SITE MANAGEMENT PLAN

YAKIMA VALLEY TRANSPORTATION CO. TROLLEY BARN SITE 404 SOUTH 3rd AVENUE YAKIMA, WASHINGTON

Prepared for

CITY OF YAKIMA

YAKIMA, WA July 1, 2015 Project No. 0818.03.01

M A U L FOSTER A L O N G I

Prepared by Maul Foster & Alongi, Inc. 1329 North State Street, Suite 301 Bellingham, WA 98225

SITE MANAGEMENT PLAN

YAKIMA VALLEY TRANSPORTATION CO. TROLLEY BARN SITE 404 SOUTH 3rd AVENUE YAKIMA, WASHINGTON

The material and data in this plan were prepared under the supervision and direction of the undersigned.

MAUL FOSTER & ALONGI, INC.

Justin L. Clary, PE Principal Engineer

Jessica G. Cawley, EIT Staff Engineer

CONTENTS

TABLES	AND ILLUSTRATIONS	V
ACRO	nyms and abbreviations	V
1	INTRODUCTION 1.1 PURPOSE OF SITE MANAGEMENT PLAN 1.2 SITE DESCRIPTION 1.3 SITE HISTORY 1.4 REMEDIAL ACTION DESCRIPTION	1 1 2 2 3
2	NATURE AND EXTENT OF RESIDUAL CONTAMINATION 2.1 RESIDUAL CONTAMINATION 2.2 DISTRIBUTION OF INDICATOR HAZARDOUS SUBSTANCES	3 3 4
3	SOIL MANAGEMENT PROCEDURES 3.1 PROTECTIVE CAP SOIL 3.2 POTENTIALLY CONTAMINATED SOIL	4 5 5
4	PROTECTIVE CAP 4.1 GRAVEL CAP DESCRIPTION 4.2 PAVEMENT CAP DESCRIPTION 4.3 BUILDING CAP DESCRIPTION 4.4 OTHER CAPPING MATERIAL	7 8 8 9 9
5	GROUNDWATER	10
6	SITE CONTROLS 6.1 WORKER HEALTH AND SAFETY 6.2 ACCESS RESTRICTION 6.3 DECONTAMINATION PROCEDURES 6.4 GROUNDWATER USE RESTRICTIONS 6.5 USE OF PROPERTY	10 10 11 11 11 11
7	NOTIFICATION AND REPORTING 7.1 NOTIFICATION AND REPORTING 7.2 RECORDKEEPING	12 12 12
8	PROTECTIVE CAP MONITORING AND MAINTENANCE 8.1 PROTECTIVE CAP INSPECTION 8.2 CORRECTIVE ACTION 8.3 PROTECTIVE CAP MAINTENANCE	12 13 13 14

LIMITATIONS

REFERENCES

FIGURES

CONTENTS (CONTINUED)

APPENDIX A

ENVIRONMENTAL COVENANT

APPENDIX B

PREVIOUS INVESTIGATION RESULTS

APPENDIX C

STOCKPILE CHARACTERIZATION METHODOLOGY

APPENDIX D

SITE INSPECTION SUMMARY REPORT FORM

TABLES AND ILLUSTRATIONS

TABLE

CAPPING OPTIONS

FOLLOWING PLAN:

FIGURES

- 1 SITE LOCATION
- 2 SITE MAP
- 3 EXTENT OF ENVIRONMENTAL CONTAMINATION
- 4 PROTECTIVE CAP LAYOUT

ACRONYMS AND ABBREVIATIONS

bgs below ground surface

the City City of Yakima, Washington

CUL cleanup level

CWCMH Central Washington Comprehensive Mental Health

agency located at 402 S 4th Avenue, Yakima, WA

Ecology Washington State Department of Ecology

ESA environmental site assessment

HAZWOPER Hazardous Waste Operations and Emergency

Response

IHS indicator hazardous substance
MFA Maul Foster & Alongi, Inc.
MTCA Model Toxics Control Act

NWTPH Northwest Total Petroleum Hydrocarbons

OSHA Occupational Safety and Health Act

the Site 404 S 3rd Avenue, Yakima, WA, Ecology Facility Site

No. 9688850, Cleanup Site No. 2190

SMP site management plan

USEPA U.S. Environmental Protection Agency

USPCI U.S. Pollution Control, Inc. UST underground storage tank

WAC Washington Administrative Code

VOC volatile organic compound

YVT Yakima Valley Transportation Company

1 INTRODUCTION

On behalf of the City of Yakima, Washington (the City), Maul Foster & Alongi, Inc. (MFA) has prepared this Site Management Plan (SMP) for the Yakima Valley Transportation Co. Trolley Barn site, which is a confirmed contaminated site, Washington State Department of Ecology (Ecology) Facility Site No. 9688850, Cleanup Site No. 2190 (the Site). The Site includes property upon which the Yakima Valley Trolleys houses and maintains trolleys and operates the Yakima Electric Railway Museum, which is located at 404 South 3rd Avenue (the Property), as well as the adjacent parking lot to the west, which is currently operated by the Central Washington Comprehensive Mental Health agency (CWCMH) located at 402 South 4th Avenue. The City recently completed an interim action at the Property that was funded through an interagency agreement executed with Ecology. The remedial action included construction of a protective cap. The portion of the Site extending onto the CWCMH property has previously been capped with asphalt that also serves as the CWCMH's parking lot.

This SMP has been prepared in accordance with the requirement of Washington Administrative Code (WAC) 173-340-440 and related provisions of the Washington State Model Toxics Control Act (MTCA). This document provides soil management procedures to be followed in the event of future development or for any condition in which the protective cap is breached. This document also addresses monitoring and maintenance procedures associated with the Site's protective cap. An environmental covenant executed by the City and Ecology is anticipated to be recorded with the Property in the near future; a draft of the covenant is included as Appendix A.

1.1 Purpose of Site Management Plan

The purpose of the SMP is to provide guidance for all future site activities during which a breach of the protective cap could occur and also to provide guidance for monitoring and maintenance associated with the protective cap. This SMP also provides guidelines for assessing potential environmental impacts associated with contaminated soils and groundwater that may be incurred during future construction at the Site, and outlines precautions and procedures necessary for the protection of human health and the environment. This SMP identifies indicator hazardous substances (IHSs); excavation protocols; soil handling procedures; waste characterization and disposal requirements; erosion control, dust control, and stormwater protection measures; and groundwater management requirements.

The guidelines and procedures outlined in this SMP are to be implemented during site management if groundwater is generated, the protective cap is breached, and underlying impacted soil is disturbed, or if further site development takes place.

1.2 Site Description

The physical address for the Site is 404 South 3rd Avenue, but also includes the CWCMH property located at 402 South 4th Avenue in Yakima, Washington, as shown in Figure 1. The Property, a 1.58-acre parcel (tax assessor parcel number 181324-44465), is on the southwest corner of the intersection of West Pine Street and South 3rd Avenue, with the CWCMH property located immediately to the west on a 1.53-acre parcel (tax assessor parcel number 181324-44471). Both properties are located in section 24 of township 13 north and range 18 east of the Willamette Meridian and shown in Figure 2.

1.3 Site History

The Yakima Valley Transportation Company (YVT) constructed, owned, and operated electric trains on the Property from 1907 until 1909, when YVT was purchased by the Union Pacific Railroad. The Union Pacific Railroad expanded the rail system as a feeder of freight operations until 1985. Soon after that, the City purchased the Property (Yakima Valley Trolleys, 2015). Volunteers of a non-profit, Yakima Valley Trolleys, maintain and continue operations of the electric trains on behalf of the City.

The Property is primarily used to house and maintain trolleys supporting Yakima Valley Trolleys' operation of the Yakima Electric Railway Museum, which is also located inside the Substation Building on the Property. There are currently three buildings on the Property, the Trolley Barn, the Substation Building, and a small stone shed. Formerly, another trolley barn, a coal bin, an above ground storage tank and stock shed existed along the boundary between the two properties of the Site (see Figure 2). There were, at one time, at least three underground storage tanks (USTs) on the Site; U.S. Pollution Control, Inc. (USPCI) reported closure (via removal) of the USTs in 1990, and indicated evidence of leaking from two of the tanks (USPCI, 1990). The "Former UST Basin" shown in Figure 2 refers to the area surrounding what is referred to in the Trolley Barn UST Closure Site Assessment Report as Tank No. 6 (USPCI, 1990).

Site investigations began in 1991 during property transfer evaluation, and were conducted in 1993 during geotechnical investigations, and in 1996 during a Phase I environmental site assessment (ESA) at the CWCMH property (Shannon & Wilson, 1996). Two Phase II ESAs have since been conducted, the first in 1996 for the CWCMH property, and the second in 2007 at the Property. Since 2014, quarterly groundwater monitoring has been conducted by GeoEngineers (2015). See Appendix B for previous Investigation Results.

Ecology led soil and groundwater investigations conducted by GeoEngineers under the Eastern Washington Clean Sites Initiative. Soil sampling and monitoring well installation occurred in August 2014 (GeoEngineers, 2015b). Ecology, with assistance of GeoEngineers, analyzed shallow soil samples collected from throughout the Property in March 2015 for heavy metals, primarily lead and arsenic.

The City entered into an interagency agreement with Ecology in April 2015 to conduct an interim remedial action in June 2015. The interim remedial action was implemented to address IHS exceedances in soil, as well as potential groundwater contamination sources in the vicinity of the

Former UST Basin, and is documented in the Interim Remedial Action Completion Report (MFA, 2015).

1.4 Remedial Action Description

Prior remedial actions conducted at the Site have been associated with removal of USTs, excavation of impacted soils, and construction of a protective cap. Site improvements associated with the Site were designed to integrate the necessary capping components for protection of human health and the environment. The protective cap, which is described in greater detail in Section 4, varies across the Site, and comprises the following:

- Gravel cap (minimum of 0.1 to 0.5 foot of clean gravel)
- Pavement cap (asphalt, concrete, or similar material)¹
- Building cap (existing building foundations)

2 NATURE AND EXTENT OF RESIDUAL CONTAMINATION

2.1 Residual Contamination

The Site contains residual soil contamination beneath a protective cap. The IHSs identified for the site soils are:

- Metals: arsenic, lead, and cadmium (GeoEngineers, 2015a)
- Diesel and heavy oil-range petroleum hydrocarbons (GeoEngineers, 2015a)
- Petroleum-related volatile organic compounds (VOCs): benzene (GeoEngineers, 2015a) and toluene (Shannon & Wilson, 1996)

Groundwater contamination is attributed to contamination originating the former USTs. The IHSs identified for site groundwater are:

- Metals: lead and manganese (GeoEngineers, 2015a), and chromium (GeoEngineers, 2015b)
- Petroleum hydrocarbons: gasoline-, diesel- and lube-oil-range (GeoEngineers, 2015a)

¹ The issuance of this plan precedes the actual protective cap (pavement) construction on the Property (anticipated completion in summer 2016), but the plan has been written as though the protective cap is in place and includes the protective cap components to which Ecology has agreed.

The tables in Appendix B provide all available analytical data for soil and groundwater that potentially remains on site.

2.2 Distribution of Indicator Hazardous Substances

IHSs are assumed to be present in soils and groundwater within the site boundary at concentrations that exceed MTCA Method A cleanup levels (CULs) for soil and groundwater. Locations of CUL exceedances are shown in Figure 3.

Metals (arsenic and lead) are present in soil above CULs at the Site directly beneath the protective cap. In addition to the presence of metals in shallow soils, heavy oil-range petroleum hydrocarbons have been observed in soils directly underlying the asphalt cap on the CWCMH property. Benzene, diesel-range petroleum hydrocarbons, VOCs, cadmium and lead are present in soil at deeper depths of approximately 9 to 12 feet below ground surface (bgs), near the former UST Basin (see Figure 2). Based on these data, there is the potential for construction workers or future occupational workers to come in contact with impacted soil on the Site.

No IHSs have been detected above MTCA CULs in groundwater during three quarterly groundwater monitoring events in 2014 and 2015. Manganese has been detected above the USEPA secondary MCL, although below the MTCA Method B CUL. Lead, and gasoline-, diesel-, and heavy oil-range petroleum hydrocarbons were identified in groundwater on the northeast corner of the Site in a reconnaissance groundwater sample collected from a soil boring (GeoEngineers, 2014), although Ecology does not consider these results representative of groundwater conditions. A small area near the northwest corner of the Former UST Basin is likely contaminated with diesel-range petroleum hydrocarbons based on the August 2014 reconnaissance groundwater sample results and the June 2015 confirmation soil sample results collected during the interim remedial action from within the seasonal high groundwater interface (MFA, 2015). Groundwater flow has been observed to be from west to east, with variation in flow direction over time (GeoEngineers, 2014). Per the environmental covenant (Appendix A), use of groundwater from beneath the Site is prohibited.

3 SOIL MANAGEMENT PROCEDURES

This section describes protocols for managing potentially contaminated soils resulting from excavations and other soil-disturbing activities. All activities that disturb soil beneath existing graveled or paved surfaces, or building foundations (i.e., soils beneath the protective cap described in Section 4) must be conducted or overseen by workers who have appropriate hazardous site operations training (see Section 6.1). For all non-emergency projects in which potentially contaminated soils will be disturbed, notify Ecology before the start of work per requirements stipulated in the environmental covenant; in emergency situations (e.g., repair of a broken water line), notify Ecology as soon as is practical to do so.

3.1 Protective Cap Soil

Depending on the type of project, construction activities may be limited to disturbance of the protective cap zone. Protective soil cap disturbances do not involve any special handling or health and safety requirements (outside the standard construction health and safety protocol). If the protective soil cap is disturbed, reconstruction will be required. Additional detail regarding cap construction requirements is provided in Section 4.

3.2 Potentially Contaminated Soil

If construction activities require excavation below the established cap (e.g., gravel cap, pavement, concrete, building) and result in the disturbance of soil that may be contaminated, then the protocol presented in this section should be followed. Soil below the cap may be breached during future site activities, including but not limited to the following: utility or storm sewer construction or repair, underground structure or building foundation construction, and general earthwork and earthmoving activities. Worker safety requirements pertaining to handling of contaminated soil are provided in Section 6.1.

The final cap configurations for the Site are shown in Figure 4. Further description of cap restoration for each type of capping material is provided in Section 4. If activities on the Site are expected to result in handling of contaminated soils by a method that is inconsistent with this plan or using a cap profile different from that previously approved, Ecology must be notified prior to the action in accordance with requirements stipulated in the environmental covenant.

3.2.1 Excavation and Handling

Soil from beneath the cap should be handled separately from clean soil backfill and the clean protective cap soil material in an effort to avoid cross-contamination and to allow for reuse of the protective cap material as part of restoration activities. Contaminated soil can be handled either by placing it back where it was originally excavated; by placing and capping at a new, on-site location, consistent with approved cap construction requirements (see Section 4); or by disposing of the contaminated soil off site. If soil is excavated from locations and depths of known petroleum-related contamination (see Figure 3), then Ecology's Guidance for Remediation of Petroleum Contaminated Sites (Ecology, 2011) shall dictate on-site placement or off-site re-use options. Placement of contaminated soil generated from construction activities on any portions of the clean soil cap should be avoided. Excavation will be completed in a manner that minimizes dust generation and incorporates appropriate erosion control procedures that prevents stormwater from migrating onto the protective cap or off site.

3.2.2 Stockpiling

Any soil excavated from beneath the protective cap and temporarily (less than 90 days) stockpiled at the Site will be managed in a manner that minimizes erosion, contact with stormwater runoff, dust generation, and worker or public contact, unless the soil is immediately loaded into trucks for off-site disposal. If it is necessary to stockpile contaminated soil, it is preferable to stockpile the soil on

surfaces other than the clean soil cap. Soil temporarily held on site will be placed in stockpiles on impervious plastic sheeting (minimum 10-mil thickness). The stockpile shall be covered with plastic sheeting or equivalent material and secured by sandbags at the end of each workday to prevent erosion, dust generation, and direct contact by humans. The sheeting that covers the stockpile must be regularly inspected to ensure that it remains functional and protective of human health and the environment. Temporary stockpiles of contaminated soil must be managed as described in Section 3.2.5 within 90 days of completion of excavation work, unless written approval is obtained from Ecology for an alternative schedule.

Stockpiles that are disposed of off-site will be characterized as described in Section 3.2.5 before removal. Following the stockpile removal, the area beneath the separation material shall be inspected and any remaining stockpile soil shall be scraped, swept, or otherwise removed and properly disposed of.

3.2.3 Replacement at Original Excavation Location

If potentially contaminated soil is to be placed in the original excavation, stockpiles of soil are to be temporarily placed on an impermeable liner. The existing grade should be cleared of debris and any objects that have the potential to puncture the liner. A berm constructed of site soil, compost socks, or equivalent material approved by the engineer is to be installed along the perimeter of the stockpile. The bottom liner must extend up and over the perimeter berm. The cover should be secured with sandbags. Contaminated soil can be stockpiled for up to 90 days without a Resource Conservation and Recovery Act permit.

3.2.4 New Placement Location

If contaminated soil cannot be placed in the original excavation, then the soil may be used as backfill at other areas of the Site below an Ecology-approved cap. If soil is excavated from locations and depths of known petroleum-related contamination (see Figure 3), then Ecology's Guidance for Remediation of Petroleum Contaminated Sites (Ecology, 2011) shall dictate on-site placement or off-site re-use options. Instances that may potentially warrant a new placement location include large excavations for subgrade, footing, or utility trenches, where replacement in the original location is not possible. Upon approval of a new placement location, the material must be capped consistent with minimum capping guidelines described in Section 4. If new capping profiles or materials are proposed (outside of those listed in Section 4), preapproval from Ecology will be required.

3.2.5 Off-site Disposal

All soil originating from beneath the Site's protective cap should be assumed to contain contaminants above acceptable risk levels until sampling and analysis, described below, demonstrate otherwise. If impacted soil cannot be reused on the Site, then it must be disposed of appropriately at a licensed landfill. Soil must be characterized and managed consistent with the protocols described in this SMP or the current state and federal regulations applicable at the time of construction, if these are more restrictive.

Management of soil identified for off-site disposal will adhere to the following procedures:

- Obtain waste acceptance and disposal agreements for the material from the licensed disposal facility.
- Minimize spillage of contaminated material during truck loading; scrape, clean up, and dispose of any spilled material.
- Remove excess material from the truck, including from the tires, before leaving the loading area.
- Ensure that there are no free liquids in the material contained in the truck.

Stockpile characterization methodology and analytical requirements are provided in Appendix C.

Excavated material will be disposed of at a licensed disposal facility, depending on the results of the waste characterization.

The protective cap design comprises the following:

- Gravel cap
- Pavement cap with associated minimal landscaping areas
- Building cap

The following table summarizes each cap type, and the following subsections describe each of the cap components, including minimum design standards that would be applicable should any of the protective caps be removed or altered as a result of future development activities. It is also possible to propose new capping material and/or thickness. If new capping profiles or material are proposed (outside of what is listed below), approval from Ecology will be required. To expedite review, Ecology should be notified well in advance of development of the proposed capping profile or material changes.

Table Capping Options

Type of Use	Typical Section
Gravel Cap	Compacted, crushed surfacing base course (min. thickness 2 inches)
Parking/driveways	Impermeable surface (min. thickness 3 inches) with clean sub-base as necessary for construction Associated landscaping areas to be kept to a minimum with clean top soil cover as appropriate to establish and maintain vegetation growth
Sidewalk/pathway	Impermeable surface (min. thickness 2.5 inches) with clean sub-base as necessary for construction

Type of Use	Typical Section
Building/structure	 Stem wall/footing foundation with min. 1-foot-thick, clean sub-base Slab-on-grade (min. thickness 3 inches) with sub-base as necessary for construction

4.1 Gravel Cap Description

The gravel cap consists of a clean gravel layer to ensure the appropriate degree of protectiveness for ecological and human receptors from the impacted material that remains on the Site. Import gravel to be used as clean capping material requires approval from Ecology. The owner of the proposed fill material must hire a qualified environmental professional to obtain representative samples of the proposed fill material for laboratory analysis. The engineer and/or environmental professional will work with the site owner and Ecology to develop an appropriate sampling schedule. Samples will be analyzed by a certified environmental testing laboratory.

Additional testing may be required in order to determine the physical characteristics of the soil for geotechnical engineering purposes. Environmental analytical results will be compared to the most conservative screening level from the Ecology MTCA Method A soil CULs for unrestricted land uses and ecological indicator soil concentrations for protection of terrestrial plants, soil biota, and wildlife (WAC 173-340-7493(2)(a)(i)), except for analytes for which a natural background concentration has been established. When background concentrations are available, the applicable soil quality criteria will not be lower than the background concentrations.

4.2 Pavement Cap Description

Portions of the Site on which driveways, parking lots, patios, walkways, or sidewalks are constructed consist of the pavement cap. The pavement cap profiles have been designed to ensure the appropriate degree of protectiveness for ecological and human receptors from the impacted material that remains on the Site. The following describes the separate layers of the protective pavement cap, starting with the deepest:

- Sub-base
- Pavement (asphalt or concrete)

4.2.1 Sub-Base Layer

Before placement of clean materials, the subgrade (native soil) should be prepared consistent with geotechnical requirements. Following subgrade preparation, a base rock layer should be placed and compacted in accordance with design specifications. At a minimum, base rock should be placed in accordance with the current revision of the City of Yakima's Engineering Standards for Public Works Construction. The base rock should be imported from a verified clean source.

4.2.2 Asphalt Cap Construction

Asphalt used as a capping material should comply with the current revision of the City of Yakima's Engineering Standards for Public Works Construction.

4.2.3 Concrete Cap Construction

Concrete used as a capping material should comply with the current revision of the City of Yakima's Engineering Standards for Public Works Construction.

4.2.4 Landscaping Area Construction

Landscaping areas associated with pavement caps that serve as parking lots will be kept to the minimum required under City of Yakima development regulations. Certified clean, imported topsoil and associated groundcover materials will be placed landscape areas in sufficient quantity to establish and maintain landscape vegetation.

4.3 Building Cap Description

Construction of permanent buildings on the Site will effectively eliminate the potential for exposure to underlying contaminants. The following describes the separate layers of the protective building cap, starting with the deepest:

- Structural base
- Building foundation

4.3.1 Structural Base Layer

Before placement of clean materials, the subgrade (native soil) should be prepared consistent with geotechnical requirements. Following subgrade preparation and if determined warranted by a licensed geotechnical engineer, a structural fill layer should be placed and compacted in accordance with design specifications, with the material imported from a verified clean source.

4.3.2 Building Foundation

A licensed structural engineer should design the building foundations in accordance with the current revision of the International Building Code.

4.4 Other Capping Material

If surfacing materials other than those listed above are desired as part of future redevelopment activities, Ecology approval is required.

5 GROUNDWATER

Contaminated groundwater is known to exist beneath the Site, typically at least 12 feet bgs. Because of its depth, it is unlikely that groundwater will be generated during any on-site work (e.g., dewatering of excavations); however, should groundwater be generated in the future, it should be analyzed for the following to identify applicable disposal options:

- Metals (arsenic, cadmium, chromium, lead, manganese) by U.S. Environmental Protection Agency (USEPA) Method 200 Series
- Petroleum hydrocarbons by Ecology Method NWTPH-Dx, and -Gx
- VOCs (benzene, toluene, ethylbenzene and total xylenes) by USEPA Method 8260C

6 SITE CONTROLS

The generation of contaminated material triggers the requirement to implement specific site controls. These controls are required in order to protect the adjacent environment and reduce potential exposure of the nearby public to the contaminated material that remains capped at the Site.

6.1 Worker Health and Safety

All future redevelopment activities that penetrate the cap and thereby generate contaminated soil are to be conducted according to WAC 173-340-810; the Occupational Safety and Health Act (OSHA) of 1970 (29 U.S. Code Sec. 651 et seq.); the Washington Industrial Safety and Health Act (Chapter 49.17 Revised Code of Washington); and relevant regulations. The contractor will be required, before beginning work, to prepare a health and safety plan, which is to be available for review by Ecology upon request. The health and safety plan shall, at a minimum, set forth the requirements and protections for working in areas containing soil that may be chemically impacted, and shall include the following:

- Current Hazardous Waste Operations and Emergency Response (HAZWOPER) certification for workers disturbing impacted soil
- IHSs and site background
- Personal protective equipment
- Personal hygiene and decontamination protocols
- Medical surveillance
- Hazard communication and site control

Recordkeeping and reporting

6.1.1 Qualified Personnel

The contractor will complete construction work in compliance with OSHA regulations (29 Code of Federal Regulations § 1910.120 and § 1926.65); workers in any area of the Site that is no longer contained by the protective cap and any workers who will come in contact with potentially contaminated material must be "qualified personnel." The qualified personnel must have received the HAZWOPER standard 40-hour training, as well as received refresher training in the past year. Managers and supervisors directly overseeing the working crew must have received additional specialized training in hazardous-waste management supervision.

6.2 Access Restriction

In the event of construction on site with the potential to generate contaminated material, fencing should be maintained in order to restrict public access to areas of the Site that are no longer contained by a cap. Signage shall be posted on the fencing separating the public from uncapped areas.

6.3 Decontamination Procedures

Soil will be removed from equipment before the equipment leaves the controlled area. Vehicle tires that travel over soil deemed contaminated must be freed of soil by brushing, wheel wash, or another method that is appropriate to the work being performed before the vehicle leaves the controlled area in order to prevent tracking of potentially contaminated soil to clean portion of the Site or off site. Decontamination will be conducted in a manner that prevents the contamination of the protective cap.

Decontamination will be managed so that washwater does not migrate from the decontamination area.

Equipment and personnel decontamination procedures will be defined in the activity-specific health and safety plan.

6.4 Groundwater Use Restrictions

Groundwater use is restricted per the environmental covenant (Appendix A). Groundwater management is discussed in Section 5.

6.5 Use of Property

WAC 173-340-420 states that at sites where a cleanup action requires an institutional control, a periodic review shall be completed no less frequently than every five years after the initiation of a cleanup action. Actual review frequency at the Site will be determined by Ecology.

7.1 Notification and Reporting

Ecology is to be notified in accordance with requirements stipulated in the environmental covenant in advance of substantial development activities at the Site.

The contractor shall maintain weekly reports of field activities during any active construction that disturbs soil or other cap material on the Site. The property owner, per the environmental covenant, will prepare a project completion report to document the management of impacted soil for each project in which such work is conducted. The report will document the management techniques used, approximate volumes of materials handled, placement or disposal information, disposal manifests, and analytical data generated during management of the impacted material.

7.2 Recordkeeping

The property owner must maintain records to provide to any subsequent property owner, documenting the following:

- On-site placement of excavated soil, including delineation of the disposal areas and estimated volumes
- Off-site disposal of excavated soil, including waste characterization, shipping manifests, and disposal certificates
- Cap breach reports, including where the cap was breached, methods for replacement, materials used, and any analytical results

8 PROTECTIVE CAP MONITORING AND MAINTENANCE

The protective cap requires regular and routine inspection for evaluation and maintenance of its integrity. Monitoring and, if required, maintenance should be conducted annually, at a minimum. This will provide an opportunity to correct small, localized failures before they become larger, more detrimental failures. In addition to annual inspection, an inspection is to take place after a large natural disaster occurs in close proximity to the Site, or any other large-scale disturbance occurs near or at the Site. As the cap is the primary barrier protecting human and ecological receptors from the remaining impacted soil, it is imperative that the cap maintain its intended integrity. This section outlines the monitoring and inspection procedure for each of the protective capping materials.

The person conducting the monitoring should complete the monitoring worksheet provided in Appendix D. The main purpose of the monitoring event is to document current conditions of capping materials. The documentation can be used as a reference to evaluate severity of cap degradation in comparison to the cap's condition during previous monitoring events and determine if corrective action is required.

8.1 Protective Cap Inspection

This section describes the minimum observation and monitoring requirements per inspection for each component of the overall protective cap.

