Prepared for: The BNSF Railway Company Seattle, Washington

2007-2008 Annual Site-Wide Groundwater Monitoring Report

BNSF Former Fueling and Maintenance Facility – Skykomish, Washington

AECOM, Inc. July 2009 Document No.: 01140-204-0340

AECOM

Prepared for: The BNSF Railway Company Seattle, Washington

2007-2008 Annual Site-Wide Groundwater Monitoring Report

BNSF Former Fueling and Maintenance Facility – Skykomish, Washington

Prepared by Cassie Smith, Geologist

Reviewed by Renee Knecht, L.G., Project Geologist

Reviewed by Thom Booth, L.H.G., Project Hydrogeologist

AECOM, Inc. July 2009 Document No.: 01140-204-0340

Contents

1.0	Intro	oduction	1-1
	1.1	Groundwater Monitoring Objectives	1-1
	1.2	Background	1-1
	1.3	Report Organization	1-2
2.0	Mor	nitoring Well Network	2-1
3.0	Gau	ging and Sampling Procedures	3-1
	3.1	Fluid Level Measurements	3-1
		3.1.1 Groundwater Levels and Product Thickness Measurements	3-1
		3.1.2 Surface Water Level Measurements	3-1
	3.2	3 2 1 Well Purging and Field Parameter Collection	3-2
		3.2.2 Sample Preservation and Handling	3-2
		3.2.3 Investigation-Derived Waste	3-2
4.0	Lab	oratory Analysis and Reporting	4-1
	4.1	Analytical Methods	4-1
	4.2	Data Packages	4-1
	4.3	Data Management and Validation	4-1
	4.4	Groundwater Cleanup Levels and Remediation Levels	4-2
5.0	Res	ults	5-1
	5.1	Fluid Levels	5-1
	5.2	Field Parameters	5-1
		5.2.1 pH	5-1
		5.2.2 Conductivity	5-2
		5.2.3 Temperature	5-2
		5.2.4 Oxidation-Reduction Potential	5-2
	- 0	5.2.5 Turbially	5-Z
	5.3	1 otal Petroleum Hydrocarbons	5-2
		5.3.2 Levee Zone Wells	5-3
		5.3.3 Former Maloney Creek Wells	5-3
6.0	Sum	nmary and Recommendations	6-1
7.0	Refe	erences	7-1

List of Appendices

Appendix A Field Forms Appendix B Data Reports

Appendix C Data Validation Reports

List of Tables

- Table 5-1
 Potentiometric Surface Elevations and Product Thicknesses August 2007 September 2008
- Table 5-2
 Stabilized Field Parameter Measurements
- Table 5-3Total Petroleum Hydrocarbons (TPH-Dx)

List of Figures

- Figure 1-1 Regional Location Map
- Figure 1-2 Site Map Showing Site Zones and other Notable Features
- Figure 2-1 Site Layout showing Fluid Level Gauging Network August 2007 April 2008
- Figure 2-2 Site Layout showing Fluid Level Gauging Network May September 2008
- Figure 5-1 Hydrograph Source Data Locations Plotted on Hydrographs
- Figure 5-2 Groundwater Elevations Selected Wells January 2003 September 2007
- Figure 5-3 Groundwater Elevations Selected Wells August 2007 September 2008
- Figure 5-4 Skykomish River and Select Wells Groundwater Elevations August 2007 September 2008
- Figure 5-5 Product Thickness vs. Groundwater Elevation in Well 5-W-2 (2002-2008)
- Figure 5-6 Product Thickness vs. Groundwater Elevation in Well 5-W-3 (2002-2008)
- Figure 5-7 Product Thickness vs. Groundwater Elevation in Well MW-8 (2002-2008)
- Figure 5-8 Product Thickness vs. Groundwater Elevation in Well MW-20 (2002-2008)
- Figure 5-9 Product Thickness vs. Groundwater Elevation in Well MW-21 (2002-2008)
- Figure 5-10 Product Thickness vs. Groundwater Elevation in Well MW-36 (2002-2008)
- Figure 5-11 October 2007 Potentiometric Map
- Figure 5-12 November 2, 2007 Potentiometric Map
- Figure 5-13 November 15, 2007 Potentiometric Map
- Figure 5-14 December 2007 Potentiometric Map
- Figure 5-15 January 2008 Potentiometric Map
- Figure 5-16 March 2008 Potentiometric Map
- Figure 5-17 April 2008 Potentiometric Map
- Figure 5-18 May 2008 Potentiometric Map
- Figure 5-19 June 2008 Potentiometric Map
- Figure 5-20 July 2008 Potentiometric Map
- Figure 5-21 August 2008 Potentiometric Map
- Figure 5-22 September 2008 Potentiometric Map
- Figure 5-23 Total Petroleum Hydrocarbons (TPH-Dx) in Groundwater October 2007
- Figure 5-24 Total Petroleum Hydrocarbons (TPH-Dx) in Groundwater November 2007
- Figure 5-25 Total Petroleum Hydrocarbons (TPH-Dx) in Groundwater December 2007
- Figure 5-26 Total Petroleum Hydrocarbons (TPH-Dx) in Groundwater March 2008
- Figure 5-27 Total Petroleum Hydrocarbons (TPH-Dx) in Groundwater June 2008
- Figure 5-28 Total Petroleum Hydrocarbons (TPH-Dx) in Groundwater September 2008
- Figure 5-29 TPH Concentrations in Select Wells versus Time August 2007 September 2008
- Figure 5-30 TPH Concentrations in Select Wells versus Time (2003-2008)

1.0 Introduction

This Site-Wide Groundwater Monitoring Report (report) was prepared for the Burlington Northern Santa Fe (BNSF) Former Fueling and Maintenance Facility, Skykomish, Washington (Site) on behalf of the BNSF Railway Company, in accordance with Section VI.A.6. of Consent Decree No. 07-2-33672-9SEA and the *Groundwater Monitoring Plan* (Plan; RETEC, 2005a, 2007 and ENSR, 2008a) and describes the details and results of the site-wide groundwater monitoring activities performed from August 2007 to September 2008. This includes 1) semi-annual site-wide monitoring events completed in March and September 2008; 2) bimonthly Levee Zone monitoring completed in October, November and December 2007; and 3) quarterly Levee Zone monitoring in March and June 2008.

1.1 Groundwater Monitoring Objectives

The *Groundwater Monitoring Plan* (Plan; RETEC, 2005a, 2007 and ENSR, 2008a) describes a program that is intended to accomplish the following objectives:

- Evaluate potential changes in total petroleum hydrocarbons (TPH) distribution that may affect implementation of cleanup actions throughout the Site.
- Provide monitoring data for the groundwater in the Levee Zone to assess how Levee Zone interim cleanup actions affect groundwater quality.
- Provide water level data to assess the groundwater flow direction in the vicinity of the Former Maloney Creek east wetland.

1.2 Background

The Site includes BNSF property and adjacent public and private properties within the Town of Skykomish, and encompasses an area of about 40 acres (Figure 1-1). The Site is approximately bounded by: the South Fork Skykomish River to the north, Skykomish city limits to the east, Old Cascade Highway to the south, and Maloney Creek to the west. Railroad Avenue separates BNSF property from the main commercial district of the town (Figure 1-2).

The Former Railway Maintenance and Fueling Facility in Skykomish is owned and operated by BNSF. Historical activities since the facility opened in the late 1890s included refueling and maintaining locomotives and operating an electrical substation for electric engines. BNSF stored Bunker C and diesel fuel at the Site in aboveground storage tanks (ASTs) and underground storage tanks (USTs) until 1974, when BNSF discontinued most fuel handling activities at the Site.

Some of the historic Site activities resulted in the release of petroleum products and other compounds to the surrounding environment. In early 1991, Washington State Department of Ecology (Ecology) designated the Site as a high priority cleanup site. Later that year, BNSF initiated plans to conduct a Remedial Investigation/ Feasibility Study (RI/FS) in accordance with the Ecology Model Toxics Control Act (MTCA). At that time, formal negotiations for Agreed Order No. DE 91TC-N213 began. Negotiations were completed in mid-1993. Following a public comment period, the Agreed Order, which included detailed work plans for the RI/FS process and early interim action for cleanup work, was signed by Ecology and BNSF. Ecology and BNSF signed a separate agreed order (No. DE 01TCPNR-2800) in 2001 for additional interim action cleanup work near the South Fork Skykomish River and the levee west of 5th Street. BNSF has been routinely monitoring groundwater at the Site pursuant to the 2001 Agreed Order and *Interim Action Basis of Design Report for the* *LNAPL Barrier System* (RETEC, 2001). BNSF also conducted groundwater monitoring pursuant to the 1993 Order (after the RI and supplemental RI) in conjunction with the 1995 interim action (passive skimming wells).

In 2006, Ecology and BNSF signed an additional agreed order (No. DE-2379) that outlined the interim action for cleanup work in the Levee Zone and part of the Northwest Developed Zone (NWDZ). This interim action consisted of:

- Temporary relocation of five residences,
- Excavation of the levee, underlying soils and sediments along the south bank of the South Fork Skykomish River,
- Reconstruction of the levee, and restoration of natural resources, private property and public infrastructure that were disturbed by the remediation activities.

Under the 2006 Agreed Order, BNSF was required to continue groundwater monitoring as described in the *Groundwater Monitoring Plan* (RETEC, 2005a). In October 2007, BNSF and Ecology signed a Consent Decree (CD, No. 07-2-33672-9 SEA). Any remaining work required by the 2006 order was incorporated into and required by the CD. The CD requires BNSF to conduct a final cleanup of the Site by implementing the 2006 *Action Plan for Cleanup* (CAP) (ENSR, 2007b) in accordance with the schedule identified in the CD.

Section VI.A.6 of the CD requires BNSF to conduct groundwater monitoring consistent with the *Groundwater Monitoring Plan* (RETEC, 2005a) as amended. Upon the approval of Ecology, the *Groundwater Monitoring Plan* was amended in 2007 to the *Groundwater Monitoring Plan*, *Revision 1* (RETEC, 2007), which went into effect in July 2007. This plan is revised annually. The most recent revision, *Groundwater Monitoring Plan* (ENSR, 2008a), was approved by Ecology and went into effect in July 2008.

