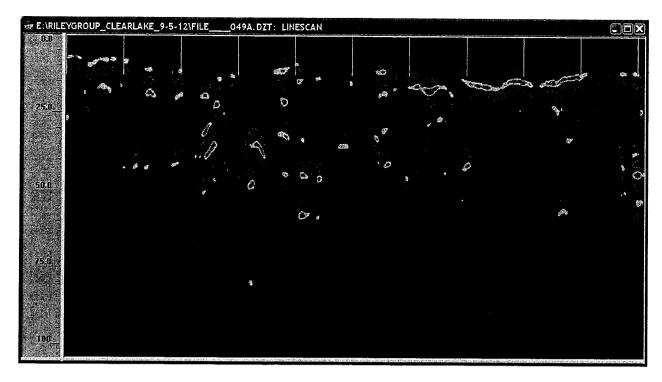
West Parking Area

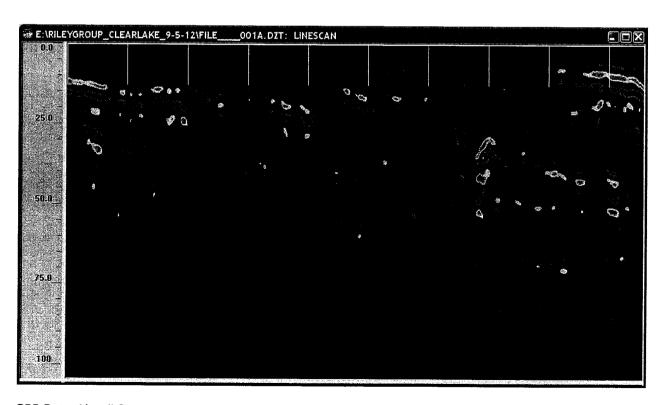


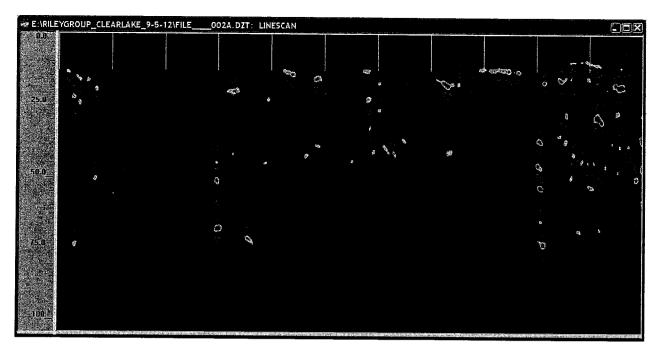

GPR Data; Line # 1


GPR Data; Line # 2

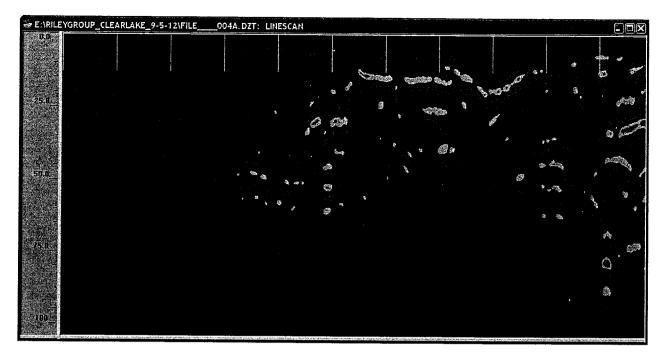

GPR Data; Line # 3, possible excavation


GPR Data; Line #4

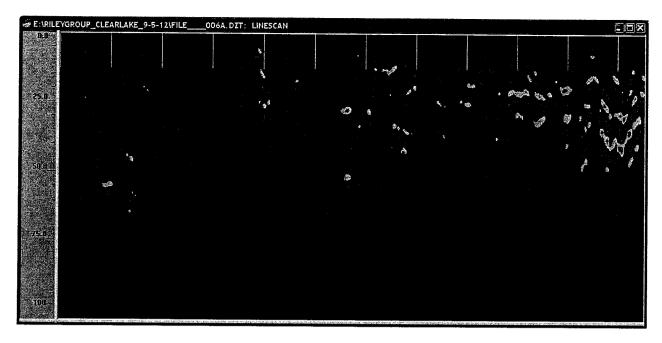

GPR Data; Line # 5

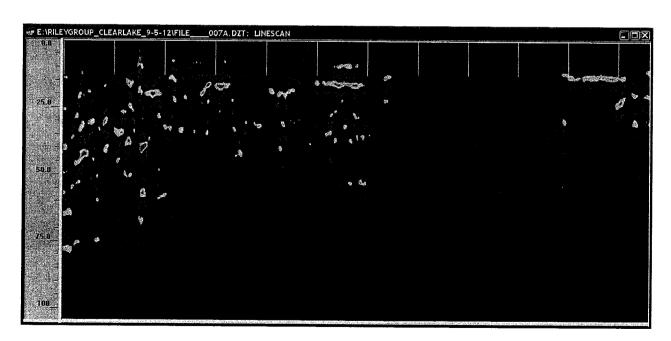

GPR Data; Line # 6

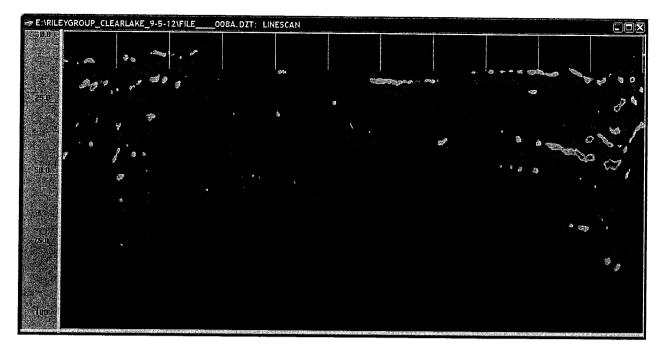

GPR Data; Line #7

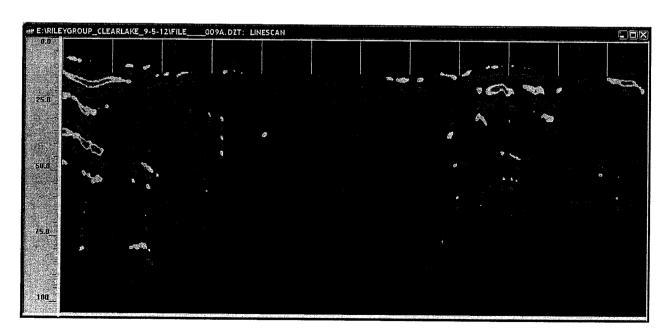

GPR Data; Line #8

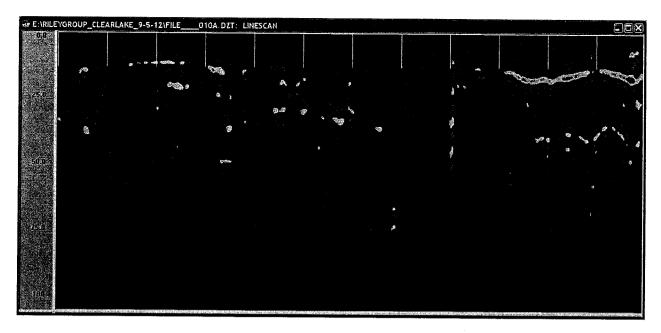
GPR Data; Line #9

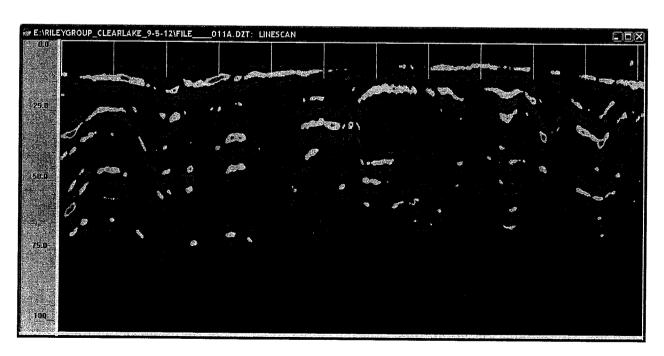

GPR Data; Line # 10

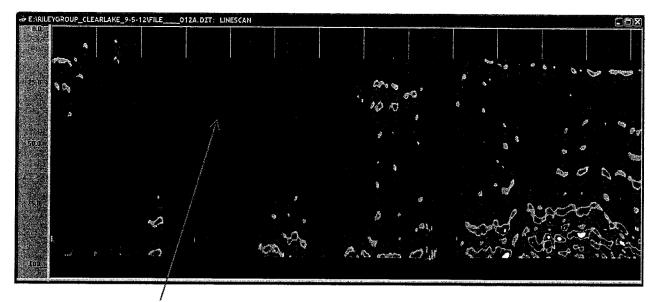

GPR Data; Line # 11


GPR Data; Line # 12

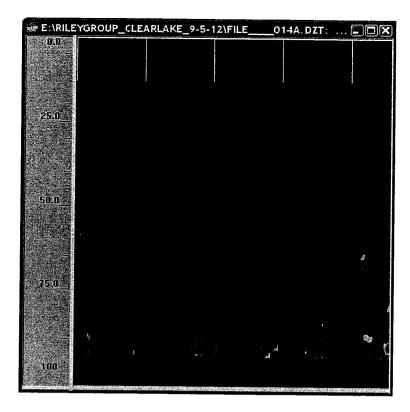

GPR Data; Line # 13

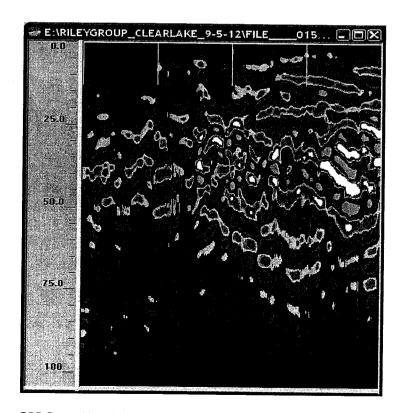

GPR Data; Line # 14

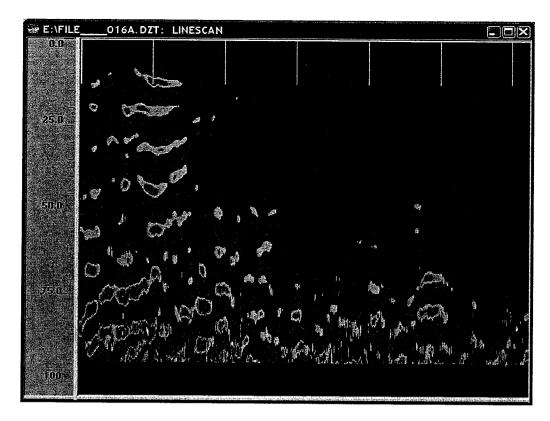

GPR Data; Line # 15

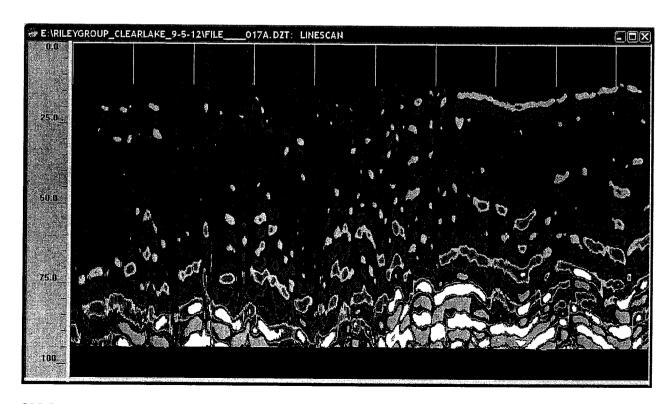

GPR Data; Line # 16

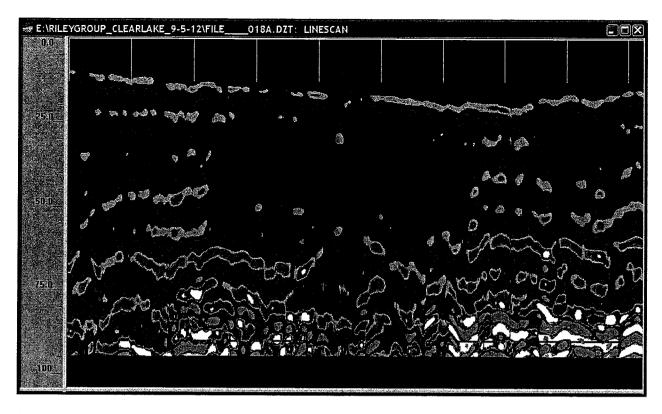
GPR Data; Line # 17


GPR Data; Line # 18

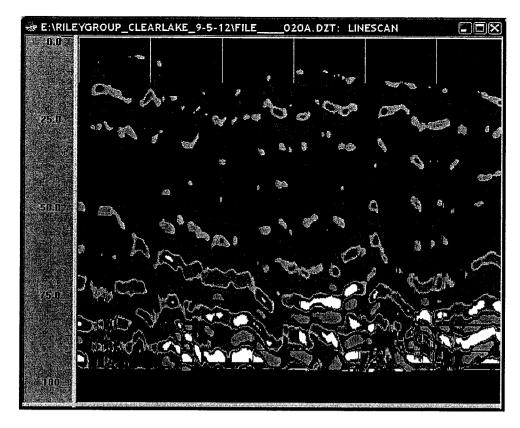

GPR Data; Line # 19, excavation

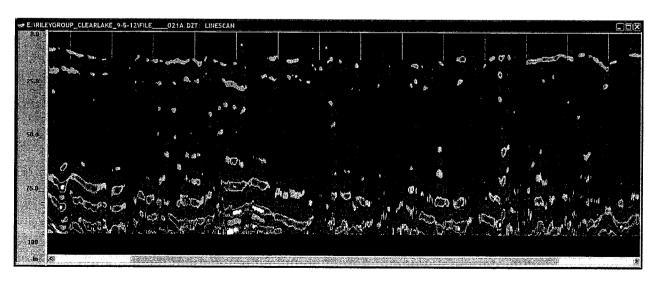

GPR Data; Line # 20

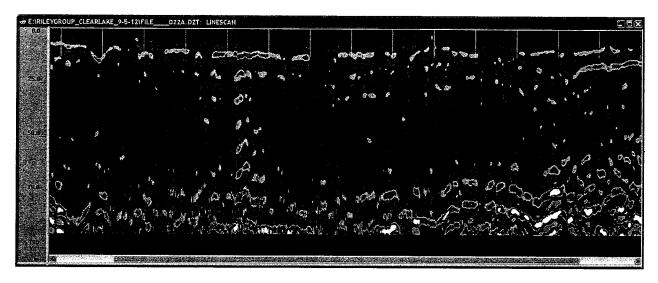

GPR Data; Line # 21

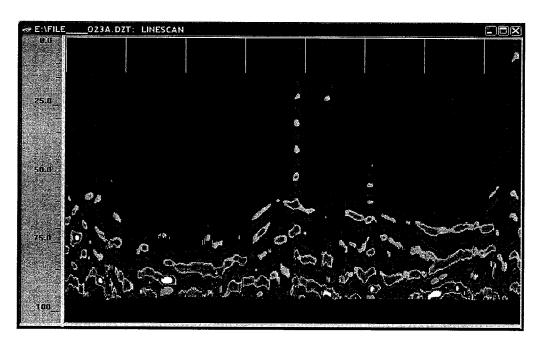

GPR Data; Line # 22

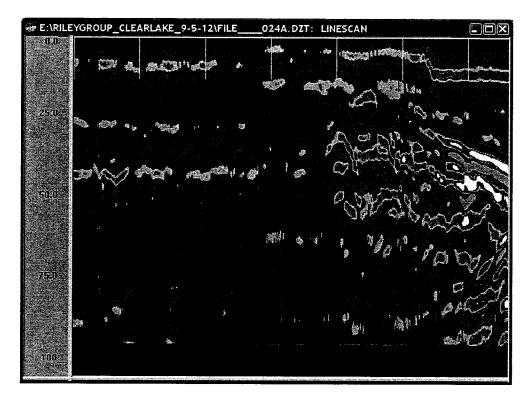
GPR Data; Line # 23

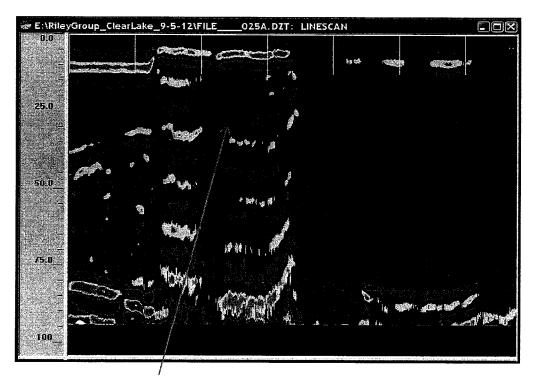

GPR Data; Line # 24

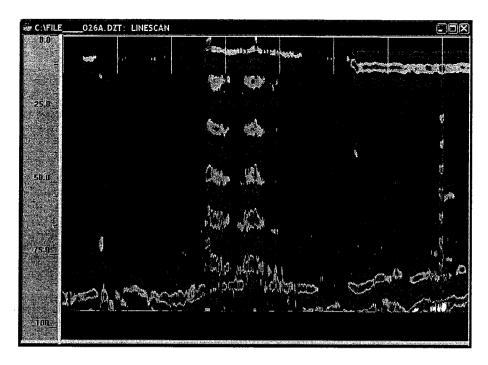

GPR Data; Line # 25

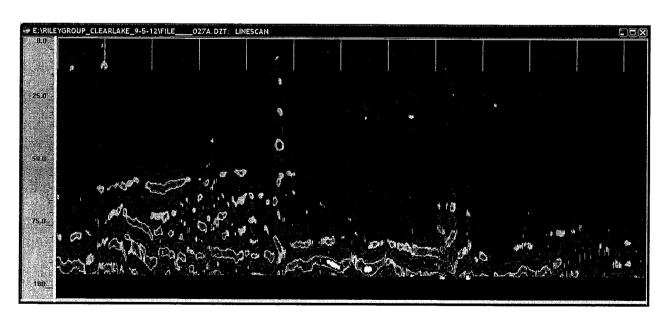

GPR Data; Line # 26

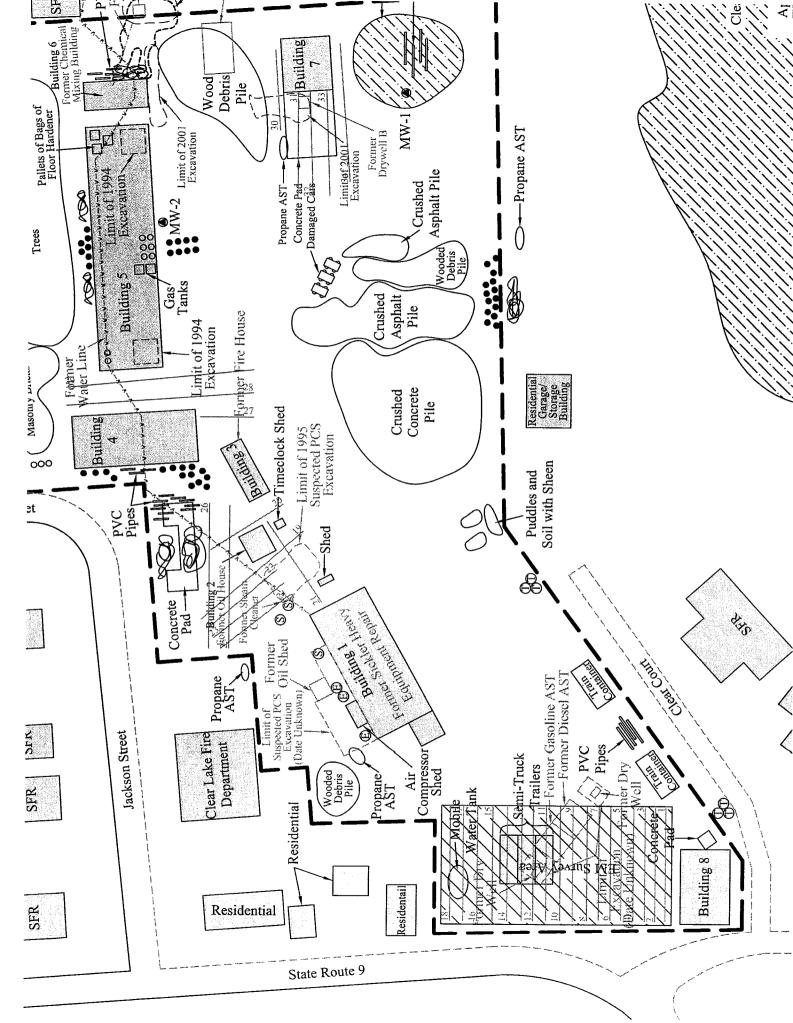

GPR Data; Line # 27

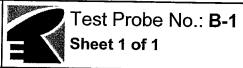

GPR Data; Line # 28


GPR Data; Line # 29

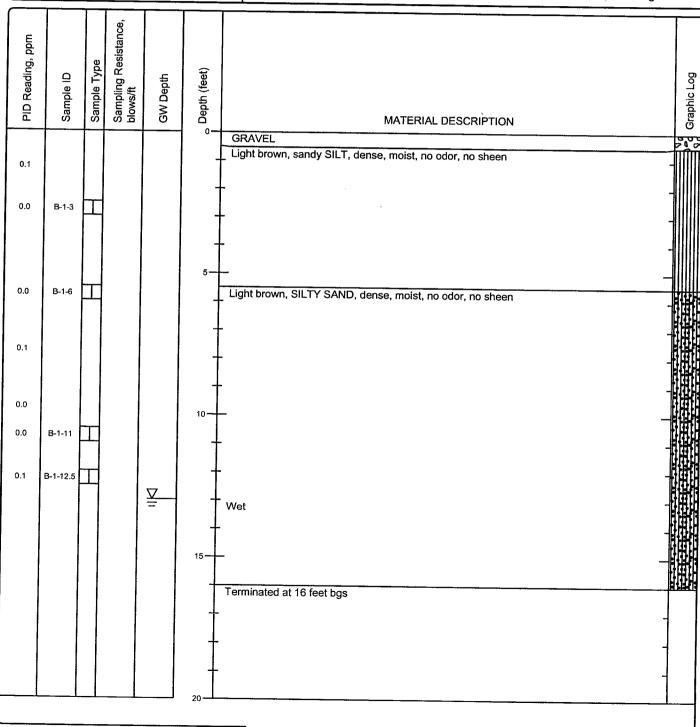

GPR Data; Line # 30

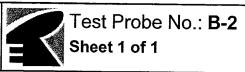

GPR Data; Line #31

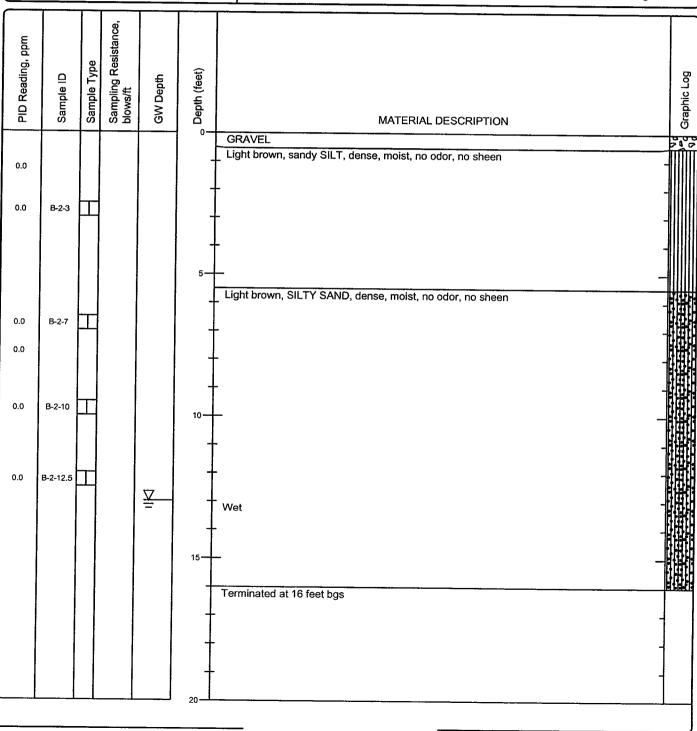

GPR Data; Line # 32, excavation

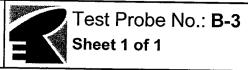


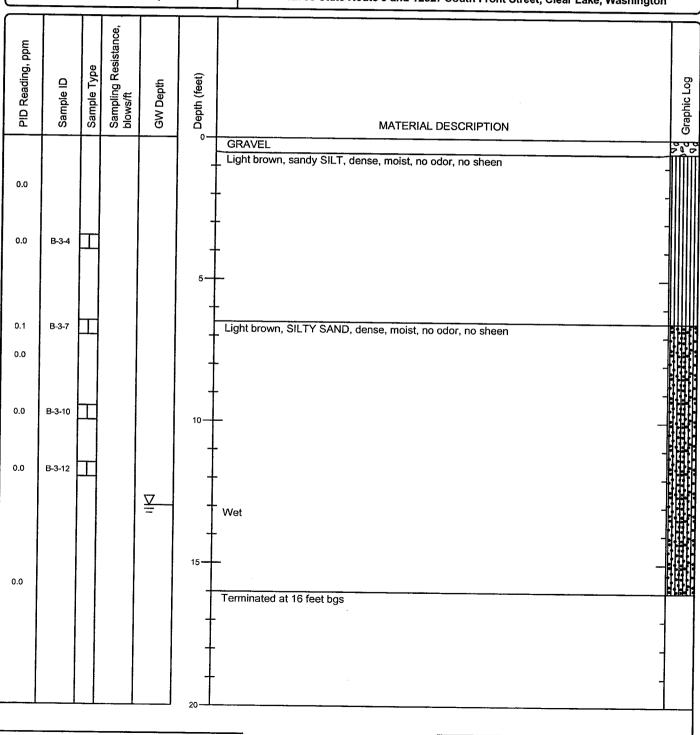
GPR Data; Line # 33

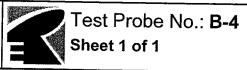


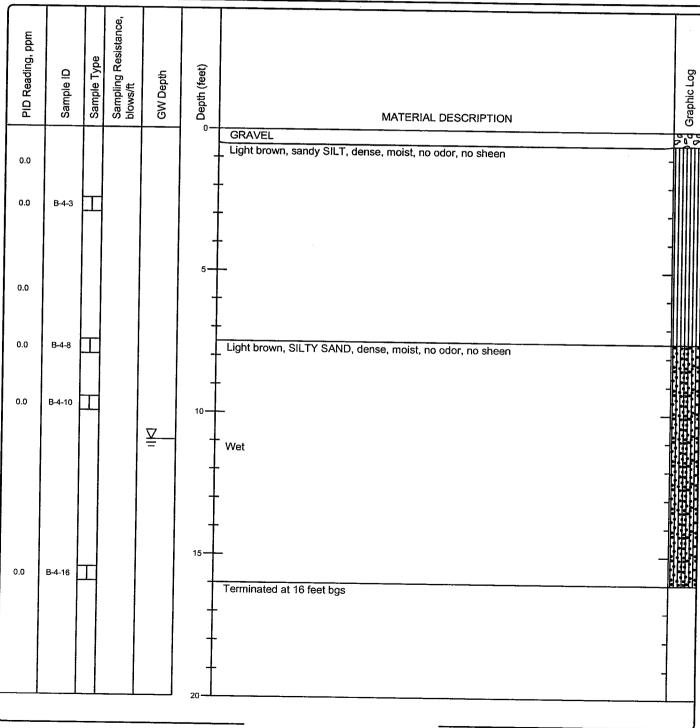

GPR Data; Line # 34

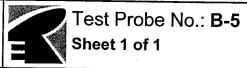


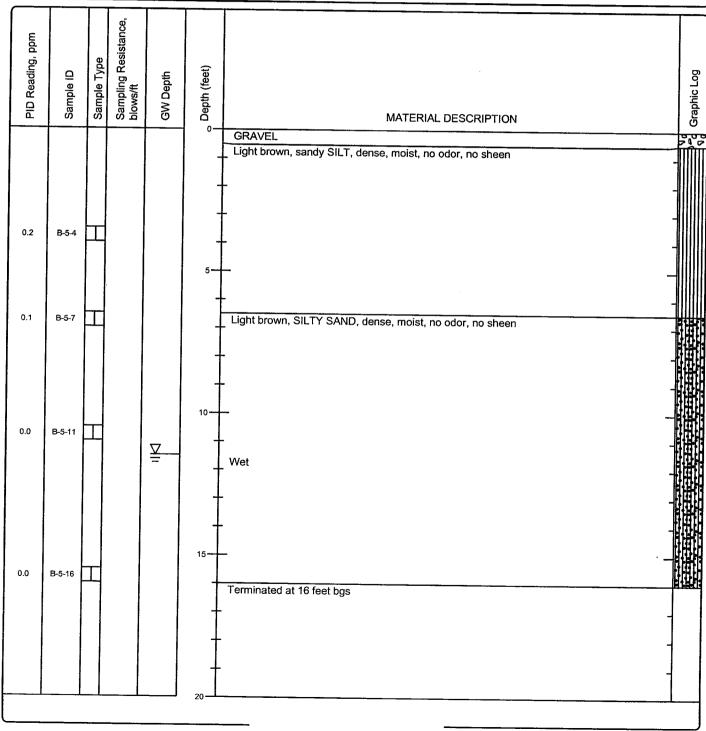

Date(s) Drilled: 09/07/12	Logged By: SL	Surface Conditions: Gravel
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 16 feet bgs
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a
Groundwater Level and Date Measured: 13' bgs	Sampling Method(s): Continuous	Hammer Data : n/a
Borehole Backfill: Bentonite Chips	Location: 12785 State Route 9 and 12827 South Front Street, Clear Lake, Washington	




Date(s) Drilled: 09/07/12	Logged By: SL	Surface Conditions: Gravel
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 16 feet bgs
