Groundwater Monitoring Report, 2015 Annual Event

TOC Holdings Co. Facility No. 01-176 24205 56th Avenue West Mountlake Terrace, WA 98043

Prepared for:

TOC Holdings Co. 2737 West Commodore Way Seattle, WA 98199

Prepared by:

Stantec Consulting Services Inc. 19101 36th Avenue West, Ste. 203 Lynnwood, WA 98036 Phone: 425.977.4994

July 31, 2015

Sign-off Sheet

This document entitled, Groundwater Monitoring Report, 2015 Annual Event, was prepared by Stantec Consulting Services Inc. (Stantec) on behalf of TOC Holdings Co. (TOC) for specific application to TOC Facility No. 01-176 in Mountlake Terrace, Washington. Services conducted by Stantec for this project were conducted in accordance with the Environmental Services Contract between HydroCon Environmental, LLC (HydroCon) and Stantec. Any reliance on this document by a third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and HydroCon. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

This document was prepared under the supervision and direction of the key staff identified below.

imsuk

Prepared by:

Prepared by:

Kim Vik Project Geologist

Andrea Pedersen Senior Project Coordinator

Reviewed by:

Rebekah Brooks, LG, LHg **Project Manager** Senior Associate, Hydrogeology

Naturi Minter

Marty Minter, PG, RG

Reviewed by:

Manager, Geology

Table of Contents

1.0	INTROD	JCTION	1
1.1	GROUN	DWATER MONITORING SCOPE OF WORK	
1.2	2015 AN	INUAL EVENT GROUNDWATER MONITORING ACTIVITIES	
2.0	DESCRIF	TION & BACKGROUND	
2.1	DESCRIF	PTION OF TOC SITE	
2.2	DESCRIF	PTION OF ADJACENT PROPERTIES	4
2.3	SITE BAC	CKGROUND	5
3.0	GEOLO	GIC FRAMEWORK	6
4.0	HYDROO	GEOLOGIC FRAMEWORK	7
4.1	SHALLO	w water-bearing zone (shallow zone)	7
4.2	INTERME	DIATE WATER-BEARING ZONE (INTERMEDIATE ZONE)	7
4.3	DEEP W.	ATER-BEARING ZONE (DEEP ZONE)	
4.4	WELL SC	REEN INTERVALS INTERSECTING MULTIPLE WATER-BEARING ZONES	
5.0	REMEDI	ATION SYSTEM STATUS	
6.0		DWATER MONITORING SCOPE OF WORK & METHODOLOGY	
6.1		O-GROUNDWATER/DEPTH-TO-PRODUCT LEVEL MEASUREMENTS	
6.2	GROUN	DWATER SAMPLE COLLECTION	
	6.2.1	Groundwater Sampling Methods & Procedures	
6.3	LABORA	TORY ANALYSES	
	6.3.1	Groundwater Samples	
6.4	QA/QC	SAMPLING METHODS & DATA QUALITY REVIEW	
7.0	GROUN	DWATER MONITORING RESULTS	
7.1	GROUN	DWATER ELEVATIONS	
	7.1.1	Shallow Zone	17
	7.1.2	Intermediate Zone	
	7.1.3	Deep Zone	17
	7.1.4	Well Screens Intersecting Multiple Zones	
7.2	GROUN	DWATER QUALITY RESULTS	
	7.2.1	Shallow Zone	
	7.2.2	Intermediate Zone	
	7.2.3	Deep Zone	
	7.2.4	Well Screens Intersecting Multiple Zones	
7.3	LNAPL R	ESULTS	
7.4	QA/QC	& DATA QUALITY RESULTS	22
8.0		DWATER TRENDS	
8.1	GROUN	DWATER ELEVATION TRENDS	
8.2	SHALLO	W ZONE CONTAMINANT DISTRIBUTION	
	8.2.1	Benzene	
	8.2.2	Gasoline-Range Petroleum Hydrocarbons	
	8.2.3	Other Constituents	
8.3	INTERME	DIATE ZONE CONTAMINANT TRENDS	
	8.3.1	Benzene	
	8.3.2	Gasoline-Range Petroleum Hydrocarbons	
	8.3.3	Other Constituents	
8.4		DNE CONTAMINANT TRENDS	
8.5		ON-AQUEOUS PHASE LIQUID TRENDS	
9.0		GROUNDWATER TASKS	
10.0		ICES	

Table of Contents

List of Tables

- 1-1 Depth-to-Groundwater/Depth-to-Product Level Measurements
- 2-1 Groundwater Results for Selected Constituents, Shallow Zone Wells
- 2-2 Groundwater Results for Common Fuel Additives, Shallow Zone Wells
- 3-1 Groundwater Results for Selected Constituents, Intermediate Zone Wells
- 3-2 Groundwater Results for Common Fuel Additives, Intermediate Zone Wells
- 4-1 Groundwater Results for Selected Constituents, Deep Zone Wells
- 4-2 Groundwater Results for Common Fuel Additives, Deep Zone Wells
- 5-1 Groundwater Results for Selected Constituents, Shallow-Intermediate Intersect Zone Wells
- 5-2 Groundwater Results for Common Fuel Additives, Shallow-Intermediate Zone Intersect Wells
- 6-1 Groundwater Results for Selected Constituents, Intermediate-Deep Zone Intersect Wells
- 6-2 Groundwater Results for Common Fuel Additives, Intermediate-Deep Zone Intersect Wells

List of Figures

- 1 Project Location
- 2 Site Map
- 3 Locations of Wells and Remediation Systems
- 4 Groundwater Elevation Contours, Shallow Zone, March 2015
- 5 Groundwater Elevation Contours, Intermediate Zone, March 2015
- 6 Groundwater Elevation Contours, Deep Zone, March 2015
- 7 Shallow (MW62), Intermediate (MW20 and MW32) and Deep (MW53) Zone Groundwater Elevations, December 2006 March 2015
- 8 Shallow (MW67), Intermediate (MW63) and Deep (MW64) Zone Groundwater Elevations, December 2006 – March 2015
- 9 GRPH Concentrations in Groundwater, March 2015, Shallow Zone
- 10 Benzene Concentrations in Groundwater, March 2015, Shallow Zone
- 11 GRPH Concentrations in Groundwater, March 2015, Intermediate Zone
- 12 Benzene Concentrations in Groundwater, March 2015, Intermediate Zone
- 13 Benzene Concentrations in Groundwater, Shallow Zone Wells MW02, MW04 and MW12, June 1992 March 2015
- 14 GRPH Concentrations in Groundwater, Shallow Zone Wells MW02, MW04 and MW12, June 1992 March 2015
- 15 Groundwater Elevation and GRPH Concentration in Groundwater, Shallow Zone Well MW02, June 1992 – March 2015
- 16 Benzene Concentrations in Groundwater, Selected Intermediate Zone Wells, September 2005 March 2015

Table of Contents

- 17 Groundwater Elevation and Benzene Concentration in Groundwater, Intermediate Zone Well MW48 and Benzene Concentrations in Wells near MW48, December 2006 – March 2015
- 18 GRPH Concentrations in Groundwater, Selected Intermediate Zone Wells, September 2005 March 2015
- 19 Groundwater Elevation and GRPH Concentrations in Groundwater, Intermediate Zone Well MW48 and GRPH Concentrations in Wells near MW48, December 2006 – March 2015
- 20 Total Lead Concentrations in Groundwater, Intermediate Zone Wells MW31, MW32 and MW91, December 2006 March 2015
- 21 GRPH Plume Comparison, Intermediate Zone Wells, March/April 2014 and March 2015
- 22 LNAPL Thickness, Shallow Zone Wells MW29, MW71 and MW102 and Intermediate Zone Well MW48, December 2005 – March 2015
- 23 Groundwater Elevation and LNAPL Thickness, Intermediate Zone Well MW48, December 2006 March 2015

List of Appendices

- A Groundwater Monitoring Plan
- B Laboratory Analytical Reports Groundwater Samples

Acronyms & Abbreviations

μg/L 1Q2015	micrograms per Liter First Quarter 2015
2Q2014	Second Quarter 2014
2Q2015	Second Quarter 2015
AO	Agreed Order
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene and total xylenes
CSM	conceptual site model
DPE	dual-phase extraction
DRPH	diesel-range petroleum hydrocarbons
DTW/DTP	depth-to-groundwater / depth-to-product
Ecology	Washington State Department of Ecology
EDB	ethylene dibromide (1,2-dibromoethane)
EDC	ethylene dichloride (1,2-dichloroethane)
EPA Ericales en 8 Drune	U.S. Environmental Protection Agency
Friedman & Bruya GRPH	Friedman & Bruya, Inc.
HydroCon	gasoline-range petroleum hydrocarbons HydroCon Environmental, LLC
ID	identification
IRAWP	Interim Remedial Action Work Plan
LNAPL	light non-aqueous phase liquid
MDL	method detection limit
MPE	multi-phase extraction
MRL	method reporting limit
MTBE	methyl tert-butyl ether
MTCA	Model Toxics Control Act
NWTPH-Dx	Northwest Total Petroleum Hydrocarbon – Diesel-Range Organics
NWTPH-Gx	Northwest Total Petroleum Hydrocarbon – Gasoline-Range Organics
ORPH	motor oil-range petroleum hydrocarbons
PACE	PACE Engineers, Inc.
PAH	polycyclic aromatic hydrocarbons
QA/QC	quality assurance / quality control
RI	remedial investigation
ROW	right-of-way
RW	remediation well
SES	SoundEarth Strategies, Inc.
Stantec	Stantec Consulting Services Inc.
SVE	soil vapor extraction
toc Ust	TOC Holdings Co.
VOC	underground storage tank volatile organic compound

List of Properties - TOC Site

TOC Property	24205 56th Avenue West, Mountlake Terrace, WA
TOC/Farmasonis Property	24225 56th Avenue West, Mountlake Terrace, WA
Drake Property	24309 56th Avenue West, Mountlake Terrace, WA
56th Avenue West ROW	Right-of-way adjacent to TOC, TOC/Farmasonis & Drake properties

List of Properties - Adjacent to TOC Site

Herman Property Shin/Choi Property

24311 56th Avenue West, Mountlake Terrace, WA 24325 56th Avenue West, Mountlake Terrace, WA 242nd Street Southwest ROW Right-of-way adjacent to TOC Property

Executive Summary

This report documents the field activities and groundwater quality results for the 2015 annual groundwater performance monitoring event associated with interim remedial actions at the TOC Holdings Co. (TOC) Facility No. 01-176 located in Mountlake Terrace, Snohomish County, Washington. Field activities were performed by Stantec Consulting Services Inc. (Stantec) as a subconsultant to HydroCon Environmental, LLC (HydroCon) on behalf of TOC. Ongoing groundwater monitoring is conducted under Agreed Order (AO) No. DE 8661, entered in October 2011 between TOC and the Washington State Department of Ecology (Ecology 2011). As specified in the AO, the Site encompasses the following four properties (collectively referred to as the "TOC Site") located in Mountlake Terrace, Washington:

- TOC Property: 24205 56th Avenue West;
- TOC/Farmasonis Property: 24225 56th Avenue West;
- Drake Property: 24309 56th Avenue West; and
- 56th Avenue West Right-of-Way (ROW): adjacent to the three properties identified above.

The groundwater monitoring scope of work defined in the IRAWP encompasses the four properties identified above as the "TOC Site" as well as the following two adjacent properties:

- Shin/Choi Property: 24325 56th Avenue West (south of the TOC Site) and
- 242nd Street Southwest ROW: adjacent to the TOC Property (north of the TOC Site).

Following completion of the IRAWP, monitoring wells were also installed on the following property between June 2013 and June 2015:

• Herman Property: 24311 56th Avenue West (directly south of the TOC Site).

Groundwater monitoring for the 2015 annual event conducted from March 11 through 20, 2015 included measuring depth-to-groundwater/depth-to-product (DTW/DTP) levels and collecting groundwater samples at all active wells.

DTW/DTP levels were measured at 89 well locations and groundwater samples were collected from 82 well locations. Of the 97 wells scheduled for groundwater performance monitoring, 12 could not be gauged due to insufficient groundwater in monitoring wells or because the top of pump was encountered in remediation wells at a depth above the groundwater level and access past the pump was not possible. In addition, 15 wells could not be sampled due to insufficient groundwater sample volume and one well was not sampled due to the presence of light non-aqueous liquid (LNAPL) in the well.

Laboratory analyses for selected petroleum-related constituents included:

- gasoline-, motor oil- and diesel-range petroleum hydrocarbons (GRPH, ORPH and DRP);
- benzene, toluene, ethylbenzene, and xylenes BTEX); and
- polycyclic aromatic hydrocarbons (PAHs).

Laboratory analyses for selected fuel additives and blending compounds included:

- methyl tert-butyl ether (MTBE);
- ethylene dibromide (EDB; 1,2-dibromoethane);
- ethylene dichloride (EDC; 1,2-dichloroethane); and
- total and dissolved lead.

Executive Summary

Data collected during the 2015 annual event confirmed the presence of three interconnected groundwater zones in the heterogeneous, glacial deposits found at the TOC Site. The three groundwater zones include:

- **Shallow Zone:** shallow, perched water-bearing zone encountered at approximately 5 to 20 feet below ground surface (bgs);
- Intermediate Zone: an unconfined, intermediate water-bearing zone ranging in depth between approximately 20 and 60 feet bgs; and
- **Deep Zone:** a deep zone that appears to be interconnected with the intermediate zone at depths (based on well screens) greater than 60 feet bgs.

Additionally, 16 wells (one of which was decommissioned) appear to have screen intervals that intersect multiple groundwater zones (either Shallow and Intermediate Zones, or Intermediate and Deep Zones) and may not represent the individual hydrogeological conditions of either zone. For discussion purposes, these monitoring and remediation wells are placed into five categories based on well screen intervals and intersected groundwater zones and include: 1) Shallow Zone; 2) Intermediate Zone; 3) Deep Zone; 4) Wells intersecting Shallow-Intermediate Zones; and 5) Well intersecting Intermediate-Deep Zones.

Groundwater contamination on the TOC, TOC/Farmasonis and Drake properties appears to have originated from historical gasoline releases on the TOC Property. As evidenced by downward vertical gradients and the resulting contaminant distribution, gasoline-related petroleum constituents appear to have migrated downward from the shallow to the intermediate groundwater zones below the TOC Property over time and then migrated downgradient onto the TOC/Farmasonis and Drake Properties to the south with groundwater flow. Minimal residual groundwater contamination remains in the shallow zone likely due to remediation in this zone between 1996 and 2005. Based on an evaluation of trends in the predominant contaminant concentrations (e.g., GRPH, benzene, and to a lesser extent, lead), concentrations of petroleum constituents in the intermediate groundwater zone appear to have decreased over time and only remain at a few locations on the TOC Property, on the southwestern side of the TOC/Farmasonis Property, and one location on the Drake Property. The reduction in groundwater concentrations can likely be attributed to operation of three remediation systems: one for the TOC Property (Unit 1), one for the TOC/Farmasonis Property (Unit 2), and one for the Drake Property (Unit 3). Both Units 2 and 3 are located within a single compound on the TOC/Farmasonis Property. Comparison of contaminant concentrations with groundwater levels over time indicate that an inverse relationship appears to occur, such that dissolved groundwater concentrations increase with decreasing groundwater levels. These trends imply that residual contamination in the soil is liberated when groundwater levels decrease during seasonal low periods. Vertical upward gradients between the deep and intermediate zones downgradient of the TOC Property appear to be effective in inhibiting further downward migration of contamination and effectively bounding the extent of vertical contamination.

Based on data collected at the downgradient boundary of the TOC Site, historical data from the adjacent properties to the south, and the presence of historical and potentially current underground storage tanks (USTs), groundwater contamination on the Herman and Shin/Choi Properties to the south appears to have originated from historical petroleum-related activities at those properties.

1.0 INTRODUCTION

This report presents the results of the 2015 annual groundwater performance monitoring event (2015 annual event) for the interim remedial actions at the TOC Holdings Co. (TOC) Facility No. 01-176 located in Mountlake Terrace, Snohomish County, Washington. Field activities were performed by Stantec Consulting Services Inc. (Stantec) as a subconsultant to HydroCon Environmental, LLC (HydroCon) on behalf of TOC.

1.1 Groundwater Monitoring Scope of Work

Ongoing groundwater monitoring is conducted under Agreed Order (AO) No. DE 8661, entered in October 2011 between TOC and the Washington State Department of Ecology (Ecology 2011). The scope of work is defined in the *Interim Remedial Action Work Plan* (IRAWP; SoundEarth Strategies, Inc. [SES], 2011) and is included as Exhibit C of the AO. Per the requirements of the IRAWP, the groundwater monitoring scope of work includes one annual field event (performed during the first quarter of each year) and three quarterly field events (performed during the second, third and fourth quarters of each year). As specified in the AO, the Site encompasses the following four properties (collectively referred to as the "TOC Site") located in Mountlake Terrace, Washington:

- TOC Property: 24205 56th Avenue West;
- TOC/Farmasonis Property: 24225 56th Avenue West;
- Drake Property: 24309 56th Avenue West; and
- 56th Avenue West Right-of-Way (ROW): adjacent to the three properties identified above.

The groundwater monitoring scope of work defined in the IRAWP encompasses the four properties identified above as the "TOC Site" as well as the following two adjacent properties:

- Shin/Choi Property: 24325 56th Avenue West (south of the TOC Site) and
- 242nd Street Southwest ROW: adjacent to the TOC Property (north of the TOC Site).

Following completion of the IRAWP, monitoring wells were also installed on the following property between June 2013 and June 2015:

• Herman Property: 24311 56th Avenue West (directly south of the TOC Site).

Groundwater monitoring is conducted to monitor and evaluate the performance and efficacy of three multi-phase extraction (MPE) remediation systems (described in **Sections 2.0 and 5.0**) located on the TOC Site and their effect on groundwater quality.

Initially, the scope of work defined in the IRAWP for the annual groundwater monitoring event included measuring depth-to-groundwater/depth-to-product (DTW/DTP) levels and collecting groundwater samples from 81 active monitoring and remediation wells located on five properties (TOC, TOC/Farmasonis, Drake, and the 56th Avenue and 242nd Street ROWs). The IRAWP scope of work for the annual event did not include monitoring of the four wells located on the Shin/Choi Property (south of the TOC Site) and the four decommissioned wells (SES 2011).

Introduction Groundwater Monitoring Report, 2015 Annual Event

The scope of work defined in the IRAWP for the quarterly groundwater monitoring events included collecting DTW/DTP level measurements for all active monitoring and remediation wells (excluding monitoring wells located on the Shin/Choi Property and MW75 located in the 56th Ave ROW) and collecting groundwater samples from 31 active wells installed on the TOC Site. Following completion of the IRAWP in 2011, one of the wells scheduled for quarterly sampling (MW21 located on the TOC Property) was decommissioned in 2012. Therefore, 30 active wells were selected for quarterly sampling.

Following completion of the IRAWP in July 2011, two additional monitoring wells were decommissioned and 18 new monitoring and remediation wells were installed at the locations identified in the table below.

Dronorthy Normo		Well ID				
Property Name	Newly Insta	Newly Installed Wells (1)				
TOC	• MW90 (4" RW)	• MW91 (4" RW)	• MW21			
TOC/Farmasonis	 MW92 (4" RW) MW93 (4" RW) 	MW94 (4" RW)MW100	• MW83			
Drake	 MW95 (4" RW) MW96 (4" RW) MW97 (4" RW) 	 MW98 (4" RW) MW99 (4" RW) MW101 (4" RW) 	None			
Herman	MW102MW103MW104	MW105MW106MW107	None			
Notes: ⁽¹⁾ Remediation wells (identified as "RW") are either 2 or 4 inches in diameter.						

Newly Installed Monitoring & Remediation Wells

At the time of the 2015 annual field event, 103 active monitoring and remediation wells were located on seven properties (the TOC, TOC/Farmasonis, Drake, Shin/Choi and Herman properties and the 56th Avenue and 242nd Street ROWs) and six wells have been decommissioned.

Following installation of the new wells on the TOC Site and Herman Property, the scope of work defined in the IRAWP was revised by Stantec for the annual and quarterly groundwater level measurement events to collect a more comprehensive data set in areas where additional data needs were identified. In addition to measuring DTW/DTP levels in the 77 wells identified in the IRAWP, the updated scope of work includes measuring DTW/DTP levels in the 12 new wells installed on the TOC Site during annual and quarterly field events and measuring DTW/DTP levels in the six new wells installed on the Herman Property during the annual field event only.

In addition to sampling the wells identified in the IRAWP, the groundwater sampling scope of work was revised by Stantec for the annual field event to include sampling of all 18 newly installed wells as well as the four wells located Shin/Choi Property for a total of 101 total wells. The wells located on the Shin/Choi Property are included in the annual event scope of work for the purpose of obtaining additional information regarding contaminant distribution. The groundwater sampling scope of work for the quarterly field events did not change.

1.2 2015 Annual Event Groundwater Monitoring Activities

This report presents a description of groundwater monitoring activities performed by Stantec for the 2015 annual event from March 11 to 20, 2015 and an evaluation of the field data and analytical results. Groundwater monitoring activities included collecting DTW/DTP level measurements and groundwater samples in accordance with the IRAWP and the modifications as described above. In addition to sampling the required wells, Stantec also collected samples from three of the four wells located on the Shin/Choi Property (MW72, MW73 and MW74) for the purpose of obtaining additional information regarding contaminant distribution but did not collect a groundwater sample from MW71 due to the presence of LNAPL in the well.

Sections 6.0 and 7.0 describe the groundwater monitoring scope of work and methodology and groundwater quality results for the 2015 annual event. **Section 8.0** describes the overall groundwater flow characteristics and groundwater contaminant and distribution trends.

2.0 DESCRIPTION & BACKGROUND

2.1 Description of TOC Site

As described in **Section 1.0**, the TOC Site is located in the City of Mountlake Terrace in Snohomish County, Washington (**Figure 1**), and encompasses three adjacent properties and a portion of the 56th Avenue West ROW (**Figure 2**). The TOC Site is located in a mixed residential and commercial area and surface topography slopes gently toward the south. The TOC Site is bordered by 242nd Street Southwest and commercial properties to the north; by residential properties to the east and west; and by the Herman Property and then vacant Mountlake Senior Property to the south. A description of each property included within the TOC Site is provided below.

- <u>TOC Property</u>: The vacant TOC Property consists of vegetated land with the exception of an asphalt area and graveled and fenced area housing a MPE remediation system (described in Section 5.0).
- <u>TOC/Farmasonis Property</u>: The TOC/Farmasonis Property consists of one commercial building (previously operating as a restaurant and currently vacant), an asphalt parking area, vegetated land, and a graveled and fenced area housing two MPE remediation systems (described in Section 5.0).
- **Drake Property**: The Drake Property consists of one commercial building (currently occupied by Getaway Tavern) and asphalt and gravel parking areas.
- <u>56th Avenue West ROW</u>: The portion of the 56th Avenue ROW included in the TOC Site borders the TOC, TOC/Farmasonis and Drake properties directly to the west.

2.2 Description of Adjacent Properties

In addition to the TOC Site, the scope of work (described in **Section 1.0**) includes a portion of the 242nd Street ROW (located directly north of the TOC Site) and two properties (the Herman and Shin/Choi properties) located directly south of the TOC Site. As shown on **Figure 2**, the Herman Property is bordered by the TOC Site to the north, and the Shin/Choi Property is directly south of the Herman Property. The Snohomish County boundary (located south of the Shin/Choi Property) is defined by 244th Street and the King County boundary is defined by 205th Street.

A description of the properties adjacent to the TOC Site and included in the current scope of work for groundwater monitoring is provided below.

- <u>Herman Property</u>: The Herman Property consists of one commercial building (occupied by Dave's Auto Service), an asphalt parking area and vegetated land.
- <u>Shin/Choi Property</u>: The Shin/Choi Property consists of one building (occupied by the EZ Corner Mart) and an asphalt parking area.
- <u>242nd Street Southwest ROW</u>: The portion of the 242nd Avenue ROW included in the scope of work is adjacent to the north boundary of the TOC Property.

2.3 Site Background

TOC operated a retail gasoline station on the TOC Property between 1968 and 1990. The facility included three underground storage tanks (USTs), six fuel dispensers and associated product delivery lines. One 8,000-gallon and two 6,000-gallon USTs and ancillary equipment were removed from the TOC Property in 1991 and petroleum constituents including gasoline-range petroleum hydrocarbons (GRPH), benzene, and total xylenes were observed in soil and groundwater in excess of the applicable Model Toxics Control Act (MTCA) Method A Cleanup Levels (Ecology 2007). Between 1992 and March 2015, site investigations were conducted to determine the extent of petroleum contamination and 107 monitoring and remediation wells (six of which have been decommissioned) were installed in three groundwater zones (defined as Shallow, Intermediate, and Deep and further described in Section 4.0) on the TOC Site and three adjacent properties (described in Sections 2.1 and 2.2).

In 1996, a dual-phase extraction (DPE) remediation system was installed at the TOC Property to remediate Shallow Zone groundwater impacted by petroleum hydrocarbons and remove LNAPL. The DPE system operated from February 1997 to June 2005 and was later removed following confirmation that the system effectively remediated Shallow Zone groundwater (SES 2013). In 2006, groundwater monitoring results collected by SES confirmed gasoline-related contamination extended directly downgradient of the TOC Property to the south and west.

In accordance with the AO, a remedial investigation (RI) was initiated at the TOC Site (SES 2013) and three MPE remediation systems (further discussed in **Section 5.0**) were installed between November 2011 and August 2012 to remediate residual petroleum-contaminated groundwater, soil vapor and LNAPL (if present) in the Intermediate Zone beneath and downgradient of the TOC Site. As shown on **Figure 3**, the MPE remediation systems are located within fenced enclosures on the TOC Property and TOC/Farmasonis Property and are served by remediation wells installed on the TOC, TOC/Farmasonis and Drake properties.

Available information regarding historical operations on the TOC/Farmasonis and Drake properties do not indicate the presence of USTs. Historical operations on the downgradient Herman and Shin/Choi properties indicate three USTs were removed from the Shin/Choi Property in 1991 and two USTs were removed from the Herman Property in 2001; however five additional USTs may still exist on the Herman Property. Available information on the locations of historical or current USTs and associated equipment downgradient properties is shown on **Figure 3**.

3.0 GEOLOGIC FRAMEWORK

The TOC Site is situated on the glacial upland plateau between Seattle and Everett, Washington, known as the Intercity Plateau (SES 2013). The regional geology of the TOC Site area consists of Pleistocene-age glacial till locally overlain by pockets of glacial recessional outwash sand.

The recessional outwash sand, which ranges in thickness from approximately 25 to 300 feet, is generally loose to medium dense sand and gravel with little or no fines, and may include ice contact deposits and ablation till. The glacial till, which represents the ground moraine of the Vashon glaciations, ranges from a few feet to over 50 feet thick and consists of dense to very dense gravelly, sandy silt to silty sand with variable amounts of clay, cobbles, and boulders. Groundwater is perched above and within the glacial till layer. Bedrock underlying the area consists of Tertiary sediment rocks (sandstone, shale, or conglomerate) over 900 feet deep beneath the TOC Site; therefore, bedrock is not relevant for the TOC Site characterization.

Based on the results of previous investigations conducted between 1991 and 2013, subsurface soil beneath the TOC Site consists primarily of local anthropogenic fill overlying Vashon-age glacial deposits. As reported in the *Draft RI Report* (SES 2013), the subsurface soil beneath the TOC Site is interpreted to consist of the following geologic units, from youngest to oldest: artificial (anthropogenic) fill, Vashon recessional outwash deposits, Vashon glacial till and Vashon outwash deposits.

4.0 HYDROGEOLOGIC FRAMEWORK

In the *Draft RI Report* (SES 2013), three separate groundwater zones were identified at the TOC Site, based on the lithology, well screen intervals and groundwater level measurements. Stantec evaluated the data as part of updates and revisions to the Conceptual Site Model (CSM), as required by Ecology, based on comments provided to SES from Ecology on the *Draft RI Report* (Ecology 2014). The results of the revised CSM will be provided to Ecology in a separate deliverable and will be incorporated into the final RI report prepared by Stantec.

Stantec agrees that three groundwater zones can be identified at the TOC Site; however, these zones do not appear to be separate, but are interconnected, as evidenced by the geology, groundwater elevations and contaminant distribution data. Also, the groundwater zones do not appear to be separated by distinct confining units defined by lower permeability lithology. Stantec's conceptualization of the hydrogeology is based on geologic field interpretations (e.g., boring logs) provided by SES and other consultants that previously managed the project, but will be supplemented by future investigations. Based on evaluation of the available data by Stantec, the three groundwater zones are defined in the following sections.

4.1 Shallow Water-Bearing Zone (Shallow Zone)

The Shallow Zone is a perched zone in the artificial fill or upper portion of the glacial till, at depths between approximately 5 to 20 feet below ground surface (bgs) throughout the TOC Site, depending on seasonal fluctuations of the water table. The saturation in these horizons can be seasonally discontinuous, as evidenced by some monitoring wells that are seasonally dry (e.g., MW04 during the December 2012 event), while other Shallow Zone wells monitored during the same season contain water. The primary source of recharge to the Shallow Zone is infiltration of natural precipitation through emplaced fill and native soil in unpaved areas. Other potential sources of recharge to the Shallow Zone reportedly included a former topographically closed depression, where surface runoff previously ponded, and a former stormwater infiltration pit, both of which were located in the southeast portion of the TOC Property (Figure 3). According to a 1975 TOC blueprint, the stormwater infiltration pit is located in proximity to MW18 and MW33; measures 10 feet square by 4 feet deep; and was backfilled with coarse gravel (Time Oil Co. 1975). Surface runoff intercepted by a catch basin located near the southeast corner of the paved asphalt area formerly discharged into the stormwater infiltration pit via a 6-inch-diameter drain pipe, which has been capped. Stantec was unable to confirm the location of the closed depression or the stormwater infiltration pit on the TOC Property during March 2014 site work.

4.2 Intermediate Water-Bearing Zone (Intermediate Zone)

The Intermediate Zone is an unconfined groundwater zone that is observed at depths between approximately 20 and 60 feet bgs. As reported by SES (2013), this zone consists of glacial till deposits between approximately 20 and 40 feet bgs and discontinuous sand and/or gravel-rich glacial deposits within the lower portion of the glacial till between approximately 40 and 60 feet bgs. As discussed further in **Section 7.1**, groundwater elevations in the Intermediate Zone of the TOC Property appear to be mounded such that the upper boundary of the Intermediate Zone appears closer to the base of the Shallow Zone in the vicinity of the UST excavation fill area and former

stormwater infiltration pit. Explanations for the observed groundwater mounding are likely related to artificial recharge within the backfill of the former UST cavity, depression, and infiltration pit; the presence of low permeability deposits near the downgradient edge of the property; and/or from localized influence of the vacuum from the soil vapor extraction (SVE) system for the remediation system located on the TOC Property (see Section 5.0). The low permeability deposits in the upper portion of the intermediate groundwater bearing zone impede the vertical percolation of water into the deeper groundwater zones and decrease the horizontal flux of the groundwater in the immediate vicinity. The prevalence of low permeability deposits correlates with the location of steeper horizontal hydraulic gradients in this area (see Section 7.1). In downgradient areas where the Intermediate Zone consists primarily of higher permeability units (i.e., sands and gravels), the thickness of unsaturated materials and the distance between the Shallow and Intermediate Zones increase. The higher permeability deposits contribute to a flattening of the horizontal hydraulic gradient. The Intermediate Zone appears to receive recharge from natural precipitation via the Shallow Zone. A comparison of groundwater elevations and analytical data suggests that the Intermediate Zone is considered to be the current primary contaminant transport pathway at the TOC Site.

4.3 Deep Water-Bearing Zone (Deep Zone)

The Deep Zone consists of glacial sand and gravel located at depths greater than 60 feet bgs, based on deep well screen intervals. Within the vicinity of the artificial recharge area on the TOC Property, the groundwater elevation data indicate that downward vertical gradients appear to exist between all three zones. In downgradient areas, the groundwater elevation data suggest that vertical gradients shift from downward (between the Shallow and Intermediate Zones) to neutral or slightly upward (between the Intermediate and Deep Zones). Based on these observations and the presence of fully saturated well screens, these groundwater level conditions could be a reflection of a higher permeability zone at the base of a single groundwater unit that includes both the Intermediate and Deep Zones or could represent semi-confined conditions in a separate, but interconnected groundwater zone; however, the presence of a low permeability confining unit between the two zones is not obvious in the available data. The presence of upward vertical gradients between the Deep and Intermediate Zones appear to be effective in inhibiting downward migration of contamination in downgradient areas and effectively bounding the extent of vertical contamination.

4.4 Well Screen Intervals Intersecting Multiple Water-Bearing Zones

Additionally, based on evaluation of available SES data by Stantec, 16 wells (one of which was decommissioned) appear to have screen intervals that intersect multiple groundwater zones (either Shallow and Intermediate Zones, or Intermediate and Deep Zones) and may not represent the individual hydrogeological conditions of either zone. Because shallow zone contamination in the area where these wells are located has been remediated, there is no potential for cross-contamination between groundwater zones. For discussion purposes, monitoring and remediation wells are placed into five categories based on well screen intervals and intersected groundwater zones, including: 1) Shallow Zone; 2) Intermediate Zone; 3) Deep Zone; 4) Wells intersecting Shallow-Intermediate Zones; and 5) Well intersecting Intermediate-Deep Zones. These five categories are defined in **Section 7.0**.

5.0 **REMEDIATION SYSTEM STATUS**

In accordance with the AO, three MPE remediation systems were installed between November 2011 and August 2012 to remediate residual petroleum-contaminated groundwater, soil vapor and LNAPL (if present) in the Intermediate Zone beneath and downgradient of the TOC Site. As shown on Figure 3, the MPE remediation systems are located within fenced enclosures on the TOC Property and TOC/Farmasonis Property and are served by remediation wells installed on the TOC, TOC/Farmasonis and Drake properties.

At the time of the 2015 annual field event, 22 of 23 remediation wells were actively serving the MPE remediation systems. The table below identifies the remediation wells connected to each system and their location. Operation of all three MPE remediation systems is ongoing.

System ID	System Location	Remediation Well ID	Remediation Well Location
Unit 1	TOC Property	• MW11 • MW29	TOC Property
		• MW15* • MW32	
		• MW18 • MW90	
		• MW24 • MW91	
		• MW27	
Unit 2	TOC/Farmasonis Property	• MW31 • MW92	TOC/Farmasonis Property
		• MW41 • MW93	
		• MW57 • MW94	
Unit 3	TOC/Farmasonis Property	• MW69 • MW97	Drake Property
		• MW70 • MW98	
		• MW95 • MW99	
		• MW96 • MW101	
Notes:			

Wells Serving MPE Remediation Systems

*MW15 was operating as a remediation well at the time of the 2Q2014 field event. Due to the consistent presence of biological buildup in the well, the remediation pump was removed on December 16, 2014 and MW15 is currently operating as a monitoring well.

During the past year (from 2Q2014 through 1Q2015) the MPE remediation systems have operated nearly continuously with the exception of maintenance for the blower at Unit 2. However, groundwater extraction and treatment at Unit 2 continued during vapor extraction down-time associated with blower maintenance. A summary of performance activities is provided below. Additional information describing the performance of the MPE remediation systems is provided in the Operation and Maintenance Report, First Quarter 2015 (Stantec 2015).

- From 2Q2014 through 1Q2015, a combined total of 260.4 pounds of vapor-phase hydrocarbons were removed from Units 1, 2 and 3. As of 1Q2015, a cumulative total of approximately 3,050 pounds of vapor-phase hydrocarbons have been removed since startup of the three MPE systems in October 2012.
- From 2Q2014 through 1Q2015, a combined total volume of approximately 1.63 million gallons of groundwater was extracted, treated and discharged from Units 1, 2 and 3. As of 1Q2015, the total volume of water processed since startup of the three MPE systems in October 2012 is approximately 2.87 million gallons.

Remediation System Status Groundwater Monitoring Report, 2015 Annual Event

Generally, there are reductions in groundwater concentrations in areas influenced by the remediation system. In some monitoring wells (e.g., MW27 & MW48) an increase in some contaminant concentrations was observed for the 1Q2015 (see Sections 7.2.2 and 8.3), with this likely attributed to high seasonal groundwater. Overall, the reduction in groundwater concentrations (over time) can likely be attributed to operation of the three MPE remediation systems.

Stantec conducted a comparison of groundwater elevations measured during system operation with those measured during system shut-down in the vicinity of MW48 located on the Drake Property where GRPH and benzene concentrations continue to be elevated above MTCA Method A levels, as shown in the table below.

Wall ID	Groundwater	Elevation (feet)	Notos (Observations	
Well ID	System Off	System On	Notes/Observations	
MW44	MW44 Dry Dry		Unable to measure DTW due to insufficient groundwater level.	
MW45	318.42	318.38		
MW48	314.75	313.96	trace (<0.01) product in well	
MW49	314.98	314.31		
MW57	314.74	Dry		
MW63	314.40	313.71		
MW96 (4" RW)	314.78	317.49		

Groundwater Elevations for Selected Wells

The purpose of the comparison was to evaluate whether the active remediation wells located in the vicinity of MW48 (MW57 and MW96) were adequately lowering the groundwater elevations in this area so that remediation was progressing. To better facilitate lowering of groundwater elevations in this area, bottom-loading extraction pumps were also installed in these remediation wells in February 2015. The evaluation indicated that groundwater levels decreased at MW48 during this measurement event by about 0.8 feet during pumping in comparison to 2.7 feet at the downgradient remediation well (MW96). These data and the data from the other wells in the vicinity (see table above) indicate that contamination migration near MW48 is being adequately contained. As presented in **Section 8.3.2**, the concentration of GRPH in well MW48 decreased to 12,000 µg/L in March 2015 from 33,000 µg/L in March 2014, indicating that the remediation system appears to be successful in reducing concentrations in this area; however, concentrations at this location have been variable over time. Success of the remediation system at this location will continue to be assessed during future monitoring events.

6.0 GROUNDWATER MONITORING SCOPE OF WORK & METHODOLOGY

The 2015 annual groundwater monitoring event was conducted by Stantec from March 11 to 20, 2015. The sections below summarize the monitoring locations, field methods and protocols used by Stantec and any deviations from the scope of work defined in the IRAWP (described in **Section 1.1**). Additional information regarding field and laboratory methodology is provided in the *Groundwater Monitoring Plan* provided as **Appendix A**.

6.1 Depth-to-Groundwater/Depth-to-Product Level Measurements

Stantec measured DTW/DTP levels while the remediation systems were off on March 17, 2015 for the active monitoring and remediation wells located on the TOC Site and adjacent properties. The measurements were collected after turning off the remediation systems for 5 days and allowing groundwater levels to equilibrate. Stantec also measured DTW/DTP levels for several wells located in the Intermediate Zone (MW44, MW45, MW48, MW49, MW57, MW63 and MW96) while the remediation systems were operating to assess how pumping was influencing groundwater flow and to assess performance of the remediation systems (see **Section 5.0**). Groundwater levels were permitted to equilibrate with atmospheric pressure prior to recording the measurements.

Stantec measured DTW/DTP levels relative to the top of the well casings to an accuracy of 0.01 feet using an electronic water level meter. Where LNAPL was previously observed or expected to occur, an oil/water interface probe was used to check for the presence of LNAPL and measure the DTW. When more than one water level meter is selected for a field event, Stantec collects a baseline measurement using each instrument at one well location to check for consistency between the instruments. Any differences between measurements were then used to calibrate the instruments and correct the groundwater elevations, if necessary.

As shown on **Table 1-1**, 89 wells were successfully gauged for DTW/DTP levels during the annual 2015 annual event. The wells identified in the table below were included in the annual groundwater monitoring event scope of work but could not be gauged due to insufficient groundwater in monitoring wells or because the top of pump was encountered in remediation wells at a depth above the groundwater level and access past the pump was not possible.

Well ID*	Property	Well ID*	Property	Well ID*	Property
MW13	56th Ave ROW	MW31 (2" RW)	TOC/Farmasonis	MW44	56th Ave ROW
MW18 (4" RW)	TOC	MW35	TOC	MW70 (2" RW)	Drake
MW27 (2" RW)	TOC	MW41 (2" RW)	TOC/Farmasonis	MW94 (4" RW)	TOC/Farmasonis
MW29 (2" RW)	TOC	MW42	TOC/Farmasonis	MW99 (4″ RW)	Drake
Notes:					

Wells not Gauged during Field Event

*Remediation wells (identified as "RW") are 2 or 4 inches in diameter. 2-inch remediation wells with groundwater levels below the pump could not be gauged because the diameter of water probe was too large to fit past the pump tubing.

DTW/DTP level and groundwater elevation results are presented in Section 7.1.

6.2 Groundwater Sample Collection

Stantec attempted to collect groundwater samples from the locations selected for the annual monitoring event (see **Section 1.1**) between March 11 and 20, 2015. Of the 97 active wells scheduled for sampling at the time of the 2015 annual event, 15 could not be sampled due to insufficient groundwater sample volume and one well (MW102 on the Herman Property) was not sampled due to the presence of LNAPL in the well. Wells that could not be sampled due to insufficient groundwater volume are identified in the table below.

In addition to the 97 wells scheduled for sampling, Stantec also scheduled sampling of the four wells located on the Shin/Choi Property for the purpose of obtaining additional contaminant distribution information. One of these wells (MW71) was not sampled due to the presence of LNAPL in the well.

Sample Location/ Well ID*	Property	Sample Location/ Well ID*	Property	Sample Location/ Well ID*	Property
MW13	56th Ave ROW	MW33	TOC	MW44	56th Ave ROW
MW15 (4″ RW)	TOC	MW35	TOC	MW45	56th Ave ROW
MW18 (4″ RW)	TOC	MW36	TOC	MW46	56th Ave ROW
MW23	TOC	MW41 (2″ RW)	TOC/Farmasonis	MW47	56th Ave ROW
MW31 (2″ RW)	TOC/Farmasonis	MW42	56th Ave ROW	MW94 (4″ RW)	TOC/Farmasonis
Notes:					
*Remediation wells (identified as "RW") are 2 or 4 inches in diameter.					

Wells not Sampled during Field Event (due to insufficient groundwater volume)

Groundwater quality results are presented in **Section 7.0**. LNAPL samples were not collected during the 2015 annual event and measurable LNAPL was not present in wells located on the TOC Site. Only wells located on the Herman and Shin/Choi properties (MW102 and MW71, respectively) contained LNAPL.

6.2.1 Groundwater Sampling Methods & Procedures

The groundwater sampling methods used by Stantec for the 2015 annual event are identified below. The sampling method used to collect each sample is identified on **Tables 2-1 through 6-2**.

- Pneumatic Pump: For wells connected to a MPE remediation system, Stantec collected groundwater samples using a dedicated downhole pneumatic pump. The pneumatic pumps deliver a pulse of groundwater to the wellhead whenever the groundwater table rises above the pump intake. One set of field parameters was collected from the pneumatic pumps for the remediation wells sampled. Groundwater samples were collected from the pneumatic pump directly into laboratory-prepared sample containers using disposable polyethylene tubing.
- **Peristaltic Pump:** Stantec collected groundwater samples using a peristaltic pump in accordance with low-flow protocols (EPA 1996) for monitoring wells with DTW levels less than 31 feet bgs, (due to the inability of the pump to lift the water for sampling from greater depths). Purging and sampling with a peristaltic pump was performed using disposable polyethylene tubing dedicated to each well at flow rates of 0.1 liters per minute.

- Submersible Pump: For monitoring wells with DTW levels greater than 31 feet bgs (in which a peristaltic pump could not be used), Stantec collected samples using a submersible pump in accordance with low-flow protocols (EPA 2010). Submersible pumps were used in wells that had insufficient groundwater recharge rates and/or insufficient water column heights. Purging and sampling with a submersible pump was performed using disposable polyethylene tubing at flow rates ranging from 0.1 to 0.5 liters per minute. If the water table was above the top of the screen and, hence, the well screen was saturated, the intake tubing of the submersible pump was placed approximately in the middle of the screen. If however the groundwater table was below the top of the screen and, hence, the well screen and, hence, the well screen and hence, the well screen was not fully-saturated, the intake tubing of the submersible pump was placed near the middle of the water column in the well.
- Bailer: For monitoring wells with DTW levels greater than 31 feet bgs that could not be sampled using a submersible pump, a disposable polyethylene bailer was used in accordance with low-flow protocols (EPA 1996). The bailer sampling method was the last selected method and was only used under the following circumstances:
 - Historical analytical results indicated that elevated turbidity associated with bailing likely would not result in detectable concentrations of petroleum hydrocarbons in groundwater samples.
 - Historical water columns are less than five feet and recharge makes sampling with a submersible pump problematic.

Well purging and groundwater sampling with disposable bailers required the removal of at least three well volumes from each monitoring well prior to sampling. Upon removal of at least three well volumes of groundwater, water samples were collected from the bailer directly into laboratory-prepared sample containers. If purging of three well volumes from the well was not possible due to slow recharge, the wells were allowed to recharge several hours or overnight before samples were collected.

• QA/QC Sampling Methods: Stantec collected blind field duplicate samples from seven locations (MW02, MW09, MW20, MW28, MW65, MW86 and MW104). The duplicate was collected by the same sampling method used to collect the primary sample. The results of the QA/QC samples are discussed in Section 6.4.

When purging and sampling in accordance with low-flow protocols (EPA 2010), Stantec monitored groundwater field parameters using a YSI Inc. water quality field meter equipped with a flow-through cell (except when sampling groundwater using a bailer). Field parameters, including temperature, pH, specific conductance, dissolved oxygen, turbidity, and oxidation-reduction potential were monitored and recorded.

Following purging and stabilization of the field parameters, groundwater samples were collected from the pump outlet tubing located upstream of the flow-through cell and placed directly into laboratory-prepared sample containers. Purge water generated during this sampling event was placed in labeled 55-gallon steel drums and temporarily stored on the TOC Property for transfer to the remediation systems for treatment and permitted discharge to the sanitary sewer.

Each set of sample containers was labeled with a unique sample identification number, placed on ice in a cooler and transported to licensed analytical laboratory, Friedman & Bruya, Inc. (Friedman & Bruya) located in Seattle, under standard chain-of-custody protocols for laboratory analysis.

6.3 Laboratory Analyses

6.3.1 Groundwater Samples

The types of laboratory analyses performed by Friedman & Bruya for groundwater samples collected during the quarterly field event are identified in the table below. The data were validated by Stantec and, in some cases, qualifiers were assigned. Results are reported between the method detection limits (MDLs) and the method reporting limits (MRLs) for all data packages. These results are typically reported as "not detected" when below the MRLs. In cases where the MRLs were not below MTCA Method A Cleanup Levels for groundwater, the results between the MDL and MRL are reported, but are considered estimates that are used for informational purposes only.

Hazardous Substance	Method of Analysis	Sample Location / Well ID			
Gasoline-Range Petroleum	NWTPH-Gx	Analyses performed for all groundwater samples			
Hydrocarbons (GRPH)		collected during field event.			
Oil-Range Petroleum	NWTPH-Dx	• MW20 • MW73 • MW91 • MW105			
Hydrocarbons (ORPH)		• MW66 • MW74 • MW103 • MW106			
		• MW72 • MW86 • MW104 • MW107			
Diesel-Range Petroleum	NWTPH-Dx	Samples collected from locations listed for ORPH			
Hydrocarbons (DRPH)		analyses were also analyzed for DRPH.			
Benzene, Toluene,	EPA Method 8021B or	Analyses performed for all groundwater samples			
Ethylbenzene, & Total	EPA Method 8260C	collected during field event.			
Xylenes (BTEX)					
Methyl Tertiary-Butyl Ether	EPA Method 8260C	• MW20 • MW73 • MW87 • MW99			
(MTBE)		• MW65 • MW74 • MW88 • MW101			
		• MW66 • MW76 • MW89 • MW103			
		• MW67 • MW77 • MW91 • MW104			
		• MW68 • MW78 • MW95 • MW105			
		• MW69 • MW84 • MW96 • MW106			
		• MW70 • MW85 • MW97 • MW107			
		• MW72 • MW86 • MW98			
1,2-Dicholoroethane/	EPA Method 8260C	• MW72 • MW86 • MW104 • MW106			
Ethylene Dichloride (EDC)		• MW73 • MW103 • MW105 • MW107			
		• MW74			
1,2-Dibromoethane/	EPA Method 8011M	See list provided for EDC analysis.			
Ethylene Dibromide (EDB)					
Lead (total & dissolved)	EPA Method 200.8	• MW32 • MW74 • MW101 • MW106			
		• MW48 • MW86 • MW103 • MW107			
		• MW72 • MW90 • MW104			
		• MW73 • MW91 • MW105			

6.4 QA/QC Sampling Methods & Data Quality Review

The scope of work for all groundwater monitoring events included collection and laboratory analyses of groundwater samples for QA/QC purposes. QA/QC samples collected for the 2015 annual groundwater monitoring event are described below. Analytical laboratory reports are provided as **Appendix B**.

• Field Blank Samples: Field blank samples collected during this event are described in the table below.

Sample Type	Sample ID	Description
Water Blank	 WB-031815 	One water blank was collected from clean water
		used to rinse and decontaminate field equipment.
Equipment/Rinsate Blanks	• EB-031315	Equipment/rinsate blanks were collected from
	 EB-031415 	water poured through submersible pumps.
	 EB-031615 	
	 EB-031815 	
	 EB-031915 	
	• EB-032015	

• Field Duplicates: Blind field duplicate samples were collected using the same sampling equipment methods from the locations identified in the table below.

Sample Location/Well ID	Sampling Method	Primary Sample ID	Duplicate Sample ID
MW02 (TOC Property)	Peristaltic Pump	MW02	MLT-01
MW09 (TOC Property)	Peristaltic Pump	MW09	MLT-02
MW20 (TOC Property)	Submersible Pump	MW20	MLT-03
MW28 (TOC)	Submersible Pump	MW28	MLT-04
MW65 (Drake Property)	Submersible Pump	MW65	MLT-05
MW86 (Drake Property)	Submersible Pump	MW86	MLT-06
MW104 (Herman Property)	Peristaltic Pump	MW104	MLT-07

7.0 GROUNDWATER MONITORING RESULTS

Groundwater monitoring results for the 2015 annual groundwater monitoring event are organized by monitoring well categories based on groundwater zone, well screen intervals, and intersected groundwater zones (see discussion in **Section 4.0**). The five monitoring well categories include:

- 1. Shallow Zone Wells,
- 2. Intermediate Zone Wells,
- 3. Deep Zone Wells,
- 4. Shallow-Intermediate Zone Intersect Wells, and
- 5. Intermediate-Deep Zone Intersect Wells.

7.1 Groundwater Elevations

Groundwater elevations based on DTW/DTP data collected during the 2015 annual event were contoured by Stantec and used to identify groundwater flow direction and hydraulic gradients (**Figures 4 through 6**). The DTW/DTP level measurements and groundwater elevations are summarized in the following sections and provided on **Table 1-1**.

The groundwater elevations provided on **Table 1-1** are based on a survey performed by PACE Engineers, Inc. (PACE) in April and May 2014. It should be noted that DTW/DTP level measurements were collected by Stantec when the remediation systems were turned off to better represent baseline (i.e., non-pumping) groundwater flow patterns. The systems were turned off on March 12, 2015, and groundwater levels were allowed to recharge for several days prior to the DTW/DTP measurement event on March 17, 2015. As mentioned in **Section 6.1**, Stantec also measured DTW/DTP levels at selected wells while the remediation systems were operating for comparison of groundwater conditions during pumping and non-pumping periods.

DTW level measurements during non-pumping conditions ranged from 8.88 feet bgs for MW61 (located within the 56th Avenue ROW in the Shallow Zone) to 45.77 feet bgs for MW26 (located on the TOC Property in the Deep Zone). Measurable LNAPL was observed in MW71 (located on the Shin/Choi Property) and MW102 (located on the Herman Property) and is discussed in **Section 8.5**.

As discussed in **Section 4.0**, the groundwater zones at the TOC Site appear to be interconnected. Within and in the vicinity of the artificial recharge area on the TOC Property, the groundwater elevation data indicate that downward vertical gradients appear to exist between all three zones, as shown on **Figure 7** for wells MW62 (Shallow Zone), wells MW20 and MW32 (Intermediate Zone) and MW53 (Deep Zone). Downgradient of this area, the groundwater elevation data appear to indicate that the downward vertical gradient increases between the shallow and intermediate zones, but shifts to a slightly upward gradient between the intermediate and deep zones, as shown on **Figure 8**. Groundwater elevations between the intermediate and deep zones are similar, but the deep zone elevations are typically slightly elevated above the intermediate zone. The presence of upward vertical gradients between the deep and intermediate zones downgradient of the TOC Property appear to be effective in inhibiting downward vertical flow of groundwater and migration of contamination in downgradient areas and effectively bounding the extent of vertical contamination.

A summary of groundwater elevations for each well network is provided in the following sections.

7.1.1 Shallow Zone

Consistent with groundwater elevation data collected during previous events, groundwater flow in the Shallow Zone appears to be predominantly to the south-southeast, as shown on **Figure 4**. A relatively consistent horizontal hydraulic gradient ranging from approximately 0.02 to 0.05 feet/feet is present across the southern portion of the TOC Site (i.e., TOC/Farmasonis and Drake Properties); however, in the northern area of the TOC Site (in the southern portion of the TOC Property), steepening of the gradient to about 0.1 feet/feet occurs. As discussed in **Section 4.1**, this steepening could be related to increased infiltration in this area through emplaced fill from the UST excavation or from the former topographically closed depression, where surface runoff previously ponded, and the former stormwater infiltration pit.

7.1.2 Intermediate Zone

Similar to the Shallow Zone, groundwater flow in the Intermediate Zone appears to be generally to the south-southeast based on previous groundwater elevations and those measured during this field event, as shown on Figure 5. Horizontal hydraulic gradients ranging from approximately 0.05 to 0.8 feet/feet occur across the TOC Site. As discussed in Section 4.2 and shown on Figure 5, steepening in the slope of the horizontal gradient is apparent in the vicinity of the TOC Property's southern boundary and is thought to be related to mounding of groundwater in the area of the TOC Property. This mounding could reflect the combined influences of the following: artificial recharge associated with emplaced fill in the former UST area and stormwater infiltration pit and depression; and/or the apparent presence of low permeability material restricting groundwater flow in that area. Also, localized mounding effects appear to be present in direct vicinity to some of the remediation wells (MW15, MW32 and MW91), likely associated with vacuum effects from the SVE components of the remediation systems. As groundwater moves downgradient and encounters higher permeability layers (e.g., gravels and sands), the horizontal hydraulic gradient flattens significantly as is evident from the potentiometric surface on Figure 5. The areas of depressed groundwater elevations on the TOC/Farmasonis Property and Drake Property at MW96 are likely related to influence of the remediation systems (Units 2 and 3, respectively) when operating.

7.1.3 Deep Zone

Groundwater flow in the Deep Zone appears to be generally to the southeast based on groundwater elevations measured during previous events and this field event, as shown on **Figure 6**. The horizontal hydraulic gradient is relatively flat at an average of approximately 0.006 feet/feet likely because the wells are screened in high permeability material.

7.1.4 Well Screens Intersecting Multiple Zones

As previously mentioned, the well screens in 16 monitoring and remediation wells appear to intersect conditions of multiple groundwater zones. Since the groundwater level elevations for these wells do not correlate with a single groundwater zone, they appear anomalous when included with groundwater elevations representing a single groundwater zone, as shown on **Figure 5**; therefore,

the data from these wells were not used for groundwater contouring. The groundwater elevation data collected from the wells intersecting two groundwater zones are described below.

7.1.4.1 Shallow-Intermediate Zone Intersect Wells

Fifteen monitoring and remediation wells appear to have screened intervals that intersect both Shallow and Intermediate Zone conditions (MW08, MW09, MW18, MW22, MW24, MW27, MW28, MW29, MW37, MW38, MW43, MW82, MW83, MW88 and MW100). Groundwater elevations for these wells are typically lower than Shallow Zone wells but higher than Intermediate Zone wells due to influence of groundwater conditions from both the Shallow and Intermediate Zones.

7.1.4.2 Intermediate-Deep Zone Intersect Wells

One monitoring well (MW16) appears to have a screened interval that intersects both Intermediate and Deep Zone conditions. The well has been dry during many sampling events but, when measured, the groundwater elevations are typically lower than other Intermediate Zone wells due to influence from the Deep Zone.

7.2 Groundwater Quality Results

Tables 2-1 through 6-2 summarize analytical results for the wells sampled during the 2015 annual field event. The types of laboratory analyses performed by Friedman & Bruya for the groundwater samples collected during the quarterly event are identified on the table in **Section 7.3** and laboratory reports are provided in **Appendix B**. As shown on the attached tables, the analytical results indicate several constituents were detected in groundwater samples at concentrations above the MRLs (i.e., detected concentrations) and above MTCA Method A Cleanup Levels.

A summary of the analytical results that exceed the MTCA Method A Cleanup Levels for each well network is provided in the following sections.

7.2.1 Shallow Zone

The Shallow Zone well network includes 20 active monitoring wells. The scope of work defined in the IRAWP for the annual field event requires groundwater sampling of all Shallow Zone wells excluding MW71 and MW72 installed on the Shin/Choi Property. However, as discussed in **Section 1.1**, Stantec collected a sample from MW72 for the purpose of obtaining additional information regarding contaminant distribution. MW71 and MW102 were not sampled due to the presence of LNAPL.

The table on the following page identifies groundwater samples exceeding MTCA Method A Cleanup Levels for Shallow Zone wells. **Tables 2-1 and 2-2** summarize the analytical results for all groundwater samples collected from Shallow Zone wells. Concentration distribution maps for GRPH and benzene in groundwater within the Shallow Zone during the annual 2015 event are provided as **Figures 9 and 10**, respectively.

Analyte	MTCA Method A Cleanup Level (µg/L)	Sample Location/ Well ID	Property	Analytical Results (µg/L)
GRPH	1,000 or 800 when benzene is present	MW71 MW72 MW102 MW104**	Shin/Choi Herman	LNAPL* 130,000 LNAPL* 15,000
ORPH	500	MW104**	Herman	730
DRPH	500	MW72 MW104**	Shin/Choi Herman	15,000 11,000
Benzene	5	MW72	Shin/Choi	1,400
Toluene	1,000	MW72	Shin/Choi	15,000
Ethyl-Benzene	700	MW72	Shin/Choi	2,300
Total Xylenes	1,000	MW72 MW104**	Shin/Choi Herman	18,000 2,460
EDB	0.01	MW72	Shin/Choi	0.37

Analytical Results for Groundwater Samples Exceeding Cleanup Levels (Shallow Zone Wells)

Notes:

*Indicates groundwater sample was not collected due to presence of LNAPL in the well. However, because LNAPL is present, GRPH concentrations are considered to exceed the MTCA Method A cleanup level.

**Indicates duplicate sample was collected for QA/QC purposes. The analytical results reflect the highest concentration of the two samples collected.

As the results from the 2015 annual event indicate, Shallow Zone groundwater at the TOC Site does not contain contaminants that exceed MTCA A Cleanup Levels. Based on historical distribution of contaminants in the Shallow Zone that indicate that shallow contamination did not extend as far south as the Drake Property, the Shallow Zone contamination that is observed on the Herman and Shin/Choi properties appears to be associated with the current or former presence of underground storage tanks (USTs) at those properties.

7.2.2 Intermediate Zone

At the time of the 2015 annual event, the Intermediate Zone monitoring well network included 60 active monitoring and remediation wells (18 of which are currently used as remediation wells). The scope of work defined in the IRAWP for the annual field event requires groundwater sampling of all Intermediate Zone wells excluding MW73 and MW74 installed on the Shin/Choi Property. However, as discussed in **Section 1.1**, Stantec collected samples from MW73 and MW74 for the purpose of obtaining additional information regarding contaminant distribution.

