FIDIOS				SAMPLE CHAIN OF CUSTODY	CHAIN (OF CUS	TOD		L.	= 15/15	S.	:	00	Boi/VSI
ort To	the mark	Franke Moelew	clee	- SAMP	SAMPLERS (signatura) PROJECT NAME/NO.	aturad	<i>Y</i>	\mathscr{Y}^{\vdash}	γ	₹ PO#		Page # TURNAROUND		of TIME
Address 911 C. FLA	I'T	Are	5 100		North-Edge,		Kev 0 3072B	<u>к</u> х	870			N SS	authorized by	ed by
City, State, ZIP ビント 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	لمحمال 112 Fax	to~ #	98033	2 REMARKS	RKS							SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	SAMPLE DISPOSA) pose after 30 days um samples I call with instructior	SAL s tions
								ANAL	YSES R	ANALYSES REQUESTED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel TPH-Gasoline	AOC ² P _y 8260 BTEX b _y 8021B	SVOCs by 8270	PA-45				No	Notes
	- V 10	$\sqrt{2}$	520	Soil	1154	X X	X		X					
140 (TEMS	05	~	0805	~	Ś	X X	X							
rto ptems	03	~	1025	\langle	5	X X X	X							
Com 15	ठ	Z	1035	\checkmark	\diamond	X X X	X		X					
500-18 C 44'	1 20	\sim	1407	Ś	~>	Х Х	X		X					
ID Churges per														
EMIJ = VE														
		SIGN	SIGNATURE			PRINT NAME	ME			COMPANY	NY	T DA	DATE	TIME
	Kelinquished by	hed by	Z	Z		vault n	Mucha	R		AESI	Ч	1/5		455
Dh. (206) 285-8282	Relinquished by:	hed by:	140		Nhan	7	70	77		T	N/	5	151	55%
Fax (206) 283-5044	Received by:	by:							oles re	en bleeree of united and a	0)			
FORMS/COC/COC.DOC									×					

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 8, 2015

Jon Sondergaard, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Mr. Sondergaard:

Included are the results from the testing of material submitted on January 6, 2015 from the North Edge KV030772B, F&BI 501049 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Frank Mocker AE10108R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 6, 2015 by Friedman & Bruya, Inc. from the Associated Earth Sciences North Edge KV030772B, F&BI 501049 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Associated Earth Sciences
501049 -01	SW-5 @ 40
501049 -02	SW-7 @ 41
501049 -03	SW-16 @ 30
501049 -04	SW-11 @ 25

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/15 Date Received: 01/06/15 Project: North Edge KV030772B, F&BI 501049 Date Extracted: 01/07/15 Date Analyzed: 01/07/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
SW-5 @ 40 501049-01	<0.02	<0.02	< 0.02	<0.06	<2	96
SW-7 @ 41 501049-02	<0.02	< 0.02	< 0.02	<0.06	<2	96
SW-16 @ 30 501049-03	<0.02	< 0.02	< 0.02	<0.06	<2	85
SW-11 @ 25 501049-04	< 0.02	< 0.02	< 0.02	<0.06	<2	96
Method Blank ^{05-0017 MB}	< 0.02	< 0.02	< 0.02	< 0.06	<2	91

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/15 Date Received: 01/06/15 Project: North Edge KV030772B, F&BI 501049 Date Extracted: 01/07/15 Date Analyzed: 01/07/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Surrogato

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	<u>(% Recovery)</u> (Limit 56-165)
SW-5 @ 40 501049-01	<50	<250	108
SW-7 @ 41 501049-02	<50	<250	111
SW-16 @ 30 501049-03	<50	<250	98
SW-11 @ 25 501049-04	<50	<250	110
Method Blank ^{05-034 MB}	<50	<250	107

ENVIRONMENTAL CHEMISTS

5		1	5	
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SW-7 @ 41 01/06/15 01/07/15 01/07/15 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501049 501049-02 1/5 010729.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene		% Recovery: 88 107	Lower Limit: 50 50	Upper Limit: 150 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthen	ie	< 0.01		
Benzo(k)fluoranther	ne	< 0.01		
Indeno(1,2,3-cd)pyre	ene	< 0.01		
Dibenz(a,h)anthrace	ene	< 0.01		
Benzo(g,h,i)perylene	9	< 0.01		

ENVIRONMENTAL CHEMISTS

5		I	5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SW-11 @ 25 01/06/15 01/07/15 01/07/15 Soil mg/kg (ppm)	Dry Weight		Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501049 501049-04 1/5 010730.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 85 108		Lower Limit: 50 50	Upper Limit: 150 150
		Concentration			
Compounds:		mg/kg (ppm)			
Naphthalene		< 0.01			
Acenaphthylene		< 0.01			
Acenaphthene		< 0.01			
Fluorene		< 0.01			
Phenanthrene		< 0.01			
Anthracene		< 0.01			
Fluoranthene		< 0.01			
Pyrene		< 0.01			
Benz(a)anthracene		< 0.01			
Chrysene		< 0.01			
Benzo(a)pyrene		< 0.01			
Benzo(b)fluoranthen	ie	< 0.01			
Benzo(k)fluoranther	ne	< 0.01			
Indeno(1,2,3-cd)pyre	ene	< 0.01			
Dibenz(a,h)anthrace	ene	< 0.01			
Benzo(g,h,i)perylene)	< 0.01			

ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 01/07/15 01/07/15 Soil mg/kg (ppm) Dry	y Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501049 05-031 mb 1/5 010725.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene		Recovery: 88 88	Lower Limit: 50 50	Upper Limit: 150 150
	Con	centration		
Compounds:	mg	g/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranther		< 0.01		
Benzo(k)fluoranther		< 0.01		
Indeno(1,2,3-cd)pyre		< 0.01		
Dibenz(a,h)anthrace		< 0.01		
Benzo(g,h,i)perylene	<u>)</u>	<0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/15 Date Received: 01/06/15 Project: North Edge KV030772B, F&BI 501049

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 501056-01 (Duplicate)

		Sample Result	Duplicate Result	RPD
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	90	69-120
Toluene	mg/kg (ppm)	0.5	93	70-117
Ethylbenzene	mg/kg (ppm)	0.5	94	65-123
Xylenes	mg/kg (ppm)	1.5	92	66-120
Gasoline	mg/kg (ppm)	20	90	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/15 Date Received: 01/06/15 Project: North Edge KV030772B, F&BI 501049

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 501049-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	104	108	63-146	4
Laboratory Code: L	aboratory Control	Sample					
			Percent				
	Reporting	Spike	Recovery	Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	103	79-1	44		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/15 Date Received: 01/06/15 Project: North Edge KV030772B, F&BI 501049

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 501049-04 1/5 (Matrix Spike)

Laboratory Couc. 501045	04 1/5 (Matrix Sp	inc)			
			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	88	50-150
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	93	50-150
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	90	50-150
Fluorene	mg/kg (ppm)	0.17	< 0.01	95	50-150
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	90	50-150
Anthracene	mg/kg (ppm)	0.17	< 0.01	88	50-150
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	97	50-150
Pyrene	mg/kg (ppm)	0.17	< 0.01	94	50-150
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	100	50-150
Chrysene	mg/kg (ppm)	0.17	< 0.01	97	50-150
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	97	50-150
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	101	50-150
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	94	50-150
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	107	50-150
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	108	50-150
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	102	50-150

