Supplemental Phase II Site Assessment Report

Tiger Oil — Summitview 5511 Summitview Avenue Yakima, Washington

for Washington State Department of Ecology

June 29, 2015

Supplemental Phase II Site Assessment Report

Tiger Oil – Summitview 5511 Summitview Avenue Yakima, Washington

for

Washington State Department of Ecology

June 29, 2015

523 East Second Avenue Spokane, Washington 99206 509.363.3125

Supplemental Phase II Site Assessment Report

Tiger Oil – Summitview 5511 Summitview Avenue Yakima, Washington

File No. 0504-101-02

June 29, 2015

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program – Central Region Office 1250 West Alder Street Union Gap, Washington 98903-0009

Attention: Mary Monahan

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

edidiah R. Sugalski, PE Environmental Engineer

Bruce D. Williams

Principal

JRS:BDW:tlm:tjh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0 INTRODUCTION	1
2.0 SITE DESCRIPTION AND BACKGROUND	1
3.0 SCOPE OF SERVICES	2
4.0 FIELD ACTIVITIES	3
4.1. Soil Borings	3
4.2. Monitoring Well Installation	
4.3. Subsurface Conditions	6
4.4. Groundwater Monitoring	7
4.4.1. Monitoring Well Headspace Vapor Monitoring	7
4.4.2. Groundwater Elevation Monitoring	7
5.0 CHEMICAL ANALYTICAL RESULTS	8
5.1. Soil Chemical Analytical Results	8
5.2. Groundwater Chemical Analytical Results	
5.2.1. Direct-Push Borings	
5.2.2. Groundwater Monitoring Wells	
5.3. Natural Attenuation Parameters	10
5.4. Quality Assurance/Quality Control Summary	11
6.0 SUMMARY, INTERPRETATIONS AND RECOMMENDATIONS	11
6.1. Soil Assessment	11
6.2. Groundwater Assessment	12
6.3. Chemical Analytical Results and Interpretations	12
6.3.1. Soil	12
6.3.2. Groundwater	13
6.4. Recommendations	13
7.0 REFERENCES	13
LIST OF TABLES	
Table 1. Summary of Groundwater Field Parameters	
Table 2. Summary of Groundwater Level Measurements	
Table 3 Summary of Chemical Analytical Results - Soil	

- Table 3. Summary of Chemical Analytical Results Soil
- Table 4. Summary of Chemical Analytical Results Soil PAHs
- Table 5. Summary of Chemical Analytical Results Groundwater from Soil Borings
- Table 6. Summary of Chemical Analytical Results Groundwater
- Table 7. Summary of Chemical Analytical Results Groundwater PAHs

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Site Plan and Sample Locations
- Figure 3. Groundwater Elevations March 16-18, 2015
- Figure 4. Groundwater Elevation and Intrepreted Flow Direction, May 19, 2015
- Figure 5. Subsurface Cross Section A-A' and PID Readings
- Figure 6. Subsurface Cross Section B-B' and PID Readings

LIST OF FIGURES (CONTINUED)

Figure 7. Subsurface Cross Section C-C' and PID Readings Figure 8. Subsurface Cross Section D-D' and PID Readings

APPENDICES

Appendix A. Field Methods and Boring Logs

Figure A-1. Key to Exploration Logs

Figures A-2 through A-21. Logs of Borings

Figures A-22 and A-23. Logs of Monitoring Wells

Appendix B. Laboratory Reports

Appendix C. Well Survey Report

Appendix D. Report Limitations and Guidelines for Use

ACRONYMS AND ABBREVIATIONS

bgs - below ground surface

BTEX - benzene, toluene, ethylbenzene and xylene

COCS - contaminants of concern

°C - degrees Celsius

DO - dissolved oxygen

DOT – U.S. Department of Transportation

DRPH - diesel-range petroleum hydrocarbons

Ecology - Washington State Department of Ecology

EDB - ethylene dibromide

EDC - 1,2-dichloroethane

Environmental West - Environmental West Explorations, Inc.

EPA - Environmental Protection Agency

ESA - environmental site assessment

eV - electron volt

GeoEngineers - GeoEngineers, Inc.

GPS - global positioning system

GRPH - gasoline-range petroleum hydrocarbons

IDW - Investigation-derived waste

LCS - laboratory control sample

LCSD - laboratory control sample duplicate

mg/L - milligrams per liter

mg/kg - milligrams per kilogram

mm - millimeter

MRL - Method Reporting Limit

MS - matrix spike

MSD - matrix spike duplicate

MTBE - methyl tertiary-butyl ether

MTCA - Model Toxics Control Act

NAD83 - North American Datum of 1983

NAVD88 - North American Vertical Datum of 1988

ntu - nephelometric turbidity units

ACRONYMS AND ABBREVIATIONS (CONTINUED)

ORPH - oil-range petroleum hydrocarbons

PAHs - polycyclic aromatic hydrocarbons

PID – photoionization detector

PLS - PLS, Inc.

ppm - parts per million

PVC - polyvinyl chloride

QAPP - Quality Assurance Project Plan

QA/QC - Quality Assurance/Quality Control

RPD - relative percent difference

SAP - Sampling and Analysis Plan

SDG - sample delivery group

SG - silica gel

TestAmerica - TestAmerica Laboratories, Inc.

TOC - total organic carbon

TPH - total petroleum hydrocarbons

µg/L - micrograms per liter

µg/kg - micrograms per kilogram

UST - underground storage tank

VOCs - volatile organic compounds

WAC - Washington Administrative Code

1.0 INTRODUCTION

This report describes soil and groundwater assessment activities conducted in March, April and May 2015 at the Tiger Oil – Summitview site at 5511 Summitview Avenue in Yakima, Washington (herein designated "site"). The site is located as shown in the attached Vicinity Map, Figure 1.

Activities conducted as part of the assessment included:

- Advancing nine sonic borings and collecting soil and grab groundwater samples in March 2015;
- Advancing six direct-push borings and collecting soil and grab groundwater samples in April 2015;
- Advancing five sonic borings in Summitview Avenue south of the property and collecting soil and grab groundwater samples in April 2015;
- Advancing two hollow-stem auger boring using a limited access drill rig and installing monitoring wells in the borings; and
- Collecting groundwater samples for the second quarter 2015 groundwater monitoring event.

This report includes a brief site description, our scope of services, a description of field activities, a summary of chemical and analytical results and our interpretations and recommendations. Assessment activities were conducted in general accordance with the approved work plan (GeoEngineers, 2014) and supplemental monitoring well installation memo (GeoEngineers, 2015b). Our services were performed under Washington State Department of Ecology (Ecology) Contract No. C1100145, GeoEngineers Proposal No. 0504-101-02, dated February 24, 2015, and Work Assignment No. C11145RR.

2.0 SITE DESCRIPTION AND BACKGROUND

The site is located at 5511 Summitview Avenue in Yakima, Washington. The site is bordered by arterial roadways Summitview Avenue to the south and North 56th Avenue to the west as shown on Site Plan and Sample Locations, Figure 2. A paved alley way is located to the north of the property and provides access to the bank building located to the east of the property.

The site operated as a retail gasoline station and convenience store until closure in 2001. The property contains two buildings and two historic fuel dispenser islands. Buildings at the property include the larger former convenience store in the northeast corner of the site and a smaller former satellite pay station in the southwest corner of the property. The convenience store has a glass face facing south near the former main entrance. Observations of the building interior from the glass face indicate the presence of moisture and organic vegetation on the floor of the building. Former fuel dispenser islands are located in the south and west areas of the property. A single tank pit was located south of the former convenience store between the convenience store and the southern fuel dispenser island. The property is generally paved, except where three former underground storage tanks (USTs) were removed.

In 2005, three USTs were decommissioned and removed from the property. Underground fuel delivery lines were drained and capped with quick setting cement and the tank excavation was backfilled with excavated soil and imported sand, gravels and cobbles. The tanks removed from the property included:

- One, 20,000-gallon steel regular gasoline tank
- Two, 10,000-gallon steel unleaded gasoline tanks

According to the UST decommissioning and site assessment report (Tetra Tech, 2005), visual observations did not indicate holes in the steel tanks; however, examination of the underlying soil indicated possible historic spillage associated with fill tubes for the 20,000-gallon and center 10,000-gallon USTs. Soil samples collected during the tank removal in 2005 indicated petroleum hydrocarbon concentrations greater than Model Toxics Control Act (MTCA) Method A cleanup criteria in the bottom of the tank pit.

Gasoline range petroleum hydrocarbons (GRPH), benzene, toluene, ethylbenzene and xylene (BTEX) and lead were identified approximately 11 to 15 feet below ground surface (bgs) in the soil of the tank beds during the tank removal site assessment. A follow up assessment for the dispensers and product lines indicated concentrations of GRPH and BTEX greater than MTCA Method A cleanup criteria at the western most fuel dispenser island at a depth of 3½ feet (Wayne Perry, 2005). Samples taken along the product lines and at the southern fuel dispenser island did not indicate GRPH or BTEX greater than laboratory detection limits (Wayne Perry, 2005). Approximate locations of the subsurface product lines are shown on Figure 2.

In 2014, GeoEngineers Inc. (GeoEngineers) conducted additional assessment activities in order to confirm the presence and extents of contamination identified during the 2005 UST removal. The 2014 assessment activities included advancing six direct-push borings, collecting groundwater samples from temporary wells installed in two of the direct-push borings where groundwater was encountered, installing three groundwater monitoring wells with flush mount monuments and collecting quarterly groundwater samples from each of the wells beginning in September 2014.

The 2014 assessment activities indicated the presence of GRPH, BTEX and naphthalenes exceeding MTCA Method A cleanup criteria in soil at SVDP-1, SVDP-2 and SVMW-3 (GeoEngineers, 2015a, 2015c, 2015d). Groundwater laboratory analytical results indicated GRPH, diesel-range petroleum hydrocarbons (DRPH), benzene, xylenes and naphthalenes were present at concentrations exceeding MTCA Method A cleanup criteria in SVMW-3, located south of the former tank pit and south fuel dispenser island. Analytical results of groundwater collected from SVMW-2 (located south of the subject property across Summitview Avenue) did not indicate the presence of petroleum hydrocarbons. Monitoring well SVMW-1, installed upgradient of the fuel dispenser islands, was screened in a non-water bearing subsurface stratum and has provided limited groundwater information to date. Exploration locations and cleanup criteria exceedances are shown in Figure 2.

3.0 SCOPE OF SERVICES

GeoEngineers prepared a Sampling and Analysis Plan (SAP) (GeoEngineers, 2014), to guide assessment activities. A follow up memo describing additional assessment activities was provided on March 10, 2015 (GeoEngineers, 2015b). Site assessment activities included:

- Advancing 20 direct-push and sonic soil borings (SVDP-7 through SVDP-26);
- Observing and documenting subsurface soil conditions for each boring;
- Conducting field screening activities and collecting soil and groundwater samples from the borings;

- Submitting selected soil and groundwater samples from the soil borings for laboratory chemical analysis;
- Installing two groundwater monitoring wells at the site (SVMW-4 and SVMW-5);
- Observing and documenting subsurface soil conditions and construction details for each monitoring well;
- Conducting field screening activities and collecting soil samples during the monitoring well installation;
- Submitting selected soil samples from the well installation for laboratory chemical analysis;
- Developing the new groundwater monitoring wells using surge and purge techniques;
- Surveying the new groundwater monitoring wells for horizontal and vertical references;
- Conducting the 2015 second quarter groundwater monitoring event; and
- Preparing investigation-derived waste (IDW) for disposal.

4.0 FIELD ACTIVITIES

Soil borings and well installations at the site were conducted in four separate mobilizations. For each drilling program, locations were marked in the field and a one-call utility locate was requested before equipment was mobilized to the site. A private utility locator (Utilities Plus, LLC) was contracted to locate site utilities near proposed drilling locations before drilling activities commenced. Soil borings, well construction and well development activities were conducted by Environmental West Explorations, Inc. (Environmental West). Locations of the borings and groundwater monitoring wells were established in the field using a hand-held iPad with global positioning system (GPS) software before drilling commenced. The horizontal accuracy of the hand-held unit is within about 10 feet.

GeoEngineers observed and documented soil boring activities for compliance with the previously prepared guidance documentation (GeoEngineers, 2014 and 2015b). GeoEngineers collected soil samples from the borings as they were advanced and groundwater samples were collected from temporary wells when groundwater was encountered. The two new groundwater monitoring wells were installed and developed by Environmental West and surveyed by a licensed professional surveyor, PLS, Inc. (PLS). IDW from assessment activities was contained in 55-gallon drums, labeled and stored on the subject property pending profiling and disposal.

Soil borings and well locations are shown on Figure 2. Samples collected for analytical testing were submitted to TestAmerica Laboratories, Inc. (TestAmerica) and analyzed in general accordance with the project documents. Detailed descriptions of the soil borings, well installations and groundwater sampling events are provided below.

4.1. Soil Borings

Twenty borings (SVDP-7 through SVDP-26) were advanced at the site between March 10 and April 7, 2015. Boring logs are provided in Appendix A, Figures A-2 through A-21. SVDP-7 through SVDP-15 were advanced March 16 through 18, 2015 using a S1 Schramm Sonic Rig operated by Environmental West. SVDP-16 through SVDP-21 were advanced on April 2, 2015 using a truck-mounted Geoprobe 6600. SVDP-22

through SVDP-26 were advanced on April 7, 2015 using the S1 Schramm Sonic Rig. Approximate locations are provided on Figure 2. In general, GeoEngineers followed the process below during the drilling program:

- Notified the Call-Before-You-Dig utility notification service before beginning drilling activities;
- Subcontracted Utilities Plus, LLC to locate potential utilities near each explorations before drilling;
- Subcontracted Environmental West to drill the direct-push soil borings at the site;
- Observed and documented subsurface soil conditions for each boring;
- Collected continuous soil samples and select sub-samples were field-screened using visual observations, water sheen and headspace vapor measurements with a photoionization detector (PID) to assess possible presence of petroleum-related contaminants;
- Collected grab water samples from temporary wells installed in 15 borings where groundwater was encountered:
- Backfilled exploratory boreholes with bentonite and repaired the surface with cold patch asphalt as needed; and
- Submitted 22 soil samples and 15 groundwater samples to TestAmerica of Spokane, Washington for chemical analysis.

Soil borings were generally advanced until they intercepted a clay layer underlying the site which generally occurred at a depth of approximately 18 to 22 feet bgs. Groundwater was encountered in each of the borings with the following exceptions:

- SVDP-7;
- SVDP-8;
- SVDP-14;
- SVDP-22: and
- SVDP-23.

One soil sample from each boring was submitted to TestAmerica for analysis. Logs of the soil borings are provided in Appendix A. Groundwater samples were collected and submitted to TestAmerica for analysis from temporary wells in borings where water was encountered. Groundwater was sampled by installing a 5-foot-long temporary well screen into the bottom of the boring and lowering polyethylene tubing into the temporary well.

For sonic borings SVDP-7 through SVDP-15, the borings were backfilled with bentonite up to the estimated clay layer before inserting the temporary well screen. Temporary wells were purged using a peristaltic pump for approximately 6 to 15 minutes before sampling. Water was routed through a water quality meter and flow through cell during well purging and then the flow through cell was disconnected and a sample of the water was collected for chemical analysis. Soil and groundwater samples were placed into coolers containing ice and delivered to TestAmerica under chain-of-custody for chemical analysis. Soil cuttings from the investigation were drummed, labeled and stored on the subject property pending profiling and disposal.

For soil borings SVDP-7 through SVDP-15, groundwater (if encountered) was allowed to stabilize overnight after the borings were drilled. The following day, depth to groundwater measurements were collected to estimate groundwater elevation and flow direction. Before leaving the site, SVDP-7 through SVDP-15 were surveyed for elevation and referenced to SVMW-3 by the field engineer. Estimated flow direction was used to inform the placement of monitoring wells SVMW-4 and SVMW-5 at the site. The following table summarizes the depth to water and corresponding calculated water surface elevation for the first round borings.

MARCH 16 THROUGH 18 GROUNDWATER WATER LEVEL MEASUREMENTS

Location	Depth to Water (feet)	Elevation (Feet)
SVMW-2	17.40	1198.19
SVMW-3	18.00	1200.38
SVDP-7	Dry	NA
SVDP-8	Dry	NA
SVDP-9	17.90	1200.86
SVDP-10	18.07	1200.80
SVDP-11	17.95	1201.02
SVDP-12	Not measured	NA
SVDP-13	18.41	1201.50
SVDP-14	Dry	NA
SVDP-15	Not Measured	NA

As shown on Groundwater Elevations March 16-18, 2015, Figure 3, groundwater flow direction was south during the March 2015 event. This flow direction is consistent with the groundwater flow direction estimated using the May 19, 2015 groundwater monitoring data (Groundwater Elevation and Interpreted Flow Direction May 19, 2015, Figure 4) after MW-4 and MW-5 were installed.

4.2. Monitoring Well Installation

Two groundwater monitoring wells (SVMW-4 and SVMW-5) were installed at the site on April 27, 2015 using a limited access Little Brutus hollow-stem auger drill rig operated by Environmental West. Monitoring well logs are provided in Appendix A, Figures A-22 and A-23. Wells were installed by advancing a 4.25-inch-diameter, hollow-stem auger. Approximate well locations are provided on Figure 2. In general, GeoEngineers followed the process below:

- Notified the Call-Before-You-Dig utility notification service before beginning drilling activities;
- Subcontracted Utilities Plus, LLC to locate potential utilities near each exploration before drilling;
- Subcontracted Environmental West to drill and construct the groundwater monitoring wells;
- Observed and documented subsurface soil conditions for each monitoring well;
- Collected soil samples during drilling. Select sub-samples were field-screened using visual observations, water sheen and headspace vapor measurements with a PID to assess possible presence of petroleum-related contaminants;

- Developed the groundwater monitoring wells using surging and pumping techniques;
- Submitted three soil samples (one from each well location and a duplicate from SVMW-5) to TestAmerica for chemical analysis; and
- Contracted with PLS to complete a horizontal and vertical survey of the wells.

SVMW-4 was advanced to a depth of 24-feet bgs. Water was encountered at approximately 22 feet during drilling. The well was installed using 2-inch-diameter, schedule 40 polyvinyl chloride (PVC) pipe and screened from about 13 to 23 feet bgs.

SVMW-5 was advanced to a depth of approximately $26\frac{1}{2}$ feet bgs. Water was observed at about 20 feet during drilling. The hole was backfilled with bentonite chips to 24 feet bgs and then well construction materials were placed. The well was installed using 2-inch-diameter, schedule 40 PVC pipe and screened from about 14 to 24 feet bgs.

Wells were packed with silica-sand up to about 2 feet above the screen, sealed with bentonite chips to about 2½ foot bgs and then capped with a cement well monument. Wells were developed by Environmental West on April 27, 2015 using surge and purge methods. Soil cuttings and development water from the investigation were drummed, labeled and stored on the subject property pending profiling and disposal.

Discrete soil samples were collected from each monitoring well boring. Soil samples were field-screened to evaluate for petroleum hydrocarbons, using a PID and sheen pan. One soil sample collected just above the clay interface from each well location was selected for chemical analysis. A duplicate sample was collected from SVMW-5. Soil samples were placed into coolers containing ice and then delivered to TestAmerica under chain- of-custody for chemical analysis.

The two new groundwater monitoring wells installed at the site were surveyed on April 30, 2015 by PLS. The north edge of the top of the PVC casing, and north side of the top of the well monument were surveyed for horizontal and vertical coordinates relative to North American Datum of 1983 (NAD83) Washington South Zone and North American Vertical Datum of 1988 (NAVD88), respectively. PLS also marked the north side of each well casing for future depth to groundwater measurements. Well survey information is provided in Appendix C.

4.3. Subsurface Conditions

Subsurface cross sections were developed using the information from the boring logs provided in Appendix A. Subsurface Cross Section A-A' and PID Readings, Figure 5, Subsurface Cross Section B-B' and PID Readings, Figure 6, Subsurface Cross Section C-C' and PID Readings, Figure 7 and Subsurface Cross Section D-D' and PID Readings Figure 8 represent interpreted subsurface conditions across the site. In general, brown silt with varying amounts of sand was observed below the asphalt and base coarse aggregates. A clay confining layer was observed at depths ranging from about 18 to 22 feet bgs. Above the observed clay layer, more permeable lenses of sand and gravel were present, which appear to be the predominant water bearing zone across the site. As shown in Figure 7, the confining clay layer appears to increase in elevation from west to east. This increase in elevation of the clay layer was further demonstrated by the lack of water observed in SVDP-6, SVDP-7, SVDP-8, SVDP-14, SVDP-22 and SVDP-23. The anomaly to this was the groundwater observed in SVDP-15. Groundwater was encountered in SVDP-15 near a clay sand interface.

4.4. Groundwater Monitoring

Groundwater monitoring wells SVMW-2, SVMW-3, SVMW-4 and SVMW-5 were sampled on May 19, 2015. There was not enough water to sample SVMW-1. The following sections provide a detailed description of the field activities conducted as part of the groundwater monitoring event.

Groundwater monitoring wells were purged and sampled using dedicated tubing, a peristaltic pump and standard low-flow sampling methodology (U.S. Environmental Protection Agency [EPA], 1996). Groundwater quality parameters were usually measured at 3-minute intervals during well purging and samples were generally collected when water quality parameter stabilized in conformance with the criteria presented in Appendix A or 30 minutes of purging had elapsed.

Laboratory prepared sample containers were filled, placed into a cooler on ice and submitted to the analytical laboratory for chemical analysis. One sample from each well was measured for soluble ferrous iron (Fe2+) in the field using a Hach IR-18C color disc test kit and the 1,10 phenanthroline testing method. A duplicate sample was collected from SVMW-2. Chemical analytical results are discussed in "Section 5.2.2." Groundwater field parameters are provided in Summary of Groundwater Field Parameters, Table 1. Purge water generated during groundwater sampling was drummed, labeled and stored on the subject property pending profiling and disposal.

4.4.1. Monitoring Well Headspace Vapor Monitoring

Monitoring well headspace vapors were measured on May 19, 2015 using a PID. Headspace measurements were collected by inserting the PID probe into the well casing immediately after removing the well cap and recording the maximum observed concentration. Headspace vapors ranged from 6.1 parts per million (ppm) in SVMW-2 to 284 ppm in SVMW-3, as shown in Table 1.

4.4.2. Groundwater Elevation Monitoring

Static depth to groundwater was measured in monitoring wells SVMW-1 through SVMW-5 on May 19, 2015 using an electronic water level indicator. Depth to groundwater ranged from 17.13 feet (SVMW-2) to 18.08 feet (SVMW-5) below the top of well casing, as shown in Summary of Groundwater Level Measurements, Table 2. Groundwater elevations ranged from about 1,198.46 feet in SVMW-2 to 1,200.39 feet in SVMW-4. In monitoring wells SVMW-2 and SVMW-3, groundwater elevations increased on average approximately 0.24 feet relative to the previous monitoring event conducted during March 2015.

Groundwater elevations in wells SVMW-2 through SVMW-5 appear to be representative of the shallow perched aquifer beneath the site. Based on groundwater elevations measured in SVMW-2 through SVMW-5 on May 19, 2015, groundwater flow in the shallow unconfined aquifer beneath the property was generally south, as shown in Figure 4. Groundwater gradient was estimated at 0.03 feet per foot (158.4 feet per mile) during the March 16 through 18, 2015 direct-push sampling program and 0.02 feet per foot (105.6 feet per mile) during the May 19, 2015 sampling event.

5.0 CHEMICAL ANALYTICAL RESULTS

5.1. Soil Chemical Analytical Results

One soil sample from borings SVDP-7 through SVDP-26, SVMW-4 and SVMW-5 was submitted to TestAmerica for chemical analysis. Soil samples were placed in coolers with wet ice immediately after sampling and were kept on ice until delivery to the analytical laboratory. Soil samples were submitted for the following chemical analyses:

- GRPH (NWTPH-Gx);
- DRPH (NWTPH-Dx);
- BTEX by (EPA 8260C);
- Polycyclic aromatic hydrocarbons (PAHs) (EPA 8270D); and
- Total Lead (EPA 6010C).

Soil samples from SVDP-16 through SVDP-26 were also submitted for analysis of methyl tertiary-butyl ether (MTBE) by EPA Method 8260C.

Soil analytical results are summarized and compared to MTCA Method A cleanup criteria in Summary of Chemical Analytical Results - Soil, Table 3, and Summary of Chemical Analytical Results - Soil PAHs, Table 4. Chemical analytical results for the submitted soil samples are generally summarized by the following:

- GRPH was detected in samples from SVDP-7, SVDP-9, SVDP-12, SVDP-19, SVDP-22, SVDP-24, SVDP-25 and SVDP-26 at concentrations of 750 milligrams per kilogram (mg/kg), 1,400 mg/kg, 1,400 mg/kg, 100 mg/kg, 4,500 mg/kg, 2.400 mg/kg, 160 mg/kg and 42 mg/kg, respectively. These concentrations are greater than the MTCA Method A cleanup criteria for unrestricted land use of 30 mg/kg when benzene is detected at the site.
- Ethylbenzene was detected in samples from SVDP-7, SVDP-9, SVDP-12 and SVDP-24 at concentrations of 14 mg/kg, 13 mg/kg, 22 mg/kg and 24 mg/kg, respectively. These concentrations are greater than the MTCA Method A cleanup criteria for unrestricted land use of 6 mg/kg.
- Naphthalene analyzed by EPA Method 8260C was detected in the samples from SVDP-7, SVDP-22 and SVDP-24 at concentrations of 20 mg/kg, 6.4 mg/kg and 11 mg/kg, respectively. These concentrations are greater than the MTCA Method A cleanup criteria for unrestricted land use of 5 mg/kg.
- Naphthalene analyzed by EPA Method 8270D was detected in the sample from SVDP-7 at a concentration of 10,000 micrograms per kilogram (μg/kg), which is greater than the MTCA Method A cleanup criteria for unrestricted land use of 5,000 μg/kg for naphthalenes.
- 2-Methylnaphthalene was detected in the samples from SVDP-7 and SVDP-12 at concentrations of 5,400 μg/kg and 24,000 μg/kg, respectively. These concentrations are greater than the MTCA Method A cleanup criteria for unrestricted land use of 5,000 μg/kg for naphthalenes.
- 1-Methylnaphthalene was detected in the sample from SVDP-12 at a concentration of 11,000 μg/kg, which is greater than the MTCA Method A cleanup criteria for unrestricted land use of 5,000 μg/kg for naphthalenes.

- Toluene was detected in samples from SVDP-7, SVDP-9, SVDP-12 and SVDP-24 at concentrations of 11 mg/kg, 8.5 mg/kg, 12 mg/kg and 9.3 mg/kg, respectively. These concentrations are greater than the MTCA Method A cleanup criteria for unrestricted land use of 7 mg/kg.
- Total xylenes were detected in samples from SVDP-7, SVDP-9, SVDP-12, SVDP-22 and SVDP-24 at concentrations of 96 mg/kg, 69 mg/kg, 130 mg/kg, 22 mg/kg and 97 mg/kg, respectively. These concentrations are greater than the MTCA Method A cleanup criteria for unrestricted land use of 9 mg/kg.
- Other site contaminants of concern (COCs) were either not detected or were detected at concentrations less than MTCA Method A cleanup criteria in the samples from SVDP-7, SVDP-9, SVDP-12, SVDP-22 and SVDP-24.
- Site COCs were either not detected or were detected at concentrations less than MTCA Method A cleanup criteria in the samples from other site explorations.

Laboratory analytical reports are included in Appendix B.

5.2. Groundwater Chemical Analytical Results

5.2.1. Direct-Push Borings

Groundwater was encountered and sampled from borings SVDP-9 through SVDP-13, SVDP-15 through SVDP-21, and SVDP-24 through SVDP-26 between March 17 and April 7, 2014. Groundwater samples were analyzed for GRPH, DRPH and heavy oil-range petroleum hydrocarbons (ORPH) using Northwest Method NWTPH-HCID. Analytical results are summarized by the following:

- GRPH was detected in the samples from SVDP-9, SVDP-12, SVDP-19, SVDP-24 and SVDP-25 at concentrations of 8.3 milligrams per liter (mg/L), 6.8 mg/L, 1.5 mg/L, 110 mg/L and 3.6 mg/L, respectively.
- DRPH was detected in the samples from SVDP-9, SVDP-10, SVDP-12, SVDP-24 and SVDP-25 at concentrations of 2.8 mg/L, 1.0 mg/L, 2.1 mg/L, 30 mg/L and 2.3 mg/L, respectively.
- ORPH was detected in the samples from SVDP-16 and SVDP-24 at concentrations of 0.82 mg/L and 0.9 mg/L, respectively.
- GRPH, DRPH and ORPH were either not detected or were detected at concentrations less than their MTCA Method A cleanup criteria other than noted above.

Analytical results for grab groundwater samples collected from the soil soils borings are summarized in Table 5.

5.2.2. Groundwater Monitoring Wells

Analytical results for samples collected on May 19, 2015 are tabulated and compared to previous results and MTCA Method A cleanup criteria in Summary of Chemical Analytical Results – Groundwater, Table 6 and Summary of Chemical Analytical Results – Groundwater PAHs, Table 7. TestAmerica's laboratory report is provided in Appendix B.

The following is a summary of the May 19, 2015 analytical data:

- GRPH was detected at a concentration of 14,000 micrograms per liter (μg/L) in the sample collected from SVMW-3 and 2,100 μg/L in SVMW-5, which is greater than the MTCA Method A cleanup criteria of 800 μg/L (when benzene is present).
- DRPH was detected at a concentration of 1.0 mg/L in the sample collected from SVMW-3, which is greater than the MTCA Method A cleanup criteria of 0.5 mg/L. DRPH analyzed with silica gel cleanup was detected at a concentration of 0.99 mg/L in the sample from SVMW-3.
- Benzene was detected at a concentration of 25 µg/L in the sample collected from SVMW-3, which exceeds the MTCA Method A cleanup criteria of 5 µg/L.
- Ethylene dibromide (EDB) was not detected in the sample collected from SVMW-3; however the reporting limit was greater than the MTCA Method A cleanup criteria of 0.01 μg/L.
- Naphthalene was detected at a concentration of 290 μg/L in the sample collected from SVMW-3, which is greater than the MTCA Method A cleanup criteria of 160 μg/L.
- Total xylenes were detected at a concentration of 2,900 μg/L in the sample collected from SVMW-3, which is greater than the MTCA Method A cleanup criteria of 1,000 μg/L.
- 1,3,5-trimethylbenzene was detected at a concentration of 880 μg/L in the sample collected from SVMW-3 and 190 μg/L which is greater than the MTCA Method B cleanup criteria of 80 μg/L.
- Other analytes were either not detected or were detected at concentrations less than their applicable cleanup criteria in SVMW-3.
- Site COCs were either not detected or were detected at concentrations less than their applicable cleanup criteria in the sample from SVMW-2.

Analytical results of the groundwater collected from well SVMW-3 (including a duplicate sample) generally were similar to results from the March 2015 sampling event, with the exception of DRPH. The concentrations of DRPH in the samples from SVMW-3 roughly doubled from the December 2014 to the March 2015 event.

5.3. Natural Attenuation Parameters

In addition to the COCs, groundwater samples were analyzed for natural attenuation parameters and field parameters. Results of laboratory-analyzed natural attenuation parameters are provided in Table 6. Field measurement results are provided in Table 1. Reported field parameters reflect conditions at the conclusion of well purging during low-flow sampling.

Dissolved oxygen (D0) measurements during the May 19, 2015 groundwater monitoring event were most likely increased artificially because of an equipment malfunction. Nitrate and sulfate concentrations in SVMW-3 and SVMW-5 are less than concentrations in SVMW-2 and SVMW-4, which might indicate that biodegradation is occurring near SVMW-3 and SVMW-5.

The water quality of the shallow aquifer might naturally be of low quality because the water table is believed to have a thickness of about 2 feet and subsurface soil conditions were generally fine-grained silts and clays with lesser amounts of sand and gravel. This makes it difficult to evaluate natural attenuation parameters and effects from outside influences like petroleum hydrocarbons, lawn watering and fertilizer applications.

5.4. Quality Assurance/Quality Control Summary

GeoEngineers reviewed the laboratory internal quality assurance/quality control (QA/QC) in the context of project data quality goals. Results of our review, as well as our evaluation of data suitability, are provided in Appendix B. In summary, it is our opinion that the quality of the analytical data generally is acceptable for the intended use. The following items were noted in the data validation report:

- SVDP-21 (20-21) The percent recoveries for surrogates nitrobenzene-d5 and 2-Fluorobiphenyl were less than the control limits. The reporting limits for all target analytes were qualified as estimated (UJ) in this sample.
- SVMW-4 (22.5-23) and SVMW-5(22.5-23) The sample cooler temperature recorded at the laboratory was 8.2 degrees Celsius (°C) for the samples. The samples were put on ice when they were collected (4/27/2015) and ice was added every day until they were received by the laboratory (4/29/2015). The out-of-compliance temperature was very likely isolated to the day the samples were received at the laboratory. For this reason, this temperature should not affect the sample analytical results.
- SVDP-24:GW, SVDP-25:GW and SVDP-26:GW (NWTPH-HCID) The percent recovery for surrogate n-Triacontane-d62 was less than the control limits. The positive results and reporting limits for all target analytes were qualified as estimated (J/UJ) in these samples.
- SVDP-24:GW and SVDP-25:GW (NWTPH-HCID) The DRPH and ORPH results for these samples may be influenced by the relative concentration of GRPH in the samples. For this reason, the positive results for DRPH and ORPH were qualified as estimated (J) in these samples, in order to signify a potential high bias.
- SVDP-7-15 (NWTPH-Dx) A laboratory duplicate analysis was performed on the sample. The relative percent difference (RPD) values for DRPH and ORPH were greater than the control limits. The positive results for these target analytes were qualified as estimated (J) in this sample.
- Samples SVMW-3, Duplicate and SVMW-5 (NWTPH-Dx) The positive results for DRPH may be influenced by the relative concentration of GRPH in these samples. For this reason, the positive results for DRPH were qualified as estimated (J) in these samples, in order to signify a potential high bias.

6.0 SUMMARY, INTERPRETATIONS AND RECOMMENDATIONS

6.1. Soil Assessment

Observed subsurface conditions indicate the site is generally underlain by fine sand, silts and clays with occasional gravel. Soil observed in the borings indicate a low permeability confining layer at a depth of approximately 18 to 22 feet bgs, that decreases in depth from west to east.

Boring logs indicate a coarser lens of gravel and sands is overlying the low permeability clay layer observed near 20 feet bgs. The coarser gravels and sands over the low permeability layer appear to be the predominant water bearing zone of the subsurface. The log for MW-1 indicates that the low permeable layer may be approximately 12 feet thick, before coarser sands and gravels are encountered. Cross sections of the subsurface are provided in Figures 5 through 8.

6.2. Groundwater Assessment

Observations at the site indicate that groundwater is found in coarser sands and gravels lenses between the low permeability clay layer and near surface silt. The low permeability layer generally decreases in depth from west to east and therefore groundwater was not observed in borings on the east side of the site, with the exception of SVDP-15. The shallow clay layer was intercepted by a sand lens from about 19 to 22 feet bgs where water was encountered. The clay lens was encountered again at 22 feet bgs and continued until the boring termination depth of 23 feet bgs. Groundwater contours and elevations are provided in Figures 3 and 4.

6.3. Chemical Analytical Results and Interpretations

6.3.1. Soil

Soil analytical results indicate the presence of GRPH, BTEX and naphthalenes exceeding MTCA Method A cleanup criteria at the site. GRPH, BTEX and naphthalenes were not detected in SVDP-11, SVDP-13, SVDP-20 and SVDP-21. This suggests that there may have been at least two release points at the site. One release may have originated from the west fuel island and traveled south as demonstrated by detections of site COCs in SVDP-12, SVDP-19 and SVDP-26. Impacted soil observed along this path was generally at the soil water interface, and field screening of soil did not indicate COCs near in vadose zone. It is possible that an unidentified area of vadose contamination exists beneath the west fuel island, given that during the dispenser line assessment in 2005, site COCs were detected, however they were not observed in SVDP-3.

The second source area appears to be near SVDP-1. Shallower vadose zone contamination was identified in this boring. Additional borings down gradient of SVDP-1 identified site COCs near the soil groundwater interface and not in the vadose zone. Given the proximity of the product piping lines and former tank pit, it is possible that COCs identified in SVDP-1, SVDP-2, SVMW-3, SVDP-9, SVDP-22, SVDP-24 and SVDP-25 originated from either the product delivery lines or the former tank pit. The 2005 tank removal assessment report indicated that holes were not observed in the tanks and soil contamination was most likely from spillage associated with the tank fill tubes (Tetra Tech, 2005), therefore the most likely cause of the petroleum release was most likely the product lines. It should be noted that other Tiger Oil Sites at both 1606 East Nob Hill Boulevard and 1808 North First Street had documented releases from the product piping and installation procedures of the product piping were suspected as the cause.

It is unknown if the COCs identified in SVDP-7 were a result of spillage from the UST fill tubes or leakage from the product delivery lines or tanks. It is possible that the contamination observed in SVDP-7 indicates a third release area, possibly from the fill tubes.

From the source areas, petroleum hydrocarbons appear to migrate along the soil water interface above the clay confining layer. With the exception of SVDP-1 and to a lesser extent SVDP-7, field screening and chemical analysis has generally indicated that contamination exists in the more permeable soil above the clay confining layer. Potential source areas and estimated contamination extents are provided on Figure 2.

The borings advanced in Summitview Avenue, indicate that petroleum hydrocarbons have moved downgradient and extend under Summitview Avenue. Soil collected from SVMW-2, as well as groundwater samples, have not exceeded MTCA Method A cleanup criteria; however naphthalene was detected in SVMW-2 less than MTCA Method A criteria during the March 2015 groundwater sampling event. The

downgradient edge of the contamination plume has not been fully defined; however it is believed that that it terminates somewhere between the row of borings established by SVDP-22 through SVDP-26 and downgradient monitoring well SVMW-2.

6.3.2. Groundwater

Groundwater laboratory analytical results indicate GRPH, benzene, xylenes and naphthalenes exceeding MTCA Method A cleanup criteria in SVMW-3, located south of the former tank pit and south fuel dispenser island. GRPH was also detected above MTCA Method A cleanup criteria in SVMW-5. Analytical results of groundwater collected from SVMW-2 located across Summitview Avenue did not indicate the presence of petroleum hydrocarbons. Laboratory analytical results from SVMW-4 did not indicate the presence of petroleum related contaminants and this well appears to be suitable to monitor upgradient groundwater conditions. Quarterly groundwater monitoring results between September 2014 and May 2015 were generally consistent with COC concentrations exceeding MTCA Method A in SVMW-3 for each of the four monitoring events and site COCs generally less than detection limits in SVMW-2, with the exception of naphthalene less than MTCA Method A cleanup criteria during the March 31, 2015 event.

6.4. Recommendations

Soil and groundwater contamination greater than MTCA Method A cleanup criteria was observed south and west of the former tank pit and fuel dispenser island. Further investigation is needed to delineate the extent of contamination at this site. We recommend the following activities to address data gaps at the site:

- Further investigation west and south of the site in order to delineate the extent of contamination. This could be accomplished using direct-push soil borings.
- Additional on-site direct-push probes to attempt to identify shallow petroleum hydrocarbons and source areas. Additional areas of investigation are near both fuel dispenser islands as well as along the product lines between the former USTs and fuel islands. This could be accomplished using direct-push soil borings.
- Possible remedial actions based on the results of continued monitoring.

7.0 REFERENCES

- GeoEngineers, Inc., 2014. "Sampling and Analysis Plan Soil and Groundwater Assessment." Three Tiger Oil Sites, Yakima, Washington. GEI File No. 0504-101-00, April 15, 2014.
- GeoEngineers, Inc., 2015a. "Phase II Site Assessment Report, Tiger Oil Summitview, Yakima, Washington." GEI File No. 0504-101-00. January 30, 2015.
- GeoEngineers, Inc., 2015b. "Tiger Oil Data Gap Assessments: Supplemental Work Plan Memorandum." Three Tiger Oil Sites, Yakima, Washington. GEI File No. 0504-101-00, March 10, 2015.
- GeoEngineers, Inc., 2015c. "Quarterly Groundwater Monitoring Report, Fourth Quarter 2014." Tiger Oil Summitview, Yakima, Washington. GEI File No. 0504-101-00, March 26, 2015.
- GeoEngineers, Inc., 2015d. "DRAFT Quarterly Groundwater Monitoring Report, First Quarter 2015." Tiger Oil Summitview, Yakima, Washington. GEI File No. 0504-101-00, May 18, 2015.

- Puls, R.W. and Barcelona, M.J., Low-flow (minimal drawdown) ground-water sampling procedures: EPA Ground Water Issue, April 1996, p.1-9.
- Tetra Tech, 2005. "UST Decommissioning and Site Assessment at Tiger Oil Corporation Facility, 5511 Summitview Avenue, Yakima, Washington," March 29, 2005.
- U.S. Environmental Protection Agency, 1996. Region 1, Low stress (low-flow) purging and sampling procedure for the collection of ground water samples from monitoring wells. EPA SOP No. GW 0001, Revision No. 2, July 30, 1996.
- U.S. Environmental Protection Agency, 2008. "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.
- U.S. Environmental Protection Agency, 2009. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency, 2010. "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," EPA-540-R-10-011. January 2010.
- Washington State Department of Ecology, 2007. Model Toxics Control Act Cleanup Regulations, Washington Administrative Code, Chapter 173-340. November 2007.
- Wayne Perry, 2005. "Results of Underground Piping and Dispenser Island Sampling at Tiger Oil Corporation Facility, 5511 Summitview in Yakima, Washington," December 14, 2005.

Summary of Groundwater Field Parameters¹

Tiger Oil Summitview Yakima, Washington

				Specific	Dissolved				Soluble	Monitoring Well
Well	Date		Temperature	Conductivity	Oxygen	ORP - Field ²	ORP - Normalized ³	Turbidity	Ferrous Iron	Headspace ⁵
Number	Collected	рН	(°C)	(mS/cm)	(mg/L)	(mV)	(mV)	(NTU)	(mg/L)	(ppm)
	09/18/14	NM^4	NM ⁴	NM^4	NM ⁴	NM ⁴	NA	NM^4	NM^4	0.0
SVMW-1	12/12/14	NM ⁴	NM ⁴	NM^4	NM ⁴	NM ⁴	NA	NM^4	NM^4	0.0
34/4/4-7	03/31/15	NM ⁴	NA	NM^4	NM^4	0.0				
	05/19/15	NM ⁴	NA	NM^4	NM ⁴	NM ⁴				
	09/18/14	6.97	16.78	0.75	1.11	170	372	0.8	0.0	0.1
SVMW-2	12/12/14	6.88	16.93	0.80	3.67	210	412	0.3	0.0	0.0
3010100-2	03/31/15	6.92	16.52	0.80	1.68	247	449	0.9	0.0	0.0
	05/19/15	7.04	18.70	0.71	NR ⁶	132	333	17.2	0.4	6.1
	09/18/14	6.81	17.14	0.78	0.96	-10	192	1.5	1.5	3.8
SVMW-3	12/12/14	6.83	17.07	0.80	1.09	-70	132	5.0	1.0	0.2
3010100-3	03/31/15	6.80	16.21	0.79	0.18	-148	55	3.2	1.8	0.1
	05/19/15	6.84	19.29	0.72	NR ⁶	-104	96	0.1	2.0	284
SVMW-4	05/19/15	7.10	18.04	0.70	NR ⁶	148	349	60.3	0.1	1.9
SVMW-5	05/19/15	7.02	22.38	0.75	NR ⁶	-72	125	81.8	1.6	32.2

Notes:

ORP = Oxidation reduction potential; °C = degrees Celsius; mS/cm = millisiemens per centimeter; mg/L = milligrams per liter; mV = millivolts; NM = not measured

NA = not applicable; NTU = nephelometric turbidity units; ppm = parts per million

¹Reported water quality parameters reflect stabilized conditions at the conclusion of well purging during low-flow sampling.

²Field ORP values are relative to the reference electrode associated with the multi-parameter meter.

³Normalized ORP values have been normalized, using algorithms provided by the instrument manufacturer, to the standard hydrogen electrode (SHE).

⁴Not measured (NM) due to lack of water in well.

⁵Well headspace measurements were obtained using a photoionization detector immediately upon removal of the well's compression cap.

⁶Field dissolved oxygen readings not recorded (NR) because of a possible equipment malfunction

Summary of Groundwater Level Measurements

Tiger Oil Summitview Yakima, Washington

			Top of			Depth to	Groundwater	Change in
Well	Grid Northing ¹	Grid Easting ¹	Casing Elevation ²	Screen Elevation ²	Date	Groundwater ³	Elevation ²	Groundwater
Number	(feet)	(feet)	(feet)	(feet)	Measured	(feet)	(feet)	Elevation ⁴ (feet)
					09/18/14	39.30	NA ⁵	NA
SVMW-1	462054.5	1619556.5	1,220.95	1191.0 to 1181.0	12/12/14	39.49	NA ⁵	NA
SVIVIVV-1	402034.5	1019550.5	1,220.95	1191.0 (0 1181.0	03/31/15	39.82	NA ⁵	NA
					05/19/15	39.84	NA ⁵	NA
					09/18/14	16.70	1,198.89	NA
SVMW-2	461870.0	1619606.4	1,215.59	1204.6 to 1189.6	12/12/14	16.90	1,198.69	-0.20
3010100-2	461670.0	1019000.4	1,215.59	1204.6 (0 1169.6	03/31/15	17.43	1,198.16	-0.53
					05/19/15	17.13	1,198.46	0.30
					09/18/14	17.20	1,201.18	NA
SVMW-3	461949.3	1619606.4	1,218.38	1208.4 to 1193.4	12/12/14	17.38	1,201.00	-0.18
3010100-3	401949.3	1019000.4	1,216.36	1208.4 (0 1193.4	03/31/15	17.97	1,200.41	-0.59
					05/19/15	17.79	1,200.59	0.18
SVMW-4	462028.3	1619576.7	1,220.00	1207.0 to 1197.0	05/19/15	17.99	1,200.39	NA
SVMW-5	461969.3	1619546.4	1,219.09	1205.1 to 1195.1	05/19/15	18.08	1,200.30	NA

Notes:

NA = Not Applicable

¹Grid northing and easting are referenced to North American Datum of 1983 (NAD83), Washington State Plane Coordinate System, South Zone.

²Elevations are referenced to the North American Vertical Datum of 1988 (NAVD88). Screen elevations are referenced to the nearest 0.1 foot; other elevations are referenced to the nearest 0.01 foot.

³Depth to water measurements obtained from the north side of the top of PVC well casing.

⁴Represents change in groundwater elevation from previous monitoring event, as measured in monitoring wells.

⁵Water levels measured in SVMW-1 likely are not representative of general site groundwater conditions, therefore no elevation is reported.

Summary of Chemical Analytical Results - Soil¹

Tiger Oil Summitview Yakima, Washington

Boring		SVDP-7	SVDP-8	SVDP-9	SVDP-10	SVDP-11	SVDP-12	SVDP-13	SVDP-14	SVDP-15	SVDP-16	SVDP-17	SVDP-18	SVDP-19	SVDP-20
Sample Depth (feet)	Regulatory	15	14	20	19	13	18.5	18	15	13	22-23	19.5-20.5	20-21	20-21	20-21
Date Sampled	Levels ²	03/17/15	03/17/15	03/17/15	03/17/15	03/17/15	03/16/15	03/16/15	03/17/15	03/18/15	04/02/15	04/02/15	04/02/15	04/02/15	04/02/15
Method EPA 8260C - NWTPH-Gx and Volatile Or	ganic Compounds	(mg/kg)			_			_							
Gasoline-range hydrocarbons	30/100 ³	750	<5.7	1,400	30	<5.5	1,400	<5.0	<7.2	<7.7	<5.0	<4.9	<8.7	100	<6.1
Benzene	0.03	<0.23 ⁶	<0.017	<0.25 ⁶	<0.013	<0.017	<1.5 ⁶	<0.015	<0.022	<0.023	0.029	<0.015	<0.026	<0.020	<0.018
Ethylbenzene	6	14	<0.11	13	<0.084	<0.11	22	<0.10	<0.14	<0.15	<0.099	<0.099	<0.17	<0.14	<0.12
Methyl tert-butyl ether	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.050	<0.049	<0.087	<0.068	<0.061
Naphthalene	5 ⁴	20	<0.23	4.8	<0.17	<0.22	<20 ⁶	<0.20	<0.29	<0.31	<0.20	<0.20	<0.35	<0.27	<0.24
Toluene	7	11	<0.11	8.5	<0.084	<0.11	12	<0.10	<0.14	<0.15	<0.099	<0.099	<0.17	<0.14	<0.12
o-Xylene		29	<0.23	18	<0.17	<0.22	31	<0.20	<0.29	<0.31	<0.20	<0.20	<0.35	<0.27	<0.24
m,p-Xylene	9 ⁵	67	<0.45	51	<0.34	<0.44	95	<0.40	<0.58	<0.62	<0.40	<0.39	<0.70	<0.54	<0.49
Xylenes (total)		96	<0.68	69	<0.51	<0.66	130	<0.60	<0.86	<0.93	<0.60	<0.59	<1.0	<0.81	<0.73
Method NWTPH-Dx - Semivolatile Petroleum Pro	oducts (mg/kg)														,
Diesel-range hydrocarbons	2,000	170 J	<12	<17	35	<12	480	<13	<13	<12	<13	<13	<15	<12	<12
Heavy oil-range hydrocarbons	2,000	150 J	<29	<43	97	<30	<88	<31	<34	<30	<32	<32	<36	<30	<31
Method EPA 6010C - Metals Content (mg/kg)									-	-		-			
Lead	250	38	9.3	6.8	6.2	7.0	<4.1	4.3	<5.3	5.6	<11	<25	<10	<11	<14

Boring		SVDP-21	SVDP-22	SVDP-23	SVDP-24	SVDP-25	SVDP-26	SVMW-4	SVMW-5
Sample Depth (feet)	Regulatory	20-21	20.5-21	18-18.5	19.5-20	19.5-20	20-20.5	22.5-23	22.5-23
Date Sampled	Levels ²	04/02/15	04/07/15	04/07/15	04/07/15	04/07/15	04/07/15	04/27/15	04/27/15
Method EPA 8260C - NWTPH-Gx and Volatile Organic C	ompounds (mg/kg	()		_				_	
Gasoline-range hydrocarbons	30/100 ³	<6.3	4,500	<5.6	2,400	160	42	<10	<11
Benzene	0.03	<0.019	<0.14 ⁶	<0.017	<0.17 ⁶	<0.019	<0.025	<0.031 ⁶	<0.034 ⁶
Ethylbenzene	6	<0.13	5.9	<0.11	24	<0.13	<0.16	<0.21	<0.23
Methyl tert-butyl ether	0.1	<0.063	<0.47 ⁶	<0.056	<0.56 ⁶	<0.063	<0.082	NT	NT
Naphthalene	5 ⁵	<0.25	6.4	<0.22	11	<0.25	<0.33	NT	NT
Toluene	7	<0.13	4.2	<0.11	9.3	<0.13	<0.16	<0.21	<0.23
o-Xylene	94	<0.25	4.2	<0.22	29	<0.25	<0.33	<0.42	<0.45
m,p-Xylene	9 ⁴	<0.50	18	<0.45	68	<0.51	<0.66	<0.83	<0.90
Xylenes (total)	9 ⁴	<0.75	22	<0.67	97	<0.76	<0.98	<1.2	<1.4
Method NWTPH-Dx - Semivolatile Petroleum Products (mg/kg)			_			-	-	
Diesel-range hydrocarbons	2,000	<12	110	15	42	72	<13	<15	<15
Heavy oil-range hydrocarbons	2,000	<30	<52	85	<29	<54	<34	<38	<38
Method EPA 6010C - Metals Content (mg/kg)			-	-	-	-		-	-
Lead	250	<11	<8.9	<10	<11	<10	<9.4	<5.0	4.9

Notes:

Bold indicates analyte concentration exceeds laboratory reporting limit.

Red Bold and outline indicates analyte concentration exceeds referenced regulatory criteria.

mg/kg = milligrams per kilogram; EPA = Washington State Environmental Protection Agency; NT = not tested

¹Chemical analyses conducted by TestAmerica of Spokane, Washington.

 $^{^2 \} Regulatory \ level \ refers \ to \ Washington \ State \ Model \ Toxics \ Control \ Act \ (MTCA) \ Method \ A \ cleanup \ criteria \ unless \ otherwise \ footnoted.$

³ Gasoline-range petroleum hydrocarbon cleanup levels in soil are 30 mg/kg when benzene is detected at the site and 100 mg/kg when benzene is not detected at the site.

⁴ Cleanup level refers to sum of naphthalenes.

⁵ Cleanup level for total xylenes.

⁶ Reporting limit is greater than applicable cleanup criteria.

Summary of Chemical Analytical Results - Soil PAHs¹

Tiger Oil Summitview Yakima, Washington

					Ca	rcinogenic P	AHs														
		2	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	сРАН ТЕQ²	Naphthalene	2-Methylnaphthalene	1-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(ghi)perylene
	1	TEF ²	0.1	1.0	0.1	0.1	0.01	0.1	0.1			1	1	<u> </u>			ı	ī	I		<u> </u>
Sample ID	Sample Depth	Collected	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	µg/kg	μg/kg
SVDP-7	15	03/17/15	<24	<24	<24	<24	<24	<24	<24	<18	10,000	5,400	2,400	<24	<24	<24	<24	<24	<24	24	<24
SVDP-8	14	03/17/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-9	20	03/17/15	<12	<12	<12	<12	<12	<12	<12	<9	89	300	130	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-10	19	03/17/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-11	13	03/17/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-12	18.5	03/16/15	12	<12	<12	<12	<12	<12	<12	<9	2,800	24,000	11,000	38	88	<12	60	15	16	18	<12
SVDP-13	18	03/16/15	<13	<13	<13	<13	<13	<13	<13	<10	<13	<13	<13	<13	<13	<13	<13	<13	<13	<13	<13
SVDP-14	15	03/17/15	<14	<14	<14	<14	<14	<14	<14	<11	<14	<14	<14	<14	<14	<14	<14	<14	<14	<14	<14
SVDP-15	13	03/18/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-16	22-23	04/02/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-17	19.5-20.5	04/02/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-18	20-21	04/02/15	<14	<14	<14	<14	<14	<14	<14	<11	<14	<14	<14	<14	<14	<14	<14	<14	<14	<14	<14
SVDP-19	20-21	04/02/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	47	23	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-20	20-21	04/02/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-21	20-21	04/02/15	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<9	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ	<12 UJ
SVDP-22	20.5-21	04/07/15	<11	<11	<11	<11	<11	<11	<11	<8	410	2,600	1,300	<11	34	34	33	<11	<11	<11	<11
SVDP-23	18-18.5	04/07/15	<12	<12	<12	<12	<12	<12	<12	<9	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
SVDP-24	19.5-20	04/07/15	<12	<12	<12	<12	<12	<12	<12	<9	250	1,600	670	<12	21	15	21	<12	<12	<12	<12
SVDP-25	19.5-20	04/07/15	<12	<12	<12	<12	<12	<12	<12	<9	12	100	110	<12	41	37	75	12	21	26	<12
SVDP-26	20-20.5	04/07/15	<14	<14	<14	<14	<14	<14	<14	<11	<14	<14	<14	<14	<14	<14	<14	<14	<14	<14	<14
SVMW-4	22.5-23	04/27/15	<15	<15	<15	<15	<15	<15	<15	<11	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15
SVMW-5	22.5-23	04/27/15	<16	<16	<16	<16	<16	<16	<16	<12	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16
MTCA Meth	od A Unrestricted Lan	d Use CUL ³	NE	100	NE	NE	NE	NE	NE	100		5,000 ⁴		NE	NE	NE	NE	NE	NE	NE	NE

Notes:

μg/kg = micrograms per kilogram; NE = Not Established.

Bold indicates analyte concentration exceeds laboratory reporting limit.

 $\textbf{Red Bold} \ \text{and outline indicates analyte concentration exceeds referenced regulatory criteria.}$

¹Polycyclic aromatic hydrocarbons (PAHs) analyzed using Environmental Protection Agency (EPA) Method 8270D by TestAmerica Laboratories, Inc., in Spokane, Washington.

²Carcinogenic PAH (cPAH) toxic equivalency (TEQ) calculated using toxicity equivalency factors (TEF) from MTCA Table 708-2, based on methodology described in MTCA Cleanup Regulation Washington Administrative Code 173-340-708. One half the reporting limit was used to calculate the TEQ.

³Model Toxics Control Act (MTCA) Method A unrestricted land use cleanup criteria.

⁴Total value for naphthalene, 1-methyl naphthalene and 2-methyl naphthalene.

Summary of Chemical Analytical Results - Groundwater from Soil Borings¹ Tiger Oil Summitview Yakima, Washington

Boring Number	Date Sampled	Gasoline-range hydrocarbons	Diesel-range hydrocarbons	Heavy oil-range hydrocarbons
Method NWTPH-HCID - H	lydrocarbon Identifica	tion (mg/L)		
SVDP-9	03/18/15	8.3	2.8	<0.61
SVDP-10	03/18/15	0.82	1.0	<0.61
SVDP-11	03/18/15	<0.24	<0.60	<0.60
SVDP-12	03/17/15	6.8	2.1	<1.4
SVDP-13	03/17/15	<0.24	<0.60	<0.60
SVDP-15	03/18/15	<0.24	<0.61	<0.61
SVDP-16	04/02/15	<0.25	<0.63	0.82
SVDP-17	04/02/15	<0.26	<0.64	<0.64
SVDP-18	04/02/15	<0.24	<0.62	<0.62
SVDP-19	04/02/15	1.5	<0.63	<0.63
SVDP-20	04/02/15	<0.25	<0.63	<0.63
SVDP-21	04/02/15	<0.25	<0.62	<0.62
SVDP-24	04/07/15	110 J	30 J	0.90 J
SVDP-25	04/07/15	3.6 J	2.3 J	<0.62UJ
SVDP-26	04/07/15	<0.25 UJ	<0.63 UJ	<0.63 UJ

Notes:

Bold indicates analyte concentration exceeds laboratory reporting limit. mg/L = milligrams per liter

 $^{^{\}rm 1}\,{\rm Chemical}$ analyses conducted by TestAmerica of Spokane, Washington.

Summary of Chemical Analytical Results - Groundwater¹

Tiger Oil Summitview Yakima, Washington

Т	-		Takiiia, Wasi			ı										
Well ID	Regulatory			ИW-1 ³	1			1W-2	ı			/IW-3		Duplicate (SVMW-3)	SVMW-4	SVMW-5
Date Sampled	Levels ²	09/18/14	12/12/14	3/31/2015 ¹²	5/19/2015 ¹²	09/18/14	12/12/14	03/31/15	05/19/15	09/18/14	12/12/14	03/31/15	05/19/15	05/19/15	05/19/15	05/20/15
Method NWTPH-Gx - Gasoline Range (μg/L)		•		1	1		T	ı								
Gasoline-range hydrocarbons	800/1,0004	<100	<100	NT	NT	<100	<100	<100	<100	12,700	13,200	12,000	14,000	14,000	<100	2,100
Method NWTPH-Dx - Diesel Range (mg/L)		_					_	_	_							
Diesel-range hydrocarbons	0.5	NA	NT	NT	NT	<0.239	<0.232	<0.24	<0.25	0.815 J	0.650 J	1.3	0.99 J	1.0 J	<0.24	0.49 J
Diesel-range hydrocarbons w/silica gel	0.5	NT	NT	NT	NT	NT	NT	<0.24	NT	0.968 J	0.592 J	1.1	0.99	1.0	NT	0.45
Heavy Oil-Range Hydrocarbons	0.5	NA	NT	NT	NT	<0.399	<0.387	<0.40	<0.42	<0.385	<0.385	<0.39	<0.39	<0.41	<0.40	<0.41
Heavy Oil-Range Hydrocarbons w/silica gel	0.5	NT	NT	NT	NT	NT	NT	<0.40	NT	<0.385	<0.385	<0.39	<0.39	<0.41	NT	<0.41
Method EPA 8011 - EDB (μg/L)													_			
1,2-dibromoethane (EDB)	0.01	NT	NT	NT	NT	NT	<0.0100	<0.010	<1.0	NT	0.181 J	0.13	<100 ⁷	<100 ⁷	<1.0	<10 ⁷
Method EPA 8260 - VOCs (μg/L) ⁵													•			
1,2-Dichloroethane (EDC)	5	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	<1.00	<100 ⁷	<100 ⁷	<100 ⁷	<100 ⁷	<1.0	<10 ⁷
2-Butanone	4,800 ⁶	<10.0	NT	NT	NT	<10.0	<10.0	<10	<10	55.1	<1000	<1000	<1,000	<1,000	<10	<100
Acetone	NE	<25.0	NT	NT	NT	<25.0	<25.0	<25	<25	246	NT	<2500	<2,500	<2,500	<25	<250
Benzene	5	<0.200	NT	NT	NT	<0.200	<0.200	<0.20	<0.20	27.6	32.0	36	25	26	<0.20	<2.0
Dichlorofluoromethane	NE	<0.200	NT	NT	NT	<0.200	<0.200	<0.20	<1.0	246	<20.0	<20	<100	<100	<1.0	<10
Ethylbenzene	700	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	436	571	560	570	560	<1.0	<10
HCFC-21	NE	<0.200	NT	NT	NT	<0.200	<0.200			0.270						
Hexachlorobutadiene	NE	<2.00	NT	NT	NT	<2.00	<2.00			<2.00						
n-Hexane	480 ⁶	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	80.0	<100	110	120	110	<1.0	<10
Isopropylbenzene (Cumene)	NE	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	33.6	<100	<100	<100	<100	<1.0	<10
Methyl t-butyl ether (MTBE)	20	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	<1.00	<100 ⁷	<100 ⁷	<100	<100	<1.0	<10
Naphthalene	160	<2.00	NT	NT	NT	<2.00	<2.00	<2.0	<2.0	236	200	280	290	310	<2.0	<20
p-lsopropyltoluene	NE	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	11.2	<100	<100	<100	<100	<1.0	<10
sec-Butylbenzene	800 ⁶	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	545	<100	<100	<100	<100	<1.0	<10
tert-Butylbenzene	800 ⁶	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	<1.00	<100	120	<100	<100	<1.0	<10
Toluene	1,000	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	422	427	410	400	390	<1.0	<10
Xylene, m-,p-		<2.00	NT	NT	NT	<2.00	<2.00	<2.0	<2.0	2,000	2,200	2,100	2,100	2,000	<2.0	<20
Xylene, o-	1,000 ⁸	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	794	896	820	830	840	<1.0	<10
Xylene, Total		<3.00	NT	NT	NT	<3.00	<3.00	<3.0	<3.0	2,794	3,096	2,920 ⁹	2,900	2,900	<3.0	<30
1,3,5-Trimethylbenzene	80 ⁶	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	140	211	220	880	820	<1.0	190
1,2,4-Trimethylbenzene	NE	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	660	763	780	250	230	<1.0	100
n-propylbenzene	800 ⁶	<1.00	NT	NT	NT	<1.00	<1.00	<1.0	<1.0	82.0	107	110	110	<100	<1.0	18
Metals Method EPA 200.7 - Total Lead (mg/L)													ı L			
Lead	0.015	NT	NT	NT	NT	NT	<0.0140	<0.014	<0.014	NT	<0.0140	<0.014	<0.014	<0.014	<0.014	<0.014
<u>, </u>		1		1			1		1	1	1	1				

Well ID	Regulatory		SVMW-1 ³				SVIV	IW-2			SVM	W-3		Duplicate (SVMW-3)	SVMW-4	SVMW-5
Date Sampled	Levels ²	09/18/14	12/12/14	3/31/2015 ¹²	5/19/2015 ¹²	09/18/14	12/12/14	03/31/15	05/19/15	09/18/14	12/12/14	03/31/15	05/19/15	05/19/15	05/19/15	05/20/15
Conventionals (mg/L)																
Nitrate-Nitrogen	10 ¹⁰	3.43	NT	NT	NT	6.16	7.10	8.1	7.5	2.45	4.86	4.1	3.2	2.9	9.2	4.4
Sulfate	250 ¹¹	28.6	NT	NT	NT	32.0	31.2	32	32	15.4	19.1	19	17	16	29	22
Total Organic Carbon	NE	NA	NT	NT	NT	4.39 J	1.79	1.9	1.7	3.45	2.69	2.5	2.9	2.7	1.6	2.1

Notes:

¹Chemical analyses conducted by TestAmerica of Spokane, Washington.

²Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup level unless otherwise footnoted.

 $^3\mbox{Samples}$ from SVMW-1 may not be representative of general site groundwater conditions.

⁴Cleanup level for GRPH is 800 μg/L when benzene is present, 1,000 μg/L when benzene is not present.

⁵Only VOCs detected at concentrations greater than their reporting limits are listed in the table. For a complete list of VOCs analyzed refer to the laboratory analytical report, Appendix B.

⁶MTCA Method B cleanup level.

⁷Reporting limits were greater than regulatory levels as a result of sample dilutions and the calibration range of the laboratory analytical equipment.

⁸Cleanup level for total xylenes.

⁹Total xylenes calculated by adding m,p- and o-xylenes. For total xylene concentration reported by TestAmerica see the laboratory analytical report, Appendix B.

 10 Maximum contaminant level established by Title 40, Volume 19 of the Code of Federal Regulations.

 $^{\rm 11}{\rm Secondary}$ maximum contaminant level recommended by the Environmental Protection Agency.