Since 1993, investigations performed by BNSF, in cooperation with Ecology, have revealed petroleum residuals in soil, groundwater, sediments, and surface water. Detailed information about the scope of prior investigations and the results appear in the 1996 *Remedial Investigation Report* (RETEC, 1996), the 2002 *Supplemental Remedial Investigation Report* (RETEC, 2002), the 2005 *Feasibility Study (RETEC 2005b)* and the 2007 *Remedial Design Investigation Report* (RDI Report, ENSR, 2008b).

1.3 Report Organization

Section 1 of this report provides an introduction, background information and the objectives of the site-wide groundwater monitoring. Section 2 describes the monitoring well network, changes made to the network during the monitoring period, and forthcoming changes related to cleanup activities. Section 3 describes the methods used to perform the monitoring activities. Section 4 describes the laboratory analyses and reporting and the subsequent data management and validation activities performed by AECOM Environment (AECOM). The section also describes the groundwater cleanup levels and remediation levels that have been established for the Site. Section 5 describes the results of the monitoring activities, specifically the fluid level gauging and analytical results from the groundwater sampling. Section 6 provides a summary of the data and recommendations for future sampling events. Finally, Section 7 provides cited references.

2.0 Monitoring Well Network

This section describes the piezometers and wells that were included in the groundwater monitoring network for fluid level gauging and groundwater analytical sampling during the monitoring period. Piezometer and well locations are shown in Figures 2-1 and 2-2.

Since the 2007 monitoring event, 11 piezometers were added to the FMCZ and 18 monitoring wells were decommissioned along Railroad Avenue. In agreement with Ecology (ENSR, 2007a), the 11 piezometers were installed in the FMCZ East Wetland, RYZ, and SDZ during August and September 2007 to evaluate groundwater flow direction in the vicinity of the east wetland and to compare groundwater to surface water levels within the east wetland. Monthly gauging took place immediately following installation. These piezometers were officially added to the monitoring well gauging network in the 2008 Groundwater Monitoring Plan (ENSR, 2008a).

The monitoring well gauging and sampling network was further modified after the March 2008 semi-annual groundwater sampling and gauging event. In April 2008, 18 monitoring wells were decommissioned along Railroad Avenue in preparation for the 2008 excavation and construction of the Hydraulic Contaminant Control (HCC) wall. Eight of these wells were part of the fluid level gauging network. Decommissioning details will be included in the *2008 Skykomish Remediation – As Built Completion Report*, which was submitted in March 2009 (AECOM 2009).

The monitoring well network utilized from June 2007 to June 2008, as described in the *Groundwater Monitoring Plan, Revision 1* (RETEC, 2007), consisted of the following, as categorized by the monitoring frequency.

- Monthly Monitoring 11 piezometers and 27 monitoring wells for fluid level gauging in the vicinity of Former Maloney Creek starting in November 2007
- Bi-Monthly Monitoring 13 monitoring wells for fluid level gauging in the vicinity of the Levee Zone; 7 of these wells were sampled for TPH analysis by NWTPH-Dx
- Semi-Annual Monitoring -
 - 41 monitoring wells for Site-wide fluid level gauging; 28 of these wells were sampled for TPH analysis by NWTPH-Dx
 - 9 locations for surface water level gauging

The current monitoring well network, which was utilized from July 2008 to September 2008 and is as defined in the July 2008 version of the *Groundwater Monitoring Plan* (ENSR, 2008a) consists of the following, as categorized by the monitoring frequency.

- Monthly Monitoring 11 piezometers and 27 monitoring wells for fluid level gauging in the vicinity of Former Maloney Creek
- Quarterly Monitoring 13 monitoring wells for fluid level gauging in the vicinity of the Levee Zone; 7 of these wells were sampled for TPH analysis by NWTPH-Dx

- Semi-Annual Monitoring -
 - 33 monitoring wells for Site-wide fluid level gauging; 21 of these wells were sampled for TPH analysis by NWTPH-Dx
 - 9 locations for surface water level gauging

In the remainder of this document, the "Plan" refers to the 2008 revision of the Groundwater Monitoring Plan (ENSR, 2008a), as approved by Ecology, and described in Section 1.

In addition to the monitoring scope defined in the Plan, a seep, along the bank of the South Fork Skykomish River, located near the 6th Street fallout, was sampled in September 2008 per Ecology's request.

During site-wide gauging events during this reporting period there were two wells (2A-W-7 and 2A-W-4) with suspect groundwater elevations. The groundwater elevations in these wells were consistently higher than the surrounding areas. This is believed to be due to errors in well elevation survey data. This has been noted on the respective potentiometric map figures and these wells will be re-surveyed in the near future.

The conditional points of compliance for groundwater are generally described in Section 3.4 and Figure 6 of the CAP. The monitoring network described above was established, in part, before the CAP was issued by Ecology in October 2007; however, all of the wells in the network are well inside the groundwater compliance boundary. Compliance boundary wells will be identified in the Long-Term Compliance Monitoring Plan to be developed at the conclusion of active remediation.

3.0 Gauging and Sampling Procedures

This section describes the field methods that were used for the fluid level gauging and sample collection activities described in the Plan.

3.1 Fluid Level Measurements

3.1.1 Groundwater Levels and Product Thickness Measurements

Fluid level measurements were made to provide groundwater elevation and free product thickness data. The fluid levels were measured and recorded at each well location prior to purging or sample collection activities. Two methods were used to measure fluid levels at monitoring well locations depending on whether a well contained Light Non-aqueous Phase Liquid (LNAPL).

If LNAPL was observed as a light trace (0.01 feet thick) then the depth to the top and the thickness of the LNAPL was measured using tape and paste. In this method, a measuring tape was coated with a water-reactive paste. The tape was then lowered into the well until it was below the water level. The paste reacts to the water by changing color and the LNAPL thickness can be estimated by the tape interval that was coated with the petroleum product. The groundwater elevation was then derived from the length of measuring tape that has not changed color. The LNAPL thickness was added to the groundwater elevation to derive the LNAPL top elevation.

If the LNAPL was observed at a greater thickness (0.02 feet or more thick), then, in addition to the tape and paste method, the thickness was verified using a site-specific method that employs a peristaltic pump. First the top of fluid was measured. Then, polyethylene tubing was lowered into the well to a depth below the water table. Water was pumped while the tubing was gradually raised. Once the pump began to pump LNAPL instead of water, the remaining tubing was pulled from the well and its length was measured to derive elevation.

If LNAPL was not observed, then a water level meter was used to gauge depth to water. The method used for gauging each well was noted on the gauging field forms, which are provided in Appendix A.

All measurements were collected in accordance with the Plan (ENSR, 2008a). Measurement equipment was decontaminated between wells in accordance with Standard Operating Procedure (SOP) 7600 and fluid level data were recorded on appropriate field forms (provided in Appendix A of the Plan). The field form includes fields for date and time of the measurement, depth to water (in feet), depth to LNAPL (in feet), LNAPL thickness (in feet) and measurement method. In addition, the well condition (including the condition of the lock, monument integrity, and legibility of well labels) was recorded for each location.

Upon completion of a measurement event, the field manager inspected the field forms and collected data. After assuring that the information was complete, the field manager signed the quarterly gauging sheets before the field staff left the Site.

3.1.2 Surface Water Level Measurements

River stage measurements were collected at five locations along the South Fork Skykomish River during the site-wide fluid level measuring events. Two of the locations are at known permanent landmarks (a storm outfall and a bridge abutment). The other three locations are set equidistant from the two landmarks.

The river stage elevations at each location were measured using a surveying level and rod. The elevations were measured from permanent surveying monuments in the street, parallel to the river bank.

Surface water level measurements were also collected from four piezometer locations within the FMCZ -east wetland. The piezometers, which are also used to measure groundwater elevations beneath the wetlands, were constructed with blank casing tops well above the surface water and the top-of-casing elevations have been surveyed. Therefore, the piezometer casings were used to measure the surface water elevations by placing a water level meter along the outside of the piezometers and measuring from the top of the casing to the surface of the water.

3.2 Sampling Methods

Standard EPA-approved low-flow sampling techniques, described in the Plan (SOP 235), were used for monitoring wells that have historically been free of LNAPL.

A different sampling methodology was used for wells containing LNAPL. Due to the nature and physical properties (high viscosity and specific gravity of 0.97) of Bunker C, there is a risk that LNAPL could mix with the underlying groundwater and be entrained in groundwater samples using standard sampling procedures. Therefore, as described in the Plan, air was blown out through the polyethylene tubing as it was lowered into the well. This was done in an attempt to prevent any free product from entering the tubing. These wells were then purged for 10 minutes at a low flow rate before sample collection. The low-flow purging was intended to minimize disturbance and the potential for LNAPL/water mixing. No field parameters were collected.

The fluid level measurements (described in Section 3.1) were used at each product-containing well to position the polyethylene tubing such that the tubing inlet was approximately one foot below LNAPL/water interface. Samples were then collected using low-flow sampling techniques. After sampling was complete at each location, the polyethylene sampling tube was discarded.

3.2.1 Well Purging and Field Parameter Collection

Each well was purged prior to sampling using a peristaltic pump with new disposable tubing at a flow rate of 0.1 to 0.5 L/min. During purging, the flow rates, water levels, and water quality parameters (pH, conductivity, temperature, dissolved oxygen, oxidation-reduction potential, and turbidity) were recorded. Purging continued until the parameters stabilized (i.e., the measured values showed little variation). Water quality parameter measurements are discussed in Section 5.2 of this report.

As previously stated, field parameters were not measured at wells that contain measurable LNAPL because the petroleum product could damage the water quality meters.

3.2.2 Sample Preservation and Handling

Appropriate packaging and shipping methods were used to minimize the potential for sample breakage, leakage or cross contamination (the Plan, SOP 7600). In addition, the documentation accompanying the samples provided a record of sample custody from collection to analysis. All sample containers were prepreserved in laboratory-cleaned containers. All sample preservation, handling, and analysis were conducted in accordance with the Plan.

3.2.3 Investigation-Derived Waste

All decontamination water and purge water was drummed, labeled and disposed of at a licensed disposal facility in accordance with applicable regulations and the Plan.

4.0 Laboratory Analysis and Reporting

This section summarizes the laboratory analysis and reporting procedures, and the subsequent data management and validation. Groundwater samples were analyzed by Test America Analytical Laboratories (TestAmerica), located in Bothell, Washington. TestAmerica is a Washington-certified laboratory.

4.1 Analytical Methods

Groundwater samples were analyzed for TPH using method NWTPH-Dx both with and without the acid-silica gel cleanup method.

