

August 12, 2015

Andy Smith Department of Ecology Southwest Regional Office Toxics Cleanup Program PO Box 47775 Olympia, WA 98504-7775

Re: June 2015 Groundwater Monitoring Results

NuStar Vancouver Annex Terminal

Vancouver, Washington

1569-05

Dear Mr. Smith

Apex Companies LLC. (Apex) has prepared this June 2015 Groundwater Monitoring Results letter for the NuStar Terminals Operations Partnership, L.P. (NuStar) Annex Terminal located at 5420 NW Fruit Valley Road, Vancouver, Washington (the Site; Figure 1). On July 29, 2014, the Washington State Department of Ecology (Ecology) submitted the Project Coordinator's Decision (the Decision) to NuStar, documenting steps for additional investigation and monitoring to support the Feasibility Study (FS) of the Site. One of the provisions of the Decision was that Site groundwater monitoring wells would be sampled for four quarters, with results being submitted to Ecology in quarterly letter reports. This third quarterly letter summarizes the results of the June 2015 groundwater monitoring event.

GROUNDWATER MONITORING

On June 24, 2015, Apex conducted groundwater monitoring of Site monitoring wells MW-1 through MW-6, including gauging depth to groundwater, and groundwater sampling and analysis; locations of the wells are shown on Figure 2. Measurements of the depth to groundwater were collected from the wells prior to groundwater sampling and were measured to the nearest 0.01 foot using an electronic probe. Prior to groundwater sampling, wells were purged with a peristaltic pump while water quality parameters (pH, temperature, and specific conductance) were recorded. Purging was considered complete when the field parameters stabilized. Following purging, groundwater samples were collected using a peristaltic pump and dedicated tubing. Field notes are included in Attachment A.

The groundwater samples were analyzed for gasoline-range total petroleum hydrocarbons (TPHg) and diesel-range total petroleum hydrocarbons (TPHd) with silica gel cleanup; benzene, toluene, ethylbenzene, and total xylenes (BTEX); and methyl tert-butyl ether (MTBE) by Pace Analytical of Davis, California. Laboratory reports and a quality assurance/quality control (QA/QC) review are included in Attachment B.

Groundwater Elevations

Depth to groundwater ranged from between 18.43 and 31.92 feet, corresponding to groundwater elevations ranging from 8.16 to 8.23 feet above mean sea level (MSL). Groundwater elevations were within historical levels that have ranged from approximately 7.5 feet to 12 feet above MSL (Table 1). Monitoring wells MW-5 and MW-6 have not been surveyed, so well elevation, and therefore groundwater elevation information, for these wells is not available. The groundwater gradient measured during the June 2015 monitoring event was consistent with historical results and indicates a flat to slight gradient to the south (AMEC, 2002; SECOR, 2003; and Ash Creek, 2009, 2010). Groundwater isocontours are shown on Figure 3.

Analytical Results

Analytical results from the June 2015 groundwater monitoring event are summarized in Table 2 and on Figures 4 and 5. MTBE was not detected in groundwater samples from wells MW-1 and MW-3 through MW-6. MTBE was observed in well MW-2 at a concentration of 0.0428 milligrams per liter (mg/L), which exceeds the Model Toxics Control Act (MTCA) Method A cleanup level of 0.02 mg/L.

TPHd and oil-range total petroleum hydrocarbons (TPHo) were at or below detection limits in the groundwater samples from wells MW-1 through MW-4. The laboratory identified a few discreet peaks in the diesel hydrocarbon range in samples from wells MW-5 and MW-6; however, the laboratory confirmed that the peaks were not typical of a diesel hydrocarbon fingerprint. The laboratory chemist stated that the peaks were indicative of non-petroleum organic material, which is typically (but not always) filtered out during silica gel cleanup. While silica gel cleanup was performed on the TPHd analysis, it was not affective in removing all organic material from the sample. TPHg was not detected in the groundwater samples from wells MW-1 through MW-4. TPHg in wells MW-5 and MW-6 were detected at concentrations of 15.0 and 17.7 mg/L, respectively, which exceeds the MTCA Method A cleanup level for TPHg of 0.800 mg/L.

BTEX results were non-detect in the groundwater samples from wells MW-1 through MW-4. Benzene was detected at a concentration of 0.423 mg/L in the groundwater sample from MW-6, which exceeds the MTCA Method A cleanup level of 0.005 mg/L. Total xylenes in wells MW-5 and MW-6 were detected at concentrations of 1.51 and 1.92 mg/L, respectively, exceeding the MTCA Method A cleanup level of 1 mg/L; ethylbenzene, in well MW-6, exceeded the cleanup level of 0.7 mg/L with a concentration of 1.6 mg/L.

FUTURE WORK

Monitoring wells MW-1 through MW-6 will be gauged and sampled in September 2015 using the same procedures summarized in the "Scope and Procedures" section, and the analytical results will be provided to Ecology in a quarterly results report within 45 days of receipt of analytical data from the laboratory.

On May 28, 2015, the *March 2015 Groundwater Monitoring Results and Groundwater Investigation Work Plan* was submitted to Ecology, documenting the results of the March 2015 groundwater monitoring event and proposing an additional investigation to evaluate the extent of hydrocarbon impacts in the vicinity of monitoring wells MW-5 and MW-6 (Apex, 2015). The investigation will be conducted during the third quarter of 2015 and the results will be submitted to Ecology along with the results of the September 2015 groundwater monitoring event. It is our understanding that NuStar will be required to install additional wells at the Site after the investigation data have been reviewed, and new wells will be surveyed along with existing wells MW-5 and MW-6 at that time.

The September 2015 monitoring event will conclude the four consecutive groundwater monitoring events required by the Decision. The monitoring well data from the four groundwater monitoring events and grab groundwater data from the additional site investigations, including the forthcoming investigation in the vicinity of wells MW-5 and MW-6, will be used to support the preparation of a Revised FS. NuStar/Apex will work with Ecology to establish a schedule for submittal of a Revised FS to Ecology.

If you have any questions regarding the contents of this letter, please do not hesitate to call either of the undersigned at (503) 924-4704.

Sincerely,

Stephanie Bosze Salisbury, L.G. Project Geologist

Amanda Spencer

Principal Hydrogeologist

cc: Mr. Aaron Flett, NuStar Terminals Operations Partnership, L.P. (electronic deliverable)

Ms. Renee Robinson, NuStar Energy, L.P. (electronic deliverable) Mr. Stephan Rosen, NuStar Energy, L.P. (electronic deliverable)

ATTACHMENTS

Table 1 - Groundwater Elevation Data

Table 2 – Analytical Results from Groundwater Monitoring Wells

Figure 1 - Site Location Map

Figure 2 - Site Plan

Figure 3 – Groundwater Elevations – June 2015

Figure 4 – June 2015, TPH Concentrations in Groundwater

Figure 5 – June 2015 BTEX and MTBE Concentrations in Groundwater

Figure 6 - Proposed Borehole Locations

Attachment A - Field Notes

Attachment B – Laboratory Analytical Results and Quality Assurance/Quality Control Review

Attachment C – Apex Standard Operating Procedure for Direct-Push Exploration

REFERENCES

AMEC, 2002a. Phase II Environmental Site Assessment, Cenex Harvest State Cooperatives. May 2002.

Apex Companies, LLC. (Apex), 2015. March 2015 Groundwater Monitoring Results and Groundwater Investigation Work Plan. Vancouver Annex Terminal, Vancouver, Washington, May 28, 2015.

Ash Creek Associates (Ash Creek), 2009. Remedial Investigation Work Plan. October 2009.

Ash Creek, 2010. Remedial Investigation/Risk Assessment Report. December 29, 2010.

SECOR, 2003. Results of Phase II Environmental Site Assessment. June 6, 2003.

Table 1 Groundwater Elevation Data NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

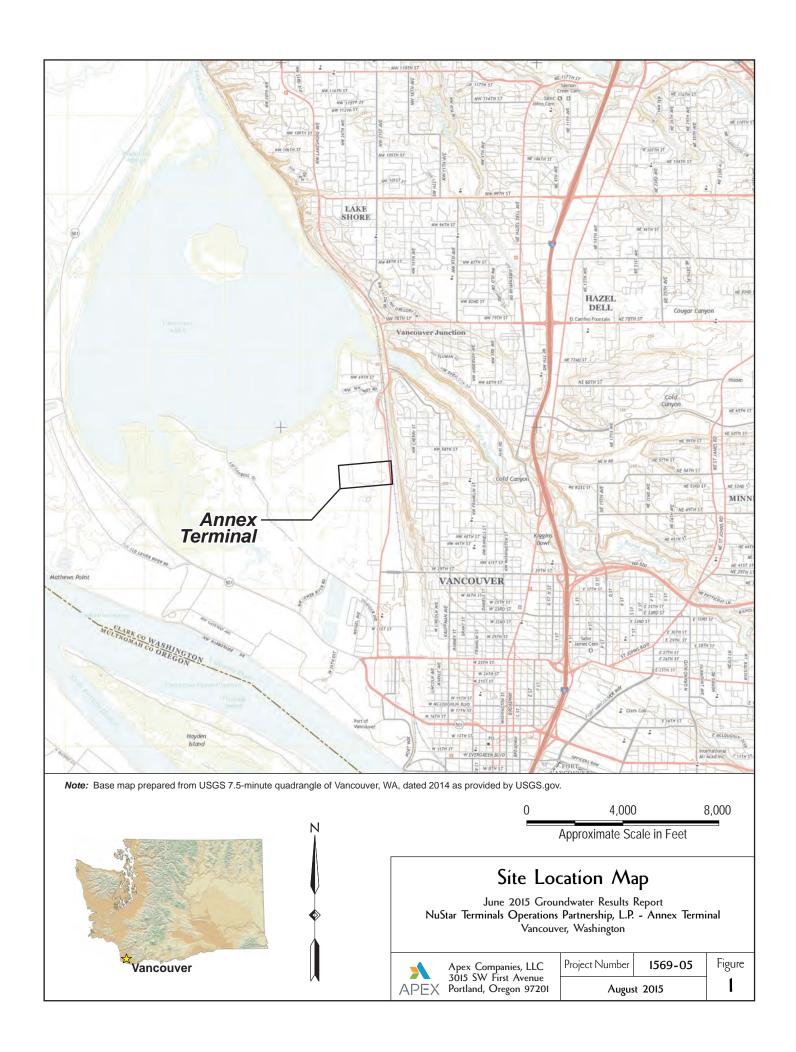
Well Number	Date of Measurement	Top of Casing Elevation (feet above MSL) ¹	Depth to Water (feet BTOC)	Groundwater Elevation (feet)
MW-1	05/14/02 05/25/07 08/24/07 11/26/07 02/27/08 03/30/10 09/01/10 12/16/14 03/25/15 06/24/15 05/14/02 05/25/07	NS 26.66 26.66 26.66 26.66 26.66 26.66 26.66 26.66 26.66 38.21	16.00 14.92 18.67 17.91 16.92 17.09 19.19 16.19 15.25 18.43 27.46 26.46	NS 11.74 7.99 8.75 9.74 9.57 7.47 10.47 11.41 8.23 NS 11.75
MW-2	08/24/07 11/26/07 02/27/08 03/30/10 09/01/10 12/16/14 03/25/15 06/24/15	38.21 38.21 38.21 38.21 38.21 38.21 38.21 38.21	30.17 29.42 28.50 28.66 30.74 27.77 26.79 30.05	8.04 8.79 9.71 9.55 7.47 10.44 11.42 8.16
MW-3	05/14/02 05/25/07 08/24/07 11/06/07 02/27/08 03/30/10 09/01/10 12/16/14 03/25/15 06/24/15	NS 39.11 39.11 39.11 39.11 39.11 39.11 39.11 39.11	28.15 27.17 31.04 30.36 28.71 29.55 31.65 28.54 27.72 30.85	NS 11.94 8.07 8.75 10.40 9.56 7.46 10.57 11.39 8.26
MW-4	05/14/02 05/25/07 08/24/07 11/06/07 02/27/08 03/30/10 09/01/10 12/16/14 03/25/15 06/24/15	NS 40.17 40.17 40.17 40.17 40.17 40.17 40.17 40.17	29.40 28.35 32.12 31.40 30.40 30.77 32.62 29.63 28.76 31.92	NS 11.82 8.05 8.77 9.77 9.40 7.55 10.54 11.41 8.25
MW-5	12/16/14 03/25/15 06/24/15	NS NS NS	16.60 15.37 18.89	NS NS NS
MW-6	12/16/14 03/25/15 06/24/15	NS NS NS	16.93 15.73 19.34	NS NS NS