¹²Insufficent water volume available for chemical analysis

J flag indicates results are qualified as estimated. See data validation report for additional information. **Bold** indicates analyte concentration exceeds laboratory reporting limit. µg/L = micrograms per liter; mg/L = milligrams per liter; NA = not applicable; NE = not established; NT = not tested

Red Bold and outline indicates analyte concentration exceeds referenced regulatory level.

Summary of Chemical Analytical Results - Groundwater PAHs¹

Tiger Oil Summitview Yakima, Washington

				Ca	rcinogenic PA	\Hs														
		Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	сРАН ТЕQ²	Naphthalene	2-Methylnaphthalene	1-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(ghi)perylene
	TEF ²	0.1	1	0.1	0.1	0.01	0.1	0.1												
Sample ID	Date Collected	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	09/18/14	<0.0260 ³	<0.0442 ³	<0.0286 ³	<0.0390 ³	<0.0286 ³	<0.0338 ³	< 0.0572 ³	<0.03 ⁴	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234	<0.234
SVMW-1	03/31/15	NT	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	05/19/15	NT	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	09/18/14	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.06	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856	<0.0856
SVMW-2	03/31/15	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087	<0.07	0.44	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087
	05/19/15	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.07	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094
	09/18/14	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.06	178	48.4	29.3	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854	<0.0854
SVMW-3	03/31/15	<0.088	<0.088	<0.088	<0.088	<0.088	<0.088	<0.088	<0.07	200	65	38	<0.088	0.11	<0.088	<0.088	<0.088	<0.088	<0.088	<0.088
	05/19/15	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.07	210	68	38	<0.089	0.10	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089
SVMW-4	05/19/15	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.07	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094
SVMW-5	05/19/15	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.07	7.6	9.6	13	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096
Duplicate (SVMW-2)	09/18/14	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.07	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863	<0.0863
Duplicate (SVMW-3)	03/31/15	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.07	210	66	38	<0.089	0.10	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089
Duplicate (SVMW-3)	05/19/15	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.07	200	65	37	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089
MTCA Method A Unrestricte	ed Land Use CUL ⁵	NE	0.1	NE	NE	NE	NE	NE	0.1		160 ⁶		NE	NE	NE	NE	NE	NE	NE	NE

Notes:

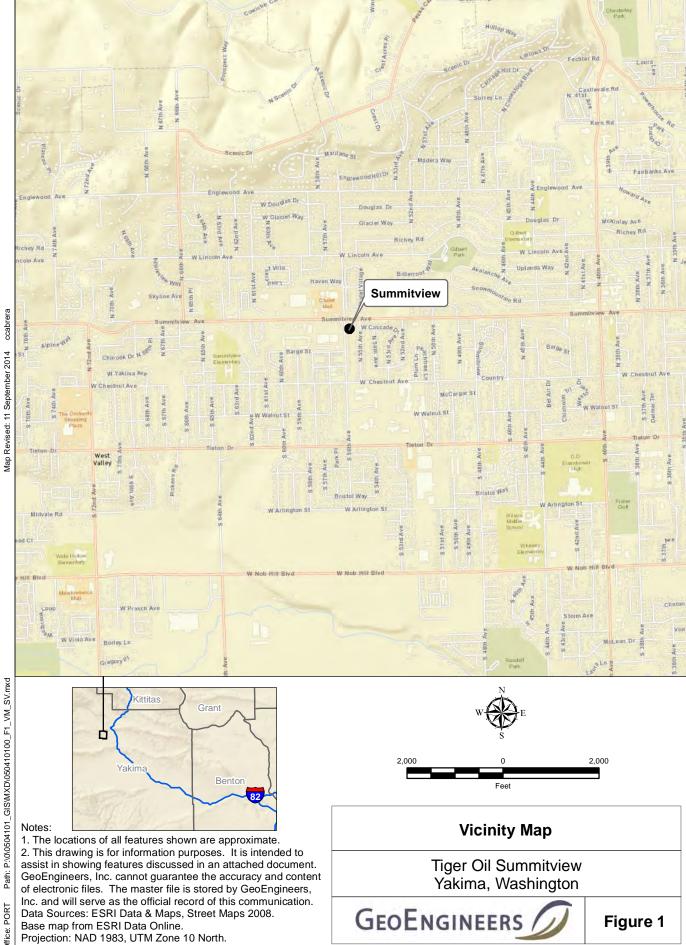
 μ g/L = micrograms per liter; NE = Not Established; NT = not tested

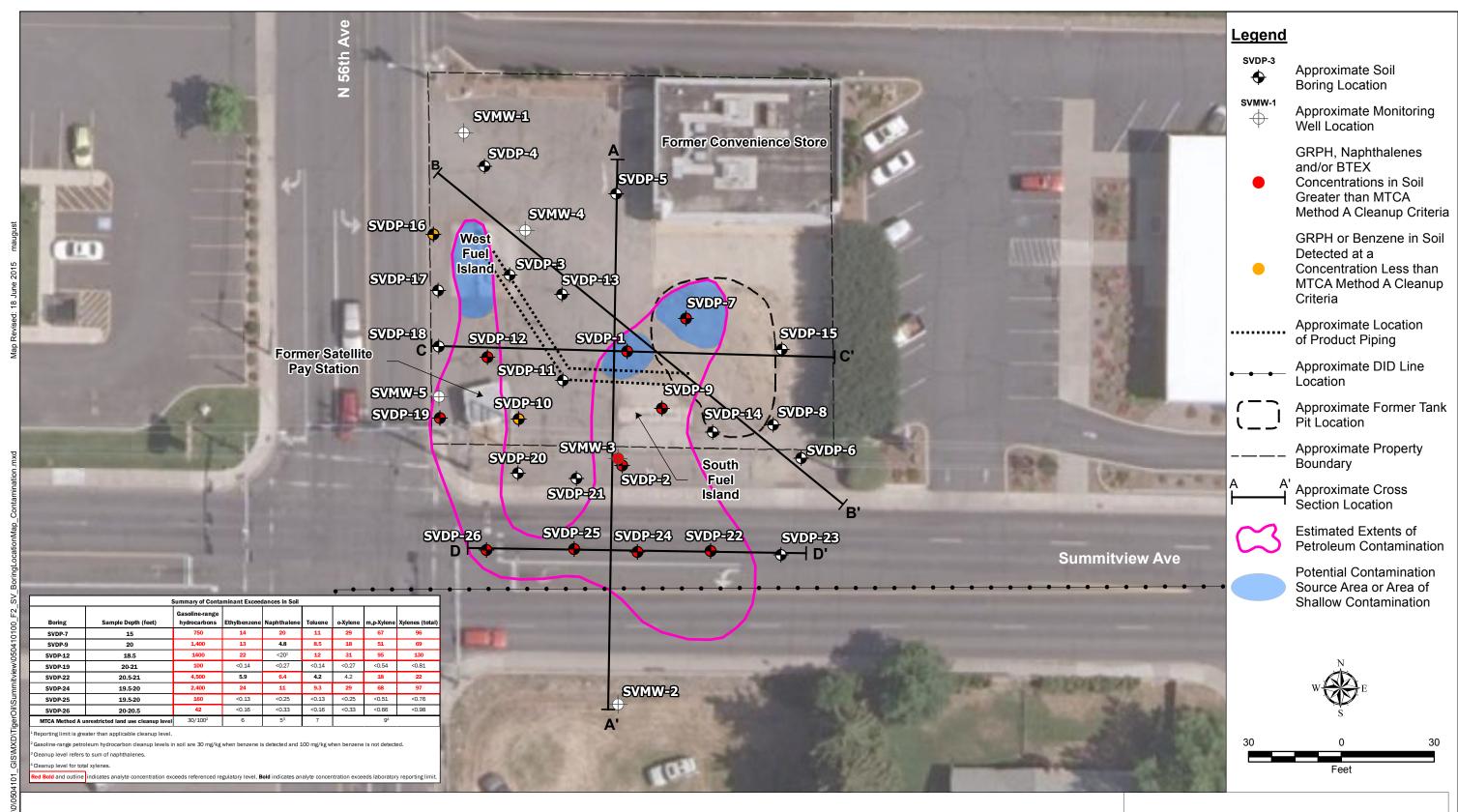
Bold indicates analyte concentration exceeds laboratory reporting limit.

Red Bold and outline indicates analyte concentration exceeds referenced regulatory level.

¹Polycyclic aromatic hydrocarbons (PAHs) analyzed using Environmental Protection Agency Method 8270D by TestAmerica Laboratories, Inc., in Spokane, Washington.

²Carcinogenic PAH (cPAH) toxic equivalency (TEQ) calculated using toxicity equivalency factors (TEF) from MTCA Table 708-2, based on methodology described in MTCA Cleanup Regulation Washington Administrative Code 173-340-708. One half the reporting limit was used to calculate the TEQ.


³Reported value is the method detection limit, as the reporting limit exceeded the MTCA Method A level when used in the TEQ calculation.


⁴The TEQ reported was calculated using half the method detection limits.

⁵Model Toxics Control Act (MTCA) Method A unrestricted land use cleanup levels.

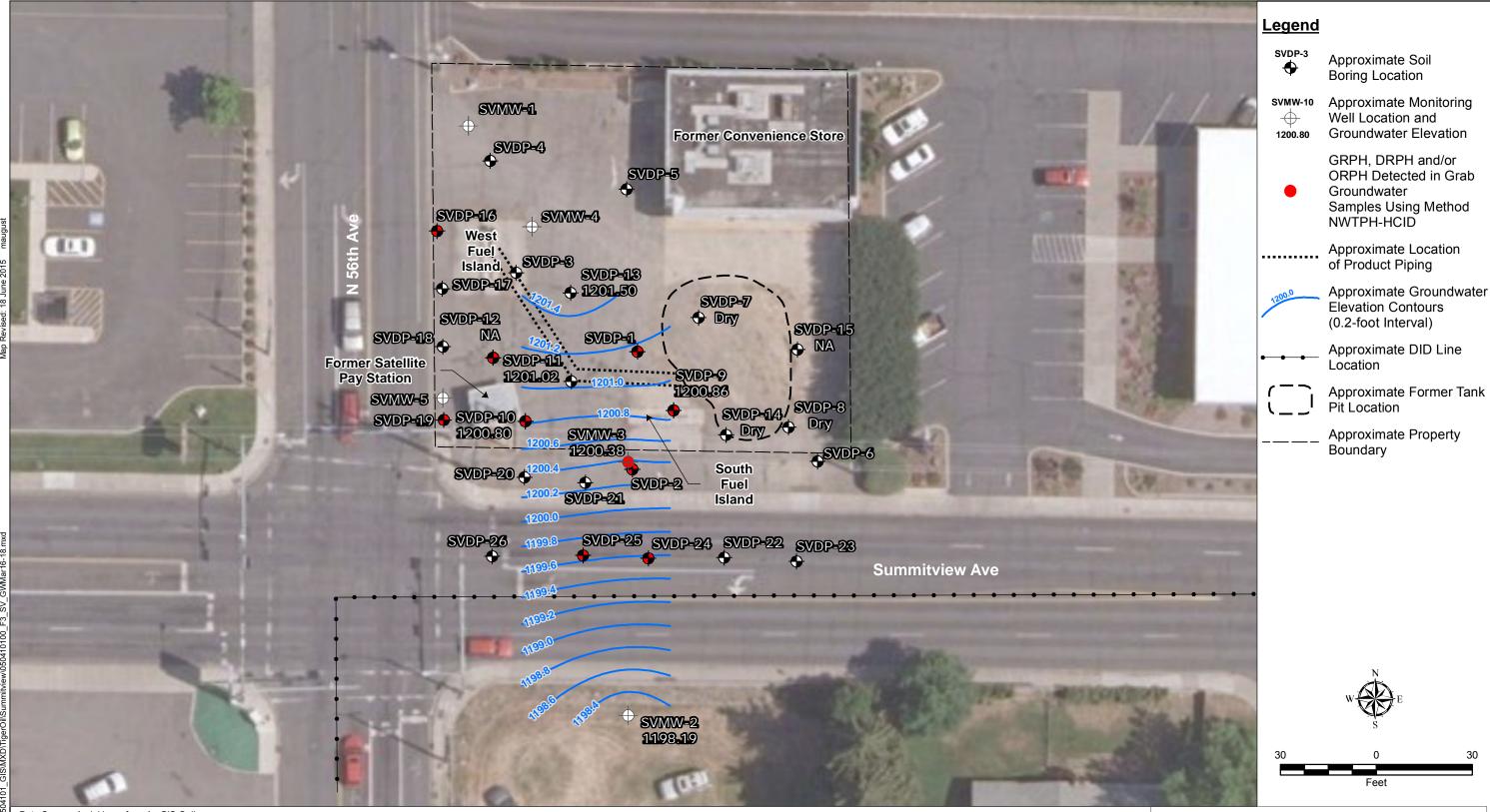
⁶Total value for naphthalene, 1-methyl naphthalene and 2-methyl naphthalene.

Data Source: Aerial base from ArcGIS Online

Projection: NAD 1983 StatePlane Washington South FIPS 4602 Feet

- The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended
- to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content
- of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

and will sarke after since the control of the communication.


3. Product piping location estimated from "Results of Underground Piping and Dispenser Island Sampling at Tiger Oil Corporation Facility, 5511 Summitview in Yakima, Washington". Figure 2 Wayne Perry, Inc.

Site Plan and Sample Locations

Tiger Oil Summitview Yakima, Washington

Figure 2

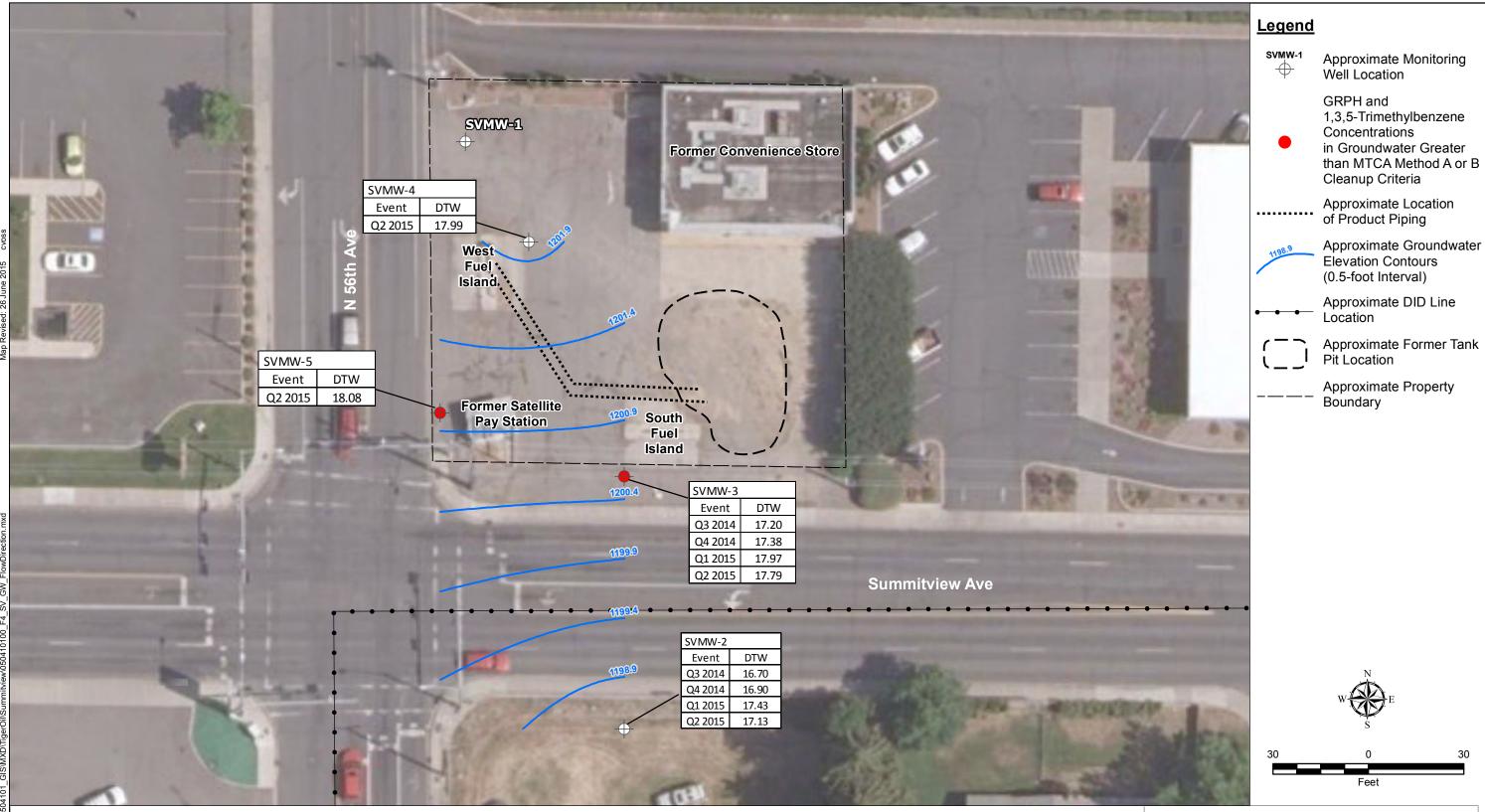
Data Source: Aerial base from ArcGIS Online.
Projection: NAD 1983 StatePlane Washington South FIPS 4602 Feet
Notes:

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended

to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

3. Product piping location estimated from "Results of Underground Piping and Dispenser Island Sampling at Tiger Oil Corporation Facility,


5511 Summitview in Yakima, Washington". Figure 2 Wayne Perry, Inc. December 14, 2005.

Groundwater Elevations March 16-18, 2015

Tiger Oil Summitview Yakima, Washington

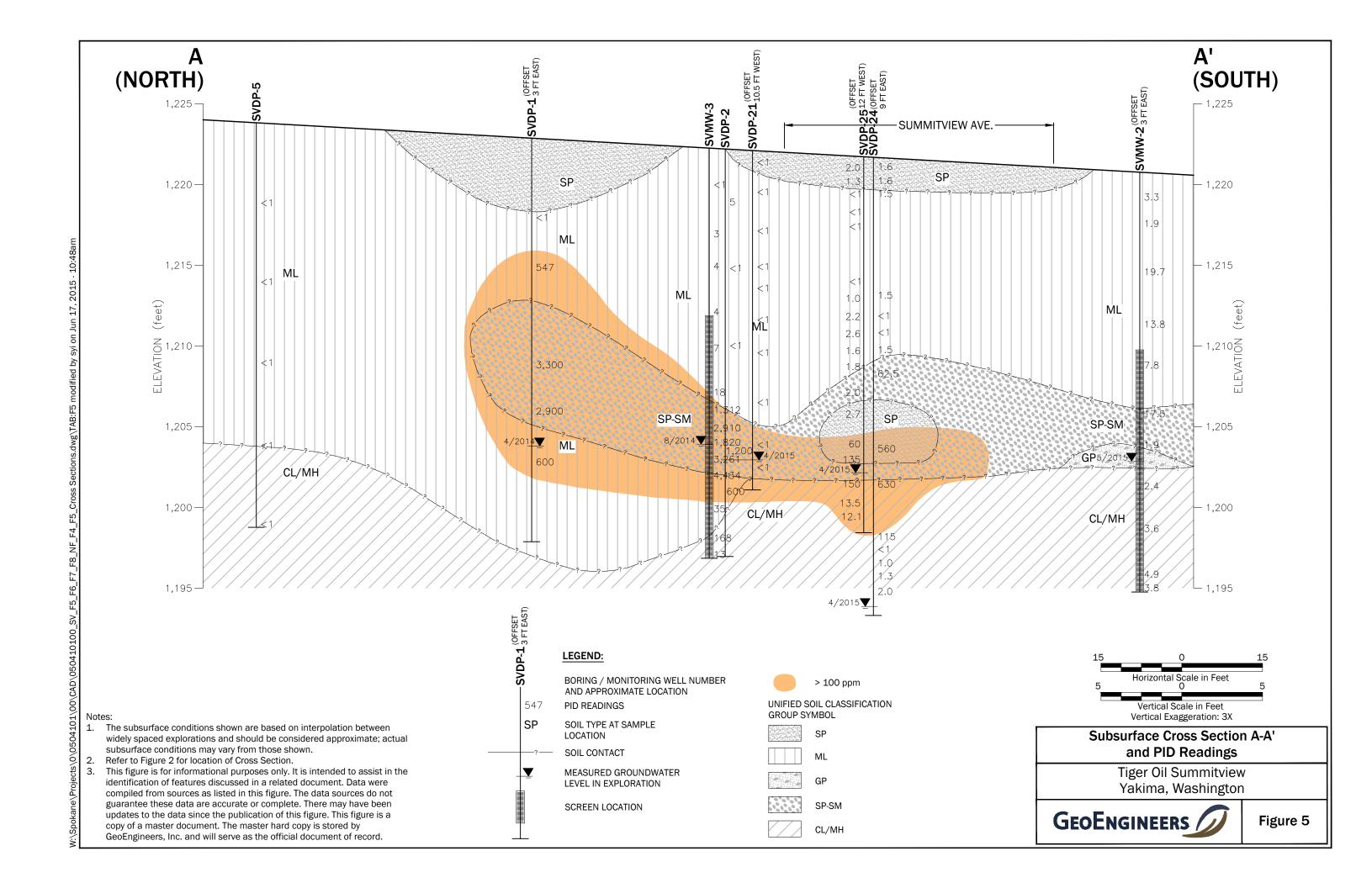
Figure 3

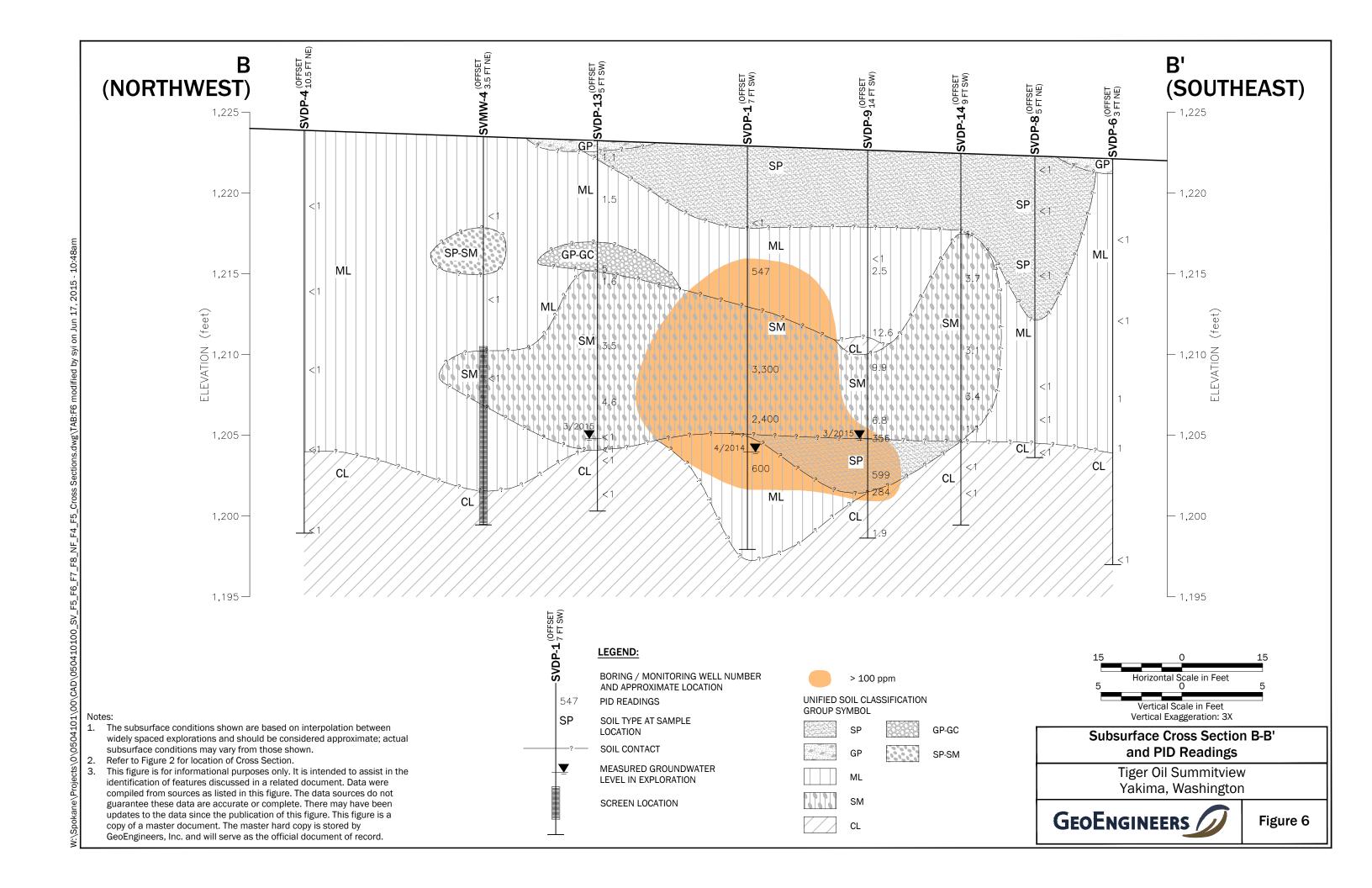
Data Source: Aerial base from ArcGIS Online.

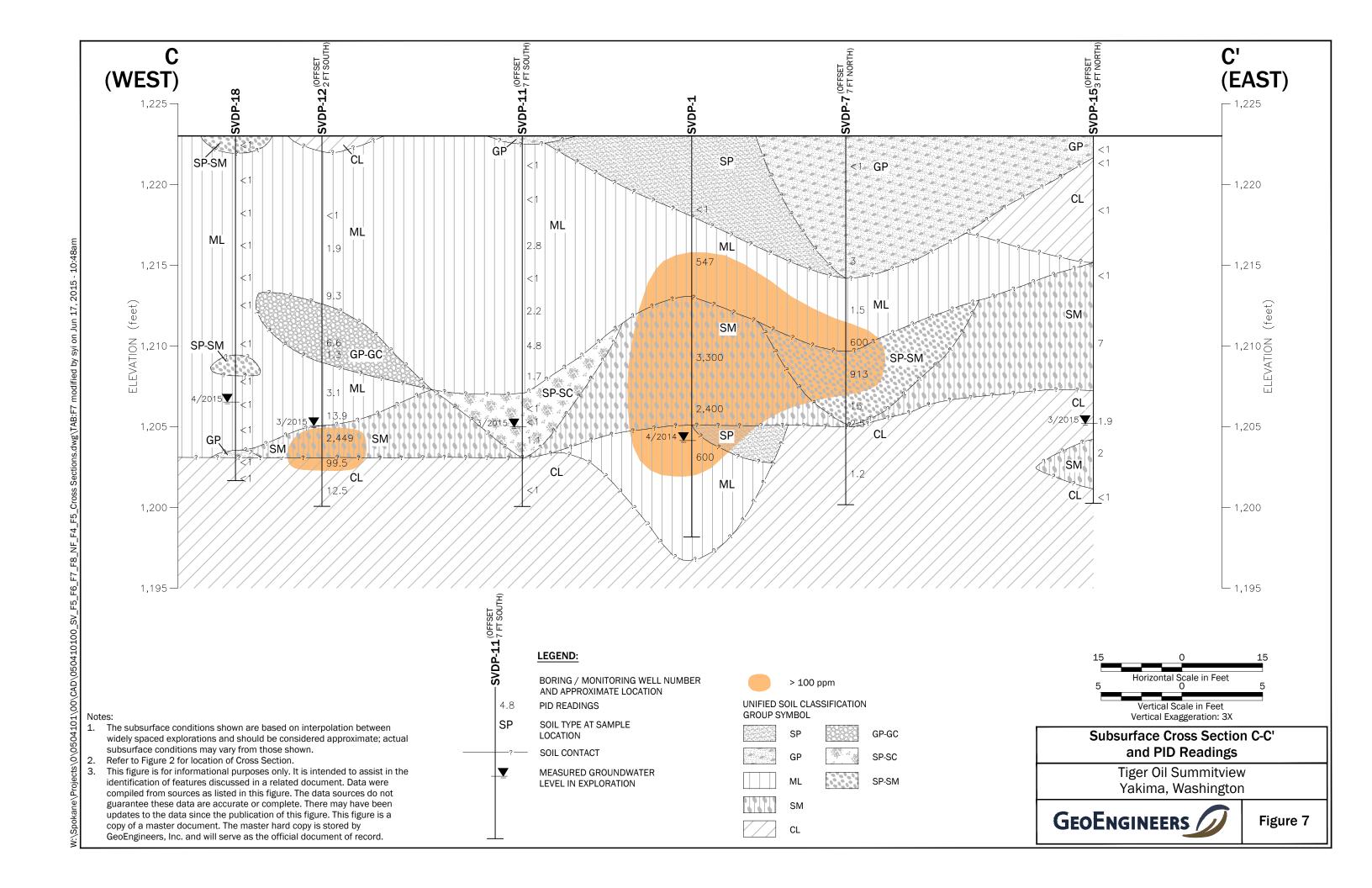
Projection: NAD 1983 StatePlane Washington South FIPS 4602 Feet

Notes

1. The locations of all features shown are approximate.
2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


3. Groundwater elevations are referred to the North American Vertical Datum of 1988 (NAVD 88).


Groundwater Elevation and Interpreted Flow Direction May 19, 2015


Tiger Oil Summitview Yakima, Washington

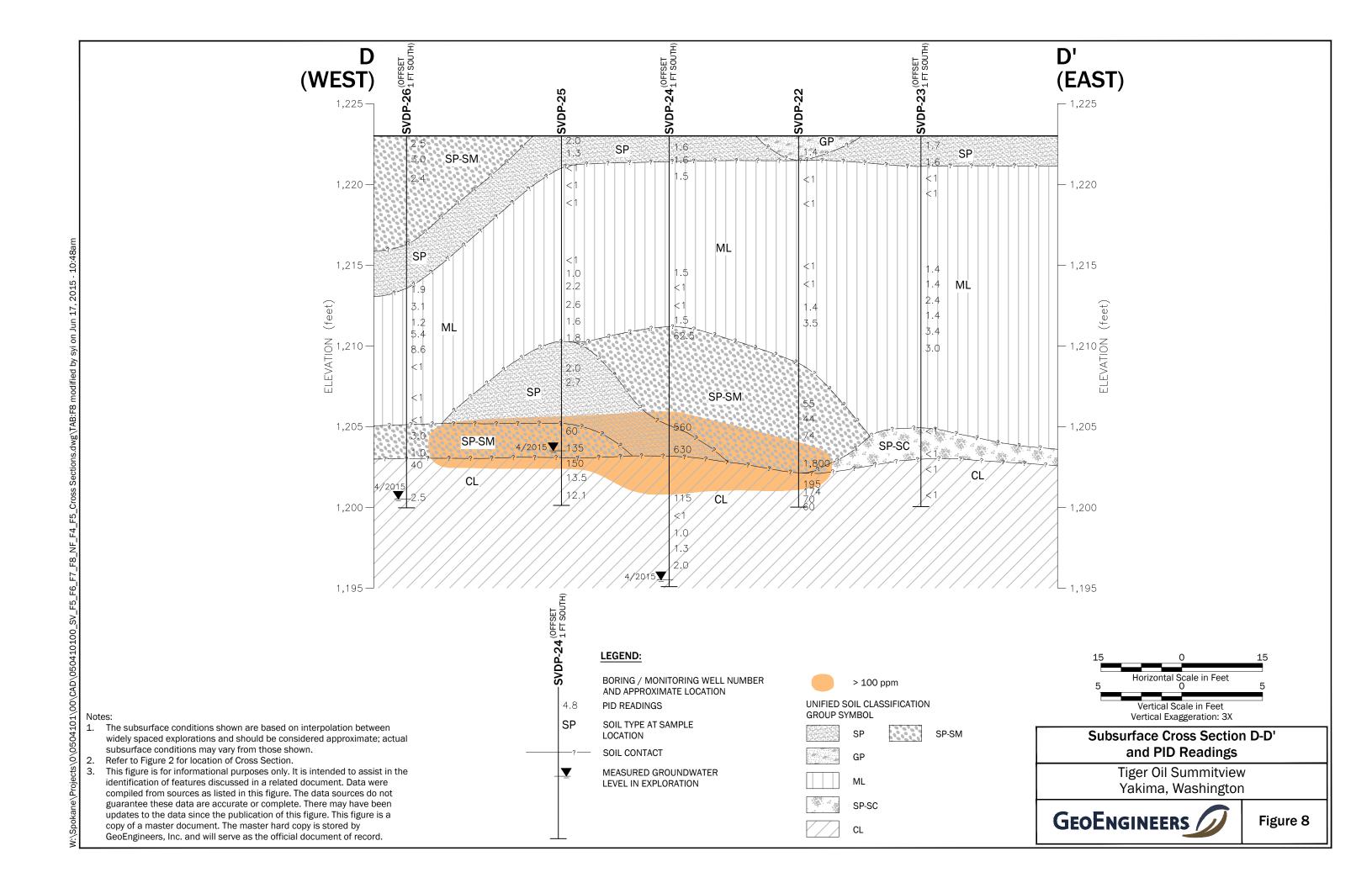


Figure 4

APPENDIX A Field Methods and Boring Logs

APPENDIX A FIELD METHODS AND BORING LOGS

General Soil Sampling Procedures

Soil samples were obtained using disposable nitrile gloves which were discarded after each use. Samples were placed in 4- or 9-ounce laboratory-supplied sample containers. Sample containers were filled to minimize headspace and labeled with a unique identification. Samples analyzed for volatile organic compounds (VOCs) were obtained using EPA Method 5035 sampling procedures. Samples were temporarily stored in an iced cooler before transfer to TestAmerica's Spokane Valley, Washington laboratory for analysis. Chain-of-custody protocols were followed.

Field Screening of Soil Samples

A GeoEngineers' representative performed field screening of soil samples obtained during drilling activities. Field screening results are used as a general guideline to delineate depths with possible petroleum-related contamination. The screening methods used include: (1) visual screening; (2) water sheen screening; and (3) headspace vapor screening using a MiniRae PID calibrated to isobutylene.

Visual screening consists of inspecting the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons such as motor oil, or when hydrocarbon concentrations are high. Water sheen screening is a more sensitive method that has been effective in evaluating whether contaminant concentrations are less than regulatory cleanup guidelines.

Water sheen screening involves placing soil in water and observing the water surface for signs of sheen. Sheen screening might detect both volatile and nonvolatile petroleum hydrocarbons. Sheen classifications are as follows:

No Sheen	No visible sheen on water surface.
Slight Sheen	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil might produce a slight sheen.
Moderate Sheen	Light to heavy sheen; might have some color/iridescence; spread is irregular to flowing, might be rapid; few remaining areas of no sheen on water surface.
Heavy Sheen	Heavy sheen with color/iridescence; spread is rapid; entire water surface might be covered with sheen.

Headspace vapor screening involved placing a soil sample in a plastic sample bag. Air was captured in the bag, and the bag was shaken to expose the soil to the air trapped in the bag. The probe of the PID was then inserted into the bag to measure VOCs in the air within the bag. In this application, the PID measured concentration of organic vapors ionizable by a 10.6 electron volt (eV) lamp in the range between 1.0 and 2,000 ppm), with a resolution of +/- 2 ppm.

Field screening results are site-specific. The effectiveness of field screening results will vary with temperature, moisture content, organic content, soil type and type and age of contaminant. The presence

or absence of a sheen or headspace vapors does not necessarily indicate the presence or absence of petroleum hydrocarbons.

Monitoring Well Construction, Development and Surveying

The groundwater monitoring wells were constructed in general accordance with Chapter 173-160, Section 400 of the Washington Administrative Code (WAC), titled *Washington State Resource Protection Well Construction Standards*. Monitoring well records were submitted in accordance with Washington State monitoring well construction standards. Monitoring well installations were observed and documented by a GeoEngineers' field representative.

The groundwater monitoring wells were installed using sonic drilling equipment and were constructed of 2-inch-diameter, Schedule 40 PVC casing and 0.01-inch slot width well screens. Well screen depths were based on groundwater conditions observed in the field such that the top of the shallow water table intercepted the well screen.

Each well was constructed with a bentonite seal and a flush-mount surface monument. A lockable cap was installed in the top of the PVC well casing. A concrete surface seal was placed around the monument at the ground surface to divert surface water away from the well location. Each well was developed using surging and pumping; wells were surged and then pumped until the development water was clear.

The monitoring well was developed to remove water introduced into the well during drilling (if any), stabilize the filter pack and formation materials surrounding the well screen, and restore the hydraulic connection between the well screen and the surrounding soil. The depth to water in the monitoring well was measured prior to development. The total depth of the well was measured and recorded. The groundwater monitoring wells were developed by pumping, surging, bailing or a combination of these methods after construction. Development of the well continued until the water was as free of sediment as practicable, with respect to the composition of the subsurface materials within the screened interval. The removal rate and amount of groundwater removed was recorded during the well development procedures. Development purge water was collected and stored on site.

The locations of the groundwater monitoring wells were established in the field using a hand-held iPad with GPS software, and subsequently surveyed by a licensed surveyor.

Depth to Groundwater

Depth to groundwater measurements from the new wells were collected and recorded in the field notebook after the water level stabilized after well development. Depth to groundwater relative to the marked north side of the monitoring well casing rims was measured to the nearest 0.01 foot using an electronic water level indicator and recorded in the field notebook. Groundwater elevation was calculated by subtracting the depth-to-water measurement from the surveyed casing rim elevation. The electronic water level indicator was decontaminated with Liquinox® solution wash and a distilled water rinse prior to use in each well.

Groundwater Sampling

Following depth to groundwater measurements, groundwater samples were collected from the installed groundwater monitoring wells consistent with the EPA's low-flow groundwater sampling procedures (EPA, 1996 and Puls and Barcelona, [Puls, 1996]). Dedicated polyethylene tubing and a portable peristaltic pump were used for groundwater purging and sampling. During purging activities, water quality parameters,

including pH, temperature, conductivity, DO and turbidity were measured using a multi-parameter meter equipped with a flow-through cell. Groundwater samples were collected after: (1) water quality parameters stabilized; or (2) a maximum purge time of 30 minutes was achieved. During purging and sampling, drawdown was not allowed to exceed 0.3 feet and the purge rate did not exceed 400 milliliters per minute. Water quality parameter stabilization criteria included the following:

Turbidity: ±10 percent for values greater than 5 nephelometric turbidity units (ntu);

Conductivity: ±3 percent;

pH: ±0.1 unit;

Temperature: ±3 percent; and

D0: ± 10 percent.

Field water quality measurements and depth-to-water measurements were recorded on a Well Purging-Field Water Quality Measurement Form. The groundwater samples were transferred in the field to laboratory-prepared sample containers and kept cool during transport to the testing laboratory. Chain-of-custody procedures were observed from the time of sample collection to delivery to the testing laboratory consistent with the Quality Assurance Project Plan (QAPP).

Location Control

The locations of the borings and groundwater monitoring wells were established in the field using a handheld iPad with GPS software. The horizontal accuracy of the hand-held unit is within about 10 feet. Upon completion, horizontal and vertical locations of the groundwater monitoring wells were survey by a licensed professional surveyor and referenced to NAD83 and NAVD88, respectively. The horizontal coordinates of the groundwater monitoring wells and the elevation of the benchmark established at the site were determined using a Topcon GR-3 GPS receiver with a nominal accuracy of 10 millimeter (mm) + 1 mm horizontal and 15 mm + 1 mm vertical. The elevation of the monitoring wells relative to the benchmark established at the site were individually determined using a Leica DNAO3 digital level with a vertical accuracy of +/-0.01 feet.

Decontamination Procedures

The objective of the decontamination procedure was to minimize the potential for cross contamination between exploration locations and between individual samples within a specific exploration. A designated decontamination area was established for decontamination of drilling equipment and reusable sampling equipment. Drilling equipment was cleaned using pressure washing equipment.

Sampling or measurement equipment was decontaminated in accordance with the following procedures before each sampling attempt or measurement:

- Brush equipment with a wire brush, if necessary, to remove large particulate matter.
- Rinse with potable tap water.
- Wash with non-phosphate detergent solution (Liquinox® and potable tap water).
- Rinse with potable tap water.

Rinse with distilled water.

Handling of Investigation-Derived Waste

IDW (drill cuttings and development and purge water), was placed in U.S. Department of Transportation (DOT) approved 55-gallon drums. The drums were labeled with the exploration number, general contents and date. IDW generated on site was placed in drums and is pending pickup for disposal at an appropriate facility.

Disposable items, such as sample tubing, direct-push sampler acrylic sleeves, gloves and paper towels, etc., were placed in plastic bags after use and deposited in trash receptacles for disposal.

Laboratory Analytical Plan

Method Reporting Limit (MRL) goals were based on Ecology MTCA soil or groundwater cleanup criteria. The following methods were used for the soil and groundwater samples:

Soil

- GRPH (NWTPH-Gx);
- DRPH (NWTPH-Dx);
- Total petroleum hydrocarbons (TPH) (NWTPH-HCID), direct push soil borings only;
- BTEX by (EPA 8260C);
- PAHs (EPA 8270D);
- EDB (EPA 8011);
- 1,2-dichloroethane (EDC) (EPA 8260C);
- MTBE (EPA Method 8260C); and
- Total Lead (EPA 6010C).

Groundwater

- GRPH (NWTPH-GX);
- DRPH (NWTPH-DX);
- VOCs (EPA 8260c);
- PAHs (EPA 8270D)
- TOC (SM5310B);
- Nitrate and Sulfate by (EPA 300); and

Ferrous Iron (Field Test, Hach 26672-88).

SOIL CLASSIFICATION CHART

M	IAJOR DIVISION	ONS.	SYMI	BOLS	TYPICAL
IV.	AJON DIVISIO			LETTER	DESCRIPTIONS
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
OOILO	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50%	SAND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND
	MORE THAN 50% OF COARSE FRACTION PASSING NO. 4	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
SOILS	05410			OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY
HI	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications

Sampler Symbol Descriptions

2.4-inch I.D. split barrel
Standard Penetration Test (SPT)
Shelby tube

Piston
Direct-P

Direct-Push
Bulk or grab

Continuous Coring

Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

A "P" indicates sampler pushed using the weight of the drill rig.

ADDITIONAL MATERIAL SYMBOLS

SYMI	BOLS	TYPICAL			
GRAPH	LETTER	DESCRIPTIONS			
	AC	Asphalt Concrete			
	СС	Cement Concrete			
33	CR	Crushed Rock/ Quarry Spalls			
	TS	Topsoil/ Forest Duff/Sod			

Groundwater Contact

Measured groundwater level in exploration, well, or piezometer

Measured free product in well or piezometer

Graphic Log Contact

Distinct contact between soil strata or geologic units

Approximate location of soil strata change within a geologic soil unit

Material Description Contact

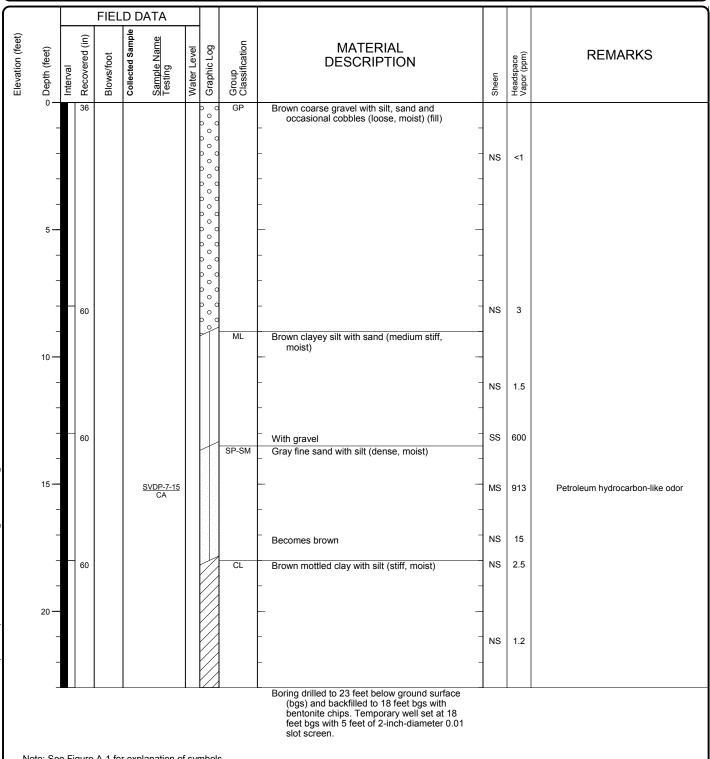
Distinct contact between soil strata or geologic units

Approximate location of soil strata change within a geologic soil unit

Laboratory / Field Tests

Percent fines AL Atterberg limits CA Chemical analysis CP Laboratory compaction test CS Consolidation test DS Direct shear HA Hydrometer analysis MC Moisture content MD Moisture content and dry density OC Organic content Permeability or hydraulic conductivity PM Ы Plasticity index PP Pocket penetrometer Parts per million PPM SA Sieve analysis TΧ Triaxial compression UC Unconfined compression VS. Vane shear

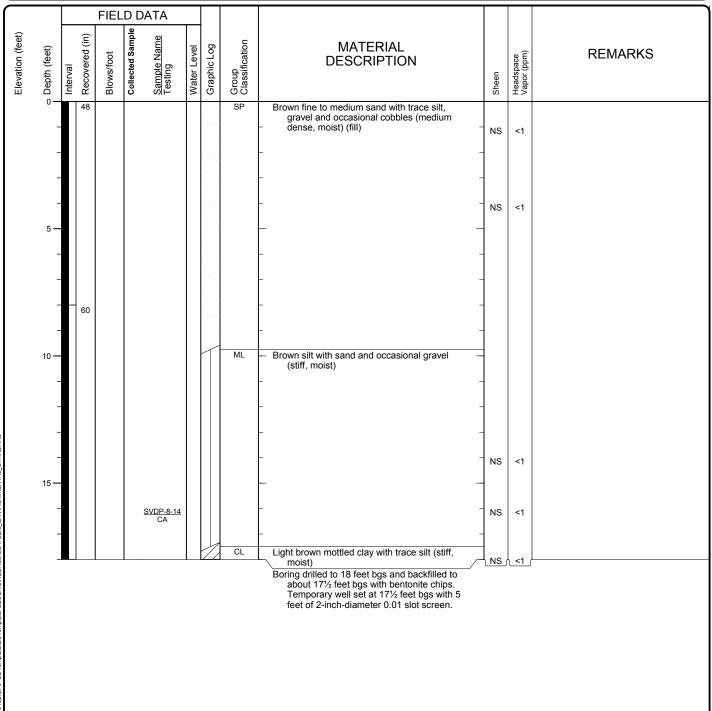
Sheen Classification

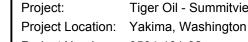

NS No Visible Sheen
SS Slight Sheen
MS Moderate Sheen
HS Heavy Sheen
NT Not Tested

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

KEY TO EXPLORATION LOGS

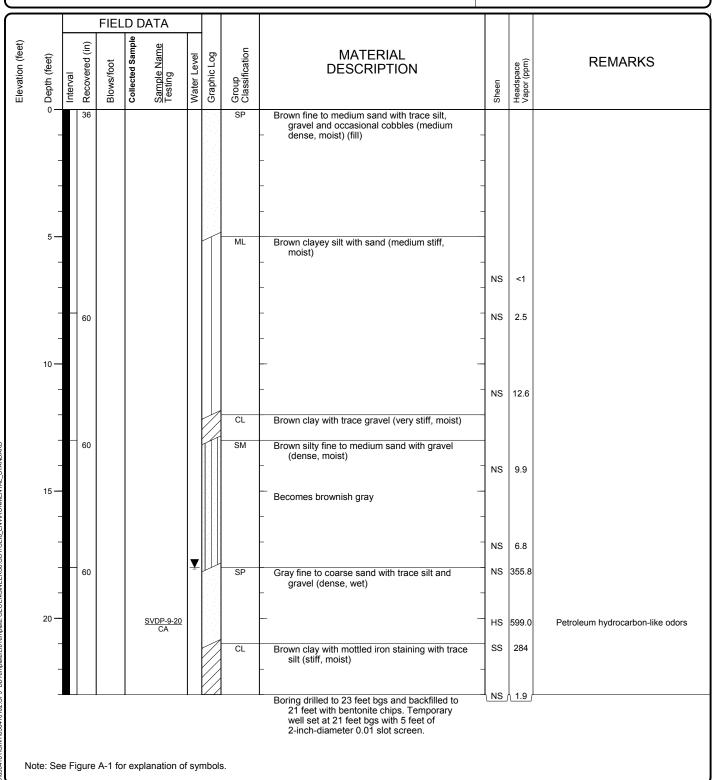
Drilled	<u>Start</u> 3/17/2015	<u>End</u> 3/17/2015	Total Depth (ft)	23	Logged By JWR Checked By JRS	est	Drilling Method	Sonic		
Surface Vertical I	Elevation (ft) Datum	Undet	ermined		Hammer Data		Drilling Equipment		Rig S-1	
Easting (Northing					System Datum		Groundwate		Depth to Water (ft)	Elevation (ft)
Notes:	Notes: Temporary well installed on 3/17/15 and backfilled with bentonite chips on 3/18/15.									


Log of Boring SVDP-7


Tiger Oil - Summitview Project Location: Yakima, Washington

Project Number: 0504-101-02 Figure A-2 Sheet 1 of 1

	Total 18 Depth (ft)	Logged By JWR Checked By JRS	Driller Environmental W Explorations, Inc.	est	Drilling Method Sonic	
Surface Elevation (ft) Undetermined Vertical Datum	Hammer Data		Drilling Equipment	Rig S-1		
Easting (X) Northing (Y)		System Datum		Groundwate	Depth to	Elevation (ft)
Notes: Temporary well installed on 3	3/17/15 and backfille					

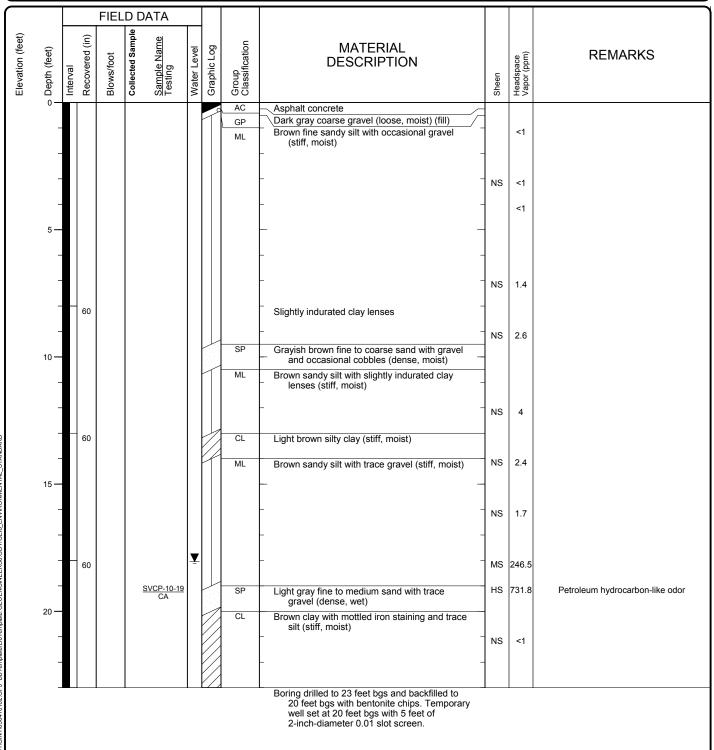


Tiger Oil - Summitview

0504-101-02 Project Number:

Figure A-3 Sheet 1 of 1

	<u>Start</u> 7/2015	<u>End</u> 3/17/2015	Total Depth (ft)	23	Logged By JWR Checked By JRS	est	Drilling Method	Sonic		
	Surface Elevation (ft) Undetermined Hammer Data					Drilling Equipment		Rig S-1		
Easting (X) Northing (Y)					System Datum	Groundwate		Depth to Water (ft)	Elevation (ft)	
Notes: Temp	Notes: Temporary well installed on 3/17/15 and backfilled with bentonite chips on 3/18/15.								18.0	

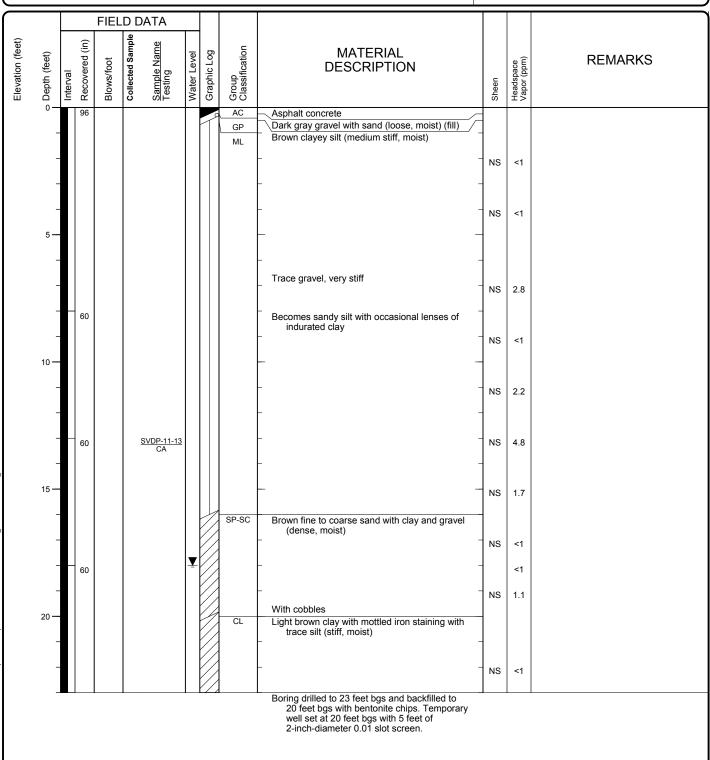

Log of Boring SVDP-9

Project: Tiger Oil - Summitview Project Location: Yakima, Washington

Project Number: 0504-101-02

Figure A-4 Sheet 1 of 1

Start Drilled 3/17/20	<u>End</u> 5 3/17/2015	Total Depth (ft)	23	Logged By JWR Checked By JRS	Driller Explorations, Inc.		Drilling Method Sonic	
Surface Elevation Vertical Datum	Surface Elevation (ft) Undetermined Hammer Data					Drilling Equipment	Rig S-1	
Easting (X) Northing (Y)				System Datum		Groundwate	Depth to	Elevation (ft)
Notes: Tempora	y well installed o	on 3/17/15 and	3/17/2015	18.1				



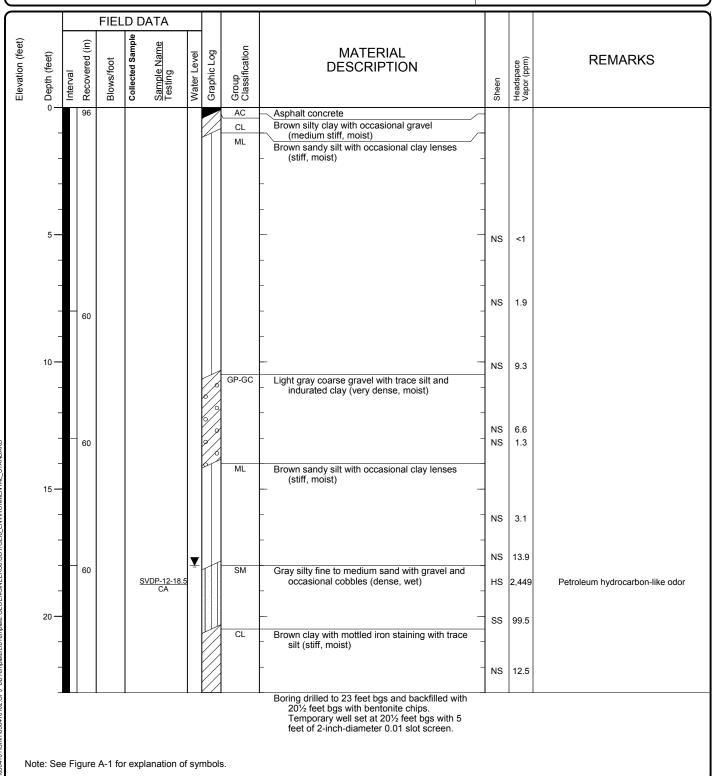
Project: Tiger Oil - Summitview Project Location: Yakima, Washington

Project Number: 0504-101-02

Figure A-5 Sheet 1 of 1

	<u>Start</u> 7/2015	<u>End</u> 3/17/2015	Total Depth (ft)	23	Logged By JWR Checked By JRS	est	Drilling Method	Sonic		
	Surface Elevation (ft) Undetermined Hammer Data					Drilling Equipment		Rig S-1		
Easting (X) Northing (Y)					System Datum	Groundwate		Depth to Water (ft)	Elevation (ft)	
Notes: Temp	Notes: Temporary well installed on 3/17/15 and backfilled with bentonite chips on 3/18/15.								18.0	

Log of Boring SVDP-11

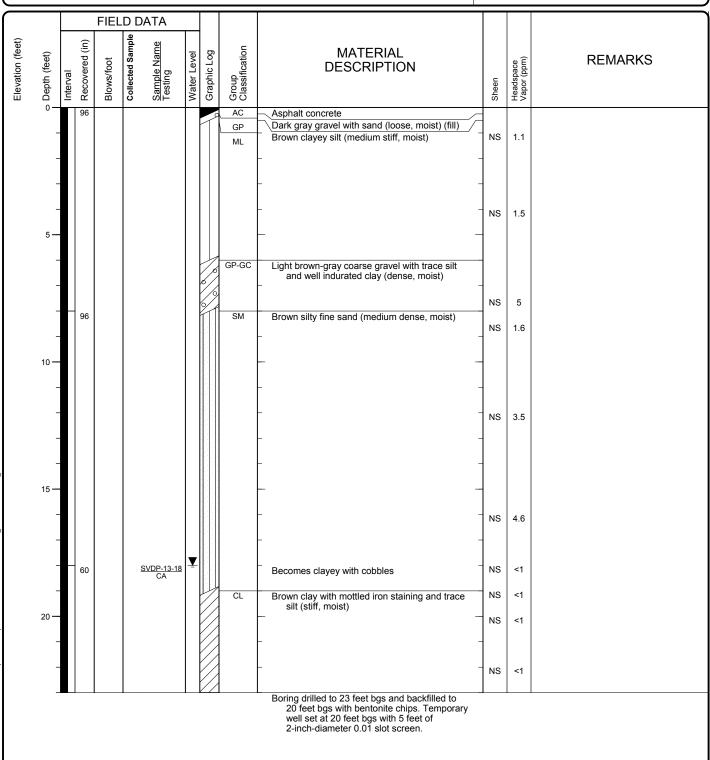


Project: Tiger Oil - Summitview Project Location: Yakima, Washington

Project Number: 0504-101-02

Figure A-6 Sheet 1 of 1

Start End Total 23 Drilled 3/16/2015 3/16/2015 Depth (ft) 23		vironmental West blorations, Inc.	Drilling Method Sonic
Surface Elevation (ft) Undetermined Vertical Datum	Hammer Data	Drilling Equipment	Rig S-1
Easting (X) Northing (Y)	System Datum	Groundwa Date Measu	Depth to
Notes: Temporary well installed on 3/17/15 and back	3/16/201		


Log of Boring SVDP-12

Project: Tiger Oil - Summitview Project Location: Yakima, Washington

Project Number: 0504-101-02

Figure A-7 Sheet 1 of 1

Start End Total 23 Drilled 3/16/2015 3/16/2015 Depth (ft) 23		vironmental West blorations, Inc.	Drilling Method Sonic
Surface Elevation (ft) Undetermined Vertical Datum	Hammer Data	Drilling Equipment	Rig S-1
Easting (X) Northing (Y)	System Datum	Groundwa Date Measu	Depth to
Notes: Temporary well installed on 3/17/15 and back	3/16/201		

Log of Boring SVDP-13

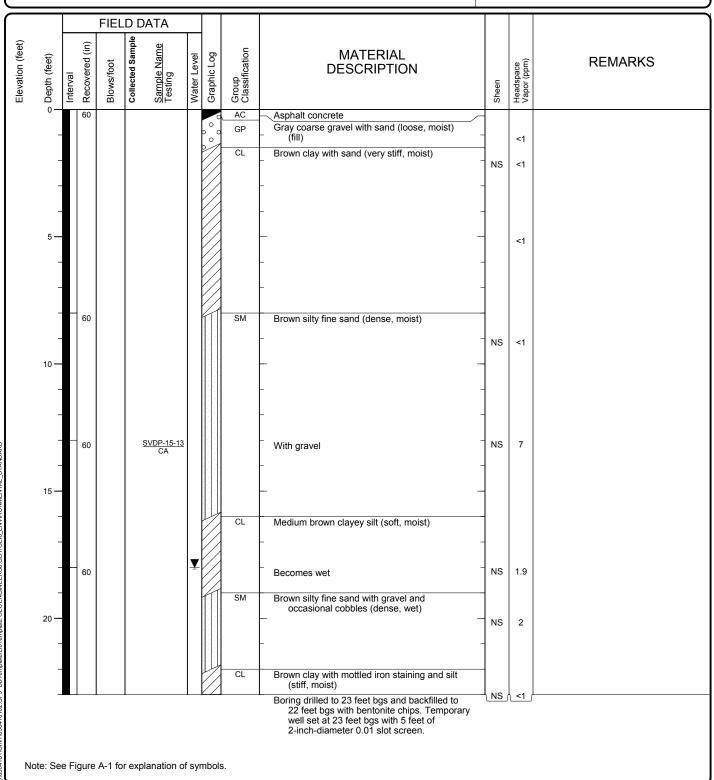
Project: Tiger Oil - Summitview Project Location: Yakima, Washington

Project Number: 0504-101-02

Figure A-8 Sheet 1 of 1

<u>Start</u> Drilled 3/17/2015	<u>End</u> 3/17/2015	Total Depth (ft)	23	Logged By JWR Checked By JRS	Driller Explorations, Inc.	est	Drilling Method Sonic	
Surface Elevation (ft) Undetermined Hammer Data					Drilling Equipment	Rig S-1		
Easting (X) Northing (Y)				System Datum		Groundwate	Depth to	Elevation (ft)
Notes: Temporary wel	ll installed o	n 3/17/15 and						

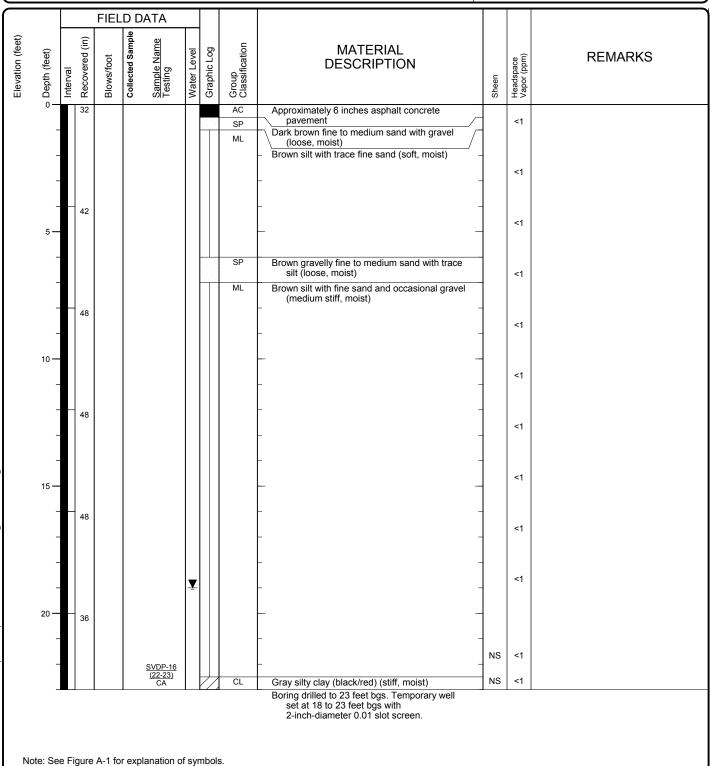
Log of Boring SVDP-14



Project: Tiger Oil - Summitview Project Location: Yakima, Washington

Project Number: 0504-101-02

Figure A-9 Sheet 1 of 1


<u>Start</u> Drilled 3/18/2015	<u>End</u> 3/18/2015	Total Depth (ft)	23	Logged By JWR Checked By JRS	Driller Explorations, Inc.	est	Drilling Method Sonic	
Surface Elevation (Vertical Datum	Surface Elevation (ft) Undetermined Hammer Data					Drilling Equipment	Rig S-1	
Easting (X) Northing (Y)				System Datum		Groundwate	Depth to	Elevation (ft)
Notes: Temporary	well installed o	n 3/17/15 and	3/18/2015	18.0				

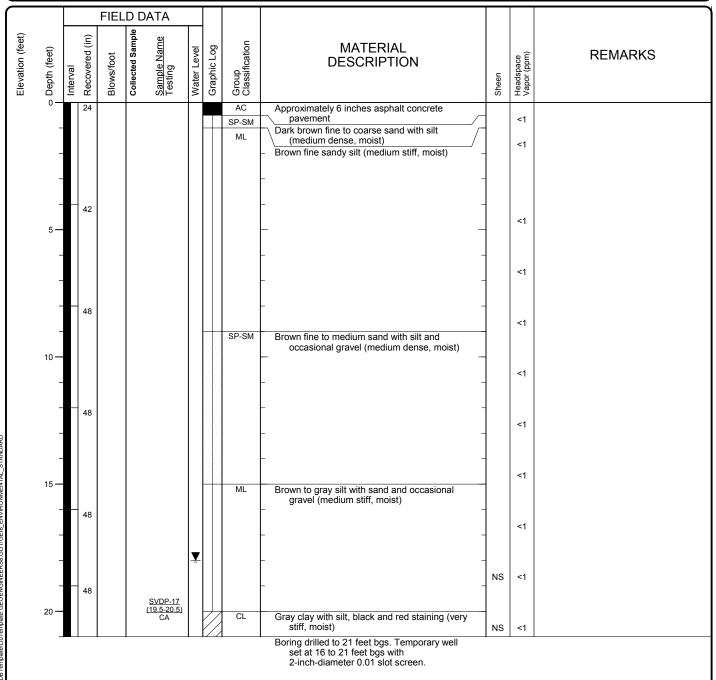
Log of Boring SVDP-15

Project: Tiger Oil - Summitview Project Location: Yakima, Washington

Drilled	<u>Start</u> 4/2/2015	<u>End</u> 4/2/2015	Total Depth (ft)	23	Logged By JML Checked By JRS	Driller Explorations, Inc.		Drilling Method	Direct-Pus	sh
Surface E Vertical D	Elevation (ft) Datum	Undet	ermined		Hammer Data		Drilling Equipment		Geoprob	e 5600
Easting (X					System Datum		Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:							4/2/2015		19.0	