8.1.1 Gravel Cap

The following defines the minimum observation and monitoring requirements per inspection for a gravel cap. All recorded observations (using the worksheet in Appendix D) should be accompanied by documenting photographs:

- Overall cap condition
- Visible rills or gullies
- Evidence of stormwater ponding or concentrated flow

8.1.2 Pavement Cap

The following defines the minimum observation and monitoring requirements per inspection for all pavement-related caps at the Site. All recorded observations should be accompanied by documenting photographs:

- Overall cap condition
- Evidence of cracking, buckling, or subgrade shifting
- Observed alligatored areas (areas with numerous intersecting cracks)

8.1.3 Building Cap

The following define the minimum observation and monitoring requirements per inspection for building caps. All recorded observations should be accompanied by documenting photographs:

- Overall cap condition
- Visible cracks in the foundation

8.2 Corrective Action

If evidence of erosion or failure is observed in any of the abovementioned caps, the person conducting the inspection and reporting should consult with the engineer. The engineer may decide that additional analysis or observation may be necessary in order to determine if the damage will

reduce the effectiveness of the protective cap. Corrective action will be evaluated on a case-by-case basis according to the type and/or severity of damage and the urgency. The following should be conducted in order to document damage and to evaluate a plan for corrective action:

- 1. Engineer's internal review of inspection reports and photographs
- 2. Site visit by the engineer to review damage
- 3. Additional measurement or analysis (survey, sample collection, or analysis)
- 4. Consultation with Ecology regarding the damage or deterioration and the engineering assessment
- 5. Proposal for repair prepared by the engineer (if determined necessary)
- 6. Contract with an appropriately certified and licensed contractor for completion of repair work (if needed)

8.3 Protective Cap Maintenance

This section describes the minimum maintenance requirements for each component of the overall protective cap.

8.3.1 Gravel Cap

Gravel cap maintenance will be conducted dependent on the findings of the annual monitoring report. If areas of the gravel cap have eroded, maintenance to replace the eroded areas with gravel will be required.

8.3.2 Pavement Cap

Pavement cap maintenance should be conducted if evidence of significant cracking or buckling (e.g., formation of pot holes) is observed. Areas that show these failures shall be maintained by the application of a corrective patch of asphalt or concrete, as appropriate.

8.3.3 Building Cap

Building foundations are not anticipated to require significant maintenance over the life of the building. Any maintenance to the building foundation should be completed in accordance with a licensed structural engineer's recommendations.

LIMITATIONS

The services undertaken in completing this plan were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This plan is solely for the use and information of our client unless otherwise noted. Any reliance on this plan by a third party is at such party's sole risk.

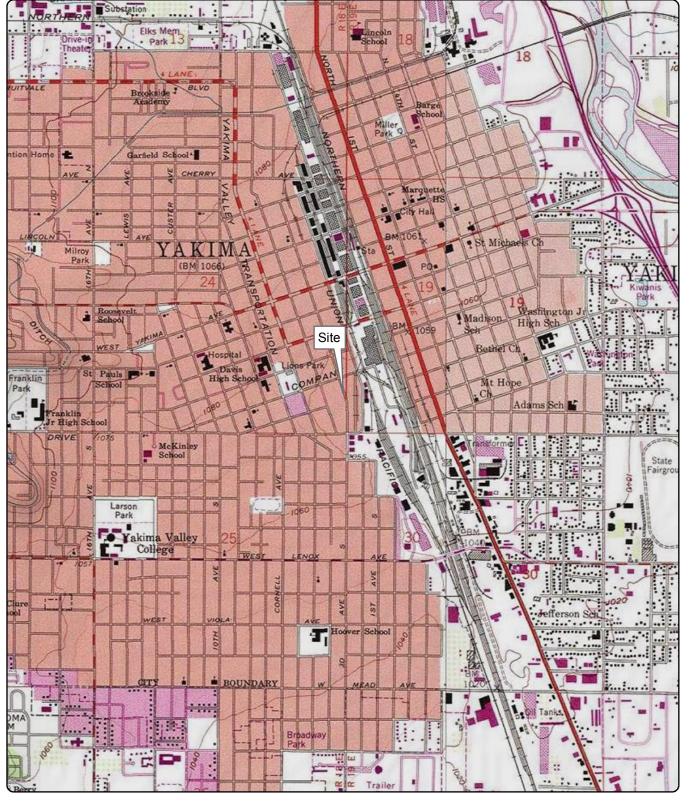
Opinions and recommendations contained in this plan apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this plan.

Ecology, 2011. Guidance for remediation of petroleum contaminated sites. Publication No. 10-09-057. Washington State Department of Ecology, Olympia, Washington. September.

GeoEngineers. 2015a. Soil and groundwater assessment report. Yakima, Washington. Washington State Department of Ecology.

GeoEngineers. 2015b. Quarterly groundwater monitoring—fourth quarter 2014. Yakima, Washington. Washington State Department of Ecology.

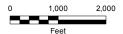
Maul Foster and Alongi. 2015. Interim remedial action completion report. Yakima, Washington. Washington State Department of Ecology.


Shannon and Wilson, Inc. 1996. Level I environmental site assessment clinic property, Yakima, Washington. Washington State Department of Ecology.

USPCI. 1990. Trolley barn UST closure site assessment report. Submitted to Washington State Department of Ecology. U.S. Pollution Control, Inc.

Yakima Valley Trolleys. 2015. Yakima Valley trolleys. General history. Yakima Valley Transportation Company.

FIGURES



Site Address: 404 S 3rd Ave, Yakima, Washington Source: US Geological Survey (1990) 7.5-minute topographic quadrangle: Yakima West Section 24, Township 13 North, Range 18 East

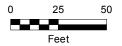
Figure 1 **Site Location**

Trolley Barn Site Yakima, Washington

Source: Aerial photograph obtained from Esri ArcGIS Online

Notes:

AST = aboveground storage tank UST = underground storage tank


This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the originary data and information sources to ascertain the usability of the information.

Legend

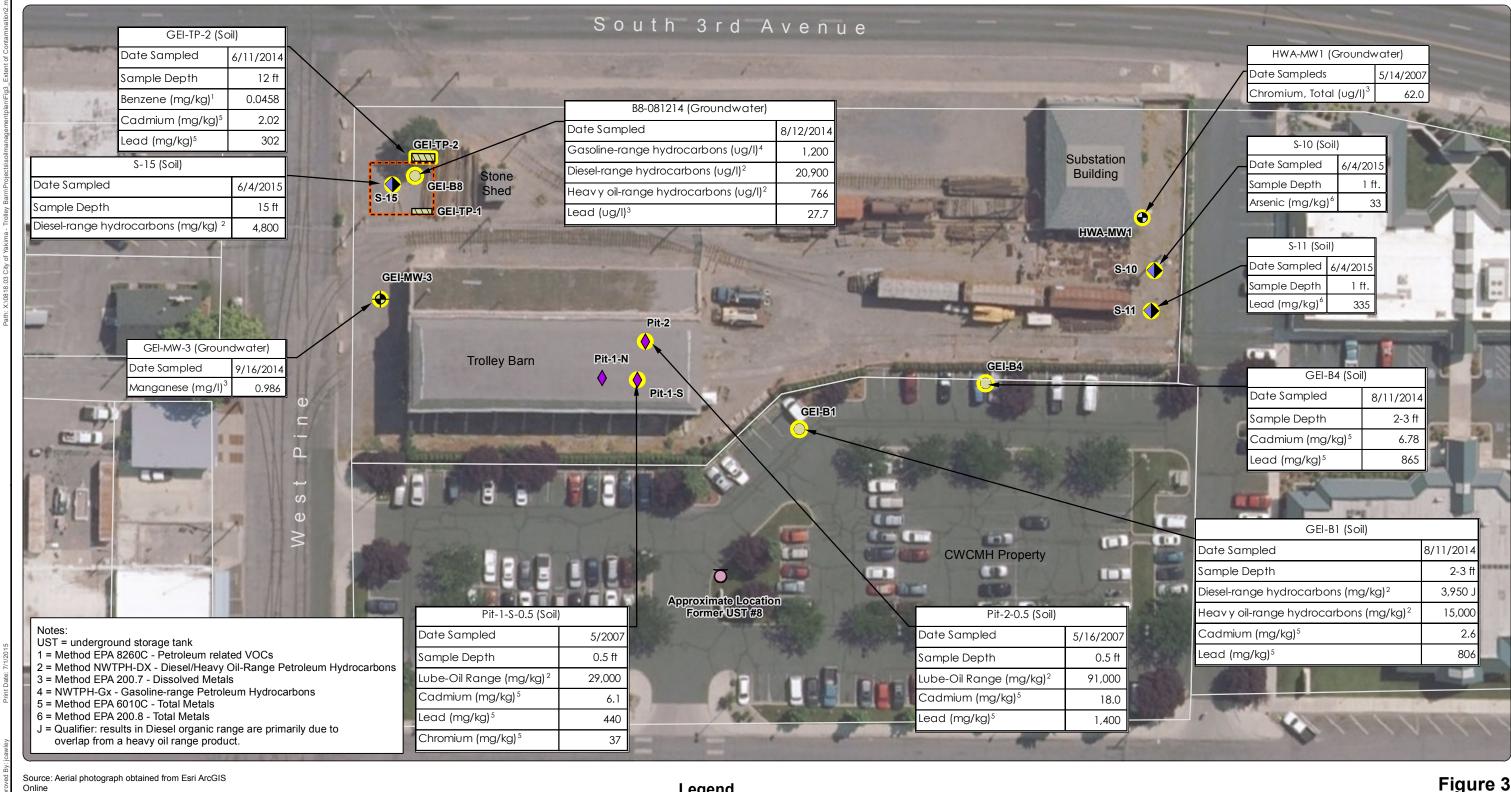

Former UST
Former Structure Footprints
Parcel Boundaries
Former UST Basin

Figure 2
Site Features and
Areas of Interest

Trolley Barn Site Yakima, Washington

gal, engineering, or surveying purposes. Users of this information should review or all the primary data and information sources to ascertain the usability of the information

Legend

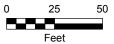
Soil Borings (GeoEngineers, 2014)

Monitoring Wells (GeoEngineers, 2014)

2014)

Test Pits (HWA GeoSciences, 2007)

Note:


Shallow soil below cap

contaminated with heavy metals throughout the site

Former UST #8

Extent of Contamination

Trolley Barn Site Yakima, Washington

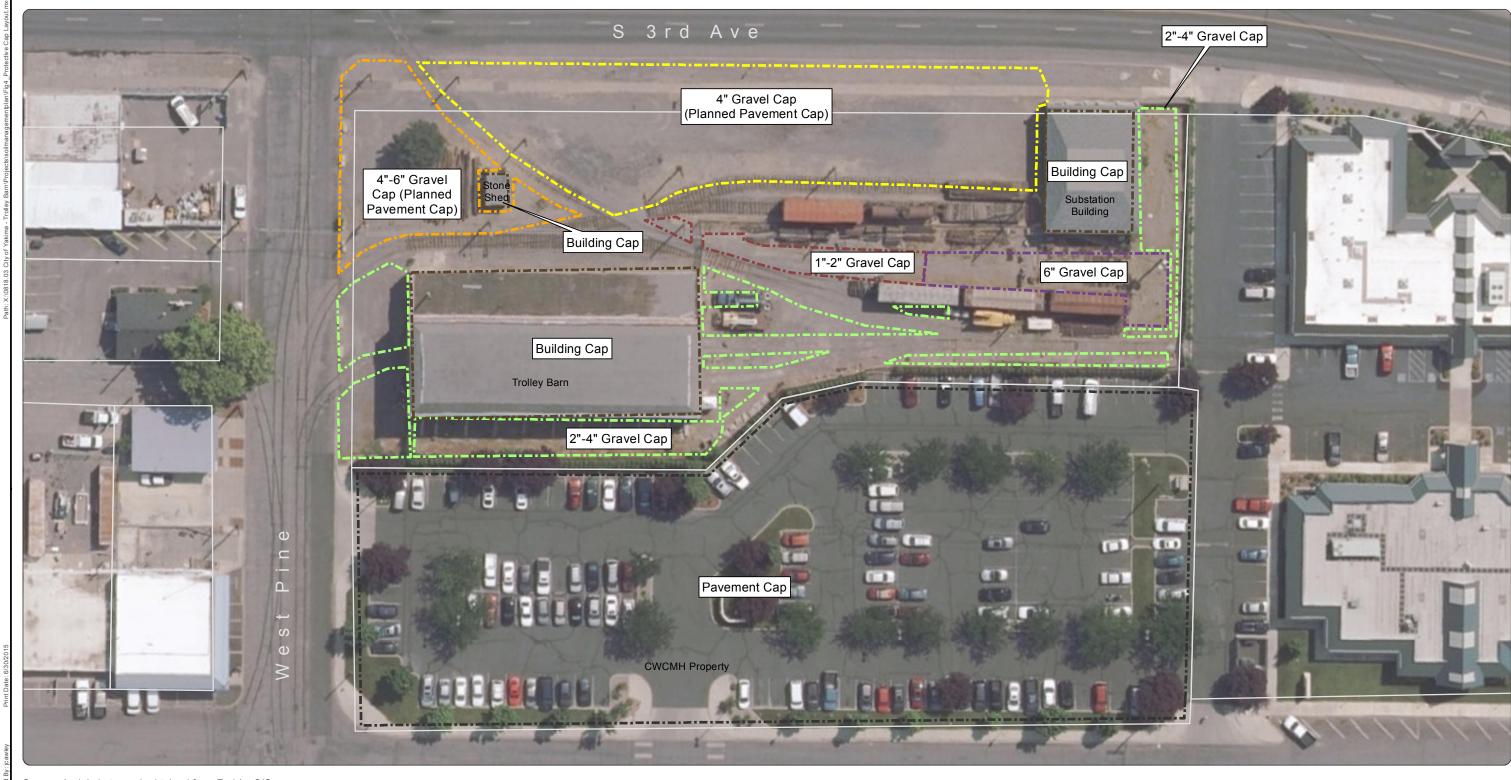
This product is for informational purposes and may not have been prepared for, or be suitable

Parcel Boundaries

Former UST Basin

Level Exceedance

(MFA, 2015)

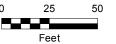

MTCA Method A Cleanup

Soil Confirmation Sample

Monitoring Well (HWA

GeoSciences, 2007)

Test Pits (GeoEngineers,


Source: Aerial photograph obtained from Esri ArcGIS

Legend

Building Cap 2"-4" Pavement Cap 4" Gravel Cap Depth 4"-6"

Figure 4 Protective Cap Layout

Trolley Barn Site Yakima, Washington

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

APPENDIX A ENVIRONMENTAL COVENANT

After Recording Return
Original Signed Covenant to:
Mary Monahan
Toxics Cleanup Program
Department of Ecology
1250 W. Alder Street
Union Gap, Washington 98903-0009

Environmental Covenant

(5/7/14 version)

Grantor: City of Yakima, Washington

Grantee: State of Washington, Department of Ecology

Brief Legal Description: See Exhibit A

Tax Parcel Nos.: Yakima County parcel no. 181324-44465

NOTE: This Covenant should not be recorded without Ecology's approval and signature. **Grantors must have a title** search conducted within the last 6 months to identify all recorded interests in the **Property including title** holders, holders of other interests (such as easements, right of ways, water & mineral rights), and encumbrances (such as lien and mortgage holders). The results of this search, typically called a title report or plat certificate, must be included with any request asking Ecology to sign a Covenant. A update to the title search should be provided to **Ecology along with the request** to sign the final covenant.

RECITALS

- **a.** This document is an environmental (restrictive) covenant (hereafter "Covenant") executed pursuant to the Model Toxics Control Act ("MTCA"), chapter 70.105D RCW and Uniform Environmental Covenants Act ("UECA"), chapter 64.70 RCW.
- b. The Property that is the subject of this Covenant is part or all of a site commonly known as Yakima Valley Transportation Co. Trolley Barn Site, Facility Site No. 9688850, Cleanup Site No. 2190. The Property is legally described in Exhibit A, and illustrated in Exhibit B, both of which are attached (hereafter "Property"). If there are differences between these two Exhibits, the legal description in Exhibit A shall prevail.
- **c.** The Property is the subject of remedial action under MTCA. This Covenant is required because residual contamination remains on the Property after completion of remedial actions. Specifically, the following principle contaminants remain on the Property:

Medium	Principle Contaminants Present	
Soil	lead, arsenic, mercury, cadmium, chromium, benzene, diesel- range petroleum hydrocarbons, and heavy oil-range petroleum hydrocarbons	
Groundwater	carcinogenic polycyclic aromatic hydrocarbons, diesel-, gasoline- and heavy oil-range petroleum hydrocarbons, lead, and manganese	
Surface Water/Sediment	Not applicable	

- **d.** It is the purpose of this Covenant to restrict certain activities and uses of the Property to protect human health and the environment and the integrity of remedial actions conducted at the site. Records describing the extent of residual contamination and remedial actions conducted are available through the Washington State Department of Ecology. This includes the interim remedial action completion report prepared by Maul Foster & Alongi, Inc. dated June 2015.
- **e.** This Covenant grants the Washington State Department of Ecology, as holder of this Covenant, certain rights specified in this Covenant. The right of the Washington State Department of Ecology as a holder is not an ownership interest under MTCA, Chapter 70.105D RCW or the Comprehensive Environmental Response, Compensation, and Liability Act ("CERCLA") 42 USC Chapter 103.

COVENANT

City of Yakima, as Grantor and fee simple owner of the Property hereby grants to the Washington State Department of Ecology, and its successors and assignees, (hereafter "Ecology") the following covenants. Furthermore, it is the intent of the Grantor that such covenants shall run with the land and be binding on all current and future owners of any portion of, or interest in, the Property.

Section 1. General Restrictions and Requirements.

The following general restrictions and requirements shall apply to the Property:

- **a. Interference with Remedial Action**. The Grantor shall not engage in any activity on the Property that may impact or interfere with the remedial action and any operation, maintenance, inspection or monitoring of that remedial action without prior written approval from Ecology.
- **b. Protection of Human Health and the Environment**. The Grantor shall not engage in any activity on the Property that may threaten continued protection of human health or the environment without prior written approval from Ecology. This includes, but is not limited to, any activity that results in the release of residual contamination that was contained as a part of the remedial action or that exacerbates or creates a new exposure to residual contamination remaining on the Property.
- **c. Continued Compliance Required.** Grantor shall not convey any interest in any portion of the Property without providing for the continued adequate and complete operation, maintenance and monitoring of remedial actions and continued compliance with this Covenant.
- **d. Leases.** Grantor shall restrict any lease for any portion of the Property to uses and activities consistent with this Covenant and notify all lessees of the restrictions on the use of the Property.
- **e. Amendment to the Covenant.** Grantor must notify and obtain approval from Ecology at least sixty (60) days in advance of any proposed activity or use of the Property in a manner that is inconsistent with this Covenant. Before approving any proposal, Ecology must issue a public notice and provide an opportunity for the public to comment on the proposal. If Ecology approves the proposal, the Covenant will be amended to reflect the change.

Section 2. Specific Prohibitions and Requirements.

In addition to the general restrictions in Section 1 of this Covenant, the following additional specific restrictions and requirements shall apply to the Property.

a. Land use.

The remedial action for the Property is based on a cleanup designed for commercial property. As such, the Property shall be used in perpetuity only for commercial land uses as that term is defined in the rules promulgated under Chapter 70.105D RCW. Prohibited uses on the Property include but are not limited to residential uses, childcare facilities, K-12 public or private schools, parks, grazing of animals, and growing of food crops.

b. Containment of soil/waste materials.

The remedial action for the Property is based on containing contaminated soil [and waste materials] under a cap consisting of 0.2 to 0.5 foot thick layer of clean soil and located as illustrated in Exhibit B. The primary purpose of this cap is to minimize the potential for contact with the contaminated soil. As such, the following restrictions shall apply within the area illustrated in Exhibit B:

Any activity on the Property that will compromise the integrity of the cap including: drilling; digging; piercing the cap with sampling device, post, stake or similar device; grading; excavation; installation of underground utilities; removal of the cap; or, application of loads in excess of the cap load bearing capacity, is prohibited without prior written approval by Ecology. The Grantor shall report to Ecology within forty-eight (48) hours of the discovery of any damage to the cap. Unless an alternative plan has been approved by Ecology in writing, the Grantor shall promptly repair the damage and submit a report documenting this work to Ecology within thirty (30) days of completing the repairs.

c. Stormwater facilities.

To minimize the potential for mobilization of contaminants remaining in the soil and/or groundwater on the Property, no stormwater infiltration facilities or ponds shall be constructed on the Property. All stormwater catch basins, conveyance systems, and other appurtenances located within this area shall be of water-tight construction.

d. Groundwater use.

The groundwater beneath the Property remains contaminated and shall not be extracted for any purpose other than temporary construction dewatering, investigation, monitoring or remediation. Drilling of a well for any water supply purpose is strictly prohibited. Groundwater extracted from the Property for any purpose shall be considered potentially contaminated and any discharge of this water shall be done in accordance with state and federal law.

e. Monitoring

Several groundwater monitoring wells are located on the Property to monitor the performance of the remedial action. The Grantor shall maintain clear access to these devices and protect them from damage. The Grantor shall report to Ecology within forty-eight (48) hours of the discovery of any damage to any monitoring device. Unless Ecology approves of an alternative plan in writing, the Grantor shall promptly repair the damage and submit a report documenting this work to Ecology within thirty (30) days of completing the repairs.

Section 3. Access.

- **a.** The Grantor shall maintain clear access to all remedial action components necessary to construct, operate, inspect, monitor and maintain the remedial action.
- **b.** The Grantor freely and voluntarily grants Ecology and its authorized representatives, upon reasonable notice, the right to enter the Property at reasonable times to evaluate the effectiveness of this Covenant and associated remedial actions, and enforce compliance with this Covenant and those actions, including the right to take samples, inspect any remedial actions conducted on the Property, and to inspect related records.
- **c.** No right of access or use by a third party to any portion of the Property is conveyed by this instrument.

Section 4. Notice Requirements.

- **a.** Conveyance of Any Interest. The Grantor, when conveying any interest in any part of the Property, including but not limited to title, easement, leases, and security or other interests, must:
 - i. Notify Ecology at least thirty (30) days in advance of the conveyance.
 - **ii**. Include in the conveying document a notice in substantially the following form, as well as a complete copy of this Covenant:
- NOTICE: THIS PROPERTY IS SUBJECT TO AN ENVIRONMENTAL COVENANT GRANTED TO THE WASHINGTON STATE DEPARTMENT OF ECOLOGY ON DATE AND RECORDED WITH THE YAKIMA COUNTY AUDITOR UNDER RECORDING NUMBER RECORDING NUMBER NUMBER. USES AND ACTIVITIES ON THIS PROPERTY MUST COMPLY WITH THAT COVENANT, A COMPLETE COPY OF WHICH IS ATTACHED TO THIS DOCUMENT.
 - **iii.** Unless otherwise agreed to in writing by Ecology, provide Ecology with a complete copy of the executed document within thirty (30) days of the date of execution of such document.
- **b. Reporting Violations.** Should the Grantor become aware of any violation of this Covenant, Grantor shall promptly report such violation to Ecology.
- **c. Emergencies.** For any emergency or significant change in site conditions due to Acts of Nature (for example, flood, fire) resulting in a violation of this Covenant, the Grantor is authorized to respond to such an event in accordance with state and federal law. The Grantor must notify Ecology of the event and response actions planned or taken as soon as practical but no later than within 24 hours of the discovery of the event.
- **d.** Any required written notice, approval, or communication shall be personally delivered or sent by first class mail to the following persons. Any change in this contact information shall be submitted in writing to all parties to this Covenant.

City of Yakima	Environmental Covenants Coordinator
City Manager	Washington State Department of Ecology

129 N. 2 nd Street	Toxics Cleanup Program
Yakima, WA 98901	P.O. Box 47600
(509) 575-6000	Olympia, WA 98504 – 7600
	(360) 407-6000

As an alternative to providing written notice and change in contact information by mail, these documents may be provided electronically in an agreed upon format at the time of submittal.

Section 5. Modification or Termination.

- **a.** If the conditions at the site requiring a Covenant have changed or no longer exist, then the Grantor may submit a request to Ecology that this Covenant be amended or terminated. Any amendment or termination of this Covenant must follow the procedures in Chapter 64.70 RCW and Chapter 70.105D RCW and any rules promulgated under these chapters.
- b. By signing this agreement, per RCW 64.70.100, the original signatories to this agreement, other than Ecology, agree to waive all rights to sign amendments to and termination of this Covenant.

Section 6. Enforcement and Construction.

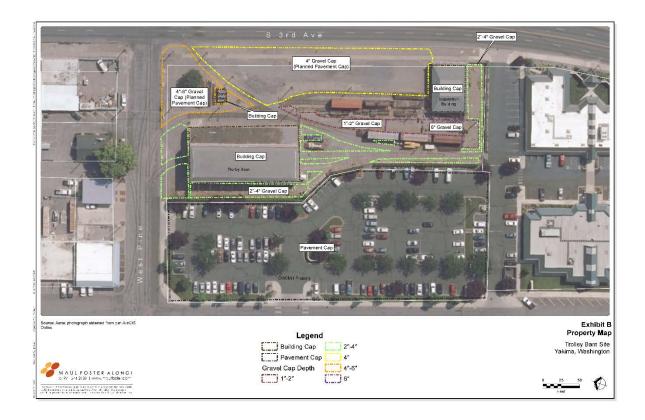
- **a.** This Covenant is being freely and voluntarily granted by the Grantor.
- **b.** Grantor shall provide Ecology with an original signed Covenant and proof of recording within ten (10) days of execution of this Covenant.
- c. Ecology shall be entitled to enforce the terms of this Covenant by resort to specific performance or legal process. All remedies available in this Covenant shall be in addition to any and all remedies at law or in equity, including Chapter 70.105D RCW and Chapter 64.70 RCW. Enforcement of the terms of this Covenant shall be at the discretion of Ecology, and any forbearance, delay or omission to exercise its rights under this Covenant in the event of a breach of any term of this Covenant is not a waiver by Ecology of that term or of any subsequent breach of that term, or any other term in this Covenant, or of any rights of Ecology under this Covenant.
- **d.** The Grantor, upon request by Ecology, shall be obligated to pay for Ecology's costs to process a request for any modification or termination of this Covenant and any approval required by this Covenant.
- e. This Covenant shall be liberally construed to meet the intent of the Model Toxics Control Act, chapter 70.105D RCW and Uniform Environmental Covenants Act, chapter 64.70 RCW.
- f. The provisions of this Covenant shall be severable. If any provision in this Covenant or its application to any person or circumstance is held invalid, the remainder of this Covenant or its application to any person or circumstance is not affected and shall continue in full force and effect as though such void provision had not been contained herein.
- **g.** A heading used at the beginning of any section or paragraph or exhibit of this Covenant may be used to aid in the interpretation of that section or paragraph or exhibit but does not override the specific requirements in that section or paragraph.