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a
Groundwater Level and Date Measured: 13' bgs	Sampling Method(s): Continuous	Hammer Data : n/a
Borehole Backfill: Bentonite Chips	Location: 12785 State Route 9 and 12827 South Front Street, Clear Lake, Washington	

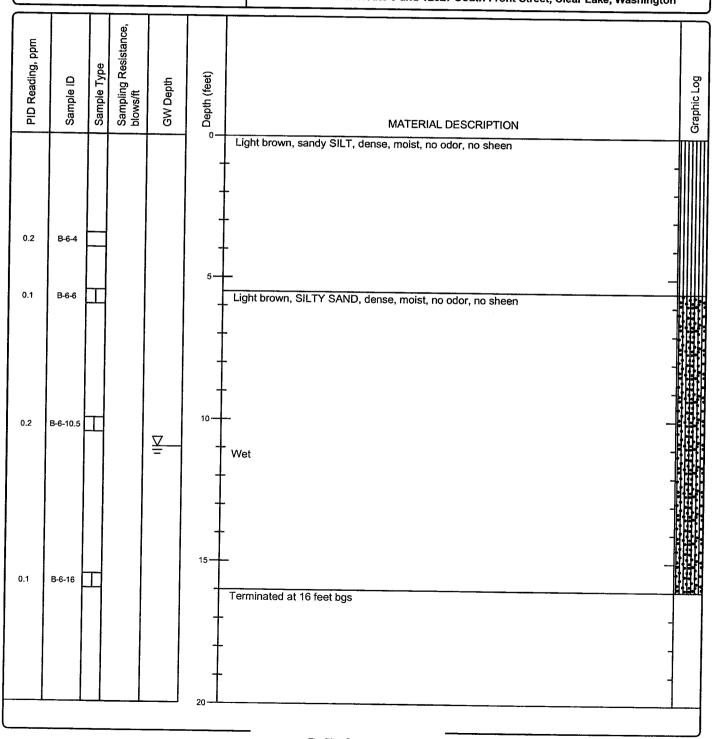


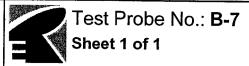

Date(s) Drilled: 09/07/12	Logged By: SL	Surface Conditions: Gravel	
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 16 feet bgs	
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a	
Groundwater Level and Date Measured: 13' bgs	Sampling Method(s): Continuous	Hammer Data : n/a	
Borehole Backfill: Bentonite Chips	Location: 12785 State Route 9 and 12827	Location: 12785 State Route 9 and 12827 South Front Street, Clear Lake, Washington	



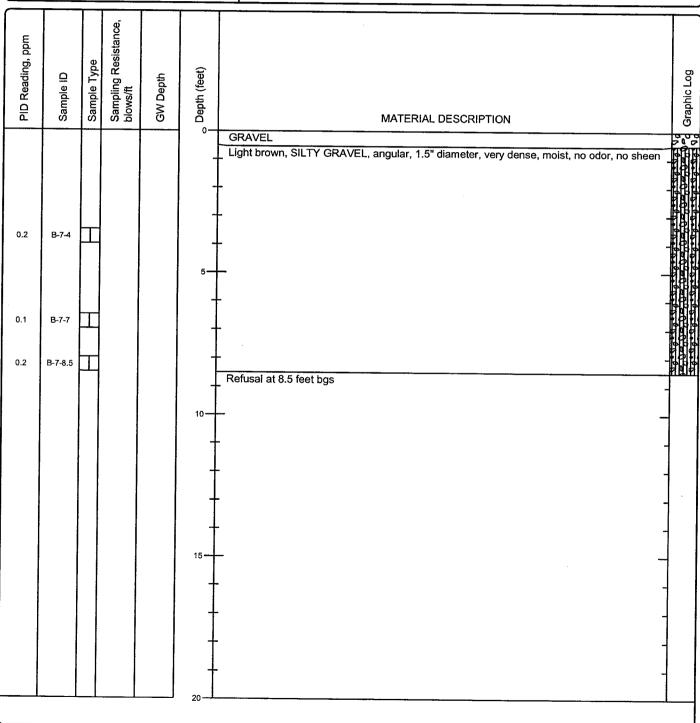
Date(s) Drilled: 09/07/12	Logged By: SL	Surface Conditions: Gravel
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 16 feet bgs
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a
Groundwater Level and Date Measured: 11' bgs	Sampling Method(s): Continuous	Hammer Data: n/a
Borehole Backfill: Bentonite Chips	Location: 12785 State Route 9 and 12827 South Front Street, Clear Lake, Washington	

Date(s) Drilled: 09/07/12	Logged By: SL	Surface Conditions: Gravel
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 16 feet bgs
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a
Groundwater Level and Date Measured: 11.5' bgs	Sampling Method(s): Continuous	Hammer Data: n/a
Borehole Backfill: Bentonite Chips	Location: 12785 State Route 9 and 12827 South Front Street, Clear Lake, Washington	

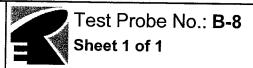

Project Number: 2012-265A Client: Columbia Bank



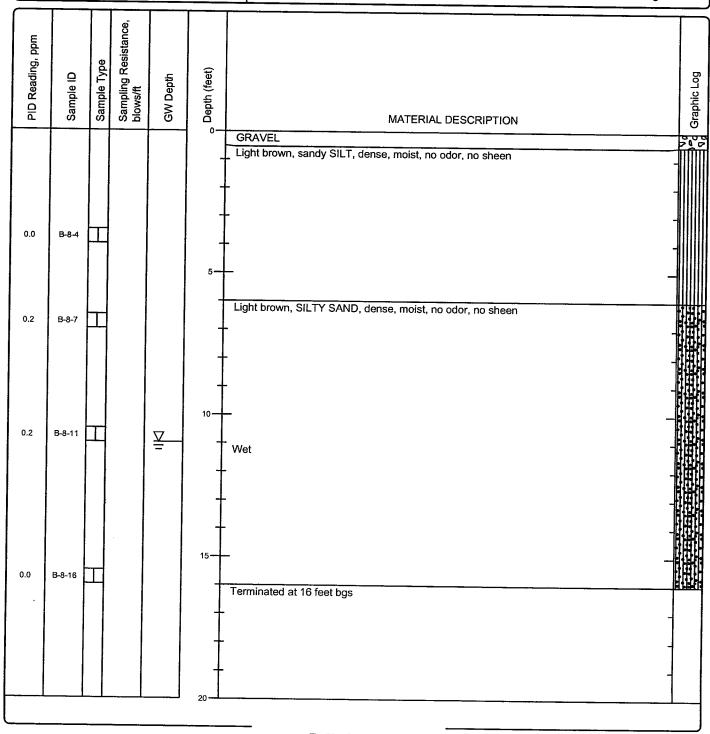
Test Probe No.: **B-6**

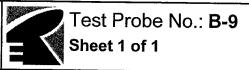

Sheet 1 of 1

Date(s) Drilled: 09/07/12	Logged By: SL	Surface Conditions: Grass
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 16 feet bgs
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a
Groundwater Level and Date Measured: 11' bgs	Sampling Method(s): 0.2, Continuous	Hammer Data : n/a
Borehole Backfill: Bentonite Chips	Location: 12785 State Route 9 and 12827 South Front Street, Clear Lake, Washington	

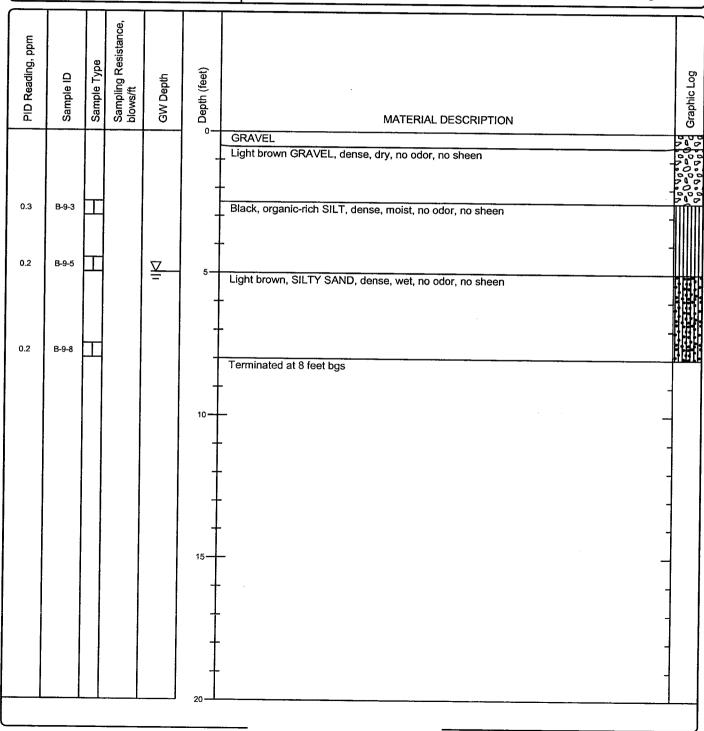


Date(s) Drilled: 09/07/12	Logged By: SL	Surface Conditions: Gravel
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 8.5 feet bgs
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a
Groundwater Level and Date Measured: Not Encountered	Sampling Method(s): Continuous	Hammer Data: n/a
Borehole Backfill: Bentonite Chips	Location: 12785 State Route 9 and 12827 South Front Street, Clear Lake, Washington	