Log of Boring SVDP-16

Project Number:

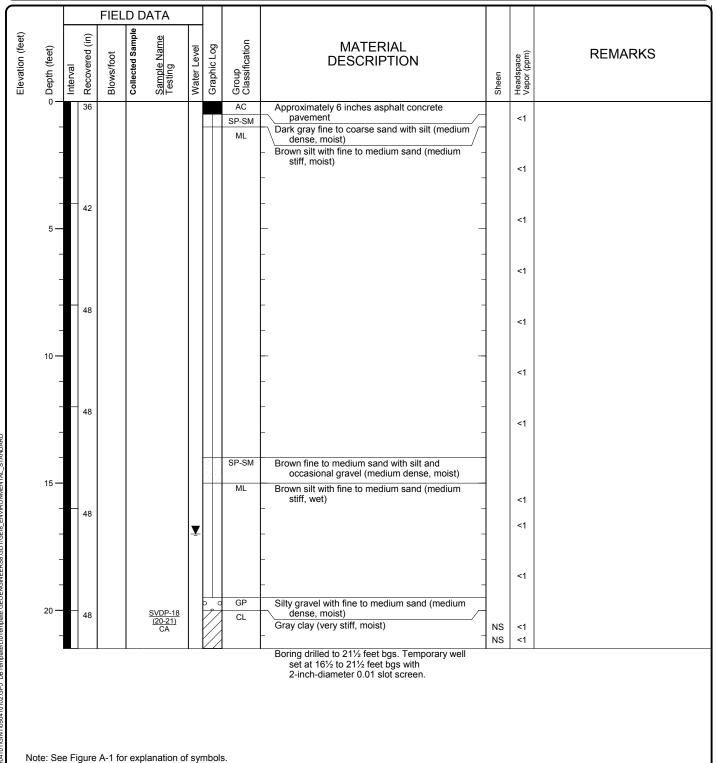


Project: Tiger Oil - Summitview Project Location: Yakima, Washington

0504-101-02

Figure A-11 Sheet 1 of 1

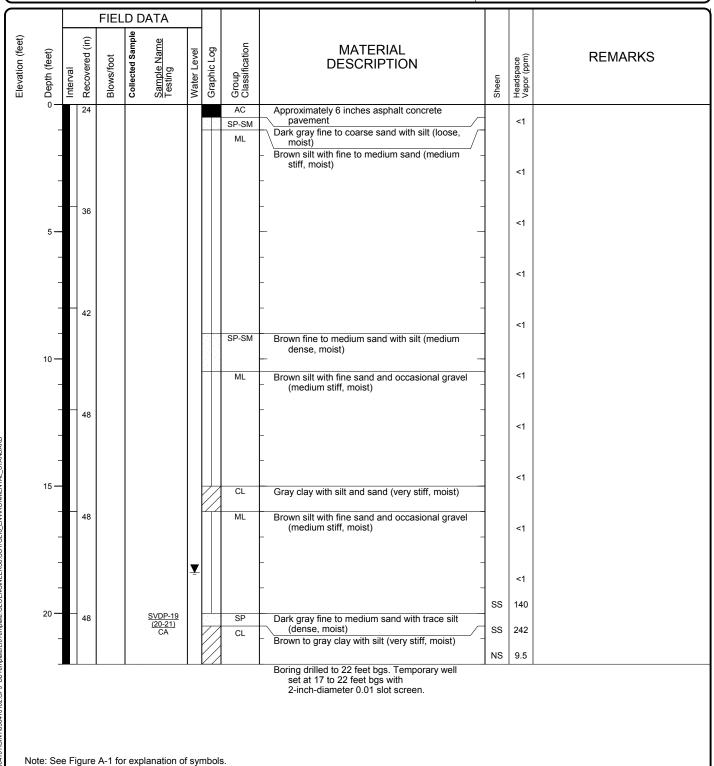
Drilled	<u>Start</u> 4/2/2015	<u>End</u> 4/2/2015	Total Depth (ft)	21	Logged By JML Checked By JRS	Driller Explorations, Inc.		Drilling Method	Direct-Pus	h
Surface E Vertical D	Elevation (ft) Datum	Undet	ermined		Hammer Data		Drilling Equipment		Geoprob	e 5600
Easting (> Northing (System Datum		Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:							4/2/2015		18.0	



Project: Tiger Oil - Summitview Project Location: Yakima, Washington

	<u>tart</u> /2015	<u>End</u> 4/2/2015	Total Depth (ft)	21.5	Logged By JML Checked By JRS	Driller Explorations, Inc.		Drilling Method	Direct-Pus	h
Surface Eleva Vertical Datur		Undet	ermined		Hammer Data		Drilling Equipment		Geoprobe	e 5600
Easting (X) Northing (Y)					System Datum		Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:							4/2/2015		17.0	

Log of Boring SVDP-18


Project Number:

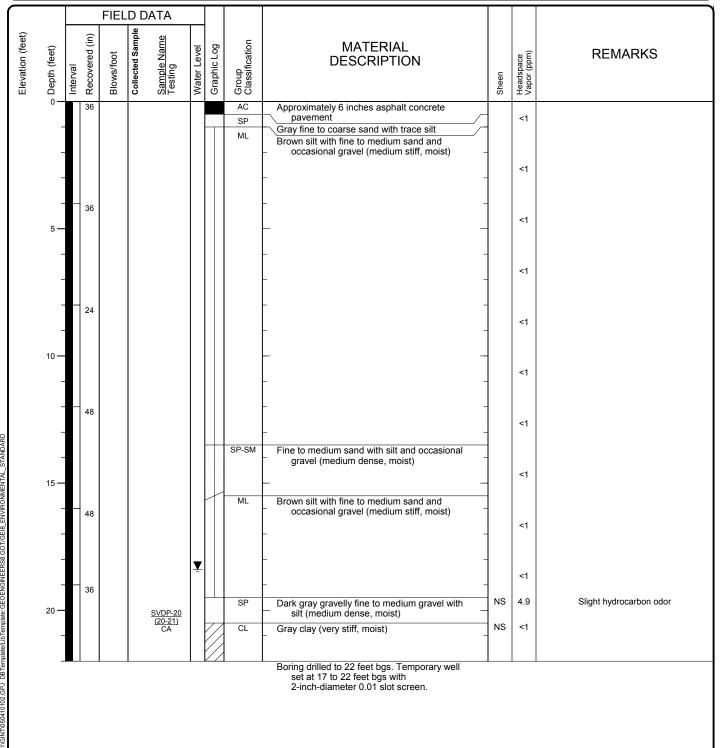
Project: Tiger Oil - Summitview Project Location: Yakima, Washington

0504-101-02

Figure A-13 Sheet 1 of 1

Drilled 4	<u>Start</u> 4/2/2015	End 4/2/2015	Total Depth (ft)	22	Logged By JML Checked By JRS	Driller Explorations, Inc.		Drilling Method	Direct-Pus	h
Surface El Vertical Da	levation (ft) atum	Undet	termined		Hammer Data		Drilling Equipment		Geoprob	e 5600
Easting (X Northing (System Datum		Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:							4/2/2015		18.4	

Log of Boring SVDP-19


Project Number:

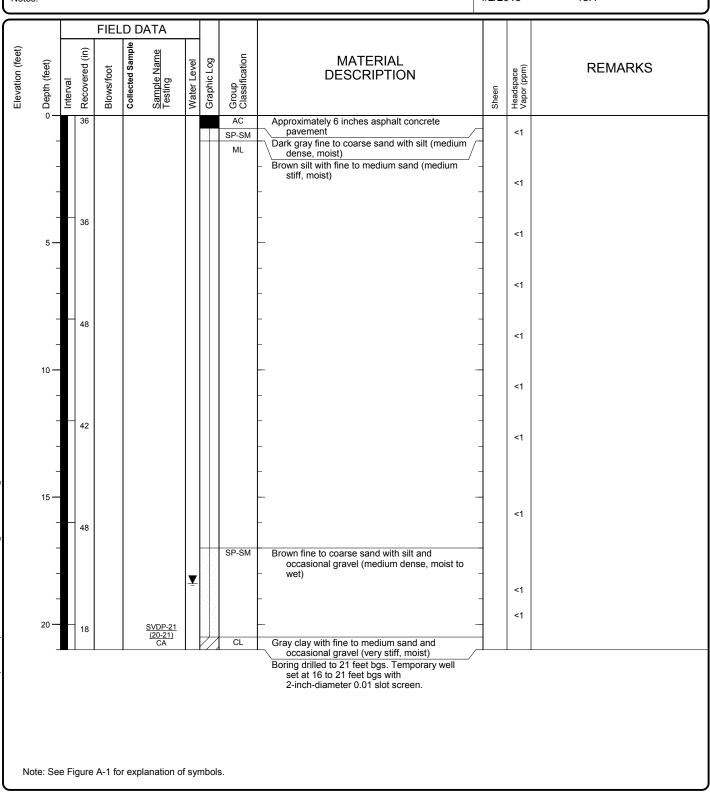
Project: Tiger Oil - Summitview Project Location: Yakima, Washington

0504-101-02

Figure A-14 Sheet 1 of 1

Start Drilled 4/2/2015	<u>End</u> 4/2/2015	Total Depth (ft)	22	Logged By JML Checked By JRS	Driller Explorations, Inc.		Drilling Method	Direct-Pus	sh
Surface Elevation Vertical Datum	^(ft) Unde	termined		Hammer Data		Drilling Equipment		Geoprob	e 5600
Easting (X) Northing (Y)				System Datum		Groundwate		Depth to Water (ft)	Elevation (ft)
Notes:						4/2/2015		18.4	

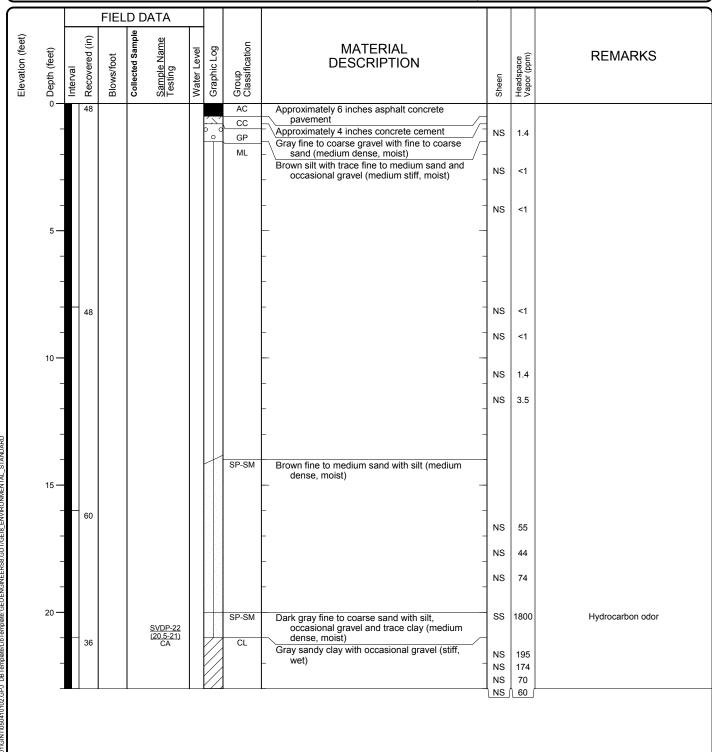
Note: See Figure A-1 for explanation of symbols.


Log of Boring SVDP-20

Project: Tiger Oil - Summitview Project Location: Yakima, Washington

Project Number: 0504-101-02

Figure A-15 Sheet 1 of 1


Drilled	<u>Start</u> 4/2/2015	<u>End</u> 4/2/2015	Total Depth (ft)	21	Logged By JML Checked By JRS	Driller Explorations, Inc.		Drilling Method	Direct-Pus	sh
Surface Vertical I	Elevation (ft) Datum	Undet	termined		Hammer Data		Drilling Equipment		Geoprob	e 5600
Easting (System Datum		Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:							4/2/2015		18.4	

Log of Boring SVDP-21

Project: Tiger Oil - Summitview Project Location: Yakima, Washington

Drilled	<u>Start</u> 4/7/2015	<u>End</u> 4/7/2015	Total Depth (ft)	23	Logged By Checked By	JML JRS	Driller Explorations, Inc.	est	Drilling Method	Sonic	
Surface Vertical	Elevation (ft) Datum	Undet	termined		Hammer Data			Drilling Equipment		Rig S-1	
Easting Northing					System Datum			Groundwate		Depth to Water (ft)	Elevation (ft)
Notes:											, ,

Log of Boring SVDP-22

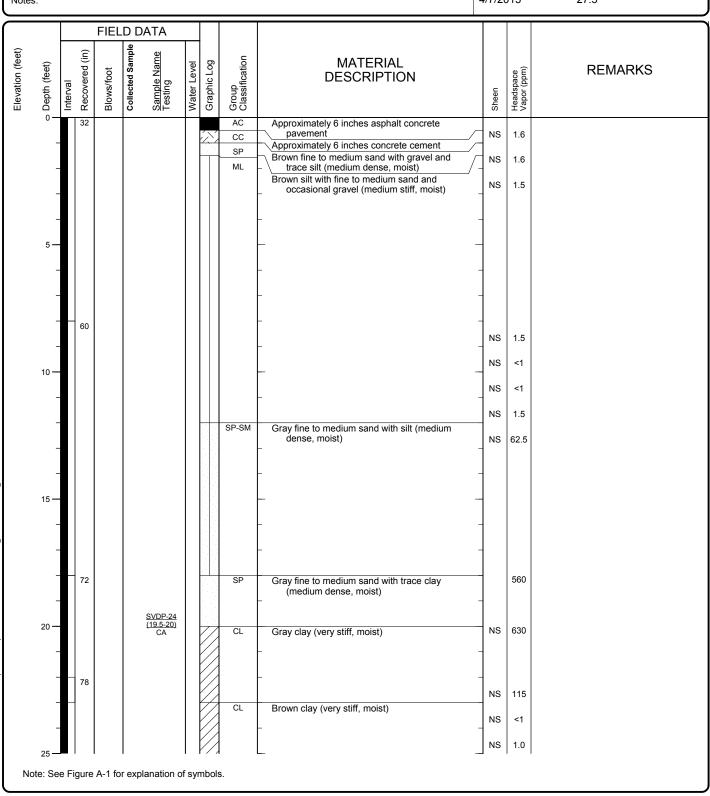
Note: See Figure A-1 for explanation of symbols.

Project: Tiger Oil - Summitview Project Location: Yakima, Washington

Project Number: 0504-101-02

Figure A-17 Sheet 1 of 1

Drilled	<u>Start</u> 4/7/2015	<u>End</u> 4/7/2015	Total Depth (ft)	23	Logged By JML Checked By JRS	Driller Explorations, Inc.		Drilling Method		
Surface Vertical I	Elevation (ft) Datum	Undet	termined		Hammer Data		Drilling Equipment		Rig S-1	
Easting (System Datum		Groundwate		Depth to Water (ft)	Elevation (ft)
Notes:										


$\overline{}$					ATA							
Elevation (feet)	Depth (feet)	Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 -	96						AC CC	Approximately 6 inches asphalt concrete pavement Approximately 6 inches concrete cement	NS	1.7	
	_							SP ML	Dark gray fine to medium sand with gravel and trace silt (medium dense, moist)	NS	1.6	
	_								Brown silt with trace fine to medium sand (medium stiff, moist)	NS	<1	
	_								-	NS	<1	
	5 —											
	-								-	_		
	_								-	_		
	-	120							-	NS	1.4	
	-								_	NS	1.4	
1	10 —									NS	2.4	
	-								-	NS	1.4	
	=								_	NS	3.4	
	_								_	NS	3.0	
	-								_			
1	15 —								-			
	-								-			
	-								-			
		60			SVDP-23 (18-18.5) CA			SP-SC	Brown fine to medium sand with clay and occasional gravel (medium dense, moist)	NS -	<1	
2	20 —						//	CL	Brown clay with trace fine to medium sand and	NS	<1	
	_								trace gravel (very stiff, moist)	NS	<1	
									-	NS	<1	

Log of Boring SVDP-23

Project: Tiger Oil - Summitview Project Location: Yakima, Washington

Drilled	<u>Start</u> 4/7/2015	<u>End</u> 4/7/2015	Total Depth (ft)	28	Logged By JML Checked By JRS	Driller Explorations, Inc.		Drilling Method	Sonic	
Surface Vertical I	Elevation (ft) Datum	Undet	termined		Hammer Data		Drilling Equipment		Rig S-1	
Easting (Northing					System Datum		Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:							4/7/2015		27.5	

Log of Boring SVDP-24

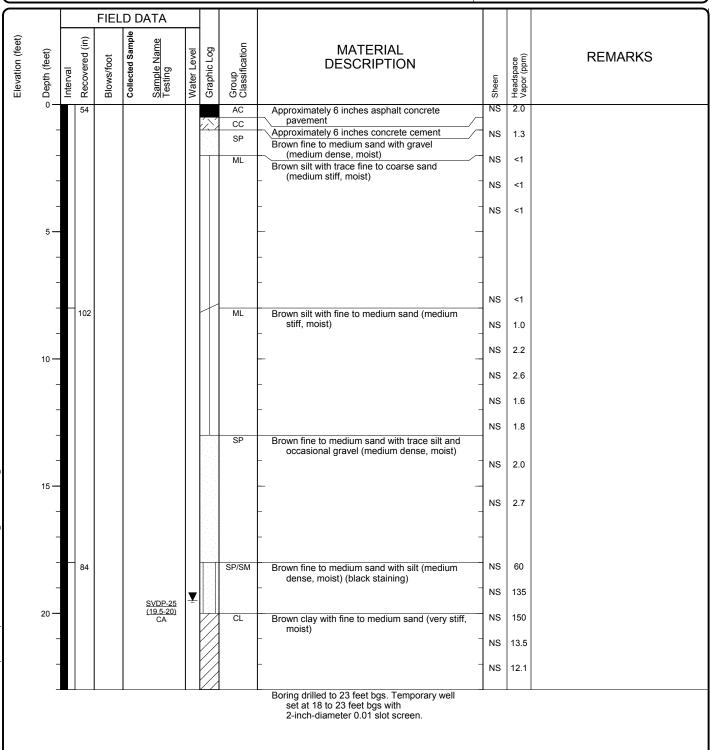
Project: Tiger Oil - Summitview Project Location: Yakima, Washington

			FIEL	D D	ATA							
Elevation (feet)	ና Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	25 —									NS	1.3	
									_	NS	2.0	
						Ī			Paring drillad to 29 foot has Tamparan well			

Boring drilled to 28 feet bgs. Temporary well set at 23 to 28 feet bgs with 2-inch-diameter 0.01 slot screen.

Note: See Figure A-1 for explanation of symbols.

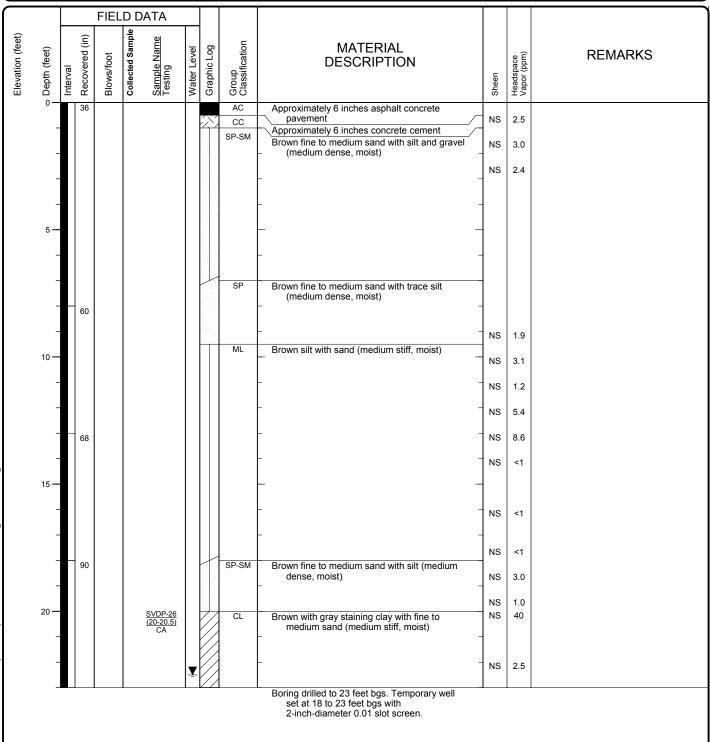
Log of Boring SVDP-24 (continued)


Project Number:

Project: Tiger Oil - Summitview Project Location: Yakima, Washington

0504-101-02 Figure A-19 Sheet 2 of 2

	<u>tart</u> <u>End</u> /2015 4/7/201	Total 5 Depth (ft)	23	Logged By JML Checked By JRS	Driller Explorations, Inc.		Drilling Method	Sonic	
Surface Eleva Vertical Datur		determined		Hammer Data		Drilling Equipment		Rig S-1	
Easting (X) Northing (Y)				System Datum		Groundwate		Depth to Water (ft)	Elevation (ft)
Notes:						4/7/2015		19.5	

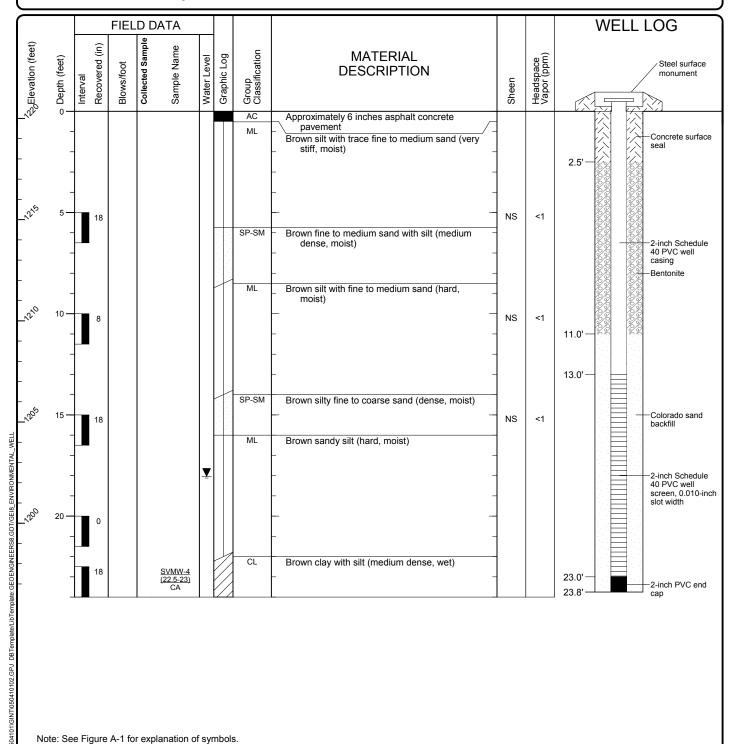


Log of Boring SVDP-25

Project: Tiger Oil - Summitview Project Location: Yakima, Washington

	<u>Start</u> 7/2015	<u>End</u> 4/7/2015	Total Depth (ft)	23	Logged By JML Checked By JRS	est	Drilling Method			
Surface Elevation (ft) Vertical Datum Undetermined				Hammer Data	Drilling Equipment	Rig S-1				
Easting (X) Northing (Y)					System Datum		Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes:							4/7/2015		22.5	

Note: See Figure A-1 for explanation of symbols.


Log of Boring SVDP-26

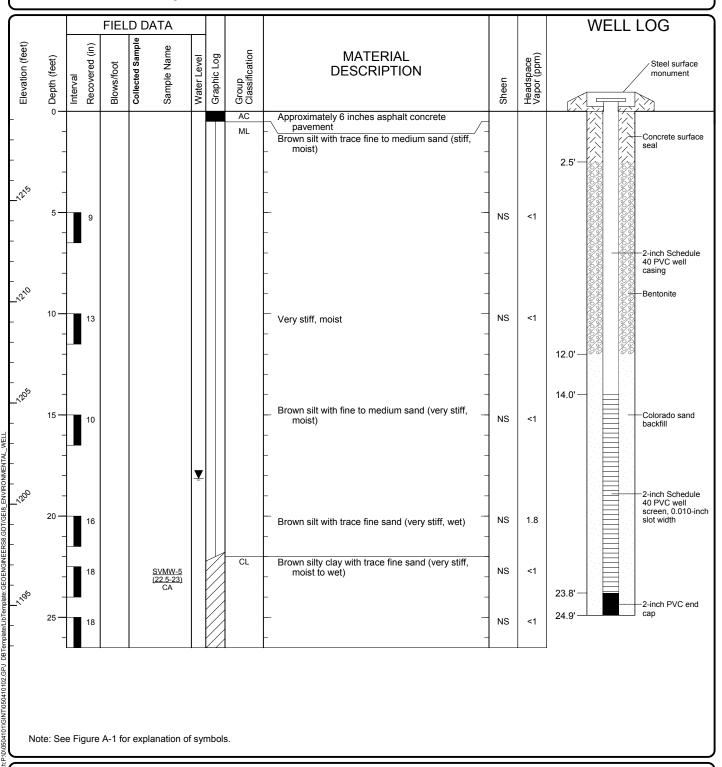
Project: Tiger Oil - Summitview Project Location: Yakima, Washington

Project Number: 0504-101-02

Figure A-21 Sheet 1 of 1

<u>Start</u> Drilled 4/27/2015	<u>End</u> 4/27/2015	Total Depth (ft)	24		Logged By JML Checked By JRS Driller Environmental West Explorations, Inc.				Drilling Method Hollow-Stem Auger		
Hammer Data	Drilling Lil Brutus Equipment			DOE Well I.D.: BHW-539 A 2 (in) well was installed on 4/27/2015 to a depth of							
Surface Elevation (ft) 1220.35 Vertical Datum NAVD88			Top of Casing Elevation (ft) 1220.00			23.75 (ft). Groundwater Depth to					
Easting (X) Northing (Y)		9576.7 028.3		Horizontal Datum	NAD83	/91; WA Sou	th Zone	Date Measured 5/12/2015	<u>Water (ft)</u> 18.0	Elevation (ft) 1202.0	
Notes: Diameter of well boring was 4.25 inches											

Log of Monitoring Well SVMW-4



Project: Tiger Oil - Summitview Project Location: Yakima, Washington

Project Number: 0504-101-02

Figure A-22 Sheet 1 of 1

<u>Start</u> Drilled 4/27/2015	<u>End</u> 4/27/2015	Total Depth (ft)	26.5	Logged By Checked By					Drilling Method Hollow-Stem Auger		
Hammer Data		Drilling Lil Brutus Equipment			DOE Well I.D.: BHW-538 A 2 (in) well was installed on 4/27/2015 to a depth of						
Surface Elevation (ft) 1219.41 Vertical Datum NAVD88			Top of Casing 1219.09 Elevation (ft)			24.9 (ft). Groundwater Depth to					
Easting (X) Northing (Y)		9546.4 969.3		Horizontal Datum	NAD83	91; WA South Zone	Э	Date Measured 5/12/2015	<u>Water (ft)</u> 18.1	Elevation (ft) 1201.0	
Notes: Diameter of well boring was 4.25 inches											

Log of Monitoring Well SVMW-5

Project: Tiger Oil - Summitview Project Location: Yakima, Washington

APPENDIX BLaboratory Reports

Data Validation Report

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125, Fax: 509.363.3126

www.geoengineers.com

Project: Tiger Oil - Summitview, Data Gap Assessment

March 2015 Soil and Groundwater Samples

GEI File No: 00504-101-02

Date: May 27, 2015

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of soil and groundwater samples collected as part of the March 2015 sampling event, and the associated laboratory quality control (QC) samples. The samples were obtained from the Tiger Oil, Summitview Site located at 5511 Summitview Avenue in Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with QAPP (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- **Laboratory Control Samples**
- Laboratory Duplicates

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
590-483-1	SVDP-7-15, SVDP-8-14, SVDP-9-20, SVDP-10-19, SVDP-11-13, SVDP-12-18.5, SVDP-13-18.0, SVDP-14-15, SVDP-15-13
590-484-1	SVDP-9-031815, SVDP-10-031815, SVDP-11-031815, SVDP-12-031715, SVDP-13-031715, SVDP-15-031815

CHEMICAL ANALYSIS PERFORMED

TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the soil and groundwater samples using the following methods:

Groundwater:

■ Hydrocarbon Identification (NWTPH-HCID) by Method NWTPH-HCID.

Soil:

- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Gas-Range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM; and
- Total Metals by Method EPA6010C.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical report. The chain-of-custody forms were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for the analyses. The sample cooler arrived at the laboratory within the appropriate temperatures of between 2°C and 6°C.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to samples, standards and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. Surrogate percent recoveries for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For sample batches, method blanks for applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if the element percent recoveries were outside the control limits in the matrix spike. The percent recovery control limits for matrix spikes are 75 percent to 125 percent.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Control Samples

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS control limits for accuracy are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS analyses would apply to samples in the associated

batch, instead of just the parent sample. The percent recovery control limits for LCS analyses are specified in the laboratory documents.

One LCS analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. For organic analyses, the RPD control limits are specified in the laboratory documents. For inorganic analyses, the RPD control limit for water is 20 percent and the RPD control limit for soil is 35 percent. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met, with the following exception:

SDG 590-483-1: (NWTPH-Dx) A laboratory duplicate analysis was performed on Sample SVDP-7-15. The RPD values for diesel-range and lube oil-range hydrocarbons were greater than the control limits. The positive results for these target analytes were qualified as estimated (J) in this sample.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS and MS/MSD percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD and laboratory duplicate RPD values, with the exception noted above.

Data is acceptable for the intended use, with the following qualifications listed below in Table 2.

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

Sample ID	Analyte	Qualifier	Reason
SVDP-7-15	Diesel-range Hydrocarbons	J	Laboratory Duplicate RPD
	Lube oil-range Hydrocarbons	J	Laboratory Duplicate RPD

Data Validation Report

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125, Fax: 509.363.3126

www.geoengineers.com

Project: Tiger Oil - Summitview, Data Gap Assessment

April 2015 Direct Push Soil and Groundwater Samples

GEI File No: 00504-101-02

Date: May 26, 2015

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of soil and groundwater samples collected as part of the April 2015 sampling event, and the associated laboratory quality control (QC) samples. The samples were obtained from the Tiger Oil, Summitview Site located at 5511 Summitview Avenue in Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with QAPP (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory Duplicates

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
590-580-1	SVDP-16:GW, SVDP-17:GW, SVDP-18:GW, SVDP-19:GW, SVDP-20:GW, SVDP-21:GW
590-581-1	SVDP-16 (22-23), SVDP-17 (19.5-20.5), SVDP-18 (20-21), SVDP-19 (20-21), SVDP-20 (20-21), SVDP-21 (20-21)

CHEMICAL ANALYSIS PERFORMED

TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the soil and groundwater samples using the following methods:

Groundwater:

Hydrocarbon Identification (NWTPH-HCID) by Method NWTPH-HCID.

Soil:

- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Gas-Range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM; and
- Total Metals by Method EPA6010C.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical report. The chain-of-custody forms were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for the analyses. The sample cooler arrived at the laboratory within the appropriate temperatures of between 2°C and 6°C.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. Surrogate percent recoveries for field samples were within the laboratory control limits, with the following exceptions:

SDG 590-581-1: (PAHs) The percent recovery for surrogate 2-Fluorobiphenyl was less than the control limits in Samples SVDP-16 (22-23), SVDP-17 (19.5-20.5), SVDP-18 (20-21), SVDP-19 (20-21) and SVDP-20 (20-21); however, the samples were spiked with two additional surrogates, both within their respective control limits. No action was required for these outliers.

The percent recoveries for surrogates nitrobenzene-d5 and 2-Fluorobiphenyl were less than the control limits in Sample SVDP-21 (20-21). The reporting limits for the target analytes were qualified as estimated (UJ) in this sample.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For the sample batches, method blanks for the applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if the element percent recoveries were outside the control limits in the matrix spike. The percent recovery control limits for matrix spikes are 75 percent to 125 percent.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to the samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. For organic analyses, the RPD control limits are specified in the laboratory documents. For inorganic analyses, the RPD control limit for water is 20 percent and the RPD control limit for soil is 35 percent. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD and MS/MSD percent recovery values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory duplicate RPD values.

Data is acceptable for the intended use, with the following qualifications listed below in Table 2.

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

Sample ID	Analyte	Qualifier	Reason
SVDP-21 (20-21)	PAH target analytes	UJ	Surrogate Recovery

Data Validation Report

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125, Fax: 509.363.3126

www.geoengineers.com

Project: Tiger Oil - Summitview, Data Gap Assessment

April 2015 Soil and Groundwater Boring Samples

GEI File No: 00504-101-02

Date: May 27, 2015

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of soil and groundwater samples collected as part of the April 2015 sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Tiger Oil, Summitview Site located at 5511 Summitview Avenue in Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with QAPP (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Trip Blanks
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery group (SDG) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
590-628-1	SVDP-22 (20.5-21), SVDP-23 (18-18.5), SVDP-24 (19.5-20), SVDP-25 (19.5-20), SVDP-26
	(20-20.5), SVDP-24:GW, SVDP-25:GW, SVDP-26:GW, Trip Blank

CHEMICAL ANALYSIS PERFORMED

TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the soil and groundwater samples using the following methods:

Groundwater:

Hydrocarbon Identification (NWTPH-HCID) by Method NWTPH-HCID.

Soil:

- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Gas-Range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM; and
- Total Metals by Method EPA6010C.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical report. The chain-of-custody forms were accurate and complete when submitted to the laboratory, with the following exception:

SDG 590-628-1: The laboratory noted that Sample Trip Blank was received, but not listed on the chain-of-custody form.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for the analyses. The sample cooler arrived at the laboratory within the appropriate temperatures of between 2°C and 6°C.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. Surrogate percent recoveries for field samples were within the laboratory control limits, with the following exceptions:

SDG 590-628-1: (NWTPH-HCID) The percent recovery for surrogate n-Triacontane-d62 was less than the control limits in Samples SVDP-24:GW, SVDP-25:GW and SVDP-26:GW. The positive results and reporting limits for the target analytes were qualified as estimated (J/UJ) in these samples.

Method and Trip Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For the sample batches, method blanks for applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in the method blanks.

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. None of the analytes of interest were detected above the reporting limits in the trip blank.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to the samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery and RPD values were within the proper control limits.

Miscellaneous

SDG 590-628-1: (NWTPH-HCID) The DRPH and ORPH results for Samples SVDP-24:GW and SVDP-25:GW may be influenced by the relative concentration of GRPH in the samples. For this reason, the positive results for DRPH and ORPH were qualified as estimated (J) in these samples, in order to signify a potential high bias.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate and LCS/LCSD percent recovery values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD RPD values.

The data is acceptable for the intended use, with the following qualifications listed below in Table 2.

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

Sample ID	Analyte	Qualifier	Reason
SVDP-24:GW	Gasoline-range Hydrocarbons	J	Surrogate Recovery
	Diesel-range Hydrocarbons	J	Surrogate Recovery/Other
	Lube oil-range Hydrocarbons	J	Surrogate Recovery/Other
SVDP-25:GW	Gasoline-range Hydrocarbons	J	Surrogate Recovery
	Diesel-range Hydrocarbons	J	Surrogate Recovery/Other
	Lube oil-range Hydrocarbons	UJ	Surrogate Recovery
SVDP-26:GW	Gasoline-range Hydrocarbons	UJ	Surrogate Recovery
	Diesel-range Hydrocarbons	UJ	Surrogate Recovery
	Lube oil-range Hydrocarbons	UJ	Surrogate Recovery

Data Validation Report

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125, Fax: 509.363.3126

www.geoengineers.com

Project: Tiger Oil - Summitview, Data Gap Assessment

April 2015 Soil Samples

GEI File No: 00504-101-02

Date: May 19, 2015

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of soil samples collected as part of the April 2015 sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Tiger Oil, Summitview Site located at 5511 Summitview Avenue in Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with QAPP (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory/Field Duplicates

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery group (SDG) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
590-731-1	SVMW-4 (22.5-23), SVMW-5 (22.5-23), SVMW-Dup

CHEMICAL ANALYSIS PERFORMED

TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the soil samples using the following methods:

- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Gas-Range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM; and
- Total Metals by Method EPA6010C.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical report. The chain-of-custody forms were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for the analyses. The sample cooler arrived at the laboratory outside the appropriate temperatures of between 2°C and 6°C. The out-of-compliance temperature is detailed below.

SDG 590-731-1: The sample cooler temperature recorded at the laboratory was 8.2° C. The samples were put on ice when they were collected (4/27/2015) and ice was added every day until they were received by the laboratory (4/29/2015). The out-of-compliance temperature was very likely isolated to the day the

samples were received at the laboratory. For this reason, this temperature should not affect the sample analytical results.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. Surrogate percent recoveries for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For sample batches, method blanks for the applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if the element percent recoveries were outside the control limits in the matrix spike. The percent recovery control limits for matrix spikes are 75 percent to 125 percent.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/laboratory control sample duplicate (LCSD) control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for the analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. For organic analyses, the RPD control limits are specified in the laboratory documents. For inorganic analyses, the RPD control limit is 35 percent. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met.

Field Duplicates

In order to assess precision, field duplicate samples are collected and analyzed along with the reviewed sample batches. The duplicate samples are analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit is 35 percent.

SDG 590-731-1: One field duplicate sample pair, SVMW-5 (22.5-23) and SVMW-Dup, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD and MS/MSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values.

No analytical results were qualified. Data is acceptable for the intended use.

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125, Fax: 509.363.3126

www.geoengineers.com

Project: Tiger Oil - Summitview

Second Quarter 2015 Groundwater Samples

GEI File No: 00504-101-00

Date: June 11, 2015

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA, 2009) of analytical data from the analyses of groundwater samples collected as part of the May 2015 sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Tiger Oil, Summitview Site located at 5511 Summitview Avenue in Yakima, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008) and Inorganic Superfund Data Review (EPA, 2010) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with QAPP (Appendix A of the Sampling and Analysis Plan, Soil and Groundwater Assessment; GeoEngineers, 2014), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Trip Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples
- Field Duplicates
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery group (SDG) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
590-870-1	SVMW-2, SVMW-3, Duplicate, SVMW-4, SVMW-5, Trip Blank

CHEMICAL ANALYSIS PERFORMED

TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the groundwater samples using the following methods:

- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Petroleum Hydrocarbons with Silica Gel (SG) Cleanup (NWTPH-Dx/SG) by Method NWTPH-Dx/SG;
- Gas-Range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Volatile Organic Compounds (VOCs) by Method SW8260C;
- 1,2-Dibromoethane (EDB) by Method SW8011;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270D-SIM;
- Total Metals by Method EPA200.7;
- Anions by Method EPA300.0; and
- Total Organic Carbon (TOC) by Method SM5310C.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and all identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical report. The chain-of-custody forms were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample

collection. Established holding times were met for all analyses. The sample cooler arrived at the laboratory within the appropriate temperatures of between 2 °C and 6 °C.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. All surrogate percent recoveries for field samples were within the laboratory control limits.

Method and Trip Blanks

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in any of the method blanks.

Trip Blanks

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. None of the target analytes were detected above the reporting limits in the trip blank.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if any element percent recoveries were outside the control limits in the matrix spike. The percent recovery control limits for matrix spikes are 75 percent to 125 percent.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Control Samples

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS control limits for accuracy are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS analyses are specified in the laboratory documents.

One LCS analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery values were within the proper control limits.

Field Duplicates

In order to assess precision, field duplicate samples are collected and analyzed along with the reviewed sample batches. The duplicate samples are analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit is 20 percent.

SDG 590-870-1: One field duplicate sample pair, SVMW-3 and Duplicate, was submitted with this SDG. The precision criteria for all target analytes were met for this sample pair.

Miscellaneous

SDG 590-870-1: (NWTPH-Dx) The positive results for DRPH in Samples SVMW-3, Duplicate and SVMW-5 may be influenced by the relative concentration of GRPH in these samples. For this reason, the positive results for DRPH were qualified as estimated (J) in these samples, in order to signify a potential high bias.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS and MS percent recovery values. Precision was acceptable, as demonstrated by the field duplicate RPD values.

All data are acceptable for the intended use, with the following qualifications listed below in Table 2.

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

Sample ID	Analyte	Qualifier	Reason
SVMW-3	Diesel-range Hydrocarbons	J	See Miscellaneous
Duplicate	Diesel-range Hydrocarbons	J	See Miscellaneous
SVMW-5	Diesel-range Hydrocarbons	J	See Miscellaneous

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-483-1

Client Project/Site: Tiger Oil - Summitview

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by: 3/30/2015 6:04:27 PM

Michelle Johnston, Project Manager II (303)736-0110

michelle.johnston@testamericainc.com

----- LINKS -----

Review your project results through Total Access

Have a Question?

Visit us at:

www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 590-483-1

Client: GeoEngineers Inc Project/Site: Tiger Oil - Summitview

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	18
Chronicle	23
Certification Summary	27
Method Summary	28
Chain of Custody	29
Receipt Checklists	30

3

4

5

a

10

Sample Summary

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summitview

TestAmerica Job ID: 590-483-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-483-1	SVDP-9-20	Solid	03/17/15 14:15	03/20/15 12:10
590-483-2	SVDP-7-15	Solid	03/17/15 09:05	03/20/15 12:10
590-483-3	SVDP-11-13	Solid	03/17/15 10:44	03/20/15 12:10
590-483-4	SVDP-10-19	Solid	03/17/15 12:53	03/20/15 12:10
590-483-5	SVDP-8-14	Solid	03/17/15 11:38	03/20/15 12:10
590-483-6	SVDP-15-13	Solid	03/18/15 10:25	03/20/15 12:10
590-483-7	SVDP-13-18.0	Solid	03/16/15 16:55	03/20/15 12:10
590-483-8	SVDP-12-18.5	Solid	03/16/15 13:55	03/20/15 12:10
590-483-9	SVDP-14-15	Solid	03/17/15 15:05	03/20/15 12:10

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summitview

TestAmerica Job ID: 590-483-1

Qualifiers

GC Semi VOA

F3 Duplicate RPD exceeds the control limit

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration

MDL M

Method Detection Limit
Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Spokane

Project/Site: Tiger Oil - Summitview

Client Sample ID: SVDP-9-20

Date Collected: 03/17/15 14:15 Date Received: 03/20/15 12:10 Lab Sample ID: 590-483-1

Matrix: Solid
Percent Solids: 80.0

Analyte	Result	Qualifier	I	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.	.25	mg/Kg	₩	03/25/15 10:38	03/25/15 11:50	10
Ethylbenzene	13		•	1.6	mg/Kg	₽	03/25/15 10:38	03/25/15 11:50	10
m,p-Xylene	51		(6.6	mg/Kg	₽	03/25/15 10:38	03/25/15 11:50	10
o-Xylene	18			3.3	mg/Kg	₽	03/25/15 10:38	03/25/15 11:50	10
Toluene	8.5		•	1.6	mg/Kg	₽	03/25/15 10:38	03/25/15 11:50	10
Naphthalene	4.8		;	3.3	mg/Kg	₽	03/25/15 10:38	03/25/15 11:50	10
Xylenes, Total	69		(9.9	mg/Kg	\$	03/25/15 10:38	03/25/15 11:50	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		74.7 - 120	0			03/25/15 10:38	03/25/15 11:50	10
4-Bromofluorobenzene (Surr)	104		69.8 - 140	0			03/25/15 10:38	03/25/15 11:50	10
Dibromofluoromethane (Surr)	98		80 - 120	0			03/25/15 10:38	03/25/15 11:50	10
Toluene-d8 (Surr)	97		78.5 - 12	5			03/25/15 10:38	03/25/15 11:50	10

Method: NWTPH-Gx - Northwest -	Volatile Petro	oleum Prod	lucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	1400		82		mg/Kg	₽	03/25/15 10:38	03/25/15 11:50	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		41.5 - 162				03/25/15 10:38	03/25/15 11:50	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	89		12		ug/Kg	₩	03/26/15 11:12	03/26/15 13:45	1
2-Methylnaphthalene	300		12		ug/Kg	≎	03/26/15 11:12	03/26/15 13:45	1
1-Methylnaphthalene	130		12		ug/Kg	≎	03/26/15 11:12	03/26/15 13:45	1
Acenaphthylene	ND		12		ug/Kg	\$	03/26/15 11:12	03/26/15 13:45	1
Acenaphthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	1
Fluorene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	1
Phenanthrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	1
Anthracene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	1
Fluoranthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	1
Pyrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	1
Benzo[a]anthracene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	1
Chrysene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	1
Benzo[b]fluoranthene	ND		12		ug/Kg	φ.	03/26/15 11:12	03/26/15 13:45	1
Benzo[k]fluoranthene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 13:45	1
Benzo[a]pyrene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 13:45	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg		03/26/15 11:12	03/26/15 13:45	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 13:45	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 13:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5			35 1 144				03/26/15 11:12	03/26/15 13:45	

Carrogate	70110001019	Quamici		i i cpai ca	rinaryzou	D uo	
Nitrobenzene-d5	53		35.1 - 144	03/26/15 11:12	03/26/15 13:45	1	
2-Fluorobiphenyl (Surr)	73		48.8 - 134	03/26/15 11:12	03/26/15 13:45	1	
p-Terphenyl-d14	80		48 - 166	03/26/15 11:12	03/26/15 13:45	1	
-							

	Method: NWTPH-Dx - Northwest -	Semi-Volatile	Petroleum	Products (G	iC)					
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Diesel Range Organics (DRO)	ND		17		mg/Kg	\	03/25/15 09:56	03/25/15 12:08	1
١	(C10-C25)									

Project/Site: Tiger Oil - Summitview

Client Sample ID: SVDP-9-20 Date Collected: 03/17/15 14:15

Date Received: 03/20/15 12:10

Lab Sample ID: 590-483-1

TestAmerica Job ID: 590-483-1

Matrix: Solid

Percent Solids: 80.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO)	ND		43		mg/Kg	\$	03/25/15 09:56	03/25/15 12:08	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	90		50 - 150				03/25/15 09:56	03/25/15 12:08	1
n-Triacontane-d62	93		50 - 150				03/25/15 09:56	03/25/15 12:08	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	6.8		5.8		mg/Kg	\$	03/23/15 07:57	03/24/15 18:03	5
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	20		0.010		%			03/23/15 14:09	1
Percent Solids	80		0.010		%			03/23/15 14:09	1

Client Sample ID: SVDP-7-15

Date Collected: 03/17/15 09:05

Lab Sample ID: 590-483-2

Matrix: Solid

Date Received: 03/20/15 12:10 Percent Solids: 83.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.23		mg/Kg	\tilde{\pi}	03/25/15 10:38	03/25/15 15:11	10
Ethylbenzene	14		1.5		mg/Kg	₽	03/25/15 10:38	03/25/15 15:11	10
m,p-Xylene	67		6.1		mg/Kg	₽	03/25/15 10:38	03/25/15 15:11	10
o-Xylene	29		3.1		mg/Kg	₽	03/25/15 10:38	03/25/15 15:11	10
Toluene	11		1.5		mg/Kg	₽	03/25/15 10:38	03/25/15 15:11	10
Naphthalene	20		3.1		mg/Kg	₽	03/25/15 10:38	03/25/15 15:11	10
Xylenes, Total	96		9.2		mg/Kg	*	03/25/15 10:38	03/25/15 15:11	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		74.7 - 120				03/25/15 10:38	03/25/15 15:11	10
4-Bromofluorobenzene (Surr)	104		69.8 - 140				03/25/15 10:38	03/25/15 15:11	10
Dibromofluoromethane (Surr)	100		80 - 120				03/25/15 10:38	03/25/15 15:11	10
Toluene-d8 (Surr)	99		78.5 - 125				03/25/15 10:38	03/25/15 15:11	10

Method: NWTPH-Gx - Northwest -	Volatile Petro	oleum Prod	ucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	750		76		mg/Kg	<u> </u>	03/25/15 10:38	03/25/15 15:11	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		41.5 - 162				03/25/15 10:38	03/25/15 15:11	10

Analyte	Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Naphthalene	10000	60	u	ıg/Kg	-	03/26/15 11:12	03/27/15 11:59	5
2-Methylnaphthalene	5400	24	U,	ıg/Kg	₩	03/26/15 11:12	03/26/15 14:08	2
1-Methylnaphthalene	2400	24	u	ıg/Kg	₩	03/26/15 11:12	03/26/15 14:08	2
Acenaphthylene	ND	24	u	ıg/Kg	\$	03/26/15 11:12	03/26/15 14:08	2
Acenaphthene	ND	24	u	ıg/Kg	₩	03/26/15 11:12	03/26/15 14:08	2
Fluorene	ND	24	U,	ıg/Kg	₩	03/26/15 11:12	03/26/15 14:08	2
Phenanthrene	ND	24	u	ıg/Kg	\$	03/26/15 11:12	03/26/15 14:08	2

TestAmerica Spokane

Project/Site: Tiger Oil - Summitview

Client Sample ID: SVDP-7-15

Date Collected: 03/17/15 09:05

Date Received: 03/20/15 12:10

Lab Sample ID: 590-483-2

TestAmerica Job ID: 590-483-1

Matrix: Solid

Percent Solids: 83.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	ND		24		ug/Kg	₩	03/26/15 11:12	03/26/15 14:08	2
Fluoranthene	ND		24		ug/Kg	₽	03/26/15 11:12	03/26/15 14:08	2
Pyrene	24		24		ug/Kg	\$	03/26/15 11:12	03/26/15 14:08	2
Benzo[a]anthracene	ND		24		ug/Kg	₽	03/26/15 11:12	03/26/15 14:08	2
Chrysene	ND		24		ug/Kg	₩	03/26/15 11:12	03/26/15 14:08	2
Benzo[b]fluoranthene	ND		24		ug/Kg	₽	03/26/15 11:12	03/26/15 14:08	2
Benzo[k]fluoranthene	ND		24		ug/Kg	₽	03/26/15 11:12	03/26/15 14:08	2
Benzo[a]pyrene	ND		24		ug/Kg	₽	03/26/15 11:12	03/26/15 14:08	2
Indeno[1,2,3-cd]pyrene	ND		24		ug/Kg	₽	03/26/15 11:12	03/26/15 14:08	2
Dibenz(a,h)anthracene	ND		24		ug/Kg	₽	03/26/15 11:12	03/26/15 14:08	2
Benzo[g,h,i]perylene	ND		24		ug/Kg	₽	03/26/15 11:12	03/26/15 14:08	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	61		35.1 - 144				03/26/15 11:12	03/26/15 14:08	2
2-Fluorobiphenyl (Surr)	86		48.8 - 134				03/26/15 11:12	03/26/15 14:08	2
p-Terphenyl-d14	82		48 - 166				03/26/15 11:12	03/26/15 14:08	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	170		12		mg/Kg	*	03/25/15 09:56	03/25/15 12:52	1
(C10-C25)									
Residual Range Organics (RRO)	150		30		mg/Kg	₽	03/25/15 09:56	03/25/15 12:52	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	98		50 - 150				03/25/15 09:56	03/25/15 12:52	1
n-Triacontane-d62	101		50 - 150				03/25/15 09:56	03/25/15 12:52	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	38		4.7		mg/Kg	\	03/23/15 07:57	03/24/15 18:07	5
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	17		0.010		%			03/23/15 14:09	1
Percent Solids	83		0.010		%			03/23/15 14:09	1

 Client Sample ID: SVDP-11-13
 Lab Sample ID: 590-483-3

 Date Collected: 03/17/15 10:44
 Matrix: Solid

 Date Received: 03/20/15 12:10
 Percent Solids: 79.3

Analyte	Result	Qualifier RL	MDL Un	nit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	0.017	mg	g/Kg	\	03/25/15 10:38	03/25/15 12:35	1
Ethylbenzene	ND	0.11	mg	g/Kg	₽	03/25/15 10:38	03/25/15 12:35	1
m,p-Xylene	ND	0.44	mg	g/Kg	₽	03/25/15 10:38	03/25/15 12:35	1
o-Xylene	ND	0.22	mg	g/Kg	₽	03/25/15 10:38	03/25/15 12:35	1
Toluene	ND	0.11	mg	g/Kg	₩	03/25/15 10:38	03/25/15 12:35	1
Naphthalene	ND	0.22	mg	g/Kg	₩	03/25/15 10:38	03/25/15 12:35	1
Xylenes, Total	ND	0.66	mg	g/Kg		03/25/15 10:38	03/25/15 12:35	1

p-Terphenyl-d14

Project/Site: Tiger Oil - Summitview

Client Sample ID: SVDP-11-13

Date Collected: 03/17/15 10:44

Date Received: 03/20/15 12:10

Lab Sample ID: 590-483-3

Matrix: Solid

Percent Solids: 79.3

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	74.7 - 120	03/25/15 10:38	03/25/15 12:35	1
4-Bromofluorobenzene (Surr)	98	69.8 - 140	03/25/15 10:38	03/25/15 12:35	1
Dibromofluoromethane (Surr)	99	80 - 120	03/25/15 10:38	03/25/15 12:35	1
Toluene-d8 (Surr)	103	78.5 - 125	03/25/15 10:38	03/25/15 12:35	1

Method: NWTPH-Gx - Northwest	- Volatile Petro	oleum Prod	ducts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.5		mg/Kg	\	03/25/15 10:38	03/25/15 12:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		41.5 _ 162				03/25/15 10:38	03/25/15 12:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		12		ug/Kg	\$	03/26/15 11:12	03/26/15 14:30	1
2-Methylnaphthalene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
1-Methylnaphthalene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
Acenaphthylene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
Acenaphthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
Fluorene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
Phenanthrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
Anthracene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 14:30	1
Fluoranthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
Pyrene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 14:30	1
Benzo[a]anthracene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
Chrysene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
Benzo[b]fluoranthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
Benzo[k]fluoranthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
Benzo[a]pyrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 14:30	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 14:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	54		35.1 - 144				03/26/15 11:12	03/26/15 14:30	1
2-Fluorobiphenyl (Surr)	73		48.8 - 134				03/26/15 11:12	03/26/15 14:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		12		mg/Kg	*	03/25/15 09:56	03/25/15 13:15	1
(C10-C25)									
Residual Range Organics (RRO)	ND		30		mg/Kg	₽	03/25/15 09:56	03/25/15 13:15	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150				03/25/15 09:56	03/25/15 13:15	1
n-Triacontane-d62	100		50 ₋ 150				03/25/15 09:56	03/25/15 13:15	1

48 - 166

83

Method: 6010C - Metals (ICP)								
Analyte	Result Qualifier	RL	MDL I	Unit	D	Prepared	Analyzed	Dil Fac
Lead	7.0	5.6		mg/Kg		03/23/15 07:57	03/24/15 18:11	5

Project/Site: Tiger Oil - Summitview

Client Sample ID: SVDP-11-13

Date Collected: 03/17/15 10:44

Lab Sample ID: 590-483-3 Matrix: Solid

TestAmerica Job ID: 590-483-1

Date Received: 03/20/15 12:10

General Chemistry									
Analyte	Result	Qualifier	RL	RL U	nit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	21		0.010	<u>%</u>	,)			03/23/15 14:09	1
Percent Solids	79		0.010	%	b			03/23/15 14:09	1

Client Sample ID: SVDP-10-19 Lab Sample ID: 590-483-4

Date Collected: 03/17/15 12:53

Matrix: Solid Date Received: 03/20/15 12:10 Percent Solids: 79.7

Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND			0.013		mg/Kg	₩	03/25/15 10:38	03/25/15 12:57	1
Ethylbenzene	ND		(0.084		mg/Kg	₩	03/25/15 10:38	03/25/15 12:57	1
m,p-Xylene	ND			0.34		mg/Kg	₽	03/25/15 10:38	03/25/15 12:57	1
o-Xylene	ND			0.17		mg/Kg	₽	03/25/15 10:38	03/25/15 12:57	1
Toluene	ND		(0.084		mg/Kg	₽	03/25/15 10:38	03/25/15 12:57	1
Naphthalene	ND			0.17		mg/Kg	₽	03/25/15 10:38	03/25/15 12:57	1
Xylenes, Total	ND			0.51		mg/Kg	\$	03/25/15 10:38	03/25/15 12:57	1
Surrogate	%Recovery	Qualifier	Limi	its				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	·	74.7 -	120				03/25/15 10:38	03/25/15 12:57	1
4-Bromofluorobenzene (Surr)	110		69.8 -	140				03/25/15 10:38	03/25/15 12:57	1
Dibromofluoromethane (Surr)	100		80 -	120				03/25/15 10:38	03/25/15 12:57	1
Toluene-d8 (Surr)	98		78.5 -	125				03/25/15 10:38	03/25/15 12:57	1

Method: NWTPH-Gx - Northwe	st - Volatile Petro	oleum Prod	ducts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	30		4.2	n	mg/Kg	\tilde{\	03/25/15 10:38	03/25/15 12:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		41.5 - 162				03/25/15 10:38	03/25/15 12:57	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 15:38	1
2-Methylnaphthalene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 15:38	1
1-Methylnaphthalene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 15:38	1
Acenaphthylene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 15:38	1
Acenaphthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 15:38	1
Fluorene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 15:38	1
Phenanthrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 15:38	1
Anthracene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 15:38	1
Fluoranthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 15:38	1
Pyrene	ND		12		ug/Kg	\$	03/26/15 11:12	03/26/15 15:38	1
Benzo[a]anthracene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 15:38	1
Chrysene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 15:38	1
Benzo[b]fluoranthene	ND		12		ug/Kg	\$	03/26/15 11:12	03/26/15 15:38	1
Benzo[k]fluoranthene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 15:38	1
Benzo[a]pyrene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 15:38	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	φ.	03/26/15 11:12	03/26/15 15:38	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 15:38	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 15:38	1

Project/Site: Tiger Oil - Summitview

Client Sample ID: SVDP-10-19

Date Collected: 03/17/15 12:53 Date Received: 03/20/15 12:10 Lab Sample ID: 590-483-4

Matrix: Solid

Percent Solids: 79.7

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	50		35.1 - 144				03/26/15 11:12	03/26/15 15:38	
2-Fluorobiphenyl (Surr)	65		48.8 - 134				03/26/15 11:12	03/26/15 15:38	
p-Terphenyl-d14	85		48 - 166				03/26/15 11:12	03/26/15 15:38	
Method: NWTPH-Dx - Northwest -	Semi-Volatile	e Petroleun	n Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO) (C10-C25)	35		12		mg/Kg	₩	03/25/15 09:56	03/25/15 13:38	
Residual Range Organics (RRO) (C25-C36)	97		30		mg/Kg	₩	03/25/15 09:56	03/25/15 13:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	99		50 - 150				03/25/15 09:56	03/25/15 13:38	
n-Triacontane-d62	108		50 - 150				03/25/15 09:56	03/25/15 13:38	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	6.2		5.0		mg/Kg	\$	03/23/15 07:57	03/24/15 18:13	
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	20	-	0.010		%			03/23/15 14:09	
Percent Solids	80		0.010		%			03/23/15 14:09	

Client Sample ID: SVDP-8-14 Lab Sample ID: 590-483-5 Date Collected: 03/17/15 11:38 **Matrix: Solid**

Date Received: 03/20/15 12:10 Percent Solids: 83.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.017		mg/Kg	*	03/25/15 10:38	03/25/15 13:20	1
Ethylbenzene	ND		0.11		mg/Kg	₽	03/25/15 10:38	03/25/15 13:20	1
m,p-Xylene	ND		0.45		mg/Kg	₽	03/25/15 10:38	03/25/15 13:20	1
o-Xylene	ND		0.23		mg/Kg	₽	03/25/15 10:38	03/25/15 13:20	1
Toluene	ND		0.11		mg/Kg	₽	03/25/15 10:38	03/25/15 13:20	1
Naphthalene	ND		0.23		mg/Kg	₽	03/25/15 10:38	03/25/15 13:20	1
Xylenes, Total	ND		0.68		mg/Kg	\$	03/25/15 10:38	03/25/15 13:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		74.7 - 120				03/25/15 10:38	03/25/15 13:20	1
4-Bromofluorobenzene (Surr)	100		69.8 - 140				03/25/15 10:38	03/25/15 13:20	1
Dibromofluoromethane (Surr)	97		80 - 120				03/25/15 10:38	03/25/15 13:20	1
Toluene-d8 (Surr)	99		78.5 - 125				03/25/15 10:38	03/25/15 13:20	1

Method: NWTPH-Gx - Northwes	st - Volatile Petro	oleum Prod	ducts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.7		mg/Kg	*	03/25/15 10:38	03/25/15 13:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		41.5 - 162				03/25/15 10:38	03/25/15 13:20	1

Lead

Project/Site: Tiger Oil - Summitview

Client Sample ID: SVDP-8-14

Date Collected: 03/17/15 11:38 Date Received: 03/20/15 12:10

Lab Sample ID: 590-483-5

Matrix: Solid

Percent Solids: 83.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		12		ug/Kg	\	03/26/15 11:12	03/26/15 16:00	1
2-Methylnaphthalene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	1
1-Methylnaphthalene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 16:00	1
Acenaphthylene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	1
Acenaphthene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 16:00	1
Fluorene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	1
Phenanthrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	1
Anthracene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 16:00	1
Fluoranthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	1
Pyrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	1
Benzo[a]anthracene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	1
Chrysene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 16:00	1
Benzo[b]fluoranthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	1
Benzo[k]fluoranthene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 16:00	1
Benzo[a]pyrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 16:00	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	43		35.1 - 144				03/26/15 11:12	03/26/15 16:00	1
2-Fluorobiphenyl (Surr)	58		48.8 - 134				03/26/15 11:12	03/26/15 16:00	1
p-Terphenyl-d14	77		48 - 166				03/26/15 11:12	03/26/15 16:00	1
Method: NWTPH-Dx - Northwe									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		12		ma/Ka	#	03/25/15 09:56	03/25/15 14:01	

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
n-Triacontane-d62	96		50 - 150			03/25/15 09:56	03/25/15 14:01	1
o-Terphenyl	94		50 - 150			03/25/15 09:56	03/25/15 14:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO) (C25-C36)	ND		29	mg/Kg	÷.	03/25/15 09:56	03/25/15 14:01	1
(C10-C25)					**	00/05/45 00 50	00/05/45 44.04	
Diesel Range Organics (DRO)	ND		12	mg/Kg	₽	03/25/15 09:56	03/25/15 14:01	1

General Chemistry Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	16	0.010	%			03/23/15 14:09	1
Percent Solids	84	0.010	%			03/23/15 14:09	1

Client Sample ID: SVDP-15-13 Lab Sample ID: 590-483-6 Date Collected: 03/18/15 10:25 Matrix: Solid Date Received: 03/20/15 12:10 Percent Solids: 80.9

Method: 8260C - Volatile Organic (Compounds I	by GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.023		mg/Kg	\	03/25/15 10:38	03/25/15 13:42	1

03/23/15 07:57 03/24/15 18:17

Project/Site: Tiger Oil - Summitview

Client Sample ID: SVDP-15-13

Date Collected: 03/18/15 10:25 Date Received: 03/20/15 12:10 Lab Sample ID: 590-483-6

Matrix: Solid

Percent Solids: 80.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		0.15		mg/Kg	<u> </u>	03/25/15 10:38	03/25/15 13:42	1
m,p-Xylene	ND		0.62		mg/Kg	₽	03/25/15 10:38	03/25/15 13:42	1
o-Xylene	ND		0.31		mg/Kg	₽	03/25/15 10:38	03/25/15 13:42	1
Toluene	ND		0.15		mg/Kg	₽	03/25/15 10:38	03/25/15 13:42	1
Naphthalene	ND		0.31		mg/Kg	₽	03/25/15 10:38	03/25/15 13:42	1
Xylenes, Total	ND		0.93		mg/Kg	₩	03/25/15 10:38	03/25/15 13:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		74.7 - 120				03/25/15 10:38	03/25/15 13:42	1
4-Bromofluorobenzene (Surr)	101		69.8 - 140				03/25/15 10:38	03/25/15 13:42	1
Dibromofluoromethane (Surr)	98		80 - 120				03/25/15 10:38	03/25/15 13:42	1
Toluene-d8 (Surr)	99		78.5 ₋ 125				03/25/15 10:38	03/25/15 13:42	1

D Prepared	Analyzed	Dil Fac
© 03/25/15 10:38	03/25/15 13:42	1
Prepared	Analyzed	Dil Fac
03/25/15 10:38	03/25/15 13:42	1
	© 03/25/15 10:38 Prepared	© 03/25/15 10:38 03/25/15 13:42 Prepared Analyzed

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		12		ug/Kg	-	03/26/15 11:12	03/26/15 16:23	1
2-Methylnaphthalene	ND		12		ug/Kg	≎	03/26/15 11:12	03/26/15 16:23	1
1-Methylnaphthalene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Acenaphthylene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Acenaphthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Fluorene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Phenanthrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Anthracene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Fluoranthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Pyrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Benzo[a]anthracene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Chrysene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Benzo[b]fluoranthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Benzo[k]fluoranthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Benzo[a]pyrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 16:23	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 16:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	56		35.1 - 144				03/26/15 11:12	03/26/15 16:23	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Method: NWTPH-Dx - Northwest -	Semi-Volatile Petroleum	Products (GC)					
p-Terphenyl-d14	86	48 - 166			03/26/15 11:12	03/26/15 16:23	1
2-Fluorobiphenyl (Surr)	76	48.8 - 134			03/26/15 11:12	03/26/15 16:23	1

