TECHNICAL MEMORANDUM

TO: Mohsen Kourehdar, P.E., Washington State Department of Ecology

FROM: Lawrence D. Beard, P.E., L.G., and Christine Kimmel, L.G.

DATE: July 11, 2011

RE: NORTH POINT/PHASE III CAPPING PROJECT SUMMARY OF COMPLIANCE MONITORING CASCADE POLE SITE, OLYMPIA, WASHINGTON

At the request of Mr. Don Bache of the Port of Olympia, we are providing the Washington State Department of Ecology (Ecology) with the results of the soil compliance monitoring conducted as part of the remedial excavation activities for the North Point/Phase III Capping Area (subject property) of the former Cascade Pole Company (CPC) site. This compliance monitoring memorandum was written to document completion of the confirmation soil sampling activities specified in Amendment No. 2 to Agreed Order No. DE 00TCPSR – 753 between Ecology and the Port of Olympia.

BACKGROUND

The CPC site is a former wood treatment facility located on Port of Olympia property in Olympia, Washington. The subject property is located within the northwest corner of the CPC site, as shown on Figure 1. Chemicals used in the former wood treatment operations include creosote and pentachlorophenol (PCP). The subject property has historically been used for log storage during CPC operation and is not located in the vicinity of primary wood treating operations.

Two investigations have been conducted at the subject property to evaluate if historical wood treatment operations have impacted the site (Landau Associates 2005a,b), and an investigation was also conducted on the adjacent property to the west (Landau Associates 2009a). The locations of these previous investigation locations are shown on Figure 1.

The results of the November 2004 investigation indicated that carcinogenic polycyclic aromatic hydrocarbons (cPAHs) were present at concentrations above the Model Toxics Control Act (MTCA) Method B cleanup level for unrestricted site use [0.137 milligrams per kilogram (mg/kg)] within the upper 1 ft of soil along the southern portion of the subject property at two sampling locations (NP-1 and NP-2). In addition, the surface soil sample results indicated the Toxicity Equivalency Quotient (TEQ) for dioxins/furans at NP-1 were also greater than the MTCA Method B cleanup level for unrestricted use. Soil samples collected from lower depth intervals (2 to 5 ft below grade) indicate concentrations below the cleanup levels.

Based on the results of the initial investigation, a supplemental surface soil investigation was conducted in September 2005. A total of nine surface soil samples were collected from the upper 1-ft interval and analyzed for cPAHs to better delineate the extent of shallow soil contamination. The results of the supplemental investigation indicated the presence of cPAHs above the cleanup level across the southern half of the parcel and in an isolated area in the northwest portion of the parcel.

PLANNED INTERIM ACTION

Based on the extent of contamination delineated by the site investigation activities described above, the area shown on Figure 2 was identified for excavation to remove contaminated soil to the MTCA Method B cleanup levels. The excavated soil was to be placed and contained at another location on the site, as described in the engineering design report (GeoEngineers 2006). The planned excavation was to extend to a depth of 1.5 ft below ground surface (BGS), although it was recognized that the excavation might extend deeper, depending on the results of the compliance monitoring

REMEDIAL EXCAVATION AND COMPLIANCE MONITORING

Site preparation activities included removal of debris piles and removal of vegetation. Consistent with the interim action plan, the area shown on Figure 2 was excavated to remove the upper 1.5 ft below original ground surface as impacted soil in the southern portion of the subject property and in an isolated area along the northwest portion. Debris fill material (i.e., timber, concrete rubble, and other construction debris) was encountered during the excavation of areas CMP-8 and CMP-11. The excavated soil was placed and contained in an area inside the slurry wall to the southeast of the excavation area, as described in the engineering design report (GeoEngineers 2006).

Upon completion of the initial excavation [approximately 2,400 cubic yards (yd³) of soil], compliance monitoring samples were collected by P.I. Resources, LLC, in accordance with procedures described in the compliance monitoring plan (CMP: Landau Associates 2009b). Soil samples were collected from 11 locations (CM-1 through CM-11) on August 5, 2010, as shown on Figure 2. Soil samples were collected from two intervals at each location to represent the upper 0 to 1 ft and the 1 to 2 ft below the base of the initial excavation using procedures described in the CMP. In accordance with the CMP, the upper sampling interval for each location was selected for analytical testing, while the lower sampling intervals were placed on hold for possible follow up analyses. Compliance soil samples were analyzed for cPAHs using U.S. Environmental Protection Agency (EPA) Method 8270. Additionally, the soil sample collected from compliance monitoring location CM-11 was tested for dioxins/furans using EPA Method 8290. Analytical results for cPAHs were evaluated by calculating the TEQ for individual cPAHs and summing the values for comparison to the benzo(a)pyrene Method B cleanup level for

unrestricted site use (0.137 mg/kg). Similarly, the TEQ for dioxins/furans were calculated based on conversion and summation of other congeners to their equivalent 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) concentration, and the TEQ values were compared against the MTCA Method B cleanup level for unrestricted site use [11 nanograms per kilogram (ng/kg)].

Analytical results from the compliance monitoring samples are summarized in Table 1 and the analytical data provided by the Port contractor are provided in Attachment 1. A review of the data was conducted by Landau Associates through a focused data validation process, as described in the CMP. All data was found to be acceptable for monitoring purposes, with the qualifications specified in Table 1.

The results of the compliance monitoring samples from the upper sampling interval indicate concentrations were below the cleanup level with the following exceptions:

- Results from CM-8 at 0 to 1 ft reported a cPAHs TEQ concentration (0.8847 mg/kg) above the Method B cleanup level (0.137 mg/kg).
- Results from CM-11 at 0 to 1 ft exhibited TEQ concentrations for both cPAHs (0.238 ng/kg and dioxins/furans (926 ng/kg) above their respective Method B cleanup levels.

Based on the surface soil sample results, the deeper sampling interval representing 1 to 2 ft below the base of the excavation was analyzed for cPAHs and dioxins/furans at CM-8 and for cPAHs at CM-11. In addition, the deeper sampling interval at location CM-9 was selected for additional analyses to further characterize the low level TEQ concentrations for cPAHs (0.116 mg/kg). The results of the follow up analyses indicated exceedance of the dioxins/furans cleanup level at CM-8 (447 ng/kg) and exceedance of the cPAHs cleanup level at CM-11 (0.277 mg/kg) (dioxin was not tested in this sample from CM-11).

ADDITIONAL EXCAVATION ACTIVITIES

Due to elevated cPAHs and/or dioxins/furans at the CMP-8 and CMP-11 sampling locations, the Port, in consultation with Ecology, conducted additional excavation in these areas. The CMP-11 area was excavated first, and compliance monitoring samples were collected from the CM-11 area as the excavation was extended vertically to about 3 ft below the initial excavation at this location. The compliance sample results for the sample collected from 3 to 4 ft indicated a TEQ concentration of dioxins/furans (75 ng/kg) remained above the cleanup level in the excavation. Because the excavation remained within the debris fill material discussed above, it was decided that the cleanup level exceedances were likely associated with the debris fill material.

The Port, in consultation with Ecology, decided to extend the excavations in the areas associated with CMP-8 and CMP-11 vertically and laterally to remove all the debris fill material. As a result, the excavations were extended vertically to the top of the hydraulic fill soil, which was present at approximately 6 ft below initial excavation grade, prior to collection of the final compliance monitoring samples in these areas. The excavations were also expanded laterally in both areas to the limits of the

debris fill, which extended the excavations well beyond the originally planned excavation boundaries. As shown on Figure 2 and on the attached as-built drawing (Attachment 2) provided by the contractor (P.I. Resources, LLC), the final excavation limits for area CM-11 encompassed much of the area associated with CMP-9 and, as a result, an additional compliance monitoring sample was also collected at the CMP-9 location.

The final confirmation soil samples collected at the base of the additional excavation areas indicated TEQs for both cPAHs and dioxins/furans at CM-8, CM-9, and CM-11 were below their respective cleanup levels. Approximately 1,000 yd³ of additional soil were excavated from these areas, for a total of approximately 3,400 yd³ for the entire excavation.

Additionally, two soil samples [CM-2(1-2) and CM-3(1-2)] collected from locations outside the limits of the expanded excavations were tested for dioxins/furans to confirm that the elevated dioxins/furans concentrations were associated with the debris fill and not the hydraulic fill. The dioxins/furans concentrations in these two samples were well below the dioxins/furans cleanup level.

Upon receipt of the final confirmation soil sampling results, a nonwoven geotextile fabric layer was placed in the areas of over-excavation prior to the placement of imported clean backfill material, which occurred between September 9 and 15, 2010. Following backfilling, approximately 7.5 ft of clean fill soil covered the over-excavated areas and a minimum of 1.5 ft of clean fill soil covered the remainder of the site.

COMPLIANCE MONITORING EVALUATION

Based on the results of compliance monitoring following additional excavation, cPAHs and dioxins/furans cleanup levels appear to have been achieved in the North Point/Phase III excavation area and the Port has met its obligations under Amendment No. 2 to Agreed Order No. DE 00TCPSR – 753. Historically, cPAHs analytical data have been utilized as an indicator parameter for impacts from the CPC site, including dioxins/furans contamination. For the Phase III excavation area, a total of eight samples were submitted for chemical testing for both cPAHs and dioxins/furans (seven compliance monitoring samples and one investigation sample).

The analytical results indicate a strong correlation between the cPAHs and dioxins/furans for the six samples collected from soil fill. For instance, the investigation sample NP-1 (0 to 1 ft) exhibited a cPAHs TEQ concentration of 0.491 mg/kg and a dioxins/furans TEQ of 616.3 ng/kg, and sample CM-11 (0 to 1 ft) exhibited a cPAHs TEQ concentration of 0.238 mg/kg and a dioxins/furans TEQ concentration of 926 ng/kg. A strong correlation between cPAHs and dioxins/furans results also occurred with low level concentrations in four of the eight samples; analytical results for sample CM-9 (1 to 2 ft) exhibited a cPAHs TEQ concentration of methods.

7.4 ng/kg, and a similar correlation was observed in the three final bottom samples at locations CM-8, CM-9, and CM-11.

A poor correlation between cPAHs and dioxins/furans concentrations was observed in the two samples, CM-8 (1-2) and CM-11 (3-4), that were collected from the debris fill material. This poor correlation appears to result from the heterogeneity inherent in the debris material rather than a lack of correlation between cPAHs and dioxins/furans concentrations for typical Site soil, as is illustrated by the six soil samples discussed above. Based on these considerations, and recognizing the inherent heterogeneity associated with the debris fill material, it is our opinion that cPAHs and dioxins/furans concentrations correlate well in Site soil and that cPAHs should continue to be used as an indicator constituent for dioxins/furans.

* * * * * * * *

This summary technical memorandum has been prepared for the exclusive use of the Port of Olympia for specific application to the North Point/Phase III Capping Area Cleanup Action. No other party is entitled to rely on the information and recommendations included in this document without the express written consent of Landau Associates. Further, the reuse of information and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Landau Associates, shall be at the user's sole risk. Landau Associates warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

References

GeoEngineers. 2006. Preliminary Draft Supplemental Engineering Design Report, North Point/Phase III Capping Project, Cascade Pole Site, Olympia, Washington. Prepared for Port of Olympia. Steven C. Woodward, L.G., Associate, and Bo McFadden, LG, LEG, Associate, GeoEngineers, Inc., Seattle, Washington. January 5.

Landau Associates. 2009a. Technical Memorandum to Mohsen Kourehdar, Washington State Department of Ecology, re: *Supplemental Soil Investigation Report, Holbrook/KGY Area, Port of Olympia, Olympia, Washington.* Lawrence Beard and Christine Kimmel, Landau Associates. July 22.

Landau Associates 2009b. Compliance Monitoring Plan, Confirmation Soil Sampling, North Point/ Phase III Capping Area Investigation, Cascade Pole Company Site, Olympia, Washington. May 5.

Landau Associates 2005a. *Report, North Point/Phase IV Capping Area Investigation,* Cascade Pole Company Site, Olympia, Washington. February 3.

Landau Associates 2005b. Technical Memorandum, Supplemental Soil Investigation Report, North Point/Phase IV Capping Area, Cascade Pole Company Site, Olympia, Washington. November 16.

Cascade Pole | V:\021\039\030.031\Figure 1.dwg (A) "Figure 1" 7/6/2011

TABLE 1 SOIL ANALYTICAL RESULTS CASCADE POLE PHASE III CONFIRMATION SAMPLING

	Cleanup Level	CM-1 (0-1) 08/05/10	CM-2 (0-1) 08/05/10	CM-2 (1-2) 08/05/10	CM-3 (0-1) 08/05/10	CM-3 (1-2) 08/05/10	CM-4 (0-1) 08/05/10	CM-5 (0-1) 08/05/10
	Lovoi	00/00/10	00/00/10	00/00/10	00,00,10	00/00/10	00/00/10	00/00/10
PAHs (mg/kg)								
Method 8270		0.00.11	0.00.11	N 1 A	0.00.11	L	0.00.11	0.00.11
Acenaphthene		0.02 U	0.02 U	NA	0.02 U	NA	0.02 U	0.02 U
Acenaphthylene		0.02 U	0.02 U	NA	0.02 U	NA	0.02 U	0.02 U
Anthracene		0.02 U	0.02 U	NA	0.02 U	NA	0.02 U	0.02 U
Benzo(a)anthracene*		0.02 U	0.02 U	NA	0.03	NA	0.06	0.02 U
Benzo(a)pyrene*		0.02 U	0.02 U	NA	0.02 U	NA	0.06	0.02 U
Benzo(b)fluoranthene*		0.02 U	0.02 U	NA	0.02 U	NA	0.04	0.02 U
Benzo(ghi)perylene		0.02 U	0.02 U	NA	0.02 U	NA	0.04	0.02 U
Benzo(k)fluoranthene*		0.02 U	0.02 U	NA	0.02 U	NA	0.06	0.02 U
Chrysene*		0.02 U	0.02 U	NA	0.02	NA	0.09	0.02 U
Dibenzo(a,h)anthracene*		0.02 U	0.02 U	NA	0.02 U	NA	0.02 U	0.02 U
Fluorene		0.02 U	0.02 U	NA	0.02 U	NA	0.02 U	0.02 U
Fluoranthene		0.03	0.02 U	NA	0.02	NA	0.12	0.02 U
Indeno(1,2,3-cd)pyrene*		0.02 U	0.02 U	NA	0.02 U	NA	0.02 U	0.02 U
Naphthalene		0.02 U	0.02 U	NA	0.02 U	NA	0.03	0.02 U
1-Methylnaphthalene		0.02 U	0.02 U	NA	0.02 U	NA	0.04	0.02 U
2-Methylnaphthalene		0.02 U	0.02 U	NA	0.02 U	NA	0.05	0.02 U
Phenanthrene		0.02 U	0.02 U	NA	0.02 U	NA	0.13	0.02 U
Pyrene		0.06	0.02 U	NA	0.05	NA	0.17	0.02 U
cPAH TEQ (a)	0.137	0	0	NA	0.0032	NA	0.0769	0
cPAH TEQ (a) (1/2 RL for ND)	0.137	0.0151	0.0151	NA	0.0172	NA	0.0789	0.0151
DIOXIN/FURANS (ng/kg)								
Method SW8290								
2,3,7,8-TCDF		NA	NA	0.103 J	NA	0.956	NA	NA
2,3,7,8-TCDD		NA	NA	0.170 J	NA	0.269 J	NA	NA
1,2,3,7,8-PeCDF		NA	NA	0.324 J	NA	0.786 J	NA	NA
2,3,4,7,8-PeCDF		NA	NA	0.445 J	NA	0.765 J	NA	NA
1,2,3,7,8-PeCDD		NA	NA	0.326 J	NA	0.784 J	NA	NA
1,2,3,4,7,8-HxCDF		NA	NA	1.11 J	NA	1.78 J	NA	NA
1,2,3,6,7,8-HxCDF		NA	NA	0.431 J	NA	1.05 J	NA	NA
2,3,4,6,7,8-HxCDF		NA	NA	0.532 J	NA	1.40 J	NA	NA
1,2,3,7,8,9-HxCDF		NA	NA	0.493 J	NA	0.731 J	NA	NA
1,2,3,4,7,8-HxCDD		NA	NA	0.263 J	NA	0.691 J	NA	NA
1,2,3,6,7,8-HxCDD		NA	NA	1.92 J	NA	3.83 J	NA	NA
1,2,3,7,8,9-HxCDD		NA	NA	0.748 J	NA	1.48 J	NA	NA
1,2,3,4,6,7,8-HpCDF		NA	NA	4.54 J	NA	17.1	NA	NA
1,2,3,4,7,8,9-HpCDF		NA	NA	0.324 J	NA	1.06 J	NA	NA
1,2,3,4,6,7,8-HpCDD		NA	NA	38.9	NA	95.2	NA	NA
OCDF		NA	NA	2.66 J	NA	25.2	NA	NA
OCDD		NA	NA	489	NA	1060	NA	NA
Total TCDF		NA	NA	0.469	NA	16.4	NA	NA
Total TCDD		NA	NA	3.80	NA	11.1	NA	NA
Total PeCDF		NA	NA	4.69	NA	17.2	NA	NA
Total PeCDD		NA	NA	1.78	NA	9.76	NA	NA
Total HxCDF		NA	NA	17.4	NA	38.2	NA	NA
Total HxCDD		NA	NA	11.5	NA	30.6	NA	NA
Total HpCDF		NA	NA	14.3	NA	53.3	NA	NA
Total HpCDD		NA	NA	85.7	NA	218	NA	NA
D/F TEQ (a)	11	NA	NA	1.78	NA	3.96	NA	NA
D/FIEQ (a)	11	NA	NA	1.78	NA	3.96	NA	NA