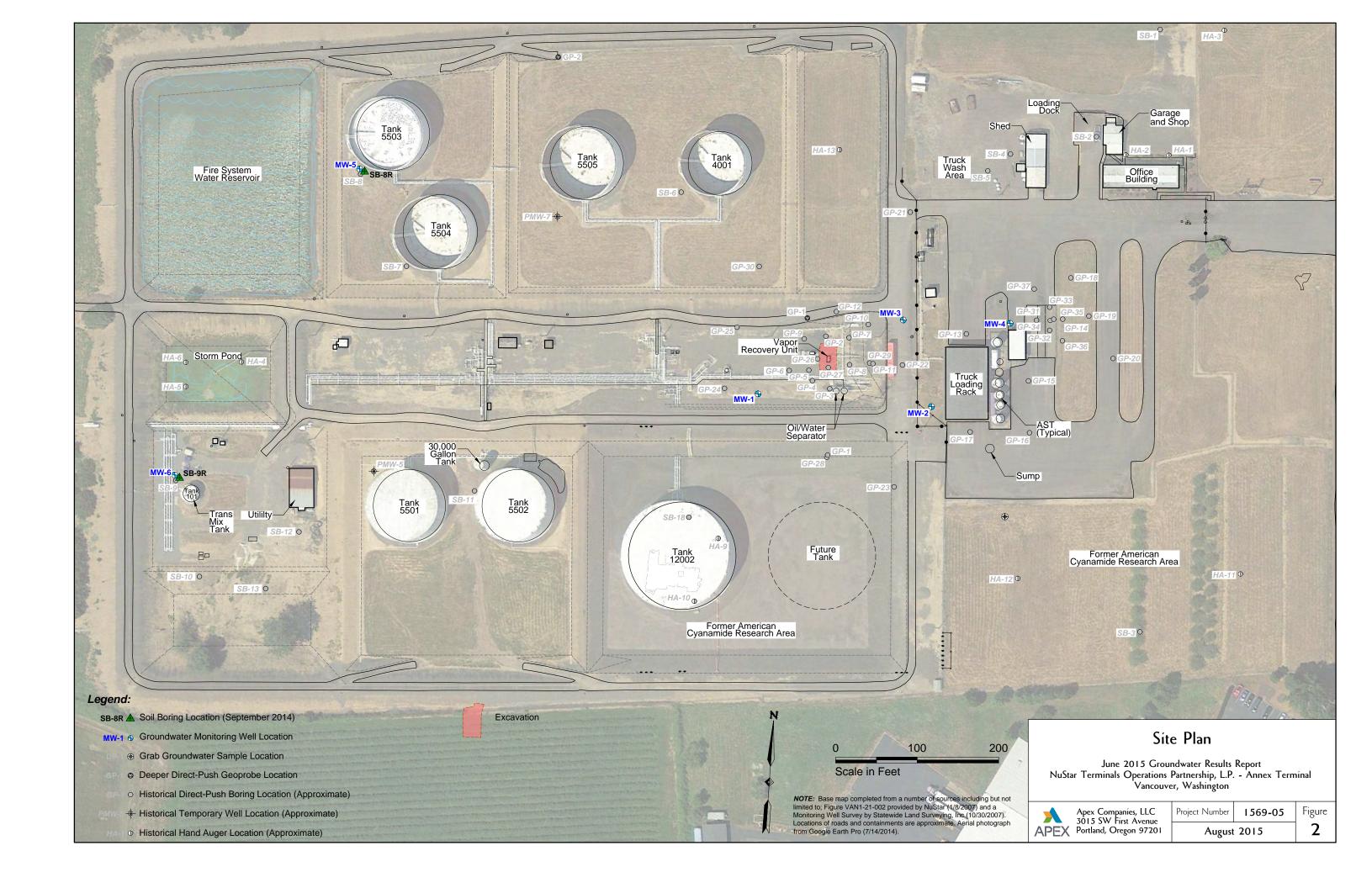
Notes:

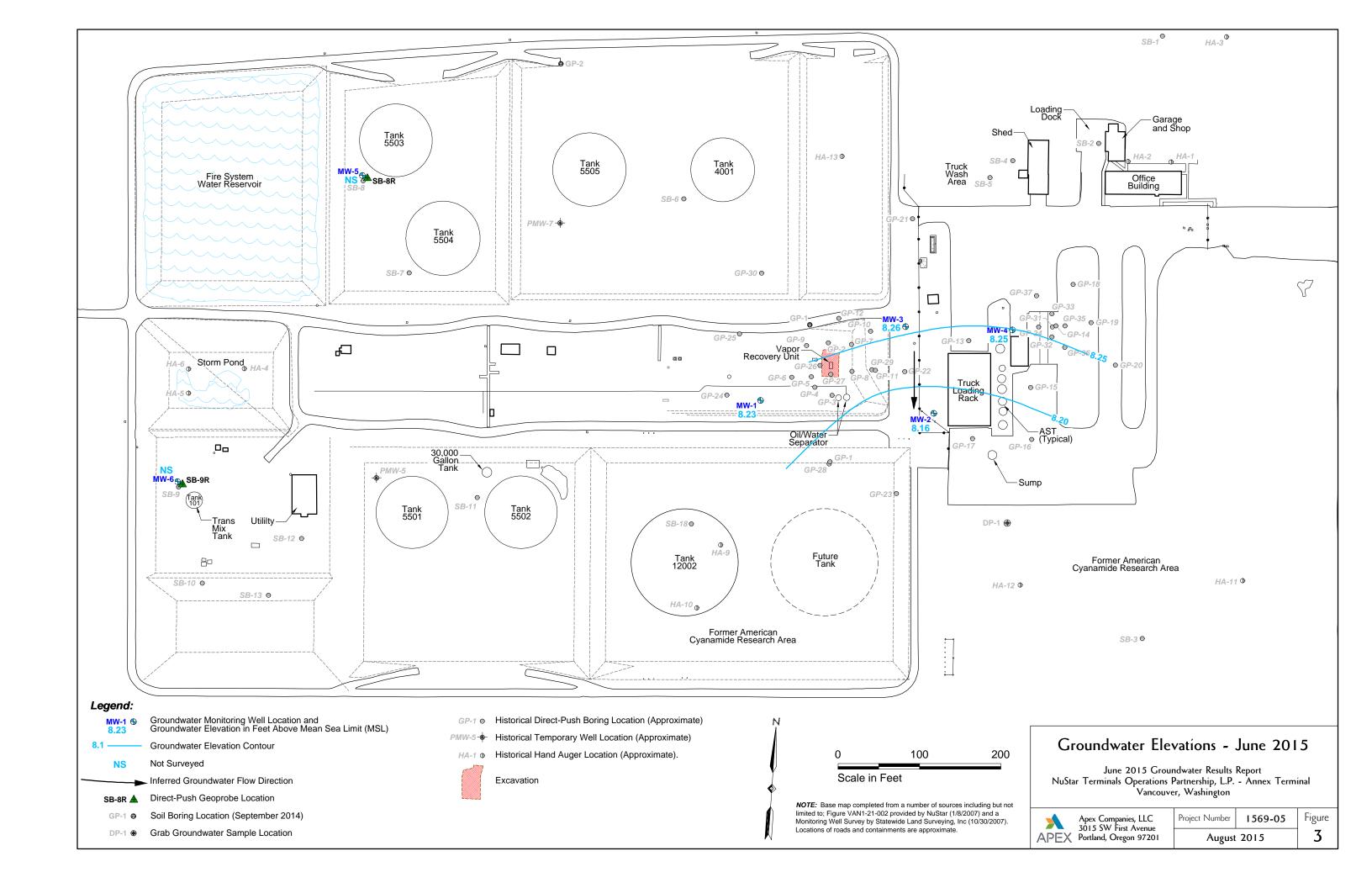
- 1. Survey elevations determined by Statewide Land Surveying, October, 2007.
- 2. feet above MSL = feet above mean sea level.
- 3. feet BTOC = feet below top of casing.
- 4. NS = Not surveyed.

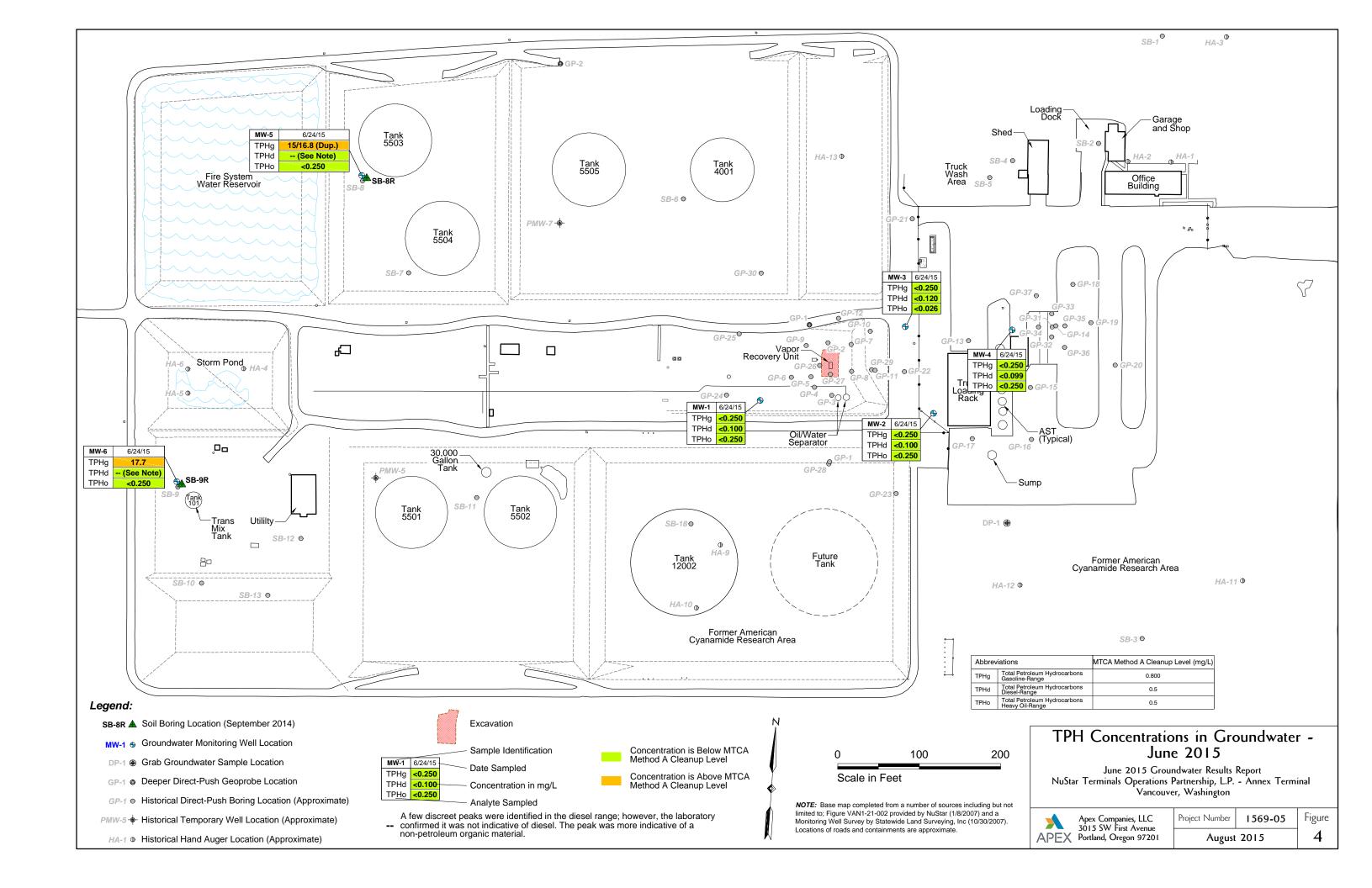
Table 2 Analytical Results from Groundwater Monitoring Wells NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