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Cout. Laborat	ony control Sump		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	90	91	70-130	1
Acenaphthylene	mg/kg (ppm)	0.17	94	93	70-130	1
Acenaphthene	mg/kg (ppm)	0.17	92	92	70-130	0
Fluorene	mg/kg (ppm)	0.17	97	98	70-130	1
Phenanthrene	mg/kg (ppm)	0.17	91	94	70-130	3
Anthracene	mg/kg (ppm)	0.17	88	92	70-130	4
Fluoranthene	mg/kg (ppm)	0.17	97	100	70-130	3
Pyrene	mg/kg (ppm)	0.17	91	97	70-130	6
Benz(a)anthracene	mg/kg (ppm)	0.17	97	101	70-130	4
Chrysene	mg/kg (ppm)	0.17	96	102	70-130	6
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	98	98	59-118	0
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	102	105	70-130	3
Benzo(a)pyrene	mg/kg (ppm)	0.17	90	92	63-105	2
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	106	107	47-126	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	109	111	49-128	2
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	104	104	51-119	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

MUE OI/Ob//IS USI TURNAROUND TIME Of BO TURNAROUND TIME Standard (2 Weeks) BO A Standard (2 Weeks) BO BO A RUSH 2 dan per Fm BO A Rush charges authorized by A B Rush charges authorized by A I Dispose after 30 days Dispose after 30 days I Dispose after 30 days I Return samples I Will call with instructions I With instructions	ESTED Notes Notes	COMPANY DATE TIME ACEXE 4/6/15 1300 F-23 T 1/6/15 V
SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) PROJECT NAME/NO. PROJECT NAME/NO. New Edy (ICV0 30772B REMARKS	ANALYSES REQUESTED	PRINT NAME Frank- Moedler Nhan Phan Fa
501049 SAMP Send Report To Frank Moder Si Send Report To Frank Moder Si Company MESE Moder Si Address 911 Fifth Ave Steles R City, State, ZIP Kirkdand, wh 98033 R Phone # 25 766 5712 Fax #	Sample ID Sample ID Date Time Sampled Sampl	Friedman & Bruya, Inc.SIGNATURE3012 16th Avenue WestRelinquished by3012 16th Avenue WestRelinquished bySeattle, WA 98119-2029Received by:Ph. (206) 285-8282Relinquished by:Fax (206) 283-5044Received by:Formsrcocrcoc.bocReceived by:

e.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 8, 2015

Jon Sondergaard, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Mr. Sondergaard:

Included are the results from the testing of material submitted on January 7, 2015 from the North Edge KV030772B, F&BI 501064 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Frank Mocker AE10108R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 7, 2015 by Friedman & Bruya, Inc. from the Associated Earth Sciences North Edge KV030772B, F&BI 501064 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Associated Earth Sciences
501064 -01	SW-10@21
501064 -02	PC-15@35.5
501064 -03	PC-18@35
501064 -04	PC-11@35.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/15 Date Received: 01/07/15 Project: North Edge KV030772B, F&BI 501064 Date Extracted: 01/07/15 Date Analyzed: 01/07/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-132)
SW-10@21 501064-01	<0.02	< 0.02	<0.02	<0.06	<2	96
PC-15@35.5 501064-02	<0.02	< 0.02	<0.02	< 0.06	<2	94
PC-18@35 501064-03	<0.02	< 0.02	<0.02	< 0.06	<2	98
PC-11@35.5 501064-04	< 0.02	<0.02	<0.02	<0.06	<2	100
Method Blank 05-0019 MB	< 0.02	< 0.02	< 0.02	<0.06	<2	97

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/15 Date Received: 01/07/15 Project: North Edge KV030772B, F&BI 501064 Date Extracted: 01/08/15 Date Analyzed: 01/08/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Surrogato

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
SW-10@21 501064-01	<50	<250	104
PC-15@35.5 501064-02	<50	<250	98
PC-18@35 501064-03	<50	<250	99
PC-11@35.5 501064-04	<50	<250	98
Method Blank ^{05-057 MB}	<50	<250	97

ENVIRONMENTAL CHEMISTS

5		1	5	
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SW-10@21 01/07/15 01/07/15 01/07/15 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501064 501064-01 1/5 010732.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 90 92	Lower Limit: 50 50	Upper Limit: 150 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthen	ie	< 0.01		
Benzo(k)fluoranther	ne	< 0.01		
Indeno(1,2,3-cd)pyre		< 0.01		
Dibenz(a,h)anthrace		< 0.01		
Benzo(g,h,i)perylene	9	< 0.01		

ENVIRONMENTAL CHEMISTS

5	1	5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 01/07/15 01/07/15 Soil mg/kg (ppm) Dry W	Veight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501064 05-031 mb 1/5 010725.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	:	covery: 88 88	Lower Limit: 50 50	Upper Limit: 150 150
		ntration		
Compounds:	mg/kg	g (ppm)		
Naphthalene	<	0.01		
Acenaphthylene	<	0.01		
Acenaphthene	<	0.01		
Fluorene	<	0.01		
Phenanthrene	<	0.01		
Anthracene	<	0.01		
Fluoranthene	<	0.01		
Pyrene	<	0.01		
Benz(a)anthracene	<	0.01		
Chrysene	<	0.01		
Benzo(a)pyrene	<	0.01		
Benzo(b)fluoranther	ie <	0.01		
Benzo(k)fluoranther	ne <	0.01		
Indeno(1,2,3-cd)pyre	ene <	0.01		
Dibenz(a,h)anthrace	ene <	0.01		
Benzo(g,h,i)perylene	e <	0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/15 Date Received: 01/07/15 Project: North Edge KV030772B, F&BI 501064

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 501064-01 (Duplicate)

		Sample	Duplicate	
		Result	Result	RPD
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	88	66-121
Toluene	mg/kg (ppm)	0.5	91	72-128
Ethylbenzene	mg/kg (ppm)	0.5	91	69-132
Xylenes	mg/kg (ppm)	1.5	91	69-131
Gasoline	mg/kg (ppm)	20	105	61-153

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/15 Date Received: 01/07/15 Project: North Edge KV030772B, F&BI 501064

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 501064-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	94	98	64-133	4
Laboratory Code: 1	aboratory Control	l Sample					
			Percent				
	Reporting	Spike	Recovery	Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	94	58-1	47		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/08/15 Date Received: 01/07/15 Project: North Edge KV030772B, F&BI 501064

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 501049-04 1/5 (Matrix Spike)

Laboratory Code. J01043-	04 1/J (Matrix Sp	ike)			
			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	88	50-150
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	93	50-150
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	90	50-150
Fluorene	mg/kg (ppm)	0.17	< 0.01	95	50-150
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	90	50-150
Anthracene	mg/kg (ppm)	0.17	< 0.01	88	50-150
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	97	50-150
Pyrene	mg/kg (ppm)	0.17	< 0.01	94	50-150
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	100	50-150
Chrysene	mg/kg (ppm)	0.17	< 0.01	97	50-150
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	97	50-150
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	101	50-150
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	94	50-150
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	107	50-150
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	108	50-150
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	102	50-150