The laboratory was instructed to report sample concentrations to the method detection limit (MDL) rather than the higher method reporting limit (MRL). It was recognized that reported concentrations above the MDL but below the MRL have a greater degree of uncertainty. Accordingly, these results were qualified as estimated (J-flagged). Reporting of results to the MDL has the advantage of reporting detected concentrations at a lower level. This also minimizes the chances that a non-detected result will be reported with a detection limit greater than the cleanup level (CUL).

4.2 Data Packages

TestAmerica provided both electronic data deliverables that could be directly imported into the environmental data management system and text data reports. The text data reports were provided as hard copies (Appendix B) and in electronic (.pdf) files.

Each data report included copies of the chain-of-custody forms and a case narrative with the following information: description of case, comments on sample condition upon receipt, and description of sample preparation and analysis. The following data were included in the data report: MDL, MRL, units of measure, dilution factor, batch number, date received, date prepared, date analyzed, analytical method, and any notes or qualifiers.

The report also contained the details and results of laboratory QA/QC procedures that were performed on the samples.

4.3 Data Management and Validation

Upon receipt of the data from TestAmerica, the electronic data deliverables and case narratives were checked for completeness, and then validated by staff chemists. Once validated, the data were imported into the environmental data management system. Finally, a quality control check was performed on the imported data to ensure that it was accurately uploaded and that transfer errors did not occur.

AECOM chemists evaluated the groundwater data to assess whether the analytical results met the quality control/validation standards described in the Plan. These metrics included precision, accuracy, method compliance and completeness of the data set. The validation results were then used to evaluate whether the data were suitable for their intended use. The validation was performed based on the criteria provided in:

- USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review, document number EPA540/R-99/008 of October 1999
- USEPA CLP National Functional Guidelines for Superfund Organic Methods Data Review, document number USEPA-540-R-07-003, July 2007.

• Analytical Methods for Petroleum Hydrocarbons, ECY 97-602. June 1997.

Field duplicate relative percent difference review and applicable control limits were taken from the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, December 1996.

Data validation reports are presented in Appendix C.

4.4 Groundwater Cleanup Levels and Remediation Levels

The groundwater TPH CUL (208 μ g/L) and RL (477 μ g/L) are specified in Section 3.4 and Table 1 of the CAP in accordance with WAC 173-340-720. The CAP anticipates that cleanup levels will be attained at points of compliance following implementation of all cleanup actions specified in the CAP and final compliance monitoring begins in 2012. (CAP, Sections 4 and 6.2.)

5.0 Results

This section presents a summary and evaluation of the results from the fluid level gauging and TPH analytical sampling conducted during the reporting period.

5.1 Fluid Levels

This section provides data and conclusions drawn from the quarterly fluid level gauging that occurred from August 2007 through September 2008. Table 5-1 presents gauging results from this reporting period. Seasonal variations in groundwater elevations and product thickness, and changes in groundwater gradients are discussed below.

There were two notable variations from the planned fluid level measurement activities. During the January 2008 monthly gauging event only a subset of locations were inaccessible due to unusually heavy snowfall. The snowfall continued through February 2008 making access to monitoring wells unsafe. Between June 30 and August 25, 2008 potentiometric surface gradients and flow directions were affected by construction dewatering and the installation of the sheetpile HCC wall.

Groundwater levels show seasonal variations in response to river levels and seasonal changes in precipitation. Figure 5-1 shows the locations of the wells and South Fork Skykomish River gauges used in the hydrographs. Figures 5-2 and 5-3 show seasonal groundwater variation for the past five years (January 2003 to September 2008) and for the period from August 2007 to September 2008, respectively. Figure 5-4 shows river levels and groundwater well data from August 2007 to September 2008.

Six wells from around the Site were selected to evaluate the relationship between free product thicknesses and groundwater elevations. Figures 5-5 through 5-10 are scatter plots of water level vs. product thickness from gauging events from 2002 through 2008. These data suggest there may be a slight trend showing a decrease in product thickness as the groundwater elevation increases.

Monthly potentiometric surface maps for the reporting period starting in October 2007 are shown in Figures 5-11 through 5-22. As shown in these figures, the groundwater flow direction is consistently towards the river, to the north or northwest, regardless of the season. These figures also show the groundwater elevations are lower in the levee remediation area due, at least in part, to the impermeable liner, which is shown on the figures and is described in the *Levee Zone Interim Action for Cleanup 2006- As Built Completion Report (*ENSR, 2007b).

5.2 Field Parameters

Table 5-2 presents stabilized field parameter measurements collected during the quarterly and semi-annual groundwater sampling events of the reporting period from all wells except those containing free product. Each field parameter is discussed separately below.

5.2.1 pH

The median pH of groundwater across the site during the reporting period was 6.02. The minimum pH was 4.83 at 2A-W-6 in December 2007 and the maximum pH was 7.45 at 5-W-16 in March 2008. The median, minimum and maximum pH measurements were consistent with past measurements at the Site.

5.2.2 Conductivity

The median conductivity (in µmhos/cm) of groundwater across the Site during the reporting period was 69. The minimum was 32 at MW-37 in March 2008 and the maximum was 307 at 5-W-15 in March 2008. These measurements were consistent with historical values.

5.2.3 Temperature

The median temperature (C) in groundwater during the reporting period was 7.18. The minimum temperature was 0.90 at MW-4 in March 2008, and a maximum temperature was 16.0 at 5-W-4 in September 2008. The temperature varied seasonally.

5.2.4 Dissolved Oxygen

The median dissolved oxygen (DO) concentration (mg/L) in groundwater across the Site during the reporting period was 2.34. The minimum DO was 0.00 mg/L (suspected meter error) and the maximum was 10.70 at 5-W-16. In general, the wells within the 2006 interim action area and outside the areas of known contamination had higher concentrations of DO than the wells within the dissolved plume area. The lowest concentrations of DO were typically measured in areas within and downgradient from the areas of known contamination and in areas having higher concentrations of groundwater contamination. These measurements are consistent with historical values.

5.2.4 Oxidation-Reduction Potential

The median oxidation reduction potential (ORP) in groundwater across the site during the reporting period was 101.2. The minimum ORP value was -112 mV at MW-35 in March 2008 and a maximum was 536 mV at 5-W-17 in March 2008. ORP in groundwater at the site is most commonly positive. These measurements were consistent with historical values.

5.2.5 Turbidity

The median turbidity in groundwater across the Site during the reporting period was 1.90 NTU. The minimum turbidity was 0 at 5-W-17 in September 2008, and the maximum was 48.2 NTU at MW-3 in September 2008. Turbidity measurements were generally less than 10 during the reporting period and are consistent with historic measurements.

5.3 Total Petroleum Hydrocarbons

TPH in groundwater was analyzed using method NWTPH-Dx, which measures diesel range (TPH-D, C12–C25) and oil range (TPH-O, C25-C36) hydrocarbons. Figures 5-23 through 5-28 show the extent of TPH (measured as method NWTPH-Dx without acid/silica gel cleanup) in groundwater. Concentrations provided on the figures are the sums of oil-range (oil) and diesel-range (diesel) TPH concentrations (no silica gel cleanup). Table 5-3 presents the TPH data for the reporting period.

TPH concentrations were compared to the CUL (208 μ g/L) and RL (477 μ g/L). As described in the Cleanup Action Plan, the CUL should be applied in areas where TPH concentrations in groundwater should be protective of sediments (e.g., near the South Fork Skykomish River and Former Maloney Creek) and the RL should be applied where TPH concentrations in groundwater should be protective of drinking water. The conditional point of compliance (CPOC) boundary shown on figures 2-26 through 5-28 is adapted from CAP Figure 6.

The CPOC is still considered tentative and may be adjusted after cleanup activities are completed. However, for the purposes of discussion, the CPOC is included on the figures and individual results are compared with both the CUL and RL.

5.3.1 Site-Wide Wells

TPH results for site-wide monitoring are illustrated on Figures 5-23 through 5-28. Oil concentrations ranged from non-detect to 2,490 μ g/L. Diesel concentrations ranged from non-detect to 7,750 μ g/L. TPH (oil plus diesel) concentrations ranged from 61 to 10,240 μ g/L. TPH (oil plus diesel range) concentrations in wells located within or adjacent to the plume typically exceeded the RL.

Analytical results from groundwater samples collected from the semi-annual sampling events were reviewed to evaluate whether TPH concentrations vary seasonally. Figure 5-29 presents time-concentration plots of TPH in selected wells. As this figure shows, TPH concentrations were generally greatest during the fall/winter months. Figure 5-30 shows historical TPH data (when available); no long-term trends are evident within the Site, indicating that the plume location is relatively stable. These figures show that the groundwater concentrations generally increase with higher groundwater elevations.

5.3.2 Levee Zone Wells

TPH results in the Levee Zone are illustrated on Figures 5-23 through 5-28. Oil concentrations ranged from non-detect to 855 μ g/L. Diesel concentrations ranged from non-detect to 1,540 μ g/L. TPH (oil plus diesel) concentrations ranged from 61 μ g/L to 1,965 μ g/L. The average concentration was 454 μ g/L. Concentrations (oil plus diesel) in wells 5-W-15, 5-W-18, and 5-W-20 typically exceeded the RL. Oil and diesel results using acid-silica gel cleanup were mostly non-detect and TPH concentrations (oil plus diesel) did not exceed the RL or CUL, suggesting potential biogenic interferences. However, since significant remaining TPH has been observed in soil south of the Levee Zone excavated area and in confirmational soil samples along the western excavation side-wall, there is other evidence that TPH-affected groundwater may be present in the Levee Zone. The oil and diesel concentrations at the seep were 111 μ g/L and 261 μ g/L. The TPH concentration (oil plus diesel) at the seep was 372 μ g/L, which exceeds the CUL.

5.3.3 Former Maloney Creek Wells

TPH results in the wells in the vicinity of Former Maloney Creek are illustrated on Figures 5-23 through 5-28. Oil concentrations ranged from non-detect to a 1,050 μ g/L. Diesel concentrations ranged from non-detect to 1,030 μ g/L. TPH (oil plus diesel) concentrations ranged from 61 μ g/L to 1,910 μ g/L. The average concentration was 609 μ g/L. TPH (oil plus diesel) concentrations in wells 2A-W-9 and 2A-W-10 typically exceeded the CUL. TPH (oil plus diesel) concentrations in wells 2A-W-11 and MW-39 typically exceeded the RL. Analysis using acid-silica gel cleanup was not completed for these wells.