TABLE 1 SOIL ANALYTICAL RESULTS CASCADE POLE PHASE III CONFIRMATION SAMPLING

	Cleanup Level	CM-6 (0-1) 08/05/10	CM-7 (0-1) 08/05/10	CM-8 (0-1) 08/05/10	CM-8 (1-2) 08/05/10	CM-8 (F) 9/9/2010	CM-9 (0-1) 08/05/10	CM-9 (1-2) 08/05/10
	Lovoi	00,00,10	00,00,10	00,00,10	00/00/10	0/0/2010	00/00/10	00,00,10
PAHs (mg/kg) Method 8270								
Acenaphthene		0.02 U	0.02 U	0.07	0.05	0.02 U	0.02 U	0.03
Acenaphthylene		0.02 U	0.02 U	0.07	0.02 U	0.02 U	0.02 0	0.03 0.02 U
Anthracene		0.02 U	0.02 0 0.07	0.55	0.02 U	0.02 U	0.02	0.02 U
Benzo(a)anthracene*		0.02 0	0.07	0.33	0.02 U	0.02 U	0.03	0.02 U
Benzo(a)pyrene*		0.03	0.07	0.43	0.02 0 0.05	0.02 U	0.18	0.02 U 0.02 U
Benzo(b)fluoranthene*		0.03 0.02 U	0.05	1.6	0.05	0.02 U	0.03	0.02 U
Benzo(ghi)perylene		0.02 U	0.13	0.82	0.02 U	0.02 U	0.23	0.02 U
Benzo(k)fluoranthene*		0.02 0	0.10	0.43	0.02 0	0.02 U	0.08	0.02 U
Chrysene*		0.02	0.15	0.45	0.02 U	0.02 U	0.12	0.02 U
Dibenzo(a,h)anthracene*		0.03 U	0.02 U	0.17	0.02 U	0.02 U	0.02 U	0.02 U
Fluorene		0.02 U	0.02 U	0.17	0.02 U	0.02 U	0.02 U	0.02 U
Fluoranthene		0.02 0	0.02 0	1.2	0.02 0	0.02 U	0.02 0	0.02 U
Indeno(1,2,3-cd)pyrene*		0.02 U	0.09	0.82	0.02 U	0.02 U	0.10	0.02 U
Naphthalene		0.02 U	0.03	0.02	0.02 U	0.02 U	0.02 U	0.02 U
1-Methylnaphthalene		0.02 U	0.03 0.02 U	0.03 0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
2-Methylnaphthalene		0.02 U	0.02 U	0.02 U 0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Phenanthrene		0.02 U	0.02 0	0.02 0 0.43	0.02 U	0.02 U	0.02 0	0.02 U
Pyrene		0.02 0	0.00	1.1	0.02 0 0.15	0.02 U	0.09	0.02 0 0.04
cPAH TEQ (a)	0.137	0.0353	0.0725	0.8847	0.15	0.02 U 0 U	0.115	0.04 0 U
cPAH TEQ (a) cPAH TEQ (a) (1/2 RL for ND)	0.137	0.0383	0.0735	0.8847	0.0731	0.0151 U	0.115	0.0151 U
CFAHTEQ(a)(1/2 RE101 ND)	0.137	0.0383	0.0735	0.0047	0.0731	0.0151 0	0.116	0.0151 0
DIOXIN/FURANS (ng/kg)								
Method SW8290								
2,3,7,8-TCDF		NA	NA	NA	21 B	1.2 U	NA	1.6 B
2,3,7,8-TCDD		NA	NA	NA	3.1	1.2 U	NA	0.23 J
1,2,3,7,8-PeCDF		NA	NA	NA	76	6.1 U	NA	1.7 J
2,3,4,7,8-PeCDF		NA	NA	NA	80	6.1 U	NA	1.8 J
1,2,3,7,8-PeCDD		NA	NA	NA	28	6.1 U	NA	1.1 J
1,2,3,4,7,8-HxCDF		NA	NA	NA	240	6.1 U	NA	3.1 J
1,2,3,6,7,8-HxCDF		NA	NA	NA	130 B	6.1 U	NA	2.4 JB
2,3,4,6,7,8-HxCDF		NA	NA	NA	110	6.1 U	NA	0.69 J
1,2,3,7,8,9-HxCDF		NA	NA	NA	24	6.1 U	NA	5.5 U
1,2,3,4,7,8-HxCDD		NA	NA	NA	78	6.1 U	NA	1.9 J
1,2,3,6,7,8-HxCDD		NA	NA	NA	840	6.1 U	NA	9.3
1,2,3,7,8,9-HxCDD		NA	NA	NA	130 B	6.1 U	NA	3.2 JB
1,2,3,4,6,7,8-HpCDF		NA	NA	NA	2500 B	1.5 JB	NA	23 B
1,2,3,4,7,8,9-HpCDF		NA	NA	NA	110 B	6.1 U	NA	1.4 JB
1,2,3,4,6,7,8-HpCDD		NA	NA	NA	20,000 B	1.1 JB	NA	240 B
OCDF		NA	NA	NA	2100 B	0.55 J	NA	32 B
OCDD		NA	NA	NA	200,000 J	6.3 JB	NA	2,100 B
Total TCDF		NA	NA	NA	140	1.2 U	NA	18
Total TCDD		NA	NA	NA	72	0.21	NA	9.4
Total PeCDF		NA	NA	NA	1300	6.1 U	NA	25
Total PeCDD		NA	NA	NA	250	6.1 U	NA	14
Total HxCDF		NA	NA	NA	7600	0.76	NA	63
Total HxCDD		NA	NA	NA	4,300	0.73	NA	58
Total HpCDF		NA	NA	NA	8000	2.5	NA	70
Total HpCDD		NA	NA	NA	45,000	2.4	NA	520
D/F TEQ (a)	11	NA	NA	NA	447	0.03	NA	7.4

TABLE 1 SOIL ANALYTICAL RESULTS CASCADE POLE PHASE III CONFIRMATION SAMPLING

	Cleanup Level	CM-9 (F) 9/9/2010	CM-10 (0-1) 08/05/10	CM-11 (0-1) 08/05/10	CM-11 (1-2) 08/05/10	CM-11 (2-3) 08/13/10	CM-11 (3-4)(b) 08/13/10	CM-11 (F) 9/9/2010
PAHs (mg/kg)								
Method 8270								
Acenaphthene		0.02 U	0.11	0.02	0.02 U	0.02 U	0.19 J	0.02 U
Acenaphthylene		0.02 U	0.02 U	0.04	0.07	0.02 U	0.02 UJ	0.02 U
Anthracene		0.02 U	0.02 U	0.20	0.23	0.02 U	0.02 UJ	0.02 U
Benzo(a)anthracene*		0.02 U	0.11	0.22	0.28	0.02 U	0.02 UJ	0.02 U
Benzo(a)pyrene*		0.02 U	0.02 U	0.08	0.10	0.02 U	0.02 UJ	0.02 U
Benzo(b)fluoranthene*		0.02 U	0.11	0.71	0.74	0.02 U	0.02 UJ	0.02 U
Benzo(ghi)perylene		0.02 U	0.02 U	0.23	0.27	0.02 U	0.02 UJ	0.02 U
Benzo(k)fluoranthene*		0.02 U	0.08	0.32	0.36	0.02 U	0.02 UJ	0.02 U
Chrysene*		0.02 U	0.21	0.70	0.90	0.02 U	0.02 UJ	0.02 U
Dibenzo(a,h)anthracene*		0.02 U	0.02 U	0.05	0.05	0.02 U	0.02 UJ	0.02 U
Fluorene		0.02 U	0.02 0	0.02 U	0.02 U	0.02 U	0.02 UJ	0.02 U
Fluoranthene		0.02 U	0.02 U	0.97	1.2	0.02 U	0.05 J	0.02 U
Indeno(1,2,3-cd)pyrene*		0.02 U	0.02 U	0.21	0.25	0.02 U	0.02 UJ	0.0 U
Naphthalene		0.02 U	0.02 U	0.09	0.03	0.02 U	0.02 UJ	0.02 U
1-Methylnaphthalene		0.02 U	0.02 U	0.03 U	0.02 U	0.02 U	0.02 UJ	0.02 U
2-Methylnaphthalene		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 UJ	0.02 U
Phenanthrene		0.02 U	0.02 0	0.02 0	0.02 0	0.02 U	0.02 UJ	0.02 U
		0.02 U	0.10	0.93	1.2	0.02 U	0.02 03 0.13 J	0.02 U
Pyrene	0.137	0.02 U 0 U	0.0311	0.238	0.277	0.02 U 0 U	0.13 J 0 UJ	0.02 U 0 U
cPAH TEQ (a)	0.137							
cPAH TEQ (a) (1/2 RL for ND)	0.137	0.0151 U	0.0431	0.238	0.277	0.0151 U	0.0151 UJ	0.0151 U
DIOXIN/FURANS (ng/kg)								
Method SW8290								
2,3,7,8-TCDF		0.55 J	NA	28	NA	NA	7.3	1.2 U
2,3,7,8-TCDD		1.2 U	NA	3.9	NA	NA	1.1 J	1.2 U
1,2,3,7,8-PeCDF		0.18 J	NA	100	NA	NA	5.1 J	6.0 U
2,3,4,7,8-PeCDF		6.1 U	NA	110	NA	NA	6.4	6.0 U
1,2,3,7,8-PeCDD		6.1 U	NA	92	NA	NA	4.8 J	6.0 U
1,2,3,4,7,8-HxCDF		0.38 JB	NA	400	NA	NA	29	0.70 J
1,2,3,6,7,8-HxCDF		0.34 JB	NA	180	NA	NA	8.3	0.29 J
2,3,4,6,7,8-HxCDF		6.1 U	NA	140	NA	NA	6.5	0.31 J
1,2,3,7,8,9-HxCDF		6.1 U	NA	31	NA	NA	6.0 U	6.0 U
1,2,3,4,7,8-HxCDD		6.1 U	NA	200	NA	NA	14	6.0 U
1,2,3,6,7,8-HxCDD		0.46 J	NA	1,500	NA	NA	81	1.2 J
1,2,3,7,8,9-HxCDD		0.40 J 0.18 JB	NA	490	NA	NA	29	0.26 JB
1,2,3,4,6,7,8-HpCDF		9.2 B	NA	3,700	NA	NA	240	5.8 JB
1,2,3,4,0,7,8,9-HpCDF		9.2 В 0.23 JB	NA	3,700 190	NA	NA	10	0.46 JB
		0.23 JB 15 B	NA	37,000 B	NA	NA	3,700 J	48 B
1,2,3,4,6,7,8-HpCDD		9.6 J					470	46 В 7.1 J
OCDF			NA	4,300	NA	NA		
OCDD		92 B	NA	290,000 JB	NA	NA	32,000 J	450 B
Total TCDF		2.0	NA	80	NA	NA	34	1.2 U
Total TCDD		0.91	NA	38	NA	NA	48	0.64
		1.4	NA	930	NA	NA	94	1.6
Total PeCDD		1.2	NA	310	NA	NA	81	1.2
Total HxCDF		6.1	NA	8,300	NA	NA	420	10
Total HxCDD		4.6	NA	6,700	NA	NA	640	12
Total HpCDF		18	NA	13,000	NA	NA	830	18
Total HpCDD		31	NA	82,000	NA	NA	8,200	110
D/F TEQ (a)	11	0.47	NA	926	NA	NA	75	0.96

* - Carcinogenic Analyte.

NA = Not Analylzed.

U = Indicates the compound was undetected at the given reporting limit.

B = Method blank contamination.

J = Estimated result.

Bold indicates detected compound.

Box indicates exceedance of screening level.

(a) TEQ = toxicity equivalency factor as described in WAC 173-340-708 (8).

(b) Sample was extracted for PAHs 2 weeks past the 2-week holding time. Results are considered estimated.

ATTACHMENT 1

Analytical Data

PI Resources Cascade Pole Phase III PROJECT Chent Project #10-002 Olympia, WA

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270

		MTH BLK	LCS	CM-1	CM-2	CM-3	CM-4	CM-5	CM-6	CM-7	CM-8	CM-9	CM-10	CM-11	MS	MSD	RPI
Date extracted	Reporting	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10 0	8/06/10 0	08/06/10	
Date analyzed	Limits	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10						08/06/10 0			
Moisture, %	(mg/kg)			57%	18%	17%	19%	19%	10%	22%	50%	17%	12%	8%			
Acenaphthene	0.02	nd	98%	nd	0.07	nd	0.11	0.02	95%	107%	12%						
Acenaphthylene	0.02	nd	73%	nd	0.07	0.02	nd	0.04		1.2014	190						
Anthracene	0.02	nd	95%	nd	nd	nd	nd	nd	nd	0.07	0.55	0.03	nd	0.20			
Benzo(a)anthracene*	0.02	nd	76%	nd	nd	0.03	0.06	nd	0.03	0.07	0.43	0.18	0.11	0.22			
Benzo(a)pyrene*	0.02	nd	76%	nd	nd	nd	0.06	nd	0.03	0.03	0.53	0.05	nd	0.08			
Benzo(b)fluoranthene*	0.02	nd	84%	nd	nd	nd	0.04	nd	nd	0.15	1.6	0.23	0.11	0.71			
Benzo(ghi)perylene	0.02	nd	68%	nd	nd	nd	0.04	nd	nd	0.07	0.82	0.08	nd	0.23			
Benzo(k)fluoranthene*	0.02	nd	92%	nd	nd	nd	0,06	nd	0.02	0.10	0.43	0.12	0.08	0.32			
Chrysene*	0.02	nd	97%	nd	nd	0.02	0.09	nd	0.03	0.15	0.87	0.20	0.21	0.70			
Dibenzo(a,h)anthracene*	0.02	nd	64%	nd	0.17	nd	nd	0.05									
Fluorene	0.02	nd	96%	nd	0.12	nd	0.05	nd									
Fluoranthene	0.02	nd	91%	0.03	nd	0.02	0.12	nd	0.04	0.16	1.2	0.02	nd	0.97			
Indeno(1,2,3-cd)pyrene*	0.02	nd	93%	nd	nd	nd	nd	nd	nd	0.09	0,82	0.10	nd	0.21			
Naphthalene	0.02	ud	85%	nd	nd	nd	0.03	nd	nd	0.03	0.05	nd	nd	0.09			
1-Methylnaphthalenc	0.02	nd	ns	nd	nd	nd	0.04	nd									
2-Methylnaphthalene	0.02	nd	ns	nd	nd	nd	0.05	nd									
Phenanthrene	0.02	nd	96%	nd	nd	nd	0.13	nd	nd	0.05	0.43	0.09	0.16	0.31			
Pyrene	0.02	nd	88%	0.06	nd	0.05	0.17	nd	0.05	0.20	LI	0.26	0.81	0.93	78%	100%	25%
Total Carcinogens				nd	nd	0.05	0.31	nd	0.11	0.59	4.9	0.88	0.51	2.3			
Surrogate recoveries.																	
2-Fhorobiphenyl		80%	58%	85%	76%	79%	86%	81%	54%	73%	82%	82%	103%	108%	81%	88%	
p-Terphenyl-d14		78%	65%	85%	79%	83%	89%	84%	58%	81%	96%	92%	108%	122%	83%	100%	

Data Qualifiers and Analytical Comments * - Carcinogenic Analyte nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 50% TO 150%

Acceptable RPD limit: 35%

PI Resources CASCADE POLE PHASE III PROJECT Client Project #10-002 Olympia, WA ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

		ATH BLK		CM-1 (0-1) C	M-2 (0-1) C	M-3 (0-1)	CM-4 (0-1) C	M-5 (0-1)	CM-6 (0-1)	CM-7 (0-1)	CM-8 (0-1)	CM-9 (0-1)	CM-10 (0-1)	CM-11 (0-1)
Date extracted	Reporting		08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10
Date analyzed	Limits	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10	08/06/10
Moisture, %	(mg/kg)	_		57%	18%	17%	19%	19%	10%	22%	50%	17%	12%	8%
Acenaphthene	0.02	nd	98%	nd	nd	nd	nd	nd	nd	nđ	0.07	nd	0.11	0.02
Acenaphthylene	0.02	nd	73%	nd	nd	nd	nd	nd	nd	nd	0.07	0.02	nd	0.04
Anthracene	0.02	nd	95%	nd	nd	nd	nd	nd	nd	0.07	0.55	0.03	nd	0.20
Benzo(a)anthracene*	0.02	nd	76%	nd	nd	0.03	0.06	nd	0.03	0.07	0.43	0.18	0.11	0.22
Benzo(a)pyrene*	0.02	nd	76%	nd	nd	nd	0.06	nd	0.03	0.03	0.53	0.05	nd	0.08
Benzo(b)fluoranthene*	0.02	nd	84%	nd	nd	nd	0.04	nd	nd	0.15	1.6	0.23	0.11	0.71
Benzo(ghi)perylene	0.02	nd	68%	nd	nd	nd	0.04	nd	nd	0.07	0.82	0.08	nd	0.23
Benzo(k)fluoranthene*	0.02	nd	92%	nd	nd	nd	0.06	nd	0.02	0.10	0.43	0.12	0.08	0.32
Chrysene*	0.02	nd	97%	nd	nd	0.02	0.09	nd	0.03	0.15	0.87	0.20	0.21	0.70
Dibenzo(a,h)anthracene*	0.02	nd	64%	nd	nd	nd	nd	nd	nd	nď	0.17	nd	nd	0.05
Fluorene	0.02	nd	96%	nd	nd	nd	nd	nd	nd	nd	0.12	nd	0.05	nd
Fluoranthene	0.02	nd	91%	0.03	nd	0.02	0.12	nd	0.04	0.16	1.2	0.02	nd	0.97
Indeno(1,2,3-cd)pyrene*	0.02	nd	93%	nd	nd	nd	nd	nd	nd	0.09	0.82	0.10	nd	0.21
Naphthalene	0.02	nd	85%	nd	nd	nd	0.03	nd	nd	0.03	0.05	nd	nd	0.09
I-Methylnaphthalene	0.02	nd	ns	nd	nd	nd	0.04	nd	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene	0.02	nd	ns	nd	nd	nd	0.05	nd	nd	nd	nd	nd	nd	nd
Phenanthrene	0.02	nd	96%	ınd	nd	nd	0.13	nd	nd	0.05	0.43	0.09	0.16	0.31
Pyrene	0 02	nd	88%	0.06	ind	0.05	0.17	nd	0.05	0.20	1.1	0.26	0.81	0.93
Total Careinogens				nd	ud	0.05	0.31	nd	0.11	0.59	4.9	0.88	0.51	2.3
Surrogate recoveries:														
2-Fluorobiphenyl		80%	58%	85%	76%	79%	86%	81%	54%	73%	82%	82%	103%	108%
p-Terphenyl-d14		78%	65%	85%	79%	83%	89%	84%	58%	81%	96%	92%	108%	122%

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270

Data Qualifiers and Analytical Comments

* - Carcinogenic Analyte

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 50% TO 150%

Acceptable RPD limit: 35%

Information and Summa	iry	Sample Information and Summary	
TEG Project Number:	S100806.1	# of Samples by Type:	
	Dely Grace Agoy	Soils	1
Start (Collection) Date:		Waters	-
End (Analysis) Date:		Soil Vapor	
	PI Resources	# of Days: 24hr	
Project Manager:		On-site (Y/N): n	
Telephone:	206-799-3508	Outlab Analyses (Y/N):	
Fax:			
Client Project Number:	10-002	# of Analyses by Type:	
Client Job Name:	Cascade Pole Phase III	VOC 8021B	
City, State:	Olympia, WA	BTEX 8020	
		TPH-418.1	
		Gasoline 8015	
		Diesel 8015	-
		Oil 8015	
		PAH 8100	
		Pesticides 8081	
		PCB 8082	
		Total Lead 7420	
		Total Cadmium 7130	
		Total Chromium 7190	
		Total Arsenic 7061	
		TCLP Lead 7420	
		TCLP Cadmium 7130	
		TCLP Chromium 7190	
		TCLP Arsenic 7061	

PI Resources Cascade Pole Phase III PROJECT Client Project #10-002 Olympia, WA ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

		MTH BLK	LCS	CM-8 (1-2)	CM-11 (1-2)	MS	MSD	RPD
Date extracted	Reporting	08/10/10	08/10/10	08/10/10	08/10/10	08/10/10	08/10/10	
Date analyzed	Limits	08/10/10	08/10/10	08/10/10	08/10/10	08/10/10	08/10/10	
Moisture, %	(mg/kg)			67%	9%			
Acenaphthene	0.02	nd	122%	0.05	nd	105%	95%	10%
Acenaphthylene	0.02	nd	94%	nd	0.07		1000	
Anthracene	0.02	nd	120%	nd	0.23			
Benzo(a)anthracene*	0.02	nd	83%	nd	0.28			
Benzo(a)pyrene*	0.02	nd	98%	0.05	0.10			
Benzo(b)fluoranthene*	0.02	nd	106%	0.10	0.74			
Benzo(ghi)perylene	0.02	nd	84%	nd	0.27			
Benzo(k)fluoranthene*	0.02	nd	114%	0.10	0.36			
Chrysene*	0.02	nd	125%	nd	0.90			
Dibenzo(a,h)anthracene*	0.02	nd	95%	nd	0.05			
Fluorene	0.02	nd	123%	nd	nd			
Fluoranthene	0.02	nd	109%	0.05	1.2			
Indeno(1,2,3-cd)pyrene*	0.02	nd	117%	nd	0.25			
Naphthalene	0.02	nd	106%	nd	0.03			
I-Methylnaphthalene	0.02	nd	ns	nd	nd			
2-Methylnaphthalene	0.02	nd	ns	nd	nd			
Phenanthrene	0.02	nd	117%	nd	0.25			
Pyrene	0.02	nd	104%	0.15	1.2	101%		
Pollo :				1.1.5				
l'otal Carcinogens				0.25	2.7			
Surrogate recoveries:								
2-Fluorobiphenyl		80%	79%	75%	85%	88%	75%	
o-Terphenyl-d14		83%	82%	85%	91%	95%	82%	