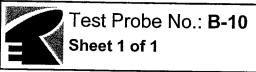



Project Number: 2012-265A

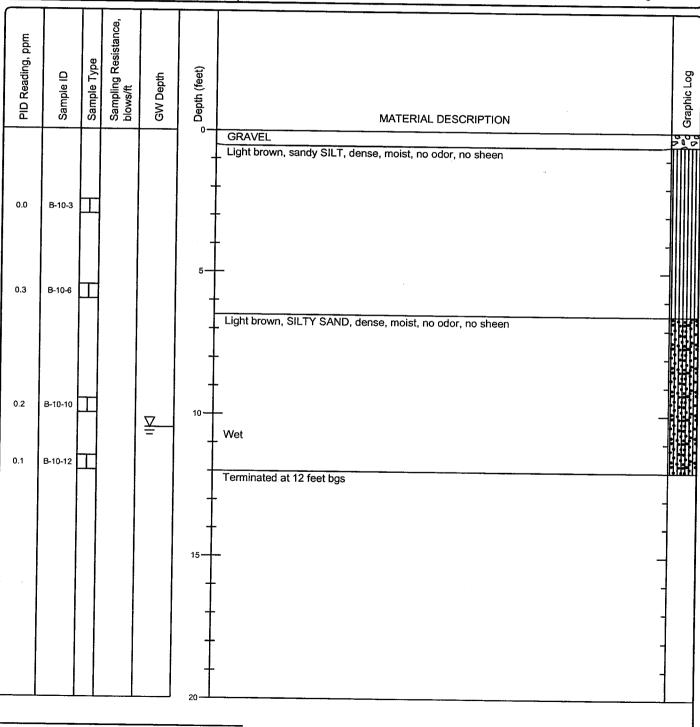
Client: Columbia Bank

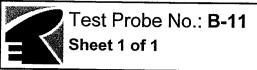


Date(s) Drilled: 09/07/12	Logged By: SL	Surface Conditions: Gravel
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 16 feet bgs
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a
Groundwater Level and Date Measured: 11' bgs	Sampling Method(s): Continuous	Hammer Data: n/a
Borehole Backfill: Bentonite Chips	Location: 12785 State Route 9 and 12827 South Front Street, Clear Lake, Washington	

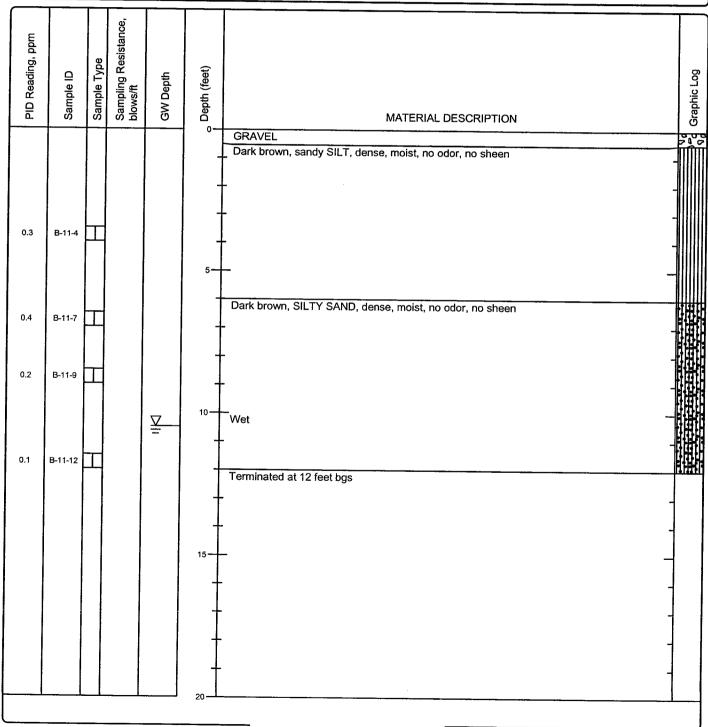


Date(s) Drilled: 09/07/12	Logged By: SL	Surface Conditions: Gravel
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 8 feet bgs
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a
Groundwater Level and Date Measured: 5' bgs	Sampling Method(s): Continuous	Hammer Data : n/a
Borehole Backfill: Bentonite Chips	Location: 12785 State Route 9 and 12827 South Front Street, Clear Lake, Washington	



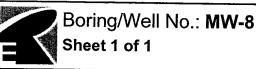

Project Number: 2012-265A

Client: Columbia Bank

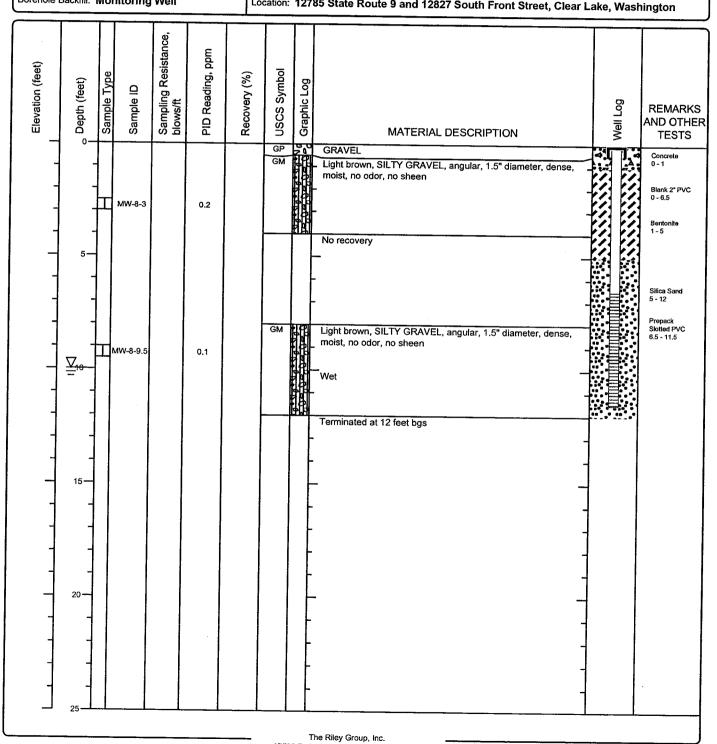


Date(s) Drilled: 09/07/12	Logged By: SL	Surface Conditions: Gravel
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 12 feet bgs
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a
Groundwater Level and Date Measured: 10.5' bgs	Sampling Method(s): Continuous	Hammer Data: n/a
Borehole Backfill: Bentonite Chips	Location: 12785 State Route 9 and 12827 South Front Street, Clear Lake, Washington	

Date(s) Drilled: 09/07/12	Logged By: SL	Surface Conditions: Gravel
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 12 feet bgs
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a
Groundwater Level and Date Measured: 10.5' bgs	Sampling Method(s): Continuous	Hammer Data: n/a
Borehole Backfill: Bentonite Chips	Location: 12785 State Route 9 and 12827 South Front Street, Clear Lake, Washington	

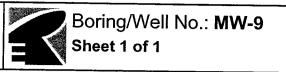

Sheet 1 of 1 Client: Columbia Bank Sampling Resistance, blows/ft ppm Reading, Sample Type Depth (feet) Graphic Log Sample ID **GW Depth** 딢 MATERIAL DESCRIPTION 1 2 5 6 |3| 7 8 **COLUMN DESCRIPTIONS** 11 PID Reading, ppm: The reading from a photo-ionization detector, GW Depth: Groundwater depth in feet below the ground surface. in parts per million. Depth (feet): Depth in feet below the ground surface. Sample ID: Sample identification number. MATERIAL DESCRIPTION: Description of material encountered. Sample Type: Type of soil sample collected at the depth interval May include consistency, moisture, color, and other descriptive shown 4 Sampling Resistance, blows/ft: Number of blows to advance driven 8 Graphic Log: Graphic depiction of the subsurface material sampler one foot (or distance shown) beyond seating interval encountered. using the hammer identified on the boring log. **FIELD AND LABORATORY TEST ABBREVIATIONS** CHEM: Chemical tests to assess corrosivity PI: Plasticity Index, percent COMP: Compaction test SA: Sieve analysis (percent passing No. 200 Sieve) CONS: One-dimensional consolidation test UC: Unconfined compressive strength test, Qu, in ksf LL: Liquid Limit, percent WA: Wash sieve (percent passing No. 200 Sieve) **MATERIAL GRAPHIC SYMBOLS** Silty GRAVEL (GM) SILT, SILT w/SAND, SANDY SILT (ML) Poorly graded GRAVEL (GP) Silty SAND (SM) TYPICAL SAMPLER GRAPHIC SYMBOLS **OTHER GRAPHIC SYMBOLS** Shelby Tube (Thin-walled, N fixed head) CME Sampler Pitcher Sample —

✓ Water level (at time of drilling, ATD) 2-inch-OD unlined split ── Water level (after waiting) Auger sampler Continuous Core Sampler spoon (SPT) Minor change in material properties within a Shelby Tube (Thin-walled, stratum **Bulk Sample** Grab Sample fixed head) - Inferred/gradational contact between strata 3-inch-OD California w/ 2.5-inch-OD Modified brass rings California w/ brass liners -?- Queried contact between strata **GENERAL NOTES** 1: Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive, and actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests. 2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

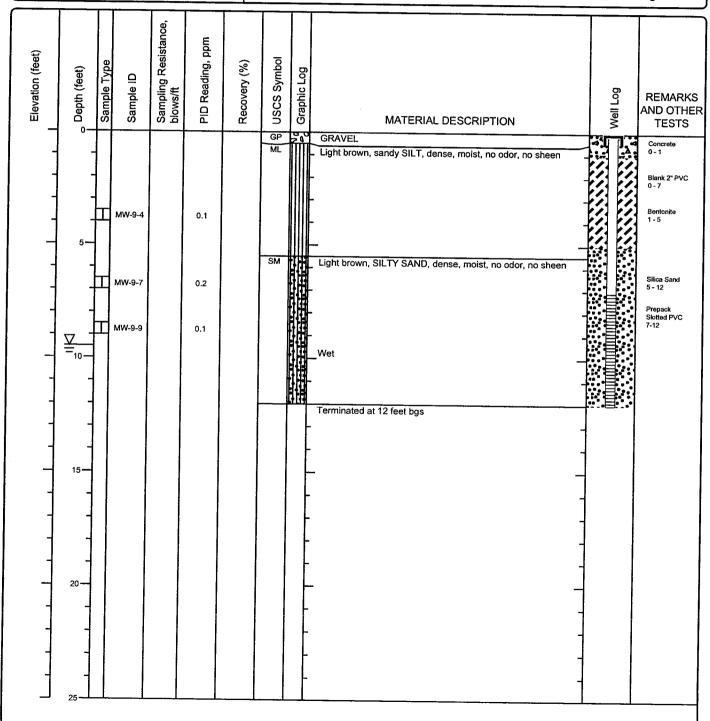

Boring Log Key

Project Name: Clear Lake Industrial Park

Project Number: 2012-265A



Date(s) Drilled: 09/10/12	Logged By: SL	Surface Conditions: Gravel
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 12 feet bgs
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a
Groundwater Level and Date Measured: 10' bgs	Sampling Method(s): Continuous	Hammer Data : n/a
Borehole Backfill: Monitoring Well	Location: 12785 State Pouto 9 and 12927 South Front Street Olive L. V.	

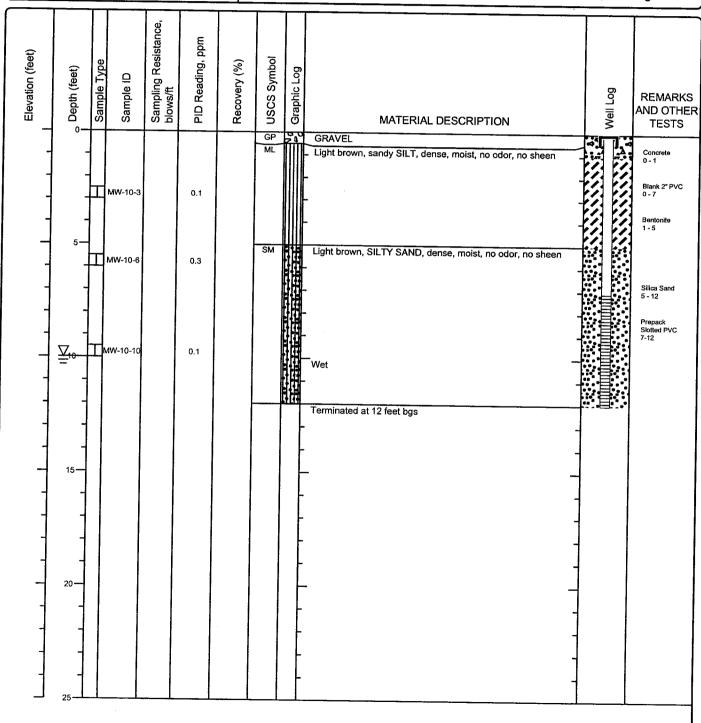


Project Number: 2012-265A

Client: Columbia Bank

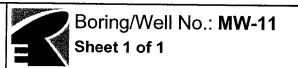
Date(s) Drilled: 09/10/12	Logged By: SL	Surface Conditions: Gravel
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 12 feet bgs
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a
Groundwater Level and Date Measured: 9.5' bgs	Sampling Method(s): Continuous Hammer Data : n/a	
Borehole Backfill: Monitoring Well	Location: 12785 State Route 9 and 12827	South Front Street, Clear Lake, Washington

Project Number: 2012-265A

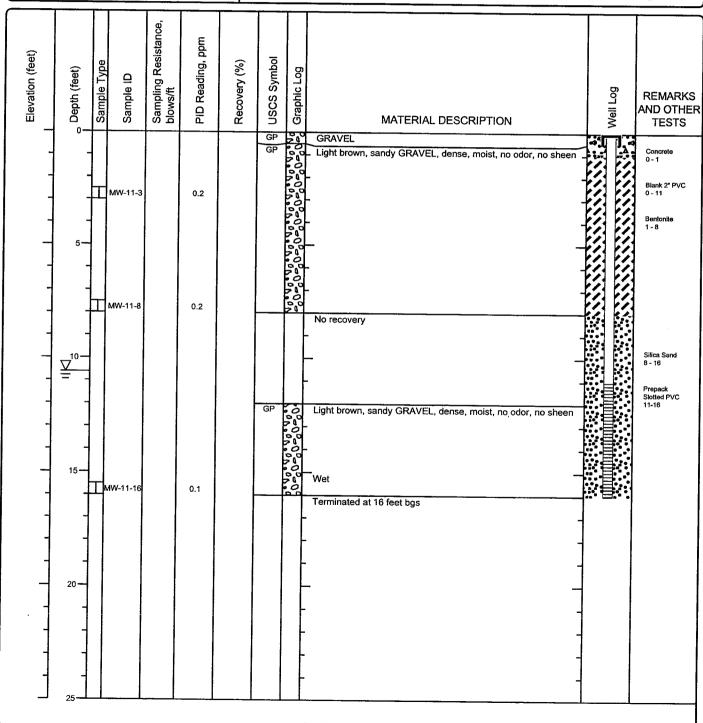


Boring/Well No.: MW-10

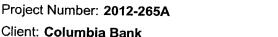
Sheet 1 of 1

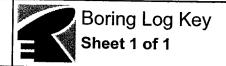

Client: Columbia Bank	
Date(s) Drillad: 00/10/12	

Date(s) Drilled: 09/10/12	Logged By: SL	Surface Conditions: Gravel
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter	Total Depth of Borehole: 12 feet bgs
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a
Groundwater Level and Date Measured: 10' bgs	Sampling Method(s): Continuous Hammer Data : n/a	
Borehole Backfill: Monitoring Well	Location: 12785 State Route 9 and 12827	South Front Street, Clear Lake, Washington



Project Number: 2012-265A


Client: Columbia Bank



Date(s) Drilled: 09/10/12	Logged By: SL	Surface Conditions: Gravel Total Depth of Borehole: 16 feet bgs	
Drilling Method(s): Direct Push	Drill Bit Size/Type: 2" Diameter		
Drill Rig Type: Truck Mounted	Drilling Contractor: Pacific NW Probe	Approximate Surface Elevation: n/a	
Groundwater Level and Date Measured: 10.62 bgs	Sampling Method(s): Continuous	Hammer Data: n/a	
Borehole Backfill: Monitoring Well	Location: 12785 State Route 9 and 12827	South Front Street, Clear Lake, Washington	

Project Number: 2012-265A

			, g						<u> </u>	
(feet)		Φ.	esistan	g, ppm	(%	ō				
ation (fe	🗢	le Typ	pling Re s/ft	eadin	ery (%	Symb	ic Log		D) O	DEMARKS
Eleva	Depth	Sample Sample	Samp blows	PID R	Recov	uscs	Graphic	MATERIAL DESCRIPTION		REMARKS AND OTHER TESTS
1	2	3 4	5	6	7	8	9	10	11	12

COLUMN DESCRIPTIONS

1 Elevation (feet): Elevation (MSL, feet).

Depth (feet): Depth in feet below the ground surface.

3 Sample Type: Type of soil sample collected at the depth interval shown

Sample ID: Sample identification number.

Sampling Resistance, blows/ft: Number of blows to advance driven 11 sampler one foot (or distance shown) beyond seating interval using the hammer identified on the boring log.

6 PID Reading, ppm: The reading from a photo-ionization detector, in parts per million.

Recovery (%): Core Recovery Percentage is determined based on a ratio of the length of core sample recovered compared to the cored interval length.

8 USCS Symbol: USCS symbol of the subsurface material.

9 Graphic Log: Graphic depiction of the subsurface material encountered.

MATERIAL DESCRIPTION: Description of material encountered. May include consistency, moisture, color, and other descriptive

Well Log: Graphical representation of well installed upon completion of drilling and sampling.

REMARKS AND OTHER TESTS: Comments and observations regarding drilling or sampling made by driller or field personnel.

FIELD AND LABORATORY TEST ABBREVIATIONS

CHEM: Chemical tests to assess corrosivity

COMP: Compaction test

CONS: One-dimensional consolidation test

LL: Liquid Limit, percent

PI: Plasticity Index, percent

SA: Sieve analysis (percent passing No. 200 Sieve) UC: Unconfined compressive strength test, Qu, in ksf

WA: Wash sieve (percent passing No. 200 Sieve)

MATERIAL GRAPHIC SYMBOLS

Bentonite chips

Portland Cement Concrete

Silty GRAVEL (GM)

Poorly graded GRAVEL (GP)

SILT, SILT w/SAND, SANDY SILT (ML)

Silty SAND (SM)

Poorly graded SAND (SP)

TYPICAL SAMPLER GRAPHIC SYMBOLS

Shelby Tube (Thin-walled, fixed head)

CME Sampler

Pitcher Sample

—

Water level (at time of drilling, ATD)

OTHER GRAPHIC SYMBOLS

Auger sampler

Continuous Core Sampler

California w/ brass liners

2-inch-OD unlined split Water level (after waiting)

Bulk Sample

spoon (SPT) Shelby Tube (Thin-walled.

Minor change in material properties within a stratum

Inferred/gradational contact between strata

3-inch-OD California w/ brass rings

Grab Sample fixed head) 2.5-inch-OD Modified

—? — Queried contact between strata

GENERAL NOTES

1: Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive, and actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.