6.0 Summary and Recommendations

This report presents the results of groundwater monitoring performed in the third and fourth quarters of 2007 and the first three quarters of 2008. Approximately 103 groundwater samples were collected during the reporting period.

The fluid level and monitoring data collected throughout the reporting period were compared to previous monitoring data. These data indicate groundwater flow gradients are relatively consistent throughout the year and similar to historic gradients; however, the installation of the HCC wall during the 2008 remediation effort has modified the groundwater flow by cutting off the flow from the railyard to the downgradient properties. This wall has not affected the direction of the groundwater flow but has caused a slight mounding on the upgradient side of the wall and caused the groundwater downgradient of the wall to be at a lower elevation than the pre-wall construction elevations. This mounding is being corrected by pumping the groundwater from recovery wells into the on site treatment system. These data also indicate that the LNAPL and dissolved plume extents have remained relatively stable throughout the monitoring period and do not appear to have migrated or changed size, although there are some seasonal fluctuations in TPH concentrations.

TPH concentrations during the monitoring events exceeded the CUL (208 μ g/L) and RL (477 μ g/L) at locations downgradient and immediately adjacent to areas containing free and residual product.

The TPH CUL (208 μ g/L) was exceeded in a sample collected from a seep observed on the bank of the South Fork Skykomish River. The TPH concentration (oil plus diesel range) was 372 μ g/L. The seep is located in an area where in-place soil exceeds the soil RL of 3,400 mg/kg NWTPH-Dx. This area west of the levee cleanup zone will be investigated further in 2009 to assess the extent of soil concentrations exceeding the RL and/or the CUL (22.0 mg/kg NWTPH-Dx). During seasons of lower river levels, samples will be collected from the seep and analyzed to more completely understand the potential TPH effects on the South Fork Skykomish River.

7.0 References

- ENSR, 2007a. Remedial Design Investigation Work Plan, Former Maintenance and Fueling Facility Skykomish, Washington. Seattle, Washington: ENSR Corp. July 2007.
- ENSR, 2007b. Interim Action for Cleanup 2006 As Built Completion Report, Former Maintenance and Fueling Facility Skykomish, Washington. Seattle, Washington: ENSR Corp. July 2007
- ENSR, 2008a. Draft Groundwater Monitoring Plan, Former Maintenance and Fueling Facility Skykomish, Washington. Seattle, Washington: ENSR Corp. May 2008.
- ENSR, 2008b. Remedial Design Investigation Report Former Maintenance and Fueling Facility, Skykomish, Washington. Seattle, Washington: ENSR Corp. May, 2008
- RETEC, 1996. Remedial Investigation for the Former Maintenance and Fueling Facility in Skykomish, Washington. Seattle, Washington: Remediation Technologies, Inc., January 1996.
- RETEC, 2001. Interim Action Basis of Design for LNAPL Barrier System: Former BNSF Fueling and Maintenance Facility, Skykomish, Washington, Vol. 1 of 2. Seattle, Washington: The RETEC Group, Inc., August 10, 2001.
- RETEC, 2002. Supplemental Remedial Investigation: BSNF Former Maintenance and Fueling Facility, Skykomish, Washington. Seattle, Washington: The RETEC Group, Inc., July 12, 2002.
- RETEC, 2005a. Groundwater Sampling Plan. Former Maintenance and Fueling Facility, Skykomish, Washington. Seattle, Washington: The RETEC Group, Inc., May 12, 2005.
- RETEC, 2005b. *Final Feasibility Study. Former Maintenance and Fueling Facility, Skykomish, Washington.* Seattle, Washington: The RETEC Group, Inc., March 15, 2005.
- RETEC, 2007. Groundwater Monitoring Plan, Revision 1. Former Maintenance and Fueling Facility, Skykomish Washington. Seattle, Washington: The RETEC Group, Inc., June 7, 2007.

AECOM Environment

Tables

		10/3/2007			11/15/2007		12/13/2007				
Well Number	Potentiometric	Wetland Water	Product	Potentiometric	Wetland Water	Product	Potentiometric	Wetland Water	Product		
	Elevation	Elevation	Thickness (feet)	Elevation	Elevation	Thickness (feet)	Elevation	Elevation	Thickness (feet)		
	(NAVD88)	(NAVD88)	mickiess (icci)	(NAVD88)	(NAVD88)	Thekness (reet)	(NAVD88)	(NAVD88)	Thekness (reet)		
1A—W—1	NM	-	-	NM	-	-	NM	-	-		
1A—W—2	NM	-	-	NM	-	-	NM	-	-		
1A—W—3	NM	-	-	NM	-	-	NM	-	-		
1A-W-4	NM	-	_	NM	-	-	NM	-	_		
1A-W-5	919.64	_	_	NM	_	_	919.25	-	_		
1B_W_1	NM	_		925.83	_	_	925.43		Trace		
10 W 1	NM			NIM			525.45 NM		Hace		
1B	INIVI	_	_	INIM	_	_		_	_		
1B—W—3	NM	-	-	NM	-	-	921.21	-	-		
1C—W—1	NM	-	_	NM	-	-	NM		_		
1C-W-2	NM	-	-	NM	-	-	NM	-	-		
1C—W—3	NM	-	-	NM	-	-	NM	-	-		
1C-W-4	NM	-	_	NM	-	-	NM	-	_		
2A-W-1	NM	_	_	NM	_	_	NM	-	_		
24_W_2	NM	_	_	925.80	_	_	925.26		_		
24 W 2	NIM			025.00			024.49		Traca		
2A-W-3	INIVI	_	_	925.39	_	_	924.40		Trace		
2A—W—4	NM	_	_	928.79	_	_	928.17		Irace		
2A—W—5	NM	_	_	927.67	_	_	928.84	_	_		
2A—W—6	NM	-	-	NM	-	-	NM	-	-		
2A—W—7	NM	-	-	930.82	-	-	929.70	-	_		
2A—W—8	NM	-	-	NM	-	-	NM	-	_		
2A-W-9	NM	_	_	928.65	_	_	927.89	_	_		
2A-W-10	NM	_		929.65	_	_	929.1	<u> </u>	<u> </u>		
20 10 44	NIM			029.00			025.1		Tross		
2M-VV-11	INIVI			928.06			925.73		i racê		
2A—W—22	NM	-	-	NM	I –	I –	925.51		<u> </u>		
2B—B—211	NM	-	—		NM — due to damag	e		NM — due to damag	e		
2B—W—4	NM	-	-	929.33	-	-	929.12	-	-		
2B-W-11	NM	-	_	929.72	929.91	-	929.47	NM	_		
2B-W-122	NM	_	_	929.67	929.73	_	929.27	NM	_		
2B-W-13	NM	_	_	929 11	929.34	_	928 71	NM	_		
2B W 10	NM			027.00	028.00		029.47	NM			
20-14	INIVI			927.90	920.00		320.47	INIVI			
2B—W—153	NM	_	_	928.20	928.97	_	NM	NM	_		
2B—W—19	NM	-	-	929.89	-	-	929.76	-	-		
2B—W—21	NM	—	—	928.50	—	—	927.94	-	—		
2B—W—30	NM	-	-	926.79	-	-	926.41	-	-		
2B-W-32	NM	-	_	929.33	-	-	929.16	-	_		
2B-W-33	NM	_	_	930.27	_	_	930.04	_	_		
5_W_1	920.63	_	_	NM	_	_	921.95		_		
5 W 2	NM			NM			NM				
5-11/2	1111/1			NIN			040.04				
5-VV-3	919.03	-	_	NM	_	_	919.01	_	_		
5-W-4	NM	-	-	NM	-	-	NM	-	-		
5-W-14	918.58	-	-	917.45	-	-	917.96	-	—		
5-W-15	918.4	-	-	917.36	-	-	917.86	-	-		
5-W-16	918.2	-	-	917.26	-	-	917.73	-	—		
5-W-17	918.37	-	-	917.36	-	-	917.91	-	_		
5-W-18	918.11	_	_	917.20	_	_	917.67	-	_		
5-W-19	914 73	_		916.87	_	_	917.43				
5-W-13	017.6			016 79			017.96				
5-00-20	917.6	_	_	916.76	_	_	917.30	_	_		
MVV-1	NM	_	_	927.29	_	_	927.53		_		
MW-2	NM	-	-	928.14	-	-	928.06		-		
MW-3	NM			929.80			929.30				
MW-4	NM	—	—	929.84	—	—	929.37	_			
MW-5	NM	-	-	928.39	-	-	927.62	-	-		
MW-7	NM	-	-	925.81	-	-	924.79	-	_		
MW-9	NM	i _	i _	926.26	1 _	1 _	925.76	<u> </u>	_		
MW/-10	NM	-	-	026 77	-	-	926.52	<u> </u>	t _		
M/0/ 44	NIM			026 52			026.02	+			
10100-11	INIVI			920.03			920.40	<u> </u>			
MVV-12	NM	_		928.15			926.50	<u> </u>			
MW-13	NM	-	-	927.07	-	-	925.74		-		
MW-14	NM			926.48			925.37				
MW-15	NM			925.35			924.46				
MW-16	NM	-	-	NM	-	-	NM	-	-		
MW-17	NM	-	-	928.48	-	-	928.32	-	Heavy Trace		
MW-18	NM	_		927 23	_	_	927.01	<u> </u>			
M\N/_10	NIM	_	_	022 44	_	_	021.92	<u> </u>			
10100-19	NIVI			322.44			321.03	+			
MVV-21	NM	_		NM			NM	<u> </u>			
MW-22	918.18	-	-	NM	-	-	917.99		Heavy Trace		
MW-26	NM			NM			NM				
MW-27	NM	—	—	NM	—	—	NM		—		
MW-28	NM	-	_	NM	_	_	NM	-	-		
MW-32	NM			NM	_	_	NM	<u> </u>	<u> </u>		
MW/-24	NM	-	-	NM	-	-	NM	<u> </u>	t .		
10107-34	NIVI			INIVI			NIVI	+			
1/1/1/-35	NM	-		NM	-	-	NM	<u> </u>	<u> </u>		
MW-36	920.84	-	-	NM	-	-	921.47		I race		
MW-37	NM			NM			NM				
MW-38	NM			NM			NM				
MW-39	NM	-	_	928.83	_	_	928.23	-			
MW-40	NM	-	-	925.63	-	-	924.73	-	-		

