APPENDIX J SUPPLEMENTARY INVESTIGATION OF SURFACE SEDIMENTS BOULEVARD PARK/STARR ROCK AREA

DATA REPORT

SUPPLEMENTARY INVESTIGATION OF SURFACE SEDIMENTS BOULEVARD PARK/STARR ROCK AREA BELLINGHAM, WASHINGTON

March 17, 1999

Prepared For:

The Department of Ecology and The Port of Bellingham

Prepared By:

ANCHOR ENVIRONMENTAL, L.L.C. 1411 4th Avenue, Suite 1210 Seattle, WA 98101 (206) 287-9130

TABLE OF CONTENTS

1 STUDY OBJECTIVES
2 REPORT ORGANIZATION
3 FIELD ACTIVITIES
3 MELD ACTIVITIES
3.1.1 Specific Sampling Objectives
3.1.2 Contaminants of Potential Concern
3.1.3 Brief Overview of Analytical Scheme
3.2 SAMPLE COLLECTION
3.3 FIELD MEASUREMENTS
3.4 DEVIATIONS FROM WORK PLAN
3.5 FIELD QUALITY ASSURANCE SAMPLES
3.5.1 Field Homogenization Duplicate Sample
3.5.2 Field Blank Samples
7
4 RESULTS
4.1.1 Methods7
4.1.2 Data Quality Assessment
4.1.3 Sediment Quality Screening Level Exceedances
4.1.5 Sediment Quanty 4.2 Confirmatory Bioassay Testing REsults
4.2 CONTRIMATOR District 8
9 IO L constation Criteria
5 CONCLUSIONS11
6 REFERENCES

i

1 STUDY OBJECTIVES

The objective of this investigation was to evaluate surface sediment samples to further delineate cleanup boundaries within the Boulevard Park/Starr Rock (Starr Rock) areas (Figure 1). Sediment sampling stations included areas where previous investigations had documented the presence of surface sediments exceeding Sediment Quality Standards (SQS) chemical criteria. The overall objectives of this investigation were twofold: (1) to determine whether surface sediments from Starr Rock comply with Washington State Sediment Management Standards (SMS) interpretive criteria, based on confirmatory biological testing; and (2) to determine whether Boulevard Park and Starr Rock can be identified as a single contiguous cleanup area. Chemicals of potential concern addressed by this investigation include metals (especially mercury), polycyclic aromatic hydrocarbons (PAHs), phenol, 4-methylphenol, and woody debris.

2 REPORT ORGANIZATION

This report presents the results of the sampling and analysis program as described in the project Work Plan (Anchor Environmental, 1998a). This report is organized as follows:

- Section 1 Study Objectives;
- Section 2 Report Organization;
- Section 3 Field Activities;
- Section 4 Results;
- Section 5 Conclusions; and
- Section 6 References.

Figures and Tables compiling and illustrating the data are presented at the end of this document.

Appendices providing supporting project documentation and are organized as follows:

- Appendix A Chemistry Data Validation Report;
- Appendix B Bioassay Testing Data Validation Report; and
- Appendix C Bioassay Testing Data Report.

3 FIELD ACTIVITIES

Surface sediment sampling was conducted in Bellingham Bay in the vicinity of Starr Rock on October 26, 1998. Six surface sediment samples were collected, as depicted in Figure 1. In addition, three reference sediment samples were collected on October 29, 1998 from Carr Inlet, located in south Puget Sound, as reference samples for confirmatory bioassay testing. Sampling was performed by Anchor Environmental, EVS Solutions, Inc., and subcontractor personnel. A brief overview of the Work Plan, descriptions of the field activities, deviations from the Work Plan, and field quality assurance (QA) samples collected during this investigation are discussed in this section.

3.1 WORK PLAN

A project Work Plan (Anchor Environmental, 1998a) was submitted for review to the Washington State Department of Ecology (Ecology), and was approved and implemented in October of 1998. The Work Plan addressed the tasks and management strategies necessary to support and complete the Boulevard Park/Starr Rock Supplementary Investigation of Surface Sediments.

3.1.1 Specific Sampling Objectives

The approved Work Plan set forth the objectives and decision points necessary to determine whether sediments from Starr Rock comply with SMS interpretive criteria, based on confirmatory bioassay testing, and whether Boulevard Park and Starr Rock can be identified as a contiguous cleanup area. Figure 2 summarizes the key decision points identified in the Work Plan.

3.1.2 <u>Contaminants of Potential Concern</u>

Contaminants of potential concern were identified based on a review of historical data (Ecology and Environment, 1991; and Ecology 1998). Mercury, PAHs, and phenolic compounds were identified as site-specific contaminants of potential concern.

3.1.3 Brief Overview of Analytical Scheme

A tiered analytical approach was used in this investigation in which the necessity of bioassay testing was contingent on preliminary chemistry results and/or observed woody debris at the designated sampling locations. The analytical scheme for this investigation is outlined in Figure 2.

In summary, surface sediment samples were subjected to confirmatory bioassay testing if they exceeded the sediment quality standard (SQS) chemical criteria for one or more target compounds, and/or observed woody debris in the sample was greater than 20 percent (by volume).

3

3.2 SAMPLE COLLECTION

Surface sediment sampling, decontamination, and processing were conducted in accordance with the approved Work Plan (Anchor Environmental, 1998a). Sampling locations are presented in Figure 1. Station coordinates, alpha-numeric station identifiers, collection date and time, water depth, mudline elevation, and physical descriptions of the surface sediment collected at each sampling station are presented in Table 1. Surface sediment sampling equipment was deployed from the R/V Nancy Anne research vessel equipped with a hydraulic A-frame, variable speed winch, seawater wash-down hose, depth sounder, and Trimble sub-meter differential Global Positioning System (DGPS) for station positioning. A 3-meter accuracy NorthStar GPS unit served as a backup system for station positioning. Surface sediment sample collection procedures are discussed below.

Six surface sediment samples were collected in the vicinity of Starr Rock. The top 10-cm of surface sediments were collected at each station using a hydraulic-operated, oversized van Veen sampler. This sampler is patented and operated by Marine Sampling Systems under the direction of Bill Jaworski and has been effective in improving sediment penetration recovery. The top 10cm of surface sediments were collected from the van Veen for chemical, physical, and biological testing following Puget Sound Estuary Program (PSEP) protocols (PSEP, 1986; with 1997 updates). All surface sediment samples were collected and processed in accordance with the Work Plan. Only one sampler deployment was required to obtain the sediment volume necessary for chemical and biological testing.

All sediment collection and processing equipment was decontaminated in accordance with the Work Plan prior to being used at each station. Surface sediment samples were processed on board the R/V Nancy Anne immediately upon collection. Sample processing involved the following:

- Once the sediment sample was brought on board, it was evaluated with respect to PSEP acceptability criteria (overlying water was present, overlying water had low turbidity, van Veen sampler was not overfilled, and sediment surface was undisturbed);
- Overlying water was siphoned off and a stainless steel spoon was used to collect the upper 10-cm of sediment from inside the van Veen sampler, taking care not to collect sediment in contact with the sides/surface of the van Veen sampler;
- The upper 10-cm of sediment collected from each sampler deployment at the sampling station was combined and homogenized in a high density polyethylene (HDPE) bucket using . a variable speed drill fitted with a stainless steel paddle;
- Homogenized sediment was then placed immediately into appropriate sample containers; and
- The sample containers were labeled, placed in re-sealable plastic bags, wrapped in bubble wrap, and placed on ice in coolers for transport to the laboratories.

Samples were shipped via Federal Express to Analytical Resources, Inc. in Seattle, Washington for chemical parameter analyses. Samples were shipped via courier to EVS Environment Consultants Laboratory in North Vancouver, British Columbia, Canada for biological testing.

3.3 FIELD MEASUREMENTS

Field measurements made at each sampling station included water depth, station location, field grain size determinations, and visual estimates of percent woody debris by volume. Field measurement data are summarized in Table 1. Water depths were corrected for mean lower low water (MLLW) using tide gage readings which were downloaded from the National Oceanic and Atmospheric Administration's tide gage located at Cherry Point in the Strait of Georgia just north of Bellingham Bay.

Preliminary determinations of percent fines were made in the field by wet sieving approximately 50-mL of homogenized sediment sample through a 62.5-µm sieve. The field grain size determination procedure separated the sediment into two fractions: 1) greater than 62.5-µm (i.e., sand and gravel); and 2) less than 62.5-µm (i.e., silt and clay). Field grain size results were used to select appropriate reference sites for the bioassay testing.

3.4 DEVIATIONS FROM WORK PLAN

No deviations from the Work Plan occurred during this investigation.

3.5 FIELD QUALITY ASSURANCE SAMPLES

Field quality assurance (QA) samples were collected as part of the Whatcom Waterway Addendum No. 3 investigation (Anchor Environmental, 1998b). The Whatcom Waterway Addendum No. 3 and Starr Rock sediment sampling were conducted as one event. Therefore, the field QA samples collected as part of the Whatcom Waterway Addendum No. 3 investigation also apply to the Starr Rock investigation.

Field QA samples were collected to assess potential problems as a result of sample collection and/or sample processing in the field. One field homogenization duplicate, one field equipment rinsate blank, and one distilled water blank were submitted as discrete blind samples to the laboratory for analyses. Field QA sample results are presented in Table 2. Field QA sample results and their impacts on data quality are discussed in this section. The field homogenization duplicate was analyzed for all parameters, whereas the rinsate and distilled water blanks were analyzed for metals and organic compounds only. The QA sample results corroborated the accuracy and precision of chemical determinations performed during this investigation.

3.5.1 Field Homogenization Duplicate Sample

One field homogenization duplicate sample was collected at Station AN-SC-70 (at the mouth of Whatcom Waterway) and submitted to the laboratory as a discrete blind sample. The field homogenization duplicate consists of a split from a homogenized sample. The purpose of obtaining and analyzing the field homogenization duplicate was to assess the sample handling and field homogenization techniques. In general, field replicate results are considered acceptable if they are within an order of magnitude of one another. Relative percent difference values for the field duplicate ranged from 0 to 58 percent, with the exception of gravel, indicating that the sediment handling and homogenization techniques did not impact the quality of analytical results obtained for this investigation. The relative percent difference for gravel was elevated due to the relatively small amount present in the sample.

3.5.2 Field Blank Samples

One equipment rinsate blank and one distilled water blank were submitted to the laboratory as discrete blind samples. The rinsate blank was collected immediately following equipment decontamination associated with sediment collection at Station AN-SC-82. The rinsate blank was prepared by pouring distilled water over the decontaminated sampling and compositing equipment into a pre-preserved sample jar. The distilled water blank was collected by pouring the distilled water directly from it's container into a pre-preserved sample jar. The purpose of the equipment rinsate and distilled water blanks was to assess the degree to which a parameter of interest was added or removed during field operations such as equipment decontamination. Zinc was detected in the equipment rinsate blank at 0.101 mg/L. This amount is considered negligible with respect to the amount of sediment collected (greater than 10-L at most stations), and therefore did not affect the quality of the data collected.

4 RESULTS

4.1 CHEMISTRY RESULTS

This section discusses chemical testing results for surface sediment samples collected during the Starr Rock investigation. Six surface sediment samples were collected during the field effort, at locations depicted on Figure 1. All samples were obtained using standard field procedures outlined in Section 3. Sediment samples were submitted to Analytical Resources Inc. of Seattle, Washington, for chemical testing. Validated chemical analytical results for these samples are presented in Table 3. A brief review of laboratory data quality, a comparison of sample results to the sediment quality criteria, and descriptions of spatial distributions of key contaminants are discussed below.

Methods 4.1.1

All sediment samples were analyzed in accordance with the methods outlined in the Work Plan.

Data Quality Assessment 4.1.2

The overall data quality objectives for collection and chemical testing of sediment samples were met, as set forth in the Work Plan, and the data for this project are considered acceptable for use as qualified. The data validation report, prepared by Quality By Design, is presented in Appendix A.

Sediment Quality Screening Level Exceedances 4.1.3

As set forth in the Work Plan, screening-level benchmarks of sediment quality used for this investigation were based on current Washington State regulations. The Sediment Management Standards (SMS) were developed by the Washington State Department of Ecology to reduce and ultimately eliminate adverse effects on biological resources. The SMS establish two sets of numerical chemical criteria against which surface sediment chemical concentrations are evaluated. The more conservative Sediment Quality Standard (SQS) provides a regulatory goal by identifying surface sediments that are predicted to have no adverse effects (chronic or acute) on biological resources and do not pose a significant risk to humans. The higher Minimum Cleanup Level (MCUL) identifies sediments which may be associated with minor adverse effects to some sensitive species.

Mercury concentrations in surface sediments exceeded SQS criteria (0.41 mg/kg) at five of the six stations, including two in which MCUL criteria (0.59 mg/kg) were also exceeded and two in which the inner Bellingham Bay bioaccumulation screening level (1.2 mg/kg) were exceeded. PAH concentrations in surface sediments exceeded SQS criteria at only one station (AN-SS-301). Surface sediment concentrations at Station AN-SS-301 exceeded SQS criteria for indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. Woody debris exceeded the SMS screening criterion of 50 percent by volume (Kendall and Michelsen, 1997) in one sample (AN-SS-305). Individual sample exceedances of SQS and MCUL chemical criteria are highlighted in Table 3 and are depicted on Figures 1 and 2.

Due to matrix interferences, detection limits exceeding SQS criteria were observed for

hexachlorobenzene at all stations except AN-SS-304 and AN-SS-305, and for 2,4dimethylphenol at station AN-SS-301. However, since all sediment samples were submitted for confirmatory bioassay testing (Section 4.2), this result did not affect overall data quality.

Based on the sediment quality screening level evaluation, mercury, woody debris, and high molecular weight PAHs were the only chemical parameters that exceeded SQS chemical criteria.

4.2 CONFIRMATORY BIOASSAY TESTING RESULTS

This section summarizes the investigation of biological effects in marine sediments at Starr Rock. Three toxicity tests were conducted on all six sediment samples collected during this study:

- 10-day amphipod mortality test using Eohaustorius estuarius;
- 48-hour larval development test using the mussel Mytilus galloprovincialis; and
- 20-day juvenile polychaete growth test using Neanthes arenaceodentata.

All three tests were performed by the EVS Environment Consultants Toxicity Testing Laboratory, North Vancouver, BC. This section provides a brief description of the testing methods, a summary of the quality assurance/quality control (QA/QC) review, results from the three toxicity tests, and comparisons of the toxicity test results with SMS interpretive criteria.

Methods 4.2.1

Sediment samples from nine stations were submitted for toxicity testing (six test samples from Starr Rock and 3 reference samples from Carr Inlet).

Sediment samples were received by the laboratory between October 28 and 30, 1998, and stored in the dark at 4°C until testing was initiated. The amphipod toxicity tests were initiated on November 6 and 9, 1998. The bivalve larval development toxicity tests were initiated on November 15, 1998. The juvenile polychaete toxicity tests were initiated on December 8, 1998.

The three reference sediment samples were included in each test series, as were the required controls. Toxicity tests were conducted in accordance with protocols outlined in the Work Plan.

Testing followed protocols recommended by PSEP (1995) and subsequent Sediment Management Annual Review Meeting (SMARM) updates (PSDDA 1996). The endpoints measured included survival and sediment avoidance of amphipods, survival and percent abnormality of bivalve larvae, and mortality and growth of polychaetes. Under the SMS, the endpoints of interest are percent mortality for amphipods, percent normal survival for bivalve larvae, and mean individual growth for polychaetes.

Prior to test initiation, the porewater ammonia measurements from two reference samples (CR-22 at 23.2 mg-N/L and CR-23W at 22.8 mg-N/L), exceeded the target value of 15 mg-N/L, prompting the initiation of the ammonia purging protocol. A separate test series was initiated for these samples that included ammonia purging. Sample CR-10 and a negative control sample

were also included in the ammonia purging test series. The results of this testing series are discussed in Section 4.2.3.

As set forth in the SMS, the determination of whether adverse effects are observed in a test sediment is established in part by a pairwise statistical comparison of test sediment with that collected from an appropriate reference station. Prior to statistical analysis, data expressed as percentages were transformed using the arcsine-square root transformation. Prior to hypothesis testing, assumptions of normality and homogeneity of variance of the replicate endpoint data were tested using the Wilk-Shapiro test (W test) and Cochran's test (F test for variances), respectively. For all three endpoints of interest under the SMS, the data were not normally distributed. Therefore, a nonparametric test (Mann-Whitney U test) was used for the hypothesis testing. The statistics were then compared to interpretive criteria for biological effects to yield pass/fail evaluations for each test sample.

Test statistics were interpreted according to the SMS interpretive criteria for biological effects as promulgated in the State of Washington Administrative Code (WAC) established for sediment quality standards (SQS) (WAC 173-204-320) and for minimum cleanup levels (MCUL) (WAC 173-204-520). Table 4 summarizes the biological effects interpretive criteria.

A sediment sample from a given station fails the overall MCUL biological criteria if:

Two of the biological tests exceed the SQS biological criteria presented in Table 4

OR

One of the biological tests exceeds the MCUL biological criteria presented in Table 4

4.2.2 Data Quality Assessment

All toxicity test results included in this report were deemed acceptable for use as outlined in the Work Plans (Anchor 1998a,b) and QAPP (Hart Crowser 1996).

Appendix B describes the general procedures used to conduct the toxicity tests, discusses specific deviations from environmental test parameters for each type of toxicity test, and presents an evaluation of the effects of these deviations. Please refer to the quality assurance review for additional details on test performance and acceptability.

4.2.3 <u>Comparison to SMS Interpretation Criteria</u>

The results for the individual replicates of the amphipod (*E. estuarius*), bivalve larvae (*M. galloprovincialis*), and juvenile polychaete (*N. arenaceodentata*) toxicity tests are presented in Tables 5, 6, and 7, respectively. The comparative grain-size data, biological effects data, and results of comparisons with interpretive criteria for biological effects are summarized in Tables 8 and 9. The laboratory data report for all toxicity tests are provided in Appendix C.

The selection of appropriate reference stations for comparison with test sediments was based on the percent of fine-grained sediments (silt and clay) in the samples (Table 8). The Starr Rock sediment samples ranged from 5.6 to 96.1 percent fine-grained material. By comparison, the percent fines in the Carr Inlet reference sediment samples ranged from 13.5 to 88.9 percent. For three Starr Rock test samples (AN-SS-301, AN-SS-305, and AN-SS-306), the closest matching

9

reference sediment sample had more than a 20 percent difference in percent fines. Nevertheless, appropriate SMS reference site comparisons were supported by the available data.

Results for the negative control and reference sediments for the amphipod test, the bivalve larval development test, and the juvenile polychaete growth test all met the performance requirements of the SMS standards. The toxicity test results for the negative control and reference sediments are summarized in Table 9.

Tables 10 through 12 summarize the results of the toxicity tests using *E. estuarius*, *M. galloprovincialis*, and *N. arenaceodentata*, respectively. These tables list the means and standard deviations of the measured endpoints, results of the statistical comparison with the reference sediments, and whether the results passed or failed the SQS and MCUL biological effects interpretive criteria.

The mean survival in all test sediments for the 10-day amphipod test using *E. estuarius* was 76 percent or greater. All test sediments passed both the SQS and MCUL criteria for amphipod mortality.

The mean normal survival for the 48-hour bivalve larval test using *M. galloprovincialis* ranged from 58.5 percent to 73.2 percent. All test sediments passed both the SQS and MCUL criteria for bivalve mean normal survivorship.

The survival in the *N. arenaceodentata* control was 60 percent, attributable to two of the replicates becoming anoxic. The survival in the three replicates that did not become anoxic was 93 percent. The mean individual growth across all of the *N. arenaceodentata* control replicates was 0.43 mg/individual/day; the growth in the three replicates that did not become anoxic was 0.53 mg/individual/day. The mean individual growth of *N. arenaceodentata* in the test sediment ranged from 0.49 to 0.67 mg/individual/day. Regardless of the control comparison, all of the sediments tested with *N. arenaceodentata* passed both SMS and MCUL biological criteria.

10

5 CONCLUSIONS

No biological responses were observed in the *E. estuarius*, *M. galloprovincialis*, or *N. arenaceodentata* toxicity tests that resulted in a failure of the SMS or MCUL biological criteria. Thus, elevated (above SQS criteria) chemical concentrations of mercury, PAHs, and woody debris were not associated with adverse ecological effects as determined by the most recent confirmatory bioassay tests. Nevertheless, two samples tested in 1996 (HC-SS-03 and HC-SS-08), which were not retested during this survey, did not exceed SQS or MCUL biological effects criteria. Further, two samples (AN-SS-303 and AN-SS-305) collected in 1998 contained mercury concentrations that exceeded the inner Bellingham Bay bioaccumulation screening level of 1.2 mg/kg. The contiguous area represented by these samples, including portions of the former Starr Rock sediment disposal mounds, are therefore targeted for prospective cleanup actions, as depicted in Figure 1.

6 REFERENCES

Anchor Environmental, 1998a. Supplementary Investigation of Surface Sediments, Boulevard Park/Starr Rock Area, Bellingham, Washington. Prepared for the Washington State Department of Ecology, Seattle, Washington, and the Port of Bellingham, Bellingham Washington. October 19, 1998.

Anchor Environmental, 1998b. Addendum No. 3, Remedial Investigation/Feasibility Study Project Plans, Whatcom Waterway Area, Bellingham, Washington. Prepared for Georgia-Pacific West Corporation, Bellingham, Washington. October 19, 1998.

Ecology, 1998. Chemical evaluation of intertidal sediments at Boulevard Park, Bellingham, WA. Ecology Report 98-308x. Waterbody No. WA-01-0050. Prepared by Dale Norton and John Summers, Washington State Department of Ecology, Olympia, Washington. April 1998.

Ecology and Environment, 1991. Site Hazardous Assessment for Boulevard Park, Bellingham, WA. Prepared by Ecology and Environment, Seattle, Washington.

Hart Crowser. 1996. Final remedial investigation/feasibility study quality assurance project plan, Whatcom Waterway Site, Bellingham, Washington. Prepared for Georgia-Pacific West Corporation.

Kendall, David and Teresa Michelsen. 1997. Management of Wood Waste Under Dredged Material Management Programs (DMMP) and the Sediment Management Standards (SMS) Cleanup Program. DMMP Clarification Paper and SMS Technical Information Memorandum.

PSDDA. 1996. Sediment Management Program biennial report. Dredging years 1994/1995. PSDDA/SMS clarification paper. Puget Sound Dredged Disposal Analysis Program. U.S. Environmental Protection Agency, Region 10, Office of Puget Sound, and U.S. Army Corps of Engineers, Seattle District, Seattle, WA.

PSEP. 1986 as updated in 1989, 1991, 1995, and 1997. Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound. Puget Sound Estuary Program.