The table on the following page identifies groundwater samples exceeding MTCA Method A Cleanup Levels for Intermediate Zone wells. **Tables 3-1 and 3-2** summarize the analytical results for the groundwater samples collected from Intermediate Zone wells. Concentration distribution maps for benzene and GRPH in groundwater within the Intermediate Zone are provided as **Figures 11 and 12**, respectively

Analyte	MTCA Method A Cleanup Level (µg/L)	Sample Location/ Well ID	Property	Analytical Results (µg/L)
GRPH	1,000 or 800 when benzene is present	MW48 MW69 MW73 MW74 MW90	56th Ave ROW Drake Shin/Choi Shin/Choi TOC	12,000 2,700 70,000 11,000 3,100
DRPH	500	MW73 MW74	Shin/Choi Shin/Choi	3,100 1,100
Benzene	5	MW48 MW73 MW74 MW103 MW107	56th Ave ROW Shin/Choi Shin/Choi Herman Herman	120 14,000 3,100 34 8
Toluene	1,000	MW73	Shin/Choi	2,300
Ethyl-Benzene	700	MW73	Shin/Choi	1,800
Total Xylenes	1,000	MW48 MW73	56th Ave ROW Shin/Choi	1,900 9,300
MTBE	20	MW74	Shin/Choi	400
EDC	5	MW74	Shin/Choi	64
EDB	0.01	MW73 MW74	Shin/Choi Shin/Choi	0.64 0.013
Total Lead	15	MW32	TOC	28

Analytical Results for Groundwater Samples Exceeding Cleanup Levels (Intermediate Zone Wells)

As shown in the above table and on **Figures 11 and 12**, GRPH concentrations exceeding MTCA Method A Cleanup Levels are focused in the following three areas on the TOC Site:

- in the vicinity of MW90 in the northwestern corner of the TOC Property (in the historic UST excavation area);
- in the vicinity of MW48 near the western corner of the TOC/Farmasonis and Drake property line (the benzene concentration at this location also exceeds the MTCA Method A Cleanup Level); and
- in the vicinity of MW69 in the southwestern area of the Drake Property.

GRPH concentrations also exceeded MTCA A Cleanup Levels at MW73 and MW74 located on the Shin/Choi Property (Figure 11).

GRPH concentrations at MW103, MW105 and MW107 located on the Herman Property (immediately south of the TOC Site) and the Shin/Choi Property (immediately south of the Herman Property) were non-detect or significantly less that the MTCA A Cleanup Level (MW103 at 120 µg/L). This distribution indicates that the source of the GRPH contamination appears to be separate from the source for the TOC Site.

Benzene concentrations exceeded MTCA A Cleanup Levels at three of the well locations described above (MW48 on the TOC Property and MW73 and MW74 on the Shin/Choi Property) as well as MW103 and MW107 near the southern boundary of the Herman Property (**Figure 12**).

7.2.3 Deep Zone

The Deep Zone monitoring well network includes six active monitoring wells. As required by the scope of work defined in the IRAWP, groundwater samples were collected from all six active wells in this zone during the 2015 annual field event. As shown on **Tables 4-1 and 4-2**, the analytical results of the samples collected from the Deep Zone did not exceed MTCA Method A Cleanup Levels during this sample event, as was the case during all previous sampling events, indicating that groundwater contamination associated with the TOC Site has not migrated into the Deep Zone.

7.2.4 Well Screens Intersecting Multiple Zones

As described in the opening paragraph of **Section 7.0**, 16 monitoring wells appear to have wells screens that intersect conditions of multiple groundwater zones. The groundwater quality results for monitoring wells in these zones are discussed in the following sections.

7.2.4.1 Shallow-Intermediate Zone Intersect Wells

The Shallow-Intermediate Zone intersect includes 14 active wells (four of which are currently used as remediation wells) and one decommissioned well. The scope of work defined in the IRAWP requires groundwater sampling of all active wells in this zone during the 2015 annual field event.

The table below identifies groundwater samples exceeding MTCA Method A Cleanup Levels for Shallow-Intermediate Zone Intersect wells. As shown on **Tables 5-1 and 5-2**, the analytical results of the samples collected did not exceed MTCA Method A Cleanup Levels. GRPH and benzene concentrations for wells screened across multiple zones are included on the Intermediate Water-Bearing Zone figures (**Figures 11 and 12**, respectively).

Analytical Results for Groundwater Samples Exceeding Cleanup Levels (Shallow-Intermediate Zone Intersect Wells)

Analyte	MTCA Method A Cleanup Level (µg/L)	Sample Location/ Well ID	Property	Analytical Results (µg/L)
Total Lead	15	MW29	TOC	119

7.2.4.2 Intermediate-Deep Zone Intersect Wells

The Intermediate-Deep Intersect Zone intersect includes one active monitoring well (MW16 located within the 242nd Street ROW). The scope of work defined in the IRAWP requires groundwater sampling of MW16 during the annual field event only. As shown on **Tables 6-1 and 6-2**, the analytical results of the samples collected did not exceed MTCA Method A Cleanup Levels. GRPH and benzene concentrations for wells screened across multiple zones are included on the Intermediate Water-Bearing Zone figures (**Figures 11 and 12**, respectively).

7.3 LNAPL Results

As mentioned in **Section 7.2**, trace and measurable LNAPL was observed in Shallow and Intermediate Zone monitoring wells during the 1Q2015 field event. The table below identifies LNAPL thickness measured at these locations. LNAPL samples were not collected from these locations during the 1Q2015 field event. The table below summarizes the LNAPL observations and measurements provided on **Table 1-1**.

Location/Well ID	Property	Groundwater Zone	LNAPL Thickness (feet)
MW11 (4" RW)	TOC	Intermediate	Observed Sheen
MW48	56th Ave ROW	Intermediate	<0.01 (Trace)
MW56	TOC/Farmasonis	Intermediate	Observed Sheen
MW71	Shin/Choi	Shallow	0.47
MW102	Herman	Shallow	0.97

LNAPL Observations & Measu	rements

7.4 QA/QC & Data Quality Results

As described in **Section 6.4**, the scope of work for the groundwater monitoring events included collection and laboratory analyses of groundwater samples for QA/QC purposes. Stantec performed a QA/QC review of the analytical results, which included a review of accuracy and precision of data supplied by the laboratory. Analytical results for field duplicates and method duplicates are provided on **Tables 2-1 through 5-2**. Analytical results for all other QA/QC samples, including water blanks and equipment/rinsate blanks are provided in the laboratory reports included as **Appendix B**.

8.0 GROUNDWATER TRENDS

The following sections present a summary of historical and current groundwater elevation and contaminant distribution trends at selected monitoring and remediation wells installed in the Shallow and Intermediate Water-Bearing Zones. Data collected over the last year (2Q2014 through 1Q2015) are provided in **Tables 1-1 through 6-2**. Data collected prior to this period are included in previous annual groundwater monitoring reports. Because contaminant concentrations at the deep wells have been consistently non-detect, a discussion of groundwater trends at these wells is not included.

Based on contaminant presence and distribution and exceedance of MTCA Method A Cleanup Levels, the primary contaminants of concern include GRPH and benzene for purposes of this discussion. Concentrations of total and dissolved lead were also evaluated for select wells where data were available.

Section 8.1 describes groundwater elevation trends. Sections 8.2 through 8.4 describe GRPH, benzene, and lead concentration trends over time in the three groundwater zones and Section 8.5 discusses the historical presence of LNAPL in Shallow and Intermediate Zone monitoring wells. Groundwater level and contaminant distribution trends will continue to be evaluated and discussed as part of future annual monitoring events.

8.1 Groundwater Elevation Trends

Groundwater elevation trends were evaluated by generating time versus groundwater elevation plots using available data from historical and recent monitoring events (February 1992 through March 2015, as available). More frequent data are available between 2012 and 2015 after the Intermediate Zone remediation systems were installed at the Site. As shown on **Figures 7 and 8**, groundwater elevations vary seasonally with high seasonal levels typically observed in winter (February-March) and low seasonal levels observed in late fall (November-December). An exception during this period was in 2014 when the high seasonal levels were observed in June 2014. Seasonal trends are similar between the three zones further indicating interconnection between the zones across the TOC Site.

Figure 7 illustrates groundwater elevation differences in the three groundwater zones on the TOC Property. In this area where horizontal hydraulic gradients in each of the zones are greater, groundwater elevations can vary seasonally to more than 10 feet in the Shallow Zone, 15 feet in the Intermediate Zone, but typically only show 5 feet or less in the Deep Zone. As shown on Figure 8, downgradient groundwater elevations on the Drake Property are in an area where horizontal hydraulic gradients are much flatter, and seasonal groundwater elevation variability is slightly less in the Shallow Zone (less than 10 feet), is about the same in the Deep Zone, but is much less in the Intermediate Zone (less than 5 feet). The reduction in variability in the Intermediate Zone wells may reflect the greater depth between the Shallow and Intermediate Zone wells in this area and the less influence by surficial recharge.

As previously discussed in **Section 7.1**, **Figure 7** illustrates the downward vertical gradients between the Shallow and Intermediate Zones and between the Intermediate and Deep Zones in upgradient areas at the TOC Property where horizontal hydraulic gradients are steeper and are thought to be

influenced by artificial recharge in this area. As shown on **Figure 8**, in downgradient areas on the Drake Property where horizontal hydraulic gradients flatten, vertical gradients between the Shallow and the Intermediate and Deep Zones are still downward; however, the vertical gradients between the Intermediate and Deep Zones are slightly upward, and appear to be effective in inhibiting downward vertical flow of groundwater and migration of contamination in downgradient areas and effectively bounding the extent of vertical contamination.

8.2 Shallow Zone Contaminant Distribution

Contaminant trends in the Shallow Zone were evaluated by generating time versus groundwater elevation and time versus concentration plots for GRPH and benzene for the period covered by the previous quarterly or other sampling events (February 1992 through March 2015, as available). Also, any changes in contamination distribution over the past year were evaluated by comparing the GRPH plume in the Shallow Zone for the 2014 annual event with the plume for the 2015 annual event. For the concentration trend plots, MW02, MW04 and MW12 (located on the TOC Property, 56th Avenue West ROW and TOC/Farmasonis Property, respectively) were selected for evaluation because they represent Shallow Zone monitoring locations within or downgradient of the source area for the TOC Site or where the majority of Shallow Zone contamination has been observed historically (at MW02). Note that groundwater concentrations in most of the Shallow Zone wells have been non-detect since late 2005 (if not earlier). This is likely resulting from the operation of the former DPE system (described in **Section 2.3**) that operated between 1996 and 2005. Below is a list of figures used for the contamination trend evaluation in the Shallow Zone.

- Figure 13: Benzene concentrations versus time for MW02, MW04 and MW12.
- Figure 14: GRPH concentrations versus time for MW02, MW04 and MW12.
- Figure 15: Groundwater elevations and GRPH concentrations versus time for MW02.

8.2.1 Benzene

As shown on **Figure 13**, the benzene concentrations in the selected shallow zone wells (MW02, MW04 and MW12) show variable concentration trends over time, but concentrations have been primarily non-detect over the past 13 years. A summary of benzene concentration trends at MW02, MW04 and MW12 is provided below.

- MW02 (TOC Property): The concentration of benzene in MW02 peaked at 4,600 µg/L in January 1994, but decreased over time to non-detect by September 2002, and has remained non-detect since then. MW02 is located downgradient (to the south) of the former UST complex on the TOC Property.
- MW04 (56th Avenue West ROW): The benzene concentration in MW04 was at a maximum of 470 μg/L in July 1992, but dropped significantly between July 1992 and September 1996 to a concentration of 77 μg/L. Benzene concentrations dropped to non-detect by March 2003 and have remained non-detect since then.
- MW12 (TOC/Farmasonis Property): Benzene concentrations in MW12 have been non-detect since the first sampling event at that well in October 2001 through the most recent groundwater sampling event in March 2015. MW12 is located on the TOC/Farmasonis Property, downgradient (to the south) of the former UST complex on the TOC Property.

Benzene has consistently been non-detect in groundwater samples collected from wells immediately downgradient of MW02 and MW04 and in wells on the TOC/Farmasonis and Drake Properties, indicating that Shallow Zone contamination did not extend very far downgradient from the TOC Property boundary.

8.2.2 Gasoline-Range Petroleum Hydrocarbons

As shown on **Figure 14**, GRPH concentrations in MW02, MW04 and MW12 follow the same general trend as the benzene concentrations shown on **Figure 13**. A summary of GRPH concentration trends at MW02, MW04 and MW12 is provided below.

- MW02 (TOC Property): GRPH concentrations in MW02 reached a maximum of 50,000 µg/L in January 1994 followed by a steady decrease to 1,400 µg/L in March 2005. The GRPH concentrations dropped to non-detect during the following sampling event in December 2005, and have remained non-detect through the annual sampling event in March 2015, as shown on Figure 15.
- MW04 (56th Avenue West ROW): GRPH concentrations in MW04 have decreased from a maximum of 100,000 μg/L in July 1992, then fluctuating between 1,000 μg/L and 38,100 μg/L between September 1996 to October 2003, and since March 2005 to the present, have been non-detect.
- MW12 (TOC/Farmasonis Property): GRPH in MW12 has not been detected since the first sampling event in October 2001 through the most recent sampling event in March 2015.

The distribution of GRPH concentrations in the Shallow Zone has likely not changed significantly over this past year. Samples were not collected on the Shin/Choi Property during the March 2014 event, per the requirements of the IRAWP. However, the presence of LNAPL or significantly elevated concentrations of GRPH in these wells during sampling events during 2008-2010 and then again in March 2015 indicate that contamination has been historically present and is still present in these areas. As stated earlier, based on historical distribution of contaminants in the Shallow Zone that indicate that shallow contamination did not extend as far south as the Drake Property, the Shallow Zone contamination that is observed on the Herman and Shin/Choi properties appears to be associated with the current or former presence of underground storage tanks (USTs) at those properties.

8.2.3 Other Constituents

Total and dissolved lead concentrations have been detected in Shallow Zone wells since 2005; however there are not enough historical data to analyze trends. As summarized below, only two Shallow Zone wells (MW34 and MW102) and one Shallow-Intermediate Zone Intersect well (MW100) have historical concentrations of total lead exceeding the MTCA Method A Cleanup Level of 15 μ g/L.

 MW34 (TOC Property): The concentration of lead in MW34 decreased from 23.7 μg/L in January 2006 to 2.45 μg/L in March/April 2014. Groundwater samples collected from MW34 in March 2015 were not analyzed for total or dissolved lead.

- MW100 (TOC/Farmasonis Property): The concentration of lead in MW100 decreased from 23.7 μ g/L in March 2012 to less than 1 μ g/L in March 2015.
- MW102 (Herman Property): The concentration of lead in MW102 was 15.6 μg/L in March/April 2014. Due to the presence of LNAPL in the well, MW102 was not sampled during the 1Q2015 field event.

8.3 Intermediate Zone Contaminant Trends

Contaminant trends in the Intermediate Zone were evaluated by generating time versus groundwater elevation and time versus concentration plots for benzene and GRPH for the period covered by the quarterly sampling events (September 2005, or first available, through the annual 2015 sampling event). Also, any changes in contamination distribution over the past year were evaluated by comparing the GRPH plume in the Intermediate Zone for the 2014 annual event with the plume for the 2015 annual event. For the concentration trend plots, the selected wells include monitoring and remediation wells installed on the TOC Property (MW09, MW11, MW18, MW25, MW32 and MW91), the TOC/Farmasonis Property (MW31 and MW57), the 56th Avenue West ROW (MW45, MW48, MW49, and MW63), and the Drake Property (MW69, MW86, MW95, MW96 and MW98). Below is a list of figures used for the contamination trend evaluation in the Intermediate Zone.

- Figure 16: Benzene concentrations versus time for selected wells (MW09, MW11, MW18, MW25, MW31, MW32, MW45, MW48, MW49, MW57, MW69, and MW86).
- Figure 17: Benzene concentrations and groundwater elevations versus time for MW48 and benzene concentrations versus time for selected wells in the vicinity of MW48 (MW57, MW63, MW95, MW96 and MW98).
- Figure 18: GRPH concentrations versus time for the same selected wells shown on Figure 16.
- Figure 19: GRPH concentrations and groundwater elevations versus time for the same selected wells shown on Figure 17.
- Figure 20: Total lead concentrations and groundwater elevations versus time for MW31, MW32 and MW91.
- Figure 21: Comparison of GRPH plumes in the Intermediate Zone for the 2014 annual event and 2015 annual event.

8.3.1 Benzene

As shown on **Figure 16**, the benzene concentrations in the selected Intermediate Zone wells listed above show variable concentrations over time, with the overall trend showing a decrease in concentrations over time. Benzene concentrations were highest prior to February 2008 and have shown a gradual decrease through March 2015.

Benzene concentrations at MW48 (located in the 56th Avenue West ROW) have been variable over the course of the historical sampling period and have fluctuated between a high of 300 μ g/L in September 2012 to non-detect in June 2012 and June 2013. The most recent sampling event in March 2015 showed a benzene concentration in MW48 at 120 μ g/L, which is slightly higher than the March/April 2014 concentration of 82 μ g/L.

Groundwater Trends Groundwater Monitoring Report, 2015 Annual Event

Figure 17 shows benzene concentration trends for MW48 and nearby wells. MW48 has consistently contained benzene concentrations greater than MTCA Method A Cleanup Levels since the well was installed in 2012. Benzene concentrations and groundwater elevation trends observed in MW48 fluctuated inversely until July 2014, after which time a more direct relationship appears to occur. Benzene concentrations in the nearby wells MW57, MW63, MW95, MW96 and MW98 do not appear to correlate to the trend observed in MW48, although sampling frequency is less in these wells. A slight increase in benzene concentration was observed in MW57 in March 2013; however, concentrations have decreased since that time and benzene was non-detect in March 2015. Benzene concentrations at the other wells located near MW48 have been mostly non-detect since the wells were installed in 2012.

With the exception of MW48, the concentrations of benzene in groundwater at the TOC Site show a general overall decreasing trend in the Intermediate Zone, likely due to operation of the MPE remediation systems since 2012.

8.3.2 Gasoline-Range Petroleum Hydrocarbons

Figure 18 shows GRPH concentrations in the selected Intermediate Zone wells (MW09, MW11, MW18, MW25, MW31, MW32, MW45, MW48, MW49, MW57, MW69 and MW86) follow a similar overall decreasing trend as the benzene concentrations. The highest GRPH concentrations generally occurred prior to February 2008 and have steadily decreased over time. Exceptions to this trend occur at the three wells discussed below.

- MW32 (TOC Property): The GRPH concentration was 120 μg/L in March 2012, but within 6 months the concentration increased significantly up to 16,000 μg/L. After December 2012, the concentrations have shown a consistent decreasing trend with a slight increase during the March/April 2014 event (4,800 μg/L). The concentration of GRPH in March 2015 was reported to be 680 μg/L, much lower than the March/April 2014 concentration.
- MW45 (56th Avenue West ROW): MW45 has shown an overall decreasing trend over time; however, in February 2013 the concentration of GRPH increased to 19,000 μg/L from 4,700 μg/L in September 2012. The following sampling event in June 2013 showed a decrease in GRPH concentrations to 8,300 μg/L. MW45 has not been sampled since June 2013 due to insufficient groundwater volume for sample collection.
- MW48 (56th Avenue West ROW): GRPH concentrations in MW48 seemed to follow a similar variable trend as the benzene concentrations. The GRPH concentrations have fluctuated between a high of 37,000 µg/L in March 2012 and a low of 7,700 µg/L in December 2014. The concentration of GRPH decreased to 12,000 µg/L in March 2015 from 33,000 µg/L in March/April 2014. However, MW48 continues to exhibit the highest concentration of GRPH in groundwater at the TOC Site.

As shown on **Figure 19**, GRPH concentration and groundwater elevation trends observed in MW48 fluctuated inversely until July 2014, after which time a more direct relationship appear between the GRPH concentration and the groundwater elevation. Similar to what is observed with benzene, there does not appear to be a direct correlation between the GRPH trends in MW48 and those observed in the nearby wells (MW57, MW63, MW95, MW96 and MW98). MW57 showed a slight increase in GRPH concentrations between March 2013 and December 2014; however, the concentration in the sample collected in March 2015 showed a decrease to less than March 2013

Groundwater Trends Groundwater Monitoring Report, 2015 Annual Event

concentrations. Similar to benzene, GRPH concentrations at the other wells located near MW48 have been mostly non-detect since the wells were installed in 2012.

In general, the concentrations of GRPH in groundwater show an overall decreasing trend in the Intermediate Zone, again likely due to the operation of the MPE remediation systems since 2012 (described in **Section 5.0**). A comparison of GRPH plumes in the Intermediate Zone for the 2014 annual event and 2015 annual event is provided as **Figure 21**. As shown, the distribution of GRPH concentrations in the Intermediate Zone indicate that areas with concentrations exceeding the MTCA Method A cleanup levels have decreased in size during this time period on the TOC Property and at the southwest corner of the TOC/Farmasonis Property. An additional area with elevated concentrations was identified at MW69 on the Drake Property where samples have not been collected over the past year because of issues with the pump (the pump was replaced prior to this event); however, historical concentrations at this well between May 2008 and February 2013 consistently showed concentrations exceeding the MTCA Method A level. Another plume area was identified on the Shin/Choi Property during the March 2015 event. Similar to the Shallow Zone data in this area (discussed in Section 8.2), this plume was not identified in 2014 because samples were not collected from the Shin/Choi Property wells per IRAWP requirements; however, historical concentrations.

8.3.3 Other Constituents

Total and dissolved lead concentrations have been detected in Intermediate Zone wells since 2005. **Figure 20** shows total lead concentrations in groundwater in MW31 (located on the TOC Property), MW32 and MW91 (both located on the TOC/Farmasonis Property). These wells were selected because they were the only wells located in the Intermediation Zone with enough available data to assess trends; however, data are still limited. As summarized below, these wells show fluctuating concentrations of total lead.

- MW31 (TOC/Farmasonis Property): MW31 shows total lead concentrations fluctuating between a high of 44.4 μg/L in February 2008 and a low of 3.51 μg/L in May 2006. The total lead concentration decreased from 19.9 μg/L in June 2013 to 11.4 μg/L in March/April 2014. MW31 was noted as dry in March 2015 and, therefore, could not be sampled due to insufficient groundwater volume.
- MW32 (TOC Property): MW32 shows total lead concentrations decreasing from 45.2 μg/L in March/April 2014 to 28 μg/L in March 2015, which exceeds the MTCA Method A Cleanup Level of 15 μg/L.
- MW91 (TOC Property): MW91 shows total lead concentrations slightly increasing from 5.35 μg/L in March/April 2014 to 6.3 μg/L in March 2015. However, the March 2015 concentration is still lower than the highest reported concentration of 15.9 μg/L in March 2012.

Historically, total lead concentrations in the Intermediate Zone ranged from 1.07 µg/L in MW09 (December 2005) to 193 µg/L in MW36 (June 2006). Wells that historically contained groundwater with total lead concentrations exceeding the MTCA Method A Cleanup Level include MW29, MW31, MW32, MW35, MW36, MW41, MW45, MW48, MW60, MW75, MW91 and MW101. The overall trend for total lead in groundwater for wells MW32 and MW91 is decreasing over time. The total lead concentrations in MW31 are still above the MTCA Method A Cleanup Level and appear to remain variable.

8.4 Deep Zone Contaminant Trends

Petroleum hydrocarbons, VOCs and lead were not detected in the six monitoring wells installed in the Deep Zone; therefore, a discussion regarding groundwater trends for this Zone is not provided.

8.5 Light Non-Aqueous Phase Liquid Trends

Since 1995, LNAPL has been historically reported in several Shallow and Intermediate Zone wells, including MW03, MW09, MW10, MW11, MW15, MW18, MW20, MW27, MW28, MW29, MW32, MW48, MW71, MW72, MW90, MW91 and MW102. As discussed in **Section 7.3**, measurable LNAPL was only encountered in two Shallow Zone wells (MW71 and MW102 located on the Shin/Choi and Herman properties, respectively) during the 2015 annual field event. LNAPL trends for these two wells and other select wells located on the TOC Site (MW29 and MW48) are summarized below. These wells were selected for trend analyses due to the availability of historical data and the historical presence of LNAPL at these locations.

- MW29 (TOC Property): MW29 contained LNAPL between December 2005 and February 2007. LNAPL has not been encountered in MW29 since May 2007 as shown on Figure 22.
- MW71 (Shin/Choi Property): LNAPL thickness has decreased significantly from a high of 1.36 feet in July 2009 to 0.47 feet in March 2015, as shown on Figure 22.
- MW102 (Herman Property): MW102 was installed in 2013 and has little historical data to assess trends over time. LNAPL thickness has only been measured twice at this location and has decreased from 1.63 feet in March 2014 (Stantec 2014) to 0.97 feet in March 2015.
- MW48 (56th Avenue West ROW): MW48 has historically contained the largest occurrence of measurable LNAPL. As shown on Figure 23, LNAPL in MW48 ranged from a high of 1.86 feet in May 2007 to 0.01 feet in June 2009. Figure 23 shows an inverse relationship between groundwater elevations and past LNAPL thicknesses. LNAPL has not been encountered in MW48 since January 2011. As of March 2015, no wells installed in the Intermediate Zone on TOC Site contain measurable LNAPL.

In summary, LNAPL thicknesses and groundwater elevations appear to be somewhat inversely related at well MW48, although there is some variability. This is also the case for LNAPL trends at MW29 when LNAPL was observed in this well in 2007. Not enough data are available to assess a comparison of these trends in well MW71. This inverse trend could be related to the liberation of residual LNAPL within partially saturated soil pore spaces as the groundwater level decreases.

Based on historical information, the presence of greater LNAPL thicknesses on the Herman and Shin/Choi Properties than has ever been observed at the TOC Site, and the current lack of measurable LNAPL in wells on the TOC, TOC/Farmasonis and Drake Properties, the source of the free product in MW71 and MW102 appears to originate from the former USTs historically located on the Herman and Shin/Choi properties. The source of the LNAPL historically measured in the ROW well MW48 is unknown. There are no known sources of petroleum hydrocarbons associated with the southwest corner of the TOC/Farmasonis Property or northwest corner of the Drake Property, near the location of MW48. Due to the location of MW48 near the utilities corridor, it is suspected that the occurrence of LNAPL may have been associated with the utilities corridor acting as a preferential pathway from an upgradient source.

9.0 FUTURE GROUNDWATER TASKS

On June 15 and 16, 2015, TOC installed two additional monitoring wells on the Herman Property in the Intermediate Water-Bearing Zone. Per Ecology's request, these two wells (identified as MW108 and MW109) were installed near the northern boundary of the Herman Property, south of MW84 and MW86 located on the Drake Property. MW108 and MW109 were installed for the purpose of obtaining data directly downgradient of TOC Site in order to bound the GRPH plume to the south. The new monitoring wells were sampled as part of groundwater monitoring activities for the second quarter field event in June 2015 (2Q2015). Groundwater quality results for the 2Q2015 sampling event and additional details regarding the two new wells will be provided to Ecology in the *Groundwater Monitoring Report, Second Quarter 2015*.

10.0 REFERENCES

- EPA 2010. Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells. Updated January 19.
- Ecology 2007. Washington State Department of Ecology. *Table 720-1, Method A Cleanup Levels for Ground Water.* Model Toxics Control Act Regulation and Statute. Cleanup Regulation Chapter 173-340 WAC. October 12.
- Ecology 2011. Washington State Department of Ecology. Agreed Order No. DE 8661, TOC Facility No. 01-176. October 28.
- Ecology 2014. Washington State Department of Ecology. Comments provided to SES re: Draft Remedial Investigation (RI) Report, TOC Holdings Co. Facility No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. January 3 (approximate).
- Lenhard and Parker 1990. Lenhard, R. J. and Parker, J. C. Estimation of Free Hydrocarbon Volume from Fluid Levels in Monitoring Wells. Groundwater, 28: 57–67. doi: 10.1111/j.1745-6584.1990.tb02229.x. January.
- SES 2011. Interim Remedial Action Work Plan (IRAWP), TOC Holdings Co. Facility No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. July 28.
- SES 2013. Draft Remedial Investigation (RI) Report, TOC Holdings Co. Facility No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. November 27.
- Stantec 2014. 2014 Annual Report, Groundwater Monitoring, TOC Holdings Co. Facility No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. September 17.
- Stantec 2015. Operations & Maintenance Report, First Quarter 2015, TOC Holdings Co. Facility No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. June 30.
- Time Oil Company [sic] (Time Oil Co.) 1975. Blueprint Drawing No. 1390: Conduits, Piping, Electrical Service, Lighting, Retaining Wall & Lot Drainage, Mountlake Terrace, Wash. September 8 with

Tables

- 1-1 Depth-to-Groundwater/Depth-to-Product Level Measurements
- 2-1 Groundwater Quality Results for Selected Constituents, Shallow Zone Wells
- 2-2 Groundwater Quality Results for Common Fuel Additives, Shallow Zone Wells
- 3-1 Groundwater Quality Results for Selected Constituents, Intermediate Zone Wells
- 3-2 Groundwater Quality Results for Common Fuel Additives, Intermediate Zone Wells
- 4-1 Groundwater Quality Results for Selected Constituents, Deep Zone Wells
- 4-2 Groundwater Quality Results for Common Fuel Additives, Deep Zone Wells
- 5-1 Groundwater Quality Results for Selected Constituents, Shallow-Intermediate Zone Intersect Wells
- 5-2 Groundwater Quality Results for Common Fuel Additives, Shallow-Intermediate Zone Intersect Wells
- 6-1 Groundwater Quality Results for Selected Constituents, Intermediate-Deep Zone Intersect Wells
- 6-2 Groundwater Quality Results for Common Fuel Additives, Intermediate-Deep Zone Intersect Wells

TABLE 1-1 Depth-to-Groundwater/Depth-to-Product Level Measurements First Quarter 2015 TOC Facility #01-176; Mountlake Terrace, Washington

		Measurement	Measurement	Reference	DTW	Groundwater	LNAPL	
Well (a)	Property	Date	Time	Elevation	(feet) (c)	Elevation	Thickness	Notes / Observations
MW01	тос	NA	(24:00) NA	(feet) (b)		(feet) (d, e)	(feet)	WELL DECOMMISSIONED 10/02/2009
MW01	TOC	NA 06/18/2014	11:01	NA 358.71	NA 11.80	NA 346.91	NA 	WELL DECOMINISSIONED 10/02/2009
MW02	тос	09/24/2014	11:01	358.71	15.39	343.32		
MW02	тос	12/16/2014	10:34	358.71	12.67	346.04		
MW02	тос	03/17/2015	11:05	358.71	10.88	340.04		
MW02	тос	06/18/2014	11:18	361.85	13.09	348.76		
MW03	тос	09/24/2014	14:55	361.85	DRY	DRY	DRY	
MW03	тос	12/16/2014	10:40	361.85	14.37	347.48		
MW03	тос	03/17/2015	10:48	361.85	11.64	350.21		
MW04	56th Ave ROW	06/18/2014	11:32	361.96	11.62	350.34		
MW04	56th Ave ROW	09/24/2014	11:52	361.96	DRY	DRY	DRY	
MW04	56th Ave ROW	12/16/2014	10:41	361.96	DRY	DRY	DRY	
MW04	56th Ave ROW	03/17/2015	11:29	361.96	10.57	351.39		
MW05	242nd St ROW	06/18/2014	11:27	363.70	11.42	352.28		
MW05	242nd St ROW	09/24/2014	11:49	363.70	DRY	DRY	DRY	
MW05	242nd St ROW	12/16/2014	10:44	363.70	DRY	DRY	DRY	
MW05	242nd St ROW	03/17/2015	11:25	363.70	9.80	353.90		
MW06	тос	06/18/2014	10:46	358.98	13.17	345.81		
MW06	TOC	09/24/2014	12:00	358.98	DRY	DRY	DRY	
MW06	TOC	12/16/2014	10:20	358.98	DRY	DRY	DRY	
MW06	тос	03/17/2015	9:53	358.98	11.24	347.74		
MW07	TOC/Farmasonis	NA	NA	NA	NA	NA	NA	WELL DECOMMISSIONED 11/29/2004
MW08	56th Ave ROW	06/18/2014	11:36	360.34	21.51	338.83		
MW08	56th Ave ROW	09/24/2014	10:59	360.34	DRY	DRY	DRY	
MW08	56th Ave ROW	12/16/2014	12:23	360.34	23.34	337.00		
MW08	56th Ave ROW	03/17/2015	13:46	360.34	17.90	342.44		
MW09	тос	06/18/2014	11:06	360.32	26.25	334.07	Sheen	
MW09	тос	09/24/2014	14:39	360.32	38.09	322.23		
MW09	тос	12/16/2014	10:37	360.32	29.58	330.74		
MW09	тос	03/17/2015	10:35	360.32	24.26	336.06		
MW10	тос	06/18/2014	10:58	357.91	33.55	324.36		
MW10	тос	09/24/2014	14:24	357.91	DRY	DRY	DRY	
MW10	тос	12/16/2014	10:32	357.91	36.39	321.52		
MW10	тос	03/17/2015	10:17	357.91	30.21	327.70		
MW11 (4" RW)	тос	06/18/2014	11:22	362.34	24.25	338.09		
MW11 (4" RW)	тос	09/24/2014	15:00	362.34	28.04	334.30		
MW11 (4" RW)	тос	12/16/2014	9:22	362.34	25.70	336.64		
MW11 (4" RW)	тос	03/17/2015	9:39	362.34	22.01	340.33	Sheen	
MW12	56th Ave ROW	06/18/2014	9:37	357.65	10.77	346.88		
MW12	56th Ave ROW	09/24/2014	13:20	357.65	14.46	343.19		
MW12	56th Ave ROW	12/16/2014	11:26	357.65	12.30	345.35		
MW12	56th Ave ROW	03/17/2015	12:26	357.65	9.66	347.99		
MW13	56th Ave ROW	06/18/2014	9:36	357.34	40.59	316.75		
MW13	56th Ave ROW	09/24/2014	13:22	357.34	DRY	DRY	DRY	
MW13	56th Ave ROW	12/16/2014	11:25	357.34	DRY	DRY	DRY	
MW13	56th Ave ROW	03/17/2015	12:27	357.34	DRY	DRY	DRY	
MW14	TOC/Farmasonis	NA	NA 10.25	NA	NA	NA	NA	WELL DECOMMISSIONED 11/29/2004
MW15 (4" RW)	тос	06/18/2014	10:35	357.56	NM	NM	NM	Abundant bio buildup on top of water. Well full of mud and could not be measured (measuring point
MW15 (4" RW)	тос	09/24/2014	14:20	357.56	NM	NM	NM	changed).
MW15 (4" RW)	тос	12/16/2014	9:28	357.56	40.80	316.76		Removed pump from well on 12/16/2014.
	тос	03/17/2015	10:03	357.56	33.00	324.56		Former RW (pump removed 12/16/2014). Measurement may not represent groundwater level due to abundant biological buildup in well.
MW16	242nd St ROW	06/18/2014	11:29	365.18	45.95	319.23		
MW16	242nd St ROW	09/24/2014	11:48	365.18	DRY	DRY	DRY	
MW16	242nd St ROW	12/16/2014	10:46	365.18	DRY	DRY	DRY	
MW16	242nd St ROW	03/17/2015	11:28	365.18	45.58	319.60		
MW17	TOC/Farmasonis	NA	NA	NA	NA	NA	NA	WELL DECOMMISSIONED 11/29/2004
MW18 (4" RW)	тос	06/18/2014	10:51	357.91	DRY	DRY	DRY	
MW18 (4" RW)	тос	09/24/2014	14:23	357.91	NM	NM	NM	unable to measure (vault full of water)
MW18 (4" RW)	тос	12/16/2014	9:08	357.91	DRY	DRY	DRY	
MW18 (4" RW)	тос	03/17/2015	9:58	357.91	DRY	DRY	DRY	
MW19	тос	06/18/2014	10:54	358.86	13.82	345.04		
MW19	тос	09/24/2014	11:56	358.86	DRY	DRY	DRY	Poor seal on well cap.
MW19	тос	12/16/2014	10:30	358.86	14.53	344.33		
MW19	тос	03/17/2015	10:09	358.86	12.87	345.99		

TABLE 1-1 Depth-to-Groundwater/Depth-to-Product Level Measurements First Quarter 2015 TOC Facility #01-176; Mountlake Terrace, Washington

Well (a)	Property	Measurement Date	Measurement Time	Reference Elevation	DTW (feet) (c)	Groundwater Elevation	LNAPL Thickness	Notes / Observations
	700		(24:00)	(feet) (b)		(feet) (d, e)	(feet)	
MW20 MW20	тос тос	06/18/2014 09/24/2014	11:01 11:54	359.93 359.93	35.29 38.48	324.64 321.45		
MW20	тос	12/16/2014	10:35	359.93	37.91	321.43		
MW20	тос	03/17/2015	10:05	359.93	31.45	328.48		
MW21	TOC	NA	NA	NA	NA	NA	NA	WELL DECOMMISSIONED 04/16/2012
MW22	ТОС	06/18/2014	11:00	358.52	29.08	329.44		
MW22	тос	09/24/2014	14:27	358.52	DRY	DRY	DRY	
MW22	тос	12/16/2014	10:31	358.52	28.95	329.57		
MW22	тос	03/17/2015	11:10	358.52	28.65	329.87		
MW23	тос	06/18/2014	10:33	357.08	39.03	318.05		
MW23	тос	09/24/2014	12:04	357.08	DRY	DRY	DRY	
MW23	тос	12/16/2014	10:14	357.08	DRY	DRY	DRY	
MW23	тос	03/17/2015	9:27	357.08	38.85	318.23		
MW24 (4" RW)	TOC	06/18/2014	11:09	361.97	24.46	337.51	Sheen	Abundant bio building on top of water.
MW24 (4" RW)	TOC	09/24/2014	12:47	361.97	DRY	DRY	DRY	
MW24 (4" RW)	TOC	12/16/2014	9:14	361.97	32.81	DRY	DRY	
MW24 (4" RW) MW25	тос тос	03/17/2015	9:45 11:04	361.97 358.70	17.28 31.66	344.69 327.04		
MW25	TOC	06/18/2014 09/24/2014	11:04	358.70	37.23	327.04		
MW25	TOC	12/16/2014	14:37	358.70	37.23	321.47 323.16		
MW25	тос	03/17/2015	11:06	358.70	27.64	331.06		
MW26	тос	06/18/2014	11:30	363.81	45.64	318.17		
MW26	тос	09/24/2014	11:50	363.81	47.41	316.40		
MW26	TOC	12/16/2014	10:43	363.81	48.38	315.43		
MW26	тос	03/17/2015	10:55	363.81	45.77	318.04		
MW27 (2" RW)	тос	06/18/2014	NM	362.51	NM	NM	NM	
MW27 (2" RW)	тос	09/24/2014	NM	362.51	NM	NM	NM	
MW27 (2" RW)	TOC	12/16/2014	9:21	362.51	NM	NM	NM	
MW27 (2" RW)	тос	03/17/2015	NM	362.51	NM	NM	NM	
MW28	тос	06/18/2014	10:49	358.41	28.17	330.24		
MW28	тос	09/24/2014	11:57	358.41	DRY	DRY	DRY	
MW28	тос	12/16/2014	10:29	358.41	29.03	329.38		
MW28	TOC	03/17/2015	11:13	358.41	26.91	331.50		
MW29 (2" RW)	TOC	06/18/2014	NM	358.93	NM	NM	NM	
MW29 (2" RW)	TOC	09/24/2014	NM	358.93	NM	NM	NM	
MW29 (2" RW) MW29 (2" RW)	тос тос	12/16/2014 03/17/2015	9:10 NM	358.93 358.93	NM NM	NM NM	NM NM	
MW30	TOC/Farmasonis	06/18/2014	NM	356.46	39.28	317.18		
MW30	TOC/Farmasonis	09/24/2014	12:04	356.46	41.68	314.78		
MW30	TOC/Farmasonis	12/16/2014	11:10	356.46	41.61	314.85		
MW30	TOC/Farmasonis	03/17/2015	11:34	356.46	38.66	317.80		
MW31 (2" RW)	TOC/Farmasonis	06/18/2014	NM	357.08	NM	NM	NM	
MW31 (2" RW)	TOC/Farmasonis	09/24/2014	NM	357.08	NM	NM	NM	
MW31 (2" RW)	TOC/Farmasonis	12/16/2014	9:37	357.08	NM	NM	NM	
MW31 (2" RW)	TOC/Farmasonis	03/17/2015	NM	357.08	NM	NM	NM	
MW32 (2" RW)	тос	06/18/2014	11:02	359.95	23.14	336.81		Abundant bio buildup on top of water.
MW32 (2" RW)	тос	09/24/2014	12:34	359.95	26.84	333.11		
MW32 (2" RW)	TOC	12/16/2014	9:17	359.95	24.78	335.17		
MW32 (2" RW)	TOC	03/17/2015	9:51	359.95	21.50	338.45		ļ
MW33	TOC	06/18/2014	10:56	358.24	DRY	DRY	DRY	
MW33 MW33	тос тос	09/24/2014 12/16/2014	11:56 10:24	358.24 358.24	DRY DRY	DRY DRY	DRY DRY	
MW33	TOC	03/17/2015	10:24	358.24	34.30	323.94	DRY 	
MW34	тос	06/18/2014	10:14	357.88	12.64	345.24		
MW34	тос	09/24/2014	12:04	357.88	DRY	DRY	DRY	
MW34	тос	12/16/2014	10:18	357.88	11.21	346.67		
MW34	TOC	03/17/2015	9:30	357.88	10.26	347.62		
MW35	тос	06/18/2014	10:43	358.46	39.39	319.07		
MW35	тос	09/24/2014	12:03	358.46	DRY	DRY	DRY	
MW35	тос	12/16/2014	10:19	358.46	DRY	DRY	DRY	
MW35	тос	03/17/2015	9:38	358.46	DRY	DRY	DRY	
MW36	тос	06/18/2014	10:45	357.98	41.67	316.31		
MW36	тос	09/24/2014	12:01	357.98	DRY	DRY	DRY	
MW36	тос	12/16/2014	NM	357.98	42.40	315.58		
MW36	тос	03/17/2015	9:47	357.98	42.05	315.93		
MW37	тос	06/18/2014	10:47	358.90	21.15	337.75		

<u>TABLE 1-1</u> Depth-to-Groundwater/Depth-to-Product Level Measurements First Quarter 2015

TOC Facility #01-176; Mountlake Terrace, Washington

			Measurement	Reference		Groundwater	LNAPL	
Well (a)	Property	Measurement	Time	Elevation	DTW	Elevation	Thickness	Notes / Observations
		Date	(24:00)	(feet) (b)	(feet) (c)	(feet) (d, e)	(feet)	
MW37	тос	09/24/2014	11:58	358.90	31.55	327.35		
MW37	тос	12/16/2014	10:21	358.90	22.79	336.11		
MW37	тос	03/17/2015	9:56	358.90	16.63	342.27		
MW38	тос	06/18/2014	11:26	364.42	19.80	344.62		
MW38	тос	09/24/2014	11:50	364.42	25.29	339.13		
MW38	тос	12/16/2014	10:47	364.42	21.67	342.75		
MW38	тос	03/17/2015	11:19	364.42	16.60	347.82		
MW39	TOC/Farmasonis	06/18/2014	10:00	355.88	39.32	316.56		
MW39	TOC/Farmasonis	09/24/2014	12:09	355.88	41.74	314.14		
MW39	TOC/Farmasonis	12/16/2014	11:08	355.88	41.53	314.35		
MW39	TOC/Farmasonis	03/17/2015	11:48	355.88	38.72	317.16		
MW40	TOC/Farmasonis	06/18/2014	9:46	356.32	39.30	317.02		
MW40	TOC/Farmasonis	09/24/2014	13:36	356.32	41.70	314.62		
MW40	TOC/Farmasonis	12/16/2014	11:18	356.32	41.65	314.67		
MW40	TOC/Farmasonis	03/17/2015	11:03	356.32	38.68	317.64		
MW41 (2" RW)	TOC/Farmasonis	06/18/2014	NM	356.14	NM	NM	NM	
MW41 (2" RW)	TOC/Farmasonis	09/24/2014	NM	356.14	NM	NM	NM	
MW41 (2" RW)	TOC/Farmasonis	12/16/2014	9:42	356.14	NM	NM	NM	
MW41 (2" RW)	TOC/Farmasonis	03/17/2015 06/18/2014	NM 0:16	356.14	NM	NM	NM	
MW42 MW42	TOC/Farmasonis TOC/Farmasonis	06/18/2014 09/24/2014	9:16 13:34	356.43 356.43	DRY DRY	DRY DRY	DRY DRY	
MW42 MW42	TOC/Farmasonis	12/16/2014	13:34	356.43	DRY	DRY	DRY	
MW42	TOC/Farmasonis	03/17/2015	11:20	356.43	DRY	DRY	DRY	
MW42	56th Ave ROW	06/18/2014	12:32	358.84	35.81	323.03		
MW43	56th Ave ROW	09/24/2014	10:55	358.84	DRY	DRY	DRY	
MW43	56th Ave ROW	12/16/2014	10:55	358.84	34.90	323.94		
MW43	56th Ave ROW	03/17/2015	13:51	358.84	34.30	324.54		
MW44	56th Ave ROW	06/18/2014	8:39	354.93	DRY	DRY	DRY	
MW44	56th Ave ROW	09/24/2014	9:51	354.93	DRY	DRY	DRY	
MW44	56th Ave ROW	12/16/2014	11:44	354.93	DRY	DRY	DRY	
MW44	56th Ave ROW	03/17/2015	12:48	354.93	DRY	DRY	DRY	
MW45	56th Ave ROW	06/18/2014	9:24	356.49	DRY	DRY	DRY	
MW45	56th Ave ROW	09/24/2014	12:23	356.49	DRY	DRY	DRY	
MW45	56th Ave ROW	12/16/2014	11:24	356.49	DRY	DRY	DRY	
MW45	56th Ave ROW	03/17/2015	12:29	356.49	38.07	318.42		
MW46	56th Ave ROW	06/18/2014	11:45	357.00	40.97	316.03		
MW46	56th Ave ROW	09/24/2014	10:50	357.00	DRY	DRY	DRY	
MW46	56th Ave ROW	12/16/2014	12:32	357.00	DRY	DRY	DRY	
MW46	56th Ave ROW	03/17/2015	13:58	357.00	41.59	315.41		
MW47	56th Ave ROW	06/18/2014	11:48	355.47	40.86	314.61		
MW47	56th Ave ROW	09/24/2014	10:46	355.47	DRY	DRY	DRY	
MW47	56th Ave ROW	12/16/2014	12:35	355.47	DRY	DRY	DRY	
MW47	56th Ave ROW	03/17/2015	14:02	355.47	41.20	314.27		
MW48	56th Ave ROW	06/18/2014	8:34	355.41	39.99	315.42		
MW48	56th Ave ROW	09/24/2014	9:47	355.41	42.79	312.62		
MW48	56th Ave ROW	12/16/2014	11:38	355.41	43.25	312.16		
MW48	56th Ave ROW	03/17/2015	12:40	355.41	40.66	314.75	Trace	
MW49	56th Ave ROW	06/18/2014	9:25	356.44	40.84	315.60		
MW49	56th Ave ROW	09/24/2014	13:32	356.44	43.22	313.22		
MW49	56th Ave ROW	12/16/2014	NM	356.44	43.78	312.66		
MW49	56th Ave ROW	03/17/2015	12:30	356.44	41.46	314.98		
MW50	56th Ave ROW	06/18/2014	11:34	361.99	35.61	326.38		
MW50	56th Ave ROW	09/24/2014	11:00	361.99	DRY	DRY	DRY	
MW50	56th Ave ROW	12/16/2014	12:21	361.99	DRY	DRY	DRY	
MW50	56th Ave ROW	03/17/2015	13:38	361.99	34.17	327.82		
MW51	56th Ave ROW	06/18/2014	8:15	352.66	39.44	313.22		
MW51	56th Ave ROW	09/24/2014	10:06	352.66	41.56	311.10		
MW51	56th Ave ROW	12/16/2014	12:38	352.66	41.79	310.87		
MW51	56th Ave ROW	03/17/2015	14:04	352.66	39.54	313.12		
MW52	56th Ave ROW	06/18/2014	11:49	355.61	41.04	314.57		
MW52	56th Ave ROW	09/24/2014	10:44	355.61	43.60	312.01		
MW52	56th Ave ROW	12/16/2014	12:36	355.61	DRY	DRY	DRY	
MW52	56th Ave ROW	03/17/2015	14:01	355.61	41.50	314.11		
MW53	56th Ave ROW	06/18/2014	11:40	359.85	41.75	318.10		
MW53	56th Ave ROW	09/24/2014	10:56	359.85	43.95	315.90		
MW53	56th Ave ROW	12/16/2014	12:25	359.85	44.24	315.61		

TABLE 1-1 Depth-to-Groundwater/Depth-to-Product Level Measurements First Quarter 2015 TOC Facility #01-176; Mountlake Terrace, Washington

			Measurement	Reference		Groundwater	LNAPL	
Well (a)	Property	Measurement Date	Time	Elevation	DTW (foot) (c)	Elevation	Thickness	Notes / Observations
		Date	(24:00)	(feet) (b)	(feet) (c)	(feet) (d, e)	(feet)	
MW53	56th Ave ROW	03/17/2015	13:47	359.85	41.00	318.85		
MW54	TOC/Farmasonis	06/18/2014	9:43	357.93	11.65	346.28		
MW54	TOC/Farmasonis	09/24/2014	13:18	357.93	15.21	342.72		
MW54	TOC/Farmasonis	12/16/2014	11:17	357.93	13.25	344.68		
MW54	TOC/Farmasonis	03/17/2015	12:16	357.93	10.77	347.16		
MW55	56th Ave ROW	06/18/2014	11:46	356.50	40.79	315.71		
MW55	56th Ave ROW	09/24/2014	10:48	356.50	43.78	312.72		
MW55	56th Ave ROW	12/16/2014	12:34	356.50	44.29	312.21		
MW55	56th Ave ROW	03/17/2015	13:59	356.50	41.12	315.38		
MW56	TOC/Farmasonis	06/18/2014	9:44	357.49	42.18	315.31		
MW56	TOC/Farmasonis	09/24/2014	13:17	357.49	44.30	313.19		
MW56	TOC/Farmasonis	12/16/2014	11:16	357.49	44.55	312.94		
MW56	TOC/Farmasonis	03/17/2015	12:17	357.49	42.04	315.45	Sheen	
MW57 (4" RW)	TOC/Farmasonis	06/18/2014	9:18	356.42	41.20	315.22		
MW57 (4" RW)	TOC/Farmasonis	09/24/2014	15:35 9:44	356.42	DRY DRY	DRY DRY	DRY DRY	
MW57 (4" RW) MW57 (4" RW)	TOC/Farmasonis TOC/Farmasonis	12/16/2014 03/17/2015	9.44	356.42 356.42	41.68	314.74		
MW58	TOC/Farmasonis		9:14	355.40	41.68	314.74		
MW58	TOC/Farmasonis	06/18/2014 09/24/2014	13:35	355.40	40.55	314.85		
MW58	TOC/Farmasonis	12/16/2014	13:35	355.40	43.35	312.05		
MW58	TOC/Farmasonis	03/17/2015	11:20	355.40	43.08	314.36		
MW59	TOC/Farmasonis	06/18/2014	9:49	356.51	41.04	315.34		
MW59	TOC/Farmasonis	09/24/2014	13:16	356.51	43.35	313.16		
MW59	TOC/Farmasonis	12/16/2014	11:15	356.51	43.64	312.87		
MW59	TOC/Farmasonis	03/17/2015	12:02	356.51	41.08	315.43		
MW60	56th Ave ROW	06/18/2014	11:42	358.58	41.61	316.97		
MW60	56th Ave ROW	09/24/2014	10:53	358.58	43.76	314.82		
MW60	56th Ave ROW	12/16/2014	12:29	358.58	44.23	314.35		
MW60	56th Ave ROW	03/17/2015	13:53	358.58	41.61	316.97		
MW61	56th Ave ROW	06/18/2014	11:44	357.17	10.67	346.50		
MW61	56th Ave ROW	09/24/2014	10:51	357.17	14.78	342.39		
MW61	56th Ave ROW	12/16/2014	12:31	357.17	10.40	346.77		
MW61	56th Ave ROW	03/17/2015	13:55	357.17	8.88	348.29		
MW62	56th Ave ROW	06/18/2014	11:38	360.50	12.00	348.50		
MW62	56th Ave ROW	09/24/2014	10:58	360.50	DRY	DRY	DRY	
MW62	56th Ave ROW	12/16/2014	12:23	360.50	11.96	348.54		
MW62	56th Ave ROW	03/17/2015	13:45	360.50	9.55	350.95		
MW63	56th Ave ROW	06/18/2014	8:37	355.11	40.71	314.40		
MW63	56th Ave ROW	09/24/2014	9:50	355.11	43.08	312.03		
MW63	56th Ave ROW	12/16/2014	11:39	355.11	43.32	311.79		
MW63	56th Ave ROW	03/17/2015	12:42	355.11	40.71	314.40		
MW64	56th Ave ROW	06/18/2014	8:36	355.18	38.76	316.42		
MW64	56th Ave ROW	09/24/2014	9:49	355.18	41.16	314.02		
MW64	56th Ave ROW	12/16/2014	11:39	355.18	41.12	314.06		
MW64	56th Ave ROW	03/17/2015	12:50	355.18	38.16	317.02		
MW65	Drake	06/18/2014	8:48	353.08	39.38	313.70	Sheen	
MW65	Drake	09/24/2014	9:29	353.08	41.89	311.19		
MW65	Drake	12/16/2014	11:52	353.08	42.00	311.08		
MW65	Drake	03/17/2015	13:35	353.08	39.40	313.68		
MW66	TOC/Farmasonis	06/18/2014	9:54	355.75	40.25	315.50		
MW66	TOC/Farmasonis	09/24/2014	12:08	355.75	NM 12.02	NM	NM	wellhead inaccessible (under surface water)
MW66	TOC/Farmasonis	12/16/2014	11:11	355.75	42.83	312.92	NM	wellhead inaccessible (under surface water)
MW66	TOC/Farmasonis	03/17/2015	11:53	355.75	40.02	315.73		
MW67	Drake	06/18/2014	8:30	355.73	12.51	343.22		
MW67	Drake	09/24/2014	9:42	355.73	16.89	338.84		
MW67	Drake	12/16/2014	11:45	355.73	14.96	340.77		
MW67 MW68	Drake	03/17/2015	12:51 8:40	355.73 355.11	12.03 12.19	343.70 342.92		
	Drake	06/18/2014						
MW68	Drake	09/24/2014	9:39	355.11	16.51	338.60		
MW68 MW68	Drake	12/16/2014 03/17/2015	11:49	355.11 355.11	14.51 11.70	340.60		
	Drake		12:52			343.41		
MW69 (2" RW)	Drake	06/18/2014	NM	353.76	NM	NM	NM	
MW69 (2" RW)	Drake	09/24/2014	NM 0:E0	353.76	NM	NM	NM	
MW69 (2" RW)	Drake	12/16/2014	9:50 9:15	353.76 353.76	NM 41.08	NM 312.68	NM	
MW69 (2" RW)	Drake	03/17/2015						
MW70 (2" RW)	Drake	06/18/2014	NM	354.17	NM	NM	NM	

TABLE 1-1 Depth-to-Groundwater/Depth-to-Product Level Measurements First Quarter 2015 TOC Facility #01-176; Mountlake Terrace, Washington

