DRAFT

Remedial Investigation Report Addendum USG Interiors Highway 99 Site Milton, Washington

> Prepared for: USG Corporation 550 West Adams Street Chicago, Illinois 60661-3676

January 14, 2013

A Report Prepared For :

USG Corporation 500 West Adams Street Post Office Box 6721 Chicago, Illinois 60661-3676

DRAFT Remedial Investigation Report Addendum USG Interiors highway 99 site Milton, Washington

January 14, 2013

Prepared by: **CDM Smith**. 14422 SE Easterto Way Suid

14432 SE Eastgate Way, Suite 100 Bellevue, Washington 98007

CDM Project No. 19921.77628

Table of Contents

Figure 3

Figure 4 Figure 5

Figure 6

Figure 7

Section 1 Intro	luction	1-1
1.1	Agreed Order	1-1
1.2	Site Location and Description	1-1
1.3	Remedial Investigation Objectives	1-1
Section 2 Field	Investigation	2-1
Section 3 Site G	eologic and Hydrogeologic Findings	3-1
Section 4 Analy	tical Results	4-1
4.1	Soil Results	4-1
4.2	Groundwater Results	
	4.2.1 Arsenic Distribution and Geochemical Indicator Parameters	
	4.2.2 Analysis of Supplemental Groundwater Assessment Data	
4.3	Surface Water Results	
4.4	Sediment Results	
Section 5 Evalu	ation of Quality Control Data	5-1
Section 6 Site C	onceptual Model	6-1
Section 7 Terre	strial Ecological Evaluation	7-1
Section 8 Summ	nary	8-1
Section 9 Refer	ences	9-1
Tables		
Table 1	Well Construction Details	
Table 2	Summary of Groundwater Elevations Measurements	
Table 3	Groundwater General Parameters	
Table 4	Surface Water General Parameters	
Table 5	Vertical Hydraulic Gradient Between Shallow and Deeper Groundwater Mo Points	nitoring
Table 6	Arsenic in Soil	
Table 7	Arsenic in Sediment	
Table 8	Analytical Results - Groundwater	
Table 9	Analytical Results - Surface Water	
Figures		
Figure 1	Site Vicinity Map	
Figure 2A	Site Plan	
Figure 2B	Site Plan	

Arsenic in Soil from 0-2 Feet Below Ground Surface Arsenic in Soil from 4-6 Feet Below Ground Surface

Groundwater Elevation Contour Map, Alluvial Aquifer, July 15, 2010

Geologic Cross Section A – A' Geologic Cross Section B – B'

- Figure 8 Arsenic in Soil from 6-8 Feet Below Ground Surface
- Figure 9 Arsenic in Soil from 8-10 Feet Below Ground Surface
- Figure 10 Arsenic in Soil from 10-12 Feet Below Ground Surface
- Figure 11 Arsenic in Soil from 12-14 Feet Below Ground Surface
- Figure 12 Arsenic in Soil from 14-16 Feet Below Ground Surface
- Figure 13 Arsenic in Soil from 16-18 Feet Below Ground Surface
- Figure 14A Dissolved Total Arsenic in Groundwater
- Figure 14B Dissolved Total Arsenic in Groundwater
- Figure 15 Arsenic +3 in Groundwater
- Figure 16 Arsenic +5 in Groundwater
- Figure 17 Dissolved Iron in Groundwater
- Figure 18 Oxidation-Reduction Potential in Groundwater
- Figure 19 Total Organic Carbon in Groundwater

Appendices

Appendix ABoring Logs and Well Construction LogsAppendix BAnalytical Laboratory Reports - Supplemental Groundwater Assessment

Introduction

This addendum presents the results of supplemental groundwater assessment conducted as part of the remedial investigation (RI) performed for USG Interiors (USG) at the former USG property located at 7110 Pacific Highway East in Milton, Washington. The site location is shown on **Figure 1**.

This addendum supplements the RI report dated July 11, 2012. After review of this report, the Washington Department of Ecology requested that USG perform additional groundwater assessment to further characterize the extent of arsenic exceeding the groundwater protection standard to the north, south, and east.

This addendum describes the results of this supplemental groundwater assessment but does not provide detailed descriptions of site history, regional and site surface water, geology, hydrogeology, or contaminant fate and transport. The reader should refer to the July 2012 RI for this information. All of the figures and tables are reprinted in this addendum.

1.1 Agreed Order

The RI was performed to satisfy the requirements of Agreed Order DE 84-506 (Order) between the Washington Department of the Ecology (Ecology) and USG. A final RI Work Plan dated March 5, 2010 was submitted to Ecology, which addressed comments from Ecology on CDM's draft RI Work Plan. The RI was conducted in accordance with the final Work Plan.

1.2 Site Location and Description

The USG Highway 99 site is located between Pacific Highway East and Interstate 5 in Milton, Washington. **Figure 2A** shows the entire groundwater investigation area for the RI. For clarity, the extent of the exploration points shown on **Figure 2A** is referred to as the "site" throughout this report. The majority of RI fieldwork occurred in the core investigation area shown on **Figure 2B**, which is used to illustrate the RI results.

Freeway Trailer and Kanopy Kingdom currently operate at the site; their business locations are shown on **Figure 2B**. Chain link fence separates each business and the western property line along Pacific Highway East.

1.3 Remedial Investigation Objectives

The RI was implemented to:

- Characterize arsenic in surface soil between the paved areas and Hylebos Creek.
- Characterize the extent of arsenic contamination in soil, groundwater, sediment, and surface water.
- Characterize the potential contaminant migration pathway of arsenic in soil and groundwater to Hylebos Creek.

- Gather additional environmental data affecting arsenic fate and transport to help select a cleanup action that will meet MTCA requirements.
- Evaluate exposure to terrestrial and ecological receptors.

Field Investigation

This section describes the field work and investigation methods completed during this supplemental groundwater assessment. Field work included: locating underground utilities, drilling two new groundwater monitoring wells, and collecting groundwater samples from four groundwater monitoring wells.

The supplemental groundwater assessment was completed between November 20 and November 28, 2012. The purpose of the supplemental assessment was to define the limits of groundwater exceeding the groundwater protection standard to the north (MW-15), south (MW-16), and east (PD-209A and PD-211) of the core investigation area shown on **Figure 2B**. These groundwater monitoring wells are shown on **Figure 2A**. MW-15 and MW-16 are new monitoring wells installed for this assessment. PD-209A and PD-211 are existing wells installed as part of the B&L Landfill groundwater monitoring well network. Well logs for MW-15, MW-16, and PD-211 are provided in **Appendix A**. We were unable to locate a well log for PD-209A.

ESN Northwest drilled MW-15 and MW-16 using a DPT drill rig on November 20, 2012. The wells were constructed with a 1" milled slot PVC well screen. A filter pack consisting of #10-20 Colorado Silica Sand was placed in the annular space between the well screen and the borehole walls. The monitoring wells were completed with flush-mounted protective covers. **Table 1** provides well construction details.

MW-15 and MW-16 were developed and sampled on November 27, 2012. The wells were developed by pumping with a peristaltic pump until the turbidity was reduced. MW-15 pumped dry and the groundwater sample was collected on November 28 after the water level had recovered. Groundwater samples from PD-209A and PD-211 were collected on November 27. Groundwater purging and sampling procedures were consistent with those described in the July, 2012 RI report.