PSEP. 1995. Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. Final report. Prepared by PTI Environmental Services, Bellevue, WA, for U.S. Environmental Protection Agency, Region 10, Office of Puget Sound, and U.S. Army Corps of Engineers, Seattle, WA.

ANCHOR

	BLVD 1	AN-SS-301
	0.10 J	1.0
-	43	35
;)	16	15
)	49	39
	N/A	pass

SURFACE SEDIMENT SAMPLING LOCATIONS BOULEVARD PARK/STARR ROCK **BELLINGHAM, WASHINGTON**

DAGEA CITINGALADA

			Station Coordin	ates (NAD 27)	Water Depth	0		Penetration	Sample	Sediment			Field Wet Sieving	Estimated	
ation ID	Date	Time	Northing	Easting	in feet (MLLW)	Samples Collected	Sample Type	化学会 化学生物学的 医马克尔氏 医外外的 人名	Analyses		Sediment Color	Sediment Odor	Results (<62 um)	Wood Waste	General Sediment Observations
nr Rock/Boul	evard Park										Г	1			
		17.10	000005 014	1238281.501	5.4	AN-SS-301	Sediment	18	Bioassay, Chemistry	fine sand, silt clay, organic matter	black, top 1 cm D.O.	slight H₂S	30%	<10%	
AN-SS-301	10/26/98	17:40	636835.814					05	Bioassay, Chemistry	silt clay	D.O.	very slight H ₂ S	94%	0%	one red rock crab
AN-SS-302	10/26/98	17:11	637297.580	1238303.571	22.8	AN-SS-302	Sediment	25	Bioassay,		D.O.	slight H ₂ S	60%	30-40%	tube worms, five 3 to 4-in long pieces of wood were removed from the sample pric homogenizing
AN-SS-303	10/26/98	15:50	637855.589	1238094.387	20.7	AN-SS-303	Sediment	27	Chemistry Bioassay, Chemistry	silt clay gravel, medium sand, silt clay	black	strong H ₂ S	4%	<5%	shell fragments, one 2x4-in brick was removed from sample prior to homogeni
AN-SS-304	10/26/98	10:32	636565.992	1238102.654	-0.1	AN-SS-304	Sediment	17	Bioassay,	silt clay, organic		strong H ₂ S	24%	>50%	trace shell fragments and small snails
AN-SS-305	10/26/98	11:47	636779.487	1237793.461	12.9	AN-SS-305	Sediment	23	Bioassay,	fine sand silt cla	y black, top 3 cm D.O.	none	30%	0%	grab sample attempts at the original sta failed due to the presence of large rocks shells; station location was slightly offse obtain sediment; final sample observation include whole clam shells, shell fragme and tube worms.
	10/26/98	15:08	637035.019	1237509.327	18.7	AN-SS-306	Sediment	15	Chemistry	This said, shi old					
rr inlet Refer					10.0	CR-10	Sediment		Bioassay	silt	olive brown	none	87%		maldanids
CR-10	10/29/98	11:02	127740.120	1185775.009	46.8		Sediment		Bioassay	silty sand	olive brown	none	16%		ophiuroids
CR-22S CR-23W	10/29/98	12:43 14:26	126838.062 126936.210	1183188.643 1183432.433	26.4 33.8	CR-22S CR-23W	Sediment		Bioassay	silty sand	olive brown	none	38%		ophiuroids

Locations are in State Plane coordinates NAD 83 North Zone datum.

ABLE 2. FIELD QU	ALITY ASSI	JRANCE SH		RES STAT	T	AN	-SC-70	-	AN-SC-200	<u> </u>	AN-SC-70
ABLE 2. FILLE C	Sample ID				「「相称」		I-SC-70		AN-SC-70 homogeniza duplicate	etion	Relative Percent
	Sample Type	Equipment Rins	ate Blank	Field Bla	110-18-20		diment	24 60	Sedimen		Difference
	Matrix	Water	0.001282.01745	Water	and the second se	and the second second	ation Qualifie	er Cr	oncentration	Qualifier	
	Units	Concentration	Qualifier	Concentration	Quanner	Guilt					77
arameter	C			1 114	T	0.9		T	0.4	J	77
onventionals	%	NA		NA		7.4		T	7.1	ļ'	
Gravel	%	NA		NA	+	51.5		T	52.0		1
Sand	%	NA		NA	+	40.3			40.5		0
Silt	%	NA		NA	+	91.8		T	92.5		1
Clay	%	NA	T	NA		2.4		T	2.6		8
Fines	%	NA	Τ	NA		37.8			35.4		7
Total organic carbon		NA	T	NA		7.4		-	7.4	T	0
Total solids	%	NA		NA		1.5					
рН	pH units							T		J	40
Fotal Metals	ug/L (water) mg/kg	.a	Τ.,	4	υ	0.9	a J	4	0.6		
	(sediment)	4	U			1 0.0	-		0.70		19
Cadmium	ug/L (water) mg/kg	⁽⁹ 0.2	U	0.2	U	0.8	5	-+			1
Mercury	(sediment) ug/L (water) mg/kg	Kg	+	10	U	100	0		99		
	(sediment)	101									
Zinc						1			30		0
LPAHs	ug/L (water)	1.0	U	1.0	U	30	<u>}</u>	-+		1	NA
2-Methylnaphthalene	ug/kg (sediment) ug/L (water)			10	U	19	9	U	20	U	
	ug/kg (sediment)	1.0	U	1.0				1	20	U	NA
Acenaphthene	ug/L (water)		U	1.0	U	2	20	-+			39
Acenapthylene	ug/kg (sediment)	1) 1.0		_	U		10		27		
	ug/L (water) ug/kg (sediment)	i) 1.0	U	1.0					21		21
Anthracene	ug/L (water)		U	1.0	U	2	26				0
Fluorene	ug/kg (sediment)	nt) 1.0			U	1	60		160		
	ug/L (water) ug/kg (sediment	nt) 1.0	U	1.0	<u> </u>				140		19
Naphthalene	ug/L (water)		U	1.0	U	1	170				
Phenanthrene	ug/kg (sediment	nt) 1.0	<u> </u>		T		465	/	418		11
	ug/L (water) ug/kg (sedimen	nt) NA		NA							
Total LPAHs	ug/ng (<u></u>							45		6
HPAHs	ug/L (water)	10	U	1.0	U		48		40		
Benzo(a)anthracene	ug/kg (sedimen	ent) 1.0	<u> </u>	0			49		46		6
	ug/L (water) ug/kg (sedimer	ent) 1.0		U 1.0					65		30
Benzo(a)pyrene	ug/L (water)			U 1.0		υ	48		65		
Benzo(b)fluoranthene	ug/kg (sedimer	ent) 1.0	<u> </u>				31		30		3
	ug/L (water) ug/kg (sedimer	ent) 1.0	'	U 1.0	<u> </u>	U			19		44
Benzo(g,h,i)perylene	un/l (water)			11 1.0	1	υ	77		49		
Benzo(k)fluoranthene	ug/kg (sedime	ent) 1.0		~			74		66		1
	ug/L (water) ug/kg (sedime	nent) 1.0		U 1.0		U			20		U N
Chrysene	ug/L (water)			U 1.0		U	19	U	20		-
Dibenzo(a,h)anthracen	ug/kg (sedime	nent) 1.0					210		200		
	ug/L (water) ug/kg (sedime	nent) 1.0		U 1.0		U					1
Fluoranthene	uo/L (water)					υ	32		27	-+	
Indeno(1,2,3-cd)pyren	ne ug/kg (sedim	nent) 1.0	-+				260	_	230		
Indeno(1,2,0 - // /	ug/L (water) ug/kg (sedim			U 1.0		U	260		5.12		
Pyrene	Uo/L (water)			NA			125		114	-+	
Benzo(b+k)fluoranthe	ug/kg (sedim	ment) NA					848		778		
Benzo(Di Kjinect	ug/kg (sedim			NA	A L		840 1				

TABLE 3 SURFACE SEDIMENT CHEMISTRY DATA

		MISTRY			Z036	-	Z036	T	Z036	T	Z036	1	Z036	Z036
		Washing	on State	Survey	98-007-03		98-007-03		98-007-03		98-007-03		98-007-03	98-007-03
		Sedir		Date	10/26/98		10/26/98		10/26/98		10/26/98		10/26/98	10/26/98
1		Chemica		Station and									AN-SS-305	AN-SS-306
Parameter	Units	SQS	CSL	Sample ID	AN-SS-30	1	AN-SS-30	2	AN-SS-303	+	AN-SS-304		AN-55-505	711-00-000
Metals in mg/kg dry weight					12		8	- 1	12		3	1	14	12
Arsenic	(mg/kg)	57	93		12 0.9 J	\rightarrow	1.0 L		0.6 J	+	1.0 U	+	0.8 J	0.8 J
Cadmium	(mg/kg)	5.1 260	6.7 270		67	-+	79	-	79	+	16		52	56
Chromium	(mg/kg)	390	390		51	\rightarrow	54		52		22		47	41
Copper	(mg/kg) (mg/kg)	450	530		29		20 1	,	25		29		44	20 U
Lead	(mg/kg)	0.41	0.59		1.0		0.45		2.9	RU	0.062 J		1.5	0.74
Mercury Silver	(mg/kg)	6.1	6.1		2.0 U		2.0 L		2.0 U		2.0 U		2.0 U	2.0 U
Zinc	(mg/kg)	410	960		90		106		108		72	_	83	92
Conventional Parameters	(mg/ng/											-	15	0.7
Gravel	%				2.3		0.0		4.3	_	5.6	\rightarrow	1.5	2.7
Sand	%				39.0		3.8		15.3	_	88.8	-	37.6	39.0
Silt	%				32.0	_	58.3		43.9	+	2.4	\rightarrow	29.4	28.5
Clay	%				26.8		37.9		36.4		3.2	\rightarrow	61.0	67.5
Fines	%				58.8	_	96.2	\rightarrow	80.3 36.7	+	55.8	\rightarrow	28.2	45.9
Total solids	%				33.2		38.0 2.6	\rightarrow	4.1	+	9.2	-+	13	2.8
Total organic carbon	%				8.8	-	7.5	\rightarrow	7.6		8.1		7.5	7.7
pН	pH units				1.0		1.0	-+	1.0		0.1			
LPAHs in mg/kg TOC			170		16		9.2		2.0	+	7.7	\rightarrow	7.7	1.8
Naphthalene	(mg/kg)	99	170		8.0		3.8		0.49 U		2.4		0.85	0.68 U
Acenaphthylene	(mg/kg)	66 16	66 57		2.6	-	1.3		0.49 U		1.1	Î	0.58	0.68 U
Acenaphthene	(mg/kg)	23	79		4.9	-	2.5	-1	0.49 U		2.4	T	1.2	0.68 U
Flourene	(mg/kg)	100	480		27		12		2.2	1	21 E		6.2	3.9
Phenanthrene	(mg/kg)	220			16		6.9		0.61	T	5.2		2.2	0.89
Anthracene	(mg/kg)	38	64		6.5		2.6	Î	0.61		1.7		1.4	0.68 U
2-Methylnaphthalene	(mg/kg)	370	780		81	1	39		6.9		42		20	9.4
Total LPAHs ⁽²⁾	(mg/kg)	370	780							Ť		Î		
					{			Ì		Ť				
HPAHs in mg/kg TOC	(malka)	160	1200		63	E	33		2.9		37 E		8.5	7.1
Fluoranthene	(mg/kg) (mg/kg)	1000			108		46		4.9		33 E	=	13	7.5
Pyrene	(mg/kg)	110			57		21	1	1.0		15		4.8	3.1
Benzo(a)anthracene Chrysene	(mg/kg)	110			56		23		1.5		15		4.8	3.6
Benzo(b)fluoranthene	(mg/kg)				60	E]	19		1.8		16		4.7	6.1
Benzo(k)fluoranthene	(mg/kg)				30		20		0.98		13	_	3.9	3.9
Total benzofluoranthenes ⁽¹⁾	(mg/kg)	230	450		90	E	39		2.8		29		8.6	10
Benzo(a)pyrene	(mg/kg)	99			68	E	28		1.3		20 0	E	6.0	4.3
Indeno(1,2,3-cd)pyrene	(mg/kg)	34			42	E	15		0.83		13		3.7	3.5
Dibenzo(a,h)anthracene	(mg/kg)	12			15		3.8		0.49 U		3.3	_	1.3	1.1
Benzo(g,h,i)perylene	(mg/kg)	31	78		35		8.5		0.73	_	11	_	2.8	
Total HPAHs ⁽²⁾	(mg/kg)	960	5300		534	E	219		16		177	E	53	43
Total HEARIS	(inging)													
Phthalates in mg/kg TOC													0.4711	0.68 U
Dimethylphthalate	(mg/kg)	53	53		0.45		0.77		0.49 U		0.21		0.17 U 0.17 U	0.68 U
Diethylphthalate	(mg/kg)	6			0.45		0.77		0.49 L		0.21		0.17 U	0.68 U
Di-n-Butylphthalate	(mg/kg)	220			0.45		0.77		0.49 L		0.21		0.17 U	0.68 U
Butylbenzylphthalate	(mg/kg)	4.9			0.45	U	0.77	U	0.49 L	4	0.21	0	0.49	1.2
Bis(2-ethylhexyl)phthalate	(mg/kg)	4			0.65		2.2	11	1.6 0.49 L	-+	0.03	U	0.17 U	0.68 U
Di-n-Octyl phthalate	(mg/kg)	58	3 4500		0.45	U	0.77	0	0.45 0	-	0.61	-	0.11	
						-								
Semivolatiles in mg/kg TOC					0,45	IT.	0.77	lu -	0.49 0	, 1	0.21	υ	0.17 U	0.68 U
1,2-Dichlorobenzene	(mg/kg)	2.			0.45		0.77	UG	0.49		0.21		0.17 UG	
1,4-Dichlorobenzene	(mg/kg)	3.			0.45		0.77		0.49		0.21		0.17 UG	0.68
1,2,4-Trichlorobenzene	(mg/kg)	0.8			0.45		0.77		0.49 1		0.21		0.17 U	0.68 L
Hexachlorobenzene	(mg/kg)	0.3			2.7	-	2.5		0.54		1.3		1.0	0.68
Dibenzofuran	(mg/kg)				0.45	U	0.77		0.49 1		0.21		0.17 U	0.68
Hexachlorobutadiene	(mg/kg)				0.45		0.77		0.49 (J	0.21	U	0.17 U	0.68 L
N-Nitrosodiphenylamine	(mg/kg)	+'	· ····	1	1									
Semivolatiles in ug/kg dry weig	uht				1									6010
Phenol	(ug/kg)	42	0 1200			UG		G	33 (G	36		52 G	58 0
2-Methylphenol	(ug/kg)	6			40			U	20 0	J	19		22 U	19 L 36
4-Methylphenol	(ug/kg)	67			1 86		190		70		120		190 22 U	19 L
2,4-Dimethylphenol	(ug/kg)	2	9 29	9		U		U	20	U	19	UC	110 UG	
Pentachlorophenol	(ug/kg)		0 690)		UG		UG	99 1	UG		UG	22 U	19/
Benzyl Alcohol	(ug/kg)		7 73			U		U	20			U	220U	190 0
	(ug/kg)				400	111	200	UU	200	U	190	U	22010	1001

Notes:

U indicates undetected at detection limit shown.

E indicates estimated concentrations.
G indicates value greater than minimum shown.
(1) Total benzofluoranthene criterion represents the sum of the concentrations of the b and k isomers. For those with concentrations that were not detected, the detection limit was used in the calculation. The "E" qualifier was attached to the Total benzofluoranthenes value if any of the contributing concentrations were denoted with that qualifier.
(2) Total LPAHs and HPAHs are sum of all contaminants within the subheading. For those with concentrations that were not detected, the detection limit was used in the calculation. The "E" qualifier was attached to the Total LPAHs or HPAHs or sum of all contaminants within the subheading. For those with concentrations were denoted with that qualifier.
Yellow shading denotes exceedance of SQS criteria.
Orange shading denotes exceedance of CSL criteria.
Purple shading denotes exceedance of Inner Bellingham Bay bioaccumulation screening level of 1.2 mg/kg for mercury.
Gray shading denotes detection limit exceeds SQS or CSL criteria.

SQS BIOLOGICAL CRITERIA	MCUL BIOLOGICAL CRITERIA
Sediments are determined to have adverse effects on biological resources when any one of the confirmatory marine sediment biological tests of WAC 173-204-315(1) demonstrates the following results:	The MCUL is exceeded when any two of the biological tests exceed the SQS biological criteria, or one of the following test determinations is made:
 Amphipod: The test sediment has a significantly higher^a mean mortality than the reference sediment, and the test sediment mean mortality exceeds 25 percent, on an absolute basis. 	 Amphipod: The test sediment has a significantly higher^a mean mortality than the reference sediment, and the test sediment mean mortality is more than 30 percent higher than the reference sediment mean mortality, on an absolute basis.
2) Larval: The test sediment has a mean survivorship of normal larvae that is significantly less ^a than the mean normal survivorship in the reference sediment, and the test sediment mean normal survivorship is less than 85 percent of the mean normal survivorship in the reference sediment (i.e., the test sediment has a mean combined abnormality and mortality that is significantly greater ^a than 15 percent relative to time-final in the reference sediment).	2) Larval: The test sediment has a mean survivorship of normal larvae that is significantly less ^a than the mean normal survivorship in the reference sediment, and the test sediment mean normal survivorship is less than 70 percent of the mean normal survivorship in the reference sediment (i.e., the test sediment has a mean combined abnormality and mortality that is significantly greater ^a than 30 percent relative to time-final in the reference sediment).
 3) Juvenile polychaete: The test sediment has a mean individual growth rate that is statistically different^a from the reference sediment mean individual growth rate, and the test sediment has a mean individual growth rate of less than 70 percent of the reference sediment mean individual growth rate. 	3) Juvenile polychaete: The test sediment has a mean individual growth rate that is statistically different ^a from the reference sediment mean individual growth rate, and the test sediment has a mean individual growth rate of less than 50 percent of the reference sediment mean individual growth rate.

Table 4. Sediment standards biological criteria

NOTE: MCUL- Minimum Cleanup Level SQS - Sediment Quality Standards

e

^a Statistical significance is defined using a *t*-test or Mann-Whitney U-test, $\alpha = 0.05$.

			REPLICATE SU	RVIVAL (%)		
_	Α	В	С	D	E	MEAN
Reference Samples	-Non-purge	d				
CR-10	95	95	90	85	90	91
CR-22	100	95	100	100	90	97
CR-23W	95	95	100	95	95	96
Negative control	100	100	95	100	95	98
Reference Samples	-Purged					00
CR-10	90	100	100	100	90	96
CR-22	100	100	100	100	100	100
CR-23W	100	100	100	100	100	100
Negative control	100	100	100	100	90	98
Boulevard Park/Sta	rr Rock Sam	ples—Non-p	urged			
AN-SS-301	75	80	90	90	80	83
AN-SS-302	100	80	75	70	60	77
AN-SS-303	80	85	90	100	70	85
AN-SS-304	100	100	100	95	90	97
AN-SS-305	95	90	90	95	85	91
AN-SS-306	100	85	55	90	50	76

Table 5. Results of individual replicates in 10-day *E. estuarius* toxicity test

		REPLICAT	E PERCENT N	ORMAL SURV	/IVAL (%)	
č <u></u>	А	в	С	D	E	MEAN
Reference ID						
CR-10	66.7	69.5	63.5	82.8	67.7	70.0
CR-22	67.0	68.4	73.0	60.0	74.4	68.6
CR-23W	67.4	73.7	65.3	71.2	66.0	68.7
Negative Control	93.7	98.6	93.0	86.0	87.7	91.8
Sample ID						
Boulevard Park/Star	rr Rock sa	mples				
AN-SS-301	70.5	75.8	74.0	68.8	76.8	73.2
AN-SS-302	73.0	62.8	71.2	67.4	69.5	68.8
AN-SS-303	68.8	71.9	66.0	74.7	72.6	70.8
AN-SS-304	59.7	53.3	57.2	62.5	59.7	58.5
AN-SS-305	66.3	70.5	68.1	64.9	71.9	68.4
AN-SS-306	59.0	65.3	67.4	62.8	66.3	64.1

Table 6. Results of individual replicates in48-hour *M. galloprovincialis* larval toxicity test

		GROWTH RA	TE (mg/indiv	ridual/day dı	y weight)	
-	Α	В	С	D	E	MEAN
Reference ID						0.40
CR-10	0.44	0.44	0.50	0.17	0.62	0.43
CR-22	0.54	0.60	0.64	0.56	0.51	0.57
CR-23W	0.32	0.66	0.53	0.89	0.54	0.59
Negative Control	0.48	0.59	0.12	0.53	0.00*	0.43
Sample ID						
Boulevard Park/Star	rr Rock sam	ples			- 10	0.07
AN-SS-301	0.87	0.49	0.51	1.01	0.48	0.67
AN-SS-302	0.39	0.75	0.33	0.23	0.73	0.49
AN-SS-303	0.74	0.59	0.47	0.47	0.31	0.52
	0.43	0.58	0.82	0.51	0.31	0.53
AN-SS-304	0.000000	0.61	0.74	0.57	0.56	0.60
AN-SS-305	0.50		0.45	0.54	0.72	0.59
AN-SS-306	0.67	0.59	0.40			

Table 7. Results of individual replicates in 20-day *N. arenaceodentata* toxicity test

* 100% mortality

	Fines (Silt + Clay) (%)
eference ID	0 B (0)
CR-10C	88.9
CR-22	13.5
CR-23W	33.8
ample ID	
oulevard Park/Starr Rock sam	ples
AN-SS-301	58.8
AN-SS-302	96.1
AN-SS-303	80.3
AN-SS-304	5.6
AN-SS-305	61
AN-SS-306	67.5

Table 8. Percent fines in data test sediments

Table 9.	Summary of toxicity test results for controls and reference
	stations and comparison to performance criteria

SAMPLE ID	MEAN PERCENT MORTALITY OF <i>E. ESTUARIS</i> ^a	MEAN PERCENT NORMAL SURVIVAL OF M. GALLOPROVINCIALIS ^a	MEAN INDIVIDUAL GROWTH RATE OF <i>N. ARENACEODENTATA</i> (mg/individual/day, dry weight, and percent mortality) ^a
Negative Control Performance criterion Test performance	< 10% mortality 2% (non-purged) 2% (purged)	> 70% normal survival 91.8%	0.38 (< 10% mortality) 0.53 (6.7% mortality) ^b
Reference Sediment Performance criterion CR-10	< 25 % mortality 9% (non-purged)	> 65% of control 76.3%	> 80% of control MIG = 0.4318 (80.8%)
CR-22	4% (purged) 3% (non-purged)	74.7%	MIG = 0.5682 (106.3%)
CR-23W	0% (purged) 4% (non-purged) 0% (purged)	74.8%	MIG = 0.5861 (109.7%)

Mean for five replicate samples. a

Two of the N. arenaceodentata control replicates became anoxic resulting in complete mortality in one and 80% mortality in the other. The data presented are calculated from the remaining three replicates. b

Table 10. Summary of the results of the *E. estuarius* toxicity tests and comparison to Sediment Management Standards criteria

STATION	Test Result (% survival)	Reference	STATISTICAL DIFFERENCE	SQS	MCUL
411.00.001	83	CR-23W	Yes	PASS	PASS
AN-SS-301	77	CR-10	No	PASS	PASS
AN-SS-302		CR-10	No	PASS	PASS
AN-SS-303	85	CR-22	No	PASS	PASS
AN-SS-304	97		Yes	PASS	PASS
AN-SS-305	91	CR-23W		PASS	PASS
AN-SS-306	76	CR-10	No	FASS	17100

SQS - Sediment Quality Standards NOTE: MCUL - Minimum Cleanup Level

> Mean and standard deviation for five replicate samples. а

Statistically significant relative to reference as determined by a Mann-Whitney test at the b $\alpha = 0.05$ level.