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Coue. Laborat	у		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	90	91	70-130	1
Acenaphthylene	mg/kg (ppm)	0.17	94	93	70-130	1
Acenaphthene	mg/kg (ppm)	0.17	92	92	70-130	0
Fluorene	mg/kg (ppm)	0.17	97	98	70-130	1
Phenanthrene	mg/kg (ppm)	0.17	91	94	70-130	3
Anthracene	mg/kg (ppm)	0.17	88	92	70-130	4
Fluoranthene	mg/kg (ppm)	0.17	97	100	70-130	3
Pyrene	mg/kg (ppm)	0.17	91	97	70-130	6
Benz(a)anthracene	mg/kg (ppm)	0.17	97	101	70-130	4
Chrysene	mg/kg (ppm)	0.17	96	102	70-130	6
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	98	98	59-118	0
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	102	105	70-130	3
Benzo(a)pyrene	mg/kg (ppm)	0.17	90	92	63-105	2
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	106	107	47-126	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	109	111	49-128	2
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	104	104	51-119	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

501 064 SAMPLE	SAMPLE CHAIN OF CUSTODY H	ME 01-07-15 801 /181	81
Frank Weder	E P C	Page	MF
Ar3L	PROJECT NAME/NO.	PO# DStandard (2 Weeks)) INTE
all Fifth Ave Shelow	North Edyc / 1200 3077213		A
Kurlehand was 98033	REMARKS	SAMPLE DISPOSA Dispose after 30 days	AL
Phone #425 766 5712 Fax #		□ Return samples □ Will call with instructions	ons
	ANALY	ANALYSES REQUESTED	
Sample ID Lab Date Time Sample TD Sampled Sampled Sampled	HFS SVOCs by 8270 TPH-Gasoline BTEX by 8021B TPH-Gasoline	Notes	s
5	V View XX X		
PC-15@35.5 087 / 0825 /			
PC-18@35 03) Oal6)			
PC-11 @35.5 04 \$ 1348 &	又 人义 》		
-	-		
	PRINT NAME	COMPANY DATE T	TIME
	For whe Macleer	2 1/2/1.51	كاك
Ph. (206) 285-8282 Relinquished by:	Dow	Frez 1/ 1	12:13
<u>_</u>			
FORMS/COCCOC.DOC			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 9, 2015

Jon Sondergaard, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Mr. Sondergaard:

Included are the results from the testing of material submitted on January 8, 2015 from the North Edge KV030772B, F&BI 501086 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Frank Mocker AE10109R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 8, 2015 by Friedman & Bruya, Inc. from the Associated Earth Sciences North Edge KV030772B, F&BI 501086 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Associated Earth Sciences				
501086 -01	PC-13@35.5				

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/15 Date Received: 01/08/15 Project: North Edge KV030772B, F&BI 501086 Date Extracted: 01/08/15 Date Analyzed: 01/08/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-132)
PC-13@35.5 501086-01	<0.02	<0.02	<0.02	<0.06	<2	100
Method Blank 05-0019 MB	< 0.02	< 0.02	< 0.02	< 0.06	<2	97

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/15 Date Received: 01/08/15 Project: North Edge KV030772B, F&BI 501086 Date Extracted: 01/08/15 Date Analyzed: 01/08/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
PC-13@35.5 501086-01	<50	<250	99
Method Blank ^{05-057 MB}	<50	<250	97

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/15 Date Received: 01/08/15 Project: North Edge KV030772B, F&BI 501086

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 501064-01 (Duplicate)

		Sample	Duplicate	
		Result	Result	RPD
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	88	66-121
Toluene	mg/kg (ppm)	0.5	91	72-128
Ethylbenzene	mg/kg (ppm)	0.5	91	69-132
Xylenes	mg/kg (ppm)	1.5	91	69-131
Gasoline	mg/kg (ppm)	20	105	61-153

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/15 Date Received: 01/08/15 Project: North Edge KV030772B, F&BI 501086

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 501064-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	94	98	64-133	4
Laboratory Code: 1	aboratory Control	l Sample					
			Percent				
	Reporting	Spike	Recovery	Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	94	58-1	47		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Page #ofofofofofofofofofofofofofofbotof	SQUESTED				COMPANY DATE TIME ALCR 1/8/15/130 FEDL 1/8/5/130
SAMPLE CHAIN OF CUSTODY ME SAMPLERS (signature) ME PROJECT NAMENO. PROJECT NAMENO. PROJECT NAMENO. North Edyc/ (CU030772) 18033 REMARKS	Zampled ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES Sampled Sampled Sampled Sampled				PRINT NAME Frank-IMARAN Mart Launglu
Viele cut	Lab Date 1 ID Sampled Sa	01E 1/8/15/1			Relinquished by Received by: Relinquished by: Received by:
501086 Send Report To Franke W Company MTSE Address 9(1 F.F.H. M City, State, ZIP Kivkland,	Sample ID	PC-13 @35.5			Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044 Forms/coc/coc.Doc

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 16, 2015

Jon Sondergaard, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Mr. Sondergaard:

Included are the results from the testing of material submitted on January 14, 2015 from the North Edge KV030772B, F&BI 501169 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Frank Mocker AE10116R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 14, 2015 by Friedman & Bruya, Inc. from the Associated Earth Sciences North Edge KV030772B, F&BI 501169 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Associated Earth Sciences
501169 -01	COM5
501169 -02	COM12
501169 -03	COM6
501169 -04	COM11

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/16/15 Date Received: 01/14/15 Project: North Edge KV030772B, F&BI 501169 Date Extracted: 01/14/15 Date Analyzed: 01/14/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
COM5 501169-01	<0.02	<0.02	< 0.02	<0.06	<2	79
COM12 501169-02	<0.02	< 0.02	< 0.02	<0.06	<2	84
COM6 501169-03	<0.02	<0.02	< 0.02	<0.06	<2	79
COM11 501169-04	< 0.02	< 0.02	< 0.02	<0.06	<2	84
Method Blank 05-0082 MB	< 0.02	< 0.02	< 0.02	< 0.06	<2	86

ENVIRONMENTAL CHEMISTS

Date of Report: 01/16/15 Date Received: 01/14/15 Project: North Edge KV030772B, F&BI 501169 Date Extracted: 01/14/15 Date Analyzed: 01/14/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Surrogato

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
COM5 501169-01	<50	<250	104
COM12 501169-02	<50	<250	99
COM6 501169-03	<50	<250	103
COM11 501169-04	<50	<250	112
Method Blank ^{05-097 MB}	<50	<250	103

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

J		I J		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	COM11 01/14/15 01/14/15 01/15/15 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501169 501169-04 1/5 011508.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 93 102	Lower Limit: 50 50	Upper Limit: 150 150
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthen	ie	< 0.01		
Benzo(k)fluoranther	ne	< 0.01		
Indeno(1,2,3-cd)pyre	ene	< 0.01		
Dibenz(a,h)anthrace	ene	< 0.01		
Benzo(g,h,i)perylene	<u>)</u>	< 0.01		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