Norme <th< th=""><th>Well (a)</th><th>Property</th><th>Measurement Date</th><th>Measurement Time (24:00)</th><th>Reference Elevation (feet) (b)</th><th>DTW (feet) (c)</th><th>Groundwater Elevation (feet) (d, e)</th><th>LNAPL Thickness (feet)</th><th>Notes / Observations</th></th<>	Well (a)	Property	Measurement Date	Measurement Time (24:00)	Reference Elevation (feet) (b)	DTW (feet) (c)	Groundwater Elevation (feet) (d, e)	LNAPL Thickness (feet)	Notes / Observations
Norme <th< td=""><td>MW70 (2" RW)</td><td>Drake</td><td>09/24/2014</td><td>NM</td><td>354.17</td><td>NM</td><td>NM</td><td>NM</td><td></td></th<>	MW70 (2" RW)	Drake	09/24/2014	NM	354.17	NM	NM	NM	
NYZService02/32/228.000.2730.2000.2230.2000.210NYZService02/32/2011.0313.721.5103.2361.13NYZService02/32/2011.0313.721.5123.2361.13NYZService02/32/2011.0321.721.5123.2580.43NYZService02/32/2011.0233.7371.783.2580.44NYZService02/32/2011.0233.7371.783.2580.44NYZService02/32/2011.5233.7313.2520.20.2Service01/2011.7523.7313.5013.5270.20.2NYZService01/20101.0723.7313.5013.5020.20.2NYZService01/20101.0723.7313.5013.5020.20.2NYZService01/20101.0121.0131.0131.0130.20.2NYZService01/20101.0141.0741.0760.20.2NYZ01/10011.0111.0111.0110.010.010.011NYZ01/10011.0111.0111.0110.0110.0110.011NYZ01/10011.0111.0111.0110.0110.0110.011NYZ01/10011.0111.0111.0110.0110.0110.011NYZ01/100101/2010<	MW70 (2" RW)	Drake	12/16/2014	9:58	354.17	NM	NM	NM	
NNP1NNP1 NNP2NNP2 NNP3NNP2 NNP3NNP3 NNP3 NNP3NNP3 NNP3 NNP3 NNP3 NNP3 NNP3 NNP3 	MW70 (2" RW)	Drake	03/17/2015	NM	354.17	NM	NM	NM	
NNYTNIP/Tam12/14/20412	MW71	Shin/Choi	06/18/2014	8:00	347.92	12.22	336.07	0.46	
NMY2Bm/Com01/17/101514.3030/2232.1233.010.47NMV2Bm/Com07/24/01410.2024.3217.8023.000.40NMV2Bm/Com07/24/01410.2342.3817.8023.000.41NMV2Bm/Com07/27/01514.5042.3817.8033.000.41NMV3Bm/Com07/27/01514.5042.3813.001.00-NMV3Bm/Com07/27/01412.5844.3831.000.70NMV3Bm/Com07/27/01514.3844.3830.010.70NMV3Bm/Com07/27/01514.3844.3830.010.70NMV3Sm/Com07/27/01514.3844.7830.010.70NMV3Sm/Com07/27/01514.3844.7830.0111.50NMV4Sm/Com07/27/01514.3847.9830.0011.61NMV4Sm/Com07/27/01414.0130.7210.00M.MN.MNot Included in SOW for gastraft worts.NMV4Sm/Com07/27/01414.0130.3714.3811.62NMV4Sm/Com07/27/01414.0130.3714.3811.62NMV5Sm/Com07/27/01414.0130.3714.3811.59NMV5Sm/Com07/27/01415.0031.00 <td>MW71</td> <td>Shin/Choi</td> <td>09/24/2014</td> <td>10:19</td> <td>347.92</td> <td>16.10</td> <td>332.80</td> <td>1.23</td> <td></td>	MW71	Shin/Choi	09/24/2014	10:19	347.92	16.10	332.80	1.23	
NMV72SmithanSmithanSmithanSmithanSmithanSmithanNMV72Smithan2775277723010.35NMV72Smithan07721450377373030120.5NMV73Smithan07711450377330120.5NMV73Smithan07711450377330120.5NMV73Smithan07711473347310820.5NMV73Smithan07711473347334733062-NMV74Smithan0771147434733473302-NMV74Smithan077114743474357302-NMV74Smithan077114743474357302302-NMV74Smithan077114743474357301630163016NMV74Smithan0771147334743573016-NMV75Smithan35721478357NMMMMNMV75Smithan077134743471418-NMV75Smithan07713573113-NMV75Smithan07713573113-NMV75Smithan077131233120-NMV75Smithan077131133	MW71	Shin/Choi	12/16/2014	13:01	347.92	15.27	333.60	1.19	
NMYZ Im//TM 107/2 3473 17.80 20.44 NMYZ Im//TM 107/17.01 12.80 3473 17.80 330.10 0.44 NMYZ Im//TM 0/17/2015 12.80 3473 330.10 0.32 - NMYZ Im//TM 0/17/2014 4.00 347.3 32.00 - - NMYZ Im//TM 0/17/2014 1.02 8.47.3 9.30.1 9.00.2 - NMYZ Im//TM 0/17/2014 1.23 8.47.3 9.30.2 - - NMY3 Sin//TM 0/17/2014 1.80 9.47.8 9.30.2 - - NMY3 Sin//TM 0/17/2014 1.80 9.47.8 9.30.2 - - NMY3 Sin//TM 0/17/2014 1.30 9.37 9.30.8 9.31.8 - - NMY4 Sin//TM 0/17/2014 9.32 9.31.8 9.1.3 - - Sin//TM 0/17/2	MW71	Shin/Choi	03/17/2015	14:33	347.92	12.12	336.18	0.47	
NNY2NN/Chel17/16/21412/1612/1694/2817.791.030.150.15NNY2NN/Chel06/16/201410.26347.3317.16308.27NNY3NN/Chel06/16/201410.26347.3337.11308.27NNY3SN/Chel02/16/201412.25347.3339.41309.27NNY3SN/Chel02/16/201412.25347.3339.41309.27NNY3SN/Chel06/15/201481.02347.9435.9031.35NNY3SN/Chel06/15/201481.02347.9435.9031.35NNY4SN/Chel07/17.0112.8337.9437.0731.06NNY5SN/Chel07/17.0112.8337.9437.0731.08NNY5SN/Chel07/17.0112.8337.9437.0731.08NNY5SN/Chel07/12.0112.8337.9431.08NN<	MW72	Shin/Choi	06/18/2014	8:05	347.38	14.69	333.03	0.43	
NMV7bit/Chai01/12/0116.20347.3834.0733.27NMV7bit/Chai09/24/201410.20347.3391.430.212NMV7bit/Chai09/24/201410.20347.3319.4130.212NMV7bit/Chai01.712/01510.20347.3318.0430.272NMV7bit/Chai01.712/01510.20347.4443.0431.15NMV7bit/Chai10.2010.214347.4443.02NMV7bit/Chai10.2134.7410.04NMV7bit/Chai10.2134.7410.0410.01NMV7bit/Chai10.2134.7410.0410.01NMV7bit/Chai10.2134.7410.0410.01NMV7bit/Chai10.2134.7410.0410.00NNMV7bit/Chai10.0113.1413.131NMV7bit/Chai10.0113.1413.131NMV7bit/Chai10.0113.1413.131NMV7bit/Chai10.0113.1413.151NMV7bit/Chai10.0113.1413.151NMV7bit/Chai </td <td>MW72</td> <td>Shin/Choi</td> <td>09/24/2014</td> <td>10:23</td> <td>347.38</td> <td>17.88</td> <td>329.85</td> <td>0.44</td> <td></td>	MW72	Shin/Choi	09/24/2014	10:23	347.38	17.88	329.85	0.44	
NMV72NUCAD01/2702014/20094/2	MW72	Shin/Choi		12:58	347.38	17.37	330.13	0.15	
NNY7NN/Col05/2.13/2.019.009.009.009.009.00NNY7NN/Col07.0010.009.07.0010.009.07.009.00<	MW72						333.29		
NNYTMINCol092/42141020947339474947299MINTMINCol12/12112/129473394739478947899111MINTMINCol01/1201514.14947394789579.11.5111MINTMINCol01/1201514.1694749589.11.51111MINTMINCol01/1201514.139.17410.1610.161111MINTMINCol01/1201514.139.17410.1610.16111 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-							
NMV2 Sin(Yolo) 12/16/2014 12:25 347.33 90.72 90.72 Image: Constraint of the second of the s									
NNY3Shir(Yolo)0/1/1/20131/4.419/3.319/3.049/3.20NNY4Shir(Yolo)0/2/2013410.169/3.749/3.523.13NNY4Shir(Yolo)0/2/2013410.169/3.749/3.200.070.07NNY4Shir(Yolo)0/2/201341.019/3.789/3.080.070.07NNY5Sch Are ROV0/2/201341.042.5.78NMNMNMNot Included in SOV for quarterly events.NNY5Sch Are ROV0/2/20141NM2.5.78NMNMNMNot Included in SOV for quarterly events.NNY5Sch Are ROV0/2/20141NM2.5.78NMNMNMNot Included in SOV for quarterly events.NNY5Sch Are ROV0/2/201419.0951.662.1.3734.42NNY6Drake0/2/201419.1251.664.0.1631.13NNY6Drake0/2/201411.1.664.0.1631.13NNY7Drake0/2/201411.1.64.0.1631.13NNY7Drake0/2/201411.1.44.9.5531.3.0NNY7Drake0/2/201411.1.44.9.5531.3.0NNY7Drake0/2/201411.1.44.9.5531.3.0NNY7Drake0/2/201411.1.535.950.1.2NN									
NNY4Shir/Choi09/12/01410.010.213.13111NNY4Shir/Choi12/16/201311.2514.27412.8229.02NNY4Shir/Choi0.3/1/201311.43812.75N.WNMNMNmNmShir/Are/NOW0/1/2014NM845.78NMNMNMNmNmNmShir/Are/NOW0/1/2014NM845.78NMNMNMNmNmNmShir/Are/NOW0/1/2014NM845.78NMNMNMNmNmNmShir/Are/NOW0/1/2014NM545.78NMNMNMNmNmNmShir/Are/NOW0/1/201412.0351.6837.3731.32NMY5Drake0/1/201412.03S15.6840.3031.33NMY6Drake0/1/201412.03S15.6840.30NMY7Drake0/1/201413.0334.9530.37NMY7Drake0/1/201413.0334.9530.36NMY7Drake0/1/201413.0334.9531.36NMY7Drake0/1/201413.0335.9531.36NMY7Drake0/1/201413.0335.9531.		-							
NNV4Sin(/bit)19/14/01410:1637.4438.9239.90.2InterfactorialNNV4Sin(/bit)03/17/01511:3837.9497.8691.06NN <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
NMV4 Sim/fob 121/12/015 12.3 347.04 DPV DPV DPV NMV5 Sin Ave 100V 007.87/2015 1.4.8 347.04 NM NM NM MM NM		-							
NNY6 Sin/Choi 917/2015 14.38 947.94 97.08 10.106 - NNY5 Sich Ave ROW 06/32/101 NM 354.7 NM									
NMY5 Sich Ave BOW OSY82014 NMA SMMA NMA									
NMV5 Sich Ave BOW P02/42024 NM NM </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
NNY5 Stich Aus BOV 12/16/2018 NM 354.78 VM NM NM <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
NW75 Seb Ave ROW 03/19/2013 9:50 354.78 41.48 91330 International State NW76 Drake 09/24/2014 9:23 351.69 17.37 114.32 International State NW76 Drake 09/24/2014 9:23 351.69 37.34 31.33 International State NW76 Drake 09/18/2014 12.05 351.69 37.34 31.35 International State NW77 Drake 09/18/2014 81.43 349.55 33.18 31.26 Screwirner in well NW77 Drake 09/18/2014 9:00 349.50 35.55 313.40 International State Screwirner in well Screwirneri									
NMV76 Deske 00/18/2014 9.99 331.49 314.42 Participation NMV76 Drake 01/2/1014 12.05 351.69 40.30 311.39 Intermediation NMV76 Drake 01/17/2014 12.05 351.69 40.16 311.53 Intermediation NMV76 Drake 01/17/2015 13.13 351.69 33.68 33.26 Intermediation NMV77 Drake 02/12/2014 9.14 349.95 33.18 310.76 Intermediation NMV77 Drake 03/17/2015 13.28 349.95 351.47 314.92 Intermediation NMV78 Drake 03/17/2015 13.28 349.90 317.00 312.30 Intermediation Interme								NM	Not included in SOW for quarterly events.
NWT6Prake09/24/2149.23951.0940.30911.39NW76Drake03/17/201513.33351.6937.44314.35NW77Drake06/18/201448.58349.9536.69313.26scewdriver in wellNW77Drake06/18/201448.58349.9533.10310.07scewdriver in wellNW77Drake01/2/201411.59349.9533.10310.77scewdriver in wellNW77Drake01/2/201411.59349.9033.10313.40scewdriver in wellNW78Drake01/12/201412.01349.9031.12312.78scewdriver in wellNW78Drake01/12/201412.01349.9037.12312.78scewdriver in wellNW78Drake01/12/201412.01349.9037.12312.78scewdriver in wellNW78Drake01/12/201412.01349.9037.12312.78scewdriver in wellNW79Drake01/12/201411.0135.9313.7834.02scewdriver in wellNW79Drake01/12/201411.0435.8014.7039.28scewdriver in wellNW79DrC/farmasonis01/12/201411.0435.8014.7039.70scewdriver in wellNW79DrC/farmasonis01/12/101453.8014.2039									
NW76 Orske 12/16/2014 12.05 951.09 401.6 311.33 Incrementation NW77 Drake 03/17/2015 13.13 951.69 37.44 311.35 Incrementation NW77 Drake 09/24/2014 9.14 349.95 36.66 313.26 Incrementation NW77 Drake 09/24/2014 9.14 349.95 33.07 Krewdrver in well NW77 Drake 09/12/2015 13.28 349.95 33.10 Incrementation NW78 Drake 09/12/2014 13.28 131.23 Incrementation NW78 Drake 09/12/2014 13.28 131.23 Incrementation NW78 Drake 09/12/2014 12.01 349.90 37.12 312.30 Incrementation NW78 Drake 09/12/2014 12.01 353.88 13.23 340.20 Incrementation 0/12.01 133.98 13.23	MW76								
NW76 Drake 0/11/2015 13:13 251.69 37.34 314.35 NW77 Drake 0/6/18/2014 6.58 349.95 30.69 313.26 NW77 Drake 0.2/12/012 11:59 349.95 30.10 screwdriver in well MW77 Drake 12/16/2014 11:59 349.95 30.10	MW76	Drake	09/24/2014	9:23	351.69	40.30	311.39		
NWTDrake06/13/D148.58340.9536.69313.27IInterpretationNW7Drake03/24/20149:14349.9530.81310.77IScrewdriver in wellNWTDrake03/12/D1513:28349.9530.55313.40IScrewdriver in wellNW78Drake03/12/D1513:28349.9035.55313.40IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	MW76	Drake	12/16/2014	12:05	351.69	40.16	311.53		
NWTDrake09/2/20149:14349:9539:18310.77icrewidriver in wellNW77Drake12/16/201411:59349:9530:10310.76NW78Drake09/17/201513:28349:9035:15313.47NW78Drake09/17/20149:00349:9035:15314.77NW78Drake09/17/2015NM349:9037:00312.30NW78Drake09/17/2015NM349:90NMNMwelfhad inaccessible (construction box on top of well)NW78Drake09/17/2015NM349:90NMNMwelfhad inaccessible (construction box on top of well)NW79TOC/Farmasonis09/17/201511:0135:3812.22341:76NW79TOC/Farmasonis09/17/201511:1435:3812.22341:76NW80TOC/Farmasonis09/17/201511:1535:3812.2033:43NW80TOC/Farmasonis09/17/201511:1635:3815:40337:43NW80TOC/Farmasonis09/17/201511:2035:5043:0431:14NW80TOC/Farmasonis09/17/201511:2935:5043:0431:14NW80TOC/Farmasonis09/17/201511:2935:5043:02NW81TOC/Farmasonis09/17/	MW76	Drake	03/17/2015	13:13	351.69	37.34	314.35		
NW77Drake12/16/201411:59349.9539.19310.76INW77Drake03/17/201513.28349.9535.15313.47NW78Drake00/14/20149.00349.9035.15313.47NW78Drake00/14/20149.16349.9037.60312.20NW78Drake00/14/201412.01349.9037.60312.20NW78Drake03/17/2015NM349.90NMNMwellhead inaccessible (construction box on top of well)NW79TOC/Farmasonis06/18/201410.10353.9813.78340.20NW79TOC/Farmasonis09/14/201411.14333.9814.70339.28NW79TOC/Farmasonis09/17/201511.35353.8812.22341.76NW79TOC/Farmasonis09/17/201511.35353.8812.22341.76NW80TOC/Farmasonis09/17/201511.35353.8812.28340.83I-NW80TOC/Farmasonis09/17/201411.60353.8812.86340.88I-NW80TOC/Farmasonis09/17/201511.40353.8912.21340.88I-NW80TOC/Farmasonis09/17/201511.40355.8912.81340.88I-NW81TOC/Farmasonis09/17/201511.60355.89 <td< td=""><td>MW77</td><td>Drake</td><td>06/18/2014</td><td>8:58</td><td>349.95</td><td>36.69</td><td>313.26</td><td></td><td></td></td<>	MW77	Drake	06/18/2014	8:58	349.95	36.69	313.26		
NW77 Drake 03/17/2015 13.28 349.95 36.55 313.40 Image NW78 Drake 06/18/2014 9:00 34.90 37.10 314.75 Image NW78 Drake 03/12/2014 12:16 349.90 37.12 312.78 Image NW78 Drake 03/17/2015 NM 349.90 37.12 312.78 Image Imag	MW77	Drake	09/24/2014	9:14	349.95	39.18	310.77		screwdriver in well
NW78 Drake 06/18/2014 9:00 349.90 35.15 314.75 Image (Construction) NW78 Drake 03/1/2014 9:16 349.90 37.20 312.30 Image (Construction) MW78 Drake 03/1/2015 NM 349.90 37.12 312.78 wellhead inaccessible (construction box on top of well) MW79 TOC/Farmasonis 06/18/2014 11:10 353.98 13.78 340.20 wellhead inaccessible (construction box on top of well) MW79 TOC/Farmasonis 03/17/2015 11:40 353.98 14.70 339.28 MW80 TOC/Farmasonis 03/17/2015 11:40 353.83 14.13 339.70 MW80 TOC/Farmasonis 03/17/2015 11:40 353.83 12.08 340.85 Sil on bottom of well. MW80 TOC/Farmasonis 03/17/2015 11:40 355.60 43.02 312.54 Sil on bottom of well. </td <td>MW77</td> <td>Drake</td> <td>12/16/2014</td> <td>11:59</td> <td>349.95</td> <td>39.19</td> <td>310.76</td> <td></td> <td></td>	MW77	Drake	12/16/2014	11:59	349.95	39.19	310.76		
NW78 Drake 09/24/2014 9-16 349.90 37.60 312.30 International State NW78 Drake 12/16/2014 12.01 349.90 N/N N/N N wellhead inaccessible (construction box on top of well) MW79 Drake 09/17/2015 N/N 353.98 13.78 340.20 wellhead inaccessible (construction box on top of well) MW79 TOC/Farmasonis 09/18/2014 11:04 353.98 14.70 332.82 MW79 TOC/Farmasonis 05/18/2014 11:04 353.38 14.70 332.82 MW80 TOC/Farmasonis 05/18/2014 11:08 353.38 14.70 332.80 MW80 TOC/Farmasonis 05/18/2014 11:04 353.83 15.00 337.83 Sitt on bottom of well. MW81 TOC/Farmasonis 03/17/2015 11:30 355.60 40.46 315.14	MW77	Drake	03/17/2015	13:28	349.95	36.55	313.40		
NW78 Drake 12/16/2014 12:01 349.90 37.12 312.78 Nethead inaccessible (construction box on top of well) NW79 Droke 03/17/2015 NM 349.90 NM NM wellhead inaccessible (construction box on top of well) MW79 TOC/Farmasonis 06/18/2014 10:10 353.98 1A70 339.28 Wellhead inaccessible (construction box on top of well) MW79 TOC/Farmasonis 09/12/2014 11:24 353.98 1A70 339.28 Intermediate MW30 TOC/Farmasonis 09/12/2014 11:25 353.88 14.13 339.70 Intermediate MW30 TOC/Farmasonis 09/18/2014 11:26 353.88 12.00 334.63 Intermediate MW30 TOC/Farmasonis 03/17/2015 11:40 355.80 42.98 312.11 Intermediate Site notatom of well. MW31 TOC/Farmasonis 09/14/2014 12:13 35.50 42.98 312.17	MW78	Drake	06/18/2014	9:00	349.90	35.15	314.75		
NM78 Drake 03/17/2015 NM 349.90 NM NM wellhead inaccessible (construction box on top of well) MW79 TOC/Farmasonis 09/24/2014 10:10 353.98 DRV DRV DRV DRV MW79 TOC/Farmasonis 12/16/2014 11:10 353.98 DRV DRV DRV DRV MW79 TOC/Farmasonis 09/24/2014 11:10 353.98 14.13 335.70 MW80 TOC/Farmasonis 06/18/2014 10:08 353.83 16.40 337.43 MW80 TOC/Farmasonis 03/17/2015 11:30 355.60 40.46 315.14 MW81 TOC/Farmasonis 03/17/2015 11:32 355.60 40.28 312.17 MW81 TOC/Farmasonis 03/17/2015 11:12 355.60 40.67 31.49.3 MW81 TOC/Farmasonis 03/17/2015 11:12 355.59	MW78	Drake	09/24/2014	9:16	349.90	37.60	312.30		
NM78 Drake 03/17/2015 NM 349.90 NM NM wellhead inaccessible (construction box on top of well) MW79 TOC/Farmasonis 09/24/2014 10:10 353.98 DRV DRV DRV DRV MW79 TOC/Farmasonis 12/16/2014 11:10 353.98 DRV DRV DRV DRV MW79 TOC/Farmasonis 09/24/2014 11:10 353.98 14.13 335.70 MW80 TOC/Farmasonis 06/18/2014 10:08 353.83 16.40 337.43 MW80 TOC/Farmasonis 03/17/2015 11:30 355.60 40.46 315.14 MW81 TOC/Farmasonis 03/17/2015 11:32 355.60 40.28 312.17 MW81 TOC/Farmasonis 03/17/2015 11:12 355.60 40.67 31.49.3 MW81 TOC/Farmasonis 03/17/2015 11:12 355.59	MW78	Drake		12:01	349.90	37.12	312.78		
MW79 TOC/Farmasonis 06/18/2014 10:10 353.98 13.78 340.20 Image: Constraint of the c							NM		wellhead inaccessible (construction box on top of well)
MW79 TOC/Farmasonis 09/24/2014 12:17 353.98 DRY DRY DRY DRY MW79 TOC/Farmasonis 12/16/2014 11:04 353.98 14.70 339.28 MW79 TOC/Farmasonis 03/17/2015 11:35 353.98 12.22 341.76 MW80 TOC/Farmasonis 06/18/2014 10:08 353.83 14.13 339.70 MW80 TOC/Farmasonis 09/24/2014 12:16 353.83 16.40 337.43 MW80 TOC/Farmasonis 09/24/2014 11:05 355.80 12.98 340.85 Sit on bottom of well. MW81 TOC/Farmasonis 09/24/2014 12:13 355.60 42.89 312.71 MW81 TOC/Farmasonis 12/16/2014 11:20 355.60 43.22 312.58 MW81 TOC/Farmasonis 12/16/2014 11:23 355.59 28.44 327.15 MW82 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
MW79 ToC/Farmasonis 12/16/2014 11:04 353.98 14.70 339.28 Mathematical Stressonis MW79 ToC/Farmasonis 09/17/2015 11:35 353.98 12.22 341.76 MW80 ToC/Farmasonis 09/24/2014 12:16 353.83 14:13 339.70 MW80 ToC/Farmasonis 09/24/2014 12:16 353.83 16:40 337.43 MW80 ToC/Farmasonis 09/24/2014 12:16 353.83 16:40 337.43 MW80 ToC/Farmasonis 03/17/2015 11:40 355.60 42.89 312.71 MW81 ToC/Farmasonis 09/24/2014 12:13 355.60 42.89 312.71 MW81 ToC/Farmasonis 03/17/2015 11:52 355.60 43.02 312.43 MW82 ToC/Farmasonis 05/18/2014 10:06 355.59 28.44 327.15 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>DRY</td><td></td></t<>								DRY	
MW79 TOC/Farmasonis 03/17/2015 11:35 353.98 12.22 341.76 Image: Constrained and the									
MW80 TOC/Farmasonis 06/18/2014 10:08 353.83 14.13 339.70 MW80 TOC/Farmasonis 09/24/2014 12:16 353.83 19.20 334.63 MW80 TOC/Farmasonis 12/16/2014 11:05 353.83 16.40 337.43 MW80 TOC/Farmasonis 05/18/2014 11:04 353.83 12.98 340.85 Silt on bottom of well. MW81 TOC/Farmasonis 05/18/2014 11:20 355.60 440.46 315.14 Silt on bottom of well. MW81 TOC/Farmasonis 03/17/2015 11:12 355.60 440.67 314.93 MW81 TOC/Farmasonis 03/17/2014 11:03 355.59 DRV DRY DR MW82 TOC/Farmasonis 03/17/2015 11:42 355.59 27.43 328.16 MW82 TOC/Farmasonis 03/17/2015 11:42 355.59 28.95 32.6.64									
MW80 TOC/Farmasonis 09/24/2014 11:16 353.83 19.20 334.63 MW80 TOC/Farmasonis 12/16/2014 11:105 353.83 16.40 337.33 MW80 TOC/Farmasonis 03/17/2015 11:40 353.83 12.98 340.85 Silt on bottom of well. MW81 TOC/Farmasonis 05/17/2014 11:20 355.60 40.46 315.14 MW81 TOC/Farmasonis 03/17/2014 11:29 355.60 40.67 314.93 MW81 TOC/Farmasonis 03/17/2014 11:52 355.60 40.67 314.93 MW82 TOC/Farmasonis 05/24/2014 11:52 355.59 28.44 327.15 MW82 TOC/Farmasonis 05/24/2014 11:33 355.59 28.44 327.15 MW82 TOC/Farmasonis 05/21/2014 11:32 355.59 28.95 326.64									
W80 TOC/Farmasonis 12/16/2014 11:05 353.83 16.40 337.43 Silt on bottom of well. MW80 TOC/Farmasonis 09/17/2015 11.40 353.83 12.98 340.85 Silt on bottom of well. MW81 TOC/Farmasonis 09/18/2014 10:04 355.60 40.46 315.14 MW81 TOC/Farmasonis 09/18/2014 11:29 355.60 40.40 315.14 MW81 TOC/Farmasonis 09/12/2014 11:29 355.60 40.67 314.93 MW81 TOC/Farmasonis 09/12/2014 11:20 355.59 28.44 327.15 MW82 TOC/Farmasonis 09/12/2014 11:03 355.59 28.43 328.16 MW82 TOC/Farmasonis 03/17/2015 11:42 355.59 28.95 326.64 MW83 TOC/Farmasonis NA NA NA									
NW80 TOC/Farmasonis 03/17/2015 11:40 353.83 12.98 340.85 Silt on bottom of well. MW81 TOC/Farmasonis 09/24/2014 10:04 355.60 40.46 315.14 Important of the second of th									
NM81TOC/Farmasonis06/18/201410:04355.6040.46315.14Independent of the second of									
NW81 TOC/Farmasonis 09/24/2014 12:13 355.60 42.89 312.71 NW81 TOC/Farmasonis 12/16/2014 11:29 355.60 43.02 312.58 NW81 TOC/Farmasonis 03/17/2015 11:52 355.60 40.67 314.93 NW82 TOC/Farmasonis 09/24/2014 10:06 355.59 28.44 327.15 NW82 TOC/Farmasonis 09/24/2014 11:03 355.59 27.43 328.16 NW82 TOC/Farmasonis 03/17/2015 11:42 355.59 28.55 326.64 NW83 TOC/Farmasonis 03/17/2015 11:42 355.59 28.55 326.64 NW84 Drake 06/18/2014 8:20 353.75 40.07 313.68 Former RW (purp removed 09/17/2013) NW84 Drake 05/18/2014 9:20 353.75 42.49 311.28									Silt on bottom of well.
MW81 TOC/Farmasonis 12/16/2014 11:29 355.60 43.02 312.58 MW81 TOC/Farmasonis 03/17/2015 11:52 355.60 40.67 314.93 MW82 TOC/Farmasonis 06/18/2014 10:06 355.59 28.44 327.15 MW82 TOC/Farmasonis 09/24/2014 12:16 355.59 DRY DRY DRY MW82 TOC/Farmasonis 03/17/2015 11:42 355.59 ZR.44 327.15 MW82 TOC/Farmasonis 03/17/2015 11:42 355.59 ZR.44 327.15 MW82 TOC/Farmasonis 03/17/2015 11:42 355.59 ZR.44 328.64 MW84 TOC/Farmasonis 03/17/2015 11:42 355.75 42.87 313.68 Former RW (pump removed 09/17/2013) MW84 Drake 09/23/2014 9:00 353.75 42.47 311.28 parked on top). Data represents measurement event 09/24/2014									
MW81 TOC/Farmasonis 03/17/2015 11:52 355.60 40.67 314.93 Interpretation MW82 TOC/Farmasonis 06/18/2014 10:06 355.59 28.44 327.15 Interpretation Interpreta									
MW82 TOC/Farmasonis 06/18/2014 10:06 355.59 28.44 327.15 MW82 TOC/Farmasonis 09/24/2014 12:16 355.59 DRY DRY DRY DRY MW82 TOC/Farmasonis 12/16/2014 11:03 355.59 27.43 328.16 MW82 TOC/Farmasonis 03/17/2015 11:42 355.59 28.95 326.64 MW83 TOC/Farmasonis 03/17/2015 11:42 355.59 28.95 326.64 MW84 Drake 06/18/2014 8:20 353.75 40.07 313.68 Former RW (pump removed 09/17/2013) MW84 Drake 09/23/2014 9:00 353.75 42.47 311.28 Former RW (pump removed 09/17/2013) MW84 Drake 12/16/2014 9:52 353.75 42.90 310.85 Former RW (pump removed 09/17/2013) MW84 Drake 03/17/2015 10:40 353.75 42.90 310.85<									
MW82 TOC/Farmasonis 09/24/2014 11:16 355.59 DRY DRY DRY DRY MW82 TOC/Farmasonis 12/16/2014 11:03 355.59 27.43 328.16 MW82 TOC/Farmasonis 03/17/2015 11:42 355.59 28.95 326.64 MW83 TOC/Farmasonis NA NA NA NA NA MA									
MW82TOC/Farmasonis12/16/201411:03355.5927.43328.16Image: Comparison of the	MW82								
NW82TOC/Farmasonis03/17/201511:42355.5928.95326.64Image: Comparison of the comparis	MW82							DRY	
MW83TOC/FarmasonisNA<	MW82	TOC/Farmasonis	12/16/2014	11:03	355.59	27.43	328.16		
MW84Drake06/18/20148:20353.7540.07313.68Former RW (pump removed 09/17/2013)MW84Drake09/23/20149:00353.7542.47311.28Wellhead inaccessible during measurement event 09/24/2014 (parked on top). Data represents measurement taken at time of sample collection.MW84Drake12/16/20149:52353.7542.47310.85Mellhead inaccessible during measurement taken at time of sample collection.MW84Drake03/17/201510:40353.7542.90310.85Mellhead inaccessible during measurement taken at time of sample collection.MW84Drake03/17/201510:40353.7542.90310.85Mellhead inaccessible during measurement taken at time of sample collection.MW85Drake06/18/20148:55351.2837.81313.47Internet of sample collection.MW85Drake09/24/20149:06351.2840.30310.98Internet of sample collection.MW85Drake09/24/201411:57351.2840.30310.98Internet of sample collection.MW86Drake03/17/201513:02352.7239.18313.46Internet of sample collection.MW86Drake09/24/20148:50352.7239.18313.54Internet of sample collection.MW86Drake09/24/20148:50352.7241.70311.02Internet of sample collection.	MW82	TOC/Farmasonis	03/17/2015	11:42	355.59	28.95	326.64		
NW84Drake09/23/20149:00353.7542.47311.28Wellhead inaccessible during measurement event 09/24/2014 (parked on top). Data represents measurement taken at time of sample collection.MW84Drake12/16/20149:52353.7542.90310.85Mellhead inaccessible during measurement taken at time of sample collection.MW84Drake03/17/201510:40353.7542.90310.85Mellhead inaccessible during measurement taken at time of sample collection.MW85Drake03/17/201510:40353.7540.19313.56Mellhead inaccessible during measurement taken at time of sample collection.MW85Drake06/18/20148:55351.2840.19313.56Mellhead inaccessible during measurement event 09/24/2014MW85Drake09/24/20149:06353.7540.19313.75Mellhead inaccessible during measurement taken at time of sample collection.MW85Drake09/24/20148:55351.2840.19313.56MW85Drake03/17/201513:02351.2840.30310.77MW86Drake06/18/20148:53352.7239.18313.54MW86Drake09/24/20148:50352.7241.70311.02MW86Drake09/24/20148:50352.7242.00310.72MW86Drake <t< td=""><td>MW83</td><td>TOC/Farmasonis</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>WELL DECOMMISSIONED 11/21/2011 (REPLACED WITH MW100)</td></t<>	MW83	TOC/Farmasonis	NA	NA	NA	NA	NA	NA	WELL DECOMMISSIONED 11/21/2011 (REPLACED WITH MW100)
NW84Drake09/23/20149:00353.7542.47311.28parked on top). Data represents measurement taken at time of sample collection.NW84Drake12/16/20149:52353.7542.90310.85parked on top). Data represents measurement taken at time of sample collection.NW84Drake03/17/201510:40353.7542.90310.85Image collection.NW85Drake06/18/20148:55351.2837.81313.47Image collection.NW85Drake09/24/20149:06351.2837.81310.77Image collection.NW85Drake09/24/20149:06351.2840.30310.98Image collection.NW85Drake09/24/20149:06351.2840.30310.77Image collection.NW85Drake03/17/201511:02351.2840.30310.77Image collection.NW86Drake03/17/201511:02351.2837.82313.46Image collection.NW86Drake09/24/20148:53352.7239.18313.54Image collection.NW86Drake12/16/201411:54352.7241.70311.02Image collection.NW86Drake03/17/201513:05352.7241.70310.72Image collection.NW86Drake03/17/201513:05352.7239.33313.39<	MW84	Drake	06/18/2014	8:20	353.75	40.07	313.68		
NW84Drake12/16/20149:52353.7542.90310.85NW84Drake03/17/201510:40353.7540.19313.56NW85Drake06/18/20148:55351.2837.81313.47NW85Drake09/24/20149:06351.2840.30310.98NW85Drake09/24/201411:57351.2840.30310.77NW85Drake03/17/201511:02351.2840.51310.77NW86Drake06/18/20148:53352.7239.18313.54NW86Drake09/24/20148:50352.7241.70311.02NW86Drake09/24/20148:50352.7242.00310.72NW86Drake09/24/201411:54352.7242.00310.72NW86Drake03/17/201513:05352.7239.33313.39NW86Drake03/17/201513:05352.7239.33313.39	MW84	Drake	09/23/2014	9:00	353.75	42.47	311.28		
MW84 Drake 03/17/2015 10:40 353.75 40.19 313.56 MW85 Drake 06/18/2014 8:55 351.28 37.81 313.47 MW85 Drake 09/24/2014 9:06 351.28 40.30 310.98 MW85 Drake 09/24/2014 9:06 351.28 40.30 310.98 MW85 Drake 09/24/2014 11:57 351.28 40.51 310.77 MW85 Drake 03/17/2015 13:02 351.28 40.51 310.77 MW85 Drake 03/17/2015 13:02 351.28 37.82 313.46 MW86 Drake 06/18/2014 8:53 352.72 39.18 313.54 MW86 Drake 09/24/2014 8:50 352.72 41.70 311.02 MW86 Drake 03/17/2015 13:05 352.72 42.00 310.72 <t< td=""><td>MW84</td><td>Drake</td><td>12/16/2014</td><td>9:52</td><td>353.75</td><td>42.90</td><td>310.85</td><td></td><td></td></t<>	MW84	Drake	12/16/2014	9:52	353.75	42.90	310.85		
MW85 Drake 06/18/2014 8:55 351.28 37.81 313.47 MW85 Drake 09/24/2014 9:06 351.28 40.30 310.98 MW85 Drake 09/24/2014 9:06 351.28 40.30 310.98 MW85 Drake 12/16/2014 11:57 351.28 40.51 310.77 MW85 Drake 03/17/2015 13:02 351.28 37.82 313.46 MW86 Drake 06/18/2014 8:53 352.72 39.18 313.54 MW86 Drake 09/24/2014 8:50 352.72 39.18 313.24 MW86 Drake 09/24/2014 8:50 352.72 41.70 311.02 MW86 Drake 12/16/2014 11:54 352.72 42.00 310.72 MW86 Drake 03/17/2015 13:05 352.72 39.33 313.39									
MW85 Drake 09/24/2014 9:06 351.28 40.30 310.98 MW85 Drake 12/16/2014 11:57 351.28 40.51 310.77 MW85 Drake 03/17/2015 13:02 351.28 40.51 310.77 MW85 Drake 03/17/2015 13:02 351.28 37.82 313.46 MW86 Drake 06/18/2014 8:53 352.72 39.18 313.54 MW86 Drake 09/24/2014 8:50 352.72 41.70 311.02 MW86 Drake 09/24/2014 8:50 352.72 42.00 310.72 MW86 Drake 03/17/2015 13:05 352.72 42.00 310.72 MW86 Drake 03/17/2015 13:05 352.72 39.33 313.39									
MW85 Drake 12/16/2014 11:57 351.28 40.51 310.77 MW85 Drake 03/17/2015 13:02 351.28 37.82 313.66 MW86 Drake 06/18/2014 8:53 352.72 39.18 313.54 MW86 Drake 09/24/2014 8:50 352.72 41.70 311.02 MW86 Drake 12/16/2014 11:54 352.72 42.00 310.72 MW86 Drake 03/17/2015 13:05 352.72 42.00 310.72 MW86 Drake 03/17/2015 13:05 352.72 39.33 313.39									
MW85 Drake 03/17/2015 13:02 351.28 37.82 313.46 MW86 Drake 06/18/2014 8:53 352.72 39.18 313.54 MW86 Drake 09/24/2014 8:50 352.72 41.70 311.02 MW86 Drake 12/16/2014 11:54 352.72 42.00 310.72 MW86 Drake 03/17/2015 13:05 352.72 39.33 313.39									
MW86 Drake 06/18/2014 8:53 352.72 39.18 313.54 MW86 Drake 09/24/2014 8:50 352.72 41.70 311.02 MW86 Drake 12/16/2014 11:54 352.72 42.00 310.72 MW86 Drake 03/17/2015 13:05 352.72 39.33 313.39									
MW86 Drake 09/24/2014 8:50 352.72 41.70 311.02 MW86 Drake 12/16/2014 11:54 352.72 42.00 310.72 MW86 Drake 03/17/2015 13:05 352.72 39.33 313.39									
MW86 Drake 12/16/2014 11:54 352.72 42.00 310.72 MW86 Drake 03/17/2015 13:05 352.72 39:33 313.39									
MW86 Drake 03/17/2015 13:05 352.72 39.33 313.39									
MW87 Drake 06/18/2014 9:06 349.72 36.68 313.04	MW86								
	MW87	Drake	06/18/2014	9:06	349.72	36.68	313.04		

<u>TABLE 1-1</u> Depth-to-Groundwater/Depth-to-Product Level Measurements First Quarter 2015 TOC Facility #01-176; Mountlake Terrace, Washington

Well (a)	Property	Measurement Date	Measurement Time (24:00)	Reference Elevation (feet) (b)	DTW (feet) (c)	Groundwater Elevation (feet) (d, e)	LNAPL Thickness (feet)	Notes / Observations
MW87	Drake	09/24/2014	9:20	349.72	39.19	310.53		
MW87	Drake	12/16/2014	12:02	349.72	38.92	310.80		
	Drake	03/17/2015	13:27	349.72	36.40	313.32		
	Drake	06/18/2014	9:11	351.63	15.99	335.64		
	Drake	09/24/2014	9:26	351.63	21.25	330.38		
	Drake	12/16/2014	12:06	351.63	22.30	329.33		
	Drake	03/17/2015	13:12	351.63	14.95	336.68		
	Drake	06/18/2014	8:17	353.86	39.98	313.88		
	Drake	09/24/2014	9:56	353.86	42.58	311.28		
	Drake	12/16/2014	11:47	353.86	42.93	310.93		
	Drake	03/17/2015	12:57	353.86	40.25	313.61		
	тос тос	06/18/2014	11:24	362.87 362.87	24.95	337.92		
. ,	TOC	09/24/2014	14:58 9:25	362.87	30.17 26.80	332.70 336.07		
	TOC	12/16/2014		362.87	20.80	340.15		
	TOC	03/17/2015 06/18/2014	9:36 11:20	362.87	25.20	340.15		
	TOC TOC	09/24/2014 12/16/2014	12:51 9:19	362.67 362.67	28.63 26.70	334.04 335.97		
	TOC	03/17/2015	9:19	362.67	26.70	335.97		
	TOC/Farmasonis	03/17/2015	9:40	357.91	42.08	339.38		
	TOC/Farmasonis	09/24/2014	15:32	357.91	42.08	313.85		
	TOC/Farmasonis	12/16/2014	9:41	357.91	44.69	313.00		
	TOC/Farmasonis	03/17/2015	10:16	357.91	42.31	315.60		
	TOC/Farmasonis	06/18/2014	9:51	355.97	42.31	315.66		
	TOC/Farmasonis	09/24/2014	15:27	355.97	DRY	DRY	DRY	
	TOC/Farmasonis	12/16/2014	9:35	355.97	DRY	DRY	DRY	
. ,	TOC/Farmasonis	03/17/2015	10:08	355.97	40.48	315.49		
	TOC/Farmasonis	06/18/2014	9:14	357.94	DRY	DRY	DRY	
	TOC/Farmasonis	09/24/2014	15:30	357.94	DRY	DRY	DRY	
	TOC/Farmasonis	12/16/2014	9:38	357.94	DRY	DRY	DRY	
· · ·	TOC/Farmasonis	03/17/2015	10:12	357.94	DRY	DRY	DRY	
	Drake	06/18/2014	8:22	354.67	40.34	314.33		
	Drake	09/24/2014	9:52	354.67	42.84	311.83		
	Drake	12/16/2014	9:49	354.67	43.08	311.59		
	Drake	03/17/2015	10:35	354.67	40.37	314.30		
	Drake	06/18/2014	8:32	356.00	41.17	314.83		
MW96 (4" RW)	Drake	09/24/2014	9:43	356.00	43.60	312.40		
MW96 (4" RW)	Drake	12/16/2014	9:46	356.00	43.92	312.08		
MW96 (4" RW)	Drake	03/17/2015	10:30	356.00	41.22	314.78		
MW97 (4" RW)	Drake	06/18/2014	8:41	354.29	39.98	314.31		
MW97 (4" RW)	Drake	09/24/2014	9:35	354.29	42.49	311.80		
MW97 (4" RW)	Drake	12/16/2014	9:57	354.29	42.74	311.55		
MW97 (4" RW)	Drake	03/17/2015	10:50	354.29	40.09	314.20		
MW98 (4" RW)	Drake	06/18/2014	8:28	354.75	DRY	DRY	DRY	
MW98 (4" RW)	Drake	09/24/2014	NM	354.75	NM	NM	NM	wellhead inaccessible (car parked on top)
MW98 (4" RW)	Drake	12/16/2014	9:54	354.75	43.27	311.48		
MW98 (4" RW)	Drake	03/17/2015	10:45	354.75	40.81	313.94		
MW99 (4" RW)	Drake	06/18/2014	8:44	353.58	DRY	DRY	DRY	
	Drake	09/24/2014	9:33	353.58	DRY	DRY	DRY	
	Drake	12/16/2014	10:00	353.58	DRY	DRY	DRY	
	Drake	03/17/2015	10:54	353.58	DRY	DRY	DRY	
	TOC/Farmasonis	06/18/2014	10:02	355.75	16.51	339.24		
	TOC/Farmasonis	09/24/2014	12:12	355.75	20.49	335.26		
	TOC/Farmasonis	12/16/2014	11:30	355.75	17.90	337.85		
	TOC/Farmasonis	03/17/2015	11:49	355.75	14.40	341.35		
	Drake	06/18/2014	8:50	352.05	38.54	313.51	Sheen	
	Drake	09/24/2014	NM	352.05	NM	NM	NM	wellhead inaccessible (car parked on top)
	Drake	12/16/2014	10:03	352.05	41.13	310.92		
	Drake	03/17/2015	10:57	352.05	38.46	313.59		
	Herman	06/18/2014	NM	352.39	NM	NM	NM	wellhead inaccessible (car parked on top)
MW102	Herman	09/24/2014	10:32	352.39	16.84	335.55	0.19	
MW102	Herman	12/13/2014	14:45	352.39	44.15	308.24		Wellhead inaccessible during measurement event 12/16/2014 (car parked on top). Data represents measurement taken at time of sample collection.
MW102	Herman	03/17/2015	14:18	352.39	15.28	337.89	0.97	
								Wellhead inaccessible during measurement event 06/18/2014 (car

TABLE 1-1 Depth-to-Groundwater/Depth-to-Product Level Measurements First Quarter 2015

TOC Facility #01-176; Mountlake Terrace, Washington

Well (a)	Property	Measurement Date	Measurement Time (24:00)	Reference Elevation (feet) (b)	DTW (feet) (c)	Groundwater Elevation (feet) (d, e)	LNAPL Thickness (feet)	Notes / Observations
MW103	Herman	09/24/2014	10:30	352.21	33.32	318.89		
MW103	Herman	12/16/2014	12:47	352.21	43.82	308.39		
MW103	Herman	03/17/2015	14:23	352.21	41.00	311.21		
MW104	Herman	06/18/2014	7:53	353.00	11.18	341.82	Sheen	
MW104	Herman	09/24/2014	10:08	353.00	16.18	336.82		
MW104	Herman	12/16/2014	12:44	353.00	13.94	339.06		
MW104	Herman	03/17/2015	14:10	353.00	11.93	341.07		
MW105	Herman	06/18/2014	7:55	353.05	39.76	313.29		
MW105	Herman	09/24/2014	10:10	353.05	DRY	DRY	DRY	
MW105	Herman	12/16/2014	12:43	353.05	DRY	DRY	DRY	
MW105	Herman	03/17/2015	14:11	353.05	40.47	312.58		
MW106	Herman	06/18/2014	13:50	349.24	13.25	335.99		
MW106	Herman	09/24/2014	10:13	349.24	18.19	331.05		
MW106	Herman	12/16/2014	12:50	349.24	12.07	337.17		
MW106	Herman	03/17/2015	14:25	349.24	11.04	338.20		
MW107	Herman	06/18/2014	15:10	349.56	37.47	312.09		
MW107	Herman	09/24/2014	10:11	349.56	39.75	309.81		
MW107	Herman	12/16/2014	12:49	349.56	39.75	309.81		
MW107	Herman	03/17/2015	14:35	349.56	37.11	312.45		

Notes:

(a) Remediation wells (identified as "RW") are connected to a multi-phase extraction system and are 2 or 4 inches in diameter.

(b) Reference elevation is the north side of the top of the well casing (except for MW25 where the reference elevation is the high point on the PVC casing and for MW99 where the reference elevation is the top of the well cap). Elevations are measured in feet above mean sea level (North American Vertical Datum of 1988 [NAVD88]).

Reference elevations surveys were conducted by PACE Engineers, Inc., in April and May 2014.

(c) DTW/DTP was measured from surveyed reference elevation [see note (b)].

(d) Where LNAPL thickness was measured, groundwater elevation was adjusted to account for the presence of LNAPL using the method from "Estimation of Free Hydrocrabon Volume from Fluid Levels in Monitoring Wells" (Lenhard & Parker).

(e) Groundwater elevation represents "system off" data (i.e., natural site conditions).

Definitions:

-- = No measurable product or odor observed.

DRY = Unable to measure DTW due to insufficient groundwater (in monitoring well) or groundwater level was below the top of pump (in remediation well).

Trace = Groundwater has <0.01 of measureable LNAPL.

Sheen = Iridescence on surface of groundwater that is indicative of LNAPL.

Acronyms: DTP = depth-to-product DTW = depth-to-groundwater LNAPL = liquid non-aqueous phase liquid NA = not available NM = not measured RW = remediation well

List of Properties:

TOC = 24205 56th Avenue West, Mountlake Terrace WA TOC/Farmasonis = 24225 56th Avenue West, Mountlake Terrace WA Drake = 24309 56th Avenue West, Mountlake Terrace WA Herman = 24311 56th Avenue West, Mountlake Terrace WA Shin/Choi = 24325 56th Avenue West, Mountlake Terrace WA 56th Ave ROW = right-of-way adjacent to TOC, TOC/Farmasonis & Drake properties 242nd St ROW = portion of right-of-way adjacent to TOC Property

References:

Lenhard, R. J. & Parker, J. C. Estimation of Free Hydrocarbon Volume from Fluid Levels in Monitoring Wells. Groundwater, 28: 57–67. doi: 10.1111/j.1745-6584.1990.tb02229.x. January 1990.

TABLE 2-1 Groundwater Quality Results for Selected Constituents Shallow Zone Wells Second Quarter 2014 - First Quarter 2015

								Analyti	cal Results	; (µg/L)			
					Total Petro	eum Hydi	rocarbons		Vol	atile Orga	nic Compo	ounds	
					Method	Me	thod		Moth	and \$14/80	21B / SW8	260C ⁽¹⁾	
					NWTPH-Gx	NWT	PH-Dx		INICCI	100 30000	1	2000	-
Well	Property	Sample Date	Sample Identifier	Sample Method	Gasoline-Range (GRPH)	Motor Oil- Range (ORPH)	Diesel-Range (DRPH)	Benzene	Toluene	Ethyl-benzene	Total Xylenes	m, p-Xylene	o-Xylene
MTCA Meth	hod A Cleanup Leve	l (μg/L) ⁽²⁾			1,000/800 ⁽³⁾	500	500	5	1,000	700	1,000	NE ⁽⁴⁾	NE ⁽⁴⁾
		12/10/2014	MW02	Peristaltic Pump	100U	NA	NA	1U ^(a)	1U ^(a)	1U ^(a)	3U	NA	NA
MW02	тос	3/14/2015	MW02	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
		3/14/2015	MLT-01*	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW03	тос	12/10/2014	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS
1111105	100	3/14/2015	MW03	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW04	56th Ave ROW	3/14/2015	MW04	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW05	242nd St ROW	3/18/2015	MW05	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW06	тос	3/13/2015	MW06	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW-12	56th Ave ROW	12/10/2014	MW12	Peristaltic Pump	100U	NA	NA	1U ^(a)	1U ^(a)	1U ^(a)	3U	NA	NA
	searchenow	3/12/2015	MW12	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW19	тос	12/11/2014	MW19	Peristaltic Pump	100U	NA	NA	1U ^(a)	1U ^(a)	1U ^(a)	3U	NA	NA
	100	3/14/2015	MW19	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW34	тос	3/13/2015	MW34	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
		6/12/2014	MW54	Peristaltic Pump	100U	250U	50U	1U	1U	1U	3U	NA	NA
MW54	TOC/Farmasonis	9/18/2014	MW54	Peristaltic Pump	100U	250U	50U	1U	1U	1U	3U	NA	NA
1010034		12/11/2014	MW54	Bailer	100U	NA	NA	0.35U	1U	1U	2U ^(b)	2U	1U
		3/12/2015	MW54	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW61	56th Ave ROW	3/13/2015	MW61	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW62	56th Ave ROW	3/13/2015	MW62	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
		6/17/2014	MW67	Peristaltic Pump	100U	250U	50U	1U	1U	1U	ЗU	NA	NA
MW67	Drake	9/20/2014	MW67	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
1111007	Drake	12/11/2014	MW67	Peristaltic Pump	100U	NA	NA	0.35U	1U	1U	2U ^(b)	2U	1U
		3/16/2015	MW67	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
		6/17/2014	MW68	Peristaltic Pump	100U	250U	50U	1U	1U	1U	3U	NA	NA
MW68	Drake	9/20/2014	MW68	Peristaltic Pump	100U	NA	NA	1U	1U	1U	ЗU	NA	NA
1111000	Drake	12/17/2014	MW68	Peristaltic Pump	100U	NA	NA	0.35U	1U	1U	2U ^(b)	2U	1U
		3/16/2015	MW68	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
		6/13/2014	MW71-P**	Peristaltic Pump	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW71	Shin/Choi	12/16/2014	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS
		3/17/2015	Not Sampled***	Not Sampled***	NS	NS	NS	NS	NS	NS	NS	NS	NS
		6/13/2014	MW72-P**	Peristaltic Pump	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW72	Shin/Choi	12/16/2014	Not Sampled***	Not Sampled***	NS	NS	NS	NS	NS	NS	NS	NS	NS
		3/19/2015	MW72	Bailer	130,000	500U	15,000	1,400	15,000	2,300	18,000	NA	NA
MW79	TOC/Farmasonis	3/12/2015	MW79	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW80	TOC/Farmasonis	3/12/2015	MW80	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
		6/19/2014	MW102-P**	Peristaltic Pump	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW102	Herman	12/17/2014	Not Sampled***	Not Sampled***	NS	NS	NS	NS	NS	NS	NS	NS	NS
		3/17/2015	Not Sampled***	Not Sampled***	NS	NS	NS	NS	NS	NS	NS	NS	NS
		6/17/2014	MW104	Peristaltic Pump	2,400	260JL	1,700JL	1U	10	57	210	NA	NA
	1	9/23/2014	MW104	Peristaltic Pump	45,000	370	7,500	35 ^(a)	6,700 ^(a)	2,000 ^(a)	7,300 ^(b)	5,200	2,100
		9/23/2014	MLT-02*	Peristaltic Pump	47,000	400	8,300	32 ^(a)	6,000 ^(a)	1,700 ^(a)	6,400 ^(b)	4,600	1,800
MW104	Herman	12/17/2014	MW-104	Peristaltic Pump	52,000	740	11,000	71	6,300	1,700	7,400 ^(b)	5,200	2,200
		12/17/2014		Peristaltic Pump	54,000	730	10,000	69	6,300	1,700	7,400 ^(b)	5,200	2,200
		3/16/2015	MW104	Peristaltic Pump	14,000	730	11,000	0.84	63	560	2,460	NA	NA
		3/16/2015	MLT-07*	Peristaltic Pump	15,000	750	11,000	0.92	67	540	2,450	NA	NA
	1	6/18/2014	MW106	Peristaltic Pump	100U	250U	320JL	10	10	1U	3U	NA	NA
	l	9/21/2014	MW106	Peristaltic Pump	100U	250U	400	1U	1U	1U	3U	NA	NA
MW106	Herman	12/15/2014	MW106	Peristaltic Pump	100U	250U	130	0.35U	10	2.2	2U ^(b)	20	1U
		3/19/2015	MW106	Peristaltic Pump	100U	500U	160	1U	1U	1U	3U	NA	NA

TABLE 2-1 Groundwater Quality Results for Selected Constituents Shallow Zone Wells Second Quarter 2014 - First Quarter 2015

TOC Facility #01-176; Mountlake Terrace, WA

NOTES & DEFINITIONS:

Shallow Zone wells are <20 feet below ground surface.

Groundwater quality results are provided for the Second, Third and Fourth Quarter 2014 field events and the First Quarter 2015 field event.

- Groundwater samples were analyzed by Friedman & Bruya, Inc. The analytical laboratory reports are included as Appendix B.
- Groundwater quality results for selected constituents are presented based on exceedance of MTCA Method A Cleanup Levels.
- Red denotes sample concentration exceeds MTCA Method A Cleanup Levels for groundwater.
- Black denotes sample concentration was detected but does not exceed MTCA Method A Cleanup Levels for groundwater.

⁽¹⁾ If samples were analyzed by two methods, the maximum concentration of the two analyses is reported.

- ⁽²⁾ MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised October 12, 2007.
- $^{(3)}$ Cleanup level is 1,000 $\mu g/L$ when benzene is not present and 800 $\mu g/L$ when benzene is present.
- ⁽⁴⁾ Cleanup level for individual xylenes has not been established.
- ^(a) Represents the maximum concentration for the two analytical methods.
- (b) Calculated concentration based on the sum of the detected concentrations for m,p-xylene and o-xylene.
- * = Indicates blind field duplicate sample was collected for quality assurance/quality control purposes.
- ** = Indicates product (LNAPL) sample was collected.
- *** = Well was not sampled due to the presence of product (LNAPL) in the well.
- DRY = Indicates well could not be sampled due to insufficient groundwater sample volume.
- NA = Indicates the compound was not analyzed.
- NE = Indicates MTCA Method A Cleanup Level has not been established.
- NS = Indicates well was not sampled.

LABORATORY NOTES:

- JL = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- Qualifier was assigned by the laboratory based on their quality control protocol.
- U = Indicates the compound was undetected at the method reporting limit.

ACRONYMS:

μg/L = micrograms per liter LNAPL = liquid non-aqueous phase liquid MTCA = Model Toxics Control Act NWTPH-Dx = Northwest Total Petroleum Hydrocarbon - diesel-range organics NWTPH-Gx = Northwest Total Petroleum Hydrocarbon - gasoline-range organics

LIST OF PROPERTIES:

TOC = 24205 56th Avenue West, Mountlake Terrace WA TOC/Farmasonis = 24225 56th Avenue West, Mountlake Terrace WA Drake = 24309 56th Avenue West, Mountlake Terrace WA Herman = 24311 56th Avenue West, Mountlake Terrace WA Shin/Choi = 24325 56th Avenue West, Mountlake Terrace WA 56th Ave ROW = portion of right-of-way adjacent to TOC, TOC/Farmasonis & Drake properties 242nd St ROW = portion of right-of-way adjacent to TOC Property

						Analy	/tical Results (µg/L)	
					Volatile	Organic Cor	mpounds	Me	tals
					Method	SW8260C	Method 8011M	Metho	d 200.8
Well	Property	Sample Date	Sample Identifier	Sample Method	Methyl t-butyl ether (MTBE)	1,2-Dichloroethane (EDC)	1,2-Dibromoethane (EDB)	Dissolved Lead	Total Lead
MTCA Met	hod A Cleanup Level (μg/L) ⁽¹⁾			20	5	0.01	15	15
		12/10/2014	MW02	Peristaltic Pump	NA	NA	NA	NA	NA
MW02	тос	3/14/2015	MW02	Peristaltic Pump	NA	NA	NA	NA	NA
		3/14/2015	MLT-01*	Peristaltic Pump	NA	NA	NA	NA	NA
MW03	тос	12/10/2014	DRY	DRY	NS	NS	NS	NS	NS
0.000		3/14/2015	MW03	Peristaltic Pump	NA	NA	NA	NA	NA
MW04	56th Ave ROW	3/14/2015	MW04	Peristaltic Pump	NA	NA	NA	NA	NA
MW05	242nd St ROW	3/18/2015	MW05	Peristaltic Pump	NA	NA	NA	NA	NA
MW06	тос	3/13/2015	MW06	Peristaltic Pump	NA	NA	NA	NA	NA
		12/10/2014	MW12	Peristaltic Pump	NA	NA	NA	NA	NA
MW-12	56th Ave ROW	3/12/2015	MW12	Peristaltic Pump	NA	NA	NA	NA	NA
	700	12/11/2014	MW19	Peristaltic Pump	NA	NA	NA	NA	NA
MW19	тос	3/14/2015	MW19	Peristaltic Pump	NA	NA	NA	NA	NA
MW34	тос	3/13/2015	MW34	Peristaltic Pump	NA	NA	NA	NA	NA
		6/12/2014	MW54	Peristaltic Pump	1U	NA	NA	NA	NA
		9/18/2014	MW54	Peristaltic Pump	1U	NA	NA	NA	NA
MW54	TOC/Farmasonis	12/11/2014	MW54	Bailer	1U	NA	NA	NA	NA
		3/12/2015	MW54	Peristaltic Pump	NA	NA	NA	NA	NA
MW61	56th Ave ROW	3/13/2015	MW61	Bailer	NA	NA	NA	NA	NA
MW62	56th Ave ROW	3/13/2015	MW62	Peristaltic Pump	NA	NA	NA	NA	NA
		6/17/2014	MW67	Peristaltic Pump	1U	NA	NA	NA	NA
			MW67	Peristaltic Pump	1U	NA	NA	NA	NA
MW67	Drake	12/11/2014		Peristaltic Pump	1U	NA	NA	NA	NA
		3/16/2015	MW67	Peristaltic Pump	10	NA	NA	NA	NA
		6/17/2014	MW68	Peristaltic Pump	10	NA	NA	NA	NA
		9/20/2014	MW68	Peristaltic Pump	10	NA	NA	NA	NA
VIW68	Drake		MW68	Peristaltic Pump	10	NA	NA	NA	NA
		3/16/2015	MW68	Peristaltic Pump	10	NA	NA	NA	NA
	1	6/13/2014	MW71-P**	Peristaltic Pump	NA	NA	NA	NA	NA
MW71	Shin/Choi	12/16/2014	DRY	DRY	NS	NS	NS	NS	NS
		3/17/2015	Not Sampled***	Not Sampled***	NS	NS	NS	NS	NS
	+	6/13/2014	MW72-P**	Peristaltic Pump	NA	NA	NA	NA	NA
MW72	Shin/Choi	12/16/2014	Not Sampled***	Not Sampled***	NA	NA	NS	NA	NA
	Shiny Chur	3/19/2015	MW72	Bailer	10	1U	0.37	4.15	7.62
MW79	TOC/Farmasonis	3/19/2015	MW79	Peristaltic Pump	NA	NA	NA	4.15 NA	7.02 NA
	-			· · · ·					
MW80	TOC/Farmasonis	3/12/2015	MW80 MW102-P**	Peristaltic Pump	NA	NA	NA	NA	NA
MIN/102	Hormon	6/19/2014		Peristaltic Pump	NA	NA	NA	NA	NA
MW102	Herman	12/17/2014 3/17/2015	Not Sampled*** Not Sampled***	Not Sampled*** Not Sampled***	NS NS	NS NS	NS NS	NS NS	NS NS

TOC Facility #01-176; Mountlake Terrace, WA

						Analy	tical Results	(µg/L)	
					Volatile	Organic Con		Me	tals
					Method	SW8260C	Method 8011M	Metho	d 200.8
Well	Property	Sample Date	Sample Identifier	Sample Method	Methyl t-butyl ether (MTBE)	1,2-Dichloroethane (EDC)	1,2-Dibromoethane (EDB)	Dissolved Lead	Total Lead
MTCA Meth	od A Cleanup Level (ug/L) ⁽¹⁾			20	5	0.01	15	15
		6/17/2014	MW104	Peristaltic Pump	1U	1U	0.01U	1U	1U
		9/23/2014	MW104	Peristaltic Pump	10U	10U	0.13	1U	1U
		9/23/2014	MLT-02*	Peristaltic Pump	10U	10U	0.13	1U	1U
MW104	Herman	12/17/2014	MW-104	Peristaltic Pump	1U	NA	NA	1U	1U
		12/17/2014	MLT-03*	Peristaltic Pump	1U	NA	NA	1U	1U
		3/16/2015	MW104	Peristaltic Pump	1U	1U	0.01U	1U	1U
		3/16/2015	MLT-07*	Peristaltic Pump	1U	1U	0.01U	1U	1U
		6/18/2014	MW106	Peristaltic Pump	1U	1U	0.01U	1U	1U
MW106	Herman	9/21/2014	MW106	Peristaltic Pump	1U	1U	0.01U	1U	1U
10100 100		12/15/2014	MW106	Peristaltic Pump	1U	NA	NA	1U	1U
		3/19/2015	MW106	Peristaltic Pump	1U	1U	0.01U	1U	1U

NOTES & DEFINITIONS:

Shallow Zone wells are <20 feet below ground surface.

Groundwater quality results are provided for the Second, Third and Fourth Quarter 2014 field events and the First Quarter 2015 field event.

Groundwater samples were analyzed by Friedman & Bruya, Inc. The analytical laboratory reports are included as Appendix B.

Groundwater quality results for selected constituents are presented based on exceedance of MTCA Method A Cleanup Levels.