(C10-C25)

Diesel Range Organics (DRO)

03/25/15 14:21

□ 03/25/15 09:56

mg/Kg

Percent Solids

Project/Site: Tiger Oil - Summitview

Client Sample ID: SVDP-15-13

Lab Sample ID: 590-483-6

03/23/15 14:09

TestAmerica Job ID: 590-483-1

Matrix: Solid

Percent Solids: 80.9

Date Collected:	03/18/15 10:25
Date Conected.	03/10/13 10.23
Date Received:	03/20/15 12:10
Date Recorred.	00/20/10 12:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO)	ND		30		mg/Kg	₩	03/25/15 09:56	03/25/15 14:21	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	93	-	50 - 150				03/25/15 09:56	03/25/15 14:21	1
n-Triacontane-d62	97		50 - 150				03/25/15 09:56	03/25/15 14:21	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	5.6		5.2		mg/Kg	₩	03/23/15 07:57	03/24/15 18:20	5
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	19		0.010		%			03/23/15 14:09	1

Client Sample ID: SVDP-13-18.0 Lab Sample ID: 590-483-7 Date Collected: 03/16/15 16:55 **Matrix: Solid**

0.010

Date Received: 03/20/15 12:10 Percent Solids: 76.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.015		mg/Kg	\	03/25/15 10:38	03/25/15 14:04	1
Ethylbenzene	ND		0.10		mg/Kg	₩	03/25/15 10:38	03/25/15 14:04	1
m,p-Xylene	ND		0.40		mg/Kg	₽	03/25/15 10:38	03/25/15 14:04	1
o-Xylene	ND		0.20		mg/Kg	₩	03/25/15 10:38	03/25/15 14:04	1
Toluene	ND		0.10		mg/Kg	₩	03/25/15 10:38	03/25/15 14:04	1
Naphthalene	ND		0.20		mg/Kg	₩	03/25/15 10:38	03/25/15 14:04	1
Xylenes, Total	ND		0.60		mg/Kg	\$	03/25/15 10:38	03/25/15 14:04	1

Surrogate	%Recovery	Qualifier	Limits	Prej	pared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		74.7 - 120	03/25/	15 10:38	03/25/15 14:04	1
4-Bromofluorobenzene (Surr)	100		69.8 - 140	03/25/	15 10:38	03/25/15 14:04	1
Dibromofluoromethane (Surr)	98		80 - 120	03/25/	15 10:38	03/25/15 14:04	1
Toluene-d8 (Surr)	100		78.5 - 125	03/25/	15 10:38	03/25/15 14:04	1

Method: NWTPH-Gx - Northwest -	- Volatile Petroleum Product	s (GC/MS)	
l .	B 11 0 116		

81

				•					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.0		mg/Kg		03/25/15 10:38	03/25/15 14:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorohenzene (Surr)	100		41.5 162				03/25/15 10:38	03/25/15 14:04	

Method: 8270D SIM - Semivolatile (Organic C	Compounds ((GC/MS SIM)	
------------------------------------	-----------	-------------	-------------	--

Method: 8270D SiM - Semivo	iatile Organic Comp	Journas (GC/M	o olivi)						
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND		13		ug/Kg	-	03/26/15 11:12	03/26/15 16:45	1
2-Methylnaphthalene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1
1-Methylnaphthalene	ND		13		ug/Kg	₩	03/26/15 11:12	03/26/15 16:45	1
Acenaphthylene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1
Acenaphthene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1
Fluorene	ND		13		ug/Kg	₩	03/26/15 11:12	03/26/15 16:45	1
Phenanthrene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1

TestAmerica Spokane

m,p-Xylene

Naphthalene

Xylenes, Total

o-Xylene

Toluene

Project/Site: Tiger Oil - Summitview

TestAmerica Job ID: 590-483-1

Client Sample ID: SVDP-13-18.0

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 590-483-7

Date Collected: 03/16/15 16:55 Date Received: 03/20/15 12:10

Matrix: Solid Percent Solids: 76.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	ND		13		ug/Kg		03/26/15 11:12	03/26/15 16:45	1
Fluoranthene	ND		13		ug/Kg	₩	03/26/15 11:12	03/26/15 16:45	1
Pyrene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1
Benzo[a]anthracene	ND		13		ug/Kg	≎	03/26/15 11:12	03/26/15 16:45	1
Chrysene	ND		13		ug/Kg	≎	03/26/15 11:12	03/26/15 16:45	1
Benzo[b]fluoranthene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1
Benzo[k]fluoranthene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1
Benzo[a]pyrene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1
Indeno[1,2,3-cd]pyrene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1
Dibenz(a,h)anthracene	ND		13		ug/Kg	₩	03/26/15 11:12	03/26/15 16:45	1
Benzo[g,h,i]perylene	ND		13		ug/Kg	₽	03/26/15 11:12	03/26/15 16:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	45		35.1 - 144				03/26/15 11:12	03/26/15 16:45	1
2-Fluorobiphenyl (Surr)	62		48.8 - 134				03/26/15 11:12	03/26/15 16:45	1
p-Terphenyl-d14	80		48 - 166				03/26/15 11:12	03/26/15 16:45	1
Method: NWTPH-Dx - Northwes	t - Semi-Volatile	Petroleum	n Products (GC	;)					
Analyte		Qualifier	RL	•	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		13		mg/Kg	\	03/25/15 09:56	03/25/15 14:44	1
Residual Range Organics (RRO) (C25-C36)	ND		31		mg/Kg	₩	03/25/15 09:56	03/25/15 14:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	94		50 - 150				03/25/15 09:56	03/25/15 14:44	1
n-Triacontane-d62	101		50 - 150				03/25/15 09:56	03/25/15 14:44	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		4.3		mg/Kg	\	03/23/15 07:57	03/24/15 18:24	5
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	23		0.010		%			03/23/15 14:09	1
Percent Solids	77		0.010		%			03/23/15 14:09	1
Client Sample ID: SVDP-12-	10 E						l ab Ca	mple ID: 590	102 0
ate Collected: 03/16/15 13:55	10.5						Lab Sa	•	
ate Received: 03/20/15 12:10								Percent Soli	x: Solid ds: 81.3
Mothodi 9260C Volotile Orneri	io Compoundo I	ov CC/MC							
Method: 8260C - Volatile Organi Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	- Qualifier	1.5	INIDL		— ¤	03/25/15 10:38	03/25/15 14:27	100
			1.5		mg/Kg	₩	03/25/15 10:38	03/25/15 14:27	100
Ethylbenzene	22		10		mg/Kg	T	00.00 10.00	00120110 14.21	100

03/25/15 14:27

03/25/15 14:27

03/25/15 14:27

03/25/15 14:27

03/25/15 14:27

100

100

100

100

100

03/25/15 10:38

03/25/15 10:38

03/25/15 10:38

03/25/15 10:38

03/25/15 10:38

₽

40

20

10

20

60

31

12

ND

130

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

_

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summitview

Client Sample ID: SVDP-12-18.5

Date Collected: 03/16/15 13:55 Date Received: 03/20/15 12:10 Lab Sample ID: 590-483-8

Matrix: Solid

Percent Solids: 81.3

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	74.7 - 120	03/25/15 10:38	03/25/15 14:27	100
4-Bromofluorobenzene (Surr)	100	69.8 - 140	03/25/15 10:38	03/25/15 14:27	100
Dibromofluoromethane (Surr)	98	80 - 120	03/25/15 10:38	03/25/15 14:27	100
Toluene-d8 (Surr)	99	78.5 ₋ 125	03/25/15 10:38	03/25/15 14:27	100

Method: NWTPH-Gx - Northwest -	Volatile Petro	oleum Prod	lucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	1400		500		mg/Kg	<u> </u>	03/25/15 10:38	03/25/15 14:27	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		41.5 - 162				03/25/15 10:38	03/25/15 14:27	100

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	2800		12		ug/Kg	₩	03/26/15 11:12	03/26/15 17:08	1
2-Methylnaphthalene	24000		120		ug/Kg	₩	03/26/15 11:12	03/27/15 12:21	10
1-Methylnaphthalene	11000		120		ug/Kg	₽	03/26/15 11:12	03/27/15 12:21	10
Acenaphthylene	38		12		ug/Kg	₽	03/26/15 11:12	03/26/15 17:08	1
Acenaphthene	88		12		ug/Kg	₽	03/26/15 11:12	03/26/15 17:08	1
Fluorene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 17:08	1
Phenanthrene	60		12		ug/Kg	₽	03/26/15 11:12	03/26/15 17:08	1
Anthracene	15		12		ug/Kg	₽	03/26/15 11:12	03/26/15 17:08	1
Fluoranthene	16		12		ug/Kg	₩	03/26/15 11:12	03/26/15 17:08	1
Pyrene	18		12		ug/Kg	₽	03/26/15 11:12	03/26/15 17:08	1
Benzo[a]anthracene	12		12		ug/Kg	₩	03/26/15 11:12	03/26/15 17:08	1
Chrysene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 17:08	1
Benzo[b]fluoranthene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 17:08	1
Benzo[k]fluoranthene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 17:08	1
Benzo[a]pyrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 17:08	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 17:08	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	₽	03/26/15 11:12	03/26/15 17:08	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	₩	03/26/15 11:12	03/26/15 17:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	78		35.1 - 144				03/26/15 11:12	03/26/15 17:08	1
2-Fluorobiphenyl (Surr)	85		48.8 - 134				03/26/15 11:12	03/26/15 17:08	1
p-Terphenyl-d14	83		48 - 166				03/26/15 11:12	03/26/15 17:08	1

	• • • • • • • • • • • • • • • • • • • •						00,20,10,1112	00,20,10,1100	•
Method: NWTPH-Dx - Northwest	- Semi-Volatile	e Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	480		35		mg/Kg	\$	03/25/15 09:56	03/26/15 09:28	2
(C10-C25)									
Residual Range Organics (RRO)	ND		88		mg/Kg	₽	03/25/15 09:56	03/26/15 09:28	2
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	90		50 - 150				03/25/15 09:56	03/26/15 09:28	2
n-Triacontane-d62	98		50 - 150				03/25/15 09:56	03/26/15 09:28	2
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		4.1		mg/Kg	<u> </u>	03/23/15 07:57	03/24/15 18:28	5

Project/Site: Tiger Oil - Summitview

Client Sample ID: SVDP-12-18.5 Lab Sample ID: 590-483-8 Date Collected: 03/16/15 13:55

Matrix: Solid

TestAmerica Job ID: 590-483-1

Date Received: 03/20/15 12:10

General Chemistry Analyte Result Qualifier RLRL Unit D Prepared Analyzed Dil Fac 0.010 % Percent Moisture 19 03/23/15 14:09 0.010 % 03/23/15 14:09 **Percent Solids** 81

Client Sample ID: SVDP-14-15 Lab Sample ID: 590-483-9

Date Collected: 03/17/15 15:05 Matrix: Solid

Date Received: 03/20/15 12:10 Percent Solids: 73.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.022		mg/Kg	₩	03/25/15 10:38	03/25/15 14:49	1
Ethylbenzene	ND		0.14		mg/Kg	₽	03/25/15 10:38	03/25/15 14:49	1
m,p-Xylene	ND		0.58		mg/Kg	₽	03/25/15 10:38	03/25/15 14:49	1
o-Xylene	ND		0.29		mg/Kg	₽	03/25/15 10:38	03/25/15 14:49	1
Toluene	ND		0.14		mg/Kg	₩	03/25/15 10:38	03/25/15 14:49	1
Naphthalene	ND		0.29		mg/Kg	₽	03/25/15 10:38	03/25/15 14:49	1
Xylenes, Total	ND		0.86		mg/Kg	\$	03/25/15 10:38	03/25/15 14:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	-	74.7 - 120				03/25/15 10:38	03/25/15 14:49	1
4-Bromofluorobenzene (Surr)	101		69.8 - 140				03/25/15 10:38	03/25/15 14:49	1
Dibromofluoromethane (Surr)	99		80 - 120				03/25/15 10:38	03/25/15 14:49	1
Toluene-d8 (Surr)	102		78.5 ₋ 125				03/25/15 10:38	03/25/15 14:49	1

1	llethod: NWTPH-Gx - Northwe	st - Volatile Petro	oleum Prod	ducts (GC/MS)						
Α	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
G	Sasoline	ND		7.2		mg/Kg	₩	03/25/15 10:38	03/25/15 14:49	1
s	urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4	-Bromofluorobenzene (Surr)	101		41.5 - 162				03/25/15 10:38	03/25/15 14:49	1

-	• • •							-
Method: 8270D SIM - Semivola Analyte	atile Organic Compounds (G Result Qualifier	C/MS SIM)	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND Qualifor	14		ug/Kg	— *	03/26/15 11:12	03/26/15 17:30	1
2-Methylnaphthalene	ND	14		ug/Kg	₩	03/26/15 11:12	03/26/15 17:30	1
1-Methylnaphthalene	ND	14	ι	ug/Kg	₩	03/26/15 11:12	03/26/15 17:30	1
Acenaphthylene	ND	14		ug/Kg	ф.	03/26/15 11:12	03/26/15 17:30	1
Acenaphthene	ND	14	ι	ug/Kg	₩	03/26/15 11:12	03/26/15 17:30	1
Fluorene	ND	14	ι	ug/Kg	₩	03/26/15 11:12	03/26/15 17:30	1
Phenanthrene	ND	14	ι	ug/Kg		03/26/15 11:12	03/26/15 17:30	1
Anthracene	ND	14	ι	ug/Kg	₩	03/26/15 11:12	03/26/15 17:30	1
Fluoranthene	ND	14	ı	ug/Kg	₩	03/26/15 11:12	03/26/15 17:30	1
Pyrene	ND	14	ι	ug/Kg	₩	03/26/15 11:12	03/26/15 17:30	1
Benzo[a]anthracene	ND	14	ı	ug/Kg	₩	03/26/15 11:12	03/26/15 17:30	1
Chrysene	ND	14	ι	ug/Kg	₩	03/26/15 11:12	03/26/15 17:30	1
Benzo[b]fluoranthene	ND	14	ι	ug/Kg	₩.	03/26/15 11:12	03/26/15 17:30	1
Benzo[k]fluoranthene	ND	14	ι	ug/Kg	₩	03/26/15 11:12	03/26/15 17:30	1
Benzo[a]pyrene	ND	14	ı	ug/Kg	₩	03/26/15 11:12	03/26/15 17:30	1
Indeno[1,2,3-cd]pyrene	ND	14	ι	ug/Kg	φ.	03/26/15 11:12	03/26/15 17:30	1
Dibenz(a,h)anthracene	ND	14	ι	ug/Kg	₩	03/26/15 11:12	03/26/15 17:30	1
Benzo[g,h,i]perylene	ND	14	ι	ug/Kg	₩	03/26/15 11:12	03/26/15 17:30	1

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summitview

TestAmerica Job ID: 590-483-1

Client Sample ID: SVDP-14-15

Date Collected: 03/17/15 15:05

Lab Sample ID: 590-483-9 Matrix: Solid

Percent Solids: 73.8

Date Received: 03/20/15 12:10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	52		35.1 - 144	03/26/15 11:12	03/26/15 17:30	1
2-Fluorobiphenyl (Surr)	69		48.8 - 134	03/26/15 11:12	03/26/15 17:30	1
p-Terphenyl-d14	83		48 - 166	03/26/15 11:12	03/26/15 17:30	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Result	Qualifier	RL	MDL	Unit	_ n	Prepared	A so a luma al	Dil Faa
				Oilit	U	Frepareu	Analyzed	Dil Fac
ND		13		mg/Kg		03/25/15 09:56	03/25/15 15:53	1
ND		34		mg/Kg	\$	03/25/15 09:56	03/25/15 15:53	1
			ND 13	ND 13	ND 13 mg/Kg	ND 13 mg/Kg 🕏	ND 13 mg/Kg © 03/25/15 09:56	ND 13 mg/Kg 3 03/25/15 09:56 03/25/15 15:53

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	90		50 - 150	03/25/15 09:56	03/25/15 15:53	1
n-Triacontane-d62	93		50 - 150	03/25/15 09:56	03/25/15 15:53	1

Method: 6010C - Metals (ICP)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND	5.3	ma/Ka	₩	03/23/15 07:57	03/24/15 18:42	5

General Chemistry

- Contract Charles									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	26		0.010		%			03/23/15 14:09	1
Percent Solids	74		0.010		%			03/23/15 14:09	1

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summitview

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 590-859/1-A

Matrix: Solid Analysis Batch: 850 Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 859

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.015		mg/Kg		03/25/15 10:38	03/25/15 10:20	1
Ethylbenzene	ND		0.10		mg/Kg		03/25/15 10:38	03/25/15 10:20	1
m,p-Xylene	ND		0.40		mg/Kg		03/25/15 10:38	03/25/15 10:20	1
o-Xylene	ND		0.20		mg/Kg		03/25/15 10:38	03/25/15 10:20	1
Toluene	ND		0.10		mg/Kg		03/25/15 10:38	03/25/15 10:20	1
Naphthalene	ND		0.20		mg/Kg		03/25/15 10:38	03/25/15 10:20	1
Xylenes, Total	ND		0.60		mg/Kg		03/25/15 10:38	03/25/15 10:20	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 74.7 - 120 03/25/15 10:38 1,2-Dichloroethane-d4 (Surr) 94 03/25/15 10:20 4-Bromofluorobenzene (Surr) 99 69.8 - 140 03/25/15 10:38 03/25/15 10:20 Dibromofluoromethane (Surr) 97 80 - 120 03/25/15 10:38 03/25/15 10:20 03/25/15 10:38 99 Toluene-d8 (Surr) 78.5 - 125 03/25/15 10:20

Lab Sample ID: LCS 590-859/2-A

Matrix: Solid Analysis Batch: 850

Analysis Batch: 852

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 859

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.500	0.483		mg/Kg		97	75.8 - 123	
Ethylbenzene	0.500	0.472		mg/Kg		94	77.3 - 121	
m,p-Xylene	0.500	0.484		mg/Kg		97	77.7 - 124	
o-Xylene	0.500	0.478		mg/Kg		96	76.7 - 129	
Toluene	0.500	0.478		mg/Kg		96	76.6 - 125	
Naphthalene	0.500	0.440		mg/Kg		88	55.1 - 142	

LCS LCS %Recovery Qualifier Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 100 74.7 - 120 4-Bromofluorobenzene (Surr) 98 69.8 - 140 103 Dibromofluoromethane (Surr) 80 - 120 Toluene-d8 (Surr) 100 78.5 - 125

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-859/1-A Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 859

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.0		mg/Kg		03/25/15 10:38	03/25/15 10:20	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		41.5 - 162				03/25/15 10:38	03/25/15 10:20	1

TestAmerica Job ID: 590-483-1

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summitview

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) (Continued)

Lab Sample ID: LCS 590-859/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 852** Prep Batch: 859 Spike LCS LCS

Analyte Added Result Qualifier %Rec Unit D Limits Gasoline 50.0 47.8 mg/Kg 96 74.4 - 124

LCS LCS

%Recovery Qualifier Limits Surrogate 41.5 - 162 4-Bromofluorobenzene (Surr) 103

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-877/1-A Client Sample ID: Method Blank Prep Type: Total/NA **Matrix: Solid** Analysis Batch: 876 Pron Batch: 877

Analysis Batch: 876								Prep Ba	tch: 877
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	MD		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
2-Methylnaphthalene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
1-Methylnaphthalene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Acenaphthylene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Acenaphthene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Fluorene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Phenanthrene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Anthracene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Fluoranthene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Pyrene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Benzo[a]anthracene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Chrysene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Benzo[b]fluoranthene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Benzo[k]fluoranthene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Benzo[a]pyrene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Indeno[1,2,3-cd]pyrene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Dibenz(a,h)anthracene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1
Benzo[g,h,i]perylene	ND		10		ug/Kg		03/26/15 11:12	03/26/15 17:53	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Nitrobenzene-d5 60 35.1 - 144 03/26/15 11:12 03/26/15 17:53 48.8 - 134 2-Fluorobiphenyl (Surr) 67 03/26/15 11:12 03/26/15 17:53 p-Terphenyl-d14 90 48 - 166 03/26/15 11:12 03/26/15 17:53

Lab Sample ID: LCS 590-877/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 876** Prep Batch: 877 LCS LCS

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	267	154		ug/Kg		58	51.4 - 133	
Fluorene	267	246		ug/Kg		92	65.7 - 123	
Chrysene	267	239		ug/Kg		90	57.3 - 133	
Indeno[1,2,3-cd]pyrene	267	341		ug/Kg		128	54.6 - 142	

TestAmerica Spokane

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-877/2-A

Matrix: Solid **Analysis Batch: 876** **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Prep Batch: 877

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	52		35.1 - 144
2-Fluorobiphenyl (Surr)	71		48.8 - 134
p-Terphenyl-d14	88		48 - 166

Client Sample ID: SVDP-11-13 Prep Type: Total/NA

Prep Batch: 877

Lab Sample ID: 590-483-3 MS Matrix: Solid

Analysis Batch: 876

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	ND		323	217		ug/Kg	<u> </u>	67	30 - 120	-
Fluorene	ND		323	313		ug/Kg	₩	97	30 - 140	
Chrysene	ND		323	269		ug/Kg	₩	83	30 - 133	
Indeno[1,2,3-cd]pyrene	ND		323	303		ug/Kg	₽	94	30 - 140	

MS MS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	61		35.1 - 144
2-Fluorobiphenyl (Surr)	85		48.8 - 134
p-Terphenyl-d14	86		48 - 166

Lab Sample ID: 590-483-3 MSD

Matrix: Solid

Analysis Batch: 876

Client Sample ID: SVDP-11-13

Prep Type: Total/NA

Prep Batch: 877

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	ND		330	195		ug/Kg	\	59	30 - 120	10	35
Fluorene	ND		330	316		ug/Kg	₽	96	30 - 140	1	35
Chrysene	ND		330	273		ug/Kg	₽	83	30 - 133	1	35
Indeno[1,2,3-cd]pyrene	ND		330	349		ug/Kg	*	106	30 - 140	14	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	63		35.1 - 144
2-Fluorobiphenyl (Surr)	79		48.8 - 134
p-Terphenyl-d14	80		48 - 166

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-853/1-A

Matrix: Solid

(C25-C36)

Analysis Batch: 856

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 853

	IND IND						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND	10	mg/Kg		03/25/15 09:56	03/25/15 11:22	1
(C10-C25)							
Residual Range Organics (RRO)	ND	25	mg/Kg		03/25/15 09:56	03/25/15 11:22	1

TestAmerica Spokane

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summitview

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: MB 590-853/1-A

Lab Sample ID: LCS 590-853/2-A

Matrix: Solid Analysis Batch: 856 Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

Prep Batch: 853

Dil Fac

MB MB

Surrogate	%Recovery	Qualifier	Limits	
o-Terphenyl	94		50 - 150	
n-Triacontane-d62	90		50 - 150	

03/25/15 09:56 03/25/15 11:22 03/25/15 09:56 03/25/15 11:22

Client Sample ID: Lab Control Sample

88

Prepared

Prep Type: Total/NA

h: 853

Analysis Batch: 856							Pr	ep Batch
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Organics (DRO)	66.7	58.3		mg/Kg		87	50 - 150	

66.7

(C10-C25) Residual Range Organics (RRO)

Matrix: Solid

(C25-C36) LCS LCS

Limits

Surrogate %Recovery Qualifier 98 50 - 150 o-Terphenyl 99 50 - 150 n-Triacontane-d62

Lab Sample ID: 590-483-2 DU Client Sample ID: SVDP-7-15

58.8

mg/Kg

Matrix: Solid

Analysis Batch: 856

Prep Type: Total/NA

Prep Batch: 853

Analysis Batom 600							• • • • • • • • • • • • • • • • • • • •	op Bato	000
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Diesel Range Organics (DRO)	170		 82.3	F3	mg/Kg	₩		69	40
(C10-C25)									
Residual Range Organics (RRO)	150		91.7	F3	mg/Kg	₩		47	40
(C25-C36)									

DU DU

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	97		50 - 150
n-Triacontane-d62	102		50 - 150

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 590-819/2-A

Matrix: Solid

Analysis Batch: 845

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 819

MR MR

Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac 03/23/15 07:56 Lead ND 0.025 mg/Kg 03/24/15 11:25

Lab Sample ID: LCS 590-819/1-A

Matrix: Solid Analysis Batch: 845 **Client Sample ID: Lab Control Sample**

Prep Type: Total/NA

Prep Batch: 819

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 1.00 80 - 120 Lead 0.976 98 mg/Kg

QC Sample Results

Client: GeoEngineers Inc TestAmerica Job ID: 590-483-1

Project/Site: Tiger Oil - Summitview

Method: Moisture - Percent Moisture

Lab Sample ID: 590-483-1 DU Client Sample ID: SVDP-9-20 Matrix: Solid **Prep Type: Total/NA**

Analysis Batch: 832								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	20		21		%		 3	20
Percent Solids	80		79		%		8.0	20

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summitview

Client Sample ID: SVDP-9-20

Lab Sample ID: 590-483-1

Date Collected: 03/17/15 14:15

Matrix: Solid

Date Received: 03/20/15 12:10 Percent Solids: 80.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.466 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		10	4.466 g	5 mL	850	03/25/15 11:50	MRS	TAL SPK
Total/NA	Prep	5035			4.466 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		10	4.466 g	5 mL	852	03/25/15 11:50	MRS	TAL SPK
Total/NA	Prep	3550C			15.32 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.32 g	2 mL	876	03/26/15 13:45	NMI	TAL SPK
Total/NA	Prep	3550C			10.92 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	10.92 g	5 mL	856	03/25/15 12:08	NMI	TAL SPK
Total/NA	Prep	3050B			1.35 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.35 g	50 mL	864	03/24/15 18:03	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

Client Sample ID: SVDP-7-15

Date Collected: 03/17/15 09:05

Date Received: 03/20/15 12:10

Lab Sample ID: 590-483-2

Matrix: Solid

Percent Solids: 83.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.552 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		10	4.552 g	5 mL	850	03/25/15 15:11	MRS	TAL SPK
Total/NA	Prep	5035			4.552 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		10	4.552 g	5 mL	852	03/25/15 15:11	MRS	TAL SPK
Total/NA	Prep	3550C			15.10 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		2	15.10 g	2 mL	876	03/26/15 14:08	NMI	TAL SPK
Total/NA	Prep	3550C			15.10 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		5	15.10 g	2 mL	890	03/27/15 11:59	NMI	TAL SPK
Total/NA	Prep	3550C			15.27 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.27 g	5 mL	856	03/25/15 12:52	NMI	TAL SPK
Total/NA	Prep	3050B			1.59 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.59 g	50 mL	864	03/24/15 18:07	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

 Client Sample ID: SVDP-11-13
 Lab Sample ID: 590-483-3

 Date Collected: 03/17/15 10:44
 Matrix: Solid

 Date Received: 03/20/15 12:10
 Percent Solids: 79.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			7.512 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		1	7.512 g	5 mL	850	03/25/15 12:35	MRS	TAL SPK
Total/NA	Prep	5035			7.512 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	7.512 g	5 mL	852	03/25/15 12:35	MRS	TAL SPK
Total/NA	Prep	3550C			15.71 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.71 g	2 mL	876	03/26/15 14:30	NMI	TAL SPK
Total/NA	Prep	3550C			15.85 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK

TestAmerica Spokane

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summitview

Lab Sample ID: 590-483-3

Matrix: Solid

Percent Solids: 79.3

Client Sample ID: SVDP-11-13 Date Collected: 03/17/15 10:44

Date Received: 03/20/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	NWTPH-Dx		1	15.85 g	5 mL	856	03/25/15 13:15	NMI	TAL SPK
Total/NA	Prep	3050B			1.40 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.40 g	50 mL	864	03/24/15 18:11	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

Client Sample ID: SVDP-10-19 Lab Sample ID: 590-483-4

Date Collected: 03/17/15 12:53 Matrix: Solid Date Received: 03/20/15 12:10 Percent Solids: 79.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			10.633 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		1	10.633 g	5 mL	850	03/25/15 12:57	MRS	TAL SPK
Total/NA	Prep	5035			10.633 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	10.633 g	5 mL	852	03/25/15 12:57	MRS	TAL SPK
Total/NA	Prep	3550C			15.19 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.19 g	2 mL	876	03/26/15 15:38	NMI	TAL SPK
Total/NA	Prep	3550C			15.47 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.47 g	5 mL	856	03/25/15 13:38	NMI	TAL SPK
Total/NA	Prep	3050B			1.58 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.58 g	50 mL	864	03/24/15 18:13	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

Client Sample ID: SVDP-8-14 Lab Sample ID: 590-483-5

Date Collected: 03/17/15 11:38 Matrix: Solid Date Received: 03/20/15 12:10 Percent Solids: 83.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.357 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		1	6.357 g	5 mL	850	03/25/15 13:20	MRS	TAL SPK
Total/NA	Prep	5035			6.357 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	6.357 g	5 mL	852	03/25/15 13:20	MRS	TAL SPK
Total/NA	Prep	3550C			15.12 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.12 g	2 mL	876	03/26/15 16:00	NMI	TAL SPK
Total/NA	Prep	3550C			15.43 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.43 g	5 mL	856	03/25/15 14:01	NMI	TAL SPK
Total/NA	Prep	3050B			1.34 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.34 g	50 mL	864	03/24/15 18:17	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

TestAmerica Job ID: 590-483-1

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summitview

Client Sample ID: SVDP-15-13

Date Collected: 03/18/15 10:25 Date Received: 03/20/15 12:10 Lab Sample ID: 590-483-6

Matrix: Solid
Percent Solids: 80.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.736 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		1	4.736 g	5 mL	850	03/25/15 13:42	MRS	TAL SPK
Total/NA	Prep	5035			4.736 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	4.736 g	5 mL	852	03/25/15 13:42	MRS	TAL SPK
Total/NA	Prep	3550C			15.02 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.02 g	2 mL	876	03/26/15 16:23	NMI	TAL SPK
Total/NA	Prep	3550C			15.54 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.54 g	5 mL	856	03/25/15 14:21	NMI	TAL SPK
Total/NA	Prep	3050B			1.50 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.50 g	50 mL	864	03/24/15 18:20	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

Client Sample ID: SVDP-13-18.0

Date Collected: 03/16/15 16:55 Date Received: 03/20/15 12:10 Lab Sample ID: 590-483-7

Matrix: Solid Percent Solids: 76.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			9.195 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		1	9.195 g	5 mL	850	03/25/15 14:04	MRS	TAL SPK
Total/NA	Prep	5035			9.195 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	9.195 g	5 mL	852	03/25/15 14:04	MRS	TAL SPK
Total/NA	Prep	3550C			15.42 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.42 g	2 mL	876	03/26/15 16:45	NMI	TAL SPK
Total/NA	Prep	3550C			15.53 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.53 g	5 mL	856	03/25/15 14:44	NMI	TAL SPK
Total/NA	Prep	3050B			1.89 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.89 g	50 mL	864	03/24/15 18:24	JSP	TAL SP
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SP

Client Sample ID: SVDP-12-18.5

Date Collected: 03/16/15 13:55 Date Received: 03/20/15 12:10 Lab Sample ID: 590-483-8
Matrix: Solid

Percent Solids: 81.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			7.97 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		100	7.97 g	5 mL	850	03/25/15 14:27	MRS	TAL SPK
Total/NA	Prep	5035			7.97 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		100	7.97 g	5 mL	852	03/25/15 14:27	MRS	TAL SPK
Total/NA	Prep	3550C			15.47 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.47 g	2 mL	876	03/26/15 17:08	NMI	TAL SPK
Total/NA	Prep	3550C			15.47 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		10	15.47 g	2 mL	890	03/27/15 12:21	NMI	TAL SPK
Total/NA	Prep	3550C			10.54 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summitview

Date Collected: 03/16/15 13:55

Date Received: 03/20/15 12:10

Client Sample ID: SVDP-12-18.5

TestAmerica Job ID: 590-483-1

Lab Sample ID: 590-483-8

. Matrix: Solid

Percent Solids: 81.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	NWTPH-Dx		2	10.54 g	5 mL	856	03/26/15 09:28	NMI	TAL SPK
Total/NA	Prep	3050B			1.88 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.88 g	50 mL	864	03/24/15 18:28	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

Client Sample ID: SVDP-14-15 Lab Sample ID: 590-483-9

 Date Collected: 03/17/15 15:05
 Matrix: Solid

 Date Received: 03/20/15 12:10
 Percent Solids: 73.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.244 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	8260C		1	6.244 g	5 mL	850	03/25/15 14:49	MRS	TAL SPK
Total/NA	Prep	5035			6.244 g	5 mL	859	03/25/15 10:38	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	6.244 g	5 mL	852	03/25/15 14:49	MRS	TAL SPK
Total/NA	Prep	3550C			15.04 g	2 mL	877	03/26/15 11:12	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.04 g	2 mL	876	03/26/15 17:30	NMI	TAL SPK
Total/NA	Prep	3550C			15.11 g	5 mL	853	03/25/15 09:56	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.11 g	5 mL	856	03/25/15 15:53	NMI	TAL SPK
Total/NA	Prep	3050B			1.60 g	50 mL	819	03/23/15 07:57	JSP	TAL SPK
Total/NA	Analysis	6010C		5	1.60 g	50 mL	864	03/24/15 18:42	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			832	03/23/15 14:09	NMI	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

0

7

ŏ

Certification Summary

Client: GeoEngineers Inc TestAmerica Job ID: 590-483-1

Project/Site: Tiger Oil - Summitview

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

3

4

5

6

8

9

Method Summary

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summitview

TestAmerica Job ID: 590-483-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	TAL SPK
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
6010C	Metals (ICP)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

6

9

46

10

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200

907-563-9200 FAX 563-9210

30

ō 29

TAL-1000 (0714)

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: TURNAROUND REQUEST Geotypneces) Sugalski @ geo engreers. con REPORT TO: JR Sugar SKL in Business Days * ADDRESS: 523 East Second Ave GROKENE WA 99202 PHONE: 509-363-3125FAX: 509-363-3126 Organic & Inorganic Analyses P.O. NUMBER: PROJECT NAME: Tiger Oil - Sumitview PRESERVATIVE PROJECT NUMBER: 6504-101-02 REQUESTED ANALYSES DAHC Sw. Bato SAMPLED BY: UWR Turnaround Requests less than standard may incur Rush Charges. Nurth-SAMPLING MATRIX LOCATION/ CLIENT SAMPLE IDENTIFICATION DATE/TIME (W, S, O) CONT COMMENTS WOID 3/17/15 SVDP-9-20 1415 0905 Page SUDP-11-13 1044 3/17/15 45VDP-10-19 3/17/5 SUDP-8-14 3/18/15 SUDP-15-13 , SUDP-B-180 1655 SUDP-12-185 1355 3/11/15 1505 .SUDP-14-15 RECEIVED BY Charla Fila DATE 3 26/15 RELEASED BY. TIME: 1010 PRINT NAME: RELEASED BY: DATE: RECEIVED BY: FIRM: TIME: PRINT NAME PRINT NAME: FIRM: ADDITIONAL REMARKS

Client: GeoEngineers Inc

List Source: TestAmerica Spokane

Job Number: 590-483-1

Login Number: 483 List Number: 1

Creator: Kratz, Sheila J

Greator: Kratz, Snella J		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-484-1 Client Project/Site: Tiger Oil

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by: 3/27/2015 8:33:22 AM

Michelle Johnston, Project Manager II (303)736-0110

michelle.johnston@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 590-484-1

Client: GeoEngineers Inc Project/Site: Tiger Oil

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	7
Chronicle	8
Certification Summary	10
Method Summary	11
Chain of Custody	12
Receipt Checklists	13

Sample Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil TestAmerica Job ID: 590-484-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-484-1	SVDP-12-031715	Water	03/17/15 08:01	03/20/15 12:10
590-484-2	SVDP-9-031815	Water	03/18/15 09:56	03/20/15 12:10
590-484-3	SVDP-13-031715	Water	03/17/15 07:41	03/20/15 12:10
590-484-4	SVDP-11-031815	Water	03/18/15 08:39	03/20/15 12:10
590-484-5	SVDP-15-031815	Water	03/18/15 11:25	03/20/15 12:10
590-484-6	SVDP-10-031815	Water	03/18/15 10:11	03/20/15 12:10

3

Δ

6

Q

10

Definitions/Glossary

Client: GeoEngineers Inc TestAmerica Job ID: 590-484-1 Project/Site: Tiger Oil

Glossary

QC

RER

RPD

TEF

TEQ

RL

Quality Control

Relative error ratio

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

Client: GeoEngineers Inc Project/Site: Tiger Oil

TestAmerica Job ID: 590-484-1

Client Sample ID: SVDP-12-031715

Lab Sample ID: 590-484-1

Date Collected: 03/17/15 08:01 Date Received: 03/20/15 12:10

Matrix: Water

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 -	6.8		0.57		mg/L		03/24/15 09:25	03/24/15 13:52	1
C10]									
Diesel Range Organics (DRO)	2.1		1.4		mg/L		03/24/15 09:25	03/24/15 13:52	1
(C10-C25)									
Residual Range Organics (RRO)	ND		1.4		mg/L		03/24/15 09:25	03/24/15 13:52	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	105		50 - 150				03/24/15 09:25	03/24/15 13:52	1
n-Triacontane-d62	98		50 ₋ 150				03/24/15 09:25	03/24/15 13:52	1

Client Sample ID: SVDP-9-031815

Lab Sample ID: 590-484-2

Matrix: Water

Date Collected: 03/18/15 09:56 Date Received: 03/20/15 12:10

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 -	8.3		0.24		mg/L		03/24/15 09:25	03/24/15 14:16	1
C10]			0.04				00/04/45 00:05	00/04/45 44:40	4
Diesel Range Organics (DRO) (C10-C25)	2.8		0.61		mg/L		03/24/15 09:25	03/24/15 14:16	1
Residual Range Organics (RRO)	ND		0.61		mg/L		03/24/15 09:25	03/24/15 14:16	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	99		50 - 150				03/24/15 09:25	03/24/15 14:16	1
n-Triacontane-d62	97		50 - 150				03/24/15 09:25	03/24/15 14:16	1

Client Sample ID: SVDP-13-031715

Lab Sample ID: 590-484-3

Matrix: Water

Date Collected: 03/17/15 07:41 Date Received: 03/20/15 12:10

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.24		mg/L		03/24/15 09:25	03/24/15 14:40	1
Diesel Range Organics (DRO)	ND		0.60		mg/L		03/24/15 09:25	03/24/15 14:40	1
(C10-C25)									
Residual Range Organics (RRO)	ND		0.60		mg/L		03/24/15 09:25	03/24/15 14:40	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	101		50 - 150				03/24/15 09:25	03/24/15 14:40	1
n-Triacontane-d62	96		50 ₋ 150				03/24/15 09:25	03/24/15 14:40	1

Client Sample ID: SVDP-11-031815

Lab Sample ID: 590-484-4

Matrix: Water

Date Collected: 03/18/15 08:39 Date Received: 03/20/15 12:10

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC)											
Analyte	Result (Qualifier RL	RL U	Init D	Prepared	Analyzed	Dil Fac				
Gasoline Range Organics [C6 - C10]	ND	0.24	m	ng/L	03/24/15 09:25	03/24/15 15:04	1				
Diesel Range Organics (DRO)	ND	0.60	m	ng/L	03/24/15 09:25	03/24/15 15:04	1				
(C10-C25)											

TestAmerica Spokane

Client: GeoEngineers Inc Project/Site: Tiger Oil

Client Sample ID: SVDP-11-031815

Date Collected: 03/18/15 08:39 Date Received: 03/20/15 12:10

Lab Sample ID: 590-484-4

Analyzed

03/24/15 15:04

D

Prepared

03/24/15 09:25

Matrix: Water

Dil Fac

Method: NWTPH-HCID - Northwest	: - Hydrocarb	on Identific	ation (GC) (C	Continued)	
Analyte	Result	Qualifier	RL	RL	Unit
Residual Range Organics (RRO)	ND		0.60		mg/L

(C25-C36)						
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	99		50 - 150	03/24/15 09:25	03/24/15 15:04	1
n-Triacontane-d62	91		50 - 150	03/24/15 09:25	03/24/15 15:04	1

Client Sample ID: SVDP-15-031815

Date Collected: 03/18/15 11:25

Date Received: 03/20/15 12:10

Lab Sample ID: 590-484-5

Matrix: Water

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC) Result Qualifier Analyzed Dil Fac Analyte RL RL Unit Prepared ND 0.24 Gasoline Range Organics [C6 - C10] mg/L 03/24/15 09:25 03/24/15 15:28 ND 0.61 03/24/15 09:25 03/24/15 15:28 Diesel Range Organics (DRO) mg/L (C10-C25) ND 0.61 mg/L 03/24/15 09:25 03/24/15 15:28 Residual Range Organics (RRO) (C25-C36)

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 102 50 - 150 03/24/15 09:25 03/24/15 15:28 03/24/15 09:25 03/24/15 15:28 n-Triacontane-d62 96 50 - 150

Client Sample ID: SVDP-10-031815

Date Collected: 03/18/15 10:11

Date Received: 03/20/15 12:10

Lab Sample ID: 590-484-6

Matrix: Water

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	0.82		0.24		mg/L		03/24/15 09:25	03/24/15 15:51	1
Diesel Range Organics (DRO) (C10-C25)	1.0		0.61		mg/L		03/24/15 09:25	03/24/15 15:51	1
Residual Range Organics (RRO) (C25-C36)	ND		0.61		mg/L		03/24/15 09:25	03/24/15 15:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	112		50 - 150				03/24/15 09:25	03/24/15 15:51	1
n-Triacontane-d62	103		50 - 150				03/24/15 09:25	03/24/15 15:51	1

QC Sample Results

Client: GeoEngineers Inc TestAmerica Job ID: 590-484-1 Project/Site: Tiger Oil

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC)

Lab Sample ID: MB 590-836/1-A							Client Sa	mple ID: Metho	d Blank
Matrix: Water								Prep Type: 1	otal/NA
Analysis Batch: 841								Prep Ba	tch: 836
-	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.25		mg/L		03/24/15 09:25	03/24/15 13:28	1
Diesel Range Organics (DRO)	ND		0.63		mg/L		03/24/15 09:25	03/24/15 13:28	1
(C10-C25)									
Residual Range Organics (RRO)	ND		0.63		mg/L		03/24/15 09:25	03/24/15 13:28	1
(C25-C36)									
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	104		50 - 150				03/24/15 09:25	03/24/15 13:28	1
n-Triacontane-d62	102		50 - 150				03/24/15 09:25	03/24/15 13:28	1

TestAmerica Job ID: 590-484-1

Client: GeoEngineers Inc Project/Site: Tiger Oil

Lab Sample ID: 590-484-1

Client Sample ID: SVDP-12-031715 Date Collected: 03/17/15 08:01

Matrix: Water

Date Received: 03/20/15 12:10

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
1	Total/NA	Prep	3510C			54.9 mL	2 mL	836	03/24/15 09:25	NMI	TAL SPK
L	Total/NA	Analysis	NWTPH-HCID		1	54.9 mL	2 mL	841	03/24/15 13:52	NMI	TAL SPK

Lab Sample ID: 590-484-2

Client Sample ID: SVDP-9-031815 Date Collected: 03/18/15 09:56

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Date Received: 03/20/15 12:10

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			129.2 mL	2 mL	836	03/24/15 09:25	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	129.2 mL	2 mL	841	03/24/15 14:16	NMI	TAL SPK

Client Sample ID: SVDP-13-031715 Lab Sample ID: 590-484-3

Date Collected: 03/17/15 07:41 **Matrix: Water**

Date Received: 03/20/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			130.8 mL	2 mL	836	03/24/15 09:25	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	130.8 mL	2 mL	841	03/24/15 14:40	NMI	TAL SPK

Client Sample ID: SVDP-11-031815 Lab Sample ID: 590-484-4

Date Collected: 03/18/15 08:39

Date Received: 03/20/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			130.8 mL	2 mL	836	03/24/15 09:25	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	130.8 mL	2 mL	841	03/24/15 15:04	NMI	TAL SPK

Client Sample ID: SVDP-15-031815 Lab Sample ID: 590-484-5

Date Collected: 03/18/15 11:25

Date Received: 03/20/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			128.2 mL	2 mL	836	03/24/15 09:25	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	128.2 mL	2 mL	841	03/24/15 15:28	NMI	TAL SPK

Client Sample ID: SVDP-10-031815 Lab Sample ID: 590-484-6

Date Collected: 03/18/15 10:11

Date Received: 03/20/15 12:10

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			128.2 mL	2 mL	836	03/24/15 09:25	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	128.2 mL	2 mL	841	03/24/15 15:51	NMI	TAL SPK

TestAmerica Spokane

Lab Chronicle

Client: GeoEngineers Inc Project/Site: Tiger Oil TestAmerica Job ID: 590-484-1

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

5

7

8

9

10

Certification Summary

Client: GeoEngineers Inc TestAmerica Job ID: 590-484-1

Project/Site: Tiger Oil

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

3

4

J

Method Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil TestAmerica Job ID: 590-484-1

TAL SPK

Protocol	Laboratory

NWTPH

Protocol References:

Method

NWTPH-HCID

NWTPH = Northwest Total Petroleum Hydrocarbon

Method Description

Northwest - Hydrocarbon Identification (GC)

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

4

6

0

9

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 509-924-9200 FAX 924-9290 FAX 906-9210 907-563-9200 FAX 563-9210

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210

			C	HAIN	OF	CUST	FOD	REPO	PRT			Wor	k O	rder #:		
CLIENT: Creo Engueros				INVOIC	E TO:									TURNAI	ROUND REQUES	T
REPORT TO: JR Sugalski J. ADDRESS: 523 Each Secan Spokare WA 99	sugalski@sece d Ave Zoz	Sheer(-	دسه									िकेन	7	Organic &	Business Days * Inorganic Analyses 4 3 2	1 <1
PHONE: 509 - 363-312 FAX: S	709-363-3126			P.O. NU	MBER.							STD.	_	Petroleum	4 3 2 Hydrocarbon Analyses	
PHONE: 506 - 363-3125 FAX: S PROJECT NAME: Tiser Oil Su.	miturew				PRESERVATIVE								4] [4] [3 2 1	<1
	ROJECT NUMBER: 0504-101-02												STD			_
	υ <i>τ</i>					REQUE	STED A	IALYSES					O	THER :	Specify:	
SAMPLED BY. しいた		五年			٠							* Turna	ound I	Requests less	s than standard may incur	Rush Charges
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	WINTPH HCHD	:									MATI (W, S		#OF CONT.	LOCATION/ COMMENTS	TA WO ID
SUDP-12-03115 3/17	15 0801	<										5	د	1		
, SUDP-9-63815 3/18	115 0956	×														
, SUDP-13-031715. 3/17/		×		ļ							ļ					
. SUDP-11-031815 3/13		Y		ļ			ļ									
, SUDP-15-031815 3/18		X		ļ <u>.</u>												
6 SVDP-10-031815 3/18	1/15 1011	Y					<u> </u>			_		ل ا		1		
7															••	
<u>B</u>											-					
,	·															
10										ر . ا					-	. 1
			DATE: TIME:	3/20	•		RECEIVED E	mother Shei	la #	NO S		TRM:	Toda	AMENICA TIME (シバク <u>こうかしっ</u>	
RELEASED BY.				DATE:		. —		RE/	<u> </u>	بسحب					DATE-	<u>~</u>
PRINT NAME:	FIRM:			TIME:				P1 [[[]]					TRM:		ТІМЕ	
ADDITIONAL REMARKS									34 Chain of	Custody					TEMP: 2/, (g PAGE TAL-	E (OF)

Client: GeoEngineers Inc

List Source: TestAmerica Spokane

Job Number: 590-484-1

Login Number: 484 List Number: 1

Creator: Kratz, Sheila J

Creator: Kratz, Snella J		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-581-1

Client Project/Site: Tiger Oil Summitview

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by:

4/15/2015 4:00:21 PM

Michelle Johnston, Project Manager II (303)736-0110

michelle.johnston@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 590-581-1

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	15
Chronicle	20
Certification Summary	23
Method Summary	24
Chain of Custody	25
Receipt Checklists	29

3

4

7

Q

10

11

Case Narrative

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-581-1

Job ID: 590-581-1

Laboratory: TestAmerica Spokane

Narrative

Job Narrative 590-581-1

Comments

No additional comments.

Receipt

The samples were received on 4/3/2015 12:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.5° C.

Except:

The container label for the following sample SVDP-20 (9-10) did not match the information listed on the Chain-of-Custody (COC). The sample is listed on the COC but there is no sample container for it.

Several samples were placed on hold upon receipt at the laboratory in accordance with the instructions on the COC. In accordance with the client's isntructions provided on 04/15/2015, all analyses on hold were cancelled.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8270D SIM: Surrogate recovery for the following samples were outside control limits: SVDP- 17 (19.5-20.5) (590-581-11), SVDP-16 (22-23) (590-581-12), SVDP-18 (20-21) (590-581-18), SVDP-19 (20-21) (590-581-24), SVDP-19 (20-21) (590-581-24 MS), SVDP-20 (20-21) (590-581-29), SVDP-21 (20-21) (590-581-34). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The samples were analyzed at dilutions for the presence of interferring, non-target analytes.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

Λ

0

R

9

1 1

Sample Summary

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-581-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-581-11	SVDP- 17 (19.5-20.5)	Solid	04/02/15 12:30	04/03/15 12:10
590-581-12	SVDP-16 (22-23)	Solid	04/02/15 10:30	04/03/15 12:10
590-581-18	SVDP-18 (20-21)	Solid	04/02/15 14:50	04/03/15 12:10
590-581-24	SVDP-19 (20-21)	Solid	04/02/15 17:00	04/03/15 12:10
590-581-29	SVDP-20 (20-21)	Solid	04/02/15 18:25	04/03/15 12:10
590-581-34	SVDP-21 (20-21)	Solid	04/02/15 19:40	04/03/15 12:10

3

4

5

0

8

9

10

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Not Calculated

Quality Control

Relative error ratio

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

TestAmerica Job ID: 590-581-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
X	Surrogate is outside control limits

Glossary

NC

ND PQL

QC

RER RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Date Collected: 04/02/15 12:30

Date Received: 04/03/15 12:10

2-Fluorobiphenyl (Surr)

p-Terphenyl-d14

Client Sample ID: SVDP- 17 (19.5-20.5)

TestAmerica Job ID: 590-581-1

Lab Sample ID: 590-581-11

Matrix: Solid

Percent Solids: 76.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.015		mg/Kg	₩	04/06/15 14:22	04/06/15 15:19	1
Ethylbenzene	ND		0.099		mg/Kg	₽	04/06/15 14:22	04/06/15 15:19	1
m,p-Xylene	ND		0.39		mg/Kg	₽	04/06/15 14:22	04/06/15 15:19	1
Methyl tert-butyl ether	ND		0.049		mg/Kg	₽	04/06/15 14:22	04/06/15 15:19	1
o-Xylene	ND		0.20		mg/Kg	₽	04/06/15 14:22	04/06/15 15:19	1
Toluene	ND		0.099		mg/Kg	₽	04/06/15 14:22	04/06/15 15:19	1
Naphthalene	ND		0.20		mg/Kg	₽	04/06/15 14:22	04/06/15 15:19	1
Xylenes, Total	ND		0.59		mg/Kg	₽	04/06/15 14:22	04/06/15 15:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		74.7 - 120				04/06/15 14:22	04/06/15 15:19	1
4-Bromofluorobenzene (Surr)	98		69.8 - 140				04/06/15 14:22	04/06/15 15:19	1
Dibromofluoromethane (Surr)	95		80 - 120				04/06/15 14:22	04/06/15 15:19	1
Toluene-d8 (Surr)	100		78.5 ₋ 125				04/06/15 14:22	04/06/15 15:19	

Method: NWTPH-Gx - Northwest	t - Volatile Petroleum Products (GC/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		4.9		mg/Kg	*	04/06/15 14:22	04/06/15 15:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		41.5 - 162				04/06/15 14:22	04/06/15 15:19	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		12		ug/Kg		04/07/15 09:20	04/07/15 16:19	1
2-Methylnaphthalene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 16:19	1
1-Methylnaphthalene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 16:19	1
Acenaphthylene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	1
Acenaphthene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 16:19	1
Fluorene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	1
Phenanthrene	ND		12		ug/Kg	\$	04/07/15 09:20	04/07/15 16:19	1
Anthracene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 16:19	1
Fluoranthene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	1
Pyrene	ND		12		ug/Kg	\$	04/07/15 09:20	04/07/15 16:19	1
Benzo[a]anthracene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	1
Chrysene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 16:19	1
Benzo[b]fluoranthene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	1
Benzo[k]fluoranthene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	1
Benzo[a]pyrene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 16:19	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	48	3	5.1 - 144				04/07/15 09:20	04/07/15 16:19	1

04/07/15 09:20 04/07/15 16:19

48.8 - 134

48 - 166

48 X

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Client Sample ID: SVDP- 17 (19.5-20.5)

Date Collected: 04/02/15 12:30 Date Received: 04/03/15 12:10 Lab Sample ID: 590-581-11

Matrix: Solid

Percent Solids: 76.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		13		mg/Kg	<u> </u>	04/08/15 10:35	04/08/15 12:16	1
(C10-C25)									
Residual Range Organics (RRO)	ND		32		mg/Kg	₽	04/08/15 10:35	04/08/15 12:16	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95		50 - 150				04/08/15 10:35	04/08/15 12:16	1
n-Triacontane-d62	83		50 - 150				04/08/15 10:35	04/08/15 12:16	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		25		mg/Kg	\	04/06/15 09:43	04/08/15 12:34	20
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	24		0.010		%			04/07/15 09:16	1
Percent Solids	76		0.010		%			04/07/15 09:16	1

Client Sample ID: SVDP-16 (22-23)

Date Collected: 04/02/15 10:30

Lab Sample ID: 590-581-12

Matrix: Solid

Date Received: 04/03/15 12:10 Percent Solids: 75.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.029		0.015		mg/Kg	₩	04/06/15 14:22	04/06/15 15:42	1
Ethylbenzene	ND		0.099		mg/Kg	₽	04/06/15 14:22	04/06/15 15:42	1
m,p-Xylene	ND		0.40		mg/Kg	₽	04/06/15 14:22	04/06/15 15:42	1
Methyl tert-butyl ether	ND		0.050		mg/Kg	₽	04/06/15 14:22	04/06/15 15:42	1
o-Xylene	ND		0.20		mg/Kg	₽	04/06/15 14:22	04/06/15 15:42	1
Toluene	ND		0.099		mg/Kg	₽	04/06/15 14:22	04/06/15 15:42	1
Naphthalene	ND		0.20		mg/Kg	₽	04/06/15 14:22	04/06/15 15:42	1
Xylenes, Total	ND		0.60		mg/Kg	₽	04/06/15 14:22	04/06/15 15:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		74.7 - 120				04/06/15 14:22	04/06/15 15:42	1
4-Bromofluorobenzene (Surr)	99		69.8 - 140				04/06/15 14:22	04/06/15 15:42	1
Dibromofluoromethane (Surr)	98		80 - 120				04/06/15 14:22	04/06/15 15:42	1
Toluene-d8 (Surr)	99		78.5 - 125				04/06/15 14:22	04/06/15 15:42	

Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ducts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.0		mg/Kg	₩	04/06/15 14:22	04/06/15 15:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99	-	41.5 - 162				04/06/15 14:22	04/06/15 15:42	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)										
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Naphthalene	ND ND	12		ug/Kg	\	04/07/15 09:20	04/07/15 16:42	1		
2-Methylnaphthalene	ND	12		ug/Kg	₩	04/07/15 09:20	04/07/15 16:42	1		
1-Methylnaphthalene	ND	12		ug/Kg	₩	04/07/15 09:20	04/07/15 16:42	1		
Acenaphthylene	ND	12		ug/Kg	₩	04/07/15 09:20	04/07/15 16:42	1		

TestAmerica Spokane

TestAmerica Job ID: 590-581-1

Client Sample ID: SVDP-16 (22-23)

Date Collected: 04/02/15 10:30 Date Received: 04/03/15 12:10 Lab Sample ID: 590-581-12

Matrix: Solid

Percent Solids: 75.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 16:42	1
Fluorene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:42	1
Phenanthrene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:42	1
Anthracene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:42	1
Fluoranthene	ND		12		ug/Kg	≎	04/07/15 09:20	04/07/15 16:42	1
Pyrene	ND		12		ug/Kg	\$	04/07/15 09:20	04/07/15 16:42	1
Benzo[a]anthracene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:42	1
Chrysene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:42	1
Benzo[b]fluoranthene	ND		12		ug/Kg	\$	04/07/15 09:20	04/07/15 16:42	1
Benzo[k]fluoranthene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:42	1
Benzo[a]pyrene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:42	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	\$	04/07/15 09:20	04/07/15 16:42	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 16:42	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	\$	04/07/15 09:20	04/07/15 16:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	38		35.1 _ 144				04/07/15 09:20	04/07/15 16:42	1
2-Fluorobiphenyl (Surr)	48	X	48.8 - 134				04/07/15 09:20	04/07/15 16:42	1
p-Terphenyl-d14	65		48 - 166				04/07/15 09:20	04/07/15 16:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		13		mg/Kg	₩	04/08/15 10:35	04/08/15 12:39	1
(C10-C25)									
Residual Range Organics (RRO)	ND		32		mg/Kg	₽	04/08/15 10:35	04/08/15 12:39	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	99		50 - 150				04/08/15 10:35	04/08/15 12:39	1
n-Triacontane-d62	81		50 - 150				04/08/15 10:35	04/08/15 12:39	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		11		mg/Kg	\$	04/06/15 09:43	04/08/15 11:39	10
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	24		0.010		%			04/07/15 09:16	1
Percent Solids	76		0.010		%			04/07/15 09:16	1

Client Sample ID: SVDP-18 (20-21) Lab Sample ID: 590-581-18

Date Collected: 04/02/15 14:50 Matrix: Solid Date Received: 04/03/15 12:10 Percent Solids: 68.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.026		mg/Kg	\	04/06/15 14:22	04/06/15 16:04	1
Ethylbenzene	ND		0.17		mg/Kg	₽	04/06/15 14:22	04/06/15 16:04	1
m,p-Xylene	ND		0.70		mg/Kg	₽	04/06/15 14:22	04/06/15 16:04	1
Methyl tert-butyl ether	ND		0.087		mg/Kg	₽	04/06/15 14:22	04/06/15 16:04	1
o-Xylene	ND		0.35		mg/Kg	₩	04/06/15 14:22	04/06/15 16:04	1

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Date Collected: 04/02/15 14:50

Date Received: 04/03/15 12:10

p-Terphenyl-d14

Client Sample ID: SVDP-18 (20-21)

Lab Sample ID: 590-581-18

TestAmerica Job ID: 590-581-1

Matrix: Solid Percent Solids: 68.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		0.17		mg/Kg	₩	04/06/15 14:22	04/06/15 16:04	1
Naphthalene	ND		0.35		mg/Kg	\$	04/06/15 14:22	04/06/15 16:04	1
Xylenes, Total	ND		1.0		mg/Kg	₽	04/06/15 14:22	04/06/15 16:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		74.7 - 120				04/06/15 14:22	04/06/15 16:04	1
4-Bromofluorobenzene (Surr)	98		69.8 - 140				04/06/15 14:22	04/06/15 16:04	1
Dibromofluoromethane (Surr)	96		80 - 120				04/06/15 14:22	04/06/15 16:04	1
Toluene-d8 (Surr)	101		78.5 ₋ 125				04/06/15 14:22	04/06/15 16:04	1

Method: NWTPH-Gx - Northwe	st - Volatile Petro	oleum Prod	ducts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		8.7		mg/Kg	₩	04/06/15 14:22	04/06/15 16:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		41.5 - 162				04/06/15 14:22	04/06/15 16:04	1

Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND			14		ug/Kg	<u></u>	04/07/15 09:20	04/07/15 17:04	1
2-Methylnaphthalene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
1-Methylnaphthalene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Acenaphthylene	ND			14		ug/Kg	\$	04/07/15 09:20	04/07/15 17:04	1
Acenaphthene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Fluorene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Phenanthrene	ND			14		ug/Kg	\$	04/07/15 09:20	04/07/15 17:04	1
Anthracene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Fluoranthene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Pyrene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Benzo[a]anthracene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Chrysene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Benzo[b]fluoranthene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Benzo[k]fluoranthene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Benzo[a]pyrene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Indeno[1,2,3-cd]pyrene	ND			14		ug/Kg	\$	04/07/15 09:20	04/07/15 17:04	1
Dibenz(a,h)anthracene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Benzo[g,h,i]perylene	ND			14		ug/Kg	₽	04/07/15 09:20	04/07/15 17:04	1
Surrogate	%Recovery	Qualifier	Lim	its				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	39		35.1 -	144				04/07/15 09:20	04/07/15 17:04	1
2-Fluorobiphenyl (Surr)	38	X	48.8 -	134				04/07/15 09:20	04/07/15 17:04	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		15		mg/Kg	\	04/08/15 10:35	04/08/15 12:58	1
Residual Range Organics (RRO) (C25-C36)	ND		36		mg/Kg	₩	04/08/15 10:35	04/08/15 12:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	98		50 - 150				04/08/15 10:35	04/08/15 12:58	1

48 - 166

51

TestAmerica Spokane

04/07/15 09:20 04/07/15 17:04

Lab Sample ID: 590-581-18

Analyzed

04/08/15 12:58

Analyzed

TestAmerica Job ID: 590-581-1

Matrix: Solid

Percent Solids: 68.2

Dil Fac

Dil Fac

Client Sample ID: SVDP-18 (20-21)

Date Collected: 04/02/15 14:50 Date Received: 04/03/15 12:10

Method: NWTPH-DX - Northwest -	Semi-volatile	Petroleum	(Continued)			
Surrogate	%Recovery	Qualifier	Limits			Prepared
n-Triacontane-d62	93		50 - 150		_	04/08/15 10:35
Method: 6010C - Metals (ICP)						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared

Lead	ND	<u> </u>	10		mg/Kg	<u> </u>	04/06/15 09:43	04/08/15 11:41	10
General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	32		0.010		%			04/07/15 09:16	1
Percent Solids	68		0.010		%			04/07/15 09:16	1

Client Sample ID: SVDP-19 (20-21)

Date Collected: 04/02/15 17:00 Date Received: 04/03/15 12:10 Lab Sample ID: 590-581-24

Matrix: Solid

Percent Solids: 81.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.020		mg/Kg	₩	04/06/15 14:22	04/06/15 16:27	1
Ethylbenzene	ND		0.14		mg/Kg	₽	04/06/15 14:22	04/06/15 16:27	1
m,p-Xylene	ND		0.54		mg/Kg	₩	04/06/15 14:22	04/06/15 16:27	1
Methyl tert-butyl ether	ND		0.068		mg/Kg	₩	04/06/15 14:22	04/06/15 16:27	1
o-Xylene	ND		0.27		mg/Kg	₩	04/06/15 14:22	04/06/15 16:27	1
Toluene	ND		0.14		mg/Kg	₩	04/06/15 14:22	04/06/15 16:27	1
Naphthalene	ND		0.27		mg/Kg	₩.	04/06/15 14:22	04/06/15 16:27	1
Xylenes, Total	ND		0.81		mg/Kg	₩	04/06/15 14:22	04/06/15 16:27	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		74.7 - 120	_	04/06/15 14:22	04/06/15 16:27	1
4-Bromofluorobenzene (Surr)	100		69.8 - 140		04/06/15 14:22	04/06/15 16:27	1
Dibromofluoromethane (Surr)	96		80 - 120		04/06/15 14:22	04/06/15 16:27	1
Toluene-d8 (Surr)	99		78.5 - 125		04/06/15 14:22	04/06/15 16:27	1

Method: NWTPH-Gx - Northwest -	Volatile Petro	Petroleum Products (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	100		6.8		mg/Kg	₽	04/06/15 14:22	04/06/15 16:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		41.5 - 162				04/06/15 14:22	04/06/15 16:27	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		12		ug/Kg		04/07/15 09:20	04/07/15 15:12	1
2-Methylnaphthalene	47		12		ug/Kg	₩	04/07/15 09:20	04/07/15 15:12	1
1-Methylnaphthalene	23		12		ug/Kg	₩	04/07/15 09:20	04/07/15 15:12	1
Acenaphthylene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 15:12	1
Acenaphthene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 15:12	1
Fluorene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 15:12	1
Phenanthrene	ND		12		ug/Kg	\$	04/07/15 09:20	04/07/15 15:12	1
Anthracene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 15:12	1
Fluoranthene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 15:12	1
Pyrene	ND		12		ug/Kg		04/07/15 09:20	04/07/15 15:12	1

TestAmerica Spokane

Project/Site: Tiger Oil Summitview

Lab Sample ID: 590-581-24

TestAmerica Job ID: 590-581-1

Client Sample ID: SVDP-19 (20-21)