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270

Data Qualifiers and Analytical Comments

* - Carcinogenic Analyte

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 50% TO 150%

Acceptable RPD limit: 35%

ESN NORTHWEST, INC.		ronmen ces Netw										C	CH/	AIN	-01	F-C	CUSTO	DY REC	COR	D
CLIENT: PI Re	sour	ices									DAT	E: 8	3/5/	to			PAGE	2 OF 9	2	-
ADDRESS: 5700	650	Aue	· S.	Suiter	01	Sen	Hlo	.61	A 981	08	DDO			· . (1	- A	Pla	2_OF_ Chase I	P	1
PHONE (206)	700	720	100	<u>-arch</u>	6	200	570	1 7	001	0	PRC	JECI	NAN A	AE: E	<u>asc</u>	avi	10101	hased	<u> </u>	-
the second se										7	LOC	ATIO	N: KC	RI	of	U	hympic	e		_
CLIENT PROJECT	r #: 1	0-00	22	PROJE	ст м.	ANAC	GER	<u>B.C</u>	herni	ck	COL	LECI	OR:	BRY	and	he	panick	DATE OF	18/5/1	0
Sample Number	Depth	Time	Sample Type	Container Type	ANAN	TSES CROCK	al and	VC-SP	SCI AS	10 10 800 9 20 00 00	esticites	051 4051 (CA-5 (CA-5) (CA-5)	alle alle alle alle alle alle alle alle	24 24 5010 5010 5010 5010	WO SUN	att	640 NOT	ES	Total Number of Containers	Note Number
1.CM-1 (1-2)	2'	0917	Soil	402		ÍÍ			X	<u>`</u>				TT.	Í	ſ	Hold	Samples	11	
2.CM-2 (1-Z)		0951							X									1 1 1	11	
3. (M-3 (1-2)	2'	1030		1.1.1.1															III	
4. CM-4 (1-2)	12'	1103						101	X											
5. CM-5 (1-2)	2'	1141							Ň.								. 16		11	
6.CM-6 (1-2)	2'	1214							X	2									1	
2CM-7 (1-2)	2'	1339							X								111222		11	
BCM-8 (1-2)	2	1413							X										11	
9. CM-9 (1-2)	2	1441							X										11	
10. CM-10 (1-2)	2'	1522							X									1	1	
DCM-11 (1-2)	2'	1636	V	V					X						X		V		3	
12.																	1. 1. 1. 1.			
13.																				
14.																				-
15.			1												1.1		11.1			
16.														10,0						1
17.																				-
18.							7													
RELINQUISHED BY (Signa	ature)		TE/TIME	RECEI	EDAY	(Signal	ure)	DA	TE/TIME		SA	MPLE P	RECEIP	PT			LABORATOR	YNOTES:	lla	-
AN	V	8/5/	0 172	o At	ONL	.A	E	85	10 1720	TOTAL	NUMBE	ROFC	ONTAI	NERS			e-mail R	Lesults to: kephoinix c		1
RELINQUISHED BY (Signa	ature)		TE/TIME	RECEIV		(Signat			TE/TIME	CHAIN	OF CUS	TODY	SEALS	YINNA	•		cheanid	k@ phothix c	orpine	27
							2			SEALS	INTACT	7 Y/N/N	A					-r		
	S	AMPLE	DISPOS	AL INSTRUCT	TIONS				······	RECEN	ED GO	OD CO	ND./CC	DLD						
				0 each 🗍 Re		- in the second	Ip .			NOTES							Turn Around	Time: 24 HR 48	HR 5 D	AY

Sample ID: CM-8 (1-2)

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G0I070480 - 002	Work Order #:	L6MAP1AC	Matrix:	SOLID
Date Sampled:	08/19/10	Date Received:	08/20/10	Dilution Factor:	1
Prep Date:	09/16/10	Analysis Date:	09/27/10	Percent Moisture:	54
Prep Batch #:	0259409	Instrument ID:	11D5		
Initial Wgt/Vol :	10 g	Analyst ID:	Alora Kuczynski		

PARAMETER			REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	3.1		2.2	0.46	pg/g
Total TCDD	72		2.2	0.46	pg/g
1,2,3,7,8-PeCDD	28		11	0.68	pg/g
Total PeCDD	250		11	0.68	pg/g
1,2,3,4,7,8-HxCDD	78		11	3.4	pg/g
1,2,3,6,7,8-HxCDD	840		11	2.9	pg/g
1,2,3,7,8,9-HxCDD	130	В	11	2.8	pg/g
Total HxCDD	4300		11	3.0	pg/g
1,2,3,4,6,7,8-HpCDD	20000	DB	110	42	pg/g
Total HpCDD	45000		110	42	pg/g
OCDD	200000	DE	220	48	pg/g
2,3,7,8-TCDF	21	CON B	2,2	1.1	pg/g
Total TCDF	140		2.2	0.95	pg/g
1,2,3,7,8-PeCDF	76		11	1.2	pg/g
2,3,4,7,8-PeCDF	80		11	1.3	pg/g
Fotal PeCDF	1300		11	1.3	pg/g
1,2,3,4,7,8-HxCDF	240		11	2.4	pg/g
1,2,3,6,7,8-HxCDF	130	В	11	2.1	pg/g
2,3,4,6,7,8-HxCDF	110		11	2.3	pg/g
1,2,3,7,8,9-HxCDF	24		11	2.6	pg/g
Total HxCDF	7600		11	2,3	pg/g
1,2,3,4,6,7,8-HpCDF	2500	В	11	2.3	pg/g
1,2,3,4,7,8,9-HpCDF	110	в	u	2.6	pg/g
Total HpCDF	8000	+	11	2.5	pg/g
OCDF	2100	DB	220	4.7	pg/g

Sample ID: CM-8 (1-2)

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G01070480 - 002	Work Order #:	L6MAP1AC	Matrix ;	SOLID
Date Sampled:	08/19/10	Date Received:	08/20/10	Dilution Factor:	1
Prep Date:	09/16/10	Analysis Date:	09/27/10	Percent Moisture:	54
Prep Batch #:	0259409	Instrument ID:	11D5		
Initial Wgt/Vol :	10 g	Analyst ID:	Alora Kuczynski		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	79	40 - 135
13C-1,2,3,7,8-PeCDD	69	40 - 135
13C-1,2,3,6,7,8-HxCDD	86	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	88	40 - 135
13C-OCDD	113	40 - 135
13C-2,3,7,8-TCDF	71	40 - 135
13C-1,2,3,7,8-PeCDF	66	40 - 135
13C-1,2,3,4,7,8-HxCDF	76	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	93	40 - 135

QUALIFIERS

Results and reporting limits have been adjusted for dry weight.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level,

CON Confirmation analysis.

D Result was obtained from the analysis of a dilution.

E Estimated result Result concentration exceeds the calibration range

Sample ID: CM-9 (1-2)

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G0I070480 - 001	Work Order #:	L6MAL1AC	Matrix:	SOLID
Date Sampled:	08/19/10	Date Received:	08/20/10	Dilution Factor:	0.92
Prep Date:	09/16/10	Analysis Date:	09/27/10	Percent Moisture:	17
Prep Batch #:	0259409	Instrument ID:	11D5		
Initial Wgt/Vol :	10.8 g	Analyst ID:	Alora Kuczynski		

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	0.23	JQ	1.1	0.18	pg/g
Total TCDD	9.4		1.1	0.18	pg/g
1,2,3,7,8-PeCDD	1.1	JQ	5.5	0.19	pg/g
Total PeCDD	14		5.5	0.19	pg/g
1,2,3,4,7,8-HxCDD	1.9	J	5.5	0.31	pg/g
1,2,3,6,7,8-HxCDD	9.3		5.5	0.26	pg/g
1,2,3,7,8,9-HxCDD	3.2	JB	5.5	0.25	pg/g
Total HxCDD	58		5.5	0.27	pg/g
1,2,3,4,6,7,8-HpCDD	240	В	5.5	1.4	pg/g
Total HpCDD	520		5.5	1.4	pg/g
OCDD	2100	В	11	0.64	pg/g
2,3,7,8-TCDF	1.6	CON B	1.1	0.23	pg/g
Total TCDF	18		1.1	0.25	pg/g
1,2,3,7,8-PeCDF	1.7	J	5.5	0.35	pg/g
2,3,4,7,8-PeCDF	1.8	J	5.5	0.35	pg/g
Total PeCDF	25		5.5	0.35	pg/g
1,2,3,4,7,8-HxCDF	3.1	J	5.5	0.21	pg/g
1,2,3,6,7,8-HxCDF	2.4	JQB	5.5	0.19	pg/g
2,3,4,6,7,8-HxCDF	0.69	J	5.5	0.20	pg/g
1,2,3,7,8,9-HxCDF	ND		5.5	0.23	pg/g
Total HxCDF	63		5.5	0.20	pg/g
1,2,3,4,6,7,8-HpCDF	23	В	5.5	0.28	pg/g
1,2,3,4,7,8,9-HpCDF	1.4	J B	5.5	0.32	pg/g
Total HpCDF	70		5.5	0.30	pg/g
OCDF	32	В	11	0.36	pg/g
					0.00

Sample ID: CM-9 (1-2)

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G0I070480 - 001	Work Order #:	L6MAL1AC	Matrix:	SOLID	
Date Sampled;	08/19/10	Date Received:	08/20/10	Dilution Factor:	0.92	
Prep Date:	09/16/10	Analysis Date:	09/27/10	Percent Moisture:	17	
Prep Batch #:	0259409	Instrument ID;	11D5			
Initial Wgt/Vol :	10.8 g	Analyst ID:	Alora Kuczynski			
		Collection of the second second second				

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	82	40 - 135
13C-1,2,3,7,8-PeCDD	62	40 - 135
13C-1,2,3,6,7,8-HxCDD	89	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	89	40 - 135
13C-OCDD	80	40 - 135
13C-2,3,7,8-TCDF	74	40 - 135
13C-1,2,3,7,8-PeCDF	65	40 - 135
13C-1,2,3,4,7,8-HxCDF	65	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	90	40 - 135

QUALIFIERS

Results and reporting limits have been adjusted for dry weight.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

CON Confirmation analysis.

J Estimated Result

Q Estimated maximum possible concentration (EMPC).

PI Resources CASCADE POLE PHASE III Client Project #10-002 Olympia, WA ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270

		MTH BLK	LCS	CM-9 (1-2)	MS	MSD	RPD
Date extracted	Reporting	08/18/10	08/18/10	08/18/10	08/18/10	08/18/10	
Date analyzed	Limits	08/18/10	08/18/10	08/18/10	08/18/10	08/18/10	
Moisture, %	(mg/kg)			17%			
Acenaphthene	0.02	nd	90%	0.03	88%	92%	4%
Acenaphthylene	0.02	nd	74%	nd			
Anthracene	0.02	nd	81%	nd			
Benzo(a)anthracene*	0.02	nd	98%	nd			
Benzo(a)pyrene*	0.02	nd	84%	nd			
Benzo(b)fluoranthene*	0,02	nd	105%	nd			
Benzo(ghi)perylene	0.02	nd	73%	nd			
Benzo(k)fluoranthene*	0.02	nd	97%	nd			
Chrysene*	0.02	nd	102%	nd			
Dibenzo(a,h)anthracene*	0.02	nd	86%	nd			
Fluorene	0.02	nd	84%	nd			
Fluoranthene	0.02	nd	88%	nd			
Indeno(1,2,3-cd)pyrene*	0.02	nd	79%	nd			
Naphthalene	0.02	nd	66%	nd			
I-Methylnaphthalene	0.02	nd	ns	nd			
2-Methylnaphthalene	0.02	nd	ns	nd			
Phenanthrene	0.02	nd	86%	nd			
Pyrene	0.02	nd	86%	0.04	84%	88%	5%
Total Carcinogens				nd			
Surrogate recoverles:							
2-Fluorobiphenyl		74%	67%	57%	74%	78%	
p-Terphenyl-d14		65%	81%	52%	73%	77%	

* - Carcinogenic Analyte
nd - not detected at listed reporting limits
na - not analyzed
C - coelution with sample peaks
M - matrix interference
J - estimated value
Results reported on dry-weight basis
Acceptable Recovery limits: 50% TO 150%

Data Qualifiers and Analytical Comments

Acceptable RPD limit: 35%

ns- not in the spiking solution

dr .

4

PI Resources CASCADE POLE PHASE III PROJECT Client Project #10-002 Olympia, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270

		MTH BLK	LCS	CM-11 (2-3)	MS	MSD	RPI
Date extracted	Reporting	08/16/10	08/16/10	08/16/10	08/16/10	08/16/10	
Date analyzed	Limits	08/16/10	08/16/10	08/16/10	08/16/10	08/16/10	
Moisture, %	(mg/kg)		_	13%			
Acenaphthene	0.02	nd	119%	nd	95%	74%	25%
Acenaphthylene	0.02	nd	107%	nd			
Anthracene	0.02	nd	112%	nd			
Benzo(a)anthracene*	0.02	nd	99%	nd			
Benzo(a)pyrene*	0.02	nď	95%	nd			
Benzo(b)fluoranthene*	0.02	nd	92%	nd			
Benzo(ghi)perylene	0.02	nd	97%	nd			
Benzo(k)fluoranthene*	0.02	nd	126%	nd			
Chrysene*	0.02	nd	112%	nd			
Dibenzo(a,h)anthracene*	0.02	nd	103%	nd			
Fluorene	0.02	nd	118%	nd			
Fluoranthene	0.02	nd	113%	nd			
Indeno(1,2,3-cd)pyrene*	0.02	nd	100%	nd			
Naphthalene	0.02	nd	132%	nd			
I-Methylnaphthalene	0.02	nd	ns	nd			
2-Methylnaphthalene	0.02	nd	ns	nd			
Phenanthrene	0.02	nd	130%	nd			
Pyrene	0.02	nd	106%	nd	83%	69%	18%
Total Carcinogens				nd			
Surrogate recoveries:							
2-Fluorobiphenyl		100%	103%	94%	95%	85%	
p-Terphenyl-d14		100%	87%	73%	78%	74%	

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 50% TO 150%

Acceptable RPD limit: 35%

ESN NORTHWEST, INC	Contraction of the local division of the loc	ronmen es Netw											Cł	łA	IN-	OF	C	UST	FOE	DY RE	co	RD
CLIENT: PIR	eso	urc	es								D	ATE:	81	13	10		P	AGE_	(OF	1	
ADDRESS: 570				S, Su:	fe	101,-	Seal	fle	WA	9810	3 P								'e f	hase	THE.	
PHONE 206)	799	-35	08	FA	x. (20	6)5	29-	39	91		1.			Po	at	A	0	lyn	Aia	,		
CLIENT PROJECT				PROJE	CT MA	NAGE	R: <u>B, (</u>	Che	nni	ch	C	OLLE	CTO	R:]	BRO	nar	16	her,	rich	DATE OF	TION 8/1	3/10
Sample Number	Depth	Time	Sample Type	Container Type	PHALTS	SES A	OT / L	ADE ST	A IN S	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1	1/5	1	17	7	1	1	1220	QTES			or Containers Laboratory Note Number
(M-11 (2-3)		1448	Soil	402				T	X			ſ	ĹĬ	T	Ť	X	T	Hald		xin Only	, 3	3
CM-11 (3-4)	3-4'	(51)	Soil	402					X							X		Hol	J Sa	neles	3	
).	-																	1		11		101
ļ.												17 6 1										T
j.																						
j.																				-		
			4															1				
3.														1		11	10	1				1
1																		1				
10.								1							1			1				1
11.				10											1							
12.	1																	1				-
13.																		1				
14.			1.1															1			-	
15.	12-18																	T				
16.																T		1				
17.		0.000																1			-	-
18.																		1				-
RELINGUISHED BY (Signa	iture)	DA	TE/TIME	RECEIV	D BY (S	ionature)	1	DATE	TIME	T		SAMPL	EREC	EIPT	_	-	1	ABORA	TORY N	OTES: /	1	- <u> </u>
400		181	13/10	1634 5	1.	1	8/13	Yiqu	24	TOTA		ABER OF				_	le al f	e-na	cil R	esults	to:	
RELINQUISHED BY (Signa	tures		TE/TIME	RECEIV	ED BY (S	ignature)		DATE	TIME	CHAI	OF O	CUSTOD	Y SE	ALS Y	/N/NA		1	hern	icka	otes: esults phoinix	cop0	not
	~				1000	1.20				SEAL	S INT	ACT? YA	VNA					1.00		1		
	SA	MPIF	DISPOS	L INSTRUCT	TONS					RECE	IVED	GOOD	COND	/COL	D				_			
	and the state of			each D Rei		Pickup				NOTE	S:						·	Turn Aron	und Tim	e: 24 HR		5 DAY

Sample ID: CM-11(0-1)

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G0H090509 - 001	Work Order #:	L5CAR1AC	Matrix:	SOLID
Date Sampled;	08/05/10	Date Received:	08/09/10	Dilution Factor:	0.93
Prep Date:	08/11/10	Analysis Date:	08/13/10	Percent Moisture:	11
Prep Batch #:	0223347	Instrument ID:	11D5	· creent monstare.	
Initial Wgt/Vol :	10.7 g	Analyst ID:	Susan X. Yan		

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	3.9		1.0	0.070	pg/g
Total TCDD	38		1.0	0.070	pg/g
1,2,3,7,8-PeCDD	92		5.2	0.60	pg/g
Total PeCDD	310		5.2	0.60	pg/g
1,2,3,4,7,8-HxCDD	200		5.2	2.9	pg/g
1,2,3,6,7,8-HxCDD	1500		5.2	2.5	pg/g
1,2,3,7,8,9-HxCDD	490		5.2	2.4	pg/g
Total HxCDD	6700		5.2	2.6	pg/g
1,2,3,4,6,7,8-HpCDD	37000	GBD	910	910	pg/g
Fotal HpCDD	82000	D	910	910	pg/g
OCDD	290000	EBD	210	170	pg/g
2,3,7,8-TCDF	28	CON	1.0	0.31	pg/g
Fotal TCDF	80		1.0	0.11	pg/g
,2,3,7,8-PeCDF	100		5,2	0.62	pg/g
2,3,4,7,8-PeCDF	110		5.2	0.65	pg/g
Total PeCDF	930		5.2	0.64	pg/g
,2,3,4,7,8-HxCDF	400		5.2	3.0	pg/g
,2,3,6,7,8-HxCDF	180		5.2	2.7	pg/g
2,3,4,6,7,8-11xCDF	140		5.2	2.9	pg/g
,2,3,7,8,9-HxCDF	31		5.2	3.2	pg/g
fotal HxCDF	8300		5.2	2.9	pg/g
,2,3,4,6,7,8-HpCDF	3700	D	100	17	pg/g
,2,3,4,7,8,9-HpCDF	190	D	100	20	pg/g
fotal HpCDF	13000	D	100	19	pg/g
OCDF	4300	D	210	8.9	pg/g

Sample ID: CM-11(0-1)

Trace Level Organic Compounds

SW846 8290

Lot - Sample #;	G0H090509 - 001	Work Order #:	L5CAR1AC	Matrix:	SOLID
Date Sampled:	08/05/10	Date Received:	08/09/10	Dilution Factor:	0.93
Prep Date:	08/11/10	Analysis Date:	08/13/10	Percent Moisture:	11
Prep Batch #;	0223347	Instrument ID:	11D5		
Initial Wgt/Vol :	10.7 g	Analyst ID:	Susan X. Yan		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	77	40 - 135
13C-1,2,3,7,8-PeCDD	78	40 - 135
13C-1,2,3,6,7,8-HxCDD	83	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	90	40 - 135
13C-OCDD	117	40 - 135
13C-2,3,7,8-TCDF	76	40 - 135
13C-1,2,3,7,8-PeCDF	79	40 - 135
13C-1,2,3,4,7,8-HxCDF	71	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	77	40 - 135

QUALIFIERS Results and reporting limits have been adjusted for dry weight

Method blank contamination. The associated method blank contains the target analyte at a reportable level. В

CON Confirmation analysis.