Red denotes sample concentration exceeds MTCA Method A Cleanup Levels for groundwater.

Black denotes sample concentration was detected but does not exceed MTCA Method A Cleanup Levels for groundwater.

⁽¹⁾ MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised October 12, 2007.

* = Indicates blind field duplicate sample was collected for quality assurance/quality control purposes.

** = Indicates product (LNAPL) sample was collected.

*** = Well was not sampled due to the presence of product (LNAPL) in the well.

DRY = Indicates well could not be sampled due to insufficient groundwater sample volume.

NA = Indicates the compound was not analyzed.

NS = Indicates well was not sampled.

ACRONYMS:

μg/L = micrograms per liter LNAPL = liquid non-aqueous phase liquid MTCA = Model Toxics Control Act

LIST OF PROPERTIES:

TOC = 24205 56th Avenue West, Mountlake Terrace WA TOC/Farmasonis = 24225 56th Avenue West, Mountlake Terrace WA Drake = 24309 56th Avenue West, Mountlake Terrace WA Herman = 24311 56th Avenue West, Mountlake Terrace WA Shin/Choi = 24325 56th Avenue West, Mountlake Terrace WA 56th Ave ROW = portion of right-of-way adjacent to TOC, TOC/Farmasonis & Drake properties 242nd St ROW = portion of right-of-way adjacent to TOC Property

Stantec

LABORATORY NOTES:

U = Indicates the compound was undetected at the method reporting limit.

					Analytical Results (μg/L)									
					Total Petrole	eum Hydr	ocarbons		Volati	le Orgar	nic Comp	ounds		
					Method NWTPH-Gx		ethod TPH-Dx		Method	SW802	1B / SW	8260C ⁽²⁾		
Well ⁽¹⁾	Property	Sample Date	Sample Identifier	Sample Method	Gasoline-Range (GRPH)	Motor Oil- Range (ORPH)	Diesel-Range (DRPH)	Benzene	Toluene	Ethyl-benzene	Total Xylenes	m, p-Xylene	o-Xylene	
MTCA Method A Cle	eanup Level (μg/L) ⁽³⁾	-		_	1,000/800 ⁽⁴⁾	500	500	5	1,000	700	1,000	NE ⁽⁵⁾	NE ⁽⁵⁾	
		6/16/2014	MW10	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA	
MW10	тос	9/20/2014	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
-		##########	MW10	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA	
		3/19/2015	MW10	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA	
MW11 (4" RW)	TOC	3/11/2015	MW11	Pneumatic Pump	190	NA	NA	1U	10	3.8	3.1	NA	NA	
MW13	56th Ave ROW	3/13/2015	DRY	DRY Decumatic Dump	NS	NS	NS	NS	NS	NS	NS	NS	NS	
		6/11/2014 9/18/2014	MW15 MW15	Pneumatic Pump	270 100U	NA	NA	1U 1U	1U 1U	2.2	7.3 3U	NA	NA	
MW15	тос	9/18/2014	DRY	Pneumatic Pump DRY	NS	NA	NA	NS	IU NS	10 NS	3U NS	NA	NA	
			DRY	DRY	NS	IN S	NS	IN S		NS NC	IN S	NS NC	IN S	
	+	3/12/2015 6/13/2014	MW20	Submersible Pump	110	250U	170J	12J	NS 5.8J	1.8	5.8	NA	NA	
		6/13/2014	MLT-02*	Submersible Pump	110	250U	230J	12J	5.8J 6J	1.8	6.3	NA	NA	
		9/22/2014	MW20	Bailer	1000	NA	NA	10	10	1.0 1U	3U	NA	NA	
MW20	тос	9/22/2014	MLT-01*	Bailer	100U	NA	NA	10	10	10	3U	NA	NA	
-		###########	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
		3/14/2015	MW20	Submersible Pump	100U	500U	140J	10	1U	1U	3U	NA	NA	
		3/14/2015	MLT-03*	Submersible Pump	100U	500U	100UJ	1U	1U	1U	3U	NA	NA	
MW23	тос	3/12/2015	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW25	тос	3/20/2015	MW25	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
		6/11/2014	MW31	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
	TO 0 / T	9/18/2014	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW31 (2" RW)	TOC/Farmasonis	##########	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
		3/11/2015	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
		6/10/2014	MW32	Pneumatic Pump	2,100	NA	NA	2.6	30	32	180	NA	NA	
MIN/22 / 4" BIN/	тос	9/18/2014	MW32	Pneumatic Pump	450	NA	NA	2.9	4.7	15	26	NA	NA	
MW32 (4" RW)	100	##########	MW32	Pneumatic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
		3/11/2015	MW32	Pneumatic Pump	680	NA	NA	1.7	7.8	16	62	NA	NA	
		6/11/2014	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW33	тос	9/18/2014	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
1010035	100	##########	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
		3/13/2015	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW35	тос	3/12/2015	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW36	тос	3/12/2015	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW41	TOC/Farmasonis	3/11/2015	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW42	TOC/Farmasonis	3/13/2015	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW44	56th Ave ROW		DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
		6/13/2014	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW45	56th Ave ROW	9/18/2014	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
		##########		DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
	Folk A DOW	3/20/2015	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW46	56th Ave ROW	3/13/2015	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
MW47	56th Ave ROW	3/20/2015	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
		6/12/2014	MW48	Bailer	10,000	NA	NA	1U	11	37	610	NA	NA	
MW48	56th Ave ROW	9/18/2014 ##########	MW48	Bailer	8,500	NA	NA	5U	12	5U	100	NA	NA	
				Bailer	7,700	NA	NA	67	21	200	440	NA	NA	
		3/20/2015	MW48	Bailer	12,000	NA	NA	120	52	400	1,900	NA	NA	
		6/14/2014 9/22/2014	MW49 MW49	Submersible Pump Submersible Pump	100U 100U	NA	NA	1.5 1U	1.6 1U	1U 1U	3U 3U	NA NA	NA	
MW49	56th Ave ROW	9/22/2014	MW49 MW49	Bailer		NA	NA	10 1U	10 1U	10 1U	3U 3U	NA		
					100U							NA NA	NA	
		3/16/2015	MW49 MW50	Submersible Pump Bailer	100U 100U	NA	NA	1U 1U	1U 1U	1U 1U	3U 3U	NA	NA	
		6/13/2014 9/19/2014	DRY	DRY	NS	NA	NA	NS	IU NS	10 NS	3U NS	AVI 21/	NA	
MW50	56th Ave ROW	9/19/2014 ##########	DRY	DRY	NS		NIC	-	NS		NS	NS	NS	
		*************************************		200	CVI	NS	NS	NS	CIT	NS	CVI	CVI	CVI	

					Analytical Results (µg/L)									
					Total Petrole	eum Hydro	ocarbons	Volatile Organic Compounds						
					Method NWTPH-Gx		ethod TPH-Dx		Method	l SW802	1B / SW	8260C ⁽²⁾		
Well ⁽¹⁾	Property	Sample Date	Sample Identifier	Sample Method	Gasoline-Range (GRPH)	Motor Oil- Range (ORPH)	Diesel-Range (DRPH)	Benzene	Toluene	Ethyl-benzene	Total Xylenes	m, p-Xylene	o-Xylene	
MTCA Method A Clea	anup Level (µg/L) ⁽³⁾				1,000/800 ⁽⁴⁾	500	500	5	1,000	700	1,000	NE ⁽⁵⁾	NE ⁽⁵⁾	
		6/17/2014	MW51	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA	
MW51	56th Ave ROW	9/20/2014	MW51	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA	
		##########	MW51	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA	
		3/20/2015 6/13/2014	MW51 MW52	Bailer Bailer	100U 100U	NA	NA	1U 1U	1U 1U	1U 1U	3U 3U	NA	NA	
		9/20/2014	DRY	DRY	NS	NA	NA	NS	NS	NS	NS	NA	NA	
MW52	56th Ave ROW	##########	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
		3/20/2015	MW52	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA	
		6/19/2014	MW53	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
MW53	56th Ave ROW	9/24/2014	MW53	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
	Sour Ave NOW	##########	MW53	Bailer	100U	NA	NA	1U	10	1U	ЗU	NA	NA	
		3/13/2015	MW53	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
		6/19/2014	MW55	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
MW55	56th Ave ROW	9/24/2014	MW55	Submersible Pump	100U	NA	NA	1U	1U	10	3U	NA	NA	
		##########		Bailer	100U	NA	NA	1U	10	10	3U	NA	NA	
	-	3/13/2015 6/14/2014	MW55 MW56	Submersible Pump Submersible Pump	100U 100U	NA	NA	1U 1U	1U 1U	1U 1U	3U 3U	NA	NA	
		9/22/2014	MW56	Submersible Pump	100U	NA	NA	1U	10	1U	3U	NA	NA	
MW56	TOC/Farmasonis	###########	MW56	Submersible Pump	1000 100U	NA	NA	10	10	10	30	NA	NA	
		3/14/2015	MW56	Submersible Pump	100U	NA	NA	10	10	10	3U	NA	NA	
		#######################################	MW57	Pneumatic Pump	4,700	NA	NA	2.2	2.8	62	416 ^(b)	400	16	
MW57 (4" RW)	TOC/Farmasonis	3/11/2015	MW57	Pneumatic Pump	110	NA	NA	1U	1U	2	11	NA	NA	
		6/14/2014	MW58	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
MW58	TOC/Farmasonis	9/22/2014	MW58	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
11110030	TOC/Farmasonis	##########	MW58	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
		3/16/2015	MW58	Submersible Pump	100U	NA	NA	1U	10	1U	3U	NA	NA	
		6/14/2014	MW59	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
MW59	TOC/Farmasonis	9/22/2014	MW59	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
		##########		Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
		3/14/2015	MW59	Submersible Pump	100U	NA	NA	1U	10	10	3U	NA	NA	
		6/19/2014	MW60	Submersible Pump	100U	NA	NA	1U	10	1U	3U	NA	NA	
MW60	56th Ave ROW	9/25/2014 ##########	MW60 MW60	Bailer	100U 100U	NA	NA	1U 1U	1U 1U	1U 1U	3U 3U	NA	NA	
		3/13/2015	MW60	Submersible Pump Submersible Pump	100U	NA	NA	1U	10	1U	3U	NA	NA	
		6/19/2014	MW63	Submersible Pump	1000	NA	NΔ	10	10	10	30	NΔ	NA	
		9/23/2014		Submersible Pump	100U	NA	NA	10	10	1U	3U	NA	NA	
MW63	56th Ave ROW	#######################################		Submersible Pump	100U	NA	NA	10	10	10	3U	NA	NA	
		3/20/2015	MW63	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
		6/17/2014	MW65	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA	
		9/23/2014	MW65	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
MW65	Drake	##########	MW65	Bailer	100U	NA	NA	0.35U	1U	1U	2U ^(b)	2U	10	
		3/18/2015	MW65	Submersible Pump	100U	NA	NA	1U	10	1U	ЗU	NA	NA	
		3/18/2015	MLT-05*	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA	
		6/11/2014	MW66	Bailer	100U	250U	50U	1U	1U	1U	3U	NA	NA	
MW66	TOC/Farmasonis	9/20/2014	MW66	Bailer	100U	250U	50U	1U	1U	1U	3U	NA	NA	
		##########	MW66	Bailer	100U	250U	190	0.35U	10	10	2U ^(b)	20	1U	
		3/20/2015	MW66	Bailer	100U	500U	120	1U	1U	1U NG	3U	NA	NA	
		6/19/2014 9/23/2014	DRY DRY	DRY DRY	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS NS	
MW69 (2" RW)	Drake	9/23/2014 ##########		DRY	NS	NS	NS	NS	NS NS	NS	NS	NS NS	NS NS	
		3/20/2015	MW69	Pneumatic Pump	2,700	NA	C M	1U	1.9	32	140 ^(b)	C M	NA	
		6/20/2013	MW70	Pheumatic Pump	100U	300U	85JL	1U	1.9	32 1U	3U	NA	NA	
		9/19/2014	MW70	Pneumatic Pump	100U	250U	110	10	10	1U	3U	NA	NA	
MW70 (2" RW)	Drake	#######################################		DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	
			MW70	Pneumatic Pump	100U	NA	NA	10	10	1U	3U	NA	NA	
			-											

					Analytical Re					al Results (µg/L)					
					Total Petrole	eum Hydr					nic Comp	ounds			
					Method NWTPH-Gx		ethod TPH-Dx		Metho	d SW802	1B / SW	8260C ⁽²⁾			
Well ⁽¹⁾	Property	Sample Date	Sample Identifier	Sample Method	Gasoline-Range (GRPH)	Motor Oil- Range (ORPH)	Diesel-Range (DRPH)	Benzene	Toluene	Ethyl-benzene	Total Xylenes	m, p-Xylene	o-Xylene		
MTCA Method A Clea	anup Level (µg/L) ⁽³⁾	-			1,000/800 ⁽⁴⁾	500	500	5	1,000	700	1,000	NE ⁽⁵⁾	NE ⁽⁵⁾		
		6/13/2014	MW73	Submersible Pump	87,000	300U	5,900JL	2,100	4,100	840	NA	6,400	3,300		
MW73	Shin/Choi	9/21/2014	MW73	Submersible Pump	81,000	250U	4,600	15,000	3,600	1,900	9,200	NA	NA		
-	,	#########	MW73	Bailer	69,000	250U	4,300	13,000	920	1,600	7,900 ^(b)	5,400	2,500		
		3/19/2015	MW73	Submersible Pump	70,000	500U	3,100	14,000	2,300	1,800	9,300	NA	NA		
		6/13/2014	MW74	Submersible Pump	66,000	250U	4,200JL	1,800	7,600	690	NA	2,100	600		
MW74	Shin/Choi	9/22/2014	MW74	Bailer	7,100	390	3,000	1,700	310	67	290	NA	NA		
		#########	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS		
		3/19/2015	MW74	Bailer	11,000	500U	1,100	3,100	210	30	100	NA	NA		
MW75	56th Ave ROW	3/19/2015	MW75	Submersible Pump	100U	NA	NA	1U	10	1U	3U	NA	NA		
MW76	Drake	3/18/2015	MW76	Bailer	100U	NA	NA	10	10	10	3U	NA	NA		
		6/17/2014	MW77	Bailer	100U	NA	NA	1U	10	1U	3U	NA	NA		
MW77	Drake	9/23/2014	MW77	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
		##########	MW77	Bailer	100U	NA	NA	0.35U	1U	1U	2U ^(b)	2U	1U		
		3/18/2015	MW77	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA		
MW81	TOC/Farmasonis	3/13/2015	MW81	Bailer	100U	NA	NA	1U	1U	10	3U	NA	NA		
		6/20/2014	MW84	Submersible Pump	960	NA	NA	1U	1U	5.9	17	NA	NA		
MW84	Drake	9/23/2014	MW84	Submersible Pump	780	NA	NA	1U	1U	4.9	15	NA	NA		
		#########		Submersible Pump	620	NA	NA	0.35U	1U	2.3	8.7 ^(b)	8.7	1U		
		3/16/2015	MW84	Submersible Pump	630	NA	NA	1U	1U	4.8	12	NA	NA		
		6/20/2014	MW85	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
MW85	Drake	9/24/2014	MW85	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
		##########	MW85	Submersible Pump	100U	NA	NA	0.35U	1U	1U	2U ^(b)	2U	1U		
		3/18/2015	MW85	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
		6/20/2014	MW86	Submersible Pump	100U	250U	50U	1U	1U	1U	3U	NA	NA		
		6/20/2014	MLT-03*	Submersible Pump	100U	250U	50U	1U	1U	1U	3U	NA	NA		
		9/24/2014	MW86	Submersible Pump	1,000	250U	180J	1.8	1.9	1.2	3U	NA	NA		
MW86	Drake	9/24/2014	MLT-03*	Submersible Pump	930	250U	140J	1.8	1.9	1.2	3.1	NA	NA		
	brune	#########	MW86	Submersible Pump	100U	250U	50U	0.35U	1U	1U	2U ^(b)	2U	1U		
		##########	MLT-02*	Submersible Pump	100U	250U	50U	0.35U	10	1U	2U ^(b)	2U	1U		
		3/18/2015	MW86	Submersible Pump	100U	500U	100U	1U	1U	1U	3U	NA	NA		
		3/18/2015	MLT-06*	Submersible Pump	100U	500U	100U	1U	1U	1U	3U	NA	NA		
MW87	Drake	3/18/2015	MW87	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA		
		6/20/2014	MW89	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
MW89	Drake	9/23/2014	MW89	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
	Diake	#########	MW89	Submersible Pump	100U	NA	NA	0.35U	1U	1U	2U ^(b)	2U	1U		
		3/18/2015	MW89	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
MW90 (4" RW)	тос	3/12/2015	MW90	Pneumatic Pump	3,100	NA	NA	1U	54	1U	590	NA	NA		
MW91 (4" RW)	тос	3/11/2015	MW91	Pneumatic Pump	160	300U	120	1U	1.2	1.2	3.4	NA	NA		
MW92 (4" RW)	TOC/Farmasonis	3/11/2015	MW92	Pneumatic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
MW93 (4" RW)	TOC/Farmasonis	3/11/2015	MW93	Pneumatic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
MW94 (4" RW)	TOC/Farmasonis	3/11/2015	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS		
MW95 (4" RW)	Drake	3/11/2015	MW95	Pneumatic Pump	100U	NA	NA	1U	1U	1U	3.7	NA	NA		
		#########	MW96	Pneumatic Pump	100U	NA	NA	0.35U	1U	1U	3 ^(b)	3	1U		
MW96 (4" RW)	Drake	3/11/2015	MW96	Pneumatic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
		3/12/2015	MLT-10 ^(a)	Pneumatic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
MW97 (4" RW)	Drake	3/11/2015	MW97	Pneumatic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
MW98 (4" RW)	Drake	3/11/2015	MW98	Pneumatic Pump	600	NA	NA	4.5	2.3	11	43	NA	NA		
MW99 (4" RW)	Drake		MW99	Pneumatic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
MW101 (4" RW)	Drake		MW101	Pneumatic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA		
			MW103	Submersible Pump	100U	250U	120JL	3	1.3	1U	3U	NA	NA		
NAV102		9/21/2014	MW103	Bailer	100U	300U	170	1U	1U	1U	3U	NA	NA		
MW103	Herman	##########		Bailer	100U	250U	50U	1.3	1U	1U	2U ^(b)	2U	1U		
		1	MW103	Bailer		500U	170	34	1.7	1U			NA		

TOC Facility #01-176; Mountlake Terrace, WA

						Analy	tical Res	ults (µg/	L)				
				Total Petroleum Hydroca Method Meth			ocarbons		Volati	le Organ	ic Comp	ounds	
					Method NWTPH-Gx		ethod TPH-Dx		Method	I SW802	1B / SW8	8260C ⁽²⁾	
Well ⁽¹⁾	Property	Sample Date	Sample Identifier	Sample Method	Gasoline-Range (GRPH)	Motor Oil- Range (ORPH)	Diesel-Range (DRPH)	Benzene	Toluene	Ethyl-benzene	Total Xylenes	m, p-Xylene	o-Xylene
MTCA Method A Clean	ITCA Method A Cleanup Level (µg/L) ⁽³⁾					500	500	5	1,000	700	1,000	NE ⁽⁵⁾	NE ⁽⁵⁾
		6/18/2014	MW105	Submersible Pump	1,000/800⁽⁴⁾ 100U	250U	50U	1U	1U	1U	3U	NA	NA
MW105	Herman	9/22/2014	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS
14144103	nerman	#########	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS
		3/16/2015	MW105	Bailer	100U	500U	230	1U	1U	1U	3U	NA	NA
		6/19/2014	MW107	Submersible Pump	100U	250U	59JL	1U	1U	1U	3U	NA	NA
MW107	Herman	9/21/2014	MW107	Submersible Pump	100U	250U	66	5.3J	2.1	1U	4	NA	NA
		#########	MW107	Submersible Pump	100U	250U	50U	0.35U	1U	1U	2U ^(b)	2U	1U
		3/19/2015	MW107	Submersible Pump	100U	500U	110	8	3	1.5	7.9	NA	NA

NOTES & DEFINITIONS:

Intermediate Zone wells are 20 to 60 feet below ground surface.

Groundwater quality results are provided for the Second, Third and Fourth Quarter 2014 field events and the First Quarter 2015 field event.

Groundwater samples were analyzed by Friedman & Bruya, Inc. The analytical laboratory reports are included as Appendix B.

Groundwater quality results for selected constituents are presented based on exceedance of MTCA Method A Cleanup Levels.

Red denotes sample concentration exceeds MTCA Method A Cleanup Levels for groundwater.

Black denotes sample concentration was detected but does not exceed MTCA Method A Cleanup Levels for groundwater.

⁽¹⁾ Remediation wells (identified as "RW") are connected to a multi-phase extraction system.

⁽²⁾ If samples were analyzed by two methods, the maximum concentration of the two analyses is reported.

⁽³⁾ MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised October 12, 2007.

 $^{(4)}$ Cleanup level is 1,000 $\mu g/L$ when benzene is not present and 800 $\mu g/L$ when benzene is present.

⁽⁵⁾ Cleanup level for individual xylenes has not been established.

(a) Due to air turbulence encountered in the first sample collected from MW96 on 3/11/2015, a second sample was collected on 3/12/2015 to evaluate the .

impact of turbulence on analytical results

^(b) Calculated concentration based on the sum of the detected concentrations for m,p-xylene and o-xylene.

* = Indicates blind field duplicate sample was collected for quality assurance/quality control purposes.

DRY = Indicates well could not be sampled due to insufficient groundwater sample volume.

NA = Indicates the compound was not analyzed.

NE = Indicates MTCA Method A Cleanup Level has not been established.

NS = Indicates well was not sampled.

LABORATORY NOTES:

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. Qualifier was assigned based on data validation protocol.

JL = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. Qualifier was assigned by the laboratory based on their quality control protocol.

U = Indicates the compound was undetected at the reported concentration.

ACRONYMS:

μg/L = micrograms per liter MTCA = Model Toxics Control Act NWTPH-Dx = Northwest Total Petroleum Hydrocarbon - diesel-range organics NWTPH-Gx = Northwest Total Petroleum Hydrocarbon - gasoline-range organics

LIST OF PROPERTIES:

TOC = 24205 56th Avenue West, Mountlake Terrace WA TOC/Farmasonis = 24225 56th Avenue West, Mountlake Terrace WA Drake = 24309 56th Avenue West, Mountlake Terrace WA Herman = 24311 56th Avenue West, Mountlake Terrace WA Shin/Choi = 24325 56th Avenue West, Mountlake Terrace WA 56th Ave ROW = right-of-way adjacent to TOC, TOC/Farmasonis & Drake properties

						Analy	/tical Results (μg/L)	
					Volatile	Organic Con	npounds	Me	tals
					Method	SW8260C	Method 8011M	Metho	d 200.8
Well ⁽¹⁾	Property	Sample Date	Sample Identifier	Sample Method	Methyl t-butyl ether (MTBE)	1,2-Dichloroethane (EDC)	1,2-Dibromoethane (EDB)	Dissolved Lead	Total Lead
MTCA Method A Cl	eanup Level (µg/L) ⁽²⁾		-		20	5	0.01	15	15
		6/16/2014	MW10	Bailer	NA	NA	NA	NA	NA
	TOC	9/20/2014	DRY	DRY	NA	NA	NA	NA	NA
MW10	тос	12/11/2014	MW10	Bailer	NA	NA	NA	NA	NA
		3/19/2015	MW10	Bailer	NA	NA	NA	NA	NA
MW11 (4" RW)	тос	3/11/2015	MW11	Pneumatic Pump	NA	NA	NA	NA	NA
MW13	56th Ave ROW	3/13/2015	DRY	DRY	NS	NS	NS	NS	NS
		6/11/2014	MW15	Pneumatic Pump	NA	NA	NA	NA	NA
MW15	тос	9/18/2014	MW15	Pneumatic Pump	NA	NA	NA	NA	NA
	100	12/15/2014	DRY	DRY	NS	NS	NS	NS	NS
		3/12/2015	DRY	DRY	NS	NS	NS	NS	NS
		6/13/2014	MW20	Submersible Pump	1U	NA	NA	NA	NA
		6/13/2014	MLT-02*	Submersible Pump	1U	NA	NA	NA	NA
		9/22/2014	MW20	Bailer	1U	NA	NA	NA	NA
MW20	тос	9/22/2014	MLT-01*	Bailer	1U	NA	NA	NA	NA
		12/11/2014	DRY	DRY	NS	NS	NS	NS	NS
		3/14/2015	MW20	Submersible Pump	1U	NA	NA	NA	NA
		3/14/2015	MLT-03*	Submersible Pump	1U	NA	NA	NA	NA
MW23	тос	3/12/2015	DRY	DRY	NS	NS	NS	NS	NS
MW25	тос	3/20/2015	MW25	Submersible Pump	NA	NA	NA	NA	NA
		6/11/2014	MW31	Submersible Pump	NA	NA	NA	9.67	11.4
		9/18/2014	DRY	DRY	NS	NS	NS	NS	NS
MW31 (2" RW)	TOC/Farmasonis	12/11/2014	DRY	DRY	NS	NS	NS	NS	NS
		3/11/2015	DRY	DRY	NS	NS	NS	NS	NS
		6/10/2014	MW32	Pneumatic Pump	NA	NA	NA	2.97	4.03
		9/18/2014	MW32	Pneumatic Pump	NA	NA	NA	50.8	62.2
MW32 (4" RW)	тос	12/11/2014	MW32	Pneumatic Pump	NA	NA	NA	NA	14.9
		3/11/2015	MW32	Pneumatic Pump	NA	NA	NA	1.04	28
		6/11/2014	DRY	DRY	NS	NS	NS	NS	NS
		9/18/2014	DRY	DRY	NS	NS	NS	NS	NS
MW33	тос	12/11/2014		DRY	NS	NS	NS	NS	NS
		3/13/2015	DRY	DRY	NS	NS	NS	NS	NS
MW35	тос	3/12/2015	DRY	DRY	NS	NS	NS	NS	NS
MW36	тос	3/12/2015	DRY	DRY	NS	NS	NS	NS	NS
VW41	TOC/Farmasonis	3/11/2015	DRY	DRY	NS	NS	NS	NS	NS
VW42	TOC/Farmasonis	3/13/2015	DRY	DRY	NS	NS	NS	NS	NS
VW44	56th Ave ROW	3/20/2015	DRY	DRY	NS	NS	NS	NS	NS
		6/13/2014	DRY	DRY	NS	NS	NS	NS	NS
		9/18/2014	DRY	DRY	NS	NS	NS	NS	NS
MW45	56th Ave ROW	12/11/2014		DRY	NS	NS	NS	NS	NS
		3/20/2015	DRY	DRY	NS	NS	NS	NS	NS

						Analy	/tical Results (µg/L)	
					Volatile	Organic Con	-	Me	tals
					Method	SW8260C	Method 8011M	Metho	d 200.8
Well ⁽¹⁾	Property	Sample Date	Sample Identifier	Sample Method	Methyl t-butyl ether (MTBE)	1,2-Dichloroethane (EDC)	1,2-Dibromoethane (EDB)	Dissolved Lead	Total Lead
MTCA Method A C	leanup Level (µg/L) ⁽²)			20	5	0.01	15	15
MW46	56th Ave ROW	3/13/2015	DRY	DRY	NS	NS	NS	NS	NS
MW47	56th Ave ROW	3/20/2015	DRY	DRY	NS	NS	NS	NS	NS
		6/12/2014	MW48	Bailer	NA	NA	NA	2.46	3.91
A14/40	E6th Ave BOW	9/18/2014	MW48	Bailer	NA	NA	NA	3.13	10.2
MW48	56th Ave ROW	12/11/2014	MW48	Bailer	NA	NA	NA	8.14	10.5
		3/20/2015	MW48	Bailer	NA	NA	NA	12.8	14.6
		6/14/2014	MW49	Submersible Pump	NA	NA	NA	NA	NA
		9/22/2014	MW49	Submersible Pump	NA	NA	NA	NA	NA
MW49	56th Ave ROW	12/15/2014	MW49	Bailer	NA	NA	NA	NA	NA
		3/16/2015	MW49	Submersible Pump	NA	NA	NA	NA	NA
		6/13/2014	MW50	Bailer	NA	NA	NA	NA	NA
		9/19/2014	DRY	DRY	NS	NS	NS	NS	NS
MW50	56th Ave ROW	12/12/2014		DRY	NS	NS	NS	NS	NS
		3/20/2015	MW50	Bailer	NA	NA	NA	NA	NA
		6/17/2014	MW51	Bailer	NA	NA	NA	NA	NA
		9/20/2014	MW51	Bailer	NA	NA	NA	NA	NA
MW51	56th Ave ROW	12/12/2014	MW51	Bailer	NA	NA	NA	NA	NA
		3/20/2015	MW51	Bailer	NA	NA	NA	NA	NA
		6/13/2014	MW52	Bailer	NA	NA	NA	NA	NA
		9/20/2014	DRY	DRY	NS	NS	NS	NS	NS
MW52	56th Ave ROW	12/12/2014		DRY	NS	NS	NS	NS	NS
		3/20/2015	MW52	Bailer	NA	NA	NA	NA	NA
		6/19/2014	MW53	Submersible Pump	NA	NA	NA	NA	NA
			MW53	Submersible Pump	NA	NA	NA	NA	NA
MW53	56th Ave ROW	12/15/2014		Bailer					
			MW53	Submersible Pump	NA	NA	NA	NA	NA
	-				NA	NA	NA	NA	NA
			MW55	Submersible Pump	NA	NA	NA	NA	NA
MW55	56th Ave ROW	-	MW55	Submersible Pump	NA	NA	NA	NA	NA
		12/16/2014		Bailer Submersible Pump	NA	NA	NA	NA	NA
		3/13/2015	MW55		NA	NA	NA	NA	NA
		6/14/2014	MW56	Submersible Pump	NA	NA	NA	NA	NA
MW56	TOC/Farmasonis	9/22/2014	MW56	Submersible Pump	NA	NA	NA	NA	NA
		12/13/2014		Submersible Pump	NA	NA	NA	NA	NA
		3/14/2015	MW56	Submersible Pump	NA	NA	NA	NA	NA
MW57 (4" RW)	TOC/Farmasonis	12/11/2014	MW57	Pneumatic Pump	1U	NA	NA	NA	NA
-		3/11/2015	MW57	Pneumatic Pump	NA	NA	NA	NA	NA
		6/14/2014	MW58	Submersible Pump	NA	NA	NA	NA	NA
MW58	TOC/Farmasonis	9/22/2014	MW58	Submersible Pump	NA	NA	NA	NA	NA
		12/16/2014	MW58	Submersible Pump	NA	NA	NA	NA	NA
		3/16/2015	MW58	Submersible Pump	NA	NA	NA	NA	NA

						Analy	/tical Results (µg/L)	
					Volatile	Organic Con	npounds	Me	tals
					Method	SW8260C	Method 8011M	Metho	d 200.8
Well ⁽¹⁾	Property	Sample Date	Sample Identifier	Sample Method	Methyl t-butyl ether (MTBE)	1,2-Dichloroethane (EDC)	1,2-Dibromoethane (EDB)	Dissolved Lead	Total Lead
MTCA Method A Cl	eanup Level (µg/L) ⁽²⁾	-			20	5	0.01	15	15
		6/14/2014	MW59	Submersible Pump	NA	NA	NA	NA	NA
			MW59	Submersible Pump	NA	NA	NA	NA	NA
MW59	TOC/Farmasonis	12/13/2014	MW59	Submersible Pump	NA	NA	NA	NA	NA
			MW59	Submersible Pump	NA	NA	NA	NA	NA
		6/19/2014	MW60	Submersible Pump	NA	NA	NA	NA	NA
			MW60	Bailer	NA	NA	NA	NA	NA
MW60	56th Ave ROW	12/16/2014	MW60	Submersible Pump	NA	NA	NA	NA	NA
		3/13/2015	MW60	Submersible Pump	NA	NA	NA	NA	NA
		6/19/2014	MW63	Submersible Pump	NA	NA	NA	NA	NA
		9/23/2014	MW63	Submersible Pump	NA	NA	NA	NA	NA
MW63	56th Ave ROW	12/17/2014		Submersible Pump	NA	NA	NA	NA	NA
		3/20/2015	MW63	Submersible Pump	NA	NA	NA	NA	NA
			MW65	Bailer	1U	NA	NA	NA	NA
		9/23/2014	MW65	Submersible Pump	1U	NA	NA	NA	NA
MW65	Drake	12/17/2014		Bailer	1U	NA	NA	NA	NA
			MW65	Submersible Pump	1U	NA	NA	NA	NA
		3/18/2015	MLT-05*	Submersible Pump	1U	NA	NA	NA	NA
		6/11/2014	MW66	Bailer	1U	NA	NA	NA	NA
		9/20/2014	MW66	Bailer	1U	NA	NA	NA	NA
MW66	TOC/Farmasonis	12/15/2014		Bailer	1U	NA	NA	NA	NA
		3/20/2015	MW66	Bailer	1U	NA	NA	NA	NA
		6/19/2014	DRY	DRY	NS	NS	NS	NS	NS
		9/23/2014	DRY	DRY	NS	NS	NS	NS	NS
MW69 (2" RW)	Drake	12/11/2014		DRY	NS	NS	NS	NS	NS
		3/20/2015		Pneumatic Pump	1U	NA	NA	NA	NA
		-	MW70	Pneumatic Pump	10	10	0.01U	10	2.48
		9/19/2014		Pneumatic Pump	10	10	0.01U	10	10
MW70 (2" RW)	Drake	12/11/2014		DRY	NS	NS	NS	NS	NS
		3/11/2015		Pneumatic Pump	1U	NA	NA	NA	NA
			MW73	Submersible Pump	200U	200U	1.8	10	4.3
			MW73	Submersible Pump	10	10	0.41	1U	10
MW73	Shin/Choi	12/15/2014		Bailer	90	NA	NA	10 1U	2.18
			MW73	Submersible Pump	17	10	0.64	10 1U	10
	1		MW74	Submersible Pump	610	2000	1.7	5.88	7.39
		9/22/2014	MW74	Bailer	580	NA	NA	NA	NA
MW74	Shin/Choi	12/15/2014		DRY	NS	NS	NS	NS	NS
			MW74	Bailer	400	64	0.013	10	4.8
MW75	56th Ave ROW		MW75	Submersible Pump	NA	NA	NA	NA	4.8
MW76	Drake		MW76	Bailer	1U	NA	NA	NA	NA

						Analy	/tical Results (μg/L)	
					Volatile	Organic Con	npounds	Me	tals
					Method	SW8260C	Method 8011M	Metho	d 200.8
Well ⁽¹⁾	Property	Sample Date	Sample Identifier	Sample Method	Methyl t-butyl ether (MTBE)	1,2-Dichloroethane (EDC)	1,2-Dibromoethane (EDB)	Dissolved Lead	Total Lead
MTCA Method A Cl	eanup Level (µg/L) ⁽²⁾)			20	5	0.01	15	15
		6/17/2014	MW77	Bailer	1U	NA	NA	NA	NA
MW77	Drake	9/23/2014	MW77	Submersible Pump	1U	NA	NA	NA	NA
	Diake	12/17/2014	MW77	Bailer	1U	NA	NA	NA	NA
		3/18/2015	MW77	Bailer	1U	NA	NA	NA	NA
MW81	TOC/Farmasonis	3/13/2015	MW81	Bailer	NA	NA	NA	NA	NA
		6/20/2014	MW84	Submersible Pump	1U	NA	NA	NA	NA
MW84	Drake	9/23/2014	MW84	Submersible Pump	1U	NA	NA	NA	NA
1010004	Diake	12/17/2014	MW84	Submersible Pump	1U	NA	NA	NA	NA
		3/16/2015	MW84	Submersible Pump	1U	NA	NA	NA	NA
		6/20/2014	MW85	Submersible Pump	1U	NA	NA	NA	NA
MW85	Drake	9/24/2014	MW85	Submersible Pump	1U	NA	NA	NA	NA
101005	Drake	12/15/2014	MW85	Submersible Pump	1U	NA	NA	NA	NA
		3/18/2015	MW85	Submersible Pump	1U	NA	NA	NA	NA
		6/20/2014	MW86	Submersible Pump	1U	1U	0.01U	1U	1U
		6/20/2014	MLT-03*	Submersible Pump	1U	1U	0.01U	1U	1U
		9/24/2014	MW86	Submersible Pump	1U	1U	0.01U	1U	1U
NA14/0C	Droko	9/24/2014	MLT-03*	Submersible Pump	1U	1U	0.01U	1U	1U
MW86	Drake	12/15/2014	MW86	Submersible Pump	1U	NA	NA	1U	1U
		12/15/2014	MLT-02*	Submersible Pump	1U	NA	NA	1U	1U
		3/18/2015	MW86	Submersible Pump	1U	1U	0.01U	1U	R
		3/18/2015	MLT-06*	Submersible Pump	1U	1U	0.01U	1U	1U
MW87	Drake	3/18/2015	MW87	Bailer	1U	NA	NA	NA	NA
		6/20/2014	MW89	Submersible Pump	1U	NA	NA	NA	NA
		9/23/2014	MW89	Submersible Pump	1U	NA	NA	NA	NA
MW89	Drake	12/17/2014	MW89	Submersible Pump	1U	NA	NA	NA	NA
		3/18/2015		Submersible Pump	1U	NA	NA	NA	NA
MW90 (4" RW)	тос	3/12/2015	MW90	Pneumatic Pump	NA	NA	NA	1U	2.03
MW91 (4" RW)	тос	3/11/2015		Pneumatic Pump	1U	NA	NA	1.73	6.3
MW92 (4" RW)	TOC/Farmasonis	3/11/2015	MW92	Pneumatic Pump	NA	NA	NA	NA	NA
MW93 (4" RW)	TOC/Farmasonis	3/11/2015	MW93	Pneumatic Pump	NA	NA	NA	NA	NA
MW94 (4" RW)	TOC/Farmasonis	3/11/2015	DRY	DRY	NS	NS	NS	NS	NS
MW95 (4" RW)	Drake	3/11/2015	MW95	Pneumatic Pump	1U	NA	NA	NA	NA
		12/11/2014	MW96	Pneumatic Pump	1U	NA	NA	NA	NA
MW96 (4" RW)	Drake	3/11/2015	MW96	Pneumatic Pump	NA	NA	NA	NA	NA
		3/12/2015	MLT-10 ^(a)	Pneumatic Pump	1U	NA	NA	NA	NA
MW97 (4" RW)	Drake	3/11/2015	MW97	Pneumatic Pump	1U	NA	NA	NA	NA
MW98 (4" RW)	Drake	3/11/2015	MW98	Pneumatic Pump	1U	NA	NA	NA	NA
MW99 (4" RW)	Drake	3/11/2015	MW99	Pneumatic Pump	1U	NA	NA	NA	NA
MW101 (4" RW)	Drake	3/11/2015	MW101	Pneumatic Pump	1U	NA	NA	1U	1U

TOC Facility #01-176; Mountlake Terrace, WA

					Analytical Results (µg/L) Volatile Organic Compounds Metal Method						
				npounds	Me	tals					
					Method	SW8260C	Method 8011M	Metho	d 200.8		
Well ⁽¹⁾	Property	Sample Date	Sample Identifier	Sample Method	Methyl t-butyl ether (MTBE)	1,2-Dichloroethane (EDC)	1,2-Dibromoethane (EDB)	Dissolved Lead	Total Lead		
MTCA Method A	Cleanup Level (µg/L)	2)			20	5	0.01	15	15		
		6/18/2014	MW103	Submersible Pump	170	1U	0.01U	3.84	4.69		
MW103	Herman	9/21/2014	MW103	Bailer	10	1U	0.01U	1U	2.64		
10100103	пеннан	12/13/2014	MW103	Bailer	9.1	NA	NA	1U	2.7		
		3/19/2015	MW103	Bailer	8.4	1U	0.01U	1U	1.82		
		6/18/2014	MW105	Submersible Pump	1U	1U	0.01U	1U	1.21		
MW105	Herman	9/22/2014	DRY	DRY	NS	NS	NS	NS	NS		
14144103	nerman	12/16/2014	DRY	DRY	NS	NS	NS	NS	NS		
		3/16/2015	MW105	Bailer	1U	1U	0.01U	1.28	3.24		
		6/19/2014	MW107	Submersible Pump	1U	1U	0.01U	1U	1U		
MW107	Herman	9/21/2014	MW107	Submersible Pump	1U	1U	0.01U	1U	1U		
10100107	nerman	12/15/2014	MW107	Submersible Pump	1U	NA	NA	1U	1U		
		3/19/2015	MW107	Submersible Pump	1U	1U	0.01U	1U	8.86		

NOTES & DEFINITIONS:

Intermediate Zone wells are 20 to 60 feet below ground surface.

Groundwater quality results are provided for the Second, Third and Fourth Quarter 2014 field events and the First Quarter 2015 field event.

Groundwater samples were analyzed by Friedman & Bruya, Inc. The analytical laboratory reports are included as Appendix B.

Groundwater quality results for selected constituents are presented based on exceedance of MTCA Method A Cleanup Levels.

Red denotes sample concentration exceeds MTCA Method A Cleanup Levels for groundwater.

Black denotes sample concentration was detected but does not exceed MTCA Method A Cleanup Levels for groundwater.

⁽¹⁾ Remediation wells (identified as "RW") are connected to a multi-phase extraction system.

⁽²⁾ MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised October 12, 2007.

^(a) Due to air turbulence encountered in the first groundwater sample collected from MW96 on 3/11/2015, a second sample was collected on 3/12/2015 to evaluate the impact of turbulence on analytical results.

* = Indicates blind field duplicate sample was collected for quality assurance/quality control purposes.

DRY = Indicates well could not be sampled due to insufficient groundwater sample volume.

NA = Indicates the compound was not analyzed.

NS = Indicates well was not sampled.

ACRONYMS:

LABORATORY NOTES:

μg/L = micrograms per liter MTCA = Model Toxics Control Act

R = Indicates data was rejected. U = Indicates the compound was undetected at the reported concentration.

LIST OF PROPERTIES:

TOC = 24205 56th Avenue West, Mountlake Terrace WA TOC/Farmasonis = 24225 56th Avenue West, Mountlake Terrace WA Drake = 24309 56th Avenue West, Mountlake Terrace WA Herman = 24311 56th Avenue West, Mountlake Terrace WA Shin/Choi = 24325 56th Avenue West, Mountlake Terrace WA 56th Ave ROW = right-of-way adjacent to TOC, TOC/Farmasonis & Drake properties

TOC Facility #01-176; Mountlake Terrace, WA

					Analytical Results (μg/L) Total Petroleum Volatile Organic Compounds								
						troleum arbons	ı		,	Volatile (Organic Co	mpounds	
					Method NWTPH-Gx		thod PH-Dx		М	ethod S\	W8021B /	SW8260C ⁽¹⁾	
Well	Property	Sample Date	Sample Identifier	Sample Method	Gasoline-Range (GRPH)	Motor Oil-Range (ORPH)	Diesel-Range (DRPH)	3enzene	Toluene	Ethyl-benzene	fotal Xylenes	n, p-Xylene	o-Xylene
MTCA Met	hod A Cleanup Level	(μg/L) ⁽²⁾		•	1,000/800 ⁽³⁾	500	500	5	1,000	700	1,000	NE ⁽⁴⁾	NE ⁽⁴⁾
MW26	тос		MW26	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW30	TOC/Farmasonis	3/14/2015	MW30	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW39	TOC/Farmasonis	3/14/2015	MW39	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW40	TOC/Farmasonis	3/20/2015	MW40	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW64	56th Ave ROW	3/20/2015	MW64	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA
MW78	Drake	3/18/2015	MW78	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA

NOTES & DEFINITIONS:

Deep Zone wells are >60 feet below ground surface.

Groundwater quality results are provided for the Second, Third and Fourth Quarter 2014 field events and the First Quarter 2015 field event.

Groundwater samples were analyzed by Friedman & Bruya, Inc. The analytical laboratory reports are included as Appendix B.

Groundwater quality results for selected constituents are presented based on exceedance of MTCA Method A Cleanup Levels.

Red denotes sample concentration exceeds MTCA Method A Cleanup Levels for groundwater.

Black denotes sample concentration was detected but does not exceed MTCA Method A Cleanup Levels for groundwater.

⁽¹⁾ If samples were analyzed by two methods, the maximum concentration of the two analyses is reported.

(2) MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised October 12, 2007.

 $^{(3)}$ Cleanup level is 1,000 µg/L when benzene is not present and 800 µg/L when benzene is present.

⁽⁴⁾ Cleanup level for individual xylenes has not been established.

NA = Indicates the compound was not analyzed.

NE = Indicates MTCA Method A Cleanup Level has not been established.

LABORATORY NOTES:

U = Indicates the compound was undetected at the method reporting limit.

ACRONYMS:

μg/L = micrograms per liter MTCA = Model Toxics Control Act NWTPH-Dx = Northwest Total Petroleum Hydrocarbon - diesel-range organics NWTPH-Gx = Northwest Total Petroleum Hydrocarbon - gasoline-range organics

LIST OF PROPERTIES:

TOC Facility #01-176; Mountlake Terrace, WA

					Analytical Results (µg/L) Volatile Organic Compounds Method Method 8011M Method (
					Volatile	Organic Com	pounds	Me	tals	
					Method	SW8260C		Metho	d 200.8	
Well	Property	Sample Date	Sample Identifier	Sample Method	Methyl t-butyl ether (MTBE)	1,2-Dichloroethane (EDC)	1,2-Dibromoethane (EDB)	Dissolved Lead	Total Lead	
MTCA Meth	od A Cleanup Level ((µg/L) ⁽¹⁾			20	5	0.01	15	15	
MW26	тос		MW26	Bailer	NA	NA	NA	NA	NA	
MW30	TOC/Farmasonis	3/14/2015	MW30	Submersible Pump	NA	NA	NA	NA	NA	
MW39	TOC/Farmasonis	3/14/2015	MW39	Submersible Pump	NA	NA	NA	NA	NA	
MW40	TOC/Farmasonis	3/20/2015	MW40	Submersible Pump	NA	NA	NA	NA	NA	
MW64	56th Ave ROW	3/20/2015	MW64	Submersible Pump	NA	NA	NA	NA	NA	
MW78	Drake	3/18/2015	MW78	Submersible Pump	1U	NA	NA	NA	NA	

NOTES & DEFINITIONS:

Deep Zone wells are >60 feet below ground surface.

Groundwater quality results are provided for the Second, Third and Fourth Quarter 2014 field events and the First Quarter 2015 field event.

Groundwater samples were analyzed by Friedman & Bruya, Inc. The analytical laboratory reports are included as Appendix B.

Groundwater quality results for selected constituents are presented based on exceedance of MTCA Method A Cleanup Levels.

Red denotes sample concentration exceeds MTCA Method A Cleanup Levels for groundwater.

Black denotes sample concentration was detected but does not exceed MTCA Method A Cleanup Levels for groundwater.

⁽¹¹ MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised October 12, 2007. NA = Indicates the compound was not analyzed.

LABORATORY NOTES:

U = Indicates the compound was undetected at the method reporting limit.

ACRONYMS:

μg/L = micrograms per liter MTCA = Model Toxics Control Act

LIST OF PROPERTIES:

<u>TABLE 5-1</u> Groundwater Quality Results for Selected Constituents Shallow-Intermediate Zone Intersect Wells Second Quarter 2014 - First Quarter 2015 TOC Facility #01-176

								Analyt	ical Res	ults (ug	·/I)					
					Total Pe	trolour			Volatile Organic Compounds Method SW8021B / SW8260C ⁽²⁾							
						arbons	1		١	/olatile (Organic Co	mpounds				
					Method		thod		м	othod SV	V8021B / S	W8260C ⁽²⁾				
					NWTPH-Gx	NWT	PH-Dx		191	-	V8021D7 3	w8200C				
Well ⁽¹⁾	Property	Sample Date	Sample Identifier	Sample Method	Gasoline-Range (GRPH)	Motor Oil-Range (ORPH)	Diesel-Range (DRPH)	Benzene	Toluene	Ethyl-benzene	Total Xylenes	m, p-Xylene	o-Xylene			
MTCA Method A C	leanup Level (µg/L)	3)			1,000/800 ⁽⁴⁾	500	500	5	1,000	700	1,000	NE ⁽⁵⁾	NE ⁽⁵⁾			
MW08	56th Ave ROW	3/13/2015	MW08	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA			
		6/13/2014	MW09(Peri)	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA			
		6/13/2014	MLT-01(Peri)*	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA			
		6/13/2014	MW09(Bailer)	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA			
		6/13/2014	MW09(Submersible)	Submersible Pump	100U	NA	NA	3.4J	2.9J	1U	4.6	NA	NA			
MW09	тос	9/22/2014	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS			
		12/13/2014	MW09-SUB	Submersible Pump	210	NA	NA	1U	1U	1U	3U	NA	NA			
		12/13/2014	MLT-1*	Submersible Pump	160	NA	NA	1U	1U	1U	3U	NA	NA			
		3/18/2015	MW09	Peristaltic Pump	120	NA	NA	1UJ	1U	2.5	15	NA	NA			
		3/18/2015	MLT-02*	Peristaltic Pump	140	NA	NA	2.1J	1	2.6	17	NA	NA			
MW18	тос	3/11/2015	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS			
MW22	тос	3/14/2015	MW22	Peristaltic Pump	100U	NA	NA	1U	1U	1U	ЗU	NA	NA			
MW24 (4" RW)	тос	3/11/2015	MW24	Pneumatic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA			
		6/19/2014	MW27	Pneumatic Pump	390	NA	NA	1U	1.6	7.1	44	NA	NA			
MW27 (2" RW)	тос	9/18/2014	DRY	DRY	NS	NS	NS	NS	NS	NS	NS	NS	NS			
IVIVV27(2 KVV)	100	12/11/2014	MW27	Pneumatic Pump	100U	NA	NA	1U	1U	1U	4.2	NA	NA			
		3/11/2015	MW27	Pneumatic Pump	320	NA	NA	1U	2.3	7.5	39	NA	NA			
MW28	тос	3/20/2015	MW28	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA			
1010020	100	3/20/2015	MTL-04*	Submersible Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA			
MW29 (2" RW)	тос	3/11/2015	MW29	Pneumatic Pump	790	NA	NA	1U	1	1U	29	NA	NA			
MW37	тос	3/12/2015	MW37	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA			
MW38	тос	3/18/2015	MW38	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA			
MW43	56th Ave ROW	3/20/2015	MW43	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA			
MW82	TOC/Farmasonis	3/13/2015	MW82	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA			
MW88	Drake	3/18/2015	MW88**	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA			
MW100	TOC/Farmasonis	3/13/2015	MW100	Peristaltic Pump	100U	NA	NA	1U	1U	1U	3U	NA	NA			

NOTES & DEFINITIONS:

All of the wells identified on this table have screened intervals that intersect both Shallow Zone and Intermediate Zone conditions.

Groundwater quality results are provided for the Second, Third and Fourth Quarter 2014 field events and the First Quarter 2015 field event.

Groundwater samples were analyzed by Friedman & Bruya, Inc. The analytical laboratory reports are included as Appendix B.

Groundwater quality results for selected constituents are presented based on exceedance of MTCA Method A Cleanup Levels.

Red denotes sample concentration exceeds MTCA Method A Cleanup Levels for groundwater.

Black denotes sample concentration was detected but does not exceed MTCA Method A Cleanup Levels for groundwater.

⁽¹⁾ Remediation wells (identified as "RW") are connected to a multi-phase extraction system.

⁽²⁾ If samples were analyzed by two methods, the maximum concentration of the two analyses is reported.

⁽³⁾ MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised October 12, 2007.

 $^{(4)}$ Cleanup level is 1,000 $\mu\text{g/L}$ when benzene is not present and 800 $\mu\text{g/L}$ when benzene is present.

⁽⁵⁾ Cleanup level for individual xylenes has not been established.

* = Indicates blind field duplicate sample was collected for quality assurance/quality control purposes.

DRY = Indicates well could not be sampled due to insufficient groundwater sample volume.

NA = Indicates the compound was not analyzed.

NE = Indicates MTCA Method A Cleanup Level has not been established.

NS = Indicates well was not sampled.

LABORATORY NOTES:

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

Qualifier was assigned based on data validation protocol.

U = Indicates the compound was undetected at the method reporting limit.

ACRONYMS:

μg/L = micrograms per liter MTCA = Model Toxics Control Act NWTPH-Dx = Northwest Total Petroleum Hydrocarbon - diesel-range organics NWTPH-Gx = Northwest Total Petroleum Hydrocarbon - gasoline-range organics

LIST OF PROPERTIES:

TABLE 5-2 Groundwater Quality Results for Common Fuel Additives Shallow-Intermediate Zone Intersect Wells Second Quarter 2014 - First Quarter 2015 TOC Facility #01-176

	Method								
					Volatile	Organic Com	pounds	Me	tals
					Method	SW8260C		Metho	d 200.8
Well ⁽¹⁾	Property	Sample Date	Sample Identifier	Sample Method	Methyl t-butyl ether (MTBE)	1,2-Dichloroethane (EDC)	1,2-Dibromoethane (EDB)	Dissolved Lead	Total Lead
	Cleanup Level (µg/L)				20	5	0.01	15	15
MW08	56th Ave ROW	3/13/2015	MW08	Peristaltic Pump	NA	NA	NA	NA	NA
		6/13/2014	MW09(Peri)	Peristaltic Pump	NA	NA	NA	NA	NA
		6/13/2014	MLT-01(Peri)*	Peristaltic Pump	NA	NA	NA	NA	NA
		6/13/2014	MW09(Bailer)	Bailer	NA	NA	NA	NA	NA
		6/13/2014	MW09(Submersible)	Submersible Pump	NA	NA	NA	NA	NA
MW09	тос	9/22/2014	DRY	DRY	NS	NS	NS	NS	NS
		12/13/2014	MW09-SUB	Submersible Pump	NA	NA	NA	NA	NA
		12/13/2014	MLT-1*	Submersible Pump	NA	NA	NA	NA	NA
		3/18/2015	MW09	Peristaltic Pump	NA	NA	NA	NA	NA
		3/18/2015	MLT-02*	Peristaltic Pump	NA	NA	NA	NA	NA
MW18	тос	3/11/2015	DRY	DRY	NS	NS	NS	NS	NS
MW22	тос	3/14/2015	MW22	Peristaltic Pump	NA	NA	NA	NA	NA
MW24 (4" RW)	тос	3/11/2015	MW24	Pneumatic Pump	NA	NA	NA	NA	NA
		6/19/2014	MW27	Pneumatic Pump	NA	NA	NA	NA	NA
MW27 (2" RW)	тос	9/18/2014	DRY	DRY	NS	NS	NS	NS	NS
	100	12/11/2014	MW27	Pneumatic Pump	NA	NA	NA	NA	NA
		3/11/2015	MW27	Pneumatic Pump	NA	NA	NA	NA	NA
MW28	тос	3/20/2015	MW28	Submersible Pump	NA	NA	NA	NA	NA
	100	3/20/2015	MTL-04*	Submersible Pump	NA	NA	NA	NA	NA
MW29 (2" RW)	тос	3/11/2015	MW29	Pneumatic Pump	NA	NA	NA	2.91	119
MW37	тос	3/12/2015	MW37	Peristaltic Pump	NA	NA	NA	NA	NA
MW38	TOC	3/18/2015	MW38	Peristaltic Pump	NA	NA	NA	NA	NA
MW43	56th Ave ROW	3/20/2015	MW43	Bailer	NA	NA	NA	NA	NA
MW82	TOC/Farmasonis	3/13/2015	MW82	Bailer	NA	NA	NA	NA	NA
MW88	Drake	3/18/2015	MW88**	Peristaltic Pump	1U	NA	NA	NA	NA
MW100	TOC/Farmasonis	3/13/2015	MW100	Peristaltic Pump	NA	NA	NA	1U	1U

NOTES & DEFINITIONS:

All of the wells identified on this table have screened intervals that intersect both Shallow Zone and Intermediate Zone conditions.

Groundwater quality results are provided for the Second, Third and Fourth Quarter 2014 field events and the First Quarter 2015 field event.

Groundwater samples were analyzed by Friedman & Bruya, Inc. The analytical laboratory reports are included as Appendix B.

Groundwater quality results for selected constituents are presented based on exceedance of MTCA Method A Cleanup Levels.

Red denotes sample concentration exceeds MTCA Method A Cleanup Levels for groundwater.

Black denotes sample concentration was detected but does not exceed MTCA Method A Cleanup Levels for groundwater.

(1) MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised October 12, 2007.

* = Indicates blind field duplicate sample was collected for quality assurance/quality control purposes.

DRY = Indicates well could not be sampled due to insufficient groundwater sample volume.

NA = Indicates the compound was not analyzed.

NS = Indicates well was not sampled.

LABORATORY NOTES:

U = Indicates the compound was undetected at the method reporting limit.

ACRONYMS & ABBREVIATIONS:

μg/L = micrograms per liter MTCA = Model Toxics Control Act

LIST OF PROPERTIES:

TABLE 6-1 Groundwater Quality Results for Selected Constituents Intermediate-Deep Zone Intersect Wells Second Quarter 2014 - First Quarter 2015 TOC Facility #01-176

									tical Res	ults (µg	/L)		
					Total Pe Hydrod	troleum arbons	l		١	/olatile C	Organic Co	mpounds	
					Method NWTPH-Gx		hod PH-Dx			Met	hod SW80	21B	
Well ID	Property	Sample Date	Sample Identifier	Sample Method	Gasoline-Range (GRPH)	Motor Oil-Range (ORPH)	Diesel-Range (DRPH)	Benzene	Toluene	Ethyl-benzene	Total Xylenes	m, p-Xylene	o-Xylene
MTCA Method A	Cleanup Level (µg/	L) ⁽¹⁾	-	-	1,000/800 ⁽²⁾	500	500	5	1,000	700	1,000	NE ⁽³⁾	NE ⁽³⁾
MW16	242nd St ROW	3/19/2015	MW16	Bailer	100U	NA	NA	1U	1U	1U	3U	NA	NA

NOTES & DEFINITIONS:

MW16 is the only well that has screened intervals intersecting both Intermediate Zone and Deep Zone conditions.

Groundwater samples were analyzed by Friedman & Bruya, Inc. The analytical laboratory reports are included as Appendix B.

Groundwater quality results for selected constituents are presented based on exceedance of MTCA Method A Cleanup Levels.

Red denotes sample concentration exceeds MTCA Method A Cleanup Levels for groundwater.

Black denotes sample concentration was detected but does not exceed MTCA Method A Cleanup Levels for groundwater.

(1) MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised October 12, 2007.

 $^{(2)}$ Cleanup level is 1,000 $\mu g/L$ when benzene is not present and 800 $\mu g/L$ when benzene is present.

⁽³⁾ Cleanup level for individual xylenes has not been established.

NA = Indicates the compound was not analyzed.

NE = Indicates MTCA Method A Cleanup Level has not been established.

LABORATORY NOTES:

U = Indicates the compound was undetected at the method reporting limit.

ACRONYMS:

 μ g/L = micrograms per liter MTCA = Model Toxics Control Act

LIST OF PROPERTIES:

242nd St ROW = portion of right-of-way adjacent to TOC Property

TABLE 6-2 Groundwater Quality Results for Common Fuel Additives Intermediate-Deep Zone Intersect Wells Second Quarter 2014 - First Quarter 2015 TOC Facility #01-176

					Analytical Results (μg/L)				
					Volatile Organic Compounds			Metals	
					Method SW8260C		Method 8011M	Method 200.8	
Well ID	Property	Sample Date	Sample Identifier	Sample Method	Methyl t-butyl ether (MTBE)	1,2-Dichloroethane (EDC)	1,2-Dibromoethane (EDB)	Dissolved Lead	Total Lead
MTCA Method A Cleanup Level (µg/L) ⁽¹⁾					20	5	0.01	15	15
MW16	242nd St ROW	3/19/2015	MW16	Bailer	NA	NA	NA	NA	NA

NOTES & DEFINITIONS:

MW16 is the only well that has screened intervals intersecting both Intermediate Zone and Deep Zone conditions.