2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

Clear Lake Industrial Park 11/7/2012 Site Name:

Jerry Sawetz

Evaluator:

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

¹Soil ingestion only; ²Soil dermal contact; ³Soil to Ground Water; ⁴Ground Water ingestion; ⁵Vapor exposure pathway

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Valna	Thaife
1. General information		A FIRST	3112
1.1 Name of Chemical:		Chlordana	
1.2 Measured Soil Concentration, if any:	<u>.</u>		mallea
1.3 Natural Background Concentration for Soil, if any:	N. S. S.		mo/ka
1.4 Practical Quantitation Limit for Soil, if any:	POI	0.01	mo/ko
* To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS,, GF.	_ * [∑ } (
2. Toxicological Properties of the Chemical: Chemical-Specific]		
2.1 Oral Reference Dose ^{1,3}	R.D.	0,0005	me/ke-day
2.2 Oral Carcinogenic Potency Factor ^{1,3}	CPF	0.35	kg-dav/mg
2.3 Inhalation Reference Dose ⁵	RD.	0.0002	mo/ko-dav
2.4 Inhalation Carcinogenic Potency Factor ⁵	CPE.	0.35	ke-dav/mo
3. Exposure Parameters			S
3.1 Inhalation Correction Factor (default = "2" for volatiles; "1" for all others) ⁴	INH INH		unitless
3.2 Inhalation Absorption Fraction (default = "1") ⁵	ABS.		umitless
3.3 Gastrointestinal Absorption Fraction (default = " 1 ") 1,2	ABI		unitless
3.4 Adherence Factor (default = " 0.2 ") ²	AF	0.2	mo/cm²-day
3.5 Dermal Absorption Fraction (chemical-specific or defaults) ²	ABS,	0.1	unitless
3.6 Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults) ²	_ 	0.5	unitless
4. Physical and Chemical Properties of the Chemical: Chemical-Specific			
Soil Organic Carbon-Water Partitioning Coefficient; for metals, enter K_d value here and enter "1" for f_{ac} value	K ac	5.100E+04	1/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	H A		unitless
*If the value for Henry's Law Constant is given in the unit of "atm.m" /mol", enter value here: *Converted unitless form of H @13° C' River this converted value int. "II ""	H.		atm.m³/mol
Commission of the contract the contraction while the total to the police of the contraction of the contracti	H cc	0.000E+00	unitless

Solubility of the Chemical in Water: for the calculation of soil saturation limit 5. Target Ground Water Cleanup Level	S	5.600E-02 mg/l
Target Ground Water Cleanup Level applicable for a soil cleanup level calculation:		
*Results from the Ground Water Cleanup Level Worksheet are not	ů Č	2.00E+00 ug/l
autornativally transferred frito trits worksneer.		
6. Site-Specific Hydrogeological Characteristics		
Total Soil Porosity (default = "0.43");	Ş	O. A. Timir
Volumetric Water Content (default = "0.30");	(0)	2 C
Volumetric Air Content (default = "0.13");	ં હ	
Dry Soil Bulk Density (default = "1.50"):	e e	C1.0
Fraction Soil Organic Carbon (default = "0.001"); for metals, enter "1" for f_{ac} value here	· •	
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	7 gc	
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil layer) Mechanisms	É	
* Vapor Attenuation Factor is the ratio of air concentration at the exposure point (e.g., within the building) to the vapor-		

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS Chlordane

Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway

phase contaminant concentration within the soil at the source

0.01

VAF

Chemical of Concern:

1. Summary of Results

To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here: -To calculate a soil concentration based on Method C vapor pathway, check here:

2

K IS the ra	molka	2.867F+00	Soil Saturation Limit, C, :.
satur	mg/kg	1.792E-04	(informational purposes only):
Csat corres	*	1000	Soil concentration based on Vapor Pathway
2.27.1	·	r further.	pathway - evaluate vapor pathway further.
	or exposure	stective of vap	Warning! Soil Cleanup Level above may not be protective of vapor exposure
	mg/kg	2.048E+00	Soil Cleanup Level (not considering vapor pathway):
	mg/kg	0.01	Practical Quantitation Limit for Soil:
	mg/kg	N/A	Natural Background concentration for Soil:
	mg/kg	2.048E+00	Contact & Ground Water Protection:
			Most stringent soil concentration based on Soil Direct
	Units	Conc	Basis for Soil Concentration

sponds to the total soil chemical concentration rated in soil.

contaminant migration velocity in saturated zone atio of the ground water flow velocity to the

בשות אונוסות המשלות אפוספות ווו פשותושופת לסוום.

Retardation Factor, R: unitless

2. Summary of Calculation for each Exposure Pathway

	Summar	Summary by Exposure Pathway				
			<u>Method B</u> Unrestricted Land Use	<u>od B</u> I Land Use	Method C	<u>Method C</u> Industrial Land Use
			@ HQ=1.0; RISK =1,0E-6	ISK =1,0E-6	@ HQ=1.0; RISK =1.0E-\$	ISK =1.0E-5
Soil Direct			Ingestion only	Ingestion & Dermal	Ingestion only	Ingestion & Dermal
Contact	Under the Current	HQ? @ Exposure Point	N/A	N/A	N/A	N/A
	Condition	RISK? @ Exposure Point	N/A	N/A	N/A	N/A
	Target Soil	@HQ=1.0	4.000E+01	2.778E+01	1.750E+03	3.333E+02
	CUL? mg/kg	@RISK =1.0E-6 or 1.0E-5	2.857E+00	1.984E+00	3.750E+02	7.143E+01
			Method B	<u>id B</u>	Method C	od C
			@ HQ=1.0; RISK =1.0E-6	SK =1.0E-6	@ HQ=1.0; RISK =1.0E-5	ISK =1.0E-5
Protection of	Under the Current	Predicted Ground Water Conc? ug/l		N/A	Ą	
Potable	Condition	HQ? @ Exposure Point	N/A	¥	A/N	Ą
Ground Water		RISK? @ Exposure Point	N/A	4	NA	A
	Target Ground Water CUL?	er CUL? ug/l		2.000E+00	E+00	
	Target Soil CUL?	mg/kg		2.048E+00	E+00	
			Method B	id B	Method C	od C
			@ HQ=1.0; RISK =1.0E-6	K=1.0E-6	@ HQ=1.0; RISK =1.0E-5	SK =1.0E-5
Protection of	Under the Current	Predicted Air Conc? ug/m³ @Exposure Point		NA	*	
Air Onality	Condition	HQ? @ Exposure Point	N/A		N/A	Ą
(for informational		RISK? @ Exposure Point	N/A	*	N/A	Æ
purpose only)	Target Air	@ HQ=1.0	3.200E-01	E-01	7.000E-01	E-01
	CUL? ug/m³	@ RISK=1.0E-6 or 1.0E-5	2.500E-02	3-02	2.500E-01	E-01
	Target Soil	@ HQ=1.0	8.192E-01	3-01	1.792E-04	E-04
	CUL? mg/kg	@ RISK=1.0E-6 or 1.0E-5	6,400E-02	3-02	6.400E-01	E-01

NOTES: "CUL" = Cleanup Level; "Conc" = concentration; "HQ" = hazard quotient; "RISK" = carcinogenic risk.

through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
 - Soil residual saturation (see WAC 173-340-747(10));
- Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

sufficient to establish air cleanup levels under the regulation. Specifically, the air cleanup levels derived using this Workbook do not environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-750). The use of this Workbook may not be CAUTION: The requirements and procedures for establishing air cleanup levels that are protective of human health and the account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(f) and (4)(b)(f)
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
 - Total site risk (see WAC 173-340-750(5)(a)).

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

October 10, 2012

Richard Simpson, Project Manager The Riley Group, Inc. 17522 Bothell Way NE Bothell, WA 98011

Dear Mr. Simpson:

Included are the results from the testing of material submitted on October 5, 2012 from the Clear Lake 2012-265A, F&BI 210094 project. There are 16 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures TRG1010R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 5, 2012 by Friedman & Bruya, Inc. from the The Riley Group Clear Lake 2012-265A, F&BI 210094 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	The Riley Group
210094-01	MW2
210094-02	MW1
210094-03	MW8

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	MW2
Date Received:	10/05/12
Date Extracted:	10/09/12
Date Analyzed:	10/09/12
Matrix:	Water
Units:	ug/L (ppb)

Client:	The Riley Group
Project:	Clear Lake 2012-265A, F&BI 210094
Lab ID:	210094-01
Data File:	210094-01.022
Instrument:	ICPMS1
Operator:	AP
-	

Internal Standard: Germanium Indium Holmium	% Recovery: 111 97 95	Lower Limit: 60 60 60	Upper Limit: 125 125 125
Analyte:	Concentration		

Analyte;	ug/L (ppb)
Chromium Arsenic Cadmium Lead	2.90 5.97 <1 <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW1
Date Received: 10/05/12
Date Extracted: 10/09/12
Date Analyzed: 10/09/12
Matrix: Water
Units: ug/L (ppb)

Client: The Riley Group
Project: Clear Lake 2012-265A, F&BI 210094

Lab ID: 210094-02 Data File: 210094-02.023 Instrument: ICPMS1

Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	96	60	125
Indium	91	60	125
Holmium	94	60	125

Concentration

Analyte: ug/L (ppb)

 Chromium
 1.69

 Arsenic
 <1</td>

 Cadmium
 <1</td>

 Lead
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW8
Date Received: 10/05/12
Date Extracted: 10/09/12
Date Analyzed: 10/09/12
Matrix: Water
Units: ug/L (ppb)

Client: The Riley Group
Project: Clear Lake 2012-265A, F&BI 210094

Lab ID: 210094-03 x10 Data File: 210094-03 x10.025

Instrument: ICPMS1 Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	121	60	125
Indium	94	60	125
Holmium	95	60	125

Concentration ug/L (ppb)

Chromium 782
Arsenic 87.0
Cadmium 11.9
Lead 860

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

Method Blank

Date Received: Date Extracted: Not Applicable 10/09/12

Date Analyzed: Matrix:

10/09/12 Water ug/L (ppb)

The Riley Group

Project: Lab ID:

Clear Lake 2012-265A, F&BI 210094 I2-694 mb

Data File: Instrument:

I2-694 mb.015 ICPMS1

Operator:

AP

	Lower	Upper
% Recovery:	Limit:	Limit:
96	60	125
102	60	125
100	60	125
	96 102	% Recovery: Limit: 96 60 102 60

Concentration

Analyte:

Units:

ug/L (ppb)

<1

Chromium Arsenic Cadmium Lead

<1 <1 <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW2
Date Received: 10/05/12
Date Extracted: 10/09/12
Date Analyzed: 10/09/12
Matrix: Water
Units: ug/L (ppb)

Client: The Riley Group
Project: Clear Lake 2012-265A, F&BI 210094

AP

Lab ID: 210094-01
Data File: 210094-01,010
Instrument: ICPMS1

Operator:

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 98 60 125 Indium 99 60 125 Holmium 96 60 125

Concentration ug/L (ppb)

Chromium <1
Arsenic <1
Cadmium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW1
Date Received: 10/05/12
Date Extracted: 10/09/12
Date Analyzed: 10/09/12
Matrix: Water
Units: ug/L (ppb)

Client: The Riley Group
Project: Clear Lake 2012-265A, F&BI 210094

 Lab ID:
 210094-02

 Data File:
 210094-02.013

 Instrument:
 ICPMS1

Operator: AP

_		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	99	60	125
Indium	99	60	125
Holmium	100	60	125

Concentration ug/L (ppb)

Chromium <1
Arsenic <1
Cadmium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW8
Date Received: 10/05/12
Date Extracted: 10/09/12
Date Analyzed: 10/09/12
Matrix: Water
Units: ug/L (ppb)

Client: The Riley Group
Project: Clear Lake 2012-265A, F&BI 210094
Lab ID: 210094-03
Data File: 210094-03.014
Instrument: ICPMS1

Operator: AP

	•	Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	96	60	125
Indium	97	60	125
Holmium	95	60	125

Concentration ug/L (ppb)

Chromium <1
Arsenic <1
Cadmium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

Method Blank

Date Received: Date Extracted: Not Applicable 10/09/12

Date Analyzed: Matrix:

10/09/12 Water ug/L (ppb) Client:

The Riley Group

Project: Lab ID:

Clear Lake 2012-265A, F&BI 210094 I2-693 mb

Data File: Instrument: ICPMS1

I2-693 mb.008

Operator:

AP

	Lower	Upper
% Recovery:	Limit:	Limit:
103	60	125
105	60	125
104	60	125
	103 105	% Recovery: Limit: 103 60 105 60

Concentration

Analyte:

Units:

ug/L (ppb)

Chromium <1 Arsenic <1 Cadmium <1 Lead <1

ENVIRONMENTAL CHEMISTS

Date of Report: 10/10/12 Date Received: 10/05/12

Project: Clear Lake 2012-265A, F&BI 210094

Date Extracted: 10/08/12 Date Analyzed: 10/09/12

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR DISSOLVED MERCURY USING EPA METHOD 1631E

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Dissolved Mercury</u>
MW2 210094-01	<0.1
MW1 210094-02	<0.1
MW8 210094-03	<0.1
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 10/10/12 Date Received: 10/05/12

Project: Clear Lake 2012-265A, F&BI 210094

Date Extracted: 10/08/12 Date Analyzed: 10/09/12

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Total Mercury</u>
MW2 210094-01	<0.1
MW1 210094-02	<0.1
MW8 210094-03	1.3
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 10/10/12 Date Received: 10/05/12

Project: Clear Lake 2012-265A, F&BI 210094

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 210093-02 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Chromium	ug/L (ppb)	20	<1	95	93	71-130	2
Arsenic	ug/L (ppb)	10	1.21	93	92	51-167	1
Cadmium	ug/L (ppb)	5	<1	93	93	86-115	Õ
Lead	ug/L (ppb)	10	<1	94	92	85-115	2

Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria
Chromium	ug/L (ppb)	20	94	80-119
Arsenic	ug/L (ppb)	10	91	81-118
Cadmium	ug/L (ppb)	5	95	86-118
Lead	ug/L (ppb)	10	99	84-120

ENVIRONMENTAL CHEMISTS

Date of Report: 10/10/12 Date Received: 10/05/12

Project: Clear Lake 2012-265A, F&BI 210094

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 210094-01 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Chromium	ug/L (ppb)	20	<1	99	98	71-130	1
Arsenic	ug/L (ppb)	10	<1	99	95	51-167	4
Cadmium	ug/L (ppb)	5	<1	97	94	86-115	3
Lead	ug/L (ppb)	10	<1	98	96	85-115	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Chromium	ug/L (ppb)	20	93	80-119
Arsenic	ug/L (ppb)	10	91	81-118
Cadmium	ug/L (ppb)	5	93	86-118
Lead	ug/L (ppb)	10	94	84-120

ENVIRONMENTAL CHEMISTS

Date of Report: 10/10/12 Date Received: 10/05/12

Project: Clear Lake 2012-265A, F&BI 210094

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED MERCURY USING EPA METHOD 1631E

Laboratory Code: 210094-01 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Mercury	ug/L (ppb)	0.5	<0.1	92	89	78-124	3

			Percent	
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria
Mercury	ug/L (ppb)	0.5	84	78-123

ENVIRONMENTAL CHEMISTS

Date of Report: 10/10/12 Date Received: 10/05/12

Project: Clear Lake 2012-265A, F&BI 210094

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 210094-01 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
			recourt	1110	WIOD	Cifteria	(Lunc 20)
Mercury	ug/L (ppb)	0.5	< 0.1	87	91	78-124	

			Percent		
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria	
Mercury	ug/L (ppb)	0.5	91	78-123	_

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- \mbox{ds} The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht Analysis performed outside the method or client-specified holding time requirement.
- ${\bf ip}$ Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

10/5/12 15:30 TIME Standard (2 Weeks)
 RUSH
 Rush charges authorized by ☐ Return samples.
☐ Will call with instructions SAMPLE DISPOSAI Notes Dispose after 30 days Ç 10.5.72 DATE cuples redeived at ANALYSES REQUESTED COMPANY TAT 费 WIEH SHH 2012-265A **2AOC⁸ PA 8510** HONG NOWHEN SAMPLE CHAIN OF CUSTODY **AOC8 PA8500** FILT DASSOLVED PRINT NAME TPH-Gasoline SAMPITERS Arignature MAMENIO TPH-Diesel Sample Type | containers # of REMARKS PROJECT *₩* Time Sampled 1300 10-411-180 SIGNATURE Date Sampled 014 210 410 Relinquished by: Fax # Received by Received by 日配 B B Friedman & Bruya, Inc. Seattle, WA 98119-2029 3012 16th Avenue West 210094 Sample ID CMY Fax (206) 283-5044 Ph. (206) 285-8282 Send Report To City, State, ZIP PORMS/COC/COC/DOC Company Address Phone #_

1311 N. 35th St. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya

Michael Erdahl 3012 16th Ave. W. Seattle, Washington 98119

RE: 209155

Lab ID: 1209059

September 20, 2012

Attention Michael Erdahl:

Fremont Analytical, Inc. received 7 sample(s) on 9/13/2012 for the analyses presented in the following report.

Organochlorine Pesticides by EPA Method 8081

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

MGA

Michael Dee

Sr. Chemist / Principal

Fremont

Date: 09/20/2012

CLIENT:

Friedman & Bruya

Project: Lab Order: 209155 1209059 **Work Order Sample Summary**

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1209059-001	MW-1	09/11/2012 2:15 PM	09/13/2012 2:00 PM
1209059-002	MW-2	09/11/2012 1:30 PM	09/13/2012 2:00 PM
1209059-003	MW-4	09/11/2012 12:30 PM	09/13/2012 2:00 PM
1209059-004	MW-8	09/11/2012 11:30 AM	09/13/2012 2:00 PM
1209059-005	MW-9	09/11/2012 11:40 AM	09/13/2012 2:00 PM
1209059-006	MW-10	09/11/2012 12:00 PM	09/13/2012 2:00 PM
1209059-007	MW-11	09/11/2012 2:10 PM	09/13/2012 2:00 PM

Case Narrative

WO#: **1209059**Date: **9/20/2012**

CLIENT:

Friedman & Bruya

Project:

209155

I. SAMPLE RECEIPT:

All samples were received intact.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Insufficient sample was provided to perform Sample Duplicate or MS/MSD analysis.