Site Geologic and Hydrogeologic Findings

This supplemental groundwater assessment yielded no new site geologic or hydrogeologic findings, a complete discussion of these topics is provided in the July 2012 RI report. Geologic cross sections and the water table surface map from the RI report are reproduced here as **Figures 3**, **4**, and **5**. **Table 2** provides water level measurements. **Table 3** groundwater parameters measurements from this supplemental groundwater assessment. **Tables 4** and **5** re-print surface water and hydrogeologic data from the RI report.

Section 4 Analytical Results

This section presents new groundwater data from the samples collected in November 2012.

4.1 Soil Results

No soil samples were submitted for laboratory or grain-size analysis as a part of the November 2012 supplemental assessment. For completeness, the following results are re-printed from the July 2012 RI report:

- Arsenic soil results are shown in **Table 6**.
- Isocontour maps of arsenic in site soil (Figures 6 through 13) were prepared using computer software and krieging methods. Figures 6 through 13 show arsenic contours in soil at depths of 0 to 2, 4 to 6, 6 to 8, 8 to 10, 10 to 12, 12 to 14, 14 to 16, and 16 to 18 feet bgs, respectively. Note that the arsenic values shown in Figure 13 are from saturated soil samples collected below the water table.

4.2 Groundwater Results

Groundwater samples collected in the November 2012 supplemental assessment were analyzed for total dissolved arsenic. The results are summarized in **Table 7**, along with analytical methods, reporting limits, and cleanup levels for arsenic. A Copy of the laboratory report for the supplemental groundwater assessment is included in **Appendix B**.

4.2.1 Arsenic Distribution and Geochemical Indicator Parameters

Figure 14A shows total dissolved arsenic concentration outside the core investigation area, including the results of samples collected in November 2012. **Figure 14B** is an isoconcentration map that shows the distribution of total dissolved arsenic in groundwater in the core investigation area. **Figures 15** through **19** are isoconcentration maps showing dissolved iron, arsenic (+3), arsenic (+5), and ORP in groundwater.

4.2.2 Analysis of Supplemental Groundwater Assessment Data

This section discusses arsenic results for the supplemental groundwater assessment. The July 2012 RI report analyses groundwater data from the core investigation area.

The objective of the supplemental groundwater assessment was to define the extent of arsenic exceeding the groundwater protection standard to the north, south, and east.

- <u>South:</u> The groundwater cleanup standard to the south was achieved with the sample collected from MW-15.
- <u>North</u>: The groundwater cleanup standard was not achieved in MW-16, the northernmost well drilled for the Highway 99 RI. The dissolved arsenic concentration in this well was 7.2 µg/L. Arsenic concentrations continued to attenuate to the north and these data do not indicate there is an additional arsenic source at the northern end of the site.

 <u>East:</u> The groundwater cleanup standard was exceeded in both of the B&L Landfill wells sampled for this supplemental assessment. Dissolved arsenic concentrations in these wells were 5.1 μg/L for PD-211 and 8.5 μg/L for PD-209A.

Arsenic is ubiquitous throughout Commencement Bay and the surrounding area as a result of the operation of a former Asarco smelter in Ruston. Arsenic sources in soil include fallout from the smelter plume, smelter slag from used as ballast in the many log yards, and smelter slag that was widely used as a fill material. Slag fill was observed in several soil samples collected for this RI.

This area-wide source of soil contamination impacts groundwater quality. CDM Smith recently submitted to Ecology a study of arsenic concentrations in soil and groundwater in the vicinity of the Estes Express Lines Terminal Facility (aka USF Reddaway) in Tacoma (CDM Smith, 2012). In our view, arsenic concentrations in the range of $5.1 \ \mu g/L$ to $8.5 \ \mu g/L$ that are seen in monitoring wells MW-16, PD-209A and PD-211 are within the range of area-wide background concentrations and are not necessarily indicative of impact from the Highway 99 site.

4.3 Surface Water Results

No surface water samples were collected for this supplemental assessment. RI surface water results are re-printed in **Table 8**.

4.4 Sediment Results

No sediment samples were collected for this supplemental assessment. RI sediment results are presented in **Table 9**.

Evaluation of Quality Control Data

Analytical reports and all available QC data were reviewed and evaluated to assess their overall quality and usability for the supplemental groundwater assessment samples. Based on these evaluations, no QC issues encountered were significant enough to warrant analytical data qualification. All data were determined to be usable for the intended project purposes.

Section 6 Site Conceptual Model

Arsenic geochemistry, fate and transport, and attenuation are discussed in the July 2012 RI report.

Terrestrial Ecological Evaluation

A simplified terrestrial ecological evaluation (TEE) was conducted to assess the potential risk of exposure to wildlife from potential site contamination. The TEE is presented in the July 2012 RI report.

Summary

Findings of the RI are summarized below.

- Based on our evaluation of the overall quality and usability of soil and groundwater samples, no
 QC issues encountered were significant enough to warrant analytical data of analytical reports
 and available QC data from the field investigation. All data were determined to be usable for the
 intended project purposes without qualification.
- Industrial waste containing arsenic was used as fill on the site from about 1971 to 1973. The
 majority of this fill was excavated and disposed off-site by USG in a 1984/1985 contaminant
 source removal action. Arsenic impacted native soil in the vicinity of 99-1 was also removed at
 this time.
- The site is underlain by fill, alluvium, and glacial deposits to a depth of at least 59 feet bgs. Fill included slag.
- Two aquifers were identified at the site: the Alluvial Aquifer and Glacial Aquifer.
- The Alluvial Aquifer is the uppermost aquifer at the site and is impacted by arsenic. There is a strong upward hydraulic gradient from the underlying Glacial Aquifer.
- The estimated average linear groundwater flow velocity in the Alluvial Aquifer is estimated to range from 2 to 20 feet/day.
- The distribution of residual arsenic in soil at the site reflects the results of the 1984/1985 contaminant source removal action. Arsenic concentrations are relatively low at ground surface. Soil excavated in 1984/1985 was restored with clean fill. The RI fully defined the lateral and vertical extent of arsenic exceeding MTCA soil cleanup levels.
- Arsenic concentrations in Alluvial Aquifer groundwater are highest at monitoring well 99-1. This well was drilled where the highest arsenic concentrations were encountered in fill and native soil during the 1984/1985 contaminant source removal action.
- Arsenic concentrations in groundwater attenuate significantly in all directions from 99-1. However, arsenic exceeds MTCA Method A groundwater cleanup levels to the north (Linwood Custom Homes) and east of Interstate 5. In our view, arsenic concentrations between 5.1 µg/L to 8.5 µg/L are within the range of area-wide background concentrations and are not necessarily indicative of impact from the Highway 99 site.
- Arsenic within the Alluvial Aquifer attenuates with depth. Arsenic in the underlying Glacial Aquifer exceeds MTCA Method A cleanup standards but this exceedence does not appear to be related site activities.

- Arsenic transport in the Alluvial Aquifer is at least 34 times slower than the groundwater velocity, resulting in long travel times for arsenic to migrate downgradient from the contaminant source area.
- Arsenic in the Alluvial Aquifer does not appear to be impacting Hylebos Creek water quality.
- Hylebos Creek sediment downgradient of the contaminant source area has arsenic exceeding ecological screening criteria
- The simplified TEE exposure analysis concluded that land use at the site and surrounding area makes substantial wildlife exposure unlikely.

References

Anderson, M.A., J.F. Ferguson and J. Gavis. 1976. *Arsenate Adsorption on Amorphous Aluminum Hydroxides.* J. Colloid & Interface Sci. v. 54 p. 391-399.