The undersigned Grantor war execute this Covenant.	rants he/she holds the	title to the Property and has authority	/ to
EXECUTED this	day of	, 2015.	
CITY OF YAKIMA, WASH	INGTON		
Tony O'Rourke City Manager	-		
Dated:	-		
STATE OF WASHINGTON DEPARTMENT OF ECOLO	ЮGY		
Valerie Bound Central Region Section Mana Toxics Cleanup Program	- ager		
Dated:	_		

GRANTOR CORPORATE ACKNOWLEDGMENT

STATE OF WASHINGTON COUNTY OF YAKIMA

	, 20, I certify that
personally appeared before me, acknow	wledged that he/she is the
of the corporation that executed the w	vithin and foregoing instrument, and signed said instrument
ž	l of said corporation, for the uses and purposes therein ne/she was authorized to execute said instrument for said
	Notary Public in and for the State of
	Washington, residing at
	My appointment expires


Exhibit A

LEGAL DESCRIPTION

(Required)

Exhibit B

PROPERTY MAP

Exhibit C

SUBORDINATION AGREEMENT

KNOW ALL PERSONS, That	, the owner a	nd holder of
that certain	(Instrument) bearing the date the	day of
, 20, executed by	y	,
, and reco	rded in the office of the County Auditor of	
County, S	State of Washington, on the	, 20,
under Auditor's File Number	, does hereby agree that said Instrumer	nt shall be
subordinate to the interest of the State of	f Washington, Department of Ecology, under	er the
environmental (restrictive) covenant dat	ed, 20, exe	ecuted by
	, and recorded	in
County, V	Washington under Auditor's File Number	
Dated, 20		
,		
NAME		
- 1 1 1.		
STATE OF WASHINGTON COUNTY OF YAKIMA		
COUNTIOFTAKIMA		
On this day of	, 20, I certify that	
herein and who executed the within and	, 20, I certify that and acknowledged that he/she is the individe foregoing instrument and signed the same	dual described at his/her free
and voluntary act and deed for the uses a	and purposes therein mentioned.	
	Notary Public in and for the St	ate of
	Washington, residing at	
	My appointment expires	·

APPENDIX B PREVIOUS INVESTIGATION RESULTS

CRO 608037

SITE ASSESSMENT REPORT
UNDERGROUND STORAGE TANK CLOSURE
AT

UNION PACIFIC RAILROAD Yakima branch Tanks 6, 7, and 8

LUST

November 1990

DEPARTMENT OF ECOLOGY UNDERGROUND STORAGE TANKS

NOV 1 3 1990

By
U.S. Pollution Control, Inc. (USPCI)
5665 Flatiron Parkway
Boulder, CO 80301

November 8, 1990

Susan Bergdorf Underground Storage Tank Notification Hazardous and Solid Waste Program Department of Ecology, M/S PV-11 Olympia, WA 98504-8711

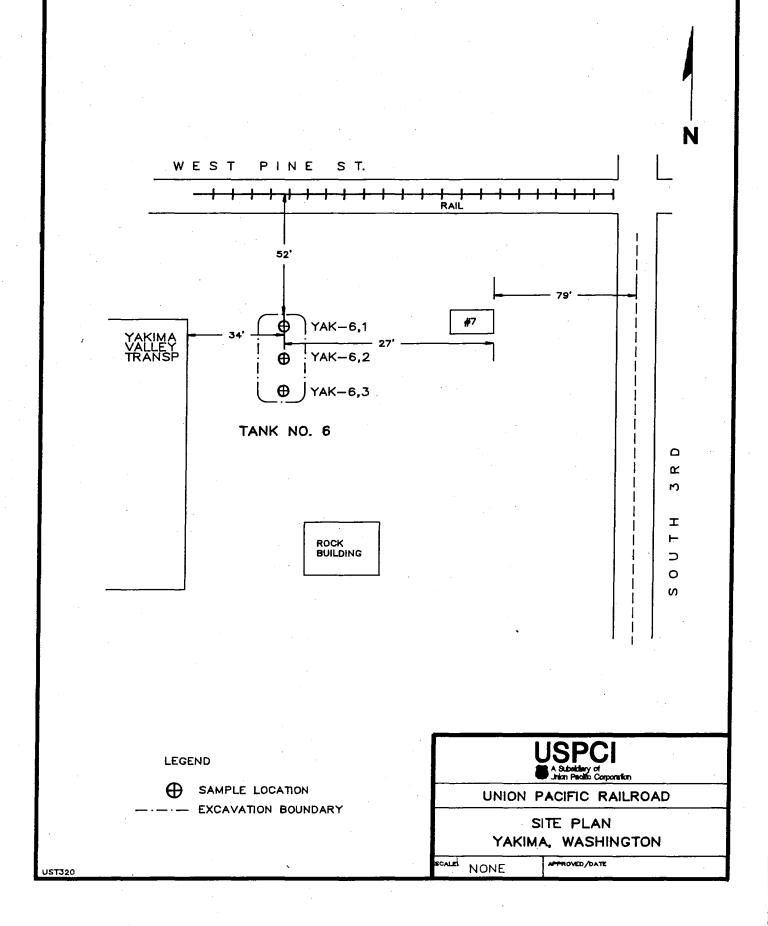
RE: Underground storage tank (UST) removal at Union Pacific's Yakima Branch

Dear Ms. Bergdorf:

U.S. Pollution Control, Inc. (USPCI) has recently completed a closure of eight USTs in the Union Pacific Railroad system. Enclosed is the closure report for three of these tanks located at Yakima Branch in Yakima County, Washington. We are pleased to report that no evidence of leakage was discovered for tanks 6, 7, and 8. A clean closure report was prepared in January of 1990 for tanks 2, 3, and 5. It was determined that tanks 1 and 4 were leaking and a site investigative report hasbeen prepared separately.

If you have any questions, please do not hesitate to call.

Sincerely,


Curt Hull

Program Manager

Environmental Assessments

Enclosure

cc: Alan Jensen, UPRR
Roger Fitch, UPRR
John Yellich, USPCI
Steve Beck, USPCI

WEST PINE S T. TANK NO. 7 I ROCK BUILDING \supset 0 ഗ USPCI
A Subsidiery of
Union People Cooperation LEGEND SAMPLE LOCATION UNION PACIFIC RAILROAD -- EXCAVATION BOUNDARY SITE PLAN YAKIMA, WASHINGTON NONE APPROVED/DATE UST321

WEST PINE STREET YAKIMA VALLEY CAR BARN APPROX. 2 SOUTH SWITCH # USPCI A Buboklary of Union Pacific Corporation LEGEND SAMPLE LOCATION UNION PACIFIC RAILROAD --- EXCAVATION BOUNDARY SITE PLAN YAKIMA, WASHINGTON SCALE: NONE APPROVED/DATE UST319

Analysis Report

USPCI. INC. 5665 FLATIRON PARKWAY BOULDER. CO

CO 80301

CURT G. HULL

THE INDUSTRI. .. LABORATORIES COMPANY

Complete Consulting Chemistry Service Secteriological & Analytical Testing

1450 East 62nd Avenue P.O. Box 16207 Denver, Colorado 80216 (303) 287-9691 FAX (303) 287-0964

Page:	<u>1</u>
ate Received:	06/22/90
ate Reported:	0 8/29/90
Lab Number:	5684
Customer P.O.:	93409

Sample Marked:	SOIL. UST.	UPRR. PROJ	ECT 93409		
	TOTAL PET- ROLEUM HY-	BENZENE	TOLUENE	XYLENE	ETHYL- BENZENE
SAMPLE NO	DROCARBONS PPM	PPM	PPM	PFM	PPM
BENTON CITY 1-1-N. 6/15/90	100	ND<0.2	ND<0.2	ND<0.2	ND<0.2
BENTON CITY 1-2-C. 6/15/90	30	0.7	1.6	ND<0.2	ND<0.2
BENTON CITY. 1-3-5. 6/15/90	70	0.6	1.0	ND<0.2	ND<0.2
KENNEWICK 1-1-N. 6/15/90	10	ND<0.2	0.3	ND<0.2	ND<0.2
KENNEWICK 1-2-C. 6/15/90	20	0.6	0.9	ND<0.2	ND<0.2
KENNEWICK 1-3-5. 6/15/90	110	3.0	5.1	ND<0.2	ND<0.2
WALLULA 1-1-C. 6/15/90	15	1.1	1.7	ND<0.2	ND<0.2
WALLULA 1-2-E. 6/15/90	12	1.0	1.8	ND<0.2	ND<0.2
WALLULA 1-3-W. 6/15/90	55	ND<0.2	0.5	ND<0.2	ND<0.2
YAKIMA 8-4-C. 6/13/9 <i>0</i>	35	0.4	0.7	ND<0.2	ND<0.2
(ALEN 1-1-N. 6/12/90	25	0.6	1.1	ND<0.2	ND<0.2
KALEN 1-2-0. 6/12/90	45	1.0	1.7	ND<0.2	ND<0.2

Analysis Report

USPCI, INC.

5665 FLATIRON PARKWAY

BOULDER.

CO 80301

CURT G. HULL

THE INDUSTRIA_ LABORATORIES COMPANY

Complete Consulting Chemistry Service Bacteriological & Analytical Testing

1450 East 62nd Avenue P.O. Box 16207 Denver, Colorado 80216 (303) 287-9691 FAX (303) 287-0964

 Page:
 2

 Date Received:
 06/22/90

 Date Reported:
 08/29/90

 Lab Number:
 5684

 Customer P.O.:
 93409

Sample Marked:	SOIL. UST.	UPRR. PROJI	ECT 93409		
•	TOTAL PET- ROLEUM HY- DROCARBONS	BENZENE	TOLUENE	XYLENE	ETHYL- BENZENE
SAMPLE NO	PPM	FPM	PPM	PPM	PPM
KALEN 1-3-5. 6/12/90	20	0.7	1.8	ND<0.2	ND<0.2
YAKIMA 7-1-E. 6/13/9 <i>0</i>	40	12.9	29.1	0.5	1.3
YAKIMA 7-2-C. 6/13/90	45	2.4	4.0	ND<0.2	ND<0.2
YAKIMA 7-3-W. 6/123/90	10				
YAKIMA 7-3-W. €/13/9 <i>0</i>		1.9	3.1	ND<0.2	ND<0.2
YAKIMA 8-1-E. 6/13/9 <i>0</i>	20	0.5	1.0	ND<0.2	ND<0.2
YAKIMA 8-2-C. 6/13/90	20	ND<0.2	0.5	ND<0.2	ND<0.2
YAKIMA 8-3-W. 6/13/90	70	ND<0.2	ND<0.2	ND<0.2	ND<0.2
YAKIMA 6-1-N. 6/14/90	60	3.3	5.5	ND<0.2	ND<0.2
YAKIMA 6-2-0. 6/15/90	85	0.5	1.1	ND<0.2	ND<0.2
`AKIMA 6-3-5. 6/14/90	25	0.9	1.7	ND<0.2	ND<0.2
GRANDVIEW	50	0.3	1.4	NDKO.2	ND<0.2

6-1-N. 6/15/90

Central Washington Comprehensive Mental Health Phase Il Environmental Site Assessment Yakima, Washington

October 1996

Central Washington Comprehensive Mental Health

321 East Yakima Avenue Yakima, Washington 98901

1354 N. Grandridge Boulevard Kennewick, Washington 99336*1037 509*735*1280

SHANNON & WILSON, INC.

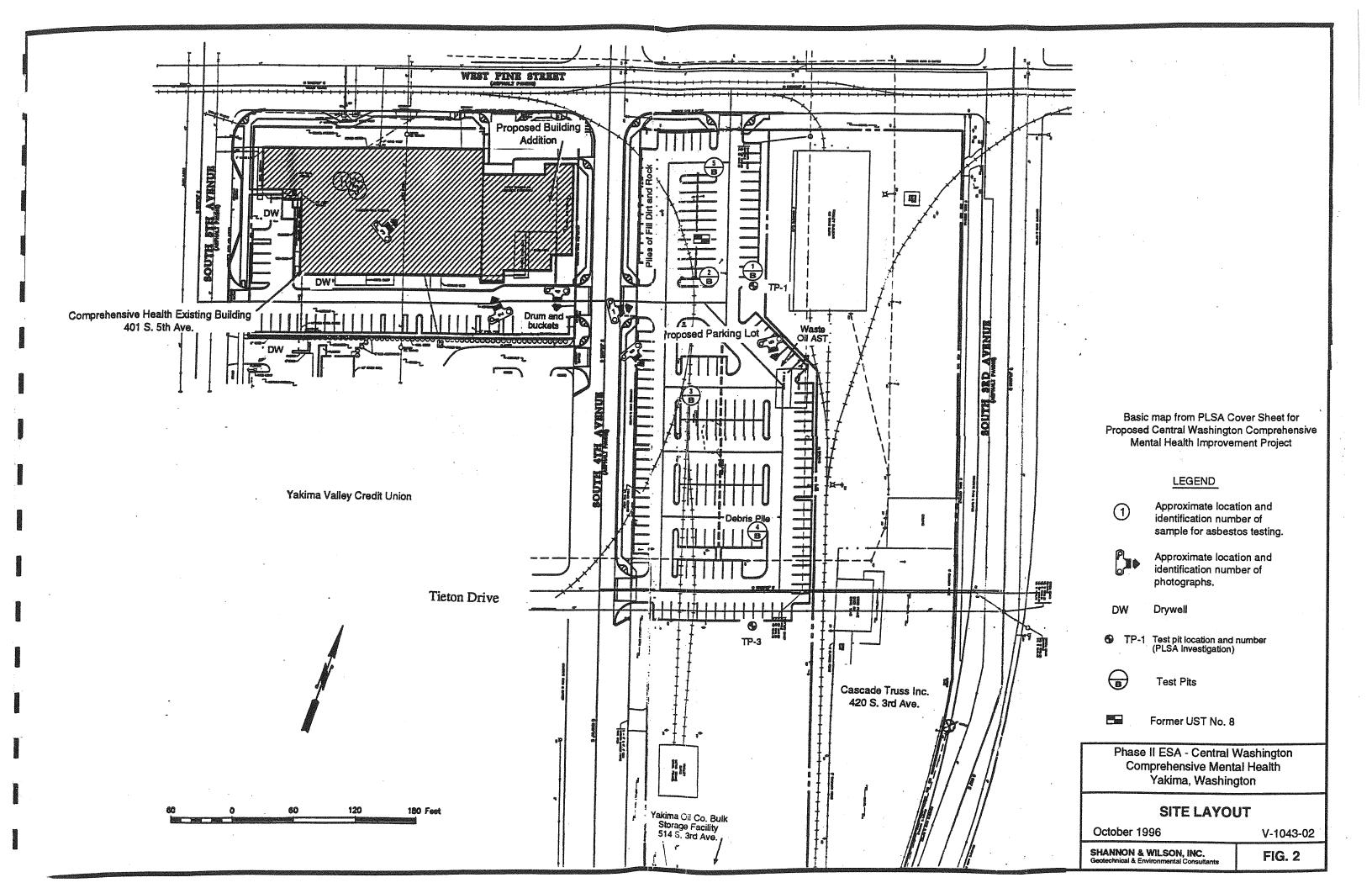
TABLE 1 PID SCREENING RESULTS

Sample Location	Sample Depth (feet)	PID Reading (ppm)	Sample Disposition	
Test Pit No. 2	2.5	4.9	Held pending lab results.	
	4.5	12.8	Sent to analytical lab.	
	7.5	6.7	Held pending lab results.	
	10	6.7	Held pending lab results.	
Test Pit No. 3	2.5	2.1	Held pending lab results.	
	5	1.5	Held pending lab results.	
	7.5	2.9	Sent to analytical lab.	
	10	1.8	Held pending lab results.	
Test Pit No. 4	1.5	1.5	Combined and sent to	
	2.5	1.6	analytical lab.	
	5	1.2	Held pending lab results.	
Test Pit No. 5	2.5	2.5	Held pending lab results.	
	5	2.5	Sent to analytical lab.	
	7.5	1.3	Held pending lab results.	
Oil Tank Soil Sample		2.4	Sent to analytical lab.	

PID = photoionization detector ppm = parts per million

TABLE 2 SUMMARY OF ANALYTICAL RESULTS

Analytical Test Parameters	TP-2	TP-3	TP-4	TP-5	Oil Tank Soil Sample	MTCA Screening Levels
METALS: Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc	5 U 6 0.4 0.3 18.4 21.6 6 0.05 U 12 13 0.7 5 U 55.8		5 U 6 0.6 0.2 U 16.6 35.6 94 0.05 U 17 15 0.7 5 U 57.9	6 U 6 U 0.5 0.3 16.8 25.1 11 0.06 U 14 10 0.8 6 U 66.4	5 U 5 U 0.3 5.0 13.3 266 544 0.05 U 42 8 1.9 5 U 1370	20.0 2.0 100.0 250.0 1.0
PAH: Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Dibenzofuran		71 U 71 U 71 U 71 U 71 U 71 U 71 U 71 U	72 U 72 U 72 U 72 U 72 U 72 U 72 U 72 U			1000.0
WTPH: Diesel Other	29	5.2 U		18	34,000	200.0 200.0
PCB: Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1221 Aroclor 1232		850 U 850 U 850 U 850 U 850 U 850 U 1,700 U 850 U		1,200 U 1,200 U 1,200 U 1,200 U 1,200 U 1,200 U 1,200 U	840 U 840 U 840 U 840 U 840 U 1,700 U 840 U	1,000.0


U = Compound not detected at the given detection limit.

MTCA = The Model Toxics Control Act, Method A Screening Levels for Soils

SHANNON & WILSON, INC.

TABLE 3 SUMMARY OF TEST PIT DATA

Test Pit No.	Total Depth (feet)	Soil Depths (feet)	Soil Type(s)
1	3.0	0 - 3.0 3.0	Poorly graded gravel with concrete rubble and wood. Weathered asphalt layer.
2	10.0	0 - 2.5 2.5 - 4.5 4.5 - 10.0	Poorly graded gravel with sand and concrete rubble. Poorly graded gravel with coarse sand, wood, and metal debris. Undisturbed well-graded gravel with cobbles and coarse sand.
3	10.0	0 - 2.5 2.5 - 5.0 4.5 - 10.0	Poorly graded gravel with brick and wood debris. Poorly graded gravel with coarse sand, concrete rubble, and wire. Undisturbed well-graded gravel with cobbles and coarse sand.
4	5.0	0 - 0.5 0.5 - 0.75 0.75 - 1.5 1.5 - 1.75 1.75 - 4.0 4.0 - 5.0	Silty sand with gravel. Wood chips. Silty sand with gravel. Wood chips. Silty sand with gravel. Undisturbed well-graded gravel with coarse sand.
5	7.5	0 - 5.0 5.0 - 7.5	Poorly graded gravel with brick debris. Undisturbed well-graded gravel with coarse sand.

SHANNON & WILSON, INC.

APPENDIX A ANALYTICAL RESULTS

October 7, 1996

Donna Parkes Shannon & Wilson, Inc. 303 Wellsian Way Richland, WA 99352

RE: Project: V-1043-02, Comprehensive Health ARI Job No. Q251

Dear Donna:

Please find enclosed the original chain-of-custody record and final results for the project referenced above. Analytical Resources, Inc. accepted thirteen water samples and one trip blank in good condition on September 25, 1996. All samples were received intact. The trip blank was not required for any of these analyses. The samples were analyzed for PAHs, PCBs, WTPH-D, WTPH-418.1 and Priority Pollutant Metals as requested.

No analytical complications were noted. It was noted during the extraction and preparation of Samples SS-1-01 and SS-1-03 that these samples consisted primarily of oily rocks. The respective analyses of these samples did not appear to be affected by the matrices.

As always, copies of these reports and all associated raw data will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris Project Manager 206/340-2866, ext. 113

Enclosures cc: File Q251 MDH/mdh

	Page			Sallello Sallello
500 0251	CHAIN OF CUSTODY RECORD	Analysis Parameters/Sample Container Description	(include preservative if used)	CANAL AND CHAIN OF GUOD
116138.7	CHAIN	1354 N. Grandriege Blvd. Kennewiek, WA 99336 (509) 735-1280	2412 N. 30th St., Suite 201 Tacoma, WA 98407 (206) 759-0156	ate npled
-XE191/52171-76	SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	400 N. 34th Street, Suite 100 11500 Olive Blvd., Suite 276 Seattle, WA 98103 St. Louis, MO 63141 P (206) 632-8020 (314) 872-8170 (2055 Hill Road 5430 Fairbanks Street, Suite 3 2 Fairbanks, AK 99709 Anchorage, AK 99518 1 (907) 479-0600 (907) 561-2120 (303 Wellsian Lby (509)946-6309 Richland WA 99352 Fax 946-6580 D Sample Identity Lab No. Time Sar

303 Wellsian Lby (509)946-6309 Richland WA 99352 Fax 946-6309 Sample Identity Lab No. Time	O9 SC Date	A RES	STALL SERVICE	22	D. Halp	Salano Journal R	
TP-2-01	10,30 A/24/96				7	heman	hemarks/marrix
4			×			Ğ -	
TP-2-03							
TP-3-01 1130	0				>		
TP-3-02				×			
TP-4-01	0			×			
179-4-02			×				
TP-5-01 13:30	0	×					
TP-5-02-			× .				
TP-5-03				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
		Relinquished By:	d By: 1.	Reling	Relinquished By: 2.	Relinquished By:	1 By: 3.
Project Number: $(1 - 1043 - 6)$ Total Number of Containers		Signature:	Time: 16 15	Signature:	Тіте:	Signature:	Time:
Contact: Donna Parkas Received Good Cond, Cold			Date: 4.2 + 4 Printed Name:	Printed Name:	Date:	Printed Name:	Date:
Ongoing Project? Yes No Polivery Method:		Company of the Company	Mr. Destanna				
Sampler Gorge Garduer (attach shipping bill, if any)		SPANNEN & WILSOLTH.	usolthe.	Company:		Company:	
Instructions		Received By:	T QUE	Recei	Received By: 2.	Received By:	69
Requested Turn Around Time: Special Instructions:		Signature:	Mme: 1400	Signature:	Time:	Signature:	ime:
		Printed Name:	Date: 9/25/2	Printed Name:	Date:	Printed Name:	Date:
Distribution: White - w/shipment - returned to Shannon & Wilson w/ Laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - Job File	and a	Company:		Company:		Company:	

SHANN Geotechnic	
ග ජී	
$\overline{\mathbb{T}}$	

ION & WILSON, INC. at and Environmental Consultants

11500 Olive Blvd., Suite 276 St. Louis, MO 63141 (314) 872-8170 100 400 N. 34th Street, Suite Seattle, WA 98103 (206) 632-8020 2055 Hill Road Fairbanks, AK 99709 (907) 479-0600

CHAIN OF CUSTODY RECORD

1354 N. Grandridge Blvd. Kennewick, WA 99536 (509) 765-7280

Analysis Parameters/Sample Container Description (include preservative if used)

Attn:M. Harris

AR

ō

4 Laboratory_

Remarks/Matrix 500 Sale lion 400 (3/13/14/K) Story do de so 2412 N. 30th St., Suite 201 Tacoma, WA 98407 (206) 759-0156 Date Sampled 1415 9 124/94 Sample Receipt 2 19 5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 (907) 561-2120 Lab No. CUSTOMER SUPPLIED Project Information NERPORT -03 Sample Identity 401 101 10Z 55-1 -55-

				Melnaushed By:
Project Number: V -104/3 -0.2	Total Number of Containers	100		
Project Name:	COC Seals/Intact? Y/N/NA	14 Met	- de communicación de c	
Contact:	Received Good Cond./Cold	Printed Name: Date: 7.24.4 Printed Name:	Date:	Printed Name: Date:
Ongoing Project? Yes No Delivery Method:		Concern to Concerned	en e	
Sampler: らんっぱん (stach shipping bill, if any)		ON E WILLSON IN	Company:	Company:
Instructions		Received By: 1.	Received By: 2.	Received Ru: 3
Requested Turn Around Time:		me: 1400	me:	ne:
Special Instructions:		1		
		Printed Name: Date: 925 % Printed Name:	Date:	Printed Name: Date:
		C ASOS SOVER		
Distribution: White - w/shipment - returned to Shannon & Wilson w/ Laboratory report Yellow - w/shipment - for consignee files		Company:	Company:	Сотралу:
Pink - Shannon & Wilson - Job File	ob File	**************************************		

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC COMPOUND DATA REPORTING QUALIFIERS

- U Indicates the compound was analyzed for, but not detected at the given detection limit.
- J Indicates an estimated value when the result is less than the calculated detection limit.
- D Indicates the surrogate/spike(s) was not detected, due to dilution of extract.
- NR Indicates the surrogate recovery cannot be reported due to matrix interference.
- E Indicates a value above the linear range of the detector. Sample dilution required.
- S Indicates no value reported due to saturation of the detector. Dilution required.
- Y Indicates a raised detection limit due to matrix interferences.
- NA Indicates compound was not analyzed.
- M Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match.
- B Indicates compound was found in the associated method blank.

ORGANICS ANALYSIS DATA SHEET

PNAs by GC/MS

Sample No: Method Blank

Lab Sample ID: 093096MB

QC Report No: Q251-Shannon & Wilson

LIMS ID: 96-16129

Project: Yakima

Matrix: Soil

V-1043-02

Data Release Authorized: ANS

Date Sampled: NA

Reported: 10/01/96

Date Received: NA

Date extracted: 09/27/96 12:00

Sample Amount: 7.50 g-dry-wt

Date analyzed: 09/30/96 Instrument: FINN2 Final Extract Volume: 0.5 mL Conc/Dilution Factor: 1:1

GPC Cleanup: NO

Moisture: NA pH: NA

CAS Number	Analyte	ug/kg
91-20-3	Naphthalene	67 บั
91-57-6	2-Methylnaphthalene	67 U
208-96-8	Acenaphthylene	67 U
83-32-9	Acenaphthene	67 บั
86-73-7	Fluorene	67 U
85-01-8	Phenanthrene	67 U
120-12-7	Anthracene	67 U
206-44-0	Fluoranthene	67 บั
129-00-0	Pyrene	67 บั
56-55-3	Benzo(a) anthracene	67 U
218-01-9	Chrysene	67 U
205-99-2	Benzo(b) fluoranthene	67 U
207-08-9	Benzo(k) fluoranthene	67 ט
50-32-8	Benzo(a)pyrene	67 U
193-39-5	Indeno(1,2,3-cd)pyrene	67 U
53-70-3	Dibenz(a,h)anthracene	67 U
191-24-2	Benzo(g,h,i)perylene	67 U
132-64-9	Dibenzofuran	67 U

Base/Neutral Surrogate Recovery

d14-p-Terphenyl	72.	3%
d10-Diphenyl	58.	28

ORGANICS ANALYSIS DATA SHEET

PNAs by GC/MS

Lab Sample ID: Q251E

LIMS ID: 96-16129 Matrix: Soil

Data Release Authorized:

Reported: 10/01/96

Sample No: TP-3-02

QC Report No: Q251-Shannon & Wilson

Project: Yakima

V-1043-02

Date Sampled: 09/24/96 Date Received: 09/25/96

Date extracted: 09/27/96 12:00

Date analyzed: 09/30/96 Instrument: FINN2 GPC Cleanup: NO Sample Amount: 7.08 g-dry-wt

Final Extract Volume: 0.5 mL Conc/Dilution Factor: 1:1 Moisture: 6.0%

pH: 5.8

CAS Number	Analyte	ug/kg
91-20-3	Naphthalene	71 U
91-57-6	2-Methylnaphthalene	71 U
208-96-8	Acenaphthylene	71 U
83-32-9	Acenaphthene	71 Ŭ
86-73-7	Fluorene	71 U
85-01-8	Phenanthrene	71 Ŭ
120-12-7	Anthracene	71 Ŭ
206-44-0	Fluoranthene	71 U
129-00-0	Pyrene	71 U
56-55-3	Benzo(a)anthracene	71 U
218-01-9	Chrysene	71 U
205-99-2	Benzo(b)fluoranthene	71 U
207-08-9	Benzo(k)fluoranthene	71 U
50-32-8	Benzo(a)pyrene	71 U
193-39-5	Indeno(1,2,3-cd)pyrene	71 U
53-70-3	Dibenz(a,h)anthracene	71 U
191-24-2	Benzo(g,h,i)perylene	71 Ŭ
132-64-9	Dibenzofuran	71 U

Base/Neutral Surrogate Recovery

d14-p-Terphenyl	62.7%
d10-Diphenvl	74.1%

ORGANICS ANALYSIS DATA SHEET

PNAs by GC/MS

Lab Sample ID: Q251F

LIMS ID: 96-16130

Matrix: Soil

Data Release Authorized:

Reported: 10/01/96

Sample No: TP-4-01

QC Report No: Q251-Shannon & Wilson

Project: Yakima

V-1043-02

Date Sampled: 09/24/96

Date Received: 09/25/96

Date extracted: 09/27/96 12:00

Date analyzed: 09/30/96

Instrument: FINN2

GPC Cleanup: NO

Sample Amount: 6.94 g-dry-wt

Final Extract Volume: 0.5 mL

Conc/Dilution Factor: 1:1

Moisture: 7.4%

pH: 5.4

CAS Number	Analyte	ug/kg
91-20-3	Naphthalene	72 U
91-57-6	2-Methylnaphthalene	72 U
208-96-8	Acenaphthylene	72 U
83-32-9	Acenaphthene	72 U
86-73-7	Fluorene	72 U
85-01-8	Phenanthrene	72 U
120-12-7	Anthracene	72 U
206-44-0	Fluoranthene	72 U
129-00-0	Pyrene	72 U
56-55-3	Benzo(a) anthracene	72 U
218-01-9	Chrysene	72 U
205-99-2	Benzo(b) fluoranthene	72 U
207-08-9	Benzo(k) fluoranthene	72 U
50-32-8	Benzo(a)pyrene	72 U
193-39-5	Indeno(1,2,3-cd)pyrene	72 U
53-70-3	Dibenz(a,h)anthracene	72 U
191-24-2	Benzo(g,h,i)perylene	72 U
132-64-9	Dibenzofuran	72 U

Base/Neutral Surrogate Recovery

d14-p-Terphenyl	64.0%
d10-Diphenyl	58.4%

ORGANICS ANALYSIS DATA SHEET SVOA by METHOD 625/8270

Lab Sample ID: Q251SB

QC Report No: Q251-Shannon & Wilson

LIMS ID: 96-16129 Matrix: Soil

Project: Yakima

V-1043-02

Data Release Authorized:

Reported: 10/01/96

LABORATORY CONTROL SAMPLE CONSTITUENT	SPIKE VALUE	SPIKE ADDED	% RECOVERY
Naphthalene	1030	1670	61.7%
Acenaphthene	825	1670	49.4%
Fluoranthene	959	1670	57.4%
Benzo(a)anthracene	933	1670	55.9%

Spike Blank Surrogate Recovery

d14-p-Terphenyl	53.2%
d10-Diphenyl	45.2%

Values reported in ppb (ug/kg) dry weight

TOTAL DIESEL RANGE HYDROCARBONS WA TPHd Range C12 to C24 by GC/FID

Matrix: Soil

Data Release Authorized:

Reported: 10/02/96

QC Report No: Q251-Shannon & Wilson

Project: Yakima

V-1043-02

Date Received: 09/25/96

		Date	Date	Dilution	Diesel Range	*Diese	l Surr
Lab ID	Client Sample ID	Extracted	Analyzed	Factor	Hydrocarbons	ID	Recovery
Q251-0927MB	Method Blank	09/27/96	09/27/96	1:1	5.0 Ŭ		114%
96-16128-Q251D	TP-3-01	09/27/96	09/27/96	1:1	5.2 Ŭ		115%

Values reported in ppm (mg/kg) on a dry weight basis.