5	1	5	
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 01/14/15 01/15/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501169 05-098 mb 1/5 011507.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	% Recovery: 98 -d12 98	Lower Limit: 50 50	Upper Limit: 150 150
	Concentration	1	
Compounds:	mg/kg (ppm))	
Naphthalene	<0.01		
Acenaphthylene	< 0.01		
Acenaphthene	< 0.01		
Fluorene	< 0.01		
Phenanthrene	< 0.01		
Anthracene	< 0.01		
Fluoranthene	< 0.01		
Pyrene	< 0.01		
Benz(a)anthracene	< 0.01		
Chrysene	< 0.01		
Benzo(a)pyrene	< 0.01		
Benzo(b)fluoranther	ne <0.01		
Benzo(k)fluoranther			
Indeno(1,2,3-cd)pyre			
Dibenz(a,h)anthrace			
Benzo(g,h,i)perylene	e <0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/16/15 Date Received: 01/14/15 Project: North Edge KV030772B, F&BI 501169

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 501167-01 (Duplicate)

		Sample Result	Duplicate Result	RPD
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	87	69-120
Toluene	mg/kg (ppm)	0.5	88	70-117
Ethylbenzene	mg/kg (ppm)	0.5	89	65-123
Xylenes	mg/kg (ppm)	1.5	87	66-120
Gasoline	mg/kg (ppm)	20	105	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 01/16/15 Date Received: 01/14/15 Project: North Edge KV030772B, F&BI 501169

mg/kg (ppm)

5,000

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 501168-01 (Matrix Spike)

Diesel Extended

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	100	104	73-135	4
Laboratory Code:	Laboratory Control	Sample					
			Percent				
	Reporting Units	Spike	Recovery	Acceptane	ce		
Analyte		Level	LCS	Criteria			

104

74-139

ENVIRONMENTAL CHEMISTS

Date of Report: 01/16/15 Date Received: 01/14/15 Project: North Edge KV030772B, F&BI 501169

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 501137-27 1/5 (Matrix Spike)

i 1/5 (Matrix Sp	ike)			
		Sample	Percent	
Reporting	Spike	Result	Recovery	Acceptance
Units	Level	(Wet wt)	MS	Criteria
mg/kg (ppm)	0.17	< 0.01	90	50-150
mg/kg (ppm)	0.17	< 0.01	97	50-150
mg/kg (ppm)	0.17	0.33	102 b	50-150
mg/kg (ppm)	0.17	0.13	101 b	50-150
mg/kg (ppm)	0.17	0.85	116 b	50-150
mg/kg (ppm)	0.17	0.21	98 b	50-150
mg/kg (ppm)	0.17	0.98	184 b	50-150
mg/kg (ppm)	0.17	0.94	186 b	50-150
mg/kg (ppm)	0.17	0.52	178 b	50-150
mg/kg (ppm)	0.17	0.51	163 b	50-150
mg/kg (ppm)	0.17	0.62	104 b	50-150
mg/kg (ppm)	0.17	0.16	185 b	50-150
mg/kg (ppm)	0.17	0.50	175 b	50-150
mg/kg (ppm)	0.17	0.28	140 b	50-150
mg/kg (ppm)	0.17	0.073	104 b	50-150
mg/kg (ppm)	0.17	0.25	105 b	50-150
	Reporting Units mg/kg (ppm) mg/kg (ppm)	Reporting Units Spike Level mg/kg (ppm) 0.17 mg/kg (ppm) 0.17	Reporting Units Spike Level Result (Wet wt) mg/kg (ppm) 0.17 <0.01	Reporting Units Spike Level Sample Result Percent Recovery mg/kg (ppm) 0.17 <0.01

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Coue. Laborat		10 1/0	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	88	89	70-130	1
Acenaphthylene	mg/kg (ppm)	0.17	94	95	70-130	1
Acenaphthene	mg/kg (ppm)	0.17	91	91	70-130	0
Fluorene	mg/kg (ppm)	0.17	95	95	70-130	0
Phenanthrene	mg/kg (ppm)	0.17	89	89	70-130	0
Anthracene	mg/kg (ppm)	0.17	88	89	70-130	1
Fluoranthene	mg/kg (ppm)	0.17	96	98	70-130	2
Pyrene	mg/kg (ppm)	0.17	102	97	70-130	5
Benz(a)anthracene	mg/kg (ppm)	0.17	95	97	70-130	2
Chrysene	mg/kg (ppm)	0.17	98	98	70-130	0
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	97	98	59-118	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	107	104	70-130	3
Benzo(a)pyrene	mg/kg (ppm)	0.17	91	94	63-105	3
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	97	103	47-126	6
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	100	107	49-128	7
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	92	96	51-119	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

5 DI/69 Send Report To <u>Forwhy</u> Company <u>AnSSE</u> Address <u>All H 374</u> M City, State, ZIP <u>K-weland</u> Phone # <u>725 766 5112 Fax #</u>	wh are	SAMPLE CHA SAMPLER PROJECT N PROJECT N PROJECT N REMARKS	NN OF CUS (signature) (AME/NO.	TODY M LU13d772B	The state of the s	We Di Lish Rt.	- /4-/5 V5/ 802 Page # of 902 TURNAROUND TIME Standard (2 Weeks) Rush charges authorized by Rush charges authorized by SAMPLE DISPOSAL Dispose after 30 days C Dispose After 30 days C Disp
Sample ID	Lab Date Time ID Sampled Sampled	lype	BTEX by 8021B TPH-Gasoline TPH-Diesel	VOCs by 8260	HHS SVOCs by 8270		Notes
COM 5 COM 12 COM 12 COM 12	01 1/13/5 1315 02/4 E & 12 08 15 02/4 E & 12 00		XXXX XXXX XXXX XXXX				
							2
Friedman & Bruya, Inc. 3012 16th Avenue West Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044 Formsycocycoc.boc	SIGNATURE Relinquished : GNATURE Received by: May Relinquished by: Received by:	2	PRINT NAME LAWLS BIL	K WN CLO	COMPANY FEB		DATE TIME 14/15 13 21 14/16 (330)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 19, 2015

Jon Sondergaard, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Mr. Sondergaard:

Included are the results from the testing of material submitted on January 16, 2015 from the North Edge/KV030772B, F&BI 501213 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Frank Mocker AE10119R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 16, 2015 by Friedman & Bruya, Inc. from the Associated Earth Sciences North Edge/KV030772B project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Associated Earth Sciences
501213 -01	COM 7
501213 -02	COM 8
501213 -03	COM 10
501213 -04	COM 9

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/15 Date Received: 01/16/15 Project: North Edge/KV030772B, F&BI 501213 Date Extracted: 01/16/15 Date Analyzed: 01/16/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-132)
COM 7 501213-01	< 0.02	< 0.02	< 0.02	< 0.06	<2	92
COM 8 501213-02	<0.02	< 0.02	< 0.02	< 0.06	<2	96
COM 10 501213-03	< 0.02	< 0.02	<0.02	< 0.06	<2	98
COM 9 501213-04	<0.02	<0.02	<0.02	<0.06	<2	100
Method Blank 05-0085 MB	< 0.02	< 0.02	< 0.02	<0.06	<2	96

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/15 Date Received: 01/16/15 Project: North Edge/KV030772B, F&BI 501213 Date Extracted: 01/16/15 Date Analyzed: 01/16/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Surrogato

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
COM 7 501213-01	<50	<250	99
COM 8 501213-02	<50	<250	95
COM 10 501213-03	<50	<250	96
COM 9 501213-04	<50	<250	96
Method Blank ^{05-118 MB}	<50	<250	108

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/15 Date Received: 01/16/15 Project: North Edge/KV030772B, F&BI 501213

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 501198-05 (Duplicate)