STATION	TEST RESULT (% normal survivorship)	Reference	STATISTICAL DIFFERENCE	PERCENT OF REFERENCE	SQS	MCUL
	70.0	CR-23W	No	-	PASS	PASS
N-SS-301	73.2	•••	1.1459	-	PASS	PASS
N-SS-302	68.8	CR-10	No		PASS	PASS
N-SS-303	70.8	CR-10	No	-		1
	58.5	CR-22	Yes	85.3	PASS	PASS
N-SS-304		CR-23W	No	-	PASS	PASS
AN-SS-305	68.4			91.5	PASS	PASS
AN-SS-306	64.1	CR-10	Yes	91.0	17.00	

Table 11. Summary of the results of the *M. galloprovincialis* toxicity testsand comparison to Sediment Management Standards criteria

Table 12. Summary of the results of the N. arenaceodentata toxicity testsand comparison to Sediment Management Standards criteria

STATION	TEST RESULT (mg/ind./day)	REFERENCE	STATISTICAL DIFFERENCE	SQS	MCUL
•		CR-23W	No	PASS	PASS
AN-SS-301	0.6695	0	No	PASS	PASS
AN-SS-302	0.4853	CR-10	26666	PASS	PASS
AN-SS-303	0.5153	CR-10	No		
	0.5294	CR-22	No	PASS	PASS
AN-SS-304		CR-23W	No	PASS	PASS
AN-SS-305	0.5962	•	10.0050	PASS	PASS
AN-SS-306	0.595	CR-10	No	FAGO	17100

(____

Appendix A Chemistry Data Validation Report

(=

Laboratory Quality Assurance Consulting

97 Puhili Street Hilo, Hawaii 96720 Phone: (808) 969-9424 Fax: (808) 969-9094

DATA VALIDATION REPORT

Project Name: Whatcom Waterway Anchor Project 98-030-01 and Boulevard Parks/Starr Rock Area Anchor Project 98-007-03

Type of Samples: Sediments Date of Sampling: October 26-29, 1998

Prepared for:

Anchor Environmental, L.L.C. 1411 Fourth Avenue, Suite 1210 Seattle, WA 98101

QBD Job 173

Reviewed and Approved,

marst-lavis

Thomas S. Davis

Table of Contents

This data validation report consists of the following stand alone sections, each of which is formatted to follow Functional Guidelines but which also include subsections discussing QBD contacts with the laboratory, other comments, and a summary table of data qualifiers.

		Page
A.	Introduction	.1
B.	Sample Receipt and Condition	.4
	Review of Metals Analyses	
	Review of Inorganic Analyses	
E.	Puget Sound Estuary Program Data Qualifier Definitions	
F.		
G.	Summary Table of Data Qualifier Flags	
H.	Revised Laboratory Reports	,20

Attachment 1. Communications with the Laboratory

A. Introduction

Laboratory Sciences, Inc., d.b.a. *Quality by Design* (QBD), has completed an EPA Level II Data Assessment, on the submitted data packages in accordance with the subcontract agreement dated January 18, 1999 with Anchor Environmental, L.L.C.

The reporting format and criteria for recommending data qualifying flags for this data set are described in USEPA "Functional Guidelines for Evaluating Organics Analyses", and "Functional Guidelines for Evaluating Inorganics Analyses", June, 1994, the Statement of Work for Project Numbers 98-030-01 Whatcom Waterway, Addendum 3, 98-007-03 Boulevard Park/Starr Rock (Anchor Environmental, October 1998) and Work Plan for Supplementary Investigation of Surface Sediments Boulevard Park/Starr Rock Area, Bellingham, Washington (Anchor Environmental, October 1998), and "Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound", May 1997 or using criteria listed in the method referenced. Data may be qualified for any of several reasons:

- 1. By the laboratory prior to receipt by the reviewer;
- 2. Because of laboratory deviation from the designated method;
- 3. Because the data may not meet the criteria listed in the reference above; or
- 4. By the professional judgment of the reviewer.

The data set consists of a 1522 page analytical report from Analytical Resources, Inc., in Seattle, Washington. and contains data for the samples shown in Table 1. Grain size analysis was subcontracted to Rosa Environmental and Geotechnical Laboratory and their entire report was included in the data package. The inorganics analysis was subcontracted to Columbia Analytical Services and their entire report was included in the data package.

Each data set includes an analytical data package for each sample, copies of the completed chain-ofcustody forms, and a Quality Control (QC) Data Package. The analytical data package includes analytical results, blank sample results, both laboratory and client sample identifications, appropriate dates but not times, reporting limits, method references, surrogate recoveries as appropriate, the laboratory's name and address, and the initials of the person authorizing release of the data.. The custody forms include the receipt of the sample but not the laboratory's internal tracking. The QC Data Package includes a tabular listing of the laboratory's sample identification, spiking concentrations. recoveries, percentage calculations, and acceptance windows.

The data reviewer and senior reviewer are shown in Table 2.

Data Validation Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 2

Sample Identification	Laboratory Identification	SVOC	Grain Size	Metals	Inorganics
AN-SS-304	98-22425	х	X	Х	x
AN-SS-306	98-22426	Х	x	х	x
AN-SS-305	98-22427	Х	x	Х	x
AN-SS-303	98-22428	х	x	Х	x
AN-SS-302	98-22429	Х	x	Х	x
AN-SS-301	98-22430	X	x	Х	x
AN-SC-84	98-22431	х	x	Х	X
AN-SS-45	98-22432	Х	X	Х	x
AN-SS-47	98-22433	х	x	Х	x
AN-SS-70	98-22434	Х	X	Х	x
AN-SS-200	98-22435	х	x	Х	x
CR-10	98-22571		x		
CR-23W	98-22572		x		
CR-22	98-22573		X		
AN-SS-36	98-22607	Х	x	Х	x
AN-SC-80	98-22608	Х	x	Х	x
AN-SC-71	98-22609	х	x	Х	x
AN-SC-72	98-22610	Х	X	Х	x
AN-SC-73	98-22611	Х	x	Х	x
AN-SC-77	98-22612	Х	x	х	x
AN-SC-78	98-22613	Х	x	х	x
AN-SC-82	98-22614	Х	x	х	x
AN-SC-201	98-22615	Х	x	Х	x
AN-SC-202	98-22616	Х	x	х	x
AN-SC-81	98-22617	Х	x	Х	x
AN-SC-37	98-22618	Х	X	х	x

Table 1. Sample Data Received

Key:

SVOA Metals Inorganics = Semivolatile Organic Analysis

= Metals by ICP and Mercury by Cold Vapor Atomic Absorption

= Classical Wet Chemistry

Data Validation Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 3

Table 2.Data Package, Reviewer, and Senior Reviewer

Analysis	Reviewer	Senior Reviewer
Semivolatile Analysis	Kathy J. Gunderson	Thomas S. Davis
Metals	Carlene McCutcheon	Lorraine L. Davis
Inorganic Chemistry	Carlene McCutcheon	Lorraine L. Davis
Grain Size	Carlene McCutcheon	Lorraine L. Davis

B. Sample Receipt and Condition

The analytical plan and the data packages were reviewed and compared against the chain-of-custody and other data. Except as noted below, no data are missing from the packages and no errors in accuracy were found. All tests requested on the chain-of-custody were performed.

Discussion: The temperature of two of the sample coolers was above the recommended temperature range of 2 to 6°C at the time of sample log-in. The temperature of the coolers containing samples collected October 26, 1998 and October 27, 1998 were 9.0°C. The cooler temperatures for samples collected October 28, 1998 and October 29, 1998 were not recorded. Because the one cooler showed evidence of cooling, because the sampling staff stated that ice had been added to the coolers, and because these analyses are not highly volatile, it is the judgment of the reviewer that this exceedence does not warrant a data qualifier flag.

The chain-of-custody (COC) for samples collected October 27, 1998 was missing the arrow down to indicate the date collected for all samples. Kim Magruder of Anchor Environmental was contacted and verified that all the affected samples were collected October 27, 1998.

Sample AN-SC-80 did not have a matrix listed in the COC. Ms. Magruder indicated the sample was a sediment.

Sample AN-SC-71 was not listed on the COC. It was added by the laboratory at the time of sample receipt.

C. Review of GC/MS Semivolatile Analyses EPA Method 8270

1. Timeliness and a Check for Errors

The analytical plan and the data packages were reviewed and compared against the chain-of-custody and other data. All samples were analyzed within the technical holding times. There are no contractual holding time criteria that have been brought to the attention of the reviewer.

2. GC/MS Tuning and Mass Calibration

All Decafluorotriphenylphosphine (DFTPP) tune criteria were met for the initial calibration and all dates of sample analysis.

3. Initial and Continuing Calibration

Except as noted below, all initial and continuing calibration QC criteria were met. No Target Compound List (TCL) analytes had Percent Relative Standard Deviations (%RSD) greater than that allowed by the method and all continuing calibration criteria were met.

	Analyte Affected	Type of Deviation	Qualifier
Associated Samples		%RSD = 40.4	26 E
AN-SS-45	di-n-Octylphthalate	%RSD = 40.4	58 E
AN-SC-82	di-n-Octylphthalate		98 E
AN-SC-82DL	di-n-Octylphthalate	%RSD = 40.4	76 E
AN-SS-304	bis(2-Ethylhexyl)phthalate	%D = 28.0	120 E
AN-SC-71	bis(2-Ethylhexyl)phthalate	%D = 28.0	
AN-SC-72	bis(2-Ethylhexyl)phthalate	%D = 28.0	140 E
AN-SC-72 AN-SC-73	bis(2-Ethylhexyl)phthalate	%D = 28.0	180 E
	bis(2-Ethylhexyl)phthalate	%D = 28.0	190 E
AN-SC-77	bis(2-Ethylhexyl)phthalate	%D = 28.0	1300 E
AN-SC-82	bis(2-Ethylhexyl)phthalate	%D = 28.0	1400 E
AN-SC-81		%D = 28.0	860 E
AN-SC-37	bis(2-Ethylhexyl)phthalate		

Discussion: The percent relative standard deviation of di-n-Octylphthalate in the initial calibration was above the acceptance criteria of 30%. As specified in *Functional*

Guidelines, only positive results were qualified with "E" for estimated since the relative response factor criteria were met. Non-detects were not qualified.

The percent difference (%D) values for bis(2-Ethylhexyl)phthalate, Benzoic acid, and Pentachlorophenol in several of the continuing calibrations were above the acceptance criteria of 25%. As specified in *Functional Guidelines*, only positive results in associated samples were qualified with "E" for estimated. Non-detects were not qualified.

4. Blanks and Checks for Contamination

Method blank analyses were performed at the required frequencies and no target compounds were detected. Except as noted below, field blanks were analyzed as specified in the Work Plan and were free of target compounds.

Analuta Affected	Type of Deviation	Qualifier
		1400 B
		1300 B
bis(2-Ethylhexyl)phthalate		
bis(2-Ethylhexyl)phthalate	Blank Contamination	860 B
	Analyte Affected bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate	bis(2-Ethylhexyl)phthalateBlank Contaminationbis(2-Ethylhexyl)phthalateBlank Contamination

Discussion: Bis(2-ethylhexyl)phthalate was detected in the rinsate blank AN-SC-201. Per Functional Guidelines, data qualifiers are not required because the concentration in the samples is greater than 10 times the concentration in the blank. The compound bis(2-Ethylhexyl)phthalate has been flagged with "B" in the associated samples per SEDQUAL requirements.

5. Surrogate Recovery

Surrogate analytes were added to all samples and blanks as required by the referenced method. Except as noted below, all percent recovery values were within laboratory and Work Plan criteria.

	Analyte Affected	Type of Deviation	Qualifier
Associated Samples		Surrogate	280 UG
AN-SS-47	Phenol	Surrogate	280 UG
AN-SS-47	2-Methylphenol	0	140 UG
AN-SS-47	4-Methylphenol	Surrogate	410 UG
AN-SS-47	2,4-Dimethylphenol	Surrogate	1400 UG
AN-SS-47	Benzoic Acid	Surrogate	690 UG
AN-SS-47	Pentachlorophenol	Surrogate	690.00

Data Validation Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 7

Discussion: The work plans do not list control limits for the surrogates 2-Chlorophenol- d_4 and 1,2-Dichlorobenzene- d_4 . In addition, the work plan did not list surrogate control limits for water samples. In these cases, the laboratory control limits were used to assess data quality.

The Phenol-d₅ and 2-Chlorophenol-d₄ surrogate recovery values are below acceptance criteria in Sample AN-SS-47 at 26.1% and 27.8%, respectively. Non-detect target analytes in the acid fraction were qualified with "UG" for a low bias.

The 1,2-Dichlorobenzene- d_4 surrogate recovery in the diluted analysis of Sample AN-SS-301 was below the laboratory control limits at 27.2%. Data qualifiers are not required since *Functional Guidelines* allows one surrogate to fail criteria without qualification.

6. Matrix Spike/Matrix Spike Duplicate

Except as noted below, matrix spikes (MS) and matrix spike duplicates (MSD) were analyzed as required by the referenced method and all percent recoveries (%Rec) and relative percent differences (RPD) were within the work plan criteria.

to stated Complex	Analyte Affected	Type of Deviation	Qualifier
Associated Samples	Phenol	MS/MSD	80 UG
AN-SS-301	1,4-Dichlorobenzene	MS/MSD	40 UG
AN-SS-301		MS/MSD	40 UG
AN-SS-301	1,2,4-Trichlorobenzene	MS/MSD	200 UG
AN-SS-301	Pentachlorophenol	MS/MSD	39 UG
AN-SS-302	Phenol	MS/MSD MS/MSD	20 UG
AN-SS-302	1,4-Dichlorobenzene	MS/MSD	20 UG
AN-SS-302	1,2,4-Trichlorobenzene		98 UG
AN-SS-302	Pentachlorophenol		39 UG
AN-SS-303	Phenol	MS/MSD	20 UG
AN-SS-303	1,4-Dichlorobenzene	MS/MSD	20 UG
AN-SS-303	1,2,4-Trichlorobenzene	MS/MSD	
AN-SS-303	Pentachlorophenol	MS/MSD	99 UG
AN-SS-304	Phenol	MS/MSD	38 UG
AN-SS-304	1,4-Dichlorobenzene	MS/MSD	19 UG
AN-SS-304	1,2,4-Trichlorobenzene	MS/MSD	19 UG
AN-SS-304	Pentachlorophenol	MS/MSD	95 UG
AN-SS-305	Phenol	MS/MSD	52 G
AN-SS-305	1,4-Dichlorobenzene	MS/MSD	22 UG

Data Validation Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 8

Associated Samples	Analyte Affected	Type of Deviation	Qualifier
	1,2,4-Trichlorobenzene	MS/MSD	22 UG
AN-SS-305	Pentachlorophenol	MS/MSD	110 UG
AN-SS-305	Phenol	MS/MSD	58 G
AN-SS-306	1,4-Dichlorobenzene	MS/MSD	19 UG
	1,2,4-Trichlorobenzene	MS/MSD	19 UG
AN-SS-306	Pentachlorophenol	MS/MSD	97 UG
AN-SS-306 AN-SC-80	Pyrene	MS/MSD	1200 G

Discussion: The percent recovery values of Phenol, 1,4-Dichlorobenzene, 1,2,4-Trichlorobenzene, and Pentachlorophenol in the sediment MS/MSD associated with the Starr Rock site were below the Work Plan acceptance criteria for accuracy of 60-120%. Due to the pattern of low recovery in the MS, MSD and blank spike, positive results and detection limits for these analytes have been qualified with "G" for a low bias in all Starr Rock sediment samples.

The percent recovery values of Pyrene in the MS and MSD associated with the Whatcom Waterway site are below the Work Plan criteria. Since the Pyrene blank spike recovery is acceptable, only the sample spiked as the MS/MSD (AN-SC-80) was qualified with "G" for a low bias.

It appears the RPD values reported by the laboratory are calculated on the percent recovery values and not the MS and MSD concentrations. Data qualifiers are not recommended since all recalculated RPDs are within the Work Plan criteria.

The laboratory did not analyze a MS/MSD pair for the water samples. Although the SEDQUAL frequency is MS/MSD analyses at 5%, no data qualifier flags are recommended because the laboratory analyzed a Blank Spike/Blank Spike Duplicate.

Note that the Starr Rock and Whatcom Waterway Work Plans have different acceptance criteria for QC samples.

7. Blank Spike/Laboratory Control Sample/Standard Reference Material

Except as noted below, blank spikes or laboratory control samples (LCS) and standard reference materials (SRMs) were analyzed as required by the SEDQUAL program and all percent recoveries (%Rec) were within the Work Plan criteria.

Qualifier	Affected	Associated Samples
80 UG	nol	
	nol	N-SS-301

Data Validation Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 9

Associated Samples	Analyte Affected	Type of Deviation	Qualifier
	1,4-Dichlorobenzene	BS	40 UG
AN-SS-301	1,2,4-Trichlorobenzene	BS	40 UG
AN-SS-301	Pentachlorophenol	BS	200 UG
AN-SS-301	Phenol	BS	39 UG
AN-SS-302	1,4-Dichlorobenzene	BS	20 UG
AN-SS-302		BS	20 UG
AN-SS-302	1,2,4-Trichlorobenzene	BS	98 UG
AN-SS-302	Pentachlorophenol	BS	39 UG
AN-SS-303	Phenol	BS	20 UG
AN-SS-303	1,4-Dichlorobenzene	BS	20 UG
AN-SS-303	1,2,4-Trichlorobenzene	BS	99 UG
AN-SS-303	Pentachlorophenol	BS	38 UG
AN-SS-304	Phenol	BS	19 UG
AN-SS-304	1,4-Dichlorobenzene		19 UG
AN-SS-304	1,2,4-Trichlorobenzene	BS	95 UG
AN-SS-304	Pentachlorophenol	BS	52 G
AN-SS-305	Phenol	BS	22 UG
AN-SS-305	1,4-Dichlorobenzene	BS	
AN-SS-305	1,2,4-Trichlorobenzene	BS	22 UG
AN-SS-305	Pentachlorophenol	BS	110 UG
AN-SS-306	Phenol	BS	58 G
AN-SS-306	1,4-Dichlorobenzene	BS	19 UG
AN-SS-306	1,2,4-Trichlorobenzene	BS	19 UG
AN-SS-306	Pentachlorophenol	BS	97 UG

Discussion: The percent recovery values of Phenol, 1,4-Dichlorobenzene, 1,2,4-Trichlorobenzene, and Pentachlorophenol in the sediment blank spike associated with the Starr Rock site were below the Work Plan acceptance criteria for accuracy of 60-120%. Due to the pattern of low recovery in the MS, MSD and blank spikes, positive results and detection limits for these analytes have been qualified with "G" for a low bias in all Starr Rock sediment samples.

The standard reference material, Sequim Bay Sediment, was analyzed with sediment batches from both sites. As shown below, the results for all analytes, with the exception of Benzoic acid and 4-Methylphenol, were within the 95% confidence interval as required by the SEDQUAL program.

Data Validation Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 10

	Starr R	lock	Whatcom W	aterway	Sequim Bay	
	Laboratory	Percent	Laboratory	Percent	Expected	
Analyte	Result	Recovery	Result	Recovery	Value	95% C. I.
Phenol	67 U	NC	79	14	560	0-420
.4-Dichlorobenzene	33 U	NC	33 U	NC	51	0-26.8
.2-Dichlorobenzene	33 U	NC	33 U	NC	170	5.3-34.7
4-Methylphenol	37 *	7.3	77	15	509	65-297
Benzoic Acid	670	NC	780 *	NC	NA	0-747
Naphthalene	50	29	40	24	170	23-123
Hexachlorobutadiene	67 U	NC	67 U	NC	170	0-22
2-Methylnaphthalene	72	42	66	39	170	23-155
Acenaphthylene	33 U	NC	33 U	NC	170	6-94
Acenaphthene	78	46	86	51	170	49-141
Fluorene	80	47	83	49	170	51-145
Hexachlorobenzene	33 U	NC	33 U	NC	1.7	0.84-1.16
Pentachlorophenol	390	77	170	33	509	0-985
Phenanthrene	120	71	130	76	170	2-310
Anthracene	74	44	93	55	170	35-187
Fluoranthene	130	76	160	94	170	0-302
Pyrene	110	65	170	100	170	0-281
Benzo(a)anthracene	100	59	120	71	170	33-197
Chrysene	110	65	120	71	170	23-233
Benzo(b)fluoranthene	120	71	140	82	170	0-382
Benzo(a)pyrene	120	35	140	41	340	26-214
Indeno(1,2,3-cd)pyrene	33 U	NC	33 U	NC	170	0-186
Dibenz(a,h)anthracene	86	51	100	59	170	35-167
Benzo(g,h,i)perylene	59	35	120	71	170	0-191
Average Percent Recovery		51		56		

Summary of Certified Reference Material Results Sequim Bay Sediment

Notes:

* Indicates the value is outside the QAPP acceptance criteria of the 95% confidence interval U: Indicates the compound was not detected at the reported concentration All results are in µg/Kg

8. Field Duplicates

Quality By Design

Sample AN-SS-200 was identified as a field duplicate of Sample AN-SS-70. Field duplicate precision is acceptable since most RPDs are less than 40%. RPD values are presented in Table 3.