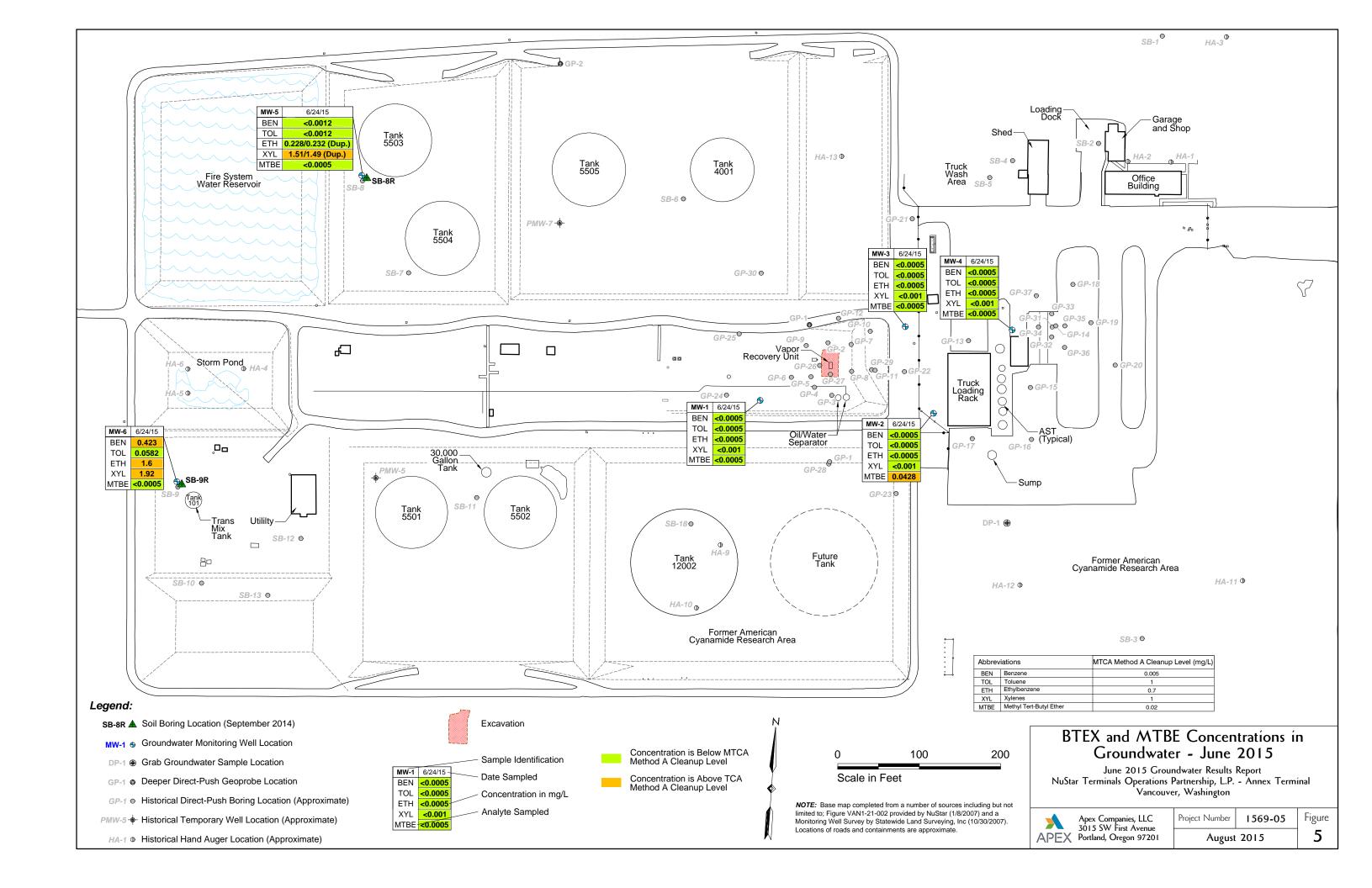
													Со	ncentrations in	mg/L (ppm)											
Well Number	Sample Date	Screened Interval (feet bgs)	ТРНд	ТРНФ	ТРНһо	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-Dibromoethane	1,2-Dichloroethane	Ethanol	Tert-Butyl alcohol	Ethyl tert-Butyl Ether (ETBE)	Diisopropyl Ether (DIPE)	Methyl tert-butyl ether (MTBE)	Tert-Amyl Methyl Ether (TAME)	Naphthalene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Isopropyl-benzene	n-Propylbenzene	n-Butyl-benzene	sec-Butyl-benzene	Chloroform	Methanol
MW-1	05/14/02 05/19/03 05/25/07 08/24/07 11/26/07 02/27/08 03/31/10 09/01/10 12/16/14 03/25/15 06/24/15	14.5-24.5	<0.080 <0.080 <0.1 <0.080 <0.080 <0.250 <0.250 <0.250 <0.250 <0.250	0.455 b	<0.500 <0.476 <0.476 <0.476 <0.472 <0.588 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500	<0.0005 <0.001 <0.0002 <0.001 <0.0001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.001 <0.0005 <0.002 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.001 <0.0005 <0.002 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.001 <0.002 <0.001 <0.006 <0.006 <0.001 <0.0015 <0.0005 <0.001 <0.001	<0.0005 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	<0.0005 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 -0.0005 	<0.150 <0.100 <0.100 <0.100 <0.100 <0.005 <0.005 <0.005	<0.025 <0.020 <0.020 <0.020 <0.0010 <0.005 <0.005 <	 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	<0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.002 <0.001 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.002 <0.002 <0.002 <5.0 <5.0 <0.0005 <0.0005 	<0.001 <0.001 <0.001 <0.001 <0.001 <0.0005 <0.0005 <0.0005 	<0.0005 <0.001 <0.0005 <0.001 <0.001 <0.0005 <0.0005 <0.0005 	<0.002 <0.002 <0.002 <0.002 <0.002 <0.0005 <0.0005 <0.0005 	<0.0005 <0.001 <0.0005 <0.001 <0.001 <0.0005 <0.0005 <0.0005 		<0.001	<0.001	 <0.050
MW-2	05/14/02 05/19/03 05/25/07 08/24/07 11/26/07 02/27/08 03/31/10 09/01/10 12/16/14 03/25/15 06/24/15	20-35	41.4 0.439 0.102 <0.080 0.0817 <0.250 <0.250 <0.250 <0.250 <0.250	<0.250 <0.238 <0.238 <0.236 <0.294 <0.250 <0.250 <0.250 <0.046 <0.100	<0.500 <0.476 <0.476 <0.472 <0.588 <0.500 <0.500 <0.500 <0.500 <0.500 <0.250	4.35 0.534 0.071 <0.001 <0.001 0.005 <0.0005 <0.0005 <0.0005 <0.0005	2.68 0.00975 0.00114 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	1.84 0.194 0.0361 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	8.72 0.876 0.0453 <0.006 <0.006 <0.001 <0.0015 <0.0005 <0.0001 <0.0001	<0.025 <0.05 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 -0.0005 	<0.025 <0.005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 -0.0005 	<pre> <0.150 <0.100 <0.100 <0.100 <0.100 <0.005 <0.005 <0.005</pre>		 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	 <0.001 <0.0005 	0.7 0.0776 0.0182 0.059 0.083 0.015 0.045 0.081 0.008 <0.0005 0.0428	 <0.001 <0.0005 	0.106 0.015 <0.002 <0.05 <0.005 <0.0005 <0.0005 	0.665 0.16 0.04 <0.001 <0.001 <0.0005 <0.0005 	0.194 0.0624 0.0335 <0.001 <0.001 <0.0005 <0.0005 	<100 0.0099 0.003 0.0032 <0.002 0.00034 J <0.0005 <0.0005	0.071 0.0158 0.00249 <0.001 <0.001 <0.0005 <0.0005 	 0.0033 <0.0005 <0.0005 		 <0.05 <0.0005 <0.0005 	 <0.050
MW-3	05/14/02 05/19/03 05/25/07 08/24/07 11/26/07 02/27/08 03/31/10 09/01/10 12/16/14 03/25/15 06/24/15	24.5-34.5	4.5 0.361 <0.1 <0.080 2.14 2.10 <0.250 <0.250 <0.418 <0.250	<0.250 <0.238 <0.238 <0.238 <0.236 0.387 <0.250 <0.250 <0.250 <0.046 0.120	<0.500 <0.476 <0.476 <0.472 <0.500 <0.500 <0.500 <0.500 <0.092 <0.026	0.0419 0.0908 <0.0005 <0.001 0.0011 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0096 0.0097 <0.0005 <0.002 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.293 0.338 0.0132 <0.002 0.0066 0.17 0.018 <0.0005 <0.0005 <0.0005	0.521 0.5382 0.0145 <0.006 <0.006 0.17 0.021 <0.00015 <0.0005 <0.001	<0.001 <0.05 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 -0.0005 	<0.001 <0.05 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 -0.0005 	<pre> <0.150 <0.100 <0.100 <0.100 <0.100 <0.005 <0.005</pre>	 	 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <-0.0005	 <0.001 <0.0005 	<4.00 0.0037 <0.002 <0.0005 0.0069 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	0.0489 0.0308 <0.002 <0.05 <0.05 0.0064 0.0018 <0.0005	0.296 0.315 0.0107 <0.001 <0.001 0.21 0.24 <0.0005 	0.106 0.0895 0.00348 <0.001 <0.001 0.051 <0.0005 <0.0005	0.0213 0.0194 0.00532 <0.002 0.0031 0.022 0.019 <0.0005	0.0591 0.0623 0.0093 <0.001 0.0012 0.056 0.050 <0.0005	0.0068 0.0052 <0.0005		 <0.05 <0.0005 <0.0005 	 <0.050
MW-3 DUP	02/27/08 03/31/10 09/01/10	24.5-34.5	1.85 1.90 <0.250	0.342 <0.250 <0.250	<0.485 <0.500 <0.500	0.0011 <0.0015 <0.0005	<0.0005 <0.0015 <0.0005	0.19 0.018 <0.0005	0.2 0.020 <0.0015	<0.0005 <0.0015 <0.0005	<0.0005 <0.0015 <0.0005	<0.100 <0.015 <0.005	<0.0010 <0.007 <0.005	<0.0005 <0.0015 <0.0005	<0.0005 <0.0015 <0.0005	<0.0005 <0.0015 <0.0005	<0.0005 <0.0015 <0.0005	0.0076 0.0019 <0.0005	0.23 0.27 <0.0005	0.058 <0.0015 <0.0005	0.026 0.018 <0.0005	0.066 0.048 <0.0005	0.0050 <0.0005	0.012 <0.0005	<0.0015 <0.0005	
MW-4	05/14/02 05/19/03 05/25/07 08/24/07 11/26/07 02/27/08 03/31/10 09/01/10 12/16/14 03/25/15 06/24/15	20-35	<0.080 -0.080 <0.1 <0.080 <0.080 <0.250 <0.250 <0.250 <0.250 <0.250	0.358 ⁵ . <0.238 <0.238 <0.236 <0.248 <0.250 <0.250 <0.250 <0.250 <0.250	<0.500 <0.476 <0.476 <0.477 <0.477 <0.500 <0.500 <0.500 <0.91 <0.250	<0.0005 <0.001 <0.0002 <0.001 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.001 <0.0005 <0.002 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.001 <0.0005 <0.002 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.001 <0.002 <0.001 <0.006 <0.006 <0.001 <0.0015 <0.0015 <0.001 <0.001	<0.0005 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	<0.0005 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	 <0.150 <0.100 <0.100 <0.100 <0.005 <0.005 <0.005 <0.005 <0.005 	 <0.025 <0.020 <0.020 <0.001 <0.005 <0.005 <0.005 <1.005 	 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	<0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	<0.002 <0.001 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	 <0.001 <0.0005 	<0.002 <0.002 <0.002 <0.005 <0.05 <0.0005 <0.0005 	<0.001 <0.001 <0.001 <0.001 <0.001 <0.0005 <0.0005 	<0.0005 <0.001 <0.0005 <0.001 <0.001 <0.0005 <0.0005 	<0.002 <0.002 <0.002 <0.002 <0.002 <0.0005 <0.0005 <0.0005 	<0.0005 <0.001 <0.0005 <0.001 <0.001 <0.0005 <0.0005 <0.0005 	 <0.05 <0.0005 <0.0005 	 <0.001 <0.0005 <0.0005 		 <0.050
MW-5	12/16/14 03/25/15 06/24/15	10-25	15 18.1 15	0.350 <0.045 0.33 D (see note)	<0.500 <0.091 <0.250	0.00070 <0.00050 <0.0012	0.00066 0.00061 <0.0012	0.12 0.218 0.228	1.2 1.45 1.51	 	 	 		 	 	<0.0005 <0.0005 <0.0005	 	 	 	 	 	 	 	 	 	
· ·	DE MTCA Method A	·	0.800 8.	0.5	0.5	0.005	1	0.7	1	NA	0.005	NA	NA	NA	NA	0.02	NA	0.16	NA	NA	NA	NA	NA	NA	NA	NA

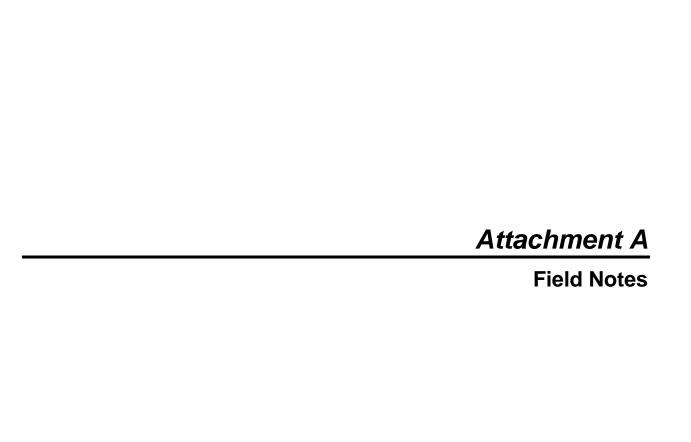

Table 2 Analytical Results from Groundwater Monitoring Wells NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington


													Co	oncentrations in	mg/L (ppm)											
Well Number	Sample Date	Screened Interval (feet bgs)	TPHg	ТРН	TPHho	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-Dibromoethane	1,2-Dichloroethane	Ethanol	Tert-Butyl alcohol	Ethyl tert-Butyl Ether (ETBE)	Diisopropyl Ether (DIPE)	Methyl tert-butyl ether (MTBE)	Tert-Amyl Methyl Ether (TAME)	Naphthalene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	lsopropyl-benzene	n-Propylbenzene	n-Butyl-benzene	sec-Butyl-benzene	Chloroform	Methanol
	12/16/14		15	<0.250	<0.500	0.00088	0.00081	0.18	1.3							< 0.0005										
MW-5 DUP	03/25/15	10-25	17.2	<0.046	< 0.092	0.0005	0.00065	0.236	1.22							< 0.0005										
	06/24/15		16.8	0.560 D (see note)	< 0.250	<0.0012	<0.0012	0.232	1.49							<0.0005										
	12/16/14		15	<0.250	< 0.500	0.47	0.065	1.3	2.6							< 0.0005										
MW-6	03/25/15	10-25	13.7	0.047	< 0.092	0.516	0.0756	1.4	2.26							< 0.0005										
	06/24/15		17.7	1.2 D (see note)	<0.250	0.423	0.0582	1.6	1.92						-	<0.0005										
Washington DC	OE MTCA Method A	A cleanup level 9.	0.800 8.	0.5	0.5	0.005	1	0.7	1	NA	0.005	NA	NA	NA	NA	0.02	NA	0.16	NA	NA	NA	NA	NA	NA	NA	NA


- Notes:


 TPHg = Total petroleum hydrocarbons in gasoline carbon range by NW-TPHgx method.


 TPHd = Total petroleum hydrocarbons in diesel carbon range by NW-TPHdx method with silica gel cleanup.
- 3. TPHho = Total petroleum hydrocarbons ion heavy oil carbon range NW-TPHdx method with silica gel cleanup.
- Boldface values represent concentration that exceeds MTCA Method A cleanup level.
- 5. Analysis completed without silica gel cleanup. Lab detected hydrocarbons with non-petroleum peaks or elution pattern that suggests the presence of biogenic interference.
- Hydrocarbon pattern most closely resembles a blend of heavy gas-/light diesel-range components.
- 7. mg/L (ppm) = Milligrams per liter (parts per million).
- 8. TPHg cleanup level dependent on presence of benzene in groundwater. Cleanup level = 0.800 mg/L if benzene is present and 1.00 mg/L if benzene is not present.
- 9. Washington DOE MTCA Method A cleanup level = Washington Department of Ecology Model Toxics Control Act Method A cleanup level.
- 10. < = Not detected at or above the specified laboratory method reporting limit (MRL).
- 11. bgs = below ground surface
- 12. The relative percent difference between TPHD concentrations in samples MW-5 and MW-5 DUP exceed the control limit of +/- 30%
- 13. D = Laboratory report noted discreet peaks that are not indicative of diesel. The laboratory chemist confirmed the peaks were from non-petroleum organic material.