Table 5-1 Potentiometric Surface Elevations and Product Thicknesses August 2007 through September 2008

							4/20/2008				
		1/1/2008			3/24/2008			4/30/2008			
Well Number	Potentiometric	Wetland Water	Product	Potentiometric	Wetland Water	Product	Potentiometric	Wetland Water	Product		
	Elevation	Elevation	Thickness (feet)	Elevation	Elevation	Thickness (feet)	Elevation	Elevation	Thickness (feet)		
	(NAVD88)	(NAVD88)		(NAVD88)	(NAVD88)		(NAVD88)	(NAVD88)	1110101000 (1001)		
1A—W—1	NM	-	-	922.82	-	-	NM	1	—		
1A—W—2	NM	-	-	925.43	-	Very Heavy Trace	NM	-	-		
1A—W—3	NM	-	_	920.46	_	-	NM	_	_		
1AW4	NM	_	_	920.98	_	_	NM	_	_		
10 W 5	NM			010.25			NIM				
1A	INIVI	-	_	919.23	_	_	INIVI	-	_		
1B—W—1	925.82	—	_	926.16	-	Irace	925.43	_	Irace		
1B—W—2	NM	-	-	924.26	-	-	NM	1	—		
1B-W-3	NM	-	-	923.45	-	-	NM	-	-		
1C-W-1	NM	_	_	924.62	_	-	NM	_	_		
1C_W_2	NM	_	_	926.27	_	_	NM	_			
10_W_2	NIN			920.27			NIM				
10-00-3	NM	_		912.62	-	-	NIM	_	_		
1C-W-4	NM	-	_	923.55	-	-	NM	-	—		
2A—W—1	NM	-	-	925.27	-	-	NM	-	-		
2A—W—2	925.84	-	-	926.06	-	-	NM	-	-		
2A-W-3	925.28	_	_	925.57	_	Trace	924.93	_	Trace		
2A W 4	NM			020.09		Hogay Traco	029.21		Hogyay Traco		
2A-W-4	INIVI	_		323.00		Tieavy Trace	320.31	_	Tieavy Tiace		
2A—W—5	927.60	-	—	927.97	_	-	927.34	-	—		
2A—W—6	NM	—		925.18		-	NM	-	—		
2A-W-7	NM			929.80			929.79	_			
2A-W-8	NM	_	_	928.88	_	_	NM	_	_		
2A-W-9	928.38	_	_	928 56	_		928 11	_			
24_1/1 10	020.45		_	020.74	_		020.51	_	i		
20-10	323.40	_	-	323.14	-	-	323.31	-	-		
2A—W—11	927.65	-	-	927.84	-	I race	927.36	-	Irace		
2A—W—22	NM		_	925.65	_		925.53		<u> </u>		
2B-B-211		NM — due to damag	e		NM - due to damage	e	926.45	-	—		
2B-W-4	929.18	_	—	929.41		_	929.35	—	—		
2BW11	929.69	930.63		920 01	920.06		929.80	920 06			
20 W 400	020.59	550.05 NA	_	020.77	020.00		020.00	020.70			
2B-W-122	929.58	NM		929.77	929.88	-	929.62	929.73	_		
2B—W—13	928.93	NM	-	929.10	929.38	-	928.88	929.33	-		
2B—W—14	928.87	NM	-	929.11	929.11	-	928.92	929.25	-		
2B—W—153	927.72	NM	_	927.79	929.23	-	927.24	929.14	_		
2B-W-19	929.65	_	-	929.89	-	_	929 94	-	_		
2B W 10	NM			029.54			028.22				
2D-W-21	19191	_	_	920.34		_	320.33	_			
2B—W—30	926.73	-	—	927.04	_	-	926.37	-	—		
2B—W—32	929.15	—		929.40		-	929.35	-	—		
2B—W—33	930.70	-	-	930.87	-	-	930.57	-	—		
5—W—1	NM	_	_	922.44	_	Trace	NM	_	_		
5_W_2	NM	_	_	920.75	_	Very Heavy Trace	NM	_			
5 W 2	NIM			010.52		Honey Troop	NIM				
5-VV-3	NM	_		919.52	-	Heavy Trace	NIM	_	_		
5-W-4	NM	-	-	921.03	_	-	NM	-	-		
5-W-14	NM	-	-	918.06	-	-	NM	-	-		
5-W-15	NM	-	_	917.99	_	-	NM	_	_		
5-W-16	NM	-	_	917.71	_	_	NM	-	_		
5 W 17	NIM			017.97			NIM				
5-00-17	INIVI	_	_	917.67	_	_	INIVI	_	_		
5-W-18	NM	_	_	917.63	_	_	NM	_	_		
5-W-19	NM	-	-	917.22	-	-	NM	-	-		
5-W-20	NM	-	-	917.12	-	-	NM	-	—		
MW-1	927.29	_	_	927.61	_	_	927.58	_	_		
MW-2	927 76		_	928 14	_	_	928 17	_			
MAY 0	020.57		_	020.14	_		020.04				
11117-3	929.57			930.58			930.01	-	— — —		
MW-4	929.69	-	-	930.15	-	-	929.83	-			
MW-5	928.12	_	—	928.32	_	_	927.84	—	<u> </u>		
MW-7	925.67	_		926.02	_	Trace	925.41	_	—		
MW-9	926.23	_	_	926.52	_	_	925.80	_	_		
MW-10	NM	_	_	926 99	_		926 39	_			
M\A/_11	NM		_	026.41	_		026.33	-	i		
10100-11			-	920.41	-		920.33	-			
MVV-12	927.74	-	-	927.80	-	-	927.27	_			
MW-13	926.91			926.91		—	926.48				
MW-14	926.33	-	-	926.43	-		925.97	-	-		
MW-15	925.32	—	—	925.53	—	_	925.00	—	—		
MW-16	NM	_	_	921 03	_		NM	_	_		
MM/ 47	0.06.00			020.00			020.26		l		
11111	320.32	_	-	320.03	-		320.20	-	— — —		
MVV-18	927.06	-	-	927.41	-	-	926.94	_			
MW-19	NM		_	922.61	_		NM		<u> </u>		
MW-21	NM	-	-	925.74	_	Very Heavy Trace	NM	-	—		
MW-22	NM	_	_	918.32	_	Heavy Trace	NM	_	_		
MW-26	NM		-	022.96	-		NM	-	-		
10107-20	NIVI	-	_	323.00	_			_			
MW-27	NM	-	-	925.86	-	-	NM	_			
MW-28	NM			928.82			NM		<u> </u>		
MW-32	NM	-	-	917.33	-		NM	-	i <u> </u>		
MW-34	NM	—	—	925.08	—	_	NM	—	—		
MW/-35	NM			925.24			NM	_			
NIN/ 00	NIVI			923.24		0.00	NIM		— <u> </u>		
1/1/1/-36	NM			922.03		0.82	NM				
MW-37	NM		-	924.69	-		NM	-			
MW-38	NM		-	918.22	-		NM	-	i —		
MW-39	928.66	_	_	928.89	_	Trace	928.68	_	Trace		
MW-40	925.57	—	—	925.77	—	—	925.23	—	—		

Table 5-1 Potentiometric Surface Elevations and Product Thicknesses August 2007 through September 2008