D Result was obtained from the analysis of a dilution.

E Estimated result. Result concentration exceeds the calibration range.

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

ESN NORTHWEST, INC.		ronmen ces Netw							Cł	HAI	N-0	F-(CUSTODY R	ECORI
CLIENT: PI								DATE	: 8/	5/10	2	-	PAGEOF	2
ADDRESS: 5700	GTU,	Ave	S, Su	te 101	Seattle	WA 9812	28	PRO	JECT N	AME:	Cas	ca	te Pale Phase	
PHONE: (206)7 CLIENT PROJECT	99-	350	08	F	ax (206)5	29-3791		LOC	ATION:	POR	t of	Ć	hympia	
CLIENT PROJECT	#: 14	0-00	22	PROJ	ECT MANAG	ER: B. Cher	<u>nick</u>	COL	LECTO	R: <u>B</u>	Ryan	G	<u>hennisk</u> DAT	E OF BESTION
Sample Number	Depth	Time	Sample Type	Container Ty	PARTIES OF	201-11- 201-11- 201-11- 201-10-10-10-10-10- 201-10-10-10-10-10-10- 201-10-10-10-10-10-10-10-10-10-10-10-10-1	110/10/51 51/0/10/51 11/0/10/51	St Libes	031 49-29-19-19-19-19-19-19-19-19-19-19-19-19-19	Destor Put	Nº SUILO SU	NOTIV	NOTES	Total Number of Containers Laboratory
CM-1 (0-1)	1'	0855	Soil	402	TYY	X						1	- NOTES	/
CM-2 (0-1)	1'	0940		4 02		X								11
CM-3(0-1)	1'	1015				X								11
CM-4 (0-1)	11'	1050												II
CM-5 (0-1)	1'	1127				X								11
CM-6(0-1)	1',	1200				X								
CM-7(0-1)	11	1327							1.1					
<u>CM-8(0-1)</u>	$\downarrow \Gamma$	1358				X				_				1
C/n-9 (0-1)		1431			+++++			-						
ocm-10(U-1)		1501	V	-M-						_				
M - 11(0 - 1)	+L	1611	V	<u> </u>			_							3_
2				· · · ·	++++			-						
3.			-	1		++-+-								
4.	1			1										
5.	-	1		1				-						
<u>6. </u>	1					+						-		
8.	1													
ELINOUISHED BY (Signa	ature)	, DA	TE/TIME	RECE	YER BY (Signate	re) DATE/TIME		SAI	MPLE REC	CEIPT	<u> </u>		LABORATORY NOTES!	
15	1	8/5/	0 17.	20 %	TAKK	5- 810 11	TOTAL		R OF CON		S		e-mail Results	to
ELINQUISHED BY (Signa	alure)	DA	TE/TIME		VED BY (Signalu	DATE/TIME	CHAIN	OF CUS	TODY SE	ALS Y/N	/NA		Tchennide@pho	Thixcorp
		~				0	SEAL	S INTACT	7 Y/N/NA					net
	SA	MPLE	DISPOS	AL INSTRU	TIONS		RECE	VED GO	OD COND	.COLD			LABORATORY NOTES! e-mail Results chernide@pho TAT for 8290 =	Stary
					atum 🛛 Pickup		NOTE	S:					Turn Around Time: 24 HF	2 48 HR 5 DA
												d		

PI Resources Cascade Pole Phase III PROJECT Client Project #10-002 Olympia, WA ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analytical Results

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270

the second second		MTH BLK	LCS	CM-11 (F)	CM-9 (F)	CM-8 (F)	MS	MOD	
Date extracted	Reporting	09/13/10	09/13/10	09/13/10	09/13/10	09/13/10	09/13/10	MSD	RP
Date analyzed	Limits		09/13/10	09/13/10	09/13/10	09/13/10		09/13/10	_
Moisture, %	(mg/kg)			17%	29%	26%	09/13/10	09/13/10	
Acenaphthene	0.02	nd	119%						
Acenaphthylene	0.02	nd		nd	nd	nd	89%	75%	179
Anthracene	0.02	nd	95%	nd	nd	nd			
Benzo(a)anthracene*	0.02	nd	123%	nd	nd	nd			
Benzo(a)pyrene*	0.02		113%	nd	nd	nd			
Benzo(b)fluoranthene*	0.02	nd	105%	nd	nd	nd			
Benzo(ghi)perylene	0.02	nd	121%	nd	nd	nd			
Benzo(k)fluoranthene*		nd	122%	nd	nd	nd			
Chrysene*	0.02	nd	124%	nd	nd	nd			
Dibenzo(a,h)anthracene*	0.02	nd	113%	nd	nd	nd			
Fluorene	0.02	nd	128%	nd	nd	nd			
Fluoranthene	0.02	nd	121%	nd	nd	nd			
C. (1997) 1997 1997 1997 1997	0.02	nd	103%	nd	nd	nd			
Indeno(1,2,3-cd)pyrene*	0.02	nd	127%	nd	nd	nd			
Naphthalene	0.02	nd	97%	nd	nd	nd			
-Methylnaphthalene	0.02	nd	ns	nd	nd	nd			
2-Methylnaphthalene	0.02	nd	ns	nd	nd	nd			
henanthrene	0.02	nd	114%	nd	nd	nd			
yrene	0.02	nd	103%	nd	nd	nd	72%	63%	13%
otal Carcinogens							1270	0.578	13%
our caromogeno				nd	nd	nd			
urrogate recoveries:									
-Fluorobiphenyl		83%	92%	87%	78%	81%	700/	C+01	
-Terphenyl-d14		71%	83%	73%	68%	68%	78% 72%	61% 55%	

Data Qualifiers and Analytical Comments

* - Carcinogenic Analyte

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 50% TO 150%

Acceptable RPD limit: 35%

ESN NORTHWEST, INC.	And in case of the local division of the loc	ronmer ces Netv											(CH	All	1-0	F-(CUSTODY	RECC	RD
CLIENT: PI RE	2504	RCC hA,	s s s	c.L.			Ħ.		, A G	101		DATE	:_4	7/9	1	0		PAGE /	OF	
ADDRESS: <u>5700</u> PHONE: (206)	799-	350	08	<u>, 24, 18 11</u> FA	x: 2	<u>5ea</u> 06	52	, W 9-:	399	<u>010</u> 71	20	PRO.	JEC.		ME: POR	t of	atte	pole Phase	<u>, 111</u>	
CLIENT PROJEC	т#: <u>1</u>	0-0	02	PROJE	ст м/	ANAC	GER:_	B,C	her	Mic	k	COLI	EC	TOR	B	Ryan	C		DATE OF COLLECTION	ta/10
Sample Number	Depth	Time	Sample Type	Container Type	ANAL ANAL	AN OF	Set Sol	ME STOC	siss significant	ANIA PO	10 10 100 100 100 100 100 100 100 100 1	C.P. W.	1000 000	AND	SPO SU	S SURP SURP	inti	NOTES	Point Number	of Containers Laboratory Note Number
1.CM-11 (F)	11'	0826	Soil	402		Ϋ́		TT.	X		r r	Y	Ť	1	M	X	Ĩ			3
2CM-9(F)	11'	0851		402			57 E 3		X							X				3
3.CM-8 (F)	11'	0922	Soil	402					X							X				3
4.																		-		
5.										-										
6,																				
7.																				
8.																				
9.												11.3								
10.															12		11			
11.										- 5										
12.																				
13.																				
14.		-													1					
15.			1																	
16.									112											
17.																				-
18.		1	120.3																	
RELINQUISHED BY (Sign	ature)	/DA	TE/TIME	RECEIV	ED BY	Signal	ure)	DAT	E/TIM	É		SAN	IPLE	RECE	PT			LABORATORY NOTES		اب بر
AL Y	1	9/9/1	5/20	>>().		4)	100.	24	9/9/	T	OTAL N	UMBER	ROF	CONTA	INER	S		e-mail Resu cheanickephi	Its to:	
RELINQUISHED BY (Sign	(1 PD	TE/TIME	RECEIV		-	<u> </u>		ETIM		HAIN C	F CUS	TODY	SEAL	S Y/N/	NA		chenickonh	in wront	1. hot
				Ũ							EALSI	NTACT	Y/N/	NA			1		mucorp	a ne l
	S	AMPLE	DISPOS	AL INSTRUCT	TONS					R	ECEIV	ED GOO	DD CC	DND./C	OLD			Standard TA	ŧΤ	
						NOTES: Turn Around Time: 24 HR 48 HR 5 DA						5 DAY								

PI Resources CASCADE POLE PHASE III PROJECT Client Project #10-002 Olympia, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270

		MTH BLK	LCS	CM-11 (3-4)**	MS	MSD	RPD
Date extracted	Reporting	10/22/10	10/22/10	10/22/10	10/22/10	10/22/10	
Date analyzed	Limits	10/22/10	10/22/10	10/22/10	10/22/10	10/22/10	
Moisture, %	(mg/kg)			16%			
Acenaphthene	0.02	nd	115%	0.19	81%	79%	3%
Acenaphthylene	0.02	nd	108%	nd			SA
Anthracene	0.02	nd	107%	nd			
Benzo(a)anthracene*	0.02	nd	103%	nd			
Benzo(a)pyrene*	0.02	nd	99%	nd			
Benzo(b)fluoranthene*	0.02	nd	118%	nd			
Benzo(ghi)perylene	0.02	nd	99%	nd			
Benzo(k)fluoranthene*	0.02	nd	110%	nd			
Chrysene*	0.02	nd	118%	nd			
Dibenzo(a,h)anthracenc*	0.02	nd	92%	nd			
Fluorene	0.02	nd	121%	nd			
Fluoranthene	0.02	nd	114%	0.05			
Indeno(1,2,3-cd)pyrene*	0.02	nd	94%	nd			
Naphthalene	0.02	nd	115%	nd			
1-Methylnaphthalene	0.02	nd	ns	nd			
2-Methylnaphthalene	0.02	nd	ns	. nd			
Phenanthrene	0.02	nd	114%	nd			
Pyrene	0.02	nd	109%	0.13	66%	62%	6%
Total Carcinogens				nd			
Surrogate recoveries:							
2-Fluorobiphenyl		131%	102%	87%	99%	92%	
o-Terphenyl-d14		144%	104%	81%	99%	93%	

Data Qualifiers and Analytical Comments

* - Carcinogenic Analyte

** - Sample was extracted and analyzed past the 2 week holding time from date of collection

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 50% TO 150%

Acceptable RPD limit: 35%

ESN NORTHWEST, INC.	Contractory in a set of the	onmen es Netw	and the second se										СН	AI M	1-0)F-	-CI	USTOD	Y RE	col	RC
CLIENT: PIR	eso	urc M	es A.	C C	.7	101	C	Æ	.1.14	1 An.	DA		s /r				1	AGE(OF		-
ADDRESS: 5700	999.	-35	O8	<u>>, Su</u> FA	: <u>Fe</u> x:(2	06)	, se 529	al/4 7-39	e,WA 191	9810	8 PR							Polo Ph Lympia	ase 1	<u> </u>	
CLIENT PROJECT	#: <u>/(</u>	0-0	02	PROJE	стм	ANAG	BER:	B, Ch	ern	ich								hennich	DATE OF	N 8/13	5/10
Sample Number	Depth	Time	Sample Type	Container Type	ANA	VSES (101 101 101 101 101 101 101 101 101 101	ME STOR	200 PA	10/10	Sold Julie	BORT CT ST	ANTER C	ALA BOOR	O SUILO	Oil Oil	alles a	all Morres		fotal Number	aboratory
1. (M-11 (2-3)	2-3	1448	Soil	402	r'r	Ϋ́		1T	X	T	TT	T	4		K	ð	f	Half Dia	Sall	3	12:
2.CM-11 (3-4)	3-4	1511	Soil	402					Ø					11	15	t	1	Hold Diox	hong	3	+
l.						11					++				1	1-	+	1014 Jan	pies	-1-2	+
4.											$\uparrow \uparrow$				-						+
5.											++			\mathbf{t}			1			-	+
3.			1			11									-		1			-	+
7.															-		1-				+
).						11	100									+-	-				+
).															-		1-				+
10.						T									-		1				+-
11.											++			+			1		- 1 - 10		+
12.						T									-		1-	D-Client o	Adad Phi		+
13.										-					-	1.	+	Ou al stir as	210 11	1-1	+
14.						T								+	-		-	past hot	t time		+
15,		0.1	· · · · · ·									1			+		+		10/21	54-	+
16.						11				-		-			+		+-			-	-
17.						11									-		1-				+
18.			1.00	(T)	TT	TT					11			++	+		-				+
RELINGUISHED BY (Signa	ture)	DA	TE/TIME	RECEN	ED BY	(Signal)	are)	DATE	E/TIME	T	S	AMPLE	RECE	PT		-	- - -		TEC.		_
SE	-1	181	13/10	1634 5		11	8	13/10	2211	TOT	AL NUMB				5		1,	- Wail DE	sulta +	2.	
RELINQUISHED BY (Signa	itures		TETIME	RECEIV	EDBY	(Signati	ure)	DATE	624 ETTIME		IN OF CL				_		-	hanilo	short.		
										1.	LS INTAC						-10	ABORATORY NO C-mail Re heanicke	UNUNIXO	corp.	he
· · · · · · · · · · · · · · · · · · ·	SA	MPLE	DISPOS	AL INSTRUC	TIONS						EIVED G			OLD		+					
				each 🗆 Re	C. 8 / C. 7.		ρ	-		NOT							T	urn Around Time:	24 HR	HR S	i DA'

Case Narrative

TestAmerica West Sacramento Project Number G0H200505

General Comments

It was noted that collection date is not listed on the chain of custody (coc) for these samples. They have been logged in using the collection date listed on the sample containers.

Sample CM-8 (1-2) was placed on "Hold" per request by Steve on August 20, 2010.

SOLID, 8290, Dioxins/Furans with Totals

Sample: 1

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q" flag.

The concentrations of some analytes in this sample exceed the upper quantitation level of the initial calibration curve, but the peaks do not saturate the instrument detector. Historical data indicates that for the isotope dilution method, dilution and re-analysis will not produce significantly different results and the data is reported with an "E" flag.

The analytical result for 2,3,7,8-TCDF is reported from the confirmation data that was analyzed on August 27, 2010. The analytical result is reported with a "CON" flag.

There are no other anomalies associated with this project.

TestAmericc

THE LEADER IN ENVIRONMENTAL TESTING

Certifying State	Certificate #	Certifying State	Certificate #
Alaska	UST-055	New York*	11666
Arizona	AZ0708	Oregon*	CA 200005
Arkansas	88-0691	Pennsylvania	68-1272
Californía*	01119CA	South Carolina	87014
Colorado	NA	Texas	T104704399-08-TX
Connecticut	PH-0691	Utah*	QUANI
Florida*	E87570	Virginia	00178
Georgia	960	Washington	C1281
Hawaii	NA	West Virginia	9930C, 334
Illinois	200060	Wisconsin	998204680
Kansas*	E-10375	NFESC	NA
Louisiana*	30612	USACE	NA
Michigan	9947	USDA Foreign Plant	37-82605
Nevada	CA44	USDA Foreign Soil	P330-09-00055
New Jersey*	CA005	US Fish & Wildlife	LE148388-0
New Mexico	NA	Guam	09-014r

TestAmerica Laboratories West Sacramento Certifications/Accreditatio

*NELAP accredited. A more detailed parameter list is available upon request. Updated 3/25/2009

QC Parameter Definitions

QC Batch: The QC batch consists of a set of up to 20 field samples that behave similarly (i.e., same matrix) and are processed using the same procedures, reagents, and standards at the same time.

Method Blank: An analytical control consisting of all reagents, which may include internal standards and surrogates, and is carried through the entire analytical procedure. The method blank is used to define the level of laboratory background contamination.

Laboratory Control Sample and Laboratory Control Sample Duplicate (LCS/LCSD): An aliquot of blank matrix spiked with known amounts of representative target analytes. The LCS (and LCSD as required) is carried through the entire analytical process and is used to monitor the accuracy of the analytical process independent of potential matrix effects. If an LCSD is performed, it may also be used to evaluate the precision of the process.

Duplicate Sample (DU): Different aliquots of the same sample are analyzed to evaluate the precision of an analysis.

Surrogates: Organic compounds not expected to be detected in field samples, which behave similarly to target analytes. These are added to every sample within a batch at a known concentration to determine the efficiency of the sample preparation and analytical process.

Matrix Spike and Matrix Spike Duplicate (MS/MSD): An MS is an aliquot of a matrix fortified with known quantities of specific compounds and subjected to an entire analytical procedure in order to indicate the appropriateness of the method for a particular matrix. The percent recovery for the respective compound(s) is then calculated. The MSD is a second aliquot of the same matrix as the matrix spike, also spiked, in order to determine the precision of the method.

Isotope Dilution: For isotope dilution methods, isotopically labeled analogs (internal standards) of the native target analytes are spiked into the sample at time of extraction. These internal standards are used for quantitation, and monitor and correct for matrix effects. Since matrix effects on method performance can be judged by the recovery of these analogs, there is little added benefit of performing MS/MSD for these methods. MS/MSD are only performed for client or QAPP requirements.

Control Limits: The reported control limits are either based on laboratory historical data, method requirements, or project data quality objectives. The control limits represent the estimated uncertainty of the test results.

Sample Summary

TestAmerica West Sacramento Project Number G0H200505

WO#	Sample #	Client Sample ID	Sampling Date	Received Date
L5W79	1	CM-11 (3-4)	8/13/2010 03:11 PM	8/20/2010 09:25 AM
L5W8H	2	CM-8 (1-2)	8/19/2010 08:42 AM	8/20/2010 09:25 AM
L5W8V	3	CM-11 (2-3)	8/13/2010 02:48 PM	8/20/2010 09:25 AM
L5W8W	4	CM-9 (1-2)	8/19/2010 03:52 PM	8/20/2010 09:25 AM

Notes(s):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, co rrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity, pre ssure, reactivity, redox potential, specific gravity, spot test s, solids, solubility, temperature, viscosity, and weight.