J	·····	- /	Duplicate	
		Sample Result	Result	RPD
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	91	66-121
Toluene	mg/kg (ppm)	0.5	94	72-128
Ethylbenzene	mg/kg (ppm)	0.5	95	69-132
Xylenes	mg/kg (ppm)	1.5	94	69-131
Gasoline	mg/kg (ppm)	20	105	61-153

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/15 Date Received: 01/16/15 Project: North Edge/KV030772B, F&BI 501213

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 501195-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	115	117	73-135	2
Laboratory Code:	Laboratory Control	Sample					
	Reporting Units	Spike	Percent Recovery	Acceptan	ce		

	Reporting Units	Spike	Recovery	Acceptance
Analyte		Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	116	74-139

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Inc. Reting Received and Retering	SAMPLE CHAIN OF CUSTODY	- Muelca SAMPLERS (signature) (C) PROJECT NAME/NO. PO# Project North Edys/ 1 c/0 3 27 72 B Could, up 98033 REMARKS DL. C. D. L. M. L. M. C. M. L. M. C. M. C. M. L. M. C. M. C. L. M.		VOCs by \$260 BTEX by \$021B TPH-Gasoline Containers TPH-Diesel	1/5/15/1222 501 14 XXX 1222 501 14 XXX	Might 1230 C C K K K En 1/2/C	Milling and Marken Ma	VVIII VXXX VXX VIII			SIGNATURE PRINT NAME COMPANY DATE TIME uished De LL Frinde Wicker MEST 1/16/15 1032 ed by MEST 1/16/15 1032
		Autor More	Phone # 4 2 5 766 5 12 Fax #			11/ <i>51</i> / 5	14645	1/1/16/15	 		SIGNAT Relinquished by Received by Relinquished by

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 19, 2015

Jon Sondergaard, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Mr. Sondergaard:

Included are the results from the testing of material submitted on January 16, 2015 from the North Edge/KV030772B, F&BI 501226 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Frank Mocker AE10119R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 16, 2015 by Friedman & Bruya, Inc. from the Associated Earth Sciences North Edge/KV030772B, F&BI 501226 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Associated Earth Sciences
501226 -01	Com13
501226 -02	Com19

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/15 Date Received: 01/16/15 Project: North Edge/KV030772B, F&BI 501226 Date Extracted: 01/19/15 Date Analyzed: 01/19/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-132)
Com13 501226-01	<0.02	< 0.02	<0.02	<0.06	<2	101
Com19 501226-02	< 0.02	< 0.02	< 0.02	< 0.06	<2	96
Method Blank ^{05-121 MB}	< 0.02	< 0.02	< 0.02	< 0.06	<2	96

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/15 Date Received: 01/16/15 Project: North Edge/KV030772B, F&BI 501226 Date Extracted: 01/16/15 Date Analyzed: 01/16/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
Com13 501226-01	<50	<250	97
Com19 501226-02	<50	<250	104
Method Blank ^{05-132 MB}	<50	<250	104

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/15 Date Received: 01/16/15 Project: North Edge/KV030772B, F&BI 501226

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 501226-01 (Duplicate)

Laboratory could	ooi220 oi (Dupileu	,		
			Duplicate	
		Sample Result	Result	RPD
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	76	66-121
Toluene	mg/kg (ppm)	0.5	78	72-128
Ethylbenzene	mg/kg (ppm)	0.5	77	69-132
Xylenes	mg/kg (ppm)	1.5	79	69-131
Gasoline	mg/kg (ppm)	20	90	61-153

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/15 Date Received: 01/16/15 Project: North Edge/KV030772B, F&BI 501226

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 501217-03 (Matrix Spike)

ercent							
ecovery Acceptance RPD							
MSD Criteria (Limit 20)							
114 63-146 4							
Laboratory Code: Laboratory Control Sample							
ce la							
•							

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

50126	26	Š	SAMPLE CHAIN OF CUSTODY	O NIAIN O	F CUSTC	DY		A.	1 31	ME 1/16/15 80, 1V2	1 / V_2.
Send Report To Fran Company Address 911 F Fth	Ne Muc SI	ste 100	SAMPL PROJEC	SAMPLERS (signature), PROJECT NAME/NO.	(a)	10 0307	PO# PO#		$\Box = \frac{P_{ave \#}}{TURNAROUND}$ $\Box Standard (2 Wecks)$ $RUSH (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)$	Page # Af TURNAROUND TIME INAROUND TIME IN	
City, State, ZIP K-V-Clund, u	to a	8033	REMARKS	KS .					SAMPLE DI SAMPLE DI Dispose after 30 Return samples Will call with in	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	
						ANAI	ANALYSES REQUESTED	QUESTED			
Sample ID	Lab Date ID Sampled S	Time	Sample Type	# of containers	TPH-Diesel TPH-Gasoline BTEX by 8021B	2ΛΟC ² Ρ ^λ 8530 ΛΟC ² Ρ ^λ 8500	НЕЗ			Notes	
COM 13	01A-7) 16/5	1220	501)	1 227	X X X						
Com 19	020-D (16/5	1353	501))	X X X						
				,							1
									-		
					· · · · · · · · · · · · · · · · · · ·						
								Sample		dat 2. c	
	SIGNATURE	TURE		PR	PRINT NAME			COMPANY		DATE TIME	
3012 16th Avenue West Seattle, WA 98119-2029	Received by:	ACL &	JL	Krine Nhés	and Wicker	Wicker		MEST T.BT	×//	121121120	
L	Relinquished by:				-	-		Y	• \		<u></u>
14	Received by:										1
FORMS/COC/COC.DOC											7

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 27, 2015

Jon Sondergaard, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Mr. Sondergaard:

Included are the additional results from the testing of material submitted on January 19, 2015 from the North Edge KV030772B, F&BI 501242 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Frank Mocker AE10127R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 19, 2015 by Friedman & Bruya, Inc. from the Associated Earth Sciences North Edge KV030772B project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Associated Earth Sciences
501242 -01	COM 20
501242 -02	COM 21

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

J		I J		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	COM 21 01/19/15 01/22/15 01/22/15 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501242 501242-02 1/5 012225.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 94 92	Lower Limit: 50 35	Upper Limit: 150 159
Compounda		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranther		< 0.01		
Benzo(k)fluoranther		< 0.01		
Indeno(1,2,3-cd)pyre		< 0.01		
Dibenz(a,h)anthrace		< 0.01		
Benzo(g,h,i)perylene	<u>è</u>	< 0.01		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

5	1	5	
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 01/22/15 01/22/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501242 05-155 mb 1/5 012221.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene		Lower Limit: 50 35	Upper Limit: 150 159
Compounds:	Concentration mg/kg (ppm)		
Naphthalene	<0.01		
Acenaphthylene	< 0.01		
Acenaphthene	<0.01		
Fluorene	<0.01		
Phenanthrene	<0.01		
Anthracene	<0.01		
Fluoranthene	<0.01		
Pyrene	<0.01		
Benz(a)anthracene	<0.01		
Chrysene	<0.01		
Benzo(a)pyrene	<0.01		
Benzo(b)fluoranther	ne <0.01		
Benzo(k)fluoranther	ne <0.01		
Indeno(1,2,3-cd)pyre	ene <0.01		
Dibenz(a,h)anthrace	ene <0.01		
Benzo(g,h,i)perylene	< 0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/27/15 Date Received: 01/19/15 Project: North Edge KV030772B, F&BI 501242