Groundwater samples were analyzed by Friedman & Bruya, Inc. The analytical laboratory reports are included as Appendix B.

Groundwater quality results for selected constituents are presented based on exceedance of MTCA Method A Cleanup Levels.

Red denotes sample concentration exceeds MTCA Method A Cleanup Levels for groundwater.

Black denotes sample concentration was detected but does not exceed MTCA Method A Cleanup Levels for groundwater.

⁽¹⁾ MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised October 12, 2007. NA = Indicates the compound was not analyzed.

ACRONYMS:

μg/L = micrograms per liter MTCA = Model Toxics Control Act

LIST OF PROPERTIES:

242nd St ROW = portion of right-of-way adjacent to TOC Property

Figures

- 1 Project Location
- 2 Site Map
- 3 Locations of Wells and Remediation Systems
- 4 Groundwater Elevation Contours, Shallow Zone
- 5 Groundwater Elevation Contours, Intermediate Zone
- 6 Groundwater Elevation Contours, Deep Zone
- 7 Groundwater Elevations, Shallow (MW62), Intermediate (MW20 and MW32) and Deep (MW53) Zone, December 2006 March 2015
- 8 Groundwater Elevations, Shallow (MW67), Intermediate (MW63) and Deep (MW64) Zone, December 2006 – March 2015
- 9 GRPH Concentrations in Groundwater, March 2015, Shallow Zone
- 10 Benzene Concentrations in Groundwater, March 2015, Shallow Zone
- 11 GRPH Concentrations in Groundwater, March 2015, Intermediate Zone
- 12 Benzene Concentrations in Groundwater, March 2015, Intermediate Zone
- 13 Benzene Concentrations in Groundwater, Shallow Zone Wells MW02, MW04 and MW12, June 1992 March 2015
- 14 GRPH Concentrations in Groundwater, Shallow Zone Wells MW02, MW04 and MW12, June 1992 March 2015
- 15 Groundwater Elevation and GRPH Concentration in Groundwater, Shallow Zone Well MW02, June 1992 – March 2015
- 16 Benzene Concentrations in Groundwater, Selected Intermediate Zone Wells, September 2005 – March 2015
- 17 Groundwater Elevation and Benzene Concentration in Groundwater, Intermediate Zone Well MW48 and Wells Near MW48, December 2006 – March 2015
- 18 GRPH Concentrations in Groundwater, Selected Intermediate Zone Wells, September 2005 – March 2015
- 19 Groundwater Elevation and GRPH Concentrations in Groundwater, Intermediate Zone Well MW48 and GRPH Concentrations in Wells Near MW48, December 2006 – March 2015
- 20 Total Lead Concentrations in Groundwater, Intermediate Zone Wells MW31, MW32 and MW91, December 2006 – March 2015
- 21 GRPH Plume Comparison, Intermediate Zone Wells, March 2014 and March 2015
- 22 LNAPL Thickness, Shallow Zone Wells MW29, MW71 and MW102 and Intermediate Zone Well MW48, December 2005 – March 2015
- 23 Groundwater Elevation and LNAPL Thickness, Intermediate Zone Well MW48, December 2006 – March 2015

TOC Holdings Co. Facility No. 01-176; Mountlake Terrace, WA 360 355 350 345 Groundwater Elevation (feet) 340 335 330 325 MW20 320 MW32 315 310 305 300 Jul-06 - 60-lnL Jan-10 -Jul-08 Jan-09 -Jul-10 -Jul-12 Jul-13 Jan-15 -Jul-15 Jan-07 Jul-07 Jan-08 Jan-11 Jul-11 Jan-12 Jan-13 Jan-14 Jul-14

FIGURE 7 Shallow (MW62), Intermediate (MW20 and MW32) and Deep (MW53) Zone Groundwater Elevations December 2006 - March 2015

Date

TOC Holdings Co. Facility No. 01-176; Mountlake Terrace, WA 350 345 340 335 Groundwater Elevation (feet) 330 325 - MW63 - MW64 320 315 310 305 300 Jan-10 -Jan-13 -Jul-06 -Jan-08 Jul-08 Jan-09 Jul-09 Jul-10 -Jan-12 Jul-12 Jul-13 Jan-14 Jul-14 Jan-15 Jul-15 -Jan-07 Jul-07 Jan-11 Jul-11

FIGURE 8 Shallow (MW67), Intermediate (MW63) and Deep (MW64) Zone Groundwater Elevations December 2006 - March 2015

FIGURE 13 Benzene Concentrations in Groundwater, Shallow Zone Wells MW02, MW04 and MW12 June 1992 - March 2015 TOC Holdings Co. Facility No. 01-176; Mountlake Terrace, WA

June 1992 - March 2015 TOC Holdings Co. Facility No. 01-176; Mountlake Terrace, WA 100000 90000 80000 70000 **GRPH** Concentrations (ug/L) 60000 MW04 50000 40000 30000 20000 10000 0 Jan-02 📊 Jan-03 📙 Jan-92 † Jan-15 Jan-06 Jan-14 🛓 Jan-93 Jan-94 Jan-96 Jan-98 Jan-99 Jan-00 Jan-04 Jan-05 Jan-08 Jan-09 Jan-10 Jan-12 Jan-13 Jan-95 Jan-97 Jan-01 Jan-07 Jan-11

Date

FIGURE 14 GRPH Concentrations in Groundwater, Shallow Zone Wells MW02, MW04 and MW12

TOC Holdings Co. Facility No. 01-176; Mountlake Terrace, WA 360 100000 90000 80000 355 70000 Groundwater Elevation (feet) 60000 **GRPH** Concentration (ug/L) 350 50000 40000 30000 345 20000 10000 340 0 Jan-15 Jan-92 Jan-93 -Jan-96 Jan-98 -Jan-99 Jan-00 Jan-95 Jan-01 Jan-03 Jan-05 Jan-06 Jan-08 Jan-09 Jan-10 Jan-12 Jan-13 Jan-94 Jan-97 Jan-02 Jan-04 Jan-07 Jan-11 Jan-14 Date MW02 GW Elevation MW02 GRPH

FIGURE 15 Groundwater Elevation and GRPH Concentrations in Groundwater, Shallow Zone Well MW02 June 1992 - March 2015

TOC Holdings Co. Facility No. 01-176; Mountlake Terrace, WA 1000 0 900 800 700 Benzene Concentration (ug/L) 600 - MW11 - MW18 500 MW25 - MW31 — — MW32 400 - MW45 - MW48 300 A 200 <u>→</u> MW49 - MW57 100 0 Jul-05 + Dec-05 Dec-14 Jul-13 🎝 Dec-06 -Dec-08 -Dec-09 -Dec-10 -Dec-12 Dec-13 Jul-06 -Jan-08 -Jul-08 - 60-lnC Jul-10 Jan-12 Jul-12 Jul-14 Jul-15 -Jul-07 Jul-11

Date

FIGURE 16 Benzene Concentrations in Groundwater, Selected Intermediate Zone Wells September 2005 - March 2015

Stantec

and Benzene Concentrations in Wells Near MW48 December 2006 - March 2015 TOC Holdings Co. Facility No. 01-176; Mountlake Terrace, WA 320 400 350 315 300 Groundwater Elevation in MW48 (feet) Benzene Concentration (ug/L) 250 310 200 150 305 100 50 300 0 Jan-13 -Jan-15 -Jul-06 -Jul-12 Jul-13 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10 Jul-11 Jan-12 Jan-14 Jul-14 Jul-15 Jan-11 Date MW48 Groundwater MW48 Benzene MW57 Benzene MW63 Benzene MW95 Benzene MW96 Benzene MW98 Benzene

FIGURE 17 Groundwater Elevation and Benzene Concentrations in Groundwater, Intermediate Zone Well MW48

TOC Holdings Co. Facility No. 01-176; Mountlake Terrace, WA 60000 55000 50000 45000 **GRPH** Concentrations (ug/L) 40000 - MW11 35000 <u>→</u> MW18 30000 - MW25 25000 20000 - MW48 15000 —×— MW86 10000 - MW69 ——— MW49 5000 - MW57 0 Dec-12 Dec-05 -Dec-06 -Dec-08 -Dec-09 -Dec-13 Dec-14 Jul-05 Jan-08 -Jul-09 Jul-10 Jan-12 Jul-12 Jul-13 Jul-14 Jul-15 -Jul-06 Jul-07 Jul-08 Dec-10 Jul-11 Date

FIGURE 18 GRPH Concentrations in Groundwater, Selected Intermediate Zone Wells September 2005 - March 2015 TOC Holdings Co. Facility No. 01-176; Mountlake Terrace, WA

FIGURE 19

TOC Holdings Co. Facility No. 01-176; Mountlake Terrace, WA 60 55 50 45 40 Total Lead Concentration (ug/L) 35 30 MW91 25 20 15 10 5 0 Jan-10 -- 01-Inf Date Jan-06 -Jan-09 -Jul-05 Jan-08 - 60-InC Jan-12 Jan-13 Jan-15 Jul-06 Jan-07 Jul-08 Jan-11 Jul-12 Jul-13 Jan-14 Jul-14 Jul-07 Jul-11

FIGURE 20 Total Lead Concentrations in Groundwater, Intermediate Zone Wells MW31, MW32 and MW91 December 2005 - March 2015

) Stantec

TOC Holdings Co. Facility No. 01-176; Mountlake Terrace, WA 1.80 1.60 1.40 1.20 LNAPL Thickness (feet) 1.00 0.80 0.60 0.40 0.20 There is no data for MW102 prior to July 2013. 0.00 Jul-05 † Jan-06 -Jan-10 -Jul-06 Jul-07 Jan-08 Jul-08 -Jan-09 -Jul-09 Jul-10 -Jul-12 Jan-13 -Jul-13 Jan-14 Jul-14 Jan-15 Jul-15 Jan-07 Jan-11 Jul-11 Jan-12 Date - MW29 LNAPL Thickness MW102 LNAPL Thickness

FIGURE 22 LNAPL Thickness, Shallow Zone Wells MW29, MW71 and MW102 and Intermediate Well MW48 December 2005 - March 2015 TOC Holdings Co. Facility No. 01-176: Mountlake Terrace, WA

December 2006 - March 2015 TOC Holdings Co. Facility No. 01-176; Mountlake Terrace, WA 320 1.80 1.60 1.40 315 Groundwater Elevation (feet) 1.20 LNAPL Thickness (feet) 1.00 310 0.80 0.60 305 0.40 0.20 300 0.00 Jul-06 † Jan-09 -Jul-10 -Jan-13 -Jul-08 -Jul-13 Jan-15 Jan-07 Jan-08 Jul-09 Jan-10 Jan-11 Jan-12 Jul-12 Jan-14 Jul-14 Jul-15 Jul-07 Jul-11 Date

FIGURE 23 Groundwater Elevation and LNAPL Thickness, Intermediate Zone Well MW48

Appendix A

Groundwater Monitoring Plan

Groundwater Monitoring Plan

TOC Holdings Co. Facility No. 01-176 24205 56th Avenue West Mountlake Terrace, WA 98043

Prepared for:

TOC Holdings Co. 2737 West Commodore Way Seattle, WA 98199

Prepared by:

Stantec Consulting Services Inc. 19101 36th Avenue West, Ste. 203 Lynnwood, WA 98036 Phone: 425.977.4994

v.2

Sign-off Sheet

This document entitled, *Groundwater Monitoring Plan*, was prepared by Stantec Consulting Services Inc. (Stantec) on behalf of TOC Holdings Co. (TOC) for specific application to TOC Facility No. 01-176 in Mountlake Terrace, Washington. Services conducted by Stantec for this project were conducted in accordance with the Environmental Services Contract between HydroCon Environmental, LLC (HydroCon) and Stantec. Any reliance on this document by a third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and HydroCon. The opinions in the document are based on conditions and information existing at the time the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

This document was prepared under the supervision and direction of the key staff identified below.

ana Hutchins

Prepared by:

Dana Hutchins, GIT Project Specialist, Geology

Prepared by:

Andrea Pedersen Senior Project Coordinator

Reviewed by:

Rebekah Brooks, LG, LHg Project Manager Senior Associate, Hydrogeology

Table of Contents

1.0	INTRODUC	TION	1
2.0	HEALTH AN	ID SAFETY	2
3.0	GROUNDW	ATER MONITORING METHODS & PROCEDURES	3
3.1	DEPTH-TO-	WATER/DEPTH-TO-PRODUCT MEASUREMENTS	3
	3.1.1	Materials & Equipment	4
	3.1.2	Equipment Calibration	4
	3.1.3	Measuring Point Locations	5
	3.1.4	Measuring Procedures	5
	3.1.5	Total Well Casing Depth Measurement Procedures	6
3.2	GROUNDV	VATER SAMPLE COLLECTION	7
	3.2.1	Materials & Equipment	7
	3.2.2	Sample Containers & Volumes	7
	3.2.3	Sample Container Labeling	8
	3.2.4	Equipment Calibration	9
	3.2.5	Groundwater Sampling Methods & Procedures	9
	3.2.6	Groundwater Sampling	10
	3.2.7	Sample Filtration	11
	3.2.8	Sample Documentation	11
	3.2.9	Sample Packaging, Preservation & Shipping	12
	3.2.10	Sample Custody	12
	3.2.11	Equipment Decontamination Procedures	13
4.0	QA/QC MI	ETHODS & PROCEDURES	14
4.1	FIELD QA/0	QC SAMPLES	14
	4.1.1	Blind Field Duplicate Samples	14
	4.1.2	Field Blanks	14
4.2	LABORATC	DRY QA/QC SAMPLES	15
4.3	DATA VALI	DATION	15
5.0	LIMITATION	IS	17
6.0	REFERENCE	S	18

LIST OF TABLES

Table A-1: Groundwater Sampling Schedule

ATTACHMENT 1: FIELD FORMS

Field Report Form Field Sampling Data Sheet DTW/DTP Level Measurement Form Chain-of-Custody Form RMS-01: Risk Management Strategy RMS-02: Field Level Risk Assessment (Fit for Duty), 5-Day RMS-03: Incident Report

Acronyms & Abbreviations

VOC volatile organic compound	bgs BTEX CFR COC DOT DRPH DTP DTW EDB EDC EPA FSDS GRPH HASP HCI HNO ₃ HydroCon IRAWP L LNAPL MU NAPL ML MTBE MW NTU NTU NTU NTU NTU NTU NTU NTU NTU NTU	below ground surface benzene, toluene, ethylbenzene and total xylenes Code of Federal Regulations chain of custody U.S. Department of Transportation diesel-range petroleum hydrocarbons depth to product depth to water ethylene dibromide (1,2-dibromoethane) ethylene dichloride (1,2-dibromoethane) U.S. Environmental Protection Agency Field Sample Data Sheet gasoline-range petroleum hydrocarbons Health and Safety Plan hydrochloric acid nitric acid HydroCon Environmental, LLC Interim Remedial Action Work Plan lifer light non-aqueous phase liquid milliliters methyl tertiary-butyl ether monitoring well Nephelometric Turbidity Unit Northwest Total Petroleum Hydrocarbon for diesel-range organics Occupational Safety and Health Administration oil-water separator polycyclic aromatic hydrocarbons Quality Assurance / Quality Control Resource Conservation and Recovery Act relative percent difference remediation well Stantec Consulting Services Inc. TOC Holdings Co. U.S. Geology Survey volatile organic analysis

List of Properties – TOC Site

TOC Property	24205 56th Avenue West, Mountlake Terrace, WA
TOC/Farmasonis Property	24225 56th Avenue West, Mountlake Terrace, WA
Drake Property	24309 56th Avenue West, Mountlake Terrace, WA
56th Avenue West ROW	Right-of-way adjacent to TOC, TOC/Farmasonis & Drake properties

List of Properties - Adjacent to TOC Site

Herman Property	24311 56th Avenue West, Mountlake Terrace, WA
Shin/Choi Property	24325 56th Avenue West, Mountlake Terrace, WA
242nd Street Southwest ROW	Right-of-way adjacent to TOC Property

1.0 INTRODUCTION

This *Groundwater Monitoring Plan* presents the field procedures and protocol to be followed during field events associated with the interim remedial action at the TOC Holdings Co. (TOC) Facility No. 01-176 located in Mountlake Terrace, Snohomish County, Washington. The procedures presented herein are intended to be general in nature and, as the work progresses and, when warranted, appropriate revisions may be made based on current site conditions. Field activities will be performed by Stantec Consulting Services Inc. (Stantec) as a subconsultant to HydroCon Environmental, LLC (HydroCon) on behalf of TOC.

2.0 HEALTH AND SAFETY

A site-specific Health and Safety Plan (HASP) has been prepared in accordance with the Occupational Safety and Health Administration (OSHA) Code of Federal Regulation (CFR) 1910.120. The HASP includes a Site description and background, a chemical and physical hazard evaluation, operations plan, safety equipment and procedures, and emergency procedures. The site-specific HASP encompasses health and safety protocols to be used by Stantec personnel during performance of groundwater monitoring and other field activities. The HASP will also be used to inform Stantec field personnel of the site hazards and appropriate safety measures to be undertaken when working on the site.

All Stantec personnel that perform field activities must read and understand the contents of the sitespecific HASP and sign the signature page prior to conducting field work. A recent HASP must be in the possession of Stantec staff when in the field. In addition, Stantec personnel must complete a RMS-02 – Field Risk Assessment (Fit for Duty) Form (provided in **Attachment 1**) on the first day of each field event and update each day during the event. In compliance with requirements on the RMS-02, the Stantec field crew lead will hold an onsite safety meeting at the beginning (and end, if necessary) of each workday to include all Stantec field personnel and any other personnel to be at the Site at the time of groundwater monitoring for coordination purposes. Safety meetings will be documented on the RMS-02 Form.

In the case of a safety Incident involving injury, potential injury, or report of pain, soreness, or discomfort, Stantec personnel must report immediately (within one hour) to their project manager or supervisor. Supervisors will then immediately contact their HSE representative to develop a plan for assessment and care. Any safety incidents must be documented on Stantec's RMS-03 Incident Report Form (see Attachment A) within 24 hours of any incident. The form should be submitted to by email to hse@stantec.com or fax at (780) 969-2030, with or without signatures. Once signed, the forms will be placed into the project files.

3.0 GROUNDWATER MONITORING METHODS & PROCEDURES

The methods and procedures described in this plan were developed primarily from the U.S. Environmental Protection Agency (EPA) and U.S. Geological Survey (USGS) sources identified below.

- Standard Operating Procedure for the Standard/Well-Volume Method for Collecting a Ground-Water Sample from Monitoring Wells for Site Characterization (EPA, Region 9)
- Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells (EPA 2010)
- Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers. Ground Water Forum Issue Paper (EPA 2002)
- National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9, Chapters A1-A9 (USGS, Various Dates)

The following sections summarize the methods and protocols that will be used by Stantec for the quarterly and annual groundwater performance monitoring events.

3.1 Depth-to-Water/Depth-to-Product Measurements

In accordance with the scope of work defined in the IRAWP, depth-to-water/depth-to-product (DTW/DTP) levels are measured during each field event to determine groundwater flow characteristics and contaminant distribution. For the TOC project, DTW/DTP measurements will be collected from active monitoring and remediation wells using the following schedule:

- "System On" Measurements: At the beginning of each groundwater monitoring event, DTW/DTP level measurements will be collected from selected wells while the MPE remediation systems are operating. Measurements will be used to assess how pumping is influencing groundwater flow and to assess performance of the remediation systems. All measurements will be collected on the same day.
- 2) "System Off" Measurements: Following completion of the system on measurement event, the MPE remediation systems will be turned off for several days (typically 5 days) to allow groundwater levels to equilibrate prior to collecting system off measurements. System off measurements will be used to assess natural groundwater conditions (i.e., without influence of the remediation systems). All measurements will be collected on the same day.
- 3) DTW/DTP measurements will also be collected from each well prior to sampling. Samples will be collected between the system on and system off DTW/DTP measurement events.

Groundwater Monitoring Methods & Procedures *Groundwater Monitoring Plan*

3.1.1 Materials & Equipment

Materials and equipment required for DTW/DTP level measurements are described below.

- Project Records:
 - o Well Construction Records and Previous DTW/DTP Measurements:
 - o HASP or completed RMS-01 form (provided in Attachment 1)
 - o Groundwater Monitoring Plan
 - o Sampling Schedule (provided as Table A-1)
- Field Notebook and Forms (provided in Attachment 1)
 - o Field Report Forms
 - o DTW/DTP Level Measurement Form
 - o Health and Safety Forms (RMS-02 and RMS-03)
- Electronic Probes: An electronic probe consists of a contact electrode attached to the end of an insulated electrical cable marked with length indicators, and a reel which houses an ammeter, buzzer or other closed circuit indicator. The indicator shows a closed circuit and flow of current when the electrode touches a water or light non-aqueous phase liquid (LNAPL) surface. At locations where LNAPL is not present, DTW levels will be measured with an electronic water level probe to an accuracy of 0.01 feet. Where LNAPL is present (or was previously observed or is expected to occur), an oil/water interface probe will be used to check for the presence of LNAPL and measure the DTP and DTW.

3.1.2 Equipment Calibration

The electronic probes used for DTW/DTP measurements will be calibrated at least annually (as part of regular maintenance) by comparing the position of the electrode relative to the marked graduations on the cable to those on a steel surveyors tape. The electronic probes will be calibrated more frequently if there is reason to suspect the probe was stretched (e.g., it was stuck in a well and pulled vigorously for retrieval or if the probe requires repair that could have affected the length of the cable).

If more than one electronic probe will be used for the measurement event, a baseline measurement from one well location will be collected using each probe to check for consistency between the instruments. Any differences between measurements will then be used to calibrate the instruments and correct the groundwater elevations, if necessary. The serial number of the electronic probe(s) selected for the measurement event will be recorded on the DTW/DTP Form and/or in the designated field notebook. If an instrument cannot be calibrated, it will be removed from service and labeled as needing repair.

Groundwater Monitoring Methods & Procedures Groundwater Monitoring Plan

3.1.3 Measuring Point Locations

A measuring point has been established and marked at the top of the inner casing of each well where DTW/DTW measurements are made. The measuring point is based on the reference point used for the topographic survey conducted by a licensed surveyor following well installation or following any modification of the well casing or previously established measuring point. Generally, this point is the top of the well casing on the north side. The measuring point is permanently marked using an indelible marker or a notch cut into the casing. When a monitoring well is surveyed, the licensed surveyor will reference the measuring point elevation relative to the local datum for location and elevation.

3.1.4 Measuring Procedures

As described in **Section 3.1.1**, DTW/DTP measurements will be collected using an electronic water level probe or an electronic oil-water interface probe.

The procedures summarized below will be used by Stantec field staff for each DTW/DTP measurement event.

- During preparation for the field event, check the electronic probes to confirm the battery is fully charged.
- Prior to collecting DTW/DTP measurements, review well construction details and previously collected measurements at each well location to gain insight on expected measurement values and to be alerted to any anomalous readings.
- Prior to collecting measurements, open each well casing for a minimum of 15 minutes to allow groundwater levels to equilibrate with atmospheric pressure.
- Select the appropriate electronic probe for each measurement location. (As described in **Section 3.1.1**, where LNAPL was previously observed or is expected to occur, an electronic oil/water interface probe will be used to check for the presence of LNAPL and measure the DTP and DTW.)
- To avoid cross contamination between wells, rinse the indicator probes and affected cables with deionized or tap water prior to the first measurement location, between each measurement location, and following the last measurement location.
- Lower the selected probe into the well until the ammeter or buzzer indicates a closed circuit. Raise and lower the probe slightly until the shortest length of cable that gives the maximum response on the indicator is found.
- With the cable in this fixed position, measure the DTW/DTP levels relative to the measuring point at the top of the well casing (see **Section 4.1.3**) to an accuracy of 0.01 feet. In the event LNAPL is encountered in the well, the DTP level will be recorded first and the DTW level will be recorded second. The probe(s) will identify the DTP level with a solid, continuous buzzer sound and will identify the DTW level with a pulsating buzzer sound.
- The measurement procedures will be repeated as many times as necessary until two identical DTW/DTP measurements are obtained at each well location.

 System on and system off measurements will be recorded on the DTW/DTP Level Measurement Form along with the date and time of each measurement and any notable observations. Measurements collected at the time of sampling will be recorded on the FSDS. Field forms are provided in Attachment 1.

Groundwater elevations will be calculated from the DTW measurement and the surveyed measuring point elevation at each well. If LNAPL is identified in the well, the LNAPL thickness will be determined by subtracting the DTP from the DTW measurement. LNAPL is lighter than water and slightly depresses the groundwater table as a function of the specific gravity difference between the two media. If LNAPL is measured in any monitoring wells, the reported groundwater elevations will be normalized using the industry-standard specific gravity estimate of the LNAPL (gasoline at the TOC site) relative to a specific gravity of 1.0 for water. The following equation and associated values will be used to obtain the normalized groundwater elevation:

Normalized Groundwater Elevation (feet) = $[(H_{TOC} - H_w) * 1.0] + [(H_w - H_{LNAPL}) * SG]$			
H _{TOC} = top of well casing elevation	H_{LNAPL} = DTP level below the top of well casing		
$\mathbf{H}_{\mathbf{W}}$ = DTW level below the top of well casing	SG = specific gravity of LNAPL		

3.1.5 Total Well Casing Depth Measurement Procedures

To confirm the total depth of an existing well casing (if needed), the total depth of a well casing will be measured immediately after construction or at any time when conditions of the well may have changed or are in question. The total well depth is measured by sounding the bottom of the well with a weighted steel surveyors' tape or other graduated and weighted steel or fiberglass measuring tape. The electronic water level probe may also be used as a measuring device, if weighted.

To measure the total depth of the well, the weighted measuring tape or probe will be lowered into the well until there is slack in the tape or until there is a noticeable decrease in weight, which indicates the instrument has reached the bottom of the well. The tape will be lowered slowly to avoid damaging the bottom of the well with the additional weight. The tape will be raised slowly until it just becomes taut. With the tape in this fixed position, the tape reading opposite the measuring point at the top of the casing (or on the north side of the casing, if the well has not yet been surveyed) will be recorded to the nearest 0.1 feet.

3.2 Groundwater Sample Collection

Groundwater samples are collected to monitor contaminant concentrations and distribution and to evaluate the performance and efficacy of the remediation systems located on the TOC Site and their effect on groundwater quality.

The groundwater sampling method selected for each well location depends upon the function of the well (i.e., monitoring or remediation) and the volume of groundwater available for sample collection.

3.2.1 Materials & Equipment

Materials and equipment required for groundwater sampling are listed below.

• Project Records:

- o Well Construction Records
- o HASP or completed RMS-01 Form (provided in Attachment 1)
- o Groundwater Monitoring Plan
- o Sampling Schedule (see Table A-1)
- Field Notebook and Forms (provided in Attachment 1)
 - o Field Report Forms
 - o FSDS
 - o Chain of Custody (COC) Form (provided by analytical laboratory)
 - o Health and Safety Forms (RMS-02 and RMS-03)

• Groundwater Sampling Equipment:

- o Pneumatic Pump
- o Peristaltic Pump
- o Submersible Pump
- o Bailers
- o Field Parameter Meters
- o Flow-through Cells and Filters
- o Sample Containers and Insulated Coolers (provided by analytical laboratory)
- o Ice for Coolers

3.2.2 Sample Containers & Volumes

Groundwater samples will be collected into sample containers appropriate for the analytical method, and will be obtained from the licensed analytical laboratory performing the analyses (Friedman & Bruya, Inc. [Friedman & Bruya]). Different containers will be required for specific groups of analytes in accordance with applicable EPA Methods. **Table A-1** (subject to change and approved with the project manager prior to the field events) provides the quarterly sampling schedule and analyses for each well, per the requirements of the IRAWP (SES 2011). Stantec field personnel will coordinate with Friedman & Bruya to confirm the appropriate containers and preservatives are provided prior to each sampling event. The table on the following page summarizes the types of analyses and associated sample containers and preservatives that will be provided for each well location scheduled for sampling.

	Quantity of	Compl	- Containers Deguired per	Compling Location	
			e Containers Required per		
Laboratory Analyses & Method	40mL VOA Glass Vials		250mL Plastic Bottle	500mL Amber Glass	
	(preserved with	HCI)	(preserved with HNO ₃)	Bottle (unpreserved)	
GRPH (NWTPH-Gx)	3				
BTEX (EPA Method 8260B)	3				
MTBE (EPA Method 8260C)	1				
EDB (EPA Method 8260C)					
EDC(EPA Method 8011M)			2		
Dissolved Lead (EPA Method 200.8)*			Ζ		
Total Lead (EPA Method 200.8)					
DRPH & ORPH (NWTPH-Dx)				1	
PAH (EPA Method SW8270DSIM)				I	
*Groundwater samples for this analysis will typically be field-filtered using the procedure described in Section 2.2.4.					
Definitions:					
BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes MTBE = Methyl Tertiary-Butyl Ether					
DRPH = diesel-range petroleum hydrocarbons			NWTPH-Dx = Northwest Total Petroleum Hydrocarbon for Diesel-		
EDB = ethylene dibromide; 1,2-dibromoethane			Range Organics		
EDC = ethylene dichloride; 1,2-dicholoroethane			NWTPH-Gx = Northwest Total Petroleum Hydrocarbon for		
EPA = U.S. Environmental Protection Agency			Gasoline-Range Organics		
GRPH = gasoline-range petroleum hydrocarbons		ORPH = oil-range petroleum hydrocarbons			
HCl = hydrochloric acid			PAH = Polycyclic Aromatic Hydrocarbons		
HNO ₃ = nitric acid			VOA = volatile organic analysis		
mL = milliliter					

Quantity of Sample Containers per Sample Location & Laboratory Analyses

3.2.3 Sample Container Labeling

Prior to groundwater sampling, Stantec staff will label each sample container that will be used for groundwater collection. Each sample container will include a self-adhesive label with the information described below written in waterproof ink.

- Project Identifier (ID)
- Unique Sample ID: Groundwater samples will be assigned a unique ID that corresponds to the well location from which the sample was collected (e.g., a sample collected from MW02 will be given the sample ID MW02).
- Blind Duplicates (described in **Section 4.1.1**): Samples collected as blind field duplicates will be given a unique ID (e.g., MLT-01, MLT-02, MLT-03, etc.). The sample ID will not identify the well location from which the sample was collected. The primary sample ID and blind duplicate sample ID will be identified on the FSDS sheet will not be identified on the COC Form.
- Field Blanks (described in Section 4.1.2): Samples collected as field blanks (water blanks and equipment/rinsate blanks) will include two letters identifying the type of sample collected (e.g., WB = water blank and EB = equipment blank) followed by the sample date (e.g., WB-031815 and EB-031815).
- Date and Time: The date and time of sample collection will be identified on each label.
- Treatment: If the sample is field-filtered during collection or if preservatives are added, it will be noted on the label COC Form.

Groundwater Monitoring Methods & Procedures *Groundwater Monitoring Plan*

3.2.4 Equipment Calibration

Prior to the beginning of groundwater sampling, field parameter meters will be calibrated by Stantec field personnel in accordance with the manufacturer's instructions. Calibration checks for all instruments will be performed and documented in the field notebook or on the Field Report Forms on each sampling day. Calibration will occur at a minimum at the beginning at each sampling day and whenever drift in the meter readings is observed. If an instrument cannot be calibrated, it will be removed from service and labeled as needing repair.

3.2.5 Groundwater Sampling Methods & Procedures

Stantec will use the following four groundwater sampling methods: pneumatic pump, peristaltic pump, submersible pump and bailer. Purging and sampling will be performed in accordance with low-flow protocols (EPA 2010a), except when using a bailer. The rational for using each method is described below.

- Pneumatic Pump: For remediation wells connected to a remediation system, Stantec will collect groundwater samples using a dedicated downhole pneumatic pump. The pneumatic pumps deliver a pulse of groundwater to the wellhead whenever the groundwater table rises above the pump intake, or when the float switch connected to the oil-water separator (OWS) for the associated remediation system turns the pump on when the OWS is empty or off when full. One set of field parameters will be collected from the pneumatic pumps for the remediation wells sampled. Groundwater samples will be collected from the pneumatic pump directly into laboratory-prepared sample containers using disposable polyethylene tubing or tubing dedicated to each well.
- Peristaltic Pump: Stantec will collect groundwater samples using a peristaltic pump in accordance with low-flow protocols (EPA 2010a) for monitoring wells with DTW levels less than 31 feet bgs (due to the inability of the pump to lift the water for sampling from greater depths). Purging and sampling with a peristaltic pump will be performed using disposable polyethylene tubing or tubing dedicated to each well at flow rates of 0.1 liters per minute.
- Submersible Pump: For monitoring wells with DTW levels greater than 31feet bgs, Stantec will collect groundwater samples using a submersible pump in accordance with low-flow protocols (EPA 2010a). Submersible pumps will be used in wells with insufficient groundwater recharge rates and/or insufficient water column heights. Purging and sampling with a submersible pump will be performed using disposable or dedicated polyethylene tubing at flow rates ranging from 0.1 to 0.5 liters per minute. If the groundwater table is above the top of the screen and, hence, the well screen is saturated, the intake tubing or the submersible pump will be placed approximately in the middle of the screen. If however the groundwater table is below the top of the screen and, hence, the well screen is not fully-saturated, the intake tubing of the submersible pump will be placed near the middle of the water column in the well.
- **Bailer:** For monitoring wells with DTW levels greater than 31 feet bgs that cannot be sampled using a submersible pump, a disposable polyethylene bailer will be used in accordance with low-flow protocols (EPA 2010a). Well purging and groundwater sampling with disposable bailers will require removal of at least three well volumes from each monitoring well prior to sampling. After purging, groundwater samples will be collected from the bailer directly into laboratory-prepared

sample containers. If purging of three well volumes is not possible due to slow recharge, the wells will be allowed to recharge several hours or overnight before re-attempting sample collection. The bailer sampling method will be the last selected method and will only be used under the following circumstances:

- Historical results indicated that elevated turbidity associated with bailing would likely not result in detectable concentrations of petroleum hydrocarbons in samples.
- Historical water columns are less than five feet and slow recharge rates make sampling with a submersible pump problematic.

3.2.5.1 Field Parameters

Stantec will monitor groundwater field parameters using a YSI Inc. water quality field meter equipped with a flow-through cell during well purging and at the time of groundwater sampling. Use of flow-through cell is not is not possible when sampling using a bailer. Field parameters and stabilization criteria that will be monitored and recorded are identified in the table below. Stabilization criteria will be met prior to sampling using three field readings recorded approximately five minutes apart.

Field Parameters	Stabilization Criteria
Temperature	Readings are within 3% of each other
рН	Readings are within +/- 0.1 units of each other
Specific Conductance	Readings are within 3% of each other
Dissolved Oxygen	Readings are within 10% of each other
Turbidity	10% for values greater than 5 Nephelometric Turbidity Unit (NTU; if three turbidity values are less than 5 NTU, the values are considered stabilized)
Oxidation-Reduction Potential	Readings are within +/- 10 millivolts of each other

Field Parameters & Stabilization Criteria

Data obtained from the field parameter measurements will be recorded on the FSDS. Separate aliquots of water will be used for taking field measurements (i.e., sample containers for laboratory analysis will not be reopened). If the parameters have not stabilized after collecting three field readings or three well volumes, the field instruments will be checked to determine if they are operating correctly and are still calibrated. If needed, the instruments will be recalibrated.

3.2.6 Groundwater Sampling

Following purging and stabilization of the field parameters, groundwater samples will be collected from the pump outlet tubing located upstream of the flow-through cell or directly from the bailer, and placed directly into laboratory-prepared sample containers that have been pre-labeled by Stantec staff (see **Section 3.2.3**). Clean gloves will be worn by field personnel when collecting each sample to avoid cross-contamination. The groundwater samples will be discharged or poured slowly and carefully into the sample containers to minimize aeration. Groundwater samples collected for Volatile Organic Compound (VOC) analyses will be collected in vials and completely filled so no head space remains. Following groundwater collection, VOC sample containers will be checked for air bubbles. If air bubbles are observed, the container will be emptied and a new container will be used. Following collection, the groundwater samples will be stored in coolers or a refrigerator until transported to the analytical laboratory.

Purge water generated during the sampling event will be placed in 55-gallon steel drums that will be labeled and temporarily stored on the TOC Property for transfer to the remediation systems for treatment and permitted discharge to the sanitary sewer.

3.2.7 Sample Filtration

Groundwater samples collected for dissolved parameters (e.g., metals) will be field-filtered using a disposable in-line, 0.45 micron filter. The groundwater sample will be pumped through the filter attached directly to the discharge tubing of the groundwater pumping system (in accordance with low-flow sampling procedures) or a peristaltic pump and a section of Tygon (polyvinylchloride) tubing or other appropriate method may be used if the sample is first collected in a clean container (volume based sampling). The filter cartridge will be rinsed with an aliquot of sample prior to collection of sample in the containers or as recommended by the filter manufacturer. A new filter and tubing will be used for each sample. A note will be made on the sample label, FSDS, and COC form to indicate the sample has been field filtered.

3.2.8 Sample Documentation

The information listed below will be documented on the FSDS for each groundwater sample.

- Project ID
- Sample location (well ID and property location)
- Sample ID (including duplicate sample ID[s] if applicable)
- Sample method (i.e., bailer, submersible pump, peristaltic pump or pneumatic pump)
- Sampling date and time
- Make, model and serial number of field instruments and equipment
- DTW/DTP level measurements (obtained at time of sampling)
- Well screen interval
- Total well depth
- Purging and sampling methods
- Sampling depth
- Sample container inventory (i.e., container type and volume, quantity, and any preservatives or filters)
- Total purge volume
- Field parameter measurements (e.g., time and cumulative purge volume, temperature, pH, specific conductance, turbidity, dissolved oxygen, oxidation-reduction potential, and purge rate)
- Notable observations
- Field personnel name and signature

If required, other notable field observations will be recorded in a field notebook and/or field photographs. Following completion of the sampling event, a quality assurance/quality control (QA/QC) review of the field records will be completed by the Project Manager (or his/her designee), and the original record will be placed in the project file.

3.2.9 Sample Packaging, Preservation & Shipping

Samples will be packaged and transported in a manner that will protect the integrity of the sample and prevent detrimental effects due to the possible hazardous nature of the samples. Regulations for packaging, marking, labeling and shipping hazardous materials are promulgated in the Code of Federal Regulations (CFR) by the U.S. Department of Transportation (DOT), 49 CFR 171 through 177. The sample containers will be packaged carefully to avoid breakage or cross contamination using sufficient packing material.

If required by the analytical method, groundwater samples will be placed on ice inside an insulated cooler (at an approximate cooler temperature of 4 °C [39.2 °F]) immediately after collection or in a refrigerator until packaged for transport to the laboratory. This approximate temperature will be maintained until delivery to the analytical laboratory.

3.2.10 Sample Custody

The primary objective of sample custody is to create an accurate record that can be used to trace the possession and handling of samples so that their quality and integrity can be documented and maintained from collection until completion of all required analyses. Sample custody will be achieved by filling out a COC Form. The COC form is initially completed by Stantec field personnel collecting the sample, and thereafter signed by each individual accepting custody of the sample. A sample will be considered to be in custody under the following conditions:

- field or laboratory personnel have the sample in physical possession;
- field or laboratory personnel have the sample in view;
- the sample is locked or secured in a locked container or otherwise sealed so that tampering is evident; and/or
- the sample is kept in a secured area that is restricted to authorized personnel only.

When samples are transferred to another entity, the personnel receiving the samples will sign the COC Form and document the date and time of transfer. Laboratory personnel accepting custody will sign and document the date and time transfer on the COC Form. Laboratory personnel will also note any integrity issues on the COC Form and will maintain sample security and custody through the analytical process.

The coolers in which the samples are packaged will be accompanied by the COC Form(s) identifying their contents. If coolers are shipped via commercial courier, the COC Form will be sealed in plastic bags and placed inside the coolers secured with custody seals.

Groundwater Monitoring Methods & Procedures Groundwater Monitoring Plan

3.2.11 Equipment Decontamination Procedures

Decontamination procedures for groundwater sampling equipment will be used to minimize the possibility of cross-contaminating samples. Sampling equipment that will be used to sample multiple locations will be cleaned prior to sampling a different location. Sampling equipment that comes in contact with potentially contaminated material will be decontaminated before and after each use. Equipment cleaning methods will be recorded in the field records.

Steel surveyors' tape, electrical probes and other measuring tapes will be cleaned before and after each measurement location. Cleaning will be accomplished by washing off visible contamination with a laboratory-grade detergent/water solution and rinsing with clean, potable, municipal water followed by rinsing with distilled or deionized water. If equipment is potentially contaminated by LNAPL, it should be rinsed with a weak hexane solution or warm, soapy water before the final distilled or deionized water rinse. After cleaning, equipment will be handled carefully to minimize contact with contaminants.

Sample bottles and bottle caps will be cleaned and prepared by the analytical laboratory (or their supplier) using standard EPA-approved protocols. Sample bottles and bottle caps will be protected from contamination between time of receipt by the sampler(s) and time of actual usage.

4.0 QA/QC METHODS & PROCEDURES

The objective of the QA/QC procedures described below is to confirm that project data are of known and appropriate quality and integrity, and sufficient to support their intended use. QA/QC will be accomplished by collecting field QA/QC samples or measurements at specific well locations in the field or specific samples in the laboratory. The results of the QA/QC samples will be used to evaluate precision, accuracy, representativeness, completeness and comparability of the analytical results.

4.1 Field QA/QC Samples

4.1.1 Blind Field Duplicate Samples

Blind field duplicate samples will be used to evaluate precision and accuracy. and will be collected during groundwater monitoring events to evaluate whether sample collection methods are reproducible. In general, for every 10 groundwater samples collected, one duplicate sample will be collected per day. The relative percent difference (RPD) between the original and duplicate sample result should be less than 20 percent. Duplicate samples will be collected from the same well location and at the same time as the original sample and placed in different bottles than the primary sample. The bottles will be labeled such that the laboratory cannot determine the sample location (i.e., well ID). Samples will be collected by alternately filling sample containers for both the original and corresponding duplicate sample to decrease variability between samples, except for samples collected for VOC analysis.

4.1.2 Field Blanks

Field blanks will be used to evaluate precision and accuracy . The QA/QC samples described below will be collected for all groundwater monitoring events.

- <u>Water Blanks</u>: A water blank sample will be collected in the field to evaluate the potential presence of contamination originating from sources not associated with sample collection procedures. Each sample container is filled with deionized or distilled water in the field, preserved as required, and returned to the laboratory for analysis along with the other samples. In general, one water blank sample will be collected for every 20 original samples.
- <u>Equipment/Rinsate Blanks</u>: Following the last equipment decontamination of each sampling day, a distilled water rinse of the down hole equipment used to collect groundwater samples at multiple locations will be collected, preserved as required, and returned to the laboratory for analysis along with the other samples. Equipment rinsate samples for this project will only be collected on days that a submersible pump was used.
- <u>Trip Blanks</u>: A blank sample set is prepared by the laboratory to evaluate the presence of contamination (volatiles) during transit, from sample bottles, or from laboratory conditions. Each blank bottle is filled with deionized or distilled water in the laboratory, preserved as required, and returned to the laboratory for analysis along with the other samples. In general, one trip blank sample will be included in each shipping container. There should be no analytes detected in the trip blank.

4.2 Laboratory QA/QC Samples

The following samples will be used to evaluate laboratory QA/QC:

- <u>Laboratory Duplicates</u>: Laboratory matrix spike duplicate samples are prepared by the laboratory to assess laboratory precision. One laboratory duplicate sample is analyzed per batch of 20 groundwater samples. The RPD between the original and duplicate sample should be within the laboratory method requirements.
- <u>Laboratory Method Blanks</u>: Laboratory method blanks are samples prepared in the laboratory to identify any potential contamination introduced within the laboratory. One method blank will be analyzed per batch of 20 samples. Analytes should not be detected in the laboratory method blank.
- <u>Laboratory Matrix Spikes</u>: Laboratory matrix spikes are used to evaluate potential matrix effects on sample analysis for inorganic parameters. One matrix spike and one matrix spike duplicate sample (generally run as a pair) will be included with analyses per batch of 20, (at a minimum of one per sampling event). The percent recoveries of target analytes from the matrix spike sample should be within the laboratory method requirements. As described, above, the matrix spike duplicate evaluates precision and the RPD should be within the laboratory method requirements.
- Laboratory Control Samples: A laboratory control sample is a sample of known analyte concentrations that is similar to the field sample matrix and is analyzed identically with the field samples in a sample batch. The laboratory control sample demonstrates that the analytical method and instrumentation are within specified control limits for acceptability. One laboratory control sample and one laboratory control sample duplicate (generally run as a pair) will be analyzed per batch of 20 samples (at a minimum of one per sampling event). The percent recoveries of analytes from the laboratory control sample duplicate evaluates precision and the RPD should be within the laboratory method requirements.

4.3 Data Validation

Both field and laboratory QA/QC results will be evaluated to ensure sample integrity and data of known quality. Analytical reports from the laboratory will be accompanied by QA/QC results necessary to enable data reviewers to determine the quality of the data. The data validation process will identify QA/QC problems and potential limitations on the use of the data, if any. Results of samples that are outside of the laboratory or field QA/QC requirements will be marked with qualifiers (flags). Data validation will be conducted using the appropriate EPA guidelines for inorganics and organics (EPA 2008 and EPA 2010b). The QA/QC review will include evaluation of the following components:

- COC Forms;
- laboratory data completeness;
- laboratory sample integrity and holding times;
- field and method duplicate samples;
- water and equipment/rinsate blank samples;
- laboratory duplicate and blank samples;

QA/QC Methods & Procedures Groundwater Monitoring Plan

- laboratory accuracy and precision;
- field sampling and analysis precision;
- field comparability (e.g., similar site conditions, collection techniques, measurement procedures, and methods and reporting); and
- sample representativeness.

Copies of the evaluations conducted for the data validation will be maintained in Stantec's project files. Any data qualifiers applied to the data will be documented on the groundwater quality results tables attached to each groundwater monitoring report prepared by Stantec.

5.0 LIMITATIONS

This document, *Groundwater Monitoring Plan*, was prepared by Stantec Consulting Services Inc. (as a subconsultant to HydroCon Environmental, LLC) on behalf of TOC Holdings Co. The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

The material presented reflects Stantec's best judgment in light of the information available to it at the time of preparation. Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

Any use which a third party makes of this document, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec Consulting Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this document.

6.0 **REFERENCES**

- Ecology 2011. Washington State Department of Ecology (Ecology). Agreed Order No. DE 8661, TOC Facility No. 01-176. October 28.
- EPA 2002. Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers. EPA 542-S-02-001. May 2002.
- EPA 2008. USEPA Contract Laboratory Program, National Functional Guidelines for Organic Superfund Data Review, USEPA-540-R-08-01. June 2008.
- EPA 2010a. Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells. Updated January 19, 2010.
- EPA 2010b. USEPA Contract Laboratory Program, National Functional Guidelines for Inorganic Superfund Data Review, USEPA 540-R-10-011. January 2010.
- EPA, Region 9. Standard Operating Procedure for the Standard/Well-Volume Method for Collecting a Ground-Water Sample from Monitoring Wells for Site Characterization. Available online at: earth1.epa.gov/region09/qa/pdfs/finalgwsamp_sop.pdf.
- SES 2011. Interim Remedial Action Work Plan (IRAWP), TOC Holdings Co. Facility No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. July 28.
- USGS. various dates. National field manual for the collection of water quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9, Chapters A1-A9, available online at http://pubs.water.usgs.gov/twri9A.

Table A-1: Groundwater Sampling Schedule

Table 1: 2015 Groundwater Sampling Schedule TOC Holdings Co. Facility #01-176

Mountlake Terrace, Washington

	Sample Location			oratory Analyses for	Groundwater Samp	les ⁽¹⁾		40mL	VOA			250m	L HNO3			500mL UI	N-P Amber	
Well ID	Property	Current Well Use	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	1st Ouarter	2nd Ouarter	3rd Ouarter	4th Ouarter	1st Ouarter	2nd Ouarter	3rd Ouarter	4th Ouarter	1st Ouarter	2nd Ouarter	3rd Ouarter	4th Ouarter
MW01	TOC	Decommissioned	NS	NS	NS	NS												
MW02	TOC	(10/01/2009) Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW02 MW03	TOC	Monitoring Well	GX, BTEX	NS	NS	NS	3											
MW04	56th Ave ROW	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW05	242nd St ROW	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW06	TOC	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW07	TOC/Farmasonis	Decommissioned (11/29/2004)	NS	NS	NS	NS												
MW08	56th Ave W ROW	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW09*	TOC	Monitoring Well	Gx, BTEX, (QA/QC)	Gx, BTEX, (QA/QC)	Gx, BTEX, (QA/QC)	Gx, BTEX, (QA/QC)	6	6	6	6								
MW10*	TOC	Monitoring Well	Gx, BTEX	Gx, BTEX	Gx, BTEX	Gx, BTEX	3	3	3	3								
MW11	TOC	4" Remediation Well	Gx, BTEX	NS	NS	NS	3											
MW12	56th Ave ROW	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW13	56th Ave ROW	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW14	TOC/Farmasonis	Decommissioned (11/29/2004)	NS	NS	NS	NS												
MW15*	TOC	4" Remediation Well	Gx, BTEX	Gx, BTEX	Gx, BTEX	Gx, BTEX	3	3	3	3								
MW16	242nd St ROW	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW17	TOC/Farmasonis	Decommissioned (11/29/2004)	NS	NS	NS	NS												
MW18	TOC	4" Remediation Well	Gx, BTEX	NS	NS	NS	3											
MW19	TOC	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW20*	TOC	Monitoring Well	Gx, Dx, PAH, BTEX, MTBE, (QA/QC)	Gx, Dx, PAH, BTEX, MTBE, (QA/QC)	Gx, Dx, PAH, BTEX, MTBE, (QA/QC)	Gx, Dx, PAH, BTEX, MTBE, (QA/QC)	8	8	8	8					2	2	2	2
MW21*	тос	Decommissioned (04/16/2012)	NS	NS	NS	NS												
MW22	TOC	Monitoring Well	Gx, BTEX	Gx, BTEX	Gx, BTEX	Gx, BTEX	3											
MW23	TOC	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW24	TOC	4" Remediation Well	Gx, BTEX	NS	NS	NS	3											
MW25	TOC	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW26	242nd St ROW	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW27*	TOC	2" Remediation Well	Gx, BTEX	Gx, BTEX	Gx, BTEX	Gx, BTEX	3	3	3	3								
MW28	TOC	Monitoring	Gx, BTEX, (QA/QC)	NS	NS	NS	6											
MW29	TOC	2" Remediation Well	Gx, BTEX, T/D Pb	NS	NS	NS	3				2							
MW30	TOC/Farmasonis	Monitoring	Gx, BTEX	NS	NS	NS	3	0	3	0	2	0	0	0				
MW31* MW32*	TOC/Farmasonis TOC	2" Remediation Well 4" Remediation Well	Gx, BTEX, T/D Pb Gx, BTEX, T/D Pb	Gx, BTEX, T/D Pb Gx, BTEX	Gx, BTEX, T/D Pb Gx, BTEX	Gx, BTEX, T/D Pb Gx, BTEX	3	3	3	3	2	2	2	2				
MW32*	TOC	4 Remediation Well	GX, BTEX, T/D PD GX, BTEX	GX, BTEX GX, BTEX	GX, BTEX	GX, BIEX GX, BTEX	3	3	3	3	2							-
MW34	TOC	Monitoring Well	GX, BTEX	NS	NS	NS	3	3	3	3								
MW35	TOC	Monitoring Well	Gx, BTEX, T/D Pb	NS	NS	NS	3				2							
MW36	TOC	Monitoring Well	GX, BTEX, I/D I D	NS	NS	NS	3				-							
MW37	TOC	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW38	242nd St ROW	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW39	TOC/Farmasonis	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW40	TOC/Farmasonis	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW41	TOC/Farmasonis	2" Remediation Well	Gx, BTEX, T/D Pb	NS	NS	NS	3				2							
MW42	TOC/Farmasonis	Monitoring Well (Dry)**	NS	NS	NS	NS												
MW43	56th Ave ROW	Monitoring Well (Dry)**	NS	NS	NS	NS									ļ			
MW44	56th Ave ROW	Monitoring Well (Dry)**	NS	NS	NS	NS												
MW45* MW46	56th Ave ROW 56th Ave ROW	Monitoring Well Monitoring Well	Gx, BTEX, T/D Pb Gx, BTEX, T/D Pb	Gx, BTEX, T/D Pb NS	Gx, BTEX, T/D Pb NS	Gx, BTEX, T/D Pb NS	3	3	3	3	2	2	2	2				
MW47	56th Ave ROW	Monitoring Well	Gx, BTEX, T/D Pb	NS	NS	NS	3				2							
MW48*	56th Ave ROW	Monitoring Well	Gx, BTEX, T/D Pb	Gx, BTEX, T/D Pb	Gx, BTEX, T/D Pb	Gx, BTEX, T/D Pb	3	3	3	3	2	2	2	2				
MW40 MW49*	56th Ave ROW	Monitoring Well	GX, BTEX, IT D T D	GX, BTEX, T/D T B	GX, BTEX, T/D T B	GX, BTEX, T/D T D	3	3	3	3	<u></u>	~	~	-				
MW50*	56th Ave ROW	Monitoring Well	Gx, BTEX	GX, BTEX	GX, BTEX	Gx, BTEX	3	3	3	3								
MW51*	56th Ave ROW	Monitoring Well	Gx, BTEX	Gx, BTEX	GX, BTEX	Gx, BTEX	3	3	3	3								
MW52*	56th Ave ROW	Monitoring Well	Gx, BTEX	Gx, BTEX	Gx, BTEX	Gx, BTEX	3	3	3	3	1	l	l				l	
MW53*	56th Ave ROW	Monitoring Well	Gx, BTEX	GX, BTEX	GX, BTEX	GX, BTEX	3	3	3	3		İ	İ	1		1	İ	

Table 1: 2015 Groundwater Sampling Schedule TOC Holdings Co. Facility #01-176

Mountlake Terrace, Washington

	Sample Lo	ocation	Lab	oratory Analyses for	Groundwater Samp	bles ⁽¹⁾		40mL	VOA			250ml	L HNO3			500mL UN	I-P Amber	
Well ID	Property	Current Well Use	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	1st Ouarter	2nd Ouarter	3rd Ouarter	4th Ouarter	1st Ouarter	2nd Ouarter	3rd Ouarter	4th Ouarter	1st Ouarter	2nd Ouarter	3rd Ouarter	4th Ouarter
MW54	TOC/Farmasonis	Monitoring Well	Gx, Dx, PAH, BTEX, MTBE	4	4	4	4					1	3	3	3			
MW55*	56th Ave ROW	Monitoring Well	Gx, BTEX	Gx, BTEX	Gx, BTEX	Gx, BTEX	3	3	3	3								
MW56*	TOC/Farmasonis	Monitoring Well	Gx, BTEX	Gx, BTEX	Gx, BTEX	Gx, BTEX	3	3	3	3								
MW57	TOC/Farmasonis	4" Remediation Well	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	4			4								
MW58*	TOC/Farmasonis	Monitoring Well	Gx, BTEX	Gx, BTEX	Gx, BTEX	Gx, BTEX	3	3	3	3								
MW59*	TOC/Farmasonis	Monitoring Well	Gx, BTEX	Gx, BTEX	Gx, BTEX	Gx, BTEX	3	3	3	3								
MW60*	56th Ave ROW	Monitoring Well	Gx, BTEX	Gx, BTEX	Gx, BTEX	Gx, BTEX	3	3	3	3								
MW61	56th Ave ROW	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW62	56th Ave ROW	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW63*	56th Ave ROW	Monitoring Well	Gx, BTEX	Gx, BTEX	Gx, BTEX	Gx, BTEX	3	3	3	3								
MW64	56th Ave ROW	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW65*	Drake	Monitoring Well	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	4	4	4	4								
MW66*	TOC/Farmasonis	Monitoring Well	Gx, Dx, PAH, BTEX, MTBE	4	4	4	4					1	1	1	1			
MW67	Drake	Monitoring Well	Gx, BTEX	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	3	4	4	4								
MW68	Drake	Monitoring Well	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	4	4	4	4								1
			Gx, Dx, PAH, BTEX,	4		4	4					1	1	1	1			
MW69*	Drake	2" Remediation Well	MTBE	MTBE	MTBE	MTBE	4	4	4	4								
MW70*	Drake	2" Remediation Well	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	4	4	4	4	2	2	2	2	1	1	1	1			
MW71	Shin/Choi	Monitoring Well (Product)***	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	NS	NS	NS	4				2				1			
MW72	Shin/Choi	Monitoring Well (Product)***	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	NS	NS	NS	4				2				1			
MW73	Shin/Choi	Monitoring Well	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	NS	NS	NS	4				2				1			
MW74	Shin/Choi	Monitoring Well	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	NS	NS	NS	4				2				1			
MW75	56th Ave ROW	Monitoring Well	Gx, BTEX	NS	NS	NS	3				2							
MW76	Drake	Monitoring Well	Gx, BTEX, MTBE	NS	NS	NS	4											
MW77*	Drake	Monitoring Well	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	4	4	4	4								
MW78	Drake	Monitoring Well	Gx, BTEX, MTBE	NS	NS	NS	4											
MW79	TOC/Farmasonis	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW80	TOC/Farmasonis	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW81	TOC/Farmasonis	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW82	TOC/Farmasonis	Monitoring Well	Gx, BTEX	NS	NS	NS	3											
MW83	TOC/Farmasonis	Decommissioned (11/21/2011)	NS	NS	NS	NS												
MW84*	Drake	Monitoring Well	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	4	4	4	4								
MW85*	Drake	Monitoring Well (repaired on 11/28/2011)	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	4	4	4	4								
MW86*	Drake	Monitoring Well	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb, (QA/QC)	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb, (QA/QC)	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb, (QA/QC)	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb, (QA/QC)	8	8	8	8	4	4	4	4	2	2	2	2
MW87	Drake	Monitoring Well	Gx, BTEX, MTBE	NS	NS	NS	4											
MW88	Drake	Monitoring Well	Gx, BTEX	NS	NS	NS	3		1									
MW89*	Drake	Monitoring Well	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	4	4	4	4								1
MW90	TOC	4" Remediation Well	Gx, BTEX, T/D Pb	NS	NS	NS	3		· ·		2							
MW91	TOC	4" Remediation Well	Gx, BTEX, T/D Pb	NS	NS	NS	3				2							
MW92	TOC/Farmasonis	4" Remediation Well	Gx, BTEX	NS	NS	NS	3											1
MW93	TOC/Farmasonis	4" Remediation Well	Gx, BTEX	NS	NS	NS	3											
MW94	TOC/Farmasonis	4" Remediation Well	Gx, BTEX	NS	NS	NS	3											
MW95	Drake	4" Remediation Well	GX, BTEX, MTBE	NS	NS	NS	4											1
MW96	Drake	4" Remediation Well	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	Gx, BTEX, MTBE	4			4								+ +
MW97	Drake	4" Remediation Well	Gx, BTEX, MTBE	NS	NS	NS	4			-								<u>├</u>

Table 1: 2015 Groundwater Sampling Schedule

TOC Holdings Co. Facility #01-176 Mountlake Terrace, Washington

	8 Drake 4" Remediation 9 Drake 4" Remediation 00 TOC/Farmasonis Monitoring W 01 Drake 4" Remediation 02 Herman Monitoring Well (Pr 03 Herman Monitoring W		Labo	oratory Analyses for	Groundwater Samp	les ⁽¹⁾		40mL	VOA			250ml	. HNO3			500mL UI	N-P Amber	
Well ID	Property	Current Well Use	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	1st Ouarter	2nd Ouarter	3rd Ouarter	4th Ouarter	1st Ouarter	2nd Ouarter	3rd Ouarter	4th Ouarter	1st Ouarter	2nd Ouarter	3rd Ouarter	4th Ouarter
MW98	Drake	4" Remediation Well	Gx, BTEX, MTBE	NS	NS	NS	4											
MW99	Drake	4" Remediation Well	Gx, BTEX, MTBE	NS	NS	NS	4											
MW100	TOC/Farmasonis	Monitoring Well	Gx, BTEX, T/D Pb	NS	NS	NS	3				2							
MW101	Drake	4" Remediation Well	Gx, BTEX, MTBE, T/D Pb	NS	NS	NS	4				2							
MW102	Herman	Monitoring Well (Product)**	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	4	4	4	4	2	2	2	2	1	1	1	1
MW103	Herman	Monitoring Well	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	4	4	4	4	2	2	2	2	1	1	1	1
MW104	Herman	Monitoring Well (Product)**	Gx, Dx, BTEX, MTBE, EDC, EDB, T/D Pb, (QA/QC)	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	8	4	4	4	4	2	2	2	1	1	1	1
MW105	Herman	Monitoring Well	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	4	4	4	4	2	2	2	2	1	1	1	1
MW106	Herman	Monitoring Well	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	4	4	4	4	2	2	2	2	1	1	1	1
MW107	Herman	Monitoring Well	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	Gx, Dx, PAH, BTEX, MTBE, EDC, EDB, T/D Pb	4	4	4	4	2	2	2	2	1	1	1	1
	Equipment/Rins	sate Blank x4	As needed/All	As needed/All	As needed/All	As needed/All	16	16	16	16	8	8	8	8	4	4	4	4
	Water Bl	ank x2	As needed/All	As needed/All	As needed/All	As needed/All	8	8	8	8	4	4	4	4	2	2	2	2
					S	ample Bottle Totals	368	171	171	179	68	36	36	36	24	22	22	22

NOTES:

⁽¹⁾ QA/QC = blind field duplicate samples are collected. *Well is sampled quarterly (per the requirements of the Interim Redial Action Work Plan attached to the Agreed Order). **Well is typically dry. **Do not sample if well contains product.