		5/29/2008			6/23/2008		7/24/2008				
Well Number	Potentiometric	Wetland Water	Desident	Potentiometric	Wetland Water	Desiduat	Potentiometric	Wetland Water	Desident		
Wen Number	Elevation (NAVD88)	Elevation (NAVD88)	Thickness (feet)	Elevation (NAVD88)	Elevation (NAVD88)	Thickness (feet)	Elevation (NAVD88)	Elevation (NAVD88)	Thickness (feet)		
1A-W-1	NM		_	NM		_	NM		_		
10 W 2	NM			NM			NIM				
10 W 2	NM			NM			NM				
1A W 3	NINA	-		NIM			NIM				
1A	INIVI	-	-	INIM	-	-	NIM	-	-		
1AW-5	NM	_	_	920.61	_	_	NM	_	_		
1B—W—1	NM	-	_	NM	-	-	NM	_	_		
1B—W—2	NM	-	—	NM	-	-	NM	—	—		
1B—W—3	NM	-	-	NM	-	-	NM	-	_		
1C-W-1	NM	-	-	NM	-	-	NM	-	-		
1C-W-2	NM	_	_	NM	_	_	NM	_	_		
1C-W-3	NM	_	_	NM	_	_	NM	_	_		
1C-W-4	NM	_	_	NM	_	_	NM	_	_		
20 W 1	NM			NM			NM				
2A-W-1	NIN			NIM			NIM				
2A—VV—2	INIVI	-	_	INIM	_	_	NM	_	_		
2A—W—3	925.10	-	Irace	924.38	-	Irace	924.24	_	Irace		
2A—W—4	NM	-	-	NM	-	-	927.27	-	0.29		
2A—W—5	928.15	-	-	927.53	-	-	926.12	-	_		
2A—W—6	NM	-	-	NM	-	-	NM	-	-		
2A—W—7	931.40	-	-	NM	-	-	929.01	_	_		
2A—W—8	NM	-	_	NM	-	-	NM	_			
2A-W-9	927.98	_	_	927.49	_	_	926.24	_	_		
2A-W-10	929.45	t _	i _	929.10	1 _	i _	927.21	i _	i _		
2A_\//_11	927.26		Heavy Trace	926 59	_	Heavy Trace	925.56	_	Heavy Trace		
20-10-00	521.20 NIM	+ <u> </u>	neavy Hate	520.09 NM		neavy nace	523.00	— — —	neavy nace		
24-10-22											
2B-B-211	926.05		_	925.37	-	-	924.61	-			
28—W—4	929.81		-	929.36	-	-	927.74	_	-		
2B—W—11	929.83	929.54		929.59	929.59	-	927.68	Dry	—		
2B—W—122	929.60	929.37	-	929.26	929.17	0.04	927.38	Dry	-		
2B—W—13	928.70	929.22	-	929.07	929.09	0.81	926.62	Dry	—		
2B—W—14	928.78	Dry	-	928.25	Dry	-	926.54	Dry	-		
2B-W-153	NM	Dry	_	NM	Dry	_	NM	Dry	_		
2B-W-19	930.78	_	_	930.15	_	_	928.11	_	_		
2B_W_21	928.60	_		928.10	_	_	926.82				
20 W 21	026.00			026.17			NIM				
2B	926.88	-	_	926.17	_	_	NM	_	_		
2B—W—32	929.94	_	_	929.44	_	_	927.80	_	_		
2B—W—33	930.71	-	_	930.09	-	-	927.72	-	_		
5—W—1	NM	-	-	921.89	-	Trace	NM	_	_		
5—W—2	NM	-	-	NM	-	-	NM	-	_		
5-W-3	NM	-	-	919.95	-	Trace	NM	-	—		
5-W-4	NM	-	-	NM	-	-	NM	-	-		
5-W-14	NM	_	_	919.25	_	_	NM	_	_		
5-W-15	NM	_	_	919.17	_	_	NM	_	_		
5-W-16	NM	_	_	919.02	_	_	NM	_	_		
5-W-17	NM	_		919.16	_	_	NM				
5-W-19	NM			019.00			NM				
5-00-10	INIVI	_	—	916.99	_	_	INIVI	_	_		
5-00-19	NM	-	_	918.73	_	_	NM	_	_		
5-W-20	NM	-	_	918.62	_	_	NM	_	_		
MW-1	929.10	-	-	928.26	-	-	926.57	-	-		
MW-2	929.88	-	-	928.97	-	-	927.00	-	—		
MW-3	930.52			929.72			927.61				
MW-4	929.70	-	_	929.43	-	-	927.46	_	_		
MW-5	927.78	-	_	927.28	-	-	926.10	_	_		
MW-7	925.37	-	Trace	924.62	_	_	924.26	_	Trace		
MW-9	926.36	—	_	925.68	—	—	924.55	—	_		
MW-10	927 30	_		926.66	_	_	925 30	_			
MW-11	927.62		_	926 70	_	_	925.40	_	_		
NAVA/ 40	006.00			006.40			0.05.00				
	920.80		— —	920.18			923.29	— <u> </u>	— <u> </u>		
1/1/1/3	926.12			925.51		_	924.79	_			
MW-14	925.75			925.14			924.54				
MW-15	924.96		_	924.28	-	-	923.96	_			
MW-16	NM			NM			NM				
MW-17	929.39		Trace	927.60		Trace	926.25		Heavy Trace		
MW-18	928.07	-	_	927.32	_	—	925.87	—	_		
MW-19	NM	-	_	NM	-	-	NM	-	_		
MW-21	NM	—	—	NM	—	—	NM	—	—		
MW/-22	NM	_		918 76	_	Heavy Trace	NM	i _	i _		
MW/-26	NM	t .		NM	-	incary induc	NM	l _	l _		
N/N/ 07	NIVI			NIVI			NIVI				
1/1/1/-27	INIM	-		INIM	-	-	NM	-	_		
MW-28	NM		-	NM	-	-	NM	-	-		
MW-32	NM	-		NM	-	-	NM	—	—		
MW-34	NM			NM			NM				
MW-35	NM	—		NM	—	—	NM	—	_		
MW-36	NM	-	_	921.94	-	Heavy Trace	NM	_	_		
MW-37	NM	-	_	NM	_	_	NM	_	_		
MW-38	NM	-	_	NM	_	_	NM	_	_		
MW-39	928.73	t _	Trace	928.23	i _	Trace	926.76	i _	Trace		
MW-40	925.18	t _		924.52	1 _	_	924.11	i _			
						1					

Table 5-1 Potentiometric Surface Elevations and Product Thicknesses August 2007 through September 2008

		8/27/2008			9/22/2008	
	Potentiometric	Wetland Water		Potentiometric	Wetland Water	
Well Number	Flevation	Flevation	Product	Flevation	Flevation	Product
	(NAVD88)	(NAVD88)	Thickness (feet)	(NAVD88)	(NAVD88)	Thickness (feet)
1A-W-1	NM	(NAVD00)	_	021 71	(INAV DOO)	_
14.11/10				521.71		
1A-W-2	NM	_	_	NM	-	_
1A-W-3	NM	-	-	918.95	-	-
1A-W-4	NM	-	-	919.80	-	-
1A-W-5	NM	_	_	918.37	_	_
1B-W-1	NM	_	_	NM		_
1D-W-1	NIM			1111/1	_	
1B-W-2	INIVI	-	-	921.37	_	-
1B-W-3	NM	-	-	921.21	_	—
1C-W-1	NM	-	-	922.64	-	-
1C-W-2	NM	_	_	924.70	_	_
1C-W-3	NM	_	_	NM	_	_
10 W 4	NIM			021.90		
10-11-4	INIVI	_	_	921.09	_	_
2A-W-1	NM	—	—	NM	-	—
2A-W-2	NM	-	-	NM		—
2A-W-3	923.88	-	Trace	922.75	-	Trace
2A-W-4	927.36	_	Heavy Trace	926.66	_	Heavy Trace
20.10/-5	025.02			025.17		
2A-W-5	323.32			323.17	_	
2A-W-6	NM	_	_	NM	_	_
2A-W-7	928.72	_	_	928.20	—	_
2A-W-8	NM	-	-	926.46	_	-
2A-W-9	926.06	_	_	925.19	_	-
2A-W-10	929.1	_	_	925.97	_	_
24-1/1-11	025.52		Heavy Traco	92/ 90		Heavy Traco
2/1-1/1	323.32		Heavy Hate	324.0U		Ticavy TIdue
2A-W-22	NM	-	-	NM		-
2B-B-211	924.38	_	_	93.70		_
2B-W-4	927.51	_	_	926.54	_	_
2B-W-11	927.88	927.88	_	926.32	926.32	_
2B-W-122	927.84	027.84	_	926.00	926.00	_
20 W 122	000.55	000.55		005.40	005.40	
2B-W-13	926.55	920.00	-	925.48	925.48	-
2B-W-14	926.45	926.45	-	925.55	925.55	-
2B-W-153	927.44	927.44	-	924.53	924.53	-
2B-W-19	927.90	-	-	926.93	_	1
2B-W-21	926 59	_	_	925.81	_	_
2B W 20	025.00			024.34		
2B-W-30	925.09	-	-	924.34	-	-
2B-W-32	927.52	-	-	926.63	-	-
2B-W-33	928.16	—	—	926.47	-	-
5-W-1	NM	-	-	918.74	_	-
5-W-2	NM	_	_	917.39	_	-926.85
5-W-3	NM	_	_	917.26	_	Trace
EWA	NIM			017.00		11000
5-77-4	INIVI			917.99		
5-W-14	NM	-	-	917.19	-	-
5-W-15	NM	-	-	917.21	1	-
5-W-16	NM	-	-	917.04	-	-
5-W-17	NM	_	_	917.14	_	_
5-W-18	NM	_	_	917.00		_
5 W 10	NINA			040.70		
5-W-19	NM	_	_	916.73		_
5-W-20	NM	-	-	916.65	_	-
MW-1	926.18	-	-	925.61	_	-
MW-2	926.55	-	-	925.92	_	1
MW-3	929.76	_	_	926.84	_	_
MANA/ A	027.47			026.01		
WW -4	321.41	-	-	320.23		
IVIVV-5	925.89	_	_	925.11	_	_
MW-7	924.02			923.01	_	None
MW-9	925.04	-	-	924.04	-	- 1
MW-10	925.44	_	_	924.69	_	_
MW-11	925.36	_	_	924.74	_	_
MW-12	025.10			924 50		
N/N/ 40	323.13			324.3U		
MVV-13	924.63	-	-	923.94	_	-
MW-14	924.22	_	_	923.54		_
MW-15	923.46	_	_	922.61	_	_
MW-16	NM	_	_	918.42	—	_
MW-17	NM	_	_	NM	_	_
M\A/_19	025 77			925.05		
IVIV/-18	920.//			920.00	_	
MW-19	NM	-	-	NM	-	-
MW-21	NM	_	_	NM		Very Heavy Trace
MW-22	NM	_	_	917.02	_	Heavy Trace
MW-26	NM	_	_	919.34	—	_
MW-27	NM			NM		
MW/ 00	NINI NINA			0.05.00		
IVIVV-28	INIM	_	_	925.26	_	_
MW-32	NM	—	—	916.46	—	-
MW-34	NM	_	_	NM	-	- 1
MW-35	NM	_	_	921.30	_	-
MW-36	NM	_	_	919.87	_	Heavy Trace
MW 97	NAA			NM		
IVIV -3/				INIVI		
MVV-38	NM	—	—	916.90	—	—
MW-39	926.58	—	Trace	925.88	—	Trace
MW-40	923.62	_	_	922.81		-

Table 5-1 Potentiometric Surface Elevations and Product Thicknesses August 2007 through September 2008

 Notes

 PT
 Product Thickness

 NM
 Not Measured

 HT
 Heavy Trace

 T
 Trace

 ¹2B-B-21 was observed to be damaged during the May 2008 gauging event. This piezometer is irreparable.

 ²2B-V-12 was installed at an angle of 14 degrees from vertical. All potentiometric elevations have been corrected to vertical.

 ³2B-W-15 was observed to be damaged during the May 2008 gauging event. This piezometer has been unable to be repaired. February 2008 groundwater was not recorded due to inaccessibility to site or wells.