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 501289-02 1/5 (Matrix Spike)

Laboratory Code. Jorzog-oz 1/5 (Watrix Spike)							
			Sample	Percent			
	Reporting Spi		Result	Recovery	Acceptance		
Analyte	Units	Level	(Wet wt)	MS	Criteria		
Naphthalene	mg/kg (ppm)	0.17	< 0.01	92	44-129		
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	99	52-121		
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	96	51-123		
Fluorene	mg/kg (ppm)	0.17	< 0.01	100	37-137		
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	97	45-124		
Anthracene	mg/kg (ppm)	0.17	< 0.01	95	32-124		
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	103	50-125		
Pyrene	mg/kg (ppm)	0.17	< 0.01	102	41-135		
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	114	23-144		
Chrysene	mg/kg (ppm)	0.17	< 0.01	106	45-122		
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	120	31-144		
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	114	45-130		
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	108	39-128		
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	108	28-146		
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	98	46-129		
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	91	37-133		

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Couc. Laborat	ory control Sump		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	93	90	58-121	3
Acenaphthylene	mg/kg (ppm)	0.17	98	91	54-121	7
Acenaphthene	mg/kg (ppm)	0.17	95	93	54-123	2
Fluorene	mg/kg (ppm)	0.17	100	93	56-127	7
Phenanthrene	mg/kg (ppm)	0.17	95	92	55-122	3
Anthracene	mg/kg (ppm)	0.17	92	90	50-120	2
Fluoranthene	mg/kg (ppm)	0.17	99	94	54-129	5
Pyrene	mg/kg (ppm)	0.17	102	100	53-127	2
Benz(a)anthracene	mg/kg (ppm)	0.17	107	100	51-115	7
Chrysene	mg/kg (ppm)	0.17	104	99	55-129	5
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	114	108	56-123	5
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	112	110	54-131	2
Benzo(a)pyrene	mg/kg (ppm)	0.17	103	98	51-118	5
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	118	107	49-148	10
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	111	106	50-141	5
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	102	96	52-131	6

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

 /?./5 V.5, C. gc * of C. TURNAROUND TIME Standard (2 Weeks) gr RUSH Z NAPLE Dispose anthorized by SAMPLE Dispose after 30 days Dispose after 30 days Return samples Will call with instructions 	Notes	1/20/cd	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	TIPOLOGIA SALAN
SAMPLE CHAIN OF CUSTODY ME el- SAMPLERS (signature PROJECT NAMENO. PROJECT NAM	ACC2 PX 8270 HPS SVOC2 PY 8270 HPS STEX by 8021B TPH-Gasoline STEX by 8021B TPH-Gasoline SCOC2 by 8270 TPH-Gasoline			Frind Machine COMPANY FULL LEVILL AND TAR
Norber SAM	Lab Date Time Sample Type ID Sampled Sampled	15 112 12 2017 112 2017 120 1200 1200 1200		Receive by Receive by Received by: Received by:
50/242 Send Report To Franke 1 Company MEST Address All KiFHA Mu City. State, ZIP K-1 V-k-1 am A	Sample ID	COM 20 COM 21		Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044 FoxMSCOCCOCDOC

-

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 28, 2015

Jon Sondergaard, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Mr. Sondergaard:

Included is the amended report from the testing of material submitted on January 19, 2015 from the North Edge KV030772B, F&BI 501242 project. Per your request, sample COM 20 has been removed from the case narrative since it was not logged in for any testing in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Frank Mocker AE10127R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 27, 2015

Jon Sondergaard, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Mr. Sondergaard:

Included are the additional results from the testing of material submitted on January 19, 2015 from the North Edge KV030772B, F&BI 501242 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Frank Mocker AE10127R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 19, 2015 by Friedman & Bruya, Inc. from the Associated Earth Sciences North Edge KV030772B project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Associated Earth Sciences
501242 -02	COM 21

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

J		I I J		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	COM 21 01/19/15 01/22/15 01/22/15 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501242 501242-02 1/5 012225.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 94 92	Lower Limit: 50 35	Upper Limit: 150 159
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranther	ne	< 0.01		
Benzo(k)fluoranther	ne	< 0.01		
Indeno(1,2,3-cd)pyre		< 0.01		
Dibenz(a,h)anthrace	ene	< 0.01		
Benzo(g,h,i)perylene	9	< 0.01		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

5	1	5	
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 01/22/15 01/22/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501242 05-155 mb 1/5 012221.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene		Lower Limit: 50 35	Upper Limit: 150 159
Compounds:	Concentration mg/kg (ppm)		
_			
Naphthalene	< 0.01		
Acenaphthylene	< 0.01		
Acenaphthene	<0.01		
Fluorene	< 0.01		
Phenanthrene	< 0.01		
Anthracene	< 0.01		
Fluoranthene	< 0.01		
Pyrene	< 0.01		
Benz(a)anthracene	< 0.01		
Chrysene	< 0.01		
Benzo(a)pyrene	< 0.01		
Benzo(b)fluoranthen	ne <0.01		
Benzo(k)fluoranther	ne <0.01		
Indeno(1,2,3-cd)pyre	ene <0.01		
Dibenz(a,h)anthrace	ene <0.01		
Benzo(g,h,i)perylene	< 0.01		
-			

ENVIRONMENTAL CHEMISTS

Date of Report: 01/27/15 Date Received: 01/19/15 Project: North Edge KV030772B, F&BI 501242

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 501289-02 1/5 (Matrix Spike)

Laboratory Code. Jor209-	Laboratory Code. Jorzog-oz 1/5 (Watrix Spike)							
			Sample	Percent				
	Reporting	Spike	Result	Recovery	Acceptance			
Analyte	Units	Level	(Wet wt)	MS	Criteria			
Naphthalene	mg/kg (ppm)	0.17	< 0.01	92	44-129			
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	99	52-121			
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	96	51-123			
Fluorene	mg/kg (ppm)	0.17	< 0.01	100	37-137			
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	97	45-124			
Anthracene	mg/kg (ppm)	0.17	< 0.01	95	32-124			
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	103	50-125			
Pyrene	mg/kg (ppm)	0.17	< 0.01	102	41-135			
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	114	23-144			
Chrysene	mg/kg (ppm)	0.17	< 0.01	106	45-122			
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	120	31-144			
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	114	45-130			
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	108	39-128			
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	108	28-146			
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	98	46-129			
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	91	37-133			

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Cout. Laborat	ony control Sump		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	93	90	58-121	3
Acenaphthylene	mg/kg (ppm)	0.17	98	91	54-121	7
Acenaphthene	mg/kg (ppm)	0.17	95	93	54-123	2
Fluorene	mg/kg (ppm)	0.17	100	93	56-127	7
Phenanthrene	mg/kg (ppm)	0.17	95	92	55-122	3
Anthracene	mg/kg (ppm)	0.17	92	90	50-120	2
Fluoranthene	mg/kg (ppm)	0.17	99	94	54-129	5
Pyrene	mg/kg (ppm)	0.17	102	100	53-127	2
Benz(a)anthracene	mg/kg (ppm)	0.17	107	100	51-115	7
Chrysene	mg/kg (ppm)	0.17	104	99	55-129	5
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	114	108	56-123	5
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	112	110	54-131	2
Benzo(a)pyrene	mg/kg (ppm)	0.17	103	98	51-118	5
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	118	107	49-148	10
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	111	106	50-141	5
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	102	96	52-131	6