Matrix: Solid

Date Collected: 04/02/15 17:00 Date Received: 04/03/15 12:10

Percent Solids: 81.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	MD		12		ug/Kg		04/07/15 09:20	04/07/15 15:12	
Chrysene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 15:12	
Benzo[b]fluoranthene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 15:12	
Benzo[k]fluoranthene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 15:12	
Benzo[a]pyrene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 15:12	
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 15:12	
Dibenz(a,h)anthracene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 15:12	
Benzo[g,h,i]perylene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 15:12	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	37		35.1 - 144				04/07/15 09:20	04/07/15 15:12	
2-Fluorobiphenyl (Surr)	47	Χ	48.8 - 134				04/07/15 09:20	04/07/15 15:12	
p-Terphenyl-d14	64		48 - 166				04/07/15 09:20	04/07/15 15:12	
Method: NWTPH-Dx - Northwes Analyte	Result	Petroleum Qualifier	RL	MDL		D	Prepared 04/08/15 10:35	Analyzed	
Analyte Diesel Range Organics (DRO)			,	MDL	Unit mg/Kg	D	Prepared 04/08/15 10:35	Analyzed 04/08/15 13:17	
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO)	Result		RL	MDL					
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36)	Result ND ND	Qualifier	RL 12 30	MDL	mg/Kg	<u> </u>	04/08/15 10:35 04/08/15 10:35	04/08/15 13:17 04/08/15 13:17	
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate	Result ND ND %Recovery	Qualifier	12 30 <i>Limits</i>	MDL	mg/Kg	<u> </u>	04/08/15 10:35 04/08/15 10:35 Prepared	04/08/15 13:17 04/08/15 13:17 Analyzed	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl		Qualifier	RL 12 30 Signature 12 30 Signature 150 - 150 Signature 150	MDL	mg/Kg	<u> </u>	04/08/15 10:35 04/08/15 10:35 Prepared 04/08/15 10:35	04/08/15 13:17 04/08/15 13:17 Analyzed 04/08/15 13:17	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate	Result ND ND %Recovery	Qualifier	12 30 <i>Limits</i>	MDL	mg/Kg	<u> </u>	04/08/15 10:35 04/08/15 10:35 Prepared	04/08/15 13:17 04/08/15 13:17 Analyzed	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl		Qualifier	RL 12 30 Signature 12 30 Signature 150 - 150 Signature 150	MDL	mg/Kg	<u> </u>	04/08/15 10:35 04/08/15 10:35 Prepared 04/08/15 10:35	04/08/15 13:17 04/08/15 13:17 Analyzed 04/08/15 13:17	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62	Result ND ND %Recovery 97 94	Qualifier	RL 12 30 Signature 12 30 Signature 150 - 150 Signature 150	MDL MDL	mg/Kg mg/Kg	## D	04/08/15 10:35 04/08/15 10:35 Prepared 04/08/15 10:35	04/08/15 13:17 04/08/15 13:17 Analyzed 04/08/15 13:17	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 6010C - Metals (ICP)	Result ND ND %Recovery 97 94	Qualifier Qualifier	RL 12 30 Limits 50 - 150 50 - 150		mg/Kg mg/Kg	*	04/08/15 10:35 04/08/15 10:35 Prepared 04/08/15 10:35 04/08/15 10:35	04/08/15 13:17 04/08/15 13:17 Analyzed 04/08/15 13:17 04/08/15 13:17	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 6010C - Metals (ICP) Analyte	Result ND ND %Recovery 97 94 Result	Qualifier Qualifier	RL 12 30 Limits 50 - 150 50 - 150		mg/Kg mg/Kg	## D	04/08/15 10:35 04/08/15 10:35 Prepared 04/08/15 10:35 04/08/15 10:35	04/08/15 13:17 04/08/15 13:17 Analyzed 04/08/15 13:17 04/08/15 13:17	Dil Fa
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 6010C - Metals (ICP) Analyte Lead		Qualifier Qualifier	RL 12 30 Limits 50 - 150 50 - 150	MDL	mg/Kg mg/Kg Unit mg/Kg	## D	04/08/15 10:35 04/08/15 10:35 Prepared 04/08/15 10:35 04/08/15 10:35	04/08/15 13:17 04/08/15 13:17 Analyzed 04/08/15 13:17 04/08/15 13:17	Dil Fac
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 6010C - Metals (ICP) Analyte Lead General Chemistry		Qualifier Qualifier Qualifier	RL 12 30 Limits 50 - 150 50 - 150 RL 11	MDL	mg/Kg mg/Kg Unit mg/Kg	— — — — — —	04/08/15 10:35 04/08/15 10:35 Prepared 04/08/15 10:35 04/08/15 10:35 Prepared 04/06/15 09:43	04/08/15 13:17 04/08/15 13:17 Analyzed 04/08/15 13:17 04/08/15 13:17 Analyzed 04/08/15 13:17	Dil Fac

Client Sample ID: SVDP-20 (20-21)

Lab Sample ID: 590-581-29

Date Collected: 04/02/15 18:25

Percent Solids: 79.2

Matrix: Solid

Date Received: 04/03/15 12:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.018		mg/Kg	\tilde{\pi}	04/06/15 14:22	04/06/15 16:49	1
Ethylbenzene	ND		0.12		mg/Kg	₽	04/06/15 14:22	04/06/15 16:49	1
m,p-Xylene	ND		0.49		mg/Kg	₽	04/06/15 14:22	04/06/15 16:49	1
Methyl tert-butyl ether	ND		0.061		mg/Kg	₽	04/06/15 14:22	04/06/15 16:49	1
o-Xylene	ND		0.24		mg/Kg	₽	04/06/15 14:22	04/06/15 16:49	1
Toluene	ND		0.12		mg/Kg	₽	04/06/15 14:22	04/06/15 16:49	1
Naphthalene	ND		0.24		mg/Kg	₽	04/06/15 14:22	04/06/15 16:49	1
Xylenes, Total	ND		0.73		mg/Kg	\$	04/06/15 14:22	04/06/15 16:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		74.7 - 120				04/06/15 14:22	04/06/15 16:49	1
4-Bromofluorobenzene (Surr)	97		69.8 - 140				04/06/15 14:22	04/06/15 16:49	1

Client Sample Results

Client: GeoEngineers Inc

Analyte

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-581-1

Lab Sample ID: 590-581-29

Analyzed

Prepared

Matrix: Solid

Dil Fac

Percent Solids: 79.2

C	lie	nt	Sa	am	ple	ID:	SV	DP-20	(20-21)
_		_							

Date Collected: 04/02/15 18:25 Date Received: 04/03/15 12:10

Method: 8260C - Volatile Organic Compounds by	v GC/MS	(Continued)
	,	(

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	98		80 - 120	04/06/15 14:22	04/06/15 16:49	1
Toluene-d8 (Surr)	103		78.5 - 125	04/06/15 14:22	04/06/15 16:49	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Gasoline	ND	6.1	mg/Kg	04/06/15 14:22	04/06/15 16:49	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac

MDL Unit

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	97		41.5 - 162	04/06/15 14:22	04/06/15 16:49	

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		12		ug/Kg	\$	04/07/15 09:20	04/07/15 17:27	1
2-Methylnaphthalene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
1-Methylnaphthalene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
Acenaphthylene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
Acenaphthene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
Fluorene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
Phenanthrene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
Anthracene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
Fluoranthene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
Pyrene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
Benzo[a]anthracene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
Chrysene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
Benzo[b]fluoranthene	ND		12		ug/Kg	\$	04/07/15 09:20	04/07/15 17:27	1
Benzo[k]fluoranthene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
Benzo[a]pyrene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	\$	04/07/15 09:20	04/07/15 17:27	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:27	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	42		35.1 - 144	04/07/15 09.	20 04/07/15 17:27	1
2-Fluorobiphenyl (Surr)	44	X	48.8 - 134	04/07/15 09.	20 04/07/15 17:27	1
p-Terphenyl-d14	64		48 - 166	04/07/15 09.	20 04/07/15 17:27	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		12		mg/Kg	<u></u>	04/08/15 10:35	04/08/15 13:36	1
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND		31		mg/Kg	₩	04/08/15 10:35	04/08/15 13:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl			50 - 150				04/08/15 10:35	04/08/15 13:36	

o-Terphenyl	100	50 - 150	04/08/15 10:35	04/08/15 13:36	1
n-Triacontane-d62	95	50 - 150	04/08/15 10:35	04/08/15 13:36	1

Method: 6010C - Metals (ICP)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		14		mg/Kg	<u></u>	04/06/15 09:43	04/08/15 11:46	10

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-581-1

Client Sample ID: SVDP-20 (20-21)

Date Collected: 04/02/15 18:25 Date Received: 04/03/15 12:10 Lab Sample ID: 590-581-29

Matrix: Solid

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	21		0.010		%			04/07/15 09:16	1
Percent Solids	79		0.010		%			04/07/15 09:16	1
-									

Client Sample ID: SVDP-21 (20-21) Lab Sample ID: 590-581-34

Date Collected: 04/02/15 19:40 Matrix: Solid Date Received: 04/03/15 12:10 Percent Solids: 80.6

ate Received. 04/03/13 12.10	Received. 04/03/13 12.10									
Method: 8260C - Volatile Orga	nic Compounds I	by GC/MS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa	
Benzene	ND		0.019		mg/Kg	\	04/06/15 14:22	04/06/15 17:12		
Ethylbenzene	ND		0.13		mg/Kg	₽	04/06/15 14:22	04/06/15 17:12		
m,p-Xylene	ND		0.50		mg/Kg	₩	04/06/15 14:22	04/06/15 17:12		
Methyl tert-butyl ether	ND		0.063		mg/Kg	₩.	04/06/15 14:22	04/06/15 17:12		
o-Xylene	ND		0.25		mg/Kg	₽	04/06/15 14:22	04/06/15 17:12		
Toluene	ND		0.13		mg/Kg	₩	04/06/15 14:22	04/06/15 17:12		
Naphthalene	ND		0.25		mg/Kg		04/06/15 14:22	04/06/15 17:12		
Xylenes, Total	ND		0.75		mg/Kg	\$	04/06/15 14:22	04/06/15 17:12		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa	
1,2-Dichloroethane-d4 (Surr)	92		74.7 - 120				04/06/15 14:22	04/06/15 17:12		
4-Bromofluorobenzene (Surr)	96		69.8 - 140				04/06/15 14:22	04/06/15 17:12		
Dibromofluoromethane (Surr)	97		80 - 120				04/06/15 14:22	04/06/15 17:12		
Toluene-d8 (Surr)	103		78.5 - 125				04/06/15 14:22	04/06/15 17:12		

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)											
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Gasoline	ND		6.3		mg/Kg	‡	04/06/15 14:22	04/06/15 17:12	1	
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
	4-Bromofluorobenzene (Surr)	96		41.5 - 162				04/06/15 14:22	04/06/15 17:12	1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		12		ug/Kg	<u></u>	04/07/15 09:20	04/07/15 17:49	1
2-Methylnaphthalene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:49	1
1-Methylnaphthalene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:49	1
Acenaphthylene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:49	1
Acenaphthene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:49	1
Fluorene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:49	1
Phenanthrene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:49	1
Anthracene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:49	1
Fluoranthene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:49	1
Pyrene	ND		12		ug/Kg	\$	04/07/15 09:20	04/07/15 17:49	1
Benzo[a]anthracene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:49	1
Chrysene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:49	1
Benzo[b]fluoranthene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:49	1
Benzo[k]fluoranthene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 17:49	1
Benzo[a]pyrene	ND		12		ug/Kg	₽	04/07/15 09:20	04/07/15 17:49	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 17:49	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 17:49	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	₩	04/07/15 09:20	04/07/15 17:49	1

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Date Collected: 04/02/15 19:40

Date Received: 04/03/15 12:10

Client Sample ID: SVDP-21 (20-21)

TestAmerica Job ID: 590-581-1

Lab Sample ID: 590-581-34

Matrix: Solid

Percent Solids: 80.6

Surroga	ate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobe	nzene-d5	33	X	35.1 - 144	04/07/15 09:20	04/07/15 17:49	1
2-Fluore	obiphenyl (Surr)	43	X	48.8 - 134	04/07/15 09:20	04/07/15 17:49	1
p-Terph	enyl-d14	63		48 - 166	04/07/15 09:20	04/07/15 17:49	1

2-Fluorobiphenyl (Surr)	43	X	48.8 - 134				04/07/15 09:20	04/07/15 17:49	1
p-Terphenyl-d14	63		48 - 166				04/07/15 09:20	04/07/15 17:49	•
Method: NWTPH-Dx - Northwest	Semi-Volatile	Petroleun	n Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO)	ND		12		mg/Kg	*	04/08/15 10:35	04/08/15 13:55	
(C10-C25)									
Residual Range Organics (RRO)	ND		30		mg/Kg	₩	04/08/15 10:35	04/08/15 13:55	•
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	91		50 - 150				04/08/15 10:35	04/08/15 13:55	
n-Triacontane-d62	89		50 - 150				04/08/15 10:35	04/08/15 13:55	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	ND				mg/Kg	\	04/06/15 09:43	04/08/15 11:58	10

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	19		0.010		%			04/07/15 09:16	1
Percent Solids	81		0.010		%			04/07/15 09:16	1

TestAmerica Job ID: 590-581-1

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 590-1016/1-A

Matrix: Solid

Analysis Batch: 1011

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 1016

	1110	IND							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.015		mg/Kg		04/06/15 14:22	04/06/15 13:01	1
Ethylbenzene	ND		0.10		mg/Kg		04/06/15 14:22	04/06/15 13:01	1
m,p-Xylene	ND		0.40		mg/Kg		04/06/15 14:22	04/06/15 13:01	1
Methyl tert-butyl ether	ND		0.050		mg/Kg		04/06/15 14:22	04/06/15 13:01	1
o-Xylene	ND		0.20		mg/Kg		04/06/15 14:22	04/06/15 13:01	1
Toluene	ND		0.10		mg/Kg		04/06/15 14:22	04/06/15 13:01	1
Naphthalene	ND		0.20		mg/Kg		04/06/15 14:22	04/06/15 13:01	1
Xylenes, Total	ND		0.60		mg/Kg		04/06/15 14:22	04/06/15 13:01	1

MB MB

MR MR

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90	74.7 - 120	04/06/15 14:22	04/06/15 13:01	1
4-Bromofluorobenzene (Surr)	97	69.8 - 140	04/06/15 14:22	04/06/15 13:01	1
Dibromofluoromethane (Surr)	96	80 - 120	04/06/15 14:22	04/06/15 13:01	1
Toluene-d8 (Surr)	102	78.5 - 125	04/06/15 14:22	04/06/15 13:01	1

Lab Sample ID: LCS 590-1016/2-A

Matrix: Solid

Analysis Batch: 1011

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 1016

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.500	0.534		mg/Kg		107	75.8 - 123	
Ethylbenzene	0.500	0.539		mg/Kg		108	77.3 - 121	
m,p-Xylene	0.500	0.555		mg/Kg		111	77.7 - 124	
Methyl tert-butyl ether	0.500	0.468		mg/Kg		94	60 - 140	
o-Xylene	0.500	0.548		mg/Kg		110	76.7 - 129	
Toluene	0.500	0.544		mg/Kg		109	76.6 - 125	
Naphthalene	0.500	0.452		mg/Kg		90	55.1 - 142	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		74.7 - 120
4-Bromofluorobenzene (Surr)	97		69.8 - 140
Dibromofluoromethane (Surr)	97		80 - 120
Toluene-d8 (Surr)	101		78.5 - 125

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-1016/1-A

Matrix: Solid

Analysis Batch: 1013

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 1016

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.0		mg/Kg		04/06/15 14:22	04/06/15 13:01	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		41.5 - 162				04/06/15 14:22	04/06/15 13:01	1

TestAmerica Job ID: 590-581-1

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) (Continued)

Lab Sample ID: LCS 590-1016/3-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Prep Batch: 1016

Analysis Batch: 1013

Spike LCS LCS Added Result Qualifier Analyte D %Rec Limits Unit 74.4 - 124 Gasoline 50.0 50.4 mg/Kg 101

LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 41.5 - 162 99

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-1026/1-A

Matrix: Solid

Analysis Ba

e ID: MB 590-1026/1-A								Client Sa	mple ID: Metho	d Blank
id									Prep Type: 1	Γotal/NA
atch: 1024									Prep Bate	ch: 1026
	MB	MB								
	Result	Qualifier	RL	MDL	Unit	ı	D	Prepared	Analyzed	Dil Fac

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
2-Methylnaphthalene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
1-Methylnaphthalene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Acenaphthylene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Acenaphthene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Fluorene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Phenanthrene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Anthracene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Fluoranthene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Pyrene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Benzo[a]anthracene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Chrysene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Benzo[b]fluoranthene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Benzo[k]fluoranthene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Benzo[a]pyrene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Indeno[1,2,3-cd]pyrene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Dibenz(a,h)anthracene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1
Benzo[g,h,i]perylene	ND		10		ug/Kg		04/07/15 09:20	04/07/15 13:19	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	36		35.1 - 144	04/07/15 09:20	04/07/15 13:19	1
2-Fluorobiphenyl (Surr)	58		48.8 - 134	04/07/15 09:20	04/07/15 13:19	1
p-Terphenyl-d14	62		48 - 166	04/07/15 09:20	04/07/15 13:19	1

Lab Sample ID: LCS 590-1026/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 1024** Prep Batch: 1026

	Opike	LOG	LUU				/ortec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	267	173		ug/Kg		65	51.4 - 133	
Fluorene	267	221		ug/Kg		83	65.7 - 123	
Chrysene	267	220		ug/Kg		83	57.3 - 133	
Indeno[1,2,3-cd]pyrene	267	243		ug/Kg		91	54.6 - 142	

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-581-1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-1026/2-A

Matrix: Solid

Matrix: Solid

Fluorene

Chrysene

Indeno[1,2,3-cd]pyrene

Analysis Batch: 1024

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 1026

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	41		35.1 - 144
2-Fluorobiphenyl (Surr)	50		48.8 - 134
p-Terphenyl-d14	68		48 - 166

Client Sample ID: Lab Control Sample Dup

54.6 - 142

82

Prep Type: Total/NA

11

35

Prep Batch: 1026

Analysis Batch: 1024

Lab Sample ID: LCSD 590-1026/3-A

Spike LCSD LCSD Analyte Added Result Qualifier Unit Naphthalene

RPD Limit %Rec **RPD** Limits 267 164 ug/Kg 61 51.4 - 133 5 35 267 208 ug/Kg 78 65.7 - 1236 35 267 213 ug/Kg 80 57.3 - 133 3 35

ug/Kg

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	56		35.1 - 144
2-Fluorobiphenyl (Surr)	54		48.8 - 134
p-Terphenyl-d14	62		48 - 166

Lab Sample ID: 590-581-24 MS Client Sample ID: SVDP-19 (20-21)

219

267

Matrix: Solid

Analysis Batch: 1024

Prep Type: Total/NA

Prep Batch: 1026

Sample Sample Spike MS MS %Rec. Qualifier Added Result Qualifier %Rec Limits Analyte Result Unit D 77 Naphthalene ND 313 187 60 30 - 120 ug/Kg ₽ ND 313 255 30 - 140 Fluorene ug/Kg 81 Ü Chrysene ND 313 234 ug/Kg 75 30 - 133 ₩. Indeno[1,2,3-cd]pyrene ND 313 237 ug/Kg 76 30 - 140

MS MS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	49		35.1 - 144
2-Fluorobiphenyl (Surr)	48	X	48.8 - 134
p-Terphenyl-d14	60		48 - 166

Lab Sample ID: 590-581-24 MSD Client Sample ID: SVDP-19 (20-21)

Matrix: Solid

Analysis Batch: 1024

Prep Type: Total/NA

Prep Batch: 1026

Spike MSD MSD %Rec. RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Ö Naphthalene ND 328 199 ug/Kg 61 30 - 120 35 ND ₽ Fluorene 328 260 79 ug/Kg 30 - 1402 35 Ċ. Chrysene ND 328 275 ug/Kg 84 30 - 133 35 16 . . ND 328 261 79 Indeno[1,2,3-cd]pyrene ug/Kg 30 - 140 10 35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	48		35.1 - 144
2-Fluorobiphenyl (Surr)	50		48.8 - 134

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-581-1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 590-581-24 MSD

Matrix: Solid

Analysis Batch: 1024

Client Sample ID: SVDP-19 (20-21) Prep Type: Total/NA

Prep Batch: 1026

MSD MSD

Surrogate %Recovery Qualifier p-Terphenyl-d14 63

Limits 48 - 166

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-1047/1-A

Matrix: Solid

Analysis Batch: 1044

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 1047

ı		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Diesel Range Organics (DRO) (C10-C25)	ND		10		mg/Kg		04/08/15 10:35	04/08/15 11:11	1
	Residual Range Organics (RRO)	ND		25		mg/Kg		04/08/15 10:35	04/08/15 11:11	1

(C25-C36)

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	104		50 - 150	04/08/15 10:35	04/08/15 11:11	1
n-Triacontane-d62	94		50 ₋ 150	04/08/15 10:35	04/08/15 11:11	1

Lab Sample ID: LCS 590-1047/2-A

Matrix: Solid

Analysis Batch: 1044

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 1047

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Organics (DRO)	 66.7	62.5		mg/Kg		94	50 - 150	
(C10-C25)								
Residual Range Organics (RRO)	66.7	59.6		mg/Kg		89	50 - 150	
(005 000)								

(C25-C36)

	LCS		
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	102		50 - 150
n-Triacontane-d62	97		50 150

Lab Sample ID: 590-581-11 DU

Matrix: Solid

Analysis Batch: 1044

Client Sample ID: SVDP- 17 (19.5-20.5)

Prep Type: Total/NA

Prep Batch: 1047

Ja	ıple Sampl	#	טע	DU					RPD
nalyte R	sult Qualif	er	Result	Qualifier	Unit	D		RPD	Limit
esel Range Organics (DRO)	ND		ND		mg/Kg	₩		5	40
C10-C25)									
esidual Range Organics (RRO)	ND		ND		mg/Kg	☼		NC	40
į	nalyte Reservances (DRO) :10-C25)	nalyte Result Qualification esel Range Organics (DRO)	nalyte Result Qualifier esel Range Organics (DRO) ND stor-C25) esidual Range Organics (RRO) ND	nalyte Result Qualifier Result esel Range Organics (DRO) ND ND :10-C25) seidual Range Organics (RRO) ND ND	nalyte Result Qualifier Result Qualifier Qualifier Qualifier Result Qualifier esel Range Organics (DRO) ND ND ND 110-C25) esidual Range Organics (RRO) ND ND ND	nalyte Result Qualifier Result Qualifier Unit esel Range Organics (DRO) ND ND mg/Kg :10-C25) esidual Range Organics (RRO) ND ND mg/Kg	nalyte Result Qualifier Result Qualifier Unit D esel Range Organics (DRO) ND ND mg/Kg stor-C25) esidual Range Organics (RRO) ND ND mg/Kg	nalyte Result Qualifier Result Qualifier Unit D esel Range Organics (DRO) ND ND mg/Kg stitution C25) esidual Range Organics (RRO) ND ND mg/Kg	nalyte Result Qualifier Result Qualifier Unit D RPD esel Range Organics (DRO) ND ND mg/Kg 5 sti0-C25) sesidual Range Organics (RRO) ND ND mg/Kg * NC

(C25-C36)

DU DU

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	100		50 - 150
n-Triacontane-d62	81		50 - 150

QC Sample Results

Client: GeoEngineers Inc

Matrix: Solid

Project/Site: Tiger Oil Summitview

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 590-1002/2-A

TestAmerica Job ID: 590-581-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: SVDP-19 (20-21)

Prep Type: Total/NA

Prep Batch: 1002

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 1002

Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed Lead 0.025 04/06/15 09:43 04/07/15 13:45 ND mg/Kg

Lab Sample ID: LCS 590-1002/1-A

Matrix: Solid

Analysis Batch: 1048

Lead

Analysis Batch: 1048

Spike Analyte Added

MB MB

LCS LCS Result Qualifier Unit %Rec Limits 1.00 1.01 mg/Kg 101 80 - 120

Method: Moisture - Percent Moisture

Lab Sample ID: 590-581-24 DU

Matrix: Solid

Analysis Batch: 1025

•	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	19		18		%		 4	20
Percent Solids	81		82		%		1	20

Project/Site: Tiger Oil Summitview

Date Collected: 04/02/15 12:30

Date Received: 04/03/15 12:10

Client Sample ID: SVDP- 17 (19.5-20.5)

Lab Sample ID: 590-581-11

Matrix: Solid Percent Solids: 76.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			9.775 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	8260C		1	9.775 g	5 mL	1011	04/06/15 15:19	MRS	TAL SPK
Total/NA	Prep	5035			9.775 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	9.775 g	5 mL	1013	04/06/15 15:19	MRS	TAL SPK
Total/NA	Prep	3550C			15.93 g	2 mL	1026	04/07/15 09:20	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.93 g	2 mL	1024	04/07/15 16:19	NMI	TAL SPK
Total/NA	Prep	3550C			15.54 g	5 mL	1047	04/08/15 10:35	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.54 g	5 mL	1044	04/08/15 12:16	NMI	TAL SPK
Total/NA	Prep	3050B			1.29 g	50 mL	1002	04/06/15 09:43	JSP	TAL SPK
Total/NA	Analysis	6010C		20	1.29 g	50 mL	1055	04/08/15 12:34	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1025	04/07/15 09:16	NMI	TAL SPK

Client Sample ID: SVDP-16 (22-23)

Date Collected: 04/02/15 10:30 Date Received: 04/03/15 12:10 Lab Sample ID: 590-581-12

Matrix: Solid Percent Solids: 75.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			9.809 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	8260C		1	9.809 g	5 mL	1011	04/06/15 15:42	MRS	TAL SPK
Total/NA	Prep	5035			9.809 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	9.809 g	5 mL	1013	04/06/15 15:42	MRS	TAL SP
Total/NA	Prep	3550C			15.86 g	2 mL	1026	04/07/15 09:20	NMI	TAL SP
Total/NA	Analysis	8270D SIM		1	15.86 g	2 mL	1024	04/07/15 16:42	NMI	TAL SP
Total/NA	Prep	3550C			15.33 g	5 mL	1047	04/08/15 10:35	NMI	TAL SP
Total/NA	Analysis	NWTPH-Dx		1	15.33 g	5 mL	1044	04/08/15 12:39	NMI	TAL SP
Total/NA	Prep	3050B			1.47 g	50 mL	1002	04/06/15 09:43	JSP	TAL SP
Total/NA	Analysis	6010C		10	1.47 g	50 mL	1055	04/08/15 11:39	JSP	TAL SP
Total/NA	Analysis	Moisture		1			1025	04/07/15 09:16	NMI	TAL SPI

Client Sample ID: SVDP-18 (20-21)

Date Collected: 04/02/15 14:50 Date Received: 04/03/15 12:10 Lab Sample ID: 590-581-18 **Matrix: Solid**

Percent Solids: 68.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.75 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	8260C		1	5.75 g	5 mL	1011	04/06/15 16:04	MRS	TAL SPK
Total/NA	Prep	5035			5.75 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	5.75 g	5 mL	1013	04/06/15 16:04	MRS	TAL SPK
Total/NA	Prep	3550C			15.26 g	2 mL	1026	04/07/15 09:20	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.26 g	2 mL	1024	04/07/15 17:04	NMI	TAL SPK
Total/NA	Prep	3550C			15.08 g	5 mL	1047	04/08/15 10:35	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.08 g	5 mL	1044	04/08/15 12:58	NMI	TAL SPK
Total/NA	Prep	3050B			1.78 g	50 mL	1002	04/06/15 09:43	JSP	TAL SPK

Project/Site: Tiger Oil Summitview

Lab Sample ID: 590-581-18

TestAmerica Job ID: 590-581-1

Matrix: Solid

Percent Solids: 68.2

Client Sample ID: SVDP-18 (20-21) Date Collected: 04/02/15 14:50

Date Received: 04/03/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	6010C		10	1.78 g	50 mL	1055	04/08/15 11:41	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1025	04/07/15 09:16	NMI	TAL SPK

Client Sample ID: SVDP-19 (20-21) Lab Sample ID: 590-581-24

Date Collected: 04/02/15 17:00 Date Received: 04/03/15 12:10

Matrix: Solid Percent Solids: 81.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.505 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	8260C		1	5.505 g	5 mL	1011	04/06/15 16:27	MRS	TAL SPK
Total/NA	Prep	5035			5.505 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	5.505 g	5 mL	1013	04/06/15 16:27	MRS	TAL SPK
Total/NA	Prep	3550C			15.13 g	2 mL	1026	04/07/15 09:20	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.13 g	2 mL	1024	04/07/15 15:12	NMI	TAL SPK
Total/NA	Prep	3550C			15.38 g	5 mL	1047	04/08/15 10:35	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.38 g	5 mL	1044	04/08/15 13:17	NMI	TAL SPK
Total/NA	Prep	3050B			1.36 g	50 mL	1002	04/06/15 09:43	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.36 g	50 mL	1055	04/08/15 11:43	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1025	04/07/15 09:16	NMI	TAL SPK

Client Sample ID: SVDP-20 (20-21) Lab Sample ID: 590-581-29

Date Collected: 04/02/15 18:25 Date Received: 04/03/15 12:10

Matrix: Solid Percent Solids: 79.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.595 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	8260C		1	6.595 g	5 mL	1011	04/06/15 16:49	MRS	TAL SPK
Total/NA	Prep	5035			6.595 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	6.595 g	5 mL	1013	04/06/15 16:49	MRS	TAL SPK
Total/NA	Prep	3550C			15.89 g	2 mL	1026	04/07/15 09:20	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.89 g	2 mL	1024	04/07/15 17:27	NMI	TAL SPK
Total/NA	Prep	3550C			15.26 g	5 mL	1047	04/08/15 10:35	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.26 g	5 mL	1044	04/08/15 13:36	NMI	TAL SPK
Total/NA	Prep	3050B			1.13 g	50 mL	1002	04/06/15 09:43	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.13 g	50 mL	1055	04/08/15 11:46	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1025	04/07/15 09:16	NMI	TAL SPK

Client Sample ID: SVDP-21 (20-21) Lab Sample ID: 590-581-34

Date Collected: 04/02/15 19:40 Date Received: 04/03/15 12:10

Matrix: Solid Percent Solids: 80.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.102 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-581-1

Lab Sample ID: 590-581-34

Matrix: Solid

Percent Solids: 80.6

Client Sample ID: SVDP-21 (20-21)

Date Collected: 04/02/15 19:40 Date Received: 04/03/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	6.102 g	5 mL	1011	04/06/15 17:12	MRS	TAL SPK
Total/NA	Prep	5035			6.102 g	5 mL	1016	04/06/15 14:22	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	6.102 g	5 mL	1013	04/06/15 17:12	MRS	TAL SPK
Total/NA	Prep	3550C			15.75 g	2 mL	1026	04/07/15 09:20	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.75 g	2 mL	1024	04/07/15 17:49	NMI	TAL SPK
Total/NA	Prep	3550C			15.63 g	5 mL	1047	04/08/15 10:35	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.63 g	5 mL	1044	04/08/15 13:55	NMI	TAL SPK
Total/NA	Prep	3050B			1.36 g	50 mL	1002	04/06/15 09:43	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.36 g	50 mL	1055	04/08/15 11:58	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1025	04/07/15 09:16	NMI	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

0

0

10

Certification Summary

Client: GeoEngineers Inc TestAmerica Job ID: 590-581-1

Project/Site: Tiger Oil Summitview

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

3

4

6

8

9

10

Method Summary

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-581-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	TAL SPK
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
6010C	Metals (ICP)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

Ö

46

11

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT

Work Order #: INVOICE TO: TURNAROUND REQUEST isugalski ageoenginars.com in Business Days * REPORT TO: ADDRESS: Organic & Inorganic Analyses P.O. NUMBER: PRESERVATIVE PROJECT NUMBER: REQUESTED ANALYSES MWTPH - Cax SAMPLED BY: Turnaround Requests less than standard may incur Rush Charges SAMPLING MATRIX #OF LOCATION/ CLIENT SAMPLE CONT. COMMENTS IDENTIFICATION DATE/TIME (W, S, O) WOD 2 15VDA-16(2-3) 0936 25/pp-16 (5-6) 0940 5VDP- 16 (10-11) 0945 45VDP-16 (15-16) 0950 5VDP-16(17-18) 1000 SVDD - 17(1-2) 1130 ,5VDP-17 1140 1145 120D 1210 FIRM: TO ATTORICATION 12:10 FIRM: GEI TIME: PRINT NAME: RELEASED BY DATE: RECEIVED BY: PRINT NAME: PRINT NAME-FTRM: TIME: ADDITIONAL REMARKS:

29 Page 25 of

TAL-1000 (0714)

X

1600

FIRM:

χ

X

TIME:

DATE:

TIME:

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

RELEASED BY

PRINT NAME:

RELEASED BY.

PRINT NAME:

ADDITIONAL REMARKS:

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210

907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: TURNAROUND REQUEST Isnialshie gerenymans. wom in Business Days * Organic & Inorganic Analyses <1 Petroleum Hydrocarbon Analyses P.O. NUMBER: PRESERVATIVE REQUESTED ANALYSES OTHER MUTPH - GX SAMPLED BY: AT-FINLOW Turnaround Requests less than standard may incur Rush Charges Brex 9260 SAMPLING MATRIX LOCATION/ TA CLIENT SAMPLE COMMENTS WOID IDENTIFICATION DATE/TIME (W, S, O) CONT. /230 χ X X 1030 1400 1405

FIRM: T, A

FIRM:

TIME

DATE-

TIME

TAL-1000 (0714)

TEMP:

PRINT NAME:

RECEIVED BY:

PRINT NAME:

29 Page 26 of

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave , Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 509-924-9200 FAX 924-9290 X 503-906-9200 FAX 906-9210 FAX 563-9210

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: TURNAROUND REQUEST CLIENT: in Business Days * REPORT TO: Organic & Inorganic Analyses Petroleum Hydrocarbon Analyses P.O. NUMBER: PRESERVATIVE PROJECT NUMBER. 0504-101-01 REQUESTED ANALYSES OTHER MUTPH-62 SIM 8270 SAMPLED BY: A-Holl M Turnaround Requests less than standard may incur Rush Charges. STE'S SCIOC PAH'S LOCATION/ CLIENT SAMPLE SAMPLING MATRIX IDENTIFICATION DATE/TIME (W, S, O) CONT. COMMENTS WOID 1620 1630 /650 X X × 750 1800 1810 1250 DATE: 4/3/2015 RECEIVED BY THELLIA FIRM: T. A TIME. (2(D) FIRM: RELEASED BY: DATE: RECEIVED BY: DATE: TIME: PRINT NAME: FIRM: PRINT NAME: FIRM: TIME: ADDITIONAL REMARKS.

ð Page 27

TAL-1000 (0714)

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste Alo, Anchorage, AK 99502-1119

503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: TURNAROUND REQUEST jougatoli @ georgres.com in Business Days * ADDRESS: Organic & Inorganic Analyses P.O. NUMBER: PRESERVATIVE PROJECT NUMBER: 0504-101-00 REQUESTED ANALYSES OTHER Pb(+44) SAMPLED BY: Turnaround Requests less than standard may incur Rush Charges. MATRIX LOCATION/ SAMPLING #OF CLIENT SAMPLE (W, S, O) CONT. COMMENTS WOID IDENTIFICATION DATE/TIME 1900 11-01) 16-9QV2. 197D RELEASED BY: FIRM: GEI PRINT NAME. DATE: RECEIVED BY: DATE: RELEASED BY: PRINT NAME: TIME: PRINT NAME: TIME: ADDITIONAL REMARKS

Page 28 of

TAL-1000 (0714)

Client: GeoEngineers Inc Job Number: 590-581-1

Login Number: 581 List Source: TestAmerica Spokane

List Number: 1 Creator: Kratz, Sheila J

Creator. Matz, Shella 3		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.5
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-580-1

Client Project/Site: Tiger Oil Summitview

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by:

4/13/2015 10:44:00 AM

Michelle Johnston, Project Manager II (303)736-0110

michelle.johnston@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 590-580-1

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	
Definitions	5
Client Sample Results	6
QC Sample Results	
Chronicle	9
Certification Summary	11
Method Summary	12
Chain of Custody	13
Receipt Checklists	14

3

4

0

9

Case Narrative

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-580-1

Job ID: 590-580-1

Laboratory: TestAmerica Spokane

Narrative

Job Narrative 590-580-1

Comments

No additional comments.

Receipt

The samples were received on 4/3/2015 12:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.5° C.

GC Semi VOA

Method(s) NWTPH-HCID: Gasoline in samples 590-580-5 and SVDP-20:GW (590-580-5 appears to be present just below the reporting limit.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

-

3

Δ

6

0

4 0

1 4

Sample Summary

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-580-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
590-580-1	SVDP-16:GW	Water	04/02/15 11:08	04/03/15 12:10	
590-580-2	SVDP-17:GW	Water	04/02/15 13:25	04/03/15 12:10	
590-580-3	SVDP-18:GW	Water	04/02/15 15:38	04/03/15 12:10	
590-580-4	SVDP-19:GW	Water	04/02/15 17:32	04/03/15 12:10	
590-580-5	SVDP-20:GW	Water	04/02/15 18:46	04/03/15 12:10	
590-580-6	SVDP-21:GW	Water	04/02/15 20:04	04/03/15 12:10	

3

4

5

7

8

9

10

11

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Relative error ratio

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 590-580-1

Glossary

RER

RPD

TEF

TEQ

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-580-1

Lab Sample ID: 590-580-1

Matrix: Water

Client Sample ID: SVDP-16:GW Date Collected: 04/02/15 11:08

Date Received: 04/03/15 12:10

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.25		mg/L		04/08/15 12:46	04/09/15 12:17	1
Diesel Range Organics (DRO) (C10-C25)	ND		0.63		mg/L		04/08/15 12:46	04/09/15 12:17	1
Residual Range Organics (RRO) (C25-C36)	0.82		0.63		mg/L		04/08/15 12:46	04/09/15 12:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150				04/08/15 12:46	04/09/15 12:17	1
n-Triacontane-d62	76		50 ₋ 150				04/08/15 12:46	04/09/15 12:17	1

Client Sample ID: SVDP-17:GW Lab Sample ID: 590-580-2

Date Collected: 04/02/15 13:25 Matrix: Water

Date Received: 04/03/15 12:10

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.26		mg/L		04/08/15 12:46	04/09/15 12:38	1
Diesel Range Organics (DRO) (C10-C25)	ND		0.64		mg/L		04/08/15 12:46	04/09/15 12:38	1
Residual Range Organics (RRO) (C25-C36)	ND		0.64		mg/L		04/08/15 12:46	04/09/15 12:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	88		50 - 150				04/08/15 12:46	04/09/15 12:38	1
n-Triacontane-d62	69		50 - 150				04/08/15 12:46	04/09/15 12:38	1

Client Sample ID: SVDP-18:GW Lab Sample ID: 590-580-3 Date Collected: 04/02/15 15:38 Matrix: Water

Date Received: 04/03/15 12:10

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.24		mg/L		04/08/15 12:46	04/09/15 13:02	1
Diesel Range Organics (DRO) (C10-C25)	ND		0.62		mg/L		04/08/15 12:46	04/09/15 13:02	1
Residual Range Organics (RRO) (C25-C36)	ND		0.62		mg/L		04/08/15 12:46	04/09/15 13:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97		50 - 150				04/08/15 12:46	04/09/15 13:02	1
n-Triacontane-d62	69		50 ₋ 150				04/08/15 12:46	04/09/15 13:02	1

Client Sample ID: SVDP-19:GW Lab Sample ID: 590-580-4

Date Collected: 04/02/15 17:32 **Matrix: Water** Date Received: 04/03/15 12:10

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC)									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	1.5		0.25		mg/L		04/08/15 12:46	04/09/15 13:20	1
Diesel Range Organics (DRO) (C10-C25)	ND		0.63		mg/L		04/08/15 12:46	04/09/15 13:20	1

Project/Site: Tiger Oil Summitview

Lab Sample ID: 590-580-4

Lab Sample ID: 590-580-6

Matrix: Water

Matrix: Water

Matrix: Water

Client Sample ID: SVDP-19:GW Date Collected: 04/02/15 17:32

Date Received: 04/03/15 12:10

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO)	ND		0.63		mg/L		04/08/15 12:46	04/09/15 13:20	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	100		50 - 150				04/08/15 12:46	04/09/15 13:20	1
n-Triacontane-d62	72		50 - 150				04/08/15 12:46	04/09/15 13:20	1

Client Sample ID: SVDP-20:GW Lab Sample ID: 590-580-5

Date Collected: 04/02/15 18:46 Date Received: 04/03/15 12:10

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC) Analyte Result Qualifier RL RL Unit Prepared Analyzed Dil Fac ND 0.25 Gasoline Range Organics [C6 - C10] mg/L 04/08/15 12:46 04/09/15 13:42 ND 0.63 04/08/15 12:46 04/09/15 13:42 Diesel Range Organics (DRO) mg/L (C10-C25) Residual Range Organics (RRO) ND 0.63 mg/L 04/08/15 12:46 04/09/15 13:42 (C25-C36) Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

 o-Terphenyl
 96
 50 - 150
 04/08/15 12:46
 04/09/15 13:42
 1

 n-Triacontane-d62
 75
 50 - 150
 04/08/15 12:46
 04/09/15 13:42
 1

Client Sample ID: SVDP-21:GW

Date Collected: 04/02/15 20:04

Date Received: 04/03/15 12:10

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.25		mg/L		04/08/15 12:46	04/09/15 14:02	1
Diesel Range Organics (DRO) (C10-C25)	ND		0.62		mg/L		04/08/15 12:46	04/09/15 14:02	1
Residual Range Organics (RRO) (C25-C36)	ND		0.62		mg/L		04/08/15 12:46	04/09/15 14:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97		50 - 150				04/08/15 12:46	04/09/15 14:02	1
n-Triacontane-d62	69		50 ₋ 150				04/08/15 12:46	04/09/15 14:02	1

QC Sample Results

Client: GeoEngineers Inc

Matrix: Water

n-Triacontane-d62

Project/Site: Tiger Oil Summitview

Lab Sample ID: MB 590-1049/1-A

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC)

68

TestAmerica Job ID: 590-580-1

Client Sample ID: Method Blank

Sherit Sample ID. Method Blank	
Prep Type: Total/NA	
Prep Batch: 1049	

Analysis Batch: 1069							Prep Bate	ch: 1049
_	MB	MB					-	
Analyte	Result	Qualifier	RL	RL Un	it I	D Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.25	mg	ı/L	04/08/15 12:46	04/09/15 11:54	1
Diesel Range Organics (DRO)	ND		0.63	mg	ı/L	04/08/15 12:46	04/09/15 11:54	1
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND		0.63	mg	ı/L	04/08/15 12:46	04/09/15 11:54	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	102		50 - 150			04/08/15 12:46	04/09/15 11:54	1

50 - 150

Lab Sample ID: 590-580-4

Project/Site: Tiger Oil Summitview

Client Sample ID: SVDP-16:GW

Lab Sample ID: 590-580-1 Date Collected: 04/02/15 11:08

Matrix: Water

Date Received: 04/03/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			124.9 mL	2 mL	1049	04/08/15 12:46	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	124.9 mL	2 mL	1069	04/09/15 12:17	NMI	TAL SPK

Client Sample ID: SVDP-17:GW Lab Sample ID: 590-580-2

Date Collected: 04/02/15 13:25 Matrix: Water

Date Received: 04/03/15 12:10

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			122.5 mL	2 mL	1049	04/08/15 12:46	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	122.5 mL	2 mL	1069	04/09/15 12:38	NMI	TAL SPK

Client Sample ID: SVDP-18:GW Lab Sample ID: 590-580-3 **Matrix: Water**

Date Collected: 04/02/15 15:38 Date Received: 04/03/15 12:10

Initial Final Batch Batch Dil Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 3510C 127.7 mL 2 mL 1049 04/08/15 12:46 NMI TAL SPK

Total/NA NWTPH-HCID TAL SPK Analysis 127.7 mL 1069 04/09/15 13:02 NMI 2 mL

Client Sample ID: SVDP-19:GW

Date Collected: 04/02/15 17:32 **Matrix: Water**

Date Received: 04/03/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			125.4 mL	2 mL	1049	04/08/15 12:46	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	125.4 mL	2 mL	1069	04/09/15 13:20	NMI	TAL SPK

Client Sample ID: SVDP-20:GW Lab Sample ID: 590-580-5

Date Collected: 04/02/15 18:46 Date Received: 04/03/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			124.8 mL	2 mL	1049	04/08/15 12:46	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	124.8 mL	2 mL	1069	04/09/15 13:42	NMI	TAL SPK

Client Sample ID: SVDP-21:GW Lab Sample ID: 590-580-6

Date Collected: 04/02/15 20:04

Date Received: 04/03/15 12:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			126.3 mL	2 mL	1049	04/08/15 12:46	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	126.3 mL	2 mL	1069	04/09/15 14:02	NMI	TAL SPK

Matrix: Water

Matrix: Water

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

TestAmerica Job ID: 590-580-1

- 0

4

6

Ω

Q

10

11

Certification Summary

Client: GeoEngineers Inc TestAmerica Job ID: 590-580-1

Project/Site: Tiger Oil Summitview

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

3

4

5

6

8

9

10

11

Method Summary

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-580-1

Method	Method Description	Protocol	Laboratory
NWTPH-HCID	Northwest - Hydrocarbon Identification (GC)	NWTPH	TAL SPK

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924**-**9200 503-906-9200

907-563-9200

Work Order #:

CHAIN OF CUSTODY REPORT

																			
LIENT: Goo Enginees	TO: Goo Engrads TTO: JR Snjobh: jsing like lycoornas con ESS: 523 E Sounch Ana Spokana in A. 99202 ESG9-113-3125 FAX: T NAME: Summit view Tight Oal						INVOICE TO:							TURNAROUND REQUEST					
EPORT TO: FR Smith.	' Singa liski'ly	w. conzos	,												in	Business Days *			
DDRESS: 523	SPERICK Are															Inorganic Analyses			
Sookna hal	A 99202													7 5 4 3 2 1 <1 STD. Petroleum Hydrocarbon Analyses					
HONE: 509 - 763-3125	FAX:				P.O. NU	JMBER:								STD.	Petroleum	Hydrocarbon Analyses			
ROJECT NAME: SUMMIT	VIEW	n. 0					PRE	SERVATIV	ΛÉ.					×	[] 4 [3 2 1 <	1		
ROJECT NUMBER:	1 Ber						<u> </u>												
	-		<u> </u>		· · · · · · · · · · · · · · · · · · ·	·-	REQUES	TED ANA	LYSES							Specify:			
AMPLED BY:													* 7	umaround	Requests less	than standard may incur i	Rush Charges.		
CLIENT SAMPLE IDENTIFICATION	SAMP DATE/		MI											MATRIX W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID		
SUDP-16:GW	4/2/2015	llog	У											IJ	1				
SVDP-17:4W	1	1325	Х																
5VDP-18: GW		1538	X																
SVDP-19:GW		1732	λ													<u> </u>			
SVDP-ZO!GW		1846	χ																
SVDP-21 : GW	V	2004	X							<u> </u>				$\sqrt{}$	V				
											_								
						-				<u> </u>									
	<u> </u>					-				-					1				
]]	1							. ,		ļ				<i>i</i> 1 —		
LEASED BY				<u> </u>	DATE	4/3/	12015	1	RECEIVED BY	dhe	Du AJ	ratz				DATE-4	3/15		
ILEASED BY A LEE		FIRM. 4	?ə		ТІМІ	121	0	lı	RINT NAME:	Other She	la Kr	atz		FIRM	Tast	America TME 1	9,10		
LEASED BY:					DATE	E:		1	RECEIVED BY	r:				,		DATE			
INT NAME.		FIRM:			TIME	5:		1	RINT NAME:	: 				PIRM	:	TIME-			
DDITIONAL REMARKS:															_	TEMP: C 5. 6 PAGE	/ or /		

Page 13 of 14

TAL-1000 (0714)

Job Number: 590-580-1

Login Number: 580 List Source: TestAmerica Spokane

List Number: 1

Creator: Kratz, Sheila J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
he cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.5
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6 mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-628-1

Client Project/Site: Tiger Oil Summitview

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

She My

Authorized for release by: 4/22/2015 10:05:56 AM Stephanie Kupper, Project Manager I (303)736-0182 stephanie.kupper@testamericainc.com

Designee for

Michelle Johnston, Project Manager II (303)736-0110

michelle.johnston@testamericainc.com

LINKS

results through
Total Access

Review your project

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview TestAmerica Job ID: 590-628-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	16
Chronicle	24
Certification Summary	27
Method Summary	28
Chain of Custody	29
Receint Checklists	30

3

4

9

10

11

Case Narrative

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-628-1

Job ID: 590-628-1

Laboratory: TestAmerica Spokane

Narrative

Job Narrative 590-628-1

Receipt

The samples were received on 4/9/2015 at 9:52 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.6° C.

Except:

Sample Trip Blank (590-628-9) was received at the laboratory, but was not listed on the COC. This sample was logged for methods 8260B and NWTPH-Gx per the volume received. The client was notified on 04/10/2015.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method NWTPH-HCID: Surrogate recovery for the following samples was outside control limits: SVDP-24 :GW (590-628-6), SVDP-25 :GW (590-628-7), SVDP-26 :GW (590-628-8). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method NWTPH-HCID: Detected hydrocarbons appear to be due to gasoline overlap: SVDP-24 :GW (590-628-6), SVDP-25 :GW (590-628-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

3

4

5

6

9

10

11

Sample Summary

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-628-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-628-1	SVDP-22 (20.5-21)	Solid	04/07/15 11:30	04/09/15 09:52
590-628-2	SVDP-23 (18-18.5)	Solid	04/07/15 13:00	04/09/15 09:52
590-628-3	SVDP-24 (19.5-20)	Solid	04/07/15 14:00	04/09/15 09:52
590-628-4	SVDP-25 (19.5-20)	Solid	04/07/15 15:40	04/09/15 09:52
590-628-5	SVDP-26 (20-20.5)	Solid	04/07/15 17:15	04/09/15 09:52
590-628-6	SVDP-24 :GW	Water	04/07/15 14:40	04/09/15 09:52
590-628-7	SVDP-25 :GW	Water	04/07/15 16:03	04/09/15 09:52
590-628-8	SVDP-26 :GW	Water	04/07/15 17:40	04/09/15 09:52
590-628-9	Trip Blank	Water	04/02/15 00:00	04/09/15 09:52

Δ

4

6

10

11

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-628-1

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier **Qualifier Description**

X Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit

MDC MDL ML

Method Detection Limit Minimum Level (Dioxin)

NC Not Calculated

Not detected at the reporting limit (or MDL or EDL if shown) ND

Minimum detectable concentration

PQL Practical Quantitation Limit

QC **Quality Control** RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TEQ

TestAmerica Spokane

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Date Collected: 04/07/15 11:30 Date Received: 04/09/15 09:52

Client Sample ID: SVDP-22 (20.5-21)

TestAmerica Job ID: 590-628-1

Percent Solids: 88.8

Lab Sa	mpie ii	J: 59	0-628-1	
		Matr	ix: Solid	I

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.14		mg/Kg	₩	04/10/15 09:34	04/10/15 11:01	10
Ethylbenzene	5.9		0.95		mg/Kg	₽	04/10/15 09:34	04/10/15 11:01	10
m,p-Xylene	18		3.8		mg/Kg	₽	04/10/15 09:34	04/10/15 11:01	10
Methyl tert-butyl ether	ND		0.47		mg/Kg	₽	04/10/15 09:34	04/10/15 11:01	10
o-Xylene	4.2		1.9		mg/Kg	₽	04/10/15 09:34	04/10/15 11:01	10
Toluene	4.2		0.95		mg/Kg	₽	04/10/15 09:34	04/10/15 11:01	10
Naphthalene	6.4		1.9		mg/Kg	\$	04/10/15 09:34	04/10/15 11:01	10
Xylenes, Total	22		5.7		mg/Kg	\$	04/10/15 09:34	04/10/15 11:01	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		74.7 - 120				04/10/15 09:34	04/10/15 11:01	10
4-Bromofluorobenzene (Surr)	105		69.8 - 140				04/10/15 09:34	04/10/15 11:01	10
Dibromofluoromethane (Surr)	93		80 - 120				04/10/15 09:34	04/10/15 11:01	10
Toluene-d8 (Surr)	102		78.5 ₋ 125				04/10/15 09:34	04/10/15 11:01	10

Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	lucts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	4500		47		mg/Kg	₩	04/10/15 09:34	04/10/15 11:01	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		41.5 - 162				04/10/15 09:34	04/10/15 11:01	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	410		11		ug/Kg		04/17/15 11:36	04/17/15 15:23	1
2-Methylnaphthalene	2600		22		ug/Kg	₩	04/17/15 11:36	04/17/15 17:38	2
1-Methylnaphthalene	1300		11		ug/Kg	₩	04/17/15 11:36	04/17/15 15:23	1
Acenaphthylene	ND		11		ug/Kg	₽	04/17/15 11:36	04/17/15 15:23	1
Acenaphthene	34		11		ug/Kg	₽	04/17/15 11:36	04/17/15 15:23	1
Fluorene	34		11		ug/Kg	₩	04/17/15 11:36	04/17/15 15:23	1
Phenanthrene	33		11		ug/Kg		04/17/15 11:36	04/17/15 15:23	1
Anthracene	ND		11		ug/Kg	₩	04/17/15 11:36	04/17/15 15:23	1
Fluoranthene	ND		11		ug/Kg	₩	04/17/15 11:36	04/17/15 15:23	1
Pyrene	ND		11		ug/Kg		04/17/15 11:36	04/17/15 15:23	1
Benzo[a]anthracene	ND		11		ug/Kg	₩	04/17/15 11:36	04/17/15 15:23	1
Chrysene	ND		11		ug/Kg	₩	04/17/15 11:36	04/17/15 15:23	1
Benzo[b]fluoranthene	ND		11		ug/Kg		04/17/15 11:36	04/17/15 15:23	1
Benzo[k]fluoranthene	ND		11		ug/Kg	₩	04/17/15 11:36	04/17/15 15:23	1
Benzo[a]pyrene	ND		11		ug/Kg	₩	04/17/15 11:36	04/17/15 15:23	1
Indeno[1,2,3-cd]pyrene	ND		11		ug/Kg		04/17/15 11:36	04/17/15 15:23	1
Dibenz(a,h)anthracene	ND		11		ug/Kg	₩	04/17/15 11:36	04/17/15 15:23	1
Benzo[g,h,i]perylene	ND		11		ug/Kg	₩	04/17/15 11:36	04/17/15 15:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

١	Surrogate	%Recovery	Qualifier	Limits	Prepare	ed	Analyzed	Dil Fac
	Nitrobenzene-d5	50		35.1 - 144	04/17/15 1	11:36	04/17/15 15:23	1
	2-Fluorobiphenyl (Surr)	68		48.8 - 134	04/17/15 1	11:36	04/17/15 15:23	1
l	p-Terphenyl-d14	71		48 - 166	04/17/15 1	11:36	04/17/15 15:23	1

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-628-1

Client Sample ID: SVDP-22 (20.5-21)

Date Collected: 04/07/15 11:30 Date Received: 04/09/15 09:52 Lab Sample ID: 590-628-1

Matrix: Solid

Percent Solids: 88.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	110		21		mg/Kg	₩	04/16/15 11:17	04/17/15 21:25	1
(C10-C25)									
Residual Range Organics (RRO)	ND		52		mg/Kg	≎	04/16/15 11:17	04/17/15 21:25	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	111		50 - 150				04/16/15 11:17	04/17/15 21:25	1
n-Triacontane-d62	110		50 - 150				04/16/15 11:17	04/17/15 21:25	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		8.9		mg/Kg	*	04/17/15 09:34	04/21/15 12:47	10
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	11		0.010		%			04/10/15 15:26	1
Percent Solids	89		0.010		%			04/10/15 15:26	1

Client Sample ID: SVDP-23 (18-18.5)

Date Collected: 04/07/15 13:00 Date Received: 04/09/15 09:52

Lab Sample ID: 590-628-2

Matrix: Solid Percent Solids: 81.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.017		mg/Kg	₩	04/10/15 09:34	04/10/15 11:23	1
Ethylbenzene	ND		0.11		mg/Kg	₽	04/10/15 09:34	04/10/15 11:23	1
m,p-Xylene	ND		0.45		mg/Kg	☼	04/10/15 09:34	04/10/15 11:23	1
Methyl tert-butyl ether	ND		0.056		mg/Kg	₽	04/10/15 09:34	04/10/15 11:23	1
o-Xylene	ND		0.22		mg/Kg	₽	04/10/15 09:34	04/10/15 11:23	1
Toluene	ND		0.11		mg/Kg	☼	04/10/15 09:34	04/10/15 11:23	1
Naphthalene	ND		0.22		mg/Kg	₽	04/10/15 09:34	04/10/15 11:23	1
Xylenes, Total	ND		0.67		mg/Kg	₩	04/10/15 09:34	04/10/15 11:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		74.7 - 120				04/10/15 09:34	04/10/15 11:23	1
4-Bromofluorobenzene (Surr)	104		69.8 - 140				04/10/15 09:34	04/10/15 11:23	1
Dibromofluoromethane (Surr)	95		80 - 120				04/10/15 09:34	04/10/15 11:23	1
Toluene-d8 (Surr)	100		78.5 - 125				04/10/15 09:34	04/10/15 11:23	1
- Method: NWTPH-Gx - Northw	est - Volatile Petro	oleum Prod	ducts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.6		mg/Kg	₩	04/10/15 09:34	04/10/15 11:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Method: 8270D SIM - Semivola	itile Organic Com	pounds (GC/I	MS SIM)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		12		ug/Kg	\	04/17/15 11:36	04/17/15 15:46	1
2-Methylnaphthalene	ND		12		ug/Kg	₩	04/17/15 11:36	04/17/15 15:46	1
1-Methylnaphthalene	ND		12		ug/Kg	₩	04/17/15 11:36	04/17/15 15:46	1
Acenaphthylene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 15:46	1

TestAmerica Spokane

Page 7 of 30

4/22/2015

Project/Site: Tiger Oil Summitview

Client: GeoEngineers Inc

Client Sample ID: SVDP-23 (18-18.5)

Lab Sample ID: 590-628-2 Date Collected: 04/07/15 13:00

Matrix: Solid Date Received: 04/09/15 09:52 Percent Solids: 81.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		12		ug/Kg	<u></u>	04/17/15 11:36	04/17/15 15:46	1
Fluorene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 15:46	1
Phenanthrene	ND		12		ug/Kg	\$	04/17/15 11:36	04/17/15 15:46	1
Anthracene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 15:46	1
Fluoranthene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 15:46	1
Pyrene	ND		12		ug/Kg	\$	04/17/15 11:36	04/17/15 15:46	1
Benzo[a]anthracene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 15:46	1
Chrysene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 15:46	1
Benzo[b]fluoranthene	ND		12		ug/Kg	\$	04/17/15 11:36	04/17/15 15:46	1
Benzo[k]fluoranthene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 15:46	1
Benzo[a]pyrene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 15:46	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 15:46	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 15:46	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 15:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	51	-	35.1 - 144				04/17/15 11:36	04/17/15 15:46	1
2-Fluorobiphenyl (Surr)	63		48.8 - 134				04/17/15 11:36	04/17/15 15:46	1
p-Terphenyl-d14	71		48 - 166				04/17/15 11:36	04/17/15 15:46	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	15		12		mg/Kg		04/16/15 11:17	04/17/15 21:49	1
(C10-C25)									
Residual Range Organics (RRO)	85		30		mg/Kg	₽	04/16/15 11:17	04/17/15 21:49	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	101		50 - 150				04/16/15 11:17	04/17/15 21:49	1
n-Triacontane-d62	103		50 ₋ 150				04/16/15 11:17	04/17/15 21:49	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		10		mg/Kg	<u></u>	04/17/15 09:34	04/21/15 12:49	10
General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Percent Moisture	19		0.010		%			04/10/15 15:26	1	
Percent Solids	81		0.010		%			04/10/15 15:26	1	
_										

Client Sample ID: SVDP-24 (19.5-20) Lab Sample ID: 590-628-3 Date Collected: 04/07/15 14:00 Matrix: Solid Date Received: 04/09/15 09:52 Percent Solids: 83.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.17		mg/Kg	₩	04/10/15 09:34	04/10/15 11:46	10
Ethylbenzene	24		1.1		mg/Kg	₽	04/10/15 09:34	04/10/15 11:46	10
m,p-Xylene	68		45		mg/Kg	₽	04/10/15 09:34	04/10/15 14:18	100
Methyl tert-butyl ether	ND		0.56		mg/Kg	₽	04/10/15 09:34	04/10/15 11:46	10
o-Xylene	29		22		mg/Kg	☼	04/10/15 09:34	04/10/15 14:18	100

Page 8 of 30

TestAmerica Spokane

4/22/2015

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Client Sample ID: SVDP-24 (19.5-20)

Date Collected: 04/07/15 14:00 Date Received: 04/09/15 09:52

Dibenz(a,h)anthracene

Benzo[g,h,i]perylene

Lab Sample ID: 590-628-3

Matrix: Solid	d
Percent Solids: 83.2	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Toluene	9.3		1.1		mg/Kg	<u> </u>	04/10/15 09:34	04/10/15 11:46	10
Naphthalene	11		2.2		mg/Kg	₽	04/10/15 09:34	04/10/15 11:46	10
Xylenes, Total	97		67		mg/Kg	₩	04/10/15 09:34	04/10/15 14:18	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	93		74.7 - 120				04/10/15 09:34	04/10/15 11:46	1
1,2-Dichloroethane-d4 (Surr)	97		74.7 - 120				04/10/15 09:34	04/10/15 14:18	10
4-Bromofluorobenzene (Surr)	105		69.8 - 140				04/10/15 09:34	04/10/15 11:46	1
4-Bromofluorobenzene (Surr)	101		69.8 - 140				04/10/15 09:34	04/10/15 14:18	10
Dibromofluoromethane (Surr)	94		80 - 120				04/10/15 09:34	04/10/15 11:46	1
Dibromofluoromethane (Surr)	96		80 - 120				04/10/15 09:34	04/10/15 14:18	10
Toluene-d8 (Surr)	101		78.5 - 125				04/10/15 09:34	04/10/15 11:46	1
Toluene-d8 (Surr)	97		78.5 - 125				04/10/15 09:34	04/10/15 14:18	10
Method: NWTPH-Gx - Northwe	et - Volatile Petro	oleum Proc	lucts (GC/MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	2400		56		mg/Kg	*	04/10/15 09:34	04/10/15 11:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	105		41.5 - 162				Prepared 04/10/15 09:34	Analyzed 04/10/15 11:46	
4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola	105		41.5 - 162	MDL	Unit	D			1
4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte	105	npounds (G	41.5 - 162 GC/MS SIM)	MDL	Unit ug/Kg	D	04/10/15 09:34	04/10/15 11:46	Dil Fa
4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene	105 atile Organic Com Result	npounds (G	41.5 - 162 GC/MS SIM) RL	MDL			04/10/15 09:34 Prepared	04/10/15 11:46 Analyzed	Dil Fa
4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene	atile Organic Com Result 250	npounds (G	41.5 - 162 GC/MS SIM) RL 12	MDL	ug/Kg		04/10/15 09:34 Prepared 04/17/15 11:36	04/10/15 11:46 Analyzed 04/17/15 16:08	Dil Fa
4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	105 atile Organic Com Result 250 1600	npounds (G	41.5 - 162 GC/MS SIM) RL 12 12	MDL	ug/Kg ug/Kg		04/10/15 09:34 Prepared 04/17/15 11:36 04/17/15 11:36	04/10/15 11:46 Analyzed 04/17/15 16:08 04/17/15 16:08	Dil Fa
4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene	105 atile Organic Com Result 250 1600 670	npounds (G	41.5 - 162 GC/MS SIM) RL 12 12 12	MDL	ug/Kg ug/Kg ug/Kg	* *	Prepared 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36	Analyzed 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08	Dil Fa
Surrogate 4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	105 atile Organic Com Result 250 1600 670	npounds (G	41.5 - 162 GC/MS SIM) RL 12 12 12 12	MDL	ug/Kg ug/Kg ug/Kg ug/Kg	*	Prepared 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36	Analyzed 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08	Dil Fa
4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	105 atile Organic Com Result 250 1600 670 ND 21	npounds (G	41.5 - 162 6C/MS SIM) RL 12 12 12 12 12 12	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	Prepared 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36	Analyzed 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08	Dil Fa
Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	105 atile Organic Com Result 250 1600 670 ND 21	npounds (G	41.5 - 162 6C/MS SIM) RL 12 12 12 12 12 12 12	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * * * *	Prepared 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36	Analyzed 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08	Dil Fa
Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene I-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	105 atile Organic Com Result 250 1600 670 ND 21 15	npounds (G	41.5 - 162 6C/MS SIM) RL 12 12 12 12 12 12 12 12 12 1	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * * * * * * * * * * * * * * * * * *	Prepared 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36	Analyzed 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08	Dil Fa
Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	105 atile Organic Com Result 250 1600 670 ND 21 15 21 ND	npounds (G	41.5 - 162 6C/MS SIM) RL 12 12 12 12 12 12 12 12 12 1	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * * * * * *	Prepared 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36	Analyzed 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08	Dil Fa
Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pryrene	105 atile Organic Com Result 250 1600 670 ND 21 15 21 ND ND	npounds (G	41.5 - 162 6C/MS SIM) RL 12 12 12 12 12 12 12 12 12 12 12 12 12	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36	Analyzed 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08	Dil Fa
Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Benzo[a]anthracene	105 atile Organic Com Result 250 1600 670 ND 21 15 21 ND ND ND	npounds (G	41.5 - 162 6C/MS SIM) RL 12 12 12 12 12 12 12 12 12 1	MDL	ug/Kg		Prepared 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36	Analyzed 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08	Dil Fa
Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene Pyrene Benzo[a]anthracene Chrysene	105 atile Organic Com Result 250 1600 670 ND 21 15 21 ND ND ND ND ND	npounds (G	41.5 - 162 6C/MS SIM) RL 12 12 12 12 12 12 12 12 12 12 12 12 12	MDL	ug/Kg		Prepared 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36	Analyzed 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08	Dil Fa
Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Benzo[b]fluoranthene	105 atile Organic Com Result 250 1600 670 ND 21 15 21 ND ND ND ND ND ND ND	npounds (G	41.5 - 162 6C/MS SIM) RL 12 12 12 12 12 12 12 12 12 12 12 12 12	MDL	ug/Kg		Prepared 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36	Analyzed 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08	Dil Fa
4-Bromofluorobenzene (Surr) Method: 8270D SIM - Semivola Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene	105 atile Organic Com Result 250 1600 670 ND 21 15 21 ND ND ND ND ND ND ND ND ND	npounds (G	41.5 - 162 BC/MS SIM) RL 12 12 12 12 12 12 12 12 12 12 12 12 12	MDL	ug/Kg		Prepared 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36 04/17/15 11:36	Analyzed 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08 04/17/15 16:08	Dil Fa

