DETERMINATION

DETERMINATION

BRAY, TER MENTING

CHOOL

CHOOL

FINAL VERSION WORKSHEET 1 SUMMARY SCORE SHEET

Site Name/Location (Street, City, County, Section/Township/Range, TCP ID Number):

Brewster Elementary School

Sec 14/T30N/R24E

 $502 \text{ S. } 2^{nd}$

Ecology Facility Site ID: 31998846

Brewster, Okanogan County, WA 98812

Latitude:

48° 05′ 39.73

Longitude: 119° 47′ 00.11

Site scored/ranked for 02/24/04 update

Site Description (Include management areas, substances of concern, and quantities):

The subject site is owned by the Brewster School District, and is occupied by the elementary school facility. The school yard consists of several play areas, landscaped grounds, and parking/access areas. Play yards are generally well-maintained, with good grass cover, wood chips, gravel, or other barriers to native soil. Some small areas are worn from excessive traffic, such as areas beneath swings and slides, or main travel routes to/from the school building.

The soils throughout the property were sampled by Okanogan County Public Health in April of 2003, and samples were analyzed for lead and arsenic. While lead and arsenic are present in the soil throughout the property, the concentrations only exceed MTCA Method A cleanup levels for Unrestricted Land Use in the small play yard for the preschool, and the surrounding undeveloped land between the faculty parking lot and the eastern property boundary.

The Brewster School District is currently addressing the issue of soil exposure in these areas, with assistance from the Washington State Department of Ecology.

Special Considerations (Include limitations in site file data or data which cannot be accommodated in the model, but which are important in evaluating the risk associated with the site, or any other factor(s) over-riding a decision of no further action for the site):

ROUTE SCORES:

Surface Water/Human Health: ___9.6 Surface Water/Environ.: __16.7

Air/Human Health:

25.7 Air/Environmental:

Ground Water/Human Health: 44.0

OVERALL RANK: 3

FINAL VERSION

WORKSHEET 2 - ROUTE DOCUMENTATION

1. SURFACE WATER ROUTE

List those substances to be <u>considered</u> for scoring:

Source: 1,2

Arsenic, lead.

Explain basis for choice of substance(s) to be used in scoring.

Soil sample analysis.

List those management units to be <u>considered</u> for scoring: Source: 1

Contaminated on-site surface and subsurface soils.

Explain basis for choice of unit to be <u>used</u> in scoring.

Analytical confirmation of these contaminants.

2. AIR ROUTE

List those substances to be considered for scoring:

Source: 1,2

Arsenic, lead.

Explain basis for choice of substance(s) to be used in scoring.

Soil sample analysis.

List those management units to be considered for scoring: Source: 1

Contaminated on-site surface and subsurface soils.

Explain basis for choice of unit to be used in scoring.

Analytical confirmation of these contaminants.

FINAL VERSION

3. GROUND WATER ROUTE

List those substances to be <u>considered</u> for scoring:

Source: 1,2

Arsenic, lead.

Explain basis for choice of substance(s) to be used in scoring.

Soil sample analysis.

List those management units to be considered for scoring: Source: 1

Contaminated on-site surface and subsurface soils.

Explain basis for choice of unit to be used in scoring.

Analytical confirmation of these contaminants.

FINAL VERSION

WORKSHEET 3 (If Required)

SUBSTANCE CHARACTERISTICS WORKSHEET

FOR MULTIPLE UNIT/SUBSTANCE SITES

Combination 1 Combination 2 Combination 3

Unit: Section Not Applicable.

•	
1. SURFACE WATER ROUTE	
Substance(s): Human Toxicity Value: Environ. Toxicity Value: Containment Value: Rationale:	
Surface Water Human Subscore: ((+3) (+1) =
Surface Water Environ.	() ()
2. AIR ROUTE Substance(s): Human Toxicity/Mobility Value: Environ. Toxicity/ Mobility Value: Containment Value: Rationale:	
Air Human Subscore: Air Environ. Subscore: ((+3) (+1) = (+3) (+1) =
3. GROUND WATER ROUTE Substance(s): Human Toxicity Value: Containment Value: Rationale:	
Ground Water Subscore:	(+3) (+1) = (+3) (+1) = (+3) (+1) = () () = () () =
	highest scoring toxicity/containment combinations, the will be used for route scoring:

FINAL VERSION WORKSHEET 4 SURFACE WATER ROUTE

1.0 SUBSTANCE CHARACTERISTICS

1.1 Human Toxicity

	Drinking Water Standard	Acute Toxicity	Chronic Toxicity	_	arcino- enicity	
Substance	(ug/l) Val.	(mg/kg-bw) Val.	(mg/kg/day) Va.	L. WOE	PF* Val.	
1. Arsenic	50 6	763(rat) 5	0.001 5	A	1.75 7	
2. Lead	5 8	ND -	ND -	B2	ND -	

*Potency Factor

Substance
1. Arsenic
2. Lead

Source: 1,2,5 Highest Value: 8 (Max.=10)

+2 Bonus Points? 2
Final Toxicity Value: 10
(max.=12)

1.2 Environmental Toxicity

(X) Freshwater

() Marine
Acute Water

·	Acute Wate Quality Cr		Non-human Acute To:		n	
	(ug/1)	Value	(mg/kg)	<u> Value</u>	Source: 1,2,5	Value: 6
_	360	4	ND			(max.=10)
	5	6	ND	_		

1.3 Substance Quantity Source: 1,6 Value: 8 (max.=10)

FINAL VERSION WORKSHEET 4 (CONTINUED) SURFACE WATER ROUTE

2.0 MIGRATION POTENTIAL

	Containment	Source: 1,6	Value: 4 (Max.=10)
E>	xplain basis:		(Max.=10)
	Management unit scored as a spills/discharges/cont		
	at the surface, with non-maintained run-on/runoff c	ontrols	
	(vegetated buffer)		
2.2	Surface Soil Permeability: sand, gravel, sandy loam	Source: 1,3,6	Value: 1 (Max.=7)
2.3	Total Annual Precipitation: 11.3 inches	Source: 7	Value: 1 (Max.=5)
2.4	Max. 2-Yr/24-hour Precipitation: <1 inch	Source: 6	Value: 1 (Max.=5)
2.5	Flood Plain: Not in flood plain	Source: 8,12	Value: $0 \over (Max.=2)$
2.6	Terrain Slope: <2%	Source: 1,6,1	2 Value: 1 (Max. = 5)
3.0	TARGETS		
3.0	IARGEIS		
3.1	Distance to Surface Water: ~1150'	Source: 1,12	Value: 7 (Max. =10)
3.2	Population Served within 2 miles (See WARM Scoring Manual Regarding Direction): $\sqrt{\text{pop.}=\sqrt{0}} = 0$	Source: 10	Value: 0 (Max.=75)
3.3	Area Irrigated within 2 miles $0.75\sqrt{\text{no. acres}} = 0.75\sqrt{4111} = (.75)(64.1) = 48.1 => 48$	Source: 10	Value: 30
3.4	Distance to Nearest Fishery Resource: ~1150'	Source: 1,11,	
3.5	Distance to, and Name(s) of, Nearest Sensitive Environment(s) Brewster municipal park 200' Columbia River fisheries 1100'	Source: 1,11,2	12 Value: 12 (Max.=12)
4.0	RELEASE Explain basis for scoring a release to surface water: None documented by analytical evidence.	Source: 1	Value: 0 (Max. =5)

FINAL VERSION WORKSHEET 5 AIR ROUTE

1.0 SUBSTAN	CE CHARACTERISTICS	3			
1.1 Introdu	ction (WARM Scorin	ng Manual) - Pl	ease review be	efore scoring	,
1.2 Human T	Coxicity				
Substance 1. Arsenic 2. Lead	Air Standard (ug/m³) Val. 0.00023 10 0.5 10	Acute Toxicity (mg/m³) ND ND ND -	Chronic Toxicity (mg/kg/day) ND ND		<u>Val.</u> 9
*Potency Factor Source: 1,2,5 Highest Value: 10 (MAX.=10) +2 Bonus Points? 2 Final Toxicity Value: 12 (MAX.=12)					
	y (Use numbers to Gaseous Mobility Vapor Pressure(s)			onces) Source: Value: (Max.=4)	
1.3.2	Particulate Mobil Soil type: 1 Erodibility: 1 Climatic Factor:	Loamy sands		Source: $\frac{3,5,6}{3}$	