3015 SW First Avenue Portland, Oregon 97201-4707 (503) 924-4704 Phone (503) 943-6357 Fax PROJECT LOCATION CLIENT PURPOSE OF OBSERVATIONS APEX REPRESENTATIVE CONTRACTOR CONTRACTOR REP. Our firm's professionals are represented on site solely to observe operations of the opinions to our client. The presence and activities of our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report is provided solely as evidence that field observation was perfor vary from and shall take precedence over those included in a preliminary report.	PROJECT NUMBER FIELD REPORT NUMBER PAGE OF OF OATE ARRIVAL TIME DEPARTURE TIME WEATHER APEX PROJECT MANAGER PERMIT NO. H&S REVIEW Contractor identified, to form opinions about the adequacy of those operations, and to report to relieve any contractor from its obligation to meet contractual requirements. The contractor restruction. Unless signed by the Ash Creek Associates Project Manager, this report is prelimined. Observations and/or conclusions and/or recommendations conveyed in the final report of the second of the secon
Portland, Oregon 97201-4707 (503) 924-4704 Phone (503) 943-6357 Fax PROJECT LOCATION CLIENT PURPOSE OF OBSERVATIONS APEX REPRESENTATIVE CONTRACTOR CONTRACTOR REP. Our firm's professionals are represented on site solely to observe operations of the opinions to our client. The presence and activities of our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report is provided solely as evidence that field observation was perfor vary from and shall take precedence over those included in a preliminary report.	ARRIVAL TIME DEPARTURE TIME WEATHER APEX PROJECT MANAGER PERMIT NO. H&S REVIEW Contractor identified, to form opinions about the adequacy of those operations, and to report to relieve any contractor from its obligation to meet contractual requirements. The contractor restruction. Unless signed by the Ash Creek Associates Project Manager, this report is preliming med. Observations and/or conclusions and/or recommendations conveyed in the final report
PROJECT LOCATION CLIENT PURPOSE OF OBSERVATIONS APEX REPRESENTATIVE CONTRACTOR CONTRACTOR REP. Our firm's professionals are represented on site solely to observe operations of the opinions to our client. The presence and activities of our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report is provided solely as evidence that field observation was perfor vary from and shall take precedence over those included in a preliminary report.	ARRIVAL TIME DEPARTURE TIME WEATHER APEX PROJECT MANAGER PERMIT NO. H&S REVIEW Contractor identified, to form opinions about the adequacy of those operations, and to report to relieve any contractor from its obligation to meet contractual requirements. The contractor restruction. Unless signed by the Ash Creek Associates Project Manager, this report is preliming med. Observations and/or conclusions and/or recommendations conveyed in the final report
PROJECT LOCATION CLIENT PURPOSE OF OBSERVATIONS APEX REPRESENTATIVE CONTRACTOR CONTRACTOR REP. Our firm's professionals are represented on site solely to observe operations of the opinions to our client. The presence and activities of our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report is provided solely as evidence that field observation was perfor vary from and shall take precedence over those included in a preliminary report.	ARRIVAL TIME DEPARTURE TIME WEATHER APEX PROJECT MANAGER PERMIT NO. H&S REVIEW Contractor identified, to form opinions about the adequacy of those operations, and to report to relieve any contractor from its obligation to meet contractual requirements. The contractor restruction. Unless signed by the Ash Creek Associates Project Manager, this report is preliming med. Observations and/or conclusions and/or recommendations conveyed in the final report
PROJECT LOCATION CLIENT PURPOSE OF OBSERVATIONS APEX REPRESENTATIVE CONTRACTOR CONTRACTOR REP. Our firm's professionals are represented on site solely to observe operations of the opinions to our client. The presence and activities of our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report is provided solely as evidence that field observation was perform vary from and shall take precedence over those included in a preliminary report. OF OF SAMPLE MAN-SAMPLE AND SAMPLE MAN-SAMPLE MAN	DEPARTURE TIME WEATHER APEX PROJECT MANAGER PERMIT NO. H&S REVIEW Contractor identified, to form opinions about the adequacy of those operations, and to report it relieve any contractor from its obligation to meet contractual requirements. The contractor restruction. Unless signed by the Ash Creek Associates Project Manager, this report is prelimined. Observations and/or conclusions and/or recommendations conveyed in the final report
CLIENT PURPOSE OF OBSERVATIONS APEX REPRESENTATIVE CONTRACTOR CONTRACTOR REP. Our firm's professionals are represented on site solely to observe operations of the copinions to our client. The presence and activities of our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report is provided solely as evidence that field observation was perfor vary from and shall take precedence over those included in a preliminary report.	DEPARTURE TIME WEATHER APEX PROJECT MANAGER PERMIT NO. H&S REVIEW Contractor identified, to form opinions about the adequacy of those operations, and to report it relieve any contractor from its obligation to meet contractual requirements. The contractor restruction. Unless signed by the Ash Creek Associates Project Manager, this report is prelimined. Observations and/or conclusions and/or recommendations conveyed in the final report
CLIENT PURPOSE OF OBSERVATIONS APEX REPRESENTATIVE CONTRACTOR CONTRACTOR REP. Our firm's professionals are represented on site solely to observe operations of the opinions to our client. The presence and activities of our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report is provided solely as evidence that field observation was perform vary from and shall take precedence over those included in a preliminary report.	APEX PROJECT MANAGER PERMIT NO. H&S REVIEW Contractor identified, to form opinions about the adequacy of those operations, and to report to relieve any contractor from its obligation to meet contractual requirements. The contractor restruction. Unless signed by the Ash Creek Associates Project Manager, this report is preliming med. Observations and/or conclusions and/or recommendations conveyed in the final report
PURPOSE OF OBSERVATIONS APEX REPRESENTATIVE CONTRACTOR CONTRACTOR REP. Our firm's professionals are represented on site solely to observe operations of the opinions to our client. The presence and activities of our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report is provided solely as evidence that field observation was perform vary from and shall take precedence over those included in a preliminary report. Og 05 Og 33 Og 05 Og 16 Og 17 Sample MW-6 Sample MW-7 La 10 MW-6 Sample MW-7 La 10 MW-8	APEX PROJECT MANAGER PERMIT NO. H&S REVIEW Contractor identified, to form opinions about the adequacy of those operations, and to report it relieve any contractor from its obligation to meet contractual requirements. The contractor restruction. Unless signed by the Ash Creek Associates Project Manager, this report is prelimited. Observations and/or conclusions and/or recommendations conveyed in the final report
APEX REPRESENTATIVE CONTRACTOR CONTRACTOR REP. Our firm's professionals are represented on site solely to observe operations of the copinions to our client. The presence and activities of our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report is provided solely as evidence that field observation was perfort vary from and shall take precedence over those included in a preliminary report.	PERMIT NO. H&S REVIEW Contractor identified, to form opinions about the adequacy of those operations, and to report to relieve any contractor from its obligation to meet contractual requirements. The contractor restruction. Unless signed by the Ash Creek Associates Project Manager, this report is prelimited. Observations and/or conclusions and/or recommendations conveyed in the final report.
CONTRACTOR CONTRACTOR REP. Our firm's professionals are represented on site solely to observe operations of the copinions to our client. The presence and activities of our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report is provided solely as evidence that field observation was perform vary from and shall take precedence over those included in a preliminary report. On the provided solely as evidence that field observation was perform vary from and shall take precedence over those included in a preliminary report. On the provided solely as evidence that field observation was perform vary from and shall take precedence over those included in a preliminary report. On the provided solely as evidence that field observation was perform vary from and shall take precedence over those included in a preliminary report.	PERMIT NO. H&S REVIEW Contractor identified, to form opinions about the adequacy of those operations, and to report to relieve any contractor from its obligation to meet contractual requirements. The contractor restruction. Unless signed by the Ash Creek Associates Project Manager, this report is prelimited. Observations and/or conclusions and/or recommendations conveyed in the final report.
CONTRACTOR REP. Our firm's professionals are represented on site solely to observe operations of the copinions to our client. The presence and activities of our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report is provided solely as evidence that field observation was performed and shall take precedence over those included in a preliminary report. Our firm's professionals are represented on site solely to observe operations of the copinions to our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report that field observation was performed and shall take precedence over those included in a preliminary report. Our firm's professionals are represented on site solely to observe operations of the copinions to our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report was performed and shall take precedence over those included in a preliminary report. Our firm's professionals are represented on site solely to observe operations of the copinions of the copin	H&S REVIEW contractor identified, to form opinions about the adequacy of those operations, and to report to relieve any contractor from its obligation to meet contractual requirements. The contractor restruction. Unless signed by the Ash Creek Associates Project Manager, this report is prelimited. Observations and/or conclusions and/or recommendations conveyed in the final report
Our firm's professionals are represented on site solely to observe operations of the opinions to our client. The presence and activities of our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report is provided solely as evidence that field observation was perfort vary from and shall take precedence over those included in a preliminary report. On the control of the control	H&S REVIEW contractor identified, to form opinions about the adequacy of those operations, and to report to relieve any contractor from its obligation to meet contractual requirements. The contractor restruction. Unless signed by the Ash Creek Associates Project Manager, this report is prelimited. Observations and/or conclusions and/or recommendations conveyed in the final report
opinions to our client. The presence and activities of our field representative do not sole responsibility for site safety and the methods, operations, send sequence of cor A preliminary report is provided solely as evidence that field observation was performant shall take precedence over those included in a preliminary report. Open Square Complete Sample Market	contractor identified, to form opinions about the adequacy of those operations, and to report to relieve any contractor from its obligation to meet contractual requirements. The contractor restruction. Unless signed by the Ash Creek Associates Project Manager, this report is prelimit med. Observations and/or conclusions and/or recommendations conveyed in the final report
1000 Sample MW-60 1830 Sample MW-1 1117 Sample MW-3 1210 Sample MW-2 -3 pa	set up to sample on MW-5
1000 Sample MW-60 1830 Sample MW-1 1117 Sample MW-3 1210 Sample MW-2 -3 pa	set up to sample on MW-5
1000 Sample MW-6 1830 Sample MW-1 1117 Sample MW-3 1210 Sample MW-2 -3 pa	set up to sample on MW-5
1000 Sample MW-6 1830 Sample MW-1 1117 Sample MW-3 1210 Sample MW-2 -3 pa	set up to sample on MW-5
1000 Sample MW-6 1830 Sample MW-1 1117 Sample MW-3 1210 Sample MW-2 -3 pa	116 0.0
130 Scriple MW-1 1117 Sample MW-3 1210 Suple MW-2 -> p	M-2 120h
1217 Sample MW-3 1210 Sample MW-2 -3 p	
1210 Suple MW-2 -> p	
12as Sample MW-4 -7 San	er net partlerost to till flow call
Idas Sample MW-4 -7 Sa	- Sure il no paraeta realy
, ,	ne situation as MW-d
1310 leve sordy, dung	Purse voter in drumand
Deek up	
1725 I turn it work pe	rmi
1375 off-s.7	
BY	

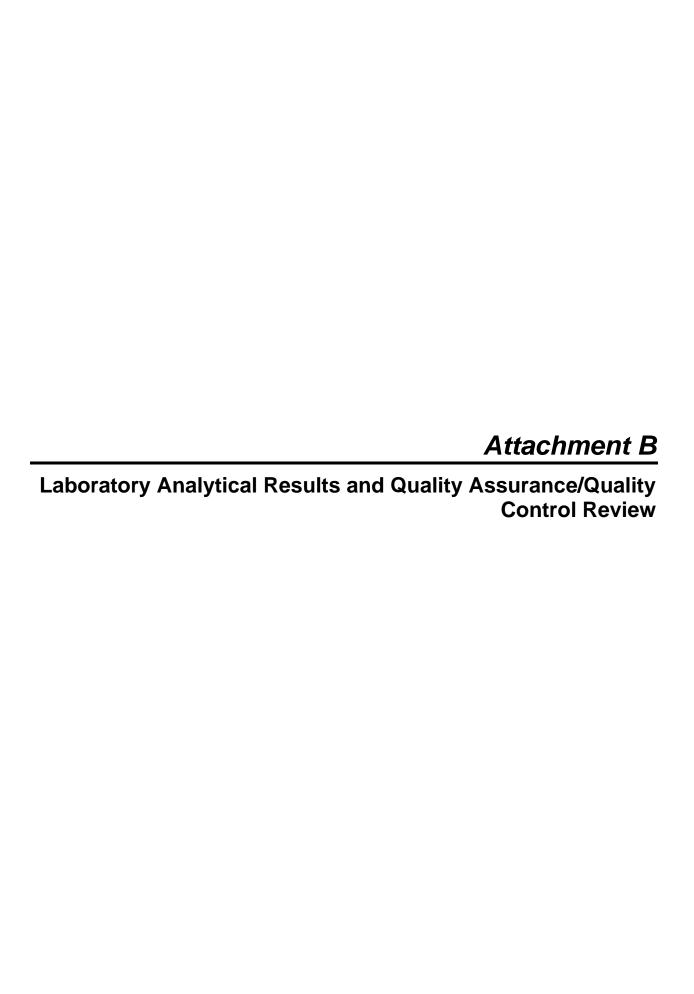
APEX REPRESENTATIVE

APEX PROJECT MANAGER

WELL GAGING DATA SHEET

_ A					J.		Job Number:	1569-04
			6.3	Client:	1254	V	Date:	6/24/15
\DE	· \/			Project:	16. 1	mex	Sampler:	CR
APE				Weather:			Time In/Out:	
					VEL DATA	'		
Well I.D.	Time	Depth to Free Product (feet)	Depth to Water (feet)	Depth to Well Bottom (feet)	Product Thickness (feet)	Water Column Height (feet)	Not	es/Other Remarks
MW-3	0833	_	30.85					100
Mw-5	0838	-	18.89					
MW-6	0847	_	19.34					
MW-1	0852	_	18.43					
MWa	0828	_	30,05					
MW-4	0903	-	31.92		-			
				4.				
								* .
					Y			- Souls -
								A SHARE WA
			T					