ACRONYMS:

BTEX = benzene, toluene, ethylbenzene and total xylenes Dx = diesel- and motor oil-range petroleum hydrocarbons EDB = ethylene dibromide (1,2-dibromoethane) EDC = ethylene dichloride (1,2-dicholoroethane) Gx = gasoline-range petroleum hydrocarbons HNO₃ = nitric acid mL = milliLiter MTBE = methyl tertiary-butyl ether MW = monitoring well NS = not sampled PAH = polycyclic aromatic hydrocarbons QA/QC = quality assurance / quality control ROW = right-of-way RW = remediation well T/D Pb = total and dissolved lead UN-P = unpreserved VOA = volatile organic analysis

LIST OF PROPERTIES:

TOC = 24205 56th Avenue West, Mountlake Terrace WA TOC/Farmasonis = 24225 56th Avenue West, Mountlake Terrace WA Drake = 24309 56th Avenue West, Mountlake Terrace WA Herman = 24311 56th Avenue West, Mountlake Terrace WA Shin/Choi = 24325 56th Avenue West, Mountlake Terrace WA 56th Ave ROW = right-of-way adjacent to TOC/Farmasonis & Drake properties 242nd St ROW = portion of right-of-way adjacent to TOC Property

Attachment 1: Field Forms

Field Report Form Field Sampling Data Sheet DTW/DTP Level Measurement Form Chain-of-Custody Form RMS-01: Risk Management Strategy RMS-02: Field Level Risk Assessment (Fit for Duty), 5-Day RMS-03: Incident Report

Field Report

TOC Facility #01-176; Mountlake Terrace, WA

Client Name: HydroCon Owner Name: Site Address: 24225 56th Avenue West Mountake Terrace, WA 98043 Project Number: Date: Author Name: Report Attachments: Arrival & Departure Times (24:00): (ori-site) Times (24:00): (ori-site) (off-site) (off-site) Purpose of Visit or Phase/Task #: Safety Incidents: Other:			GENERAL INFO			
Author Name: Report Attachments: Arrival & Departure Times (24:00): Purpose of Visit or Phase/Task #: Safety Incidents: Weather: Sunny Cloudy Rain Purpose of Visit or Phase/Task #: Safety Incidents: Weather: Meather: Sunny Cloudy Rain SITE MEETING Temp:F Meeting Time (24:00): Topics/Issues Discussed: Attendees: Image: Cloude firm/agency name and contact name for non-Stantec personnel.) Stantec Personnel: Other Personnel: Stantec Personnel: Contractor Personnel: Other Personnel: Image: Cloude firm/agency name and contact name for non-Stantec personnel.)			Site Address: 24225 56th Avenue West		Date:	
Purpose of Visit or Phase/Task #: Safety Incidents: Weather: Safety Incidents: Weather: Safety Incidents: Deter: Temp: Temp:			Mountlake Terrace, WA 98043			
Purpose of Visit or Phase/Task #: Safety Incidents: Weather: Sunny Cloudy Rain Other: Temp: - Temp: Meeting Time (24:00): Topics/Issues Discussed: Attendees: Meeting Time (24:00): Topics/Issues Discussed: Attendees: PERSONNEL ON-SITE (Include firm/agency name and contact name for non-Statec personnel.) Stantec Personnel: Contractor Personnel: Other Personnel: WORK PERFORMED	Author Name	:	Report Attachments:	Arrival & Departur	e Times (24:00)	:
Purpose of Visit or Phase/Task #: Safety Incidents: Weather: Sunny Cloudy Rain Other: Temp: - Temp: Meeting Time (24:00): Topics/Issues Discussed: Attendees: Meeting Time (24:00): Topics/Issues Discussed: Attendees: PERSONNEL ON-SITE (Include firm/agency name and contact name for non-Statec personnel.) Stantec Personnel: Contractor Personnel: Other Personnel: WORK PERFORMED				(on-site)	(off-site	<u></u>
Image: Image:	Purpose of Vi	sit or Phase/Task #:	Safety Incidents:			
SITE MEETING Meeting Time (24:00): Topics/Issues Discussed: Attendees: PERSONNEL ON-SITE (Include firm/agency name and contact name for non-Stantec personnel.) Stantec Personnel: Other Personnel: Stantec Personnel: Contractor Personnel: Other Personnel: Other Personnel: WORK PERFORMED Example 1 Example 2 Example 2				Other:		
SITE MEETING Meeting Time (24:00): Topics/Issues Discussed: Attendees: PERSONNEL ON-SITE (Include firm/agency name and contact name for non-Stantec personnel.) Stantec Personnel: Other Personnel: Stantec Personnel: Contractor Personnel: Other Personnel: Other Personnel: WORK PERFORMED Example 1 Example 2 Example 2				Temp:•	F°	с
PERSONNEL ON-SITE (Include firm/agency name and contact name for non-Stantec personnel.) Stantec Personnel: Contractor Personnel: Other Personnel: WORK PERFORMED						
(Include firm/agency name and contact name for non-Stantec personnel.) Stantec Personnel: Other Personnel: WORK PERFORMED Other Personnel:	Meeting Time	e (24:00):	Topics/Issues Discussed:	Attendees:		
Stantec Personnel: Contractor Personnel: Other Personnel: WORK PERFORMED		(Include)		antee norsennel)		
WORK PERFORMED	Stantos Dorce					
	stantec Perso	innei.		Other Personnei.		
Inter (24.00) Description Image: Image	Time (24:00)	Description				
Image: Constraint of the second se	nine (24.00)	Description				
Image: Constraint of the second se						
Image: Sector						
Image: Constraint of the second of the se						
Image: Constraint of the second of the se						
Image: Constraint of the second of the se						
Image: Constraint of the second of the se						
Image: Provide the second s						
Image: Constraint of the second sec						
Image: Image:						

Property:
_____ TOC ___ TOC/Farmasonis ____ Drake ____ 56th ROW Well ID: ______ □ Herman □ Shin/Choi □ 242nd ROW

Sample ID: _____ Duplicate Sample ID: _____

Field Sampling Data Sheet

TOC Facility #01-176; Mountlake Terrace, WA

PROJ	PROJECT INFO					'EATHE	R						SAMP	LE INFO		
Client Name:	Hydr	oCon		□Sunny	/ 🗆	Cloud	dy l	□Rain	Sa	mple	e Date					
Owner Name:	TOC	Holdings	Co.	□Othe	:				Sa	mple	e Time	(24:00):			
Project No: 203	37001	02		Temp:		•F		_∘C	Du	plica	ate Sai	nple T	ime (2	24:00):		
							EQUI	PMEN								
Туре			N	lake					Мо	del				Se	erial	No.
Water Meter																
Multimeter																
Turbidity																
Pump Controlle	er															
SAMPLE METH	OD [Bailer 🛛] Sub	mersible	Pum	p □ F	Perista	Itic Pu	np 🗆] Pne	eumatio	c Pum	o 🗆 C	Other:		
					DTP	/DTW	LEVEL	MEAS	UREIV	1ENTS	S					
Date		Time 24:00)	DTP	(feet)	D	TW (fe	et)	DTB	(feet))	Casing (Incl		. Scre	en Inte (feet)	rval	Pump Intake (feet)
Purge Volu										Volu	me Co	nvers	ion Fa	ctor (V	C)	
	⊧ wate et)*VC	er columr *3		1″ = 0.0	041 2	<i>"</i> = 0.	163 3	3″ = 0.	367	4″ =	0.653	6″ = [•]	1.469	10″ = 4	.080	12″ = 5.875
SAMPLE DATA																
Time (5 min.	DTV		ers	l r	н	r	emp.	- T	DO	S	Spec. (ORP		Turbidity
intervals)	(fee	et) Pum	ped	4	,,,,		(∘C)	(mg/L)	(µS/c	:m)	(mV)	_	(NTU)
															_	
						_										
	Stahil	ization C	iteria	+(D.1		3%		10%		39	/ 2	+	10mV		10%
		ow Rate R				in; Op		Total		dow			<u>+</u>	TOTTV		1070
						SÆ	AMPLE	E BOTT	ES							
Bottle Type		\checkmark	Qua	antity	Vol	ume	Pre	eserva	tive	Fi	lter			Oth	er	
VOA Glass					40	mL		HCL		Ν	NO					
Poly					500) mL		HNO		Ν	NO					
Poly					500) mL		HNO	3	Y	'es					
		al Bottles:			111	\cdots	111	111	1							
OBSERVATIONS (describe in notes)		Odor □Bi Product (>													e)	
(describe in notes) Product (>0.01 feet measurable LNAPL) Trace (>0.01 feet measurable LNAPL) NOTES																
NOILS																

System On Measurement Date: System Off Measurement Date: Meter Serial Number(s): Field Personnel:

DTW/DTP Level Measurements

TOC Holdings Facility #01-176; Mountlake Terrace, WA

MEASUREM	ENT LOCATION		DTP / DTW LE	VEL MEASUREMENTS (feet bg	s)			NOTES / OBSERVATIONS
WELL ID ⁽¹⁾	PROPERTY ⁽²⁾	PREVIOUS DTP/DTW LEVEL SYSTEM OFF (3/24/14)	PREVIOUS DTP/DTW LEVEL SYSTEM ON (4/3/14)	DTP/DTW LEVEL SYSTEM OFF	TIME (24:00)	DTP/DTW LEVEL SYSTEM ON	TIME (24:00)	Trace = <0.01 measurable LNAPL Sheen = Iridescencee on water surface
		3131EW OFF (3/24/14)	3131EW ON (4/3/14)	TOC PROPE		STSTEINION	(24.00)	Sheen - muescencee on water surface
MW02	тос	10.83	10.66					
MW03	тос	11.00	11.61					
MW06	тос	8.68	9.18					
MW09	тос	22.44	27.43					
MW10	тос	30.78	Dry					
MW11 (4" RW)	тос	21.31	33.00					
MW15 (4" RW)	тос	36.70	29.40					Former RW (pump removed 12/16/2014)
MW18 (4" RW)	тос	Dry	Dry					TOP = 27.85 feet bgs
MW19	тос	12.09	12.11				1	
MW20	тос	33.03	36.30					
MW22	тос	27.92	29.41					
MW23	тос	38.86	38.56					
MW24 (4" RW)	тос	14.10	Dry					TOP = 31.75 feet bgs
MW25	тос	27.64	32.82					
MW26	тос	48.34	47.77					
MW27 (2" RW)	тос	NM	NM					
MW28	тос	26.99	28.50					
MW29 (2" RW)	тос	NM	NM					
MW30	тос	41.15	41.29					
MW32 (4" RW)	тос	21.03	28.95					
MW33	тос	34.51	33.98					
MW34	тос	8.78	9.26					
MW35	тос	39.36	39.64					
MW36	тос	42.28	42.41					
MW37	тос	14.97	15.91					
MW38	тос	16.15	18.44					
MW90 (4" RW)	тос	23.19	34.94					
MW91 (4" RW)	тос	22.64	32.60					
MW04	56th Ave ROW	11.51	10.87					
MW08	56th Ave ROW	17.49	23.32					
MW50	56th Ave ROW	35.72	35.88					

DTW/DTP Level Measurements TOC Holdings Facility #01-176; Mountlake Terrace, WA

MEASUREMEN	NT LOCATION		DTP / DTW LEV	/EL MEASUREMENTS (feet bg	5)			NOTES / OBSERVATIONS
WELL ID ⁽¹⁾	PROPERTY ⁽²⁾	PREVIOUS DTP/DTW LEVEL SYSTEM OFF (3/24/14)	PREVIOUS DTP/DTW LEVEL SYSTEM ON (4/3/14)	DTP/DTW LEVEL SYSTEM OFF	TIME (24:00)	DTP/DTW LEVEL SYSTEM ON	TIME (24:00)	Trace = <0.01 measurable LNAPL Sheen = Iridescencee on water surface
MW53 5	56th Ave ROW	43.81	44.00					
MW62 5	56th Ave ROW	9.72	9.56					
MW05 2	242nd St ROW	11.50	10.73					
MW16 2	242nd St ROW	Dry	Dry					
				TOC / FARMASONIS	PROPERTY WE	LLS	-	
MW31 (2" RW)	TOC / Farmasonis	NM	NM					
MW39 1	TOC / Farmasonis	41.00	41.19					
MW40	TOC / Farmasonis	41.22	41.34					
MW41 (2" RW)	TOC / Farmasonis	NM	NM					
MW42	TOC / Farmasonis	Dry	Dry					
MW54 1	TOC / Farmasonis	10.92	10.53					
MW56 1	TOC / Farmasonis	44.00	45.55					
MW57 (4" RW)	TOC / Farmasonis	Dry	NM ⁽¹⁾					
MW58	TOC / Farmasonis	FSDS is 44.15 (03/26/14)	44.89					
MW59	TOC / Farmasonis	42.12	45.14					
MW66 1	TOC / Farmasonis	42.30	43.78					
MW79	TOC / Farmasonis	10.53	10.50					
MW80	TOC / Farmasonis	11.70	11.58					
MW81	TOC / Farmasonis	42.45	44.14					
MW82	TOC / Farmasonis	26.30	28.96					
MW92 (4" RW)	TOC / Farmasonis	44.30	44.80					
MW93 (4" RW)	TOC / Farmasonis	Dry	42.15					
MW94 (4" RW)	TOC / Farmasonis	Dry	Dry					TOP = 40.44 feet bgs
MW100	TOC / Farmasonis	14.05	13.94					
MW12 5	59th Ave ROW	10.00	9.60					
MW13 5	59th Ave ROW	Dry	Dry					
MW43 5	59th Ave ROW	34.71	34.72					
MW45 5	59th Ave ROW	Dry	Dry					
MW46 5	59th Ave ROW	Dry	43.40 (2)					
MW49 5	59th Ave ROW	42.97	44.74					
MW60 5	59th Ave ROW	43.88	44.87				1	
MW61 5	59th Ave ROW	8.29	8.38				1	

DTW/DTP Level Measurements

TOC Holdings Facility #01-176; Mountlake Terrace, WA

MEASUREM	ENT LOCATION		DTP / DTW LEV	/EL MEASUREMENTS (feet bg	5)			NOTES / OBSERVATIONS
WELL ID ⁽¹⁾	PROPERTY ⁽²⁾	PREVIOUS DTP/DTW LEVEL SYSTEM OFF (3/24/14)	PREVIOUS DTP/DTW LEVEL SYSTEM ON (4/3/14)	DTP/DTW LEVEL SYSTEM OFF	TIME (24:00)	DTP/DTW LEVEL SYSTEM ON	TIME (24:00)	Trace = <0.01 measurable LNAPL Sheen = Iridescencee on water surface
				DRAKE PROP	ERTY WELLS			
MW65	Drake	41.19	41.82					
MW67	Drake	13.05	12.34					
MW68	Drake	12.42	11.65					
MW69 (2" RW)	Drake	Dry	NM ⁽¹⁾					
MW70 (2" RW)	Drake	NM	NM					
MW76	Drake	39.01	40.57					
MW77	Drake	38.54	39.73					
MW78	Drake	36.33	36.72					
MW84	Drake	NM ⁽¹⁾	NM ⁽¹⁾					Former RW (pump removed 09/17/2013)
MW85	Drake	39.87	40.95					
MW86	Drake	41.22	42.41					
MW87	Drake	38.17	39.26					
MW88	Drake	18.54	12.00					
MW89	Drake	42.07	44.00					
MW95 (4" RW)	Drake	43.35	45.55					
MW96 (4" RW)	Drake	43.25	Dry					TOP = 47.5 feet bgs
MW97 (4" RW)	Drake	42.35	Dry					TOP = 42.77 feet bgs
MW98 (4" RW)	Drake	42.46	NM ⁽¹⁾					
MW99 (4" RW)	Drake	Dry	Dry					TOP = 38.55 feet bgs
MW101 (4" RW)	Drake	40.36	Dry					TOP = 42.35 feet bgs
MW44	56th Ave ROW	Dry	Dry					
MW47	56th Ave ROW	44.63 ⁽²⁾	Dry					
MW48	56th Ave ROW	42.51	42.19					
MW52	56th Ave ROW	43.30	43.45					
MW55	56th Ave ROW	43.63	43.78					
MW63	56th Ave ROW	42.69	42.68					
MW64	56th Ave ROW	41.06	41.19					
MW75	56th Ave ROW	NM	43.91					Well located in roadway and subject to Traffic Control Plan.

DTW/DTP Level Measurements

TOC Holdings Facility #01-176; Mountlake Terrace, WA

MEASUREN	IENT LOCATION		DTP / DTW LE	VEL MEASUREMENTS (feet bg	5)			NOTES / OBSERVATIONS
WELL ID ⁽¹⁾	PROPERTY ⁽²⁾	PREVIOUS DTP/DTW LEVEL SYSTEM OFF (3/24/14)	PREVIOUS DTP/DTW LEVEL SYSTEM ON (4/3/14)	DTP/DTW LEVEL SYSTEM OFF	TIME (24:00)	DTP/DTW LEVEL SYSTEM ON	TIME (24:00)	Trace = <0.01 measurable LNAPL Sheen = Iridescencee on water surface
				HERMAN PRO			<u> </u>	
MW102	Herman	15.29/16.92	14.78/16.26					
MW103	Herman	43.27	43.55					
MW104	Herman	10.84	10.31					
MW105	Herman	42.26 ⁽²⁾	Dry					
MW106	Herman	8.64	9.02					
MW107	Herman	39.16	39.89					
MW108	Herman	not available	not available					
MW109	Herman	not available	not available					
MW51	56th Ave ROW	41.27	41.88					
				SHIN/CHOI PRO	OPERTY WELLS			
MW71	Shin/Choi	12.70/12.99	11.91/12.16					
MW72	Shin/Choi	15.69/16.18	14.67/14.96					
MW73	Shin/Choi	38.60	38.90					
MW74	Shin/Choi	39.10	39.10					
				DECOMMISSI	ONED WELLS			
MW01	Decommissioned							
MW07	Decommissioned							
MW14	Decommissioned							
MW17	Decommissioned							
MW21	Decommissioned							
MW83	Decommissioned							

NOTES & DEFINITIONS:

bgs = below ground surface DTP = depth-to-product

FSDS = field sampling data sheet

DTW = depth-to-water

MW = monitoring well

RW = remediation well TOP = top of pump

NM = not measured ROW= right-of-way

⁽¹⁾ Remediation wells (identified as "RW") are connected to a multi-phase extraction system and are 2 or 4 inches in diameter.

⁽²⁾ Wells located in ROW are included under property they are nearest to.

*Well could not be measured due to inaccessible wellhead (vehicle parked over wellhead).

**Unclear if well was dry or if water was in end cap of well.

Dry = Indicates well could not be sampled due to insufficient groundwater sample volume.

ACRONYMS:

LIST OF PROPERTIES:

TOC = 24205 56th Avenue West, Mountlake Terrace WA TOC/Farmasonis = 24225 56th Avenue West, Mountlake Terrace WA Drake = 24309 56th Avenue West, Mountlake Terrace WA Herman = 24311 56th Avenue West, Mountlake Terrace WA Shin/Choi = 24325 56th Avenue West, Mountlake Terrace WA S6th Ave ROW = portion of right-of-way adjacent to TOC, TOC/Farmasonis & Drake properties 242nd St ROW = portion of right-of-way adjacent to TOC Property

SAMPLE CHAIN OF CUSTODY

		SAMPL	ERS (signa	ture	;)								٦.			¢ of			
Send Report To Kim Vik 8	Rebe	ekah Bro	oks		DDO IE	CT NAME/							T	20 #		4 [NAROUND TIME
Company Stantec Cons	ulting	Services	Inc.			ite 01-17		203	3700	010	2	(c	heck	one)			\Box RU		d (2 Weeks)
Address 19101 36th Ave	W, Su	uite 203								- <u>.</u>			201.A 201.B	-Qtr E			Rush		ges authorized by:
City, State, ZIP_Lynnwoo	d, WA	98036							eck o Herr				orope i6th /					pose	IPLE DISPOSAL after 30 days
Phone #_425-977-4994	Fax	<u># 425-44</u>	9-4097		Drc	C/Farmaso Ike							242no	d St F	ROM				amples with instructions
											ANA	LYS	SES R	EQU	EST	ED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sam	ple Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B)	HFS							Notes
		-																	
······································											-								
Prife for the second second second second second second second second second second second second second second																			

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:				
Seattle, WA 98119-2029	Received by:				
Ph. (206) 285-8282	Relinquished by:	······································			
Fax (206) 283-5044	Received by:				
FORMS\COC\COC.DOC				. I	

RISK MANAGEMENT STRATEGY – RMS 1

Project: Client: Location: File No. Project No:

- Where a project with fieldwork does not require a Health and Safety Plan (HASP), a Risk Management Strategy (RMS1) must be completed.
- If the scope of work for a project that originally did not involve field work changes to include field work, an RMS1 form must be completed and reviewed with employees before field work begins.
- Although the RMS1 is intended to be part of the desktop planning process for a project, please be aware that the RMS1 can be carried as a field resource as well, to complement use of the RMS2 – Field Level Risk Assessment.
- 1. PROJECT SUMMARY:

Description of the work:

General

Does a Prime Contractor (Constructor) or Client HSE Program apply?

If yes, please identify.

If Client, Prime Contractor or Constructor provides Orientation and/or Training, attach a copy of the training record to the project file and provide a copy to the OSEC.

Does this project involve work outside of North Ame	erica (International)	🗌 Yes	🗌 Nc
---	-----------------------	-------	------

(If yes, you <u>must</u> contact <u>international@stantec.com</u>)

2. HAZARD RECOGNITION

Health Hazard (Check all appropriate categories)

Is this work where MSDSs are required?

If yes, copies of MSDSs must be available at project site and attached to this document.

Chemical	Physical	Ergonomic
 Acids or Caustics Asbestos H₂S Halogenated Organic Compounds Heavy Metals Metals PCBs Pesticides / Herbicides Petroleum Hydrocarbons Poisonous Materials Solvents/Flammables Other – specify: 	 Cold Stress/Frostbite Confined Space Driver Fatigue Dust / Dusty environments Flora or Fauna (type): Heat Stress / Sunburn Noise Radiation (type): Remote Location Rough Terrain/Heavy Brush Road / Trail Conditions Vibration Water Wildlife Working at Heights Other – specify: 	 Force Posture Repetitive Motion Tools Workplace Design Other - specify: Biological Bacterial Control Cultures Domestic Waste Medical Waste Sewage / Wastewater Other - specify: Not Applicable

Safety Hazards (Check all appropriate categories)

Machine	Machine	Material Handling & Task
Machine ATV Attv Automobile Blades Chains / Cables / Ropes Crush Points Cutting Edges	Machine Shear Points Springs Wrap Points Other – specify:	Material Handling & Task Completion Bending Falling/Flying Objects Fatigue Heavy Load (> 50 pounds) Load (< 50 pounds)
 Free-Wheeling Point Heavy Equipment Helicopter Hydraulic Systems Levers 	 Chemical Electrical Hydraulic Mechanical Pneumatic Potential 	Repetitive Sharp/Rough Surface Twisting Other – specify:
 Moving Parts Pinch Points Rotating Parts (i.e. auger) 	 Differmal Other – specify: 	Deviation of SWPNot Applicable

3. HAZARD ASSESSMENT

Check off all SWPs that apply to job

• Unless required by client, printing SWPs is not required. However, review of all applicable SWPs before commencing work is mandatory. The most current version of each below is hyperlinked to allow review, and printing where desired.

100 Series – General HSE	200) Series – Construction HSE	300) Series – Hazardous Materials
102 – Workplace Violence		201 - Fall Protection/Working		<u>311 – Working in</u>
Prevention Program		from Heights		Environmental Laboratories
<u>103 – Workplace Hazardous</u> <u>Materials Information System</u>		<u> 202 – Ladder Safety</u>		<u> 312 – Fueling Gasoline</u>
(WHMIS)		<u> 203 – Aerial Work Platforms</u>	_	Engines
 104 - Hazard Communication 		205 - Scaffold Safety		<u> 314 - Working Around</u>
□ 105 – Personal Protective		206 – Hand and Portable		Hazardous Waste and
Equipment (PPE)		Power Tools		<u>Wastewater</u>
□ 107 – First Aid		<u> 208 – Hoisting and Lifting</u>	400) Series – Program Specific
□ 108 – Bloodborne Pathogens		213 – Utility Clearance		<u>406 – Electrical Safety</u>
□ 111 – Medical Surveillance		214 – Entering Excavations		Program 407 - Traffic Control and
$\square 113 - \text{Heat Stress}$		and Trenches		Protection Planning
		<u> 215 – Supervision of Hydro-</u>		408 – Lock, Tag & Try (LTT)
<u>114 – Working in Cold</u> Environments		Excavation Activities		409 Respiratory Protection
 <u>115 – Material Handling and</u> 		<u> 216 – Working Near Mobile</u>		411 - Confined Space Entry
Safe Lifting	_	<u>Equipment</u>		414 – Hot Work
$\square \underline{116 - Office Safety}$		<u> 217 – Forklift Operation</u>		416 – Supervision of
$\square 118 - Working Alone in the$	300) Series – Hazardous Materials		Contracted Drilling Activities
Field		<u> 304 – Asbestos Safety</u>	500) - PA/PC/Region Specific
<u>124 – Safe Driving</u>		<u>305 – Benzene Safety</u>	Pro	grams
□ 125 – Workstation		<u>308 – Working in</u>		<u>501 - Using the Spot</u>
Ergonomics		Geotechnical and Materials	_	<u>Messenger System</u>
<u>126 – Using a Chainsaw</u>		<u>Laboratories</u>		502 - Use and Handling of
□ 130 – Rail Safety		<u>310 – Compressed Gas</u>		Nuclear Density Gauges
		<u>Cylinders</u>		504 - Backpack and Boat
Last Undated: Juna 2014			Doc	sumant Owner: Corporate HSE

RISK MANAGEMENT STRATEGY – RMS 1

500 – PA/PC/Region Specific	500 – PA/PC/Region Specific	Other SWPs not listed	
Programs Mounted Electro-fishing 507 – Aircraft Safety 508 – Wildlife Encounters 509 - Guideline for 2-way Radio Use on Radio Controlled Roads in BC	Programs	- • Select and list others here	

SWP for this task being performed is <u>not available</u> – Quantified Hazard Assessment (RMS7) must be performed, please speak with Regional Safety Environment Coordinator (RSEC) for assistance.

4. PERSONAL PROTECTIVE EQUIPMENT (PPE)

Based on hazard recognition and assessment as identified in the documents above, identify required PPE.

Head Protection (CSA or ANSI) – Type:	Hearing Protection – Type:
Work Boots (CSA or ANSI) – Type:	Respiratory Protection – Type:
Eye/Face Protection - Type:	Coveralls - Type:
🗌 High Visibility Vest – Type:	Fall Protection – Type:
Gloves – Type:	Other -

5. JOB ADMINISTRATION

Training

Is there any training required outside that identified in the applicable SWPs? If yes, please identify:

Do workers require site-specific orientation?
Yes No

Emergency Planning

It is the responsibility of the Project Manager to prepare and communicate an Emergency Preparedness and Response plan to all field staff.

Site Emergency #	Fire Dept.
Ambulance	Police
OSEC	Environment Dept.
	Regional HR

Stantec Corporate HSE Representative: Right-click and pick from list based on your location

Stantec Public Relations/Media Contact*: Pick from list...

* Employees who are not authorized to speak on Stantec's behalf must not respond to inquiries from the investment community or media unless specifically asked to do so by an authorized spokesperson. All such inquiries shall be referred to Public Relations.

RISK MANAGEMENT STRATEGY – RMS 1

Project Contact Information:

Title	Name		Company	Phone Number
Stantec Office				
Project Manager				
Project Site Safety				
Client or Owner				
Stantec After-Hours Number				
Other (specify):				
Other (specify):				
First Aid facilities are located:				
First Aiders on site are:				
Fire extinguishers are located:				
Fire alarms are located:				
MSDSs are located:				
Eyewash station is located:				
Spill response equipment is:				
The nearest phone is:				
Medical Assistance (Contact to dis emergency signs or symptoms of w injury or illness):		Pick from delete	list If other, specify l	here or just
Record site-specific information be clinic/hospital, etc.):	elow (evacuation	n signal, mu	ster points, routes/map	o to

For any injury, the employee shall:

- 1. Initiate necessary first aid or medical treatment.
- 2. Immediately notify their supervisor.

6. REVIEW, APPROVAL AND DISTRIBUTION

Employee Review

All employees conducting field work on this project will review the Risk Management Strategy (RMS1) and sign below acknowledging that they have been advised of the hazards, controls, PPE, and other safety equipment required, and have reviewed the applicable SWPs. Employees in the field who identify additional hazards not listed above shall notify the project manager of the hazard, and prior to proceeding, will confirm the controls that will be used. Document any on-site changes and communications using the RMS2 as appropriate; see section 2.4 of the HSE Program Manual on Management of Change.

Please designate Team Lead for field activities below.

SELECT AND DELETE THESE INSTRUCTIONS BEFORE PRINTING: To insert extra signing rows for more staff position mouse cursor at beginning of a signature row, type <u>signrows</u> and hit the F3 button to insert more as needed. This will insert three at a time.

Reviewed by:

Print Name (Team Lead Field)	Signature	Date
Print Name	Signature	Date
Print Name	Signature	Date
Print Name	Signature	Date
Print Name	Signature	Date

Approvals

By signing this approval, the Project Manager is acknowledging that (s)he has communicated the hazards, controls, required PPE and applicable SWPs to the employees working on this project. It also indicates that the Project Manager has verified that employees have all the equipment required to work safely, that the equipment is in working order, and that the employees have the knowledge required to operate/use this equipment.

Distribution:	Original: Project File Copies: Field Staff		
by:	Print Name (Project Manager)	Signature (Project Manager)	Date
Approved			
Prepared by:	Print Name	Signature	Date

FIELD LEVEL RISK ASSESSMENT (FIT FOR DUTY), 5 DAY – RMS 2

Pro	oject: Proje	ct No:
Clie	ient:	
Loc	cation:	
Sta	art Date:	
Do	ocumentation and Procedure Review	
1.	Risk Management Strategy (RMS1) form and/or Site Specific Health and Safety Plan signed reviewed?	d and □ Yes □ No *
2.	Emergency Response Plan reviewed?	□ Yes □ No * □ N/A
3.	Tested two-way communications (cell phone, satellite phone) and security measures?	□ Yes □ No*
4.	Attended Client Site Health and Safety meeting?	□ Yes □ No * □ N/A
5. Conducted Stantec site safety meeting with all workforces?		□ Yes □ No * □ N/A
6.	Are there any new or unexpected hazards not identified in the RMS1/HASP? If yes, include in the Job Safety Analysis (JSA).	□ Yes □ No
7.	Working alone or remote work? If yes, complete call in/out process – Safe Work form must be completed.	□ Yes □ No
No	otifications and Permits	
8.	Are work permits required for this site? If yes, have they been completed and submitted as required?	□ Yes □ No □ Yes □ No *
9.	Are utility locates required for this site? If yes, have they been completed and reviewed?	□ Yes □ No □ Yes □ No *
10.	Does the Client require any notification prior to starting the work? If yes, has the notification been provided?	□ Yes □ No □ Yes □ No *
	*Contact your Project Manager immediate	ly.
W	ork Description Provide a general description of the work to be conducted.	

Personal Protective Equipment	List specific PPE as needed. Verify type and	inspect condition.	
Head Protection Type:	□ Hearing Protection:	Gloves Type:	
Foot Protection Type:	Respiratory Protection:	Water Safety Gear:	
Eye Protection Type:	□ Fire Retardant Coveralls:		
High Visibility Vest:	Fall Protection:		
Tools and Equipment List specific equipment to be used. Verify type and inspect condition.			

FIELD LEVEL RISK ASSESSMENT (FIT FOR DUTY), 5 DAY – RMS 2

Daily Tailgate Discussions/Subcontractor Input

Date:		Time:	Weather:
Start			
Mid-Day			
Post-Day			
Date:		Time:	Weather:
Start			
Mid-Day			
Post-Day			
Date:		Time:	Weather:
Start			
Mid-Day			
Post-Day			
Date:		Time:	Weather:
Start			
Mid-Day			
Post-Day			
Date:		Time:	Weather:
Start			
Mid-Day			
Post-Day			

I know the hazards:

By signing here, you are stating the following:

- 1. I have been involved in the Job Safety Analysis (JSA) and understand the hazards and risk control actions associated with each task I am about to perform.
- 2. I understand the permit to work requirements applicable to the work I am about to perform (if it includes permitted activities).
- 3. I am aware that work that has not been risk-assessed must not be performed.
- 4. I am aware of my ability and obligation to Stop Work (See below).

I arrived and departed fit for duty (see Fit for Duty card for further information):

- 5. I am physically and mentally fit for duty.
- 6. I am not under the influence of any type of medication, drugs or alcohol that could affect my ability to work safely.
- 7. I am aware of my responsibility to bring any illness, injury (regardless of where or when it occurred), symptoms of soreness or discomfort, or fatigue issue I may have to the attention of the Crew Lead or Supervisor.
- 8. I sign out uninjured unless I have otherwise informed the Crew Lead or Supervisor.

Insert fitness level under corresponding time column: Fit for Duty = F Alternate Plan = AP Team Lead to contact Project Manager for any personnel identified as AP															
ie	Date:		act Proje	Date:	geriora	ny perso	Date:	entined	as ap	Date:			Date:		
Individual Name/Company Name/Signature	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:

I will STOP WORK any time anyone is concerned or uncertain about safety. I will STOP WORK if anyone identifies a hazard or additional mitigation not recorded. I will be alert to any changes in personnel or their fitness level (AP), conditions at the work site or hazards. If it is necessary to STOP WORK, I will reassess the task, hazards and mitigations; and then proceed only when safe to do so.

Conclusion of day: I certify that the planned work activities are completed for the day and all injuries and first aids have been reported via RMS3.

Signature of Crew Lead:	Date:	Alt the
Signature of Crew Lead:	Date:	stop
Signature of Crew Lead:	Date:	
Signature of Crew Lead:	Date:	
Signature of Crew Lead:	Date:	Are you ready to work safely?

Remember to 1.Stop and think 2.Look around 3.Assess risk 4.Control risks 5.Begin/resume work

FIELD LEVEL RISK ASSESSMENT

(FIT FOR DUTY), 5 DAY - RMS 2

FIELD LEVEL RISK ASSESSMENT (FIT FOR DUTY), 5 DAY – RMS 2

Job Safety Analysis (JSA) Must be completed for all field activities.

	Basic Job Steps			Potential Hazards	Control		rson onsible	
	Review the hazard categorie	es bel	ow a	nd check the mitigation measu	I Ires applica	ble to	the identified scope of work.	
							·	
1.	Environmental Hazards Work area clean		23	Access/Egress Hazards Aerial life/Man basket (inspected &		38.	Rigging & Hoisting Hazards Lift study required	
2.	Material storage identified		23. 24.	Scaffold (inspected & tagged)		39.		
3.	Dust/Mist/Fume		25.	Ladders (tied off)		40.	Tools inspected	
4.	Noise in area		26.	Slips & trips		41.	Equipment inspected	
5.	Extreme temperatures		27.	Hoisting (tools, equipment)		42.	Slings inspected	
6.	Spill potential		28.	Evacuation (alarms, routes, ph. #)		43.	Others working overhead/below	
7.	Waste containers needed		29.	Confined space entry permit require	ed 🗆	44.	Critical lift permit	
8.	Waste properly disposed							
9.	Waste plan identified						Electrical Hazards	
10.	Excavation permit required			Rememb	ber to	45	GFI test	
11.	Other workers in area			1.Stop and	d think		Lighting levels too low	
12.	Weather conditions			2. Look gro	ound	47.		
13.	MSDS reviewed			SIOP		48.	Electrical cords condition	
				3. Assess ri		49.	Electrical tools condition	
				4. Control	risks	50.	Fire extinguisher	
	Ergonomic Hazards			Are you ready to work safely? 5.Begin/re	esume work	51.	Hot work or electrical permit require	d 🗆
14.	Awkward body position			Overhead Hazards				
15.	Over extension		30.	Barricades & signs in place			Personal Limitations/Hazard	5
16.	Prolonged twisting/bending motion		31.	Hole coverings identified		52.		
17.	Working in a tight area		32.	Harness/lanyard inspected		53.	Confusing instructions	
18.	Lift too heavy/awkward to lift		33.	100% Tie-off with harness		54.	No training for task or tools to be us	ed 🗆
19.	Parts of body in line of fire		34.	Tie off points identified		55.	First time performing the task	
20.	Repetitive motion		35.	Falling items		56.	Micro break (stretching/flexing)	
21.	Hands not in line of sight		36.	Foreign bodies in eyes		57.	Report all injuries to your supervis	or 🗆
22.	Working above your head		37.	Hoisting or moving loads overhead				
	It is important that all relevant hazards have plans in place to reduce risk.							
	Be sure that all associated permits are closed off at the end of the job.							
	Remember: Stop and Think							

Reviewed by Name and Signature:

Stantec

INCIDENT REPORT – RMS 3

Incidents involving injury, potential injury, or report of pain, soreness, or discomfort must be reported immediately (within one hour) to a supervisor. Supervisors will then immediately contact their HSE representative to develop a plan for assessment and care. This form must be completed and <u>submitted within 24 hours</u> of any incident. Do not delay submission waiting for signatures. Email to <u>hse@stantec.com</u> or fax unsigned report to (780) 969-2030 and file locally in compliance with the corporate <u>records retention policy and practices</u> once all signatures have been obtained.

This document contains privileged and confidential information prepared at the request of Stantec's Legal Counsel. The contents of this report are restricted to HR personnel, Risk Management Representatives, Project Manager and BC Leader, and Stantec's Insurer, Adjuster and Legal Counsel. Information collected will be used solely for the purpose of meeting the requirements of Stantec's HSE and insurance programs, complying with applicable legislation, and will be used in accordance with any governing privacy legislation. The information collected will be maintained electronically and may be included in required reports.

SECTION 1: GENERAL INFORM	ATION
Office location:	BC number:
Location of incident:	
Incident date and time:	Date and time reported:
Project name:	Project number:
Client Name:	
Person in charge:	Person in Charge Phone:

SECTION 2: STANTEC EMPLOYEE INFORMATION (if more than one identify extras in incident details below)				
Name:		Phone:		
Job position:		Group name:		
Time employee began work:		Job Experience (in years)		
Type of employment:	Full Time 🔲 ; Visitor 🔲 ; Contract 🔲 ; Vo	olunteer 🔲 ; Seasonal 🗌		
Supervisor:		Supervisor Phone:		

SECTION 3: INCIDENT DETAIL	ILS		
Type of Incident:	*incident types marked with an aste See StanNet for a list of <u>Incident Type</u>	risk, please complete pages 1 and signa <u>e Definitions</u>	iture page only
 *Report Only *Hazard Identification *Near Miss *Safety Opportunity 	 First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment 	 Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Theft Contractor Recordable Incident Non-compliance 	 3rd Party Incident (i.e., Public) Spill or Release Utility Strike Fire/Explosion/Flood Stop Work Authority
Describe incident in de	tail: (include any issues related to j	people, equipment, materials, enviro	onment, and processes)

Immediate corrective actions taken:

INCIDENT REPORT – RMS 3

SECTION 4: MEDICAL INFORMATION				
Name of first aid attendant:	Injury recorded in first aid log? Yes No N/A			
Description of first aid or medical treatment administered:				
Clinic/hospital sent to:				
Attending physician/paramedic (if known):				
Area of Injury – Please check all that apply:				
Head Teeth Upper Left	Right Left Right Left Right Left Right			
Face Neck Lower Shoulde				
Eye(s) Chest Abdomen Arm Ear(s) Pelvis Elbow	Hand Thigh Foot Finger(s) Knee Toe(s)			
Other Specify				
Has the injured employee had	a previous similar injury or disability? Yes No			
SECTION 5: PROPERTY OR VEHICLE DAMAGE: STANTEC				
Ownership Details (choose one):	ental agreement) 🗌 Stantec Owned 🗌 Personal (employee vehicle)			
Year, Make, and Model of Vehicle:	Vehicle ID # (VIN)			
Nature of damage:	Estimated cost of damage: \$			
Description of damaged property:				
Attending police officer (if known):	Badge #:			
Copy of police report received Yes No I If ye	s, file number: (attach copy of police report)			
PROPERTY OR VEHICLE DAMAGE: 3RD PARTY				
Name of owner and contact number:				
Year, Make, and Model of Vehicle:	License Plate Number:			
Insurer and Policy Number:				
Injured parties? Yes No I If yes, describe I				
Diagram or photographs attached? Yes No]			
WITNESS INFORMATION - #1				
Name:	Phone Number:			
Witness statement provided? Yes (attached) No				
WITNESS INFORMATION - #2				
Name:	Phone Number:			
Witness statement provided? Yes (attached)				

Canada East (Atlantic) – Jim Elkins (613-404-8508); Canada East (ON/QC) – Jim Elkins (613-404-8508);

Canada East (Quebec) – Claudine Tremblay (514-668-4820); Canada Mountain – Shawna Robichaud (587-894-2635); Canada Prairies – Yvonne Beattie (780-616-8909); International – Kev Metcalfe (780-231-2185); US Northeast & South) – Fred Miller (610-235-7315); US Midwest & Mid-Atlantic - Keith Kuhlmann (740-816-6170); US West – Clint Reuter (626-696-2279)

INCIDENT REPORT – RMS 3

SECTION 6: SPILL OR RELEASE						
Sub	ostance:					
Qua	antity:	Employee(s) exposed via:	□ Inhalation □ Contact □ Ingestion □ n/a			
Off	-site impacts observed or anticipated?	Yes 🗌 No 🗌 If yes, describ	be:			
Nar	me of regulatory agencies contacted:					
Cor	ntact name, number, date and time of call:			Τ		
<u> </u>						
SEC	CTION 7: ANALYSIS					
		IMMEDIATE/DIRECT CAU	JSES			
	A. UNSAFE ACTIONS (check off as man					
	Operating equipment without	Failing to use personal protectiv	Pre equipment Failure to identify hazard or risk			
	authority Failure to warn	properly Improper loading				
	_	Improper placement	Failure to communicate			
		Improper lifting or handling	Other: Specify			
		Improper position for a task				
	Removing safety devices	Servicing equipment in operatio	on			
	Using defective/improper	Horseplay				
	equipment					
	Using equipment improperly	Failure to follow procedure, poli	icy or practice			
	B. UNSAFE CONDITIONS (check off as r	nany as necessary)				
		ion exposure	Inadequate information/data			
	· · · · · · · · · · · · · · · · · · ·	r low temperature	Inadequate preparation/planning			
	exposi	ires				
		quate or excess	Inadequate support/assistance			
	illumina		• - · · · ····			
		quate ventilation				
		ce of harmful materials				
	Fire and explosion hazards Inaded	quate	Other: Specify			
			gases, dusts, smokes, fumes, vapours			
	Noise exposure					
<u> </u>		BASIC/ROOT CAUSES	S			
	C. PERSONAL FACTORS (check off as many		·			
	Inadequate physical capability	Mental stress	Lack of knowledge			
	Physical stress	Lack of skill	Other: Specify			
	D. JOB FACTORS (check off as many as new					
	Inadequate leadership or supervision	Inadequate maintenance	(scheduled or Excessive wear and tear			
		preventative)				
	Inadequate engineering	Inadequate tools or equipr		ons		
	Inadequate purchasing	Inadequate work standard	Improper motivation			
	Abuse or misuse	Other: Specify				

INCIDENT REPORT – RMS 3

SECTION 8: FOLLOW-UF	2			
Short-term:	Corrective Action	Assigned To	Target Date	Completion Date
Long-term:	Corrective Action	Assigned To	Target Date	Completion Date

REVIEW COMMENTS					
Involved Employee Comments:					
Signature:	Print Name:	Date:			
Job Title:		Dale.			
Lead Investigator Comments:					
Signature:	Print Name:	Date:			
Job Title:					
Supervisor/Project Manager:					
Signature:	Print Name:	Date:			
Job Title:					
HSE Representative (OSEC/JH&S Committ	ee/RSEC/HSE Manager):				
Signature:	Print Name:	Date:			
Job Title:					
Management Review:					
_					
		-			
Signature: Job Title [,]	Print Name:	Date:			

Client Review (if required):

INCIDENT REPORT – RMS 3

Sign	ature:
Job	Title:

Print Name:

Date:

Additional Comments:

Appendix B

Analytical Laboratory Reports

TOC Site & 242nd Avenue ROW Groundwater Samples

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 24, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 12, 2015 from the TOC_01-176, WORFDB8 F&BI 503225 project. There are 25 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0324R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 12, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503225 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
503225 -01	MW93
503225 -02	MW92
503225 -03	MW57
503225 -04	MW29
503225 -05	MW32
503225 -06	MW24
503225 -07	MW27
503225 -08	MW91
503225 -09	MW11
503225 -10	MW90
503225 -11	MW54
503225 -12	TB-021215-2

All quality control requirements were acceptable.

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503225 Date Extracted: 03/16/15 and 03/18/15 Date Analyzed: 03/16/15 and 03/18/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW93 503225-01	<1	<1	<1	<3	<100	99
MW92 503225-02	<1	<1	<1	<3	<100	96
MW57 503225-03	<1	<1	2.0	11	110	97
MW29 503225-04	<1	1.0	<1	29	790	103
MW32 503225-05	1.7	7.8	16	62	680	106
MW24 503225-06	<1	<1	<1	<3	<100	94
MW27 503225-07	<1	2.3	7.5	39	320	96
MW91 503225-08	<1	1.2	1.2	3.4	160	101
MW11 503225-09	<1	<1	3.8	3.1	190	97
MW90 503225-10	<1	54	<1	590	3,100	112

Results Reported as ug/L (ppb)
ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503225 Date Extracted: 03/16/15 and 03/18/15 Date Analyzed: 03/16/15 and 03/18/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW54 503225-11	<1	<1	<1	<3	<100	96
TB-021215-2 503225-12	<1	<1	<1	<3	<100	91
Method Blank ^{05-514 MB}	<1	<1	<1	<3	<100	91

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503225 Date Extracted: 03/16/15 Date Analyzed: 03/16/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW91 503225-08 1/1.2	120 x	<300	104
Method Blank ^{05-537 MB}	<50	<250	97

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW29 03/12/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503225 503225-04 503225-04.046 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 90	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		2.91		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW32 03/12/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503225 503225-05 503225-05.049 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 91	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		1.04		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW91 03/12/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator: Lower	Stantec TOC_01-176, WORFDB8 F&BI 503225 503225-08 503225-08.050 ICPMS1 AP Upper
Internal Standard: Holmium		% Recovery: 89	Limit: 60	Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		1.73		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW90 03/12/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503225 503225-10 503225-10.051 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 89	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/20/15 03/20/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503225 I5-167 mb I5-167 mb.044 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW29 03/12/15 03/18/15 03/19/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503225 503225-04 503225-04.048 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 92	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		119		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW32 03/12/15 03/18/15 03/19/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503225 503225-05 503225-05.049 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		28.0		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW91 03/12/15 03/18/15 03/19/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503225 503225-08 503225-08.050 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 97	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		6.30		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW90 03/12/15 03/18/15 03/19/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503225 503225-10 503225-10.051 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 97	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		2.03		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/18/15 03/19/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503225 I5-163 mb I5-163 mb.021 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 98	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW91 03/12/15 03/13/15 03/13/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503225 503225-08 031324.D GCMS9 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	85	117
Toluene-d8		97	91	108
4-Bromofluorobenze	ene	98	76	126
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blar Not Applicat 03/13/15 03/13/15 Water		Client: Project: Lab ID: Data File: Instrument:	Stantec TOC_01-176, WORFDB8 F&BI 503225 05-0494 mb 031307.D GCMS9
Units:	ug/L (ppb)		Operator:	JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	-d4	105	85	117
Toluene-d8		97	91	108
4-Bromofluorobenze	ene	97	76	126
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW91 03/12/15 03/17/15 03/18/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503225 503225-08 1/2 031818.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 144 67	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		<0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranther		< 0.1		
Benzo(k)fluoranther		< 0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrace		< 0.1		
Benzo(g,h,i)perylene	<u>e</u>	< 0.1		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applicat 03/17/15 03/18/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503225 05-535 mb2 1/2 031809.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 108 117	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthen		< 0.1		
Benzo(k)fluoranther		< 0.1		
Indeno(1,2,3-cd)pyre		<0.1		
Dibenz(a,h)anthrace		<0.1		
Benzo(g,h,i)perylene	<u>)</u>	<0.1		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503225

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503225-11 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	50	<1	93	94	50-150	1
Toluene	ug/L (ppb)	50	<1	94	95	50-150	1
Ethylbenzene	ug/L (ppb)	50	<1	95	98	50-150	3
Xylenes	ug/L (ppb)	150	<3	94	95	50-150	1
Gasoline	ug/L (ppb)	1,000	<100	95	96	53-117	1

Laboratory Code: Laboratory Control Sample

		Percent	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
ug/L (ppb)	50	96	65-118
ug/L (ppb)	50	96	72-122
ug/L (ppb)	50	97	73-126
ug/L (ppb)	150	94	74-118
ug/L (ppb)	1,000	98	69-134
	Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 50 ug/L (ppb) 50	Reporting Units Spike Level Recovery LCS ug/L (ppb) 50 96 ug/L (ppb) 50 96 ug/L (ppb) 50 97 ug/L (ppb) 150 94

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503225

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	101	103	63-142	2

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503225

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Lead	ug/L (ppb)	10	2.91	100	101	79-121	1

-	·		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	103	83-115

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503225

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Co	ode: 503281-07 (N	Aatrix Spil	ke)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	110	117	79-121	6

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	83-115

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503225

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503225-08 (Matrix Spike)

5 × ×	1 /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	96	68-125

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	F		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	108	101	70-122	7

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503225

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: Laboratory Control Sample 1/0.25

Laboratory Couc. Laborator	J	F	Percent	Percent		
	Reporting	Spike	Recovery LCS	Recovery	Acceptance	RPD
Analyte	Units	Level	·	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	0.25	85	91	70-130	7
Acenaphthylene	ug/L (ppb)	0.25	82	88	70-130	7
Acenaphthene	ug/L (ppb)	0.25	84	92	70-130	9
Fluorene	ug/L (ppb)	0.25	82	88	70-130	7
Phenanthrene	ug/L (ppb)	0.25	89	95	70-130	7
Anthracene	ug/L (ppb)	0.25	87	94	70-130	8
Fluoranthene	ug/L (ppb)	0.25	87	93	70-130	7
Pyrene	ug/L (ppb)	0.25	94	103	70-130	9
Benz(a)anthracene	ug/L (ppb)	0.25	93	102	70-130	9
Chrysene	ug/L (ppb)	0.25	101	107	70-130	6
Benzo(b)fluoranthene	ug/L (ppb)	0.25	99	99	59-130	0
Benzo(k)fluoranthene	ug/L (ppb)	0.25	93	104	65-120	11
Benzo(a)pyrene	ug/L (ppb)	0.25	93	102	60-125	9
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	0.25	85	95	42-135	11
Dibenz(a,h)anthracene	ug/L (ppb)	0.25	79	85	37-125	7
Benzo(g,h,i)perylene	ug/L (ppb)	0.25	86	93	45-123	8

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 \mbox{ca} - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

,													FORMS\COC\COC.DOC	FORM
		amples received	0								з у :	Received by:	Fax (206) 283-5044	Fax(
	>										ied by:	Relinquished by:	Ph. (206) 285-8282	Ph. (.
CQS1	03-12-15	LEST	t I		Phan	Ph	Whan	<u>ح</u>	Š	Jan	m/h	Received by:	Seattle, WA 98119-2029	Seatt
1200	03-12-15	Stoutec			10n	lado	Antonela	Pr	>	Nadon	led by:	Kelinquished by:	3012 16th Avenue West	3012
TIME	DATE	COMPANY			ME	PRINT NAME	PRIN			SIGNATURE	SIGN		Friedman & Bruya, Inc.	Fried
														-
					\leq	\times			И			12	16-031212-2	B
(DSM)	MS/n				\times	\succ	مر		E	1100	03-12-15	= 77	MWSH	Mu
Notes			HFS	SVOCs by 8270	BTEX by 8021B VOCs by8260	TPH-Diesel TPH-Gasoline	# of	Sample Type		Time Sampled	Date Sampled	Lab	Sample ID	
		ANALYSES REQUESTED	YSES RE	ANAL										
ructions	Return samples Will call with instructions										#	94 Fax	Phone # 45-477-4994 Fax #	Phor
POSAL ays	SAMPLE DISPOSAL	A Dis					S	REMARKS		1003E	Lynnwood wh ado26	UMOOD	City, State, ZIP M	City.
rized by	Rush charges authorized by	Rush		102	3700	20	TOC MLT / 203700102	TOC		#20	9101 W 36th Are#203	W 3		Address
s)	Standard (2 Weeks)		PO#			- 0	PROJECT NAME/NO.	PROJECT				f	Company Hantec	Com
	Page # 2 of 4		olor	albolo		ure)	SAMPLERS (signature)	SAMPLE			Stools	Kan v	Send Report To Rubulah Brooks	Send
KA SO	50,1002/3	DY ME 03/12/15 TOC ,	03/1	ΥMÉ	TOD	CUS	SAMPLE CHAIN OF CUSTO	PLE CE	SAM				503225	20 20

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 24, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 12, 2015 from the TOC_01-176, WORFDB8 F&BI 503226 project. There are 19 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn0324R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 12, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503226 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
503226 -01	MW95
503226 -02	MW96
503226 -03	MW70
503226 -04	MW97
503226 -05	MW101
503226 -06	MW99
503226 -07	MW98
503226 -08	MLT-10
503226 -09	TB-031215-1

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503226 Date Extracted: 03/17/15 Date Analyzed: 03/17/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW95 503226-01	<1	<1	<1	3.7	<100	94
MW96 503226-02	<1	<1	<1	<3	<100	93
MW70 503226-03	<1	<1	<1	<3	<100	81
MW97 503226-04	<1	<1	<1	<3	<100	93
MW101 503226-05	<1	<1	<1	<3	<100	93
MW99 503226-06	<1	<1	<1	<3	<100	93
MW98 503226-07	4.5	2.3	11	43	600	98
MLT-10 503226-08	<1	<1	<1	<3	<100	94
TB-031215-1 503226-09	<1	<1	<1	<3	<100	81
Method Blank ^{05-517 MB}	<1	<1	<1	<3	<100	93

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW101 03/12/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503226 503226-05 503226-05.052 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 91	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/20/15 03/20/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503226 I5-167 mb I5-167 mb.044 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW101 03/12/15 03/18/15 03/19/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503226 503226-05 503226-05.047 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 92	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/18/15 03/19/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503226 I5-163 mb I5-163 mb.021 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 98	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW95 03/12/15 03/13/15 03/14/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503226 503226-01 031343.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	104	94	108
Toluene-d8		99	91	107
4-Bromofluorobenze	ene	97	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW70 03/12/15 03/13/15 03/14/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503226 503226-03 031344.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	106	94	108
Toluene-d8		99	91	107
4-Bromofluorobenze	ene	97	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW97 03/12/15 03/13/15 03/14/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503226 503226-04 031345.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4		103	94	108
Toluene-d8		100	91	107
4-Bromofluorobenzene		98	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ether (MTBE)		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW101 03/12/15 03/13/15 03/14/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503226 503226-05 031346.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4		107	94	108
Toluene-d8		100	91	107
4-Bromofluorobenzene		96	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ether (MTBE)		<1		
ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW99 03/12/15 03/13/15 03/14/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503226 503226-06 031347.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	107	94	108
Toluene-d8		101	91	107
4-Bromofluorobenze	ene	99	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW98 03/12/15 03/13/15 03/14/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503226 503226-07 031348.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	103 [°]	94	108
Toluene-d8		101	91	107
4-Bromofluorobenze	ene	98	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-10 03/12/15 03/13/15 03/16/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503226 503226-08 031606.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	104	94	108
Toluene-d8		100	91	107
4-Bromofluorobenze	ene	99	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blar Not Applicat 03/16/15 03/13/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503226 05-0495 mb 031309.D GCMS7 JS
enite.	dg E (ppb)		operator.	
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	-d4	102	94	108
Toluene-d8		99	91	107
4-Bromofluorobenze	ene	101	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503226

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503226-01 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	3.7	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	97	72-119
Toluene	ug/L (ppb)	50	100	71-113
Ethylbenzene	ug/L (ppb)	50	99	72-114
Xylenes	ug/L (ppb)	150	86	72-113
Gasoline	ug/L (ppb)	1,000	97	70-119

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503226

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code:	503225-04 (N	/latrix Spik	te)				
				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	2.91	100	101	79-121	1
Laboratory Code: Laboratory Control Sample Percent							

Applyto	Reporting	Spike	Recovery	Acceptance
	Units	Level	LCS	Criteria
Analyte Lead	ug/L (ppb)	10	103	83-115

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503226

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Coo	de: 503281-07 (N	Aatrix Spil	ke)	Percent	Percent		
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Lead	ug/L (ppb)	10	<1	110	117	79-121	6

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	83-115

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503226

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503224-01 (Matrix Spike)

	in opino)			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	111	79-118

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	96	106	81-118	10

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

				FORMS\COC\COC.DOC
	Samples received at		Received by:	Fax (206) 283-5044
r			Relinquished by:	<i>Ph.</i> (206) 285-8282
3-12-15/5200	FEBT	Whan Phan	Received by: m/ // and	2029
3-12-15 1500	Stouter	Antonela Vadon	Relinquished by MUCADA	
DATE TIME	COMPANY	PRINT NAME	SIGNATURE	 T
			M b0	10-031215-1
mw46-40	×	H XX	08 103-12-15 0950 W	MLT-10
	×	L1 XX	M 1/1/1/ SI-1-50 20	
	× 	H XX	06/211-15 15/5 W	mwag
	XXX	6 XX 6	05/203-11-15 1310 W-	MWIOI
		H XX H	04 103-11-15 1300 W	MW97
	×.	XX 4	03 D 03-11-5 1257 W	MWilo
		3 XX	02 2 03-11-15 1240 W	Mwale
	\times	H XX H	01 P- 13-11-15 1237 W	Mwa5
Notes ,	HES MTZE (8260C) TOTAL PB DINOLVED PB	TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by 8260 SVOCs by 8270	Lab Date Time ID Sampled Sampled Sample Type	Sample ID
	ANALYSES REQUESTED	ANA		
SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions		REMARKS Bottles for discolved Ob analysis are labeled Userlved " and are filtered,	WA 98036	City, State, ZIP LYNNWOOD Phone # 475-477-49614 Fax #
Rush charges authorized by	Rush cha	1 1 1 1 1 2 2 1 0 0 1 0 1 L	19101 W 36 the #203	
RUSH	PO# Standa	PROJECT NAME/NO.	P	•
Page # of US TURNAROUND TIME Image: Compare the second sec		SAMPLERS (signature) Alador	Reberhiah Brocks SAN	Send Report To Republi
THE EXPANE FROM	DY ME 03/12/15 Wate	SAMPLE CHAIN OF CUSTODY ME	SAMPL	503226

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 18, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 12, 2015 from the TOC_01-176, WORFDB8 F&BI 503227 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stno318R.doc

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 12, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503227 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
503227 -01	MW12

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/18/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503227 Date Extracted: 03/13/15 Date Analyzed: 03/13/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as	ug/L	(ppb)
----------------------------	------	-------

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW12 503227-01	<1	<1	<1	<3	<100	94
Method Blank ^{05-512 MB}	<1	<1	<1	<3	<100	96

ENVIRONMENTAL CHEMISTS

Date of Report: 03/18/15 Date Received: 03/12/15 Project: TOC_01-176, WORFDB8 F&BI 503227

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503220-01 (Duplicate)

0	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	96	65-118
Toluene	ug/L (ppb)	50	97	72-122
Ethylbenzene	ug/L (ppb)	50	98	73-126
Xylenes	ug/L (ppb)	150	96	74-118
Gasoline	ug/L (ppb)	1,000	94	69-134

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COC.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.							TIMW #	Sample ID		City, State, ZIP Lynnwood WA Phone # 425-477-4994 Fax #		Company Stanke	Send Report To Reballah Brooks	503227
	Received by:	Relinquished by:	Received by:	Relinquished by:								01 10	Lab ID		qui Fax	25	top	Kah E	,
	l by:	shed by:		shed by:	SIGN							03-12-15	Date Sampled		ZA	19101 W 36th Mp #203		Srooks	-
		- / -	(an)	wolen	SIGNATURE							1230	Time Sampled		98036	#203		• ,	
			25									£	Sample Type		RE	0	PROJE	SAMP	SAMPLE CHAIN OF CUSTODY
			- NOhe	Antonela	PR							ŝ	# of containers		RKS	OC MLT 203700102	PROJECT NAME/NO.	SAMPLERS (signature)	CHAIN O
			and and and and and and and and and and		PRINT NAME			 		 		 5	TPH-Diesel	4		12	NO.	uture)	F CU
		-		Va dos	VAME			 	,	 		 トズ	TPH-Gasoline BTEX by 8021B			037			JSTC
		1	~~	ž	(1)								VOCs by8260			000		Alader	DDY
			e e					 				 	SVOCs by 8270	ANA		Ř		S	_
-			(HFS	ANALYSES				00	ME
			\downarrow	~				 		 	 			SREC			PO#		0
-			\dot{q}_1	5	MO		Sa	 		 				REQUESTED			-+-) - (
			8	NY X	OMPANY		mple	 						TED	_		ر		03-12-15
)	ra c	Y		Samples received at	 								Kush	Standa	•	
-			Ŷ	2			eived					 			pose a pose a furn sa ll call	charg	ndard	Page #	
			-12-15	3-12-15	DATE	<u></u>	D						Z		☐ Will call with instructions	Kush charges authorized by	Standard (2 Weeks)	AROUND	- 7
			1520	1800	TIME		_°C						Notes		rs ctions	ed by		TIME	ع بر ح

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 20, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 16, 2015 from the TOC_01-176, WORFDB8 F&BI 503278 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn0320R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 16, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503278 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Stantec
503278 -01	MW53
503278 -02	MW62
503278 -03	MW08
503278 -04	MW60
503278 -05	MW61
503278 -06	MW55
503278 -07	MW04
503278 -08	MW49

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503278 Date Extracted: 03/17/15 Date Analyzed: 03/17/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW53 503278-01	<1	<1	<1	<3	<100	94
MW62 503278-02	<1	<1	<1	<3	<100	95
MW08 503278-03	<1	<1	<1	<3	<100	94
MW60 503278-04	<1	<1	<1	<3	<100	94
MW61 503278-05	<1	<1	<1	<3	<100	82
MW55 503278-06	<1	<1	<1	<3	<100	93
MW04 503278-07	<1	<1	<1	<3	<100	94
MW49 503278-08	<1	<1	<1	<3	<100	94
Method Blank ^{05-517 MB}	<1	<1	<1	<3	<100	93

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503278

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503226-01 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	3.7	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	97	72-119
Toluene	ug/L (ppb)	50	100	71-113
Ethylbenzene	ug/L (ppb)	50	99	72-114
Xylenes	ug/L (ppb)	150	86	72-113
Gasoline	ug/L (ppb)	1,000	97	70-119

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

										by:	Received by:	Fax (206) 283-5044
										hed by: 1	Relinquished by:	<i>Ph.</i> (206) 285-8282
516-15 1400	CBT.			19	oh a	~	Whan		in	an lay	Received by:	2029
BS-16-15 1400	ston tic		bidicin	60		00	mondon		Valon	, Ya	ennquis	T
DATE TIME	COMPANY			ĺΕ	PRINT NAME	NT	PRI		SIGNATURE	SIGN	-	
ved at 3° C	Samples received				ļ	ļ						
				1	X	ļ	w	ε	1100	2.16.15	1 80	64mm - G MW
					Ϋ́		w	3	SID	03-14-15	to	MWOH
				X	X	<pre>/</pre>	ь С	E	13415	0.3-13-15	06	MMSS
			 	X	X		ىرى	3	1330	03-13-15	2	MW (6)
			<u> </u>	$ \square$	X	ļ ,	ص	5	1145	03-13-15	Oy	MWGO
				X	Ь Д	<u> </u>	دن	3	1132	03-13-15	03	MM 08
					Ι Υ		أنر'	ટ	1030	03-13-15	02	MN62
				ト	<u>ک</u>		Э	ε	1020	03-13-15	0/0-	MW23
Notes		HFS	VOCs by8260 SVOCs by 8270	BTEX by 8021B	TPH-Gasoline	TPH-Diesel	# of containers	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID
	REQUESTED	ANALYSES	A									
☐ Return samples ☐ Will call with instructions	f] Retu									# 	<u>14</u> Fax	F
SAMPLE DISPOSAL Dispose after 30 days	S S						KS	REMARKS	WA 98036	N VA	000	City, State, ZIP Lynnwood
Rush charges authorized by	Rush ch		2	25	203700102	26	MLT /	R	EO.	19101 W 36th Ave. #1203	3:4	
TURNAROUND TIME Standard (2 Weeks)	PO# D'Standa		K.			NO	PROJECT NAME/NO	PROJEC		(MONIO		Company Stantec
11 -	Pa	1 shalon ,		2	\sim	ture	SAMPLERS (signature)	SAMPLE				
Row Nor	03-16-15	ME	Y	[OI	U S1	Ē	HAIN OI	SAMPLE CHAIN OF CUSTODY	S			503278

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 20, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 16, 2015 from the TOC_01-176, WORFDB8 F&BI 503279 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn0320R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 16, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503279 project. Samples were logged in under the laboratory ID's listed below.