Surrogate is Methyl-Arachidate.

* ID indicates, in the opinion of the analyst, the petroleum product with the best pattern match. 'NO' indicates that there was not a good match for any of the requested products. Diesel quantitation on total peaks in the range from C12 to C24.

Data Qualifiers

- U Compound not detected at the given detection limit.
- E Value detected above linear range of instrument. Dilution required.
- J Indicates an estimated value below the calculated detection limit.
- S No value reported due to saturation of the detector. Dilution required.
- D Indicates the surrogate was not detected because of dilution of the extract.
- E Indicates a value above the linear range of the detector. Dilution required.
- NR Indicates no recovery due to matrix interference.

FORM-1 WA TPHD

TOTAL DIESEL RANGE HYDROCARBONS WA TPHd Range C12 to C24 by GC/FID

Lab Sample ID: Q251SB

QC Report No: Q251-Shannon & Wilson

LIMS ID: 96-16128 Matrix: Soil

Project: Yakima

V-1043-02

Data Release Authorized:

Reported: 10/02/96

LABORATORY CONTROL SAMPLE RECOVERY REPORT

Date extracted: 09/27/96 Date analyzed: 09/27/96

CONSTITUENT	SPIKE	SPIKE	%
	FOUND	ADDED	RECOVERY
Diesel Range Hydrocarbons	111	100	111%

TPHd Surrogate Recovery

Methylarachidate

104%

Values reported in ppm (mg/kg) on a dry weight basis.

TOTAL PETROLEUM HYDROCARBONS Modified EPA Method 418.1 - IR Scan

QC Report No: Q251-Shannon & Wilson

Matrix: Soil

Project: Yakima

Batch ID: IR0819B-02

V-1043-02

Date Received: 09/25/96

Data Release Authorized:

Reported: 10/02/96

Lab ID	Client Sample ID	Date	Dilution	Total Petroleum Hydrocarbons (mg/kg)
nan in	Sample 1D	Analyzed	Factor	Hydrocarbons (mg/kg)
Q251-1002MB	Method Blank	10/02/96	1:1	10 U
96-16125	TP-2-01	10/02/96	1:1	29
96-16132	TP-5-01	10/02/96	. 1:1	18
96-16135	SS-1-01	10/02/96	1:100	34,000

Values reported in ppm (mg/kg) on a dry weight basis.

Data Qualifiers

Compound not detected at the given detection limit.

TOTAL PETROLEUM HYDROCARBONS Modified EPA Method 418.1 - IR Scan

Lab Sample ID: Q251-SB

LIMS ID: 96-16125

Matrix: Soil

QC Report No: Q251-Shannon & Wilson

Project: Yakima

V-1043-02

Data Release Authorized:

Reported: 10/02/96

LABORATORY CONTROL SAMPLE RECOVERY REPORT

Date Analyzed: 10/02/96

CONSTITUENT	SPIKE VALUE	SPIKE AMT	% RECOVERY
LABORATORY CONTROL SAMPLE			
Total Petroleum Hydrocarbons	106	100	106%

Values reported in parts per million (mg/kg)

Sample No: Method Blank

Lab Sample ID: Q251MB

QC Report No: Q251-Shannon & Wilson

LIMS ID: 96-16127

Project: Yakima

Matrix: Soil

V-1043-02

Date Sampled:

Data Release Authorized:

Date extracted: 09/27/96

Date analyzed: 09/30/96

Date Received:

Reported: 10/02/96

GPC Cleanup: No

Florisil Cleanup: No

Sample Amount: 5.00 g-dry-wt

Acid Cleanup: Yes Sulfur Cleanup: No

Final Ext Vol: 40 mL Conc/Dilution Factor: 1:1

pH: NA

Percent Moisture: NA

Reported in Total ug/kg Dry Weight

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	800 U
53469-21-9	Aroclor 1242	800 U
12672-29-6	Aroclor 1248	800 U
11097-69-1	Aroclor 1254	800 U
11096-82-5	Aroclor 1260	800 U
11104-28-2	Aroclor 1221	1,600 U
11141-16-5	Aroclor 1232	800 U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 80.0% Tetrachlorometaxylene 72.5%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank R
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: TP-2-03

Lab Sample ID: Q251C

QC Report No: Q251-Shannon & Wilson

LIMS ID: 96-16127

Project: Yakima V-1043-02

Matrix: Soil

Date Sampled: 09/24/96

Data Release Authorized:

Date Received: 09/25/96

Reported: 10/02/96

Date extracted: 09/27/96

GPC Cleanup: No

Florisil Cleanup: No

Acid Cleanup: Yes

Sample Amount: 4.72 g-dry-wt

Date analyzed: 09/30/96

Sulfur Cleanup: No

Final Ext Vol: 40 mL

Conc/Dilution Factor: 1:1

pH: 6.0 Percent Moisture: 5.8 %

Reported in Total ug/kg Dry Weight

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	850	U
53469-21-9	Aroclor	1242	850	U
12672-29-6	Aroclor	1248	850	U
11097-69-1	Aroclor	1254	850	U
11096-82-5	Aroclor	1260	850	U
11104-28-2	Aroclor	1221	1,700	U
11141-16-5	Aroclor	1232	850	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl

79.5%

Tetrachlorometaxylene 74.5%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- Indicates compound was not analyzed.
- Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: TP-5-03

Lab Sample ID: Q251J

QC Report No: Q251-Shannon & Wilson

LIMS ID: 96-16134

Project: Yakima

Matrix: Soil

V-1043-02

Date Sampled: Date Received:

09/24/96 09/25/96

Data Release Authorized:

Date extracted: 09/27/96

Date analyzed: 09/30/96

Reported: 10/02/96

GPC Cleanup: No

Florisil Cleanup: No

Sample Amount: 3.38 g-dry-wt

Acid Cleanup: Yes

Final Ext Vol: 40 mL

Sulfur Cleanup: No Conc/Dilution Factor: 1:1

pH: 5.4

Percent Moisture: 32.3%

CAS Number		Analyte	Value		
	12674-11-2	Aroclor	1016	1,200	U
	53469-21-9	Aroclor	1242	1,200	U
	12672-29-6	Aroclor	1248	1,200	U
	11097-69-1	Aroclor	1254	1,200	U
	11096-82-5	Aroclor	1260	1,200	U
	11104-28-2	Aroclor	1221	2,400	U
	11141-16-5	Aroclor	1232	1,200	U

Reported in Total ug/kg Dry Weight

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 72.5% Tetrachlorometaxylene 65.0%

- Indicates an estimated value when that result is less than the ıΤ calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- IJ Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank В
- Indicates compound was not analyzed. NA
- Indicates no recovery due to interferences. NR
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: SS-1-03

Lab Sample ID: Q251M

QC Report No: Q251-Shannon & Wilson

LIMS ID: 96-16137

Project: Yakima

Matrix: Soil

V-1043-02

Date Sampled:

09/24/96

Date Received: 09/25/96

Data Release Authorized:

Date extracted: 09/27/96

Date analyzed: 09/30/96

Reported: 10/02/96

GPC Cleanup: No

Florisil Cleanup: No

Acid Cleanup: Yes

Sample Amount: 4.77 g-dry-wt

Sulfur Cleanup: No

Final Ext Vol: 40 mL

Conc/Dilution Factor: 1:1

Percent Moisture: 5.0 %

pH: 5.6

Reported in Total ug/kg Dry Weight

CAS Number	Analyte	Value		
12674-11-2	Aroclor 1016	840 U		
53469-21-9	Aroclor 1242	840 U		
12672-29-6	Aroclor 1248	840 U		
11097-69-1	Aroclor 1254	. 840 U		
11096-82-5	Aroclor 1260	840 U		
11104-28-2	Aroclor 1221	1,700 ប		
11141-16-5	Aroclor 1232	840 Ŭ		

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 75.5% Tetrachlorometaxylene 58.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- Indicates compound was not analyzed. NA
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Lab Sample ID: Q251

LIMS ID: 96-16127

Matrix: Soil

Data Release Authorized:

Reported: 10/02/96

QC Report No: Q251-Shannon & Wilson

Project: Yakima

V-1043-02

LABORATORY CONTROL SAMPLE SPIKE RECOVERY

Date extracted: 09/27/96

SPIKE SPIKE CONSTITUENT RECOVERY FOUND ADDED LABORATORY CONTROL SAMPLE Aroclor 1242 6310 8000 78.9%

Aroclor Surrogate Recoveries

Decachlorobiphenyl 84.5% Tetrachlorometaxylene 74.5%

Values Reported in Total ug/kg Dry Weight

INORGANICS ANALYSIS DATA SHEET

Sample No: Method Blank

TOTAL METALS

Lab Sample ID: Q251MB

LIMS ID: 96-16126

Matrix: Soil

QC Report No: Q251-Shannon & Wilson

Project: Yakima

V-1043-02

Date Sampled: NA

Date Received: NA

Data Release Authorized:

Reported: 10/07/96

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry
***	2440	110 0110 0	2400	CAD MUMDEL	Augry Co	<u> </u>	mg/ kg - GL y
3050	09/26/96	6010	10/05/96	7440-36-0	Antimony	5	5 U
3050	09/26/96	6010	10/05/96	7440-38-2	Arsenic	5	5 U
3050	09/26/96	6010	10/05/96	7440-41-7	Beryllium	0.1	0.1 U
3050	09/26/96	6010	10/05/96	7440-43-9	Cadmium	0.2	0.2 U
3050	09/26/96	6010	10/05/96	7440-47-3	Chromium	0.5	0.5 ប
3050	09/26/96	6010	10/05/96	7440-50-8	Copper	0.2	0.2 U
3050	09/26/96	6010	10/05/96	7439-92-1	Lead	2	2 U
CLP	09/26/96	7470	09/27/96	7439-97-6	Mercury	0.05	0.05 U
3050	09/26/96	6010	10/05/96	7440-02-0	Nickel	1	1 U
3050	09/26/96	6010	10/05/96	7782-49-2	Selenium	5	5 Ŭ
3050	09/26/96	6010	10/05/96	7440-22-4	Silver	0.3	0.3 ປັ
3050	09/26/96	6010	10/05/96	7440-28-0	Thallium	5	5 U
3050	09/26/96	6010	10/05/96	7440-66-6	Zinc	0.4	0.4 U

U Analyte undetected at given RL

RL Reporting Limit

INORGANICS ANALYSIS DATA SHEET

TOTAL METALS

Matrix: Soil

Sample No: TP-2-02

Lab Sample ID: Q251B LIMS ID: 96-16126

QC Report No: Q251-Shannon & Wilson

Project:

Yakima

Date Sampled: 09/24/96

V-1043-02

Date Received: 09/25/96

Data Release Authorized:

Reported: 10/07/96

Percent Total Solids: 93.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry
3050	09/26/96	6010	10/05/96	7440-36-0	Antimony	5	5 บั
3050	09/26/96	6010	10/05/96	7440-38-2	Arsenic	5	6
3050	09/26/96	6010	10/05/96	7440-41-7	Beryllium	0.1	0.4
3050	09/26/96	6010	10/05/96	7440-43-9	Cadmium	0.2	0.2
3050	09/26/96	6010	10/05/96	7440-47-3	Chromium	0.5	18.4
3050	09/26/96	6010	10/05/96	7440-50-8	Copper	0.2	21.6
3050	09/26/96	6010	10/05/96	7439-92-1	Lead	2	6
CLP	09/26/96	7471	09/27/96	7439-97-6	Mercury	0. 05	0.05 U
3050	09/26/96	6010	10/05/96	7440-02-0	Nickel	1	12
3050	09/26/96	6010	10/05/96	7782-49-2	Selenium	5	13
3050	09/26/96	6010	10/05/96	7440-22-4	Silver	0.3	0.7
3050	09/26/96	6010	10/05/96	7440-28-0	Thallium	5	5 บั
3050	09/26/96	6010	10/05/96	7440-66-6	Zinc	0.4	55.8

U Analyte undetected at given RL

Reporting Limit RL

INORGANICS ANALYSIS DATA SHEET

Sample No: TP-4-02

TOTAL METALS

Lab Sample ID: Q251G

LIMS ID: 96-16131

Matrix: Soil

QC Report No: Q251-Shannon & Wilson

Project: Yakima

V-1043-02

Date Sampled: 09/24/96

Date Received: 09/25/96

Data Release Authorized Reported: 10/07/96

Percent Total Solids: 91.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry
404-24-41-41-41-41-41-41-41-41-41-41-41-41-41						<u> </u>	
3050	09/26/96	6010	10/05/96	7440-36-0	Antimony	5	5 U
3050	09/26/96	6010	10/05/96	7440-38-2	Arsenic	5	6
3050	09/26/96	6010	10/05/96	7440-41-7	Beryllium	0.1	0.6
3050	09/26/96	6010	10/05/96	7440-43-9	Cadmium	0.2	0.2 U
3050	09/26/96	6010	10/05/96	7440-47-3	Chromium	0.5	16.6
3050	09/26/96	6010	10/05/96	7440-50-8	Copper	0.2	35.6
3050	09/26/96	6010	10/05/96	7439-92-1	Lead	2	94
CLP	09/26/96	7471	09/27/96	7439-97-6	Mercury	0.05	0.05 ប
3050	09/26/96	6010	10/05/96	7440-02-0	Nickel	1	17
3050	09/26/96	6010	10/05/96	7782-49-2	Selenium	5	15
3050	09/26/96	6010	10/05/96	7440-22-4	Silver	0.3	0.7
3050	09/26/96	6010	10/05/96	7440-28-0	Thallium	5	5 T
3050	09/26/96	6010	10/05/96	7440-66-6	Zinc	0.4	57.9

U Analyte undetected at given RL

RLReporting Limit

APPENDIX

IMPORTANT INFORMATION ABOUT YOUR ENVIRONMENTAL SITE ASSESSMENT/EVALUATION

INORGANICS ANALYSIS DATA SHEET

Sample No: TP-5-02

TOTAL METALS

Lab Sample ID: Q251I

LIMS ID: 96-16133

Matrix: Soil

QC Report No: Q251-Shannon & Wilson

Project: Yakima

V-1043-02

Date Sampled: 09/24/96

Date Received: 09/25/96

Data Release Authorized:

Reported: 10/07/96

Percent Total Solids: 85.4%

Prep	Prep	Analysis	Analysis				
Meth	Date	Method	Date	CAS Number	Analyte	RL	mg/kg-dry
3050	09/26/96	6010	10/05/96	7440-36-0	Antimony	6	6 Ü
3050	09/26/96	6010	10/05/96	7440-38-2	Arsenic	6	. 6 U
3050	09/26/96	6010	10/05/96	7440-41-7	Beryllium	0.1	0.5
3050	09/26/96	6010	10/05/96	7440-43-9	Cadmium	0.2	0.3
3050	09/26/96	6010	10/05/96	7440-47-3	Chromium	0.6	16.8
3050	09/26/96	6010	10/05/96	7440-50-8	Copper	0.2	25.1
3050	09/26/96	6010	10/05/96	7439-92-1	Lead	2	11
CLP	09/26/96	7471	09/27/96	7439-97-6	Mercury	0.06	0.06 U
3050	09/26/96	6010	10/05/96	7440-02-0	Nickel	1	14
3050	09/26/96	6010	10/05/96	7782-49-2	Selenium	6	10
3050	09/26/96	6010	10/05/96	7440-22-4	Silver	0.3	0.8
3050	09/26/96	6010	10/05/96	7440-28-0	Thallium	6	6 U
3050	09/26/96	6010	10/05/96	7440-66-6	Zinc	0.5	66.4

U Analyte undetected at given RL

RL Reporting Limit

INORGANICS ANALYSIS DATA SHEET

Sample No: SS-1-02

TOTAL METALS

Lab Sample ID: Q251L LIMS ID: 96-16136

QC Report No: Q251-Shannon & Wilson

Project: Yakima

Matrix: Soil

V-1043-02

Date Sampled: 09/24/96

Date Received: 09/25/96

Data Release Authorized:

Reported: 10/07/96

Percent Total Solids: 93.3%

Prep	Prep	Analysis	Analysis				/* -
Meth	Date	Method	Date	CAS Number	Analyte	RL	mg/kg-dry
3050	09/26/96	6010	10/05/96	7440-36-0	Antimony	5	5 U
3050	09/26/96	6010	10/05/96	7440-38-2	Arsenic	5	5 U
3050	09/26/96	6010	10/05/96	7440-41-7	Beryllium	0.1	0.3
3050	09/26/96	6010	10/05/96	7440-43-9	Cadmium	0.2	5.0
3050	09/26/96	6010	10/05/96	7440-47-3	Chromium	0.5	13.3
3050	09/26/96	6010	10/05/96	7440-50-8	Copper	0.2	266
3050	09/26/96	6010	10/05/96	7439-92-1	Lead	2	544
CLP	09/26/96	7471	09/27/96	7439-97-6	Mercury	0.05	0.05 ប
3050	09/26/96	6010	10/05/96	7440-02-0	Nickel	1	42
3050	09/26/96	6010	10/05/96	7782-49-2	Selenium	5	8
3050	09/26/96	6010	10/05/96	7440-22-4	Silver	0.3	1.9
3050	09/26/96	6010	10/05/96	7440-28-0	Thallium	5	5 U
3050	09/26/96	6010	10/05/96	7440-66-6	Zinc	0.4	1,370

Analyte undetected at given RL

RL Reporting Limit

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Lab Sample ID: Q251LCS

LIMS ID: 96-16126

Matrix: Soil

QC Report No: Q251-Shannon & Wilson

Project: Yakima

V-1043-02

Data Release Authorized:

Reported: 10/07/96

BLANK SPIKE QUALITY CONTROL REPORT

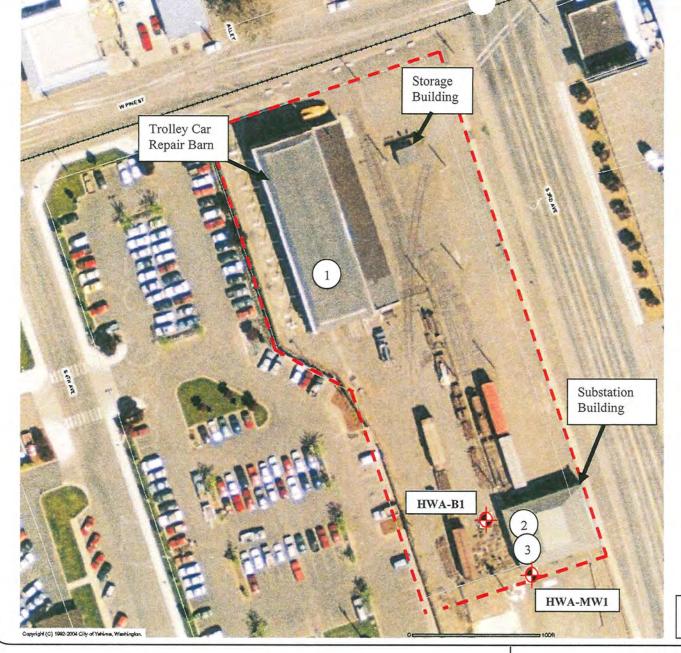
	Analysis	Spike	Spike	%	
Analyte	Method	mg/kg-dry	Added	Recovery	Ō
Antimony	6010	246	250	98.4%	
Arsenic	6010	247	250	98.8%	
Beryllium	6010	4.8	5.0	96.0%	
Cadmium	6010	9.5	10.0	95.0%	
Chromium	6010	24.8	25.0	99.2%	
Copper	6010	10.2	10.0	102.0%	
Lead	6010	97	100	97.0%	
Mercury	7471	0.42	0.50	84.0%	
Nickel	6010	49	50	98.0%	
Selenium	6010	252	250	100.8%	
Silver	6010	23.9	25.0	95.6%	
Thallium	6010	243	250	97.2%	
Zinc	6010	47.9	50.0	95.8%	

'Q' codes:

N = control limit not met

Control Limits:

75-125%


PHASE II ENVIRONMENTAL SITE ASSESSMENT **Yakima Valley Transportation Company** 3rd Avenue South & West Pine Street Yakima, Washington HWA Project No. 2006-116-22

Prepared for Menke Jackson Beyer Elofson Ehlis & Harper LLP August 16, 2007

HWA GEOSCIENCES INC.

- · Geotechnical Engineering
- · Hydrogeology
- · Geoenvironmental Services
- Inspection & Testing

Property line, approximate

HWA boring/monitoring well location

Trolley maintenance pits

Unused electrical equipment

UST location

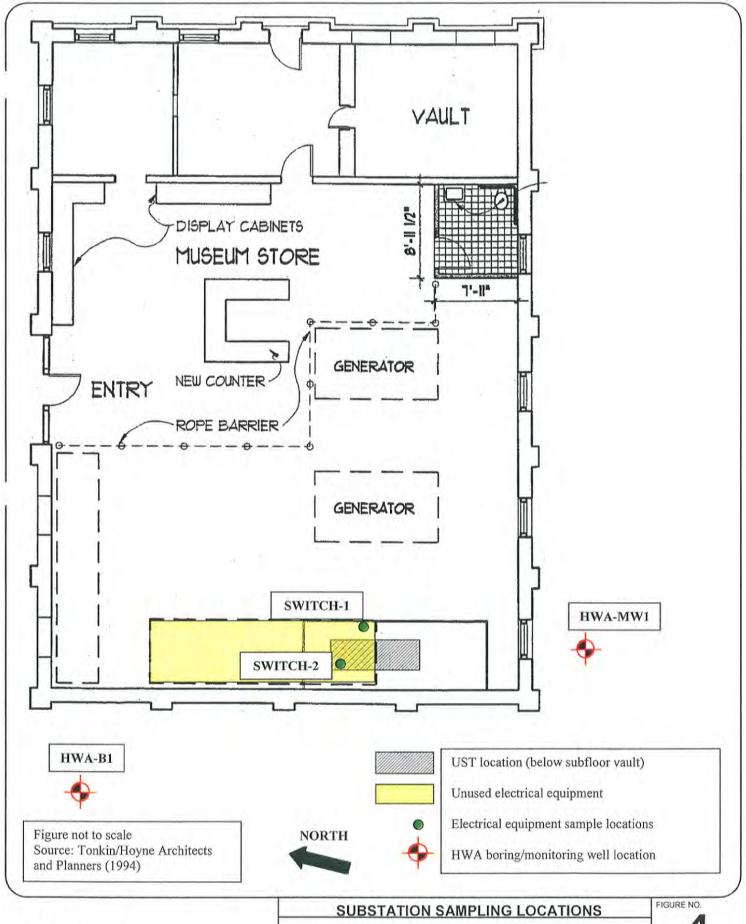
NORTH

Source: Aerial Photograph from City of Yakima Planning Division (2006)

YAKIMA VALLEY TRANSPORTATION CO. 3RD AVENUE SOUTH & WEST PINE STREET YAKIMA, WASHINGTON

FIGURE NO.

PROJECT NO. 2006-116-22



HWA GEOSCIENCES INC.

YAKIMA VALLEY TRANSPORTATION CO. 3RD AVENUE SOUTH & WEST PINE STREET YAKIMA, WASHINGTON

PROJECT NO.

2006-116

YAKIMA VALLEY TRANSPORTATION CO. 3RD AVENUE SOUTH & WEST PINE STREET YAKIMA, WASHINGTON

PROJECT NO.

2006-116

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200

LYNNWOOD, WA 98036

DATE:

5/30/2007

CCIL JOB #: DATE RECEIVED: 0705077

WDOE ACCREDITATION #:

5/15/2007 C142

CLIENT CONTACT:

VANCE ATKINS

CLIENT PROJECT ID: YUTC

CLIENT SAMPLE ID: 5/14/2007

13:20 SWITCH-1

CCIL SAMPLE #:

-01

	DATA RE	77.000	1111111111	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS*	UNITS**	DATE	BY
PCB-1016	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/17/2007	RAL
PCB-1221	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/17/2007	RAL
PCB-1232	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/17/2007	RAL
PCB-1242	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/17/2007	RAL
PCB-1248	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/17/2007	RAL
PCB-1254	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/17/2007	RAL
PCB-1260	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/17/2007	RAL

[&]quot; 'ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

[&]quot;LINITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRYWEIGHT BASIS

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200 LYNNWOOD, WA 98036 DATE: CCIL JOB #: 5/30/2007 0705077

DATE RECEIVED: WDOE ACCREDITATION #:

5/15/2007 C142

CLIENT CONTACT:

VANCE ATKINS

CLIENT PROJECT ID: YUTC

CLIENT SAMPLE ID: 5/14/2007

13:30 SWITCH-2

CCIL SAMPLE #:

-02

	DATA RE	SULTS			
ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS BY
PCB-1016	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/18/2007	RAL
PCB-1221	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/18/2007	RAL
PCB-1232	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/18/2007	RAL
PCB-1242	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/18/2007	RAL
PCB-1248	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/18/2007	RAL
PCB-1254	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/18/2007	RAL
PCB-1260	EPA-600/4-81-045	ND(<1.0)	MG/KG	5/18/2007	RAL

[&]quot; "NO" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

[&]quot;UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200 LYNNWOOD, WA 98036

DATE: CCIL JOB #: 5/30/2007 0705077

DATE RECEIVED: WDOE ACCREDITATION #: 5/15/2007 C142

CLIENT CONTACT:

VANCE ATKINS

CLIENT PROJECT ID:

YUTC CLIENT SAMPLE ID: 5/14/2007

15:30 PIT-1-S-0.5

CCIL SAMPLE #:

-04

	DATAR	ESULTS			
ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range TPH-Oil Range	NWTPH-DX NWTPH-DX	ND(<1600) 29000	MG/KG MG/KG	5/17/2007 5/17/2007	EBS EBS
PCB-1016	EPA-8082	ND(<0.1)	MG/KG	5/21/2007	RAL
PCB-1221	EPA-8082	ND(<0.1)	MG/KG	5/21/2007	RAL
PCB-1232	EPA-8082	ND(<0.1)	MG/KG	5/21/2007	RAL
PCB-1242	EPA-8082	ND(<0.1)	MG/KG	5/21/2007	RAL
PCB-1248	EPA-8082	ND(<0.1)	MG/KG	5/21/2007	RAL
PCB-1254	EPA-8082	ND(<0.1)	MG/KG	5/21/2007	RAL
PCB-1260	EPA-8082	0.4	MG/KG	5/21/2007	RAL
Arsenic	EPA-6010	ND(<5.0)	MG/KG	5/16/2007	ICP
Cadmium	EPA-6010	6.1	MG/KG	5/16/2007	ICP
Chromium	EPA-6010	37	MG/KG	5/16/2007	ICP
Lead	EPA-6010	440	MG/KG	5/16/2007	ICP
Mercury	EPA-7471	0.08	MG/KG	5/16/2007	ICP

NOTE: CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY LUBE OIL.