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	49		35.1 - 144	04/17/15 11:36	04/17/15 16:08	1
2-Fluorobiphenyl (Surr)	69		48.8 - 134	04/17/15 11:36	04/17/15 16:08	1
p-Terphenyl-d14	63		48 - 166	04/17/15 11:36	04/17/15 16:08	1

12

12

ug/Kg

ug/Kg

ND

ND

Method: NWTPH-Dx - Northwest	t - Semi-Volatile	Petroleum P	roducts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	42		12		mg/Kg		04/16/15 11:17	04/17/15 22:13	1
(C10-C25)									

TestAmerica Spokane

04/17/15 16:08

04/17/15 16:08

04/17/15 11:36

04/17/15 11:36

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-628-1

Client Sample ID: SVDP-24 (19.5-20)

Lab Sample ID: 590-628-3

Date Collected: 04/07/15 14:00 Date Received: 04/09/15 09:52

Matrix: Solid Percent Solids: 83.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO)	ND		29		mg/Kg	\$	04/16/15 11:17	04/17/15 22:13	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	100		50 - 150				04/16/15 11:17	04/17/15 22:13	1
n-Triacontane-d62	102		50 - 150				04/16/15 11:17	04/17/15 22:13	1
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
• • •	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead -	ND		11		mg/Kg	₽	04/17/15 09:34	04/21/15 12:52	10
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Demonstrations	17	· 	0.010		%			04/10/15 15:26	1
Percent Moisture									

Lab Sample ID: 590-628-4

Date Collected: 04/07/15 15:40 Date Received: 04/09/15 09:52

Client Sample ID: SVDP-25 (19.5-20)

Matrix: Solid Percent Solids: 78.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	-	0.019		mg/Kg	\tilde{\pi}	04/10/15 09:34	04/10/15 12:08	1
Ethylbenzene	ND		0.13		mg/Kg	₽	04/10/15 09:34	04/10/15 12:08	1
m,p-Xylene	ND		0.51		mg/Kg	₽	04/10/15 09:34	04/10/15 12:08	1
Methyl tert-butyl ether	ND		0.063		mg/Kg	₽	04/10/15 09:34	04/10/15 12:08	1
o-Xylene	ND		0.25		mg/Kg	₽	04/10/15 09:34	04/10/15 12:08	1
Toluene	ND		0.13		mg/Kg	₽	04/10/15 09:34	04/10/15 12:08	1
Naphthalene	ND		0.25		mg/Kg	₽	04/10/15 09:34	04/10/15 12:08	1
Xylenes, Total	ND		0.76		mg/Kg	₽	04/10/15 09:34	04/10/15 12:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	-	74.7 - 120				04/10/15 09:34	04/10/15 12:08	1
4-Bromofluorobenzene (Surr)	110		69.8 - 140				04/10/15 09:34	04/10/15 12:08	1
Dibromofluoromethane (Surr)	98		80 - 120				04/10/15 09:34	04/10/15 12:08	1
Toluene-d8 (Surr)	101		78.5 - 125				04/10/15 09:34	04/10/15 12:08	1
Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	lucts (GC/MS)						
Analyte		Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	160		6.3		mg/Kg	<u></u>	04/10/15 09:34	04/10/15 12:08	

Gasoline	160		6.3	mg/Kg	₩	04/10/15 09:34	04/10/15 12:08	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	110		41.5 - 162			04/10/15 09:34	04/10/15 12:08	1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	12		12		ug/Kg	\$	04/17/15 11:36	04/17/15 16:31	1
2-Methylnaphthalene	100		12		ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
1-Methylnaphthalene	110		12		ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
Acenaphthylene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
Acenaphthene	41		12		ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
Fluorene	37		12		ug/Kg	₩	04/17/15 11:36	04/17/15 16:31	1

TestAmerica Spokane

Project/Site: Tiger Oil Summitview

Client: GeoEngineers Inc

Client Sample ID: SVDP-25 (19.5-20)

Lab Sample ID: 590-628-4 Date Collected: 04/07/15 15:40 Matrix: Solid

Date Received: 04/09/15 09:52 Percent Solids: 78.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenanthrene	75		12		ug/Kg	-	04/17/15 11:36	04/17/15 16:31	1
Anthracene	12		12		ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
Fluoranthene	21		12		ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
Pyrene	26		12		ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
Benzo[a]anthracene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
Chrysene	ND		12		ug/Kg	₩	04/17/15 11:36	04/17/15 16:31	1
Benzo[b]fluoranthene	ND		12		ug/Kg		04/17/15 11:36	04/17/15 16:31	1
Benzo[k]fluoranthene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
Benzo[a]pyrene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
Indeno[1,2,3-cd]pyrene	ND		12		ug/Kg	\$	04/17/15 11:36	04/17/15 16:31	1
Dibenz(a,h)anthracene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
Benzo[g,h,i]perylene	ND		12		ug/Kg	₽	04/17/15 11:36	04/17/15 16:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	56		35.1 - 144				04/17/15 11:36	04/17/15 16:31	1
2-Fluorobiphenyl (Surr)	66		48.8 - 134				04/17/15 11:36	04/17/15 16:31	1
p-Terphenyl-d14	70		48 - 166				04/17/15 11:36	04/17/15 16:31	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
n-Triacontane-d62 	106		50 - 150				04/16/15 11:17	04/17/15 22:37	1
o-Terphenyl	109		50 - 150				04/16/15 11:17	04/17/15 22:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
(C25-C36)									
(C10-C25) Residual Range Organics (RRO)	ND		54		mg/Kg	₽	04/16/15 11:17	04/17/15 22:37	1
Diesel Range Organics (DRO)	72		22		mg/Kg	₩	04/16/15 11:17	04/17/15 22:37	1
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Method: NWTPH-Dx - Northwest	t - Semi-Volatile	Petroleum	Products (GC)						
p-Terphenyl-d14	70		48 - 166				04/17/15 11:36	04/17/15 16:31	1
2-Fluorobiphenyl (Surr)	66		48.8 - 134				04/17/15 11:36	04/17/15 16:31	1
O. Flore we bis be seed (Origin)	00		10.0 101				04/47/45 44:00	04/47/45 40:04	

Allalyte	Result	Qualifier	KL	MDL	Ullit	U	riepaieu	Allalyzeu	DII Fac
Lead	ND		10		mg/Kg	\	04/17/15 09:34	04/21/15 12:54	10
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	22		0.010		%			04/10/15 15:26	1
Percent Solids	78		0.010		%			04/10/15 15:26	1
_									

Client Sample ID: SVDP-26 (20-20.5) Lab Sample ID: 590-628-5

Date Collected: 04/07/15 17:15 Matrix: Solid Date Received: 04/09/15 09:52 Percent Solids: 72.9

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	0.025	mg/Kg	₩	04/10/15 09:34	04/10/15 12:31	1
Ethylbenzene	ND	0.16	mg/Kg	₽	04/10/15 09:34	04/10/15 12:31	1
m,p-Xylene	ND	0.66	mg/Kg	≎	04/10/15 09:34	04/10/15 12:31	1
Methyl tert-butyl ether	ND	0.082	mg/Kg	\$	04/10/15 09:34	04/10/15 12:31	1
o-Xylene	ND	0.33	mg/Kg	≎	04/10/15 09:34	04/10/15 12:31	1
Toluene	ND	0.16	mg/Kg	≎	04/10/15 09:34	04/10/15 12:31	1
Naphthalene	ND	0.33	mg/Kg	₽	04/10/15 09:34	04/10/15 12:31	1

TestAmerica Spokane

4/22/2015

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Date Collected: 04/07/15 17:15

Date Received: 04/09/15 09:52

Client Sample ID: SVDP-26 (20-20.5)

TestAmerica Job ID: 590-628-1

Lab Sample ID: 590-628-5

. Matrix: Solid

Percent Solids: 72.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		0.98		mg/Kg	\	04/10/15 09:34	04/10/15 12:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		74.7 - 120				04/10/15 09:34	04/10/15 12:31	1
4-Bromofluorobenzene (Surr)	105		69.8 - 140				04/10/15 09:34	04/10/15 12:31	1
Dibromofluoromethane (Surr)	97		80 - 120				04/10/15 09:34	04/10/15 12:31	1
Toluene-d8 (Surr)	100		78.5 - 125				04/10/15 09:34	04/10/15 12:31	1

Method: NWTPH-Gx - Northwe	st - Volatile Petro	oleum Prod	ducts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	42		8.2		mg/Kg		04/10/15 09:34	04/10/15 12:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		41.5 - 162				04/10/15 09:34	04/10/15 12:31	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		14		ug/Kg		04/17/15 11:36	04/17/15 16:53	1
2-Methylnaphthalene	ND		14		ug/Kg	₽	04/17/15 11:36	04/17/15 16:53	1
1-Methylnaphthalene	ND		14		ug/Kg	₽	04/17/15 11:36	04/17/15 16:53	1
Acenaphthylene	ND		14		ug/Kg	\$	04/17/15 11:36	04/17/15 16:53	1
Acenaphthene	ND		14		ug/Kg	₽	04/17/15 11:36	04/17/15 16:53	1
Fluorene	ND		14		ug/Kg	₽	04/17/15 11:36	04/17/15 16:53	1
Phenanthrene	ND		14		ug/Kg	\$	04/17/15 11:36	04/17/15 16:53	1
Anthracene	ND		14		ug/Kg	₩	04/17/15 11:36	04/17/15 16:53	1
Fluoranthene	ND		14		ug/Kg	₽	04/17/15 11:36	04/17/15 16:53	1
Pyrene	ND		14		ug/Kg	₽	04/17/15 11:36	04/17/15 16:53	1
Benzo[a]anthracene	ND		14		ug/Kg	₽	04/17/15 11:36	04/17/15 16:53	1
Chrysene	ND		14		ug/Kg	₽	04/17/15 11:36	04/17/15 16:53	1
Benzo[b]fluoranthene	ND		14		ug/Kg	₽	04/17/15 11:36	04/17/15 16:53	1
Benzo[k]fluoranthene	ND		14		ug/Kg	₽	04/17/15 11:36	04/17/15 16:53	1
Benzo[a]pyrene	ND		14		ug/Kg	₽	04/17/15 11:36	04/17/15 16:53	1
Indeno[1,2,3-cd]pyrene	ND		14		ug/Kg	₽	04/17/15 11:36	04/17/15 16:53	1
Dibenz(a,h)anthracene	ND		14		ug/Kg	₽	04/17/15 11:36	04/17/15 16:53	1
Benzo[g,h,i]perylene	ND		14		ug/Kg	₩	04/17/15 11:36	04/17/15 16:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	54		35.1 - 144				04/17/15 11:36	04/17/15 16:53	1
2-Fluorobiphenyl (Surr)	67		48.8 - 134				04/17/15 11:36	04/17/15 16:53	1
p-Terphenyl-d14	68		48 - 166				04/17/15 11:36	04/17/15 16:53	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		13		mg/Kg	*	04/16/15 11:17	04/17/15 23:01	1
(C10-C25)									
Residual Range Organics (RRO)	ND		34		mg/Kg	₽	04/16/15 11:17	04/17/15 23:01	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95		50 - 150				04/16/15 11:17	04/17/15 23:01	1
n-Triacontane-d62	100		50 ₋ 150				04/16/15 11:17	04/17/15 23:01	1

TestAmerica Spokane

8

_

. .

11

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Client Sample ID: SVDP-26 (20-20.5)

Date Collected: 04/07/15 17:15 Date Received: 04/09/15 09:52

Lab Sample ID: 590-628-5

Matrix: Solid Percent Solids: 72.9

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		9.4		mg/Kg		04/17/15 09:34	04/21/15 12:56	10
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	27		0.010		%			04/10/15 15:26	1
Percent Solids	73		0.010		%			04/10/15 15:26	1

Client Sample ID: SVDP-24 :GW

Date Collected: 04/07/15 14:40

Date Received: 04/09/15 09:52

Lab Sample ID: 590-628-6

Matrix: Water

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 -	110		0.27		mg/L		04/13/15 14:39	04/15/15 09:11	1
C10]									
Diesel Range Organics (DRO)	30		0.69		mg/L		04/13/15 14:39	04/15/15 09:11	1
(C10-C25)									
Residual Range Organics (RRO)	0.90		0.69		mg/L		04/13/15 14:39	04/15/15 09:11	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	92		50 - 150				04/13/15 14:39	04/15/15 09:11	1
n-Triacontane-d62	40	X	50 ₋ 150				04/13/15 14:39	04/15/15 09:11	1

Client Sample ID: SVDP-25 :GW

Date Collected: 04/07/15 16:03

Date Received: 04/09/15 09:52

Lab Sample	ID: 590-628-7
------------	---------------

Matrix: Water

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 -	3.6		0.25		mg/L		04/13/15 14:39	04/15/15 09:33	1
C10]									
Diesel Range Organics (DRO)	2.3		0.62		mg/L		04/13/15 14:39	04/15/15 09:33	1
(C10-C25)									
Residual Range Organics (RRO)	ND		0.62		mg/L		04/13/15 14:39	04/15/15 09:33	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		50 - 150				04/13/15 14:39	04/15/15 09:33	1
n-Triacontane-d62	45	X	50 ₋ 150				04/13/15 14:39	04/15/15 09:33	1

Client Sample ID: SVDP-26 :GW

Date Collected: 04/07/15 17:40

Date Received: 04/09/15 09:52

Lab Sample ID: 590-628-8

Matrix: Water

Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND	0.25	mg/L		04/13/15 14:43	04/15/15 09:56	1
Diesel Range Organics (DRO) (C10-C25)	ND	0.63	mg/L		04/13/15 14:43	04/15/15 09:56	1
Residual Range Organics (RRO) (C25-C36)	ND	0.63	mg/L		04/13/15 14:43	04/15/15 09:56	1

TestAmerica Spokane

Page 13 of 30

4/22/2015

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-628-1

Client Sample ID: SVDP-26 :GW

Lab Sample ID: 590-628-8

Matrix: Water

Date Collected: 04/07/15 17:40 Date Received: 04/09/15 09:52

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	81		50 - 150	04/13/15 14:43	04/15/15 09:56	1
n-Triacontane-d62	37	X	50 ₋ 150	04/13/15 14:43	04/15/15 09:56	1

Client Sample ID: Trip Blank Lab Sample ID: 590-628-9

Date Collected: 04/02/15 00:00

Matrix: Water Date Received: 04/09/15 09:52

Analyte	Result Qual	ifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L			04/10/15 21:45	1
1,1,1-Trichloroethane	ND	1.0	ug/L			04/10/15 21:45	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			04/10/15 21:45	1
1,1,2-Trichloroethane	ND	1.0	ug/L			04/10/15 21:45	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug/L			04/10/15 21:45	1
1,1-Dichloroethane	ND	1.0	ug/L			04/10/15 21:45	1
1,1-Dichloroethene	ND	1.0	ug/L			04/10/15 21:45	1
1,1-Dichloropropene	ND	1.0	ug/L			04/10/15 21:45	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			04/10/15 21:45	1
1,2,3-Trichloropropane	ND	1.0	ug/L			04/10/15 21:45	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			04/10/15 21:45	1
1,2,4-Trimethylbenzene	ND	1.0	ug/L			04/10/15 21:45	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L			04/10/15 21:45	1
1,2-Dibromoethane (EDB)	ND	1.0	ug/L			04/10/15 21:45	1
1,2-Dichlorobenzene	ND	1.0	ug/L			04/10/15 21:45	1
1,2-Dichloroethane	ND	1.0	ug/L			04/10/15 21:45	1
1,2-Dichloropropane	ND	1.0	ug/L			04/10/15 21:45	1
1,3,5-Trimethylbenzene	ND	1.0	ug/L			04/10/15 21:45	1
1,3-Dichlorobenzene	ND	1.0	ug/L			04/10/15 21:45	1
1,3-Dichloropropane	ND	1.0	ug/L			04/10/15 21:45	1
1,4-Dichlorobenzene	ND	1.0	ug/L			04/10/15 21:45	1
2,2-Dichloropropane	ND	1.0	ug/L			04/10/15 21:45	1
2-Butanone (MEK)	ND	10	ug/L			04/10/15 21:45	1
2-Chlorotoluene	ND	1.0	ug/L			04/10/15 21:45	1
2-Hexanone	ND	10	ug/L			04/10/15 21:45	1
4-Chlorotoluene	ND	1.0	ug/L			04/10/15 21:45	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			04/10/15 21:45	1
Acetone	ND	25	ug/L			04/10/15 21:45	1
Benzene	ND	0.20	ug/L			04/10/15 21:45	1
Bromobenzene	ND	1.0	ug/L			04/10/15 21:45	1
Bromochloromethane	ND	1.0	ug/L			04/10/15 21:45	1
Bromodichloromethane	ND	1.0	ug/L			04/10/15 21:45	1
Bromoform	ND	1.0	ug/L			04/10/15 21:45	1
Bromomethane	ND	5.0	ug/L			04/10/15 21:45	1
Carbon disulfide	ND	1.0	ug/L			04/10/15 21:45	1
Carbon tetrachloride	ND	1.0	ug/L			04/10/15 21:45	1
Chlorobenzene	ND	1.0	ug/L			04/10/15 21:45	1
Chloroethane	ND	1.0	ug/L			04/10/15 21:45	1
Chloroform	ND	1.0	ug/L			04/10/15 21:45	1
Chloromethane	ND	3.0	ug/L			04/10/15 21:45	1
cis-1,2-Dichloroethene	ND	1.0	ug/L			04/10/15 21:45	1

TestAmerica Spokane

4/22/2015

Page 14 of 30

Client Sample Results

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-628-1

Lab Sample ID: 590-628-9

Matrix: Water

Client Sample ID: Trip Blank

Date Collected: 04/02/15 00:00 Date Received: 04/09/15 09:52

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		1.0		ug/L			04/10/15 21:45	1
Dibromochloromethane	ND		1.0		ug/L			04/10/15 21:45	1
Dibromomethane	ND		1.0		ug/L			04/10/15 21:45	1
Dichlorodifluoromethane	ND		1.0		ug/L			04/10/15 21:45	1
Dichlorofluoromethane	ND		0.20		ug/L			04/10/15 21:45	1
Ethylbenzene	ND		1.0		ug/L			04/10/15 21:45	1
Hexachlorobutadiene	ND		2.0		ug/L			04/10/15 21:45	1
Hexane	ND		1.0		ug/L			04/10/15 21:45	1
Isopropylbenzene	ND		1.0		ug/L			04/10/15 21:45	1
m,p-Xylene	ND		2.0		ug/L			04/10/15 21:45	1
Methyl tert-butyl ether	ND		1.0		ug/L			04/10/15 21:45	1
Methylene Chloride	ND		10		ug/L			04/10/15 21:45	1
Naphthalene	ND		2.0		ug/L			04/10/15 21:45	1
n-Butylbenzene	ND		1.0		ug/L			04/10/15 21:45	1
N-Propylbenzene	ND		1.0		ug/L			04/10/15 21:45	1
o-Xylene	ND		1.0		ug/L			04/10/15 21:45	1
p-Isopropyltoluene	ND		1.0		ug/L			04/10/15 21:45	1
sec-Butylbenzene	ND		1.0		ug/L			04/10/15 21:45	1
Styrene	ND		1.0		ug/L			04/10/15 21:45	1
tert-Butanol	ND		5.0		ug/L			04/10/15 21:45	1
tert-Butylbenzene	ND		1.0		ug/L			04/10/15 21:45	1
Tetrachloroethene	ND		1.0		ug/L			04/10/15 21:45	1
Toluene	ND		1.0		ug/L			04/10/15 21:45	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/10/15 21:45	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			04/10/15 21:45	1
Trichloroethene	ND		1.0		ug/L			04/10/15 21:45	1
Trichlorofluoromethane	ND		1.0		ug/L			04/10/15 21:45	1
Vinyl chloride	ND		0.20		ug/L			04/10/15 21:45	1
Xylenes, Total	ND		3.0		ug/L			04/10/15 21:45	1
Surrogate		Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		70 - 140			_		04/10/15 21:45	1
4-Bromofluorobenzene (Surr)	99		68.7 - 141					04/10/15 21:45	1
Dibromofluoromethane (Surr)	105		71.2 - 143					04/10/15 21:45	1
Toluene-d8 (Surr)	100		74.1 - 135					04/10/15 21:45	1

Method: NWTPH-Gx - Northwe	st - Volatile Petro	oleum Prod	ducts (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		100		ug/L			04/10/15 21:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		68.7 - 141			_		04/10/15 21:45	1

TestAmerica Spokane

4

6

8

10

11

12

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 590-1077/1-A

Matrix: Solid

Analysis Batch: 1073

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 1077

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.015		mg/Kg		04/10/15 09:34	04/10/15 09:05	1
Ethylbenzene	ND		0.10		mg/Kg		04/10/15 09:34	04/10/15 09:05	1
m,p-Xylene	ND		0.40		mg/Kg		04/10/15 09:34	04/10/15 09:05	1
Methyl tert-butyl ether	ND		0.050		mg/Kg		04/10/15 09:34	04/10/15 09:05	1
Naphthalene	ND		0.20		mg/Kg		04/10/15 09:34	04/10/15 09:05	1
o-Xylene	ND		0.20		mg/Kg		04/10/15 09:34	04/10/15 09:05	1
Toluene	ND		0.10		mg/Kg		04/10/15 09:34	04/10/15 09:05	1
Xylenes, Total	ND		0.60		mg/Kg		04/10/15 09:34	04/10/15 09:05	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fa	1C
1,2-Dichloroethane-d4 (Surr)	96		74.7 - 120	04/10/15 09:34	04/10/15 09:05		1
4-Bromofluorobenzene (Surr)	101		69.8 - 140	04/10/15 09:34	04/10/15 09:05		1
Dibromofluoromethane (Surr)	97		80 - 120	04/10/15 09:34	04/10/15 09:05		1
Toluene-d8 (Surr)	100		78.5 - 125	04/10/15 09:34	04/10/15 09:05		1

Lab Sample ID: LCS 590-1077/2-A

Matrix: Solid

Analysis Batch: 1073

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 1077

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.500	0.479		mg/Kg		96	75.8 - 123	
Ethylbenzene	0.500	0.477		mg/Kg		95	77.3 _ 121	
m,p-Xylene	0.500	0.481		mg/Kg		96	77.7 - 124	
Methyl tert-butyl ether	0.500	0.473		mg/Kg		95	60 - 140	
Naphthalene	0.500	0.440		mg/Kg		88	55.1 - 142	
o-Xylene	0.500	0.478		mg/Kg		96	76.7 _ 129	
Toluene	0.500	0.490		ma/Ka		98	76.6 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		74.7 - 120
4-Bromofluorobenzene (Surr)	100		69.8 - 140
Dibromofluoromethane (Surr)	100		80 - 120
Toluene-d8 (Surr)	99		78.5 - 125

Lab Sample ID: MB 590-1091/4

Matrix: Water

Analysis Batch: 1091

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			04/10/15 19:06	1
1,1,1-Trichloroethane	ND		1.0		ug/L			04/10/15 19:06	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			04/10/15 19:06	1
1,1,2-Trichloroethane	ND		1.0		ug/L			04/10/15 19:06	1
1,1,2-Trichlorotrifluoroethane	ND		1.0		ug/L			04/10/15 19:06	1
1,1-Dichloroethane	ND		1.0		ug/L			04/10/15 19:06	1
1,1-Dichloroethene	ND		1.0		ug/L			04/10/15 19:06	1
1,1-Dichloropropene	ND		1.0		ug/L			04/10/15 19:06	1

TestAmerica Spokane

Page 16 of 30

4/22/2015

QC Sample Results

Client: GeoEngineers Inc

N-Propylbenzene

Project/Site: Tiger Oil Summitview

Lab Sample ID: MB 590-1091/4

TestAmerica Job ID: 590-628-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water Analysis Batch: 1091

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

	MB M	IB						
Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	ND ND	1.0		ug/L			04/10/15 19:06	1
1,2,3-Trichloropropane	ND	1.0		ug/L			04/10/15 19:06	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			04/10/15 19:06	1
1,2,4-Trimethylbenzene	ND	1.0		ug/L			04/10/15 19:06	1
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/L			04/10/15 19:06	1
1,2-Dibromoethane (EDB)	ND	1.0		ug/L			04/10/15 19:06	1
1,2-Dichlorobenzene	ND	1.0		ug/L			04/10/15 19:06	1
1,2-Dichloroethane	ND	1.0		ug/L			04/10/15 19:06	1
1,2-Dichloropropane	ND	1.0		ug/L			04/10/15 19:06	1
1,3,5-Trimethylbenzene	ND	1.0		ug/L			04/10/15 19:06	1
1,3-Dichlorobenzene	ND	1.0		ug/L			04/10/15 19:06	1
1,3-Dichloropropane	ND	1.0		ug/L			04/10/15 19:06	1
1,4-Dichlorobenzene	ND	1.0		ug/L			04/10/15 19:06	1
2,2-Dichloropropane	ND	1.0		ug/L			04/10/15 19:06	1
2-Butanone (MEK)	ND	10		ug/L			04/10/15 19:06	1
2-Chlorotoluene	ND	1.0		ug/L			04/10/15 19:06	1
2-Hexanone	ND	10		ug/L			04/10/15 19:06	1
4-Chlorotoluene	ND	1.0		ug/L			04/10/15 19:06	1
4-Methyl-2-pentanone (MIBK)	ND	10		ug/L			04/10/15 19:06	1
Acetone	ND	25		ug/L			04/10/15 19:06	
Benzene	ND	0.20		ug/L			04/10/15 19:06	1
Bromobenzene	ND	1.0		ug/L			04/10/15 19:06	1
Bromochloromethane	ND	1.0		ug/L			04/10/15 19:06	
Bromodichloromethane	ND	1.0		ug/L			04/10/15 19:06	1
Bromoform	ND	1.0		ug/L			04/10/15 19:06	1
Bromomethane	ND	5.0					04/10/15 19:06	
Carbon disulfide	ND	1.0		ug/L ug/L			04/10/15 19:06	1
Carbon tetrachloride	ND	1.0					04/10/15 19:06	1
				ug/L				
Chlorobenzene	ND ND	1.0		ug/L			04/10/15 19:06	1
Chloroethane		1.0		ug/L			04/10/15 19:06	1
Chloroform	ND	1.0		ug/L			04/10/15 19:06	
Chloromethane	ND	3.0		ug/L			04/10/15 19:06	1
cis-1,2-Dichloroethene	ND	1.0		ug/L			04/10/15 19:06	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			04/10/15 19:06	1
Dibromochloromethane	ND	1.0		ug/L			04/10/15 19:06	1
Dibromomethane	ND	1.0		ug/L			04/10/15 19:06	1
Dichlorodifluoromethane	ND	1.0		ug/L			04/10/15 19:06	
Dichlorofluoromethane	ND	0.20		ug/L			04/10/15 19:06	1
Ethylbenzene	ND	1.0		ug/L			04/10/15 19:06	1
Hexachlorobutadiene	ND	2.0		ug/L			04/10/15 19:06	1
Hexane	ND	1.0		ug/L			04/10/15 19:06	1
Isopropylbenzene	ND	1.0		ug/L			04/10/15 19:06	1
m,p-Xylene	ND	2.0		ug/L			04/10/15 19:06	1
Methyl tert-butyl ether	ND	1.0		ug/L			04/10/15 19:06	1
Methylene Chloride	ND	10		ug/L			04/10/15 19:06	1
Naphthalene	ND	2.0		ug/L			04/10/15 19:06	1
n-Butylbenzene	ND	1.0		ug/L			04/10/15 19:06	1

TestAmerica Spokane

04/10/15 19:06

Page 17 of 30

1.0

ug/L

ND

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 590-1091/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 1091

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		1.0		ug/L			04/10/15 19:06	1
p-Isopropyltoluene	ND		1.0		ug/L			04/10/15 19:06	1
sec-Butylbenzene	ND		1.0		ug/L			04/10/15 19:06	1
Styrene	ND		1.0		ug/L			04/10/15 19:06	1
tert-Butanol	ND		5.0		ug/L			04/10/15 19:06	1
tert-Butylbenzene	ND		1.0		ug/L			04/10/15 19:06	1
Tetrachloroethene	ND		1.0		ug/L			04/10/15 19:06	1
Toluene	ND		1.0		ug/L			04/10/15 19:06	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/10/15 19:06	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			04/10/15 19:06	1
Trichloroethene	ND		1.0		ug/L			04/10/15 19:06	1
Trichlorofluoromethane	ND		1.0		ug/L			04/10/15 19:06	1
Vinyl chloride	ND		0.20		ug/L			04/10/15 19:06	1
Xylenes, Total	ND		3.0		ug/L			04/10/15 19:06	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 100 70 - 140 04/10/15 19:06 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) 99 68.7 - 141 04/10/15 19:06 Dibromofluoromethane (Surr) 106 71.2 - 143 04/10/15 19:06 Toluene-d8 (Surr) 74.1 - 135 04/10/15 19:06 101

Lab Sample ID: LCS 590-1091/5

Matrix: Water

Analysis Batch: 1091								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	10.0	11.1		ug/L		111	60 - 140	
1,1,1-Trichloroethane	10.0	10.3		ug/L		103	60 - 140	
1,1,2,2-Tetrachloroethane	10.0	10.6		ug/L		106	60 _ 140	
1,1,2-Trichloroethane	10.0	10.8		ug/L		108	60 - 140	
1,1,2-Trichlorotrifluoroethane	10.0	10.9		ug/L		109	60 - 140	
1,1-Dichloroethane	10.0	10.8		ug/L		108	60 - 140	
1,1-Dichloroethene	10.0	11.0		ug/L		110	78.1 - 155	
1,1-Dichloropropene	10.0	11.0		ug/L		110	60 - 140	
1,2,3-Trichlorobenzene	10.0	10.5		ug/L		105	60 - 140	
1,2,3-Trichloropropane	10.0	10.7		ug/L		107	60 - 140	
1,2,4-Trichlorobenzene	10.0	10.2		ug/L		102	60 - 140	
1,2,4-Trimethylbenzene	10.0	10.1		ug/L		101	60 - 140	
1,2-Dibromo-3-Chloropropane	10.0	11.3		ug/L		113	60 - 140	
1,2-Dichlorobenzene	10.0	10.5		ug/L		105	60 - 140	
1,2-Dichloroethane	10.0	10.5		ug/L		105	63.9 _ 144	
1,2-Dichloropropane	10.0	10.5		ug/L		105	60 - 140	
1,3,5-Trimethylbenzene	10.0	10.1		ug/L		101	60 - 140	
1,3-Dichlorobenzene	10.0	10.6		ug/L		106	60 - 140	
1,3-Dichloropropane	10.0	10.9		ug/L		109	60 - 140	
1,4-Dichlorobenzene	10.0	10.3		ug/L		103	60 - 140	
2,2-Dichloropropane	10.0	10.3		ug/L		103	60 - 140	
2-Butanone (MEK)	50.0	57.7		ug/L		115	60 - 140	

TestAmerica Spokane

Page 18 of 30

Client Sample ID: Lab Control Sample Prep Type: Total/NA

QC Sample Results

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Lab Sample ID: LCS 590-1091/5

TestAmerica Job ID: 590-628-1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water

Analysis Batch: 1091	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2-Chlorotoluene	10.0	10.3		ug/L		103	60 - 140	
2-Hexanone	50.0	59.1		ug/L		118	60 - 140	
4-Chlorotoluene	10.0	10.1		ug/L		101	60 - 140	
4-Methyl-2-pentanone (MIBK)	50.0	57.5		ug/L		115	60 - 140	
Acetone	50.0	51.7		ug/L		103	60 - 140	
Benzene	10.0	10.6		ug/L		106	80 - 140	
Bromobenzene	10.0	10.7		ug/L		107	60 - 140	
Bromochloromethane	10.0	10.9		ug/L		109	60 - 140	
Bromodichloromethane	10.0	10.3		ug/L		103	60 - 140	
Bromoform	10.0	10.7		ug/L		107	60 - 140	
Bromomethane	10.0	12.2		ug/L		122	60 - 140	
Carbon disulfide	10.0	11.3		ug/L		113	60 - 140	
Carbon tetrachloride	10.0	11.0		ug/L		110	60 - 140	
Chlorobenzene	10.0	11.0		ug/L		110	79.2 - 125	
Chloroethane	10.0	11.7		ug/L		117	60 - 140	
Chloroform	10.0	10.4		ug/L		104	60 - 140	
Chloromethane	10.0	12.1		ug/L		121	60 - 140	
cis-1,2-Dichloroethene	10.0	10.6		ug/L		106	60 - 140	
cis-1,3-Dichloropropene	10.0	10.3		ug/L		103	60 - 140	
Dibromochloromethane	10.0	10.7		ug/L		107	60 - 140	
Dibromomethane	10.0	11.3		ug/L		113	60 - 140	
Dichlorodifluoromethane	10.0	13.2		ug/L		132	60 - 140	
Dichlorofluoromethane	10.0	11.3		ug/L		113	60 - 140	
Ethylbenzene	10.0	10.6		ug/L		106	80 - 120	
Hexachlorobutadiene	10.0	10.5		ug/L		105	80 - 120	
Hexane	10.0	10.9		ug/L		109	60 - 140	
Isopropylbenzene	10.0	10.4		ug/L		104	60 - 140	
m,p-Xylene	10.0	10.6		ug/L		106	80 - 120	
Methyl tert-butyl ether	10.0	11.1		ug/L		111	80.1 - 128	
Methylene Chloride	10.0	9.14	\bar{J}	ug/L		91	60 - 140	
Naphthalene	10.0	10.7		ug/L		107	62.8 - 132	
n-Butylbenzene	10.0	10.1		ug/L		101	60 - 140	
N-Propylbenzene	10.0	10.1		ug/L		101	60 - 140	
o-Xylene	10.0	10.5		ug/L		105	80 - 120	
p-Isopropyltoluene	10.0	10.6		ug/L		106	60 - 140	
sec-Butylbenzene	10.0	10.1		ug/L		101	60 - 140	
Styrene	10.0	10.6		ug/L		106	60 - 140	
tert-Butanol	100	129		ug/L		129	60 - 140	
tert-Butylbenzene	10.0	10.7		ug/L		107	60 - 140	
Tetrachloroethene	10.0	11.0		ug/L		110	60 - 140	
Toluene	10.0	10.6		ug/L		106	80 - 123	
trans-1,2-Dichloroethene	10.0	10.9		ug/L		109	60 - 140	
trans-1,3-Dichloropropene	10.0	10.4		ug/L		104	60 - 140	
Trichloroethene	10.0	11.4		ug/L		114	74.8 - 123	
Trichlorofluoromethane	10.0	10.7		ug/L		107	60 - 140	
Vinyl chloride	10.0	12.3		ug/L		123	60 - 140	

TestAmerica Spokane

Page 19 of 30

4

8

12

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590-1091/5

Matrix: Water

Analysis Batch: 1091

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		70 - 140
4-Bromofluorobenzene (Surr)	97		68.7 ₋ 141
Dibromofluoromethane (Surr)	105		71.2 - 143
Toluene-d8 (Surr)	100		74.1 - 135

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-1077/1-A

Matrix: Solid

Analysis Batch: 1074

Client Sample ID: Method Blank Prep Type: Total/NA

MDL Unit

Prep Batch: 1077

Analyzed

Dil Fac

Result Qualifier Analyte

MB MB

Gasoline	ND		5.0	mg/Kg	04/10/15 09:34	04/10/15 09:05	1
	МВ	МВ					
Surrogato	%Pacayany	Qualifier	l imite		Prepared	Analyzed	Dil Fac

RL

Curroguio	70110001019	Quamici	2,,,,,,,	• •	reparea	rinaryzou	<i>D</i> ao
4-Bromofluorobenzene (Surr)	101		41.5 - 162	04/10	0/15 09:34	04/10/15 09:05	1

Lab Sample ID: LCS 590-1077/3-A

Matrix: Solid

Analysis Batch: 1074

Client Sample ID:	: Lab Control Sample
	Prep Type: Total/NA
	D D 4 1 4000

Prepared

Prep Batch: 1077

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline	50.0	51.3		mg/Kg		103	74.4 - 124	

LCS LCS

мв мв

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorohenzene (Surr)	102	41.5 162

Lab Sample ID: MB 590-1090/4

Matrix: Water

Analysis Batch: 1090

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Gasoline	ND		100		ug/L				04/10/15 19:06	1
	МВ	MB								

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		68.7 - 141		04/10/15 19:06	1

Lab Sample ID: LCS 590-1090/6

Matrix: Water

Analysis Batch: 1090

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Added Analyte Result Qualifier Limits Unit %Rec Gasoline 1000 101 1010 ug/L 80 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		68.7 - 141

TestAmerica Spokane

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-1155/1-A

Matrix: Solid

Analysis Batch: 1154

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 1155

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
2-Methylnaphthalene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
1-Methylnaphthalene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Acenaphthylene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Acenaphthene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Fluorene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Phenanthrene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Anthracene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Fluoranthene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Pyrene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Benzo[a]anthracene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Chrysene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Benzo[b]fluoranthene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Benzo[k]fluoranthene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Benzo[a]pyrene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Indeno[1,2,3-cd]pyrene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Dibenz(a,h)anthracene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1
Benzo[g,h,i]perylene	ND		10		ug/Kg		04/17/15 11:36	04/17/15 12:37	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	45		35.1 - 144	04/17/15 11:36	04/17/15 12:37	1
2-Fluorobiphenyl (Surr)	53		48.8 _ 134	04/17/15 11:36	04/17/15 12:37	1
p-Terphenyl-d14	80		48 - 166	04/17/15 11:36	04/17/15 12:37	1

Lab Sample ID: LCS 590-1155/2-A

Matrix: Solid

Analysis Batch: 1154

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 1155

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	267	194		ug/Kg		73	51.4 - 133	
Fluorene	267	286		ug/Kg		107	65.7 - 123	
Chrysene	267	273		ug/Kg		102	57.3 - 133	
Indeno[1,2,3-cd]pyrene	267	247		ug/Kg		92	54.6 - 142	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	59		35.1 - 144
2-Fluorobiphenyl (Surr)	73		48.8 - 134
p-Terphenyl-d14	70		48 - 166

Lab Sample ID: LCSD 590-1155/3-A

Matrix: Solid

Analysis Batch: 1154

Client Sample ID: L	.ab	Control Sample Dup
		Prep Type: Total/NA

Prep Batch: 1155

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	267	201		ug/Kg		75	51.4 - 133	3	35
Fluorene	267	310		ug/Kg		116	65.7 - 123	8	35
Chrysene	267	264		ug/Kg		99	57.3 - 133	3	35

TestAmerica Spokane

4/22/2015

Page 21 of 30

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCSD 590-1155/3-A

Matrix: Solid Analysis Batch: 1154 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 1155

RPD

Added Result Qualifier RPD Limit Analyte Unit D %Rec Limits 275 Indeno[1,2,3-cd]pyrene 267 103 35 ug/Kg 54.6 - 142 11

LCSD LCSD

LCSD LCSD %Recovery Qualifier Limits 35.1 - 144 61 48.8 - 134 90

48 - 166

Spike

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

76

Lab Sample ID: MB 590-1136/1-A

Matrix: Solid

Surrogate

Nitrobenzene-d5

p-Terphenyl-d14

2-Fluorobiphenyl (Surr)

Analysis Batch: 1160

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 1136

Dil Fac

MR MR Result Qualifier MDL Unit Dil Fac Analyte RL Prepared Analyzed 10 04/16/15 11:17 04/17/15 15:25 ND mg/Kg Diesel Range Organics (DRO) (C10-C25) ND 25 04/16/15 11:17 04/17/15 15:25 Residual Range Organics (RRO) mg/Kg

(C25-C36)

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed o-Terphenyl 95 50 - 150 04/16/15 11:17 04/17/15 15:25 103 50 - 150 04/16/15 11:17 04/17/15 15:25 n-Triacontane-d62

Lab Sample ID: LCS 590-1136/2-A

Matrix: Solid

Analysis Batch: 1160

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 1136

Spike LCS LCS babbA Result Qualifier Analyte Unit D %Rec Limits 66.7 58.7 mg/Kg 88 50 - 150 Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) 66.7 60.5 mg/Kg 91 50 - 150

(C25-C36)

LCS LCS

Surrogate %Recovery Qualifier Limits 50 - 150 o-Terphenyl 99 105 50 - 150 n-Triacontane-d62

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC)

Lab Sample ID: MB 590-1104/1-A

Matrix: Water

Analysis Batch: 1112

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 1104

мв мв Result Qualifier **RL** Unit Prepared Analyzed Dil Fac RL 0.25 Gasoline Range Organics [C6 - C10] ND ma/L 04/13/15 14:39 04/15/15 08:48 Diesel Range Organics (DRO) ND 0.63 mg/L 04/13/15 14:39 04/15/15 08:48 (C10-C25)

TestAmerica Spokane

Page 22 of 30

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Method: NWTPH-HCID - Northwest - Hydrocarbon Identification (GC) (Continued)

Lab Sample ID: MB 590-1104/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 1112** Prep Batch: 1104

MB MB Analyte Result Qualifier RL **RL** Unit D Prepared Analyzed Dil Fac 0.63 04/13/15 14:39 04/15/15 08:48 ND mg/L Residual Range Organics (RRO)

(C25-C36)

MB MB Qualifier Dil Fac Surrogate %Recovery Limits Prepared Analyzed o-Terphenyl 114 50 - 150 04/13/15 14:39 04/15/15 08:48

n-Triacontane-d62 52 50 - 150 04/13/15 14:39 04/15/15 08:48

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 590-1151/2-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Prep Batch: 1151

Analysis Batch: 1189 MR MR

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.025 mg/Kg 04/17/15 09:34 Lead ND 04/21/15 10:52

Lab Sample ID: LCS 590-1151/1-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 1189 Prep Batch: 1151 Spike LCS LCS

Added Analyte Result Qualifier Unit %Rec Limits Lead 1.00 0.955 95 80 - 120 mg/Kg

Client: GeoEngineers Inc Project/Site: Tiger Oil Summitview

Client Sample ID: SVDP-22 (20.5-21) Lab Sample ID: 590-628-1

Date Collected: 04/07/15 11:30 **Matrix: Solid** Date Received: 04/09/15 09:52 Percent Solids: 88.8

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.839 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	8260C		10	6.839 g	5 mL	1073	04/10/15 11:01	MRS	TAL SPK
Total/NA	Prep	5035			6.839 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		10	6.839 g	5 mL	1074	04/10/15 11:01	MRS	TAL SPK
Total/NA	Prep	3550C			15.60 g	2 mL	1155	04/17/15 11:36	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.60 g	2 mL	1154	04/17/15 15:23	NMI	TAL SPK
Total/NA	Prep	3550C			15.60 g	2 mL	1155	04/17/15 11:36	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		2	15.60 g	2 mL	1154	04/17/15 17:38	NMI	TAL SPK
Total/NA	Prep	3550C			8.11 g	5 mL	1136	04/16/15 11:17	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	8.11 g	5 mL	1160	04/17/15 21:25	NMI	TAL SPK
Total/NA	Prep	3050B			1.58 g	50 mL	1151	04/17/15 09:34	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.58 g	50 mL	1189	04/21/15 12:47	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1086	04/10/15 15:26	NMI	TAL SPK

Client Sample ID: SVDP-23 (18-18.5) Lab Sample ID: 590-628-2

Date Collected: 04/07/15 13:00 **Matrix: Solid** Date Received: 04/09/15 09:52 Percent Solids: 81.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.886 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	8260C		1	6.886 g	5 mL	1073	04/10/15 11:23	MRS	TAL SPK
Total/NA	Prep	5035			6.886 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	6.886 g	5 mL	1074	04/10/15 11:23	MRS	TAL SPK
Total/NA	Prep	3550C			15.71 g	2 mL	1155	04/17/15 11:36	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.71 g	2 mL	1154	04/17/15 15:46	NMI	TAL SPK
Total/NA	Prep	3550C			15.13 g	5 mL	1136	04/16/15 11:17	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.13 g	5 mL	1160	04/17/15 21:49	NMI	TAL SPK
Total/NA	Prep	3050B			1.50 g	50 mL	1151	04/17/15 09:34	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.50 g	50 mL	1189	04/21/15 12:49	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1086	04/10/15 15:26	NMI	TAL SPK

Client Sample ID: SVDP-24 (19.5-20) Lab Sample ID: 590-628-3

Date Collected: 04/07/15 14:00 **Matrix: Solid** Date Received: 04/09/15 09:52 Percent Solids: 83.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.597 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	8260C		10	6.597 g	5 mL	1073	04/10/15 11:46	MRS	TAL SPK
Total/NA	Prep	5035			6.597 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	8260C		100	6.597 g	5 mL	1073	04/10/15 14:18	MRS	TAL SPK
Total/NA	Prep	5035			6.597 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		10	6.597 g	5 mL	1074	04/10/15 11:46	MRS	TAL SPK
Total/NA	Prep	3550C			15.35 g	2 mL	1155	04/17/15 11:36	NMI	TAL SPK

TestAmerica Spokane

Page 24 of 30

4/22/2015

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Lab Sample ID: 590-628-3

Client Sample ID: SVDP-24 (19.5-20) Date Collected: 04/07/15 14:00 Matrix: Solid Date Received: 04/09/15 09:52 Percent Solids: 83.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8270D SIM		1	15.35 g	2 mL	1154	04/17/15 16:08	NMI	TAL SPK
Total/NA	Prep	3550C			15.65 g	5 mL	1136	04/16/15 11:17	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.65 g	5 mL	1160	04/17/15 22:13	NMI	TAL SPK
Total/NA	Prep	3050B			1.40 g	50 mL	1151	04/17/15 09:34	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.40 g	50 mL	1189	04/21/15 12:52	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1086	04/10/15 15:26	NMI	TAL SPK

Client Sample ID: SVDP-25 (19.5-20) Lab Sample ID: 590-628-4

Date Collected: 04/07/15 15:40 **Matrix: Solid** Date Received: 04/09/15 09:52 Percent Solids: 78.0

ato itocorrou									. 0.00	. Comaci i cit
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.54 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	8260C		1	6.54 g	5 mL	1073	04/10/15 12:08	MRS	TAL SPK
Total/NA	Prep	5035			6.54 g	5 mL	1077	04/10/15 09:34	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	6.54 g	5 mL	1074	04/10/15 12:08	MRS	TAL SPK
Total/NA	Prep	3550C			15.61 g	2 mL	1155	04/17/15 11:36	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.61 g	2 mL	1154	04/17/15 16:31	NMI	TAL SPK
Total/NA	Prep	3550C			8.83 g	5 mL	1136	04/16/15 11:17	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	8.83 g	5 mL	1160	04/17/15 22:37	NMI	TAL SPK
Total/NA	Prep	3050B			1.61 g	50 mL	1151	04/17/15 09:34	JSP	TAL SPK
Total/NA	Analysis	6010C		10	1.61 g	50 mL	1189	04/21/15 12:54	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1086	04/10/15 15:26	NMI	TAL SPK

Client Sample ID: SVDP-26 (20-20.5) Lab Sample ID: 590-628-5

Date Collected: 04/07/15 17:15 **Matrix: Solid** Date Received: 04/09/15 09:52 Percent Solids: 72.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.413 g	5 mL	1077	04/10/15 09:34	MRS	TAL SP
Total/NA	Analysis	8260C		1	5.413 g	5 mL	1073	04/10/15 12:31	MRS	TAL SP
Total/NA	Prep	5035			5.413 g	5 mL	1077	04/10/15 09:34	MRS	TAL SP
Total/NA	Analysis	NWTPH-Gx		1	5.413 g	5 mL	1074	04/10/15 12:31	MRS	TAL SP
Total/NA	Prep	3550C			15.14 g	2 mL	1155	04/17/15 11:36	NMI	TAL SP
Total/NA	Analysis	8270D SIM		1	15.14 g	2 mL	1154	04/17/15 16:53	NMI	TAL SP
Total/NA	Prep	3550C			15.32 g	5 mL	1136	04/16/15 11:17	NMI	TAL SPI
Total/NA	Analysis	NWTPH-Dx		1	15.32 g	5 mL	1160	04/17/15 23:01	NMI	TAL SP
Total/NA	Prep	3050B			1.82 g	50 mL	1151	04/17/15 09:34	JSP	TAL SP
Total/NA	Analysis	6010C		10	1.82 g	50 mL	1189	04/21/15 12:56	JSP	TAL SP
Total/NA	Analysis	Moisture		1			1086	04/10/15 15:26	NMI	TAL SP

TestAmerica Spokane

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

Client Sample ID: SVDP-24 :GW

Lab Sample ID: 590-628-6 Date Collected: 04/07/15 14:40

Matrix: Water

Date Received: 04/09/15 09:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			114.5 mL	2 mL	1104	04/13/15 14:39	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	114.5 mL	2 mL	1112	04/15/15 09:11	NMI	TAL SPK

Client Sample ID: SVDP-25 :GW Lab Sample ID: 590-628-7

Matrix: Water

Date Collected: 04/07/15 16:03 Date Received: 04/09/15 09:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			126.7 mL	2 mL	1104	04/13/15 14:39	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	126.7 mL	2 mL	1112	04/15/15 09:33	NMI	TAL SPK

Client Sample ID: SVDP-26 :GW Lab Sample ID: 590-628-8

Date Collected: 04/07/15 17:40 Matrix: Water

Date Received: 04/09/15 09:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			124.9 mL	2 mL	1104	04/13/15 14:43	NMI	TAL SPK
Total/NA	Analysis	NWTPH-HCID		1	124.9 mL	2 mL	1112	04/15/15 09:56	NMI	TAL SPK

Lab Sample ID: 590-628-9 **Client Sample ID: Trip Blank**

Date Collected: 04/02/15 00:00 **Matrix: Water**

Date Received: 04/09/15 09:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	43 mL	43 mL	1091	04/10/15 21:45	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	43 ml	43 ml	1090	04/10/15 21:45	MRS	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Certification Summary

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-628-1

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date		
Alaska (UST)	State Program	10	UST-071	10-31-15		
Washington	State Program	10	C569	01-06-16		

2

3

4

q

10

11

40

Method Summary

Client: GeoEngineers Inc

Project/Site: Tiger Oil Summitview

TestAmerica Job ID: 590-628-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	TAL SPK
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
NWTPH-HCID	Northwest - Hydrocarbon Identification (GC)	NWTPH	TAL SPK
6010C	Metals (ICP)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

5

6

Я

9

10

11

13

Chain of Custody Record

Test	An	ner	ico

Spokane, WA 99206
Phone (509) 924-9200 Fax (509) 924-9290

Client Information	Cumpier:	Josh Lee	_ (JN	Joh	nston.	Miche	elle A					илег (г	acking	NO(s)			590-253-89.1		
Client Contact JR Sugalski	Phone: 4	06-239-	1810	E-Mi mic		ohnsto	on@te	estam	ericaino	: com							Page. Page 1 of 1		
Company GeoEngineers Inc					T					ysis R	20011	etor					Job#		
Address. 523 East Second Ave	Due Date Red	quested:							Allai	ysis r	eque	Stet	<u>.</u>			33,	Preservation Co		<u> </u>
city: Spokane	TAT Request																A - HCL B - NaOH C - Zn Acetate	M - Hexa N - None O - AsNa	
State, Zip: VVA, 99202	ک 1	stel.							1								D - Nitric Acid E - NaHSO4	P - Na2O Q - Na2S)4S
Phone:	PO#															,	F - MeOH	R - Na2S: S - H2SO	2803
509-209-2830(Tel) Email:	Purchase (Order not require	•d	 -	- 2				ļ								H - Ascorbic Acid		Oodecahydrate
jsugalski@geoengineers com Project Name	Project#:				- S		ă		l							Sign	J - DI Water	V - MCAA W - ph 4-	A
Tiger Oil - Sumrtview - Soil	59000440					S	NWTPH_Dx									ntain	L - EDA	Z - other	
Site:	SSOW#:				Same	2 5	SIM, NV									00 00	Other:		!
		Sample	Sample Type (C=comp,	Matrix (W=water, s=solid, 0=waste/oil,	ejd Filfered	REGOC, NWTPH_GX_MS	6010C, 8270D_S	15.70								Total Number			
Sample Identification	Sample D	Date Time		BT=Tissue, A=Alterion: Code:	K	E S	8		~~~, ; ;		(S.) (<u> </u>	· • • • • • • • • • • • • • • • • • • •	7	C OE	Š	Special I	nstruction	is/Note:
SVDP-22 (20:5-21)	4/7/20	15 1130	G	Š		×	×	##""#. A	<u>***</u>	3.7		201	<u> </u>	7, , ,	1	8		<u>mander o</u>	
SVDP-23(18-18.5)		/300	1	1	\sqcap	×	ΙX				_				_				
5VDA-24(19.5-20)		1400		1	\prod	X	X				十				_	O.	3		:
SVDP-25 (19.5-20)		1540				X	λ					1	ļ		_†				T
SVDP-26(20-20,5)	V	1715	V	V	Π	X	Х				1			l					
SVDP - Ja: GD					\prod					1 1					7	2000			<u> </u>
5VDP-23:6W					П											145			:
5VDP - 24:GN		1440	€ ₁	W	Ŋ	T-		X								2			i
SVDP-25: GW		1603	ì	1	1			χ			$\neg \top$				$\neg \uparrow$				
5VDP-26: 4W		1740	V	\forall	V			χ								1		_	: !
Trio Blook-																×			1
Possible Hazard Identification					s	$\overline{}$				may b	e ass	essed	if sa	mple	are	retain	ed longer than 1		
Non-Hazard Flammable Skin Irritant Poiso. Deliverable Requested: I, II, III, IV, Other (specify)	nB □Ui	nknown Ra	adiological		_ s		_	To C	<i>lient</i> s/QC R	eguirer	Disp	osal E	By Lat			Archi	ive For	Months	1
Empty Kit Relinguished by:		Date.			Time								hod of	Shipme	ent				
Reinquished by	Data/Time			Company			ewed b	у ,	- 11	, ,							Ott.	Company	/n.
Relinquished by.					-	Rec	eived b	ela:	K	ato				Date/		7	9:52	Company	America
Relinquished by:					_		eived b			\mathcal{L}									
					_									Date/.	ime:			Company	
Custody Seals Intact: Custody Seal No.	590-628 C	Chain of Custody	У			Coo	er Ten	nperatu	re(s) °C	and Other	r Rema C	Ks.	ו ניצ						,

- O

5

<u>a</u> 4

Login Sample Receipt Checklist

Client: GeoEngineers Inc Job Number: 590-628-1

Login Number: 628 List Source: TestAmerica Spokane

List Number: 1

Creator: Kratz, Sheila J

Creator. Kratz, Stiella J		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.6
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Trip Blank received, but not listed on COC.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

7

9

10

46

TestAmerica Spokane

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-731-1

Client Project/Site: Tiger Oil/0504-101-02

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

dancue timington

Authorized for release by: 5/13/2015 2:09:04 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GeoEngineers Inc Project/Site: Tiger Oil/0504-101-02 TestAmerica Job ID: 590-731-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	
Definitions	5
Client Sample Results	6
QC Sample Results	11
Chronicle	16
Certification Summary	18
Method Summary	19
Chain of Custody	20
Receint Checklists	21

Case Narrative

Client: GeoEngineers Inc

Project/Site: Tiger Oil/0504-101-02

TestAmerica Job ID: 590-731-1

Job ID: 590-731-1

Laboratory: TestAmerica Spokane

Narrative

Receipt

The samples were received on 4/29/2015 4:25 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 8.1° C.

Except:

The following samples were received at the laboratory outside the required temperature criteria: SVMW-Dup (590-731-1), SVMW-5 (22.5-23) (590-731-2) and SVMW-4 (22.5-23) (590-731-3).