SOLID, 8290, Dioxins/Furans with Totals

Sample ID: CM-11 (3-4)

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G0H200505 - 001	Work Order #:	L5W791AC	Matrix:	SOLID
Date Sampled:	08/13/10	Date Received:	08/20/10	Dilution Factor:	0.99
Prep Date:	08/20/10	Analysis Date;	08/24/10	Percent Moisture:	17
Prep Batch #;	0232371	Instrument ID:	1D5		
Initial Wgt/Vol :	10.07 g	Analyst ID:	Susan X. Yan		

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS	
2,3,7,8-TCDD	1.1	J	1.2	0.26	pg/g	
Total TCDD	48		1.2	0.26	pg/g	
1,2,3,7,8-PeCDD	4.8	J	6.0	1.0	pg/g	
Total PeCDD	81		6.0	1.0	pg/g	
1,2,3,4,7,8-HxCDD	14		6.0	0.94	pg/g	
1,2,3,6,7,8-HxCDD	81		6.0	0.88	pg/g	
1,2,3,7,8,9-HxCDD	29		6.0	0.78	pg/g	
Total HxCDD	640		6.0	0.86	pg/g	
1,2,3,4,6,7,8-HpCDD	3700	ЕВ	6.0	2.0	pg/g	
Total HpCDD	8200		6.0	2.0	pg/g	
OCDD	32000	ЕВ	12	3.4	pg/g	
2,3,7,8-TCDF	7.3	CON	1.2	1.0	pg/g	
Total TCDF	34		1.2	0.33	pg/g	
1,2,3,7,8-PeCDF	5.1	J	6.0	0.51	pg/g	
2,3,4,7,8-PeCDF	6.4		6.0	0.56	pg/g	
Total PeCDF	94		6.0	0.53	pg/g	
1,2,3,4,7,8-HxCDF	29		6.0	1.2	pg/g	
1,2,3,6,7,8-HxCDF	8.3		6.0	1.1	pg/g	
2,3,4,6,7,8-HxCDF	6.5		6.0	1.2	pg/g	
1,2,3,7,8,9-HxCDF	ND		6.0	1.2	pg/g	
Total HxCDF	420		6.0	1.2	pg/g	
1,2,3,4,6,7,8-HpCDF	240	в	6.0	0.53	pg/g	
1,2,3,4,7,8,9-HpCDF	10		6.0	0.60	pg/g	
Total HpCDF	830		6,0	0.56	pg/g	
OCDF	470	В	12	0.86	pg/g	

Sample ID: CM-11 (3-4)

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G0H200505 - 001	Work Order #;	L5W791AC	Matrix:	SOLID	
Date Sampled:	08/13/10	Date Received:	08/20/10	Dilution Factor:	0.99	
Prep Date:	08/20/10	Analysis Date:	08/24/10	Percent Moisture:	17	
Prep Batch #:	0232371	Instrument ID:	1D5	Trought Construction		
Initial Wgt/Vol :	10.07 g	Analyst ID:	Susan X. Yan			

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	54	40 - 135
13C-1,2,3,7,8-PeCDD	42	40 - 135
13C-1,2,3,6,7,8-HxCDD	54	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	54	40 - 135
13C-OCDD	51	40 - 135
13C-2,3,7,8-TCDF	51	40 - 135
13C-1,2,3,7,8-PeCDF	47	40 - 135
13C-1,2,3,4,7,8-HxCDF	56	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	52	40 - 135

QUALIFIERS

Results and reporting limits have been adjusted for dry weight.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

CON Confirmation analysis.

E Estimated result. Result concentration exceeds the calibration range.

J Estimated Result
QC DATA ASSOCIATION SUMMARY

G0H200505

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	SOLID	SW846 8290		0232371	
	SOLID	ASTM D 2216-90		0238329	0238198

Method Blank Report

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G0H200000 - 371B	Work Order #;	L5XTJ1AA	Matrix:	SOLID
Date Sampled:	08/13/10	Date Received:	08/20/10	Dilution Factor;	1
Prep Date:	08/20/10	Analysis Date:	08/25/10	Percent Moisture:	0.0
Prep Batch #:	0232371	Instrument ID:	11D5	and the strategics	
Initial Wgt/Vol :	10 g	Analyst ID:	Susan X. Yan		

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.0	0.072	pg/g
Total TCDD	ND		1.0	0.072	pg/g
1,2,3,7,8-PeCDD	ND		5.0	0.14	pg/g
Total PeCDD	0.39		5.0	0.14	pg/g
1,2,3,4,7,8-HxCDD	ND		5.0	0.091	pg/g
1,2,3,6,7,8-HxCDD	ND		5.0	0.079	pg/g
1,2,3,7,8,9-HxCDD	ND		5.0	0.077	pg/g
Fotal HxCDD	0.12		5.0	0.082	pg/g
1,2,3,4,6,7,8-HpCDD	0.14	JQ	5.0	0.067	pg/g
Fotal HpCDD	0.25		5.0	0.067	pg/g
OCDD	0.67	JQ	10	0.052	pg/g
2, 3 ,7,8-TCDF	ND		1.0	0.074	pg/g
Fotal TCDF	ND		1.0	0.074	pg/g
1,2,3,7,8-PeCDF	ND		5.0	0.10	pg/g
2,3,4,7,8-PeCDF	ND		5.0	0.11	pg/g
Fotal PeCDF	ND		5.0	0.11	pg/g
,2,3,4,7,8-HxCDF	ND		5.0	0.037	pg/g
,2,3,6,7,8-HxCDF	ND		5.0	0.060	pg/g
2,3,4,6,7,8-HxCDF	ND		5.0	0.046	pg/g
,2,3,7,8,9-HxCDF	ND		5.0	0.059	pg/g
fotal HxCDF	ND		5.0	0.060	pg/g
,2,3,4,6,7,8-HpCDF	0.069	JQ	5.0	0.060	pg/g
,2,3,4,7,8,9-HpCDF	ND		5.0	0.069	pg/g
otal HpCDF	0.069		5.0	0.064	pg/g
OCDF	0.23	J	10	0.047	pg/g

Method Blank Report

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G0H200000 - 371B	Work Order #:	L5XTJ1AA	Matrix:	SOLID
Date Sampled:	08/13/10	Date Received:	08/20/10	Dilution Factor:	1
Prep Date:	08/20/10	Analysis Date:	08/25/10	Percent Moisture:	0.0
Prep Batch #:	0232371	Instrument ID:	11D5		
Initial Wgt/Vol :	10 g	Analyst ID,;	Susan X. Yan		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	71	40 - 135
13C-1,2,3,7,8-PeCDD	51	40 - 135
13C-1,2,3,6,7,8-HxCDD	69	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	73	40 - 135
13C-OCDD	70	40 - 135
13C-2,3,7,8-TCDF	78	40 - 135
13C-1,2,3,7,8-PeCDF	62	40 - 135
13C-1,2,3,4,7,8-HxCDF	81	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	81	40 - 135

<u>QUALIFIERS</u> Results and reporting limits have been adjusted for dry weight.

J Estimated Result.

Q Estimated maximum possible concentration (EMPC).

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Organic Compounds

Client Lot #:	G0H200505	Work Order	#: L5XTJ1A0	C-LCS	Matrix:	SOLID
LCS Lot-Sample# :	G0H200000 - 371					
Prep Date:	08/20/10	Analysis Dat	le: 08/23/10			
Prep Batch #:	0232371					
Dilution Factor :	1					
Analyst ID:	Susan X. Yan	Instrument]	D: 1D5	Method:	SW846	829
Initial Wgt/Vol:	10 g					
	SPIKE	MEASURED		PERCENT RECOVERY	RECOVERY	
PARAMETER	AMOUNT	AMOUNT	UNITS		LIMITS	
2,3,7,8-TCDD	20.0	19.2	pg/g	96	(77 - 130)	
1,2,3,7,8-PeCDD	100	103	pg/g	103	(79 - 134)	
1,2,3,4,7,8-HxCDD	100	89.7	pg/g	90	(65 - 144)	
1,2,3,6,7,8-HxCDD	100	94.3	pg/g	94	(73 - 147)	
1,2,3,7,8,9-HxCDD	100	82.2	pg/g	82	(80 - 143)	
1,2,3,4,6,7,8-HpCDD	100	105	pg/g	105	(86 - 134)	
OCDD	200 20.0	204 18.3	pg/g	102	(80 - 137)	
2,3,7,8-TCDF 1,2,3,7,8-PcCDF	100	93.7	pg/g	91 94	(79 - 137)	
2,3,4,7,8-PeCDF	100	96.3	pg/g	94 96	(81 - 134) (76 - 132)	
1,2,3,4,7,8-HxCDF	100	87.5	pg/g pg/g	87	(70 - 132) (72 - 140)	
1,2,3,6,7,8-HxCDF	100	92.8	pg/g	93	(72 - 140) (63 - 152)	
2,3,4,6,7,8-HxCDF	100	93.3	pg/g	93	(72 - 151)	
1,2,3,7,8,9-HxCDF	100	85.7	pg/g	86	(72 - 151) (72 - 152)	
1,2,3,4,6,7,8-HpCDF	100	93.6	pg/g	94	(81 - 137)	
1,2,3,4,7,8,9-HpCDF	100	83.0	pg/g	83	(79 - 139)	
OCDF	200	221	pg/g	110	(75 - 141)	
INTERNAL STANDA	RD		PERCENT RECOVERY		RECOVERY LIMITS	
13C-2,3,7,8-TCDD			68		(40 - 135)	
13C-1,2,3,7,8-PeCDD			55		(40 - 135)	
13C-1,2,3,6,7,8-HxCD	D		75		(40 - 135)	
13C-1,2,3,4,6,7,8-HpC			61		(40 - 135)	
13C-OCDD			46		(40 - 135)	
13C-2,3,7,8-TCDF			67		(40 - 135)	
13C-1,2,3,7,8-PeCDF			63		(40 - 135)	
13C-1,2,3,4,7,8-HxCD	F		76		(40 - 135)	
13C-1,2,3,4,6,7,8-HpC			69		(40 - 135)	

Notes:

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

SOLID, D 2216-90, Percent Moisture

+

Client Sample ID: CM-11 (3-4)

General Chemistry

Lot-Sample #:	G0H200505-001	Workk Order ##:: L5W79	Mettmix SOLID
Date Sampled:	08/13/10	Date Received .:: 08/20/10	
<pre>% Moisture:</pre>	17		

Percent Moisture	1177.55	0.10	*	ASTM D 2216-90	0088//226-0088//2277//1100	mmmmmmm
PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	

QC DATA ASSOCIATION SUMMARY

G0H200505

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	SOLID SOLID	SW846 8290 ASTM D 2216-90		0232371 0238329	0238198

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #:	G0H200505	Weark	: Oinden	## :: L5	DXG-SMP Meetin DXG-DUP	iix:: SOLII	2
Date Sampled: % Moisture:		Datte	Recei	7989d - :: 08			
PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Moisture					SD Lot-Sample #		
3.5	3.2	% Dilution Fac	9.4 tor: 1	(0-20)	ASTM D 2216-90	08/26-08/27/1	0 0238329

ESN	1																	Ûé	7103.	5		
NORTHWEST, INC.	And in case of the local division of the loc	ronmer ces Netw	The second second second									(CH	A	N-	OF	-C	USTO	DY	REC	OF	RE
CLIENT: PIR	esou	RCe	s								DAT	E:_0	91	9/	10		P	AGE	1	OF		
ADDRESS: 570 PHONE: (606)	06	"Av	e. 5	Suite li	01, 4	Sea	Hle	, W	A 9	8108	PRO	DJEC	T N	/ AME	Ca	isca	te	Pole P	hase	T		
PHONE: (206)	799-	350	08	FA	x: 2	06)	52	9-3	399	>/	LOC	CATIO	DN:	Po	<u>at</u>	of	Ol	Impia				Č.
CLIENT PROJEC												LEC	TOF	2: I	BRY	an	Ch	ernick	(DATE OF	9/7/	10
Sample Number	Depth	Time	Sample Type	Container Type	ANAL	SP OF	ALL STATE	ME SEAL	San Marine	STR STR	Person Carl	10051 / 000	Antalia	SHOP CHOS	M Suite Suite	es une	otin	200 NOTE	-5		Total Number of Containers	Laboratory
1.CM-11 (F)	1'	0826	Soil	402	r'r	Ϋ́		M	X	\int			- Y	Ť	Ť	X	1	1			3	Ē
CM-9(F)	1'	0851		402					X							X					3	
3.CM-8(F)	1'	0922	Soil	402					X							X					3	
4.							10															
j						++			313						-		-					
3	_		-			++	4							_	-		_					
·		-				11	-	1						-	1							
3	_					++		1	_			1			1						1	L
)			-			+		++			4-1-				-		-					
10.									-			-										
11.		-				++		++				-			1						1	1
12.	_	-				++						-	-	_								1
13	29					++	-					-		-	_						-	
14	-	100	-			++	-	++	-		+ +	-									-	1
15.			<u> </u>			++	-	+	_			-		-								1
16.						1-1-		1-1-			+-+-	+	-	_	-			+			-	1
17.	-		1			++					+	1	-									1
18.	-	1	1				1_			L_L_		1	L_I.		1	1	1	1			1	
RELINQUISHED BY (Sig	nature)	a/1	ATE/TIME	RECEIV	EDBA	11			E/TIME	TOT		MPLE						LABORATOR	NOTES:	11. 1		
Sh 1	1	1/9/1		276/0	lu	h	60.		9/9/	10-	IN OF CU					-+	-	e-mail	RESU	ITS 10	1	
RELINQUISHED BY (SI	(nature)	• D/	ATE/TIME	RECEIV	EDBY	(Signati	ure)	DAT	ЕЛІМЕ	·	1.1.5			1.0 1/	ININA	-		LABORATOR e-mail cheanich	epno	MIXCO	RPI	he
											LS INTAC			001-		-+	-	standa	J TA	T		
			the second	AL INSTRUC		- it				_	EIVED GO	JODC	UNU.	COLL			-	Turn Around	N 127			
	D ESN D	ISPOSAL	@ \$2.0	0each 🛛 Re	tum D	Picku	p			NOT	ES:	_						Turn Around	ume: 24	HR 48	HR 5	DA

Y IZ

c/m/T/1

Sample ID: CM-8(F)

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G0I130442 - 003	Work Order #:	L6WCJ2AC	Matrix:	SOLID
Date Sampled:	09/09/10	Date Received:	09/13/10	Dilution Factor:	0.95
Prep Date:	10/05/10	Analysis Date:	10/10/10	Percent Moisture:	21
Prep Batch #:	0278230	Instrument ID:	4D5		
Initial Wgt/Vol :	10.43 g	Analyst ID:	Susan X. Yan		

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.2	0.13	pg/g
Total TCDD	0.21		1.2	0.13	pg/g
1,2,3,7,8-PeCDD	ND		6.1	0.26	pg/g
Total PeCDD	ND		6.1	0.26	pg/g
1,2,3,4,7,8-HxCDD	ND		6.1	0.17	pg/g
1,2,3,6,7,8-HxCDD	ND		6.1	0.15	pg/g
1,2,3,7,8,9-HxCDD	ND		6.1	0,15	pg/g
Total HxCDD	0.73		6.1	0.16	pg/g
1,2,3,4,6,7,8-HpCDD	1.1	JQB	6.1	0.16	pg/g
Total HpCDD	2.4		6.1	0.16	pg/g
DCDD	6.3	JB	12	0.23	pg/g
2,3,7,8-TCDF	ND		1.2	0.083	pg/g
Total TCDF	ND		1.2	0.083	pg/g
1,2,3,7,8-PeCDF	ND		6.1	0.13	pg/g
2,3,4,7,8-PeCDF	ND		6.1	0.14	pg/g
Total PeCDF	ND		6.1	0.14	pg/g
,2,3,4,7,8-HxCDF	ND		6.1	0.099	pg/g
1,2,3,6,7,8-HxCDF	ND		6.1	0.094	pg/g
2,3,4,6,7,8-HxCDF	ND		6.1	0.098	pg/g
1,2,3,7,8,9-HxCDF	ND		6.1	0.11	pg/g
Fotal HxCDF	0.76		6,1	0.10	pg/g
,2,3,4,6,7,8-HpCDF	1.5	ЈВ	6.1	0.18	pg/g
,2,3,4,7,8,9-HpCDF	ND		6.1	0.22	pg/g
Fotal HpCDF	2.5		6.1	0.20	pg/g
OCDF	0.55	JQ	12	0.25	pg/g

Sample ID: CM-8(F)

Trace Level Organic Compounds

SW846 8290

Date Sampled: 09/09/10 Date Received: 09/13/10 Dilution F.	0.05
	tor: 0.95
Prep Date: 10/05/10 Analysis Date: 10/10/10 Percent M	sture: 21
Prep Batch #: 0278230 Instrument ID: 4D5	
Initial Wgt/Vol: 10.43 g Analyst ID: Susan X. Yan	

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	77	40 - 135
13C-1,2,3,7,8-PeCDD	78	40 - 135
13C-1,2,3,6,7,8-HxCDD	72	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	90	40 - 135
13C-OCDD	68	40 - 135
13C-2,3,7,8-TCDF	70	40 - 135
13C-1,2,3,7,8-PeCDF	80	40 - 135
13C-1,2,3,4,7,8-HxCDF	59	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	73	40 - 135

QUALIFIERS

Results and reporting limits have been adjusted for dry weight

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

J Estimated Result.

Q Estimated maximum possible concentration (EMPC),

Sample ID: CM-9(F)

Trace Level Organic Compounds

SW846 8290

G0I130442 - 002	Work Order #:	L6WCF2AC	Matrix:	SOLID
9/09/10	Date Received;	09/13/10	Dilution Factor:	0.91
0/05/10	Analysis Date:	10/10/10	Percent Moisture:	24
278230	Instrument ID:	4D5	2012 C 202 C 2020 2 2 2 5	
0.88 g	Analyst ID:	Susan X. Yan		
	9/09/10 0/05/10 278230	9/09/10 Date Received: 0/05/10 Analysis Date: 278230 Instrument ID;	9/09/10 Date Received: 09/13/10 0/05/10 Алаlysis Date: 10/10/10 278230 Instrument ID: 4D5	9/09/10Date Received:09/13/10Dilution Factor:0/05/10Analysis Date:10/10/10Percent Moisture:278230Instrument ID:4D5

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1,2	0.076	pg/g
Total TCDD	0.91		1.2	0.076	pg/g
1,2,3,7,8-PeCDD	ND		6.1	0.23	pg/g
Total PeCDD	1.2		6.1	0.23	pg/g
1,2,3,4,7,8-HxCDD	ND		6,1	0.14	pg/g
1,2,3,6,7,8-HxCDD	0.46	J	6.1	0.12	pg/g
1,2,3,7,8,9-HxCDD	0.18	JQB	6.1	0.12	pg/g
Total HxCDD	4.6		6.1	0.13	pg/g
1,2,3,4,6,7,8-HpCDD	15	В	6.1	0.21	pg/g
Total HpCDD	31		6.1	0.21	pg/g
OCDD	92	в	12	0.41	pg/g
2,3,7,8-TCDF	0.55	J	1.2	0.096	pg/g
Total TCDF	2.0		1.2	0.096	pg/g
1,2,3,7,8-PeCDF	0.18	J	6.1	0.14	pg/g
2,3,4,7,8-PeCDF	ND		6.1	0.15	pg/g
Fotal PeCDF	1.4		6.1	0.16	pg/g
1,2,3,4,7,8-IIxCDF	0.38	J B	6.1	0.13	pg/g
1,2,3,6,7,8-HxCDF	0.34	JB	6.1	0.13	pg/g
2,3,4,6,7,8-HxCDF	ND		6.1	0.13	pg/g
,2,3,7,8,9-HxCDF	ND		6.1	0.15	pg/g
l'otal HxCDF	6.1		6.1	0.14	pg/g
,2,3,4,6,7,8-HpCDF	9.2	в	6.1	0.14	pg/g
,2,3,4,7,8,9-HpCDF	0.23	JQB	6.1	0.17	pg/g
fotal HpCDF	18		6.1	0.15	pg/g
OCDF	9.6	J	12	0.23	pg/g

Sample ID: CM-9(F)

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G0I130442 - 002	Work Order #:	L6WCF2AC	Matrix:	SOLID	
Date Sampled:	09/09/10	Date Received:	09/13/10	Dilution Factor:	0.91	
Prep Date:	10/05/10	Analysis Date:	10/10/10	Percent Moisture:	24	
Prep Batch #;	0278230	Instrument ID:	4D5	t creent moisture.		
Initial Wgt/Vol :	10.88 g	Analyst ID:	Susan X. Yan			

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	87	40 - 135
13C-1,2,3,7,8-PeCDD	93	40 - 135
13C-1,2,3,6,7,8-HxCDD	90	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	102	40 - 135
13C-OCDD	85	40 - 135
13C-2,3,7,8-TCDF	80	40 - 135
13C-1,2,3,7,8-PeCDF	93	40 - 135
13C-1,2,3,4,7,8-HxCDF	67	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	87	40 - 135
		10 - 2017.