Anderson, M.P., and Woessner, W.W. 1992. *Applied Groundwater Modeling – Simulation of Flow and Advective Transport.* San Diego: Academic Press, Inc.

CDM Smith 2012. Arsenic Study. Estes Express Lines Terminal Facility (aka USG Reddaway). Tacoma, Washington. Voluntary Cleanup Program ID #SW1095. Prepared for Mr. Eugene Radcliff, Washington Department of Ecology by CDM Smith. December 13, 2012.

Camp Dresser & McKee, Inc. (CDM) 2010. *Remedial Investigation Work Plan, USG Interiors Highway 99 Site, Milton, Washington.* Dated March 5, 2010.

Duel, L.E. and A. R. Swoboda. 1972. *Arsenic Solubility in a Reducted Environment*. Soil Sci. Soc. Am. Proc. 36:276-278.

Ecology. 1986. *Memorandum to the Project File*. By Dom Reale, Washington Department of Ecology. June 30, 1986

Frost, R.R. and R.A. Griffin. 1977. *Effect of pH on Adsorption of Arsenic and Selenium from Landfill Leachate by Clay Minerals*. Soil Sci. Soc. Am. J. v. 41 p. 53-57.

Hazen. 1911. *Discussion—Dams on sand foundations*. Transactions, American Society of Civil Engineers, v. 73, p. 199.

Hem, J.D. 1971. *Study and Interpretation of the Chemical Characteristics of Natural Water*. Second Edition. USGS Water Supply Paper 1473.

Hounslow, A.W. 1980. *Ground Water Geochemistry: Arsenic in Landfills*. Ground Water v. 18 n. 4 p. 331-333.

Parkhurst, D.L. and Appelo, C.A.J. 1999. User's Guide to PHREEQC (Version 2)- A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. USGS Water-Resources Investigations Report 99-4259.

Pierce, M.L. and C.B. Moore. 1982. *Adsorption of arsenite and arsenate on amorphous iron hydroxide*. Water Res. 16:1247-1253.

Root, R.A., Dixit, S., Campbell, K.M., Jew, A.D., Hering, J.G. and P.A. O'Day. 2007. *Arsenic sequestration by sorption processes in high-iron sediments*. Geochimica et Cosmochimica Acta. v. 71, p. 5782-5803.

Shnyukov, E.F. 1963. *Arsenic in the Cimmerian Iron Ores of the Azov-Black Sea Region.* Geochemistry (Geokhimiya), 87-93.

Stow, S.H. 1969. *The Occurrence of Arsenic and the Color-Causing Components in Florida Land-Pebble Phosphate Rock*. Economic Geology. V. 64, p. 667-671.

Stumm, W. and J.J. Morgan. 1981. *Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters*. 2nd ed. John Wiley and Sons, NY.

Su, C. and R.W. Puls. 2004. Significance of Iron (II,III) Hydroxycarbonate Green Rust in Arsenic Remediation using Zerovalent Iron in Laboratory Column Tests. Environ. Sci. Technol. v. 38, p. 5224-5231.

TPCHD. 1993. *Hylebos Creek Water Quality Project. Final Report. Prepared for Tacoma-Pierce County Health Department Water Resources Section.* Prepared by Adolfson Associates, Inc. June 1993.

EPA, 1998. Method 6200, Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. January 1998.

Washington Department of Ecology (Ecology). 2008. *Agreed Order DE 84-506 Between the Washington Department of the Ecology and USG.* August 17, 1984.

Whiting, K.S. 1992. *The Thermodynamics and Geochemistry of Arsenic, with Application to Subsurface Waters at the Sharon Steel Superfund Site at Midvale, Utah.* MS Thesis T-4128 Colorado School of Mines, Golden Colorado.

Woolsen, E.A., J.H. Axley, and P.C. Kearney. 1971. The *Chemistry and Phytotoxicity of Arsenic in Soils: I Contaminated Field Soils*. Soil Sci. Soc. Am. Proc. 35:938-943.

Distribution

1 Сору	Wshington Department of Ecology Toxics Cleanup Program Post Office Box 47775 Olympia, Washington 98504-47775
	Attention: Mr. Dominick Reale
1 Сору	USG Corporation 500 West Adams Street Chicago, Illinois 60661-3676 Attention: Ms. Lanta Stevens

Quality Assurance/Technical Review by:

Alan D. Carey, LHG Project Managert

Tables

Table 1 Well Construction Details Highway 99 Site USG Interiors Milton, Washington

Well I.D.	Northing ^a	Easting ^a	TOC Elevation (ft AMSL) ^b	Boring Total Depth (ft)	Screen Depth Interval (ft)	Casing Diameter (in)	Slot Size (in)	Screen Type	Drilled Date
MW-1	703059.65	1184681.28	23.02	19.0	13-18	2	0.01	PVC	05/05/10
MW-2	702999.60	1184652.77	22.37	19.0	12-19	2	0.01	PVC	05/04/10
MW-3	703045.13	1184763.71	20.22	21.0	14.7-19.7	2	0.01	PVC	05/07/10
MW-4	702987.85	1184749.40	20.40	20.0	14-19	2	0.01	PVC	05/05/10
MW-5	702934.84	1184745.18	19.07	20.0	14.5-19.5	2	0.01	PVC	05/06/10
MW-6	702883.36	1184710.13	19.89	20.0	14.1-19.1	2	0.01	PVC	05/06/10
MW-7	702969.79	1184715.93	21.06	39.0	25-30	2	0.01	PVC	05/05/10
MW-8	702924.45	1184744.14	19.12	40.0	34.9-40.1	2	0.01	PVC	05/06/10
MW-9	702988.01	1184715.80	20.87	59.0	43-48	2	0.01	PVC	05/04/10
MW-10	702958.17	1184783.51	14.15	12.6	10.4-11.5	3/4	0.01	Stainless Steel	10/14/11
MW-11	703185.90	1184844.31	15.41	10.5	9.3-10.5	3/4	0.01	Stainless Steel	10/14/11
MW-12	703065.01	1184585.80	21.54	20.0	14-19	1	0.01	Pre-pack PVC	05/11/12
MW-13	702495.10	1184478.55	22.16	16.0	10-15	1	0.01	Pre-pack PVC	05/11/12
MW-14	703437.40	1184781.81	30.30	20.0	13-18	1	0.01	Pre-pack PVC	05/11/12
MW-15				12.0	7-12	1	0.01	PVC	11/20/12
MW-16				12.0	12-17	1	0.01	PVC	11/20/12
PD-209A	702899.19	1185072.73	17.13	~14	UNK	2	UNK	PVC	UNK
PD-211	703281	1185150	16.77	20.0	6-16	2	UNK	PVC	08/18/08
99-1	702978.95	1184715.54	21.34	28.0	15-25	4	0.01	PVC	05/1985
99-2	703159.55	1184771.51	22.64	25.5	15-25	4	0.01	PVC	05/1985

Notes:

a) Washington State Plane North American Datum of 1983 (NAD 83), Zone 12, feet.

b) ft AMSL - feet above mean sea level. Elevations based on North American Vertical Datum of 1988 (NAVD 88).

TOC - Top of casing.

PVC - Polyvinylchloride.

UNK - Unknown.