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method Moisture: The sample duplicate (DUP) precision for 590-1316 was outside control limits. Sample non-homogeneity is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

Sample Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil/0504-101-02

TestAmerica Job ID: 590-731-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
590-731-1	SVMW-Dup	Solid	04/27/15 08:00 04/29/15 16:25
590-731-2	SVMW-5 (22.5-23)	Solid	04/27/15 09:30 04/29/15 16:25
590-731-3	SVMW-4 (22.5-23)	Solid	04/27/15 12:00 04/29/15 16:25

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Tiger Oil/0504-101-02

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 590-731-1

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Client: GeoEngineers Inc

Project/Site: Tiger Oil/0504-101-02

Date Collected: 04/27/15 08:00

Date Received: 04/29/15 16:25

Client Sample ID: SVMW-Dup

TestAmerica Job ID: 590-731-1

Lab Sample ID: 590-731-1

Matrix: Solid

Percent Solids: 63.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.040		mg/Kg	<u> </u>	05/01/15 12:55	05/01/15 13:26	1
Ethylbenzene	ND		0.27		mg/Kg	₩	05/01/15 12:55	05/01/15 13:26	1
m,p-Xylene	ND		1.1		mg/Kg	☼	05/01/15 12:55	05/01/15 13:26	1
o-Xylene	ND		0.53		mg/Kg	₩.	05/01/15 12:55	05/01/15 13:26	1
Toluene	ND		0.27		mg/Kg	₩	05/01/15 12:55	05/01/15 13:26	1
Xylenes, Total	ND		1.6		mg/Kg	₩	05/01/15 12:55	05/01/15 13:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		74.7 - 120				05/01/15 12:55	05/01/15 13:26	1
4-Bromofluorobenzene (Surr)	101		69.8 - 140				05/01/15 12:55	05/01/15 13:26	1
Dibromofluoromethane (Surr)	99		80 - 120				05/01/15 12:55	05/01/15 13:26	1
Toluene-d8 (Surr)	101		78.5 - 125				05/01/15 12:55	05/01/15 13:26	1

Method: NWTPH-Gx - Northwe	est - Volatile	e Petroleu	m Products	s (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	13		13		mg/Kg	<u></u>	05/01/15 12:55	05/01/15 13:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		41.5 - 162				05/01/15 12:55	05/01/15 13:26	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		15		ug/Kg	₩	05/08/15 10:17	05/12/15 17:16	1
2-Methylnaphthalene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 17:16	1
1-Methylnaphthalene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 17:16	1
Acenaphthylene	ND		15		ug/Kg	₽	05/08/15 10:17	05/12/15 17:16	1
Acenaphthene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 17:16	1
Fluorene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 17:16	1
Phenanthrene	ND		15		ug/Kg	\$	05/08/15 10:17	05/12/15 17:16	1
Anthracene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 17:16	1
Fluoranthene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 17:16	1
Pyrene	ND		15		ug/Kg	₽	05/08/15 10:17	05/12/15 17:16	1
Benzo[a]anthracene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 17:16	1
Chrysene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 17:16	1
Benzo[b]fluoranthene	ND		15		ug/Kg	₽	05/08/15 10:17	05/12/15 17:16	1
Benzo[k]fluoranthene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 17:16	1
Benzo[a]pyrene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 17:16	1
Indeno[1,2,3-cd]pyrene	ND		15		ug/Kg	φ.	05/08/15 10:17	05/12/15 17:16	1
Dibenz(a,h)anthracene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 17:16	1
Benzo[g,h,i]perylene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 17:16	1
Surrogate	%Recovery	Qualifier Lim	nits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	67	35.1 -	144				05/08/15 10:17	05/12/15 17:16	1
2-Fluorobiphenyl (Surr)	55	48.8 -	134				05/08/15 10:17	05/12/15 17:16	1
p-Terphenyl-d14	109	48 -	166				05/08/15 10:17	05/12/15 17:16	1

Method: NWTPH-Dx - Northy	vest - Semi-Volatile	Petroleum Products (G	C)	
p-Terphenyl-d14	109	48 - 166	05/08/15 10:17 05/12/15 17:16	1
2-Fluorobiphenyl (Surr)	55	48.8 - 134	05/08/15 10:17 05/12/15 17:16	1
Mill Obelizelie-ub	07	33.1 - 1 77	03/06/13 10:17 03/12/13 17:10	,

RL

16

MDL Unit

mg/Kg

Result Qualifier

ND

Diesel Range Organics (DRO) (C10-C25)

TestAmerica Spokane

Analyzed

Prepared

□ 5/05/15 08:15 □ 05/05/15 10:36 □ 05/05/15

Project/Site: Tiger Oil/0504-101-02

TestAmerica Job ID: 590-731-1

Client Sample ID: SVMW-Dup

Lab Sample ID: 590-731-1 Date Collected: 04/27/15 08:00 Matrix: Solid Date Received: 04/29/15 16:25

Percent Solids: 63.7

Analyte	Result	Qualifier	RL	MDL	Unit	ט	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO) (C25-C36)	ND		39		mg/Kg	— <u>∓</u>	05/05/15 08:15	05/05/15 10:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		50 - 150				05/05/15 08:15	05/05/15 10:36	1
n-Triacontane-d62	88		50 - 150				05/05/15 08:15	05/05/15 10:36	1

Method:	6010C -	Metals	(ICP)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	5.4	4.8	mg/Kg	<u> </u>	04/30/15 09:21	05/01/15 13:11	5

General Chemistry

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	36	0.010	%			05/01/15 16:12	1
Percent Solids	64	0.010	%			05/01/15 16:12	1

Client Sample ID: SVMW-5 (22.5-23)

Lab Sample ID: 590-731-2 Date Collected: 04/27/15 09:30 **Matrix: Solid** Date Received: 04/29/15 16:25 Percent Solids: 62.7

RL

MDL Unit

Prepared

Analyzed

05/01/15 12:55 05/01/15 13:49

05/01/15 12:55 05/01/15 13:49

Dil Fac

Method: 8260C - Volatile O	rganic Compounds by GC/	MS
Analyte	Result Qualifier	

Benzene	ND		0.034	mg/Kg	₩	05/01/15 12:55	05/01/15 13:49	1
Ethylbenzene	ND		0.23	mg/Kg	₩	05/01/15 12:55	05/01/15 13:49	1
m,p-Xylene	ND		0.90	mg/Kg	₩	05/01/15 12:55	05/01/15 13:49	1
o-Xylene	ND		0.45	mg/Kg	₩	05/01/15 12:55	05/01/15 13:49	1
Toluene	ND		0.23	mg/Kg	₩	05/01/15 12:55	05/01/15 13:49	1
Xylenes, Total	ND		1.4	mg/Kg	₩	05/01/15 12:55	05/01/15 13:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		74.7 - 120			05/01/15 12:55	05/01/15 13:49	1
4-Bromofluorobenzene (Surr)	101		69.8 - 140			05/01/15 12:55	05/01/15 13:49	1

80 - 120

78.5 - 125

Method: NWTPH-Gx	Mandlesses 4 Mala4!1	- Dadwalassus I	3
I IVIETNOO' NIVVI PH-(-X)	- Northwest - Volatii	e Petrolelim i	2r0011cts ((=(.//VIS)

101

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		11		mg/Kg	<u> </u>	05/01/15 12:55	05/01/15 13:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		41.5 - 162				05/01/15 12:55	05/01/15 13:49	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	16	ug/Kg	₩	05/08/15 10:17	05/12/15 17:39	1
2-Methylnaphthalene	ND	16	ug/Kg	₽	05/08/15 10:17	05/12/15 17:39	1
1-Methylnaphthalene	ND	16	ug/Kg	☼	05/08/15 10:17	05/12/15 17:39	1
Acenaphthylene	ND	16	ug/Kg	₽	05/08/15 10:17	05/12/15 17:39	1
Acenaphthene	ND	16	ug/Kg	☼	05/08/15 10:17	05/12/15 17:39	1
Fluorene	ND	16	ug/Kg	≎	05/08/15 10:17	05/12/15 17:39	1
Phenanthrene	ND	16	ug/Kg	\$	05/08/15 10:17	05/12/15 17:39	1
Anthracene	ND	16	ug/Kg	₩	05/08/15 10:17	05/12/15 17:39	1

TestAmerica Spokane

9

Client: GeoEngineers Inc

Project/Site: Tiger Oil/0504-101-02

Lab Sample ID: 590-731-2

TestAmerica Job ID: 590-731-1

Matrix: Solid

Percent Solids: 62.7

C	lient	Samp	le ID:	SVMW-5	(22.5-23)
---	-------	------	--------	--------	-----------

Date Collected: 04/27/15 09:30 Date Received: 04/29/15 16:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	ND		16		ug/Kg	<u> </u>	05/08/15 10:17	05/12/15 17:39	1
Pyrene	ND		16		ug/Kg	φ.	05/08/15 10:17	05/12/15 17:39	1
Benzo[a]anthracene	ND		16		ug/Kg	☼	05/08/15 10:17	05/12/15 17:39	1
Chrysene	ND		16		ug/Kg	☼	05/08/15 10:17	05/12/15 17:39	1
Benzo[b]fluoranthene	ND		16		ug/Kg	₽	05/08/15 10:17	05/12/15 17:39	1
Benzo[k]fluoranthene	ND		16		ug/Kg	☼	05/08/15 10:17	05/12/15 17:39	1
Benzo[a]pyrene	ND		16		ug/Kg	☼	05/08/15 10:17	05/12/15 17:39	1
Indeno[1,2,3-cd]pyrene	ND		16		ug/Kg	₽	05/08/15 10:17	05/12/15 17:39	1
Dibenz(a,h)anthracene	ND		16		ug/Kg	☼	05/08/15 10:17	05/12/15 17:39	1
Benzo[g,h,i]perylene	ND		16		ug/Kg	₩	05/08/15 10:17	05/12/15 17:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	71		35.1 - 144				05/08/15 10:17	05/12/15 17:39	1
2-Fluorobiphenyl (Surr)	60		48.8 - 134				05/08/15 10:17	05/12/15 17:39	1
p-Terphenyl-d14	98		48 - 166				05/08/15 10:17	05/12/15 17:39	1

Method: NWTPH-Dx - Northwe	st - Semi-V	olatile Pet	roleum Produ	ucts (G0	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		15		mg/Kg		05/05/15 08:15	05/05/15 10:59	1
Residual Range Organics (RRO) (C25-C36)	ND		38		mg/Kg	☼	05/05/15 08:15	05/05/15 10:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	94		50 - 150				05/05/15 08:15	05/05/15 10:59	
n-Triacontane-d62	89		50 - 150				05/05/15 08:15	05/05/15 10:59	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.9		4.0		mg/Kg	<u> </u>	04/30/15 09:21	05/01/15 13:15	

Lead	4.9	4.0	m	ng/Kg	₽	04/30/15 09:21	05/01/15 13:15	5	
General Chemistry Analyte	Result Qua	alifier RL	RL U	nit	D	Prepared	Analyzed	Dil Fac	
Percent Moisture	37	0.010	%	,)	_		05/01/15 16:12	1	
Percent Solids	63	0.010	%	, D			05/01/15 16:12	1	

Client Sample ID: SVMW-4 (22.5-23)

Lab Sample ID: 590-731-3

Date Collected: 04/27/15 12:00 Matrix: Solid
Date Received: 04/29/15 16:25 Percent Solids: 64.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.031		mg/Kg	<u> </u>	05/01/15 12:55	05/01/15 14:11	1
Ethylbenzene	ND		0.21		mg/Kg	₩	05/01/15 12:55	05/01/15 14:11	1
m,p-Xylene	ND		0.83		mg/Kg	☼	05/01/15 12:55	05/01/15 14:11	1
o-Xylene	ND		0.42		mg/Kg	₩	05/01/15 12:55	05/01/15 14:11	1
Toluene	ND		0.21		mg/Kg	₩	05/01/15 12:55	05/01/15 14:11	1
Xylenes, Total	ND		1.2		mg/Kg	₩	05/01/15 12:55	05/01/15 14:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			74.7 - 120				05/01/15 12:55	05/01/15 14:11	1
4-Bromofluorobenzene (Surr)	98		69.8 - 140				05/01/15 12:55	05/01/15 14:11	1

TestAmerica Spokane

Page 8 of 21

5/13/2015

Client: GeoEngineers Inc TestAmerica Job ID: 590-731-1

Project/Site: Tiger Oil/0504-101-02

Client Sample ID: SVMW-4 (22.5-23)

Date Collected: 04/27/15 12:00 Date Received: 04/29/15 16:25

Analyte

Lab Sample ID: 590-731-3 **Matrix: Solid**

Percent Solids: 64.5

Analyzed

Prepared

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99		80 - 120	05/01/15 12:55	05/01/15 14:11	1
Toluene-d8 (Surr)	102		78.5 - 125	05/01/15 12:55	05/01/15 14:11	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Result Qualifier

Gasoline	ND		10	mg/Kg ☼	05/01/15 12:55	05/01/15 14:11	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		41.5 - 162		05/01/15 12:55	05/01/15 14:11	1

MDL Unit

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		15		ug/Kg	₩	05/08/15 10:17	05/12/15 18:01	1
2-Methylnaphthalene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 18:01	1
1-Methylnaphthalene	ND		15		ug/Kg	₽	05/08/15 10:17	05/12/15 18:01	1
Acenaphthylene	ND		15		ug/Kg	₽	05/08/15 10:17	05/12/15 18:01	1
Acenaphthene	ND		15		ug/Kg	☼	05/08/15 10:17	05/12/15 18:01	1
Fluorene	ND		15		ug/Kg	≎	05/08/15 10:17	05/12/15 18:01	1
Phenanthrene	ND		15		ug/Kg		05/08/15 10:17	05/12/15 18:01	1
Anthracene	ND		15		ug/Kg	≎	05/08/15 10:17	05/12/15 18:01	1
Fluoranthene	ND		15		ug/Kg	≎	05/08/15 10:17	05/12/15 18:01	1
Pyrene	ND		15		ug/Kg		05/08/15 10:17	05/12/15 18:01	1
Benzo[a]anthracene	ND		15		ug/Kg	≎	05/08/15 10:17	05/12/15 18:01	1
Chrysene	ND		15		ug/Kg	≎	05/08/15 10:17	05/12/15 18:01	1
Benzo[b]fluoranthene	ND		15		ug/Kg	φ.	05/08/15 10:17	05/12/15 18:01	1
Benzo[k]fluoranthene	ND		15		ug/Kg	≎	05/08/15 10:17	05/12/15 18:01	1
Benzo[a]pyrene	ND		15		ug/Kg	≎	05/08/15 10:17	05/12/15 18:01	1
Indeno[1,2,3-cd]pyrene	ND		15		ug/Kg	φ.	05/08/15 10:17	05/12/15 18:01	1
Dibenz(a,h)anthracene	ND		15		ug/Kg	≎	05/08/15 10:17	05/12/15 18:01	1
Benzo[g,h,i]perylene	ND		15		ug/Kg	₩	05/08/15 10:17	05/12/15 18:01	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	64		35.1 - 144	05/08/15 10:17	05/12/15 18:01	1
2-Fluorobiphenyl (Surr)	57		48.8 - 134	05/08/15 10:17	05/12/15 18:01	1
p-Terphenyl-d14	109		48 - 166	05/08/15 10:17	05/12/15 18:01	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) Analyte Result Qualifier MDL Únit RL

Diesel Range Organics (DRO)	ND	15	mg/Kg	-	05/05/15 08:15	05/05/15 11:22	1
(C10-C25)							
Residual Range Organics (RRO)	ND	38	mg/Kg	÷.	05/05/15 08:15	05/05/15 11:22	1
(C25-C36)							
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	87	50 - 150			05/05/15 08:15	05/05/15 11:22	1
n-Triacontane-d62	83	50 ₋ 150			05/05/15 08:15	05/05/15 11:22	1

Method:	6010C - Metals (ICP)
	oo i oo iiii o iaaa j	,

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND	5.0	mg/Kg	₩	04/30/15 09:21	05/01/15 13:19	5

TestAmerica Spokane

Analyzed

Page 9 of 21

Dil Fac

Dil Fac

Client: GeoEngineers Inc TestAmerica Job ID: 590-731-1

Project/Site: Tiger Oil/0504-101-02

Client Sample ID: SVMW-4 (22.5-23)

Lab Sample ID: 590-731-3

Date Collected: 04/27/15 12:00 Lab Sample 1D. 350-731-3

Date Received: 04/29/15 16:25

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	36		0.010		%			05/01/15 16:12	1
Percent Solids	64		0.010		%			05/01/15 16:12	1

Client: GeoEngineers Inc

Project/Site: Tiger Oil/0504-101-02

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 590-1312/7-A

Matrix: Solid

Analysis Batch: 1310

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 1312

	INIB I	MR							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND		0.015		mg/Kg		05/01/15 16:23	05/01/15 16:30	1
Ethylbenzene	ND		0.10		mg/Kg		05/01/15 16:23	05/01/15 16:30	1
m,p-Xylene	ND		0.40		mg/Kg		05/01/15 16:23	05/01/15 16:30	1
o-Xylene	ND		0.20		mg/Kg		05/01/15 16:23	05/01/15 16:30	1
Toluene	ND		0.10		mg/Kg		05/01/15 16:23	05/01/15 16:30	1
Xylenes, Total	ND		0.60		mg/Kg		05/01/15 16:23	05/01/15 16:30	1

MB MB

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	74.7 - 120	05/01/15 16:23	05/01/15 16:30	1
4-Bromofluorobenzene (Surr)	99	69.8 - 140	05/01/15 16:23	05/01/15 16:30	1
Dibromofluoromethane (Surr)	99	80 - 120	05/01/15 16:23	05/01/15 16:30	1
Toluene-d8 (Surr)	99	78.5 - 125	05/01/15 16:23	05/01/15 16:30	1

Lab Sample ID: LCS 590-1312/2-A

Matrix: Solid

Analysis Batch: 1310

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 1312

%Rec.
%Rec Limits
99 75.8 - 123
100 77.3 - 121
100 77.7 - 124
100 76.7 - 129
101 76.6 - 125

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		74.7 - 120
4-Bromofluorobenzene (Surr)	99		69.8 - 140
Dibromofluoromethane (Surr)	99		80 - 120
Toluene-d8 (Surr)	100		78.5 - 125

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

MB MB

Result Qualifier

Lab Sample ID: MB 590-1312/7-A

Matrix: Solid

Analyte

Analysis Batch: 1313

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 1312

Analyzed

Dil Fac

Prepared

Gasoline	ND		5.0	mg/Kg	05/01/15 16:23	05/01/15 16:30	1
	MB	МВ					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		41.5 - 162		05/01/15 16:23	05/01/15 16:30	1

RL

MDL Unit

LCS LCS

TestAmerica Job ID: 590-731-1

Client: GeoEngineers Inc

Project/Site: Tiger Oil/0504-101-02

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) (Continued)

Lab Sample ID: LCS 590-1312/3-A

Matrix: Solid

Analysis Batch: 1313

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 1312 %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits 50.0 Gasoline 51.4 mg/Kg 103 74.4 - 124

Spike

LCS LCS

Surrogate %Recovery Qualifier Limits 41.5 - 162 4-Bromofluorobenzene (Surr) 99

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-1385/1-A

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 1398								Prep Batcl	n: 1385
	MB					_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
2-Methylnaphthalene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
1-Methylnaphthalene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Acenaphthylene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Acenaphthene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Fluorene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Phenanthrene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Anthracene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Fluoranthene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Pyrene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Benzo[a]anthracene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Chrysene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Benzo[b]fluoranthene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Benzo[k]fluoranthene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Benzo[a]pyrene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Indeno[1,2,3-cd]pyrene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Dibenz(a,h)anthracene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1
Benzo[g,h,i]perylene	ND		10		ug/Kg		05/08/15 10:17	05/12/15 13:27	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	69		35.1 - 144	05/08/15 10:17	05/12/15 13:27	1
2-Fluorobiphenyl (Surr)	69		48.8 - 134	05/08/15 10:17	05/12/15 13:27	1
p-Terphenyl-d14	122		48 - 166	05/08/15 10:17	05/12/15 13:27	1

Lab Sample ID: LCS 590-1385/2-A

Matrix: Solid

Analysis Batch: 1398

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 1385

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	267	269		ug/Kg		101	51.4 - 133	
Fluorene	267	282		ug/Kg		106	65.7 - 123	
Chrysene	267	294		ug/Kg		110	57.3 - 133	
Indeno[1,2,3-cd]pyrene	267	314		ug/Kg		118	54.6 - 142	

TestAmerica Spokane

Page 12 of 21

5/13/2015

TestAmerica Job ID: 590-731-1

Client: GeoEngineers Inc Project/Site: Tiger Oil/0504-101-02

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-1385/2-A

Lab Sample ID: LCSD 590-1385/3-A

Matrix: Solid

Analysis Batch: 1398

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 1385

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	73		35.1 - 144
2-Fluorobiphenyl (Surr)	84		48.8 - 134
p-Terphenyl-d14	102		48 - 166

Client Sample ID: Lab Control Sample Dup

119 54.6 - 142

Prep Type: Total/NA

Matrix: Solid

Indeno[1,2,3-cd]pyrene

Analyte Naphthalene Fluorene Chrysene

Analysis Batch: 1398

							Prep	Batch:	1385
Sp	ike	LCSD	LCSD				%Rec.		RPD
Add	ded	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	267	271		ug/Kg		102	51.4 - 133	1	35
	267	284		ug/Kg		106	65.7 - 123	1	35
:	267	290		ug/Kg		109	57.3 - 133	1	35

ug/Kg

LCSD LCSD %Recovery Qualifier Surrogate Limits Nitrobenzene-d5 72 35.1 - 144 2-Fluorobiphenyl (Surr) 84 48.8 - 134 p-Terphenyl-d14 100 48 - 166

Lab Sample ID: 590-731-1 MS

Matrix: Solid

Analysis Batch: 1398

Client Sample	ID: SVMW-Dup
Prep	Type: Total/NA

Prep Batch: 1385

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	ND		415	408		ug/Kg	₩	98	30 - 120	
Fluorene	ND		415	455		ug/Kg	₩	110	30 - 140	
Chrysene	ND		415	463		ug/Kg	₩	112	30 - 133	
Indeno[1,2,3-cd]pyrene	ND		415	527		ug/Kg	₩	126	30 - 140	

267

316

MS MS

Surrogate	%Recovery 0	Qualifier	Limits
Nitrobenzene-d5	88		35.1 - 144
2-Fluorobiphenyl (Surr)	92		48.8 - 134
p-Terphenyl-d14	102		48 - 166

Lab Sample ID: 590-731-1 MSD **Client Sample ID: SVMW-Dup**

Matrix: Solid

Analysis Batch: 1398

Prep Type: Total/NA

Prep Batch: 1385

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	ND		413	421		ug/Kg	₩	102	30 - 120	3	35
Fluorene	ND		413	337		ug/Kg	₩	82	30 - 140	30	35
Chrysene	ND		413	453		ug/Kg	☼	110	30 - 133	2	35
Indeno[1,2,3-cd]pyrene	ND		413	508		ug/Kg	₩	122	30 - 140	4	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	95		35.1 - 144
2-Fluorobiphenyl (Surr)	72		48.8 - 134

TestAmerica Spokane

Page 13 of 21

Client: GeoEngineers Inc

Project/Site: Tiger Oil/0504-101-02

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 590-731-1 MSD

Matrix: Solid

Analysis Batch: 1398

Client Sample ID: SVMW-Dup Prep Type: Total/NA

Prep Batch: 1385

MSD MSD

%Recovery Qualifier Surrogate Limits p-Terphenyl-d14 48 - 166 101

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-1339/1-A

Matrix: Solid

Analysis Batch: 1335

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 1339

MB MB RL Analyte Result Qualifier **MDL** Unit D Dil Fac Prepared Analyzed $\overline{\mathsf{ND}}$ 10 05/05/15 08:15 05/05/15 09:08 Diesel Range Organics (DRO) mg/Kg (C10-C25) Residual Range Organics (RRO) ND 25 mg/Kg 05/05/15 08:15 05/05/15 09:08 (C25-C36)

MB MB

Qualifier Surrogate %Recovery I imits Prepared Analyzed Dil Fac 50 - 150 o-Terphenyl 88 <u>05/05/15 08:15</u> <u>05/05/15 09:08</u> 05/05/15 08:15 05/05/15 09:08 n-Triacontane-d62 79 50 - 150

Lab Sample ID: LCS 590-1339/2-A

Matrix: Solid

Analysis Batch: 1335

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 1339

LCS LCS Spike %Rec. Added Result Qualifier Limits **Analyte** Unit %Rec 66.7 67.6 101 50 - 150 mg/Kg Diesel Range Organics (DRO) (C10-C25) 66.7 72.9 mg/Kg 109 50 - 150 Residual Range Organics (RRO)

(C25-C36)

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 50 - 150 109 n-Triacontane-d62 102 50 - 150

Lab Sample ID: LCSD 590-1339/3-A

Matrix: Solid

Analysis Batch: 1335

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 1339

LCSD LCSD Spike %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 66.7 25 Diesel Range Organics (DRO) 71.1 mg/Kg 107 50 - 150 5 (C10-C25) Residual Range Organics (RRO) 66.7 74.9 mg/Kg 112 50 - 1503 25

(C25-C36)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	110		50 - 150
n-Triacontane-d62	102		50 - 150

QC Sample Results

Client: GeoEngineers Inc

Project/Site: Tiger Oil/0504-101-02

TestAmerica Job ID: 590-731-1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: 590-731-1 DU

Matrix: Solid

Analysis Batch: 1335

Client Sample ID: SVMW-Dup Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 1290

Prep Batch: 1339

RPD RPD Limit

Sample Sample DU DU Analyte Result Qualifier Result Qualifier Unit D ₩ NC ND ND mg/Kg 40 Diesel Range Organics (DRO) (C10-C25) ND ND NC Residual Range Organics (RRO) mg/Kg

(C25-C36)

DU DU Surrogate %Recovery Qualifier Limits o-Terphenyl 87 50 - 150 n-Triacontane-d62 78 50 - 150

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 590-1290/2-A

Matrix: Solid

Analysis Batch: 1315

Prep Type: Total/NA Prep Batch: 1290 мв мв

Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac Lead $\overline{\mathsf{ND}}$ 0.025 mg/Kg 04/30/15 09:21 05/01/15 11:09

Lab Sample ID: LCS 590-1290/1-A

Matrix: Solid

Analysis Batch: 1315

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Lead 1.00 0.910 mg/Kg 91 80 - 120

Client: GeoEngineers Inc

Project/Site: Tiger Oil/0504-101-02

Matrix: Solid

Lab Sample ID: 590-731-1 **Client Sample ID: SVMW-Dup** Date Collected: 04/27/15 08:00 Date Received: 04/29/15 16:25 Percent Solids: 63.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3.767 g	5 mL	1312	05/01/15 12:55	MRS	TAL SPK
Total/NA	Analysis	8260C		1	3.767 g	5 mL	1310	05/01/15 13:26	MRS	TAL SPK
Total/NA	Prep	5035			3.767 g	5 mL	1312	05/01/15 12:55	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	3.767 g	5 mL	1313	05/01/15 13:26	MRS	TAL SPK
Total/NA	Prep	3550C			15.46 g	2 mL	1385	05/08/15 10:17	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.46 g	2 mL	1398	05/12/15 17:16	MRS	TAL SPK
Total/NA	Prep	3550C			15.16 g	5 mL	1339	05/05/15 08:15	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.16 g	5 mL	1335	05/05/15 10:36	NMI	TAL SPK
Total/NA	Prep	3050B			2.04 g	50 mL	1290	04/30/15 09:21	JSP	TAL SPK
Total/NA	Analysis	6010C		5	2.04 g	50 mL	1315	05/01/15 13:11	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1316	05/01/15 16:12	JSP	TAL SPK

Client Sample ID: SVMW-5 (22.5-23)

Lab Sample ID: 590-731-2 Date Collected: 04/27/15 09:30 **Matrix: Solid** Date Received: 04/29/15 16:25 Percent Solids: 62.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.798 g	5 mL	1312	05/01/15 12:55	MRS	TAL SP
Total/NA	Analysis	8260C		1	4.798 g	5 mL	1310	05/01/15 13:49	MRS	TAL SP
Total/NA	Prep	5035			4.798 g	5 mL	1312	05/01/15 12:55	MRS	TAL SPI
Total/NA	Analysis	NWTPH-Gx		1	4.798 g	5 mL	1313	05/01/15 13:49	MRS	TAL SPI
Total/NA	Prep	3550C			15.25 g	2 mL	1385	05/08/15 10:17	NMI	TAL SPI
Total/NA	Analysis	8270D SIM		1	15.25 g	2 mL	1398	05/12/15 17:39	MRS	TAL SPI
Total/NA	Prep	3550C			15.57 g	5 mL	1339	05/05/15 08:15	NMI	TAL SPI
Total/NA	Analysis	NWTPH-Dx		1	15.57 g	5 mL	1335	05/05/15 10:59	NMI	TAL SPI
Total/NA	Prep	3050B			2.49 g	50 mL	1290	04/30/15 09:21	JSP	TAL SPI
Total/NA	Analysis	6010C		5	2.49 g	50 mL	1315	05/01/15 13:15	JSP	TAL SP
Total/NA	Analysis	Moisture		1			1316	05/01/15 16:12	JSP	TAL SP

Client Sample ID: SVMW-4 (22.5-23)

Lab Sample ID: 590-731-3 Date Collected: 04/27/15 12:00 **Matrix: Solid** Date Received: 04/29/15 16:25 Percent Solids: 64.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.067 g	5 mL	1312	05/01/15 12:55	MRS	TAL SPK
Total/NA	Analysis	8260C		1	5.067 g	5 mL	1310	05/01/15 14:11	MRS	TAL SPK
Total/NA	Prep	5035			5.067 g	5 mL	1312	05/01/15 12:55	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	5.067 g	5 mL	1313	05/01/15 14:11	MRS	TAL SPK
Total/NA	Prep	3550C			15.21 g	2 mL	1385	05/08/15 10:17	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	15.21 g	2 mL	1398	05/12/15 18:01	MRS	TAL SPK
Total/NA	Prep	3550C			15.25 g	5 mL	1339	05/05/15 08:15	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	15.25 g	5 mL	1335	05/05/15 11:22	NMI	TAL SPK
Total/NA	Prep	3050B			1.94 q	50 mL	1290	04/30/15 09:21	JSP	TAL SP

TestAmerica Spokane

Page 16 of 21

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Tiger Oil/0504-101-02

Date Collected: 04/27/15 12:00

Date Received: 04/29/15 16:25

Client Sample ID: SVMW-4 (22.5-23)

TestAmerica Job ID: 590-731-1

Lab Sample ID: 590-731-3

. Matrix: Solid

Percent Solids: 64.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	6010C		5	1.94 g	50 mL	1315	05/01/15 13:19	JSP	TAL SPK
Total/NA	Analysis	Moisture		1			1316	05/01/15 16:12	JSP	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

8

g

10

11

Certification Summary

Client: GeoEngineers Inc

TestAmerica Job ID: 590-731-1 Project/Site: Tiger Oil/0504-101-02

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

Method Summary

Client: GeoEngineers Inc

Project/Site: Tiger Oil/0504-101-02

TestAmerica Job ID: 590-731-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	TAL SPK
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
6010C	Metals (ICP)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Page 20 of 21

11922 East 1st Ave Spokane, WA 99206

TestAmerica Spokane

Chain of Custody Record

Phone (509) 924-9200 Fax (509) 924-9290																	THE	LEPBER D	SAMBO	7. 14 1206	Tal Tes	T146
Client Information	Sampler Josh Phone 406-	Luc			nston,	Miche	elie A					Carner	Trackı	ng No(s)-	·		10 [.] 291-89.1				
Client Contact JR Sugalski	Phone 406-3	239-78	8/0	E-Mi mic	ail. helle jo	hnsto	on@te	stame	ericain	c com							Page Page	1 of 1				
Company. GeoEngineers Inc	<u> </u>				Π					iysis	Req	ueste	ed				4 1 1	0504	1-16	7-	02	
Address	Due Date Requeste	ed:			. 4 60	of										- [''	Prese	rvation C	odes:	Ì		
523 East Second Ave City.	TAT Requested (da	avel.			- 15	4											A-H		M - 1	lexane	:	
Spokane		aya,			48												B - Na C - Zr	OH Acetate	Q - A	ione IsNaO	2	
State, Zip:	std.					, 1						ł				,	D - Ni	tric Acid :HSO4	P-1	la2049 Na2SO	3	
WA, 99202	BO #					1000											F-M		R - N	laģS29	SO3	
Phone 509-209-2830(Tel)	PO#: Purchase Order	not require	:d			100			1									nchior scorbic Acid	S-H	12\$04	decahydr	rata
Email	WO#	'			Ž	10		}									I - Ice		U - A	cetone		210
jsugalski@geoengineers.com					98 O	X 1	ă	-								92		Waler DTA	V - N W -	10AA ph 4-5		
Project Name. Tiger Oil - Sumitview - Soil	Project#. 59000440				2		H4.									Containe	L-E		Z - c	ther (s	pecify)	
Site:	SSOW#:				148	SK.	NA.			ŀ						log y	Other	:				
						ğ	<u>}</u>			ļ						ja						
			Sample	Matrix	2 2	8260C, NWTPH_Gx_MS	8270D_SIM, NWTPH_DX					ł				Į.						
			Туре	(W=water,	É	Ž	827		ł							Ž						
		Sample	(C=comp,	8=solid, O=waste/oil,	7 2	90C	6010C,					İ	-			Total Number	r'					
Sample Identification	Sample Date	Time		BT=Tissue, A=A		Z	1				1		_			4	<u> </u>	Special	Instruc	tions	/Note:	
			Preserva	tion Code:	XX	F	N.	:-	24 1	: [:	4		. 1	<u> </u>	1 1		<u> </u>		, ,			<u> </u>
SVMW-Dup	4/24/2015	0800	G	S		$ \lambda $	X						-		1	3	3					
SVMW-5 (22.5-23)		0930		1		X	X									**	3					
SVMW- Jup SVMW-5 (22:5-23) SVMW-4 (22:5-23)	V	1200	V	V		Х	X									=	3			1		
															1 1					İ		
						+	+		-	+	+		-	-	+-+	-				-		
					$\bot \bot$	1																
						İ					li	1	ļ				1					
			i		\top	1	 			\neg	1	\dashv				1				i		
			 		++	+	1		┥.	-	IF (1 C) (1 E	0 DI 1116	101101	1111911	an au							
]	1			1	ì								11111							
						l			7					LLLIIIL								
			 		╅	+			$\overline{}$					111111				_		+		
					$\bot\bot$				<u> </u>		∭∭∭ 31 Ch	nain o. Hillini	tuuus f Cus	tody	11811182							
									1	J 3U -1•	J; J.	ietii i G		,								
Possible Hazard Identification		,	·		Si	ample	e Dist	osal	(A fe	e may	be as	sess	ed if :	sampl	es are	retain	ed Ion	ger than	1 mont	h		
Non-Hazard Flammable Skin Irritant Polson	n B Unkno	wn 🖵	adiological			\Box		To C		۱		sposa.				_	ive For			1 nths		
Deliverable Requested: I, II, III, IV, Other (specify)					S					Requin												
Empty Kit Relinquished by		Date ⁻			Time		· / /:)	M	lethod	of Ship	ment					†		
Relinquished by:	Date/Time. 4/24/15	16	:25	Company	Į.	Pec	eived b	y. Ila	,^9	700	r f			Dat 4	е/Tiphe //29	1/1=	5 //.	7.25	Corr	pany G-	Sp	DK
Relinquished by:	Dafe/Timé			Company		Rec	eived b	<i>д_у.</i> y:		" " " (e/Time	/ 	<u> </u>	<u> </u>		pány	<u> </u>	
Relinquished by	Date/Time.			Company		Rec	erved b	y.						Dat	e/Time				Com	pány		
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No	<u> </u>					Coo	ler Ten	nperatur	re(s) °C	and Ott	her Ren	narks:								<u> </u>		

Client: GeoEngineers Inc

Job Number: 590-731-1

SDG Number:

Login Number: 731 List Source: TestAmerica Spokane

List Number: 1

Creator: Kratz, Sheila J

orotton rivate, onone o		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-870-1

Client Project/Site: Tiger Oil - Summit View

Revision: 1

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

dandu tringten

Authorized for release by: 6/15/2015 3:28:57 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GeoEngineers Inc Project/Site: Tiger Oil - Summit View TestAmerica Job ID: 590-870-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	
Client Sample Results	6
QC Sample Results	24
Chronicle	
Certification Summary	35
Method Summary	36
Chain of Custody	37
·	38

3

4

e

0

9

10

Case Narrative

Client: GeoEngineers Inc

TestAmerica Job ID: 590-870-1 Project/Site: Tiger Oil - Summit View

Job ID: 590-870-1

Laboratory: TestAmerica Spokane

Narrative

Revision1

The QC data for method 200.7 was inadvertantly not included in the intial final report. This final report replaces the final report generated on 05/29/2015.

Receipt

The samples were received on 5/20/2015 10:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.6° C.

GC/MS VOA Method 8260C:

The continuing calibration verification (CCV) associated with batch 590-1594 recovered above the upper control limit for Dichlorodifluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: Duplicate (590-870-1), SVMW-2 (590-870-2), SVMW-3 (590-870-3), SVMW-4 (590-870-4), SVMW-5 (590-870-5), Trip Blank (590-870-6) and (CCVIS 590-1594/6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA Method NWTPH-Dx:

Detected hydrocarbons appear to be due to gasoline overlap in the following samples: Duplicate (590-870-1), SVMW-3 (590-870-3) and SVMW-5 (590-870-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-870-1	Duplicate	Water	05/19/15 08:00	05/20/15 10:40
590-870-2	SVMW-2	Water	05/19/15 12:46	05/20/15 10:40
590-870-3	SVMW-3	Water	05/19/15 14:23	05/20/15 10:40
590-870-4	SVMW-4	Water	05/19/15 11:30	05/20/15 10:40
590-870-5	SVMW-5	Water	05/19/15 13:35	05/20/15 10:40
590-870-6	Trip Blank	Water	05/19/15 00:00	05/20/15 10:40

Definitions/Glossary

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 590-870-1

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Lab Sample ID: 590-870-1

Matrix: Water

Client Sample ID: Duplicate Date Collected: 05/19/15 08:00 Date Received: 05/20/15 10:40

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	100	ug/L		05/28/15 17:08	100
1,1,1-Trichloroethane	ND	100	ug/L		05/28/15 17:08	100
1,1,2,2-Tetrachloroethane	ND	100	ug/L		05/28/15 17:08	100
1,1,2-Trichloroethane	ND	100	ug/L		05/28/15 17:08	100
1,1,2-Trichlorotrifluoroethane	ND	100	ug/L		05/28/15 17:08	100
1,1-Dichloroethane	ND	100	ug/L		05/28/15 17:08	100
1,1-Dichloroethene	ND	100	ug/L		05/28/15 17:08	100
1,1-Dichloropropene	ND	100	ug/L		05/28/15 17:08	100
1,2,3-Trichlorobenzene	ND	100	ug/L		05/28/15 17:08	100
1,2,3-Trichloropropane	ND	100	ug/L		05/28/15 17:08	100
1,2,4-Trichlorobenzene	ND	100	ug/L		05/28/15 17:08	100
1,2,4-Trimethylbenzene	230	100	ug/L		05/28/15 17:08	100
1,2-Dibromo-3-Chloropropane	ND	500	ug/L		05/28/15 17:08	100
1,2-Dibromoethane (EDB)	ND	100	ug/L		05/28/15 17:08	100
1,2-Dichlorobenzene	ND	100	ug/L		05/28/15 17:08	100
1,2-Dichloroethane	ND	100	ug/L		05/28/15 17:08	100
1,2-Dichloropropane	ND	100	ug/L		05/28/15 17:08	100
1,3,5-Trimethylbenzene	820	100	ug/L		05/28/15 17:08	100
1,3-Dichlorobenzene	ND	100	ug/L		05/28/15 17:08	100
1,3-Dichloropropane	ND	100	ug/L		05/28/15 17:08	100
1,4-Dichlorobenzene	ND	100	ug/L		05/28/15 17:08	100
2,2-Dichloropropane	ND	100	ug/L		05/28/15 17:08	100
2-Butanone (MEK)	ND	1000	ug/L		05/28/15 17:08	100
2-Chlorotoluene	ND	100	ug/L		05/28/15 17:08	100
2-Hexanone	ND	1000	ug/L		05/28/15 17:08	100
4-Chlorotoluene	ND	100	ug/L		05/28/15 17:08	100
4-Methyl-2-pentanone (MIBK)	ND	1000	ug/L		05/28/15 17:08	100
Acetone	ND	2500	ug/L		05/28/15 17:08	100
Benzene	26	20	ug/L		05/28/15 17:08	100
Bromobenzene	ND	100	ug/L		05/28/15 17:08	100
Bromochloromethane	ND	100	ug/L		05/28/15 17:08	100
Bromodichloromethane	ND	100	ug/L		05/28/15 17:08	100
Bromoform	ND	100	ug/L		05/28/15 17:08	100
Bromomethane	ND	500	ug/L		05/28/15 17:08	100
Carbon disulfide	ND	100	ug/L		05/28/15 17:08	100
Carbon tetrachloride	ND	100	ug/L		05/28/15 17:08	100
Chlorobenzene	ND	100	ug/L		05/28/15 17:08	100
Chloroethane	ND	100	ug/L		05/28/15 17:08	100
Chloroform	ND	100	ug/L		05/28/15 17:08	100
Chloromethane	ND	300			05/28/15 17:08	100
cis-1,2-Dichloroethene	ND	100	ug/L ug/L		05/28/15 17:08	100
·	ND ND	100			05/28/15 17:08	100
cis-1,3-Dichloropropene Dibromochloromethane	ND		ug/L		05/28/15 17:08	
Dibromocnioromethane Dibromomethane	ND ND	100 100	ug/L		05/28/15 17:08	100 100
Dibromomethane Dichlorodifluoromethane			ug/L			
	ND	100	ug/L		05/28/15 17:08	100
Dichlorofluoromethane	ND	20	ug/L		05/28/15 17:08	100
Ethylbenzene	560	100	ug/L		05/28/15 17:08	100
Hexachlorobutadiene	ND	200	ug/L		05/28/15 17:08	100
Hexane	110	100	ug/L		05/28/15 17:08	10

TestAmerica Spokane

6/15/2015

Page 6 of 39

9

3

5

7

9

10

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

Lab Sample ID: 590-870-1

TestAmerica Job ID: 590-870-1

Matrix: Water

Client Sample ID: Duplicate	
Date Collected: 05/19/15 08:00	
Date Received: 05/20/15 10:40	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		100		ug/L			05/28/15 17:08	100
m,p-Xylene	2000		200		ug/L			05/28/15 17:08	100
Methyl tert-butyl ether	ND		100		ug/L			05/28/15 17:08	100
Methylene Chloride	ND		1000		ug/L			05/28/15 17:08	100
Naphthalene	310		200		ug/L			05/28/15 17:08	100
n-Butylbenzene	ND		100		ug/L			05/28/15 17:08	100
N-Propylbenzene	ND		100		ug/L			05/28/15 17:08	100
o-Xylene	840		100		ug/L			05/28/15 17:08	100
p-Isopropyltoluene	ND		100		ug/L			05/28/15 17:08	100
sec-Butylbenzene	ND		100		ug/L			05/28/15 17:08	100
Styrene	ND		100		ug/L			05/28/15 17:08	100
tert-Butanol	ND		500		ug/L			05/28/15 17:08	100
tert-Butylbenzene	ND		100		ug/L			05/28/15 17:08	100
Tetrachloroethene	ND		100		ug/L			05/28/15 17:08	100
Toluene	390		100		ug/L			05/28/15 17:08	100
trans-1,2-Dichloroethene	ND		100		ug/L			05/28/15 17:08	100
trans-1,3-Dichloropropene	ND		100		ug/L			05/28/15 17:08	100
Trichloroethene	ND		100		ug/L			05/28/15 17:08	100
Trichlorofluoromethane	ND		100		ug/L			05/28/15 17:08	100
Vinyl chloride	ND		20		ug/L			05/28/15 17:08	100
Xylenes, Total	2900		300		ug/L			05/28/15 17:08	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		70 - 140					05/28/15 17:08	100
4-Bromofluorobenzene (Surr)	97		68.7 - 141					05/28/15 17:08	100
Dibromofluoromethane (Surr)	100		71.2 - 143					05/28/15 17:08	100
Toluene-d8 (Surr)	101		74.1 - 135					05/28/15 17:08	100

Method: NWTPH-Gx - Northwe	est - Volatile	e Petroleu	m Products	(GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	14000		10000		ug/L			05/28/15 17:08	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		68.7 - 141			-		05/28/15 17:08	100

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	200	1.8		ug/L		05/21/15 12:52	05/21/15 17:43	20
2-Methylnaphthalene	65	1.8		ug/L		05/21/15 12:52	05/21/15 17:43	20
1-Methylnaphthalene	37	1.8		ug/L		05/21/15 12:52	05/21/15 17:43	20
Acenaphthylene	ND	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Acenaphthene	ND	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Fluorene	ND	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Phenanthrene	ND	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Anthracene	ND	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Fluoranthene	ND	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Pyrene	ND	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Benzo[a]anthracene	ND	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Chrysene	ND	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Benzo[b]fluoranthene	ND	0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1

TestAmerica Spokane

Page 7 of 39

6/15/2015

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

Client Sample ID: Duplicate

Date Collected: 05/19/15 08:00

Date Received: 05/20/15 10:40

TestAmerica Job ID: 590-870-1

Lab Sample ID: 590-870-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[k]fluoranthene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Benzo[a]pyrene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Indeno[1,2,3-cd]pyrene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Dibenz(a,h)anthracene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Benzo[g,h,i]perylene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 15:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	69		32.7 - 135				05/21/15 12:52	05/21/15 17:43	20
2-Fluorobiphenyl (Surr)	67		44.3 - 120				05/21/15 12:52	05/21/15 15:24	1
p-Terphenyl-d14	91		59.5 - 154				05/21/15 12:52	05/21/15 15:24	1

Method: 8011 - EDB, DBCP, and 1,2,3-TCP (GC)										
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,2-Dibromoethane (EDB)	ND ND	0.010		ug/L		05/27/15 09:58	05/27/15 11:40	1		
Method: NWTPH-Dx -	Northwest - Semi-V	olatile Petroleum Pi	oducts (G	C)						

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	1.0		0.24		mg/L		05/26/15 13:14	05/26/15 17:40	1
Residual Range Organics (RRO) (C25-C36)	ND		0.41		mg/L		05/26/15 13:14	05/26/15 17:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150				05/26/15 13:14	05/26/15 17:40	1
n-Triacontane-d62	106		50 - 150				05/26/15 13:14	05/26/15 17:40	1

Method: NWTPH-Dx - Northy	vest - Semi-Vol	latile Petr	oleum Prod	ucts (G0	C) - Silic	a Gel (Cleanup		
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	1.0		0.24		mg/L		05/26/15 13:14	05/27/15 09:54	1
Residual Range Organics (RRO) (C25-C36)	ND		0.41		mg/L		05/26/15 13:14	05/27/15 09:54	1
Surrogate	%Recovery C	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97		50 - 150				05/26/15 13:14	05/27/15 09:54	1
Tria a a rata ra a 100	00		FO 4FO				05/06/45 40:44	05/07/45 00:54	

C . C. p C y .	• •	00 - 100			00, 20, 10, 10, 1	00.200	•
n-Triacontane-d62	89	50 - 150			05/26/15 13:14	05/27/15 09:54	1
Method: 300.0 - Anions, Ion	Chromatography						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	2.9	0.20	mg/L		-	05/20/15 16:00	1

Sulfate	16	0.50	mg/L		05/20/15 16:00	1
Method: 200.7 Rev 4.4 - Metal Analyte Lead	S (ICP) Result Quali	fier RL 0.014	MDL Unit mg/L	D Prepared 05/27/15 14:00	Analyzed 05/28/15 22:09	Dil Fac

General Chemistry Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	2.7	1.0		mg/L			05/26/15 11:39	1

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Lab Sample ID: 590-870-2

Matrix: Water

Client Sample ID: SVMW-2

Date Collected: 05/19/15 12:46 Date Received: 05/20/15 10:40

Method: 8260C - Volatile Organalyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND The state of th	1.0	ug/L	=		05/28/15 17:30	
1,1,1-Trichloroethane	ND	1.0	ug/L			05/28/15 17:30	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			05/28/15 17:30	
1,1,2-Trichloroethane	ND	1.0	ug/L			05/28/15 17:30	
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug/L			05/28/15 17:30	
1,1-Dichloroethane	ND	1.0	ug/L			05/28/15 17:30	
1.1-Dichloroethene	ND	1.0	ug/L			05/28/15 17:30	
1,1-Dichloropropene	ND	1.0	ug/L			05/28/15 17:30	
1,2,3-Trichlorobenzene	ND	1.0	ug/L			05/28/15 17:30	
1,2,3-Trichloropropane	ND	1.0	ug/L			05/28/15 17:30	
1,2,4-Trichlorobenzene	ND	1.0	_			05/28/15 17:30	
1,2,4-Trimethylbenzene	ND ND	1.0	ug/L			05/28/15 17:30	
·			ug/L				
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L			05/28/15 17:30	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L			05/28/15 17:30	
1,2-Dichlorobenzene	ND	1.0	ug/L			05/28/15 17:30	
1,2-Dichloroethane	ND	1.0	ug/L			05/28/15 17:30	
1,2-Dichloropropane	ND	1.0	ug/L			05/28/15 17:30	
1,3,5-Trimethylbenzene	ND	1.0	ug/L			05/28/15 17:30	
1,3-Dichlorobenzene	ND	1.0	ug/L			05/28/15 17:30	
1,3-Dichloropropane	ND	1.0	ug/L			05/28/15 17:30	
1,4-Dichlorobenzene	ND	1.0	ug/L			05/28/15 17:30	
2,2-Dichloropropane	ND	1.0	ug/L			05/28/15 17:30	
2-Butanone (MEK)	ND	10	ug/L			05/28/15 17:30	
2-Chlorotoluene	ND	1.0	ug/L			05/28/15 17:30	
2-Hexanone	ND	10	ug/L			05/28/15 17:30	
4-Chlorotoluene	ND	1.0	ug/L			05/28/15 17:30	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			05/28/15 17:30	
Acetone	ND	25	ug/L			05/28/15 17:30	
Benzene	ND	0.20	ug/L			05/28/15 17:30	
Bromobenzene	ND	1.0	ug/L			05/28/15 17:30	
Bromochloromethane	ND	1.0	ug/L			05/28/15 17:30	
Bromodichloromethane	ND	1.0	ug/L			05/28/15 17:30	
Bromoform	ND	1.0	ug/L			05/28/15 17:30	
Bromomethane	ND	5.0	ug/L			05/28/15 17:30	
Carbon disulfide	ND	1.0	ug/L			05/28/15 17:30	
Carbon tetrachloride	ND	1.0	ug/L			05/28/15 17:30	
Chlorobenzene	ND	1.0	ug/L			05/28/15 17:30	
Chloroethane	ND	1.0	ug/L			05/28/15 17:30	
Chloroform	ND	1.0	ug/L			05/28/15 17:30	
Chloromethane	ND	3.0	ug/L			05/28/15 17:30	
cis-1,2-Dichloroethene	ND	1.0	ug/L			05/28/15 17:30	
cis-1,3-Dichloropropene	ND	1.0	ug/L			05/28/15 17:30	
Dibromochloromethane	ND	1.0	ug/L			05/28/15 17:30	
Dibromomethane	ND	1.0	ug/L			05/28/15 17:30	
Dichlorodifluoromethane	ND ND	1.0	ug/L			05/28/15 17:30	
Dichlorofluoromethane	ND ND		.			05/28/15 17:30	
		0.20	ug/L				
Ethylbenzene	ND	1.0	ug/L			05/28/15 17:30	
Hexachlorobutadiene Hexane	ND ND	2.0	ug/L ug/L			05/28/15 17:30 05/28/15 17:30	

TestAmerica Spokane

6/15/2015

Page 9 of 39

2

3

6

8

1 N

11

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Lab Sample ID: 590-870-2

Matrix: Water

Client Sample ID: SVMW-2

Date Collected: 05/19/15 12:46 Date Received: 05/20/15 10:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		1.0		ug/L			05/28/15 17:30	1
m,p-Xylene	ND		2.0		ug/L			05/28/15 17:30	1
Methyl tert-butyl ether	ND		1.0		ug/L			05/28/15 17:30	1
Methylene Chloride	ND		10		ug/L			05/28/15 17:30	1
Naphthalene	ND		2.0		ug/L			05/28/15 17:30	1
n-Butylbenzene	ND		1.0		ug/L			05/28/15 17:30	1
N-Propylbenzene	ND		1.0		ug/L			05/28/15 17:30	1
o-Xylene	ND		1.0		ug/L			05/28/15 17:30	1
p-Isopropyltoluene	ND		1.0		ug/L			05/28/15 17:30	1
sec-Butylbenzene	ND		1.0		ug/L			05/28/15 17:30	1
Styrene	ND		1.0		ug/L			05/28/15 17:30	1
tert-Butanol	ND		5.0		ug/L			05/28/15 17:30	1
tert-Butylbenzene	ND		1.0		ug/L			05/28/15 17:30	1
Tetrachloroethene	ND		1.0		ug/L			05/28/15 17:30	1
Toluene	ND		1.0		ug/L			05/28/15 17:30	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			05/28/15 17:30	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/28/15 17:30	1
Trichloroethene	ND		1.0		ug/L			05/28/15 17:30	1
Trichlorofluoromethane	ND		1.0		ug/L			05/28/15 17:30	1
Vinyl chloride	ND		0.20		ug/L			05/28/15 17:30	1
Xylenes, Total	ND		3.0		ug/L			05/28/15 17:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		70 - 140					05/28/15 17:30	1
4-Bromofluorobenzene (Surr)	102		68.7 - 141					05/28/15 17:30	1
Dibromofluoromethane (Surr)	100		71.2 - 143					05/28/15 17:30	1
Toluene-d8 (Surr)	96		74.1 - 135					05/28/15 17:30	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Gasoline	ND		100		ug/L			05/28/15 17:30	1		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
4-Bromofluorobenzene (Surr)	102		68.7 - 141					05/28/15 17:30	1		

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
2-Methylnaphthalene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
1-Methylnaphthalene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Acenaphthylene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Acenaphthene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Fluorene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Phenanthrene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Anthracene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Fluoranthene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Pyrene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Benzo[a]anthracene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Chrysene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Benzo[b]fluoranthene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1

TestAmerica Spokane

Page 10 of 39

1

2

4

6

8

10

11

Project/Site: Tiger Oil - Summit View

Lab Sample ID: 590-870-2

TestAmerica Job ID: 590-870-1

Matrix: Water

Client Sample ID: SVMW-2 Date Collected: 05/19/15 12:46

Date Received: 05/20/15 10:40

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[k]fluoranthene	ND ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Benzo[a]pyrene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Indeno[1,2,3-cd]pyrene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Dibenz(a,h)anthracene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Benzo[g,h,i]perylene	ND		0.094		ug/L		05/21/15 12:52	05/21/15 15:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	96		32.7 - 135				05/21/15 12:52	05/21/15 15:52	1
2-Fluorobiphenyl (Surr)	72		44.3 - 120				05/21/15 12:52	05/21/15 15:52	1
p-Terphenyl-d14	94		59.5 ₋ 154				05/21/15 12:52	05/21/15 15:52	1

Method: 8011 - EDB, DBCP, and 1,2,3-TCP (GC)									
	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,2-Dibromoethane (EDB)	ND	0.010		ug/L		05/27/15 09:58	05/27/15 11:56	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.25		mg/L		05/26/15 13:14	05/26/15 18:00	1
(C10-C25)									
Residual Range Organics (RRO)	ND		0.42		mg/L		05/26/15 13:14	05/26/15 18:00	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97		50 - 150				05/26/15 13:14	05/26/15 18:00	1
n-Triacontane-d62	107		50 - 150				05/26/15 13:14	05/26/15 18:00	1
Method: 300.0 - Anions, Ion	Chromatogra	aphy							
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
APPEAR OF A STATE OF THE STATE								05/00/45 40:40	

Allalyte	Nesuit	Qualifici	IXL	IVIDE	Oilit		riepaieu	Allalyzeu	Diriac
Nitrate as N	7.5		0.20		mg/L			05/20/15 16:13	1
Sulfate	32		0.50		mg/L			05/20/15 16:13	1
Method: 200.7 Rev 4.4 - Me Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Lead	ND		0.014		mg/L		05/27/15 14:00	05/28/15 22:11	1
General Chemistry									

General Chemistry							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	1.7	1.0	mg/L			05/26/15 11:39	1

Client Sample ID: SVMW-3

Date Collected: 05/19/15 14:23

Date Received: 05/20/15 10:40

Lab Sample ID: 590-870-3

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane		100		ug/L			05/28/15 18:01	100
1,1,1-Trichloroethane	ND	100		ug/L			05/28/15 18:01	100
1,1,2,2-Tetrachloroethane	ND	100		ug/L			05/28/15 18:01	100
1,1,2-Trichloroethane	ND	100		ug/L			05/28/15 18:01	100
1,1,2-Trichlorotrifluoroethane	ND	100		ug/L			05/28/15 18:01	100
1,1-Dichloroethane	ND	100		ug/L			05/28/15 18:01	100
1,1-Dichloroethene	ND	100		ug/L			05/28/15 18:01	100

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Lab Sample ID: 590-870-3

Matrix: Water

Client Sample ID: SVMW-3

Date Collected: 05/19/15 14:23 Date Received: 05/20/15 10:40

N-Propylbenzene

Method: 8260C - Volatile Org Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	ND	100	ug/L		05/28/15 18:01	100
1,2,3-Trichlorobenzene	ND	100	ug/L		05/28/15 18:01	100
1,2,3-Trichloropropane	ND	100	ug/L		05/28/15 18:01	100
1,2,4-Trichlorobenzene	ND	100	ug/L		05/28/15 18:01	100
1,2,4-Trimethylbenzene	250	100	ug/L		05/28/15 18:01	100
1,2-Dibromo-3-Chloropropane	ND	500	ug/L		05/28/15 18:01	100
1,2-Dibromoethane (EDB)	ND	100	ug/L		05/28/15 18:01	100
1,2-Dichlorobenzene	ND	100	ug/L		05/28/15 18:01	100
1,2-Dichloroethane	ND	100	ug/L		05/28/15 18:01	100
1,2-Dichloropropane	ND	100	ug/L		05/28/15 18:01	100
1,3,5-Trimethylbenzene	880	100	ug/L		05/28/15 18:01	100
1,3-Dichlorobenzene	ND	100	ug/L		05/28/15 18:01	100
1,3-Dichloropropane	ND	100	ug/L		05/28/15 18:01	100
1,4-Dichlorobenzene	ND	100	ug/L		05/28/15 18:01	100
2,2-Dichloropropane	ND	100	ug/L		05/28/15 18:01	100
2-Butanone (MEK)	ND	1000	ug/L		05/28/15 18:01	100
2-Chlorotoluene	ND	100	ug/L		05/28/15 18:01	100
2-Hexanone	ND	1000	ug/L		05/28/15 18:01	100
4-Chlorotoluene	ND	100	ug/L		05/28/15 18:01	100
4-Methyl-2-pentanone (MIBK)	ND	1000	ug/L		05/28/15 18:01	100
Acetone	ND	2500	ug/L		05/28/15 18:01	100
	25	200			05/28/15 18:01	100
Benzene	ND	100	ug/L			
Bromobenzene Bromobenzene			ug/L		05/28/15 18:01	100
Bromochloromethane	ND ND	100	ug/L		05/28/15 18:01	100
Bromodichloromethane	ND	100	ug/L		05/28/15 18:01	100
Bromoform	ND	100	ug/L		05/28/15 18:01	100
Bromomethane	ND	500	ug/L		05/28/15 18:01	100
Carbon disulfide	ND	100	ug/L		05/28/15 18:01	100
Carbon tetrachloride	ND	100	ug/L		05/28/15 18:01	100
Chlorobenzene	ND	100	ug/L		05/28/15 18:01	100
Chloroethane	ND	100	ug/L		05/28/15 18:01	100
Chloroform	ND	100	ug/L		05/28/15 18:01	100
Chloromethane	ND	300	ug/L		05/28/15 18:01	100
cis-1,2-Dichloroethene	ND	100	ug/L		05/28/15 18:01	100
cis-1,3-Dichloropropene	ND	100	ug/L		05/28/15 18:01	100
Dibromochloromethane	ND	100	ug/L		05/28/15 18:01	100
Dibromomethane	ND	100	ug/L		05/28/15 18:01	100
Dichlorodifluoromethane	ND	100	ug/L		05/28/15 18:01	100
Dichlorofluoromethane	ND	20	ug/L		05/28/15 18:01	100
Ethylbenzene	570	100	ug/L		05/28/15 18:01	100
Hexachlorobutadiene	ND	200	ug/L		05/28/15 18:01	100
Hexane	120	100	ug/L		05/28/15 18:01	100
Isopropylbenzene	ND	100	ug/L		05/28/15 18:01	100
m,p-Xylene	2100	200	ug/L		05/28/15 18:01	100
Methyl tert-butyl ether	ND	100	ug/L		05/28/15 18:01	100
Methylene Chloride	ND	1000	ug/L		05/28/15 18:01	100
Naphthalene	290	200	ug/L		05/28/15 18:01	100
n-Butylbenzene	ND	100	ug/L		05/28/15 18:01	100
2031001120110	112	100	ug/ L		05/20/45 40.04	100

TestAmerica Spokane

05/28/15 18:01

Page 12 of 39

100

ug/L

110

6/15/2015

TestAmerica Job ID: 590-870-1

Client Sample ID: SVMW-3

Date Collected: 05/19/15 14:23 Date Received: 05/20/15 10:40 Lab Sample ID: 590-870-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	830		100		ug/L			05/28/15 18:01	100
p-Isopropyltoluene	ND		100		ug/L			05/28/15 18:01	100
sec-Butylbenzene	ND		100		ug/L			05/28/15 18:01	100
Styrene	ND		100		ug/L			05/28/15 18:01	100
tert-Butanol	ND		500		ug/L			05/28/15 18:01	100
tert-Butylbenzene	ND		100		ug/L			05/28/15 18:01	100
Tetrachloroethene	ND		100		ug/L			05/28/15 18:01	100
Toluene	400		100		ug/L			05/28/15 18:01	100
trans-1,2-Dichloroethene	ND		100		ug/L			05/28/15 18:01	100
trans-1,3-Dichloropropene	ND		100		ug/L			05/28/15 18:01	100
Trichloroethene	ND		100		ug/L			05/28/15 18:01	100
Trichlorofluoromethane	ND		100		ug/L			05/28/15 18:01	100
Vinyl chloride	ND		20		ug/L			05/28/15 18:01	100
Xylenes, Total	2900		300		ug/L			05/28/15 18:01	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		70 - 140			•		05/28/15 18:01	100
4-Bromofluorobenzene (Surr)	105		68.7 - 141					05/28/15 18:01	100
Dibromofluoromethane (Surr)	104		71.2 - 143					05/28/15 18:01	100
Toluene-d8 (Surr)	99		74.1 - 135					05/28/15 18:01	100

Method: NWTPH-Gx - Northw									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	14000		10000		ug/L			05/28/15 18:01	100
	0/5	0 ""							5=
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		68.7 - 141			-		05/28/15 18:01	100

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	210		1.8		ug/L		05/21/15 12:52	05/21/15 18:38	20
2-Methylnaphthalene	68		1.8		ug/L		05/21/15 12:52	05/21/15 18:38	20
1-Methylnaphthalene	38		1.8		ug/L		05/21/15 12:52	05/21/15 18:38	20
Acenaphthylene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Acenaphthene	0.10		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Fluorene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Phenanthrene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Anthracene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Fluoranthene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Pyrene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Benzo[a]anthracene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Chrysene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Benzo[b]fluoranthene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Benzo[k]fluoranthene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Benzo[a]pyrene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Indeno[1,2,3-cd]pyrene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Dibenz(a,h)anthracene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Benzo[g,h,i]perylene	ND		0.089		ug/L		05/21/15 12:52	05/21/15 16:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	56		32.7 - 135				05/21/15 12:52	05/21/15 18:38	20

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

Lab Sample ID: 590-870-3

TestAmerica Job ID: 590-870-1

Matrix: Water

Date Collected: 05/19/15 14:23 Date Received: 05/20/15 10:40

Client Sample ID: SVMW-3

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	65		44.3 - 120	05/21/15 12:52	05/21/15 16:20	1
p-Terphenyl-d14	83		59.5 - 154	05/21/15 12:52	05/21/15 16:20	1

Method: 8011 - EDB, DBCP, and 1,2,3-TCP (GC)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND	0.010	ug/L		05/27/15 09:58	05/27/15 12:13	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

mothod: HTT II BX Hortimos	ot	iumo i omo	iouiii i iou	4010 (01	-,					
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Diesel Range Organics (DRO) (C10-C25)	1.0		0.23		mg/L		05/26/15 13:14	05/26/15 18:20	1	
Residual Range Organics (RRO) (C25-C36)	ND		0.39		mg/L		05/26/15 13:14	05/26/15 18:20	1	
Surrogate	%Recovery	Qualifier	l imite				Propared	Analyzed	Dil Fac	

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
o-Terphenyl	94		50 - 150	05/26/15 13:14 05/26/15 18:20	1
n-Triacontane-d62	106		50 - 150	05/26/15 13:14 05/26/15 18:20	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) - Silica Gel Cleanup

Analyte	Result C	Qualitier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	0.99		0.23		mg/L		05/26/15 13:14	05/27/15 10:14	1
(C10-C25) Residual Range Organics (RRO) (C25-C36)	ND		0.39		mg/L		05/26/15 13:14	05/27/15 10:14	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150	05/26/15 13:14	05/27/15 10:14	1
n-Triacontane-d62	94		50 - 150	05/26/15 13:14	05/27/15 10:14	1

Method: 300.0 - Anions, Ion Chromatography

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	3.2		0.20		mg/L			05/20/15 16:26	1
Sulfate	17		0.50		mg/L			05/20/15 16:26	1

Method: 200.7 Rev 4.4 - Metals (ICP)

Analyte	Result	Qualifier	KL	MDL	Unit	ı	ט	Prepared	Analyzed	Dil Fac
Lead	ND		0.014		mg/L		_	05/27/15 14:00	05/28/15 22:14	1
										

General Chemistry

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	2.9	1.0	mg/L			05/26/15 11:39	1

Client Sample ID: SVMW-4

Lab Sample ID: 590-870-4 Date Collected: 05/19/15 11:30 **Matrix: Water** Date Received: 05/20/15 10:40

Mothod: 8260C - Volatile Organic Compounds by GC/MS

iethod: 6260C - volatile Organi	c Compounds by C	3C/IVI3					
nalyte	Result Qualifier	RL	MDL Unit	t D	Prepared	Analyzed	Dil Fac
1,1,2-Tetrachloroethane	ND	1.0	ug/L			05/28/15 18:23	1
1,1-Trichloroethane	ND	1.0	ug/L	=		05/28/15 18:23	1
1,2,2-Tetrachloroethane	ND	1.0	ug/L	-		05/28/15 18:23	1
1,2-Trichloroethane	ND	1.0	ug/L			05/28/15 18:23	1
	nalyte 1,1,2-Tetrachloroethane 1,2,2-Tetrachloroethane 1,2,2-Tetrachloroethane 1,2-Trichloroethane	nalyte Result Qualifier 1,1,2-Tetrachloroethane ND 1,1-Trichloroethane ND 1,2,2-Tetrachloroethane ND	1,1,2-Tetrachloroethane ND 1.0 1,1-Trichloroethane ND 1.0 1,2,2-Tetrachloroethane ND 1.0	nalyte Result 1,1,2-Tetrachloroethane Qualifier RL ug/L MDL ug/L Unit ug/L 1,1,2-Tetrachloroethane ND 1.0 ug/L ug/L 1,2,2-Tetrachloroethane ND 1.0 ug/L	nalyte Result 1,1,2-Tetrachloroethane Qualifier RL ug/L MDL ug/L Unit ug/L D 1,1,2-Tetrachloroethane ND 1.0 ug/L ug/L 1,2,2-Tetrachloroethane ND 1.0 ug/L	nalyte Result 1,1,2-Tetrachloroethane ND 1.0 ug/L Unit ug/L D Prepared 1,1,2-Tetrachloroethane ND 1.0 ug/L ug/L ug/L 1,2,2-Tetrachloroethane ND 1.0 ug/L ug/L ug/L 1,2,2-Tetrachloroethane ND 1.0 ug/L 1,2,2-Tetrachloroethane ND 1.0 ug/L 1,2,2-Tetrachloroethane ND 1,2,2-Tetrachloroethane 1,	nalyte Result 1,1,2-Tetrachloroethane Qualifier RL 1.0 MDL 1.0 Unit ug/L ug/L ug/L D Prepared 05/28/15 18:23 1,1-Trichloroethane ND 1.0 1.0 ug/L ug/L 05/28/15 18:23 1,2-Tetrachloroethane ND 1.0 ug/L 05/28/15 18:23

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

Client Sample ID: SVMW-4

Date Collected: 05/19/15 11:30

TestAmerica Job ID: 590-870-1

Lab Sample ID: 590-870-4 **Matrix: Water**

Date Received: 05/20/15 10:40

Dil Fac	Į
1	
1	

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug/L		05/28/15 18:23	
1,1-Dichloroethane	ND	1.0	ug/L		05/28/15 18:23	
1,1-Dichloroethene	ND	1.0	ug/L		05/28/15 18:23	
1,1-Dichloropropene	ND	1.0	ug/L		05/28/15 18:23	
1,2,3-Trichlorobenzene	ND	1.0	ug/L		05/28/15 18:23	
1,2,3-Trichloropropane	ND	1.0	ug/L		05/28/15 18:23	
1,2,4-Trichlorobenzene	ND	1.0	ug/L		05/28/15 18:23	
1,2,4-Trimethylbenzene	ND	1.0	ug/L		05/28/15 18:23	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		05/28/15 18:23	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L		05/28/15 18:23	
1,2-Dichlorobenzene	ND	1.0	ug/L		05/28/15 18:23	
1,2-Dichloroethane	ND	1.0	ug/L		05/28/15 18:23	
1,2-Dichloropropane	ND	1.0	ug/L		05/28/15 18:23	
1,3,5-Trimethylbenzene	ND	1.0	ug/L		05/28/15 18:23	
1,3-Dichlorobenzene	ND	1.0	ug/L		05/28/15 18:23	
1,3-Dichloropropane	ND	1.0	ug/L		05/28/15 18:23	
1,4-Dichlorobenzene	ND	1.0	ug/L		05/28/15 18:23	
2,2-Dichloropropane	ND	1.0	ug/L		05/28/15 18:23	
2-Butanone (MEK)	ND	10	ug/L		05/28/15 18:23	
2-Chlorotoluene	ND	1.0	ug/L		05/28/15 18:23	
2-Hexanone	ND	10	ug/L		05/28/15 18:23	
4-Chlorotoluene	ND	1.0	ug/L		05/28/15 18:23	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		05/28/15 18:23	
Acetone	ND	25	ug/L		05/28/15 18:23	
Benzene	ND	0.20	ug/L		05/28/15 18:23	
Bromobenzene	ND	1.0	ug/L		05/28/15 18:23	
Bromochloromethane	ND	1.0	ug/L		05/28/15 18:23	
Bromodichloromethane	ND	1.0	ug/L		05/28/15 18:23	
Bromoform	ND	1.0	ug/L		05/28/15 18:23	
Bromomethane	ND	5.0	ug/L		05/28/15 18:23	
Carbon disulfide	ND	1.0	ug/L		05/28/15 18:23	
Carbon tetrachloride	ND	1.0	ug/L		05/28/15 18:23	
Chlorobenzene	ND	1.0	ug/L		05/28/15 18:23	
Chloroethane	ND	1.0	ug/L		05/28/15 18:23	
Chloroform	ND	1.0	ug/L		05/28/15 18:23	
Chloromethane	ND	3.0	ug/L		05/28/15 18:23	
cis-1,2-Dichloroethene	ND	1.0	ug/L		05/28/15 18:23	
cis-1,3-Dichloropropene	ND	1.0	ug/L		05/28/15 18:23	
Dibromochloromethane	ND	1.0	ug/L		05/28/15 18:23	
Dibromomethane	ND	1.0	ug/L		05/28/15 18:23	
Dichlorodifluoromethane	ND	1.0	ug/L		05/28/15 18:23	
Dichlorofluoromethane	ND	0.20	ug/L		05/28/15 18:23	
Ethylbenzene	ND ND	1.0	ug/L		05/28/15 18:23	
Ettiyiberizerie Hexachlorobutadiene	ND ND	2.0	ug/L		05/28/15 18:23	
Hexane	ND				05/28/15 18:23	
	ND ND	1.0	ug/L			
sopropylbenzene		1.0	ug/L		05/28/15 18:23	
m,p-Xylene	ND	2.0	ug/L		05/28/15 18:23	
Methyl tert-butyl ether	ND	1.0	ug/L		05/28/15 18:23	
Methylene Chloride	ND	10	ug/L		05/28/15 18:23	

TestAmerica Job ID: 590-870-1

05/28/15 18:23

05/28/15 18:23

Client: GeoEngineers Inc Project/Site: Tiger Oil - Summit View

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Client Sample ID: SVMW-4 Lab Sample ID: 590-870-4

Date Collected: 05/19/15 11:30 **Matrix: Water** Date Received: 05/20/15 10:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.0		ug/L			05/28/15 18:23	1
n-Butylbenzene	ND		1.0		ug/L			05/28/15 18:23	1
N-Propylbenzene	ND		1.0		ug/L			05/28/15 18:23	1
o-Xylene	ND		1.0		ug/L			05/28/15 18:23	1
p-Isopropyltoluene	ND		1.0		ug/L			05/28/15 18:23	1
sec-Butylbenzene	ND		1.0		ug/L			05/28/15 18:23	1
Styrene	ND		1.0		ug/L			05/28/15 18:23	1
tert-Butanol	ND		5.0		ug/L			05/28/15 18:23	1
tert-Butylbenzene	ND		1.0		ug/L			05/28/15 18:23	1
Tetrachloroethene	ND		1.0		ug/L			05/28/15 18:23	1
Toluene	ND		1.0		ug/L			05/28/15 18:23	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			05/28/15 18:23	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/28/15 18:23	1
Trichloroethene	ND		1.0		ug/L			05/28/15 18:23	1
Trichlorofluoromethane	ND		1.0		ug/L			05/28/15 18:23	1
Vinyl chloride	ND		0.20		ug/L			05/28/15 18:23	1
Xylenes, Total	ND		3.0		ug/L			05/28/15 18:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		70 - 140			-		05/28/15 18:23	1
4-Bromofluorobenzene (Surr)	107		68.7 - 141					05/28/15 18:23	1