QUALIFIERS

Results and reporting limits have been adjusted for dry weight.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

J Estimated Result.

Q Estimated maximum possible concentration (EMPC).

\\gsacsql1\QDSApps\SOG_Stmd\EDL_RL_Report.rpt 10/14/2010

Sample ID: CM-11(F)

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G0I130442 - 001	Work Order #:	L6WCA2AC	Matrix:	SOLID
Date Sampled:	09/09/10	Date Received:	09/13/10	Dilution Factor:	0.96
Prep Date:	10/05/10	Analysis Date;	10/10/10	Percent Moisture:	19
Prep Batch #:	0278230	Instrument ID:	4D5		
Initial Wgt/Vol :	10.33 g	Analyst ID:	Susan X. Yan		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	60	40 - 135
13C-1,2,3,7,8-PeCDD	65	40 - 135
13C-1,2,3,6,7,8-HxCDD	59	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	72	40 - 135
13C-OCDD	65	40 - 135
13C-2,3,7,8-TCDF	54	40 - 135
13C-1,2,3,7,8-PeCDF	64	40 - 135
13C-1,2,3,4,7,8-HxCDF	47	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	60	40 - 135

<u>QUALIFIERS</u> Results and reporting limits have been adjusted for dry weight.

Method blank contamination. The associated method blank contains the target analyte at a reportable level. в

J Estimated Result

Q Estimated maximum possible concentration (EMPC).

\\qsacsql1\QDSApps\SOG_Stmd\EDL_RL_Report.rpt 10/14/2010

Table of Contents: ARI Job SO94

Client: Landau Associates, Inc.

Project: 0021035.010 Port of Olympia

,

	Page From:	Page To:
Inventory Sheet		
Cover Letter		
Chain of Custody Documentation	_2_	4
Case Narrative, Data Qualifiers, Control Limits	_5_	10
Dioxin Analysis		
Report and Summary QC Forms		30
Total Solids		-
Report and Summary QC Forms	31	
Dioxin Raw Data	. .	
Extractions Bench Sheets and Notes	34	36
Initial Calibration	_37	133
Run Logs, Continuing Calibrations, and Raw Data	134	265

G	
τ <u>γ</u>	<u>April-20-2011</u>
Signature	Date

April 20, 2011

Chris Kimmel Landau Associates, Inc. 130 2nd Avenue S. Edmonds, WA 98020

RE: Project: Port of Olympia ARI Job No: SO94

Dear Chris:

Please find enclosed the original *Chain of Custody*, sample receipt documentation, and final results for the project referenced above. Analytical Resources, Inc. accepted two soil samples in good condition on March 26, 2011.

The samples were analyzed for Dioxins and Furans, as requested on the Chain of Custody.

Please refer to the Case Narrative for analytical details regarding the sample.

A copy of this report and all associated ARI raw data will be kept on file with ARI. Should you have any questions or problems, please feel free to contact me at any time.

Sincerely, ANALYTICAL RESOURCES, INC.

Kelly Bottem Client Services Manager (206) 695-6211 Enclosures

KB/kb

Page 1 of____

Chain of Custody Documentation

ARI Job ID: SO94

	PINK COPY - Client Representative	Laboratory	YELLOW COPY - Laboratory	Project File	WHITE COPY - Project File
DateTime	Time	Date	Time 0830	3 26/11	Date
Company		Company			Company
Printed Name	Ø	Printed Name	RI	Lar Lar	Printed
Signature		Signature	1 u l in Imb in	hell , f	Signat
Received by	ed by	Relinquished by	5	Received by M	Rece
Method of Shipment	Shi				
Other					
Dissolved metal water samples field filtered					
preserved w/socium bisultate					
non-preserved preserved w/methanol					
VOC/BTEX/VPH (soil):					
Analyze for EPH if no specific product identified					
product					
run samples standardized to					
X NWTPH-Dx - run acid wash/silica gel cleanup					
aliquot from clear portion			X I	105 00	1/5/10 1030
X Allow water samples to settle, collect			× -	51 501	815/10 095
Observations/Comments			No. of Containers	Time Matrix	Date Tir
					Kimmel
					Cheis Kimme
		28			PI Resources
X standard		()			Pole
Tur	Testing Parameters		35.010	Project No. 0C 2 10	Project Name Port of Olympia F
Page 1 of 1	Record	stody F	Chain-of-Custody Record	C	
03/25/2011					Tacoma (253) 926-2493 Spokane (509) 327-9737 Doutiond (503) 542-1080
2094				2060	X Seattle/Edmonds (425) 778-0907

S094:00003

,

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Recei	pt Form	
ARI Client:AMAAU COC No(s): Assigned ARI Job No:	Project Name: <u>POY+ OF</u> Delivered by: Fed-Ex UPS Courier H Tracking No:		·····
Preliminary Examination Phase:			
Were intact, properly signed and dated custody seals attached to the Were custody papers included with the cooler?	stry)	YES (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	NO NO 41619
	d attach all shipping documents		-
Log-In Phase: Was a temperature blank included in the cooler? What kind of packing material was used? Bubble Wrap V	Vet Ice Gel Packs Berggies Foam Block	YES	NO
Was sufficient ice used (if appropriate)?		NA (YES	NO
Were all bottles sealed in individual plastic bags?		NES	NO
Did all bottles arrive in good condition (unbroken)?		KES.	NO
Were all bottle labels complete and legible?			NO
Did the number of containers listed on COC match with the number		MES	NO
Did all bottle labels and tags agree with custody papers?			NO
Were all bottles used correct for the requested analyses?		A LES	NO
Do any of the analyses (bottles) require preservation? (attach preservation)		YES	NO
Were all VOC vials free of air bubbles?		YES	NO
Was sufficient amount of sample sent in each bottle?		(YES	NO
Date VOC Trip Blank was made at ARI			
Was Sample Split by ARI : W YES Date/Time: Samples Logged by:Date:Date:	Equipment: 3 2 8 11 Time: of discrepancies or concerns **	Split by:	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
······································			

Sample ID on COC	Sample ID on Bottle	Sample ID on COC
		•
· · · · · · · · · · · · · · · · · · ·		
s, & Resolutions:	·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	· · · · · · · · · · · · · · · · · · ·
e:		
es' LARGE Air Bubbles	Small → "sm"	
>4 mm	Peabubbles → "pb"	
	Large → "lg"	
	Headspace → "hs"	
	s, & Resolutions:	s, & Resolutions: e: es' LARGE Air Bubbles > 4 mm Peabubbles → "pb" Large → "lg"

Case Narrative, Data Qualifiers, Control Limits

ARI Job ID: SO94

Case Narrative

Client: Landau Associates Project: Port of Olympia ARI Job No.: SO94

Dioxin/Furans by EPA 8290

The sample and associated laboratory QC were prepared and analyzed within the method recommended holding times.

Analysis was performed using the application specific RTX-Dioxin 2 column, which has a unique elution order and selectivity for the target compounds, as well as a unique isomer separation for the 2378-TCDF. A resolution test mixture was designed specifically for this column, consisting of 2348-TCDF, 2378-TCDF and 3467-TCDF to evaluate the method required minimum valley between isomer of 25%. Use of the RTX-Dioxin2 column eliminates the need for second column confirmation.

Initial and continuing calibration results were within method requirements.

The method blank had hits below the RL. Associated sample results are greater then ten times the concentrations found in the method blank therefore no action was taken. The OPR (Ongoing Precision and Accuracy or LCS) sample percent recoveries were within control limits.

The percent recoveries for all preparation and cleanup surrogates were within established QC limits.

The TEQ was calculated with WHO2005 with ND=0 for undetects (flagged "U"), following EPA protocols. A more conservative estimate of the TEQ would be to include EMPC values in the calculation.

Page 1 of 1

Sample ID Cross Reference Report

ARI Job No: SO94 Client: Landau Associates, Inc. Project Event: 0021035.010 Project Name: Port of Olympia

Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
CM-2(1-2) CM-3(1-2)	S094A S094B	11-6769 11-6770		08/05/10 09:51 08/05/10 10:30	03/26/11 08:30 03/26/11 08:30

Printed 03/28/11

Analytical Resources, Incorporated Analytical Chemists and Consultants

Data Reporting Qualifiers Effective 2/14/2011

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but \geq the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).

Analytical Resources, Incorporated Analytical Chemists and Consultants

- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Analytical Resources, Incorporated Analytical Chemists and Consultants

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

Dioxin Analysis Report and Summary QC Forms

ARI Job ID: SO94

,

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Dioxins/Furans by SW8290 Page 1 of 1

Lab Sample ID: SO94A LIMS ID: 11-6769 Matrix: Soil Data Release Authorized: WS Reported: 04/19/11

Date Extracted: 03/30/11 Date Analyzed: 04/15/11 17:39 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No

Total HpCDD

Sample ID: CM-2(1-2)

QC Report No: S094-Landau Associates, Inc. Project: Port of Olympia 0021035.010 Date Sampled: 08/05/10 Date Received: 03/26/11

Sample Amount: 10.1 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits	EDL	RL	Result	
2,3,7,8-TCDF	0.64	0.65-0.89		0.989	0.103	JEMPC
2,3,7,8-TCDD	0.35	0.65-0.89		0.989	0.170	JEMPC
1,2,3,7,8-PeCDF	1.40	1.32-1.78		4.95	0.324	J
2,3,4,7,8-PeCDF	1.72	1.32-1.78		4.95	0.445	J
1,2,3,7,8-PeCDD	1.52	1.32-1.78		4.95	0.326	J
1,2,3,4,7,8-HxCDF	1.20	1.05-1.43		4.95	1.11	J
1,2,3,6,7,8-HxCDF	1.16	1.05-1.43		4.95	0.431	J
2,3,4,6,7,8-HxCDF	1.17	1.05-1.43		4.95	0.532	J
1,2,3,7,8,9-HxCDF	1.07	1.05-1.43		4.95	0.493	J
1,2,3,4,7,8-HxCDD	1.05	1.05-1.43		4.95	0.263	JEMPC
1,2,3,6,7,8-HxCDD	1.22	1.05-1.43		4.95	1.92	J
1,2,3,7,8,9-HxCDD	1.27	1.05-1.43		4.95	0.748	J
1,2,3,4,6,7,8-HpCDF	0.98	0.88-1.20		4.95	4.54	J
1,2,3,4,7,8,9-HpCDF	1.02	0.88-1.20		4.95	0.324	J
1,2,3,4,6,7,8-HpCDD	1.06	0.88-1.20		4.95	38.9	
OCDF	0.94	0.76-1.02		9.89	2.66	J
OCDD	0.89	0.76-1.02		9.89	489	
Homologue Group	EDL	RL		W/O EMPC	WITH EM	PC
Total TCDF		0.989		0.138	0.469	
Total TCDD		0.989		3.58	3.80	
Total PeCDF		4.95		4.55	4.69	
Total PeCDD		4.95		1.56	1.78	
Total HxCDF		4.95		17.2	17.4	
Total HxCDD		4.95		10.8	11.5	
Total HpCDF		4.95		14.3		

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 1.78

4.95

85.7

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 1.78

Reported in pg/g

Sample ID: CM-2(1-2)

Lab Sample ID: SO94A LIMS ID: 11-6769 Matrix: Soil Data Release Authorized: VIJ Reported: 04/19/11

Date Extracted: 03/30/11 Date Analyzed: 04/15/11 17:39 Instrument/Analyst: AS1/PK QC Report No: SO94-Landau Associates, Inc. Project: Port of Olympia 0021035.010 Date Sampled: 08/05/10 Date Received: 03/26/11

Sample Amount: 10.1 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits
13C-2,3,7,8-TCDF	0.79	0.65-0.89	94.2	40-135
13C-2,3,7,8-TCDD	0.78	0.65-0.89	83.3	40-135
13C-1,2,3,7,8-PeCDF	1.58	1.32-1.78	89.5	40-135
13C-2,3,4,7,8-PeCDF	1.58	1.32-1.78	80.9	40-135
13C-1,2,3,7,8-PeCDD	1.59	1.32-1.78	81.2	40-135
13C-1,2,3,4,7,8-HxCDF	0.52	0.43-0.59	84.7	40-135
13C-1,2,3,6,7,8-HxCDF	0.53	0.43-0.59	88.4	40-135
13C-2, 3, 4, 6, 7, 8-HxCDF	0.53	0.43-0.59	80.9	40-135
13C-1,2,3,7,8,9-HxCDF	0.53	0.43-0.59	76.9	40-135
13C-1,2,3,4,7,8-HxCDD	1.27	1.05-1.43	83.0	40-135
13C-1,2,3,6,7,8-HxCDD	1.25	1.05-1.43	84.0	40-135
13C-1, 2, 3, 4, 6, 7, 8-HpCDF	0.45	0.37-0.51	66.7	40-135
13C-1, 2, 3, 4, 7, 8, 9-HpCDF	0.44	0.37-0.51	64.8	40-135
13C-1, 2, 3, 4, 6, 7, 8-HpCDD	1.07	0.88-1.20	72.5	40-135
13C-OCDD	0.90	0.76-1.02	57.4	40-135
37C14-2,3,7,8-TCDD			92.1	35-197

Reported in Percent Recovery

Sample ID: CM-3(1-2)

Lab Sample ID: SO94B LIMS ID: 11-6770 Matrix: Soil Data Release Authorized: VIS Reported: 04/19/11

Date Extracted: 03/30/11 Date Analyzed: 04/15/11 18:30 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No QC Report No: SO94-Landau Associates, Inc. Project: Port of Olympia 0021035.010 Date Sampled: 08/05/10 Date Received: 03/26/11

Sample Amount: 10.5 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits EDI	L RL	Result
2,3,7,8-TCDF	0.73	0.65-0.89	0.949	0.956
2,3,7,8-TCDD	0.45	0.65-0.89	0.949	0.269 JEMPC
1,2,3,7,8-PeCDF	1.56	1.32-1.78	4.74	0.786 JX
2,3,4,7,8-PeCDF	1.67	1.32-1.78	4.74	0.765 J
1,2,3,7,8-PeCDD	1.59	1.32-1.78	4.74	0.784 J
1,2,3,4,7,8-HxCDF	1.24	1.05-1.43	4.74	1.78 J
1,2,3,6,7,8-HxCDF	1.32	1.05-1.43	4.74	1.05 J
2,3,4,6,7,8-HxCDF	1.22	1.05-1.43	4.74	1.40 J
1,2,3,7,8,9-HxCDF	1.29	1.05-1.43	4.74	0.731 J
1,2,3,4,7,8-HxCDD	1.09	1.05-1.43	4.74	0.691 J
1,2,3,6,7,8-HxCDD	1.25	1.05-1.43	4.74	3.83 J
1,2,3,7,8,9-HxCDD	1.29	1.05-1.43	4.74	1.48 J
1,2,3,4,6,7,8-HpCDF	1.02	0.88-1.20	4.74	17.1
1,2,3,4,7,8,9-HpCDF	1.10	0.88-1.20	4.74	1.06 J
1,2,3,4,6,7,8-HpCDD	1.05	0.88-1.20	4.74	95.2
OCDF	0.88	0.76-1.02	9.49	25.2
OCDD	0.90	0.76-1.02	9.49	1,060
Homologue Group	EDL	RL	W/O EMPC	WITH EMPC
Total TCDF		0.949	16.2	16.4
Total TCDD		0.949	10.6	11.1
Total PeCDF		4.74	16.6	17.2
Total PeCDD		4.74	9.15	9.76
Total HxCDF		4.74	37.7	38.2
Total HxCDD		4.74	30.2	30.6
Total HpCDF		4.74	53.1	53.3
Total HpCDD		4.74	218	

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 3.96

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 3.96

Reported in pg/g

Sample ID: CM-3(1-2)

Lab Sample ID: SO94B LIMS ID: 11-6770 Matrix: Soil Data Release Authorized: Vis Reported: 04/19/11

Date Extracted: 03/30/11 Date Analyzed: 04/15/11 18:30 Instrument/Analyst: AS1/PK QC Report No: SO94-Landau Associates, Inc. Project: Port of Olympia 0021035.010 Date Sampled: 08/05/10 Date Received: 03/26/11

Sample Amount: 10.5 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits
13C-2,3,7,8-TCDF	0.79	0.65-0.89	86.7	40-135
13C-2,3,7,8-TCDD	0.78	0.65-0.89	82.7	40-135
13C-1,2,3,7,8-PeCDF	1.58	1.32-1.78	79.2	40-135
13C-2,3,4,7,8-PeCDF	1.57	1.32-1.78	79.4	40-135
13C-1,2,3,7,8-PeCDD	1.57	1.32-1.78	79.0	40-135
13C-1,2,3,4,7,8-HxCDF	0.52	0.43-0.59	84.0	40-135
13C-1,2,3,6,7,8-HxCDF	0.52	0.43-0.59	83.1	40-135
13C-2,3,4,6,7,8-HxCDF	0.53	0.43-0.59	86.4	40-135
13C-1,2,3,7,8,9-HxCDF	0.53	0.43-0.59	90.5	40-135
13C-1,2,3,4,7,8-HxCDD	1.27	1.05-1.43	83.8	40-135
13C-1,2,3,6,7,8-HxCDD	1.26	1.05-1.43	84.6	40-135
13C-1,2,3,4,6,7,8-HpCDF	0.45	0.37-0.51	76.2	40-135
13C-1,2,3,4,7,8,9-HpCDF	0.45	0.37-0.51	79.7	40-135
13C-1,2,3,4,6,7,8-HpCDD	1.05	0.88-1.20	84.1	40-135
13C-OCDD	0.90	0.76-1.02	76.9	40-135
37C14-2,3,7,8-TCDD			92.6	35-197

Reported in Percent Recovery

ORGANICS ANALYSIS DATA SHEET Dioxins/Furans by SW8290

Sample ID: OPR-033011

Page 1 of 1

Lab Sample ID: OPR-033011 LIMS ID: 11-6769 Matrix: Soil Data Release Authorized: VI } Reported: 04/19/11

Date Extracted: 03/30/11 Date Analyzed: 04/15/11 16:48 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No

QC Report No: SO94-Landau Associates, Inc. Project: Port of Olympia 0021035.010 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits	RL	Result
2,3,7,8-TCDF	0.77	0.65-0.89	1.00	22.0
2,3,7,8-TCDD	0.77	0.65-0.89	1.00	20.4
1,2,3,7,8-PeCDF	1.55	1.32-1.78	5.00	102
2,3,4,7,8-PeCDF	1.56	1.32-1.78	5.00	102
1,2,3,7,8-PeCDD	1.56	1.32-1.78	5.00	101
1,2,3,4,7,8-HxCDF	1.24	1.05-1.43	5.00	103
1,2,3,6,7,8-HxCDF	1.26	1.05-1.43	5.00	100
2,3,4,6,7,8-HxCDF	1.24	1.05-1.43	5.00	100
1,2,3,7,8,9-HxCDF	1.20	1.05-1.43	5.00	104
1,2,3,4,7,8-HxCDD	1.25	1.05-1.43	5.00	101
1,2,3,6,7,8-HxCDD	1.26	1.05-1.43	5.00	105
1,2,3,7,8,9-HxCDD	1.27	1.05-1.43	5.00	97.5
1,2,3,4,6,7,8-HpCDF	1.03	0.88-1.20	5.00	124
1,2,3,4,7,8,9-HpCDF	1.06	0.88-1.20	5.00	103
1,2,3,4,6,7,8-HpCDD	1.02	0.88-1.20	5.00	101
OCDF	0.90	0.76-1.02	10.0	176
OCDD	0.88	0.76-1.02	10.0	197
Homologue Group	EDL	RL	W/O EMPC	WITH EMPC
Total TCDF	0.0195	1.00	24.8	24.9
Total TCDD	0.0432	1.00	21.1	
Total PeCDF	0.0363	5.00	214	215
Total PeCDD	0.0400	5.00	102	
Total HxCDF	0.0529	5.00	411	
Total HxCDD	0.0496	5.00	303	
Total HpCDF		5.00	227	228
Total HpCDD	0.0777	5.00	103	