DIESEL RANGE REPORTING LIMIT RAISED DUE TO OIL RANGE PRODUCT OVERLAP.

[&]quot; 'ND' INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT, REPORTING LIMIT IS GIVEN IN PARENTHESES.

[&]quot;UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200 LYNNWOOD, WA 98036 DATE

5/30/2007

CCIL JOB # DATE RECEIVED: 0705077 5/15/2007

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

VANCE ATKINS

CLIENT PROJECT ID:

YUTC

CLIENT SAMPLE ID: 5/14/2007

15:30 PIT-2-0.5

CCIL SAMPLE #.

-05

ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range TPH-Oil Range	NWTPH-DX NWTPH-DX	ND(<5600) 91000	MG/KG MG/KG	5/17/2007 5/17/2007	EBS EBS
PCB-1016	EPA-8082	ND(<0.1)	MG/KG	5/21/2007	RAL
PCB-1221	EPA-8082	ND(<0.1)	MG/KG	5/21/2007	RAL
PCB-1232	EPA-8082	ND(<0.1)	MG/KG	5/21/2007	RAL
PCB-1242	EPA-8082	ND(<0.1)	MG/KG	5/21/2007	RAL
PCB-1248	EPA-8082	ND(<0.1)	MG/KG	5/21/2007	RAL
PCB-1254	EPA-8082	0.8	MG/KG	5/21/2007	RAL
PCB-1260	EPA-8082	ND(<0.1)	MG/KG	5/21/2007	RAL
Arsenic	EPA-6010	ND(<5.0)	MG/KG	5/16/2007	ICP
Cadmium	EPA-6010	18	MG/KG	5/16/2007	ICP
Chromium	EPA-6010	9.3	MG/KG	5/16/2007	ICP
Lead	EPA-6010	1400	MG/KG	5/16/2007	ICP
Mercury	EPA-7471	0.13	MG/KG	5/16/2007	ICP

NOTE: CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY LUBE OIL.

DIESEL RANGE REPORTING LIMIT RAISED DUE TO OIL RANGE PRODUCT OVERLAP.

[&]quot;NO" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT, REPORTING LIMIT IS GIVEN IN PARENTHESES.

[&]quot; UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200

LYNNWOOD, WA 98036

DATE:

5/30/2007

CCIL JOB #:

0705077

DATE RECEIVED: WDOE ACCREDITATION #: 5/15/2007 C142

CLIENT CONTACT:

VANCE ATKINS

CLIENT PROJECT ID: YUTC

QUALITY CONTROL RESULTS

SURROGATE RECOVERY

CCIL SAMPLE ID	метноо	SURID	% RECV
0705077-01 0705077-01	EPA-600/4-81-045 EPA-600/4-81-045	TCMX DCB	96 96
0705077-02 0705077-02	EPA-600/4-81-045 EPA-600/4-81-045	TCMX DCB	117 111
0705077-04 0705077-04 0705077-04	NWTPH-DX EPA-8082 EPA-8082	C25 TCMX DCB	121 80
0705077-05 0705077-05 0705077-05	NVVTPH-DX EPA-8082 EPA-8082	C25 TCMX DCB	151** 54

^{*} SURROGATE DILUTED OUT OF CALIBRATION RANGE.

^{**} SURROGATE OUTSIDE OF CONTROL LIMITS OF 16-134% POSSIBLY DUE TO MATRIX INTERFERENCE.

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200 LYNNWOOD, WA 98036 DATE: CCIL JOB #: DATE RECEIVED: 5/30/2007 0705077

WDOE ACCREDITATION #:

5/15/2007 C142

CLIENT CONTACT:

VANCE ATKINS

CLIENT PROJECT ID: YUTC

QUALITY CONTROL RESULTS

METHOD	MATRIX	QC BATCH ID	ASSOCIATED SAMPLES	ANALYTE	RESULT	UNITS
EPA-600/4-81-045	Other	PS051707-1	0705077 -01 to 02	PCB-1016	ND(<0.1)	MG/KG
EPA-600/4-81-045	Other	PS051707-1	0705077 -01 to 02	PCB-1221	ND(<0.1)	MG/KG
EPA-600/4-81-045	Other	PS051707-1	0705077 -01 to 02	PCB-1232	ND(<0.1)	MG/KG
EPA-600/4-81-045	Other	PS051707-1	0705077 -01 to 02	PCB-1242	ND(<0.1)	MG/KG
EPA-600/4-81-045	Other	PS051707-1	0705077 -01 to 02	PCB-1248	ND(<0.1)	MG/KG
EPA-600/4-81-045	Other	PS051707-1	0705077 -01 to 02	PCB-1254	ND(<0.1)	MG/KG
EPA-600/4-81-045	Other	PS051707-1	0705077 -01 to 02	PCB-1260	ND(<0.1)	MG/KG
NWTPH-DX	Soil	DS051007-2	0705077 -04 to 05	TPH-Diesel Range	ND(<25)	MG/KG
NWTPH-DX	Soil	DS051007-2	0705077 -04 to 05	TPH-Oil Range	ND(<50)	MG/KG
EPA-8082	Soil	PS051707-2	0705077 -04 to 05	PCB-1016	ND(<0.1)	MG/KG
EPA-8082	Soil	PS051707-2	0705077 -04 to 05	PCB-1221	ND(<0.1)	MG/KG
EPA-8082	Soil	PS051707-2	0705077 -04 to 05	PCB-1232	ND(<0.1)	MG/KG
EPA-8082	Soil	PS051707-2	0705077 -04 to 05	PCB-1242	ND(<0.1)	MG/KG
EPA-8082	Soil	PS051707-2	0705077 -04 to 05	PCB-1248	ND(<0.1)	MG/KG
EPA-8082	Soll	PS051707-2	0705077 -04 to 05	PCB-1254	ND(<0.1)	MG/KG
EPA-8082	Soil	PS051707-2	0705077 -04 to 05	PCB-1260	ND(<0.1)	MG/KG
EPA-7471	Soil	HGS051607-1	0705077 -04 to 05	Mercury	ND(<0.02)	MG/KG
EPA-6010	Soil	ICPMET-S-051107-2	0705077 -04 to 05	Arsenic	ND(<5.0)	MG/KG
EPA-6010	Soil	ICPMET-S-051107-2	0705077 -04 to 05	Cadmium	ND(<1.0)	MG/KG
EPA-6010	Soil	ICPMET-S-051107-2	0705077 -04 to 05	Chromium	ND(<1.0)	MG/KG
EPA-6010	Soil	ICPMET-S-051107-2	0705077 -04 to 05	Lead	ND(<5.0)	MG/KG

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200

YUTC

LYNNWOOD, WA 98036

DATE:

5/30/2007

CCIL JOB #:

0705077

DATE RECEIVED:

5/15/2007

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

VANCE ATKINS

CLIENT PROJECT ID:

QUALITY CONTROL RESULTS

SPIKE/SPIKE DUPLICATE RESULTS

METHOD	MATRIX	QC BATCH ID	ASSOCIATED SAMPLES	ANALYTE	SPIKE RECOVERY	SPIKE DUP RECOVERY	RPD
EPA-600/4-81-045	Other	PS051707-1	0705077 -01 to 02	PCB-1016	100 %	82 %	20
EPA-600/4-81-045	Other	PS051707-1	0705077 -01 to 02	PCB-1260	100 %	82 %	20
NWTPH-DX	Soil	DS051007-2	0705077 -04 to 05	TPH-Diesel Range	89 %	98 %	10
EPA-8082	Soil	PS051707-2	0705077 -04 to 05	PCB-1016	115 %	99 %	15
EPA-8082	Soil	PS051707-2	0705077 -04 to 05	PCB-1260	115 %	99 %	15
EPA-7471	Sail	HGS051607-1	0705077 -04 to 05	Mercury	102 %	107 %	5
EPA-6010	Soil	ICPMET-S-051107-2	0705077 -04 to 05	Arsenic	99 %	98 %	3
EPA-6010	Soil	ICPMET-S-051107-2	0705077 -04 to 05	Cadmium	100 %	99 %	1.1
EPA-6010	Soil	ICPMET-S-051107-2	0705077 -04 to 05	Chromium	101 %	100 %	3
EPA-6010	Soil	ICPMET-S-051107-2	0705077 -04 to 05	Lead	100 %	99 %	1

APPROVED BY:

Page 7

HWA GEOSCIENCES INC.

19730 64th Ave. W., Suite 200, Lynnwood, WA 98036 (425)774-0106 4500 Kruse Way, Suite 300, Lake Oswego, OR 97035 (503)675-2424

and Laboratory Analysis Request Chain of Custody

PΑ	DA
AGE	H
**	
	N
	7
약	>
	0
	7

60

		1.7			7		-				Received by:
	120	57/5/27	11 1	(1)		74	1) -	本ない	-	Received by:
	1:00	11/2	600	11111		than tail	7	1	W LU	To bet	Relinquished by:
REMARKS	TIME	DATE	COMPANY			SIGNATURE			JAME	PRINT NAME	
4			*					¥			
							- Carlon	-			
					F						
4											
**	į	#4									
, do											
					-					1	
								1	1	1	
			ia 90								
				X	X	\ -		4	1600	7	2172-0.5
				X	X	4 1		-	1777	٥)	PIT-1-5-05
						3 2x+34		50,-	1530	1	PIT-1-0
Ļ				7		2 1+42M		010	(333		SWITCH . Z
				X		1 1 740m		٥١٥	5/時1221373	5/18	Switch -
REMARKS				CPA+ PCT	Nui	LAB ID # OF BOTTLE		MATRIX	TE TIME	ID DATE	HWA SAMPLE ID
			,,• •	+ 5	17	m	PHONE:		2	1.	HWA CONTACT:
				-TK)-y		Ü	PHONE	TKINS	Anci A	ME: L	SAMPLERS NAME: UA
											SITE CODE:
						T. (106-11)					

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200

LYNNWOOD, WA 98036

DATE: CCIL JOB #: 5/25/2007

DATE RECEIVED:

0705089 5/18/2007

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: CLIENT PROJECT ID:

VANCE ATKINS YVTC #2006-116

CLIENT SAMPLE ID: 5/16/2007 10:45 HWA-MW-1-15

CCIL SAMPLE #

-02

1,000	DATA R	ESULTS			
ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range	NWTPH-DX	ND(<25)	MG/KG	5/21/2007	EBS
TPH-Oil Range	NWTPH-DX	ND(<50)	MG/KG	5/21/2007	EBS

[&]quot; "NO" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

[&]quot; UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200

LYNNWOOD, WA 98036

DATE:

CCIL JOB #:

5/25/2007

0.7

DATE RECEIVED:

0705089 5/18/2007

WDOE ACCREDITATION #

C142

CLIENT CONTACT:

VANCE ATKINS YVTC #2006-116

CLIENT PROJECT ID: YVTC #2 CLIENT SAMPLE ID: 5/16/2007

13:45 HWA-B1-5

CCIL SAMPLE #:

-04

	DATAR	ESULTS	9		
ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range	NWTPH-DX	ND(<25)	MG/KG	5/21/2007	EBS
TPH-Oil Range	NWTPH-DX	ND(<50)	MG/KG	5/21/2007	EBS

[&]quot; "NO" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

[&]quot;UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200

LYNNWOOD, WA 98036

DATE:

5/25/2007

CCIL JOB #:

0705089

DATE RECEIVED: WDOE ACCREDITATION #:

5/18/2007

C142

CLIENT CONTACT:

VANCE ATKINS

CLIENT PROJECT ID: YVTC #2006-116 CLIENT SAMPLE ID: 5/16/2007 14:15

14:15 HWA-B1-15

CCIL SAMPLE #:

-06

Section 1980	DATA RI	ESULTS			
ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS BY
TPH-Diesel Range	NWTPH-DX	ND(<25)	MG/KG	5/21/2007	EBS
TPH-Oil Range	NWTPH-DX	ND(<50)	MG/KG	5/21/2007	EBS

^{* &}quot;NO" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

[&]quot;UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200

LYNNWOOD, WA 98036

DATE:

5/25/2007

CCIL JOB #: DATE RECEIVED:

0705089 5/18/2007

WDOE ACCREDITATION #:

CLIENT CONTACT:

VANCE ATKINS YVTC #2006-116

CLIENT PROJECT ID: CLIENT SAMPLE ID: 5/17/2007 9:00 HWA-MW1

C142

ANALYSIS BY

CCIL SAMPLE #:

-08

	DATARI	ESULTS		
ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE
TPH-Diesel Range	NWTPH-DX	ND(<130)	UG/L	5/22/2007
TPH-Oil Range	NWTPH-DX	ND(<250)	UG/L	5/22/2007

		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	COMP.	74.15	
TPH-Diesel Range	NWTPH-DX	ND(<130)	UG/L	5/22/2007	EBS
TPH-Oil Range	NWTPH-DX	ND(<250)	UG/L	5/22/2007	EBS
Dichlorodifluoromethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Chloromethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Vinyl Chloride	EPA-8260	ND(<0.2)	UG/L	5/18/2007	GAP
Bromomethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Chloroethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Trichlorofluoromethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Acetone	EPA-8260	ND(<25)	UG/L	5/18/2007	GAP
1,1-Dichloroethene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Methylene Chloride	EPA-8260	ND(<5)	UG/L	5/18/2007	GAP
Acrylonitrile	EPA-8260	ND(<10)	UG/L	5/18/2007	GAP
Methyl T-Butyl Ether	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Trans-1,2-Dichloroethene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
1,1-Dichloroethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
2-Butanone	EPA-8260	ND(<10)	UG/L	5/18/2007	GAP
Cis-1,2-Dichloroethene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
2,2-Dichloropropane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Bromochloromethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Chloroform	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
1,1,1-Trichloroethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
1,1-Dichloropropene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Carbon Tetrachloride	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
1,2-Dichloroethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Benzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Trichloraethene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
1,2-Dichloropropane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Dibromomethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Bromodichloromethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Trans-1,3-Dichloropropene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
4-Methyl-2-Pentanone	EPA-8260	ND(<10)	UG/L	5/18/2007	GAP
Toluene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Cis-1,3-Dichloropropene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
1,1,2-Trichloroethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200 LYNNWOOD, WA 98036

DATE: CCIL JOB #:

5/25/2007

DATE RECEIVED:

0705089 5/18/2007

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

VANCE ATKINS

CLIENT PROJECT ID: CLIENT SAMPLE ID: 5/17/2007 9:00 HWA-MW1

YVTC #2006-116

CCIL SAMPLE #:

-08

	DATA RE	SULTS			
ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSI BY
2-Hexanone	EPA-8260	ND(<10)	UG/L	5/18/2007	GAP
,3-Dichloropropane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Tetrachloroethylene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Dibromochloromethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
1,2-Dibromoethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Chlorobenzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
1,1,1,2-Tetrachloroethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAP
Ethylbenzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
M+P Xylene	EPA-8260	ND(<4)	UG/L	5/18/2007	GAF
Styrene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
O-Xylene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
Bromoform	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
sopropylbenzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
1,1,2,2-Tetrachloroethane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
1,2,3-Trichloropropane	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
Bromobenzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
N-Propyl Benzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
2-Chlorotoluene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
1,3,5-Trimethylbenzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
4-Chlorotoluene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
T-Butyl Benzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
1,2,4-Trimethylbenzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
S-Butyl Benzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
P-Isopropyltoluene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
1,3 Dichlorobenzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
1,4-Dichlorobenzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
N-Butylbenzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
1,2-Dichlorobenzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
,2-Dibromo 3-Chloropropane	EPA-8260	ND(<10)	UG/L	5/18/2007	GAF
1,2,4-Trichlorobenzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
lexachlorobutadiene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAR
Vaphthalene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
1,2,3-Trichlorobenzene	EPA-8260	ND(<2)	UG/L	5/18/2007	GAF
Benzo(a)anthracene	EPA-8270 SIM	ND(<0.02)	UG/L	5/22/2007	RAL

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200 LYNNWOOD, WA 98036

DATE:

5/25/2007

CCIL JOB #: DATE RECEIVED:

0705089 5/18/2007

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: CLIENT PROJECT ID:

VANCE ATKINS YVTC #2006-116

CLIENT SAMPLE ID: 5/17/2007 9:00 HWA-MW1

CCIL SAMPLE #:

ANALYTE	METHOD	RESULTS*	UNITS**	ANALYSIS DATE	ANALYSIS
ANALITE	METHOD	KESOLIS	014110	DAIL	
Chrysene	EPA-8270 SIM	ND(<0.02)	UG/L	5/22/2007	RAL
Benzo(b)fluoranthene	EPA-8270 SIM	ND(<0.02)	UG/L	5/22/2007	RAL
Benzo(k)fluoranthene	EPA-8270 SIM	ND(<0.02)	UG/L	5/22/2007	RAL
Benzo(a)pyrene	EPA-8270 SIM	ND(<0.02)	UG/L	5/22/2007	RAL
Indeno(1,2,3-cd)pyrene	EPA-8270 SIM	ND(<0.02)	UG/L	5/22/2007	RAL
Dibenz(a,h)anthracene	EPA-8270 SIM	ND(<0.02)	UG/L	5/22/2007	RAL
Arsenic (Dissolved)	EPA-7060	ND(<4)	UG/L	5/23/2007	ICP
Arsenic (Total)	EPA-7060	ND(<4)	UG/L	5/23/2007	ICP
Cadmium (Dissolved)	EPA-200.7	ND(<5)	UG/L	5/21/2007	ICP
Cadmium (Total)	EPA-200.7	ND(<5)	UG/L	5/21/2007	ICP
Chromium (Dissolved)	EPA-200.7	62	UG/L	5/21/2007	ICP
Chromium (Total)	EPA-200.7	62	UG/L	5/21/2007	ICP
Lead (Dissolved)	EPA-7421	ND(<3)	UG/L	5/23/2007	ICP
Lead (Total)	EPA-7421	ND(<3)	UG/L	5/23/2007	ICP
Mercury (Dissolved)	EPA-7470	ND(<0.2)	UG/L	5/21/2007	ICP
Mercury (Total)	EPA-7470	ND(<0.2)	UG/L	5/21/2007	ICP

[&]quot; "NO" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

[&]quot;UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200 LYNNWOOD, WA 98036

CCIL JOB #: DATE RECEIVED:

DATE:

5/25/2007 0705089 5/18/2007

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

VANCE ATKINS CLIENT PROJECT ID: YVTC #2006-116

QUALITY CONTROL RESULTS

SURROGATE RECOVERY

CCIL SAMPLE ID	METHOD	SURID	% RECV
0705089-02	NWTPH-DX	C25	93
0705089-04	NWTPH-DX	C25	112
0705089-06	NWTPH-DX	C25	77
0705089-08 0705089-08	NWTPH-DX EPA-8260	C25 1.2-Dichloroethane-d4	108 105
0705089-08	EPA-8260	Toluene-d8	100
0705089-08	EPA-8260	4-Bromofluorobenzene	104
0705089-08	EPA-8270 SIM	Terphenyl-d14	106

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200 LYNNWOOD, WA 98036 DATE:

5/25/2007

CCIL JOB #: DATE RECEIVED: 0705089

WDOE ACCREDITATION #:

5/18/2007 C142

CLIENT CONTACT; CLIENT PROJECT ID:

VANCE ATKINS YVTC #2006-116

QUALITY CONTROL RESULTS

METHOD	MATRIX	QC BATCH ID	ASSOCIATED SAMPLES	ANALYTE	RESULT	UNITS
NWTPH-DX	Soil	DS052107	0705089 -02,04,06	TPH-Diesel Range	ND(<25)	MG/KG
NWTPH-DX	Soil	DS052107	0705089 -02,04,06	TPH-Oil Range	ND(<50)	MG/KG
NWTPH-DX	Water	DW052207	0705089 -08	TPH-Diesel Range	ND(<130)	UG/L
NWTPH-DX	Water	DW052207	0705089 -08	TPH-Oil Range	ND(<250)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Dichlorodifluoromethane	ND(<2)	UG/L
EPA-8260	Water	VVV051807	0705089 -08	Chloromethane	ND(<2)	UGIL
EPA-8260	Water	VW051807	0705089 -08	Vinyl Chloride	ND(<0.2)	UG/L
EPA-8260	Water	VVV051807	0705089 -08	Bromomethane	ND(<2)	UG/L
EPA-8260	Water	VVV051807	0705089 -08	Chloroethane	ND(<2)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Trichlorofluoromethane	ND(<2)	UG/L
EPA-8260	Water	VVV051807	0705089 -08	Acetone	ND(<25)	UG/L
EPA-8260	Water	VVV051807	0705089 -08	1,1-Dichloroethene	ND(<2)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Methylene Chloride	ND(<5)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Acrylonitrile	ND(<10)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Methyl T-Butyl Ether	ND(<2)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Trans-1,2-Dichloroethene	ND(<2)	UGIL
EPA-8260	Water	VVV051807	0705089 -08	1,1-Dichloroethane	ND(<2)	UG/L
EPA-8260	Water	VVV051807	0705089 -08	2-Butanone	ND(<10)	UG/L
EPA-8260	Water	VVV051807	0705089 -08	Gis-1,2-Dichloroethene	ND(<2)	UG/L
EPA-8260	Water	VVV051807	0705089 -08	2,2-Dichloropropane	ND(<2)	UG/L
EPA-8260	Water	VVV051807	0705089 -08	Bromochloromethane	ND(<2)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Chloroform	ND(<2)	UG/L
EPA-8260	Water	VW051807	0705089 -08	1,1,1-Trichloroethane	ND(<2)	UG/L
EPA-8260	Water	VW051807	0705089 -08	1,1-Dichloropropene	ND(<2)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Carbon Tetrachloride	ND(<2)	UG/L
EPA-8260	Water	VW051807	0705089 -08	1,2-Dichloroethane	ND(<2)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Benzene	ND(<2)	UGIL
EPA-8260	Water	VW051807	0705089 -08	Trichloroethene	ND(<2)	UG/L
EPA-8260	Water	VVV051807	0705089 -08	1,2-Dichloropropane	ND(<2)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Dibromomethane	ND(<2)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Bromodichloromethane	ND(<2)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Trans-1,3-Dichloropropene	ND(<2)	UG/L
EPA-8260	Water	VVV051807	0705089 -08	4-Methyl-2-Pentanone	ND(<10)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Toluene	ND(<2)	UG/L
EPA-8260	Water	VW051807	0705089 -08	Cis-1,3-Dichloropropene	ND(<2)	UG/L
- 0.730.0400	1.44000	440000000000000000000000000000000000000	Page 8	The Me and appropriate page	Mch.	

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200 LYNNWOOD, WA 98036 DATE: CCIL JOB #: 5/25/2007

DATE RECEIVED:

0705089 5/18/2007

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: CLIENT PROJECT ID: VANCE ATKINS YVTC #2006-116

QUALITY CONTROL RESULTS

	METHOD	MATRIX	QC BATCH ID	ASSOCIATED SAMPLES	ANALYTE	RESULT	UNITS
	EPA-8260	Water	VW051807	0705089 -08	1,1,2-Trichloroethane	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	2-Hexanone	ND(<10)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	1,3-Dichloropropane	ND(<2)	UG/L
	EPA-8260	Water	VW051807	0705089 -08	Tetrachloroethylene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	Dibromochloromethane	ND(<2)	UG/L
	EPA-8260	Water	VW051807	0705089 -08	1,2-Dibromoethane	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	Chlorobenzene	ND(<2)	UG/L
	EPA-8260	Water	VW051807	0705089 -08	1,1,1,2-Tetrachloroethane	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	Ethylbenzene	ND(<2)	UG/L
	EPA-8260	Water	VW051807	0705089 -08	M+P Xylene	ND(<4)	UG/L
	EPA-8260	Water	VW051807	0705089 -08	Styrene	ND(<2)	UG/L
	EPA-8260	Water	VW051807	0705089 -08	O-Xylene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	Bromoform	ND(<2)	UG/L
	EPA-8260	Water	VW051807	0705089 -08	Isopropylbenzene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	1,1,2,2-Tetrachioroethane	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	1,2,3-Trichloropropane	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	Bromobenzene	ND(<2)	UG/L
	EPA-8260	Water	VW051807	0705089 -08	N-Propyl Benzene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	2-Chlorotoluene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	1,3,5-Trimethylbenzene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	4-Chlorotoluene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	T-Butyl Benzene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	1,2,4-Trimethylbenzene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	S-Butyl Benzene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	P-Isopropyltoluene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	1,3 Dichlorobenzene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	1,4-Dichlorobenzene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	N-Butylbenzene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	1,2-Dichlorobenzene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	1,2-Dibromo 3-Chloropropane	ND(<10)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	1,2,4-Trichlorobenzene	ND(<2)	UG/L
	EPA-8260	Water	VVV051807	0705089 -08	Hexachlorobutadiene	ND(<2)	UG/L
	EPA-8260	Water	VW051807	0705089 -08	Naphthalene	ND(<2)	UG/L
	EPA-8260	Water	VW051807	0705089 -08	1,2,3-Trichlorobenzene	ND(<2)	UG/L
-	EPA-8270 SIM	Water	PAHW040507-2	0705089 -08	Benzo(a)anthracene	ND(<0.02)	UG/L

CLIENT: HWA GEOSCIENCES

19730 64TH AVE. W. SUITE 200 LYNNWOOD, WA 98036

DATE: CCIL JOB #: 5/25/2007 0705089

DATE RECEIVED: WDOE ACCREDITATION #: 5/18/2007 C142

CLIENT CONTACT:

VANCE ATKINS CLIENT PROJECT ID: YVTC #2006-116

QUALITY CONTROL RESULTS

METHOD	MATRIX	QC BATCH ID	ASSOCIATED SAMPLES	ANALYTE	RESULT	UNITS
EPA-8270 SIM	Water	PAHW040507-2	0705089 -08	Chrysene	ND(<0.02)	UG/L
EPA-8270 SIM	Water	PAHW040507-2	0705089 -08	Benzo(b)fluoranthene	ND(<0.02)	UG/L
EPA-8270 SIM	Water	PAHW040507-2	0705089 -08	Benzo(k)fluoranthene	ND(<0.02)	UG/L
EPA-8270 SIM	Water	PAHW040507-2	0705089 -08	Benzo(a)pyrene	ND(<0.02)	UG/L
EPA-8270 SIM	Water	PAHW040507-2	0705089 -08	Indeno(1,2,3-cd)pyrene	ND(<0.02)	UG/L
EPA-8270 SIM	Water	PAHW040507-2	0705089 -08	Dibenz(a,h)anthracene	ND(<0.02)	UG/L
EPA-7060	Water	AS052307	0705089 -08	Arsenic (Dissolved)	ND(<4)	UG/L
EPA-7060	Water	AS052307	0705089 -08	Arsenic (Total)	ND(<4)	UGIL
EPA-7470	Water	HGW052107-1	0705089 -08	Mercury (Dissolved)	ND(<0.2)	UG/L
EPA-7470	Water	HGW052107-1	0705089 -08	Mercury (Total)	ND(<0.2)	UG/L
EPA-200.7	Water	ICPMET-W-052107-1	0705089 -08	Cadmium (Dissolved)	ND(<5)	UG/L
EPA-200.7	Water	ICPMET-W-052107-1	0705089 -08	Cadmium (Total)	ND(<5)	UG/L
EPA-200.7	Water	ICPMET-W-052107-1	0705089 -08	Chromium (Dissolved)	ND(<7)	UG/L
EPA-200,7	Water	ICPMET-W-052107-1	0705089 -08	Chromium (Total)	ND(<7)	UGIL
EPA-7421	Water	PB052307	0705089 -08	Lead (Dissolved)	ND(<3)	UG/L
EPA-7421	Water	PB052307	0705089 -08	Lead (Total)	ND(<3)	UG/L

CLIENT: HWA GEOSCIENCES

19730 64TH AVE, W. SUITE 200

CCIL JOB #: DATE RECEIVED: WDOE ACCREDITATION #:

DATE:

5/25/2007 0705089 5/18/2007

C142

LYNNWOOD, WA 98036

CLIENT CONTACT: CLIENT PROJECT ID: VANCE ATKINS YVTC #2006-116

QUALITY CONTROL RESULTS

SPIKE/SPIKE DUPLICATE RESULTS

METHOD	MATRIX	QC BATCH ID		CIATED MPLES	ANALYTE	SPIKE RECOVERY	SPIKE DUP RECOVERY	RPD
NWTPH-DX	Soil	DS052107	0705089	-02,04,06	TPH-Diesel Range	100 %	92 %	8
NWTPH-DX	Water	DW052207	0705089	-08	TPH-Diesel Range	77 %	81 %	5
EPA-8260	Water	VW051807	0705089	-08	1,1-Dichloroethene	91 %	93 %	2
EPA-8260	Water	VW051807	0705089	-08	Benzene	91 %	101 %	10
EPA-8260	Water	VVV051807	0705089	-08	Trichloroethene	92 %	101 %	10
EPA-8260	Water	VW051807	0705089	-08	Toluene	91 %	99 %	9
EPA-8260	Water	VW051807	0705089	-08	Chlorobenzene	91 %	98 %	7
EPA-8270 SIM	Water	PAHW040507-2	0705089	-08	Naphthalene	74 %	70 %	5
EPA-8270 SIM	Water	PAHW040507-2	0705089	-08	Acenaphthene	74 %	73 %	1
EPA-8270 SIM	Water	PAHW040507-2	0705089	-08	Pyrene	109 %	118 %	8
EPA-8270 SIM	Water	PAHW040507-2	0705089	-08	Benzo (ghi) perylene	68 %	70 %	2
EPA-7060	Water	AS052307	0705089	-08	Arsenic (Total)	109 %	114 %	4
EPA-7470	Water	HGW052107-1	0705089	-08	Mercury (Total)	105 %	91 %	14
EPA-200.7	Water	ICPMET-W-052107-1	0705089	-08	Cadmium (Total)	101 %	109 %	8
EPA-200.7	Water	ICPMET-W-052107-1	0705089	-08	Chromium (Total)	102 %	110 %	8
EPA-7421	Water	PB052307	0705089	-08	Lead (Total)	90 %	102 %	12

HWA GEOSCIENCES INC.