	Sample ID AN-SS-70	Field Duplicate ID AN-SS-200	RPD
nalyte	240	270	11.7
-Methylphenol	160	160	0
laphthalene	30	30	0
-Methylnaphthalene	20	20 U	NC
Acenaphthylene	48	44	8.6
Dibenzofuran	26	21	21.3
Fluorene		140	19.4
Phenanthrene	170	27	38.8
Anthracene	40	34	23.4
di-n-Butylphthalate	43	200	4.9
Fluoranthene	210		12.2
Ругепе	260	230	6.5
Benzo(a)anthracene	48	45	57.5
bis(2-Ethylhexyl)phthalate	150	83	11.4
Chrysene	74	66	
Benzo(b)fluoranthene	48	65	30.1
Benzo(k)fluoranthene	77	49	44.4
	49	46	6.3
Benzo(a)pyrene	32	27	16.9
Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene	31	30	3.3

Field Duplicate Result and RPD.

Key: NC = Not CalculableU = Not Detected

9. Internal Standards Performance

Internal standards were added to all samples and blanks as required by the method. Except as noted below, all internal standard areas and retention times were within the required limits.

Data Validation. Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 12

Associated Samples	Analyte Affected	Type of Deviation	Qualifier
AN-SC-81	Indeno(1,2,3-cd)pyrene	Internal standard	290 L
AN-SC-81	Dibenz(a,h)anthracene	Internal standard	110 L
AN-SC-81	Benzo(g,h,i)perylene	Internal standard	210 L
AN-SC-82	Indeno(1,2,3-cd)pyrene	Internal standard	220 L
AN-SC-82	Dibenz(a,h)anthracene	Internal standard	77 L
AN-SC-82	Benzo(g,h,i)perylene	Internal standard	140 L

Discussion: In Samples AN-SC-81 and AN-SC-82, the area of internal standard Perylene- d_{12} is less than the criteria of two times the Perylene- d_{12} area in the associated calibration verification. Positive results and detection limits of the associated analytes in these samples have been qualified with "L" for low bias.

10. TCL Compound Identification

Ouality By Design

All TCL Compound identifications met the criteria of the referenced method.

Discussion: The Butylbenzylphthalate results in Samples AN-SC-78, AN-SC-80, AN-SC-81, and AN-SC-82 were flagged "M" by the laboratory. The laboratory defines the M flag as "Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match". In all cases the Butylbenzylphthalate peak coeluted with an unknown hydrocarbon. The analytical data system poorly subtracted the background hydrocarbon spectrum from the Butylbenzylphthalate spectrum. In the reviewer's opinion, the spectra is strong enough to justify reporting Butylbenzylphthalate without qualification since the peak shapes and ion ratios are acceptable.

11. Compound Quantitation and Reported Detection Limits

Quantitation was performed in accordance with the referenced method, including the correct calculations using appropriate internal standards, quantitation ion, and RRF. Except as noted below, the Work Plan required reporting limits were met.

Associated Samples	Analyte Affected	Type of Deviation	Qualifier
AN-SS-301	Fluoranthene	Linear range exceeded	5500 R
AN-SS-301	Рутепе	Linear range exceeded	9500 R
AN-SS-301	Benzo(a)anthracene	Linear range exceeded	5000 R

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z036A LIMS ID: 98-22425 Matrix: Sediment Data Release Authorized: M~ Reported: 11/19/98

Date extracted: 11/03/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES

Project: Date Sampled: Date Received:

QC Report No: Z036-Anchor Environmental Starr Rock 98-007-03 10/26/98 10/28/98

Sample Amount: 52.8 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:10 Percent Moisture: 34.2% pH: 7.6

	han lathe	ug/kg
CAS Number	Analyte	380 U R
108-95-2	Phenol	190 U
106-46-7	1,4-Dichlorobenzene	950 U
100-51-6	Benzyl Alcohol	190 U
95-50-1	1,2-Dichlorobenzene	380 U
95-48-7	2-Methylphenol	190 U
106-44-5	4-Methylphenol	570 U
105-67-9	2,4-Dimethylphenol	1,900 U
65-85-0	Benzoic Acid	190 U
120-82-1	1,2,4-Trichlorobenzene	670
91-20-3	Naphthalene	380 U
87-68-3	Hexachlorobutadiene	190 U
91-57-6	2-Methylnaphthalene	190 U
131-11-3	Dimethylphthalate	240
208-96-8	Acenaphthylene	190 U
83-32-9	Acenaphthene	190 U
132-64-9	Dibenzofuran	190 U
84-66-2	Diethylphthalate	240
86-73-7	Fluorene	190 U
86-30-6	N-Nitrosodiphenylamine	190 U
118-74-1	Hexachlorobenzene	950 U 🗸
87-86-5	Pentachlorophenol	1,900
85-01-8	Phenanthrene	510 R
120-12-7	Anthracene	190 U R
84-74-2	Di-n-Butylphthalate	3,400
206-44-0	Fluoranthene	
		FQ2 1.19 97

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z036A LIMS ID: 98-22425 Matrix: Sediment Data Release Authorized: \Y\~ Reported: 11/19/98

Date extracted: 11/03/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES QC Report No: Z036-Anchor Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98

> Sample Amount: 52.8 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:10 Percent Moisture: 34.2% pH: 7.6

_	Analyte	ug/kg
CAS Number		3,000 R
129-00-0	Pyrene	190 U (
85-68-7	Butylbenzylphthalate	1,400
56-55-3	Benzo (a) anthracene	190 U
117-81-7	bis(2-Ethylhexyl)phthalate	1,800
218-01-9	Chrysene	190 U
117-84-0	Di-n-Octyl phthalate	1,600
205-99-2	Benzo(b)fluoranthene	1,300 🗸
207-08-9	Benzo(k) fluoranthene	1,800
50-32-8	Benzo (a) pyrene	1,000 R
193-39-5	Indeno(1,2,3-cd)pyrene	260
53-70-3	Dibenz (a, h) anthracene	800 1
191-24-2	Benzo(g,h,i)perylene	14-2 1-1195

olatiles Sur	rogate Recovery	11 28
50.4% 56.8% 63.6%	d5-Phenol 2-Fluorophenol 2,4,6-Tribromophenol d4-2-Chlorophenol	44.3% 70.4% 76.3% 55.7%
	50.4% 56.8% 63.6%	50.4*2-Fluorophenol56.8*2,4,6-Tribromophenol63.6*2,4,6-Tribromophenol

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z036B LIMS ID: 98-22426 Matrix: Sediment Data Release Authorized: WV Reported: 11/19/98

Date extracted: 11/03/98 Date analyzed: 11/10/98 Instrument: nt1 GPC Cleanup: YES QC Report No: Z036-Anchor Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98

> Sample Amount: 51.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 53.4% pH: 7.5

	Analyte	ug/kg
CAS Number	Phenol	V58 G
108-95-2	1,4-Dichlorobenzene	19 U G
106-46-7	Benzyl Alcohol	97 U
100-51-6	1,2-Dichlorobenzene	19 U
95-50-1		39 U
95-48-7	2-Methylphenol	36
106-44-5	4-Methylphenol	58 U
105-67-9	2,4-Dimethylphenol	190 U
65-85-0	Benzoic Acid	19 U G
120-82-1	1,2,4-Trichlorobenzene	₩51
91-20-3	Naphthalene	39 U '
87-68-3	Hexachlorobutadiene	19 U
91-57-6	2-Methylnaphthalene	19 U
131-11-3	Dimethylphthalate	19 U
208-96-8	Acenaphthylene	19 U
83-32-9	Acenaphthene	19 U
132-64-9	Dibenzofuran	19 U
84-66-2	Diethylphthalate	19 U
86-73-7	Fluorene	19 U
86-30-6	N-Nitrosodiphenylamine	19 U
118-74-1	Hexachlorobenzene	97 U G
87-86-5	Pentachlorophenol	110
85-01-8	Phenanthrene	25
120-12-7	Anthracene	19 U
84-74-2	Di-n-Butylphthalate	200
206-44-0	Fluoranthene	
		Kip 1.19.50

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z036B LIMS ID: 98-22426 Matrix: Sediment Data Release Authorized: MARPORTE: 11/19/98

QC Report No: Z036-Anchor Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98

Date extracted: 11/03/98 Date analyzed: 11/10/98 Instrument: nt1 GPC Cleanup: YES Sample Amount: 51.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 53.4% pH: 7.5

	Analyte	ug/kg
CAS Number		210
129-00-0	Pyrene	19 U
85-68-7	Butylbenzylphthalate	87
56-55-3	Benzo(a) anthracene	>34
117-81-7	bis (2-Ethylhexyl) phthalate	100
218-01-9	Chrysene	19 U
117-84-0	Di-n-Octyl phthalate	170
205-99-2	Benzo(b)fluoranthene	110
207-08-9	Benzo(k)fluoranthene	120
50-32-8	Benzo(a)pyrene	99
193-39-5	Indeno (1, 2, 3-cd) pyrene	32
53-70-3	Dibenz(a, h) anthracene	65
191-24-2	Benzo(g,h,i)perylene	
		Rf 1. 19.9

Semivo	latiles Sur	rogate Recovery	47.8%
d5-Nitrobenzene 2-Fluorobiphenyl d14-p-Terphenyl d4-1,2-Dichlorobenzene	44.6% 51.7% 71.4%	d5-Phenol 2-Fluorophenol 2,4,6-Tribromophenol d4-2-Chlorophenol	47.8% 50.2% 69.5% 45.0%

Sample No: AN-SS-305

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z036C LIMS ID: 98-22427 Matrix: Sediment Data Release Authorized: W Reported: 11/19/98

Date extracted: 11/03/98 Date analyzed: 11/10/98 Instrument: ntl GPC Cleanup: YES

QC Report No: Z036-Anchor Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98

Sample Amount: 45.7 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 69.6% pH: 7.4

CAS Number	Analyte	ug/kg
108-95-2	Phenol	52 4
106-46-7	1,4-Dichlorobenzene	22 U G
100-51-6	Benzyl Alcohol	110 U
95-50-1	1,2-Dichlorobenzene	22 U
95-48-7	2-Methylphenol	44 U
106-44-5	4-Methylphenol	190
105-67-9	2,4-Dimethylphenol	66 U
65-85-0	Benzoic Acid	220 U
120-82-1	1,2,4-Trichlorobenzene	22 U G
91-20-3	Naphthalene	-1,000
87-68-3	Hexachlorobutadiene	44 U .
91-57-6	2-Methylnaphthalene	180
131-11-3	Dimethylphthalate	22 U
208-96-8	Acenaphthylene	110
83-32-9	Acenaphthene	76
132-64-9	Dibenzofuran	130
84-66-2	Diethylphthalate	22 U
86-73-7	Fluorene	160
86-30-6	N-Nitrosodiphenylamine	22 U
118-74-1	Hexachlorobenzene	22 U
87-86-5	Pentachlorophenol	110 U G
85-01-8	Phenanthrene	800
120-12-7	Anthracene	280
84-74-2	Di-n-Butylphthalate	22 U
206-44-0	Fluoranthene	1,100
		K40 1.19.95

FORM-1

Sample No: AN-SS-305

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z036C LIMS ID: 98-22427 Matrix: Sediment Data Release Authorized: N Reported: 11/19/98

- QC Report No: Z036-Anchor Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98
- Date extracted: 11/03/98 Date analyzed: 11/10/98 Instrument: nt1 GPC Cleanup: YES

.

Sample Amount: 45.7 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 69.6% pH: 7.4

	3	ug/kg
CAS Number	Analyte	1,700
129-00-0	Pyrene	22 U
85-68-7	Butylbenzylphthalate	620
56-55-3	Benzo(a) anthracene	~64
117-81-7	bis (2-Ethylhexyl) phthalate	620
218-01-9	Chrysene	22 U
117-84-0	Di-n-Octyl phthalate	610
205-99-2	Benzo(b) fluoranthene	510
207-08-9	Benzo(k) fluoranthene	780
50-32-8	Benzo(a) pyrene	A.10-014-11
193-39-5	Indeno(1,2,3-cd)pyrene	480
53-70-3	Dibenz (a, h) anthracene	170
	Benzo(g,h,i)perylene	360
191-24-2	Bauno (31) - , F 2-1	K40 1.19.

Semiv	olatiles Sur	rogate Recovery	50.0%
d5-Nitrobenzene	49.4%	d5-Phenol	51.1%
2-Fluorobiphenyl	50.5%	2-Fluorophenol	62.9%
d14-p-Terphenyl	77.6%	2,4,6-Tribromophenol d4-2-Chlorophenol	46.5%
d4-1,2-Dichlorobenzene	40.5%	d4-2-Chiorophenor	

Sample No: AN-SS-303

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z036D LIMS ID: 98-22428 Matrix: Sediment Data Release Authorized: WA Reported: 11/19/98

Date extracted: 11/03/98 Date analyzed: 11/10/98 Instrument: nt1 GPC Cleanup: YES QC Report No: Z036-Anchor Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98

> Sample Amount: 50.7 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 61.1% pH: 7.4

	Analyte	ug/kg
CAS Number	Phenol	39 U G 20 U G
108-95-2	1,4-Dichlorobenzene	20 U (4
106-46-7	Benzyl Alcohol	99 U
100-51-6	1,2-Dichlorobenzene	20 U
95-50-1	2-Methylphenol	39 U
95-48-7		70
106-44-5	4-Methylphenol	59 U
105-67-9	2,4-Dimethylphenol	200 U
65-85-0	Benzoic Acid	20 U G
120-82-1	1,2,4-Trichlorobenzene	₩80
91-20-3	Naphthalene	39 U .
87-68-3	Hexachlorobutadiene	25
91-57-6	2-Methylnaphthalene	20 U
131-11-3	Dimethylphthalate	20 U
208-96-8	Acenaphthylene	20 U
83-32-9	Acenaphthene	22
132-64-9	Dibenzofuran	20 U
84-66-2	Diethylphthalate	20 U
86-73-7	Fluorene	20 U
86-30-6	N-Nitrosodiphenylamine	20 U
118-74-1	Hexachlorobenzene	200 990 G
87-86-5	Pentachlorophenol	(15) IS 100
85-01-8	Phenanthrene	91
120-12-7	Anthracene	25
84-74-2	Di-n-Butylphthalate	20 U
206-44-0	Fluoranthene	120
200-41-0		K42 1-19.99

Sample No: AN-SS-303

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z036D LIMS ID: 98-22428 Matrix: Sediment Data Release Authorized: IMA Reported: 11/19/98

Date extracted: 11/03/98 Date analyzed: 11/10/98 Instrument: nt1 GPC Cleanup: YES QC Report No: Z036-Ancher Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98

> Sample Amount: 50.7 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 61.1% pH: 7.4

		ug/kg
CAS Number	Analyte	200
129-00-0	Pyrene	20 U
85-68-7	Butylbenzylphthalate	42
56-55-3	Benzo(a) anthracene	~67
117-81-7	bis(2-Ethylhexyl)phthalate	60
218-01-9	Chrysene	20 U
117-84-0	Di-n-Octyl phthalate	75
205-99-2	Benzo(b)fluoranthene	40
207-08-9	Benzo(k) fluoranthene	53
50-32-8	Benzo (a) pyrene	34
193-39-5	Indeno (1, 2, 3-cd) pyrene	20 U .
53-70-3	Dibenz(a, h) anthracene	30
191-24-2	Benzo(g,h,i)perylene	K40 1. 19 519
		ide

enol 47.48 prophenol 51.5% -Tribromophenol 71.1% Chlorophenol 46.5%
u 6

Sample No: AN-SS-302

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z036E LIMS ID: 98-22429 Matrix: Sediment Data Release Authorized: W/A Reported: 11/19/98

Date extracted: 11/03/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES

.

QC Report No: Z036-Anchor Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98

> Sample Amount: 50.8 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 61.0% pH: 7.4

and Muniham	Analyte	ug/kg
CAS Number	Phenol	39 U G 20 U G
108-95-2	1,4-Dichlorobenzene	20 0 5
106-46-7	Benzyl Alcohol	98 U
100-51-6	1,2-Dichlorobenzene	20 U
95-50-1	2-Methylphenol	39 U
95-48-7	4-Methylphenol	190
106-44-5	2,4-Dimethylphenol	59 U
105-67-9	Benzoic Acid	200 U
65-85-0	1,2,4-Trichlorobenzene	20 U G
120-82-1	Naphthalene	₩240
91-20-3	Hexachlorobutadiene	39 U ·
87-68-3	2-Methylnaphthalene	68
91-57-6	Dimethylphthalate	20 U
131-11-3	Acenaphthylene	100
208-96-8	Acenaphthene	34
83-32-9	Dibenzofuran	65
132-64-9	Diethylphthalate	20 U
84-66-2	Fluorene	65
86-73-7	N-Nitrosodiphenylamine	20 U
86-30-6	Hexachlorobenzene	20 U
118-74-1	Pentachlorophenol	98 U G
87-86-5	Phenanthrene	320
85-01-8	Anthracene	180
120-12-7	Di-n-Butylphthalate	20 U
84-74-2	Fluoranthene	870
206-44-0	FILOFANCHENG	Kts 1.19.95

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z036E LIMS ID: 98-22429 Matrix: Sediment Data Release Authorized: "My" Reported: 11/19/98

Date extracted: 11/03/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES

QC Report No: Z036-Anchor Environmental Starr Rock Project: 98-007-03 10/26/98 Date Sampled: Date Received: 10/28/98

Sample Amount: 50.8 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 61.0% pH: 7.4

CAS Number	Analyte	ug/kg
CAS Number 129-00-0 85-68-7 56-55-3 117-81-7 218-01-9 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Pyrene Butylbenzylphthalate . Benzo(a) anthracene bis(2-Ethylhexyl)phthalate Chrysene Di-n-Octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	1,200 20 U 550 58 $x \in Kp : 17 : 17$ 610 20 U 490 520 730 400 98 220 Kp : 1,2-11.9%

Se	mivolatiles Surr	ogate Recovery	58.6%
d5-Nitrobenzene	54.8%	d5-Phenol 2-Fluorophenol	61.6%
2-Fluorobiphenyl d14-p-Terphenyl	61.8% 76.4%	2,4,6-Tribromophenol d4-2-Chlorophenol	82.2% 52.9%
d4-1,2-Dichlorobenze	ene 46.6%	d4-2-chiorophenor	

ANALYTICAL RESOURCES INCORPORATED

Sample No: AN-SS-301

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z036F LIMS ID: 98-22430 Matrix: Sediment Data Release Authorized: MA Reported: 11/19/98

Date extracted: 11/03/98 Date analyzed: 11/18/98 Instrument: nt1 GPC Cleanup: YES QC Report No: Z036-Anchor Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98

> Sample Amount: 50.2 g-dry-wt Final Extract Volume: 2.0 mL Dilution Factor: 1:1 Percent Moisture: 64.2% pH: 7.4

	Analyte	ug/kg
CAS Number		80 U G
108-95-2	Phenol 1,4-Dichlorobenzene	40 U G
106-46-7	1,4-Dichiorobenzene	200 U
100-51-6	Benzyl Alcohol	40 U
95-50-1	1,2-Dichlorobenzene	80 U
95-48-7	2-Methylphenol	86
106-44-5	4-Methylphenol	120 U
105-67-9	2,4-Dimethylphenol	400 U
65-85-0	Benzoic Acid	40 U G
120-82-1	1,2,4-Trichlorobenzene	~1,400
91-20-3	Naphthalene	80 U
87-68-3	Hexachlorobutadiene	570
91-57-6	2-Methylnaphthalene	40 U
131-11-3	Dimethylphthalate	700
208-96-8	Acenaphthylene	230
83-32-9	Acenaphthene	240
132-64-9	Dibenzofuran	40 U
84-66-2	Diethylphthalate	430
86-73-7	Fluorene	40 U
86-30-6	N-Nitrosodiphenylamine	40 U
118-74-1	Hexachlorobenzene	200 U G
87-86-5	Pentachlorophenol	
85-01-8	Phenanthrene	2,400
120-12-7	Anthracene	1,400
	Di-n-Butylphthalate	40 U
84-74-2 206-44-0	Fluoranthene	5,500 B R
		K40 1.45.6X

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z036F LIMS ID: 98-22430 Matrix: Sediment Data Release Authorized: W Reported: 11/19/98

Date extracted: 11/03/98 Date analyzed: 11/18/98 Instrument: nt1 GPC Cleanup: YES Sample No: AN-SS-301

QC Report No: Z036-Anchor Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98

> Sample Amount: 50.2 g-dry-wt Final Extract Volume: 2.0 mL Dilution Factor: 1:1 Percent Moisture: 64.2% pH: 7.4

	Analyte	ug/kg	-
CAS Number		9,500 B	R
129-00-0	Pyrene	40 U	
85-68-7	Butylbenzylphthalate	5,000 B	R
56-55-3	Benzo(a) anthracene	> 57	
117-81-7	bis (2-Ethylhexyl) phthalate	4,900 B	R
218-01-9	Chrysene	40 U	
117-84-0	Di-n-Octyl phthalate	5,300 E	R
205-99-2	Benzo(b)fluoranthene	2,600	• •
207-08-9	Benzo(k) fluoranthene		R
50-32-8	Benzo(a) pyrene		R
193-39-5	Indeno(1,2,3-cd)pyrene	1,300	•
53-70-3	Dibenz (a, h) anthracene	3,100	
191-24-2	Benzo(g,h,i)perylene	KHD 1.19.0	50

Semivo	latiles Sur	cogate Recovery	10 08
d5-Nitrobenzene 2-Fluorobiphenyl d14-p-Terphenyl	45.2% 48.7% 72.9%	d5-Phenol 2-Fluorophenol 2,4,6-Tribromophenol d4-2-Chlorophenol	46.8% 51.1% 64.3% 46.4%
d4-1,2-Dichlorobenzene	55110		

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z036F LIMS ID: 98-22430 Matrix: Sediment Data Release Authorized: Mu Reported: 11/19/98

Date extracted: 11/03/98 Date analyzed: 11/18/98 Instrument: nt1 GPC Cleanup: YES QC Report No: Z036-Anchor Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98

Sample Amount: 50.2 g-dry-wt Final Extract Volume: 2.0 mL Dilution Factor: 1:10 Percent Moisture: 64.2% pH: 7.4

N_0	Analyte	ug/kg
CAS Number	Phenol	800 U R
108-95-2	1,4-Dichlorobenzene	400 U
106-46-7	Benzyl Alcohol	2,000 U
100-51-6	1,2-Dichlorobenzene	400 U
95-50-1		800 U
95-48-7	2-Methylphenol	400 U
106-44-5	4-Methylphenol	1,200 U
105-67-9	2,4-Dimethylphenol	4,000 U
65-85-0	Benzoic Acid	400 U
120-82-1	1,2,4-Trichlorobenzene	1,300
91-20-3	Naphthalene	800 U
87-68-3	Hexachlorobutadiene	480
91-57-6	2-Methylnaphthalene	400 U
131-11-3	Dimethylphthalate	640
208-96-8	Acenaphthylene	400 U
83-32-9	Acenaphthene	400 U
132-64-9	Dibenzofuran	400 U
84-66-2	Diethylphthalate	400 U
86-73-7	Fluorene	400 U
86-30-6	N-Nitrosodiphenylamine	400 U
118-74-1	Hexachlorobenzene	2,000 U
87-86-5	Pentachlorophenol	2,100
85-01-8	Phenanthrene	1,300
120-12-7	Anthracene	400 U 🗸
84-74-2	Di-n-Butylphthalate	6,400
206-44-0	Fluoranthene	
alerta son president 3553		K10 1.19.98