Table 3Groundwater General Parameters

Hwy 99 Site USG Interiors

Milton, Washington

Monitoring Well	Date Sampled	Time Sampled	Temperature (°C)	Specific Conductance (µs/cm)	рН	Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)	Appearance/ Odor
MW1	05/26/10	1435	12.72	318	6.73	5.79	0.25	-11.7	Clear, colorless/no odor
MW2	05/25/10	1445	13.28	331	6.79	0.57	0.22	-35.4	Clear, colorless/no odor
MW3	05/25/10	1615	12.53	449	6.73	16.6	0.20	-82.8	Yellow tint, slight turbidity/no odor
	07/15/10	1430	13.01	460	6.66	3.3	0.13	-107.4	Slight yellowish color, clear, no odor
MW4	05/26/10	1310	12.22	633	6.48	5.68	0.26	-0.7	Clear, colorless/no odor
	07/15/10	1305	13.51	664	6.61	0.00	0.15	-91.5	Clear, colorless, broken organic sheen /no odor
MW5	05/26/10	1025	11.79	394	6.74	4.58	0.30	-67.1	Clear, colorless/no odor
MW6	05/26/10	0915	12.66	456	6.68	8.96	0.39	-54.5	Clear, colorless/no odor
MW7	05/27/10	1045	13.28	420	6.99	10.15	0.21	-8.3	Clear, colorless/no odor
MW8	05/27/10	0940	12.05	419	7.00	8.62	0.27	16.3	Clear, colorless/no odor
MW9	05/27/10	1200	13.35	265	7.72	9.86	0.19	68.2	Clear, colorless/no odor
MW10	10/18/11	1335	13.44	349	6.88	49.8	0.47	-94.0	Clear, colorless/no odor
MW11	10/18/11	1225	13.90	670	6.48	12.8	0.16	-129.9	Clear, colorless/no odor
MW12	05/22/12	0950	11.91	188	6.67	26.9	2.00	-75	Clear, colorless, odorless, slight turbidity observable in bucket
MW13	05/22/12	1220	13.24	1024	6.56	84	0.98	-102.1	Clear, colorless, odorless, little bit swirled organic sheen
MW14	05/22/12	1440	12.21	1249	6.54	863	0.71	-101.1	Colorless, odorless, water in bucket is slightly muddy
MW-15	11/27/12	1400	13.10	363	7.40	>1000	8.18	-38.3	Colorless/no odor/turbid
MW-16	11/28/12	1530	12.58	669	7.06	449	1.30	-76.3	Colorless/no odor/turbid
PD-209A	11/27/12	1205	11.47	591	7.01	24.0	1.14	-91.9	Colorless/clear/no odor/small amount biomass
PD-211	11/27/12	1045	10.84	492	6.64	34.0	1.86	-92.8	Clear, colorless/no odor/small amount light-colored biomass
99-1	05/26/10	1200	12.90	415	6.92	5.62	0.32	-58.8	Clear, colorless/no odor
	07/15/10	1210	14.21	406	6.68	5.00	0.22	-144.6	Clear, slight yellowish color, odorless
99-2	05/27/10	1310	13.24	1201	6.52	17.6	0.29	-31	Clear, slight yellowish color, broken organic sheen /no odor

Notes:

°C - degrees Celsius.

μs/cm - microsiemens per centimeter.

mg/L - milligram per liter.

mV - millivolts.

NTU - nephelometric turbidity units.

Table 8 Analytical Results - Groundwater Highway 99 Site

USG Interiors

Milton, Washington

			Sample I.D. an	d Sample Date		
	USGHWY99-MW1-05/10	USGHWY99-MW2-05/10	USGHWY99-MW3-05/10	USGHWY99-MW4-05/10	USGHWY99-MW0-05/10*	USGHWY99-MW5-05/10
Analyte	05/25/10	05/25/10	05/25/10	05/26/10	05/26/10	05/26/10
Dissolved Metals (µg/L)						
EPA Methods 200.8/7060A/6010B						
Arsenic (7060A)	630	34	780 **	1,030 **	1,060 **	1,090
Iron	4,290	1,560	29,900 **	31,500 **	32,000 **	5,070
Total Metals (µg/L)						
EPA Method 200.8/7090A/6010B						
Arsenic (200.8)		64.2				
Arsenic (7060A)		79				
Calcium	27,100	21,200	30,200	45,300	43,500	26,900
Iron	6,660	2,970	22,100	9,980	9,670	11,800
Magnesium	14,600	13,700	16,300	25,300	24,000	17,300
Potassium	2,830	3,120	4,910	6,240	5,840	3,860
Sodium	10,500	11,800	15,700	21,700	20,500	15,500
Arsenic Speciation (µg/L)						
Arsenic (III)	455	45.9	267	1,350	1,260	1,410
Arsenic (V)	33.5	2.27	19.2	29.8	24.9	36.6
Conventionals						
Alkalinity (SM 2320; mg/L CaCO ₃)	152	142	175	264	269	178
Carbonate (SM 2320; mg/L CaCO ₃)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bicarbonate (SM 2320; mg/L CaCO ₃)	152	142	175	264	269	178
Hydroxide (SM 2320; mg/L CaCO ₃)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Total Dissolved Solids (EPA 260.1; mg/L)						
Total Suspended Solids (EPA 160.2; mg/L)	2.7	5.7	24.4	11.6	10.3	28.5
Chloride (EPA 300.0; mg/L)	4.4	6.7	5.2	9.6	10.0	7.6
N-Nitrate (EPA 300.0; mg-N/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
N-Nitrite (EPA 300.0; mg-N/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sulfate (EPA 300.0; mg/L)	2.8	6.5	14.7	2.5	2.6	<0.1
Chemical Oxygen Demand (EPA 410.4; mg/L)	28.7	9.34	55.4	30.3	29.4	11.2
Total Organic Carbon (EPA 415.1; mg/L)	12.4	2.71	19.9	11.1	11.2	5.05

Table 8 Analytical Results - Groundwater Highway 99 Site

USG Interiors

Milton, Washington

	Sample I.D. and Sample Date											
	USGHWY99-MW6-05/10	USGHWY99-MW7-05/10	USGHWY99-MW8-05/10	USGHWY99-MW9-05/10	USGHWY99-99-1-05/10	USGHWY99-99-2-05/10						
Analyte	05/26/10	05/27/10	05/27/10	05/27/10	05/26/10	05/27/10						
Dissolved Metals (µq/L)												
EPA Methods 200.8/7060A/6010B												
Arsenic (7060A)	310	10	13	44	2,490 **	410						
Iron	6,200	1,800	980	<50	6,340 **	45,700						
Total Metals (µg/L)												
EPA Method 200.8/7090A/6010B												
Arsenic (200.8)			14		2,220							
Arsenic (7060A)			15		2,430							
Calcium	35,300	17,600	21,400	11,000	35,600	86,900						
Iron	14,400	7,400	4,870	290	4,840	57,200						
Magnesium	20,200	14,400	12,900	8,230	16,900	53,900						
Potassium	3,490	6,000	7,640	6,590	4,290	7,510						
Sodium	14,300	36,400	35,300	28,500	17,900	31,700						
Arsenic Speciation (µg/L)												
Arsenic (III)	351				1,780	310						
Arsenic (V)	16.5				132	37.7						
<u>Conventionals</u>												
Alkalinity (SM 2320; mg/L CaCO ₃)	207	196	205	118	193	561						
Carbonate (SM 2320; mg/L CaCO ₃)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0						
Bicarbonate (SM 2320; mg/L CaCO ₃)	207	196	205	118	193	561						
Hydroxide (SM 2320; mg/L CaCO ₃)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0						
Total Dissolved Solids (EPA 260.1; mg/L)												
Total Suspended Solids (EPA 160.2; mg/L)	41.5	22.2	18.1	4.3	9.9	50						
Chloride (EPA 300.0; mg/L)	7.3	5.6	6.3	5.4	7.4	9.6						
N-Nitrate (EPA 300.0; mg-N/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1						
N-Nitrite (EPA 300.0; mg-N/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5						
Sulfate (EPA 300.0; mg/L)	<0.1	<0.1	0.2	7.5	1.6	<0.1						
Chemical Oxygen Demand (EPA 410.4; mg/L)	20.5	10.9	7.75	6.48	7.43	62.7						
Total Organic Carbon (EPA 415.1; mg/L)	9.27	4.17	3.83	<1.50	4.83	25.3						