19730 64th Ave. W., Suite 200, Lynnwood, WA 98036 (425)774-0106 4500 Kruse Way, Suite 300, Lake Oswego, OR 97035 (503)675-2424

725089

Chain of Custody and Laboratory Analysis Request

DATE: 5/16-17/07

OR 97035 (503)675-2424 7506 -116 #: 2507-67 PHONE: PHONE:	ANALYSIS REQUESTED	PAGE: 1 of
48-1002 #		3
PHONE:	260	2 6000 52
PHONE:	Men	STOJE
# OF ATRIX LAB ID BOTTLE	MUTE	REMARKS

HWA CONTACT:

SAMPLERS SIGNATURE:

SAMPLERS NAME:

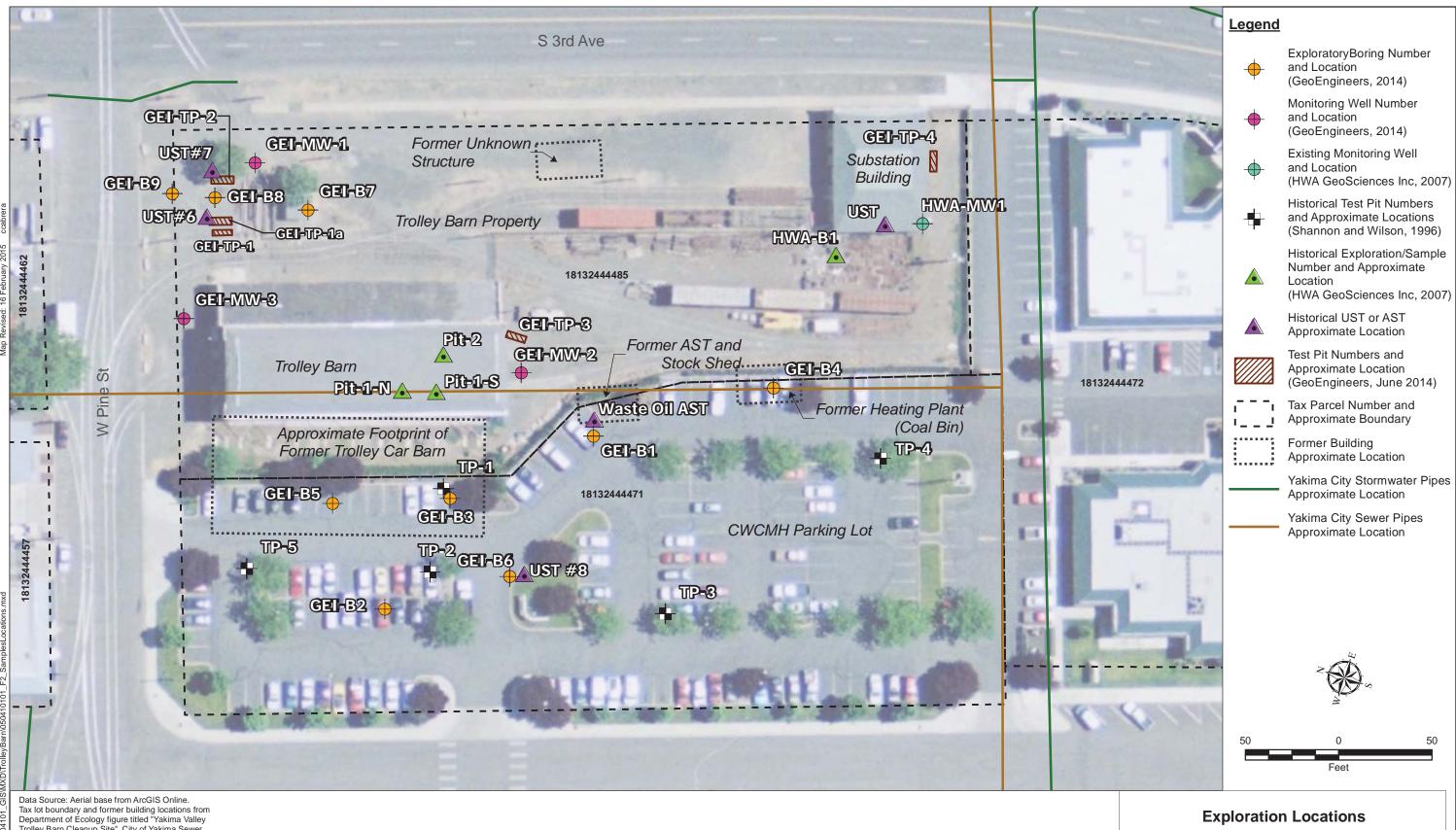
SITE CODE:

PROJECT NAME:

OI 37	-17.	LAB ID B	BOTTLE	NCP	7		
Hum-101 21-1001	- 501	2	X			+	
	*	١					
HLA BI-1 1345		4	X				
HUA. BI- IV.	_	×					
11-15 day		6	X	_			
14WA-131-20 2 1475	+	7					
HUA Mun Slitles Osus	His	X	×	X	×		TOTAL + DISSOLVED METEL
/							
/ /							
× -			1				
				F			
\ /							
PRINT NAME		SIGN	SIGNATURE		COMPANY	DATE	DATE TIME
Relinquished by: //Anc. Arw	たっと	On a	1		Hund	c/K1/5.84	18/24
Received by:	Som	R. of Bras	(COM	5/38/52	5/18/02 9:50
Relinquished by:		, , ,				11	//
Received by:							

Soil and Groundwater Assessment Report

Trolley Barn Yakima, Washington


for

Washington State Department of Ecology

February 16, 2015

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Trolley Barn Cleanup Site". City of Yakima Sewer and Stormwater Pipes digitized from City online map, http://gis.yakimawa.gov/cityflex/

Projection: NAD 1983 StatePlane Washington South FIPS 4602 Feet

The locations of features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc.

and will serve as the official record of this communication.

Trolley Barn Yakima, Washington

Figure 2

Table 4
Summary of Chemical Analytical Results - Groundwater¹
Trolley Barn
Yakima, Washington

Boring/Test Pit	MTCA Method	B8-081214	HWA-MW-1	GEI-MW-1	GEI-MW-2	GEI-MW-3	MW-Dup	
Date Sampled	Levels ²	08/12/14	09/16/14	09/16/14	09/16/14	09/16/14	09/16/14	
Method EPA 8260C - NWTPH-Gx a	nd Volatile Organic	Compounds (µg/L)						
Gasoline-range hydrocarbons	800/1,000 ³	1,200	<100	<100	<100	128	<100	
Methyl tert-butyl ether	20	<0.500	<1.00	<1.00	<1.00	<1.00	<1.00	
Benzene	5	0.350	<0.200	<0.200	<0.200	<0.200	<0.200	
Ethylbenzene	700	<0.500	<1.00	<1.00	<1.00	<1.00	<1.00	
Toluene	1,000	0.570	<1.00	<1.00	<1.00	<1.00	<1.00	
o-Xylene	1,0004	<0.500	<1.00	<1.00	<1.00	<1.00	<1.00	
m,p-Xylene	1,000	<0.500	<2.00	<2.00	<2.00	<2.00	<2.00	
Xylenes (total)	1,000	<1.50						
1,2-Dichloroethance (EDC)	5	<0.500	<1.00	<1.00	<1.00	<1.00	<1.00	
1,2-Dibromoethane (EDB)	0.01	-	<1.00 ⁵	<1.00 ⁵	<1.00 ⁵	<1.00 ⁵	<1.00 ⁵	
1,2-Dibromo-3-chloropropane	NE		<5.00	<5.00	<5.00	<5.00	<5.00	
VOCs	Varies ⁶	-	Chloroform - 1.10		Chloroform - 1.21	-	Chloroform - 1.16	
Method EPA 8270 mod Polynucl	ear Aromatic Compo	ounds (PAH) by GC/	MS with Selected Ion	Monitoring (μg/L)			•	
Naphthalene		14.5	<0.0904	<0.0930	0.0961	<0.0901	<0.0898	
2-Methylnaphthalene	160 ⁷	0.350	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898	
1-Methylnaphthalene	29.1		<0.0904	<0.0930	<0.0897	<0.0901	<0.0898	
Acenaphthylene	NE	0.778	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898	
Acenaphthene	NE	0.642	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898	
Fluorene	NE	0.447	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898	
Phenanthrene	NE	<0.195	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898	
Anthracene	NE	<0.195	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898	
Fluoranthene	NE	<0.195	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898	
Pyrene	NE	<0.195	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898	
Benzo (ghi) perylene	NE	<0.195	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898	

Boring/Test Pit	MTCA Method	B8-081214	HWA-MW-1	GEI-MW-1	GEI-MW-2	GEI-MW-3	MW-Dup
Date Sampled	Levels ²	08/12/14	09/16/14	09/16/14	09/16/14	09/16/14	09/16/14
Benzo (a) anthracene		<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Chrysene		<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Benzo (b) fluoranthene		<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Benzo (k) fluoranthene	0.18	<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Benzo (a) pyrene		<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Indeno (1,2,3-cd) pyrene		<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Dibenzo (a,h) anthracene		<0.195 ⁵	<0.0904	<0.0930	<0.0897	<0.0901	<0.0898
Carcinogenic PAH TEQ ⁹	0.1	0.147	0.0683	0.0702	0.0677	0.0680	0.0678
Method NWTPH-DX - Semivolatile	Petroleum Products	(µg/L)					
Diesel-range hydrocarbons	500	20,900	<310	<230	<232	266	<228
Heavy oil-range hydrocarbons	500	766	<517 ⁵	<383	<386	<386	<381
Method NWTPH-HCID - Hydrocarbo	n Identification (μg	/L)					
Gasoline-range hydrocarbons	800/1,000 ³	<620					
Diesel-range hydrocarbons	500	18,000					
Heavy oil-range hydrocarbons	500	1,000					
Method 8082A - Polychlorinated B	Biphenyls (μg/L)						
PCB-1016		<0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1221		<0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1232		<0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1242	0.1	<0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1248		<0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1254		<0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1260		<0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
PCB-1268		<0.195 ⁵	<0.0962	<0.0964	<0.0983	<0.0967	<0.0964
Method EPA 200 Series - Total Me	tals (µg/L)				-		
Arsenic	5	<20.0 ⁵	<2.00	<2.00	<2.00	<2.00	<2.00
Cadmium	5	<4.00	<1.00	<1.00	<1.00	<1.00	<1.00
Chromium (total)	50	36.8	<2.00	<2.00	<2.00	<2.00	<2.00
Lead	15	27.7	<2.00	<2.00	<2.00	<2.00	<2.00
Method EPA 245.1 - Total Metal	s (µg/L)						
Mercury	2	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200

Boring/Test Pit	MTCA Method	B8-081214	HWA-MW-1	GEI-MW-1	GEI-MW-2	GEI-MW-3	MW-Dup
Date Sampled	Levels ²	08/12/14	09/16/14	09/16/14	09/16/14	09/16/14	09/16/14
Method EPA 200.7 - Dissolved N	/letals (mg/L)						
Manganese	0.05 ¹⁰		0.0337	0.0422 J	<0.0100	0.986	<0.0100
Method RSK-175 - Dissolved Ga	ses (mg/L)						
Methane	NE		<0.00500	<0.00500	<0.00500	0.00508	<0.00500
Method EPA 300.0 - Anions (mg	/L)						
Nitrate-Nitrogen	10 ¹¹	-	3.12	3.58	3.34	1.05	3.26
Sulfate	250 ¹⁰	-	10.6	13.6	10.8	10.7	10.8
Method SM 2320B - Convention	al Chemistary Para	ameters (mg/L)					
Total Alkalinity	NE		90.0	80.0	85.0	125	85.0

Notes:

NT = not tested; NE = not established; EPA = Washington State Environmental Protection Agency

J qualifier indicates the data has been qualified as estimated due to the reasons stated in Appendix B.

μg/L = micrograms per liter; mg/L = milligrams per liter

¹Chemical analyses conducted by TestAmerica Laboratories, Inc. of Spokane, Washington.

²Washington State Model Toxics Control Act (MTCA) Method A Unrestricted Land Use cleanup levels. **Bold** font indicates analyte concentrations in excess of respective cleanup levels.

³Gasoline-range petroleum hydrocarbon cleanup levels in groundwater are 800 μg/L when benzene is detected and 1,000 μg/L when benzene is not detected.

⁴Cleanup level for total xylenes (m,p-xylene and o-xylene).

⁵Detection limit for analyte is greater than established cleanup level.

⁶Cleanup levels for VOCs vary based on analyte. Chloroform does not have an established cleanup level. Full list of analyzed VOCs is contained in the laboratory analytical report.

⁷Cleanup level refers to sum of naphthalenes (naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene).

⁸Cleanup level referenced to benzo (a) pyrene. If other carcinogenic PAHs are present, the cleanup level represents the total equivalent carcinogenic PAH concentration.

⁹Carcincogenic PAH toxic equivalency (TEQ) calculated using the factors found in MTCA Table 708-2. The TEQ was calculated using one half the laboratory reporting limit for non-detec

 $^{^{\}tt 10} Secondary$ maximum contaminant level recommended by the Environmental Protection Agency.

¹¹Maximum contaminant level established by Title 40, Volume 19 of the Code of Federal Regulations.

Table 5Summary of Chemical Analytical Results - Soil¹
Trolley Barn
Yakima, Washington

Boring/Test Pit	MTCA Method	GEI-TP-1 (9.5)	GEI-TP-1a (9)	GEI-TP-1a (12)	GEI-TP-2 (12)	GEI-TP-3 (9)	GEI-TP-4 (9)	GEI-MW-1 (12.5-13.5')	GEI-MW-2 (12-13')	GEI-MW-3 (12-13')	GEI-B1 (2-3')	GEI-B1 (12-13')	GEI-B2 (13-14')	GEI-B3 (7-8')	GEI-B4 (2-3')
Sample Depth (feet)	A Cleanup	9.5	9	12	12	9	9	12.5-13.5	12-13	12-13	2-3	12-13	13-14	7-8	2-3
Date Sampled	Levels ²	06/11/14	06/11/14	06/11/14	06/11/14	06/11/14	06/11/14	08/12/14	08/13/14	08/12/14	08/11/14	08/11/14	08/11/14	08/11/14	08/11/14
Method EPA 8260C - NWTPH-Gx and	d Volatile Organic	Compounds (mg/l	kg)												
Gasoline-range hydrocarbons	30/100 ³	14.6	NA	NA	23.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	0.10	<0.0302	NA	NA	<0.0331	NA	NA	<0.0627	<0.0528	<0.0641	<0.0866	NA	<0.0522	<0.0586	NA
Hexane	NA	NA	NA	NA	NA	NA	NA	<0.125	<0.106	<0.128	<0.173	NA	<0.104	<0.117	NA
Tetrachloroethene (PCE)	0.05	NA	NA	NA	NA	NA	NA	<0.0501	<0.0422	<0.0513	<0.0693	NA	<0.0261	<0.0469	NA
Trichloroethene (TCE)	0.03	NA	NA	NA	NA	NA	NA	<0.0313	<0.0264	<0.0320	<0.0433	NA	<0.0417	<0.0293	NA
Benzene	0.03	0.0237	<0.0140	<0.0149	0.0458	NA	NA	<0.0188	<0.0158	<0.0192	<0.0260	NA	<0.0156	<0.0176	NA
Ethylbenzene	6	<0.101	<0.0933	<0.0995	<0.110	NA	NA	<0.125	<0.106	<0.128	<0.173	NA	<0.104	<0.117	NA
Toluene	7	0.124	<0.0933	<0.0995	0.279	NA	NA	<0.125	<0.106	<0.128	<0.173	NA	<0.104	<0.117	NA
o-Xylene	94	<0.201	<0.187	<0.199	<0.221	NA	NA	<0.251	<0.211	<0.256	<0.346	NA	<0.209	<0.234	NA
m,p-Xylene	9	<0.403	<0.373	<0.398	<0.441	NA	NA	<0.501	<0.422	<0.513	<0.693	NA	<0.417	<0.469	NA
Xylenes (total)	9 ⁴	<0.604	<0.560	<0.597	<0.662	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethance (EDC)	NE	<0.101	NA	NA	<0.110	NA	NA	<0.125	<0.106	<0.128	<0.173	NA	<0.104	<0.117	NA
Method EPA 8011 - EDB (μg/kg)															
1,2-Dibromoethane (EDB)	5	<1.02	NA	NA	<0.792	NA	NA	<0.842	<0.934	<0.867	<5.86	NA	<0.945	<0.853	NA
1,2-Dibromo-3-chloropropane	NE	NA	NA	NA	NA	NA	NA	<0.842	<0.934	<0.867	<5.86	NA	<0.945	<0.853	NA
Method EPA 8270 mod Polynuclea	ar Aromatic Comp	ounds (PAH) by GC	MS with Selecte	ed Ion Monitoring (r	ng/kg)										
Naphthalene		<0.373	NA	NA	0.0436	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
2-Methylnaphthalene	5 ⁵	<0.373	NA	NA	0.106	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
1-Methylnaphthalene		<0.373	NA	NA	0.0608	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Acenaphthylene	NE	<0.373	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Acenaphthene	NE	<0.373	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Fluorene	NE	<0.373	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Phenanthrene	NE	<0.373	NA	NA	0.0423	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Anthracene	NE	<0.373	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Fluoranthene	NE	<0.373	NA	NA	0.0330	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Pyrene	NE	<0.373	NA	NA	0.0277	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Benzo (ghi) perylene	NE	<0.373	NA	NA	0.0251	NA	NA	<0.0195	<0.0195	<0.0196	<1.46	NA	<0.0202	<0.0184	NA
Benzo (a) anthracene		<0.373 ⁸	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.468	NA	<0.0202	<0.0184	NA
Chrysene		<0.373 ⁸	NA	NA	0.0330	NA	NA	<0.0195	<0.0195	<0.0196	<1.468	NA	<0.0202	<0.0184	NA
Benzo (b) fluoranthene		<0.373 ⁸	NA	NA	0.0409	NA	NA	<0.0195	<0.0195	<0.0196	<1.468	NA	<0.0202	<0.0184	NA
Benzo (k) fluoranthene	0.16	<0.373 ⁸	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.468	NA	<0.0202	<0.0184	NA
Benzo (a) pyrene		<0.3738	NA	NA	<0.0198	NA	NA	<0.0195	<0.0195	<0.0196	<1.468	NA	<0.0202	<0.0184	NA
Indeno (1,2,3-cd) pyrene		<0.3738	NA	NA	0.0225	NA	NA	<0.0195	<0.0195	<0.0196	<1.468	NA	<0.0202	<0.0184	NA
Dibenzo (a,h) anthracene		<0.2248	NA	NA	0.0119	NA	NA	<0.0117	<0.0117	<0.0118	<0.873 ⁸	NA	<0.0121	<0.0111	NA
Carcinogenic PAH TEQ ⁷	0.1	0.274	NA	NA	0.0197	NA	NA	0.0143	0.0143	0.0144	1.073	NA	0.0148	0.0135	NA
Method NWTPH-DX - Semivolatile Po	etroleum Products	s (mg/kg)													
Diesel-range hydrocarbons	2,000	115	NA	NA	63.8	NA	86	NA	NA	NA	3,950 J	<10.7	NA	NA	NA
Heavy oil-range hydrocarbons	2,000	244	NA	NA	182	NA	86	NA	NA	NA	15,000	<26.8	NA	NA	NA

File No. 0504-101-01 Table 5 | February 16, 2015

GEOENGINEERS

Boring/Test Pit	MTCA Method	GEI-TP-1 (9.5)	GEI-TP-1a (9)	GEI-TP-1a (12)	GEI-TP-2 (12)	GEI-TP-3 (9)	GEI-TP-4 (9)	GEI-MW-1 (12.5-13.5')	GEI-MW-2 (12-13')	GEI-MW-3 (12-13')	GEI-B1 (2-3')	GEI-B1 (12-13')	GEI-B2 (13-14')	GEI-B3 (7-8')	GEI-B4 (2-3')
Sample Depth (feet)	A Cleanup	9.5	9	12	12	9	9	12.5-13.5	12-13	12-13	2-3	12-13	13-14	7-8	2-3
Date Sampled	Levels ²	06/11/14	06/11/14	06/11/14	06/11/14	06/11/14	06/11/14	08/12/14	08/13/14	08/12/14	08/11/14	08/11/14	08/11/14	08/11/14	08/11/14
Method NWTPH-HCID - Hydrocarbon	ı Identification (m	g/kg)													
Gasoline-range hydrocarbons	30/100 ³	<36	<35	<37	<32	<37	<34	<41	<34	<37	<120	NA	<41	<38	NA
Diesel-range hydrocarbons	2,000	<91	<87	<93	<79	<92	<86	<100	<85	<92	3,100 J	NA	<100	<95	NA
Heavy oil-range hydrocarbons	2,000	210	170 J	110	220	<92	<86	<100	<85	<92	15,000	NA	<100	<95	NA
Method 8082A - Polychlorinated Bi	phenyls (µg/kg)														
PCB-1016		<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
PCB-1221		<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
PCB-1232		<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
PCB-1242	1 000	<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
PCB-1248	1,000	<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
PCB-1254		<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
PCB-1260		<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	188	NA	<9.67	<10.4	NA
PCB-1268		<87.8	NA	NA	<94.4	NA	<89.7	<8.68	<10.3	<9.57	<110	NA	<9.67	<10.4	NA
Method EPA 6010C - Total Metals ((mg/kg)														
Arsenic	20	4.74	2.91	NA	5.28	3.44	2.82	3.43	3.23	2.65	9.66	NA	3.06	2.66	14.3
Barium	NE	89.1	67.0	NA	261	56.7	40.1	NA	NA	NA	NA	NA	NA	NA	277 J
Cadmium	2	0.524	0.221	NA	2.02	<0.200	<0.207	<0.404	<0.223	<0.215	2.60	NA	<0.204	<0.197	6.78
Chromium	19/2,000	12.3 J	10.1	NA	14.3	13.0	15.8	17.1	11.5	11.3	20.2	NA	14.9	14.8	18.4 J
Lead	250	94.1	43.9	NA	302	4.71	2.27	4.16	2.96	4.51	806	NA	4.72	3.04	865
Selenium	NE	<2.64	<2.64	NA	<2.49	<2.50	<2.59	NA	NA	NA	NA	NA	NA	NA	<5.29
Silver	NE	<0.527	<0.528	NA	<0.498	<0.500	<0.518	NA	NA	NA	NA	NA	NA	NA	<1.06
Method EPA 7471B - Mercury (με	g/kg)														
Mercury	2,000	72.1 J	<48.1	NA	106	43.0	<50.0	<47.2	<43.1	<37.9	512	NA	<37.3	<42.4	203 J

Boring/Test Pit	MTCA Method	GEI-B4 (7-8')	GEI-B5 (2-3')	GEI-B5 (7-8')	GEI-B6 (2-3')	GEI-B6 (13-14')	GEI-B7 (13-14')	GEI-B8 (14-15')	GEI-B9 (13-14')	Duplicate-19	Duplicate-2 ⁹
Sample Depth (feet)	A Cleanup	7-8	2-3	7-8	2-3	13-14	13-14	14-15	13-14	NA	NA
Date Sampled	Levels ²	08/11/14	08/11/14	08/11/14	08/11/14	08/11/14	08/12/14	08/12/14	08/13/14	08/11/14	08/12/14
Method EPA 8260C - NWTPH-Gx and Volati	le Organic Compounds	(mg/kg)									
Gasoline-range hydrocarbons	30/100 ³	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	0.10	<0.0610	NA	<0.0623	NA	<0.0605	<0.0750	<0.0661	<0.0490	<0.0534	<0.0740
Hexane	NA	<0.122	NA	<0.125	NA	<0.121	<0.150	<0.132	<0.0980	<0.107	<0.148
Tetrachloroethene (PCE)	0.05	<0.0488	NA	<0.0498	NA	<0.0484	<0.0600	<0.0528	<0.0392	<0.0427	<0.0592
Trichloroethene (TCE)	0.03	<0.0305	NA	<0.0311	NA	<0.0303	<0.0375	<0.0330	<0.0245	<0.0267	<0.0370
Benzene	0.03	<0.0183	NA	<0.0187	NA	<0.0182	<0.0225	<0.0198	<0.0147	<0.0160	<0.0222
Ethylbenzene	6	<0.122	NA	<0.125	NA	<0.121	<0.150	<0.132	<0.0980	<0.107	<0.148
Toluene	7	<0.122	NA	<0.125	NA	<0.121	<0.150	<0.132	<0.0980	<0.107	<0.148
o-Xylene	9 ⁴	<0.244	NA	<0.249	NA	<0.242	<0.300	<0.264	<0.196	<0.214	<0.296
m,p-Xylene	9	<0.488	NA	<0.498	NA	<0.484	<0.600	<0.528	<0.392	<0.427	<0.592
Xylenes (total)	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethance (EDC)	NE	<0.122	NA	<0.125	NA	<0.121	<0.150	<0.132	<0.0980	<0.107	<0.148
Method EPA 8011 - EDB (μg/kg)											
1,2-Dibromoethane (EDB)	5	<0.765	NA	<0.978	NA	<0.929	<1.05	<1.01	<0.922	<0.857	<1.08
1,2-Dibromo-3-chloropropane	NE	<0.765	NA	<0.978	NA	<0.929	<1.05	<1.01	<0.922	<0.857	NA
Method EPA 8270 mod Polynuclear Arom	atic Compounds (PAH)	by GC/MS with Selec	ted Ion Monitoring (mg	(/kg)							
Naphthalene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
2-Methylnaphthalene	5 ⁵	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
1-Methylnaphthalene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Acenaphthylene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Acenaphthene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Fluorene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Phenanthrene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Anthracene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Fluoranthene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Pyrene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Benzo (ghi) perylene	NE	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Benzo (a) anthracene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Chrysene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Benzo (b) fluoranthene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Benzo (k) fluoranthene	0.16	<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Benzo (a) pyrene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Indeno (1,2,3-cd) pyrene		<0.0191	NA	<0.0215	NA	<0.0207	<0.0197	<0.0200	<0.0185	<0.0200	<0.0198
Dibenzo (a,h) anthracene]	<0.0115	NA	<0.0129	NA	<0.0124	<0.0118	<0.0120	<0.0111	<0.0120	<0.0119
Carcinogenic PAH TEQ ⁷	0.1	0.0140	NA	0.0158	NA	0.0152	0.0145	0.0147	0.0136	0.0147	0.0146
Method NWTPH-DX - Semivolatile Petroleur	m Products (mg/kg)										
Diesel-range hydrocarbons	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heavy oil-range hydrocarbons	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