1.4 Highest Human Health Toxicity/Mobility Matrix Value (from Table A-7) equals Final Matrix Value: 18 (MAX.=24)

FINAL VERSION WORKSHEET 5 (CONTINUED) AIR ROUTE

1.5	Environmental Toxicity/Mobility	Source: 1,5	
	Non-human Mammalian Acute tance	-	(Table A-7) Matrix Value
High	est Environmental Toxicity/Mobility Matrix Value (From Table A-7) equals	Final Matrix	Value: NS (Max. =24)
1.6	Substance Quantity: ~43,000 s.f. Explain basis:	Source: 1,6	Value: 6 (Max.=10)
2.0	MIGRATION POTENTIAL		
2.1	Containment: Uncontaminated soil <2' deep.	Source: 1,6	Value: 5 (Max. =10)
3.0 3.1	TARGETS Nearest Population: 140 feet	Source: 1,12	Value: 10 (Max.=10)
3.2	Distance to, and Name(s) of, Nearest Sensitive Environment(s)	Source: 1,12	Value: NA (Max.=7)
3.3	Population within 0.5 miles: $\sqrt{\text{pop.}} = \sqrt{2200} = 46.9 \Rightarrow 47$	Source: 10,12	Value: 47 (Max.=75)
4.0	RELEASE		
	Explain basis for scoring a release to air: None documented.	Source: 1,6	Value: 0 (Max.=5)

FINAL VERSION WORKSHEET 6 GROUND WATER ROUTE

1.0 SUBSTANCE CHARACTERISTICS

	1	. 1	Human	Toxicity
--	---	-----	-------	----------

1.1	Human Toxici	СУ						
	tance rsenic ead	Drinking Water Standard (ug/1) Val. 50 6 5 8	Acute Toxicity (mg/kg-bw) Val 763(rat) 5 ND -		ty (1) (Val.) (5)	WOE		<u>Val.</u> 7 -
*Pot	ency Factor				Highest		: 1,2,5 : 8 (Max.=10)	
				4	-2 Bonus Final To			: 10 (max.+12)
1.2			refer to above 2				Value	: 3 (Max.=3)
	Or							
	Solubility(mg	g/l):						
1.3	Substance Qua Explain basis	antity:~320 3:	0 cu. yds.		Source:	1,2,6	Value	* 4 (Max.=10)
2.0	MIGRATION POT	PENTIAL						
2.1	Containment Explain basis	: Contaminat	ed soil, no cap)	Source:	1,6	Value	: <u>10</u> (Max.=10)
2.2	Net Precipita	ation:	4.1 inches		Source:	7	Value	: <u>1</u> (Max.=5)
2.3	Subsurf.Hydra	ul.Conduct.:	Sands/gravels		Source:	1,3,6	Value	4 (Max.=4)
2.4	Vertical Dept	th to Ground	Water: ~40 feet		Source:	1,4,6	Value	$\frac{6}{(\text{Max.}=8)}$

FINAL VERSION WORKSHEET 6 (CONTINUED) GROUND WATER ROUTE

3.0	TARGETS	
3.1	Ground Water Usage: public supply, no alternate	Source: 9,10 Value: 9 (Max.=10)
3.2	Dist. to Nearest Drinking Water Well: on-site	Source: 1,10 Value: 5 (Max.=5)
3.3	Population Served within 2 Miles: $\sqrt{\text{pop.}} = \sqrt{2200} = 46.9 = >$	47Source: 9,10 Value: 47
3.4	Area Irrigated by (Groundwater) Wells within 2 miles: $0.75\sqrt{\text{no.acres}} = 0.75\sqrt{597} = (0.75)(24.4) = 18.3 => 18$	Source: 10 Value: 18 (Max.=50)
4.0	RELEASE Explain basis for scoring a release to ground water: No documentation	Source: 1,6 Value: 0 (Max.=5)

SOURCES USED IN SCORING

- 1. Site Hazard Assessment initial visit by Douglas Hale, October 17, 2001.
- 2. Soil sample analysis reports by Severn Trent Laboratories.
- 3. Soil logs on file at Okanogan County Health District.
- 4. Water Well Reports on file at Okanogan County Health District.
- 5. Washington Department of Ecology, Toxicology Database for Use in Washington Ranking Method Scoring, January 1992.
- 6. Washington Department of Ecology, WARM Scoring Manual, April 1992.
- 7. See attached table identified as Reference 7.
- 8. Flood Insurance Rate Maps (FIRM).
- 9. U.S. EPA SITEINFO GIS Query for lat./long. of site.
- 10. Ecology Water Rights Information System (WRIS).
- 11. Washington Department of Fish & Wildlife StreamNet database.
- 12. GIS data layers provided by Okanogan County Planning Department, composite map is attached as Reference 12.