				**	LLL MONT	ONING DA	AUTILL				
					Well I.D.	W	W-1		Job Number	81	569-04
					Client:	1	15tr		Date:	6	124/15
A DI	-\/				Project:	Vonce	over	Amex	Sampler:	C	3
API	$= \wedge$				Weather:				Time In/Out:		
					-	ELL DATA			7		
Vell Depth:	- 30				Well Diamete		7	C -	Water Heigh	nt	
epth to Wa	tor:		18.4-	3	Screened Int	4	-		x Multiplier		
Water Colun				-	Depth to Fre				x Casing Vo	lumes	
Purge Volum					Free Produc				= Purge Vol		
The Property	eight Multip	oliore (ggl)	1 inch	= 0.041		= 0.162	4-incl	n = 0.653	1 gallon = 3		
water n	eigni wuiti	niers (gai)	1-IIICII	- 0.041	4	RGING DATA		1 - 0.033	1 gallott = c	.700 III.013	
urge Metho	d:		Penj		Pump Intake		7	11083	Ho		Comments
Sampling Me	N. 1 V.		IF		Tubing Type		17	DE			ommonto
ampling we	Volume	Cumulative		Purge	Tubing Type			1		7	42.0.77.3
Time	Purged (liters)	Volume Purged (liters)	DTW (btc)	Rate (L/min)	pН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remarks
		(11111)			+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criteria
()17			18,43		6.64	17.58	75	3.20	42.6		Clear
1020			18.43		6.45	18.25	77	2,91	47.2	_	1
1023			18.43		6.43	18.89	79	2.80	47.7	-	
1026			18.43		6.43	18.91	80	2,69	47.5	_	
1029		1541	(8,43		6.43	18.85	80	2.58	46.8		4
				t							
		01			, CI = Cloudy,	60li-lu			0 = 1000		
		Ciar	ity: VC = V	ery cloudy,		IPLING DATA		- aimost ciea	ar, C - clear		
Sample	e ID:	Mr.	-1	Sampling	Flow Rate			Analytical La	boratory:	V	occe
Sample		10	30		pth to Water:	18.	73	Did Well Dev			No
# Containe		Preser	vative		sis/Method	Field Fi			r Size	MS/MSD	Duplicate ID
Ox VI		+10		JOC/6	1.6	yes	no				
				0-10	1.2	yes	no				
						yes	no				
					- 10	yes	no				
						yes	no				
						yes	no				
					С	OMMENTS					


					Well I.D.	MW	- 9		Job Number	1568	wy
					Client:	Nus	N		Date:	6/2	4/15
API	= \				Project:	Incs	ave f	Innes	Sampler:	(3
/-(-	_/\				Weather:				Time In/Out	:	
					٧	VELL DATA					
Well Depth:					Well Diamet	er:	2	14	Water Heig	ht	
Depth to Wa	ter:		30.05)	Screened In				x Multiplier		
Water Colun					Depth to Fre				x Casing Vo	olumes	
Purge Volum					Free Produc				= Purge Vo		
		pliers (gal)	1-inch	= 0.041		= 0.162	4-inc	h = 0.653		3.785 liters	
Waterin	oight main	plicio (gai)	1 mort	0.011		RGING DATA		11 0.000	1 guilott	0.7 00 INOIO	
Purge Metho	nd.	Q	ò	0	Pump Intake		-71	off Lo	12-	C	omments
Sampling Me	10.7	1	6		Tubing Type			LDRE		1	omments
Time	Volume Purged (liters)	Cumulative Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remarks
				1	+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criteria
	//)	//	1 4	- 1	1	7	1 /			
/ 4	4414			- 1		+	V ()		
			12.51								
		Clari	ty: VC = v	ery cloudy,		SC = slightly IPLING DATA		= almost clea	ar, C = clear		
Camanda	ID:	MW-	2	Camalian	AT 12 A A	II LING DAIL	•	Analyticalla	handan.	0.	
Sample		10/00	6	Sampling		30	.05	Analytical La Did Well Dev		NA.	
Sample		-			oth to Water:					110,1100	D - Parts ID
# Containe	rs/Type	Preserv	C	Analys	is/Method	Field Fi yes	no	Filter	Size	MS/MSD	Duplicate ID
6×0	N-T	1.	~!	NUC	OLIDA	yes	no				
								-			
						yes	no				
						yes	no				
						yes	no				
						yes	no			0:	
AM /	p. 1	0	1-0	N.	C	OMMENTS	1	- 11	. \-		
M	y o	(my)	m	7 PC	MATH	enayl	1	pull	uste	- 4	TI
1	UX	1/00/1	Cen	" VI	mole,	0 12:	10	2	10 0cs	act	or Rie

										7	-
	Well I.D. MW-3					Job Number	158	69-UY			
					Client:	1	ust	_	Date:	6/	24/15
A D	ΕX				Project:	50	-ccom	5 Amos	Sampler:	(-3
1-11-					Weather:				Time In/Out:		
						ELL DATA					
Well Depth:	1	1	3		Well Diamet	er:	2	11	Water Heigh	nt	
Depth to Wa			30,	85	Screened Int				x Multiplier		
Water Colu		(i =			Depth to Fre				x Casing Vo	lumes	
Purge Volur				*	Free Produc				= Purge Vol		
	eight Multip	oliers (gal)	1-inch	= 0.041		= 0.162	4-incl	n = 0.653	1 gallon = 3		
		10 /				RGING DATA					
Purge Meth	od:		Peri		Pump Intake	Depth:	~	(off 5	xithin.	C	comments
Sampling M			LF		Tubing Type		L	DPE			
Time	Volume Purged (liters)	Cumulative Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (μS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remark
		(illers)			+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criteri
1107							4.20	21.2		Clear	
11(0		-	31,13		6.84	16.52	61	3.47	24.5		
1113			31.13		6.79	16.36			27.0	_	
1/10		1/292	31.13		6,75	16,28	61	3.61	29.2		*
		Clar	ity: VC = v	ery cloudy,	CI = Cloudy,	SC = slightly IPLING DATA		= almost clea	ar, C = clear		
Sampl	e ID:	ML	1-2	Sampling	Flow Rate			Analytical La	horatory:	Pa	-0
Sample		11	17		oth to Water:	31	13	Did Well Dev		1	^
# Contain		Preser	vative		is/Method	Field Fi			r Size	MS/MSD	Duplicate ID
1 .	DIA A	+(C		1111	is/ivietriod	yes	/no)	ritte	JILE .	IVIONVIOL	Duplicate ID
(DX)	///	110		Mr 10	X HIN	yes	no				
						yes	no				
						yes	no				
						yes	no				
						yes	no				
					C	OMMENTS	110				

					Well I.D.	M	(U-c	1	Job Number	156	804
					Client:	N	str		Date:	6	124/15
AP	EY				Project:	Vac	000	Arrex	Sampler:	C	B
/-/1-					Weather:				Time In/Out	:	
					V	ELL DATA					
Well Depth:		0	A	₹	Well Diamet	er:	7	n	Water Heig	ht	
Depth to Wa			31.9	2	Screened Int	terval:		1	x Multiplier		
Water Colu					Depth to Fre				x Casing Vo	olumes	
Purge Volur					Free Produc				= Purge Vol		
	leight Multi	nliers (gal)	1-inch	= 0.041		= 0.162	4-inc	h = 0.653	1 gallon = 3		
Water	olgric Walt	piloto (gai)	1 111011	0.011		RGING DATA		11 0.000	1 guilott (3.700 III.010	
Purge Meth	od.	1	er.		Pump Intake		~7	roff s	- Aur	C	omments
Sampling M		\	1		Tubing Type		1	005			on more
Time	Volume Purged (liters)	Cumulative Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	pH	Temp (°C)	Cond (μS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remark
					+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criteri
Λ	1			1	h .		^				
/\	A		7)	/ /	1	1		11			
			1/		1				1		
		/	11/	1	1	4			_		
L			10								
				_			_			_	
- 1			11	1							
		Clari	ity: VC = \	ery cloudy,	SAM	SC = slightly	cioudy, AC	= almost clea	ir, C = clear		
Sampl	e ID:	Anh	1-4	Sampling	Flow Rate			Analytical La	horatory:	Vec	P
Sample		11.00			oth to Water:	31.	97	Did Well Dev		MA	1
										MONIO	D
# Contain		Preserv		Analys	is/Method	Field Fi		Filter	Size	MS/MSD	Duplicate ID
60	JOA	46	1	MI)6/0x	yes	no			-	
					1.	yes	no				
						yes	no				
						yes	no				
						yes	no			1	
						yes	no				
4					C	OMMENTS		1			
XX OPI	anco !	buel 4	One	H an	in to n	Il cont	V -C	ait fill	+las	celli	
1. 60	Car	00	0	12:4	5	Ino	000	mets	reed.	25	
-	TUV	W.C.	<u> </u>	7	, ,	1	10			1	

^	V				Well I.D.	M	N-5		Job Number:	157	eg roy
					Client:	ME	str		Date:	0	27/15
A D					Project:	Vince	Jorus	Ano	Sampler:	er	3
AP	ニハ				Weather:				Time In/Out:	0.	
						ELL DATA					
Well Depth:					Well Diamet	er:	2	tr	Water Heigh	it	
Depth to Wa	ater:	18.	89		Screened In	terval:			x Multiplier		
Water Colur					Depth to Fre	e Product:			x Casing Vo	lumes	
Purge Volun	ne:				Free Produc	t Thickness:			= Purge Volu	ume	
Water H	eight Multip	oliers (gal)	1-inch	= 0.041	2-inch	= 0.162	4-inch	n = 0.653	1 gallon = 3	.785 liters	
					PU	RGING DATA		20/11			
Purge Metho	od:	()e	2/2	574	Pump Intake	Depth:	~3'0	off Silfon	\	C	omments
Sampling M	ethod:	L	F		Tubing Type		L	DPE			
Time	Volume Purged (liters)	Cumulative Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (μS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remarks
					+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criteria
0920			9.77		8.65	15.15	87	4.51	-45.4	Witten	Clear
0923			20.13		8.10	15.31	89	7.00	-46.7	1	
0926			20.32		8.05	15.22	90	223	-51.8	-	
6924		20.50			8.00	15.21	91	2.00	-45.3	-	
0932		1/2 gal	20.68		7,95	1520	91	1.81	-42.1		4
		Cla	rity: VC = V	any cloudy	Cl = Cloudy	SC = slightly	cloudy AC	= almost clea	ar C = clear		
		Old	ity. VO - V	cry cloudy	SAN	IPLING DAT	A	annot ord	, 0 0.00.		
Samp	le ID:	MU-	-5	Sampling	Flow Rate			Analytical La	boratory:	Pac	8
Sample		09	33	Final De	pth to Water:	20.	68	Did Well Dev	water?	N	8
# Contain		Prese	rvative	Analys	sis/Method	Field F	iltered	Filte	r Size	MS/MSD	Duplicate ID
	DA	1-60	-	N)C/Q0/80	yes	20			_	MU-5 DU
					0.00	yes	no				
			<u> </u>		10	yes	no				
						yes	no				
						yes	no				
						yes	no				
					C	OMMENTS					

_					Well I.D.	Mh	1-6		Job Number:	15.1	0914
					Client:	N	uster		Date:	(0/2	1/15
A D	-\/				Project:	Vince	5000-1	Anex	Sampler:	61	3
AP					Weather:				Time In/Out:	_	
						ELL DATA					
Well Depth:					Well Diamete	er:	7	11	Water Heigh	nt	
Depth to Wa	iter:	14.1	19.74	L	Screened Int	erval:			x Multiplier		
Water Colur				1	Depth to Fre	e Product:			x Casing Vo	lumes	
Purge Volun	ne:				Free Product	Thickness:			= Purge Vol	ume	
Water H	eight Multip	oliers (gal)	1-inch	= 0.041	2-inch	= 0.162	4-inch	n = 0.653	1 gallon = 3	.785 liters	
					PUF	RGING DATA					
Purge Meth	od:	1	leri_		Pump Intake	Depth:	-1	sty SC	Her	C	omments
Sampling M	ethod:		4		Tubing Type		-	DIF			
Time	Volume Purged (liters)	Cumulative Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (μS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remark
		(me.e)			+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criteri
2950			20.30		8.42	15.63	98	7.52	-70.1	-	Clear
0953			20,56		8,05	15.83	103	2.99	-655		
0956			20,80		8.01	15.73	107	2.82	-66.5	-	
6954		1/2501	20.95		7.96	15.68	107	2.70	-67.1	_	4
	-100										
		01-	1/2 1/6 -		, CI = Cloudy,	SC = slightly	cloudy AC	`= almost clas	ar C = clear		
		Cla	rity. VC – V	ery cloudy	SAN	IPLING DAT	A	– annost cice	ar, o ordar		
Samp	le ID:	MU	1-6	Sampling	Flow Rate			Analytical La	boratory:	Pa	((
Sample		,	w		pth to Water:	20.5	5	Did Well Dev	water?	10	
# Contain		Prese	rvative	Analy	sis/Method	Field F	iltered	Filte	r Size	MS/MSD	Duplicate ID
GK V	UA		((VX	Gx/Dy	yes	60)	-			
				,	1.3	yes	no				1
						yes	no				
		l I				yes	no				
						yes	no				
						yes	no				
					C	OMMENTS					

Attachment B – Laboratory Analytical Reports and Data Quality Review

This appendix documents the results of a quality assurance/quality control (QA/QC) review of the analytical data for groundwater samples collected during the June 2015 groundwater sampling event for the NuStar Terminals Operations Partnership, L.P. (NuStar) Vancouver Annex Facility (Facility) in Vancouver, Washington. Pace Analytical in Davis, California performed the analyses. A copy of each analytical laboratory report is included in this appendix.

The QA review included examination and validation of the laboratory summary report, including:

- Analytical methods;
- Detection limits;
- Sample holding times;
- Custody records;
- Surrogates, spikes, and blanks; and
- Duplicates.

The QA review did not include a review of raw data.