File No. 0504-101-01 Table 5 | February 16, 2015

Boring/Test Pit	MTCA Method	GEI-B4 (7-8')	GEI-B5 (2-3')	GEI-B5 (7-8')	GEI-B6 (2-3')	GEI-B6 (13-14')	GEI-B7 (13-14')	GEI-B8 (14-15')	GEI-B9 (13-14')	Duplicate-19	Duplicate-29
Sample Depth (feet)	A Cleanup	7-8	2-3	7-8	2-3	13-14	13-14	14-15	13-14	NA	NA
Date Sampled	Levels ²	08/11/14	08/11/14	08/11/14	08/11/14	08/11/14	08/12/14	08/12/14	08/13/14	08/11/14	08/12/14
Method NWTPH-HCID - Hydrocarbon Identific	cation (mg/kg)										
Gasoline-range hydrocarbons	30/100 ³	<31	NA	<37	NA	<38	<41	<36	<34	<34	<37
Diesel-range hydrocarbons	2,000	<78	NA	<93	NA	<96	<100	<90	<85	<86	<92
Heavy oil-range hydrocarbons	2,000	<78	NA	<93	NA	<96	<100	<90	<85	<86	<92
Method 8082A - Polychlorinated Biphenyls	(µg/kg)										
PCB-1016		<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1221		<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1232		<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1242	1,000	<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1248	1,000	<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1254		<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1260		<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
PCB-1268		<9.64	NA	<10.1	NA	<10.3	<9.29	<9.46	<10.1	<8.96	<8.86
Method EPA 6010C - Total Metals (mg/kg)											
Arsenic	20	4.40	2.46	2.77	13.4	3.39	3.41	1.86	1.92	6.50	1.40
Barium	NE	NA	60.4	NA	93.4	NA	NA	NA	NA	NA	NA
Cadmium	2	<0.194	<0.187	<0.386	1.24	<0.219	<0.217	<0.195	<0.201	<0.199	<0.220
Chromium	19/2,000	13.5	7.33	16.6	13.2	15.7	15.1	9.40	9.33	15.2	8.83
Lead	250	2.20 J	24.8	3.68	343	4.77	3.71	3.81	3.48	1.40 J	3.11
Selenium	NE	NA	<2.34	NA	<2.62	NA	NA	NA	NA	NA	NA
Silver	NE	NA	<0.468	NA	<0.524	NA	NA	NA	NA	NA	NA
Method EPA 7471B - Mercury (µg/kg)											
Mercury	2,000	<49.0	48.8	194	126	<41.0	<48.1	<36.8	<47.2	<43.9	<49.0

Notes:

¹Chemical analyses conducted by TestAmerica Laboratories, Inc. of Spokane, Washington.

²Washington State Model Toxics Control Act (MTCA) Method A Unrestricted Land Use cleanup levels. **Bold** font indicates analyte concentrations in excess of respective cleanup levels.

³Gasoline-range petroleum hydrocarbon cleanup levels in soil are 30 mg/kg when benzene is detected and 100 mg/kg when benzene is not detected.

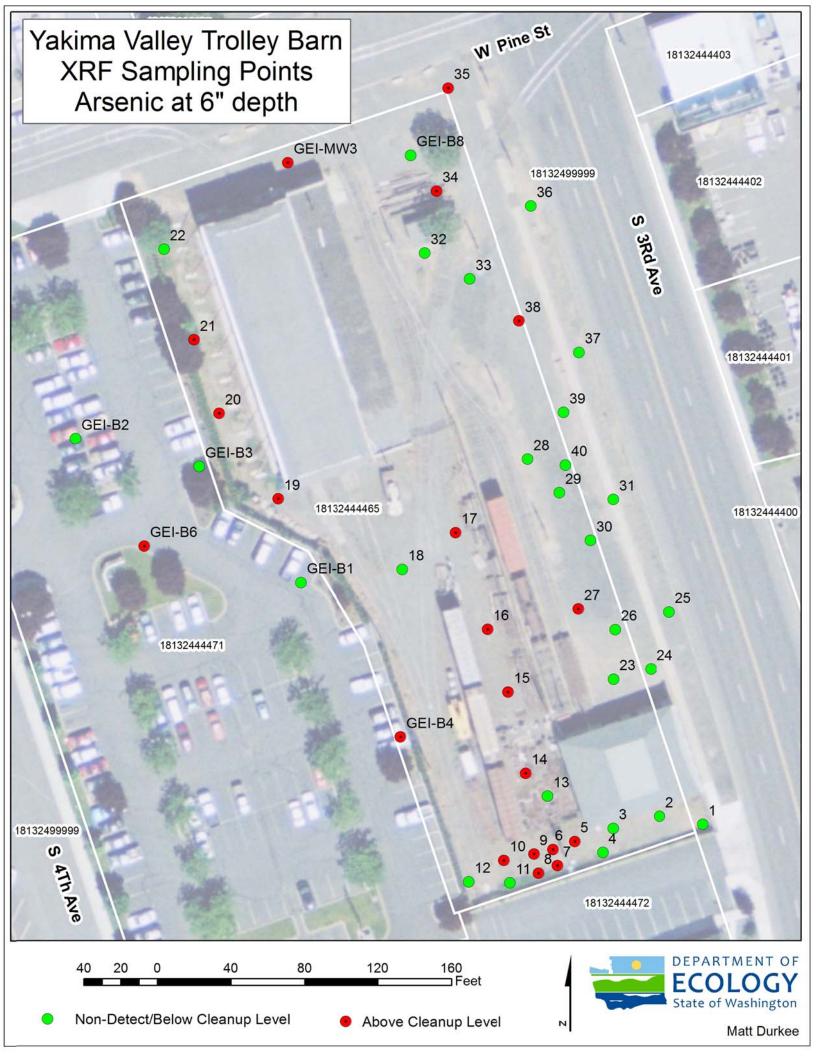
 $^{^4\}mbox{Cleanup}$ level for total xylenes (m,p-xylene and o-xylene).

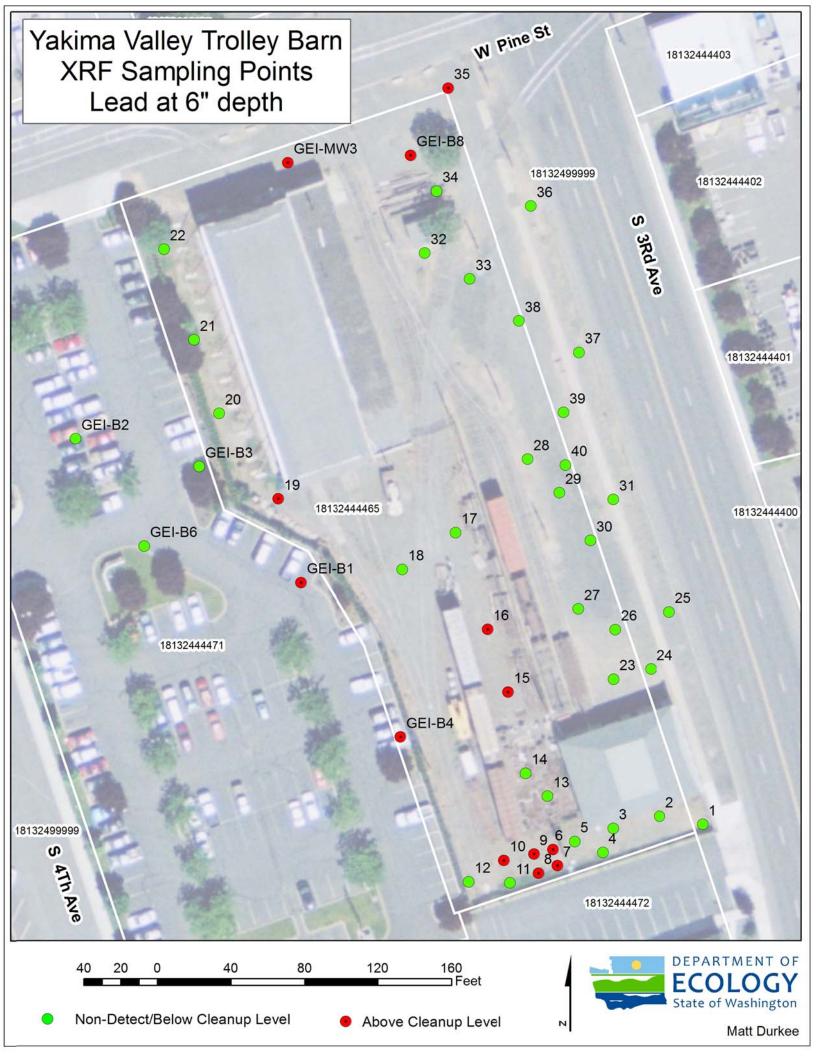
⁵Cleanup level refers to sum of naphthalenes (naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene).

⁶Cleanup level referenced to benzo (a) pyrene. If other carcinogenic PAHs are present, the cleanup level represents the total equivalent carcinogenic PAH concentration.

⁷Carcincogenic PAH toxic equivalency (TEQ) calculated using the factors found in MTCA Table 708-2. The TEQ was calculated using one half the laboratory reporting limit for non-detected analytes.

⁸Detection limit for analyte is greater than established cleanup level.


⁹Duplicate samples Duplicate-1 and Duplicate-2 were collected from samples GEI-B4(7-8) and GEI-B8(14-15), respectively.

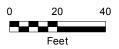

mg/kg = milligrams per kilogram; NT = not tested; NE = not established; EPA = Washington State Environmental Protection Agency

J qualifier indicates the data has been qualified as an estimate due to the reasons stated in Appendix B.

MTCA Method A CUL		20 mg/kg		250 mg/kg		2 mg/kg		
Sample ID - Depth						Hg		
(in.)	Date	As (mg/kg)	As +/-	Pb (mg/kg)	Pb +/-	(mg/kg)	Hg +/-	
1 - Surface	3/11/2015	<lod< td=""><td>8</td><td>24</td><td>4</td><td><lod< td=""><td>12</td></lod<></td></lod<>	8	24	4	<lod< td=""><td>12</td></lod<>	12	
1 - 0.5	3/11/2015	<lod< td=""><td>9</td><td><lod< td=""><td>12</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	9	<lod< td=""><td>12</td><td><lod< td=""><td>16</td></lod<></td></lod<>	12	<lod< td=""><td>16</td></lod<>	16	
2 - Surface	3/11/2015	<lod< td=""><td>14</td><td>50</td><td>6</td><td><lod< td=""><td>16</td></lod<></td></lod<>	14	50	6	<lod< td=""><td>16</td></lod<>	16	
2 - 0.5	3/11/2015	<lod< td=""><td>14</td><td>64</td><td>6</td><td><lod< td=""><td>16</td></lod<></td></lod<>	14	64	6	<lod< td=""><td>16</td></lod<>	16	
3 - Surface	3/11/2015	<lod< td=""><td>11</td><td>20</td><td>5</td><td><lod< td=""><td>16</td></lod<></td></lod<>	11	20	5	<lod< td=""><td>16</td></lod<>	16	
3 - 0.5	3/11/2015	<lod< td=""><td>9</td><td><lod< td=""><td>11</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	9	<lod< td=""><td>11</td><td><lod< td=""><td>15</td></lod<></td></lod<>	11	<lod< td=""><td>15</td></lod<>	15	
4 - Surface	3/11/2015	<lod< td=""><td>12</td><td>38</td><td>5</td><td><lod< td=""><td>18</td></lod<></td></lod<>	12	38	5	<lod< td=""><td>18</td></lod<>	18	
4 - 0.5	3/11/2015	<lod< td=""><td>15</td><td>53</td><td>6</td><td><lod< td=""><td>16</td></lod<></td></lod<>	15	53	6	<lod< td=""><td>16</td></lod<>	16	
5 - Surface	3/11/2015	<lod< td=""><td>14</td><td>50</td><td>6</td><td><lod< td=""><td>19</td></lod<></td></lod<>	14	50	6	<lod< td=""><td>19</td></lod<>	19	
5 - 0.5	3/11/2015	37	4	16	4	<lod< td=""><td>15</td></lod<>	15	
6 - Surface	3/11/2015	208	27	3469	53	<lod< td=""><td>29</td></lod<>	29	
6 - 0.5	3/11/2015	163	17	1135	25	<lod< td=""><td>21</td></lod<>	21	
7 - Surface	3/11/2015	<lod< td=""><td>21</td><td>154</td><td>9</td><td><lod< td=""><td>19</td></lod<></td></lod<>	21	154	9	<lod< td=""><td>19</td></lod<>	19	
7 - 0.5	3/11/2015	117	14	855	19	<lod< td=""><td>19</td></lod<>	19	
8 - Surface	3/11/2015	<lod< td=""><td>17</td><td>112</td><td>7</td><td><lod< td=""><td>18</td></lod<></td></lod<>	17	112	7	<lod< td=""><td>18</td></lod<>	18	
8 - 0.5	3/11/2015	43	10	447	14	<lod< td=""><td>19</td></lod<>	19	
9 - Surface	3/11/2015	<lod< td=""><td>34</td><td>540</td><td>16</td><td><lod< td=""><td>20</td></lod<></td></lod<>	34	540	16	<lod< td=""><td>20</td></lod<>	20	
9 - 0.5	3/11/2015	72	20	1912	34	<lod< td=""><td>21</td></lod<>	21	
10 - Surface	3/11/2015	44	11	524	15	<lod< td=""><td>19</td></lod<>	19	
10 - 0.5	3/11/2015	93	11	427	14	<lod< td=""><td>20</td></lod<>	20	
11 - Surface	3/11/2015	<lod< td=""><td>21</td><td>175</td><td>9</td><td><lod< td=""><td>18</td></lod<></td></lod<>	21	175	9	<lod< td=""><td>18</td></lod<>	18	
11 - 0.5	3/11/2015	<lod< td=""><td>12</td><td>22</td><td>5</td><td><lod< td=""><td>16</td></lod<></td></lod<>	12	22	5	<lod< td=""><td>16</td></lod<>	16	
12 - Surface	3/11/2015	18	5	89	6	<lod< td=""><td>16</td></lod<>	16	
12 - 0.5	3/11/2015	<lod< td=""><td>14</td><td>50</td><td>6</td><td><lod< td=""><td>17</td></lod<></td></lod<>	14	50	6	<lod< td=""><td>17</td></lod<>	17	
13 - Surface	3/11/2015	25	7	181	9	<lod< td=""><td>17</td></lod<>	17	
13 - 0.5	3/11/2015	<lod< td=""><td>20</td><td>139</td><td>8</td><td><lod< td=""><td>17</td></lod<></td></lod<>	20	139	8	<lod< td=""><td>17</td></lod<>	17	
14 - Surface	3/11/2015	201	11	387	12	<lod< td=""><td>17</td></lod<>	17	
14 - 0.5	3/11/2015	290	12	213	10	<lod< td=""><td>21</td></lod<>	21	
15 - Surface	3/11/2015	<lod< td=""><td>31</td><td>373</td><td>13</td><td><lod< td=""><td>19</td></lod<></td></lod<>	31	373	13	<lod< td=""><td>19</td></lod<>	19	
15 - 0.5	3/11/2015	135	22	2485	40	27	9	
16 - Surface	3/11/2015	<lod< td=""><td>13</td><td>34</td><td>6</td><td><lod< td=""><td>18</td></lod<></td></lod<>	13	34	6	<lod< td=""><td>18</td></lod<>	18	
16 - 0.5	3/11/2015	57	9	361	12	<lod< td=""><td>17</td></lod<>	17	
17 - Surface	3/11/2015	<lod< td=""><td>15</td><td>67</td><td>7</td><td><lod< td=""><td>17</td></lod<></td></lod<>	15	67	7	<lod< td=""><td>17</td></lod<>	17	
17 - 0.5	3/11/2015	23	6	73	7	<lod< td=""><td>16</td></lod<>	16	
18 - Surface	3/11/2015	79	9	253	11	<lod< td=""><td>20</td></lod<>	20	
18 - 0.5	3/11/2015	<lod< td=""><td>21</td><td>212</td><td>9</td><td><lod< td=""><td>17</td></lod<></td></lod<>	21	212	9	<lod< td=""><td>17</td></lod<>	17	
19 - Surface	3/11/2015	<lod< td=""><td>14</td><td>85</td><td>6</td><td><lod< td=""><td>17</td></lod<></td></lod<>	14	85	6	<lod< td=""><td>17</td></lod<>	17	
19 - 0.5	3/11/2015	72	16	1287	25	<lod< td=""><td>20</td></lod<>	20	
20 - Surface	3/11/2015	<lod< td=""><td>15</td><td>74</td><td>6</td><td><lod< td=""><td>16</td></lod<></td></lod<>	15	74	6	<lod< td=""><td>16</td></lod<>	16	
20 - 0.5	3/11/2015	27	6	89	7	<lod< td=""><td>15</td></lod<>	15	
21 - Surface	3/11/2015	<lod< td=""><td>17</td><td>76</td><td>7</td><td><lod< td=""><td>17</td></lod<></td></lod<>	17	76	7	<lod< td=""><td>17</td></lod<>	17	

MTCA Method A CUL		20 mg/kg		250 mg/kg		2 mg/kg		
Sample ID - Depth (in.)	Date	As (mg/kg)	As +/-	Pb (mg/kg)	Pb +/-	Hg (mg/kg)	Hg +/-	
21 - 0.5	3/11/2015	24	6	134	8	<lod< td=""><td>18</td></lod<>	18	
22 - Surface	3/11/2015	<lod< td=""><td>24</td><td>235</td><td>10</td><td>24</td><td>7</td></lod<>	24	235	10	24	7	
22 - 0.5	3/11/2015	<lod< td=""><td>17</td><td>123</td><td>7</td><td><lod< td=""><td>14</td></lod<></td></lod<>	17	123	7	<lod< td=""><td>14</td></lod<>	14	
23 - Surface	3/11/2015	<lod< td=""><td>21</td><td>215</td><td>9</td><td><lod< td=""><td>16</td></lod<></td></lod<>	21	215	9	<lod< td=""><td>16</td></lod<>	16	
23 - 0.5	3/11/2015	<lod< td=""><td>12</td><td>59</td><td>5</td><td><lod< td=""><td>12</td></lod<></td></lod<>	12	59	5	<lod< td=""><td>12</td></lod<>	12	
24 - Surface	3/11/2015	<lod< td=""><td>12</td><td>51</td><td>5</td><td><lod< td=""><td>16</td></lod<></td></lod<>	12	51	5	<lod< td=""><td>16</td></lod<>	16	
24 - 0.5	3/11/2015	<lod< td=""><td>15</td><td>70</td><td>7</td><td><lod< td=""><td>17</td></lod<></td></lod<>	15	70	7	<lod< td=""><td>17</td></lod<>	17	
25 - Surface	3/11/2015	<lod< td=""><td>16</td><td>88</td><td>7</td><td><lod< td=""><td>18</td></lod<></td></lod<>	16	88	7	<lod< td=""><td>18</td></lod<>	18	
25 - 0.5	3/11/2015	<lod< td=""><td>11</td><td>40</td><td>5</td><td><lod< td=""><td>15</td></lod<></td></lod<>	11	40	5	<lod< td=""><td>15</td></lod<>	15	
26 - Surface	3/11/2015	<lod< td=""><td>14</td><td>71</td><td>6</td><td><lod< td=""><td>16</td></lod<></td></lod<>	14	71	6	<lod< td=""><td>16</td></lod<>	16	
26 - 0.5	3/11/2015	<lod< td=""><td>11</td><td>26</td><td>4</td><td>18</td><td>6</td></lod<>	11	26	4	18	6	
27 - Surface	3/12/2015	<lod< td=""><td>16</td><td>94</td><td>7</td><td><lod< td=""><td>18</td></lod<></td></lod<>	16	94	7	<lod< td=""><td>18</td></lod<>	18	
27 - 0.5	3/12/2015	36	7	90	7	<lod< td=""><td>17</td></lod<>	17	
28 - Surface	3/12/2015	<lod< td=""><td>12</td><td>46</td><td>5</td><td><lod< td=""><td>15</td></lod<></td></lod<>	12	46	5	<lod< td=""><td>15</td></lod<>	15	
28 - 0.5	3/12/2015	<lod< td=""><td>11</td><td>17</td><td>4</td><td><lod< td=""><td>17</td></lod<></td></lod<>	11	17	4	<lod< td=""><td>17</td></lod<>	17	
29 - Surface	3/12/2015	<lod< td=""><td>21</td><td>226</td><td>9</td><td><lod< td=""><td>18</td></lod<></td></lod<>	21	226	9	<lod< td=""><td>18</td></lod<>	18	
29 - 0.5	3/12/2015	<lod< td=""><td>13</td><td>62</td><td>6</td><td><lod< td=""><td>15</td></lod<></td></lod<>	13	62	6	<lod< td=""><td>15</td></lod<>	15	
30 - Surface	3/12/2015	<lod< td=""><td>11</td><td>20</td><td>5</td><td><lod< td=""><td>16</td></lod<></td></lod<>	11	20	5	<lod< td=""><td>16</td></lod<>	16	
30 - 0.5	3/12/2015	<lod< td=""><td>15</td><td>84</td><td>6</td><td><lod< td=""><td>16</td></lod<></td></lod<>	15	84	6	<lod< td=""><td>16</td></lod<>	16	
31 - Surface	3/12/2015	<lod< td=""><td>14</td><td>84</td><td>6</td><td><lod< td=""><td>15</td></lod<></td></lod<>	14	84	6	<lod< td=""><td>15</td></lod<>	15	
31 - 0.5	3/12/2015	<lod< td=""><td>11</td><td>29</td><td>5</td><td><lod< td=""><td>16</td></lod<></td></lod<>	11	29	5	<lod< td=""><td>16</td></lod<>	16	
32 - Surface	3/12/2015	<lod< td=""><td>15</td><td>82</td><td>6</td><td><lod< td=""><td>16</td></lod<></td></lod<>	15	82	6	<lod< td=""><td>16</td></lod<>	16	
32 - 0.5	3/12/2015	<lod< td=""><td>14</td><td>57</td><td>6</td><td><lod< td=""><td>18</td></lod<></td></lod<>	14	57	6	<lod< td=""><td>18</td></lod<>	18	
33 - Surface	3/12/2015	<lod< td=""><td>17</td><td>116</td><td>7</td><td><lod< td=""><td>15</td></lod<></td></lod<>	17	116	7	<lod< td=""><td>15</td></lod<>	15	
33 - 0.5	3/12/2015	<lod< td=""><td>20</td><td>167</td><td>9</td><td><lod< td=""><td>18</td></lod<></td></lod<>	20	167	9	<lod< td=""><td>18</td></lod<>	18	
34 - Surface	3/12/2015	<lod< td=""><td>18</td><td>156</td><td>8</td><td><lod< td=""><td>16</td></lod<></td></lod<>	18	156	8	<lod< td=""><td>16</td></lod<>	16	
34 - 0.5	3/12/2015	17	5	96	7	<lod< td=""><td>17</td></lod<>	17	
35 - Surface	3/12/2015	<lod< td=""><td>57</td><td>1946</td><td>33</td><td><lod< td=""><td>23</td></lod<></td></lod<>	57	1946	33	<lod< td=""><td>23</td></lod<>	23	
35 - 0.5	3/12/2015	34	9	290	11	<lod< td=""><td>15</td></lod<>	15	
36 - Surface	3/12/2015	<lod< td=""><td>13</td><td>70</td><td>6</td><td><lod< td=""><td>14</td></lod<></td></lod<>	13	70	6	<lod< td=""><td>14</td></lod<>	14	
36 - 0.5	3/12/2015	<lod< td=""><td>17</td><td>116</td><td>7</td><td><lod< td=""><td>15</td></lod<></td></lod<>	17	116	7	<lod< td=""><td>15</td></lod<>	15	
37 - Surface	3/12/2015	31	8	264	10	<lod< td=""><td>17</td></lod<>	17	
37 - 0.5	3/12/2015	<lod< td=""><td>15</td><td>75</td><td>6</td><td><lod< td=""><td>18</td></lod<></td></lod<>	15	75	6	<lod< td=""><td>18</td></lod<>	18	
38 - Surface	3/12/2015	<lod< td=""><td>28</td><td>458</td><td>13</td><td><lod< td=""><td>17</td></lod<></td></lod<>	28	458	13	<lod< td=""><td>17</td></lod<>	17	
38 - 0.5	3/12/2015	21	7	163	8	<lod< td=""><td>18</td></lod<>	18	
39 - Surface	3/12/2015	14	4	31	5	<lod< td=""><td>15</td></lod<>	15	
39 - 0.5	3/12/2015	<lod< td=""><td>11</td><td>18</td><td>4</td><td><lod< td=""><td>17</td></lod<></td></lod<>	11	18	4	<lod< td=""><td>17</td></lod<>	17	
40 - Surface	3/12/2015	<lod< td=""><td>13</td><td>40</td><td>5</td><td><lod< td=""><td>16</td></lod<></td></lod<>	13	40	5	<lod< td=""><td>16</td></lod<>	16	
40 - 0.5	3/12/2015	<lod< td=""><td>11</td><td>44</td><td>5</td><td><lod< td=""><td>14</td></lod<></td></lod<>	11	44	5	<lod< td=""><td>14</td></lod<>	14	