Table 8 Analytical Results - Groundwater

Highway 99 Site

USG Interiors

Milton, Washington

		Sample I.D. and Sample Date												
	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8	GW-9	MW10-10/11	MW11-10/11	MW12-05/12	MW13-05/12	MW14-05/12
Analyte	04/07/11	04/07/11	04/07/11	04/07/11	04/07/11	04/07/11	04/07/11	04/07/11	04/07/11	10/18/11	10/18/11	05/22/12	05/22/12	05/22/12
Dissolved Metals (µg/L)														
EPA Method 6020														
Arsenic	55	2.4	38	120	21	19	<2	340	2.1	366	23.5	2.1	14.3	10.3
Iron														
Total Metals (μg/L)														
EPA Method 200.8/7090A/6010B														
Arsenic (200.8)														
Arsenic (7060A)														
Calcium														
Iron														
Magnesium														
Potassium														
Sodium														
Arsenic Speciation (µg/L)														
Arsenic (III)														
Arsenic (V)														
Conventionals														
Alkalinity (SM 2320; mg/L CaCO ₃)														
Carbonate (SM 2320; mg/L CaCO ₃)														
Bicarbonate (SM 2320; mg/L CaCO ₃)														
Hydroxide (SM 2320; mg/L CaCO ₃)														
Total Dissolved Solids (EPA 260.1; mg/L)														
Total Suspended Solids (EPA 160.2; mg/L)														
Chloride (EPA 300.0; mg/L)														
N-Nitrate (EPA 300.0; mg-N/L)														
N-Nitrite (EPA 300.0; mg-N/L)														
Sulfate (EPA 300.0; mg/L)														
Chemical Oxygen Demand (EPA 410.4; mg/L														
Total Organic Carbon (EPA 415.1; mg/L)														

Table 8 Analytical Results - Groundwater Highway 99 Site

USG Interiors

Milton, Washington

		Sample	I.D. and Sam	ple Date	
	MW-15	MW-16	PD-209A	PD-211	PD-311***
Analyte	11/27/12	11/28/12	11/27/12	11/27/12	11/27/12
Dissolved Metals (µg/L)					
EPA Method 6020					
Arsenic	0.8	7.2	8.5	5.1	4.6
Iron					
Total Metals (µg/L)					
EPA Method 200.8/7090A/6010B					
Arsenic (200.8)					
Arsenic (7060A)					
Calcium					
Iron					
Magnesium					
Potassium					
Sodium					
Arsenic Speciation (µg/L)					
Arsenic (III)					
Arsenic (V)					
Conventionals					
Alkalinity (SM 2320; mg/L CaCO ₃)					
Carbonate (SM 2320; mg/L CaCO ₃)					
Bicarbonate (SM 2320; mg/L CaCO ₃)					
Hydroxide (SM 2320; mg/L CaCO ₃)					
Total Dissolved Solids (EPA 260.1; mg/L)					
Total Suspended Solids (EPA 160.2; mg/L)					
Chloride (EPA 300.0; mg/L)					
N-Nitrate (EPA 300.0; mg-N/L)					
N-Nitrite (EPA 300.0; mg-N/L)					
Sulfate (EPA 300.0; mg/L)					
Chemical Oxygen Demand (EPA 410.4; mg/L					
Total Organic Carbon (EPA 415.1; mg/L)					

Notes:

*USGHWY-MW0-05/10 is a duplicate of USGHWY-MW4-05/10.

** Value from re-sampling on 7/15/10.

*** PD-311 is a duplicate of PD-211.

mg/L - milligrams per liter.

μg/L - micrograms per liter.

-- not analyzed.

< - analyte not detected at or greater than the listed concentration.

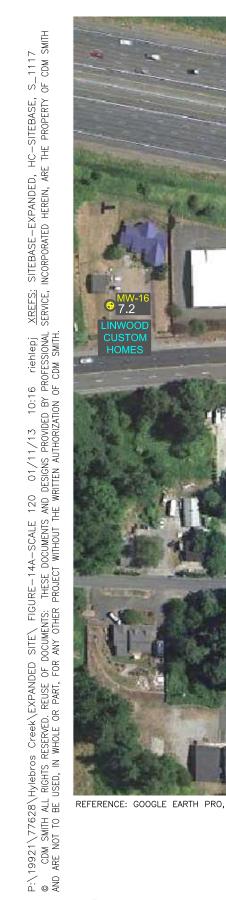
Figures

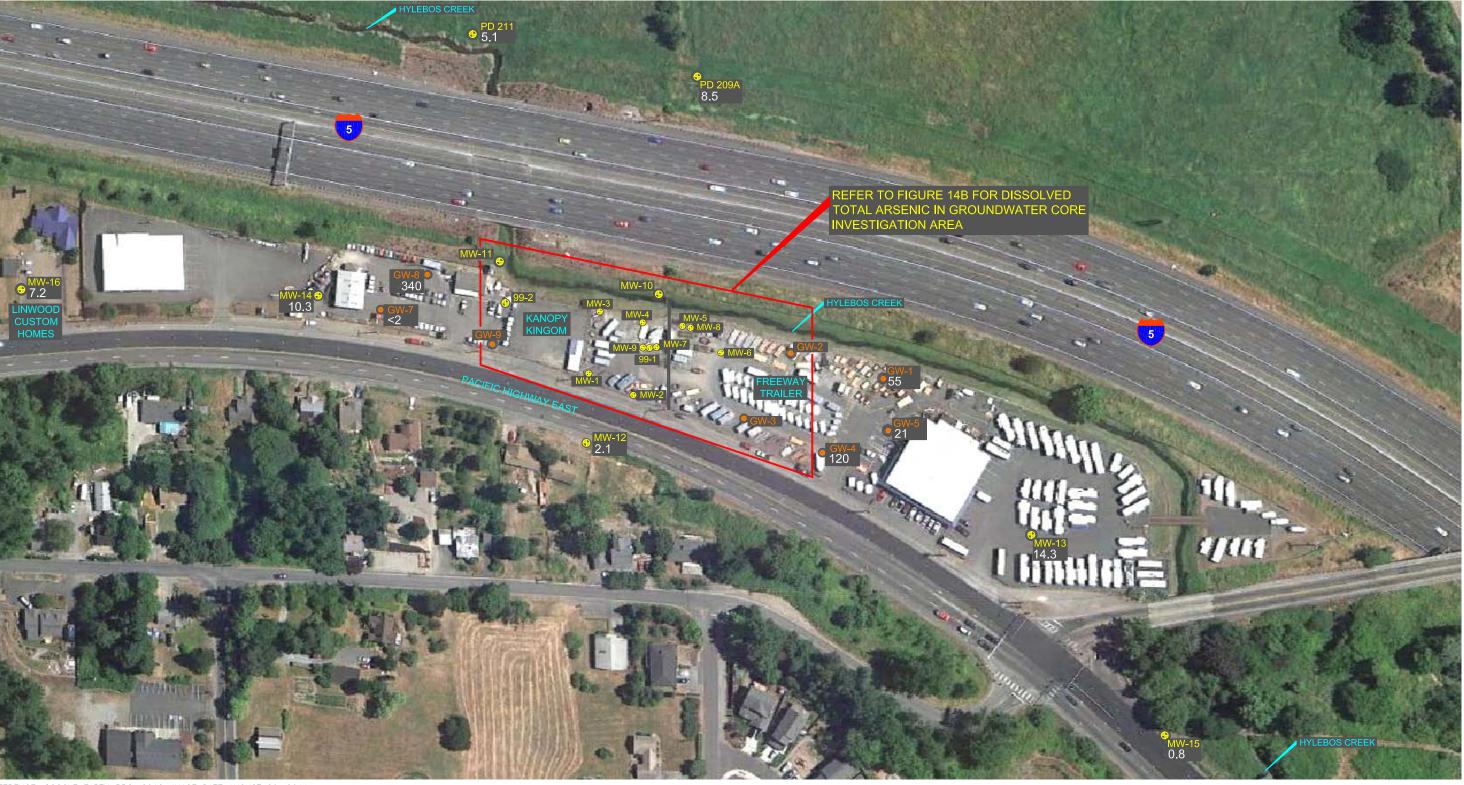
USG INTERIORS HIGHWAY 99 SITE MILTON, WASHINGTON