N-SS-301 Sample DILUTION

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z036F LIMS ID: 98-22430 Matrix: Sediment Data Release Authorized: NW

Reported: 11/19/98 Date extracted: 11/03/98

Date analyzed: 11/18/98 Instrument: ntl GPC Cleanup: YES

QC Report No: Project: Date Sampled:

Z036-Anchor Environmental Starr Rock 98-007-03 10/26/98 Date Received: 10/28/98

> Sample Amount: 50.2 g-dry-wt Final Extract Volume: 2.0 mL Dilution Factor: 1:10 Percent Moisture: 64.2% pH: 7.4

annonen aus ann eannair	Analyte	ug/kg
CAS Number 129-00-0 85-68-7 56-55-3 117-81-7 218-01-9 117-84-0	Analyte Pyrene Butylbenzylphthalate Benzo(a) anthracene bis(2-Ethylhexyl)phthalate Chrysene Di-n-Octyl phthalate	7,700 400 U R 4,400 400 U R 5,100 400 U R
205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenz (a,h) anthracene Benzo (g,h,i) perylene	3,000 3,600 R 5,100 3,400 680 R 2,800 R

S	emivolatiles	Surrogate Recovery	4 7 7 9
d5-Nitrobenzene	42.4%	d5-Phenol	41.1% 52.3%
2-Fluorobiphenyl	47.28	2-Fluorophenol 2,4,6-Tribromophenol	52.8%
d14-p-Terphenyl	52.8%	d4-2-Chlorophenol	42.7%
d4-1,2-Dichlorobenz	ene 27.2%	ui z chilolophia	

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z036-SRM LIMS ID: 98-22425 Matrix: Sediment Data Release Authorized: M_{\sim} Reported: 11/19/98

Date extracted: 11/03/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES

QC Report No: Z036-Anchor Environmental Project: Starr Rock Date Sampled: 10/26/98 Date Received: 10/28/98

98-007-03

Sample Amount: 29.9 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 40.2% pH: 6.0

CAS Number	Analyte	ug/kg
108-95-2	Phenol	67 U G
106-46-7	1,4-Dichlorobenzene	33 U G
100-51-6	Benzyl Alcohol	170 U
95-50-1	1,2-Dichlorobenzene	33 U
95-48-7	2-Methylphenol	67 U
106-44-5	4-Methylphenol	37
105-67-9	2,4-Dimethylphenol	100 U
65-85-0	Benzoic Acid	670
120-82-1	1,2,4-Trichlorobenzene	33 U G
91-20-3	Naphthalene	50
87-68-3	Hexachlorobutadiene	67 U [.]
91-57-6	2-Methylnaphthalene	72
131-11-3	Dimethylphthalate	33 U
208-96-8	Acenaphthylene	33 U
83-32-9	Acenaphthene	78
132-64-9	Dibenzofuran	33 U
84-66-2	Diethylphthalate	33 U
86-73-7	Fluorene	80
86-30-6	N-Nitrosodiphenylamine	33 U
118-74-1	Hexachlorobenzene	33 U
87-86-5	Pentachlorophenol	∖ 390 G
85-01-8	Phenanthrene	120
120-12-7	Anthracene	74
84 - 74 - 2	Di-n-Butylphthalate	33 U
206-44-0	Fluoranthene	130
	;	FAN 1.19.43

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z036-SRM LIMS ID: 98-22425 Matrix: Sediment Data Release Authorized: M~ Reported: 11/19/98

QC Report No: Z036-Anchor Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98

Date extracted: 11/03/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES Sample Amount: 29.9 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 40.2% pH: 6.0

1 ma lutto	ug/kg
	110
	33 U
Butylbenzylphthalate	100
Benzo(a) anthracene	82
bis(2-Ethylhexyl)phthalate	110
Chrysene	33 U
Di-n-Octyl phthalate	120
Benzo(b)fluoranthene	33 U
Benzo(k)fluoranthene	120
Benzo(a) pyrene	33 U
Indeno(1,2,3-cd)pyrene	· · · · · · · · · · · · · · · · · · ·
Dibenz (a, h) anthracene	86
Benzo(g,h,i)perylene	59
	Di-n-Octyl phthalate Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenz(a,h) anthracene

	Semivolatiles	Surrogate Recovery	63.8%
d5-Nitrobenzene	61.4%	d5-Phenol 2-Fluorophenol	69.8%
2-Fluorobiphenyl d14-p-Terphenyl d4-1.2-Dichlorobe	75.1%	2,4,6-Tribromophenol d4-2-Chlorophenol	95.1% 57.8%

Data Validation Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 13

1 Jaked Complet	Analyte Affected	Type of Deviation	Qualifier
Associated Samples	Chrysene	Linear range exceeded	4900 R
AN-SS-301	Benzo(b)fluoranthene	Linear range exceeded	5300 R
AN-SS-301	Benzo(a)pyrene	Linear range exceeded	6000 R
AN-SS-301		Linear range exceeded	3700 R
AN-SS-301	Indeno(1,2,3-cd)pyrene	Linear range exceeded	2000 R
AN-SS-304	Phenanthrene	Linear range exceeded	3100 R
AN-SS-304	Fluoranthene	Linear range exceeded	1700 R
AN-SS-304	Benzo(a)pyrene	Linear range exceeded	22000 R
AN-SS-47	bis(2- Ethylhexyl)phthalate	Enten range extended	220001
AN-SC-81	Рутепе	Linear range exceeded	1900 R
AN-SC-81	Рутепе	Linear range exceeded	1700 R
	Chrysene	Linear range exceeded	1900 R
AN-SC-82 AN-SS-301DL	All analytes for which the dilution was not performed.	Excessive dilution	R
AN-SS-304DL	All analytes for which the dilution was not performed.	Excessive dilution	R
AN-SS-47DL	All analytes for which the dilution was not performed.	Excessive dilution	R
AN-SC-81DL	All analytes for which the dilution was not performed.	Excessive dilution	R
AN-SC-82DL	All analytes for which the dilution was not performed.	Excessive dilution	R

Discussion: The laboratory reporting limits did not meet the work plan requirements for 2,4-Dimethylphenol and Benzyl alcohol. The laboratory reported 30 and 50 µg/Kg, and the Work Plan requirement is 20 and 25 µg/Kg, for 2,4-Dimethylphenol and Benzyl alcohol, respectively.

The work plan did not establish reporting limits for water samples.

Several samples were diluted due to suspected levels of target compounds. In these instances, the laboratory reported one result for the original analysis and one for each dilution, resulting in two sets of results for one sample. To condense the results to

one set of results per sample, the results that are above the calibration range, or which should not be used because of excessive dilution, have been flagged "R" for unusable.

The Butylbenzylphthalate reporting limits in Samples AN-SC-81 and AN-SC-82 have been flagged "Y" by the laboratory. The laboratory defines the Y flag as "Indicates raised reporting limit due to background interference or to activity on the instrument." In the reviewer's opinion, the raised reporting limit is justified due to the hydrocarbon background present in these samples.

The work plan listed Total Organic Carbon (TOC) corrected reporting limits for the Polynuclear Aromatic Hydrocarbons, Phthalates, and Chlorinated Aromatics. Generally, the TOC corrected reporting limits were much greater than the TOC uncorrected limits reported by the laboratory. However, for Sample AN-SS-47, only 10.46 grams was extracted (compared to the usual 100 grams) giving high reporting limits that might exceed the work plan limits when TOC corrected.

12. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not required for this project.

13. System Performance

System performance was acceptable and had no significant problems such as loss of resolution or peak tailing.

14. Laboratory Contact

Mark Harris of Analytical Resources, Inc. was contacted by electronic mail on December 29, 1998 to request the true values for the standard reference material Sequim Bay Sediment. A faxed reply was received via the Anchor Environmental office on December 30, 1998.

15. Other Comments

Precision information is not available for the water samples from the Whatcom Waterway site since neither a matrix spike duplicate, sample duplicate or blank spike duplicate was analyzed.

16. Data Use and Overall Assessment

The analytes qualified with an "R" are unusable. All other data, as qualified, are acceptable for use. The analyses were generally within the requirements of the referenced method. No discrepancies were observed between raw data and reported data results. All data flags are summarized at the end of this report.

D. Review of Metals Analyses

EPA Method 6010/7000/7471

1. Timeliness and a Check for Errors

The analytical plan and the data packages were reviewed and compared against the chain-of-custody and other data. All samples were analyzed within the technical holding times. There are no contractual holding time criteria that have been brought to the attention of the reviewer.

2. Initial and Continuing Calibration, including all calibrations and continuing calibration checks.

All initial and continuing calibration Quality Control criteria were met, including the number of standards used and correlation coefficients. All continuing calibration criteria, including frequency of analysis and percent recovery were met.

3. Blanks and Checks for Contamination

Instrument and method blank analyses were performed at the required frequencies and either no analytes were detected or levels were below the reporting limit.

4. ICP Interference Check Standard

The Interference Check Sample was analyzed at a frequency required by the referenced method and was within established criteria.

5. Laboratory Control Sample (LCS) Analysis

A Laboratory Control Standard was analyzed at a frequency required by the referenced method and all percent recoveries were within laboratory or method criteria.

6. Matrix Spike/Matrix Duplicates

Matrix spikes (MS) and matrix duplicates (MD) were analyzed as required by the referenced method and all percent recoveries (%Rec) and relative percent differences (RPD) were within laboratory or method criteria.

7. Graphite Furnace Atomic Absorption Analysis

All special criteria for Graphite Furnace Atomic Absorption analysis were performed at a frequency required by the referenced method and was within established criteria.

8. ICP Serial Dilution

Samples that were a factor of 50 above the Instrument Detection Limit for the analyte were diluted 5fold and were within criteria required by the referenced method.

9. Field Duplicates

Samples AN-SS-200 and AN-SS-70 were identified as field duplicates. Field duplicate precision is acceptable since most RPDs are less than 40%. RPD values are presented in Table 4.

Analyte	Sample ID AN-SS-70	Field Duplicate ID AN-SS-200	RPD
Cadmium	0.9	0.6	40.0
Mercury	0.8	0.7	13.3
Zinc	100	99	1.0

Table 4:	Field Duplicate Result and	RPD.	
----------	----------------------------	------	--

10. Sample Result Verification

The final reports were reviewed and compared against raw instrumental data and logs to check anomalies, data reduction/calculations, transcription, linear ranges, and dilutions. Except as noted below, no errors in accuracy were found

Discussion: The laboratory did not meet the QAPP Method Reporting Limit for Lead. The QAPP MRL for Lead is 3.0 mg/kg and the laboratory reported a MRL of 20 mg/kg. In

consultation with Ms. Magruder, the laboratory reporting limit was determined to be acceptable.

11. Laboratory Contact

There was no verbal or written communication with the laboratory.

12. Other Comments

None.

13. Data Use and Overall Assessment

The data are acceptable for use. The analyses were generally within the requirements of the referenced method and no discrepancies were observed between raw data and reported data results.

E. Review of Inorganic Analyses EPA Method 9060 (TOC), 150.1 (pH) and CLP ILM03.0 (Total Solids) and Grain Size

1. Timeliness and a Check for Errors.

The analytical plan and the data packages were reviewed and compared against the chain-of-custody and other data. Except as noted below, no data are missing from the packages and no errors in accuracy were found. All tests requested on the chain-of-custody were performed. All samples were analyzed within the technical holding times. There are no contractual holding time criteria that have been brought to the attention of the reviewer.

Discussion: The analysis for Grain Size was performed by Rosa Environmental and Geotechnical Laboratory. The chain-of-custody issued for the transport of samples from Analytical Resources, Inc. to Rosa Environmental does not show a time of relinquishment from Analytical Resources, Inc.

2. Initial and Continuing Calibration.

All initial and continuing calibration Quality Control criteria were met, including the number of standards used and correlation coefficients. All continuing calibration criteria, including frequency of analysis and percent recovery were met.

3. Blanks and Checks for Contamination.

Except as noted below, instrument and method blank analyses were performed at the required frequencies and either no analytes were detected or levels were below the reporting limit.

Discussion: Total Organic Carbon was detected in the method blank analyzed on November 11, 1998 and associated with Samples AN-SS-36, AN-SC-80, AN-SC-71, AN-SC-72, AN-SC-73, AN-SC-77, AN-SC-78, AN-SC-82, AN-SC-81, and AN-SC-37. The concentrations of the sample results were greater than five times (5X) the blank level and no data flags are recommended.

4. Laboratory Control Standards and Blank Spikes.

A Laboratory Control Standard was analyzed at a frequency required by the referenced method and all percent recoveries were within laboratory or method criteria.

5. Precision and Accuracy.

Matrix spikes (MS) and matrix spike duplicates (MSD) were analyzed as required by the referenced method and all percent recoveries (%Rec) and relative percent differences (RPD) were within laboratory or method criteria.

6. Field Duplicates.

Samples AN-SS-70 and AN-SS-200 were identified as field duplicates. Field duplicate precision is acceptable since most RPDs are less than 40%. RPD values are presented in Table 5.

Analyte	Sample ID AN-SS-70	Field Duplicate ID AN-SS-200	RPD
Total Organic Carbon	2.4	2.6	8.0
	7.4	7.4	0
pH Total Solids	37.9	35.4	6.8

Table 5:Field Duplicate Result and RPD.

7. Sample Result Verification.

The final reports were reviewed and compared against raw instrumental data and logs to check anomalies, data reduction/calculations, transcription, linear ranges, and dilutions. Except as noted below, no errors in accuracy were found.

Analyte Affected	Type of Deviation	Flag
Total Organic Carbon	Calculation Error	79.0
	Analyte Affected Total Organic Carbon	

Discussion: A calculation error was found in determining the percent recovery for the Total Organic Carbon matrix spike. The corrected value is listed in the summary table and on the laboratory final report form.

Data Validation Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 21

On the raw data associated with AN-SC-80 (Run C), the graph and summary table are not in agreement. The laboratory has been contacted to correct the report and reissue it directly to Anchor.

8. Laboratory Contact.

Quality By Design

The QBD project manager contacted Mark Harris at ARI Laboratory to verify the TOC calculations used. This was followed up by fax notes, copies of which are appended to this validation report.

9. Other Comments.

None.

10. Data Use and Overall Assessment.

The data, as qualified, are acceptable for use. The analyses were generally within the requirements of the referenced method and no discrepancies were observed between raw data and reported data results. All data flags are summarized at the end of this report.

Page 22

Puget Sound Estuary Program Data Qualifier Definitions F.

Used for both organics and inorganic analyses

- = Analyte detected in samples and in method blank В
- = Combined with unresolved substances C
- = Estimated E
- = Value greater than minimum shown G
- = Detected at less than the maximum shown K
- Value less than the maximum shown L =
- = Value is a mean M
- = Questionable value 0
- = Rejected or unusable value R
- Detected below the quantification limit shown Т
- = Undetected at the detection limit shown U
- = Recovery less than 10 percent X
- Blank corrected Ζ

Data Validation Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 23

Associated Samples	Analyte Affected	Type of Deviation	Qualifier
AN-SS-45	di-n-Octylphthalate	%RSD = 40.4	26 E
AN-SC-82	di-n-Octylphthalate	%RSD = 40.4	58 E
AN-SC-82 AN-SC-82DL	di-n-Octylphthalate	%RSD = 40.4	98 E
AN-SC-82DL	bis(2-Ethylhexyl)phthalate	%D = 28.0	76 E
AN-SC-71	bis(2-Ethylhexyl)phthalate	%D = 28.0	120 E
AN-SC-72	bis(2-Ethylhexyl)phthalate	%D = 28.0	140 E
AN-SC-72 AN-SC-73	bis(2-Ethylhexyl)phthalate	%D = 28.0	180 E
Contract Contract	bis(2-Ethylhexyl)phthalate	%D = 28.0	190 E
AN-SC-77	bis(2-Ethylhexyl)phthalate	%D = 28.0	1300 E
AN-SC-82	bis(2-Ethylhexyl)phthalate	%D = 28.0	1400 E
AN-SC-81	bis(2-Ethylhexyl)phthalate	%D = 28.0	860 E
AN-SC-37	Bis(2-ethylhexyl)phthalate	Blank Contamination	1400 B
AN-SC-81	Bis(2-ethylhexyl)phthalate	Blank Contamination	1300 B
AN-SC-82	Bis(2-ethylhexyl)phthalate	Blank Contamination	860 B
AN-SC-37	Phenol	Surrogate	280 UG
AN-SS-47	2-Methylphenol	Surrogate	280 UG
AN-SS-47	4-Methylphenol	Surrogate	140 UG
AN-SS-47	2,4-Dimethylphenol	Surrogate	410 UG
AN-SS-47	Benzoic Acid	Surrogate	1400 UG
AN-SS-47		Surrogate	690 UG
AN-SS-47	Pentachlorophenol	MS/MSD	80 UG
AN-SS-301	Phenol	MS/MSD and BS	40 UG
AN-SS-301	1,4-Dichlorobenzene	MS/MSD and BS	40 UG
AN-SS-301	1,2,4-Trichlorobenzene	MS/MSD and BS	200 UG
AN-SS-301	Pentachlorophenol	MS/MSD and BS	39 UG
AN-SS-302	Phenol	MS/MSD and BS	20 UG
AN-SS-302	1,4-Dichlorobenzene	MS/MSD and BS	20 UG
AN-SS-302	1,2,4-Trichlorobenzene	MS/MSD and BS	98 UG
AN-SS-302	Pentachlorophenol	MS/MSD and BS	39 UG
AN-SS-303	Phenol	MS/MSD and BS	20 UG
AN-SS-303	1,4-Dichlorobenzene		20 UG
AN-SS-303	1,2,4-Trichlorobenzene	MS/MSD and BS	

G. Summary Table of Data Qualifier Flags

Data Validation Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 24

Associated Samples	Analyte Affected	Type of Deviation	Qualifier
AN-SS-303	Pentachlorophenol	MS/MSD and BS	99 UG
AN-SS-304	Phenol	MS/MSD and BS	38 UG
AN-SS-304	1,4-Dichlorobenzene	MS/MSD and BS	19 UG
AN-SS-304	1,2,4-Trichlorobenzene	MS/MSD and BS	19 UG
AN-SS-304	Pentachlorophenol	MS/MSD and BS	95 UG
AN-SS-305	Phenol	MS/MSD and BS	52 G
AN-SS-305	1,4-Dichlorobenzene	MS/MSD and BS	22 UG
AN-SS-305	1,2,4-Trichlorobenzene	MS/MSD and BS	22 UG
AN-SS-305	Pentachlorophenol	MS/MSD and BS	110 UG
AN-SS-306	Phenol	MS/MSD and BS	58 G
AN-SS-306	1,4-Dichlorobenzene	MS/MSD and BS	19 UG
AN-SS-306	1,2,4-Trichlorobenzene	MS/MSD and BS	19 UG
AN-SS-306	Pentachlorophenol	MS/MSD and BS	97 UG
AN-SC-80	Pyrene	MS/MSD	1200 G
AN-SC-81	Indeno(1,2,3-cd)pyrene	Internal standard	290 L
AN-SC-81	Dibenz(a,h)anthracene	Internal standard	110 L
AN-SC-81	Benzo(g,h,i)perylene	Internal standard	210 L
AN-SC-82	Indeno(1,2,3-cd)pyrene	Internal standard	220 L
AN-SC-82	Dibenz(a,h)anthracene	Internal standard	77 L
AN-SC-82	Benzo(g,h,i)perylene	Internal standard	140 L
AN-SS-301	Fluoranthene	Linear range exceeded	5500 R
AN-SS-301	Pyrene	Linear range exceeded	9500 R
AN-SS-301	Benzo(a)anthracene	Linear range exceeded	5000 R
AN-SS-301	Chrysene	Linear range exceeded	4900 R
AN-SS-301	Benzo(b)fluoranthene	Linear range exceeded	5300 R
AN-SS-301	Benzo(a)pyrene	Linear range exceeded	6000 R
AN-SS-301	Indeno(1,2,3-cd)pyrene	Linear range exceeded	3700 R
AN-SS-304	Phenanthrene	Linear range exceeded	2000 R
AN-SS-304	Fluoranthene	Linear range exceeded	3100 R
AN-SS-304	Benzo(a)pyrene	Linear range exceeded	1700 R
AN-SS-47	bis(2-Ethylhexyl)phthalate	Linear range exceeded	22000 R
AN-SC-81	Pyrene	Linear range exceeded	1900 R
AN-SC-82	Pyrene	Linear range exceeded	1700 R
AN-SC-82	Chrysene	Linear range exceeded	1900 R
AN-SS-301DL	All analytes for which the dilution was not performed.	Excessive dilution	R

Data Validation Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 25

Associated Samples	Analyte Affected	Type of Deviation	Qualifier
AN-SS-304DL	All analytes for which the dilution was not performed.	Excessive dilution	R
AN-SS-47DL	All analytes for which the dilution was not performed.	Excessive dilution	R
AN-SC-81DL	All analytes for which the dilution was not performed.	Excessive dilution	R
AN-SC-82DL	All analytes for which the dilution was not performed.	Excessive dilution	R
AN-SC-80 MS	Total Organic Carbon	Calculation Error	79.0

Data Validation Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 26

H. Revised Laboratory Reports

Sample No: AN-SS-304

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z036A LIMS ID: 98-22425 Matrix: Sediment Data Release Authorized: WW Reported: 11/19/98

Date extracted: 11/03/98 Date analyzed: 11/10/98 Instrument: nt1 GPC Cleanup: YES QC Report No: 2036-Anchor Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98

> Sample Amount: 52.8 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 34.2% pH: 7.6

	Analyte	ug/kg
CAS Number	Phenol	38 U C1
108-95-2	1,4-Dichlorobenzene	19 U G
106-46-7	Benzyl Alcohol	95 U
100-51-6	1,2-Dichlorobenzene	19 U
95-50-1	1,2-Dichiorobenzene	38 U
95-48-7	2-Methylphenol	120
106-44-5	4-Methylphenol	57 U
105-67-9	2,4-Dimethylphenol	190 U
65-85-0	Benzoic Acid	19 U G
120-82-1	1,2,4-Trichlorobenzene	710
91-20-3	Naphthalene	38 U .
87-68-3	Hexachlorobutadiene	160
91-57-6	2-Methylnaphthalene	19 U
131-11-3	Dimethylphthalate	220
208-96-8	Acenaphthylene	100
83-32-9	Acenaphthene	120
132-64-9	Dibenzofuran	12 U
84-66-2	Diethylphthalate	220
86-73-7	Fluorene	19 U
86-30-6	N-Nitrosodiphenylamine	19 U
118-74-1	Hexachlorobenzene	95 U G
87-86-5	Pentachlorophenol	A
85-01-8	Phenanthrene	
120-12-7	Anthracene	480
84-74-2	Di-n-Butylphthalate	19 U
206-44-0	Fluoranthene	3,100 E R
200-11-0	 Constants deputies a 	Fip 1.19-518