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 23, 2015

Jon Sondergaard, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Mr. Sondergaard:

Included are the results from the testing of material submitted on January 21, 2015 from the North Edge KV030772B, F&BI 501261 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Frank Mocker AE10123R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 21, 2015 by Friedman & Bruya, Inc. from the Associated Earth Sciences North Edge KV030772B, F&BI 501261 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Associated Earth Sciences				
501261 -01	COM 18				

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/23/15 Date Received: 01/21/15 Project: North Edge KV030772B, F&BI 501261 Date Extracted: 01/21/15 Date Analyzed: 01/21/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-132)
COM 18 501261-01	<0.02	<0.02	<0.02	<0.06	<2	100
Method Blank ^{05-123 MB2}	< 0.02	< 0.02	< 0.02	< 0.06	<2	105

ENVIRONMENTAL CHEMISTS

Date of Report: 01/23/15 Date Received: 01/21/15 Project: North Edge KV030772B, F&BI 501261 Date Extracted: 01/21/15 Date Analyzed: 01/21/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
COM 18 501261-01	<50	<250	86
Method Blank ^{05-148 MB}	<50	<250	89

ENVIRONMENTAL CHEMISTS

Date of Report: 01/23/15 Date Received: 01/21/15 Project: North Edge KV030772B, F&BI 501261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 501239-01 (Duplicate)

		Sample Result	Duplicate Result	RPD
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	76	66-121
Toluene	mg/kg (ppm)	0.5	79	72-128
Ethylbenzene	mg/kg (ppm)	0.5	76	69-132
Xylenes	mg/kg (ppm)	1.5	79	69-131
Gasoline	mg/kg (ppm)	20	85	61-153

ENVIRONMENTAL CHEMISTS

Date of Report: 01/23/15 Date Received: 01/21/15 Project: North Edge KV030772B, F&BI 501261

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 501261-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	87	89	64-133	2
Laboratory Code: Laboratory Control Sample							
			Percent				
	Reporting	Spike	Recovery	v Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	90	58-1	47		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ODY ME 0/- 2/-/5 US/ 20 ME 0/- 10/- 0/- 0/- 20 PO# TURNAROUND TIME A PO# Standard (2 Weeks) & Amele A Lesselfs SAMPLE DISPOSAL A Labes Dispose after 30 days Labes Dispose after 30 days D Will call with instructions	HEZ HEZ ACC? PÀ 8710 ACC? PÀ8700 ACC? PÀ8700	E COMPANY DATE TIME Mochee N232 V21/15 0733 YS FZB 1/31/15 0733
APLE CHAIN OF CUSTODY M SAMPLERS (signature) (CD PROJECT NAMENO. Nu HLEdye/ 12U0 30 7223 Nu HLEdye/ 12U0 30 7223 REMARKS Card With Dales Emmi Duft Dufe	X BTEX by 8021B X TPH-Gasoline X TPH-Gasoline	PRINT NAME Frence N Jaurs Pruy
Nele 100 542100	Lab Date Time Sampled ID Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Time Sampled	SIGNATUBE Relinquisher of Nu I Mu Received by: Received by:
Send Report To FVZU/ Company De ACSE Address 911 Fifth Mue City, State, ZIP Kivelan, U Phone # 425 766 511 Prax #	Sample ID COM 18	Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044 Formsvcoccoc.Doc

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 27, 2015

Jon Sondergaard, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Mr. Sondergaard:

Included are the results from the testing of material submitted on January 22, 2015 from the North Edge KV030772B, F&BI 501289 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Frank Mocker AE10127R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 22, 2015 by Friedman & Bruya, Inc. from the Associated Earth Sciences North Edge KV030772B, F&BI 501289 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Associated Earth Sciences
501289 -01	Com16
501289 -02	Com25

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/27/15 Date Received: 01/22/15 Project: North Edge KV030772B, F&BI 501289 Date Extracted: 01/22/15 Date Analyzed: 01/22/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
Com16 501289-01	< 0.02	<0.02	<0.02	<0.06	<2	83
Com25 501289-02	<0.02	<0.02	< 0.02	< 0.06	<2	82
Method Blank 05-125 MB2	< 0.02	< 0.02	< 0.02	<0.06	<2	82

ENVIRONMENTAL CHEMISTS

Date of Report: 01/27/15 Date Received: 01/22/15 Project: North Edge KV030772B, F&BI 501289 Date Extracted: 01/22/15 Date Analyzed: 01/22/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
Com16 501289-01	<50	<250	105
Com25 501289-02	<50	<250	102
Method Blank ^{05-152 MB}	<50	<250	110

ENVIRONMENTAL CHEMISTS

5		1	5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Com16 01/22/15 01/22/15 01/22/15 Soil mg/kg (ppm)) Dry Weight		Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501289 501289-01 1/5 012224.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 123 130		Lower Limit: 50 35	Upper Limit: 150 159
Compounds		Concentration			
Compounds:		mg/kg (ppm)			
Naphthalene		< 0.01			
Acenaphthylene		< 0.01			
Acenaphthene		< 0.01			
Fluorene		< 0.01			
Phenanthrene		< 0.01			
Anthracene		< 0.01			
Fluoranthene		< 0.01			
Pyrene		< 0.01			
Benz(a)anthracene		< 0.01			
Chrysene		< 0.01			
Benzo(a)pyrene		< 0.01			
Benzo(b)fluoranthen	e	< 0.01			
Benzo(k)fluoranther	ie	< 0.01			
Indeno(1,2,3-cd)pyre		< 0.01			
Dibenz(a,h)anthrace		< 0.01			
Benzo(g,h,i)perylene	•	< 0.01			

ENVIRONMENTAL CHEMISTS

J		I J		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Com25 01/22/15 01/22/15 01/22/15 Soil mg/kg (ppm) D	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501289 501289-02 1/5 012222.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene		% Recovery: 100 99	Lower Limit: 50 35	Upper Limit: 150 159
	C	oncentration		
Compounds:	n	ng/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthen	ie	< 0.01		
Benzo(k)fluoranther	ne	< 0.01		
Indeno(1,2,3-cd)pyre	ene	< 0.01		
Dibenz(a,h)anthrace	ene	< 0.01		
Benzo(g,h,i)perylene	9	< 0.01		

ENVIRONMENTAL CHEMISTS

Ũ					
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 01/22/15 01/22/15 Soil mg/kg (ppm) Dr	ry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 05-155 mb 1/5 012221.D GCMS6 ya	501289
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	Recovery: 92 101	Lower Limit: 50 35	Upper Limit: 150 159	
C 1		ncentration			
Compounds:	m	g/kg (ppm)			
Naphthalene		< 0.01			
Acenaphthylene		< 0.01			
Acenaphthene		< 0.01			
Fluorene		< 0.01			
Phenanthrene		< 0.01			
Anthracene		< 0.01			
Fluoranthene		< 0.01			
Pyrene		< 0.01			
Benz(a)anthracene		< 0.01			
Chrysene		< 0.01			
Benzo(a)pyrene		< 0.01			
Benzo(b)fluoranther	ie	< 0.01			
Benzo(k)fluoranther	ne	< 0.01			
Indeno(1,2,3-cd)pyre	ene	< 0.01			
Dibenz(a, h)anthrace	ene	< 0.01			
Benzo(g,h,i)perylene)	< 0.01			
-					