Analytical Methods

Chemical analyses on collected water samples consisted of select volatile organic compounds (VOCs) and fuel oxygenates by U.S. Environmental Protection Agency (EPA) Method 8260B and total petroleum hydrocarbons – gasoline and diesel range (TPHg and TPHd) by Method NWTPH-Gx and NWTPH-Dx (with silica gel cleanup), respectively.

Quality Assurance Objectives and Review

The general QA objectives for this project were to develop and implement procedures for obtaining, evaluating, and confirming the usability of data of a specified quality for monitoring groundwater quality trends and SVE monitoring data at the site. To collect such information, analytical data must have an appropriate degree of accuracy and reproducibility, samples collected must be representative of actual field conditions, and samples must be collected and analyzed using unbroken chain-of-custody procedures.

Reporting limits and analytical results were compared to action levels for each parameter in the media of concern. Precision, accuracy, representativeness, completeness, and comparability parameters used to indicate data quality are defined below.

Attachment B – Laboratory Analytical Reports and Data Quality Review

Reporting Limits. Detection limits are set by the laboratory and are based on instrumentation abilities, sample matrix, and suggested detection limits by the EPA or the Washington State Department of Ecology (Ecology). In some cases, the detection limits may be raised due to high concentrations of analytes in the samples or matrix interferences. Detection limits were generally consistent with industry standards and below promulgated regulatory standards when possible (if not raised, as previously discussed). Reporting limits were reviewed and are generally acceptable for this project.

Holding Times. Samples were analyzed within the holding times specified for the VOC and analyses.

Method Blanks. A method, or laboratory, blank is a sample prepared in the laboratory along with the actual samples and analyzed for the same parameters at the same time. It is used to assess if detected contaminants may have been the result of contamination of the samples in the laboratory. No analytes were detected in the laboratory method blanks.

Laboratory Control Samples and Laboratory Control Sample Duplicate. Laboratory Control Samples (LCS) were also analyzed by the laboratory to assess the accuracy of the analytical equipment. LCS are prepared from an analyte-free matrix that is then spiked with known levels of the constituents of interest (COI; i.e., a standard). The concentrations are measured and the results compared to the known spiked levels. This comparison is expressed as percent recovery. The LCS percent recovery was within control limits for all analytes.

In addition, a second laboratory control sample (the Laboratory Control Sample Duplicate [LCSD]) is prepared as above and analyzed. This is compared to the initial laboratory control sample to assess the precision of the analytical method (relative percent difference [RPD]). No LCSD samples were analyzed with this sample batch.

Matrix Spike Analyses. Matrix Spike (MS) analyses are performed on samples submitted to the laboratory that are of the same matrix as the actual sample. The MS is spiked with known levels of the COI. These analyses are used to assess the potential for matrix interference with recovery or detection of the COI and the accuracy of the determination. The spiked sample results are compared to the expected result (i.e., sample concentration plus spike amount) and reported as percent recovery. The MS recovery exceeded control limits for TPHd. Since the associated LCS was within recovery limits, no data were flagged.

In addition, a second matrix spike sample (the Matrix Spike Duplicate [MSD]) is prepared as above and analyzed. This is compared to the initial matrix spike sample to assess the precision of the analytical method (RPD). The percent recovery and RPD were within acceptable control limits.

Attachment B – Laboratory Analytical Reports and Data Quality Review

Laboratory Duplicate. A laboratory duplicate is a second analysis of the QA/QC sample, which serves as an internal check on laboratory quality, as well as potential variability of the sample matrix. The laboratory duplicate is analyzed and compared to the primary sample analysis to assess the precision of the analytical method. This comparison can be expressed by the RPD between the original and duplicate samples. No laboratory duplicate was analyzed.

Surrogate Recovery. Surrogates are organic compounds that are similar in chemical composition to the COI and spiked into environmental and batch quality control samples prior to sample preparation and analysis. Surrogate recoveries for environmental samples are used to evaluate matrix interference on a sample-specific basis. The surrogate recovery associated with the TPHg and TPHd analysis for sample MW-6, was above control limits likely due to a matrix interference. Since the associated LCS was within control limits, no data were flagged.

Field Duplicate. A field duplicate is a second field sample collected from a selected monitoring well. Field duplicate samples serve as a check on laboratory quality as well as potential variability of the sample matrix. The field duplicate is analyzed and compared with the first sample to assess the precision of the analytical method. This comparison can be expressed by the RPD between the original and duplicate samples. A field duplicate was analyzed for sample MW-5 (MW-5 DUP) and TPHd was above the RPD limit of +/-30 percent (RPD=51%). TPHd results for the sample and duplicate were flagged with a "D" qualifier. Because the other analytes were within the RPD limit of +/-30 percent, and the matrix spike duplicates for the sample batch were within control limits, no other data were flagged.

Field Blank. A field blank is a sample of analyte-free water poured into a clean sample container in the field, preserved, and shipped to the laboratory with field samples. Field blanks assess the potential for contamination from field conditions during sampling. No field blank was analyzed.

Trip Blank. A trip blank is a clean sample of a matrix that is taken from the laboratory to the sampling site and transported back to the laboratory without having been exposed to sampling procedures. Trip blanks assess contamination introduced during shipping and field-handling activities. No analytes were detected in the trip blank.

Conclusion. In conclusion, the overall QA objectives have been met and the data are of adequate quality for use in this project.

July 08, 2015

Stephanie Bosze-Salisbury Apex Companies, LLC 3015 SW First Avenue Portland, OR 97201

RE: Project: NuStar Vacouver GWM

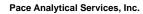
Pace Project No.: 1249204

Dear Stephanie Bosze-Salisbury:

Enclosed are the analytical results for sample(s) received by the laboratory on June 25, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Scott M Forbes scott.forbes@pacelabs.com

Scott Forhes

Project Manager

Enclosures

2795 Second Street - Suite 300 Davis, CA 95618 (530) 297-4800

CERTIFICATIONS

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

Davis Cerification IDs

2795 Second Street Suite 300 Davis, CA 95618 North Dakota Certification #: R-214 Oregon Certification #: CA300002

Washington Certification #: C926-14a California Certification #: 08263CA

SAMPLE SUMMARY

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

Lab ID	Sample ID	Matrix	Date Collected	Date Received
1249204001	MW-1	Water	06/24/15 10:30	06/25/15 10:31
1249204002	MW-2	Water	06/24/15 12:10	06/25/15 10:31
1249204003	MW-3	Water	06/24/15 11:17	06/25/15 10:31
1249204004	MW-4	Water	06/24/15 12:45	06/25/15 10:31
1249204005	MW-5	Water	06/24/15 09:33	06/25/15 10:31
1249204006	MW-5 DUP	Water	06/24/15 09:33	06/25/15 10:31
1249204007	MW-6	Water	06/24/15 10:00	06/25/15 10:31
1249204008	Trip Blank	Water	06/24/15 00:00	06/25/15 10:31

95 Second Street - Suite 300 Davis, CA 95618 (530) 297-4800

SAMPLE ANALYTE COUNT

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

Lab ID	Sample ID	Method	Analysts	Analytes Reported
1249204001	MW-1	NWTPH-Dx	DRM	3
		EPA 8260B	JMB	8
		NWTPH-Gx	JCP	4
1249204002	MW-2	NWTPH-Dx	DRM	3
		EPA 8260B	JMB	8
		NWTPH-Gx	JCP	4
1249204003	MW-3	NWTPH-Dx	DRM	3
		EPA 8260B	JMB	8
		NWTPH-Gx	JCP	4
249204004	MW-4	NWTPH-Dx	DRM	3
		EPA 8260B	JMB	8
		NWTPH-Gx	JCP	4
249204005	MW-5	NWTPH-Dx	DRM	3
		EPA 8260B	JMB	8
		NWTPH-Gx	JCP	4
1249204006	MW-5 DUP	NWTPH-Dx	DRM	3
		EPA 8260B	JMB	8
		NWTPH-Gx	JCP	4
249204007	MW-6	NWTPH-Dx	CCB	3
		EPA 8260B	JMB	8
		NWTPH-Gx	JCP	4

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

Date: 07/08/2015 03:59 PM

Sample: MW-1	Lab ID: 1249	9204001	Collected: 06/24/1	5 10:30	Received: 06	5/25/15 10:31 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS, Silica Gel	Analytical Meth	nod: NWTP	H-Dx Preparation Me	ethod: E	PA 3510			
Diesel Fuel Range	ND	mg/L	0.10	1	06/26/15 15:37	06/26/15 19:36		M1
Motor Oil Range Surrogates	ND	mg/L	0.25	1	06/26/15 15:37	06/26/15 19:36		
n-Octacosane (S)	110	%.	70-130	1	06/26/15 15:37	06/26/15 19:36	630-02-4	
8260 MSV UST	Analytical Meth	nod: EPA 82	260B					
Benzene	ND	ug/L	0.50	1		06/26/15 12:23	71-43-2	
Ethylbenzene	ND	ug/L	0.50	1		06/26/15 12:23	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	1		06/26/15 12:23	1634-04-4	
Toluene	ND	ug/L	0.50	1		06/26/15 12:23	108-88-3	
Xylene (Total) Surrogates	ND	ug/L	1.0	1		06/26/15 12:23	1330-20-7	
1,2-Dichloroethane-d4 (S)	104	%.	70-130	1		06/26/15 12:23	17060-07-0	
Toluene-d8 (S)	103	%.	70-130	1		06/26/15 12:23	2037-26-5	
4-Bromofluorobenzene (S)	99	%.	70-130	1		06/26/15 12:23	460-00-4	
NWTPH-Gx MSV	Analytical Meth	nod: NWTP	H-Gx					
ГРН as Gas Surrogates	ND	ug/L	250	1		07/03/15 14:32		
1,2-Dichloroethane-d4 (S)	122	%.	70-130	1		07/03/15 14:32	17060-07-0	
Toluene-d8 (S)	96	%.	70-130	1		07/03/15 14:32	2037-26-5	
4-Bromofluorobenzene (S)	94	%.	70-130	1		07/03/15 14:32	460-00-4	

95 Second Street - Suite 300 Davis, CA 95618 (530) 297-4800

ANALYTICAL RESULTS

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

Date: 07/08/2015 03:59 PM

Sample: MW-2	Lab ID: 124	9204002	Collected: 06/24/1	5 12:10	Received: 06	/25/15 10:31 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS, Silica Gel	Analytical Meth	nod: NWTPI	H-Dx Preparation Me	ethod: E	PA 3510			
Diesel Fuel Range	ND	mg/L	0.10	1	06/26/15 15:37	06/26/15 20:05		M1
Motor Oil Range Surrogates	ND	mg/L	0.25	1	06/26/15 15:37	06/26/15 20:05		
n-Octacosane (S)	110	%.	70-130	1	06/26/15 15:37	06/26/15 20:05	630-02-4	
8260 MSV UST	Analytical Meth	nod: EPA 82	260B					
Methyl-tert-butyl ether	42.8	ug/L	0.50	1		06/26/15 12:48	1634-04-4	
Benzene	ND	ug/L	0.50	1		06/26/15 12:48	71-43-2	
Toluene	ND	ug/L	0.50	1		06/26/15 12:48	108-88-3	
Ethylbenzene	ND	ug/L	0.50	1		06/26/15 12:48	100-41-4	
Xylene (Total) Surrogates	ND	ug/L	1.0	1		06/26/15 12:48	1330-20-7	
1,2-Dichloroethane-d4 (S)	107	%.	70-130	1		06/26/15 12:48	17060-07-0	
Toluene-d8 (S)	96	%.	70-130	1		06/26/15 12:48	2037-26-5	
4-Bromofluorobenzene (S)	100	%.	70-130	1		06/26/15 12:48	460-00-4	
NWTPH-Gx MSV	Analytical Meth	nod: NWTPI	H-Gx					
ГРН as Gas Surrogates	ND	ug/L	250	1		07/03/15 12:56		
1,2-Dichloroethane-d4 (S)	109	%.	70-130	1		07/03/15 12:56	17060-07-0	
Toluene-d8 (S)	98	%.	70-130	1		07/03/15 12:56	2037-26-5	
4-Bromofluorobenzene (S)	96	%.	70-130	1		07/03/15 12:56	460-00-4	

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

Date: 07/08/2015 03:59 PM

Sample: MW-3	Lab ID: 1249	9204003	Collected: 06/24/1	5 11:17	Received: 06	/25/15 10:31 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS, Silica Gel	Analytical Meth	od: NWTP	H-Dx Preparation Me	ethod: E	PA 3510			
Diesel Fuel Range	0.12	mg/L	0.10	1	06/26/15 15:37	06/26/15 20:34		DE,M1
Motor Oil Range <i>Surrogates</i>	ND	mg/L	0.26	1	06/26/15 15:37	06/26/15 20:34		
n-Octacosane (S)	116	%.	70-130	1	06/26/15 15:37	06/26/15 20:34	630-02-4	
8260 MSV UST	Analytical Meth	od: EPA 82	260B					
Benzene	ND	ug/L	0.50	1		06/26/15 21:32	71-43-2	
Ethylbenzene	ND	ug/L	0.50	1		06/26/15 21:32	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	1		06/26/15 21:32	1634-04-4	
Toluene	ND	ug/L	0.50	1		06/26/15 21:32	108-88-3	
Xylene (Total) Surrogates	ND	ug/L	1.0	1		06/26/15 21:32	1330-20-7	
1,2-Dichloroethane-d4 (S)	99	%.	70-130	1		06/26/15 21:32	17060-07-0	
Toluene-d8 (S)	94	%.	70-130	1		06/26/15 21:32	2037-26-5	
4-Bromofluorobenzene (S)	98	%.	70-130	1		06/26/15 21:32	460-00-4	
NWTPH-Gx MSV	Analytical Meth	od: NWTP	H-Gx					
TPH as Gas Surrogates	ND	ug/L	250	1		07/03/15 14:56		
1,2-Dichloroethane-d4 (S)	127	%.	70-130	1		07/03/15 14:56	17060-07-0	
Toluene-d8 (S)	98	%.	70-130	1		07/03/15 14:56	2037-26-5	
4-Bromofluorobenzene (S)	98	%.	70-130	1		07/03/15 14:56	460-00-4	