Sample No: AN-SS-304

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z036A LIMS ID: 98-22425 Matrix: Sediment Data Release Authorized: W~ Reported: 11/19/98

QC Report No: 2036-Anchor Environmental Project: Starr Rock 98-007-03 Date Sampled: 10/26/98 Date Received: 10/28/98

Date extracted: 11/03/98 Date analyzed: 11/10/98 Instrument: nt1 GPC Cleanup: YES

Sample Amount: Final Extract Volume:	52.8 g-dry-wt 1.0 mL
Dilution Factor:	1:1
Percent Moisture: pH:	7.6

Sen	ivolatiles Surr	ogate Recovery	66.8%
d5-Nitrobenzene	62.4%	d5-Phenol 2-Fluorophenol	67.9%
2-Fluorobiphenyl d14-p-Terphenyl	58.0% 77.7%	2,4,6-Tribromophenol	81.5% 64.2%
d4-1,2-Dichlorobenzer	ne 54.5%	d4-2-Chlorophenol	01.20

Sample No: AN-SS-45

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z037B LIMS ID: 98-22432 Matrix: Sediment Data Release Authorized: Reported: 11/17/98

Date extracted: 11/04/98 Date analyzed: 11/12/98 Instrument: nt1 GPC Cleanup: YES QC Report No: Z037-Anchor Environmental Project: WW ADDENDUM #3 98-030-01 Date Sampled: 10/27/98 Date Received: 10/28/98

> Sample Amount: 50.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 59.8% pH: 7.6

	Analyte	ug/kg
CAS Number	Phenol	40 U
108-95-2	1,4-Dichlorobenzene	20 U
106-46-7	Benzyl Alcohol	99 U
100-51-6 95-50-1	1,2-Dichlorobenzene	20 U
Carlos and and and	2-Methylphenol	40 U
95-48-7	4-Methylphenol	220
106-44-5	2,4-Dimethylphenol	60 U
105-67-9	Benzoic Acid	200 U
65-85-0	1,2,4-Trichlorobenzene	20 U
120-82-1	Naphthalene	-100 .
91-20-3	Hexachlorobutadiene	40 U
87-68-3	2-Methylnaphthalene	83
91-57-6	Dimethylphthalate	23
131-11-3	Acenaphthylene	21
208-96-8	Acenaphthene	31
83-32-9	Dibenzofuran	100
132-64-9	Diethylphthalate	20 U
84-66-2	Fluorene	70
86-73-7	N-Nitrosodiphenylamine	20 U
86-30-6	Hexachlorobenzene	20 U
118-74-1	Pentachlorophenol	99 U
87-86-5		270
85-01-8	Phenanthrene	170
120-12-7	Anthracene	20 U
84-74-2	Di-n-Butylphthalate	660
206-44-0	Fluoranthene	
		19421.205
		N N

Sample No: AN-SS-45

QC Report No: Z037-Anchor Environmental Project: WW ADDENDUM #3 98-030-01 Date Sampled: 10/27/98 Date Received: 10/28/98

Date extracted: 11/04/98 Date analyzed: 11/12/98 Instrument: nt1 GPC Cleanup: YES

ORGANICS ANALYSIS DATA SHEET

Data Release Authorized: M

Semivolatiles by GC/MS

Lab Sample ID: 2037B

Reported: 11/17/98

LIMS ID: 98-22432

Matrix: Sediment

Page 2 of 2

Sample Amount: 50.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 59.8% pH: 7.6

and Mumber	Analyte	ug/kg	
CAS Number	Pyrene	1,500	
129-00-0	Butylbenzylphthalate	35	
85-68-7		370	
56-55-3	Benzo (a) anthracene	1,400	
117-81-7	bis(2-Ethylhexyl)phthalate		
218-01-9	Chrysene	520	-
117-84-0	Di-n-Octyl phthalate	26	Ē
1997 (1997 1997 - 1997 1997 1997 1997 1997 199	Benzo (b) fluoranthene	390	
205-99-2		340	
207-08-9	Benzo(k) fluoranthene	230	
50-32-8	Benzo(a)pyrene	110	
193-39-5	Indeno(1,2,3-cd)pyrene		
53-70-3	Dibenz (a, h) anthracene	51	
191-24-2	Benzo(g,h,i)perylene	88	
		日間	1850

Semivolatiles Surrogate Recovery

	FO 0%	d5-Phenol	44.0%
d5-Nitrobenzene	50.0%		53.2%
2-Fluorobiphenyl	53.0%	2-Fluorophenol	22.20
	04 08	2,4,6-Tribromophenol	69.1%
d14-p-Terphenyl	84.8%		45.3%
d4-1,2-Dichlorobenzene	45.6%	d4-2-Chlorophenol	45.53

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z037C LIMS ID: 98-22433 Matrix: Sediment Data Release Authorized: My Reported: 11/17/98

Date extracted: 11/04/98 Date analyzed: 11/12/98 Instrument: nt1 GPC Cleanup: YES Sample No: AN-SS-47

QC Report No: Z037-Anchor Environmental Project: WW ADDENDUM #3 98-030-01 Date Sampled: 10/27/98 Date Received: 10/28/98

10/27/98 10/28/98 Sample Amount: 7.24 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1

Percent Moisture: 30.8% pH: 7.7

CAS Number	Analyte	ug/kg
108-95-2	Phenol	280 U G
106-46-7	1,4-Dichlorobenzene	140 U
100-51-6	Benzyl Alcohol	690 U
95-50-1	1,2-Dichlorobenzene	140 U
95-48-7	2-Methylphenol	280 U G
106-44-5	4-Methylphenol	140 U (j
105-67-9	2,4-Dimethylphenol	410 U G
65-85-0	Benzoic Acid	1,400 U G
120-82-1	1,2,4-Trichlorobenzene	140 U
91-20-3	Naphthalene	140 U .
87-68-3	Hexachlorobutadiene	280 U
91-57-6	2-Methylnaphthalene	140 U
131-11-3	Dimethylphthalate	140 U
208-96-8	Acenaphthylene	140 U
83-32-9	Acenaphthene	140 U
132-64-9	Dibenzofuran	140 U
84-66-2	Diethylphthalate	140 U
86-73-7	Fluorene	140 U
86-30-6	N-Nitrosodiphenylamine	140 U
118-74-1	Hexachlorobenzene	140 U
87-86-5	Pentachlorophenol	690 U G
85-01-8	Phenanthrene	480
120-12-7	Anthracene	180
84-74-2	Di-n-Butylphthalate	750
206-44-0	Fluoranthene	3,100
		K43 1.20.99
	v	1

Sample No: AN-SS-47

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z037C LIMS ID: 98-22433 Matrix: Sediment Data Release Authorized: M~ Reported: 11/17/98

Date extracted: 11/04/98 Date analyzed: 11/12/98 Instrument: nt1 GPC Cleanup: YES QC Report No: Z037-Anchor Environmental Project: WW ADDENDUM #3 98-030-01 Date Sampled: 10/27/98 Date Received: 10/28/98

> Sample Amount: 7.24 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 30.8% pH: 7.7

CAS Number	Analyte	ug/kg
129-00-0	Pyrene	4,200
85-68-7	Butylbenzylphthalate	140 U
56-55-3	Benzo(a) anthracene	490
117-81-7	bis (2-Ethylhexyl) phthalate	22,000 B R
218-01-9	Chrysene	1,300
117-84-0	Di-n-Octyl phthalate	140 U
205-99-2	Benzo(b) fluoranthene	700
207-08-9	Benzo(k) fluoranthene	1,000
50-32-8	Benzo (a) pyrene	440
193-39-5	Indeno(1,2,3-cd)pyrene	230 .
53-70-3	Dibenz(a,h)anthracene	140 U
191-24-2	Benzo(g,h,i)perylene	170
		KJ1.2- 44

Se	mivolatiles	Surrogate Recovery	
d5-Nitrobenzene	32.8%		26.1%
2-Fluorobiphenyl	46.3%	2-Fluorophenol	37.4%
d14-p-Terphenyl	84.6%	2,4,6-Tribromophenol	70.6%
d4-1,2-Dichlorobenzo	5 B 7 B 8	d4-2-Chlorophenol	27.8%

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z037C LIMS ID: 98-22433 Matrix: Sediment Data Release Authorized: Nor Reported: 11/17/98

Date extracted: 11/04/98 Date analyzed: 11/13/98 Instrument: nt1 GPC Cleanup: YES QC Report No: Z037-Anchor Environmental Project: WW ADDENDUM #3 98-030-01 Date Sampled: 10/27/98 Date Received: 10/28/98

> Sample Amount: 7.24 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:10 Percent Moisture: 30.8% pH: 7.7

CAS Number	Analyte	ug/kg
108-95-2	Phenol	2,800 U 'R
106-46-7	1,4-Dichlorobenzene	1,400 U
100-51-6	Benzyl Alcohol	6,900 U
95-50-1	1,2-Dichlorobenzene	1,400 U
95-48-7	2-Methylphenol	2,800 U
106-44-5	4-Methylphenol	1,400 U
105-67-9	2,4-Dimethylphenol	4,100 U
65-85-0	Benzoic Acid	14,000 U
120-82-1	1,2,4-Trichlorobenzene	1,400 U
91-20-3	Naphthalene	1,400 U
87-68-3	Hexachlorobutadiene	2,800 U
91-57-6	2-Methylnaphthalene	1,400 U
131-11-3	Dimethylphthalate	1,400 U
208-96-8	Acenaphthylene	1,400 U
83-32-9	Acenaphthene	1,400 U
132-64-9	Dibenzofuran	1,400 U
84-66-2	Diethylphthalate	1,400 U
86-73-7	Fluorene	1,400 U
86-30-6	N-Nitrosodiphenylamine	1,400 U
118-74-1	Hexachlorobenzene	1,400 U
87-86-5	Pentachlorophenol	6,900 U
85-01-8	Phenanthrene	1,400 U
120-12-7	Anthracene	1,400 U
84-74-2	Di-n-Butylphthalate	1,400 U
206-44-0	Fluoranthene	3,500
		K10 1-20.11

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z037C LIMS ID: 98-22433 Matrix: Sediment Data Release Authorized: MA/ Reported: 11/17/98

Date extracted: 11/04/98 Date analyzed: 11/13/98 Instrument: nt1 GPC Cleanup: YES

QC Report No: Z037-Anchor Environmental Project: WW ADDENDUM #3

98-030-01 Date Sampled: 10/27/98 Date Received: 10/28/98

> Sample Amount: 7.24 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:10 Percent Moisture: 30.8% pH: 7.7

CAS Number	Analyte	ug/kg
129-00-0	Pyrene	3,700 R
85-68-7	Butylbenzylphthalate	1,400 U
56-55-3	Benzo(a)anthracene	1,400 U V
117-81-7	bis(2-Ethylhexyl)phthalate	20,000
218-01-9	Chrysene	1,500 K
117-84-0	Di-n-Octyl phthalate	1,400 U
205-99-2	Benzo(b)fluoranthene	1,400 U
207-08-9	Benzo(k)fluoranthene	1,400 U
50-32-8	Benzo (a) pyrene	1,400 U
193-39-5	Indeno(1,2,3-cd)pyrene	1,400 U .
53-70-3	Dibenz(a,h)anthracene	1,400 U
191-24-2	Benzo(g,h,i)perylene	1,400 U 🗤
		KD 1.20 ??

5	Semivolatiles	Surrogate Recovery	0.0 2.2
d5-Nitrobenzene	30.8%	d5-Phenol	32.0%
2-Fluorobiphenyl	50.4%	2-Fluorophenol	42.4%
	67.28	2,4,6-Tribromophenol	56.5%
d14-p-Terphenyl d4-1,2-Dichloroben:	dian internet	d4-2-Chlorophenol	38.1%

Sample No: AN-SS-70

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z037D LIMS ID: 98-22434 Matrix: Sediment Data Release Authorized: M~ Reported: 11/17/98

Date extracted: 11/04/98 Date analyzed: 11/12/98 Instrument: nt1 GPC Cleanup: YES QC Report No: Z037-Anchor Environmental Project: WW ADDENDUM #3 98-030-01 Date Sampled: 10/27/98 Date Received: 10/28/98

> Sample Amount: 51.8 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 60.2% pH: 7.6

CAS Number	Analyte	ug/kg
108-95-2	Phenol	39 U
106-46-7	1,4-Dichlorobenzene	19 U
100-51-6	Benzyl Alcohol	96 U
95-50-1	1,2-Dichlorobenzene	19 U
95-48-7	2-Methylphenol	39 U
106-44-5	4-Methylphenol	240
105-67-9	2,4-Dimethylphenol	58 U
65-85-0	Benzoic Acid	190 U
120-82-1	1,2,4-Trichlorobenzene	19 U
91-20-3	Naphthalene	160
87-68-3	Hexachlorobutadiene	39 U
91-57-6	2-Methylnaphthalene	30
131-11-3	Dimethylphthalate	19 U
208-96-8	Acenaphthylene	20
83-32-9	Acenaphthene	19 U
132-64-9	Dibenzofuran	48
84-66-2	Diethylphthalate	19 U
86-73-7	Fluorene	26
86-30-6	N-Nitrosodiphenylamine	19 U
118-74-1	Hexachlorobenzene	19 U
87-86-5	Pentachlorophenol	96 U
85-01-8	Phenanthrene	170
120-12-7	Anthracene	40
84-74-2	Di-n-Butylphthalate	43
206-44-0	Fluoranthene	210
		Kp 1.20.55

Sample No: AN-SS-70

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z037D LIMS ID: 98-22434 Matrix: Sediment Data Release Authorized: N~~ Reported: 11/17/98

Date extracted: 11/04/98 Date analyzed: 11/12/98 Instrument: nt1 GPC Cleanup: YES QC Report No: Z037-Anchor Environmental Project: WW ADDENDUM #3 98-030-01 Date Sampled: 10/27/98 Date Received: 10/28/98

> Sample Amount: 51.8 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 60.2% pH: 7.6

	Analyte	ug/kg
CAS Number		260
129-00-0	Pyrene	19 U
85-68-7	Butylbenzylphthalate	48
56-55-3	Benzo(a) anthracene	
117-81-7	bis(2-Ethylhexyl)phthalate	-150
218-01-9	Chrysene	74
	Di-n-Octyl phthalate	19 U
117-84-0	Benzo (b) fluoranthene	48
205-99-2	Benzo (b) fluoranchene	77
207-08-9	Benzo(k)fluoranthene	49
50-32-8	Benzo(a)pyrene	32
193-39-5	Indeno (1,2,3-cd) pyrene	
53-70-3	Dibenz(a,h)anthracene	19 U
191-24-2	Benzo(g,h,i)perylene	31
		KJO 1.205

Sem	ivolatiles Sur	rogate Recovery	•
d5-Nitrobenzene	46.9%	d5-Phenol	38.1%
	53.1%	2-Fluorophenol	44.1%
2-Fluorobiphenyl	89.6%	2,4,6-Tribromophenol	58.6%
d14-p-Terphenyl		d4-2-Chlorophenol	36.5%
d4-1,2-Dichlorobenzen	e 36.9%	04-2-Chiorophono=	

Sample No: AN-SC-80

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z063B LIMS ID: 98-22608 Matrix: Sediment Data Release Authorized: My Reported: 11/17/98

Date extracted: 11/04/98 Date analyzed: 11/12/98 Instrument: nt1 GPC Cleanup: YES QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

> Sample Amount: 51.8 g-dry-wt Final Extract Volume: 1.0 mL

Final Extract Volume: 1.0 mL Dilution Factor: 1:2 Percent Moisture: 63.0% pH: 7.5

CAS Number	Analyte	ug/kg
129-00-0	Pyrene	1,200 G
85-68-7	Butylbenzylphthalate	62 M
56-55-3	Benzo (a) anthracene	480
117-81-7	bis (2-Ethylhexyl) phthalate	~770
218-01-9	Chrysene	530
117-84-0	Di-n-Octyl phthalate	39 U
205-99-2	Benzo (b) fluoranthene	440
207-08-9	Benzo(k) fluoranthene	380
50-32-8	Benzo(a) pyrene	280
193-39-5	Indeno (1,2,3-cd) pyrene	140
53-70-3	Dibenz (a, h) anthracene	66
191-24-2	Benzo(g,h,i) perylene	110
		79 6.5.1 697

S	emivolatiles Surr	ogate Recovery	1.424121 - 1.411 4
d5-Nitrobenzene	48.3%	d5-Phenol	49.3%
	59.0%	2-Fluorophenol	52.6%
2-Fluorobiphenyl		2,4,6-Tribromophenol	86.0%
d14-p-Terphenyl	98.6%		50.0%
d4-1,2-Dichlorobenz	ene 33.0%	d4-2-Chlorophenol	50.00

Sample No: AN-SC-71

Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z063C Q LIMS ID: 98-22609 Matrix: Sediment Data Release Authorized: M/- D

QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

Date extracted: 11/04/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES

Reported: 11/17/98

ORGANICS ANALYSIS DATA SHEET

Sample Amount: 50.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 61.4% pH: 7.3

CAS Number	Analyte	ug/k	g
108-95-2	Phenol	40	
106-46-7	1,4-Dichlorobenzene	20	U
100-51-6	Benzyl Alcohol	99	U
95-50-1	1,2-Dichlorobenzene	20	U
95-48-7	2-Methylphenol	40	U
106-44-5	4-Methylphenol	290	
105-67-9	2,4-Dimethylphenol	60	U
65-85-0	Benzoic Acid	200	U
120-82-1	1,2,4-Trichlorobenzene	20	U
91-20-3	Naphthalene	170	
87-68-3	Hexachlorobutadiene	40	U
91-57-6	2-Methylnaphthalene	66	
131-11-3	Dimethylphthalate	20	U
208-96-8	Acenaphthylene	23	
83-32-9	Acenaphthene	120	
132-64-9	Dibenzofuran	150	
84-66-2	Diethylphthalate	20	U
86-73-7	Fluorene	150	
86-30-6	N-Nitrosodiphenylamine	20	U
118-74-1	Hexachlorobenzene	20	U
87-86-5	Pentachlorophenol	99	U
85-01-8	Phenanthrene	590	
120-12-7	Anthracene	180	
84-74-2	Di-n-Butylphthalate	20	U
206-44-0	Fluoranthene	870	
		K43 (.	205
	5	1	

Sample No: AN-SC-71

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z063C LIMS ID: 98-22609 Matrix: Sediment Data Release Authorized: M Reported: 11/17/98

QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

Date extracted: 11/04/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES

Sample Amount:	50.3 g-dry-wt
Final Extract Volume:	1.0 mL
Dilution Factor:	1:1
Percent Moisture:	61.4%
pH:	7.3

CAS Number	Analyte	ug/kg
129-00-0	Pyrene	1,200
85-68-7	Butylbenzylphthalate	20 U
56-55-3	Benzo(a) anthracene	380
117-81-7	bis (2-Ethylhexyl) phthalate	V120 E
218-01-9	Chrysene	520
117-84-0	Di-n-Octyl phthalate	20 U
205-99-2	Benzo(b) fluoranthene	300
207-08-9	Benzo(k) fluoranthene	280
50-32-8	Benzo (a) pyrene	230
193-39-5	Indeno(1,2,3-cd) pyrene	93 .
53-70-3	Dibenz (a, h) anthracene	33
191-24-2	Benzo(g,h,i)perylene	60
		1427 1.12 59

	for some some has	Decoureme
Semivolatiles	Surrogate	Recovery

d5-Nitrobenzene	47.9%	d5-Phenol	52.9%
2-Fluorobiphenyl	57.0%	2-Fluorophenol	50.7%
d14-p-Terphenyl	85.5%	2,4,6-Tribromophenol	-76.4%
d4-1,2-Dichlorobenzene	33.1%	d4-2-Chlorophenol	43.9%

Sample No: AN-SC-72

Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z063D LIMS ID: 98-22610 Matrix: Sediment Data Release Authorized: MA

Reported: 11/17/98 Date extracted: 11/04/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES

ORGANICS ANALYSIS DATA SHEET

QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

> Sample Amount: 50.7 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 61.1% pH: 7.1

CAS Number	Analyte	ug/kg
108-95-2	Phenol	39 U
106-46-7	1,4-Dichlorobenzene	20 U
100-51-6	Benzyl Alcohol	99 U
95-50-1	1,2-Dichlorobenzene	20 U
95-48-7	2-Methylphenol	39 U
106-44-5	4-Methylphenol	240
105-67-9	2,4-Dimethylphenol	59 U
65-85-0	Benzoic Acid	200 U
120-82-1	1,2,4-Trichlorobenzene	20 U
91-20-3	Naphthalene	130
87-68-3	Hexachlorobutadiene	39 U
91-57-6	2-Methylnaphthalene	57
131-11-3	Dimethylphthalate	20 U
208-96-8	Acenaphthylene	22
83-32-9	Acenaphthene	52
132-64-9	Dibenzofuran	100
84-66-2	Diethylphthalate	20 U
86-73-7	Fluorene	110
86-30-6	N-Nitrosodiphenylamine	20 U
118-74-1	Hexachlorobenzene	20 U
87-86-5	Pentachlorophenol	99 U
85-01-8	Phenanthrene	390
120-12-7	Anthracene	270
84-74-2	Di-n-Butylphthalate	20 U
206-44-0	Fluoranthene	680
		K421.20 "

Sample No: AN-SC-72

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z063D LIMS ID: 98-22610 Matrix: Sediment Data Release Authorized: Nwy~ Reported: 11/17/98

QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

Date extracted: 11/04/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES Sample Amount: 50.7 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 61.1% pH: 7.1

CAS Number	Analyte	ug/kg	
129-00-0	Pyrene	1,100	
85-68-7	Butylbenzylphthalate	20 U	
56-55-3	Benzo(a) anthracene	390	
117-81-7	bis(2-Ethylhexyl)phthalate	140	F
218-01-9	Chrysene	590	~
117-84-0	Di-n-Octyl phthalate	20 U	
205-99-2	Benzo(b) fluoranthene	290	
207-08-9	Benzo(k) fluoranthene	220	
50-32-8	Benzo(a)pyrene	200	
193-39-5	Indeno (1, 2, 3-cd) pyrene	89	330
53-70-3	Dibenz (a, h) anthracene	36	
191-24-2	Benzo(g,h,i)perylene	56	
		Kp 1.20	750