<u>Stantec</u>
MW67
MW68
MW84
TB-031615-1
TB-031615-2

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503279 Date Extracted: 03/17/15 Date Analyzed: 03/17/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW67 503279-01	<1	<1	<1	<3	<100	95
MW68 503279-02	<1	<1	<1	<3	<100	95
MW84 503279-03	<1	<1	4.8	12	630	100
TB-031615-1 ⁵⁰³²⁷⁹⁻⁰⁴	<1	<1	<1	<3	<100	91
TB-031615-2 503279-05	<1	<1	<1	<3	<100	91
Method Blank ^{05-516 MB}	<1	<1	<1	<3	<100	95

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW67 03/16/15 03/16/15 03/16/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503279 503279-01 031625.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	99	57	121
Toluene-d8		102	63	127
4-Bromofluorobenze	ene	98	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW68 03/16/15 03/16/15 03/16/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503279 503279-02 031626.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	57	121
Toluene-d8		103	63	127
4-Bromofluorobenze	ene	99	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW84 03/16/15 03/16/15 03/16/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503279 503279-03 031627.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	57	121
Toluene-d8		101	63	127
4-Bromofluorobenze	ene	97	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed:	Method Blar Not Applical 03/16/15 03/16/15		Client: Project: Lab ID: Data File:	Stantec TOC_01-176, WORFDB8 F&BI 503279 05-0541 mb 031620.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	JS
		04 D	Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	-d4	101	57	121
Toluene-d8		101	63	127
4-Bromofluorobenze	ene	97	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503279

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503264-02 (Duplicate)

0	Reporting	·	Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	94	65-118
Toluene	ug/L (ppb)	50	95	72-122
Ethylbenzene	ug/L (ppb)	50	96	73-126
Xylenes	ug/L (ppb)	150	95	74-118
Gasoline	ug/L (ppb)	1,000	96	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503279

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503280-01 (Matrix Spike)

	,			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	101	74-127

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	105	101	64-147	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

t <u>></u> °C	Samples received at			FORMS/COC/COC/DOC
			Relinquished by: I	
03-16-15 1400		Nhan Man	Received by: m/m/m/m	2029
03/6-15/1400	Stoute	Antonelo Unalon	Relinquished by: Klaulon	1
DATE TIME	COMPANY	PRINT NAME	SIGNATURE	
		XX	05 E	TB-031615-2
		- XX	er – M	TB-03165-1
	\times	Li XX	03 103 16-15 1215 W	Mw84
	\times) H XX	02 03:16.15 1055 W	MW68
	×	F XX	01 p 3. 6. 5 1005 W	MWGT
Notes	MTBE	TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by8260 SVOCs by 8270 HFS	Lab Date Time ID Sampled Sampled Sample	Sample ID
	ANALYSES REQUESTED	ANALY		
 Return samples Will call with instructions 	Return Will c		<u>4</u> Fax #	Phone #425-471-4994 Fax #
SAMPLE DISPOSAL	SA SA	REMARKS	R	te,
Rush charges authorized by	Rush cha	UC MUT/203700/02		Address 1901 W 36
Standard (2 Weeks)	PO#	PROJECT NAME/NO.	P	Company Jonetic
Page # of	,	SAMPLERS (signature) Autoch		Send Report To Alle
RANE V3	03-16-15	SAMPLE CHAIN OF CUSTODY $M \in$	SAMPL	503279

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 7, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 16, 2015 from the TOC_01-176, WORFDB8 F&BI 503281 project. There are 25 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0407R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 16, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503281 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
503281 -01	MW37
503281 -02	MW79
503281 -03	MW80
503281 -04	MW34
503281 -05	MW06
503281 -06	MW82
503281 -07	MW100
503281 -08	MW81
503281 -09	EB-031315
503281 -10	MW39
503281 -11	MW02
503281 -12	MW20
503281 -13	MLT-03
503281 -14	MLT-01
503281 -15	MW30
503281 -16	MW22
503281 -17	MW56
503281 -18	MW19
503281 -19	MW59
503281 -20	MW03
503281 -21	EB-031415
503281 -22	MW58

The 8270D surrogate anthracene-d10 exceeded the acceptance criteria. No PAHs were detected, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503281 Date Extracted: 03/18/15 Date Analyzed: 03/18/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW37 503281-01	<1	<1	<1	<3	<100	97
MW79 503281-02	<1	<1	<1	<3	<100	94
MW80 503281-03	<1	<1	<1	<3	<100	93
MW34 503281-04	<1	<1	<1	<3	<100	89
MW06 503281-05	<1	<1	<1	<3	<100	97
MW82 503281-06	<1	<1	<1	<3	<100	91
MW100 503281-07	<1	<1	<1	<3	<100	96
MW81 503281-08	<1	<1	<1	<3	<100	95
EB-031315 503281-09	<1	<1	<1	<3	<100	94
MW39 503281-10	<1	<1	<1	<3	<100	96
MW02 503281-11	<1	<1	<1	<3	<100	99

Results Reported as ug/L (ppb)
ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503281 Date Extracted: 03/18/15 Date Analyzed: 03/18/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW20 503281-12	<1	<1	<1	<3	<100	91
MLT-03 503281-13	<1	<1	<1	<3	<100	95
MLT-01 503281-14	<1	<1	<1	<3	<100	100
MW30 503281-15	<1	<1	<1	<3	<100	96
MW22 503281-16	<1	<1	<1	<3	<100	94
MW56 503281-17	<1	<1	<1	<3	<100	97
MW19 503281-18	<1	<1	<1	<3	<100	96
MW59 503281-19	<1	<1	<1	<3	<100	91
MW03 503281-20	<1	<1	<1	<3	<100	88
EB-031415 ⁵⁰³²⁸¹⁻²¹	<1	<1	<1	<3	<100	94

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503281 Date Extracted: 03/18/15 Date Analyzed: 03/18/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW58 503281-22	<1	<1	<1	<3	<100	95
Method Blank ^{05-518 MB}	<1	<1	<1	<3	<100	90
Method Blank ^{05-0558 MB}	<1	<1	<1	<3	<100	93

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503281 Date Extracted: 03/17/15 Date Analyzed: 03/20/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW20 503281-12 1/2	140 x	<500	103
MLT-03 503281-13 1/2	<100	<500	109
EB-031415 503281-21 1/2	<100	<500	107
Method Blank ^{05-537 MB2}	<50	<250	98

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW100 03/16/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503281 503281-07 503281-07.056 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 92	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/20/15 03/20/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503281 I5-167 mb I5-167 mb.044 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW100 03/16/15 03/18/15 03/19/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503281 503281-07 503281-07.022 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 90	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/18/15 03/19/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503281 I5-163 mb I5-163 mb.021 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 98	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW20 03/16/15 03/16/15 03/16/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503281 503281-12 031622.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	57	121
Toluene-d8		101	63	127
4-Bromofluorobenze	ene	97	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-03 03/16/15 03/16/15 03/16/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503281 503281-13 031623.D GCMS4 JS
	0		Lower	Upper
Sumocotoci		0/ Decorrows		Limit:
Surrogates:		% Recovery:	Limit:	
1,2-Dichloroethane	-d4	101	57	121
Toluene-d8		102	63	127
4-Bromofluorobenze	ene	100	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EB-031415 03/16/15 03/16/15 03/16/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503281 503281-21 031624.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	-d4	103	57	121
Toluene-d8		101	63	127
4-Bromofluorobenze	ene	95	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applicab 03/16/15 03/16/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503281 05-0541 mb 031620.D GCMS4 JS
ennes.	48, 12 (PPD)		operatori	
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	-d4	101	57	121
Toluene-d8		101	63	127
4-Bromofluorobenze	ene	97	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW20 03/16/15 03/17/15 03/18/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503281 503281-12 1/2 031821.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 144 72	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranther		< 0.1		
Benzo(k)fluoranthe		< 0.1		
Indeno(1,2,3-cd)pyr		<0.1		
Dibenz(a,h)anthrac		<0.1		
Benzo(g,h,i)perylen	е	< 0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-03 03/16/15 03/17/15 03/18/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503281 503281-13 1/2 031822.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 164 vo 72	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		<0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		<0.1		
Phenanthrene		<0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		<0.1		
Benzo(b)fluoranther		< 0.1		
Benzo(k)fluoranther		< 0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrac		<0.1		
Benzo(g,h,i)perylene	9	<0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EB-031415 03/16/15 03/17/15 03/18/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503281 503281-21 1/2 031823.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 162 vo 82	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranther		< 0.1		
Benzo(k)fluoranther		<0.1		
Indeno(1,2,3-cd)pyre		<0.1		
Dibenz(a,h)anthrace		<0.1		
Benzo(g,h,i)perylene	<u>e</u>	<0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applicab 03/17/15 03/18/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503281 05-535 mb2 1/2 031809.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 108 117	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		<0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthen	ie	< 0.1		
Benzo(k)fluoranther		< 0.1		
Indeno(1,2,3-cd)pyre		<0.1		
Dibenz(a,h)anthrace		< 0.1		
Benzo(g,h,i)perylene	<u>)</u>	< 0.1		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503281

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503281-01 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	92	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	91	73-126
Xylenes	ug/L (ppb)	150	91	74-118
Gasoline	ug/L (ppb)	1,000	97	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503281

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503281-18 (Duplicate)

0	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	96	65-118
Toluene	ug/L (ppb)	50	97	72-122
Ethylbenzene	ug/L (ppb)	50	99	73-126
Xylenes	ug/L (ppb)	150	96	74-118
Gasoline	ug/L (ppb)	1,000	101	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503281

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	101	103	63-142	2

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503281

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code	: 503225-04 (N	Aatrix Spil	ke)				
				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	2.91	100	101	79-121	1
Laboratory Code: Laboratory Control Sample							

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	103	83-115

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503281

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

			Percent	Percent	,	- I	· · · · · · · · · · · · · · · · · · ·	Laboratory Code
RPD imit 20)		Acceptance Criteria	Recovery MSD	Recovery MS	Sample Result	Spike Level	Reporting Units	Analyte
6		79-121	117	110	<1	10	ug/L (ppb)	Lead
	21	79-121	117	110	<1	10	ug/L (ppb)	Lead

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	83-115

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503281

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503280-01 (Matrix Spike)

	,			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	101	74-127

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	105	101	64-147	4

ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503281

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Couc. Laborator	5	1	Percent	Percent		
	Reporting	Spike	Recovery LCS	Recovery	Acceptance	RPD
Analyte	Units	Level	-	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	0.25	85	91	70-130	7
Acenaphthylene	ug/L (ppb)	0.25	82	88	70-130	7
Acenaphthene	ug/L (ppb)	0.25	84	92	70-130	9
Fluorene	ug/L (ppb)	0.25	82	88	70-130	7
Phenanthrene	ug/L (ppb)	0.25	89	95	70-130	7
Anthracene	ug/L (ppb)	0.25	87	94	70-130	8
Fluoranthene	ug/L (ppb)	0.25	87	93	70-130	7
Pyrene	ug/L (ppb)	0.25	94	103	70-130	9
Benz(a)anthracene	ug/L (ppb)	0.25	93	102	70-130	9
Chrysene	ug/L (ppb)	0.25	101	107	70-130	6
Benzo(b)fluoranthene	ug/L (ppb)	0.25	99	99	59-130	0
Benzo(k)fluoranthene	ug/L (ppb)	0.25	93	104	65-120	11
Benzo(a)pyrene	ug/L (ppb)	0.25	93	102	60-125	9
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	0.25	85	95	42-135	11
Dibenz(a,h)anthracene	ug/L (ppb)	0.25	79	85	37-125	7
Benzo(g,h,i)perylene	ug/L (ppb)	0.25	86	93	45-123	8

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMSICOCICOC.DOC	Fax (206) 283-5044 Received by:	Ph. (206) 285-8282 Relinquished by:	Seattle, WA 98119-2029 Received by:		Friedman & Bruya, Inc. SIGNATURE	MW39 10/03-14-15	EB-031315 Or 03-B-15	MW81 082-03-13-15			MW06 05 03.13.15	mw 34 Og 03.1315	MW &C 03 03.4.15	MW79 02 03.12.15	NW37 01/2 03-12-15	Sample ID Lab Date ID Sampled		Phone # 425-477-4994 Fax #	IN STATE THE LYNNWAR INTA			Send Report to Rebelicah Brooks	s
	999.444.		af ann	Ave and	INATURE	1000	5 1540	1576	5 1445	1440	15 11 18	15 1025	15 1630	15 1530	5 1440	Time d Sampled			98036	he #203			7.0
-						٤	3	ε	ε	3	R	3	3	3	S	Sample Type		Bottles	REMARKS		PROJE	SAMPI	SAMPLE (
			Ohan	manilo	PRI	S	س	су V	л	دن	ω	ص	w	ىن	ر،	# of containers		for dissol	RKS		[NAN	SAMPLERS (signature)	CHAIN OI
			N A	la Vadan	PRINT NAME		X	××	XX	XX	X X	XX	XX	XX	XX	TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by8260 SVOCs by 8270	ANAL	Bottles for dissolved the analysis are labeled "duscolved" and are filtered		MLT/20.5700102	•	ture) Aladon	SAMPLE CHAIN OF CUSTODY ME 03/16/15-
	Sample		Febi	Stante	COMPAŅY				XX							HFS TOTALPD DISJOLVEDPD	ANALYSES REQUESTED	are labeled	n.		PO#		
	Samples received at <u>3</u> °C		()3-16-15 /400	RC 03-16-15 1400	YY DATE TIME											Notes	D	 Return samples Will call with instructions 	SAMPLE DISPOSAL	Rush charges authorized by	Standard (2 Weeks)	Page # 1 of 3	

												FORMS\COC\COC.DOC
at ? °C	Samples received at	Sample								by:	Received by:	Fax (206) 283-5044
											Relinquished by:	Ph. (206) 285-8282
03-16-15 1400	, e	te BI		2	oh an	r	Chan		14 au	m	Received by:	Seattle, WA 98119-2029
CO \$1 21. alies		Stanfac		Vaden		ela	Mitznela	3	Unalor	l by:	Relinquished by:	3012 16th Avenue West
DATE TIME	NΥ	COMPANY		E	PRINT NAME	NTN	PRI		SIGNATURE	SIGN/		Friedman & Bruya, Inc.
					X		6	3	1915	03-14-15	8	COM M
					$\frac{\lambda}{\lambda}$		S	٤	ای ک	03-14-15	2	MW59
					$\frac{\times}{\times}$		ŝ	۲	1425	03-14-15	NI NI	mwia
					X X		ŝ	£	ILHIO	03.14.15	ŢŢ.	MW St
					$\overset{\times}{\prec}$		دن	3	1222	031415	16	mw2a mw22
					XX		З	δ	1220	03 14.15	5.	Mw30
					××		1,20	٤	1150	12: 14:15	TY A	MLT-01
		XX		<u>/ </u>	$\frac{1}{\sqrt{2}}$	X	S	٤	11 11 11	03-14-15		MLT-03
		XX			X	X	5	٤	1130	03.14.15	I2 A	MW20
					$\frac{\times}{\checkmark}$		S	W	NIO	03-14-15	= A-	MNO2
Notes		MAXXXX PAH	SVOCs by 8270 HFS	VOCs by8260	TPH-Gasoline BTEX by 8021B	TPH-Diesel	# of containers	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID
	Ð	ANALYSES REQUESTED	ANALYS									
SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	AD Dispose Return Will cal							REMARKS	WA 98036		-4944 Fax #	City, State, ZIP LY Intubood Phone # 425-477-4944 Fax #
Rush charges authorized by 105	Rush char			1203700/02	10	I S	L.	TOC	203	9101W36th Me #203	236	
$\square RUSH \qquad \qquad \blacksquare RUSH \qquad = RUSH \qquad$	RUSH_	PO#				` <u>NO</u> .	PROJECT NAME/NO	PROJEC			Hantec	
Page # C of J V4	Page #	1	Valor	A 2		ıture	SAMPLERS (signature)	SAMPL	5	Provoly	Reloekaut	5
TOC/Romios	T	21/01/80	DY ME 03/	ODY	UST	FCI	HAIN O	SAMPLE CHAIN OF CUSTO				503281

	vd at	Samples received at					FORMS\COC\COC.DOC
					/:	Received by:	Fax (206) 283-5044
		1	ĺ			Relinquished by:	Ph. (206) 285-8282
1402	03-16-15	Te Br	Whan Phan		mr / facus	Received by:	Seattle, WA 98119-2029
copy	B.6.15	Staute	Antonela Vadon		a by Augudon	Relinquished by:	3012 16th Avenue West
TIME	DATE	COMPANY	PRINT NAME		G		Friedman & Bruya, Inc.
			3	3	03.16.15 1005		MW:58
		×	X5XXX	ع ع	02:14:15 1600	al E (EB-031415
Notes	z	MTBE PAH	Containers, # TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by8260 SVOCs by 8270	Sample Type	Date Time Sampled Sampled	Lab ID	Sample ID
		SES REQUESTED	ANALYSES				
ys ictions	Return samples Will call with instructions	Ret Wil				19 Fax #	Phone # 425-477-494
OSAL	SAMPLE DISPOSAL		REMARKS	R	Lynnavord an opport	march	
zed by	Rush charges authorized by	Rush	OC MLT/203700102		19101 W26th Me # 203	W36th	
A-05	Standard (2 Weeks)		PROJECT NAME/NO.	PRC		Fr	
of A	Page # of		SAMPLERS (signature) Audor	SAN	200Ks	Relation Brooks	Send Report To Robert
Komoy	icc Ke	03/16/15	SAMPLE CHAIN OF CUSTODY $here \in \mathbb{R}^{2}$	SAMPL			18605
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	÷						

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 25, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 19, 2015 from the TOC_01-176, WORFDB8 F&BI 503371 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn0325r.doc

### ENVIRONMENTAL CHEMISTS

### CASE NARRATIVE

This case narrative encompasses samples received on March 19, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503371 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<b>Stantec</b>
503371 -01	<b>MW05</b>
503371 -02	MW75

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/25/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503371 Date Extracted: 03/20/15 Date Analyzed: 03/20/15

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 52-124)
MW05 503371-01	<1	<1	<1	<3	<100	88
MW75 503371-02	<1	<1	<1	<3	<100	89
Method Blank ^{05-561 MB}	<1	<1	<1	<3	<100	88

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/25/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503371

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503368-01 (Duplicate)

5	Reporting	,	Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	91	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	92	73-126
Xylenes	ug/L (ppb)	150	91	74-118
Gasoline	ug/L (ppb)	1,000	95	69-134

ENVIRONMENTAL CHEMISTS

### **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$  - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$  - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COC.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.						mw 15	NMOS	Sample ID		Ate, ZIP		Company Stewfec	Send Report To Way	503371
	Received by:	Relinquished by:	Received by:	Relinquished by:							02 V	0) (J-	Lab ID		HOD d	96 M	FC	Kah	
	by:	hed by:	by: LA	hed by:	SIGN						03-19-50	03-18-15	Date Sampled			the three		Relaukah Brooks	
			a) an	angrow	SIGNATURE						Ter-	1445	Time Sampled		Ly MANNOOL (NA 90905) 477-4395 Fax #	4101 W 36 th Ave # 203		8	
											ع	ε	Sample Type		REMARKS		PROJE	SAMPI	SAMPLE CHAIN OF CUSTO
			Nhan	Mozneia	► PR						V	10	# of containers		RKS	oc ana	PROJECT NAME/NO.	SAMPLERS (signature)	CHAIN O
			0	e la	PRINT NAME		ļ						TPH-Diesel			1	NO.	ature	FC
			2		NAN	 		ļ			X	X	TPH-Gasoline						<b>US</b> 1
				Uad	E			<b> </b>	<u> </u>	 <u> </u>	X	<u> </u>	BTEX by 8021B VOCs by8260			203		R	- O
				fon							 		SVOCs by 8270	AN		3700,02		(hadar	DY
													HFS	ALY		2		8	
														ANALYSES REQUESTED		/~			ЯE
			ΤŢ	10		1								REQU			PO#		
			2 Z	え	MP	s								UEST		I			50
		t	H	onter	COMPANY	mpl	1						·····	ΕÐ			-		$\sum_{i=1}^{n}$
				R		8					 		i i u an			Rush	Standa	<b>`] </b>	31/91/150
-	$\rightarrow$	_	^w	0		ecei					 				SAN spose turn s ll call	char	IND IND INDIAN	IUK	
			3/19/15	agant	DATE	es received at							7		SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	Rush charges authorized by	Standard (2 Weeks) RUSH	TURNAROUND TIME	
			157	17	TIME	ల 6							Notes		OSAL iys ictions	zed by		) TIME	
			V	90	(L)	,												$\parallel$	s S

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 25, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 19, 2015 from the TOC_01-176, WORFDB8 F&BI 503372 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn0325r.doc

### ENVIRONMENTAL CHEMISTS

### CASE NARRATIVE

This case narrative encompasses samples received on March 19, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503372 project. Samples were logged in under the laboratory ID's listed below.

<u>Stantec</u>
MW09
MLT-02
MW38
MW26
MW10

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/25/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503372 Date Extracted: 03/20/15 Date Analyzed: 03/20/15

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 52-124)
MW09 503372-01	<1	<1	2.5	15	120	88
MLT-02 503372-02	2.1	1.0	2.6	17	140	92
MW38 503372-03	<1	<1	<1	<3	<100	87
MW26 503372-04	<1	<1	<1	<3	<100	86
MW10 503372-05	<1	<1	<1	<3	<100	87
Method Blank ^{05-561 MB}	<1	<1	<1	<3	<100	88

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/25/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503372

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503368-01 (Duplicate)

J	Reporting	·	Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent			
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Benzene	ug/L (ppb)	50	91	65-118	
Toluene	ug/L (ppb)	50	92	72-122	
Ethylbenzene	ug/L (ppb)	50	92	73-126	
Xylenes	ug/L (ppb)	150	91	74-118	
Gasoline	ug/L (ppb)	1,000	95	69-134	
ENVIRONMENTAL CHEMISTS

#### **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$  - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$  - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$  - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COC.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.						Mawlo	MW26	MW38	MLT-02	mwoq	Sample ID		City, State, ZIP Lyn Phone #475-47-4		Company Sto	Send Report To Rubo	503372
	Received by:	Relinquished by:	Received by:	Relinquished by:							05 1	04	03	02	01 2-	Lab ID		h-4225 Fax #	E X	Howlac	Mah (	•
	by:	ned by:	by: 1	by:	SIGN						1110	03-19-15 11 10	03-18-15	03-1845	01 203-18-15	Date Sampled		# WA	oth An	5	-Rebullah Brooks	•
			arlas	auton	SIGNATURE						OIN	0111	1345	1300	ari	Time Sampled		+WA 08036	19101 W 36th Are# 203			
			2								٤	ε	٤	ε	ε	Sample Type		REMARKS	R	i I	SAMP	SAMPLE
			Whan	Antonela	PI						س	ယ	ى	دں	υ	e containers		<b>NRKS</b>	MLT /203700102	PROJECT NAME/NO.	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTO
			(	r	PRINT NAME											TPH-Diesel			2	NN/	ıaturı	)F (
				Vouder	NA		ļ			ļ	X	$\geq$	X	X	$\mathbf{X}$	TPH-Gasoline			Ľ			SUC
			Ph.		ME		<u> </u>				$\left  \right\rangle$	$\times$	<del>У</del>	X	$\mathbf{X}$	BTEX by 8021B			6		Auc	TO
			£	>							<b> </b>					VOCs by8260			6		aulon	DY
			1			-										SVOCs by 8270	NAL				3	2
-										-						HFS	ANALYSES REQUESTED					NE
			T5	Ş					<u> </u>								REC			PO#		Ő
			te BI	g.	0 M										······	. <u></u>	UES			++		119
			M	toutic	COMPANY		San										TED	L	L			<u> </u>
					$\left  \right $			<u> </u>											Rush			5
			0													A		SAN Spose Sturn ill cal	char	RUSH_	Page #	
			03-19-15	03-19-15	DATE		received at											SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	Rush charges authorized by	Standard (2 Weeks) RUSH	Page # of TURNAROUND TIME	-p
			(SCD)		TIME		වා <b>ෆ</b>									Notes		POSAL ays uctions	ized by	ŝ		C \ 1

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 27, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 19, 2015 from the TOC_01-176, WORFDB8 F&BI 503374 project. There are 43 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn0327R.DOC

#### ENVIRONMENTAL CHEMISTS

#### CASE NARRATIVE

This case narrative encompasses samples received on March 19, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503374 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
503374-01	MW88
503374-02	MW89
503374-03	MW76
503374-04	MW65
503374-05	MLT-05
503374-06	MW87
503374-07	MW86
503374-08	<b>MLT-06</b>
503374-09	MW77
503374-10	MW85
503374-11	MW78
503374-	12 EB-031815
503374-13	WB-031815
503374-14	TB-031915

MTBE in the 8260C matrix spike and laboratory control sample duplicate exceeded the acceptance criteria. The analyte was not detected in the sample, therefore the data were acceptable.

All other quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503374 Date Extracted: 03/23/15 Date Analyzed: 03/23/15

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 52-124)
MW88 503374-01	<1	<1	<1	<3	<100	93
MW89 503374-02	<1	<1	<1	<3	<100	90
MW76 503374-03	<1	<1	<1	<3	<100	93
MW65 503374-04	<1	<1	<1	<3	<100	92
MLT-05 503374-05	<1	<1	<1	<3	<100	96
MW87 503374-06	<1	<1	<1	<3	<100	89
MW86 503374-07	<1	<1	<1	<3	<100	92
MLT-06 503374-08	<1	<1	<1	<3	<100	93
MW77 503374-09	<1	<1	<1	<3	<100	94
MW85 503374-10	<1	<1	<1	<3	<100	96

Results Reported as ug/L (ppb)

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503374 Date Extracted: 03/23/15 Date Analyzed: 03/23/15

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 52-124)
MW78 503374-11	<1	<1	<1	<3	<100	94
EB-031815 503374-12	<1	<1	<1	<3	<100	93
WB-031815 503374-13	<1	<1	<1	<3	<100	92
TB-031915 ⁵⁰³³⁷⁴⁻¹⁴	<1	<1	<1	<3	<100	88
Method Blank ^{05-564 MB}	<1	<1	<1	<3	<100	86

Results Reported as ug/L (ppb)

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503374 Date Extracted: 03/20/15 Date Analyzed: 03/20/15

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW86 503374-07 1/2	<100	<500	96
MLT-06 503374-08 1/2	<100	<500	97
EB-031815 503374-12 1/2	<100	<500	96
WB-031815 503374-13 1/2	<100	<500	102
Method Blank ^{05-583 MB}	<50	<250	105

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW86 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-07 503374-07.059 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 90	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-06 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-08 503374-08.060 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 89	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EB-031815 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-12 503374-12.061 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 93	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WB-031815 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-13 503374-13.062 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 92	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/20/15 03/20/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 I5-167 mb I5-167 mb.044 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW86 03/19/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-07 503374-07.047 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 90	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		5.50		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-06 03/19/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-08 503374-08.048 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 85	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EB-031815 03/19/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-12 503374-12.049 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 92	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WB-031815 03/19/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-13 503374-13.051 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/23/15 03/24/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 I5-170 mb I5-170 mb.018 ICPMS1 ML
Internal Standard: Holmium	% Recovery: 87	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

## ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW86 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-07 1/2 032022.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 90 100	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		<0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranther		< 0.1		
Benzo(k)fluoranther		< 0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrace		<0.1 <0.1		
Benzo(g,h,i)perylene	5	<0.1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-06 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-08 1/2 032023.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 91 97	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		<0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		<0.1		
Benzo(a)pyrene		<0.1		
Benzo(b)fluoranther		< 0.1		
Benzo(k)fluoranther		<0.1		
Indeno(1,2,3-cd)pyre		<0.1		
Dibenz(a,h)anthrace		<0.1		
Benzo(g,h,i)perylene	è	<0.1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EB-031815 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-12 1/2 032024.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 94 101	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		<0.1		
Benzo(b)fluoranther		< 0.1		
Benzo(k)fluoranther		<0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrace		< 0.1		
Benzo(g,h,i)perylene	<u>)</u>	<0.1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WB-031815 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)	- · ·	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-13 1/2 032025.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 93 99	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		<0.1		
Chrysene		<0.1		
Benzo(a)pyrene		<0.1		
Benzo(b)fluoranther		<0.1		
Benzo(k)fluoranther		<0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrace		< 0.1		
Benzo(g,h,i)perylene	) )	< 0.1		

#### ENVIRONMENTAL CHEMISTS

Ũ		1 0		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 05-577 mb2 1/2 032021.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene		% Recovery: 91 99	Lower Limit: 31 25	Upper Limit: 160 165
	(	Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthen	ne	< 0.1		
Benzo(k)fluoranther		< 0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrace		< 0.1		
Benzo(g,h,i)perylene		< 0.1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW89 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-02 032008.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	103	94	108
Toluene-d8		99	91	107
4-Bromofluorobenze	ene	97	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW76 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-03 032009.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	106	94	108
Toluene-d8		101	91	107
4-Bromofluorobenze	ene	97	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW65 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-04 032010.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	105 [°]	94	108
Toluene-d8		101	91	107
4-Bromofluorobenze	ene	97	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-05 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-05 032011.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	107	94	108
Toluene-d8		100	91	107
4-Bromofluorobenze	ene	95	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW87 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-06 032012.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	107 [°]	94	108
Toluene-d8		100	91	107
4-Bromofluorobenze	ene	96	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW86 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-07 032013.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	106	94	108
Toluene-d8		100	91	107
4-Bromofluorobenze	ene	98	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane		<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-06 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-08 032014.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	107	94	108
Toluene-d8		100	91	107
4-Bromofluorobenze	ene	96	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ether (MTBE)		<1		
1,2-Dichloroethane		<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW77 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-09 032015.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	107	94	108
Toluene-d8		102	91	107
4-Bromofluorobenze	ene	97	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW85 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-10 032016.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	107	94	108
Toluene-d8		100	91	107
4-Bromofluorobenze	ene	95	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW78 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-11 032017.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	107 [°]	94	108
Toluene-d8		100	91	107
4-Bromofluorobenze	ene	95	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EB-031815 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-12 032018.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	105	94	108
Toluene-d8		99	91	107
4-Bromofluorobenze	ene	95	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ether (MTBE)		<1		
1,2-Dichloroethane	(EDC)	<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WB-031815 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503374 503374-13 032019.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	107	94	108
Toluene-d8		100	91	107
4-Bromofluorobenze	ene	95	91	110
Compounds:		Concentration ug/L (ppb)		
		1		
Methyl t-butyl ethe		<1		
1,2-Dichloroethane	(EDC)	<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted:	Method Blan Not Applica 03/20/15		Client: Project: Lab ID:	Stantec TOC_01-176, WORFDB8 F&BI 503374 05-0547 mb
Date Analyzed:	03/20/15		Data File:	032007.D
Matrix:	Water		Instrument:	GCMS7
Units:	ug/L (ppb)		Operator:	JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	104	94	108
Toluene-d8		100	91	107
4-Bromofluorobenze	ene	96	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane		<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blar Not Applical 03/20/15 03/20/15 Water		Client: Project: Lab ID: Data File: Instrument:	Stantec TOC_01-176, WORFDB8 F&BI 503374 05-0547 mb 032007.D GCMS7
Units:	ug/L (ppb)		Operator:	JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	-d4	104	94	108
Toluene-d8		100	91	107
4-Bromofluorobenze	ene	96	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		
#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503374 Date Extracted: 03/23/15 Date Analyzed: 03/23/15

### **RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED**

Results Reported as  $\mu$ g/L (ppb)

Sample ID Laboratory ID	<u>EDB</u>
MW86 503374-07	< 0.01
MLT-06 503374-08	<0.01
EB-031815 503374-12	<0.01
WB-031815 503374-13	<0.01
Method Blank	< 0.01

EDB 1,2-Dibromoethane

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503374

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503389-01 (Duplicate)

J	Reporting	·	Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	ug/L (ppb)	50	91	65-118		
Toluene	ug/L (ppb)	50	91	72-122		
Ethylbenzene	ug/L (ppb)	50	90	73-126		
Xylenes	ug/L (ppb)	150	89	74-118		
Gasoline	ug/L (ppb)	1,000	97	69-134		

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503374

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	90	98	63-142	9

### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503374

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code	: 503225-04 (N	Aatrix Spil	ke)				
				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	2.91	100	101	79-121	1
Laboratory Code: Laboratory Control Sample							

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	103	83-115

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503374

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	4.86	101	108	79-121	7

5	0		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	83-115

### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503374

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Couc. Laborator	y control sum	P10	Percent	Percent		
	Reporting	Spike	Recovery LCS	Recovery	Acceptance	RPD
Analyte	Units	Level	·	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	92	94	67-116	2
Acenaphthylene	ug/L (ppb)	1	89	92	65-119	3
Acenaphthene	ug/L (ppb)	1	92	95	66-118	3
Fluorene	ug/L (ppb)	1	95	95	64-125	0
Phenanthrene	ug/L (ppb)	1	94	95	67-120	1
Anthracene	ug/L (ppb)	1	95	96	65-122	1
Fluoranthene	ug/L (ppb)	1	95	93	65-127	2
Pyrene	ug/L (ppb)	1	93	100	62-130	7
Benz(a)anthracene	ug/L (ppb)	1	94	94	60-118	0
Chrysene	ug/L (ppb)	1	96	97	66-125	1
Benzo(b)fluoranthene	ug/L (ppb)	1	107	106	55-135	1
Benzo(k)fluoranthene	ug/L (ppb)	1	106	108	62-125	2
Benzo(a)pyrene	ug/L (ppb)	1	105	104	58-127	1
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	105	97	36-142	8
Dibenz(a,h)anthracene	ug/L (ppb)	1	101	85	37-133	17
Benzo(g,h,i)perylene	ug/L (ppb)	1	101	92	34-135	9

### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503374

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503374-02 (Matrix Spike)

	-1			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	119 vo	79-118
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	100	79-115

### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503374

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

#### ENVIRONMENTAL CHEMISTS

### Date of Report: 03/27/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503374

### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED

Laboratory Code: 503392-01 (Duplicate)								
-	Reporting	Sample	Duplicate	RPD				
Analyte	Units	Result	Result	(Limit 10)				
1,2-Dibromoethane	ug/L (ppb)	< 0.01	< 0.01	nm				

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
1,2-Dibromoethane	ug/L (ppb)	0.10	98	70-130	

#### ENVIRONMENTAL CHEMISTS

## **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$  - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\mbox{ca}$  - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COC.DOC	Fax (206) 283-5044 Received by:	Ph. (206) 285-8282 Relinquished by:	Seattle, WA 98119-2029 Received by:		Friedman & Bruya, Inc.	10 85 103 103	MW 77 09202		mw80 076-0		MLT-05 05 0	mw 65 04 0	03	MW 89 02-15-15	mw 88 $\theta'^{-}_{c}$ os	Sample ID ID S		City, State, ZIP HYNNWOOD Phone # 475-477-47045Fax #	Address 1910 W Z	•
		l by:	1	1 by Aladon	SIGNATURE	03-18-15 1440	03-18-15 1440	05-18-15-20	03-1817 1300	03-18-15-1300	03-18-15 11 30	03-18-15 1110	03-18-15 1030	5-18-15 1010	03-18-15 10940	Date Sampled Sampled Sar		WA 98036	26th Avet 203	
			Nhan	Autonolo	PR	H A	1 B	v 7	r r	W 74	R H	1 I	1 Z	8 H	w B	Sample Type containers		REMARKS BOH	TOC MLT,	PROJECT NAME/NO.
			han	velo Vaulion	PRINT NAME		XX	XXX	XXX	XX X	XX	× ×	XX	XX	XX	TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by8260 SVOCs by 8270 HFS	ANALY	Botton for Chilolud	2051001 02	NO. NO.
	Samples received		Froz	Stouter	COMPANY			XXXXX	XXXXX	×.	×	×	×	×		MTBE EDB EDC TOtol Pb Ditched Pb	ANALYSES REQUESTED	Plane	Rush cha	PO#
	ved at 2 °C		CUS/ 21-87-8	3-19-15-1500	DATE TIME			×	X							PHty Notes		SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	Rush charges authorized by	Standard (2 Weeks) A

	2	Samples received at	Sam													y;	Received by:	R	283-5044 XOC.DOC	Fax (206) 283-5044 Forms\coccoc.doc	<b>1</b>
															,	ed by:	elinquish	Ré	285-8282	Ph. (206) 285-8282	<b>b</b>
1500	3-14-15		FEBI	7 Z	<b></b> .				3	ph		Nhan		5	ly la	Received by: mlly/an	Received by:		Seattle, WA 98119-2029	Seattle, WA	۲
200	03-19-15	5	Stowar	A				3	Vadar	C		Antonela			HValan		Relinquished by:	<u></u>	Avenue Wes	3012 16th	
TIME	DATE	NY	MPA	8					AMI	PRINT NAME	PRI				SIGNATURE	SIGN		-	Friedman & Bruya, Inc.	Friedman .	-
											<b> </b>										[
									┼──┼	+	┼──┼										يو بر ۲
								/ '		$\mathbf{\mathbf{x}}$				~	١	1	14	, 	31915	65-031915	
	/ 4	XXX	X	X	$\times$			-1	X	$\langle \times \rangle$	X	し		S	07t-	132-103-18-11-1700	13 2-1		31815	WB-031815	
		$\times$	$\mathbf{X}$	$\times$	\$			<u> </u>	£	X	<b></b> <b>x</b> 7		)	S	1645	03-18-15	12 A A A A		31815	EB-031815	<u> </u>
					$\times$			<b>+</b> -'	X	$\mathbf{x}$		4		W	0/0/	03-18-15 1610				mw78	
ites	Notes	Total Pb Discolved Pb PAHC	EDC	EBB	MTBE	HFS	SVOCs by 8270	VOCs by8260	BTEX by 8021B	TPH-Diesel TPH-Gasoline	· · · · · · · · · · · · · · · · · · ·	# of containers	Sample Type	Sampl	Time Sampled	Date Sampled	Lab ID		Sample ID	S	
			ANALYSES REQUESTED	EQUI	ES R	LYS	AN	1			$\left  \right $			1							<b></b> -1
s s tions	SAMPLE DISPOSAL Schwarzer 30 days □ Return samples □ Will call with instructions	Gradient Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Souther Sout										N N	REMARKS		WA 98036		Fax	1-425 Fax		City, State, ZIP Phone # 425-4	
d by	Rush charges authorized by	Rush char					Ř	bajo2		12037	-	J.C.	toc mu	03	hr# 203	19101 W 36th	3	0	191	Address	
) they	Standard (2 Weeks) RUSH	RUSH		PO#	P			-		<b>`</b> .	ÍE/N	NAN	PROJECT NAME/NO	P				Hontic	1	Company	_
	Page # of	TURN	-	1		3	Autolon	Z		ure)	gnati	RS (si	SAMPLERS (signature)	Ś		Brooks		Rebell ah		Send Report To	•
2 BQ 14	2	19/15	151	0	ME	3		FODY	STC	CU	OF	IAIN	SAMPLE CHAIN OF CUST	SAMI					ちた	503374	

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 7, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 20, 2015 from the TOC_01-176, WORFDB8 F&BI 503399 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0407R.DOC

### ENVIRONMENTAL CHEMISTS

### CASE NARRATIVE

This case narrative encompasses samples received on March 20, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503399 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
503399 -01	MW16
503399 -02	MW48
503399 -03	MW63
503399 -04	MW64
503399 -05	MW50
503399 -06	MW51
503399 -07	MW43
503399 -08	MW52
503399 -09	EB-032015
503399 -10	TB-032015-1

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503399 Date Extracted: 03/24/15 Date Analyzed: 03/24/15

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 52-124)
MW16 503399-01	<1	<1	<1	<3	<100	88
MW48 503399-02 1/40	120	52	<40	1,900	12,000	92
MW63 503399-03	<1	<1	<1	<3	<100	94
MW64 503399-04	<1	<1	<1	<3	<100	88
MW50 503399-05	<1	<1	<1	<3	<100	87
MW51 503399-06	<1	<1	<1	<3	<100	88
MW43 503399-07	<1	<1	<1	<3	<100	89
MW52 cf 503399-08	<1	<1	<1	<3	<100	92
EB-032015 ⁵⁰³³⁹⁹⁻⁰⁹	<1	<1	<1	<3	<100	92
TB-032015-1 ⁵⁰³³⁹⁹⁻¹⁰	<1	<1	<1	<3	<100	92
Method Blank ^{05-0594 MB}	<1	<1	<1	<3	<100	94

Results Reported as ug/L (ppb)

# ENVIRONMENTAL CHEMISTS

# Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW48 03/20/15 03/31/15 04/01/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503399 503399-02 503399-02.080 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 96	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		12.8		

# ENVIRONMENTAL CHEMISTS

# Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/31/15 04/01/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503399 I5-188 mb I5-188 mb.060 ICPMS1 ML
Internal Standard: Holmium	% Recovery: 100	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

# ENVIRONMENTAL CHEMISTS

# Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW48 03/20/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503399 503399-02 503399-02.054 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 90	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		14.6		

# ENVIRONMENTAL CHEMISTS

# Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/23/15 03/24/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503399 I5-170 mb I5-170 mb.018 ICPMS1 ML
Internal Standard: Holmium	% Recovery: 87	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503399

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503399-03 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	90	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	95	73-126
Xylenes	ug/L (ppb)	150	92	74-118
Gasoline	ug/L (ppb)	1,000	96	69-134

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503399

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

A 1.	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	97	96	79-121	1

· ·	•		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	107	83-115

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503399

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	4.86	101	108	79-121	7

Laboratory	0040.	Laboratory	001101 01 041	pe	
				Percent	
		Reporting	Spike	Recovery	Ac

	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	83-115

#### ENVIRONMENTAL CHEMISTS

## **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$  - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$ 

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$  - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

			-	-										FORMS\COC\COC.DOC	FOI
	30	ved at	Samples received at									oy:	Received by:	Fax (206) 283-5044	Fa
												ied by:	Relinquished by:	Ph. (206) 285-8282	Ph
0	17, do	11	Tr DJ	TI			2		5 2		2	ive I	Received by:	Seattle, WA 98119-2029	Se
	1500	(j. do-11	stantec		,	ladun	Vau	ela	The tonela	Ý	ANUCUCIA	by:	Kelinquished by:	<i>3012 16th Avenue West</i>	30
	TIME	DATE	COMPANY	C		Ē	NAN	PRINT NAME	> P		SIGNATURE	SIGNA		Friedman & Bruya, Inc.	Fr
							$\mathbb{X}$			E	Ì	1	Æ	10-032015-1	1
 ب						<u>/~</u>	$\mathbf{X}$		در،	E	1445	03-22-15	1 50	EB-032015	ГТ.
and the	the trans	Steffe T				$\left  \right\rangle$	X		(ر)	3	1350	Birt	80	Ne Sy	$\geq$
<u></u>	stantia	HIY				$\leq$	X S		်)	51	BAS	3245	07	MW43	5
						$\sim$	$\times$		ذر.	Ś	11SC)	1)3-20-11	06	N/NS)	$\geq$
					_		X		ىر،	M	3	03-20-15	20	NW 50	5
						$\sim$	X		3	S	$\frac{130}{3}$	03-20-15	140	NIN GH	
						$\succ$	$\times$		S	W	000	03 A-40320-15	03 A-C	NW 63	$\triangleright$
				$\times$			$\geq$		ণ	N	000	03-26-151020	R2 K. FL	BE B	R
						<u> </u>	×		H SC	W	1515	03-19-15	Q1 4 10	MWIG	3
	Notes			HFS Totol Ab Disclured PS	SVOCs by 8270	BTEX by 8021B VOCs by8260	TPH-Gasoline	TPH-Diesel	# of containers	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID	
			UESTED	ANALYSES REQUESTED	ANAL										
	POSAL lays ructions	SAMPLE DISPOSAL Bispose after 30 days Return samples Will call with instructions		(" and are	d" d	Sched A	125		Alxies Pr	REMA	WA CHO36		Annivued	City, State, ZIP <u>V/11</u> Phone # <u>427-477-4225</u>	PI C
	rized by	Rush charges authorized by	Rush ch		6 12	20100103	2		Mu		36th Mr 2023			Address $\langle \mathcal{A}   \mathcal{C} \rangle$	A (
	D TIME	Standard (2 Weeks)		PO#	/chouor	A	·	E/NO	PROJECT NAME/NO		and Kim	Acontec Arender	evan t	ort To _	U Ň
All		Page # /	15	HE 03-20-		FODY	TSUC	OF C	HAIN	SAMPLE CHAIN OF CUSTO			-	503399	
	, ,	こくし													

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 27, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 20, 2015 from the TOC_01-176, WORFDB8 F&BI 503402 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik stn0327R.DOC

### ENVIRONMENTAL CHEMISTS

### CASE NARRATIVE

This case narrative encompasses samples received on March 20, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503402 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
503402 -01	MW69
503402 -02	MW88

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503402 Date Extracted: 03/24/15 Date Analyzed: 03/24/15

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<b>Results Reported</b> a	as ug/L	(ppb)
---------------------------	---------	-------

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 52-124)
MW69 503402-01	<1	1.9	32	140	2,700	108
Method Blank 05-566 MB	<1	<1	<1	<3	<100	90

## ENVIRONMENTAL CHEMISTS

# Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW69 03/20/15 03/23/15 03/23/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503402 503402-01 032322.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	104	57	121
Toluene-d8		107	63	127
4-Bromofluorobenze	ene	96	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

## ENVIRONMENTAL CHEMISTS

# Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW88 03/20/15 03/23/15 03/23/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503402 503402-02 032321.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	57	121
Toluene-d8		105	63	127
4-Bromofluorobenze	ene	97	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

## ENVIRONMENTAL CHEMISTS

# Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blar Not Applicat 03/23/15 03/23/15 Water		Client: Project: Lab ID: Data File: Instrument:	Stantec TOC_01-176, WORFDB8 F&BI 503402 05-0548 mb 032308.D GCMS4
Units:	ug/L (ppb)		Operator:	JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	104	57	121
Toluene-d8		106	63	127
4-Bromofluorobenze	ene	97	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503402

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503418-01 (Duplicate)

Ū	Reporting		Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	91	65-118
Toluene	ug/L (ppb)	50	91	72-122
Ethylbenzene	ug/L (ppb)	50	92	73-126
Xylenes	ug/L (ppb)	150	91	74-118
Gasoline	ug/L (ppb)	1,000	100	69-134

### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503402

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503392-01 (Matrix Spike)

	,			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	108	74-127

### ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503402

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

	ond of Sampro		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	108	109	64-147	1

#### ENVIRONMENTAL CHEMISTS

## **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$  - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$  - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

503402			7.0	SAMPLE CHAIN OF CUSTODY	HAIN O	FC	SUC	TC	DY		F.		2	120/15 VI	21	• 1	$\leq$			-R	L) PAR(E)	¥	、入り	Ű	
Send Report To Ruberhah Brechts and Kimulik	h Ba	its and	Kinvil		SAMPLERS (signature)	uture	e)		Henden	3S	S		N			<b>11</b>		Page #	Z #		Page # of		≦		
Company Stortec	tec			<del></del>	PROJECT NAME/NO.	NO	•						PO#				Standa RUSH	ndar SH	d (2	We	Standard (2 Weeks)				
101	5	W Wth the +20%	+200%	TOC	OC MET /	S) S	57	Ć	1203100102	$\tilde{P}$						R	ush	chai	Iges	aut	Rush charges authorized by	zed	Ъ		) I
ite, ZIP	wood	Lammond UN 98036	96.08	REMARKS							┝					A T	Dis	SAI	MPI e afi	ET 3	SAMPLE DISPOSAL	S S	£		
1	Fax #	#											- - -		L		Wil	urn ll ca	san 11 w	Return samples Will call with it	□ Return samples □ Will call with instructions	ucti	ons		L
										AN	ALY	ANALYSES REQUESTED	REC	UE	STE										
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS	MARE							······································		<b>7</b>	Notes	Š		
(Un stor)	OIA1	107 26 85	02/00	s:	Ĺ		X	X				-×													
MU FY	62	05-22 K	- Bitte	54								$\times$	<u>,                                    </u>							er- 6 SIY	Alse Sambler	X 3.	Siec.	bures	*
															<b> </b>			<b> </b>	<b> </b>						
												-		-					4						
													1	+	+										
																Sai	Sample			ĬVO	received at	1.1	H۲.	ືດ້	
Friedman & Bruya, Inc. 3012 16th Avenue West	S Relinquished by:	SIGN	SIGNATURE			PRINT NAME		<b>M</b>	NAME					COMPANY	MPANY		*			DATE	DATE		TIME	TIME	<u> </u>
Seattle, WA 98119-2029 Ph. (206) 285-8282	Received by: Relinquished by:	by:	244		DO	V	10							TO BI	2	1.				1		~	X	17,04	
Fax (206) 283-5044	Received by:	by:																							
FORMS\COC\COC.DOC												ſ										ľ			l

2.2

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 3, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 20, 2015 from the TOC_01-176, WORFDB8 F&BI 503403 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0403R.DOC
#### ENVIRONMENTAL CHEMISTS

#### CASE NARRATIVE

This case narrative encompasses samples received on March 20, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503403 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<b>Stantec</b>
503403 -01	MW66
503403 -02	MW40
503403 -03	MW28
503403 -04	<b>MTL-04</b>
503403 -05	MW25
503403 -06	TB-032015-2

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503403 Date Extracted: 03/24/15 Date Analyzed: 03/24/15 and 03/25/15

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 52-124)
MW66 503403-01	<1	<1	<1	<3	<100	93
MW40 503403-02	<1	<1	<1	<3	<100	89
MW28 503403-03	<1	<1	<1	<3	<100	91
MTL-04 503403-04	<1	<1	<1	<3	<100	87
MW25 503403-05	<1	<1	<1	<3	<100	90
TB-032015-2 503403-06	<1	<1	<1	<3	<100	91
Method Blank 05-0594 MB	<1	<1	<1	<3	<100	94

Results Reported as ug/L (ppb)

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503403 Date Extracted: 03/24/15 Date Analyzed: 03/24/15

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW66 503403-01 1/2	120 x	<500	93
Method Blank 05-588 MB2	<50	<250	84

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW66 03/20/15 03/23/15 03/23/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503403 503403-01 032323.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	103	57	121
Toluene-d8		104	63	127
4-Bromofluorobenze	ene	95	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blar Not Applical 03/23/15 03/23/15 Water		Client: Project: Lab ID: Data File: Instrument:	Stantec TOC_01-176, WORFDB8 F&BI 503403 05-0548 mb 032308.D GCMS4 JS
Units:	ug/L (ppb)		Operator:	12
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	-d4	104	57	121
Toluene-d8		106	63	127
4-Bromofluorobenze	ene	97	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW66 03/20/15 03/24/15 03/25/15 Water ug/L (ppb)	- · ·	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503403 503403-01 1/2 032514.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 100 86	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranther		<0.1		
Benzo(k)fluoranther		< 0.1		
Indeno(1,2,3-cd)pyre		<0.1		
Dibenz(a,h)anthrace		<0.1		
Benzo(g,h,i)perylene	) )	<0.1		

## ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/24/15 03/25/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503403 05-589 mb2 1/2 032504.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 96 103 Concentration	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthen	ne	< 0.1		
Benzo(k)fluoranther	ne	< 0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrace		<0.1		
Benzo(g,h,i)perylene	<u>è</u>	< 0.1		

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503403

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503399-03 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	90	65-118			
Toluene	ug/L (ppb)	50	92	72-122			
Ethylbenzene	ug/L (ppb)	50	95	73-126			
Xylenes	ug/L (ppb)	150	92	74-118			
Gasoline	ug/L (ppb)	1,000	96	69-134			

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503403

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	86	86	61-133	0

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503403

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503392-01 (Matrix Spike)

	1 /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	108	74-127

	ond of Dampie		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	108	109	64-147	1