Reported in pg/g

ORGANICS ANALYSIS DATA SHEET Dioxins/Furans by SW8290

Sample ID: OPR-033011

Page 1 of 1

Lab Sample ID: OPR-033011 LIMS ID: 11-6769 Matrix: Soil Data Release Authorized: VReported: 04/19/11

Date Extracted: 03/30/11 Date Analyzed: 04/15/11 16:48 Instrument/Analyst: AS1/PK

QC Report No: SO94-Landau Associates, Inc. Project: Port of Olympia 0021035.010 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits
13C-2,3,7,8-TCDF	0.79	0.65-0.89	78.2	40-135
13C-2,3,7,8-TCDD	0.79	0.65-0.89	72.5	40-135
13C-1,2,3,7,8-PeCDF	1.56	1.32-1.78	76.1	40-135
13C-2,3,4,7,8-PeCDF	1.58	1.32-1.78	68.8	40-135
13C-1,2,3,7,8-PeCDD	1.58	1.32-1.78	71.7	40-135
13C-1,2,3,4,7,8-HxCDF	0.53	0.43-0.59	79.2	40-135
13C-1,2,3,6,7,8-HxCDF	0.53	0.43-0.59	87.4	40-135
13C-2,3,4,6,7,8-HxCDF	0.52	0.43-0.59	78.5	40-135
13C-1,2,3,7,8,9-HxCDF	0.52	0.43-0.59	66.9	40-135
13C-1,2,3,4,7,8-HxCDD	1.26	1.05-1.43	81.8	40-135
13C-1,2,3,6,7,8-HxCDD	1.26	1.05-1.43	82.0	40-135
13C-1,2,3,4,6,7,8-HpCDF	0.45	0.37-0.51	65.2	40-135
13C-1,2,3,4,7,8,9-HpCDF	0.45	0.37-0.51	59.4	40-135
13C-1,2,3,4,6,7,8-HpCDD	1.05	0.88-1.20	70.0	40-135
13C-OCDD	0.90	0.76-1.02	58.3	40-135
37C14-2,3,7,8-TCDD			79.9	35-197

Reported in Percent Recovery

Date Extracted: 03/30/11 Date Analyzed: 04/15/11 16:48 Instrument/Analyst: AS1/PK Sample ID: OPR-033011

QC Report No: SO94-Landau Associates, Inc. Project: Port of Olympia 0021035.010 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	OPR	Spiked	Recovery	Limits
2,3,7,8-TCDF	22.0	20.0	110	30-160
2,3,7,8-TCDD	20.4	20.0	102	30-160
1,2,3,7,8-PeCDF	102	100	102	30-160
2,3,4,7,8-PeCDF	102	100	102	30-160
1,2,3,7,8-PeCDD	101	100	101	30-160
1,2,3,4,7,8-HxCDF	103	100	103	30-160
1,2,3,6,7,8-HxCDF	100	100	100	30-160
2,3,4,6,7,8-HxCDF	100	100	100	30-160
1,2,3,7,8,9-HxCDF	104	100	104	30-160
1,2,3,4,7,8-HxCDD	101	100	101	30-160
1,2,3,6,7,8-HxCDD	105	100	105	30-160
1,2,3,7,8,9-HxCDD	97.5	100	97.5	30-160
1,2,3,4,6,7,8-HpCDF	124	100	124	30-160
1,2,3,4,7,8,9-HpCDF	103	100	103	30-160
1,2,3,4,6,7,8-HpCDD	101	100	101	30-160
OCDF	176	200	88.0	30-160
OCDD	197	200	98.5	30-160

Reported in pg/g

4DF - FORM IV-HR CDD Sample No. CDD/CDF METHOD BLANK SUMMARY HIGH RESOLUTION

 Lab Name:
 ANALYTICAL RESOURCES, INC.
 Contract:
 LANDAU

 Lab Code:
 S094
 Case No.:
 PORT OF OLYMPIA
 TO No.:
 SDG No.:

 Lab Sample
 TO
 S094MB

LANDAU

Matrix: (Soil/Water/Ash/T	issue/0il)	SOI	L Lu	ID:	SO94MB
Sample wt/vol: 10	(g/ml)	g		Lab File ID:	11041505
Water Sample Prep:			(SEPF/SPE)	Date Received:	26-MAR-11
GC Column: RTX-DIOXIN2	ID:0	.25	(mm)	Date Extracted:	30-MAR-11
Instrument ID:	AUTOSPEC1	-		Date Analyzed:	15-APR-11

Client Sample No.	Lab Sample ID	Lab File ID	Date Analyzed
SO94OPR	SO94OPR	11041506	04/15/11
CM-2(1-2)	SO94A	11041507	04/15/11
CM-3(1-2)	SO94B	11041508	04/15/11

SO94MB

DLM-02.2 (12/09)

S094:00019

Lab Sample ID: MB-033011 LIMS ID: 11-6769 Matrix: Soil Data Release Authorized: VTS Reported: 04/19/11

Date Extracted: 03/30/11 Date Analyzed: 04/15/11 15:57 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No Sample ID: MB-033011

QC Report No: SO94-Landau Associates, Inc. Project: Port of Olympia 0021035.010 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits	EDL	RL	Result	
2,3,7,8-TCDF		0.65-0.89	0.0195	1.00	< 0.0195	U
2,3,7,8-TCDD		0.65-0.89	0.0432	1.00	< 0.0432	U
1,2,3,7,8-PeCDF		1.32-1.78	0.0330	5.00	< 0.0330	U
2,3,4,7,8-PeCDF		1.32-1.78	0.0363	5.00	< 0.0363	U
1,2,3,7,8-PeCDD		1.32-1.78	0.0400	5.00	< 0.0400	U
1,2,3,4,7,8-HxCDF		1.05-1.43	0.0372	5.00	< 0.0372	U
1,2,3,6,7,8-HxCDF		1.05-1.43	0.0335	5.00	< 0.0335	U
2,3,4,6,7,8-HxCDF		1.05-1.43	0.0381	5.00	< 0.0381	U
1,2,3,7,8,9-HxCDF		1.05-1.43	0.0529	5.00	< 0.0529	U
1,2,3,4,7,8-HxCDD		1.05-1.43	0.0475	5.00	< 0.0475	U
1,2,3,6,7,8-HxCDD		1.05-1.43	0.0480	5.00	< 0.0480	U
1,2,3,7,8,9-HxCDD		1.05-1.43	0.0496	5.00	< 0.0496	U
1,2,3,4,6,7,8-HpCDF	0.76	0.88-1.20		5.00	0.146	JEMPC
1,2,3,4,7,8,9-HpCDF		0.88-1.20	0.0711	5.00	< 0.0711	U
1,2,3,4,6,7,8-HpCDD		0.88-1.20	0.0777	5.00	< 0.0777	U
OCDF		0.76-1.02	0.115	10.0	< 0.115	U
OCDD	0.88	0.76-1.02		10.0	0.556	J
Homologue Group	EDL	RL		W/O EMPC	WITH EM	PC
Total TCDF	0.0195	1.00	<	0.195		U
Total TCDD	0.0432	1.00	<	0.432		U
Total PeCDF	0.0363	5.00	<	0.363		U
Total PeCDD	0.0400	5.00	<	0.400		U
Total HxCDF	0.0529	5.00	<	0.529		U
Total HxCDD	0.0496	5.00	<	0.496		U
Total HpCDF		5.00	<	0.711	0.146	U
Total HpCDD	0.0777	5.00	<	0.777		U

Reported in pg/g

Sample ID: MB-033011

Lab Sample ID: MB-033011 LIMS ID: 11-6769 Matrix: Soil Data Release Authorized: V) Reported: 04/19/11

Date Extracted: 03/30/11 Date Analyzed: 04/15/11 15:57 Instrument/Analyst: AS1/PK QC Report No: SO94-Landau Associates, Inc. Project: Port of Olympia 0021035.010 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits
13C-2,3,7,8-TCDF	0.79	0.65-0.89	89.1	40-135
13C-2, 3, 7, 8-TCDD	0.78	0.65-0.89	81.4	40-135
13C-1,2,3,7,8-PeCDF	1.54	1.32-1.78	84.5	40-135
13C-2,3,4,7,8-PeCDF	1.58	1.32-1.78	75.9	40-135
13C-1,2,3,7,8-PeCDD	1.54	1.32-1.78	80.4	40-135
13C-1,2,3,4,7,8-HxCDF	0.52	0.43-0.59	87.6	40-135
13C-1, 2, 3, 6, 7, 8-HxCDF	0.51	0.43-0.59	94.1	40-135
13C-2,3,4,6,7,8-HxCDF	0.52	0.43-0.59	85.7	40-135
13C-1,2,3,7,8,9-HxCDF	0.52	0.43-0.59	73.0	40-135
13C-1, 2, 3, 4, 7, 8-HxCDD	1.27	1.05-1.43	89.2	40-135
13C-1,2,3,6,7,8-HxCDD	1.26	1.05-1.43	90.5	40-135
13C-1,2,3,4,6,7,8-HpCDF	0.45	0.37-0.51	73.4	40-135
13C-1,2,3,4,7,8,9-HpCDF	0.44	0.37-0.51	66.7	40-135
13C-1, 2, 3, 4, 6, 7, 8-HpCDD	1.04	0.88-1.20	79.2	40-135
13C-OCDD	0.89	0.76-1.02	66.4	40-135
37C14-2,3,7,8-TCDD			87.5	35-197

Reported in Percent Recovery
Sample No.

5DFA - FORM V-HR CDD-1 CDD/CDF WINDOW DEFINING MIX (WDM) SUMMARY HIGH RESOLUTION

CS3

Lab Name:	A	NALYTIC	AL R	ESOURCES, INC.	Contract:		LANDAU		
Lab Code:	SO94	Case N	Io.:	PORT OF OLYMPIA	 TO No.:		SDG No.:		
GC Column:	RTX-Di	loxin2	ID:	0.25	(mm)	Lab File ID:	11041503		
Instrument	ID:			AUTOSPEC1		Date Analyzed:	15-APR-11		
						Time Analyzed:	1356		

CDD/CDF	RT First Eluting	RT Last Eluting
TCDD	24.49	27.96
TCDF	23.22	28.23
PeCDD	29.73	32.86
PeCDF	28.06	33.26
HxCDD	34.95	37.64
HxCDF	34.15	38.07
HpCDD	40.75	42.06
HpCDF	40.18	42.99

Sample No.

5DFB - FORM V-HR CDD-2 CDD/CDF CHROMATOGRAPHIC RESOLUTION SUMMARY HIGH RESOLUTION

CS3

Lab Name:	Al	NALYTIC	AL F	ESOURCES, INC	Cont :	ract	LANDAU
Lab Code:	SO94	Case No.:		PORT OF OLYMI	TO PIA No.:		SDG No.:
GC Column:	RTX-D	IOXIN2	ID :	0.25	(mm)	Lab File ID: Date	11041503
Instrument	ID:	. <u> </u>		Autospec1		Analyzed: Time	15-APR-11
						Analyzed:	1356
	.umn pe:	rforman		n for DB-5 (or solution begins 0	-		
Quality Cor	trol (QC) Lim	its:				
Percent Val	ley bet	tween t	he 1	CDD isomers m	ust be less	than or equ	al to 25%
				n for DB-225 (a solution beginn	-		

2347-TCDF/2378-TCDF: 21.7

QC Limits:

Percent Valley between the TCDD/TCDF isomers must be less than or equal to 25%

DLM02.2 (12/09)

5DFB - FORM V-HR CDD-3 CDD/CDF ANALTYICAL SEQUENCE SUMMARY HIGH RESOLUTION

.

Lab Name:	ANALYTI	CAL RESOUR	CES, INC.	Conti	act:	LANDAU	
Lab Code:	SO94 Case	No.: PORT	OF OLYMPIA	TO No.:		SDG N	Io.:
GC Column:	RTX-DIOXIN2	ID:	0.25	(mm)	Instrument	ID:	AUTOSPEC1
Init. Calib	. Date(s):	25-JAN-11	1				
Init: Calib	. Times:	1106	152	8			

The Analytical Sequence of standards, samples, blanks, and Laboratory Control Samples (LCS) is as follows:

Client Sample No.	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
1756-1	TCDFS	11041502	04/15/11	1306
15812	CS3	11041503	04/15/11	1356
SO94MB	SO94MB	11041505	04/15/11	1557
SO94OPR	SO94OPR	11041506	04/15/11	1648
CM-2(1-2)	SO94A	11041507	04/15/11	1739
CM-3(1-2)	SO94B	11041508	04/15/11	1830
15812	CS3	11041510	04/15/11	2013

USEPA 6DFA - FORM VI-HR CDD-1 CDD/CDF INITIAL CALIBRATION RESPONSE FACTOR SUMMARY HIGH RESOLUTION

Lab Name: Lab Code: GC Column: Instrument ID:	ARI SO94 RTX-DIO AUTOSPE			Contrac Case No ID (mm)	.: PORT	AU OF OL	YMPIA		
Init.Calib.Date Init.Calib.Date Init.Calib.Date Init.Calib.Date Init.Calib.Date Init.Calib.Date	CS1: CS2: CS3: CS4:	25-Jan- 25-Jan- 25-Jan- 25-Jan- 25-Jan- 25-Jan-	11 11 11 11	Init.Ca Init.Ca Init.Ca Init.Ca	lib.Time lib.Time lib.Time lib.Time lib.Time lib.Time	CS1: CS2: CS3: CS4:	11:06: 11:59: 12:49: 13:41: 14:38: 15:28:	43 56 11 21	
		Taro	et Analy	te RRF					
	CSL	cs1	CS2	CS3	CS4	CS5	MeanRRF	%rsd	QC Limits
2378-TCDF 12378-PeCDF 23478-PeCDF 123478-HxCDF 234678-HxCDF 123678-HxCDF 123678-HxCDF 123789-HxCDF 1234678-HpCDF 1234789-HpCDF 0CDF 1	$\begin{array}{c} 0.90\\ 0.95\\ 1.11\\ 1.07\\ 1.11\\ 1.00\\ 1.34\\ 1.19\\ 1.10\\ \end{array}$	0.90 0.94 0.96 1.11 1.08 1.09 1.00 1.32 1.29 1.15	0.92 0.91 0.96 1.09 1.10 1.10 1.03 1.25 1.28 1.18	0.91 0.94 0.95 1.12 1.10 1.08 1.02 1.27 1.28 1.20	0.92 0.95 0.96 1.13 1.10 1.09 1.02 1.28 1.28 1.23	0.91 0.96 0.98 1.13 1.11 1.09 1.05 1.28 1.28 1.27	0.91 0.94 0.96 1.12 1.09 1.02 1.29 1.27 1.19	1.1 1.9 1.2 1.4 1.3 0.8 1.9 2.6 2.8 5.0	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0

2378-TCDF 12378-PeCDF 23478-PeCDF 123478-HxCDF 123678-HxCDF 123678-HxCDF 123678-HxCDF 123789-HxCDF 1234789-HpCDF 0CDF 1 2378-TCDD 12378-TCDD 123478-HxCDD 123678-HxCDD 123678-HxCDD 123789-HxCDD 2	0.90 0.95 1.07 1.11 1.004 1.19 1.099 1.099 1.06 0.986	$\begin{array}{c} 0.90\\ 0.94\\ 0.96\\ 1.10\\ 1.09\\ 1.00\\ 1.32\\ 1.15\\ 1.07\\ 1.00\\ 0.99\\ 0.91\\ 0.94\end{array}$	0.92 0.91 0.96 1.09 1.10 1.25 1.25 1.18 1.05 0.99 0.93 0.93	$\begin{array}{c} 0.91 \\ 0.94 \\ 0.95 \\ 1.12 \\ 1.10 \\ 1.08 \\ 1.02 \\ 1.27 \\ 1.28 \\ 1.20 \\ 1.03 \\ 1.00 \\ 0.98 \\ 0.94 \\ 0.96 \end{array}$	0.92 0.95 0.96 1.13 1.02 1.28 1.23 1.03 1.00 0.94 0.96	0.91 0.96 0.98 1.13 1.09 1.05 1.28 1.27 1.06 1.03 1.00 0.99	0.91 0.94 0.96 1.09 1.09 1.22 1.29 1.29 1.29 1.29 1.00 0.94 0.96	1.1 1.9 1.4 1.8 9 6 8 0 0 4 6 8 0 0 4 6 5 1 0 2.1	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
123789-HXCDD 2 1234678-HpCDD OCDD	1.06 1.04	1.05 1.01	1.03 1.02	1.05 1.03	1.05 1.03	1.04 1.03	1.05 1.03	2.1 1.0 1.2	20.0 20.0 20.0

(1) The RRF is calculated based on the labeled analog of OCDD. (2) The relative response factor (RRF) is calculated based on the labeled analogs of the other two HxCDDs.