WO#:

1209059

Date Reported:

9/20/2012

CLIENT:

Friedman & Bruya

Project:

209155

Lab ID:

1209059-001

Client Sample ID: MW-1

Chlordane, total

Collection Date:

9/11/2012 2:15:00 PM

Analyst: PH

Matrix: Water

Analyses

Result

RL Qual

Units

%REC

%REC

DF **Date Analyzed**

gamma-Chlordane alpha-Chlordane Surr: Decachlorobiphenyl Surr: Tetrachloro-m-xylene

6.79 0.206 0.310 130 57.9

0.100 64.3-142 39.7-136

1.00

0.100

µg/L μg/L μg/L

Batch ID: 3236

1

9/19/2012 8:53:00 AM 1 9/19/2012 8:53:00 AM 1

9/19/2012 8:53:00 AM 9/19/2012 8:53:00 AM 9/19/2012 8:53:00 AM

Lab ID:

1209059-002

Client Sample ID: MW-2

Collection Date: 9/11/2012 1:30:00 PM

Matrix: Water

Analyses	Result	RL Qual	Units	ÐF	Date Analyzed
Organochlorine Pesticides by	EPA Method 80	<u>081</u>	Bato	th ID: 32	236 Analyst: PH
Chlordane, total	ND	1.00	µg/L	1	9/19/2012 9:16:00 AM
gamma-Chlordane	ND	0.100	μg/L	1	9/19/2012 9:16:00 AM
alpha-Chlordane	ND	0.100	μg/L	1	9/19/2012 9:16:00 AM
Surr: Decachlorobiphenyl	110	64.3-142	%REC	1	9/19/2012 9:16:00 AM
Surr: Tetrachloro-m-xylene	48.5	39.7-136	%REC	1	9/19/2012 9:16:00 AM

Qualifiers:

В Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit D Dilution was required

Holding times for preparation or analysis exceeded Н

ND Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

WO#:

1209059

Date Reported:

9/20/2012

CLIENT:

Friedman & Bruya

Project:

209155

Lab ID:

1209059-003

Client Sample ID: MW-4

Collection Date: 9/11/2012 12:30:00 PM

Matrix: Water

Analyses

Result

RL Qual

Units

DF **Date Analyzed**

Organochlorine Pesticides by I	EPA Method 80	<u>081</u>	Batc	h ID: 32	236 Analyst: PH
Chlordane, total	1.75	1.00	μg/L	1	9/19/2012 10:29:00 AM
gamma-Chlordane	ND	0.100	μg/L	1	9/19/2012 10:29:00 AM
alpha-Chlordane	ND	0.100	μg/L	1	9/19/2012 10:29:00 AM
Surr: Decachlorobiphenyl	133	64.3-142	%REC	1	9/19/2012 10:29:00 AM
Surr: Tetrachloro-m-xylene	54.7	39.7-136	%REC	1	9/19/2012 10:29:00 AM

Lab ID:

1209059-004

Client Sample ID: MW-8

Collection Date: 9/11/2012 11:30:00 AM

Matrix: Water

Analyses Result RL Qual Units DF **Date Analyzed** Organochlorine Pesticides by EPA Method 8081 Batch ID: 3236 Analyst: PH Chlordane, total 7.70 1.00 μg/L 1 9/19/2012 10:52:00 AM gamma-Chlordane 1.27 0.100 µg/L 1 9/19/2012 10:52:00 AM alpha-Chlordane 0.964 0.100 μg/L 1 9/19/2012 10:52:00 AM Surr: Decachlorobiphenyl 96.5 64.3-142 %REC 1 9/19/2012 10:52:00 AM Surr: Tetrachloro-m-xylene 99.9 39.7-136 %REC 1 9/19/2012 10:52:00 AM

Qualifiers:

- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits
- RL Reporting Limit

В

- Dilution was required
- Н Holding times for preparation or analysis exceeded
- Not detected at the Reporting Limit ND
- S Spike recovery outside accepted recovery limits

WO#:

1209059

Date Reported:

9/20/2012

CLIENT:

Friedman & Bruya

Project:

209155

Lab ID:

1209059-005

Client Sample ID: MW-9

Collection Date: 9/11/2012 11:40:00 AM

Matrix: Water

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Organochlorine Pesticides by	EPA Method 80	<u> </u>	Bato	h ID: 3236	S Analyst: PH
Chlordane, total	2.06	1.00	µg/L	1	9/19/2012 11:16:00 AM
gamma-Chlordane	0.144	0.100	μg/L	1	9/19/2012 11:16:00 AM
alpha-Chlordane	0.118	0.100	μg/L	1	9/19/2012 11:16:00 AM
Surr: Decachlorobiphenyl	106	64.3-142	%REC	1	9/19/2012 11:16:00 AM
Surr: Tetrachloro-m-xylene	57.2	39.7-136	%REC	1	9/19/2012 11:16:00 AM

Lab ID: 1209059-006

Client Sample ID: MW-10

Collection Date: 9/11/2012 12:00:00 PM

Matrix: Water

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Organochlorine Pesticides by	EPA Method 80	<u>081</u>	Bato	th ID: 32	36 Analyst: PH
Chlordane, total	ND	1.00	µg/L	1	9/19/2012 11:39:00 AM
gamma-Chlordane	ND	0.100	μg/L	1	9/19/2012 11:39:00 AM
alpha-Chlordane	ND	0.100	μg/L	1	9/19/2012 11:39:00 AM
Surr: Decachlorobiphenyl	111	64.3-142	%REC	1	9/19/2012 11:39:00 AM
Surr: Tetrachloro-m-xylene	50.4	39.7-136	%REC	1	9/19/2012 11:39:00 AM

Qualifiers:

- В Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- Η Holding times for preparation or analysis exceeded
- Not detected at the Reporting Limit ND
- S Spike recovery outside accepted recovery limits

WO#:

1209059

Date Reported:

9/20/2012

CLIENT:

Friedman & Bruya

Project:

209155

Lab ID:

1209059-007

Client Sample ID:

MW-11

Collection Date: 9/11/2012 2:10:00 PM

9/19/2012 12:02:00 PM

Matrix: Water

1

Analyses Result RL Qual Units DF **Date Analyzed** Organochlorine Pesticides by EPA Method 8081 Batch ID: 3236 Analyst: PH Chlordane, total 5.19 1.00 μg/L 9/19/2012 12:02:00 PM gamma-Chlordane 0.313 0.100 μg/L 1 9/19/2012 12:02:00 PM alpha-Chiordane 0.390 0.100 µg/L 1 9/19/2012 12:02:00 PM Surr: Decachlorobiphenyl 128 64.3-142 %REC 1 9/19/2012 12:02:00 PM Surr: Tetrachloro-m-xylene 62.3 39.7-136 %REC

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- Н Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 9/20/2012

18/2 d. O. d.	400000	The state of the s		
Work Order:	ACOROZI.			
CLIENT:	Friedman & Bruya		3	QC SUMMARY REPORT
Project:	209155		Organochlorine Pe	Organochlorine Pesticides by EPA Method 8081
Sample ID: MB-3236	36 SampType: MBLK	Units: µg/L	Prep Date: 9/14/2012	RunNo: 5788
Client ID: MBLKW	W Batch ID: 3236		Analysis Date: 9/19/2012	Service 143052

Sample ID: MB-3236	SampType: MBLK			Units: µg/L		Prep Date:	e: 9/14/2012		RunNo: 5788		
Client ID: MBLKW	Batch ID: 3236					Analysis Date:	e: 9/19/2012		SeqNo: 113952	52	
Analyte	Result	꿉	SPK value	SPK Ref Val	%REC	LowLimit	LowLimit HighLimit RPD Ref Val	D Ref Val	%RPD	RPDLimit	Qual
Chiordane, total gamma-Chlordane	9 9 g	0.100									
Surr. Decachlorobiphenyl Surr. Tetrachloro-m-xylene	0.161	5	0.2000		80.3 56.0	64.3	142				
Sample ID: LCS-3236 Client ID: LCSW	SampType: LCS Batch ID: 3236			Units: µg/L		Prep Date:	Prep Date: 9/14/2012 Analysis Date: 9/19/2012		RunNo: 5788 SeaNo: 113953	53	
Analyte	Result	꿉	SPK value	SPK value SPK Ref Val	%REC	LowLimit HighLimit	HighLimit RPD	RPD Ref Val	%RPD R	RPDLimit	Qual
gamma-Chlordane alpha-Chlordane Surr. Decachlorobiphenyl Surr. Tetrachloro-m-xylene	2.17 2.21 0.231 0.101	0.100	2.000 2.000 0.2000 0.2000	00	109 111 116 50.5	65 65 64.3 39.7	135 135 142 136				
Sample ID: LCSD-3236	SampType: LCSD			Units: µg/L		Prep Date	Prep Date: 9/14/2012		RunNo: 5788		

Client ID: LCSW02	SW02	Batch ID: 3236	3236					Analysis Date: 9/19/2012	9/19/20	12	SeqNo: 113954	954	
Analyte			Result	귐	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
gamma-Chlordane alpha-Chlordane Surr. Decachlorobiphenyl Surr: Tetrachloro-m-xylene	mma-Chlordane vha-Chlordane Surr: Decachlorobiphenyl Surr: Tetrachloro-m-xylene		2.49 2.60 0.250 0.114	0.100	2.000 2.000 0.2000 0.2000	0 0	125 130 125 57.0	65 64.3 39.7	135 142 136 136	2.172 2.213	13.8		
Qualifiers:	B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded R RPD outside accepted recovery limits	ne associated Meti paration or analysi of recovery limits	nod Blank is exceeded		D Dilution was required J Analyte detected belc RL Reporting Limit	Dilution was required Analyte detected below quantitation limits Reporting Limit	mits		E Value ND Not de S Spike	Value above quantitation range Not detected at the Reporting Limit Spike recovery outside accepted recovery limits	ige g Limit oted recovery limits		

Date: 9/20/2012

QC SUMMARY REPORT

Friedman & Bruya CLIENT:

1209059

Work Order:

Project:	209155	•					Orga	Organochlorine Pesticides by EPA Method 8081	ides by EPA Meth	od 8081
Sample ID: LCS_	Sample ID: LCS_TECH. CHLORDA SampType: LCS	SampType: LCS			Units: µg/L		Prep Da	Prep Date: 9/14/2012	RunNo: 5788	
Client ID: LCSW	>	Batch ID: 3236				,	Analysis Da	Analysis Date: 9/18/2012	SeqNo: 113963	-
Analyte		Result	占	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual	it Qual
Chlordane, total Surr. Decachlorobiphenyl Surr. Tetrachloro-m-xylene	obiphenyl o-m-xylene	1,180 48.4 49.9	1.00	1,000 50.00 50.00	0	118 96.8 99.9	65 64.3 39.7	135 142 136		

Dilution was required	Analyte detected below quantitation limits	Reporting Limit
٥	7	꿃
B Analyte detected in the associated Method Blank	H Holding times for preparation or analysis exceeded	R RPD outside accepted recovery limits

Qualifiers:

Spike recovery outside accepted recovery limits

Not detected at the Reporting Limit Value above quantitation range

2

SUBCONTRACT SAMPLE CHAIN OF CUSTODY 1209059

Company Frieddoma and Brusa Inc. PROJECT SAMEROO. For State PROJECT SAMEROO. Professor P	Send Report To Mic				3			ļų. ≅					! [•	Paget		7
Trachium and Bruca Inc.	4						THE STATES	٠ پر	Ž		Š		1	Z :	ARCEND.	
HENNAMENS Please Email Results 1.ab Date Time Matrix # of Discusses the 30 days of the manufacture and down instruction of the manufacture of the manuf	Company Frie Address 3012	dman and 2 I6th Aw	d Bruva. e W					į V				.		amdsand (CSSH Is change	2 Weeks) sauthorize	
Lab Date Time Matrix # 0.5	ity, State, ZIP Sent hone # (206) 285-82	ttle, WA. 9	981.19 x #(20	6):283:504.4			A A		***************************************					SAMI inpose aft	T.E DISPO	NS.AL
1.35			nate n pled	Time Sampled	Matrix			Наш				פורהלהייב				To tes
1.350	Z Z	*	1777)	2:15	3	-						k				
12:50	MUZZ		• ·	\$.		-						-				
11.50 1	33	:		65:50		-				<u> </u>						
11.40	AV. S			3:4		-										
1.10	₽-W14			**		_						L				
1:10	0/2			20:17		_										
Niceline Prince Prince Part Prince Part Prince Prince Part Prince Part		7		*17.2		-						Ļ,		Giren Company was a service of the s		The state of the s
Inc. SIGNATURE PRINT NAME COMPANY DATE																and the second s
Inc. SIGNATURE PRINT NAME COMPANY DATE (est Relinguage of American Signature Civil Priedman & Bruya American Company																
Inc. SIGNATURE PRINT NAME COMPANY DATE Page Page Priedman & Bruya Phichman Phi																
Inc. SIGNATURE PRINT NAME COMPANY DATE Religious Action Pricedman & Bruya 1/4/L 1/17/L 1/17																no le mandre de la
Relinquistre SIGNATURE PRINT NAME COMPANY DATE																
Religious SIGNATURE Michael Erdahl Praedman & Bruya DATE Religious Company DATE Religious Company DATE Religious Company DATE Received by: Charle Gridge FAT FAT FAT Received by: FAT																
1029 theorethy A Clark Griggs F7T 1712 Reinmensholder. Reinmensholder. Recoived by:	edman & Bruya, In			MGNATURE	***************************************		P	ZES	AME			200	PANY		DATE	E SE
Reinmentaled by: Charle Gringgs FAT 4/19/2 Recoived by:	12 leth Avenue West	<u> l</u>		6	M	Micha	el Drds	I			Pai	dman	k Bruy		356	
Hecowet by:	atte, WA 58119-202	1	別	Service of the servic	· ·	3	2 2 2	Shirt Shirth	£		4	F		V		Midpo:2
	. (206) 285-8282		retsfied by:))				`	3							
	x (206) 283:5044	Receiv	red by:													

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

October 2, 2012

Richard Simpson, Project Manager The Riley Group, Inc. 17522 Bothell Way NE Bothell, WA 98011

Dear Mr. Simpson:

Included are the additional results from the testing of material submitted on September 10, 2012 from the 2012-265A, F&BI 209111 project. There are 10 pages included in this report. We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures TRG1002R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 10, 2012 by Friedman & Bruya, Inc. from the The Riley Group 2012-265A, F&BI 209111 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	The Riley Group
209111-01	B-1-3
209111-02	B-1-6
209111-03	B-1-11
209111-04	B-1-12.5
209111-05	B-1
209111-06	B-2-3
209111-07	B-2-7
209111-08	B-2-10
209111-09	B-2-12.5
209111-10	B-2
209111-11	B-3-4
209111-12	B-3-7
209111-13	B-3-10
209111-14	B-3-12
209111-15	B-3
209111-16	B-4-3
209111-17	B-4-8
209111-18	B-4-10
209111-19	B-4-16
209111-20	B-4
209111-21	B-5-4
209111-22	B-5-7
209111-23	B-5-11
209111-24	B-5-16
209111-25	B-5
209111-26	B-6-4
209111-27	B-6-6
209111-28	B-6-10.5
209111-29	B-6-16
209111-30	B-6
209111-31	B-7-4
209111-32	B-7-7
209111-33	B-7-8.5
209111-34	B-8-4
209111-35	B-8-7
209111-36	B-8-11

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (continued)

<u>Laboratory ID</u>	The Riley Group
209111-37	B-8-16
209111-38	B-8
209111-39	B-9-3
209111-40	B-9-5
209111-41	B-9-8
209111-42	B-9
209111-43	B-10-3
209111-44	B-10-6
209111-45	B-10-10
209111-46	B-10-12
209111-47	B-10
209111-48	B-11-4
209111-49	B-11-7
209111-50	B-11-9
209111-51	B-11-12
209111-52	B-11

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: B-1-3

09/10/12

Date Extracted: Date Analyzed:

09/27/12 09/28/12

Matrix: Units:

Soil

mg/kg (ppm)

Client:

The Riley Group

Project:

2012-265A, F&BI 209111

Lab ID: Data File: 209111-01 209111-01.014

Instrument:

ICPMS1

Operator:

AP

Internal Standard:

Indium Holmium % Recovery:

111 110 Lower Limit: 60 60 Upper Limit: 125 125

Concentration

Analyte: mg/kg (ppm)

Arsenic Lead

4.50 3.38

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

B-4-3

Date Received:

09/10/12 09/27/12

Date Extracted: Date Analyzed:

09/28/12

Matrix: Units:

Soil

mg/kg (ppm)

Client: Project: The Riley Group

2012-265A, F&BI 209111

Lab ID: Data File: 209111-16 209111-16.015

Instrument:

ICPMS1

Operator:

AP

Internal Standard:

Indium Holmium % Recovery: 114 114

Lower Limit: 60 60

Upper Limit: 125 125

Concentration

Analyte:

mg/kg (ppm)

Arsenic Lead

3.21 2.28

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: B-10-3 Date Received: 09/10/12 Date Extracted: 09/27/12 Date Analyzed: 09/28/12

Matrix:

Units:

Soil mg/kg (ppm)

Client: Project: The Riley Group

2012-265A, F&BI 209111 209111-43

Lab ID: Data File:

209111-43 rr.034

Instrument:

ICPMS1

AP

Operator:

Internal Standard:

Indium Holmium % Recovery: 100 102

Lower Limit: 60 60

Upper Limit: 125 125

Concentration mg/kg (ppm)

Analyte:

Arsenic Lead

7.36 3.70

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Method Blank Not Applicable

Date Extracted: Date Analyzed:

09/27/12 09/28/12 Soil

Matrix: Units:

mg/kg (ppm)

Client: Project: The Riley Group

2012-265A, F&BI 209111 I2-662 mb

Lab ID: Data File:

I2-662 mb.008

Instrument: Operator:

ICPMS1 AP

Internal Standard:

Indium Holmium % Recovery: 114 113

Lower Limit: 60 60

Upper Limit: 125 125

Concentration mg/kg (ppm)

Analyte:

<1

Arsenic Lead

<1

ENVIRONMENTAL CHEMISTS

Date of Report: 10/02/12 Date Received: 09/10/12

Project: 2012-265A, F&BI 209111

Date Extracted: 09/27/12 Date Analyzed: 09/28/12

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID	<u>Total Mercury</u>
Laboratory ID	
,	
B-10-3 209111-43	<0.1
203111-43	
Method Blank	<0.1
	-0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 10/02/12 Date Received: 09/10/12

Project: 2012-265A, F&BI 209111

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 209111-43 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	mg/kg (ppm)	10	7.36	102 b	101 b	56-125	1 b
Lead	mg/kg (ppm)	50	3.70	98	95	64-139	3

		Spike	Percent Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	92	79-112
Lead	mg/kg (ppm)	50	86	83-118

ENVIRONMENTAL CHEMISTS

Date of Report: 10/02/12 Date Received: 09/10/12

Project: 2012-265A, F&BI 209111

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 209111-43 (Matrix Spike)

Analyte	Reporting Units	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Allalyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	< 0.1	109	106	54-156	3

	Reporting Units	Spike	Percent Recovery	Acceptance
Analyte		Level	LCS	Criteria
Mercury	mg/kg (ppm)	0.125	99	73-131

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr-The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Page # of K TURNAROUND TIME IT Standard (2 Weeks) C RUSH
Rush charges, authorized by ☐ Dispose after 30 days
☐ Return samples
☐ Will call with instructions SAMPLE DISPOSA ME 09-10-18 A04/ SAMPLE CHAIN OF CUSTODY A596-4108 SAMPLERS (signature) PROJECT NAME/NO. REMARKS Send Report To Richard S/M/Shr 17542 Bothell way NE Bothell WA 98011 Phone # (475) 415 -0551 Fax # 209111 City, State, ZIP Address_

_	<u>ਵ</u>														
	Motes Pt		1-24 LS	71/52/6	44					4), #		DATE TIME		1/2
ANALYSES REQUESTED	HC/D								\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sameler man		*	COMPANY	1001	
ANAL	AOCs by 8270 VOCs by 8270 TPH-Gasoline TPH-Diesel	+				5						DEINT NAME	D TATALAN TA	CHERT SINDEN	Later Course
	# of containers	-		_	7	5	-	-	 -	2	T.		K	2552	fals.
	Sample Type	۲.45	_		 >	1 2	1,05			>	(Asb				Y
	Time	9:35	4:4	0:30	6:3	4:10	9:55	13:17	1.	10:B	51:01	SIGNATURE	,	1	Jan.
	Date Sampled	4-7	 ·								マ	SIGN	ing		a la
-	Lab	õ	20	8	OU A.E	3E	90	40	08	#E	10 A.E			Renewal 18	עצ ו
	Sample ID	8-1-3	9-1-1	h-1-4	B-1-12.9	8-1	8-2-3	6-27	8-2-10	8-2-12.5	7-7	Friedman & Bruya, Ing	3012 16th Avenue Wesk	Seattle, WA 98119-2029	