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503403

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Control Builing	510	Dorcont	Dorcont		
Deporting	Sniko			Accontanco	RPD
1 0	· ·	Recovery LCS		-	
Units	Level		LCSD	Criteria	(Limit 20)
ug/L (ppb)	1	89	91	70-130	2
ug/L (ppb)	1	86	87	70-130	1
ug/L (ppb)	1	90	89	70-130	1
ug/L (ppb)	1	86	87	70-130	1
ug/L (ppb)	1	92	94	70-130	2
ug/L (ppb)	1	90	93	70-130	3
ug/L (ppb)	1	88	93	70-130	6
ug/L (ppb)	1	101	102	70-130	1
ug/L (ppb)	1	94	98	70-130	4
ug/L (ppb)	1	103	104	70-130	1
ug/L (ppb)	1	95	104	59-130	9
ug/L (ppb)	1	102	98	65-120	4
ug/L (ppb)	1	98	101	60-125	3
ug/L (ppb)	1	93	101	42-135	8
ug/L (ppb)	1	83	94	37-125	12
ug/L (ppb)	1	88	97	45-123	10
	Reporting Units ug/L (ppb) ug/L (ppb)	Units Level   ug/L (ppb) 1   Reporting Units Spike Level Percent Recovery LCS   ug/L (ppb) 1 89   ug/L (ppb) 1 86   ug/L (ppb) 1 90   ug/L (ppb) 1 90   ug/L (ppb) 1 90   ug/L (ppb) 1 92   ug/L (ppb) 1 90   ug/L (ppb) 1 90   ug/L (ppb) 1 90   ug/L (ppb) 1 90   ug/L (ppb) 1 91   ug/L (ppb) 1 90   ug/L (ppb) 1 93   ug/L (ppb) 1 93   ug/L (ppb) 1 83	Reporting Units Spike Level Percent Recovery LCS Percent Recovery LCSD   ug/L (ppb) 1 89 91   ug/L (ppb) 1 86 87   ug/L (ppb) 1 90 89   ug/L (ppb) 1 90 89   ug/L (ppb) 1 90 93   ug/L (ppb) 1 101 102   ug/L (ppb) 1 103 104   ug/L (ppb) 1 95 104   ug/L (ppb) 1 102 98   ug/L (ppb) 1 98 101   ug/L (ppb) 1 98 101   ug/L (ppb) 1 98 101   ug/L (ppb) 1 93 101   ug/L (ppb) 1 93 101   ug/L (ppb) 1 93 <td>Reporting UnitsSpike LevelPercent Recovery LCSPercent Recovery LCSDAcceptance Criteriaug/L (ppb)1899170-130ug/L (ppb)1868770-130ug/L (ppb)1908970-130ug/L (ppb)1908970-130ug/L (ppb)1908970-130ug/L (ppb)1929470-130ug/L (ppb)1909370-130ug/L (ppb)1909370-130ug/L (ppb)1909370-130ug/L (ppb)1909370-130ug/L (ppb)110110270-130ug/L (ppb)1949870-130ug/L (ppb)19510459-130ug/L (ppb)19510459-130ug/L (ppb)19810160-125ug/L (ppb)19310142-135ug/L (ppb)1839437-125</td>	Reporting UnitsSpike LevelPercent Recovery LCSPercent Recovery LCSDAcceptance Criteriaug/L (ppb)1899170-130ug/L (ppb)1868770-130ug/L (ppb)1908970-130ug/L (ppb)1908970-130ug/L (ppb)1908970-130ug/L (ppb)1929470-130ug/L (ppb)1909370-130ug/L (ppb)1909370-130ug/L (ppb)1909370-130ug/L (ppb)1909370-130ug/L (ppb)110110270-130ug/L (ppb)1949870-130ug/L (ppb)19510459-130ug/L (ppb)19510459-130ug/L (ppb)19810160-125ug/L (ppb)19310142-135ug/L (ppb)1839437-125	

#### ENVIRONMENTAL CHEMISTS

#### **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$  - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

															FORMSCOCCOCDOC
													hv.	Received hv-	E (206) 202 5011
													shed by:	Relinquished by:	Ph. (206) 285-8282
11 17:00	832	F8				$\sim$		Q		D)	6	P d	l by:	Received by:	Seattle, WA 98119-2029
03-26-15 1500	Cate	(10	1		dur	rcl	Wire	5	mela	st (1)		Vadan	4	Relinquished by:	3012 16th Avenue West
DATE TIME	COMPANY	COV					PRINT NAME	H Z	R	P		SIGNATURE	SIGN		Friedman & Bruya, Inc.
es received at UAT	Samples														
									i		÷				
							$\mathbf{X}$	$\overline{\times}$			10	1	We and	06	[[ 2102.0 -1]]
							X			( ; ; ) ( ; ; )		14100	<b>7</b> 3.201	05A1	(うとうから)
		 					X	1.		t j	(t.)	- الأ ^{رد}	23-24	64 100 100	MJ-04
							X	$\times$		3	M	200	13-2017	SA.C	$n = \frac{1}{2}$
							$\mathbf{X}$	$\mathbf{X}$		(j)	3	- Rej	03-2415	DZy-	WM 40
		$\times$	1.1				X			in) ا	Ĉ	1100	0320-15	6) 4-6	11NNG6
Notes		PAHS	Mitta	HFS	SVOCs by 8270	VOCs by8260	BTEX by 8021B	TPH-Gasoline	TPH-Diesel	# of containers	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID
	STED	ANALYSES REQUESTED	ES R	LYS	ANA		1								
SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions										KS	REMARKS	10 A 48036		1200 125 <b>F</b> ax	City, State, ZIP $\frac{1}{1111100}$ A Phone # $\frac{1}{1111110}$ Fax #
Rush charges authorized by	Rus				R	2010	Haz7100		2	TOC. MLT	100	# 2023	19101 W 36th / 1918	تى ئ	
Standard (2 Weeks)	D-Ø	PO#	P						- NO	T NAME	PROJECT NAME/NO.			C .	Company Stontec
TURNAROUND TIME				ς.	Sco	ladon	<u>A</u>	(9.	atur	RS (sign	SAMPLERS (signature)	Kim Vil	× 5/100	<u>2</u> 0	Send Report To Rebeilah Blacks & Kim Vik
Bayac +F	3/20/1512	20/		ME	}	DY	TO	SUC		HAIN O	SAMPLE CHAIN OF CUSTODY	S			503403



#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 24, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 16, 2015 from the TOC_01-176, WORFDB8 F&BI 503280 project. There are 29 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0324R.DOC

#### ENVIRONMENTAL CHEMISTS

#### CASE NARRATIVE

This case narrative encompasses samples received on March 16, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503280 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
503280 -01	MW104
503280 -02	<b>MLT-07</b>

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503280 Date Extracted: 03/17/15 Date Analyzed: 03/17/15

#### **RESULTS FROM THE ANALYSIS OF WATER SAMPLES** FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE **USING METHOD NWTPH-Gx**

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Gasoline Range	Surrogate ( <u>% Recovery)</u> (Limit 50-150)
MW104 503280-01 1/20	14,000	108
MLT-07 503280-02 1/20	15,000	108
Method Blank ^{05-517 MB}	<100	104

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503280 Date Extracted: 03/17/15 Date Analyzed: 03/18/15

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW104 503280-01	11,000 x	730 x	114
MLT-07 503280-02	11,000 x	750 x	127
Method Blank ^{05-551 MB}	<50	<250	101

## ENVIRONMENTAL CHEMISTS

## Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW104 03/16/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 503280-01 503280-01.054 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 93	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

## Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-07 03/16/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 503280-02 503280-02.055 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 93	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

## Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/20/15 03/20/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 I5-167 mb I5-167 mb.044 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

## ENVIRONMENTAL CHEMISTS

# Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW104 03/16/15 03/18/15 03/19/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 503280-01 503280-01.045 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 94	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

# Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-07 03/16/15 03/18/15 03/19/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 503280-02 503280-02.046 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 97	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

# Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/18/15 03/19/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 I5-163 mb I5-163 mb.021 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 98	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW104 03/16/15 03/17/15 03/18/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 503280-01 1/2 031819.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	d12	% Recovery: 95 80	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		240 ve		
Acenaphthylene		< 0.1		
Acenaphthene		0.13		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranther		< 0.1		
Benzo(k)fluoranther		< 0.1		
Indeno(1,2,3-cd)pyro		<0.1		
Dibenz(a,h)anthrac		<0.1		
Benzo(g,h,i)perylen	е	<0.1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW104 03/16/15 03/17/15 03/19/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 503280-01 1/200 031905.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 94 d 77 d	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		450		
Acenaphthylene		<10		
Acenaphthene		<10		
Fluorene		<10		
Phenanthrene		<10		
Anthracene		<10		
Fluoranthene		<10		
Pyrene		<10		
Benz(a)anthracene		<10		
Chrysene		<10		
Benzo(a)pyrene		<10		
Benzo(b)fluoranther		<10		
Benzo(k)fluoranther		<10		
Indeno(1,2,3-cd)pyre		<10		
Dibenz(a,h)anthrace		<10		
Benzo(g,h,i)perylene	<u>)</u>	<10		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-07 03/16/15 03/17/15 03/18/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 503280-02 1/2 031820.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 96 89	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		250 ve		
Acenaphthylene		< 0.1		
Acenaphthene		0.13		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranther		<0.1		
Benzo(k)fluoranther		< 0.1		
Indeno(1,2,3-cd)pyre		<0.1		
Dibenz(a,h)anthrace		<0.1		
Benzo(g,h,i)perylene	<u>è</u>	<0.1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-07 03/16/15 03/17/15 03/19/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 503280-02 1/200 031906.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 82 d 78 d	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		430		
Acenaphthylene		<10		
Acenaphthene		<10		
Fluorene		<10		
Phenanthrene		<10		
Anthracene		<10		
Fluoranthene		<10		
Pyrene		<10		
Benz(a)anthracene		<10		
Chrysene		<10		
Benzo(a)pyrene		<10		
Benzo(b)fluoranther		<10		
Benzo(k)fluoranther		<10		
Indeno(1,2,3-cd)pyre		<10		
Dibenz(a,h)anthrac		<10		
Benzo(g,h,i)perylene	<del>j</del>	<10		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/17/15 03/18/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 05-535 mb2 031809.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 108 117	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:	(	Concentration ug/L (ppb)		
Naphthalene		< 0.05		
Acenaphthylene		< 0.05		
Acenaphthene		< 0.05		
Fluorene		< 0.05		
Phenanthrene		< 0.05		
Anthracene		< 0.05		
Fluoranthene		< 0.05		
Pyrene		< 0.05		
Benz(a)anthracene		< 0.05		
Chrysene		< 0.05		
Benzo(a)pyrene		< 0.05		
Benzo(b)fluoranther	ie	< 0.05		
Benzo(k)fluoranther		< 0.05		
Indeno(1,2,3-cd)pyre		< 0.05		
Dibenz(a,h)anthrace	ene	< 0.05		
Benzo(g,h,i)perylene	<u>)</u>	< 0.05		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW104 03/16/15 03/16/15 03/16/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 503280-01 031628.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4		98	57	121
Toluene-d8		105	63	127
4-Bromofluorobenzene		110	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
Benzene		0.84		
Toluene		63		
Ethylbenzene		430 ve		
m,p-Xylene		1,400 ve		
o-Xylene		330 ve		

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW104 03/16/15 03/16/15 03/17/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 503280-01 1/20 031712.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4		104	57	121
Toluene-d8		103	63	127
4-Bromofluorobenzene		97	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<20		
1,2-Dichloroethane	(EDC)	<20		
Benzene		<7		
Toluene		74		
Ethylbenzene		560		
m,p-Xylene		2,100		
o-Xylene		360		

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-07 03/16/15 03/16/15 03/16/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 503280-02 031629.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4		100	57	121
Toluene-d8		106	63	127
4-Bromofluorobenzene		109	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		
Benzene		0.92		
Toluene		67		
Ethylbenzene		420 ve		
m,p-Xylene		1,400 ve		
o-Xylene		330 ve		

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MLT-07 03/16/15 03/16/15 03/17/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 503280-02 1/20 031713.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4		100	57	121
Toluene-d8		102	63	127
4-Bromofluorobenzene		96	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<20		
1,2-Dichloroethane (EDC)		<20		
Benzene		<7		
Toluene		71		
Ethylbenzene		540		
m,p-Xylene		2,100		
o-Xylene		350		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blar Not Applical 03/16/15 03/16/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503280 05-0541 mb 031620.D GCMS4 JS
		0/ <b>D</b>	Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	57	121
Toluene-d8		101	63	127
4-Bromofluorobenze	ne	97	60	133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether	(MTBE)	<1		
1,2-Dichloroethane (		<1		
Benzene	<b>`</b>	< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503280 Date Extracted: 03/18/15 Date Analyzed: 03/18/15

#### **RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED**

Results Reported as  $\mu$ g/L (ppb)

Sample ID Laboratory ID	<u>EDB</u>
MW104 503280-01	<0.01
MLT-07 503280-02	<0.01
Method Blank	<0.01

EDB

1,2-Dibromoethane

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503280

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 503226-01 (Duplicate)							
	Reporting	Sampl	e Duj	olicate	RPD		
Analyte	Units	Result	t Re	esult	(Limit 20)		
Gasoline	ug/L (ppb)	<100	<	100	nm		
Laboratory Code: Laboratory Control Sample							
	_		Percent				
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria	_		
Gasoline	ug/L (ppb)	1,000	97	70-119	-		
### ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503280

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	108	110	63-142	2

### ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503280

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code:	503225-04 (N	Aatrix Spik	xe)				
				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	2.91	100	101	79-121	1
Laboratory Cada	Laboratory	ontrol Com	mlo				
Laboratory Code:	Laboratory C	ontrol San	ipie				

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	103	83-115

### ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503280

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

			Percent	Percent	,	- I	· · · · · · · · · · · · · · · · · · ·	Laboratory Code
RPD imit 20)		Acceptance Criteria	Recovery MSD	Recovery MS	Sample Result	Spike Level	Reporting Units	Analyte
6	•	79-121	117	110	<1	10	ug/L (ppb)	Lead
	21	79-121	117	110	<1	10	ug/L (ppb)	Lead

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	83-115

### ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503280

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: Laborator	y Control Sam	pie 1/0.23		_		
			Percent	Percent		
	Reporting	Spike	Recovery LCS	Recovery	Acceptance	RPD
Analyte	Units	Level		LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	0.25	85	91	70-130	7
Acenaphthylene	ug/L (ppb)	0.25	82	88	70-130	7
Acenaphthene	ug/L (ppb)	0.25	84	92	70-130	9
Fluorene	ug/L (ppb)	0.25	82	88	70-130	7
Phenanthrene	ug/L (ppb)	0.25	89	95	70-130	7
Anthracene	ug/L (ppb)	0.25	87	94	70-130	8
Fluoranthene	ug/L (ppb)	0.25	87	93	70-130	7
Pyrene	ug/L (ppb)	0.25	94	103	70-130	9
Benz(a)anthracene	ug/L (ppb)	0.25	93	102	70-130	9
Chrysene	ug/L (ppb)	0.25	101	107	70-130	6
Benzo(b)fluoranthene	ug/L (ppb)	0.25	99	99	59-130	0
Benzo(k)fluoranthene	ug/L (ppb)	0.25	93	104	65-120	11
Benzo(a)pyrene	ug/L (ppb)	0.25	93	102	60-125	9
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	0.25	85	95	42-135	11
Dibenz(a,h)anthracene	ug/L (ppb)	0.25	79	85	37-125	7
Benzo(g,h,i)perylene	ug/L (ppb)	0.25	86	93	45-123	8

### ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503280

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503280-01 (Matrix Spike)

5	1 /				
				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	101	74-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	103	69-133
Benzene	ug/L (ppb)	50	0.84	103	76-125
Toluene	ug/L (ppb)	50	63	107 b	76-122
Ethylbenzene	ug/L (ppb)	50	430	3 b	69-135
m,p-Xylene	ug/L (ppb)	100	1,400	0 b	69-135
o-Xylene	ug/L (ppb)	50	330	83 b	60-140

### ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503280

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

	<b>--</b>		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	105	101	64-147	4
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	107	104	73-132	3
Benzene	ug/L (ppb)	50	104	102	69-134	2
Toluene	ug/L (ppb)	50	102	101	72-122	1
Ethylbenzene	ug/L (ppb)	50	101	100	77-124	1
m,p-Xylene	ug/L (ppb)	100	101	100	83-125	1
o-Xylene	ug/L (ppb)	50	101	100	81-121	1

#### ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/16/15 Project: TOC_01-176, WORFDB8 F&BI 503280

### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED

Laboratory Code: 503280-01 (	(Duplicate)			
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 10)
1,2-Dibromoethane	ug/L (ppb)	<0.01	< 0.01	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
1,2-Dibromoethane	ug/L (ppb)	0.10	73	70-130

ENVIRONMENTAL CHEMISTS

## **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$  - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$ 

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

L		بر د	d Rt	Samples received at	<b>1</b>	mple	Sa													Received by:	3-5044	<i>Fax</i> (206) 283-5044 Forms/coc/coc/doc
L																-		-	a by.	Kenniquistien by.	-8282	Pn. (200) 283-8282
1	1400)	03-16-15 1	0		-1	es.	to				5	han	A		)han			1 Grun	NW x	Received by:	8119-2029	Seattle, WA 98119-2029
L	1400	61.9160	0		tec	fortec	5					dor	Va	RA	Antonela Vadon	7		Undon	id by:	Relinquished by:	enue West	3012 16th Avenue West
	TIME	DATE	$\left  - \right $		ANY	COMPANY	CC				E	PRINT NAME	ATZ	PRI				TURE	SIGNATURE	5 -	Bruya, Inc.	Friedman & Bruya, Inc.
L																						
ļ																						
I																						
	1																					
													· · · · ·									
L												<u> </u>	<u> </u>	<u> </u>						<u> </u>		
										<u> </u>	$\left  \right $											
			$\boldsymbol{\times}$	X	$\times$	$\times$	$\prec$	X				X	$\bigcirc$		E-	 	3	1200	03-16-15 1 300	5 1 2 2		MLT-01
l			$\checkmark$	$\times$	X	$\times$	$\times$	$\succ$			×			~/	1		E	1200	03-16-15	0) J- 6		MW ic LI
	Notes .	z.	Divisional AB	TOTAL Pb	EDIS	EDC	PAHS	MBE	HFS	SVOCs by 8270	BTEX by 8021B VOCs by8260	TPH-Gasoline	TPH-Diesel		# of containers		Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID	Samp
				1	ED	JEST	REQUESTED	SES F	ANALYSES	AN	$\left  \right $	$\left  \right $	$\left  \right $	+-								
L	ctions	<ul> <li>Return samples</li> <li>Will call with instructions</li> </ul>	urn sa l call	] Ret			۴	2	م م	<u>م</u>	β	ol Fr	1	2	tiltered "chisoland	for a	- tig			14 Fax #	-477-466	Phone # 425-477-4644 Fax #
	OSAL /s	SAMPLE DISPOSAL	SAMI pose a	He is		J'YAS	ane	duxfolved Phanalymi	livea	1xho	e.	de la	5	¥	d s>	MARI	REI	35	A 980	ood w	IP Lynnw	City, State, ZIP Lynnwood WA 98036
- / AQ	sed by	Rush charges authorized by	charg	Rush (						02	00	С Х	20		TOC MUT/203700102	00	1	S S	Ne #2	364 A	19101 W36th Are #223	1 1
- Ja	THAT	Standard (2 Weeks)	ndard SH	Standa RUSH			PO#				1	4	- 0	1E/N	PROJECT NAME/NO.	DJEC	PR		i i i		Stantec	Company
	of VS		Page #		╼╶ <b>┚</b> ┐				٢	helow	7	X	ure)	gnat	SAMPLERS (signature)	MPLE	SAP		Colls.	Kol P	R	Send Benort To Rubi Kah Brooks
	~	- - - -			5	6.	1	20	MC	-	ODY	JST	CL	OF	HAIN	E CI	SAMPLE CHAIN OF CUSTO					503280
-	ferman	Hen																			-	3

• •

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 7, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 19, 2015 from the TOC_01-176, WORFDB8 F&BI 503397 project. There are 25 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0407R.DOC

### ENVIRONMENTAL CHEMISTS

### CASE NARRATIVE

This case narrative encompasses samples received on March 19, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503397 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
503397 -01	MW105
503397 -02	EB-031615
503397 -03	MW103

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503397 Date Extracted: 03/23/15 Date Analyzed: 03/23/15

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 52-124)
MW105 503397-01	<1	<1	<1	<3	<100	92
EB-031615 ⁵⁰³³⁹⁷⁻⁰²	<1	<1	<1	<3	<100	90
MW103 503397-03	34	1.7	<1	<3	120	85
Method Blank ^{05-564 MB}	<1	<1	<1	<3	<100	86

Results Reported as ug/L (ppb)

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503397 Date Extracted: 03/23/15 Date Analyzed: 03/23/15

### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW105 503397-01	230 x	<500	85
MW103 503397-03	170 x	<500	98
Method Blank ^{05-588 MB}	<50	<250	99

## ENVIRONMENTAL CHEMISTS

## Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW105 03/19/15 03/31/15 04/01/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503397 503397-01 503397-01.078 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 96	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		1.28		

## ENVIRONMENTAL CHEMISTS

## Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW103 03/19/15 03/31/15 04/01/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503397 503397-03 503397-03.079 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 97	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

## Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/31/15 04/01/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503397 I5-188 mb I5-188 mb.060 ICPMS1 ML
Internal Standard: Holmium	% Recovery: 100	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

## ENVIRONMENTAL CHEMISTS

## Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW105 03/19/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503397 503397-01 503397-01.052 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 91	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		3.24		

## ENVIRONMENTAL CHEMISTS

# Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW103 03/19/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503397 503397-03 503397-03.053 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 91	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		1.82		

## ENVIRONMENTAL CHEMISTS

## Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/23/15 03/24/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503397 I5-170 mb I5-170 mb.018 ICPMS1 ML
Internal Standard: Holmium	% Recovery: 87	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW105 03/19/15 03/23/15 03/23/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503397 503397-01 032332.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	103	57	121
Toluene-d8		105	63	127
4-Bromofluorobenze	ne	97	60	133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane		<1 <1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EB-031615 03/19/15 03/23/15 03/23/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503397 503397-02 032333.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	-d4	102	57	121
Toluene-d8		106	63	127
4-Bromofluorobenze	ene	95	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	er (MTBE)	<1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW103 03/19/15 03/23/15 03/23/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503397 503397-03 032334.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	57	121
Toluene-d8		104	63	127
4-Bromofluorobenze	ne	95	60	133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane (		8.4 <1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applical 03/23/15 03/23/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503397 05-0548 mb 032308.D GCMS4 JS
	0 11		T ormon	I lan an
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	104	57	121
Toluene-d8		106	63	127
4-Bromofluorobenze	ne	97	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ether	r (MTBE)	<1		
1,2-Dichloroethane		<1		

## ENVIRONMENTAL CHEMISTS

## Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW105 03/19/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503397 503397-01 1/2 032412.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 101 88	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		<0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		<0.1		
Benzo(b)fluoranther		<0.1		
Benzo(k)fluoranther		<0.1		
Indeno(1,2,3-cd)pyre		<0.1		
Dibenz(a,h)anthrace		<0.1		
Benzo(g,h,i)perylene	<u>)</u>	<0.1		

## ENVIRONMENTAL CHEMISTS

## Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW103 03/19/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503397 503397-03 1/2 032413.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene		% Recovery: 99 79	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranther		< 0.1		
Benzo(k)fluoranther		< 0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrace		<0.1		
Benzo(g,h,i)perylene	e	<0.1		

## ENVIRONMENTAL CHEMISTS

## Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503397 05-589 mb 1/2 032411.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene		% Recovery: 99 94	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:	(	Concentration ug/L (ppb)		
Naphthalene		<0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthen	ie	< 0.1		
Benzo(k)fluoranther	ne	< 0.1		
Indeno(1,2,3-cd)pyre	ene	< 0.1		
Dibenz(a,h)anthrace	ene	<0.1		
Benzo(g,h,i)perylene	2	< 0.1		

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503397 Date Extracted: 03/23/15 Date Analyzed: 03/23/15

### **RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED**

Results Reported as  $\mu$ g/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>EDB</u>
MW105 503397-01	<0.01
MW103 503397-03	<0.01
Method Blank	< 0.01

EDB 1,2-Dibromoethane

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503397

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503389-01 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	91	65-118			
Toluene	ug/L (ppb)	50	91	72-122			
Ethylbenzene	ug/L (ppb)	50	90	73-126			
Xylenes	ug/L (ppb)	150	89	74-118			
Gasoline	ug/L (ppb)	1,000	97	69-134			

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503397

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	86	86	61-133	0

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503397

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

<b>A A .</b>	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	97	96	79-121	1

-	·		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	107	83-115

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503397

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Lead	ug/L (ppb)	10	4.86	101	108	79-121	7

Ū	Ū		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	83-115

### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503397

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503392-01 (Matrix Spike)

Percent					
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	108	74-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	106	69-133

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	108	109	64-147	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	104	103	73-132	1

### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503397

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Couc. Laborator	j control sum	<b>P10</b>	Percent	Percent		
	Reporting	Spike	Recovery LCS	Recovery	Acceptance	RPD
Analyte	Units	Level	·	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	89	91	70-130	2
Acenaphthylene	ug/L (ppb)	1	86	87	70-130	1
Acenaphthene	ug/L (ppb)	1	90	89	70-130	1
Fluorene	ug/L (ppb)	1	86	87	70-130	1
Phenanthrene	ug/L (ppb)	1	92	94	70-130	2
Anthracene	ug/L (ppb)	1	90	93	70-130	3
Fluoranthene	ug/L (ppb)	1	88	93	70-130	6
Pyrene	ug/L (ppb)	1	101	102	70-130	1
Benz(a)anthracene	ug/L (ppb)	1	94	98	70-130	4
Chrysene	ug/L (ppb)	1	103	104	70-130	1
Benzo(b)fluoranthene	ug/L (ppb)	1	95	104	59-130	9
Benzo(k)fluoranthene	ug/L (ppb)	1	102	98	65-120	4
Benzo(a)pyrene	ug/L (ppb)	1	98	101	60-125	3
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	93	101	42-135	8
Dibenz(a,h)anthracene	ug/L (ppb)	1	83	94	37-125	12
Benzo(g,h,i)perylene	ug/L (ppb)	1	88	97	45-123	10

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503397

### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED

Laboratory Code: 503392-01 (Duplicate)												
-	Reporting	Sample	Duplicate	RPD								
Analyte	Units	Result	Result	(Limit 10)								
1,2-Dibromoethane	ug/L (ppb)	< 0.01	< 0.01	nm								

	Percent								
	Reporting	Spike	Recovery	Acceptance					
Analyte	Units	Level	LCS	Criteria					
1,2-Dibromoethane	ug/L (ppb)	0.10	98	70-130					

#### ENVIRONMENTAL CHEMISTS

## **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\mbox{ca}$  - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS/COC/COC/DOC		Ph. (206) 285-8282	Seattle, WA 98119-2029 Re	3012 16th Avenue West Re						MW103	EB-031615 6	niwlos	Sample ID		City, State, ZIP $(Mhl)$ Phone # $(1)T$ $(71)$ $(4)25$ Fax #	10	Company How	Sand Benort To Robert And Price lice	505597
	meived by:	Relinquished by	Received by M C	Relinquished by: ACUCCOM	SIGNATURE					03A 203-19-15 1240	02AD (346 05 1415	0146 63-16 15 1300	Time		HUS Fax # WN 98036	10 w 30th Ave H203		L Arnolde	S
		TONG NOW EN	7	n Antonic Under	PRINT NAME						w $H$ $XX$		Sample Type Type Containers TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by8260 SVOCs by 8270	ANA	tillered,	TOC MLT / 2037 00102	PROJECT NAME/NO.	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
				Stoular	COMPANY	Samples received					×.	F   X   X   X   Y	HFS MTBE FDB FDC FDC FDC FDC FDC FDC FDC FDC FDC FDC	ANALYSES REQUESTED	AMPLE D Also wed "Clive End to the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		PO#	17 Page #	ME 300/15 V
				Cistant ison	DATE TIME	t 2°C				× 3		<u> </u>	Notes		SAMPLE DISPOSAL Sipose after 30 days Return samples Will call with instructions	Rush charges authorized by	Standard (2 Weeks)		HERMAT
#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 7, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 20, 2015 from the TOC_01-176, WORFDB8 F&BI 503401 project. There are 28 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0407R.DOC

#### ENVIRONMENTAL CHEMISTS

#### CASE NARRATIVE

This case narrative encompasses samples received on March 20, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503401 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stantec</u>
503401 -01	MW106
503401 -02	MW107
503401 -03	EB-031915

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503401 Date Extracted: 03/24/15 Date Analyzed: 03/24/15

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 52-124)
MW106 503401-01	<1	<1	<1	<3	<100	90
MW107 503401-02	8.0	3.0	1.5	7.9	<100	87
EB-031915 503401-03	<1	<1	<1	<3	<100	91
Method Blank ^{05-566 MB}	<1	<1	<1	<3	<100	90

Results Reported as ug/L (ppb)

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503401 Date Extracted: 03/24/15 Date Analyzed: 03/24/15

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW106 503401-01 1/2	160 x	<500	88
MW107 503401-02 1/2	110 x	<500	87
EB-031915 503401-03 1/2	<100	<500	91
Method Blank 05-588 MB2	<50	<250	84

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW106 03/20/15 03/31/15 04/01/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 503401-01 503401-01.082 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 99	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW107 03/20/15 03/31/15 04/01/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 503401-02 503401-02.083 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 96	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EB-031915 03/20/15 03/31/15 04/01/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 503401-03 503401-03.084 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 99	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/31/15 04/01/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 I5-188 mb I5-188 mb.060 ICPMS1 ML
Internal Standard: Holmium	% Recovery: 100	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW106 03/20/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 503401-01 503401-01.056 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW107 03/20/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 503401-02 503401-02.057 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 91	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		8.86		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EB-031915 03/20/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 503401-03 503401-03.058 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 94	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/23/15 03/24/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 I5-170 mb I5-170 mb.018 ICPMS1 ML
Internal Standard: Holmium	% Recovery: 87	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

#### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW106 03/20/15 03/23/15 03/23/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 503401-01 032335.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	100	57	121
Toluene-d8		105	63	127
4-Bromofluorobenze	ene	95	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		

# ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW107 03/20/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 503401-02 032336.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	57	121
Toluene-d8		105	63	127
4-Bromofluorobenze	ne	95	60	133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane		<1 <1		

# ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EB-031915 03/20/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 503401-03 032337.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	98	57	121
Toluene-d8		103	63	127
4-Bromofluorobenze	ne	96	60	133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane		<1 <1		

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applical 03/23/15 03/23/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 05-0548 mb 032308.D GCMS4 JS
	0 41 /		•	
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	104	57	121
Toluene-d8		106	63	127
4-Bromofluorobenze	ene	97	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane		<1		

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503401 Date Extracted: 03/23/15 Date Analyzed: 03/23/15

#### **RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED**

Results Reported as  $\mu$ g/L (ppb)

Sample ID Laboratory ID	<u>EDB</u>
MW106 503401-01	< 0.01
MW107 503401-02	< 0.01
EB-031915 503401-03	<0.01
Method Blank	< 0.01

EDB 1,2-Dibromoethane

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW106 03/20/15 03/24/15 03/25/15 Water ug/L (ppb)	1 0	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 503401-01 1/2 032511.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 102 98	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		<0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		<0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranther		< 0.1		
Benzo(k)fluoranther		<0.1		
Indeno(1,2,3-cd)pyre		<0.1		
Dibenz(a,h)anthrace		<0.1		
Benzo(g,h,i)perylene	<u>)</u>	<0.1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW107 03/20/15 03/24/15 03/25/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 503401-02 1/2 032512.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 102 94	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		0.22		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranther		< 0.1		
Benzo(k)fluoranther		<0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrace		<0.1		
Benzo(g,h,i)perylene	<u>)</u>	<0.1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EB-031915 03/20/15 03/24/15 03/25/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 503401-03 1/2 032513.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 102 96	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		<0.1		
Benzo(b)fluoranther		<0.1		
Benzo(k)fluoranther		< 0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrace		< 0.1		
Benzo(g,h,i)perylene	)	<0.1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/24/15 03/25/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503401 05-589 mb2 1/2 032504.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene		% Recovery: 96 103	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:	C	Concentration ug/L (ppb)		
Naphthalene		<0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthen	ie	< 0.1		
Benzo(k)fluoranther	ne	< 0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrace		< 0.1		
Benzo(g,h,i)perylene	<u>)</u>	< 0.1		

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503401

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503418-01 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	91	65-118
Toluene	ug/L (ppb)	50	91	72-122
Ethylbenzene	ug/L (ppb)	50	92	73-126
Xylenes	ug/L (ppb)	150	91	74-118
Gasoline	ug/L (ppb)	1,000	100	69-134

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503401

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	86	86	61-133	0

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503401

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

<b>A A</b> .	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	97	96	79-121	1

-	·		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	107	83-115

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503401

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	4.86	101	108	79-121	7

•	5		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	83-115

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503401

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503392-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	108	74-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	106	69-133

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	108	109	64-147	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	104	103	73-132	1

#### ENVIRONMENTAL CHEMISTS

#### Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503401

#### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED

Laboratory Code: 503392-01 (Duplicate)										
-	Reporting	Sample	Duplicate	RPD						
Analyte	Units	Result	Result	(Limit 10)						
1,2-Dibromoethane	ug/L (ppb)	< 0.01	< 0.01	nm						

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
1,2-Dibromoethane	ug/L (ppb)	0.10	98	70-130		

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503401

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code. Laboratory		pic	Percent	Percent		
	Reporting	Spike	Recovery LCS	Recovery	Acceptance	RPD
Analyte	Units	Level	need or j Leb	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	89	91	70-130	2
Acenaphthylene	ug/L (ppb)	1	86	87	70-130	1
Acenaphthene	ug/L (ppb)	1	90	89	70-130	1
Fluorene	ug/L (ppb)	1	86	87	70-130	1
Phenanthrene	ug/L (ppb)	1	92	94	70-130	2
Anthracene	ug/L (ppb)	1	90	93	70-130	3
Fluoranthene	ug/L (ppb)	1	88	93	70-130	6
Pyrene	ug/L (ppb)	1	101	102	70-130	1
Benz(a)anthracene	ug/L (ppb)	1	94	98	70-130	4
Chrysene	ug/L (ppb)	1	103	104	70-130	1
Benzo(b)fluoranthene	ug/L (ppb)	1	95	104	59-130	9
Benzo(k)fluoranthene	ug/L (ppb)	1	102	98	65-120	4
Benzo(a)pyrene	ug/L (ppb)	1	98	101	60-125	3
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	93	101	42-135	8
Dibenz(a,h)anthracene	ug/L (ppb)	1	83	94	37-125	12
Benzo(g,h,i)perylene	ug/L (ppb)	1	88	97	45-123	10

#### ENVIRONMENTAL CHEMISTS

#### **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$  - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COC.DOC	Eax (706) 782 5044	Seattle, WA 98119-2029 Ph. (206) 285-8282	3012 16th Avenue West	Friedman & Bruya, Inc.						EB-031915	MWIOI	901 MW	Sample ID		City, State, ZIP $\frac{1}{1} \frac{1}{1} 1$	Address $ C  C $		n n m Vh/W/	107205
	Received by	Relinquished by:	Relinquis	1 -							02 T	0140	Lab		Inwoo XT Fax	IGICI W 26th	tr'	1. F	
	hv.	by:	Relinquished by: MON	SIGN						03-19-15	1-6-60	01160 319-15	Date Sampled		WA	AC FA		mate -	
		ZANG	wolow (	SIGNATURE						1600	1500	9440	Time Sampled		1-1/225 Fax #	Are #202	M ( ) M	n nd Kin	
	-									S	B	3	Sample Type		A MODULAIS	00	PROJEC	(n/n Provide and Kim Vild SAMPLERS (signature)	SAMPLE CHAIN OF CUSTO
		67	thranela	PF								4	# of containers		L WA	$\beta$	PROJECT NAME/NO.	ERS (sign	HAIN C
		Ø	66	PRINT NAME						$\times$	$\checkmark$	$\mathbb{X}$	TPH-Diesel		entities for	[-]	NO	ıatur	)F (
		50		NA						$\times$	$\times$	$\times$	TPH-Gasoline		No No	35		e)	SUC
			North N	ME	·	 	 		]	$\geq$	$\times$	$\times$	BTEX by 8021B		ES .	1203700102	ł	>	ТО
			3				 						VOCs by8260			190		$\leq$	DY
						 	 						SVOCs by 8270	ANA	u diatelined	20	ł	Ž	
						 	 						HFS	LYS	atoliced Pb allowed " and			Ş	in.
							 			$\times$	$\leq$	$\bowtie$	MTBE	ES R	29		H		d3 -
		T	15	S						$\times$	$\times$	$\times$	EDB	EQU	- P		PO#		8
		682	R	COMPANY						$\times$	$\times$	$\times$	EDC	ANALYSES REQUESTED	A				ŝ
		17)	contec	YN	Sa					$\langle  $	$\times$	$\times$	PAHS	ΈD				<b></b>	Ŧ
					Sample					$\overline{\times}$	$\overline{\checkmark}$	$\overline{\mathbf{X}}$	Detel Ph			Rush cha			R
	_	_			5	 		$\rightarrow$	+	$\overline{\mathbf{X}}$	$\overline{\bigcirc}$	$\overline{X}$	ille leal ph		SA spos sturn ill ca	i cha	anda re⊔	Page #	Ĩ,
		~	11-02-20-15	DATE	received at							/ 1			SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	Rush charges authorized by	Standard (2 Weeks)	#	NE 03-20-15 (Herman) B
		K1		T	$\mathbf{k}_{\lambda}$								Notes		ays uctio	ized	э т		805/
		6	100	TIME									<i>\$</i> 0		ns L	by	ME	;	al a
L		5		Ļ			 											]  ,	AF3



#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 3, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 19, 2015 from the TOC_01-176, WORFDB8 F&BI 503373 project. There are 29 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0403R.DOC

#### ENVIRONMENTAL CHEMISTS

#### CASE NARRATIVE

This case narrative encompasses samples received on March 19, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503373 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
503373 -01	MW72
503373 -02	MW73

The full concentration analysis of MW73 for MTBE was qualified due to a failing laboratory control sample. The sample was reanalyzed at a dilution and unqualified results were included.

EDB was detected in the 8011 analysis. The results could not be confirmed by 8260C and may be due to matrix interferences.

All other quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503373 Date Extracted: 03/20/15 and 03/23/15 Date Analyzed: 03/20/15 and 03/23/15

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results	Reported	as ug/	ւ (ppb)	

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 52-124)
MW72 503373-01 1/1000	1,400	15,000	2,300	18,000	130,000	92
MW73 503373-02 1/1000	14,000	2,300	1,800	9,300	70,000	90
Method Blank ^{05-561 MB}	<1	<1	<1	<3	<100	88

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503373 Date Extracted: 03/20/15 Date Analyzed: 03/20/15

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW72 503373-01 1/2	15,000 x	<500	94
MW73 503373-02 1/2	3,100 x	<500	86
Method Blank ^{05-583 MB}	<50	<250	105

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW72 03/19/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 503373-01 503373-01.045 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 90	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		7.62		
## ENVIRONMENTAL CHEMISTS

## Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW73 03/19/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 503373-02 503373-02.046 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 90	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

# Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/23/15 03/24/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 I5-170 mb I5-170 mb.018 ICPMS1 ML
Internal Standard: Holmium	% Recovery: 87	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW72 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 503373-01 503373-01.057 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 88	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		4.15		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW73 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 503373-02 503373-02.058 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 90	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/20/15 03/20/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 I5-167 mb I5-167 mb.044 ICPMS1 AP
Internal Standard: Holmium	% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW72 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 503373-01 032026.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	101	94	108
Toluene-d8		103	91	107
4-Bromofluorobenze	ene	101	91	110
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane	(EDC)	<1		

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW73 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 503373-02 032025.D GCMS7 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	95	94	108
Toluene-d8		102	91	107
4-Bromofluorobenze	ene	99	91	110
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe 1,2-Dichloroethane		17 jl <1		

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW73 03/19/15 03/23/15 03/23/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 503373-02 1/10 032311A.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	98	57	121
Toluene-d8		107	63	127
4-Bromofluorobenze	ene	96	60	133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	17		
1,2-Dichloroethane		<10		

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed:	Method Blan Not Applica 03/20/15 03/20/15		Client: Project: Lab ID: Data File:	Stantec TOC_01-176, WORFDB8 F&BI 503373 05-0547 mb 032007.D
Matrix:	Water		Instrument:	GCMS7
Units:	ug/L (ppb)		Operator:	JS
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze		% Recovery: 104 100 96	Lower Limit: 94 91 91	Upper Limit: 108 107 110
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether 1,2-Dichloroethane		<1 <1		

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed:	Method Blan Not Applica 03/23/15 03/23/15		Client: Project: Lab ID: Data File:	Stantec TOC_01-176, WORFDB8 F&BI 503373 05-0548 mb 032308.D
Matrix:	Water		Instrument:	GCMS4
Units:	ug/L (ppb)		Operator:	JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-	d4	104	57	121
Toluene-d8		106	63	127
4-Bromofluorobenze	ene	97	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ethe	r (MTBE)	<1		
1,2-Dichloroethane		<1		

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503373 Date Extracted: 03/23/15 Date Analyzed: 03/23/15

#### **RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED**

Results Reported as  $\mu$ g/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>EDB</u>
MW72 503373-01 1/5	0.37
MW73 503373-02 1/5	0.64
Method Blank	< 0.01

EDB 1,2-Dibromoethane

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW72 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 503373-01 1/2 032032.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 93 99	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		530 ve		
Acenaphthylene		< 0.1		
Acenaphthene		1.3		
Fluorene		2.8		
Phenanthrene		1.1		
Anthracene		0.19		
Fluoranthene		< 0.1		
Pyrene		0.15		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		<0.1		
Benzo(b)fluoranther		<0.1		
Benzo(k)fluoranther		<0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrac		<0.1		
Benzo(g,h,i)perylene	9	<0.1		

## ENVIRONMENTAL CHEMISTS

5		1 5		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW72 03/19/15 03/20/15 03/23/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 503373-01 1/200 032303.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 93 d 107 d	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		790		
Acenaphthylene		<10		
Acenaphthene		<10		
Fluorene		<10		
Phenanthrene		<10		
Anthracene		<10		
Fluoranthene		<10		
Pyrene		<10		
Benz(a)anthracene		<10		
Chrysene		<10		
Benzo(a)pyrene		<10		
Benzo(b)fluoranther	ne	<10		
Benzo(k)fluoranther		<10		
Indeno(1,2,3-cd)pyre		<10		
Dibenz(a,h)anthrace		<10		
Benzo(g,h,i)perylene	e	<10		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW73 03/19/15 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 503373-02 1/2 032033.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 95 106	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		270 ve		
Acenaphthylene		<0.1		
Acenaphthene		0.13		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		<0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranther		< 0.1		
Benzo(k)fluoranther		<0.1		
Indeno(1,2,3-cd)pyre		<0.1		
Dibenz(a,h)anthrace		< 0.1		
Benzo(g,h,i)perylene	<u>e</u>	<0.1		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW73 03/19/15 03/20/15 03/23/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 503373-02 1/200 032304.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 124 d 113 d	Lower Limit: 31 25	Upper Limit: 160 165
Compounds:		Concentration ug/L (ppb)		
Naphthalene		350		
Acenaphthylene		<10		
Acenaphthene		<10		
Fluorene		<10		
Phenanthrene		<10		
Anthracene		<10		
Fluoranthene		<10		
Pyrene		<10		
Benz(a)anthracene		<10		
Chrysene		<10		
Benzo(a)pyrene		<10		
Benzo(b)fluoranther	ne	<10		
Benzo(k)fluoranther		<10		
Indeno(1,2,3-cd)pyre		<10		
Dibenz(a,h)anthrac		<10		
Benzo(g,h,i)perylen	e	<10		

## ENVIRONMENTAL CHEMISTS

Ũ		1 0		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/20/15 03/20/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503373 05-577 mb2 1/2 032021.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 91 99	Lower Limit: 31 25	Upper Limit: 160 165
	(	Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		< 0.1		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthen	ne	< 0.1		
Benzo(k)fluoranther	ne	< 0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrace		< 0.1		
Benzo(g,h,i)perylene	è.	< 0.1		
•				

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503373

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503368-01 (Duplicate)

0	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	91	65-118			
Toluene	ug/L (ppb)	50	92	72-122			
Ethylbenzene	ug/L (ppb)	50	92	73-126			
Xylenes	ug/L (ppb)	150	91	74-118			
Gasoline	ug/L (ppb)	1,000	95	69-134			

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503373

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	90	98	63-142	9

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503373

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Lead	ug/L (ppb)	10	4.86	101	108	79-121	7

	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	83-115

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503373

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code:	503225-04 (N	Aatrix Spik	ke)				
				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	2.91	100	101	79-121	1
Laboratory Code:	: Laboratory C	ontrol San	ple				

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Lead	ug/L (ppb)	10	103	83-115			

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503373

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503374-02 (Matrix Spike)

		Percent				
	Reporting	Spike	Sample	Recovery	Acceptance	
Analyte	Units	Level	Result	MS	Criteria	
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	119 vo	79-118	
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	100	79-115	

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	118	121 vo	81-118	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	106	105	78-117	1

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/03/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503373

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503392-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	108	74-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	106	69-133

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	108	109	64-147	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	104	103	73-132	1

#### ENVIRONMENTAL CHEMISTS

#### Date of Report: 04/03/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503373

#### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED

Laboratory Code: 503392-01 (Duplicate)								
-	Reporting	Sample	Duplicate	RPD				
Analyte	Units	Result	Result	(Limit 10)				
1,2-Dibromoethane	ug/L (ppb)	< 0.01	<0.01	nm				

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
1,2-Dibromoethane	ug/L (ppb)	0.10	98	70-130	

#### ENVIRONMENTAL CHEMISTS

#### Date of Report: 04/03/15 Date Received: 03/19/15 Project: TOC_01-176, WORFDB8 F&BI 503373

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Couc. Laborator	y control bally	<b>P10</b>	Percent	Percent		
	Reporting	Spike	Recovery LCS	Recovery	Acceptance	RPD
Analyte	Units	Level	·	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	92	94	67-116	2
Acenaphthylene	ug/L (ppb)	1	89	92	65-119	3
Acenaphthene	ug/L (ppb)	1	92	95	66-118	3
Fluorene	ug/L (ppb)	1	95	95	64-125	0
Phenanthrene	ug/L (ppb)	1	94	95	67-120	1
Anthracene	ug/L (ppb)	1	95	96	65-122	1
Fluoranthene	ug/L (ppb)	1	95	93	65-127	2
Pyrene	ug/L (ppb)	1	93	100	62-130	7
Benz(a)anthracene	ug/L (ppb)	1	94	94	60-118	0
Chrysene	ug/L (ppb)	1	96	97	66-125	1
Benzo(b)fluoranthene	ug/L (ppb)	1	107	106	55-135	1
Benzo(k)fluoranthene	ug/L (ppb)	1	106	108	62-125	2
Benzo(a)pyrene	ug/L (ppb)	1	105	104	58-127	1
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	105	97	36-142	8
Dibenz(a,h)anthracene	ug/L (ppb)	1	101	85	37-133	17
Benzo(g,h,i)perylene	ug/L (ppb)	1	101	92	34-135	9

#### ENVIRONMENTAL CHEMISTS

### **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$  - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\mbox{ca}$  - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$  - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMSV	Fax (20	Ph. (20	Senttle	Friedm								M	M			City, S Phone	Address	Company	Send	50
FORMS\COC\COC.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	SUIZ IVIN AVENUE WEST	Friedman & Bruya, Inc.								Mw73	NW72	Sample ID		City, State, ZIP UNNWOOD Phone # US HM-1995 Fax #	SS	any	Report 7	503373
Ř	5044	8282	nue wes	ruya, In										le ID		ANT	igi	Sto		ريٰ ر
Γ	Rec	<u> </u>						 		-		0	0			nnwo	V 10	Stantec	belia	
	Received by:	inquish	Received by:									224	01 5-	Lab ID		Fax	1 R		2	
	y:	Relinquished by	N. A	SIGNATURE									03-19-15 1230	Date Sampled		# ŴĄ	W We		Send Report To Rebachan Brooks	
		and	Avaden	ATURE								120	1230	Time Sampled		98036	19101 W 36th Ave # 203		- 1	
												ε	ε	Sample Type			· ·	، T	SAN	SAMPLE CHAIN OF CUSTODY
		~	B					 _	_							AR	7	JEC	<b>VPLE</b>	EC
		Nhan	Antondo	PR								4	7	# of containers		avolution are futered	TRE MLT /203700	PROJECT NAME/NO.	SAMPLERS (signature)	HAIN C
				PRINT NAME								$\times$	X	TPH-Diesel		te I	120	NO.	ature	)F C
		han	Vado	NAN				 				X	X	TPH-Gasoline		tere	57		Ċ	<b>US</b>
		ž	5	E				 				거	거	BTEX by 8021B		P & S	8	1	z	[0]
			Γ					 _						VOCs by8260	A	F	102		ladon	YC
								 						SVOCs by 8270	NAL	Se Se	2		5	I
v	,		+									$\overline{}$	$\overline{\mathbf{x}}$	HFS	ANALYSES REQUESTED	charolued pb 4 duadolued 4			<u>د</u> م	AF
Samples received at		71	KA				-	 +-				거	$\leq$	EDB	REO	live		PO#		1
les n		Feb	Stoutec	COMPANY				 				×. ×	$\frac{2}{\sqrt{2}}$		QUE	2	1	#		CD
ecen		4	3	PAN	┝━╾┼╸			 -				$\widehat{\prec}$	긝	EDC	STEI	L			╢	9
				×				 _	-+				거	TOTAL Pb	Ŭ		Rus	SF.		5
	•							 				×	$\sum$	Dissolved Pb		Lispo Vill o	sh ch	Standa	TI Pa	1
	20	2.14	P.					 	$ \rightarrow$			$\times$	적	PAHS		SAMPLE D Dispose after 3 Return samples Will call with in	large	lard ( H	Page #_	L.
	20 3	54-15	3-19-15	DATE												SAMPLE DISPOS Dispose after 30 days Return samples Will call with instruct	s autl	Standard (2 Weeks) RUSH	RO	
	<u>.</u>	+-	म											z		ISPC 0 day nstruc	horiz	eks)	Z	້ 1
		and/	leo	TIME										Notes		SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	Rush charges authorized by		Page # of	shin/cha
ـــــ	-		<b>I</b>	<b></b> ]	L <u>_</u>	<b>_</b>	<b>L</b>	 _ 1			I_	<u>I</u>		· · · · · · · · · · · · · · · · · · ·		L	· · ·	Â,		<u> </u>

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 7, 2015

Rebekah Brooks, Project Manager Stantec 19101 36th Ave W, Suite 203 Lynnwood, WA 98036

Dear Ms. Brooks:

Included are the results from the testing of material submitted on March 20, 2015 from the TOC_01-176, WORFDB8 F&BI 503400 project. There are 20 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Kim Vik STN0407R.DOC

#### ENVIRONMENTAL CHEMISTS

#### CASE NARRATIVE

This case narrative encompasses samples received on March 20, 2015 by Friedman & Bruya, Inc. from the Stantec TOC_01-176, WORFDB8 F&BI 503400 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Stantec</u>
503400 -01	MW74

All quality control requirements were acceptable.

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503400 Date Extracted: 03/24/15 Date Analyzed: 03/24/15 and 03/25/15

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate ( <u>% Recovery</u> ) (Limit 52-124)
MW74 503400-01 1/100	3,100	210	30	100	11,000	90
Method Blank ^{05-566 MB}	<1	<1	<1	<3	<100	90

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503400 Date Extracted: 03/24/15 Date Analyzed: 03/24/15

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW74 503400-01 1/2	1,100 x	<500	83
Method Blank 05-588 MB2	<50	<250	84

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW74 03/20/15 03/31/15 04/01/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503400 503400-01 503400-01.081 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 94	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

## ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/31/15 04/01/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503400 I5-188 mb I5-188 mb.060 ICPMS1 ML
Internal Standard: Holmium	% Recovery: 100	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

## ENVIRONMENTAL CHEMISTS

## Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW74 03/20/15 03/23/15 03/24/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503400 503400-01 503400-01.055 ICPMS1 ML
Internal Standard: Holmium		% Recovery: 88	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		4.80		

## ENVIRONMENTAL CHEMISTS

# Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/23/15 03/24/15 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503400 I5-170 mb I5-170 mb.018 ICPMS1 ML
Internal Standard: Holmium	% Recovery: 87	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration ug/L (ppb)		
Lead	<1		

### ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW74 03/20/15 03/23/15 03/25/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503400 503400-01 1/10 032516.D GCMS4 JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4		100	57	121
Toluene-d8		97	63	127
4-Bromofluorobenzene		95	60	133
Compounds:		Concentration ug/L (ppb)		
Methyl t-butyl ether (MTBE)		400		
1,2-Dichloroethane (EDC)		64		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted:	Method Blan Not Applical 03/23/15		Client: Project: Lab ID: Data File:	Stantec TOC_01-176, WORFDB8 F&BI 503400 05-0548 mb
Date Analyzed: Matrix:	03/23/15 Water		Data File: Instrument:	032308.D GCMS4
Units:	ug/L (ppb)		Operator:	JS
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4		104	57	121
Toluene-d8		106	63	127
4-Bromofluorobenze	ne	97	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Methyl t-butyl ether (MTBE)		<1		
1,2-Dichloroethane (EDC)		<1		
#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503400 Date Extracted: 03/23/15 Date Analyzed: 03/23/15

### **RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED**

Results Reported as  $\mu$ g/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>EDB</u>
MW74 503400-01	0.013
Method Blank	< 0.01

EDB 1,2-Dibromoethane

# ENVIRONMENTAL CHEMISTS

# Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW74 03/20/15 03/24/15 03/25/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503400 503400-01 1/2 032510.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene		% Recovery: 99 88	Lower Limit: 25 36	Upper Limit: 160 162
Compounds:		Concentration ug/L (ppb)		
Naphthalene		6.3		
Acenaphthylene		< 0.1		
Acenaphthene		< 0.1		
Fluorene		< 0.1		
Phenanthrene		< 0.1		
Anthracene		< 0.1		
Fluoranthene		< 0.1		
Pyrene		< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranther		< 0.1		
Benzo(k)fluoranther		<0.1		
Indeno(1,2,3-cd)pyre		< 0.1		
Dibenz(a,h)anthrace		<0.1		
Benzo(g,h,i)perylene	9	<0.1		

# ENVIRONMENTAL CHEMISTS

# Analysis For Semivolatile Compounds By EPA Method 8270D SIM

U		i v		
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/24/15 03/25/15 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stantec TOC_01-176, WORFDB8 F&BI 503400 05-589 mb2 1/2 032504.D GCMS10 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	-d12	% Recovery: 96 103	Lower Limit: 25 36	Upper Limit: 160 162
	C	Concentration		
Compounds:		ug/L (ppb)		
Naphthalene		<0.1		
Acenaphthylene		< 0.1		
Acenaphthene		<0.1		
Fluorene		< 0.1		
Phenanthrene		<0.1		
Anthracene		<0.1		
Fluoranthene		<0.1		
Pyrene		<0.1		
Benz(a)anthracene		<0.1		
Chrysene		<0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthen	e	< 0.1		
Benzo(k)fluoranther	ne	< 0.1		
Indeno(1,2,3-cd)pyre	ene	< 0.1		
Dibenz(a,h)anthrace		<0.1		
Benzo(g,h,i)perylene	<b>)</b>	<0.1		
•				

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503400

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 503418-01 (Duplicate)

5	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	91	65-118
Toluene	ug/L (ppb)	50	91	72-122
Ethylbenzene	ug/L (ppb)	50	92	73-126
Xylenes	ug/L (ppb)	150	91	74-118
Gasoline	ug/L (ppb)	1,000	100	69-134

### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503400

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	86	86	61-133	0

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503400

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	97	96	79-121	1

	·		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	107	83-115

#### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503400

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	4.86	101	108	79-121	7
	ode: Laboratory C	_					

5	0		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	106	83-115

### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503400

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 503392-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	108	74-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	106	69-133

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	108	109	64-147	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	104	103	73-132	1

#### ENVIRONMENTAL CHEMISTS

### Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503400

### QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE BY EPA METHOD 8011 MODIFIED

Laboratory Code: 503392-01	(Duplicate)			
-	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 10)
1,2-Dibromoethane	ug/L (ppb)	< 0.01	< 0.01	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
1,2-Dibromoethane	ug/L (ppb)	0.10	98	70-130	

### ENVIRONMENTAL CHEMISTS

Date of Report: 04/07/15 Date Received: 03/20/15 Project: TOC_01-176, WORFDB8 F&BI 503400

### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code. Laboratory	Control Sam	pic	Percent	Percent		
	Reporting	Spike	Recovery LCS	Recovery	Acceptance	RPD
Analyte	Units	Level	Recovery Leb	LCSD	Criteria	(Limit 20)
<u> </u>			00			
Naphthalene	ug/L (ppb)	1	89	91	70-130	2
Acenaphthylene	ug/L (ppb)	1	86	87	70-130	1
Acenaphthene	ug/L (ppb)	1	90	89	70-130	1
Fluorene	ug/L (ppb)	1	86	87	70-130	1
Phenanthrene	ug/L (ppb)	1	92	94	70-130	2
Anthracene	ug/L (ppb)	1	90	93	70-130	3
Fluoranthene	ug/L (ppb)	1	88	93	70-130	6
Pyrene	ug/L (ppb)	1	101	102	70-130	1
Benz(a)anthracene	ug/L (ppb)	1	94	98	70-130	4
Chrysene	ug/L (ppb)	1	103	104	70-130	1
Benzo(b)fluoranthene	ug/L (ppb)	1	95	104	59-130	9
Benzo(k)fluoranthene	ug/L (ppb)	1	102	98	65-120	4
Benzo(a)pyrene	ug/L (ppb)	1	98	101	60-125	3
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	93	101	42-135	8
Dibenz(a,h)anthracene	ug/L (ppb)	1	83	94	37-125	12
Benzo(g,h,i)perylene	ug/L (ppb)	1	88	97	45-123	10

ENVIRONMENTAL CHEMISTS

## **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$  - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\operatorname{ca}$  - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

203400			7.0	SAMPLE CHAIN OF CUSTODY	HAIN O	FC	S	TO	DY		ħ	61	ME 3/20,		21	1		9IN	うらく	(Chei)
Send Report To	land B	Releakah Browliss and KimVik	N KMV		SAMPLERS (signature)	ature	Ü		J.	É	Le la la la la la la la la la la la la la	(			<b>V</b>		TURN	NA I	TURNAROUND TIME	ME
	t.				PROJECT NAME/NO.	NO	-						PO#			R	tanda: USH	rd (2	Standard (2 Weeks)	
	19101 VU 36.4"		hr: #203	100	TOC MUT,		È	Э́-	200102	$\widehat{\Sigma}$						Rus	h cha	rges	Rush charges authorized by	by
Ite, ZIP	Lanua -	: 0		REMARKS	REMARKS But the tor dur	ta i	50	23	n f	met m	3 4 2 4	0-5	The the	Ter			SA ispos eturn	MPI e aft sam	SAMPLE DISPOSAL SAMPLE DISPOSAL Dispose after 30 days Return samples	AL
					-					ANA	YY	SES	ANALYSES REQUESTED	UES'	TED	$\left  \right $	$\left  \right $	+		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS	MTBE	EDB	EDC	ff.the		NOTO PAR	DAX logal Ph	Notes	<u>نې</u>
Mrs 14	01	3-14-15	1350	S		X	X	$\langle \cdot \rangle$					<u> </u>							
																╉──┩		<b> </b>		
													1	<u> </u>		+	<u> </u>			
															+-					
															ämp	8	Samples received at	Ϋ́ο.	at 7	ด้ 
Friedman & Bruya, Inc. 3012 16th Avenue West	Relinquis	SIGNATURE	SIGNATURE		PR	PRINT NAME	NA			5			0	MI	COMPANY			2 _		TIME
Seattle, WA 98119-2029	Received by:	by: A			ON DEWIND	a M	60		VCUQUON	Ş			F*B	8	-8 -	8		5	1 1	17.00
Ph. (206) 285-8282	Relinquis	Relinquished by:				- 1														
Fax (206) 283-5044	Received by:	by:																		
FORMS\COC\COC.DOC																				