Semivolatiles	Surrogate	Recovery
---------------	-----------	----------

d5-Nitrobenzene	43.4%	d5-Phenol	45.4%
2-Fluorobiphenyl	53.9%	2-Fluorophenol	46.2%
d14-p-Terphenyl	72.0%	2,4,6-Tribromophenol	72.6%
d4-1,2-Dichlorobenzene	33.5%	d4-2-Chlorophenol	39.3%

Sample No: AN-SC-73

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z063E LIMS ID: 98-22611 Matrix: Sediment Data Release Authorized: WW Reported: 11/17/98

QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

Date extracted: 11/04/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES

Sample Amount:	50.7 g-dry-wt
Final Extract Volume:	
Dilution Factor:	
Percent Moisture:	62.5%
pH:	7.2

CAS Number	Analyte	ug/kg
108-95-2	Phenol	39 U
106-46-7	1,4-Dichlorobenzene	20 U
100-51-6	Benzyl Alcohol	99 U
95-50-1	1,2-Dichlorobenzene	20 U
95-48-7	2-Methylphenol	39 U
106-44-5	4-Methylphenol	170
105-67-9	2,4-Dimethylphenol	59 U
65-85-0	Benzoic Acid	200 U
120-82-1	1,2,4-Trichlorobenzene	20 U
91-20-3	Naphthalene	√ 90 ·
87-68-3	Hexachlorobutadiene	39 U
91-57-6	2-Methylnaphthalene	43
131-11-3	Dimethylphthalate	20 U
208-96-8	Acenaphthylene	20 U
83-32-9	Acenaphthene	45
132-64-9	Dibenzofuran	79
84-66-2	Diethylphthalate	20 U
86-73-7	Fluorene	76
86-30-6	N-Nitrosodiphenylamine	20 U
118-74-1	Hexachlorobenzene	20 U
87-86-5	Pentachlorophenol	99 U
85-01-8	Phenanthrene	300
120-12-7	Anthracene	130
84-74-2	Di-n-Butylphthalate	20 U
206-44-0	Fluoranthene	600
200 1.8 0		12012095

QC Report No: Z063-

Date Received: 11/03/98

Project:

Date Sampled:

Sample No: AN-SC-73

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z063E LIMS ID: 98-22611 Matrix: Sediment Data Release Authorized: MA Reported: 11/17/98

Date extracted: 11/04/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES Sample Amount: 50.7 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 62.5% pH: 7.2

CAS Number	Analyte	ug/kg
129-00-0	Pyrene	690
85-68-7	Butylbenzylphthalate	20 U
56-55-3	Benzo (a) anthracene	250
117-81-7	bis(2-Ethylhexyl)phthalate	V180 E
218-01-9	Chrysene	320
117-84-0	Di-n-Octyl phthalate	20 U
205-99-2	Benzo(b) fluoranthene	220
207-08-9	Benzo(k) fluoranthene	180
50-32-8	Benzo (a) pyrene	170
193-39-5	Indeno (1,2,3-cd) pyrene	76 ·
53-70-3	Dibenz (a, h) anthracene	28
191-24-2	Benzo (g, h, i) perylene	54

10 111855

Sem	ivolatiles	Surrogate Recovery	
d5-Nitrobenzene	44.6%	d5-Phenol	40.7%
2-Fluorobiphenyl	55.0%	2-Fluorophenol	46.3%
d14-p-Terphenyl	83.5%	· · · · · · · · · · · · · · · · · · ·	76.3%
d4-1,2-Dichlorobenzen	2000 E		36.9%

RESOURCES INCORPORATED

ANALYTICAL

Sample No: AN-SC-77

QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

Date extracted: 11/04/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS

Data Release Authorized: Mww

Page 1 of 2

Lab Sample ID: Z063F

Reported: 11/17/98

LIMS ID: 98-22612

Matrix: Sediment

Sample Amount:	50.6 g-dry-wt
Final Extract Volume:	1.0 mL
Dilution Factor:	1:1
Percent Moisture:	62.6%
pH:	7.5

CAS Number	Analyte	ug/kg
108-95-2	Phenol	40 U
106-46-7	1,4-Dichlorobenzene	20 U
100-51-6	Benzyl Alcohol	99 U
95-50-1	1,2-Dichlorobenzene	20 U
95-48-7	2-Methylphenol	40 U
106-44-5	4-Methylphenol	140
105-67-9	2,4-Dimethylphenol	59 U
65-85-0	Benzoic Acid	200 U
120-82-1	1,2,4-Trichlorobenzene	、 20 U
91-20-3	Naphthalene	V100 ·
87-68-3	Hexachlorobutadiene	40 U
91-57-6	2-Methylnaphthalene	51
131-11-3	Dimethylphthalate	20 U
208-96-8	Acenaphthylene	20 U
83-32-9	Acenaphthene	41
132-64-9	Dibenzofuran	83
84-66-2	Diethylphthalate	20 U
86-73-7	Fluorene	72
86-30-6	N-Nitrosodiphenylamine	20 U
118-74-1	Hexachlorobenzene	20 U
87-86-5	Pentachlorophenol	99 U
85-01-8	Phenanthrene	230
120-12-7	Anthracene	120
84-74-2	Di-n-Butylphthalate	20 U
206-44-0	Fluoranthene	730
		KW1.20 57

Sample No: AN-SC-77

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: 2063F LIMS ID: 98-22612 Matrix: Sediment Data Release Authorized: W~~ Reported: 11/17/98

QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

Date extracted: 11/04/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES

Sample Amount:	50.6 g-dry-wt
Final Extract Volume:	1.0 mL
Dilution Factor:	1:1
Percent Moisture:	62.6%
pH:	7.5

CAS Number	Analyte	ug/kg	
129-00-0	Pyrene	940	
85-68-7	Butylbenzylphthalate	20 U	
56-55-3	Benzo (a) anthracene	280	
117-81-7	bis(2-Ethylhexyl)phthalate	190	E
218-01-9	Chrysene	390	
117-84-0	Di-n-Octyl phthalate	20 U	
205-99-2	Benzo(b) fluoranthene	220	
207-08-9	Benzo(k) fluoranthene	230	
50-32-8	Benzo(a)pyrene	190	
193-39-5	Indeno(1,2,3-cd)pyrene	93	¥
53-70-3	Dibenz (a, h) anthracene	35	
191-24-2	Benzo(g,h,i)perylene	58	
		FAD	1.18.50
		1	

			D
Semivol	atiles	Surrogate	Recovery

d5-Nitrobenzene	47.1%	d5-Phenol	44.6%
2-Fluorobiphenyl	58.4%	2-Fluorophenol	50.0%
d14-p-Terphenyl	84.4%	2,4,6-Tribromophenol	79.6%
d4-1,2-Dichlorobenzene	37.1%	d4-2-Chlorophenol	38.5%

Sample No: AN-SC-82

Date extracted: 11/04/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES 82

QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

> Sample Amount: 51.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 64.7%

pH: 9.5

CAS Number	Analyte	ug/kg
108-95-2	Phenol	39 U
106-46-7	1,4-Dichlorobenzene	20 U
100-51-6	Benzyl Alcohol	98 U
95-50-1	1,2-Dichlorobenzene	20 U
95-48-7	2-Methylphenol	39 U
106-44-5	4-Methylphenol	84
105-67-9	2,4-Dimethylphenol	59 U
65-85-0	Benzoic Acid	200 U
120-82-1	1,2,4-Trichlorobenzene	20 U
91-20-3	Naphthalene	80 .
87-68-3	Hexachlorobutadiene	39 U
91-57-6	2-Methylnaphthalene	58
131-11-3	Dimethylphthalate	20 U
208-96-8	Acenaphthylene	20 U
83-32-9	Acenaphthene	47
132-64-9	Dibenzofuran	90
84-66-2	Diethylphthalate	20 U
86-73-7	Fluorene	180
86-30-6	N-Nitrosodiphenylamine	20 U
118-74-1	Hexachlorobenzene	20 U
87-86-5	Pentachlorophenol	98 U
85-01-8	Phenanthrene	870
120-12-7	Anthracene	560
84-74-2	Di-n-Butylphthalate	20 U
206-44-0	Fluoranthene	660
		KAD 1.20 "
		Ν

FORM-1

021

ANALYTICAL RESOURCES INCORPORATED

Sample No: AN-SC-82

Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: 2063H LIMS ID: 98-22614 Matrix: Sediment Data Release Authorized: W/N Reported: 11/17/98

ORGANICS ANALYSIS DATA SHEET

QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

Date extracted: 11/04/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES Sample Amount: 51.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 64.7% pH: 9.5

CAS Number	Analyte	ug/kg
129-00-0	Pyrene	1,700 B R
85-68-7	Butylbenzylphthalate	110 M
56-55-3	Benzo(a) anthracene	730
117-81-7	bis (2-Ethylhexyl) phthalate	V1,300 EB
218-01-9	Chrysene	1,300 EB 1,900 B R
117-84-0	Di-n-Octyl phthalate	58 🔁
205-99-2	Benzo(b) fluoranthene	790
207-08-9	Benzo(k) fluoranthene	360
50-32-8	Benzo(a)pyrene	440
193-39-5	Indeno (1, 2, 3-cd) pyrene	220 L
53-70-3	Dibenz(a, h) anthracene	77 Ĺ
191-24-2	Benzo(g,h,i)perylene	140 L
		KYD 1. 17A g

S	emivolatiles	Surrogate Recovery	
d5-Nitrobenzene	54.3%	d5-Phenol	53.6%
2-Fluorobiphenyl	64.1%	2-Fluorophenol	50.5%
	109%	2,4,6-Tribromophenol	70.6%
		d4-2-Chlorophenol	45.5%
d14-p-Terphenyl d4-1,2-Dichlorobenz			45.5%

FORM-1

835

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: 2063H LIMS ID: 98-22614 Matrix: Sediment Data Release Authorized: MA Reported: 11/17/98

QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

> Sample Amount: 51.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:5 Percent Moisture: 64.7% pH: 9.5

Date extracted: 11/04/98 Date analyzed: 11/12/98 Instrument: nt1 GPC Cleanup: YES

CAS Number	Analyte	ug/kg
108-95-2	Phenol	200 U R
106-46-7	1,4-Dichlorobenzene	98 U
100-51-6	Benzyl Alcohol	490 U
95-50-1	1,2-Dichlorobenzene	98 U
95-48-7	2-Methylphenol	200 U
106-44-5	4-Methylphenol	98 U
105-67-9	2,4-Dimethylphenol	290 U
65-85-0	Benzoic Acid	980 U
120-82-1	1,2,4-Trichlorsbenzene	98 U
91-20-3	Naphthalene	98 U .
87-68-3	Hexachlorobutadiene	200 U
91-57-6	2-Methylnaphthalene	98 U
131-11-3	Dimethylphthalate	98 U
208-96-8	Acenaphthylene	98 U
83-32-9	Acenaphthene	98 U
132-64-9	Dibenzofuran	98 U
84-66-2	Diethylphthalate	98 U
86-73-7	Fluorene	190
86-30-6	N-Nitrosodiphenylamine	98 U
118-74-1	Hexachlorobenzene	98 U
87-86-5	Pentachlorophenol	490 U
85-01-8	Phenanthrene	810
120-12-7	Anthracene	600
84-74-2	Di-n-Butylphthalate	98 U
206-44-0	Fluoranthene	1,100 -
400-11-0	• • • • • • • • • • • • • • • • • • •	K10 1.2091
		New 1 Con 1

	· ·	ANALYTICAL RESOURCES INCORPORATED
ORGANICS ANALYSIS DATA	SHEET Sample	AN-SC-82
Semivolatiles by GC/MS		DILUTION
Page 2 of 2		
Lab Sample ID: Z063H	QC Report No:	Z063-
LIMS ID: 98-22614	Project:	
Matrix: Sediment		
Data Release Authorized	: M~ Date Sampled:	
Reported: 11/17/98	Date Received:	11/03/98
Date extracted: 11/04/9	8	Sample Amount: 51.3 g-dry-wt
Date analyzed: 11/12/9	8	Final Extract Volume: 1.0 mL
Instrument: nt1		Dilution Factor: 1:5
GPC Cleanup: YES		Percent Moisture: 64.7%
		pH: 9.5
CAS Number	Analyte	ug/kg
129-00-0	Pyrene	1,200
85-68-7	Butylbenzylphthalate	200 Y R 950 R
56-55-3	Benzo(a) anthracene	_ 950 R
117-81-7	bis(2-Ethylhexyl)phthala	ite 1,700
218-01-9	Chrysene	2,200 R
117-84-0	Di-n-Octyl phthalate	98 BR 101.2051
205-99-2	Benzo(b) fluoranthene	600 R
207-08-9	Benzo(k)fluoranthene	700
50-32-8	Benzo(a) pyrene	480
193-39-5	Indeno(1,2,3-cd)pyrene	240 .
53-70-3	Dibenz (a, h) anthracene	100
191-24-2	Benzo(g,h,i)perylene	210
		K42) 1 1 2.95

Semivolatiles	Surrogate	Recovery
---------------	-----------	----------

d5-Nitrobenzene	51.8%	d5-Phenol	37.9%
2-Fluorobiphenyl	58.2%	2-Fluorophenol	57.1%
d14-p-Terphenyl	75.2%	2,4,6-Tribromophenol	84.5%
d4-1,2-Dichlorobenzene	42.6%	d4-2-Chlorophenol	45.9%

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: Z063I LIMS ID: 98-22615 Matrix: Sediment Data Release Authorized: n_{A} Reported: 11/17/98

Date extracted: 11/04/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES Sample No: AN-SC-81

QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

> Sample Amount: 50.9 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 62.4% pH: 7.6

CAS Number	Analyte	ug/k	a
108-95-2	Phenol	39	U
106-46-7	1,4-Dichlorobenzene	20	U
100-51-6	Benzyl Alcohol	98	U
95-50-1	1,2-Dichlorobenzene	20	U
95-48-7	2-Methylphenol	39	U
106-44-5	4-Methylphenol	89	
105-67-9	2,4-Dimethylphenol	59	U
65-85-0	Benzoic Acid	200	U
120-82-1	1,2,4-Trichlorobenzene	20	U
91-20-3	Naphthalene	~93	2
87-68-3	Hexachlorobutadiene	39	U
91-57-6	2-Methylnaphthalene	55	
131-11-3	Dimethylphthalate	25	
208-96-8	Acenaphthylene	20	
83-32-9	Acenaphthene	64	
132-64-9	Dibenzofuran	91	
84-66-2	Diethylphthalate	20	U
86-73-7	Fluorene	94	
86-30-6	N-Nitrosodiphenylamine	20	U
118-74-1	Hexachlorobenzene	20	U
87-86-5	Pentachlorophenol	98	U
85-01-8	Phenanthrene	510	
120-12-7	Anthracene	220	
84-74-2	Di-n-Butylphthalate	20	U
206-44-0	Fluoranthene	870	
		5201.	20

FORM-1

830

QC Report No: Z063-

Date Received: 11/03/98

Project:

Date Sampled:

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z063I LIMS ID: 98-22615 Matrix: Sediment Data Release Authorized: MAA Reported: 11/17/98

Date extracted: 11/04/98 Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES Sample Amount: 50.9 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 62.4% pH: 7.6

CAS Number	Analyte	ug/kg
129-00-0	Pyrene	1,900 B R
85-68-7	Butylbenzylphthalate	160 M
56-55-3	Benzo (a) anthracene	510
117-81-7	bis (2-Ethylhexyl) phthalate	V1,400 EB
218-01-9	Chrysene	870
117-84-0	Di-n-Octyl phthalate	20 U
205-99-2	Benzo(b) fluoranthene	830
207-08-9	Benzo(k) fluoranthene	460
50-32-8	Benzo(a) pyrene	560
193-39-5	Indeno (1, 2, 3-cd) pyrene	290 .
53-70-3	Dibenz (a, h) anthracene	110 L
191-24-2	Benzo(g,h,i)perylene	210 L
		11-20515

S	emivolatiles	Surrogate Recovery	
d5-Nitrobenzene	53.1%	d5-Phenol	50.9%
2-Fluorobiphenyl	65.4%	2-Fluorophenol	49.6%
d14-p-Terphenyl	110%	2,4,6-Tribromophenol	72.4%
d4-1,2-Dichlorobenz		d4-2-Chlorophenol	42.1%

FORM-1

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 1 of 2 Lab Sample ID: 2063I LIMS ID: 98-22615 Matrix: Sediment Data Release Authorized: Mar Reported: 11/17/98

Date extracted: 11/04/98 Date analyzed: 11/12/98 Instrument: nt1 GPC Cleanup: YES QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

'ed: 11/03/98

Sample Amount: 50.9 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:5 Percent Moisture: 62.4% pH: 7.6

CAS Number	Analyte	ug/kg
108-95-2	Phenol	200 U R
106-46-7	1,4-Dichlorobenzene	98 U
100-51-6	Benzyl Alcohol	490 U
95-50-1	1,2-Dichlorobenzene	98 U
95-48-7	2-Methylphenol	200 U
106-44-5	4-Methylphenol	98 U
105-67-9	2,4-Dimethylphenol	290 U
65-85-0	Benzoic Acid	980 U
120-82-1	1,2,4-Trichlorobenzene	98 U
91-20-3	Naphthalene	98 U ·
87-68-3	Hexachlorobutadiene	200 U
91-57-6	2-Methylnaphthalene	98 U
131-11-3	Dimethylphthalate	98 U
208-96-8	Acenaphthylene	98 U
83-32-9	Acenaphthene	98 U
132-64-9	Dibenzofuran	100
84-66-2	Diethylphthalate	98 U
86-73-7	Fluorene	110
86-30-6	N-Nitrosodiphenylamine	98 U
118-74-1	Hexachlorobenzene	98 U
87-86-5	Pentachlorophenol	490 U
85-01-8	Phenanthrene	500
120-12-7	Anthracene	230
84-74-2	Di-n-Butylphthalate	98 U
206-44-0	Fluoranthene	1,500
		FAD 1.20 89

FORM-1

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: 2063I LIMS ID: 98-22615 Matrix: Sediment Data Release Authorized: WWW Reported: 11/17/98

Date extracted: 11/04/98 Date analyzed: 11/12/98 Instrument: nt1 GPC Cleanup: YES Sample Amount: 50.9 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:5 Percent Moisture: 62.4% pH: 7.6

CAS Number	Analyte	ug/kg
129-00-0	Pyrene	1,700
85-68-7	Butylbenzylphthalate	200 Y R
56-55-3	Benzo(a) anthracene	690
117-81-7	bis(2-Ethylhexyl)phthalate	1,900
218-01-9	Chrysene	890
117-84-0	Di-n-Octyl phthalate	98 U
205-99-2	Benzo(b) fluoranthene	550
207-08-9	Benzo(k)fluoranthene	740
50-32-8	Benzo(a)pyrene	500
193-39-5	Indeno (1,2,3-cd) pyrene	300 .
53-70-3	Dibenz(a,h) anthracene	130
191-24-2	Benzo(g,h,i)perylene	220 ·J
		RAD 1.2- PS

Date Sampled:

Date Received: 11/03/98

Semivolatiles Surrogate Re	covery
----------------------------	--------

d5-Nitrobenzene	48.4%	d5-Phenol	36.9%
2-Fluorobiphenyl	61.2%	2-Fluorophenol	58.3%
d14-p-Terphenyl	~78.0%	2,4,6-Tribromophenol	.89.28
d4-1,2-Dichlorobenzene	48.4%	d4-2-Chlorophenol	46.3%

Sample No: AN-SC-37

QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

> Sample Amount: 52.6 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1:1 Percent Moisture: 50.1% pH: 7.4

CAS Number	Analyte	
108-95-2	Phenol	ug/kg
106-46-7	1,4-Dichlorobenzene	38 U
100-51-6	Benzyl Alcohol	19 U
95-50-1	1,2-Dichlorobenzene	95 U
95-48-7	2-Methylphenol	19 U
106-44-5	4-Methylphenol	38 U
105-67-9	2,4-Dimethylphenol	200
65-85-0	Benzoic Acid	57 U
120-82-1	1,2,4-Trichlorobenzene	190 U
91-20-3	Naphthalene	19 U
87-68-3	Hexachlorobutadiene	200
91-57-6	2-Methylnaphthalene	38 U '
131-11-3	Dimethylphthalate	170
208-96-8	Acenaphthylene	41
83-32-9	Acenaphthene	30
132-64-9	Dibenzofuran	94
84-66-2	Diethylphthalate	140
86-73-7	Fluorene	19 U
86-30-6		130
118-74-1	N-Nitrosodiphenylamine Hexachlorobenzene	19 U
87-86-5		19 U
85-01-8	Pentachlorophenol Phenanthrene	95 U
120-12-7		470
84-74-2	Anthracene	170
206-44-0	Di-n-Butylphthalate	34
200-11-0	Fluoranthene	620
		VI>1.7 - 60

K401.50 AP

FORM-1

010

ANALYTICAL RESOURCES INCORPORATED

Matrix: Sediment Data Release Authorized: MA Reported: 11/17/98 Date extracted: 11/04/98 Date analyzed: 11/11/98

ORGANICS ANALYSIS DATA SHEET

Semivolatiles by GC/MS

Lab Sample ID: Z063J

LIMS ID: 98-22616

Page 1 of 2

Date analyzed: 11/11/98 Instrument: nt1 GPC Cleanup: YES

ORGANICS ANALYSIS DATA SHEET Semivolatiles by GC/MS Page 2 of 2 Lab Sample ID: Z063J LIMS ID: 98-22616 Matrix: Sediment Data Release Authorized: N/ Reported: 11/17/98

Date extracted: 11/04/98

Instrument: ntl

GPC Cleanup: YES

Date analyzed: 11/11/98

Sample No: AN-SC-37

QC Report No: Z063-Project:

Date Sampled: Date Received: 11/03/98

> Sample Amount: 52.6 g-dry-wt Final Extract Volume: 1.0 mL

Dilution Factor: 1:1 Percent Moisture: 50.1% pH: 7.4

CAS Number	Analyte	ug/kg
129-00-0	Pyrene	1,400
85-68-7	Butylbenzylphthalate	56
56-55-3	Benzo(a) anthracene	390
117-81-7	bis(2-Ethylhexyl)phthalate	~860 EB
218-01-9	Chrysene	520
117-84-0	Di-n-Octyl phthalate	19 U
205-99-2	Benzo(b) fluoranthene	480
207-08-9	Benzo(k) fluoranthene	350
50-32-8	Benzo(a)pyrene	340
193-39-5	Indeno(1,2,3-cd)pyrene	170
53-70-3	Dibenz (a, h) anthracene	59 ·
191-24-2	Benzo(g,h,i)perylene	120
		100 1. (->"11

COLUMN AND A COMPANY AND A COLUMN AND A COLU		Address of the second
Semivolatiles	Currogata	Recovery
Deminolaction	Burroyace	Mecovery

d5-Nitrobenzene	51.0%	d5-Phenol	49.1%
2-Fluorobiphenyl	61.6%	2-Fluorophenol	47.9%
d14-p-Terphenyl	79.9%	2,4,6-Tribromophenol	71.9%
d4-1,2-Dichlorobenzene	40.5%	d4-2-Chlorophenol	39.9%

FORM-1

QA Report - Notrix Spike/Hatrix Spike Duplicate Analysis

Matrix: Sediment

QC Report No: 2063-Project: Date Received: 11/03/98

Data Release Authonized:

MATRIX SFIKE/MATRIX SFIKE DUP. QA/QC REPORT CONVENTIONALS

Constituent	Units	Sample Value	Spike Value	Spike Added	Recovery
ARI ID: 98-22608, Z063 B	Client Sample	ID: AN-SC-80			
Total Organic Carbon MS Total Organic Carbon MSD	Percent Percent	3.01 3.01	4.55 4.47	1.95 2.15	78:8 % 79.0 67.9%

MS/MSD Recovery Limits: 75 - 125 %

Soil MS/MSD QA Report Page 1 for Z063 received 11/03/98

2/19/99 ld

1266

Quality By Design

Data Validation Whatcom Waterway and Boulevard Parks/Starr Rock Area Anchor Environmental, L.L.C. Sampled: October 26-29, 1998 February 19, 1999 Page 27

Attachment 1: Communication with the Laboratory

kathyg

From: Kim Magruder <kmagruder@anchorenv.com> To: 'kathyg@willapabay.org' Subject: Whatcom Waterway/Starr Rock Field QA Sample IDs Date: Tuesday, January 05, 1999 2:20 PM

Kathy, I can't remember if I sent the field QA sample IDs to you or not. I suspect not. The field QA sample IDs are as follows:

Field homogenization split sample: AN-SS-200 (collected at station AN-SS-70) Rinsate blank: AN-SC-201 Distilled water blank: AN-SC-202

Again, sorry for the delay! Kim.