Source: Aerial photograph obtained from Esri ArcGIS

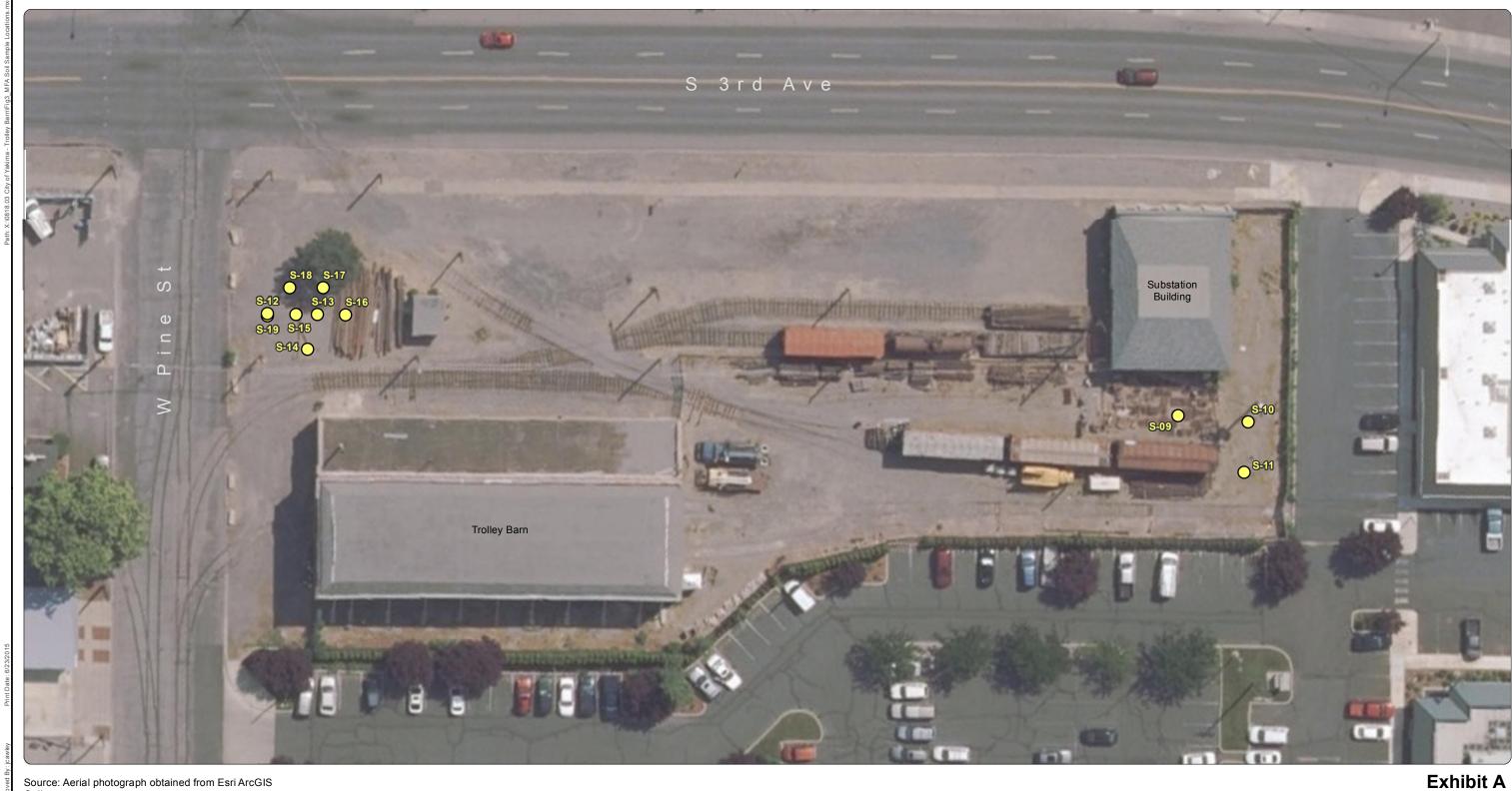

Legend

XRF Analysis Locations

June 2015 XRF Analysis Locations

Trolley Barn Site Yakima, Washington

Washington Dept. of Ecology Facility Site No. 9688850 Cleanup Site No. 2190 City of Yakima Yakima, Washington


Sample ID -		As		Pb		Cd		Hg	
Depth (in.)	Date	(mg/kg)	As +/-	(mg/kg)	Pb +/-	(mg/kg)	Cd +/-	(mg/kg)	Hg +/-
C16-6	6/4/2015	<lod< td=""><td>8</td><td><lod< td=""><td>11</td><td><lod< td=""><td>49</td><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<>	8	<lod< td=""><td>11</td><td><lod< td=""><td>49</td><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<>	11	<lod< td=""><td>49</td><td><lod< td=""><td>14</td></lod<></td></lod<>	49	<lod< td=""><td>14</td></lod<>	14
C17-6	6/4/2015	12	4	22	4	<lod< td=""><td>49</td><td><lod< td=""><td>16</td></lod<></td></lod<>	49	<lod< td=""><td>16</td></lod<>	16
C18-6	6/4/2015	<lod< td=""><td>10</td><td>29</td><td>5</td><td><lod< td=""><td>48</td><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<>	10	29	5	<lod< td=""><td>48</td><td><lod< td=""><td>14</td></lod<></td></lod<>	48	<lod< td=""><td>14</td></lod<>	14
C19-6	6/4/2015	<lod< td=""><td>9</td><td>12</td><td>4</td><td><lod< td=""><td>48</td><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<>	9	12	4	<lod< td=""><td>48</td><td><lod< td=""><td>14</td></lod<></td></lod<>	48	<lod< td=""><td>14</td></lod<>	14
C20-6	6/4/2015	<lod< td=""><td>16</td><td>113</td><td>7</td><td><lod< td=""><td>48</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	16	113	7	<lod< td=""><td>48</td><td><lod< td=""><td>16</td></lod<></td></lod<>	48	<lod< td=""><td>16</td></lod<>	16
C21-6	6/4/2015	<lod< td=""><td>16</td><td>106</td><td>7</td><td><lod< td=""><td>50</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	16	106	7	<lod< td=""><td>50</td><td><lod< td=""><td>16</td></lod<></td></lod<>	50	<lod< td=""><td>16</td></lod<>	16
C22-6	6/4/2015	11	3	<lod< td=""><td>12</td><td><lod< td=""><td>49</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	12	<lod< td=""><td>49</td><td><lod< td=""><td>15</td></lod<></td></lod<>	49	<lod< td=""><td>15</td></lod<>	15
C23-6	6/4/2015	<lod< td=""><td>15</td><td>71</td><td>6</td><td><lod< td=""><td>52</td><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<>	15	71	6	<lod< td=""><td>52</td><td><lod< td=""><td>17</td></lod<></td></lod<>	52	<lod< td=""><td>17</td></lod<>	17
C24-6	6/4/2015	<lod< td=""><td>9</td><td><lod< td=""><td>12</td><td><lod< td=""><td>47</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<>	9	<lod< td=""><td>12</td><td><lod< td=""><td>47</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	12	<lod< td=""><td>47</td><td><lod< td=""><td>15</td></lod<></td></lod<>	47	<lod< td=""><td>15</td></lod<>	15
C25-6	6/4/2015	14	3	15	4	<lod< td=""><td>48</td><td><lod< td=""><td>15</td></lod<></td></lod<>	48	<lod< td=""><td>15</td></lod<>	15
C26-6	6/4/2015	14	4	60	5	<lod< td=""><td>46</td><td><lod< td=""><td>15</td></lod<></td></lod<>	46	<lod< td=""><td>15</td></lod<>	15
C27-6	6/4/2015	<lod< td=""><td>12</td><td>32</td><td>5</td><td><lod< td=""><td>49</td><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<>	12	32	5	<lod< td=""><td>49</td><td><lod< td=""><td>18</td></lod<></td></lod<>	49	<lod< td=""><td>18</td></lod<>	18
C28-6	6/4/2015	<lod< td=""><td>9</td><td>15</td><td>4</td><td><lod< td=""><td>50</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	9	15	4	<lod< td=""><td>50</td><td><lod< td=""><td>15</td></lod<></td></lod<>	50	<lod< td=""><td>15</td></lod<>	15
C29-6	6/4/2015	<lod< td=""><td>9</td><td>13</td><td>4</td><td><lod< td=""><td>47</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	9	13	4	<lod< td=""><td>47</td><td><lod< td=""><td>15</td></lod<></td></lod<>	47	<lod< td=""><td>15</td></lod<>	15
CH2-8	6/5/2015	22	5	111	7	<lod< td=""><td>48</td><td><lod< td=""><td>14</td></lod<></td></lod<>	48	<lod< td=""><td>14</td></lod<>	14
CH3-8	6/5/2015	76	14	974	21	<lod< td=""><td>49</td><td><lod< td=""><td>20</td></lod<></td></lod<>	49	<lod< td=""><td>20</td></lod<>	20
CH4-8	6/5/2015	44	11	547	15	<lod< td=""><td>50</td><td><lod< td=""><td>19</td></lod<></td></lod<>	50	<lod< td=""><td>19</td></lod<>	19
CH5-8	6/5/2015	54	13	647	17	<lod< td=""><td>52</td><td><lod< td=""><td>18</td></lod<></td></lod<>	52	<lod< td=""><td>18</td></lod<>	18
CH6-8	6/5/2015	36	5	62	6	<lod< td=""><td>49</td><td><lod< td=""><td>17</td></lod<></td></lod<>	49	<lod< td=""><td>17</td></lod<>	17
CH7-8	6/5/2015	52	13	746	18	<lod< td=""><td>50</td><td><lod< td=""><td>19</td></lod<></td></lod<>	50	<lod< td=""><td>19</td></lod<>	19
CH8-8	6/5/2015	35	5	56	6	<lod< td=""><td>53</td><td><lod< td=""><td>17</td></lod<></td></lod<>	53	<lod< td=""><td>17</td></lod<>	17
CH9-8	6/5/2015	31	4	21	4	<lod< td=""><td>48</td><td><lod< td=""><td>13</td></lod<></td></lod<>	48	<lod< td=""><td>13</td></lod<>	13
CH10-12	6/5/2015	44	4	28	4	<lod< td=""><td>47</td><td><lod< td=""><td>15</td></lod<></td></lod<>	47	<lod< td=""><td>15</td></lod<>	15
CH11-12	6/5/2015	<lod< td=""><td>19</td><td>168</td><td>8</td><td><lod< td=""><td>49</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	19	168	8	<lod< td=""><td>49</td><td><lod< td=""><td>16</td></lod<></td></lod<>	49	<lod< td=""><td>16</td></lod<>	16
CH13-12	6/5/2015	54	8	248	10	<lod< td=""><td>51</td><td><lod< td=""><td>18</td></lod<></td></lod<>	51	<lod< td=""><td>18</td></lod<>	18
CH15-12	6/5/2015	53	9	332	11	<lod< td=""><td>49</td><td><lod< td=""><td>18</td></lod<></td></lod<>	49	<lod< td=""><td>18</td></lod<>	18
CH16-12	6/5/2015	<lod< td=""><td>8</td><td><lod< td=""><td>11</td><td><lod< td=""><td>49</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<>	8	<lod< td=""><td>11</td><td><lod< td=""><td>49</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	11	<lod< td=""><td>49</td><td><lod< td=""><td>15</td></lod<></td></lod<>	49	<lod< td=""><td>15</td></lod<>	15
CH17-12	6/5/2015	46	7	170	9	<lod< td=""><td>52</td><td><lod< td=""><td>16</td></lod<></td></lod<>	52	<lod< td=""><td>16</td></lod<>	16
CH18-12	6/5/2015	27	8	299	11	<lod< td=""><td>49</td><td><lod< td=""><td>15</td></lod<></td></lod<>	49	<lod< td=""><td>15</td></lod<>	15
CH19-12	6/5/2015	<lod< td=""><td>10</td><td>22</td><td>4</td><td><lod< td=""><td>49</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	10	22	4	<lod< td=""><td>49</td><td><lod< td=""><td>16</td></lod<></td></lod<>	49	<lod< td=""><td>16</td></lod<>	16
CH20-12	6/5/2015	45	7	159	8	<lod< td=""><td>52</td><td><lod< td=""><td>17</td></lod<></td></lod<>	52	<lod< td=""><td>17</td></lod<>	17
CH21-12	6/5/2015	54	4	<lod< td=""><td>11</td><td><lod< td=""><td>47</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	11	<lod< td=""><td>47</td><td><lod< td=""><td>16</td></lod<></td></lod<>	47	<lod< td=""><td>16</td></lod<>	16
CH22-12	6/5/2015	<lod< td=""><td>47</td><td>1286</td><td>24</td><td><lod< td=""><td>48</td><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<>	47	1286	24	<lod< td=""><td>48</td><td><lod< td=""><td>20</td></lod<></td></lod<>	48	<lod< td=""><td>20</td></lod<>	20
CH23-12	6/5/2015	<lod< td=""><td>10</td><td>14</td><td>4</td><td><lod< td=""><td>51</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	10	14	4	<lod< td=""><td>51</td><td><lod< td=""><td>15</td></lod<></td></lod<>	51	<lod< td=""><td>15</td></lod<>	15
CH24-12	6/5/2015	<lod< td=""><td>10</td><td>29</td><td>4</td><td><lod< td=""><td>48</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	10	29	4	<lod< td=""><td>48</td><td><lod< td=""><td>15</td></lod<></td></lod<>	48	<lod< td=""><td>15</td></lod<>	15
CH25-12	6/5/2015	<lod< td=""><td>11</td><td>29</td><td>4</td><td><lod< td=""><td>46</td><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<>	11	29	4	<lod< td=""><td>46</td><td><lod< td=""><td>14</td></lod<></td></lod<>	46	<lod< td=""><td>14</td></lod<>	14
CH27-12	6/5/2015	117	17	1304	26	<lod< td=""><td>50</td><td><lod< td=""><td>21</td></lod<></td></lod<>	50	<lod< td=""><td>21</td></lod<>	21
CN2-6	6/11/2015	<lod< td=""><td>10</td><td>26</td><td>4</td><td><lod< td=""><td>48</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	10	26	4	<lod< td=""><td>48</td><td><lod< td=""><td>15</td></lod<></td></lod<>	48	<lod< td=""><td>15</td></lod<>	15
CN3-6	6/11/2015	<lod< td=""><td>12</td><td>37</td><td>5</td><td><lod< td=""><td>50</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	12	37	5	<lod< td=""><td>50</td><td><lod< td=""><td>15</td></lod<></td></lod<>	50	<lod< td=""><td>15</td></lod<>	15
CN4-4	6/11/2015	<lod< td=""><td>20</td><td>190</td><td>9</td><td><lod< td=""><td>48</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	20	190	9	<lod< td=""><td>48</td><td><lod< td=""><td>15</td></lod<></td></lod<>	48	<lod< td=""><td>15</td></lod<>	15
CN5-6	6/11/2015	<lod< td=""><td>9</td><td>24</td><td>4</td><td><lod< td=""><td>48</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	9	24	4	<lod< td=""><td>48</td><td><lod< td=""><td>15</td></lod<></td></lod<>	48	<lod< td=""><td>15</td></lod<>	15

Yakima Valley Transportation Co. Trolley Barn Site

Washington Dept. of Ecology Facility Site No. 9688850 Cleanup Site No. 2190 XRF Data - June 2015

City of Yakima Yakima, Washington

CN6-6	6/11/2015	31	10	371	13	<lod< td=""><td>50</td><td><lod< td=""><td>18</td></lod<></td></lod<>	50	<lod< td=""><td>18</td></lod<>	18
CN10-6	6/11/2015	<lod< td=""><td>14</td><td>80</td><td>6</td><td><lod< td=""><td>50</td><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	14	80	6	<lod< td=""><td>50</td><td><lod< td=""><td>15</td></lod<></td></lod<>	50	<lod< td=""><td>15</td></lod<>	15
CN11-6	6/11/2015	<lod< td=""><td>21</td><td>223</td><td>9</td><td><lod< td=""><td>48</td><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<>	21	223	9	<lod< td=""><td>48</td><td><lod< td=""><td>18</td></lod<></td></lod<>	48	<lod< td=""><td>18</td></lod<>	18
CN12-6	6/11/2015	<lod< td=""><td>17</td><td>137</td><td>7</td><td><lod< td=""><td>48</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	17	137	7	<lod< td=""><td>48</td><td><lod< td=""><td>16</td></lod<></td></lod<>	48	<lod< td=""><td>16</td></lod<>	16
CN13-4	6/11/2015	<lod< td=""><td>9</td><td>16</td><td>4</td><td><lod< td=""><td>48</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	9	16	4	<lod< td=""><td>48</td><td><lod< td=""><td>16</td></lod<></td></lod<>	48	<lod< td=""><td>16</td></lod<>	16
CN14-4	6/11/2015	<lod< td=""><td>33</td><td>543</td><td>15</td><td><lod< td=""><td>52</td><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<>	33	543	15	<lod< td=""><td>52</td><td><lod< td=""><td>18</td></lod<></td></lod<>	52	<lod< td=""><td>18</td></lod<>	18
CN15-4	6/11/2015	<lod< td=""><td>10</td><td>24</td><td>4</td><td><lod< td=""><td>49</td><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<>	10	24	4	<lod< td=""><td>49</td><td><lod< td=""><td>14</td></lod<></td></lod<>	49	<lod< td=""><td>14</td></lod<>	14
CN16-4	6/11/2015	17	6	118	7	<lod< td=""><td>48</td><td><lod< td=""><td>16</td></lod<></td></lod<>	48	<lod< td=""><td>16</td></lod<>	16
CN17-6	6/11/2015	<lod< td=""><td>12</td><td>44</td><td>5</td><td><lod< td=""><td>49</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	12	44	5	<lod< td=""><td>49</td><td><lod< td=""><td>16</td></lod<></td></lod<>	49	<lod< td=""><td>16</td></lod<>	16
CN21-4	6/11/2015	<lod< td=""><td>24</td><td>173</td><td>11</td><td><lod< td=""><td>63</td><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<>	24	173	11	<lod< td=""><td>63</td><td><lod< td=""><td>18</td></lod<></td></lod<>	63	<lod< td=""><td>18</td></lod<>	18
CN22-4	6/11/2015	<lod< td=""><td>25</td><td>328</td><td>11</td><td><lod< td=""><td>48</td><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<>	25	328	11	<lod< td=""><td>48</td><td><lod< td=""><td>18</td></lod<></td></lod<>	48	<lod< td=""><td>18</td></lod<>	18
CN23-4	6/11/2015	<lod< td=""><td>17</td><td>103</td><td>7</td><td><lod< td=""><td>50</td><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<>	17	103	7	<lod< td=""><td>50</td><td><lod< td=""><td>17</td></lod<></td></lod<>	50	<lod< td=""><td>17</td></lod<>	17
CN24-4	6/11/2015	<lod< td=""><td>22</td><td>205</td><td>9</td><td><lod< td=""><td>51</td><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<>	22	205	9	<lod< td=""><td>51</td><td><lod< td=""><td>18</td></lod<></td></lod<>	51	<lod< td=""><td>18</td></lod<>	18
CN25-4	6/11/2015	71	18	1172	27	<lod< td=""><td>56</td><td><lod< td=""><td>23</td></lod<></td></lod<>	56	<lod< td=""><td>23</td></lod<>	23
CN26-4	6/11/2015	<lod< td=""><td>39</td><td>519</td><td>18</td><td><lod< td=""><td>62</td><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<>	39	519	18	<lod< td=""><td>62</td><td><lod< td=""><td>25</td></lod<></td></lod<>	62	<lod< td=""><td>25</td></lod<>	25
CN27-4	6/11/2015	<lod< td=""><td>20</td><td>119</td><td>9</td><td><lod< td=""><td>59</td><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<>	20	119	9	<lod< td=""><td>59</td><td><lod< td=""><td>18</td></lod<></td></lod<>	59	<lod< td=""><td>18</td></lod<>	18
CN28-4	6/11/2015	<lod< td=""><td>21</td><td>165</td><td>9</td><td><lod< td=""><td>54</td><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<>	21	165	9	<lod< td=""><td>54</td><td><lod< td=""><td>18</td></lod<></td></lod<>	54	<lod< td=""><td>18</td></lod<>	18

Source: Aerial photograph obtained from Esri ArcGIS Online

O Post-Excavation Confirmation Sample Location

Legend

Trolley Barn Site Yakima, Washington

MFA Soil Sample Locations

Sample Name		S-09	S-10	S-11	S-12	S-13	S-14	S-15	S-16	S-17	S-18	S-19
Sample Date	MTCA Method A	6/5/2015	6/4/2015	6/4/2015	6/10/2015	6/10/2015	6/10/2015	6/10/2015	6/10/2015	6/10/2015	6/10/2015	6/10/2015
Sample Depth (ft bgs)	CUL	1	1	1	15	15	11	15	10	12	12	10
Total Metals by USEPA Method 6020A & 200).8 (mg/kg)				•	•	•					
Arsenic	20	2.83	33	16.5	1.64	1.2	2.31	1.53	1.88	1.86	2.38	1.62
Cadmium	2	1 U	1 U	1.62	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Lead	250	25.2	85.8	335	6.46	4.57	25.9	4.41	5.42	6.73	3.72	8.12
BTEX Compounds by USEPA Method 8021B	(mg/kg)		•		•	•	•	•		•	•	
Benzene	0.03				0.02 U							
Ethylbenzene	6				0.27	0.02 U	0.02 U	0.67	0.02 U	0.02 U		
Toluene	7				0.02 U							
Total Xylenes	9				0.73	0.06 U	0.06 U	1.6	0.06 U	0.06 U		
Total Petroleum Hydrocarbons by Methods	NWTPH-Gx and N	IWTPH-DX (mo	g/kg)		•	•	•	•		•	•	
Gasoline Range Hydrocarbons	30											
Diesel Range Hydrocarbons	2000				1800	450		4800				
Motor Oil Range Hydrocarbons	2000				250 U	250 U		250 U				
Total Petroleum Hydrocarbons by Method	NWTPH-HCID (Pres	sence/Absen	ce)		•	•	•	•		•	•	
Gasoline Range Hydrocarbons	NA				ND							
Diesel Range Hydrocarbons	NA				DETECT	DETECT	ND	DETECT	ND	ND	ND	ND
Motor Oil Range Hydrocarbons	NA				ND							

NOTES:

Detected results in bold font.

Shaded values exceed MTCA Method A Cleanup Levels

https://fortress.wa.gov/ecy/clarc/Focus Sheets/Soil%20 Methods%20 B%20 and %20 A%20 unrestricted.pdf

-- = not analyzed

DETECT = analyte detected

ft bgs = feet below ground surface

mg/L = milligrams per liter

mg/kg = milligrams per kilogram

NA = not applicable

ND = non-detect

TCLP = toxicity characteristic leaching procedure

U = Analyte not detected at or above method reporting limit.

APPENDIX C STOCKPILE CHARACTERIZATION METHODOLOGY

Stockpile Characterization Methodology

Material that is removed from the Yakima Valley Transportation Company Trolley Barn Site for disposal may contain levels of indicator hazardous substances (IHSs) that are regulated under the Resource Conservation and Recovery Act (RCRA) and the Washington State Model Toxics Control Act (MTCA). The material must be adequately characterized before its removal from the Site to ensure compliance with federal and state waste management regulations, including Code of Federal Regulations (CFR) 261.24 (RCRA). Excavated material should be stockpiled methodically in order to facilitate the sampling method and organization. Composite sampling is conducted in order to best characterize each stockpile to complete a waste profile for the landfill. Waste characterization samples are to be obtained directly from the excavated material stockpiles at a frequency of approximately one composite sample per a maximum 100 cubic yards of material (before conducting any characterization sampling, confirm with the waste disposal facility that the sample collection frequency and analytical methods prescribed in the Soil Management Plan are appropriate).

Five-point composite samples will be obtained from each 100-cubic-yard stockpile section that is to be disposed of off site. In order to develop a representative sample of each delineated section, five discrete subsamples of equal size will be collected from within the section. A standard stainless-steel hand auger will be used to collect samples from various depths within the stockpile (the sampler should avoid collecting samples from the stockpile surface). The stockpile section will be divided into four quadrants, with one subsample collected from within each quadrant and the fifth subsample collected from the center of the 100-cubic yard section. Of the first four subsamples, at least one should be collected from a shallow depth, one from mid-depth, one near the bottom of the stockpile, and one from a randomly selected depth.

Samples will be composited using a stainless-steel bowl with a stainless-steel spoon. A portion of the composited sample will be placed in the laboratory-provided containers, which will then be sealed (rocks and other debris should not be placed in the container). The sampling equipment is to be decontaminated after each composite sample is collected. The samples will be placed on ice in a shipping container with chain-of-custody paperwork and transported to an accredited laboratory for analysis.

Obtaining samples in this manner is intended to result in data that are representative of the contaminants in that particular section of the stockpile, and accounts for the variability of the waste generated from different excavation locations. The material in each stockpile is expected to be homogenized through the on-site handling procedures of excavating, placing in a dump truck, and dumping into a pile. Composite sampling, combined with the on-site homogenization, should result in a sample that is representative of the pile. Variability of the soil from different excavations will be addressed by collecting one composite sample per every 100 cubic yards of soil. Laboratory quality assurance and quality control (QA/QC) data, along with sample results, will be validated before handling procedures are determined for any soil. This review will be conducted as laboratory reports are received so that management of the soil can proceed rapidly.

The data quality objectives for this sampling approach address precision, accuracy, representativeness, comparability, and completeness:

- The term "precision" refers to the ability of an analytical method or instrument to reproduce a measurement. Review of laboratory-generated QA/QC documentation will allow assessment of laboratory precision.
- Accuracy is assessed by evaluating how close a measurement is to the true or expected value. Accuracy is evaluated by reviewing laboratory QC data, such as blank and spiked samples.
- Representativeness of the data is an indication of how well data represent an expected environmental condition. The compositing approach has been designed to obtain samples that are representative of the individual stockpile sections.
- Comparability, or the confidence in evaluating one data set in relation to another, will be established through the use of consistent field techniques, standard analytical methods, standard reporting formats, equipment calibration, and analysis of reference materials.
- The data will be assessed for completeness by summarizing the number of valid results versus the total number of samples collected. Because only valid laboratory results will be acceptable for disposal determination, the results will be 100 percent complete.

Stockpile Analysis

Analysis of material on the Site is required before off-site disposal. Any and all soil that is generated and intended for off-site disposal is to be analyzed by an accredited laboratory for the following constituents:

- Gasoline- and diesel-range petroleum hydrocarbons by Washington State Department of Ecology (Ecology) Methods NWTPH-Gx and NWTPH-Dx
- Benzene, ethylbenzene, toluene, and total xylenes by U.S. Environmental Protection Agency (USEPA) Method 8260B
- Polycyclic aromatic hydrocarbons by USEPA Method 8270C
- Arsenic and lead by toxicity characteristic leaching procedure USEPA Method 1311/6010B

It is the responsibility of the party generating the impacted soil to verify current disposal requirements with the disposal facility.

APPENDIX D SITE INSPECTION SUMMARY REPORT FORM

SITE INSPECTION SUMMARY REPORT YAKIMA VALLEY TRANSPORTATION CO TROLLEY BARN VISUAL MONITORING YAKIMA, WASHINGTON

Date:	
Date.	
Weather:	
Precipitation (prior 24 hrs)	
Completed By:	
Photograph Requir	rements:
	graph of each cap component to capture composite view of entire cap.
•	ges or damage to the cap.
General Observati	ons:
General cap co	ndition.
Stormwater flow	characteristics (if monitoring conducted during wet weather).
Activity on the si	e.
Visible changes :	since previous inspection.
Standing water o	or areas of concentrated surface water flow.
Visible demarca	tion fabric.
Specific Observati	ons: To be noted with photographs, measurements, and locations:
Soil Cap:	
Areas of surfa	ace erosion (rills/gullies, concentrated sediment deposits).
Standing wat	ter or concentrated surface water flow.
Pavement Cap:	
Pavement Ca	ар:
Cracking or k	ouckling indicating lateral expansion or contraction.
Building Cap:	
Cracking of f	oundation.
Measurements:	
Length and dep	th of any surface erosion or damage.
Estimated areal	coverage of vegetation/landscaping material on soil cap.
Depth of soil cap	o at edges adjacent to pavement/building cap.

SITE INSPECTION SUMMARY REPORT YAKIMA VALLEY TRANSPORTATION CO TROLLEY BARN VISUAL MONITORING YAKIMA, WASHINGTON

Date:	
Weather:	
Precipitation (prior 24 hrs)	
Completed By:	
General Observation	ons:
	ons: To be noted with photographs, measurements, and locations:
Soil Cap:	
Pavement Cap:	
ravoment cap.	
Building Cap:	
Measurements:	

SITE INSPECTION SUMMARY REPORT YAKIMA VALLEY TRANSPORTATION CO TROLLEY BARN VISUAL MONITORING YAKIMA, WASHINGTON

Date:			
Location (Station or Coordinates)		Observations	Photo Log