ENVIRONMENTAL CHEMISTS

Date of Report: 01/27/15 Date Received: 01/22/15 Project: North Edge KV030772B, F&BI 501289

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 501277-04 (Duplicate)

		Sample	Duplicate	
		Result	Result	RPD
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

		Percent			
		Spike	Recovery	Acceptance	
Analyte	Reporting Units	Level	LCS	Criteria	
Benzene	mg/kg (ppm)	0.5	82	66-121	
Toluene	mg/kg (ppm)	0.5	86	72-128	
Ethylbenzene	mg/kg (ppm)	0.5	85	69-132	
Xylenes	mg/kg (ppm)	1.5	89	69-131	
Gasoline	mg/kg (ppm)	20	100	61-153	

ENVIRONMENTAL CHEMISTS

Date of Report: 01/27/15 Date Received: 01/22/15 Project: North Edge KV030772B, F&BI 501289

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 501285-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	93	103	73-135	10
Laboratory Code:	Laboratory Control	Sample					
			Percent				
	Reporting Units	Spike	Recovery	Acceptance	ce		

	Reporting Units	Spike	Recovery	Acceptance
Analyte		Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	92	74-139

ENVIRONMENTAL CHEMISTS

Date of Report: 01/27/15 Date Received: 01/22/15 Project: North Edge KV030772B, F&BI 501289

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 501289-02 1/5 (Matrix Spike)

Laboratory Code: 501289-02 1/5 (Matrix Spike)					
			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	92	44-129
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	99	52-121
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	96	51-123
Fluorene	mg/kg (ppm)	0.17	< 0.01	100	37-137
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	97	45-124
Anthracene	mg/kg (ppm)	0.17	< 0.01	95	32-124
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	103	50-125
Pyrene	mg/kg (ppm)	0.17	< 0.01	102	41-135
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	114	23-144
Chrysene	mg/kg (ppm)	0.17	< 0.01	106	45-122
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	120	31-144
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	114	45-130
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	108	39-128
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	108	28-146
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	98	46-129
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	91	37-133

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Couc. Laborat	ory control Sump		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	93	90	58-121	3
Acenaphthylene	mg/kg (ppm)	0.17	98	91	54-121	7
Acenaphthene	mg/kg (ppm)	0.17	95	93	54-123	2
Fluorene	mg/kg (ppm)	0.17	100	93	56-127	7
Phenanthrene	mg/kg (ppm)	0.17	95	92	55-122	3
Anthracene	mg/kg (ppm)	0.17	92	90	50-120	2
Fluoranthene	mg/kg (ppm)	0.17	99	94	54-129	5
Pyrene	mg/kg (ppm)	0.17	102	100	53-127	2
Benz(a)anthracene	mg/kg (ppm)	0.17	107	100	51-115	7
Chrysene	mg/kg (ppm)	0.17	104	99	55-129	5
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	114	108	56-123	5
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	112	110	54-131	2
Benzo(a)pyrene	mg/kg (ppm)	0.17	103	98	51-118	5
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	118	107	49-148	10
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	111	106	50-141	5
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	102	96	52-131	6

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Sol 787 SAMPLE CHAIN OF CUSTODY ME 01-82-15 Me (M) Send Report To Fage # 0f Send Report To Fage # 0f Send Report To Fage # 0f Company MEST FALLERS (signature) Pol# Company MEST ProJECT NAME/NO. POH Robit To TURNAROUND TIME Page # 0f Company MEST POH ProJect NAME/NO. POH Address 911 Fart Me 924 Motest City, State, ZIP Ew Marks SAMPLE DISPOSAL Dispose after 30 days Phone # 257/6613/12 Fax # Pol# Pol# of 20 days	R WW AG of MA ROUND TIME 2 Weeks) 2 Wee
Sample ID ID Sampled ID ID Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sample ID ID Sampled Sample ID ID Sample ID Sample ID ID Sample ID ID Sample ID ID Sample ID Sample ID ID Sample ID Sample	Notes
	s ~
Friedman & Bruya, Inc.Second Bruya, Inc.	ATE TIME 2415 0844 13/15 0841

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 29, 2015

Jon Sondergaard, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Mr. Sondergaard:

Included are the results from the testing of material submitted on January 27, 2015 from the North Edge KV030772B, F&BI 501359 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Frank Mocker AE10129R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 27, 2015 by Friedman & Bruya, Inc. from the Associated Earth Sciences North Edge KV030772B, F&BI 501359 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Associated Earth Sciences		
501359 -01	COM17		

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/29/15 Date Received: 01/27/15 Project: North Edge KV030772B, F&BI 501359 Date Extracted: 01/27/15 Date Analyzed: 01/27/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-132)
COM17 501359-01	<0.02	<0.02	<0.02	<0.06	<2	89
Method Blank ^{05-0163 MB}	< 0.02	< 0.02	< 0.02	< 0.06	<2	77

ENVIRONMENTAL CHEMISTS

Date of Report: 01/29/15 Date Received: 01/27/15 Project: North Edge KV030772B, F&BI 501359 Date Extracted: 01/27/15 Date Analyzed: 01/27/15

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
COM17 501359-01	<50	<250	91
Method Blank ^{05-188 MB}	<50	<250	90

ENVIRONMENTAL CHEMISTS

J		I I J		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	COM17 01/27/15 01/27/15 01/27/15 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501359 501359-01 1/5 012705.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 85 107	Lower Limit: 50 35	Upper Limit: 150 159
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranther	ne	< 0.01		
Benzo(k)fluoranther	ne	< 0.01		
Indeno(1,2,3-cd)pyre	ene	< 0.01		
Dibenz(a,h)anthrace	ene	< 0.01		
Benzo(g,h,i)perylene	è.	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applicat 01/27/15 01/27/15 Soil mg/kg (ppm)	le	Client: Project: Lab ID: Data File: Instrument: Operator:	Associated Earth Sciences North Edge KV030772B, F&BI 501359 05-185 mb 1/5 012704.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 87 104	Lower Limit: 50 35	Upper Limit: 150 159
		Concentration		
Compounds:		mg/kg (ppm)		
Naphthalene		< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranther	ne	< 0.01		
Benzo(k)fluoranther	ne	< 0.01		
Indeno(1,2,3-cd)pyre	ene	< 0.01		
Dibenz(a,h)anthrace		< 0.01		
Benzo(g,h,i)perylene	9	< 0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/29/15 Date Received: 01/27/15 Project: North Edge KV030772B, F&BI 501359

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 501354-01 (Duplicate)

		Sample	Duplicate	
		Result	Result	RPD
Analyte	Reporting Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

		Percent			
		Spike	Recovery	Acceptance	
Analyte	Reporting Units	Level	LCS	Criteria	
Benzene	mg/kg (ppm)	0.5	86	69-120	
Toluene	mg/kg (ppm)	0.5	87	70-117	
Ethylbenzene	mg/kg (ppm)	0.5	89	65-123	
Xylenes	mg/kg (ppm)	1.5	86	66-120	
Gasoline	mg/kg (ppm)	20	105	71-131	