Relinquished by: Ph. (206) 285-8282 Fax (206) 283-5044 PORMS/COC/COC.DOC

F* 6T

14.30

ME 09-10-12 AD4/14/1/83 14.30 TIME 2885 ☐ Standard (2 Weeks)
☐ RUSH
Rush charges authorized by Page # / of TURNAROUND TIME ☐ Dispose after 30 days
☐ Return samples
☐ Will call with instructions SAMPLE DISPOSAJ Notes ပ္စ 41017 9-10-12 9-10 M DATE Samples received at COMPANY ANALYSES REQUESTED FX 82 No. 8 ArK HES SAOCs Py 8270 SAMPLE CHAIN OF CUSTODY Rachard Smyse 2017-565A **AOC® PA8700** BLEX by 8021B PRINT NAME SAMPLERS (signature) PROJECT NAME/NO. TPH-Diesel containers # of 4 7 خذا REMARKS Sample Type 120 59i. 13/2 Time Sampled 7.07 10:30 10 m 15.95 \$5:01 10:35 10:15 10:50 Richard SimPson 9:40 Received by: 4:|1 SIGNATURE Date Sampled he Riley Grant 1: Relinquished by: Fax # Keceived by: 1887 13 립日 Refress PAS カガ ~ 2 17 111602 Friedman & Bruya, Ific. Seattle, WA 98119-2029 3012 16th Avenue West Send Report To 8-4-16 Sample ID 01-11-8 B-3-10 Ph. (206) 285-8282 Fax (206) 283-5044 (1-5-4) 4-5-8 City, State, ZIP 18-3-7 B-1-8 PORMISICOCICOCIDOC 2-4-4 6-4 6-3 Company Address Phone #

ME 09-10-12 top/24 /VB3 4.3 ☐ Standard (2 Weeks)
☐ RUSH
Rush charges authorized by ☐ Return samples ☐ Will call with instructions Notes SAMPLE DISPOS! ☐ Dispose after 30 days PATTE POST 1.10-12 ひもり Samples repeived at ANALYSES REQUESTED COMPANY Ex er \$ SAOCE PA 8510 SAMPLE CHAIN OF CUSTODY **VOCs by8260** 2011-265A प्रक्रम् **PRINT NAME** SAMPLERS (signature) PROJECT NAME/NO. TPH-Diesel DO VD Sample Type | containers **Jo** # 7 -رز 70 REMARKS 111/19 7.7 HE 209111 Richard Simpson Date Time Sampled Sampled ا:(ك 9):[] 1:25 <u>₹</u> م خ/خ P(1) [1:59 11:30 R SIGNATURE 4-7 Relinquished by: Fax # Received by: e E 43.4 28 K 84 14 3 Friedman & Bruya, Inc. Seattle, WA 98119-2029 3012 16th Avenue West 8-6-10.5 Send Report To Sample ID 11-9-0 Fax (206) 283-5044 ₽-6 Ph. (206) 285-8282 City, State, ZIP 8-6-4 9-9-8 13-5-16 8-5-11 FORMS/COC/COC/DOC 6-7-7 1-2-4 2-4 Company Address Phone #_

910-12 14-31 TIME Rush charges authorized by ☐ Return samples ☐ Will call with instructions TURNAROUND TIM SAMPLE DISPOSAI Notes कुछ ग्याय implies received as Refer to ☐ Dispose after 30 days ☐ Standard (2 Weeks) ☐ RUSH Receive マッ<u>ク</u> DATE 21-01-60 ANALYSES REQUESTED COMPANY 87 **#** SAMPLE CHAIN OF CUSTODY HE **ZAOC⁸ PA 8510** A298-4104 PRINT NAME SAMPLERS (signature) PROJECT NAME/NO. TPH-Dicsel containers # of 00 40 REMARKS Sample Type 1.78 HZ **511.** 53. Time Sampled 時 13:40 ام: الا 2 ج اح. 13:45 **():(1** 04: <1 19:31 13:50 SIGNATURE Send Report To Richard SimPsy Date Sampled 6-7 The Rivey Gard Received by: Relinquished by: Fax # 33 A·E 日配 32 \$5° 3927 34 11 34 37 3 209111 Seattle, WA 98119-2029 Friedman & Bruya, Inq 3012 16th Avenue West 5-4-3 B-7-8.5 5-6-Sample ID 4-8-8 Fax (206) 283-5044 Ph. (206) 285-8282 4-6-6 18-7-7 City, State, ZIP 11-8-8 8-8-16 PORMS/COC/CUC.DOC 6-8-7 8-8 Company Address Phone #

Rush charges authorized by: Return samples Will call with instructions SAMPLE DISPOSA Dispose after 30 days Standard (2 Weeks) 21-01-60 RUSH PO# SAMPLE CHAIN OF CUSTODY ME Dave Bair dbair@riley-group.com 701-201 Attention: SAMPLERS (signature) PROJECT NAME/NO. REMARKS Send Report To Richard Shaffer Phone # 425 415-0551 Fax # 425 415-0311 Address: 17522 Bothell Way NE, Ste A City, State, ZIP Bothell, WA 98011 Company: Riley Group,

Γ	T	12	1				- T	-1-			- ,		Γ	T	_
	Nates	December mace	202			·					2.4		DATE TIME	}	了 了 会
		+-	-		-			_			स २			6	-
ANALYSES PROTIESTED	· 64,24,45	3		+		+	+-			-	mpics received a		COMPANY	7	\
PEOU	112/1				1	T	1	\top	+	/			8	V	
CYSES	SIH)	<u> </u>	×		I			1					ر ب	
ANA	SVOCe by 8270	+	+	+	╁	+-	+	╬	╬	+	+	-		ij	
	VOCe by 8260		3	X		†	1	十	+	+	+	-	:	<u>ک</u>	
	TPH-Gasoline						I						AME	2	
	lessiG-HqT	+-	+-	╀	+	╁	-	\bot	4	_			PRINT NAME	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ı
	# of containers		٦	٦	~	2	. ~ i	X	\ \ -		Po.		PRI	かくか	
	Sample Type	50:1	14.0	Soil	<u>.</u>		>	1	50.1		 		#	1 N	
	Time	1:15	2	1:35	0):1	54:1	1:50	1:55	7.07	٥: ٦	25:4	200	LUKE		
	Date Sampled	4-7		;					-		>	GTCNY	d by:		
	Lab U	4.8 A.8	42/6	U.S.A.B	\$\$ \$\$	74	468	14.4 13.44	25	40	100元		don	A A	
	Sample ID	9.	8-4	5-10-3	9-10-8	18-10-10	11-01-8	B-10	B-11-4		B-11-8	riedman & Bruya, Inc.	012 16th Avenue West Re	Contile WA 001TO 0000	TAL 30113-5125
•							٠.					riedma	01810	ent t l'o	

3013 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fox (206) 283-5044

PORMS\COC\COC.DOC

Relinquished by:

21012

910.12 14.2 THME 121/404 Rush charges authorized by: Return samples Will call with instructions TURNAROUND TIME SAMPLE DISPOSAL Notes Dispose after 30 days Standard (2 Weeks) RUSH 7.1017 21.01.2 DATE Samples received at ME 09-10-12 Fx. 187 COMPANY ANALYSES REQUESTED PO# HIES SVOCe by 8270 SAMPLE CHAIN OF CUSTODY Dave Bair dbair@riley-group.com 70 (4. 265A PRINT:NAME Attention: SAMPLERS (signature) PROJECT NAME/NO. TPH-Diesel とつととれ # of containers <u>\</u> 5 REMARKS Sample Type H 70 1116 Date Time Sampled Sampled して という SIGNATURE Send Report To Kichan Sin/Sun Phone # 425 415-0551 Fax # 425 415-0311 Received by: 5 Address: 17522 Bothell Way NE, Ste A Relinquished by: City, State, ZIP Bothell, WA 98011 52 P.E 10 温日 Company: Riley Group, Friedman & Bruya, Inc Seattle, WA 98119-2029 3012 16th Avenue West Sample ID 13-11-17 PORMIS/COC/COC/DOC Faz (206) 283-5044 Ph. (306) 235-3233

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

September 20, 2012

Richard Simpson, Project Manager The Riley Group, Inc. 17522 Bothell Way NE Bothell, WA 98011

Dear Mr. Simpson:

Included are the results from the testing of material submitted on September 10, 2012 from the 2012-265A, F&BI 209111 project. There are 20 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures TRG0920R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 10, 2012 by Friedman & Bruya, Inc. from the The Riley Group 2012-265A, F&BI 209111 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory</u> ID	The Riley Group
209111-01	B-1-3
209111-02	B-1-6
209111-03	B-1-11
209111-04	B-1-12.5
209111-05	B-1
209111-06	B-2-3
209111-07	B-2-7
209111-08	B-2-10
209111-09	B-2-12.5
209111-10	B-2
209111-11	B-3-4
209111-12	B-3-7
209111-13	B-3-10
209111-14	B-3-12
209111-15	B-3
209111-16	B-4-3
209111-17	B-4-8
209111-18	B-4-10
209111-19	B-4-16
209111-20	B-4
209111-21	B-5-4
209111-22	B-5-7
209111-23	B-5-11
209111-24	B-5-16
209111-25	B-5
209111-26	B-6-4
209111-27	B-6-6
209111-28	B-6-10.5
209111-29	B-6-16
209111-30	B-6
209111-31	B-7-4
209111-32	B-7-7
209111-33	B-7-8.5
209111-34	B-8-4
209111-35	B-8-7
209111-36	B-8-11

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (continued)

<u>Laboratory ID</u>	The Riley Group
209111-37	B-8-16
209111-38	B-8
209111-39	B-9-3
209111-40	B-9-5
209111-41	B-9-8
209111-42	B-9
209111-43	B-10-3
209111-44	B-10-6
209111-45	B-10-10
209111-46	B-10-12
209111-47	B-10
209111-48	B-11-4
209111-49	B-11-7
209111-50	B-11-9
209111-51	B-11-12
209111-52	B-11

Samples B-9-3 and B-10-3 were sent to Fremont for was sent to for chlordane analysis. Review of the enclosed report indicates that all quality assurance were acceptable.

The 8260C calibration standard failed the acceptance criteria for bromoform for B-9. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/20/12 Date Received: 09/10/12

Project: 2012-265A, F&BI 209111

Date Extracted: 09/13/12 Date Analyzed: 09/13/12

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	Gasoline	<u>Diesel</u>	Heavy Oil	Surrogate (% Recovery) (Limit 50-150)
B-1 209111-05	ND	ND	ND	105
B-5 209111-25	ND	ND	ND	113
B-6 209111-30	ND	ND	ND	109
B-11 209111-52	ND	ND	ND	107
Method Blank 02-1657 MB	ND	ND	ND	116

ND - Material not detected at or above 0.2 mg/L gas, 0.5 mg/L diesel and 0.5 mg/L heavy oil.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/20/12 Date Received: 09/10/12

Project: 2012-265A, F&BI 209111

Date Extracted: 09/11/12

Date Analyzed: 09/11/12 and 09/12/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate (% Recovery) (Limit 50-150)
B-1-3 209111-01	ND	ND	ND	106
B-1-11 209111-03	ND	ND	ND	108
B-2-3 209111-06	ND	ND	ND	119
B-2-10 209111-08	ND	ND	ND	111
B-3-4 209111-11	ND	ND	ND	120
B-3-10 209111-13	ND	ND	ND	109
B-4-3 209111-16	ND	ND	ND	123
B-4-10 209111-18	ND	ND	ND	108
B-5-11 209111-23	ND	ND	ND	107
B-6-4 209111-26	ND	ND	ND	150
B-7-8.5 209111-33	ND	ND	ND	109
B-8-4 209111-34	ND	ND	ND	109

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/20/12 Date Received: 09/10/12

Project: 2012-265A, F&BI 209111

Date Extracted: 09/11/12

Date Analyzed: 09/11/12 and 09/12/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	Gasoline	<u>Diesel</u>	Heavy Oil	Surrogate (% Recovery) (Limit 50-150)
B-8-11 209111-36	ND	ND	ND	107
B-9-5 209111-40	ND	ND	ND	106
B-11-7 209111-49	ND	ND	ND	107
Method Blank 02-1635 MB	ND	ND	ND	107

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-1	Client:	The Riley Group
Date Received:	09/10/12	Project:	2012-265A, F&BI 209111
Date Extracted:	09/11/12	Lab ID:	209111-05
Date Analyzed:	09/11/12	Data File:	091120.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d 4	100	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	98	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-3	Client:	The Riley Group
Date Received:	09/10/12	Project:	2012-265A, F&BI 209111
Date Extracted:	09/11/12	Lab ID:	209111-15
Date Analyzed:	09/11/12	Data File:	091121.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		\mathbf{Lower}	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	101	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	- <1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method $8260\mathrm{C}$

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-4 09/10/12 09/11/12 09/11/12 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	The Riley Group 2012-265A, F&BI 209111 209111-20 091122.D GCMS9 VM
--	--	---	---

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	99	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	<0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10		<1
1,1-Dichloroethene	<1	1,1,1,2-Tetrachloroethane	<1
Methylene chloride	<5	m,p-Xylene	<2
Methyl t-butyl ether (MTBE)	<1	o-Xylene	<1
trans-1,2-Dichloroethene	<1 <1	Styrene	<1
1,1-Dichloroethane	<1	Isopropylbenzene Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1		<1
2-Butanone (MEK)	<10	1,3,5-Trimethylbenzene	<1
1,2-Dichloroethane (EDC)	<1	1,1,2,2-Tetrachloroethane	<1
1,1,1-Trichloroethane	<1	1,2,3-Trichloropropane 2-Chlorotoluene	<1
1, 1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1		<1
Benzene	<0.35	tert-Butylbenzene	<1
Trichloroethene	<0.55 <1	1,2,4-Trimethylbenzene	<1
1,2-Dichloropropane	<1	sec-Butylbenzene	<1
Bromodichloromethane	<1	p-Isopropyltoluene	<1
Dibromomethane	<1	1,3-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,4-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<10 <1	1,2-Dichlorobenzene	<1
Toluene		1,2-Dibromo-3-chloropropane	<10
trans-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
1,1,2-Trichloroethane	<1	Hexachlorobutadiene	<1
2-Hexanone	<1	Naphthalene	<1
2-11cyanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-5	Client:	The Riley Group
Date Received:	09/10/12	Project:	2012-265A, F&BI 209111
Date Extracted:	09/11/12	Lab ID:	209111-25
Date Analyzed:	09/11/12	Data File:	091123.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	99	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method $8260\mathrm{C}$

Client Sample ID:	B-6	Client:	The Riley Group
Date Received:	09/10/12	Project:	2012-265A, F&BI 209111
Date Extracted:	09/11/12	Lab ID:	209111-30
Date Analyzed:	09/11/12	Data File:	091124.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
$1,2 ext{-Dichloroethane-d4}$	99	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	99	50	150

	00	100	
Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
$\operatorname{Chloromethane}$	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
$\operatorname{Chloroethane}$	<1	Chlorobenzene	<1
${ m Trichlorofluoromethane}$	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-8	Client:	The Riley Group
Date Received:	09/10/12	Project:	2012-265A, F&BI 209111
Date Extracted:	09/11/12	Lab ID:	209111-38
Date Analyzed:	09/11/12	Data File:	091125.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		\mathbf{Lower}	Upper
Surrogates:	% Recovery:	Limit:	Limit:
$1,2 ext{-Dichloroethane-d4}$	99	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	99	50	150

	Concentration	_	Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
$\operatorname{Chloroethane}$	<1	Chlorobenzene	<1
${f Trichlorofluoromethane}$	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1, 1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method $8260\mathrm{C}$

Client Sample ID:	B-9	Client:	The Riley Group
Date Received:	09/10/12	Project:	2012-265A, F&BI 209111
Date Extracted:	09/14/12	Lab ID:	209111-42
Date Analyzed:	09/14/12	Data File:	091417.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	96	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1 ca
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B-11	Client:	The Riley Group
Date Received:	09/10/12	Project:	2012-265A, F&BI 209111
Date Extracted:	09/11/12	Lab ID:	209111-52
Date Analyzed:	09/11/12	Data File:	091126.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	98	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichlorom ethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlor obutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	The Riley Group
Date Received:	NA	Project:	2012-265A, F&BI 209111
Date Extracted:	09/11/12	Lab ID:	02-1615 mb
Date Analyzed:	09/11/12	Data File:	091116.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	99	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1, 1, 1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane '	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method $8260\mathrm{C}$

Client Sample ID:	Method Blank	Client:	The Riley Group
Date Received:	NA	Project:	2012-265A, F&BI 209111
Date Extracted:	09/14/12	Lab ID:	02-1622 mb2
Date Analyzed:	09/14/12	Data File:	091415.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	101	50	150

		7.7	
Compoundo	Concentration	Commonweller	Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1 ca
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/20/12 Date Received: 09/10/12

Project: 2012-265A, F&BI 209111

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 209111-05 (Matrix Spike)

•	F /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<10	144 vo	62-131
Chloromethane Vinyl chloride	ug/L (ppb) ug/L (ppb)	50 50	<10 <0.2	127 142 vo	68-127
Bromomethane	ug/L (ppb)	50 50	<0.2 <1	142 Vo 118	76-124 67-127
Chloroethane	ug/L (ppb)	50 50	<1	126 vo	69-123
Trichlorofluoromethane	ug/L (ppb)	50	<1	129 vo	75-121
Acetone	ug/L (ppb)	250	<10	105	68-137
1,1-Dichloroethene	ug/L (ppb)	50	<1	115	75-118
Methylene chloride	ug/L (ppb)	50	<5	108	64-120
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	118	74-120
trans-1,2-Dichloroethene 1,1-Dichloroethane	ug/L (ppb)	50	<1	112	75-119
2,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	107	82-109
cis-1,2-Dichloroethene	ug/L (ppb)	50 50	<1	106 102	62-124 83-109
Chloroform	ug/L (ppb)	50	<1	101	81-110
2-Butanone (MEK)	ug/L (ppb)	250	<10	94	75-122
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	99	76-114
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	107	77-116
1,1-Dichloropropene	ug/L (ppb)	50	<1	103	81-110
Carbon tetrachloride Benzene	ug/L (ppb)	50	<1	106	74-119
Trichloroethene	ug/L (ppb)	50 50	<0.35	102	79-108
1.2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	99 105	79-105 83-110
Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50 50	<1	105	77-118
Dibromomethane	ug/L (ppb)	50	<1	99	82-109
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	101	78-123
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	116	76-120
Toluene	ug/L (ppb)	50	<1	99	82-108
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	112	77-118
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	101	83-110
2-Hexanone 1,3-Dichloropropane	ug/L (ppb)	250	<10	95	75-128
Tetrachloroethene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	101 106	84-109
Dibromochloromethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	106	69-114 66-133
1,2-Dibromoethane (EDB)	ug/L (ppb)	50 50	<1	104	85-110
Chlorobenzene	ug/L (ppb)	50	<1	99	82-107
Ethylbenzene	ug/L (ppb)	50	<1	99	79-112
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	103	78-118
m,p-Xylene	ug/L (ppb)	100	<2	98	81-111
o-Xylene	ug/L (ppb)	50	<1	99	82-110
Styrene Isopropylbenzene	ug/L (ppb)	50 50	<1	96	73-116
Bromoform	ug/L (ppb)	ອບ 50	<1	104	80-112
n-Propylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	107 93	45-151 77-116
Bromobenzene	ug/L (ppb)	50	<1	98	84-110
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	92	78-114
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	101	82-117
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	93	77-116
2-Chlorotoluene	ug/L (ppb)	50	<1	92	79-112
4-Chlorotoluene	ug/L (ppb)	50	<1	92	80-112
tert-Butylbenzene	ug/L (ppb)	50	<1	95	81-114
1,2,4-Trimethylbenzene sec-Butylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	91 94	76-115 80-115
p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	50 50	<1	94 95	80-115 78-116
1,3-Dichlorobenzene	ug/L (ppb)	50 50	<1	97	81-110
1,4-Dichlorobenzene	ug/L (ppb)	50 50	<1	95	79-109
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	95	81-110
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	102	67-128
1,2,4 Trichlorobenzene	ug/L (ppb)	50	<1	94	77-113
Hexachlorobutadiene	ug/L (ppb)	50	<1	106	66-122
Naphthalene	ug/L (ppb)	50	<1	108	79-120
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	102	78-115