Method: NWTPH-Gx - Northw	est - Volatile	Petroleu	m Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		100		ug/L			05/28/15 18:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		68.7 - 141					05/28/15 18:23	1

71.2 - 143

74.1 - 135

100

99

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
2-Methylnaphthalene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
1-Methylnaphthalene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Acenaphthylene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Acenaphthene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Fluorene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Phenanthrene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Anthracene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Fluoranthene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Pyrene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Benzo[a]anthracene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Chrysene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Benzo[b]fluoranthene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Benzo[k]fluoranthene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Benzo[a]pyrene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Indeno[1,2,3-cd]pyrene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1
Dibenz(a,h)anthracene	ND	0.094		ug/L		05/21/15 12:52	05/21/15 16:47	1

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

Client Sample ID: SVMW-4

Date Collected: 05/19/15 11:30

Date Received: 05/20/15 10:40

Lab Sample ID: 590-870-4

TestAmerica Job ID: 590-870-1

Matrix: Water

Method: 8270D SIM - Semivolatile Organic Compound	le (CC/MS SIM) (Continued)

Analyte Benzo[g,h,i]perylene	Result ND	Qualifier	RL 0.094	MDL Unit ug/L	_ D	Prepared 05/21/15 12:52	Analyzed 05/21/15 16:47	Dil Fac
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	96		32.7 - 135			05/21/15 12:52	05/21/15 16:47	1
2-Fluorobiphenyl (Surr)	74		44.3 - 120			05/21/15 12:52	05/21/15 16:47	1
p-Terphenyl-d14	90		59.5 - 154			05/21/15 12:52	05/21/15 16:47	1

Method: 8011 -	· EDB, DBCP, and	1,2,3-	ГСР	(GC)	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND	0.010	ug/L		05/27/15 09:58	05/27/15 12:29	1

Method. NWTPH-DX - Northwes	t - Seilli-Volatile Petro	Jieum Prou	ucis (GC)					
Analyte	Result Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND	0.24	m	ıg/L		05/26/15 13:14	05/26/15 18:40	1
Residual Range Organics (RRO) (C25-C36)	ND	0.40	m	ıg/L		05/26/15 13:14	05/26/15 18:40	1

Surrogate	%Recovery C	Qualifier Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	97	50 - 15	05/26/15 13:14	05/26/15 18:40	1
n-Triacontane-d62	107	50 - 15	0 05/26/15 13:14	05/26/15 18:40	1

Method: 300.0 - Anions, Ion Chromatography

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	9.2	0.20	mg/L			05/20/15 16:39	1
Sulfate	29	0.50	mg/L			05/20/15 16:39	1

Method: 200.7	' Rev 4.4 - Me	tals (ICP)
		_

Analyte	Result Qualifier	KL	MDL Unit	D Prepared	Anaiyzed	DII Fac
Lead	ND	0.014	mg/L	05/27/15 14:0	05/28/15 22:17	1
_						

General Chemistry

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	1.6	1.0	mg/L			05/26/15 11:39	1

Client Sample ID: SVMW-5

Lab Sample ID: 590-870-5 Date Collected: 05/19/15 13:35 **Matrix: Water** Date Received: 05/20/15 10:40

Method: 8260C -	Volatile C	rganic Com	pounds by	V GC/MS
-----------------	------------	------------	-----------	---------

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND —	10		ug/L			05/28/15 18:45	10
1,1,1-Trichloroethane	ND	10		ug/L			05/28/15 18:45	10
1,1,2,2-Tetrachloroethane	ND	10		ug/L			05/28/15 18:45	10
1,1,2-Trichloroethane	ND	10		ug/L			05/28/15 18:45	10
1,1,2-Trichlorotrifluoroethane	ND	10		ug/L			05/28/15 18:45	10
1,1-Dichloroethane	ND	10		ug/L			05/28/15 18:45	10
1,1-Dichloroethene	ND	10		ug/L			05/28/15 18:45	10
1,1-Dichloropropene	ND	10		ug/L			05/28/15 18:45	10
1,2,3-Trichlorobenzene	ND	10		ug/L			05/28/15 18:45	10
1,2,3-Trichloropropane	ND	10		ug/L			05/28/15 18:45	10
1,2,4-Trichlorobenzene	ND	10		ug/L			05/28/15 18:45	10

Client: GeoEngineers Inc

cis-1,3-Dichloropropene

Dibromochloromethane

Dichlorodifluoromethane

Dichlorofluoromethane

Hexachlorobutadiene

Dibromomethane

Ethylbenzene

Project/Site: Tiger Oil - Summit View

Lab Sample ID: 590-870-5

TestAmerica Job ID: 590-870-1

Matrix: Water

Client Sample ID: SVMW-5

Date Collected: 05/19/15 13:35
Date Received: 05/20/15 10:40

Date Received: 05/20/15 10:40 Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) **Analyte** Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 100 10 ug/L 05/28/15 18:45 10 1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane ND 50 ug/L 05/28/15 18:45 10 1,2-Dibromoethane (EDB) ND 10 ug/L 05/28/15 18:45 10 1,2-Dichlorobenzene ND 10 ug/L 05/28/15 18:45 10 ND 10 ug/L 1,2-Dichloroethane 05/28/15 18:45 10 1.2-Dichloropropane ND 10 ug/L 05/28/15 18:45 10 10 1,3,5-Trimethylbenzene 190 ug/L 05/28/15 18:45 10 1,3-Dichlorobenzene ND 10 ug/L 05/28/15 18:45 10 ND 1,3-Dichloropropane 10 ug/L 05/28/15 18:45 10 1,4-Dichlorobenzene 10 ug/L 10 ND 05/28/15 18:45 2,2-Dichloropropane ND 10 ug/L 05/28/15 18:45 10 2-Butanone (MEK) ND 100 ug/L 05/28/15 18:45 10 ND 2-Chlorotoluene 10 ug/L 10 05/28/15 18:45 2-Hexanone ND 100 ug/L 05/28/15 18:45 10 4-Chlorotoluene ND 10 ug/L 10 05/28/15 18:45 4-Methyl-2-pentanone (MIBK) ND 100 ug/L 05/28/15 18:45 10 Acetone ND 250 ug/L 05/28/15 18:45 10 Benzene ND 2.0 ug/L 05/28/15 18:45 10 Bromobenzene ND 10 ug/L 05/28/15 18:45 10 Bromochloromethane ND 10 ug/L 10 05/28/15 18:45 Bromodichloromethane 05/28/15 18:45 ND 10 ug/L 10 ND Bromoform 10 ug/L 05/28/15 18:45 10 50 Bromomethane ND ug/L 05/28/15 18:45 10 Carbon disulfide 10 ND ug/L 05/28/15 18:45 10 Carbon tetrachloride ND 10 ug/L 05/28/15 18:45 10 Chlorobenzene ND 10 ug/L 05/28/15 18:45 10 Chloroethane ND 10 ug/L 05/28/15 18:45 10 10 Chloroform ND ug/L 05/28/15 18:45 10 30 Chloromethane ND ug/L 05/28/15 18:45 10 cis-1,2-Dichloroethene ND 10 ug/L 05/28/15 18:45 10

ND 10 Hexane ug/L 05/28/15 18:45 ND 10 Isopropylbenzene ug/L 05/28/15 18:45 m,p-Xylene ND 20 ug/L 05/28/15 18:45 10 Methyl tert-butyl ether ND ug/L 05/28/15 18:45 100 Methylene Chloride ND ug/L 05/28/15 18:45 Naphthalene ND 20 ug/L 05/28/15 18:45 ND n-Butylbenzene 10 ug/L 05/28/15 18:45

10

10

10

10

2.0

10

20

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

ND

ND

ND

ND

N-Propylbenzene 10 ug/L 05/28/15 18:45 18 o-Xylene ND 10 ug/L 05/28/15 18:45 p-Isopropyltoluene ND 10 ug/L 05/28/15 18:45 sec-Butylbenzene ND 10 ug/L 05/28/15 18:45 Styrene ND 10 ug/L 05/28/15 18:45

TestAmerica Spokane

6/15/2015

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

05/28/15 18:45

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

3

5

6

8

10

11

| 4

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Lab Sample ID: 590-870-5 **Matrix: Water**

Client Sample ID: SVMW-5 Date Collected: 05/19/15 13:35

Date Received: 05/20/15 10:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
tert-Butanol	ND		50		ug/L			05/28/15 18:45	10
tert-Butylbenzene	ND		10		ug/L			05/28/15 18:45	10
Tetrachloroethene	ND		10		ug/L			05/28/15 18:45	10
Toluene	ND		10		ug/L			05/28/15 18:45	10
trans-1,2-Dichloroethene	ND		10		ug/L			05/28/15 18:45	10
trans-1,3-Dichloropropene	ND		10		ug/L			05/28/15 18:45	10
Trichloroethene	ND		10		ug/L			05/28/15 18:45	10
Trichlorofluoromethane	ND		10		ug/L			05/28/15 18:45	10
Vinyl chloride	ND		2.0		ug/L			05/28/15 18:45	10
Xylenes, Total	ND		30		ug/L			05/28/15 18:45	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		70 - 140					05/28/15 18:45	10
4-Bromofluorobenzene (Surr)	104		68.7 - 141					05/28/15 18:45	10
Dibromofluoromethane (Surr)	103		71.2 - 143					05/28/15 18:45	10
Toluene-d8 (Surr)	97		74.1 - 135					05/28/15 18:45	10

Method: NWTPH-Gx - Northwo		e Petroleui Qualifier	m Products (•	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	2100		1000		ug/L	<u>-</u> -	11000.00	05/28/15 18:45	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		68.7 - 141			-		05/28/15 18:45	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	7.6		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
2-Methylnaphthalene	9.6		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
1-Methylnaphthalene	13		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Acenaphthylene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Acenaphthene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Fluorene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Phenanthrene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Anthracene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Fluoranthene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Pyrene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Benzo[a]anthracene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Chrysene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Benzo[b]fluoranthene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Benzo[k]fluoranthene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Benzo[a]pyrene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Indeno[1,2,3-cd]pyrene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Dibenz(a,h)anthracene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Benzo[g,h,i]perylene	ND		0.096		ug/L		05/21/15 12:52	05/21/15 17:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	92		32.7 - 135				05/21/15 12:52	05/21/15 17:15	1
2-Fluorobiphenyl (Surr)	79		44.3 - 120				05/21/15 12:52	05/21/15 17:15	1
p-Terphenyl-d14	94		59.5 ₋ 154				05/21/15 12:52	05/21/15 17:15	1

TestAmerica Job ID: 590-870-1

Client Sample ID: SVMW-5

Lab Sample ID: 590-870-5 Date Collected: 05/19/15 13:35

Matrix: Water

Date Received: 05/20/15 10:40

Method: 8011 - EDB, DBCP, Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.010		ug/L		05/27/15 09:58	05/27/15 12:45	1
- Method: NWTPH-Dx - Northy	vest - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	0.49		0.25		mg/L		05/26/15 13:14	05/26/15 19:00	1
Residual Range Organics (RRO) (C25-C36)	ND		0.41		mg/L		05/26/15 13:14	05/26/15 19:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95	· -	50 - 150				05/26/15 13:14	05/26/15 19:00	1
n-Triacontane-d62	104		50 - 150				05/26/15 13:14	05/26/15 19:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	0.45		0.25		mg/L		05/26/15 13:14	05/27/15 10:34	1
(C10-C25)									
Residual Range Organics (RRO)	ND		0.41		mg/L		05/26/15 13:14	05/27/15 10:34	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95		50 - 150				05/26/15 13:14	05/27/15 10:34	1
n-Triacontane-d62	71		50 - 150				05/26/15 13:14	05/27/15 10:34	1
Mothodi 200 0 Aniono Ion	Chromotogra	nhv							
Method: 300.0 - Anions, Ion Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Allalyte	Nesuit	Qualifiei	IXL	IVIDE			riepaieu		Dil i ac
Nitrata as N	4.4		0.20						- 1
	4.4		0.20		mg/L			05/20/15 16:52	1
	4.4		0.20 0.50		mg/L mg/L			05/20/15 16:52 05/20/15 16:52	1
Sulfate	22				•				1
Nitrate as N Sulfate Method: 200.7 Rev 4.4 - Meta Analyte	22 als (ICP)	Qualifier		MDL	mg/L	D	Prepared		1 1 Dil Fac

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	2.1		1.0		mg/L			05/26/15 11:39	1

Client Sample ID: Trip Blank Lab Sample ID: 590-870-6 Date Collected: 05/19/15 00:00 **Matrix: Water** Date Received: 05/20/15 10:40

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	1.0	ug/L			05/28/15 19:07	1
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L			05/28/15 19:07	1
1,1,1-Trichloroethane	ND	1.0	ug/L			05/28/15 19:07	1
1,1,1-Trichloroethane	ND	1.0	ug/L			05/28/15 19:07	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			05/28/15 19:07	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			05/28/15 19:07	1
1,1,2-Trichloroethane	ND	1.0	ug/L			05/28/15 19:07	1
1,1,2-Trichloroethane	ND	1.0	ug/L			05/28/15 19:07	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug/L			05/28/15 19:07	1

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Client Sample ID: Trip Blank

Lab Sample ID: 590-870-6

Matrix: Water

Date Collected: 05/19/15 00:00 Date Received: 05/20/15 10:40

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,2-Trichlorotrifluoroethane	ND ND	1.0	ug/L		05/28/15 19:07	
1,1-Dichloroethane	ND	1.0	ug/L		05/28/15 19:07	
1,1-Dichloroethane	ND	1.0	ug/L		05/28/15 19:07	
1,1-Dichloroethene	ND	1.0	ug/L		05/28/15 19:07	
1,1-Dichloroethene	ND	1.0	ug/L		05/28/15 19:07	
1,1-Dichloropropene	ND	1.0	ug/L		05/28/15 19:07	
1,1-Dichloropropene	ND	1.0	ug/L		05/28/15 19:07	
1,2,3-Trichlorobenzene	ND	1.0	ug/L		05/28/15 19:07	
1,2,3-Trichlorobenzene	ND	1.0	ug/L		05/28/15 19:07	
1,2,3-Trichloropropane	ND	1.0	ug/L		05/28/15 19:07	
1,2,3-Trichloropropane	ND	1.0	ug/L		05/28/15 19:07	
1,2,4-Trichlorobenzene	ND	1.0	ug/L		05/28/15 19:07	
1,2,4-Trichlorobenzene	ND	1.0	ug/L		05/28/15 19:07	
1,2,4-Trimethylbenzene	ND	1.0	ug/L		05/28/15 19:07	
1,2,4-Trimethylbenzene	ND	1.0	ug/L		05/28/15 19:07	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		05/28/15 19:07	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		05/28/15 19:07	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L		05/28/15 19:07	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L		05/28/15 19:07	
1,2-Dichlorobenzene	ND	1.0	ug/L		05/28/15 19:07	
1,2-Dichlorobenzene	ND	1.0	ug/L		05/28/15 19:07	
1,2-Dichloroethane	ND	1.0	ug/L		05/28/15 19:07	,
1,2-Dichloroethane	ND	1.0	ug/L		05/28/15 19:07	
1,2-Dichloropropane	ND	1.0	ug/L		05/28/15 19:07	
1,2-Dichloropropane	ND	1.0	ug/L		05/28/15 19:07	
1,3,5-Trimethylbenzene	ND	1.0	ug/L		05/28/15 19:07	
1,3,5-Trimethylbenzene	ND	1.0	ug/L		05/28/15 19:07	
1,3-Dichlorobenzene	ND	1.0	ug/L		05/28/15 19:07	
1,3-Dichlorobenzene	ND	1.0	ug/L		05/28/15 19:07	
1,3-Dichloropropane	ND	1.0	_		05/28/15 19:07	
	ND		ug/L		05/28/15 19:07	
1,3-Dichloropropane 1.4-Dichlorobenzene	ND ND	1.0 1.0	ug/L		05/28/15 19:07	
,	ND ND		ug/L			
1,4-Dichlorobenzene		1.0	ug/L		05/28/15 19:07	
2,2-Dichloropropane	ND ND	1.0	ug/L		05/28/15 19:07	
2,2-Dichloropropane	ND	1.0	ug/L		05/28/15 19:07	
2-Butanone (MEK)	ND	10	ug/L		05/28/15 19:07	
2-Butanone (MEK)	ND	10	ug/L		05/28/15 19:07	
2-Chlorotoluene	ND	1.0	ug/L		05/28/15 19:07	
2-Chlorotoluene	ND	1.0	ug/L		05/28/15 19:07	
2-Hexanone	ND	10	ug/L		05/28/15 19:07	
2-Hexanone	ND	10	ug/L		05/28/15 19:07	
4-Chlorotoluene	ND	1.0	ug/L		05/28/15 19:07	
4-Chlorotoluene	ND	1.0	ug/L		05/28/15 19:07	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		05/28/15 19:07	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		05/28/15 19:07	
Acetone	ND	25	ug/L		05/28/15 19:07	
Acetone	ND	25	ug/L		05/28/15 19:07	
	ND	0.20	ug/L		05/28/15 19:07	
Benzene Benzene	ND ND					

TestAmerica Spokane

2

7

9

10

Client: GeoEngineers Inc

Methylene Chloride

Naphthalene

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Lab Sample ID: 590-870-6

Matrix: Water

Client Sample ID: Trip Blank Date Collected: 05/19/15 00:00

Method: 8260C - Volatile C Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Bromobenzene	ND		1.0	ug/L			05/28/15 19:07	1
Bromobenzene	ND		1.0	ug/L			05/28/15 19:07	1
Bromochloromethane	ND		1.0	ug/L			05/28/15 19:07	1
Bromochloromethane	ND		1.0	ug/L			05/28/15 19:07	1
Bromodichloromethane	ND		1.0	ug/L			05/28/15 19:07	1
Bromodichloromethane	ND		1.0	ug/L			05/28/15 19:07	1
Bromoform	ND		1.0	ug/L			05/28/15 19:07	1
Bromoform	ND		1.0	ug/L			05/28/15 19:07	1
Bromomethane	ND		5.0	ug/L			05/28/15 19:07	1
Bromomethane	ND		5.0	ug/L			05/28/15 19:07	1
Carbon disulfide	ND		1.0	ug/L			05/28/15 19:07	1
Carbon disulfide	ND		1.0	ug/L			05/28/15 19:07	1
Carbon tetrachloride	ND		1.0	ug/L			05/28/15 19:07	1
Carbon tetrachloride	ND		1.0	ug/L			05/28/15 19:07	1
Chlorobenzene	ND		1.0	ug/L			05/28/15 19:07	1
Chlorobenzene	ND		1.0	ug/L			05/28/15 19:07	1
Chloroethane	ND		1.0	ug/L			05/28/15 19:07	1
Chloroethane	ND		1.0	ug/L			05/28/15 19:07	1
Chloroform	ND		1.0	ug/L			05/28/15 19:07	1
Chloroform	ND		1.0	ug/L			05/28/15 19:07	1
Chloromethane	ND		3.0	ug/L			05/28/15 19:07	1
Chloromethane	ND		3.0	ug/L			05/28/15 19:07	1
cis-1.2-Dichloroethene	ND		1.0	ua/L			05/28/15 19:07	1

Bromodichloromethane	ND	1.0	ug/L	05/28/15 19:07
Bromodichloromethane	ND	1.0	ug/L	05/28/15 19:07
Bromoform	ND	1.0	ug/L	05/28/15 19:07
Bromoform	ND	1.0	ug/L	05/28/15 19:07
Bromomethane	ND	5.0	ug/L	05/28/15 19:07
Bromomethane	ND	5.0	ug/L	05/28/15 19:07
Carbon disulfide	ND	1.0	ug/L	05/28/15 19:07
Carbon disulfide	ND	1.0	ug/L	05/28/15 19:07
Carbon tetrachloride	ND	1.0	ug/L	05/28/15 19:07
Carbon tetrachloride	ND	1.0	ug/L	05/28/15 19:07
Chlorobenzene	ND	1.0	ug/L	05/28/15 19:07
Chlorobenzene	ND	1.0	ug/L	05/28/15 19:07
Chloroethane	ND	1.0	ug/L	05/28/15 19:07
Chloroethane	ND	1.0	ug/L	05/28/15 19:07
Chloroform	ND	1.0	ug/L	05/28/15 19:07
Chloroform	ND	1.0	ug/L	05/28/15 19:07
Chloromethane	ND	3.0	ug/L	05/28/15 19:07
Chloromethane	ND	3.0	ug/L	05/28/15 19:07
cis-1,2-Dichloroethene	ND	1.0	ug/L	05/28/15 19:07
cis-1,2-Dichloroethene	ND	1.0	ug/L	05/28/15 19:07
cis-1,3-Dichloropropene	ND	1.0	ug/L	05/28/15 19:07
cis-1,3-Dichloropropene	ND	1.0	ug/L	05/28/15 19:07
Dibromochloromethane	ND	1.0	ug/L	05/28/15 19:07
Dibromochloromethane	ND	1.0	ug/L	05/28/15 19:07
Dibromomethane	ND	1.0	ug/L	05/28/15 19:07
Dibromomethane	ND	1.0	ug/L	05/28/15 19:07
Dichlorodifluoromethane	ND	1.0	ug/L	05/28/15 19:07
Dichlorodifluoromethane	ND	1.0	ug/L	05/28/15 19:07
Dichlorofluoromethane	ND	0.20	ug/L	05/28/15 19:07
Dichlorofluoromethane	ND	0.20	ug/L	05/28/15 19:07
Ethylbenzene	ND	1.0	ug/L	05/28/15 19:07
Ethylbenzene	ND	1.0	ug/L	05/28/15 19:07
Hexachlorobutadiene	ND	2.0	ug/L	05/28/15 19:07
Hexachlorobutadiene	ND	2.0	ug/L	05/28/15 19:07
Hexane	ND	1.0	ug/L	05/28/15 19:07
Hexane	ND	1.0	ug/L	05/28/15 19:07
Isopropylbenzene	ND	1.0	ug/L	05/28/15 19:07
Isopropylbenzene	ND	1.0	ug/L	05/28/15 19:07
m,p-Xylene	ND	2.0	ug/L	05/28/15 19:07
m,p-Xylene	ND	2.0	ug/L	05/28/15 19:07
Methyl tert-butyl ether	ND	1.0	ug/L	05/28/15 19:07
Methyl tert-butyl ether	ND	1.0	ug/L	05/28/15 19:07
Methylene Chloride	ND	10	ug/L	05/28/15 19:07
	· · · · · · · · · · · · · · · · · · ·	<u></u>	<u>.</u>	

TestAmerica Spokane

05/28/15 19:07

05/28/15 19:07

Page 22 of 39

10

2.0

ug/L

ug/L

ND

ND

6/15/2015

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Lab Sample ID: 590-870-6

Matrix: Water

Client Sample ID: Trip Blank Date Collected: 05/19/15 00:00

Date Received: 05/20/15 10:40

Method: 8260C - Volatile Organic Compounds by GC/MS (Continue)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	2.0	ug/L			05/28/15 19:07	1
n-Butylbenzene	ND	1.0	ug/L			05/28/15 19:07	1
n-Butylbenzene	ND	1.0	ug/L			05/28/15 19:07	1
N-Propylbenzene	ND	1.0	ug/L			05/28/15 19:07	1
N-Propylbenzene	ND	1.0	ug/L			05/28/15 19:07	1
o-Xylene	ND	1.0	ug/L			05/28/15 19:07	1
o-Xylene	ND	1.0	ug/L			05/28/15 19:07	1
p-Isopropyltoluene	ND	1.0	ug/L			05/28/15 19:07	1
p-Isopropyltoluene	ND	1.0	ug/L			05/28/15 19:07	1
sec-Butylbenzene	ND	1.0	ug/L			05/28/15 19:07	1
sec-Butylbenzene	ND	1.0	ug/L			05/28/15 19:07	1
Styrene	ND	1.0	ug/L			05/28/15 19:07	1
Styrene	ND	1.0	ug/L			05/28/15 19:07	1
tert-Butanol	ND	5.0	ug/L			05/28/15 19:07	1
tert-Butanol	ND	5.0	ug/L			05/28/15 19:07	1
tert-Butylbenzene	ND	1.0	ug/L			05/28/15 19:07	1
tert-Butylbenzene	ND	1.0	ug/L			05/28/15 19:07	1
Tetrachloroethene	ND	1.0	ug/L			05/28/15 19:07	1
Tetrachloroethene	ND	1.0	ug/L			05/28/15 19:07	1
Toluene	ND	1.0	ug/L			05/28/15 19:07	1
Toluene	ND	1.0	ug/L			05/28/15 19:07	1
trans-1,2-Dichloroethene	ND	1.0	ug/L			05/28/15 19:07	1
trans-1,2-Dichloroethene	ND	1.0	ug/L			05/28/15 19:07	1
trans-1,3-Dichloropropene	ND	1.0	ug/L			05/28/15 19:07	1
trans-1,3-Dichloropropene	ND	1.0	ug/L			05/28/15 19:07	1
Trichloroethene	ND	1.0	ug/L			05/28/15 19:07	1
Trichloroethene	ND	1.0	ug/L			05/28/15 19:07	1
Trichlorofluoromethane	ND	1.0	ug/L			05/28/15 19:07	1
Trichlorofluoromethane	ND	1.0	ug/L			05/28/15 19:07	1
Vinyl chloride	ND	0.20	ug/L			05/28/15 19:07	1
Vinyl chloride	ND	0.20	ug/L			05/28/15 19:07	1
Xylenes, Total	ND	3.0	ug/L			05/28/15 19:07	1
Xylenes, Total	ND	3.0	ug/L			05/28/15 19:07	1
Surrogate	%Recovery Qualifier	l imits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery (Qualifier Limits	Prepared Analyz	ed Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	70 - 140	05/28/15	19:07 1
1,2-Dichloroethane-d4 (Surr)	100	70 - 140	05/28/15	19:07 1
4-Bromofluorobenzene (Surr)	106	68.7 - 141	05/28/15	19:07 1
4-Bromofluorobenzene (Surr)	106	68.7 - 141	05/28/15	19:07 1
Dibromofluoromethane (Surr)	98	71.2 - 143	05/28/15	19:07 1
Dibromofluoromethane (Surr)	98	71.2 - 143	05/28/15	19:07 1
Toluene-d8 (Surr)	97	74.1 - 135	05/28/15	19:07 1
Toluene-d8 (Surr)	97	74.1 - 135	05/28/15	19:07 1

TestAmerica Spokane

6/15/2015

3

<u>'</u>

10

11

QC Sample Results

Client: GeoEngineers Inc

Matrix: Water

Hexachlorobutadiene

Project/Site: Tiger Oil - Summit View

Lab Sample ID: MB 590-1594/7

Method: 8260C - Volatile Organic Compounds by GC/MS

TestAmerica Job ID: 590-870-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 1594	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			05/28/15 10:19	
1,1,1-Trichloroethane	ND		1.0		ug/L			05/28/15 10:19	
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			05/28/15 10:19	•
1,1,2-Trichloroethane	ND		1.0		ug/L			05/28/15 10:19	
1,1,2-Trichlorotrifluoroethane	ND		1.0		ug/L			05/28/15 10:19	
1,1-Dichloroethane	ND		1.0		ug/L			05/28/15 10:19	•
1,1-Dichloroethene	ND		1.0		ug/L			05/28/15 10:19	
1,1-Dichloropropene	ND		1.0		ug/L			05/28/15 10:19	•
1,2,3-Trichlorobenzene	ND		1.0		ug/L			05/28/15 10:19	
1,2,3-Trichloropropane	ND		1.0		ug/L			05/28/15 10:19	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			05/28/15 10:19	
1,2,4-Trimethylbenzene	ND		1.0		ug/L			05/28/15 10:19	
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			05/28/15 10:19	
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			05/28/15 10:19	
1,2-Dichlorobenzene	ND		1.0		ug/L			05/28/15 10:19	•
1,2-Dichloroethane	ND		1.0		ug/L			05/28/15 10:19	
1,2-Dichloropropane	ND		1.0		ug/L			05/28/15 10:19	
1,3,5-Trimethylbenzene	ND		1.0		ug/L			05/28/15 10:19	•
1,3-Dichlorobenzene	ND		1.0		ug/L			05/28/15 10:19	
1,3-Dichloropropane	ND		1.0		ug/L			05/28/15 10:19	
1,4-Dichlorobenzene	ND		1.0		ug/L			05/28/15 10:19	
2,2-Dichloropropane	ND		1.0		ug/L			05/28/15 10:19	
2-Butanone (MEK)	ND		10		ug/L			05/28/15 10:19	
2-Chlorotoluene	ND		1.0		ug/L			05/28/15 10:19	•
2-Hexanone	ND		10		ug/L			05/28/15 10:19	
4-Chlorotoluene	ND		1.0		ug/L			05/28/15 10:19	•
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			05/28/15 10:19	
Acetone	ND		25		ug/L			05/28/15 10:19	
Benzene	ND		0.20		ug/L			05/28/15 10:19	
Bromobenzene	ND		1.0		ug/L			05/28/15 10:19	
Bromochloromethane	ND		1.0		ug/L			05/28/15 10:19	· · · · · · · · ·
Bromodichloromethane	ND		1.0		ug/L			05/28/15 10:19	
Bromoform	ND		1.0		ug/L			05/28/15 10:19	
Bromomethane	ND		5.0		ug/L			05/28/15 10:19	
Carbon disulfide	ND		1.0		ug/L			05/28/15 10:19	•
Carbon tetrachloride	ND		1.0		ug/L			05/28/15 10:19	•
Chlorobenzene	ND		1.0		ug/L			05/28/15 10:19	
Chloroethane	ND		1.0		ug/L			05/28/15 10:19	•
Chloroform	ND		1.0		ug/L			05/28/15 10:19	•
Chloromethane	ND		3.0		ug/L			05/28/15 10:19	
cis-1,2-Dichloroethene	ND		1.0		ug/L			05/28/15 10:19	•
cis-1,3-Dichloropropene	ND		1.0		ug/L			05/28/15 10:19	•
Dibromochloromethane	ND		1.0		ug/L			05/28/15 10:19	
Dibromomethane	ND		1.0		ug/L			05/28/15 10:19	•
Dichlorodifluoromethane	ND		1.0		ug/L			05/28/15 10:19	
Dichlorofluoromethane	ND		0.20		ug/L			05/28/15 10:19	
Ethylbenzene	ND		1.0		ug/L			05/28/15 10:19	

TestAmerica Spokane

05/28/15 10:19

Page 24 of 39

2.0

ug/L

ND

TestAmerica Job ID: 590-870-1

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 590-1594/7 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 1594

Analysis Buton. 1004	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexane	ND		1.0		ug/L			05/28/15 10:19	1
Isopropylbenzene	ND		1.0		ug/L			05/28/15 10:19	1
m,p-Xylene	ND		2.0		ug/L			05/28/15 10:19	1
Methyl tert-butyl ether	ND		1.0		ug/L			05/28/15 10:19	1
Methylene Chloride	ND		10		ug/L			05/28/15 10:19	1
Naphthalene	ND		2.0		ug/L			05/28/15 10:19	1
n-Butylbenzene	ND		1.0		ug/L			05/28/15 10:19	1
N-Propylbenzene	ND		1.0		ug/L			05/28/15 10:19	1
o-Xylene	ND		1.0		ug/L			05/28/15 10:19	1
p-Isopropyltoluene	ND		1.0		ug/L			05/28/15 10:19	1
sec-Butylbenzene	ND		1.0		ug/L			05/28/15 10:19	1
Styrene	ND		1.0		ug/L			05/28/15 10:19	1
tert-Butanol	ND		5.0		ug/L			05/28/15 10:19	1
tert-Butylbenzene	ND		1.0		ug/L			05/28/15 10:19	1
Tetrachloroethene	ND		1.0		ug/L			05/28/15 10:19	1
Toluene	ND		1.0		ug/L			05/28/15 10:19	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			05/28/15 10:19	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/28/15 10:19	1
Trichloroethene	ND		1.0		ug/L			05/28/15 10:19	1
Trichlorofluoromethane	ND		1.0		ug/L			05/28/15 10:19	1
Vinyl chloride	ND		0.20		ug/L			05/28/15 10:19	1
Xylenes, Total	ND		3.0		ug/L			05/28/15 10:19	1

MB MB %Recovery Qualifier Surrogate Limits Prepared Dil Fac Analyzed 103 1,2-Dichloroethane-d4 (Surr) 70 - 140 05/28/15 10:19 103 4-Bromofluorobenzene (Surr) 68.7 - 141 05/28/15 10:19 101 71.2 - 143 05/28/15 10:19 Dibromofluoromethane (Surr) Toluene-d8 (Surr) 104 74.1 - 135 05/28/15 10:19

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 590-1594/8 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 1594								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	10.0	9.56		ug/L		96	60 - 140	
1,1,1-Trichloroethane	10.0	9.57		ug/L		96	60 - 140	
1,1,2,2-Tetrachloroethane	10.0	9.90		ug/L		99	60 - 140	
1,1,2-Trichloroethane	10.0	9.90		ug/L		99	60 - 140	
1,1,2-Trichlorotrifluoroethane	10.0	10.2		ug/L		102	60 - 140	
1,1-Dichloroethane	10.0	10.1		ug/L		101	60 - 140	
1,1-Dichloroethene	10.0	9.69		ug/L		97	78.1 ₋ 155	
1,1-Dichloropropene	10.0	10.9		ug/L		109	60 - 140	
1,2,3-Trichlorobenzene	10.0	10.3		ug/L		103	60 - 140	
1,2,3-Trichloropropane	10.0	9.48		ug/L		95	60 - 140	
1,2,4-Trichlorobenzene	10.0	10.0		ug/L		100	60 - 140	
1,2,4-Trimethylbenzene	10.0	9.87		ug/L		99	60 - 140	
1,2-Dibromo-3-Chloropropane	10.0	8.55		ug/L		86	60 - 140	
1,2-Dichlorobenzene	10.0	9.87		ug/L		99	60 - 140	

TestAmerica Spokane

Page 25 of 39

QC Sample Results

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Lab Sample ID: LCS 590-1594/8

Matrix: Water

Matrix: Water					Prep Type: Total/N
Analysis Batch: 1594					
	Spike	LCS			%Rec.
Analyte	Added		Qualifier Unit	D %Rec	Limits
1,2-Dichloroethane	10.0	9.68	ug/L	97	63.9 - 144
1,2-Dichloropropane	10.0	10.1	ug/L	101	60 - 140
1,3,5-Trimethylbenzene	10.0	9.60	ug/L	96	60 - 140
1,3-Dichlorobenzene	10.0	9.66	ug/L	97	60 - 140
1,3-Dichloropropane	10.0	9.79	ug/L	98	60 - 140
1,4-Dichlorobenzene	10.0	9.75	ug/L	97	60 - 140
2,2-Dichloropropane	10.0	9.59	ug/L	96	60 - 140
2-Butanone (MEK)	50.0	57.3	ug/L	115	60 - 140
2-Chlorotoluene	10.0	10.0	ug/L	100	60 - 140
2-Hexanone	50.0	51.0	ug/L	102	60 - 140
4-Chlorotoluene	10.0	9.61	ug/L	96	60 - 140
4-Methyl-2-pentanone (MIBK)	50.0	49.3	ug/L	99	60 - 140
Acetone	50.0	51.6	ug/L	103	60 - 140
Benzene	10.0	9.81	ug/L	98	80 - 140
Bromobenzene	10.0	9.83	ug/L	98	60 - 140
Bromochloromethane	10.0	9.55	ug/L	96	60 - 140
Bromodichloromethane	10.0	9.62	ug/L	96	60 - 140
Bromoform	10.0	8.82	ug/L	88	60 - 140
Bromomethane	10.0	11.2	ug/L	112	60 - 140
Carbon disulfide	10.0	10.0	ug/L	100	60 - 140
Carbon tetrachloride	10.0	9.89	ug/L	99	60 - 140
Chlorobenzene	10.0	9.62	ug/L	96	79.2 - 125
Chloroethane	10.0	10.8	ug/L	108	60 - 140
Chloroform	10.0	9.63	ug/L	96	60 - 140
Chloromethane	10.0	11.4	ug/L	114	60 - 140
cis-1,2-Dichloroethene	10.0	9.56	ug/L	96	60 - 140
cis-1,3-Dichloropropene	10.0	10.1	ug/L	101	60 - 140
Dibromochloromethane	10.0	9.48	ug/L	95	60 - 140
Dibromomethane	10.0	9.49	ug/L	95	60 - 140
Dichlorodifluoromethane	10.0	12.9	ug/L	129	60 - 140
Dichlorofluoromethane	10.0	10.2	ug/L	102	60 - 140
Ethylbenzene	10.0	9.82	ug/L	98	80 - 120
Hexachlorobutadiene	10.0	9.52	ug/L	95	80 - 120
Hexane	10.0	10.4	ug/L	104	60 - 140
Isopropylbenzene	10.0	9.45	ug/L	95	60 - 140
m,p-Xylene	10.0	9.80	ug/L	98	80 - 120
Methyl tert-butyl ether	10.0	10.0	ug/L	100	80.1 - 128
Methylene Chloride	10.0	12.1	ug/L	121	60 - 140
Naphthalene	10.0	10.0	ug/L	100	62.8 - 132
n-Butylbenzene	10.0	9.72	ug/L	97	60 - 140
N-Propylbenzene	10.0	9.97	ug/L	100	60 - 140
o-Xylene	10.0	9.60	ug/L	96	80 - 120
p-Isopropyltoluene	10.0	9.51	ug/L	95	60 - 140
sec-Butylbenzene	10.0	9.50	ug/L	95	60 - 140
Styrene	10.0	9.50	ug/L ug/L	91	60 - 140 60 - 140
tert-Butanol	10.0	98.3	ug/L ug/L	98	60 - 140
tert-Butylbenzene	10.0	96.3		98	60 - 140
			ug/L		
Tetrachloroethene	10.0	9.67	ug/L	97	60 - 140

TestAmerica Spokane

6/15/2015

Page 26 of 39

2

3

5

7

9

10

11

12

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590-1594/8

Matrix: Water

Analysis Batch: 1594

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Toluene	10.0	9.58		ug/L		96	80 - 123	
trans-1,2-Dichloroethene	10.0	9.98		ug/L		100	60 - 140	
trans-1,3-Dichloropropene	10.0	10.7		ug/L		107	60 - 140	
Trichloroethene	10.0	10.3		ug/L		103	74.8 - 123	
Trichlorofluoromethane	10.0	10.1		ug/L		101	60 - 140	
Vinyl chloride	10.0	11.0		ug/L		110	60 - 140	

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 99 70 - 140 4-Bromofluorobenzene (Surr) 98 68.7 - 141 Dibromofluoromethane (Surr) 98 71.2 - 143 Toluene-d8 (Surr) 100 74.1 - 135

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-1596/7 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 1596

Analysis Batch. 1990	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		100		ug/L			05/28/15 10:19	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Lab Sample ID: LCS 590-1596/9 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

68.7 - 141

Matrix: Water

Analysis Batch: 1596

4-Bromofluorobenzene (Surr)

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit D %Rec 1000 Gasoline 932 ug/L 93 80 - 120

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 100 68.7 - 141

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

103

Lab Sample ID: MB 590-1534/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA **Analysis Batch: 1531** Prep Batch: 1534

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
2-Methylnaphthalene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
1-Methylnaphthalene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Acenaphthylene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Acenaphthene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1

TestAmerica Spokane

05/28/15 10:19

Page 27 of 39

TestAmerica Job ID: 590-870-1

Client: GeoEngineers Inc Project/Site: Tiger Oil - Summit View

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: MB 590-1534/1-A

MB MB

Matrix: Water Analysis Batch: 1531 Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 1534

	141.0	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Phenanthrene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Anthracene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Fluoranthene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Pyrene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Benzo[a]anthracene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Chrysene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Benzo[b]fluoranthene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Benzo[k]fluoranthene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Benzo[a]pyrene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Indeno[1,2,3-cd]pyrene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Dibenz(a,h)anthracene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1
Benzo[g,h,i]perylene	ND		0.18		ug/L		05/21/15 12:52	05/21/15 14:29	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	117		32.7 - 135	05/21/15 12:52	05/21/15 14:29	1
2-Fluorobiphenyl (Surr)	88		44.3 - 120	05/21/15 12:52	05/21/15 14:29	1
p-Terphenyl-d14	106		59.5 - 154	05/21/15 12:52	05/21/15 14:29	1

Lab Sample ID: LCS 590-1534/2-A

Matrix: Water

Analysis Batch: 1531

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 1534 %Rec

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	3.20	3.01		ug/L		94	27.8 - 143	
Fluorene	3.20	3.69		ug/L		115	59.2 - 120	
Chrysene	3.20	3.67		ug/L		115	69.1 - 122	
Indeno[1,2,3-cd]pyrene	3.20	3.94		ug/L		123	56.1 - 135	
	Analyte Naphthalene Fluorene Chrysene	Analyte Added Naphthalene 3.20 Fluorene 3.20 Chrysene 3.20	Analyte Added Nesult Naphthalene 3.20 3.01 Fluorene 3.20 3.69 Chrysene 3.20 3.67	AnalyteAdded AddedResult QualifierNaphthalene3.203.01Fluorene3.203.69Chrysene3.203.67	Analyte Added Result Qualifier Unit Naphthalene 3.20 3.01 ug/L Fluorene 3.20 3.69 ug/L Chrysene 3.20 3.67 ug/L	Analyte Added Naghthalene Result Qualifier Unit Ug/L D Fluorene 3.20 3.69 ug/L Chrysene 3.20 3.67 ug/L	Analyte Added Naphthalene Result Qualifier Unit ug/L D %Rec ug/L 94 Fluorene 3.20 3.69 ug/L 115 Chrysene 3.20 3.67 ug/L 115	Analyte Added Result Qualifier Unit D %Rec. Naphthalene 3.20 3.01 ug/L 94 27.8 - 143 Fluorene 3.20 3.69 ug/L 115 59.2 - 120 Chrysene 3.20 3.67 ug/L 115 69.1 - 122

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Nitrobenzene-d5	97	32.7 - 135
2-Fluorobiphenyl (Surr)	79	44.3 - 120
p-Terphenyl-d14	85	59.5 - 154

Method: 8011 - EDB, DBCP, and 1,2,3-TCP (GC)

Lab Sample ID: MB 590-1582/2-A

Matrix: Water

Analysis Batch: 1583

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 1582

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.010 05/27/15 09:58 05/27/15 11:07 1,2-Dibromoethane (EDB) ND ug/L

TestAmerica Spokane

6/15/2015

Client: GeoEngineers Inc

Analyte

Lab Sample ID: LCS 590-1559/2-A

Project/Site: Tiger Oil - Summit View

Method: 8011 - EDB, DBCP, and 1,2,3-TCP (GC) (Continued)

Lab Sample ID: LCS 590-1582/3-A				Clie	nt Sar	mple ID	: Lab Con	trol Sample
Matrix: Water							Prep Typ	e: Total/NA
Analysis Batch: 1583							Prep	Batch: 1582
•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1.2-Dibromoethane (EDR)	0 125	0.157		ua/l		125	60 140	

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Result Qualifier

Lab Sample ID: MB 590-1559 Matrix: Water Analysis Batch: 1555	9/1- A MB	мв					•	le ID: Method Prep Type: To Prep Batch	otal/NA
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.24		mg/L		05/26/15 13:14	05/26/15 17:00	1
Residual Range Organics (RRO) (C25-C36)	ND		0.40		mg/L		05/26/15 13:14	05/26/15 17:00	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	92		50 - 150				05/26/15 13:14	05/26/15 17:00	1
n-Triacontane-d62	102		50 - 150				05/26/15 13:14	05/26/15 17:00	

Lab Sample ID: MB 590-1559/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 1574	Prep Batch: 1559
MB MB	

RL

MDL Unit

Prepared

Analyzed

Client Sample ID: Lab Control Sample

Dil Fac

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
	MB	MB					
Residual Range Organics (RRO) (C25-C36)	ND		0.40	mg/L	05/26/15 13:14	05/27/15 09:15	1
Diesel Range Organics (DRO) (C10-C25)	ND		0.24	mg/L	05/26/15 13:14	05/27/15 09:15	1

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	93		50 - 150	05/26/15 13:14	05/27/15 09:15	1
n-Triacontane-d62	74		50 - 150	05/26/15 13:14	05/27/15 09:15	1

Matrix: Water							Prep Ty	pe: Total/	NA
Analysis Batch: 1555							Prep	Batch: 18	559
-	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Diesel Range Organics (DRO) (C10-C25)	3.20	2.89		mg/L		90	50 - 150		
Residual Range Organics (RRO)	3.20	2.97		mg/L		93	50 - 150		

(C10-C25) Residual Range Organics (RRO) (C25-C36)			3.20	2.97	mg/L	93	50 - 150	
	LCS	LCS						
Surrogate	%Recovery	Qualifier	Limits					
o-Terphenyl	98		50 - 150					
n-Triacontane-d62	105		50 - 150					

TestAmerica Spokane

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 590-1559/2-A

Matrix: Water

Analysis Batch: 1574

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Batch: 1559

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 3.20 89 50 - 150 Diesel Range Organics (DRO) 2.84 mg/L (C10-C25) 3.20 2.99 93 Residual Range Organics (RRO) mg/L 50 - 150

(C25-C36)

LCS LCS

MB MB

Surrogate %Recovery Qualifier Limits o-Terphenyl 98 50 - 150 n-Triacontane-d62 64 50 - 150

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 590-1516/15

Matrix: Water

Analysis Batch: 1516

Client Sample ID: Method Blank Prep Type: Total/NA

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Nitrate as N 0.20 05/20/15 15:08 ND ma/L

Lab Sample ID: LCS 590-1516/14

Matrix: Water

Analysis Batch: 1516

Spike LCS LCS %Rec. Analyte Added Result Qualifier %Rec Limits Unit Nitrate as N 5.00 5.08 102 90 - 110 mg/L

Lab Sample ID: MB 590-1517/15

Matrix: Water

Analysis Batch: 1517

MB MB

Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed 0.50 Sulfate $\overline{\mathsf{ND}}$ mg/L 05/20/15 15:08

Analysis Batch: 1517

Lab Sample ID: LCS 590-1517/14 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Unit Limits Analyte D %Rec Sulfate 12.5 12.8 mg/L 102 90 - 110

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 590-1553/2-A

Matrix: Water

Analysis Batch: 1633

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 1553

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Lead $\overline{\mathsf{ND}}$ 0.014 05/27/15 14:00 05/29/15 11:10 mg/L

TestAmerica Spokane

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

05/26/15 11:39

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: LCS 590-1553/1-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 1633** Prep Batch: 1553 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits 1.00 Lead 0.997 mg/L 100 85 - 115

ND

Method: SM 5310C - TOC

Lab Sample ID: MB 490-251385/1 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 251385

Total Organic Carbon

MB MB MDL Unit RL Analyte Result Qualifier D Prepared Analyzed Dil Fac 1.0

Lab Sample ID: LCS 490-251385/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

mg/L

Analysis Batch: 251385

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits **Total Organic Carbon** 10.0 9.81 98 90 - 110 mg/L TOC Result 1 10.0 9.89 90 - 110 mg/L 99 TOC Result 2 10.0 9.73 mg/L 97 90 - 110

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Lab Sample ID: 590-870-1

Matrix: Water

Client Sample ID: Duplicate Date Collected: 05/19/15 08:00

Date Received: 05/20/15 10:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		100	43 mL	43 mL	1594	05/28/15 17:08	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		100	43 mL	43 mL	1596	05/28/15 17:08	MRS	TAL SPK
Total/NA	Prep	3510C			253.9 mL	2 mL	1534	05/21/15 12:52	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	253.9 mL	2 mL	1531	05/21/15 15:24	NMI	TAL SPK
Total/NA	Prep	3510C			253.9 mL	2 mL	1534	05/21/15 12:52	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		20	253.9 mL	2 mL	1531	05/21/15 17:43	NMI	TAL SPK
Total/NA	Prep	8011			80 mL	2 mL	1582	05/27/15 09:58	NMI	TAL SPK
Total/NA	Analysis	8011		1	80 mL	2 mL	1583	05/27/15 11:40	NMI	TAL SPK
Silica Gel Cleanup	Prep	3510C SGC			122.9 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Silica Gel Cleanup	Analysis	NWTPH-Dx		1	122.9 mL	2 mL	1574	05/27/15 09:54	NMI	TAL SPK
Total/NA	Prep	3510C SGC			122.9 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	122.9 mL	2 mL	1555	05/26/15 17:40	NMI	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1516	05/20/15 16:00	MRS	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1517	05/20/15 16:00	MRS	TAL SPK
Total/NA	Prep	200.7			50 mL	50 mL	1553	05/27/15 14:00	JSP	TAL SPK
Total/NA	Analysis	200.7 Rev 4.4		1	50 mL	50 mL	1622	05/28/15 22:09	JSP	TAL SPK
Total/NA	Analysis	SM 5310C		1	50 mL	50 mL	251385	05/26/15 11:39	JAB	TAL NSH

Client Sample ID: SVMW-2 Lab Sample ID: 590-870-2 Date Collected: 05/19/15 12:46 **Matrix: Water**

Date Received: 05/20/15 10:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	43 mL	43 mL	1594	05/28/15 17:30	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	1596	05/28/15 17:30	MRS	TAL SPK
Total/NA	Prep	3510C			238.8 mL	2 mL	1534	05/21/15 12:52	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	238.8 mL	2 mL	1531	05/21/15 15:52	NMI	TAL SPK
Total/NA	Prep	8011			80 mL	2 mL	1582	05/27/15 09:58	NMI	TAL SPK
Total/NA	Analysis	8011		1	80 mL	2 mL	1583	05/27/15 11:56	NMI	TAL SPK
Total/NA	Prep	3510C SGC			118.9 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	118.9 mL	2 mL	1555	05/26/15 18:00	NMI	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1516	05/20/15 16:13	MRS	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1517	05/20/15 16:13	MRS	TAL SPK
Total/NA	Prep	200.7			50 mL	50 mL	1553	05/27/15 14:00	JSP	TAL SPK
Total/NA	Analysis	200.7 Rev 4.4		1	50 mL	50 mL	1622	05/28/15 22:11	JSP	TAL SPK
Total/NA	Analysis	SM 5310C		1	50 mL	50 mL	251385	05/26/15 11:39	JAB	TAL NSH

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Lab Sample ID: 590-870-3

Matrix: Water

Client Sample ID: SVMW-3 Date Collected: 05/19/15 14:23 Date Received: 05/20/15 10:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		100	43 mL	43 mL	1594	05/28/15 18:01	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		100	43 mL	43 mL	1596	05/28/15 18:01	MRS	TAL SPK
Total/NA	Prep	3510C			253 mL	2 mL	1534	05/21/15 12:52	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	253 mL	2 mL	1531	05/21/15 16:20	NMI	TAL SPK
Total/NA	Prep	3510C			253 mL	2 mL	1534	05/21/15 12:52	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		20	253 mL	2 mL	1531	05/21/15 18:38	NMI	TAL SPK
Total/NA	Prep	8011			80 mL	2 mL	1582	05/27/15 09:58	NMI	TAL SPK
Total/NA	Analysis	8011		1	80 mL	2 mL	1583	05/27/15 12:13	NMI	TAL SPK
Silica Gel Cleanup	Prep	3510C SGC			127.7 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Silica Gel Cleanup	Analysis	NWTPH-Dx		1	127.7 mL	2 mL	1574	05/27/15 10:14	NMI	TAL SPK
Total/NA	Prep	3510C SGC			127.7 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	127.7 mL	2 mL	1555	05/26/15 18:20	NMI	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1516	05/20/15 16:26	MRS	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1517	05/20/15 16:26	MRS	TAL SPK
Total/NA	Prep	200.7			50 mL	50 mL	1553	05/27/15 14:00	JSP	TAL SPK
Total/NA	Analysis	200.7 Rev 4.4		1	50 mL	50 mL	1622	05/28/15 22:14	JSP	TAL SPK
Total/NA	Analysis	SM 5310C		1	50 mL	50 mL	251385	05/26/15 11:39	JAB	TAL NSH

Client Sample ID: SVMW-4 Lab Sample ID: 590-870-4 Date Collected: 05/19/15 11:30 **Matrix: Water**

Date Received: 05/20/15 10:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	43 mL	43 mL	1594	05/28/15 18:23	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	1596	05/28/15 18:23	MRS	TAL SP
Total/NA	Prep	3510C			239.2 mL	2 mL	1534	05/21/15 12:52	NMI	TAL SP
Total/NA	Analysis	8270D SIM		1	239.2 mL	2 mL	1531	05/21/15 16:47	NMI	TAL SP
Total/NA	Prep	8011			80 mL	2 mL	1582	05/27/15 09:58	NMI	TAL SP
Total/NA	Analysis	8011		1	80 mL	2 mL	1583	05/27/15 12:29	NMI	TAL SP
Total/NA	Prep	3510C SGC			126.2 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SP
Total/NA	Analysis	NWTPH-Dx		1	126.2 mL	2 mL	1555	05/26/15 18:40	NMI	TAL SP
Total/NA	Analysis	300.0		1	5 mL		1516	05/20/15 16:39	MRS	TAL SP
Total/NA	Analysis	300.0		1	5 mL		1517	05/20/15 16:39	MRS	TAL SP
Total/NA	Prep	200.7			50 mL	50 mL	1553	05/27/15 14:00	JSP	TAL SP
Total/NA	Analysis	200.7 Rev 4.4		1	50 mL	50 mL	1622	05/28/15 22:17	JSP	TAL SP
Total/NA	Analysis	SM 5310C		1	50 mL	50 mL	251385	05/26/15 11:39	JAB	TAL NS

TestAmerica Spokane

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Lab Sample ID: 590-870-5

Matrix: Water

Date	Collected:	05/19/15	13:35
Date	Received:	05/20/15	10:40
_			

Client Sample ID: SVMW-5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		10	43 mL	43 mL	1594	05/28/15 18:45	MRS	TAL SPK
Total/NA	Analysis	NWTPH-Gx		10	43 mL	43 mL	1596	05/28/15 18:45	MRS	TAL SPK
Total/NA	Prep	3510C			233.3 mL	2 mL	1534	05/21/15 12:52	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1	233.3 mL	2 mL	1531	05/21/15 17:15	NMI	TAL SPK
Total/NA	Prep	8011			80 mL	2 mL	1582	05/27/15 09:58	NMI	TAL SPK
Total/NA	Analysis	8011		1	80 mL	2 mL	1583	05/27/15 12:45	NMI	TAL SPK
Silica Gel Cleanup	Prep	3510C SGC			120.7 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Silica Gel Cleanup	Analysis	NWTPH-Dx		1	120.7 mL	2 mL	1574	05/27/15 10:34	NMI	TAL SPK
Total/NA	Prep	3510C SGC			120.7 mL	2 mL	1559	05/26/15 13:14	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1	120.7 mL	2 mL	1555	05/26/15 19:00	NMI	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1516	05/20/15 16:52	MRS	TAL SPK
Total/NA	Analysis	300.0		1	5 mL		1517	05/20/15 16:52	MRS	TAL SPK
Total/NA	Prep	200.7			50 mL	50 mL	1553	05/27/15 14:00	JSP	TAL SPK
Total/NA	Analysis	200.7 Rev 4.4		1	50 mL	50 mL	1622	05/28/15 22:19	JSP	TAL SPK
Total/NA	Analysis	SM 5310C		1	50 mL	50 mL	251385	05/26/15 11:39	JAB	TAL NSH

Client Sample ID: Trip Blank

Date Collected: 05/19/15 00:00

Lab Sample ID: 590-870-6 **Matrix: Water** Date Received: 05/20/15 10:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	43 mL	43 mL	1594	05/28/15 19:07	MRS	TAL SPK

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

TestAmerica Spokane

Certification Summary

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-15
Washington	State Program	10	C569	01-06-16

Laboratory: TestAmerica Nashville

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Washington	State Program	10	C789	07-19-15

3

4

5

6

9

10

11

40

Method Summary

Client: GeoEngineers Inc

Project/Site: Tiger Oil - Summit View

TestAmerica Job ID: 590-870-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	TAL SPK
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
8011	EDB, DBCP, and 1,2,3-TCP (GC)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
300.0	Anions, Ion Chromatography	MCAWW	TAL SPK
200.7 Rev 4.4	Metals (ICP)	EPA	TAL SPK
SM 5310C	TOC	SM	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

NWTPH = Northwest Total Petroleum Hydrocarbon

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

7

10

11

4

Page 37 of 39

TestAmerica Spokane

11922 East 1st Ave

Chain of Custody Record

Tes	iA!	n		CC
\$\$\$\$\$\$\$\$\$\$\$	1216B20B1	LEMBER .	1920 M. 1950.	DDDBBBBB
THE LEAD	er in er	igos.	TEXT AS	TESTARE

Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290				istouy i	NEC	JUIC	4											<i>The Leacem in th</i>			
Client Information	Sampler:	on Fri	DERLCY	Lab Arr	PM rington	ı, Ran	dee E					C	amer T	racking	No(s)			COC No ⁻ 590-364-128.1			
Client Contact: JR Sugalski	Phone 710	ء ناه <i>څ</i>	677	E-M ran	/lail ndee.a	rringto	on@te	stame	ericai	inc.co	m	- 1						Page: Page 1 of 1			
Company Geo Engineers Inc	•			•	T				Ar	nalys	is R	equ	este	d				Job#			
Address: 523 East Second Ave	Due Date Requ	ested:				900 655											<u> </u>	Preservation Code			
City: Spokane State, Zip:	TAT Requested	l (days):															,	A - HCL B - NaOH C - Zn Acetate D - Nitne Acid	M - Hexa N - None O - AsNa P - None	e aO2	
WA, 99202		·				10to 10.74	rbour				_							E - NaHSO4 F - MeOH	P - Na20 Q - Na28 R - Na28	SO3 S2SO3	
Phone. 509-209-2830(Tei)	PO #. Purchase Or	der not requ	uired		a		ydroca				w/o SGT							G - Amchlor	5 - H2S0 T - TSP1	04 Dodecahyd	drate
Email: jsugalski@geoengineers.com	WO #				ov No	9 8	atic H	MS	-4		ੲੈ	<u>6</u>					Į.	I - Ice	U - Aceto V - MCA	one .A	
Project Name: Tiger Oil - Summit View	Project # 59000440				72	ă 3	ic Arom	ORGF	15 PCh	1 1	-Dx with	ane (EI	les				oontaiříbřs	K - EDTA L - EDA	W - ph 4 Z - other	-5 (specify)	
Site: Washington	SSOW#:				Sam	g i	lycycl	00, 30	7	Š	MTPH	moeth	Volat			ŀ	و م				
Sample identification .	Sample Da	Samp te Tîme	G=grat	(W=water, S=solid, P; O=waste/oII, D) BT=Tissue, A=Al		Perform MSIMSD (Yes	8270D_SIM - Polycyclic Aromatic Hydrocarbon	300_ORGFM_28D, 300_ORGFMS	200.7 - Lead	8260C, NWTPH_Gx_MS	NWTPH_Dx - NWTPH-Dx	8011 - 1,2-Dibromoethane (EDB)	8260C - 8260C - Volatile:				Total Number	Special Ins	structio	ns/Note	
			7	ivation Code:	7.7	Xs.	1	N		A J	A N) <i>f</i>	<u> </u>	1	1 1		_				
DURLICATE	5/19/19			Water	N	۲		X	X	×	$\overline{}$	x)	<			\perp					
51MW-2 51MW-3	1	1241		Water	Ŋ	_ >		×	*	*	X 1	ĸ	χ			\perp					
5VMW-3		142	: - : \ 	Water	2	×	×	×	V	ĸ	γ,	ζ,	۴								
SVMW-4		1130	اے	Water	ηV	×	×	< <	¥	k	×	ķ.	×								
SVMW-S		1335	19	Water	74	×	*	*	×	×	× ;	ĸ	<u>ሃ</u>					3			
SVMW-5 Taip Brann	♦			Water	74								×								
				Water	A						_	l	ł	l	l l	İ	1.	1			
	-		<u> </u>	Water	\prod		-				_								1		
					+						-								+		
					+	+				\dashv	— 5	90-8	70 CI	hain o	f Cust	tody					
Possible Hazard Identification				Į.	- 	Samp	le Dis _i	oosa	(A	fee m	ay be	ass	esse	d if sa	mples	ar <u>e</u> re	etain	ed longer than 1 n	nonth)		
Non-Hazard Flammable Skin Irritant Poiss Deliverable Requested I, II, III, IV, Other (specify)	on B └─Unk	nown	Radiologica	1		نده دد	Return	To C	lient	t		Dis	oosal	By La	b		Archi	ve For	Month	s	
		T				Specia	i instr	uction	15/Q(U Rec	quiren	nents	*/	14	500	b 8	FOR	LEAD			
Empty Kit Relinquished by. Relinquished by:	Date/Time.	Date:	<u>† , </u>	Componi	11111	ię						,	Me	thod of	- Stribine	erit.	, .		10		
	5	19/1	5/1516	Company GEZ	-				12	6	K	DA	4	<u> </u>	Date/I	<u> 20/</u>	5	10:40	7AC	<u>dyk</u>	Ł
Relinquished by:	Date/Time ⁻			Company		Re	ceived b	y.			J'		ر		Date∕⊓	ime			Compan	ly -	
Relinquished by:	Date/Time:			Company			ceived b	-							Date/				Compan	ıy	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No Custody Seal No.: Δ Yes Δ No		,		ı		Co	oler Ten	peratu	ure(s)	°C and	d Other	Rem	arks: C	70					-		
			1										~			4			$-\!\!\!+$		

Job Number: 590-870-1

List Source: TestAmerica Spokane

Client: GeoEngineers Inc

Login Number: 870 List Number: 1

Creator: Kratz, Sheila J

Creator. Kratz, Silella J		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Spokane

Job Number: 590-870-1

List Creation: 05/21/15 04:28 PM

Login Number: 870 List Source: TestAmerica Nashville

Creator: Ford, Easton

List Number: 2

MS/MSDs

<6mm (1/4").

Multiphasic samples are not present.

Residual Chlorine Checked.

Samples do not require splitting or compositing.

Containers requiring zero headspace have no headspace or bubble is

Client: GeoEngineers Inc

,		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested	True	

N/A

True

True

N/A

APPENDIX CWell Survey Report

MONITO	TIGER OIL ORING WELL ELEVATIO YAKIMA, WA	N TABLE	SURVEY DATE 4/30/2015	PLS JOB NO. 15029					
FEATURE	NORTH EDGE OF PVC	NORTHING	EASTING						
SVMW-4	1220.00	1220.35	462028.3	1619576.7					
SVMW-5	1219.09	1219.41	461969.3	1619546.4					
BENCHMARK ELEVATION = 1219.58'	SW CORNER OF TRAFFICONCRETE PAD AT THE SUMMITVIEW AVE. AND OF CONCRETE WALK	NE CORNER OF	461957.6	1619548.4					
NAVD 88 - REFERENCED FROM WSDOT MONUMENT DESIGNATION GP39012-9, WITH A PUBLISHED ELEVATION OF 1130.33 FEET.									
HORIZONTAL DATUM:	HORIZONTAL DATUM: NAD 83/91 WASHINGTON SOUTH ZONE - BASED ON GPS MEASUREMENTS USING THE WASHINGTON STATE REFERENCE NETWORK.								

The horizontal coordinates of the groundwater monitoring wells and the elevation of the benchmark established at the site were determined using a Topcon GR-3 GPS receiver with a nominal accuracy of 10mm + 1ppm horizontal and 15mm + 1ppm vertical. The elevation of the monitoring wells at each site are relative to the benchmark established at each site and were individually determined using a Leica DNA03 digital level with a vertical accuracy of +/- 0.01 feet.

APPENDIX D Report Limitations and Guidelines for Use

APPENDIX D REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

GeoEngineers has performed this assessment of the Tiger Oil – Summitview site in Yakima, Washington in general accordance with the Work Plan dated April 15, 2014. This report has been prepared for the exclusive use of the Washington Department of Ecology. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an Environmental Site Assessment (ESA) study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and property. No one except the Washington Department of Ecology should rely on this environmental report without first conferring with GeoEngineers. Use of this report is not recommended for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the Tiger Oil – Summitview site in Yakima, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, it is important not to rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made to the project or property after the date of this report, we recommend that GeoEngineers be given the opportunity to review our interpretations and recommendations. Based on that review, we can provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of our Client. No other party may rely on the product of our services unless we agree to such reliance in advance and in writing. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations Are Always Evolving

Some substances may be present in the vicinity of the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substances, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

Performance of a Phase II ESA is intended to reduce uncertainty regarding the potential for contamination in connection with a property, but no ESA can wholly eliminate that uncertainty. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by man-made events such as construction on or adjacent to the subject property, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Please contact GeoEngineers before applying this report for its intended purpose so that GeoEngineers may evaluate whether changed conditions affect the continued applicability of the report.

Soil and Groundwater End Use

The cleanup criteria referenced in this report are site- and situation-specific. The cleanup criteria may not be applicable for other properties or for other on-site uses of the affected soil and/or groundwater. Note that hazardous substances may be present in some of the on-site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup criteria. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject property or reuse of the affected soil or groundwater on-site to evaluate the potential for associated environmental liabilities. We are unable to assume responsibility for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject property to another location or its reuse on-site in instances that we did not know or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the subject property. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an informed opinion about subsurface conditions throughout the property. Actual subsurface conditions may differ,

sometimes significantly, from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproduction is acceptable, but separating logs from the report can create a risk of misinterpretation.

Read These Provisions Closely

It is important to recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are less exact than other engineering and natural science disciplines. Without this understanding, there may be expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you need to know more about how these "Report Limitations and Guidelines for Use" apply to your project or property.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants, and no conclusions or inferences should be drawn regarding Biological Pollutants as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.

A Client that desires these specialized services is advised to obtain them from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service?

Please let us know by visiting **www.geoengineers.com/feedback**.