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

Date: 07/08/2015 03:59 PM

Sample: MW-4	Lab ID: 124	9204004	Collected: 06/24/1	5 12:45	Received: 06	/25/15 10:31 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS, Silica Gel	Analytical Meth	nod: NWTPI	H-Dx Preparation Me	ethod: E	PA 3510			
Diesel Fuel Range	ND	mg/L	0.099	1	06/26/15 15:37	06/26/15 21:04		M1
Motor Oil Range Surrogates	ND	mg/L	0.25	1	06/26/15 15:37	06/26/15 21:04		
n-Octacosane (S)	103	%.	70-130	1	06/26/15 15:37	06/26/15 21:04	630-02-4	
8260 MSV UST	Analytical Meth	nod: EPA 82	60B					
Benzene	ND	ug/L	0.50	1		06/26/15 13:13	71-43-2	
Ethylbenzene	ND	ug/L	0.50	1		06/26/15 13:13	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	0.50	1		06/26/15 13:13	1634-04-4	
Toluene	ND	ug/L	0.50	1		06/26/15 13:13	108-88-3	
Xylene (Total) Surrogates	ND	ug/L	1.0	1		06/26/15 13:13	1330-20-7	
1,2-Dichloroethane-d4 (S)	110	%.	70-130	1		06/26/15 13:13	17060-07-0	
Toluene-d8 (S)	101	%.	70-130	1		06/26/15 13:13	2037-26-5	
4-Bromofluorobenzene (S)	102	%.	70-130	1		06/26/15 13:13	460-00-4	
NWTPH-Gx MSV	Analytical Meth	nod: NWTPI	H-Gx					
ГРН as Gas Surrogates	ND	ug/L	250	1		07/03/15 15:20		
1,2-Dichloroethane-d4 (S)	110	%.	70-130	1		07/03/15 15:20	17060-07-0	
Toluene-d8 (S)	97	%.	70-130	1		07/03/15 15:20	2037-26-5	
4-Bromofluorobenzene (S)	91	%.	70-130	1		07/03/15 15:20	460-00-4	

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

Date: 07/08/2015 03:59 PM

Sample: MW-5	Lab ID: 124	9204005	Collected: 06/24/1	5 09:33	Received: 06	/25/15 10:31 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS, Silica Gel	Analytical Meth	nod: NWTPI	H-Dx Preparation Me	ethod: E	PA 3510			
Diesel Fuel Range	0.33	mg/L	0.10	1	06/26/15 15:37	06/26/15 21:33		DG,M1
Motor Oil Range Surrogates	ND	mg/L	0.25	1	06/26/15 15:37	06/26/15 21:33		
n-Octacosane (S)	109	%.	70-130	1	06/26/15 15:37	06/26/15 21:33	630-02-4	
8260 MSV UST	Analytical Meth	nod: EPA 82	260B					
Benzene	ND	ug/L	1.2	2.5		06/26/15 14:02	71-43-2	
Ethylbenzene	228	ug/L	1.2	2.5		06/26/15 14:02	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	1.2	2.5		06/26/15 14:02	1634-04-4	
Toluene	ND	ug/L	1.2	2.5		06/26/15 14:02	108-88-3	
Xylene (Total) Surrogates	1510	ug/L	10.0	10		06/26/15 22:28	1330-20-7	
1,2-Dichloroethane-d4 (S)	97	%.	70-130	2.5		06/26/15 14:02	17060-07-0	
Toluene-d8 (S)	99	%.	70-130	2.5		06/26/15 14:02	2037-26-5	
4-Bromofluorobenzene (S)	105	%.	70-130	2.5		06/26/15 14:02	460-00-4	
NWTPH-Gx MSV	Analytical Meth	nod: NWTPI	H-Gx					
ГРН as Gas Surrogates	15000	ug/L	2500	10		07/03/15 15:44		
1,2-Dichloroethane-d4 (S)	109	%.	70-130	10		07/03/15 15:44	17060-07-0	
Toluene-d8 (S)	99	%.	70-130	10		07/03/15 15:44	2037-26-5	
4-Bromofluorobenzene (S)	106	%.	70-130	10		07/03/15 15:44	460-00-4	

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

Date: 07/08/2015 03:59 PM

Sample: MW-5 DUP	Lab ID: 124	9204006	Collected: 06/24/1	5 09:33	Received: 06	5/25/15 10:31 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS, Silica Gel	Analytical Meth	nod: NWTPI	H-Dx Preparation Me	ethod: E	PA 3510			
Diesel Fuel Range	0.56	mg/L	0.10	1	06/26/15 15:37	06/26/15 22:02		DG,M1
Motor Oil Range Surrogates	ND	mg/L	0.25	1	06/26/15 15:37	06/26/15 22:02		
n-Octacosane (S)	110	%.	70-130	1	06/26/15 15:37	06/26/15 22:02	630-02-4	
8260 MSV UST	Analytical Meth	nod: EPA 82	60B					
Benzene	ND	ug/L	1.2	2.5		06/26/15 14:27	71-43-2	
Ethylbenzene	232	ug/L	1.2	2.5		06/26/15 14:27	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	1.2	2.5		06/26/15 14:27	1634-04-4	
Toluene	ND	ug/L	1.2	2.5		06/26/15 14:27	108-88-3	
Xylene (Total) Surrogates	1490	ug/L	10.0	10		06/26/15 22:52	1330-20-7	
1,2-Dichloroethane-d4 (S)	96	%.	70-130	2.5		06/26/15 14:27	17060-07-0	
Toluene-d8 (S)	98	%.	70-130	2.5		06/26/15 14:27	2037-26-5	
4-Bromofluorobenzene (S)	103	%.	70-130	2.5		06/26/15 14:27	460-00-4	
NWTPH-Gx MSV	Analytical Meth	nod: NWTPI	H-Gx					
ГРН as Gas Surrogates	16800	ug/L	2500	10		07/03/15 16:08		
1,2-Dichloroethane-d4 (S)	108	%.	70-130	10		07/03/15 16:08	17060-07-0	
Toluene-d8 (S)	99	%.	70-130	10		07/03/15 16:08	2037-26-5	
4-Bromofluorobenzene (S)	101	%.	70-130	10		07/03/15 16:08	460-00-4	

(530) 297-4800

ANALYTICAL RESULTS

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

Date: 07/08/2015 03:59 PM

Sample: MW-6	Lab ID: 124	9204007	Collected: 06/24/1	5 10:00	Received: 06	/25/15 10:31 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS, Silica Gel	Analytical Meth	nod: NWTPI	H-Dx Preparation Me	ethod: E	PA 3510			
Diesel Fuel Range	1.2	mg/L	0.10	1	06/26/15 15:37	07/03/15 02:16		DG,M1
Motor Oil Range Surrogates	ND	mg/L	0.25	1	06/26/15 15:37	07/03/15 02:16		
n-Octacosane (S)	140	%.	70-130	1	06/26/15 15:37	07/03/15 02:16	630-02-4	S5
8260 MSV UST	Analytical Meth	nod: EPA 82	260B					
Benzene	423	ug/L	2.5	5		06/26/15 15:17	71-43-2	
Ethylbenzene	1580	ug/L	2.5	5		06/26/15 15:17	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	2.5	5		06/26/15 15:17	1634-04-4	
Toluene	58.2	ug/L	2.5	5		06/26/15 15:17	108-88-3	
Xylene (Total) Surrogates	1920	ug/L	10.0	10		06/26/15 23:17	1330-20-7	
1,2-Dichloroethane-d4 (S)	101	%.	70-130	5		06/26/15 15:17	17060-07-0	
Toluene-d8 (S)	100	%.	70-130	5		06/26/15 15:17	2037-26-5	
4-Bromofluorobenzene (S)	106	%.	70-130	5		06/26/15 15:17	460-00-4	
NWTPH-Gx MSV	Analytical Meth	nod: NWTPI	H-Gx					
ГРН as Gas Surrogates	17700	ug/L	2500	10		07/03/15 16:32		
1,2-Dichloroethane-d4 (S)	107	%.	70-130	10		07/03/15 16:32	17060-07-0	
Toluene-d8 (S)	97	%.	70-130	10		07/03/15 16:32	2037-26-5	
4-Bromofluorobenzene (S)	104	%.	70-130	10		07/03/15 16:32	460-00-4	

(530) 297-4800

QUALITY CONTROL DATA

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

QC Batch: DAOP/1227 Analysis Method: NWTPH-Dx

QC Batch Method: EPA 3510 Analysis Description: NWTPH-Dx GCS, Silica Gel

Associated Lab Samples: 1249204001, 1249204002, 1249204003, 1249204004, 1249204005, 1249204006, 1249204007

METHOD BLANK: 223402 Matrix: Water

Associated Lab Samples: 1249204001, 1249204002, 1249204003, 1249204004, 1249204005, 1249204006, 1249204007

Blank Reporting Result Limit Qualifiers Parameter Units Analyzed Diesel Fuel Range ND 07/07/15 12:24 mg/L 0.10 Motor Oil Range mg/L ND 0.25 07/07/15 12:24 120 70-130 07/07/15 12:24 n-Octacosane (S) %.

LABORATORY CONTROL SAMPLE: 223403

Date: 07/08/2015 03:59 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Diesel Fuel Range .88 0.70 79 70-130 mg/L 110 70-130 n-Octacosane (S) %.

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 223404 223405 MS MSD 1249204001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units % Rec RPD RPD Qual Result Conc. Conc. Result Result % Rec Limits Diesel Fuel Range 25 M1 mg/L ND .87 .9 0.64 0.63 65 62 70-130 n-Octacosane (S) %. 112 119 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

Date: 07/08/2015 03:59 PM

QC Batch: DAVM/1646 Analysis Method: EPA 8260B

QC Batch Method: EPA 8260B Analysis Description: 8260 MSV UST-WATER

Associated Lab Samples: 1249204001, 1249204002, 1249204003, 1249204004, 1249204005, 1249204006, 1249204007

METHOD BLANK: 223328 Matrix: Water

Associated Lab Samples: 1249204001, 1249204002, 1249204003, 1249204004, 1249204005, 1249204006, 1249204007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND ND	0.50	06/26/15 08:14	
Ethylbenzene	ug/L	ND	0.50	06/26/15 08:14	
Methyl-tert-butyl ether	ug/L	ND	0.50	06/26/15 08:14	
Toluene	ug/L	ND	0.50	06/26/15 08:14	
Xylene (Total)	ug/L	ND	1.0	06/26/15 08:14	
1,2-Dichloroethane-d4 (S)	%.	99	70-130	06/26/15 08:14	
4-Bromofluorobenzene (S)	%.	98	70-130	06/26/15 08:14	
Toluene-d8 (S)	%.	99	70-130	06/26/15 08:14	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Faidilletei	Units	CONC.		/0 KEC		Qualifiers
Benzene	ug/L	40	44.5	111	70-130	
Ethylbenzene	ug/L	40	47.4	119	70-130	
Methyl-tert-butyl ether	ug/L	40	42.1	105	70-130	
Toluene	ug/L	40	43.5	109	70-130	
Xylene (Total)	ug/L	120	133	110	70-130	
1,2-Dichloroethane-d4 (S)	%.			100	70-130	
4-Bromofluorobenzene (S)	%.			98	70-130	
Toluene-d8 (S)	%.			98	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 22333	0		223331							
		1249200001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	% Rec	RPD	RPD	Qual
Benzene	ug/L	10.9	40	40	54.1	53.5	108	106	70-130	1	25	
Ethylbenzene	ug/L	ND	40	40	43.4	43.5	108	108	70-130	0	25	
Methyl-tert-butyl ether	ug/L	133	40	40	173	164	101	79	70-130	5	25	
Toluene	ug/L	ND	40	40	41.1	41.0	102	102	70-130	0	25	
Xylene (Total)	ug/L	ND	120	120	118	120	98	100	70-130	2	25	
1,2-Dichloroethane-d4 (S)	%.						97	98	70-130			
4-Bromofluorobenzene (S)	%.						99	103	70-130			
Toluene-d8 (S)	%.						98	97	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

Date: 07/08/2015 03:59 PM

QC Batch: DAVM/1688 Analysis Method: NWTPH-Gx

QC Batch Method: **NWTPH-Gx** Analysis Description: NWTPH-Gx Water MSV

Associated Lab Samples: 1249204001, 1249204002, 1249204003, 1249204004, 1249204005, 1249204006, 1249204007

METHOD BLANK: 225052 Matrix: Water

Associated Lab Samples: 1249204001, 1249204002, 1249204003, 1249204004, 1249204005, 1249204006, 1249204007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
TPH as Gas	ug/L	ND ND	250	07/03/15 12:32	
1,2-Dichloroethane-d4 (S)	%.	110	70-130	07/03/15 12:32	
4-Bromofluorobenzene (S)	%.	96	70-130	07/03/15 12:32	
Toluene-d8 (S)	%.	97	70-130	07/03/15 12:32	

LABORATORY CONTROL SAMPLE: 225053 Spike LCS LCS % Rec Result % Rec Limits Qualifiers Parameter Units Conc. TPH as Gas 480 422 88 70-130 ug/L 1,2-Dichloroethane-d4 (S) 108 70-130 %. 4-Bromofluorobenzene (S) %. 105 70-130 Toluene-d8 (S) %. 98 70-130

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 225056 225057 MS MSD MSD 1249204002 Spike Spike MS MS MSD % Rec Max Parameter Units % Rec RPD RPD Qual Result Conc. Conc. Result Result % Rec Limits 70-130 TPH as Gas ug/L ND 480 480 440 461 88 92 5 25 1,2-Dichloroethane-d4 (S) 109 70-130 %. 118 4-Bromofluorobenzene (S) %. 101 101 70-130 Toluene-d8 (S) %. 99 99 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(530) 297-4800

QUALIFIERS

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 07/08/2015 03:59 PM

DE Discrete peaks present, atypical for Diesel Fuel.