		Field Parameters											
			рН	Conductivity	Temperature	ORP	Dissolved Oxygen	Turbidity					
Well	Sample Date	Time		(µmhos/cm)	(°C)	(mV)	(mg/L)	(NTU)					
1A-W-1	25-Mar-08	0932	6.22	80	6.47	-25.7	2.94	1.91					
	23-Sep-08	0853	6.12	137	11.5	92.6	0.49	2.33					
1A-W-3	25-Mar-08		ř	No parameters	collected, product i	n discharge line.	i	·					
	23-Sep-08	0944	6.10	83	10.13	92.5	2.53	5.39					
1A-W-4	25-Mar-08	1047	6.62	62	7.0	-28.2	5.30	1.18					
	23-Sep-08	1050	6.21	56	8.02	101.2	4.68	0.01					
14-10/-5	25-Mar-08	1456	6.38	104	6.84	113.1	7.28	2.20					
IA W 3	23-Sep-08	1129	6.29	59	9.39	103.5	4.02	0.66					
1R W/ 1	25-Mar-08			No parameters	collected, product in	n discharge line.							
10-00-1	23-Sep-08				Abandoned								
1B.W. 2	25-Mar-08	1217	6.00	58	7.01	-19.0	3.51	2.61					
1B-W-2	23-Sep-08	1652	6.22	172	11.72	80.8	0.26	3.00					
1D W 2	25-Mar-08	1745	6.06	69	5.75	0.1	4.21	0.95					
1B-W-3	23-Sep-08	1541	5.96	85	10.72	71.9	0.54	1.00					
	13-Dec-07	1237	4.87	107	7.78	173.2	0.50	0.95					
1C-W-1	25-Mar-08	1006	5.53	76	5.61	125.2	3.84	2.40					
	23-Sep-08	1312	5.53	51	11.45	112.6	2.34	0.25					
10.11/ 0	25-Mar-08	0843	6.11	75	5.11	159.1	8.01	2.40					
1C-W-2	23-Sep-08	1150	6.12	84	12.2	174.0	2.79	1.01					
10.11/ 0	24-Mar-08	1542	6.00	45	5.08	13.3	10.3	27.3					
10-77-3	23-Sep-08			No data (ina	ccessible, large bol	ders on top).	10.5 21.5						
10.11/1	24-Mar-08	1514	5.22	47	5.89	125.1	1.95	2.20					
1C-VV-4	23-Sep-08	1429	5.52	59	10.18	94.0	0.35	0.64					
	26-Mar-08	-		No parameters	collected, product i	n discharge line.							
2A-W-1	23-Sep-08				Abandoned								
	13-Dec-07	1408	4.83	79	6.17	187.6	0.50	2.11					
2A-W-6*	26-Mar-08	1038	5.42	50	4.55	173.0	0.83	1.77					
0.0. M/ 0	25-Mar-08	1534	5.47	78	3.41	90.1	1.52	2.50					
2A-W-9	23-Sep-08	1405	5.99	84	14.4	-4.0	0.00	1.61					
	25-Mar-08	1616	5.69	59	1.69	125.5	8.43	2.00					
2A-W-10	22-Sep-08	1653	5.25	43	9.44	86.1	0.14	4.51					
	24-Mar-08		0.20										
2A-W-11	23-Sep-08			No parameters	collected, product i	n discharge line.							
	25-Mar-08	1440 5.82		33 4.09		-77.9	0.63	1.58					
2B-W-4	23-Sep-08		0.02		Field form missing		0.00						
	25-Mar-08	1053	5.76	65	4.8	148.6	3.46	2.20					
5-W-4	23-Sep-08	1313	5.91	109	16.0	-16.0	1.81	9.06					
	20 000 00	1010	0.01	100	10.0	10.0	1.01	0.00					

Table 5-2 Stabilized Field Parameter Measurements

		Field Parameters											
Well	Sample Date	Timo	рН	Conductivity	Temperature	ORP (m)()	Dissolved Oxygen (mg/l)						
Weil		1004	F 60	(µ111103/c111)	(0)	21.0	(IIIg/L)	0.75					
	3-001-07	1004	5.60	62	7.5 0.05	21.0	5.04	0.75					
	21-INOV-07	0842	0.64	57	6.65	100.3	5.91	0.05					
5-W-14	12-Dec-07	1853	6.09	03	5.8	279.8	4.93	0.51					
	25-Mai-06	0905	0.04	103	0.0	135.0	0.30	0.40					
	23-Jun-08	1508	0.53	93	9.9	109.0	5.73	0.19					
	23-Sep-08	1032	6.27	57	8.2	144.0	4.10	0.00					
	3-Uct-07	1041	5.92	190	10.4	76.8	2.25	16.0					
	21-Nov-07	1017	6.53	86	8.85	3.60	0.87	4.00					
5-W-15	13-Dec-07	0921	5.87	47	7.4	124.8	0.83	10.74					
	25-Mar-08	0950	6.65	307	3.7	15.5	0.98	18.7					
	23-Jun-08	1230	6.59	135	11.1	40.9	1.28	2.36					
	23-Sep-08	1635	6.55	88	11.04	-73.9	0.19	4.90					
	3-Oct-07	1138	6.09	40	9.3	-53.9	10.7	4.90					
	21-Nov-07	1113	6.75	59	6.22	112.3	5.86	3.63					
5-W-16	12-Dec-07	2006	5.81	125	3.4	121.0	0.00	2.95					
	25-Mar-08	1047	7.45	62	4.2	99.0	0.00	2.99					
	23-Jun-08	1547	7.36	41	9.4	126.0	0.01	3.56					
	23-Sep-08	1756	6.64	41	10.8	77.7	6.90	0.45					
	3-Oct-07	1225	5.65	38	8.1	-42.9	6.03	0.90					
	21-Nov-07	1115	6.19	49	8.17	91.6	5.47	0.80					
5-W-17	13-Dec-07	0814	5.78	48	5.94	248.2	5.01	0.74					
0.11.11	25-Mar-08	1132	6.40	84	6.4	536.0	6.70	6.41					
	23-Jun-08	1327	6.39	77	8.3	144.0	5.82	0.43					
	23-Sep-08	1133	6.15	52	8.91	152.9	4.43	0.00					
	3-Oct-07	1307	5.57	88	9.8	109.0	1.70	0.66					
	21-Nov-07	1034	5.98	95	9.62	31.5	0.18	2.80					
5-W/-18	13-Dec-07	1046	5.51	87	6.89	135.6	0.32	10.34					
0 11 10	25-Mar-08	1417	6.35	178	4.6	110.0	0.72	9.56					
	23-Jun-08	1420	6.40	131	10.5	61.9	1.07	1.00					
	23-Sep-08	1245	6.30	101	11.24	98.3	0.20	0.38					
	3-Oct-07	1347	5.60	36	8.5	-33.9	7.00	0.20					
	21-Nov-07	0935	6.10	42	7.09	168.0	3.99	0.99					
5-W/-19	12-Dec-07	2113	6.04	48	5.52	201.1	5.20	1.85					
0-11-13	25-Mar-08	1459	6.48	76	6.2	356.0	8.44	0.86					
	23-Jun-08	1629	6.46	73	8.8	169.0	5.90	0.41					
	23-Sep-08	1429	6.30	47	9.76	146.8	4.75	0.03					

Table 5-2 Stabilized Field Parameter Measurements

					Field Par	ameters				
Well	Sample Date	Time	рН	Conductivity (µmhos/cm)	Temperature (°C)	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)		
	3-Oct-07	1437	5.50	165	9.6	-14.2	0.41	0.71		
	21-Nov-07	0836	6.07	114	9.03	81.8	0.14	3.30		
5 M/ 00	12-Dec-07	2214	5.62	78	7.18	95.7	0.33	3.58		
5-W-20	25-Mar-08	1608	6.43	125	4.4	170.0	0.61	2.18		
	23-Jun-08	1713	6.38	131	9.5	103.0	0.43	1.34		
	23-Sep-08	0919	6.27	99	9.87	76.8	0.17	1.06		
M/M/ 2	26-Mar-08	0945	6.02	85	1.5	175.0	8.30	10.1		
10100-3	23-Sep-08	1544	6.15	172	13.9	87.0	7.90	48.2		
N4)A/ 4	26-Mar-08	1033	6.22	88	0.9	5.99	4.01	2.98		
10100-4	23-Sep-08	1456	6.07	60	12.7	22.0	0.00	1.49		
MW/ 16	25-Mar-08	1439	5.45	64	5.14	126.9	7.42	1.90		
10100-10	23-Sep-08	1853	5.20	43	10.49	207.6	1.64	0.05		
MW/ 10	26-Mar-08	1115	5.63	39	4.03	181.0	6.79	2.40		
10100-19	23-Sep-08				Abandoned					
MW-34	25-Mar-08	0919	5.48	46	4.22	191.4	6.75	2.30		
10100-54	23-Sep-08				Abandoned					
MW-35	25-Mar-08	1602	6.10	101	6.85	-112.3	0.56	1.47		
10100-55	23-Sep-08	1755	5.95	87	11.42	37.3	0.20	0.48		
MW/ 27	26-Mar-08	0924	5.81	32	3.71	-83.8	0.79	0.92		
10100-37	23-Sep-08				Abandoned					
MW-38	25-Mar-08	1307	6.19	98	7.45	120.4	0.53	1.90		
10100-30	23-Sep-08	1231	6.12	54	12.6	167.0	1.12	0.74		
MW/-39	26-Mar-08			No parametors	collected product i	lected product in discharge line				
10100-39	23-Sep-08			No parameters		r uischarge inte.				

Table 5-2 Stabilized Field Parameter Measurements

Notes

*2A-W-6 was removed from the sampling network in May 2008 as approved by the Department of Ecology and explained in the 2008 GW Monitoring Plan