LEGEND:

MONITORING WELL PHASE 2 DPT BORING MONITORING WELL MW-14 WAS DRILLED AT THE LOCATION OF GW-6

NOTE:


REFERENCE: GOOGLE EARTH PRO, 2012, IMAGE DATE AUGUST 20, 2011



P:\19921\77628\Hylebros Creek\EXPANDED SITE\ FIGURE-ZA-SCALE 120 01/08/13 12:43 riehlepj <u>XREES</u>: SITEBASE-EXPANDED, HC-SITEBASE, S_1117 C CDM SMITH ALL RIGHTS RESERVED. REUSE OF DOCUMENTS: THESE DOCUMENTS AND DESIGNS PROVIDED BY PROFESSIONAL SERVICE, INCORPORATED HEREIN, ARE THE PROPERTY OF CDM SMITH ARE NOT TO BE USED, IN WHOLE OR PART, FOR ANY OTHER PROJECT WITHOUT THE WRITTEN AUTHORIZATION OF CDM SMITH.

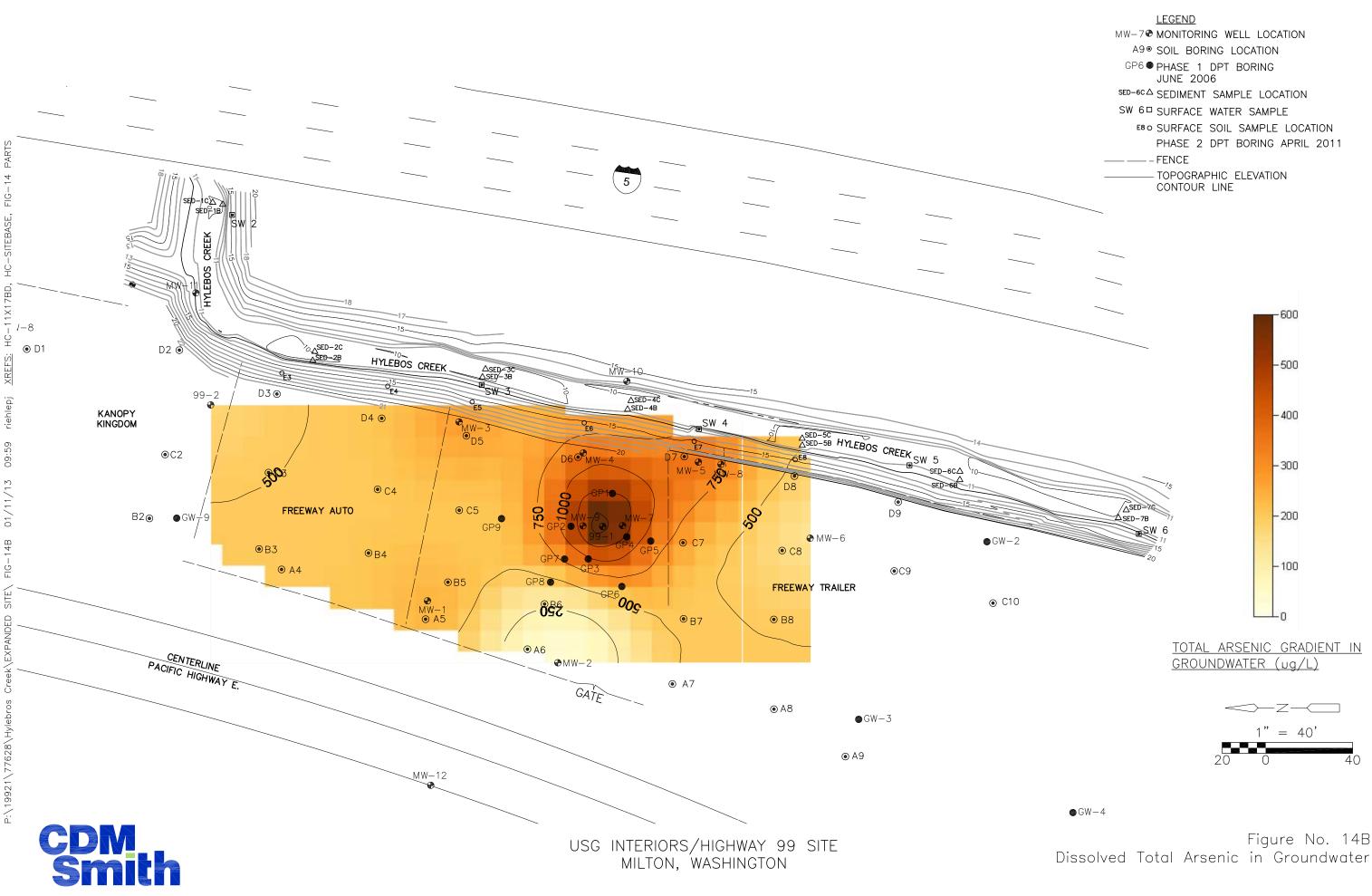
Figure No. 2A Site Plan

REFERENCE: GOOGLE EARTH PRO, 2012, IMAGE DATE AUGUST 20, 2011

LEGEND:

MONITORING WELL AND DISOLVED TOTAL ARSENIC CONCENTRATION (ug/L) $\end{tabular}$

PHASE 2 DPT BORING AND DISOLVED TOTAL ARSENIC CENCENTRATION (ug/L) $\ensuremath{\mathsf{ug/L}}\xspace$


USG INTERIORS HIGHWAY 99 SITE MILTON, WASHINGTON

NOTE:

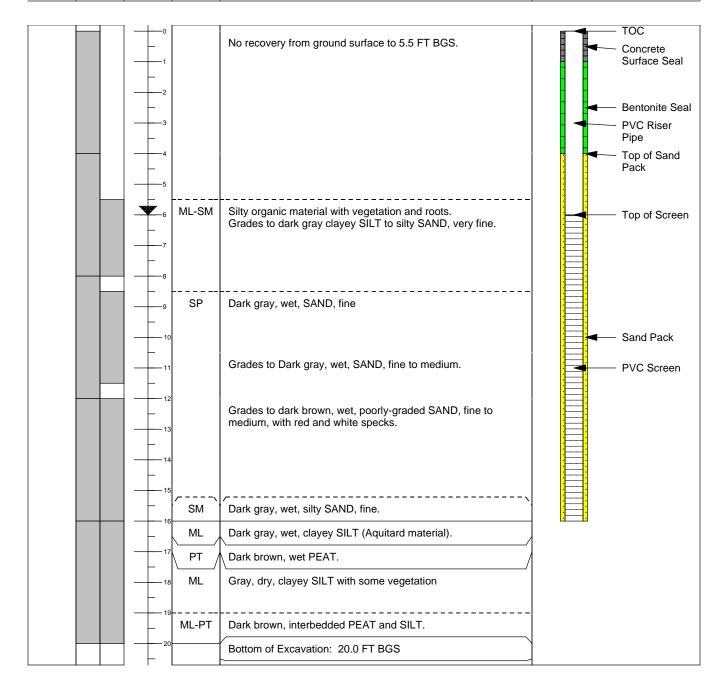
MONITORING WELL MW-14 WAS DRILLED AT THE LOCATION OF GW-6

Figure No. 14A Dissolved Total Arsenic in Groundwater

Dissolved Total Arsenic in Groundwater

Appendix A Boring Logs and Well Construction Logs

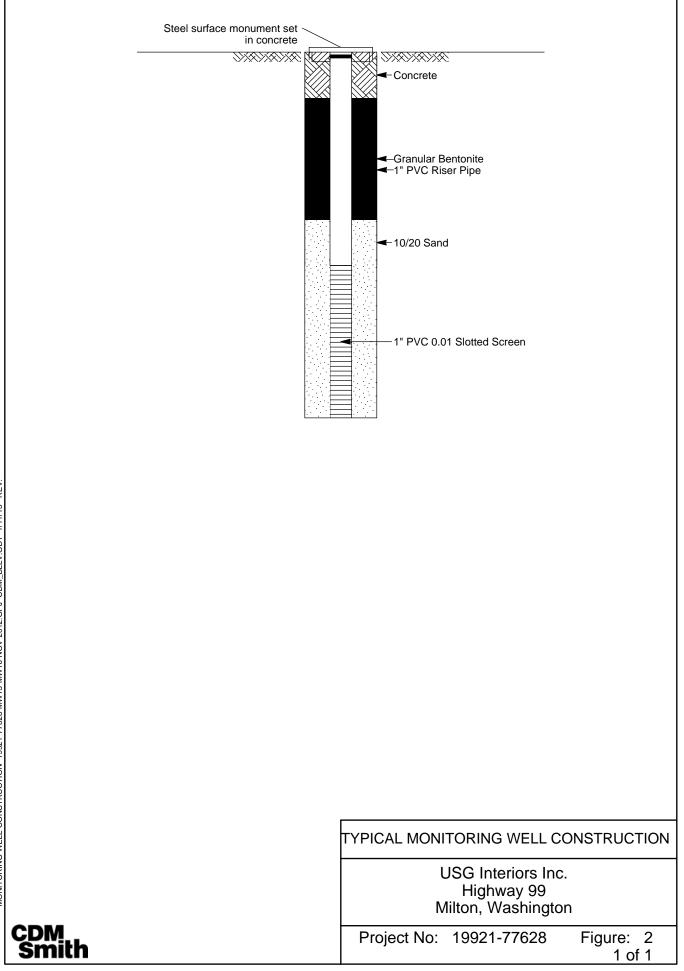
Ground Surf Elev. & Datum: 13.99 FT, NAVD Coordinate System: NAD 83/98 Latitude/Northing: 703281 Longitude/Easting: 1185150 Casing Elevation: 16.77, FT NAVD 88

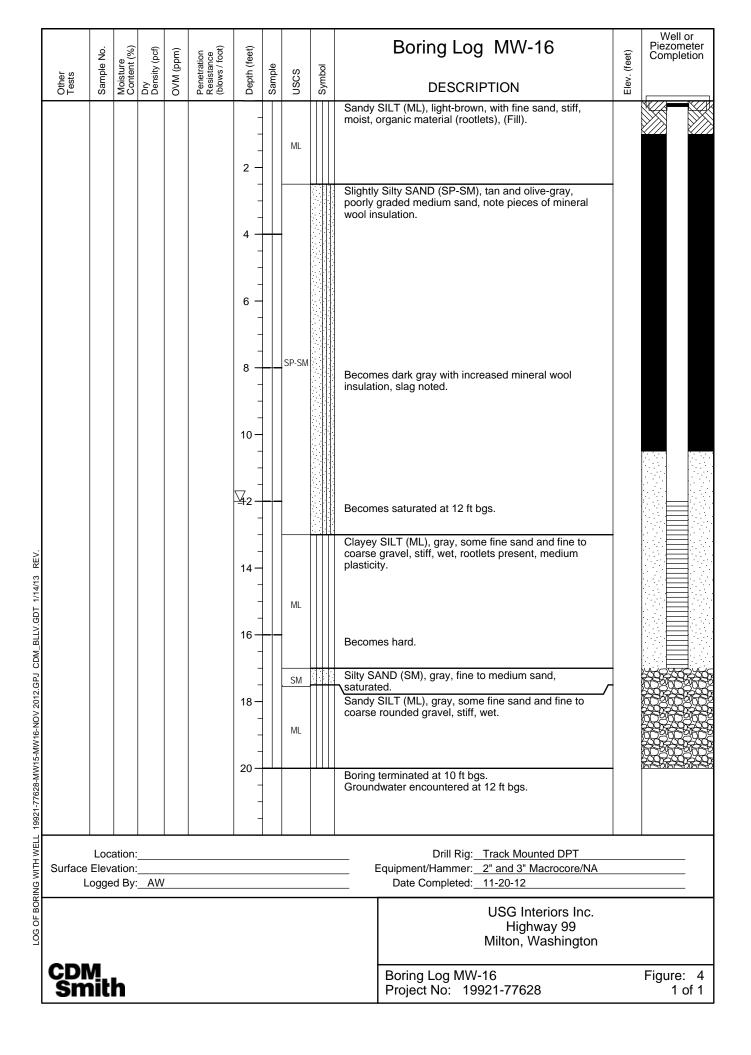

Drill Date: August 18, 2008 Logged By: Lisa Meoli Drilled By: Cascade Drilling 20rill Type: Geoprobe/Direct Push Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 20.0 FT BGS Groundwater ATD (ft bgs): 6 FT BGS

Boring Location: PD-211

Client: B&L Custodial Trust Project: B&L RIM Task Number: Site Location: B&L Woodwaste Pierce County, WA

Remarks:


SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)