	1 Date 1 - 4-09 pages > 21
Post-it' Fax Note 767	The second secon
Tolorraine	From BRITAY
CorDept DED	Co.
Phone #	Ptrone #
and the second s	WEAKEL From King
Fax+ Left Voica-	

Analytical Resources, Incorporated Analytical Chemists and Consultants

<u>FAX</u>

Date: January 28, 1999 MC From: Mark D. Harris, ARI, 206/621-6490 RE: Z036, Anchor Environmental, Starr Rock

Pages (incl. cover): 1

To: Lorraine Davis, Quality By Design 808/969-9094

Comments:

Actually this is easier than I thought.

The burn weight number is entered into the instrument and that factor is taken into account when the Observed C number is recorded. This number is, in turn, blank corrected and converted to the correct units to reach the final result.

For example, on page 1250 for sample Z036A, the Observed C is 91,800. Subtract the mean blank concentration (listed in the upper third of the page) of 40 and you have the Corrected C value - 91,760. This is converted to percent which is reported as 9.2 on page 1204.

Let me know if you have any further questions.

Quality By Design 97 Puhili Street Hilo, Hawaii 96720 Phone: (808) 969-9424 Fax: (808) 969-9094 e-mail: qbdhilo@gte.net

FACSIMILE TRANSMISSION SHEET

Date: February 20, 1999

Fax #: 206/621-7523

To: Analytical Resources, Incorporated

Attn: Mark Harris

Total Pages, including this one: 1

From: Lorraine Davis

In our review of Rosa Environmental and Geotechnical Laboratory Grain Size data for your project/sample 98-22608 (Anchor Environmental Whatcom Waterway/Starr Rock) it appears that the grain size graph which corresponds to Sample AN-SC-80C does not accurately reflect the values found on the table for the same sample.

Will you request a review of this particular sample by Rosa Environmental and Geotechnical and if there is a discrepancy, that they reissue a corrected report and graph? The corrected report is to go to Anchor Environmental directly, and not to us.

If you have any questions, please don't hesitate to call me.

Thank you for you assistance.

		****		* XMT REPORT	*******	******	*****	1:KX:	F######	******	**
**	****	ጜ፠፠፠፠፠ ኯጜዀጜቚዀዀዄዄዀዀዀዀ									*
ж							Feb.	20	1999	12:14PM	*
ж							reb.	20	1.555	16.1.4.11	ж
*						<i>E</i>				0005	
	NO.	OTHER FACSIMILE	START TIME	USAGE TIME	MODE	PAGES	RESULT			CODE	ж
Ψ	1.11-11	D HER I HOUTHLE	01110								*
*				00140	TV	01	OK			(00)	*
ж	Ø1	621 7523	Feb. 20 12:13PM	00'40	TX	01	WAN			•	*
•											
1											ж
*											ж
*						1. Laboratorio de la		a de de	111.4.64	****	(**
*	*****	******	******	*****	activity of the	ትረጉጥብ፣ ከብተብ፣ 1።	te-metabal@1-dop.p	- 1 toda	ded an effette		

kathyg

From: kathyg <kathyg@willapabay.org> To: Mark Harris <mark@arilabs.com> Cc: Tom Davis <qbdhilo@gte.net> Subject: Anchor Environmental - Whatcom Waterway Date: Tuesday, December 29, 1998 11:03 AM

Hi Mark,

I am working for Quality By Design and they are doing the validation of the Whatcom Waterway project for Anchor Environmental. For your project numbers 2036 and 2037, I need the "true values" for the semivolatile analyses of the SRM. In SDG 2036 it is labeled 2036 SRM, in SDG 2037 it is labeled as sample SQ-1 (2037-063).

Thanks, Kathy

ant by: A	ANCHOR ENV. L.L.C.	206 287 9131;	12/31/98 3:12PM; Jettax #122; raye 1/4
one work	ANALYTICAL RESCURCES;	206 821 7523;	Dec-30-98 10:33AM; Page 1/1
		Fax	Analytical Resources, Inc. 333 Ninth Ave North Seattle, WA 98109-5187 Phone # (206) 621-6490 Fax # (206) 621-7523 From: Kit. Gardner, F MARK HARRIS
Addr Com	nd To: ressee <u>Kathy G</u> pany <u>Anic Her</u> En. er of pages including thi		(# Postini) Fax Now R7673 12/31/98 4- DONE TO FADILY GUNDERSON FANY (300)942-6060 From KIM MAGBNDER Plicens (306) 387-9130
Date	12.30.98	Tim	0:30 q.m.
Ċor	nments	- Martin	
	and the second		
u			
•			
The only	information contained within th y for the person(s) to whom it is a ify the sender immediately, and o	is document should be consider addressed. Should you receive destroy the copy received.	ed confidential and is intended his transmission in error, please

Rev.4 07/08/94

.

;

:

Sent by: ANCHOR ENV. L.L.C. Rocalved: 12/30/98 10:36AM; Sent By: ANALYTICAL RESOURCES;

:

Mark Harris

and strength	kalnyg (kalnyg@willapabay.org)			
From:	Tuesday, December 29, 1998 11:03 AM			
Sent:	Mark Harris			
To:	Tom Davis			
Cc;	Anchor Environmental - Whatcom Waterway			
Subject:	Allchor Environment			

Hi Mark.

I am working for Quality By Design and they are doing the validation of the Whatcom Waterway project for Anchor Environmental. For your project numbers Z036 and Z037, I need the "true values" for the semivolatile analyses of the SRM. In SDG Z036 it is labeled Z038 SRM, in SDG Z037 it is labeled as sample \$Q-1 (Z037-063).

Thanks, Kalhy

287.9131

Sent By: ANALYTICAL RESOURCES; 08/16/98 13:25 3360 871 874		5.83
Sent By: ANALYTICAL RESOURCES;	208 821 7523> 206 821 7523;	ANCHOR ENV. L.L.C Dec-30-98 10:3
SCOT by: ANCHOR ENV. L.L.C.	206 287 9131;	12/31/98 3:

13:28 3360 871 8747

002 `,

• 1

08/14/98

Ļ.,

.

Sequim Bay Sediment Data w/o HPLC & Isotopic Data (From 6/96 to 7/96)

Anima (mar)	Expected	-	Average	Std Dev	•
Compound	ug/Kg	n	73	25.04	
Naphthalene	170	77		33.05	
2-Methyinapthelane	170	75	89		
2-Med Water and telente	170	30	148	58.98	:
1-Methyinapthalene	849	25	783	469.07	;
Biphenyl	170	22	236	198,69	1
2,8-Dimethylnapthalene		59	50	22.01	
Acenaphthylene	170		. 95	23.09	9
Acenaphthene	170	79		23.65	
Fluorene	170	80	88	76.99	
Phenanthrene	170	81	158		
	170	81	111	37.89	
Anthracana	170	23	227	313.19	
. 1-Methylphenanthrene	170	80	.143	. 79.34	
Pluoranthene	170	81	132	74.29	23
Pyrene			115	41.03	
Benzo(a)anthracene	170 :	81	128		
Chrysene	170	80			
Benzo(b)fluoranthene	170	66	132		
Berrowala	340	24	326		
Benzo(e)pyrene	170	81	120		
Benzo(a)pynene	170	. 33	169		
Porylene	170	10	64	60.85	30 ;
Indano(123-cd)pyrone		79	101	and the second sec	
Dibertz(ah)anthracene	170		91		
Benzo(ghi)perviene	170	85			
	· · · · · · · · · · · · · · · · · · ·			80.0	
Hexachorobenzene	1.7	12	1,0		
Lindane	· 1.7	25	2.		
Heptachior	1.7	4			
	1.7	17	1.		
Aldrin	1.7	21	1.		
Haptachiorapoxide	8.5	16	4.	0 1.10	
alpha-Chlordana	1.7	12	0.	9 0.10	
trans-Nonachior			1.	183	
Dieldrin	1.7	21		1 0.29	
Mirex	3.4	12			
MIECA	3.4	16			
0,P-DDE	3.4	17		.6 1.37	
P.P-DDE	3.4	13	-1	.2 0.82	
a.o-DDD	3.4	18	1	.5 0.99	
0,0-000		18	C	.9 0.60)
o,p-DDT	3.4			2.5 1.78	5
p,p-DDT	3.4			12 39.47	
Anocior 1254	170	38	1	16	
Chlorinated terphonyl	85	0		71 124.6	ĸ
CURRANGE INCOUNTS	560	55			5
Phenol	509	. 55		81 114.2	
4-Methylphenol	509	54 '	3	317.1	
Pentachiorophenol	1.7	12		3.1 2.5	3
alpha-BHC	1.7	19		5	

-28

i

Sent by: ANCHOR ENV. L.L.C.	200 201 9131, 12/01/30 01101 11/ Jellax "	10011 090 111
Received: 12/30/08 10:36AM; Sent By: ANALYTICAL RESOURCES;	206 621 7523 -> ANCHOR ENV. L.L.C.; Page 4 206 621 7523; Dec-30-98 10:35AM;	Page 4/4
08/14/98 13:26 2380 871 87	AT REGION 10 LAB	003

13:20 09/14/98

•

Sequim Bay Sediment Data w/o HPLC & Isotopic Data (From 6/88 to 7/98)

8.				
	Expected			Std Dev
Compound	ug/Kg	n	Average	810 1/84
	478	41	20	7.35
1,2-Dichlorobenzene	170 102	48	26	9,99
1,3-Dichlorobenzene	51	37	12	7.40
1,4-Dichlorobenzene	170	2	38	53.03
Nitrobenzene	170	õ	***	
2,6-Dinitrotoluene	170	ŏ		
2,4-Dinitrotoluene	170	40	102	22,87
4-Chlorophenylphenyl ether	170	42	234	56.12
4-Bromophenylphenyl ether	170	44	75	28.42
laophorone	170	. 7	6	8.16
Hexachlorobutadiene	3.4	6	26,5	3.69
alpha-Endosultan	3.4	8	20.0	4.97
beta-Endosullan		5	. 8.2	1.02
Endrin	3.4		110	140.17
Tributyl tin chloride	• 170	21 22	302	123.67
Coprostanol	272		103	119.50
2-Methoxyphenol	509	8 13	458	274.71
Tetrachloroguiacol	509		180	217.79
Disthylhexyl phthalate	170	47	100	
Diphenyl isophthalate	170	0	291	227.98
Benzoic acid		36	18	17.03
Butylberzyl phthalate		7	24	26.59
9H-Carbazole		4	11	14.52
Dibenzofuran		8 3	12	4.90
Benzyl alcohol		. 3	14	4.00
		39	58	16.68
Nitrobenzene-d5		39	70	16,69
2-Fluoroblphenyl		47	114	120.34
Terphonyl-d14		12	94	35.23
Pyrane-d10		39	64	16.02
Phenol-d6		39	60	
2-Fluorophenol		19	53	
1,2-Dichlorobenzene-d4			73	
2,4,6-Tribromophenol		20	87	
Anthracene-d10		222	79	
2.3.5.8-p-Cresol-d4		2	105	
Fluoranthene-d10		2	246	
Dibenz(ah)anthracene-d14	4	9 2	73	
Acridine-d9		2	54	
2-Chlorophenol-d4		17	7	
Diphenyl-d10		6	9	
Fluoranthene-d10		6		A 84/44
(a) addition (b) (b)				

Last Calculated May 14, 1998

Lest Printed 05/14/98

Anchor Env. Whatcom Water way Phone log of 3 Dustions for Keim + Field dups? VTarget compound list (13270 list repeaked RLS. VOAPP criteria? - True Values for SRM Compione E/ < Resulto 3 J(+))50% Moisture-No 206-287-9130 2-21 Kim, Anchor Kim, Anchor 2 28 2-29-98 Kim, Unchos Rem, Unchos She'll Se-mail Field dups, be will have to get SRM true values from ART. I will c-mail my questions to her. VM: Field dup TDs? Kim_ -4-98 1. 9-99 Kem RE RLS Table 2 Attachment A, Last. Section For dry wt-not TX corrected Check on Metals?

3073

Kem .2099 Use of R flag on dilution results of 22-99 Keim RE: Different P+A criteria per site Starr Rock precision ? Starr Rock P.PD 245 + 40 to field deup from whaten - Table 3 for INW - would be et = Sate Stale what SEDQUAL allows Deut already done using limits in wakiplan

Quality By Design 97 Puhili Street Hilo, Hawaii 96720 Phone: (808) 969-9424 Fax: (808) 969-9094 e-mail: qbdhilo@gte.net

FACSIMILE TRANSMISSION SHEET

Date: February 20, 1999	Fax #: 206/621-7523
To: Analytical Resources, Incorporated	From: Lorraine Davis
Attn: Mark Harris	Total Pages, including this one: 1

In our review of Rosa Environmental and Geotechnical Laboratory Grain Size data for your project/sample 98-22608 (Anchor Environmental Whatcom Waterway/Starr Rock) it appears that the grain size graph which corresponds to Sample AN-SC-80C does not accurately reflect the values found on the table for the same sample.

Will you request a review of this particular sample by Rosa Environmental and Geotechnical and if there is a discrepancy, that they reissue a corrected report and graph? The corrected report is to go to Anchor Environmental directly, and not to us.

If you have any questions, please don't hesitate to call me.

Thank you for you assistance.

Bioassay Data Validation Report

The following review is based on the guidelines set forth in Section 9, "Quality Assurance for Bioassays," in *Data Validation Guidance Manual for Selected Sediment Variables* (PTI 1989), on the Puget Sound Estuary Protocols (PSEP 1995), on methods described in the EVS Environment Consultants (EVS) Standard Operating Procedures (SOP; EVS 1995), and on the data quality objectives outlined in the Workplans (Anchor 1998a,b). The three data packages reviewed were for toxicity tests using the amphipod *Eohaustorius estuarius*, the bivalve larvae *Mytilus galloprovincialis*, and the juvenile polychaete *Neanthes arenaceodentata*. These toxicity tests were conducted on 23 sediment samples collected from Bellingham Bay and Carr Inlet, Washington. The three toxicity tests were conducted by EVS Bioassay Laboratory, North Vancouver, BC.

BIOASSAYS

The toxicity tests were each conducted on twenty test sediments, three reference sediments, and one negative control. The amphipod toxicity tests were performed in two test batches (one non-purge and one purge) initiated November 6 and 9, 1998, respectively. The bivalve larval development toxicity test was initiated on November 15, 1998, and the juvenile polychaete toxicity test was initiated on December 8, 1998. The measurement endpoints included mean percent survival and sediment avoidance for the amphipods, survival and percent abnormality for the bivalve larvae, and mortality and growth for the polychaetes.

SAMPLE COLLECTION, TRANSPORT, AND STORAGE

Samples were collected, transported, and stored in accordance with the procedures outlined in the work plans. The only deviation from the guidelines was that the temperatures of several coolers, when received by the EVS laboratory, were above the holding temperature range of $4^{\circ} \pm 2^{\circ}$ C specified in the work plan. The temperatures recorded by the bioassay laboratory for the sample shipments ranged from 4° C to 10° C. Samples were stored in the dark at 4° C at the laboratory.

DATA COMPLETENESS AND FORMAT

Information regarding the responses, experimental conditions, control results, and conditions influencing data quality were included in the Whatcom Waterway Area and Boulevard Park/Starr Rock Area data packages.

DATA VALIDATION AND ASSESSMENT

Analytical Methods

Organism holding and acclimatization periods were carefully controlled. All tests were conducted using randomly distributed identical test chambers filled with the appropriate amount of test sediment and overlying water. During the testing, water quality measurements of salinity, temperature, pH, and ammonia were within the criteria outlined in the SOPs and in PSEP guidelines, with the exceptions discussed below.

Amphipod Test

The measured salinity of 30 ppt slightly exceeded the recommended range of 27.29 ppt for both the purge and non-purge amphipod tests. Purging requirements caused the amphipod holding time of 10 days to be exceeded by 1 day. Since the mean survival in the purge and non-purge test controls were both 98 percent, these deviations did not seem to affect the results of the test.

Juvenile Polychaete Test

The dissolved oxygen (DO) measurements fell below the recommended range of greater than 60 percent saturation (ASTM 1997). The low DO concentrations measured in some replicates are unlikely to have substantially affected the outcome of the test because aeration was checked daily and low DO could not have persisted for longer than 24 hours in any one jar. The pH measurements slightly exceeded the recommended range of 7.5 to 8.5 (EVS 1995). The low pH measurements may be the result of low DO concentrations.

Although two of the control replicates became anoxic, the dissolved concentrations were not correlated with survival or growth. Overall, the sound growth and survival across the reference and test sediments indicate that the performance of the test was acceptable.

Bivalve Larval Test

The mean percent/normal larvae in the seawater control met the criterion for test acceptability (PSEP 1995). All water quality parameters during the test were within acceptable ranges.

Test Precision

Replicate analyses, sample homogenization, and larval counts were adequately performed to assure test precision.

Positive Controls

Reference toxicant tests were conducted concurrently with each sediment toxicity test. The results of the reference toxicant tests for *E. estuarius* and *M. galloprovincialis* were within the confidence ranges established by the laboratory. The reference toxicant test for the *N. arenaceodentata* series was slightly lower than the laboratory range but was within the laboratory control limits (mean \pm 3SD) of 9.6 \pm 6.9 mg/L Cd.

TOXICITY TEST	REFERENCE TOXICANT TEST	LC50/EC50 MEASUREMENT	ACCEPTABLE RANGE (MEAN ∀ 2SD)
E. estuarius (non-purge)	96-hour LC50 with cadmium	10.8 mg/L cadmium	8.0 ± 6.9 mg/L cadmium
<i>E. estuarius</i> (purge)	96-hour LC50 with cadmium	8.1 mg/L cadmium	8.3 ± 7.1 mg/L cadmium
M. galloprovincialis	48-hour EC50 with sodium dodecyl sulphate (SDS)	3.3 mg/L SDS	3.7 ± 1.6 mg/L SDS
N. arenaceodentata	96-hour LC50 with cadmium	4.2 mg/L cadmium	9.6 ± 4.7 mg/L cadmium

The results of reference toxicant test with *N. arenaceodentata* indicate that the batch of test organisms may be more sensitive than average. Therefore, given the sound growth and low mortality across the test and reference sediment there is strong confidence in the decision that none of the test sediments were toxic to *N. arenaceodentata*.

Negative Controls

A negative control test was conducted concurrently with each sediment toxicity test. The mean performance of the negative control samples for the *E. estuarius* and *M. galloprovincialis* toxicity tests met the Sediment Management Standards performance criteria, therefore indicating that the tests were valid.

For the *N. arenaceodentata* test, the mean survival in the negative control failed to meet the criteria of greater than 90 percent for the test acceptability outlined in PSEP (1995). The low control survival results may be attributed to anoxic conditions observed within the control sediments in the two replicates with the lowest survival. The color of these two replicates was dark grey as opposed to the pale cream color of the other three replicates. The mean survival of the three replicates that were not anoxic was 93 percent. Mean survival in the reference sediment samples ranged from 80 to 92 percent.

Growth responses in the negative control met the criterion of 0.38 mg/individual/day. The growth response in the references met the criterion that mean individual growth be at least 80 percent that of the control. Overall, given the low mortality and sound growth across the oxic control replicates and all of the reference sediment and test sediment samples, the test performance is acceptable.

CONCLUSION

The data from the Whatcom Waterway and Boulevard Park/Starr Rock Area sediment toxicity tests are complete with respect to the requirements outlined for this data quality review. The conclusion of this review is that the test results for E. estuarius, M. galloprovincialis, and N. arenaceodentata are usable as reported.

REFERENCES

Anchor. 1998a. Addendum No. 3, Remedial investigation/feasibility, Whatcom Waterway Site, Bellingham, Washington. Work Plan. Prepared for Georgia-Pacific West Corporation. Anchor Environmental LLC, Seattle, WA.

Anchor. 1998b. Supplementary investigation of surface sediments, Boulevard Park/Starr Rock, Bellingham, Washington. Work Plan. Prepared for Washington Department of Ecology and the Port of Bellingham. Anchor Environmental LLC, Seattle, WA.

ASTM. 1997. Standard guide for conducting sediment toxicity tests with marine and estuarine polychaetous annelids. Method 1611-94. In: Annual book of ASTM standards, water and environmental technology, Volume 11.05. American Society for Testing and Materials, Philadelphia, PA.

- EVS. 1995. EVS Environment Consultants laboratory standard operating procedures manual, Volume II: Sediment. EVS Environment Consultants, North Vancouver, BC.
- PSEP. 1995. Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. Prepared for U.S. Environmental Protection Agency, Region 10, Seattle, WA. Puget Sound Estuary Program, Seattle, WA.
- PTI. 1989. Data validation guidance manual for selected sediment variables. Prepared for Washington Department of Ecology, Olympia, WA. June 1989 draft.