		Labe	led Comp	ound RRF					
	CSL	CS1	cs2	CS3	CS4	CS 5	MeanRRF	%RSD	QC Limits
13C-2378-TCDF 13C-12378-PeCDF 13C-123478-PeCDF 13C-123478-HxCDF 13C-123678-HxCDF 13C-234678-HxCDF 13C-123789-HxCDF 13C-1234789-HpCDF 13C-1234789-HpCDF 13C-123478-PeCDD 13C-123478-PeCDD 13C-123478-HxCDD 13C-123478-HxCDD 13C-1234678-HpCDD 13C-0CDD	1.57 1.24 1.16 1.24 1.27 1.14 1.06 0.98 0.75 0.97 1.03 0.83 0.72	1.51 1.21 1.17 1.24 1.36 1.28 1.15 1.05 0.82 0.97 0.74 0.98 1.02 0.83 0.74	1.52 1.17 1.13 1.28 1.27 1.15 1.11 0.83 0.72 1.00 1.04 0.85 0.77	1.54 1.18 1.26 1.29 1.15 1.07 0.83 0.73 0.98 1.04 0.83 0.74	1.55 1.23 1.19 1.23 1.27 1.13 1.05 0.81 0.99 0.76 0.98 1.02 0.82 0.71	1.62 1.40 1.37 1.23 1.24 1.15 1.07 0.84 0.85 0.98 1.01 0.84 0.80	1.55 1.24 1.20 1.25 1.34 1.27 1.15 1.07 0.82 0.98 0.76 0.98 1.03 0.83 0.75	2.4 6.4 1.5 1.3 0.9 1.8 4.4 1.0 1.2 1.1 4.5	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0

	USEPA
	6DFB - Form VI-HR CDD-2
CDD/CDF INITIAL	CALIBRATION ION ABUNDANCE RATIO SUMMARY
•	HIGH RESOLUTION

			1120		011011				
Lab Name: Lab Code: GC Column: Instrument ID:	ARI SO94 RTX-DIO> AUTOSPEC			Contr Case ID (m	No.: P	ANDAU ORT OF 0 25	DLYMPIA		
Init.Calib.Date Init.Calib.Date Init.Calib.Date Init.Calib.Date Init.Calib.Date Init.Calib.Date	CS1: CS2: CS3: CS4:	25-Jan- 25-Jan- 25-Jan- 25-Jan- 25-Jan- 25-Jan-	11 11 11 11	Init. Init. Init. Init.	Calib.T Calib.T Calib.T Calib.T	ime CSL: ime CS1: ime CS2: ime CS3: ime CS4: ime CS5:	11:59 12:49 13:41 14:38):43):56 L:11 3:21	
Target Analytes	Selected	Ions	Ion Ab	undance	Ratio				
		CSL	cs1	CS2	CS3	CS4	CS5 Fla	ug QC	C Limits #
2378-TCDF 12378-PeCDF 23478-PeCDF 123478-HxCDF 234678-HxCDF 123678-HxCDF 123678-HxCDF 1234678-HpCDF 1234789-HpCDF 0CDF 2378-TCDD 12378-PeCDD 123678-HxCDD 123678-HxCDD 123678-HxCDD 123678-HxCDD 1234678-HpCDD 0CDD	304/306 340/342 374/376 374/376 374/376 374/376 374/376 408/410 442/444 320/322 356/358 390/392 390/392 424/426 458/460	0.66 1.49 1.60 1.26 1.17 1.30 1.05 0.99 0.88 0.79 1.58 1.39 1.20 0.98 0.83	0.80 1.52 1.48 1.30 1.22 1.24 1.21 0.99 0.90 0.88 1.52 1.25 1.28 1.19 1.06 0.88	0.77 1.54 1.49 1.24 1.18 1.25 1.25 1.02 1.01 0.91 0.75 1.57 1.21 1.28 1.21 1.06 0.88	0.75 1.54 1.23 1.20 1.23 1.21 1.02 1.02 1.03 0.89 0.78 1.57 1.26 1.25 1.24 1.04 0.88	1.54 1.52 1.21 1.22 1.21 1.02 1.02 0.89 0.79 1.55 1.29 1.22 1.22 1.22 1.22	0.75 1.53 1.51 1.21 1.21 1.21 1.01 1.02 0.89 0.78 1.56 1.25 1.25 1.24 1.05 0.89	1. 1. 1. 0. 0. 1. 1.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Labeled Compound	d Selecte	d Ions	Ion Ab	undance	Ratio				
		CSL	cs1	CS2	CS3	CS4	CS5	Flag	QC Limits #
13C-2378-TCDF 13C-12378-PeCDF 13C-123478-PeCDF 13C-123478-HxCDI 13C-123678-HxCDI 13C-234678-HxCDI 13C-123789-HxCDI 13C-1234678-HpCI 13C-1234789-HpCI 13C-12378-PeCDD 13C-123478-HxCDI 13C-123678-HxCDI 13C-1234678-HpCI 13C-0CDD	F 384/38 F 384/38 F 384/38 DF 418/42 DF 418/42 332/33 368/37 D 402/40 D 402/40 D 436/43	i4 1.61 i4 1.57 i6 0.52 i6 0.53 i6 0.53 i0 0.44 i4 0.78 i0 1.57 i4 1.25 i4 1.25	0.78 1.58 0.52 0.51 0.53 0.45 0.45 0.78 1.59 1.27 1.26 1.02 0.91	0.78 1.57 0.52 0.53 0.53 0.45 0.45 0.46 0.79 1.58 1.25 1.05 0.90		1.57 1.59 0.52 0.52 0.46 0.46 0.79 1.27 1.25 1.28	1.59 1.57 0.52 0.53 0.45 0.46 0.78 1.58 1.27 1.06		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Internal Standa	rd Select	ed Ions CSL	Ion Al CS1	bundanco CS2	e Ratio CS3	CS4	CS5	Flag	QC Limits #
13С-1234-тСDD 13С-123789-нхСDI	332/334 0 402/404		0.79 1.25	0.79 1.25					0.65 - 0.89 1.05 - 1.43
(#) Quality Cont	trol (OC)	limits	represe	ent +159	X windo	w around	the		

(#) Quality Control (QC) limits represent $\pm 15\%$ window around the theoretical ion abundance ratio. The laboratory must flag any analyte in any calibration solution which does not meet the ion abundance ratio QC limit by placing an asterisk in the flag column.

USEPA 7DFA - Form VII-HR CDD-1 CDD/CDF CONTINUING CALIBRATION SUMMARY HIGH RESOLUTION

ARI	Contract:	LANDAU
SO94	Case No.:	PORT OF TACOMA
	SDG No.:	
RTX-DIOXIN2	ID (mm):	.25
AUTOSPEC1	Lab File ID:	11041503
15-Apr-11	Time Analysed	13:56:45
25-JAN-11	init.Calib.Time:	
	SO94 RTX-DIOXIN2 AUTOSPEC1 15-Apr-11	SO94 Case No.: SDG No.: RTX-DIOXIN2 ID (mm): AUTOSPEC1 Lab File ID: 15-Apr-11 Time Analysed

Target Analytes	Selected lons	RRF	Mean RRF	%D	%D Flag [#]	Ion Ratio	Ratio Flag [#]	Ratio QC Limits
2378-TCDD	320/322	1.05	1.06	-0.7		0.79		0.65 - 0.89
2378-TCDF	304/306	0.94	0.91	3.2		0.78		0.65 - 0.89
12378-PeCDF	340/342	0.97	0.94	3.5		1.55		1.32 - 1.78
12378-PeCDD	356/358	1.01	1.00	1.0		1.53		1.32 - 1.78
23478-PeCDF	340/342	0.99	0.96	2.7		1.54		1.32 - 1.78
123478-HxCDF	374/376	1.12	1.12	0.0		1.22		1.05 - 1.43
123678-HxCDF	374/376	1.11	1.09	1.6		1.25		1.05 - 1.43
123478-HxCDD	390/392	1.01	1.00	1.2		1.25		1.05 - 1.43
123678-HxCDD	390/392	1.00	0.94	6.4		1.25		1.05 - 1.43
123789-HxCDD	390/392	0.98	0.96	2.0		1.25		1.05 - 1.43
234678-HxCDF	374/376	1.12	1.09	2.4		1.23		1.05 - 1.43
123789-HxCDF	374/376	1.05	1.02	2.8		1.24		1.05 - 1.43
1234678-HpCDF	408/410	1.29	1.29	0.1		1.04		0.89 - 1.21
1234678-HpCDD	424/426	1.07	1.05	1.9		1.07		0.89 - 1.21
1234789-HpCDF	408/410	1.27	1.27	0.1		1.02		0.89 - 1.21
OCDD	458/460	1.04	1.03	1.7		0.89		0.76 - 1.02
OCDF	442/444	1.25	1.19	4.8		0.90		0.76 - 1.02

Labeled Compounds	Selected lons	RRF	Mean RRF	%D	%D Flag [#]	Ion Ratio	Ratio Flag [#]	Ratio QC Limits
13C-2378-TCDD	332/334	0.99	0.98	1.3		0.78		0.65 - 0.89
13C-12378-PeCDD	368/370	0.79	0.76	4.8	T	1.59		1.32 - 1.78
13C-123478-HxCDD	402/404	1.00	0.98	1.5		1.27		1.05 - 1.43
13C-123678-HxCDD	402/404	1.04	1.03	1.4		1.24	Î -	1.05 - 1.43
13C-1234678-HpCDD	436/438	0.81	0.83	-3.0		1.06		0.89 - 1.21
13C-OCDD	470/472	0.69	0.75	-7.3		0.90		0.76 - 1.02
13C-2378-TCDF	316/318	1.61	1.55	3.6		0.79		0.65 - 0.89
13C-12378-PeCDF	352/354	1.30	1.24	5.3		1.57		1.32 - 1.78
13C-23478-PeCDF	352/354	1.28	1.20	6.9	T	1.58	1	1.32 - 1.78
13C-123478-HxCDF	384/386	1.32	1.25	5.3		0.53		0.43 - 0.59
13C-123678-HxCDF	384/386	1.39	1.33	4.1		0.53		0.43 - 0.59
13C-234678-HxCDF	384/386	1.32	1.27	4.1		0.53		0.43 - 0.59
13C-123789-HxCDF	384/386	1.17	1.15	2.0	1	0.53		0.43 - 0.59
13C-1234678-HpCDF	418/420	1.08	1.07	0.8		0.45		0.37 - 0.51
13C-1234789-HpCDF	418/420	0.83	0.82	0.8		0.45		0.37 - 0.51

Clean-up	Selected lons	RRF	Mean RRF	%D	%D Flag [#]	Ion Ratio	Ratio Flag [#]	Ratio QC Limits
Internal Standards	Selected lons	RRF	Mean RRF	%D	%D Flag [#]	lon Ratio	lon Ratio Flag [#]	ion Ratio QC Limits
13C-1234-TCDD	332/334	NA	NA	NA	NA	0.80		0.65 - 0.89
13C-123789-HxCDD	402/404	NA	NA	NA	NA	1.24		1.05 - 1.43

(#) The laboratory must flag any analyte which does not meet the criteria for Percentage Difference (%D) or ion abundance ratio by placing an asterisk in the appropriate

USEPA 7DFB - Form VII-HR CDD-2 CDD/CDF CONTINUING CALIBRATION RETENTION TIME SUMMARY HIGH RESOLUTION

Lab Name:	ARI	Contract:	LANDAU
Lab Code:	SO94	Case No.:	PORT OF TACOMA
TO No.:		SDG No.:	
GC Column:	RTX-DIOXIN2	ID (mm):	.25
Instrument ID:	AUTOSPEC1	Lab File ID:	11041503
Date Analysed	15-Apr-11	Time Analysed	13:56:45
Init.Calib.Date:	25-JAN-11	Init.Calib.Time:	

Target Analytes	RRT*	RT
2378-TCDD	1.00	27.36
2378-TCDF	1.00	26.72
12378-PeCDF	1.00	30.87
12378-PeCDD	1.00	32.46
23478-PeCDF	1.00	32.21
123478-HxCDF	1.00	35.88
123678-HxCDF	1.00	36.03
123478-HxCDD	1.00	37.11
123678-HxCDD	1.00	37.23
123789-HxCDD	1.01	37.64
234678-HxCDF	1.00	36.97
123789-HxCDF	1.00	38.07
1234678-HpCDF	1.00	40.19
1234678-HpCDD	1.00	42.06
1234789-HpCDF	1.00	42.99
OCDD	1.00	48.21
OCDF	1.01	48.52

Labeled Compounds	RRT [#]	RT
13C-2378-TCDD	1.03	27.35
13C-12378-PeCDD	1.22	32.45
13C-123478-HxCDD	0.99	37.08
13C-123678-HxCDD	0.99	37.22
13C-1234678-HpCDD	1.12	42.04
13C-OCDD	1.28	48.19
13C-2378-TCDF	1.01	26.70
13C-12378-PeCDF	1.16	30.86
13C-23478-PeCDF	1.21	32.20
13C-123478-HxCDF	0.95	35.87
13C-123678-HxCDF	0.96	36.01
13C-234678-HxCDF	0.98	36.95
13C-123789-HxCDF	1.01	38.05
13C-1234678-HpCDF	1.07	40.16
13C-1234789-HpCDF	1.14	42.97

Clean up Standard	RRT [#]	RT

Internal Standards	RRT [#]	RT
13C-1234-TCDD	0.00	26.53
13C-123789-HxCDD	0.00	37.62

(#) RRT = (RT of Analyte)/(RT of appropriate labeled compound).

USEPA 7DFA - Form VII-HR CDD-1 CDD/CDF CONTINUING CALIBRATION SUMMARY HIGH RESOLUTION

Lab Name:	ARI	Contract:	LANDAU
Lab Code:	SO94	Case No.:	PORT OF OLYMPIA
TO No.:		SDG No.:	
GC Column:	RTX-DIOXIN2	ID (mm):	.25
Instrument ID:	AUTOSPEC1	Lab File ID:	11041510
Date Analysed	15-Apr-11	Time Analysed	20:13:18
Init.Calib.Date:	25-JAN-11	Init.Calib.Time:	

Target Analytes	Selected lons	RRF	Mean RRF	%D	%D Flag [#]	Ion Ratio	Ratio Flag [#]	Ratio QC Limits
2378-TCDD	320/322	1.04	1.06	-1.4		0.77		0.65 - 0.89
2378-TCDF	304/306	0.95	0.91	3.9		0.78		0.65 - 0.89
12378-PeCDF	340/342	0.98	0.94	4.2		1.56		1.32 - 1.78
12378-PeCDD	356/358	1.02	1.00	1.6		1.58		1.32 - 1.78
23478-PeCDF	340/342	0.99	0.96	3.6		1.57		1.32 - 1.78
123478-HxCDF	374/376	1.15	1.12	2.7		1.24		1.05 - 1.43
123678-HxCDF	374/376	1.11	1.09	2.0		1.23		1.05 - 1.43
123478-HxCDD	390/392	1.05	1.00	4.9		1.25		1.05 - 1.43
123678-HxCDD	390/392	0.97	0.94	3.2		1.22		1.05 - 1.43
123789-HxCDD	390/392	0.99	0.96	3.5		1.25		1.05 - 1.43
234678-HxCDF	374/376	1.10	1.09	0.5		1.24		1.05 - 1.43
123789-HxCDF	374/376	1.06	1.02	4.1		1.24		1.05 - 1.43
1234678-HpCDF	408/410	1.32	1.29	2.3		1.04		0.89 - 1.21
1234678-HpCDD	424/426	1.07	1.05	2.0		1.04		0.89 - 1.21
1234789-HpCDF	408/410	1.30	1.27	2.7		1.00		0.89 - 1.21
OCDD	458/460	1.05	1.03	2.2		0.88		0.76 - 1.02
OCDF	442/444	1.26	1.19	6.1		0.92		0.76 - 1.02

Labeled Compounds	Selected lons	RRF	Mean RRF	%D	%D Flag [#]	Ion Ratio	Ratio Flag [#]	Ratio QC Limits
13C-2378-TCDD	332/334	0.99	0.98	1.0		0.78		0.65 - 0.89
13C-12378-PeCDD	368/370	0.81	0.76	7.3		1.58		1.32 - 1.78
13C-123478-HxCDD	402/404	0.98	0.98	-0.5		1.28		1.05 - 1.43
13C-123678-HxCDD	402/404	1.03	1.03	0.8		1.26		1.05 - 1.43
13C-1234678-HpCDD	436/438	0.83	0.83	-0.2		1.05		0.89 - 1.21
13C-OCDD	470/472	0.70	0.75	-6.2		0.90		0.76 - 1.02
13C-2378-TCDF	316/318	1.58	1.55	1.7		0.79		0.65 - 0.89
13C-12378-PeCDF	352/354	1.34	1.24	7.9		1.57		1.32 - 1.78
13C-23478-PeCDF	352/354	1.31	1.20	9.3		1.57		1.32 - 1.78
13C-123478-HxCDF	384/386	1.27	1.25	1.4		0.52		0.43 - 0.59
13C-123678-HxCDF	384/386	1.36	1.33	1.7		0.53		0.43 - 0.59
13C-234678-HxCDF	384/386	1.32	1.27	4.3		0.53		0.43 - 0.59
13C-123789-HxCDF	384/386	1.16	1.15	0.9		0.52		0.43 - 0.59
13C-1234678-HpCDF	418/420	1.16	1.07	8.5		0.45		0.37 - 0.51
13C-1234789-HpCDF	418/420	0.82	0.82	-0.2		0.46	1	0.37 - 0.51

Clean-up	Selected lons	RRF	Mean RRF	%D	%D Flag [#]	lon Ratio	Ratio Flag [#]	Ratio QC Limits
internal Standards	Selected lons	RRF	Mean RRF	%D	%D Flag [#]	Ion Ratio	ion Ratio Flag [#]	lon Ratio QC Limits
13C-1234-TCDD	332/334	NA	NA	NA	NA	0.78		0.65 - 0.89
13C-123789-HxCDD	402/404	NA	NA	NA	NA	1.25		1.05 - 1.43

(#) The laboratory must flag any analyte which does not meet the criteria for Percentage Difference (%D) or ion abundance ratio by placing an asterisk in the appropriate

USEPA 7DFB - Form VII-HR CDD-2 CDD/CDF CONTINUING CALIBRATION RETENTION TIME SUMMARY HIGH RESOLUTION

Lab Name:	ARI	Contract:	LANDAU
Lab Code:	SO94	Case No.:	PORT OF OLYMPIA
TO No.:		SDG No.:	
GC Column:	RTX-DIOXIN2	ID (mm):	.25
Instrument ID:	AUTOSPEC1	Lab File ID:	11041510
Date Analysed	15-Apr-11	Time Analysed	20:13:18
Init.Calib.Date:	25-JAN-11	Init.Calib.Time:	

Target Analytes	RRT [#]	RT
2378-TCDD	1.00	27.36
2378-TCDF	1.00	26.72
12378-PeCDF	1.00	30.87
12378-PeCDD	1.00	32.46
23478-PeCDF	1.00	32.21
123478-HxCDF	1.00	35.88
123678-HxCDF	1.00	36.03
123478-HxCDD	1.00	37.10
123678-HxCDD	1.00	37.23
123789-HxCDD	1.01	37.63
234678-HxCDF	1.00	36.97
123789-HxCDF	1.00	38.07
1234678-HpCDF	1.00	40.18
1234678-HpCDD	1.00	42.05
1234789-HpCDF	1.00	42.99
OCDD	1.00	48.21
OCDF	1.01	48.51

Labeled Compounds	RRT#	RT
13C-2378-TCDD	1.03	27.33
13C-12378-PeCDD	1.22	32.44
13C-123478-HxCDD	0.99	37.08
13C-123678-HxCDD	0.99	37.20
13C-1234678-HpCDD	1.12	42.04
13C-OCDD	1.28	48.19
13C-2378-TCDF	1.01	26.70
13C-12378-PeCDF	1.16	30.85
13C-23478-PeCDF	1.21	32.20
13C-123478-HxCDF	0.95	35.87
13C-123678-HxCDF	0.96	36.01
13C-234678-HxCDF	0.98	36.95
13C-123789-HxCDF	1.01	38.05
13C-1234678-HpCDF	1.07	40.16
13C-1234789-HpCDF	1.14	42.97

	Clean up Standard	RRT [#]	RT
--	-------------------	------------------	----

Internal Standards	RRT [#]	RT
13C-1234-TCDD	0.00	26.53
13C-123789-HxCDD	0.00	37.62

(#) RRT = (RT of Analyte)/(RT of appropriate labeled compound).

Total Solids

•

•

ARI Job ID: SO94

.

Extractions Total Solids-extts Data By: Tarry Hawk Created: 3/28/11				Worklist: 9123 Analyst: RVR Comments:		
Oven ID: Balance ID:);	
Sample	s In:	Date:	Time	:	Temp:	Analyst:
Sample	s Out:	Date:	Time	:	Temp:	Analyst:
	ARI ID CLIENT ID		Wet Wt (g)	-	% Solids	рН
1.	SO94A 11-6769 CM-2(1-2)	1.16	10.62	8.53	77.9	NR
2.	SO94B 11-6770 CM-3(1-2)	1.17	10.81	9.96	91.2	NR

Extractions Total Data By: Tarry Haw Created: 3/28/11		ts	Worklist: Analyst: T Comments:	
Oven ID: 015		. (Balance ID	: 24150347
Samples In:	,	1	: 16:25 Temp: 103	
Samples Out:	Date 32	<u>g(n</u> Time	: \$6'.35 Temp: 103°	Analyst: <u>R R</u>
ARI ID CLIENT ID	Tare Wt (g)	Wet Wt (g)	Dry Wt (g) % Solids	Н
1. SO94A 11-6769	1.16	10.62	8.53	NR
CM-2(1-2) 2. SO94B 11-6770 CM-3(1-2)	_1.17	W-8(9.96	NR

ATTACHMENT 2

As-Built Drawing