Notes: FT BGS = feet below ground surface ppm = parts per million

USCS = Unified Soil Classification System = denotes groundwater table

						SOI	L CLASSI	FIC		N LEGEND					
		MAJOR	DIV	ISIONS							SAI	MPLE TYPE SYMBOLS			
	_	GRAVEL	۹	Clean gravels	with	GW	Well graded grav	vels, gra	vel-sand r	nixtures	\square	Disturbed bag or jar sample			
COARSE GRAINED SOILS	ŗ	More than h	alf	little or no fir		GP	Poorly graded gr	avels, g	ravel-sand	mixtures		Std. Penetration Test (2.0" OD)			
ED S	More than half is larger than No. 200 sieve	coarse fracti is larger tha No. 4 sieve s	an	Gravel wit		GM	Silty gravels, gravel-sand-silt mixtures					Type U Ring Sampler (3.25" OD)			
AINE	200 s			over 12% fir	es	GC 📈	Clayey gravels, gravel-sand-clay mixtures					California Sampler (3.0" OD)			
GR	No.	SANDS		Clean sands	with	sw	Well graded sand	ds, grav	elly sands			Undisturbed Tube Sample			
NRSE	Aore 1 thar	More than h		little or no fir	es	SP	Poorly graded sa	ands, gra	avelly sand	ds					
COA	~	coarse fracti is smaller th No. 4 sieve s	an	Sands with	ı	SM	Silty sand, sand-	silt mixt	ures		9	Grab Sample			
				over 12% fir	es	sc	Clayey sands, sa	and-clay	mixtures			Core Run Non-standard Penetration Test			
S	er	SII .	тς Λ	ND CLAYS		ML	Inorganic silts an clayey fine sands	d very f s, or cla	ine sands, vey silts w	rock flour, silty or ith slight plasticity		(with split spoon sampler)			
FINE GRAINED SOILS	More than half is smaller than No. 200 sieve	-	-	less than 50		CL	Inorganic clays o clays, sandy clay	of low to /s, silty (medium p clays, lean	lasticity, gravelly clays	COI	NTACT BETWEEN UNITS			
NED	alf is 200 s					OL	Organic clays an	d organ	ic silty cla	vs of low plasticity		Change in geologic unit			
RAI	No.	SII .	тς Λ	ND CLAYS		мн	Inorganic silts, m silty soils, elastic	icaceou silts	is or diator	maceous fine sandy or		Soil type change within			
E G	ore th than			greater than 50)	СН	Inorganic clays o	of high p	lasticity, fa	t clays		geologic unit			
Ē	Σ					ОН	Organic clays of	medium	ı to high pl	asticity, organic silts		Obscure or gradational change			
			RGA	NIC SOILS		PT ^w ww	Peat and other h	ighly or	ganic soils		мс	DISTURE DESCRIPTION			
_	DE	SCRIPTO	DRS	FOR SO	LS	TRATA	AND STRUC	CTUR	E (EN	GLISH/METRIC	;)				
S		Parting:	less th (1/6 ci	nan 1/16 in. m)		Pocket:	Erratic, discontin deposit of limited	uous	Near ho	rizontal: 0 to 10 deg.		Dry - Free of moisture, dusty			
Thickness	ng	Seam:	1/16 to 1/2 in. (1/6 to 1 1/4 cm)		4 cm)		extent	itude	Low ang	-	Mo	oist - Damp but no visible free water			
I Thic	Spaci	Layer:	1/2 to (1 1/4	12 in. to 30 1/2 cm)	in. 30 1/2 cm) 1/2 cm		Lenticular deposi		High an Near Ve	-	v	Vet - Visible free water, saturated			
General Thickne	or	Stratum:		n. (30 1/2 cm)		Varved:	Alternating seam of silt and clay Alternating seam	10				WELL			
Ū				er ft. (30 1/2 cm			d: Alternating layers					COMPLETIONS			
		numerous:	> 1 pe	er ft. (30 1/2 cm				-				Concrete Seal			
LV.GDT 1/14/13 REV	ST	RUCTURE	E DE	SCRIPTIO	N (c	ont.)				Well Casing					
1/14/		ractured kensided		eaks easily a blished, gloss	•		•			Gro	undwater Level 👤				
E E		ky, Diced Sheared	Br	eaks easily ir	ito sr	nall angular	angular lumps					ted Well Casing			
	omc	geneous		sturbed textu ame color and		0						Sand Backfill			
		DEI			тv		ISISTENCY	ve			Imper	rmeable Backfill			
GPJ				E GRAINE			ISISTENCT				or Bentonite/Grouted				
/ 2012	D	ensity			pprox	 Relative sity (%) 	Consistency		blows/ft)	Approx. Undrained Shear Str. (psf)	AL				
0N-9	/ery	Loose	0	to 4		- 15	Very Soft		0 to 2	<250	GSD	 Grain Size Distribution 			
μ μ	.0056	•	4 1	to 10	15	- 35	Soft		2 to 4	250 - 500	MD Comp	 Moisture Content/Dry Density 			
V 15		ım Dense		to 30		- 65	Medium Stiff		4 to 8	500 - 1000	SG CBR	 Specific Gravity 			
1 E)ens /on/	e Dense		to 50 ver 50		- 85 - 100	Stiff Very Stiff		3 to 15 5 to 30	1000 - 2000 2000 - 4000	RM	 Resilient Modulus 			
21-77	CIY	Dense	00	ei 50	00	- 100	Hard		ver 30	>4000	TXP Cons	 Triaxial Permeability 			
0 199	lote	s.									Chem	- Corrosion			
			tions i	n this report a	ro ha	eed on visua	I field and laborate	orv obs	ervations	which	UC VS	 Direct Shear 			
ir	nclud	e density/con	nsister	ncy, moisture o	ondi	ion, grain siz	ze, and plasticity e	estimate	es, and sh	ould not be		 Triaxial Compression 			
n CATI	netho	ods in accorda	ance v	with ASTM D 2	488	were used as	ented herein. Visis an identification	guide.				 Consolidated, Undrained 			
ASS					-		ice with ASTM D 2	2487.			_	ors Inc.			
2 P		al symbols a nt fines.	re use	ed to indicate g	ravel	and sand ur	nits with 5 to 12				ghwa				
		OR = weight o	of rod.									shington			
		DM						⊢			-	0			
	S	mith							Project No: 19921-77628 Figure: 1						

ſ		Sample No.	Moisture Content (%)	Dry Density (pcf)	(mdd)	Penetration Resistance (blows / foot)	Depth (feet)	e		0	Boring Log MW-15	(feet)	Well or Piezometer Completion
	Other Tests	Sampl	Moistu Conte	Dry Densit	OVM (ppm)	Penetr Resisti (blows	Depth	Sample	nscs	Symbol	DESCRIPTION	Elev. (feet)	
							- - 2 - -		SM		3" Asphalt. Gravelly, Silty SAND (SM), brown, fine to coarse sand, with fine to coarse gravel and silt, dense, moist (Fill).		
							4 — 4 — 6 —		ML		Sandy SILT (ML), light brown with fine sand and some fine gravel, stiff, wet.	-	
									SM		Silty SAND (SM), brown, fine to coarse sand with silt and some fine to coarse gravel, dense, saturated. Increasing silt, becomes wet. Becomes saturated at 10 ft bgs. Increasing fine gravel, decreasing silt.	-	
19921-77628-MW15-MW16-NOV 2012.GPJ CDM_BLLV.GDI 1/14/13 REV.							12				Boring terminated at 12 ft bgs. Groundwater encountered at 10 ft bgs.		
	Surface L	Eleva						I		I	Drill Rig: Track Mounted DPT Equipment/Hammer: <u>2" Macrocore/NA</u> Date Completed: <u>11-20-12</u>	I	·
											USG Interiors Inc. Highway 99 Milton, Washington		
	CDI Sm	/ it	h								Boring Log MW-15 Project No: 19921-77628		Figure: 3 1 of 1

Appendix B Analytical Laboratory Reports – Supplemental Groundwater Assessment