DG Lower boiling hydrocarbons present, atypical for Diesel Fuel.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

S5 Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: NuStar Vacouver GWM

Pace Project No.: 1249204

Date: 07/08/2015 03:59 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch DASG/1217		
1249204001	MW-1	EPA 3510	DAOP/1227	NWTPH-Dx			
1249204002	MW-2	EPA 3510	DAOP/1227	NWTPH-Dx	DASG/1217		
1249204003	MW-3	EPA 3510	DAOP/1227	NWTPH-Dx	DASG/1217		
1249204004	MW-4	EPA 3510	DAOP/1227	NWTPH-Dx	DASG/1217		
1249204005	MW-5	EPA 3510	DAOP/1227	NWTPH-Dx	DASG/1217		
1249204006	MW-5 DUP	EPA 3510	DAOP/1227	NWTPH-Dx	DASG/1217		
1249204007	MW-6	EPA 3510	DAOP/1227	NWTPH-Dx	DASG/1217		
1249204001	MW-1	EPA 8260B	DAVM/1646				
1249204002	MW-2	EPA 8260B	DAVM/1646				
1249204003	MW-3	EPA 8260B	DAVM/1646				
1249204004	MW-4	EPA 8260B	DAVM/1646				
1249204005	MW-5	EPA 8260B	DAVM/1646				
1249204006	MW-5 DUP	EPA 8260B	DAVM/1646				
1249204007	MW-6	EPA 8260B	DAVM/1646				
1249204001	MW-1	NWTPH-Gx	DAVM/1688				
1249204002	MW-2	NWTPH-Gx	DAVM/1688				
1249204003	MW-3	NWTPH-Gx	DAVM/1688				
1249204004	MW-4	NWTPH-Gx	DAVM/1688				
1249204005	MW-5	NWTPH-Gx	DAVM/1688				
1249204006	MW-5 DUP	NWTPH-Gx	DAVM/1688				
1249204007	MW-6	NWTPH-Gx	DAVM/1688				

Project Manager: Stephanie Bosze Salisbury APEX

CHAIN OF CUSTODY RECORD Client Name: Apex/Ash Creek

Apex/Ash Creek 3015 SW First Ave Address:

City/State/Zip:

Portland, OR 97201

Project Name: NuStar Vacouver GWM

Sampler Name: C. Brackett Project Number: 1569-04

503-924-4704 x1925

Fax No.:

503.924.4704 1249204

Telephone Number:

Analytical Lab: Pace

Report To: <u>sbosze@apexcos.com</u> o Page: 1

	stluse X Results Send QC with report									z			
	TAT (Pre-Schedule) TAT (AT TAT TAT TAT TAT TAT TAT TAT TAT		×	×	×	×	×	×	-	-			
	(11.0 0.17110110								16.55				
									oratory Comments: Temperature Upon Receipt:	vocs riee of neadspace?			
									ent;	בפור			
Analyze For:									m m	5			
									atr C	B			
									tory nper	3			
									Laboratory Comments: Temperature Upon F	2			
	STEX, MTBE ONLY by 82608	×	×	×	×	×	×	×	ت	T			
	хэ-натми	×	×	×	×	×	×	×			150 23/	e e	e
	TPH-diesel and heavy oil -NWTPG-Dx with silica gel cles	×	×	×	×	×	×	×	,	ر ا	(63)	Time	Time
	Offher (specify):								į				
Matrix	lioS								Ú	FexEx			
	Spudge										00 7515	Date	Date
2	Wastewater Drinking Water	-	-							۱	8		
	Groundwater	×	×	×	×	×	×	×		H			
	Office (Specify)			,,	- ' '	· ·							Received by: Name/Company
Preservative	None (Black Label)								1		Q		
	H ₂ SO₄ Glass(Yellow Label)								Ì		5 7	2	
	H ₂ SO₄ Plastic (Yellow Label)								7		E C	g	
	NaOH (Orange Label)								3	318	Received by: Name/Company	5	9
	HCI (Blue Label)	×	×	×	×	×	×	×	7	3		ne/(ne/(
	HNO ³ (Red Label)	J	V		J				Mothod of Shipmont		318	Nar	Nar
	lce	×	×	×	×	×	×	×	2		8/13	by:	by:
	Field Filtered									Sport		ived	ived
	Composite									100	200	Received by: Name/Company	Rece
	dsab	×	×	×	×	×	×	×		9	1500	Time	Time
	No. of Containers Shipped	9	9	9	9	9	9	9		7		۲	۲
	Time Sampled	1030	1210	1117	1245	933	933	1000		22		Date	
1			2	2	2	2	2			3	6/24/2015		Date
	Date Sampled	6/24/15	6/24/15	6/24/15	6/24/15	6/24/15	6/24/15	6/24/15			/9		
										Macan	yanies	прапу	npany
	Sample ID / Description						DUP		Special Instructions:	shod by Name/Con	Chris Brackett / Apex Companies	Relinquished by: Name/Company	Relinquished by: Name/Company
	Sample	MW-1	MW-2	MW-3	MW-4	MW-5	MW-5 DUP	MW-6	Special	Polimerije	Chris Bra	Relinquit	Relinquis

8385688

Relinquished by: Name/Company

Time

Date

Received by: Name/Company

Time

Date

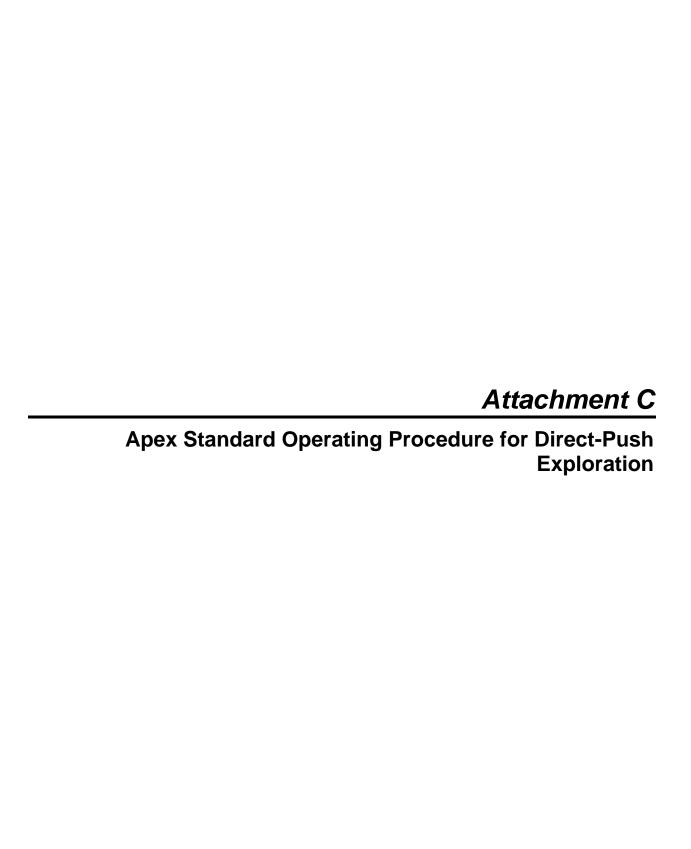
Pace Analytical*

Project Manager Review:

Scott/K

Document Name:

Sample Condition Upon Receipt Form


Document No.: F-DAV-C-002-rev.02 Document Revised: 25Feb2015

Page 1 of 1

Issuing Authority: Pace Davis, CA Quality Office

Sample Condition Client Name: Project #: WO#:1249204 **Upon Receipt** LLE Courier: TUPS **USPS** Client Commercial Pace OnTrac Other: 1088 Tracking Number: 1120 Optional: Proj. Due Date: Custody Seal on Cooler/Box Present? Proj. Name: Yes No Seals Intact? Yes No Packing Material: Bubble Wrap Bubble Bags None Other: Temp Blank? Yes No Thermom. Used: DA1434 Type of Ice: ☐Wet ☐Blue ☐Dry Ice ☐None ☐Samples on ice, cooling process has begun ☐DA2285 Cooler Temp Read(°C): 3.4 Cooler Temp Corrected(°C): Biological Tissue Frozen? Yes No N/A Temp should be above freezing to 6°C Correction Factor: Date and Initials of Person Examining Contents: 4 0625 15 Chain of Custody Present? Yes No □ N/A Chain of Custody Filled Out? □No □N/A Chain of Custody Relinquished? □No □N/A Sampler Name and/or Signature on COC? □No □N/A Samples Arrived within Hold Time? Yes No □N/A Short Hold Time Analysis (<72 hr)? □Yes **No** □N/A Rush Turn Around Time Requested? Tyes **No** □N/A 7. Sufficient Volume? Yes □No □N/A 8. Correct Containers Used? Yes □No □N/A 9. -Pace Containers Used? Ves No □N/A Containers Intact? Yes No □N/A Filtered Volume Received for Dissolved Tests? Yes No ØN/A 11. Note if sediment is visible in the dissolved container. Sample Labels Match COC? Yes □No □N/A 12. -Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been Yes □No DN/A 13. ☐HNO₃ ☐H₂SO₄ NaOH HCI All containers needing preservation are found to be in Sample # compliance with EPA recommendation? Yes □No ☑N/A (HNO₃, H₂SO₄, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) Exceptions: VOA, Coliform, TOC, Oil and Grease, Initial when Lot # of added Yes □ No DRO/8015 (water) DOC completed: preservative: Headspace in VOA Vials (>6mm)? DNO Yes □N/A 14. Trip Blank Present? Yes No □N/A 15. Trip Blank Custody Seals Present? Yes 12No □N/A Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Field Data Required? Yes No Person Contacted: Date/Time: Comments/Resolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

STANDARD OPERATING PROCEDURE

SOP Number: 2.4

Date: July 28, 2009

Push-Probe Exploration Procedures Re

Revision Number: 0.02

Page: 1 of 2

1. PURPOSE AND SCOPE

This Standard Operating Procedure (SOP) describes the methods for observing and sampling from push-probes (i.e., GeoProbe™). Subsurface soil cores may be obtained using this system for purposes of determining subsurface soil conditions and for obtaining soil samples for physical and/or chemical evaluation. Grab groundwater samples may be collected using temporary well screens. Soil vapor samples may be obtained using temporary well points. Shallow (less than 50 feet), small-diameter (2-inch max) pre-packed wells may also be installed using push-probe equipment. This procedure is applicable during all Apex Companies, LLC (Apex) push-probe activities.

2. EQUIPMENT AND MATERIALS

The following materials are necessary for this procedure:

- Traffic cones, measuring tape, spatula, and buckets/drums
- Sampling equipment (water level probe, pumps, tubing) and laboratory-supplied sample containers
- · Field documentation materials
- Decontamination materials
- Personal protective equipment (as required by project Health and Safety Plan)

3. METHODOLOGY

Coring Procedure (Conducted by Drilling Subcontractor):

The sampling procedure includes driving a 2-inch outside-diameter, 5-foot-long, push-probe soil sampler to the desired depth using a combination of hydraulic pressure and mechanical hammer blows. When the sampling depth is reached, the pin attaching the sampler's tip is released (if a tip is used), which allows the tip to slide inside the sampler (Macro-Core Sampler with removable plastic liner). The sampler is driven the length of the sampler to collect a soil core, which is then withdrawn from the exploration. When the sampler is retrieved from the borehole the drive head/cutting shoe is detached and the liner is removed. Soil cores are collected continuously to the full depth of the exploration unless otherwise specified in a project-specific sampling and analysis plan (SAP). Verify that the subcontractor decontaminates the sampling device (per SOP 1.2) prior to its initial use and following collection of each soil sample.

Logging and Soil Sample Collection:

Remove the soil core from the sampler for field screening, description, and placement into sample jars. Soil samples will be collected for field screening and possible chemical analysis on two foot intervals unless otherwise specified in a project-specific SAP. The sampling interval will be determined in the field based on recovery, soil variability, and evidence of contamination. Complete field screening as specified in SOP-2.1. Soil samples should be collected using different procedures for volatile on non-volatile analyses, as follows.

- Volatile Analyses. Sampling for volatile organics analysis (VOA) is different than other routine physical or chemical testing because of the potential loss of volatiles during sampling. To limit volatile loss, the soil sample must be obtained as quickly and as directly as possible. If a VOA sample is to collected as part of a multiple analyte sample, the VOA sample portion will be obtained first. The VOA sample should be obtained from a discrete portion of the entire collected sample and should not be composited or homogenized. Sample bottles should be filled to capacity, with no headspace. Specific procedures for collecting VOA samples using the EPA Method 5035 are discussed in SOP 2.7.
- Other Analyses. Soil samples for non-volatile analyses will be thoroughly homogenized in a stainless steel bowl prior to bottling. Sample homogenizing is accomplished by manually mixing the entire soil

STANDARD OPERATING PROCEDURE

SOP Number: 2.4

Date: July 28, 2009

Push-Probe Exploration Procedures

Revision Number: 0.02

Page: 2 of 2

sample in the stainless steel bowl with a clean sampling tool until a uniform mixture is achieved. The sample jar should be filled completely.

Any extra soil generated during probing activities will be placed in Department of Transportation (DOT) approved drums.

Grab Groundwater Sample Collection:

Collect grab groundwater samples using a sampling attachment with a 4 to 5-foot-long temporary screen (specify to drillers whether to use decontaminated stainless steel or disposable PVC. Also, specify whether a filter pack is necessary based on field observations). Obtain samples using a peristaltic pump unless otherwise specified in the SAP with new tubing for each boring. Record field parameters (e.g., temperature, conductivity, and pH) prior to sampling.

Backfilling the Excavation (Conducted by Drilling Subcontractor):

After sampling activities are completed, abandon each exploration in accordance with Oregon Water Resources Department (OWRD) regulations and procedures. The abandonment procedure typically consists of filling the exploration with granular bentonite and hydrating the bentonite with water. Match the surface completion to the surrounding materials.