ENVIRONMENTAL CHEMISTS

Date of Report: 09/20/12 Date Received: 09/10/12

Project: 2012-265A, F&BI 209111

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	150 vo	135	56-138	11
Chloromethane	ug/L (ppb)	50	132 vo	123	66-131	7
Vinyl chloride	ug/L (ppb)	50	145 vo	133 vo	73-126	9
Bromomethane	ug/L (ppb)	50	123	113	65-131	8
Chloroethane	ug/L (ppb)	50	128 vo	119	69-125	7
Trichlorofluoromethane	ug/L (ppb)	50	129 vo	118	75-124	9
Acetone	ug/L (ppb)	250	105	93	64-136	12
1,1-Dichloroethene Methylene chloride	ug/L (ppb)	50	116	105	72-122	10
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50 50	110	99	56-128	11
trans-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	114 110	110 105	76-120 74-122	4 5
1,1-Dichloroethane	ug/L (ppb)	50	108 vo	103	85-107	5 5
2.2-Dichloropropane	ug/L (ppb)	50	105	101	83-119	4
cis-1,2-Dichloroethene	ug/L (ppb)	50	100	96	85-105	4
Chloroform	ug/L (ppb)	50	101	100	83-107	ī
2-Butanone (MEK)	ug/L (ppb)	250	90	85	75-118	6
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	96	97	85-107	1
1,1,1-Trichloroethane	ug/L (ppb)	50	103	102	81-114	1
1,1-Dichloropropene Carbon tetrachloride	ug/L (ppb)	50	99	100	85-107	1
Benzene	ug/L (ppb)	50	102	101	77-118	1
Trichloroethene	ug/L (ppb)	50 50	100	100	81-107	0
1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	105 vo 107 vo	97 97	80-104 86-106	8 10
Bromodichloromethane	ug/L (ppb)	50	99	93	76-117	6
Dibromomethane	ug/L (ppb)	50	102	94	86-106	8
4-Methyl-2-pentanone	ug/L (ppb)	250	100	91	85-113	9
cis-1,3-Dichloropropene	ug/L (ppb)	50	119	106	78-120	12
Toluene	ug/L (ppb)	50	100	97	86-105	3
trans-1,3-Dichloropropene	ug/L (ppb)	50	108	109	82-116	1
1,1,2-Trichloroethane	ug/L (ppb)	50	99	98	87-106	1
2-Hexanone	ug/L (ppb)	250	95	92	84-117	3
1,3-Dichloropropane	ug/L (ppb)	50	106	99	86-107	7
Tetrachloroethene Dibromochloromethane	ug/L (ppb)	50	108 vo	104	81-106	4
1,2-Dibromoethane (EDB)	ug/L (ppb)	50 50	96	88	57-138	9
Chlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	106 96	101 95	89-107	5 1
Ethylbenzene	ug/L (ppb)	50 50	96	96	86-104 87-107	0
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	101	97	79-117	4
m,p-Xylene	ug/L (ppb)	100	97	97	87-107	0
o-Xylene	ug/L (ppb)	50	95	98	86-107	3
Styrene	ug/L (ppb)	50	100	104	87-110	4
Isopropylbenzene	ug/L (ppb)	50	96	98	87-108	2
Bromoform	ug/L (ppb)	50	83	83	27-167	0
n-Propylbenzene	ug/L (ppb)	50	94	90	87-109	4
Bromobenzene 1.3.5-Trimethylbenzene	ug/L (ppb)	50	99	96	86-108	3
1,3,3-1 rimetnyloenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	98 98	93 96	88-108	5
1.2.3-Trichloropropane	ug/L (ppb)	50 50	96 94	96 91	82-116 75-117	2 3
2-Chlorotoluene	ug/L (ppb)	50	94	91	85-109	3
4-Chlorotoluene	ug/L (ppb)	50 50	94	90	87-107	4
tert-Butylbenzene	ug/L (ppb)	50	96	93	86-110	3
1,2,4 Trimethylbenzene	ug/L (ppb)	50	97	92	87-109	5
sec-Butylbenzene	ug/L (ppb)	50	94	91	88-110	3
p-Isopropyltoluene	ug/L (ppb)	50	96	93	87-112	3
1,3-Dichlorobenzene	ug/L (ppb)	50	96	93	88-105	3
1,4-Dichlorobenzene	ug/L (ppb)	50	93	92	87-104	1
1,2-Dichlorobenzene	ug/L (ppb)	50	96	92	86-107	4
1,2-Dibromo-3-chloropropane 1.2.4-Trichlorobenzene	ug/L (ppb)	50 50	88	85	65-126	3
1,2,4-1 richioropenzene Hexac hlorobutadiene	ug/L (ppb) ug/L (ppb)	50 50	92 104	94	86-109	2
Naphthalene	ug/L (ppb) ug/L (ppb)	50 50	94	105 94	78-116 89-114	1 0

ENVIRONMENTAL CHEMISTS

Date of Report: 09/20/12 Date Received: 09/10/12

Project: 2012-265A, F&BI 209111

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 209111-15 (Matrix Spike)

	/			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<10	92	62-131
Chloromethane Vinyl chloride	ug/L (ppb)	50	<10	92	68-127
Bromomethane	ug/L (ppb)	50 20	<0.2	103	76-124
Chloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	96 99	67-127
Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	99	69-123
Acetone	ug/L (ppb)	250	<10	83	75-121 68-137
1.1-Dichloroethene	ug/L (ppb)	50	<1	91	75-118
Methylene chloride	ug/L (ppb)	50	<5	89	64-120
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	94	74-120
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	92	75-119
1,1-Dichloroethane	ug/L (ppb)	50	<1	94	82-109
2,2-Dichloropropane	ug/L (ppb)	50	<1	91	62-124
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	93	83-109
Chloroform	ug/L (ppb)	50	<1	92	81-110
2-Butanone (MEK)	ug/L (ppb)	250	<10	84	75-122
1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane	ug/L (ppb)	50	<1	89	76-114
1,1-Dichloropropene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	96	77-116
Carbon tetrachloride	ug/L (ppb)	50 50	<1 <1	89 95	81-110 74-119
Benzene	ug/L (ppb)	50 50	< 0.35	92	79-108
Trichloroethene	ug/L (ppb)	50	<1	90	79-105
1,2-Dichloropropane	ug/L (ppb)	50	<1	94	83-110
Bromodichloromethane	ug/L (ppb)	50	<1	95	77-118
Dibromomethane	ug/L (ppb)	50	<1	93	82-109
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	92	78-123
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	100	76-120
Toluene	ug/L (ppb)	50	<1	93	82-108
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	98	77-118
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	95	83-110
2-Hexanone 1.3-Dichloropropane	ug/L (ppb)	250	<10	92	75-128
Tetrachloroethene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	95	84-109
Dibromochloromethane	ug/L (ppb)	50 50	<1	91 97	69-114
1,2-Dibromoethane (EDB)	ug/L (ppb)	50 50	<1	97	66-133 85-110
Chlorobenzene	ug/L (ppb)	50	<1	93	82-107
Ethylbenzene	ug/L (ppb)	50	<1	94	79-112
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	97	78-118
m,p-Xylene	ug/L (ppb)	100	<2	94	81-111
o-Xylene	ug/L (ppb)	50	<1	93	82-110
Styrene	ug/L (ppb)	50	<1	97	73-116
Isopropylbenzene	ug/L (ppb)	50	<1	97	80-112
Bromoform	ug/L (ppb)	50	<1	90	45-151
n-Propylbenzene Bromobenzene	ug/L (ppb)	50	<1	92	77-116
	ug/L (ppb)	50	<1	92	84-110
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb)	50 50	<1	94	78-114
1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	100 91	82-117 77-116
2-Chlorotoluene	ug/L (ppb)	50 50	<1	91 91	77-116
4-Chlorotoluene	ug/L (ppb)	50 50	<1	91	80-112
tert-Butylbenzene	ug/L (ppb)	50	<1	94	81-114
1,2,4 Trimethylbenzene	ug/L (ppb)	50	<1	94	76-115
sec-Butylbenzene	ug/L (ppb)	50	<1	93	80-115
p-Isopropyltoluene	ug/L (ppb)	50	<1	93	78-116
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	90	81-110
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	89	79-109
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	91	81-110
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	97	67-128
1,2,4 Trichlorobenzene Hexachlorobutadiene	ug/L (ppb)	50	<1	86	77-113
Naphthalene	ug/L (ppb)	50	<1	90	66-122
1,2,3-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	98 96	79-120
-,-,- 11.0HOLOGIBORC	ag.r. (hhn)	JU	~1	90	78-115

ENVIRONMENTAL CHEMISTS

Date of Report: 09/20/12 Date Received: 09/10/12

Project: 2012-265A, F&BI 209111

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

3			Percent	Percent		
Analyte	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Dichlorodifluoromethane	Units	Level	LCS	LCSD	<u>Criteria</u>	(Limit 20)
Chloromethane	ug/L (ppb) ug/L (ppb)	50 50	109 99	100	56-138	9
Vinyl chloride	ug/L (ppb)	50 50	108	96 107	66-131	3
Bromomethane	ug/L (ppb)	50 50	93	93	73-126 65-131	1 0
Chloroethane	ug/L (ppb)	50	99	100	69-125	1
Trichlorofluoromethane	ug/L (ppb)	50	98	99	75-124	1
Acetone	ug/L (ppb)	250	80	79	64-136	î
1,1-Dichloroethene	ug/L (ppb)	50	91	93	72-122	$ ilde{f 2}$
Methylene chloride	ug/L (ppb)	50	86	87	56-128	1
Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene	ug/L (ppb)	50	95	94	76-120	1
1,1-Dichloroethane	ug/L (ppb)	50	89	91	74-122	2
2,2-Dichloropropane	ug/L (ppb)	50	95	94	85-107	1
cis-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	99 93	101	83-119	2
Chloroform	ug/L (ppb)	50 50	93 91	93 92	85-105	0
2-Butanone (MEK)	ug/L (ppb)	250	83	92 82	83-107	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	90	90	75-118 85-107	I 0
1,1,1-Trichloroethane	ug/L (ppb)	50	95	96	81-114	I
1,1-Dichloropropene	ug/L (ppb)	50	93	93	85-107	Ô
Carbon tetrachloride	ug/L (ppb)	50	93	95	77-118	2
Benzene	ug/L (ppb)	50	93	92	81-107	1
Trichloroethene 1,2-Dichloropropane	ug/L (ppb)	50	91	92	80-104	1
I,2-Dicmoropropane Bromodichloromethane	ug/L (ppb)	50	95	94	86-106	1
Dibromomethane	ug/L (ppb)	50	93 -	93	76-117	0
4-Methyl-2-pentanone	ug/L (ppb) ug/L (ppb)	50 250	91	92	86-106	1
cis-1,3-Dichloropropene	ug/L (ppb)	250 50	89	90	85-113	1
Toluene	ug/L (ppb) ug/L (ppb)	50 50	103 91	104 92	78-120	1
trans-1,3-Dichloropropene	ug/L (ppb)	50 50	100	92 102	86-105 82-116	1 2
1,1,2-Trichloroethane	ug/L (ppb)	50	98	94	87-106	
2-Hexanone	ug/L (ppb)	250	85	88 88	84-117	4 3
1,3-Dichloropropane	ug/L (ppb)	50	94	92	86-107	2
Tetrachloroethene	ug/L (ppb)	50	91	92	81-106	ī
Dibromochloromethane	ug/L (ppb)	50	91	94	57-138	ŝ
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	94	95	89-107	1
Chlorobenzene Ethylbenzene	ug/L (ppb)	50	91	91	86-104	0
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	93	92	87-107	1
m,p-Xylene	ug/L (ppb)	50	92	93	79-117	1
o-Xylene	ug/L (ppb) ug/L (ppb)	100 50	93 92	93	87-107	0
Styrene	ug/L (ppb)	50 50	97	93 98	86-107	1
Isopropylbenzene	ug/L (ppb)	50	95	96	87-110 87-108	1 1
Bromoform	ug/L (ppb)	50	85	88	27-167	3
n-Propylbenzene	ug/L (ppb)	50	92	92	87-109	ő
Bromobenzene	ug/L (ppb)	50	90	90	86-108	Õ
1,3,5-Trimethylbenzene	ug/L (ppb)	50	95	94	88-108	i
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	102	98	82-116	4
1,2,3 Trichloropropane 2-Chlorotoluene	ug/L (ppb)	50	90	90	75-117	0
4-Chlorotoluene	ug/L (ppb)	50	90	89	85-109	1
tert-Butylbenzene	ug/L (ppb)	50 50	91	91	87-107	0
1,2,4 Trimethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	94 94	94 93	86-110	0
sec-Butylbenzene	ug/L (ppb)	50 50	94 94	93 93	87-109 88-110	1
p-Isopropyltoluene	ug/L (ppb)	50	94	94	87-112	_
1,3-Dichlorobenzene	ug/L (ppb)	50	90	89	88-105	0 1
1,4-Dichlorobenzene	ug/L (ppb)	50	88	88	87-104	0
1,2-Dichlorobenzene	ug/L (ppb)	50	90	90	86-107	0
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	89	90	65-126	1
1,2,4 Trichlorobenzene	ug/L (ppb)	50	88	88	86-109	Ô
Hexachlorobutadiene	ug/L (ppb)	50	94	94	78-116	0
Naphthalene	ug/L (ppb)	50	98	98	89-114	0
1,2,3-Trichlorobenzene	ug/L (ppb)	50	97	97	89-111	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

1311 N. 35th St. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya

Michael Erdahl 3012 16th Ave. W. Seattle, Washington 98119

RE: 209111

Lab ID: 1209041

September 19, 2012

Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 9/11/2012 for the analyses presented in the following report.

Organochlorine Pesticides by EPA Method 8081 Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

MGR

Michael Dee

Sr. Chemist / Principal

Date: 09/19/2012

CLIENT:

Friedman & Bruya

Project: Lab Order: 209111 1209041 **Work Order Sample Summary**

Lab Sample ID

Client Sample ID

Date/Time Collected

Date/Time Received

1209041-001

B-9-3

09/07/2012 1:05 PM

09/11/2012 3:30 PM

1209041-002

B-10-3

09/07/2012 1:20 PM

09/11/2012 3:30 PM

Case Narrative

WO#: **1209041**Date: **9/19/2012**

CLIENT:

Friedman & Bruya

Project:

209111

I. SAMPLE RECEIPT:

All samples were received intact.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Analytical Report

WO#:

1209041

Date Reported: 9/19/2012

Client: Friedman & Bruya

Collection Date: 9/7/2012 1:05:00 PM

Project: 209111

Lab ID: 1209041-001

Matrix: Soil

Client Sample ID: B-9-3

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Organochlorine Pesticides by	EPA Method 808	<u>31</u>		Batcl	h ID: 32	23 Analyst: PH
gamma-Chlordane	ND	0.0134		mg/Kg-dry	1	9/19/2012 5:02:00 AM
alpha-Chlordane	ND	0.0134		mg/Kg-dry	1	9/19/2012 5:02:00 AM
Chiordane, Total	ND	0.0134		mg/Kg-dry	1	9/19/2012 5:02:00 AM
Surr: Decachlorobiphenyl	121	65-135		%REC	1	9/19/2012 5:02:00 AM
Surr: Tetrachloro-m-xylene	100	65-135		%REC	1	9/19/2012 5:02:00 AM
Sample Moisture (Percent Mo	isture)			Batch	ı ID: R	5658 Analyst: CM
Percent Moisture	36.2			wt%	1	9/12/2012 10:02:49 AM

Qualifiers:

- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- Н Holding times for preparation or analysis exceeded
- Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

Analytical Report

WO#: **1209041**

Date Reported: 9/19/2012

Client: Friedman & Bruya

Project: 209111

Lab ID: 1209041-002

Client Sample ID: B-10-3

Collection Date: 9/7/2012 1:20:00 PM

Matrix: Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Organochlorine Pesticides by	EPA Method 808	<u>:1</u>		Batcl	n ID: 32	23 Analyst: PH
gamma-Chlordane	ND	0.0110		mg/Kg-dry	1	9/19/2012 5:25:00 AM
alpha-Chiordane	ND	0.0110		mg/Kg-dry	1	9/19/2012 5:25:00 AM
Chiordane, Total	ND	0.0110		mg/Kg-dry	1	9/19/2012 5:25:00 AM
Surr: Decachlorobiphenyl	135	65-135		%REC	1	9/19/2012 5:25:00 AM
Surr: Tetrachloro-m-xylene	101	65-135		%REC	1	9/19/2012 5:25:00 AM
Sample Moisture (Percent Mo	<u>isture)</u>			Batch	ı ID: R	5658 Analyst: CM
Percent Moisture	25.7			wt%	1	9/12/2012 10:02:49 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Organochlorine Pesticides by EPA Method 8081 **QC SUMMARY REPORT** Friedman & Bruya 1209041 209111 Work Order: CLIENT: Project:

Sample ID: MB-3223	SampType: MBLK			Units: mg/Kg		Prep Date	Prep Date: 9/18/2012	RunNo: 5765	
Client ID: MBLKS	Batch ID: 3223					Analysis Date	Analysis Date; 9/19/2012	SeqNo: 113473	
Analyte	Result	귙	SPK value	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
gamma-Chlordane alpha-Chlordane	O N	0.0100							
Chlordane, Total	ND A720 0	0.0100	0.05000		0 7 0	ŭ			
Surr: Tetrachloro-m-xylene	0.0480		0.05000		96.1	65	135		
Sample ID: LCS-3223 Client ID: LCSS	SampType: LCS Batch ID: 3223			Units: mg/Kg		Prep Date Analysis Date	Prep Date: 9/18/2012 Analysis Date: 9/19/2012	RunNo: 5765 SeqNo: 113474	
Analyte	Result	묍	SPK value	SPK Ref Val	%REC	LowLimit	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
gamma-Chlordane alpha-Chlordane Surr: Decachlorobiphenyl Surr: Tetrachloro-m-xylene	0.455 0.457 0.0572 0.0487	0.0100	0.5000 0.5000 0.05000 0.05000	0 0	90.9 91.5 114 97.3	65 65 65	135 135 135		
Sample ID: 1209041-002ADUP	SampType: DUP			Units: mg/Kg-dry	<u>5</u>	Prep Date: 9/18/201	9/18/2012	RunNo: 5765	

Sample ID: 1209041-002ADUP	SampType: DUP			Units: mg/Kg-dry	dry	Prep Dat	Prep Date: 9/18/2012	12	RunNo: 5765	5	
Client ID: B-10-3	Batch ID: 3223					Analysis Dat	Analysis Date: 9/19/2012	12	SeqNo: 113477	477	
Analyte	Result	귐	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
gamma-Chlordane	Q	0.0111						0	0	98	
alpha-Chlordane	2	0.0111						0	0	93	
Chlordane, Total	Q	0.0111						0	0	0	
Surr: Decachlorobiphenyl	0.0637		0.05528		115	65	135		0		
Surr: Tetrachloro-m-xylene	0.0554		0.05528		100	65	135		0		

Spike recovery outside accepted recovery limits

Value above quantitation range Not detected at the Reporting Limit

⊒ Q

Analyte detected below quantitation limits

Reporting Limit

Dilution was required

ㅁ ㄱ 귍

Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

ω т

Qualifiers:

RPD outside accepted recovery limits

QC SUMMARY REPORT

Work Order: 1209041

CLIENT: Friedman & Bruya

Organochlorine Pesticides by EPA Method 8081 Qual %RPD RPDLimit SeqNo: 113478 RunNo: 5765 LowLimit HighLimit RPD Ref Val Prep Date: 9/18/2012 Analysis Date: 9/19/2012 135 135 135 65 65 65 %REC 102 103 130 99.6 Units: mg/Kg-dry 0 0 SPK Ref Val SPK value 0.5361 0.05361 0.05361 쩐 0.0107 0.0107 Batch ID: 3223 Result 0.547 0.552 0.0698 0.0534 SampType: MS Sample ID: 1209041-002AMS 209111 Surr: Tetrachloro-m-xylene Surr: Decachlorobiphenyl Client ID: B-10-3 gamma-Chlordane alpha-Chlordane Project: Analyte

Sample ID: LCS_TECH. CHLORDA SampType: LCS	SampType: LCS			Units: mg/Kg		Prep Dat	Prep Date: 9/18/2012	12	RunNo: 5765	55	
Client ID: LCSS	Batch ID: 3223					Analysis Dat	Analysis Date: 9/18/2012	12	SeqNo: 113479	1479	•
Analyte	Result	씸	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Chlordane, Total	1,180	0.0100	1,000	0	118	65	135				
Surr: Decachlorobiphenyl	49.4		50.00		98.7	65	135				
Surr: Tetrachloro-m-xylene	48.7		50.00		97.4	65	135				

THE PERSONNEL PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS	ion was required E Value above quantitation range	e detected below quantitation limits ND Not detected at the Reporting Limit	Reporting Limit Spike recovery outside accepted recovery limits
	D Dilutio	J Analyt	RL Repor
	Analyte detected in the associated Method Blank	Holding times for preparation or analysis exceeded	RPD outside accepted recovery limits
	œ 	I	œ
	Qualifiers:		

	i		٩.	5	1		
		ż		2	4	Ť	
		ä		ż	į	÷	
		å		í	al a		
	Ĭ	2	3	ž	3	Ġ	á
		3	i,	3	ď	ď	ì
		Ş	Û	ź	2	e	
		3	÷	į	Ċ.		
		ŝ	ġ	Ì	ŕ	2	ŀ
		4		à	Н	w	ķ.
		š	:	ì		ч	Ĺ
		å		×	٠.	_	Ē,
		ŝ	S	1	1	7	į.
			٥,	3	7		
				Ž,	ž	à	٩.,
		ä.	ŝ	S	7	5	٠.
		ř,	Ý	3			
			٩	ì	ě.	4	
		Ĭ	•	ă	ė	ч	ŧ.
i	ĺ	3		J	Ť		
		ř	Ġ	f			
		ŝ	Ž,	i,	Ž.	3	1
	ľ	Ť	Ġ	Ì.	ř	-	٥.
	ŀ	è		ķ	×	3	
	į	ì	έ	ŝ.	Ŷ,		٠'
	i	1	Ì	1	ø,	ø.	١.
		à.	ċ	Š	Σ,	3	
		ř	Ē,	Ĭ	ř	٠,	V
			÷	L	ì	7	
	ì	ş		1		'n	•
	ļ	ŝ	Ĭ	ĝ	ě,		į.
l		1		1		ķ	
		¢		H	7	4	€.
		ŝ	1	á	2		Ċ
į	į			3		3	
ŀ	í		Ņ	×	ä	88	
				ť	X	3	
ŀ			ľ	ï			
ŀ				ł	1	. 2	٠.
			1	ź			
ŀ			1	1	ě.	7	0
				ž		ń	ï
		3	-	ä		ز	
		è	d		ć	4	
		÷	1	١.	ż		
ļ			1	Š			
l				्			
l						4	
I				2	7		
				•	3		
¢				•	2	֡֜֝֝֝֟֝֝֟֝֝֟֝֝֟֓֓֓֓֓֟֝֓֓֓֓֟֟֓֓֓֓֓֓֓֓֓֟֟֓֓֓֓֓֓	
				•		1	
				•	2		
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7		
			The second secon		7		
			the second second second second second		7		
			Christian Comments of the Comm		7		
			And the second s		7		
The state of the s			Charles and the second				
The state of the s			and he has been been replaced in the second of the second		,	とうこうろうし	
			Company of the Compan		7	ノゴココココンブイ	
			The second secon			ノゴココラフブマ	
			Challenger compact New Against the relationship of the contract of the contrac			ノゴンコンファ	
			Monte Management and Market Service Services and the service services and the service services and the services are services and the services and the services and the services are services and the services and the services and the services are services and the services and the services are services and the services and the services are services are services and the services are services are services and the services are services and the services are services and the services are				
			Commence of the Commence of th				
			A CONTRACTOR OF THE PARTY OF TH			ノゴコココラフフィー	
			The second secon				
			The second secon	* ((I))		ノガンブランブ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
				· ((())		ノゴンゴンフファーシェント	
				· ((()))		プランプランプラー ひょくり	
			Control of the Contro			ゴロコロコンファーローノ	
			The state of the s	· ((()))		ノゴンゴンランフィー	
			Application of the second seco	(())			
			Section of the Sectio	(())		しばらばくさい しゅうりょう	
			The second secon			プロコラファイー マン・C	
			The second secon			THE CATION CALLS	
			ACCOUNTS OF ACCOUNTS AND ACCOUN				

Fux (206) 283-5044	Seattle, WA 98119-2029 Ph. (206) 285-8282	3012 16th Avenue West	Friedman & Bruya, Inc.							% -⊡ 3	6-9-3	Sample ID Lab	City, State, ZIP—Seattle, WA 98119 Phone # (206) 285-8282	Address 3012	Company Tried	Send Report To. Michael Erdahl
Received by:	Retinquistad	Tool Jack Constitution								1/3/m	1/4/2		WA 98]][3012 16th Ave W	Etjedman and Bruya, Inc.	
	A	クイ	STONATIONS								3	Time Sampled	(206) 283-5044			
										8 2	Sø.	Matrix			3	ř
	Ō										-	Jara of	NEW AND S	b	PROJECT NAME/NO.	SUBCONTRACTOR
	<u>7</u>	Michael Erdahl	l e									Dioxins and Furans by 8290	KS Please Email Results	900 ≡	NAMB	RACT
	图		EI N									ЕРН			Š.	
	Chieguiggs		PHINT NAME	*								VPH	esults.			771 }
	U					5, 1 - 1 - 1						Nitrate		<u> </u>		7
												Sulfate		B-894	Š	
	T.	Friedman &										Alkalinity		圣	В #	
	Ħ	lan &	COMPANY							X	Y	Chlordane		Xi		
	, coin	Bruya	YWY									4	Diapose Return Ville	Rush cha	A Standa	- E
	' `	Shifter	DATE	A. C.									SAMPLE DISPOSAL Dispose after 30 days Return samples UWill call with instructions	Rush charges authorized by	ÆStandard (2 Weeks) □ RUSH	TURNAROUND TIME
	3.30pm	12:S4p+	TIME	T.					•			Notes)SAL ions	d by		of

20911	777			SAMPLE CHAIN OF CUSTODY	CHAIN C	F CUSTO		ME 09-10-12	-12 AOH /VLY	4/1/02
Send Report To	Chan	Richard SimPson	1860	SAMP	SAMPLERS (signature)	ature)	1/2	120	Page # 0	Q_{\parallel}
1	Riky	The Riky Group		PROJE	PROJECT NAME/NO.	MO.		PO#		TIME
	H 80	17541 Bothell wm	A 所	À 	1598-402	X59E	. _	Oşa,	Rush charges, authorized by	d by
City, State, ZIP Bo	Bothell	Wh 9	48011	REMARKS	RKS				SAMPLE DISPOSAI	SAL
Phone # (425) 415-055	055 Fa	Fax #							☐ Return samples ☐ Will call with instructions	ions
							ANAL	ANALYSES REQUESTED		
********	<u>-</u>					ənilo			*	11 - pe 25 9/14/11
Sample ID		Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Gase BTEX by 8	AOCs by	[15 	Notes	\$ s
8-1-3	õ	4-7	9:35	۲۰,۶	-			X		
9-1-4	70	-	4:4		_					
11-1-4	8		06:90		_			×		
B-1-13.9	OU A.E		9:75	→	70					
7 8-1	8 NE		4:40	Hzn	5	7	5	×		
8-2-3	90		9:55	1,05	v 1.					
6-2-7	97	·	(1):tr		_				-	
B-2-10	80		10:01					X		
3-2-17.5	\$ \$		a4:01	→	5			Samples received at	ceived at 4 vc	
7-7	7. 4.E.	7	51:01	Hab	N					
Friedman & Bruya, Ing		SIGNA	SIGNATURE		PRU	PRINT NAME		COMPANY	ATTA (TIME
3012 16th Avenue West	Ketter	١٧٩	1	t,	Krown K	A No. 25 K	KY		2.01.6	1315
Seattle, WA 98119-2029	Received by	100	Day	m	Lower	6		Pasima	Land &	K
Ph. (206) 285-8282	Relinquished by:	ed by:		ž.		•				
Fax (206) 283-5044	Received by:	St.	Jest C		D0 V0	V		F* BT	" "	4.21

ME 09-10-12 AD4/44 /V 83 TIME ☐ Standard (2 Weeks)
☐ RUSH
Rush charges authorized by Page # / _____of ____TURNAROUND TIME ☐ Return samples ☐ Will call with instructions SAMPLE DISPOSAL Notes ç ☐ Dispose after 30 days DATE Samples received at COMPANY ANALYSES REQUESTED **B** HES 2 VOCs by 8270 SAMPLE CHAIN OF CUSTODY **AOCs Py8260** 2013-565 A PRINT NAME BLEX by 8021B SAMPLERS (signature) PROJECT NAME/NO. TPH-Diesel Sample Type | containers # of 7 7 دنا REMARKS 120 420 59i' 73 7.07 Sampled 10:30 ex 2 10:33 10:85 51:01 1:05 10:50 Send Report To Richard Simpson Time 9:40 <u>ب</u> SIGNATURE he Riley Grove Date Sampled 4.7 Fax# 以多 27.24 Lab ED AS AE # U 9 2 7 ~ 7 209111 Friedman & Bruya, Ific. Sample ID B-4-10 91-4-8 B-3-10 6-3-17 4-5-9 6-3-7 8-1-8 City, State, ZIP 2-4-4 2, 4 8-3 Company _ Phone #_ Address

1335 41.01.7 9-101 That Smyser month Received by: Seattle, WA 98119-2029 3012 16th Avenue West

Relinquished by:

Ph. (206) 285-8282

Fax (206) 283-5044

Received by:

イオタグ

16.21

0 10 11

11167	C	•		SAMPLE	AMPLE CHAIN OF CUSTODY	F CUS	TOD	×	ME	21-01-60	7-12	tay tax	al to	E
Send Report To	K. Kras		Similar	<u> </u>	SAMPLERS (signature)	ature)	13	7		l. 1		Page # />	y o	
F	Riry		6000	<u> </u>	PROJECT NAME/NO.	NO.	•			PO#	St	TURNAROUND TIME Standard (2 Weeks)	UND TIME ceks)	
				 I	シャークマ	7	YY				Rush cha	Rush charges authorized by	horized by	.
City, State, ZIP				REMARKS	RKS						6	SAMPLE DISPOSAI	ISPOSAL	
Phone #	Fa	Fax #										 □ Dispose after 30 days □ Return samples □ Will call with instructions 	o days nstructions	
								ANA	CYSES R	ANALYSES REOUESTED	3			7
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	AOCs by 8021B		HCID				Notes	
4-5-4	70	9-7	11:70	51.1	-			- 1						
9-7-7	92		رک (ک											
8-5-11	23kH		ا (به		16°				×					T
13-5-16	वे		11:25	 	_									
8-5	1.8. 1.7.		02:11	Hn	7~		X		X		-			T -
4-9-8	2		9h:J!	1:15				-	X					T
9-9-8	77		11:42	_	-			 	 					T
B-6-11.5	2.8 k		11:39		7			 		-				1
B-6-16	\$		(1:59	->						Sample	Samples received	d at 4	۔ د	Τ
4-6	88 17.	>	18:40	ЦХO	2		X	-	X					Т-
Friedman & Bruya, Inc.		SIGN/	SIGNATURE		PRI	PRINT NAME	田			COMPANY	Ž	DATE	TIME	7 [
South Will Old October 100 2020					2 hard	त्याच्या (दे 	र्		\ \ \	197		6.0.1	++	T
Ph. (206) 285-8282	Relinquished by:		1	1	Louis	13	iseda	3	S	1111	×	4.00.12	525	
Far (206) 283-5044	Received hw													
1100-101/001/01	7	4		· .	, C					C. A. D.		7	0 11	-

09-10-12 NOW HV4/1083 Samples received as Received 7.02 TIME ☐ Standard (2 Weeks)
☐ RUSH
Rush charges authorized by ☐ Return samples ☐ Will call with instructions SAMPLE DISPOSAL Notes म्हारा गर्भ ☐ Dispose after 30 days Received D1612 DATE COMPANY ANALYSES REQUESTED **B** SAMPLE CHAIN OF CUSTODY HE HFS **2AOCs ph 8510 AOCs py8260** 104 - 265A PRINT NAME SAMPLERS (signature) PROJECT NAME/NO. TPH-Diesel Sample Type | containers # of S 3 REMARKS 1:16 HZ <u>51.</u> 731 Date Time Sampled Sampled 95:01 本 <u>=</u> 13:35 14:42 19.35 07: < 1 17:50 ر مربح المربح 1):(1 Received by: SIGNATURE Send Report To Richard SimPan 9-7 Tte Rivey GANT Relinquished by: Fax# 138 FE 33 A.E Гар 38 483 171 3940 3.4 34 37 3 $\frac{c}{c}$ 209111 Seattle, WA 98119-2029 Friedman & Bruya, Inç 3012 16th Avenue West 8-4-3 B-7-8.5 5-6-8 Sample ID h-8-8 Ph. (206) 285-8282 17-7-8 4-6-6 8-8-16 City, State, ZIP 11-8-8 6-8-0 8-8 Company __ Address. Phone #

910-17 14. 8

T+ 87

Fax (206) 283-5044

183	0	Ą	by:	H	su		T	mare				T	T		T	T	T		7	Ž	
10x /14	ک مر	TURNAROUND TIME	Rush charges authorized by:	SAMPLE DISPOSAI	Dispose after 30 days Return samples Will call with instructions		Notes	Des	10 1							14.	1	DATE TEME	15	3,2 193	
-12	Page #	TURNAROUND Standard (2 Weeks)	RUSH tush charges	SAMP	Dispose after 30 days Return samples Will call with instruct			, A							-	a pan			61016	21015	
01-60			A	1		ESTED							-			mples received as		COMPANY	0	11	
エル		PO#				ANALYSES REQUESTED	Orpholy.			×						Ž	-		/5/	Mes!	
	1		~		ID.com	ANALY	VOCs by 8260	1	ક										5.	h	
OF CUST	ture)	NO.	2017.265		Attention: bair@rilev-grou		TPH-Gasoline TPH-Gasoline STEX by 8021B											PRINT NAME	4	INTO	
SAMPLE CHAIN OF CUSTODY	SAMPLERS (signature)	PROJECT NAME/NO	2		Attention: Dave Bair dbair@rilev-group.com		# of containers		٦	-6	4	٥	7	70	~	_	ا ما	PRI	ward	alle	C
AMPLE	SAMPI	PROJE	· · · · · · · · · · · · · · · · · · ·	REMARKS	Dave		Sample Type	50:1	420	1,05			→	王	1.05		~		N	7	
Ω							Time Sampled Si	1:15	2	1:15	0); ;	54:1	1:50	H 55:1	7:05	۶: ره	7:15	JRE	J.	X	
	. 02	~ PC }~/	A A		15-0311		Date Sampled S	9-7							_	A	7	SIGNATURE		Ta Van	(
	R. Chad Cl. 12		Way NE, S	WA 98011	ax # 425 4.		Lab	4.8 A.8	42.6	u.3.A.B	44	74 17	463	がなった。	84	£ !	以 第 第			Relinquished by:	Received by:
771		ey Group,	Address: 17522 Bothell Way NE, Ste A	City, State, ZIP Bothell, WA 98011	Phone # 425 415-0551 Fax # 425 415-0311		OI a	8	-	7.1		13-10-10	13-10-17	B - 10	6-11-8	0-11-0	B-11-9	4	/		
-4 P	Send Report To	Company: Riley Group,	ress: 175	, State, ZI	ne # 425 4		Sample ID	8-9-8	8-9	5-10-3	9-10-8	18-1	13-1	6	B		2	Friedman & Bruya, Inc. 3012 16th America West	Seattle. WA 98119-2029	Ph. (206) 285-8282	Fax (206) 283-5044
	Sen	Con	Add	City	Pho													Friedn 3012 1	Seattle	Ph. (36	Fax (2)

2/1/8	d	en	1						T	T		$\overline{}$	_	T	T		1	7 [ع لا) 20	
104/14/183) jo	TUKNAKUUND TIME ndard (2 Weeks)	Rush charges authorized by:	SAMPLE DISPOSAL	Return samples Will call with instructions		Notes													-	
2	- 11:	TUKNAKUUND Standard (2 Weeks)	ges auth	SAMPLE DISPO	Return samples Will call with ins							. -				1	4	OT A CT	1.0.0	4.10.12	9.00
27	Page #	Standar	rosh ush char	SAN	Return e Will call											1	# 5	 -	4	6	0
01 -			ద	<u> </u>		TED										receis		A NIV		X	C
ME 09-10-17		PO#	•			EQUES			<u> </u>				-	-	<u> </u>	Samples received at		COMPANY		and	6
7						ANALYSES REQUESTED	()/ 2(f)		×	1			-						1		
≽-					8	ANAI	SAOCs by 8270		+		-	+	+-	-	 	╀					
OD	1		عـــــــــــــــــــــــــــــــــــــ		10.co		VOCs by 8260		X				+	+		-			B		
UST			7		Pro		BLEX by 8021B											PRINT NAME	3	No.	
5 E	ure)	0.	\mathcal{K}		Attention: lbair@riley		TPH-Diesel	.	-	_	ļ							Z H	X	13	7
0	nati	E	1		tten	H			-	-		-	 	┿				PRIN	X	Lavar	
SAMPLE CHAIN OF CUSTODY	SAMPLERS (signature)	PROJECT NAME/NO.	2017-2654	KS	Attention: Dave Bair dbair@rilev-group.com		# of containers	-	85										School	R	Q
LE	MPL	OJE(REMARKS	Dave	П						1	-	-	 				لا		
SAMP	SA	E.		RE			Sample Type	9111	H 20										>/	1	
- -						- 	Time Sampled	2.70	7.7									3E	9	mala	2
:	<u> </u>	-			•			3	À									ATT		X	,)
	Richard Singer		te A	_	Fax # 425 415-0311		Date Sampled	4.7	→						-			SIGNATURE		ano.	A
≥	10/	·	ay NE, 6	A 9801.	: # 425 4		Lab ID	19	5.8 A.E											Relinquished hy	Received by:
209111	N.C.	roup,	Address: 17522 Bothell Way NE, Ste A	City, State, ZIP Bothell, WA 98011	- 1							-		-					12 2		- F
		Company: Riley Group,	522 Bo	IP Bot	Phone # 425 415-0551		Sample ID	=		·						·		Friedman & Bruya, Inc.	South West South West	13-20. 282	044
	Send Report To	ny: R	ıs: 17!	tate, 2	# 425		Samı	3-11-13	11-8									ı & Bı	r Aver 74 oo	Ph. (206) 285-8282	Fax (206) 283-5044
	and F	aduic	ldres	ty, S	one			2						·				dmai	1297	(908)	(302)
	ß	ŏ	Ac	<mark>ర</mark>	£					.:		:						Frie	SUIL	Ph. (Fax (
				• • • •			•		•								—— <u>—</u>	:	•••	:	