Table 5-3	Total Petroleum Hydrocarbons Reported as NWTPH-Dx
-----------	---

	Chemical Name Oil Range				Oil Range w/SG			Diesel Range				Diese	l Range w/ Silica G	el Cleanup	NTPH-Dx (calc) ^{a, b}	NTPH-Dx w/SG (calc) ^{a, b}
	Unit		μg/L			µg/L				µg/L			µg/L		µg/L	μg/L
			Mathad	Deperting	Decult 9	Mathad	Deperting	Decult	,	Mathad	Deperting	Decult 9	Mathad	Deperting		
Well	Sample Date	Qualifier	Detection Limit	Detection Limit	Qualifier	Detection Limit	Detection Limit	Qualifie	× r D	etection Limit	Detection Limit	Qualifier	Detection Limit	Detection Limit		
	25 Mar 08	ND		470	NIA			100	ТП	27.7	006	NIA			225	
1A-VV-1	25-Mar-08	ND 152 I	84.9	472				183	J	37.7	230	NA NA			225	
1A-W-3	25-Mar-08	102 J	84.9	470	NA			836	J	37.7	236	NA			2246	
1A-W-3	23-Sep-08	420 J	85.7	476	NA			191	J	38.1	238	NA			611	
1A-W-3 FD	23-Sep-08	180 J	84.9	472	NA			79.1	J	37.7	236	NA			259	NA
1A-W-4	25-Mar-08	ND	84.9	472	NA			ND		37.7	236	NA			61	NA NA
1A-W-4	23-Sep-08	ND	84.9	472	NA			ND		37.7	236	NA			61	NA
1A-W-5	25-Mar-08	ND	86.5	481	NA			ND		38.5	240	NA			63	NA
1A-W-5	23-Sep-08	ND	84.9	472	NA			ND		37.7	236	NA			61	NA
1B-W-1	25-Mar-08	859	84.9	472	NA			3180		37.7	236	NA			4039	NA
1B-W-2	25-Mar-08	118 J	84.9	472	NA			175	J	37.7	236	NA			293	NA
1B-W-2	23-Sep-08	170 J	87.4	485	NA			507	J	38.8	243	NA			677	NA
1B-W-3	25-Mar-08	96 J	84.9	472	NA			116	J	37.7	236	NA			212	NA
1B-W-3	23-Sep-08	ND	85.7	476	NA	454	470	117	J	38.1	238	NA		000	160	NA
1C-W-1	13-Dec-07	357 J	84.9	472	ND	151	472	1280	J	37.7	236	43.3	J 37.7	236	1637	118.8
1C-W-1	25-Mar-08	170 J	84.9	472				613 55		37.7	230	NA NA			783	
1C-W-2	25-Mar-08	ND	84.9	472	NA			ND	J	37.7	230	NA			97	
1C-W-2	23-Sen-08	ND	84.9	472	NA			ND		37.7	236	NA			61	
1C-W-3	24-Mar-08	ND	84.9	472	NA			ND		37.7	236	NA			61	
1C-W-4	24-Mar-08	111 J	84.9	472	NA			174	J	37.7	236	NA			285	NA NA
1C-W-4	23-Sep-08	105 J	84.9	472	NA			373	J	37.7	236	NA			478	NA
2A-W-1	26-Mar-08	583	86.5	481	NA			1530		38.5	240	NA			2113	NA
2A-W-1 FD	26-Mar-08	561	86.5	481	NA			1490		38.5	240	NA			2051	NA
2A-W-6	13-Dec-07	831	84.9	472	ND	151	472	4980	J	37.7	236	243	JN 37.7	236	5811	318.5
2A-W-6	26-Mar-08	497	86.5	481	NA			2540		38.5	240	NA			3037	NA
2A-W-6 FD	26-Mar-08	481	84.9	472	NA			2520		37.7	236	NA			3001	NA
5-W-4	25-Mar-08	175 J	86.5	481	NA			188	J	38.5	240	NA			363	NA
5-VV-4	23-Sep-08	2490 J	84.9	472	NA	82		211	J	31.1	236	NA			10240	NA NA
0-VV-4 FD M\\//₋16	25-Mar-08	100 J	84 Q	4/0 //72					J	30.1	238	NA NA		1	539 61	
MW-16	23-Sep-08	ND	84.9	472	NA			ND	+ +	37.7	236	NA			61	
MW-19	26-Mar-08	ND	84.9	472	NA			38	J	37.7	236	NA	<u>_</u>	1	80	
MW-34	25-Mar-08	ND	84.9	472	NA			80.8	J	37.7	236	NA		1	123	
MW-35	25-Mar-08	357 J	84.9	472	NA			1300		37.7	236	NA			1657	NA I
MW-35	23-Sep-08	187 J	85.7	476	NA			305	J	38.1	238	NA			492	NA
MW-37	26-Mar-08	284 J	84.9	472	NA			842		37.7	236	NA			1126	NA
MW-38	25-Mar-08	ND	84.9	472	NA			84	J	37.7	236	NA			126	NA
MW-38	23-Sep-08	ND	85.7	476	NA			ND		38.1	238	NA			62	NA
Maximum		2490						7750				243			10240	** 319 **
Minimum		ND						ND				43			61	** 119 **
Average															1121	** 219 **

	Chemical Name	e Oil Range			Oil Range w/SG				Diesel Range		Diese	I Range w/ Silica G	el Cleanup	NTPH-Dx (calc) ^{a, b}	NTPH-Dx w/SG (calc) ^{a,}	, b		
	Unit			µg/L			µg/L		μg/L					μg/L	-	µg/Ĺ	μg/L	
Well	Sample Date	Result & Qualifier	s r	Method Detection Limit	Reporting Detection Limit	Result & Qualifier	Method Detection Limit	Reporting Detection Limit	Result & Qualifier	k r [Method Detection Limit	Reporting Detection Limit	Result & Qualifier	Method Detection Limit	Reporting Detection Limit			
Levee Zone wells																		
5-W-14	3-Oct-07	ND		85.7	476	NA			ND		38.1	238	NA			62	NA	
5-W-14	2-Nov-07	87	J	84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	106	94.35	
5-W-14	12-Dec-07	ND		84.9	472	ND	151	472	49.9	J	37.7	236	51.6	J 37.7	236	92	127.1	
5-W-14	25-Mar-08	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-14	23-Jun-08	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-14	23-Sep-08	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-14 FD	2-Nov-07	164	J	84.9	472	ND	151	472	73.6	J	37.7	236	ND	37.7	236	238	94.35	
5-W-15	3-Oct-07	425	J	85.7	476	NA		170	1540	JN	38.1	238	NA			1965	NA	
5-W-15	2-Nov-07	1//	J	84.9	472	ND	151	472	85.8	J	37.7	236	ND	37.7	236	263	94.35	
5-VV-15	13-Dec-07	ND 152		84.9	472	ND	151	472	121	J	37.7	236	ND	37.7	236	163	94.35	
5-VV-15	20-IVIAI-08	103	J	84.9	472		151	472	305		37.7	230		37.7	230	438	94.35	
5-W-15	23-501-08	145 ND	J	04.9 94.0	472	ND	151	472	204	J	27.7	230		27.7	230	21/	94.33	
5-W-15 FD	23-3ep-00	152	1	84.9	472	ND	151	472	207	J	37.7	230	ND	37.7	230	314	94.33	
5-W-15 FD	3-Oct-07	397		84.9	472	NA	101	472	1470	JN	37.7	236	NA	51.1	230	1867	NA	-
5-W-15 FD	23-Sep-08	ND	Ŭ	85.7	476	ND	152	476	193		38.1	238	ND	38.1	238	236	95.05	
5-W-16	3-Oct-07	ND	Î	84.9	472	NA		-	56.2	J	37.7	236	NA			99	NA	Ť
5-W-16	2-Nov-07	118	J	85.7	476	ND	152	476	67.6	J	38.1	238	ND	38.1	238	186	95.05	-
5-W-16	12-Dec-07	ND		84.9	472	ND	151	472	47.6	J	37.7	236	47.9	J 37.7	236	90	123.4	
5-W-16	25-Mar-08	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-16	23-Jun-08	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-16	23-Sep-08	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-16 FD	25-Mar-08	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-17	3-Oct-07	ND		84.9	472	NA			ND		37.7	236	NA			61	NA	
5-W-17	2-Nov-07	521		84.9	472	ND	151	472	141	J	37.7	236	ND	37.7	236	662	94.35	
5-W-17	13-Dec-07	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-17	25-Mar-08	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-17	23-Jun-08	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-17	23-Sep-08	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-17 FD	13-Dec-07	256		04.9	472	ND	151	472	ND	INI	37.7	230	ND	51.1	230	01	94.55	_
5-VV-18	3-001-07	200	J	84.9	472	NA	151	470	023	JIN	37.7	236	NA 79.4	1 27.7	226	879	152.0	
5-W-18	2-100V-07 13-Dec-07	406	1	04.9 84.0	472		151	472	858		37.7	230	76.4	J 37.7	230	1955	132.9	
5-W-18	25-Mar-08	362	J	84.9	472	ND	151	472	844	J	37.7	230	44.6	J 37.7	230	1204	132.2	
5-W-18	23-Jun-08	272		84.9	472	ND	151	472	511		37.7	236	41.9	<u> </u>	236	783	117.4	
5-W-18	23-Sep-08	ND	Ŭ	84.9	472	ND	151	472	342	J	37.7	236	ND	37.7	236	384	94.35	
5-W-19	3-Oct-07	ND		84.9	472	NA			ND		37.7	236	NA			61	NA	Ť
5-W-19	2-Nov-07	134	J	85.7	476	ND	152	476	ND		38.1	238	ND	38.1	238	153	95.05	-
5-W-19	12-Dec-07	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-19	25-Mar-08	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-19	23-Jun-08	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-19	23-Sep-08	ND		84.9	472	ND	151	472	ND		37.7	236	ND	37.7	236	61	94.35	
5-W-20	3-Oct-07	393	J	84.9	472	NA			756	JN	37.7	236	NA			1149	NA	
5-W-20	2-Nov-07	820		85.7	476	ND	152	476	1010		38.1	238	53.4	J 38.1	238	1830	129.4	
5-W-20	12-Dec-07	403	J	84.9	472	ND	151	472	912	J	37.7	236	45	J 37.7	236	1315	120.5	
5-W-20	25-Mar-08	326	J	84.9	472	ND	151	472	762		37.7	236	39.6	J 37.7	236	1088	115.1	
5-W-20	23-Jun-08	292	J	84.9	472	ND	151	472	551	J	37.7	236	ND	37.7	236	843	94.35	_
5-VV-20	23-Sep-08			84.9	4/2	ND	151	472	305	J	37.7	236	ND 42	37.7	236	347	94.35	_
Seep	27-Aug-08	055	J	84.9	472	ND	151	472	201	J	31.1	236	42	J 31.1	236	372	117.5	
Minimum		805 NID							1 540							1905 '	154 ** 04	**
Average									ND				ND			453 *	* 102	**

Table 5-3 Total Petroleum Hydrocarbons Reported as NWTPH-Dx

Table 5-3 Total Petroleum Hydrocarbons Reported as NWTPH-Dx

	Chemical Name Oil Range					Oil Range w/SO	G		Diesel Range		Diese	Range w/ Silica G	el Cleanup	NTPH-Dx (calc) ^{a, b}	NTPH-Dx w/SG (calc)	ı, b
	Unit		μg/L			μg/L			μg/L			µg/L		μg/L	µg/L	
Well	Sample Date	Result & Qualifier	Method Detection Limit	Reporting Detection Limit	Result & Qualifier	Method Detection Limit	Reporting Detection Limit	Result & Qualifier	Method Detection Limit	Reporting Detection Limit	Result & Qualifier	Method Detection Limit	Reporting Detection Limit			
Fomer Maloney Creel	k Wetland															
2A-W-9	25-Mar-08	598	84.9	472	NA			1030	37.7	236	NA			1628	NA	
2A-W-9	23-Sep-08	147	J 85.7	476	NA			323	J 38.1	238	NA			470	NA	
2A-W-9 FD	23-Sep-08	171	J 85.7	476	NA			294	J 38.1	238	NA			465	NA	
2A-W-10	25-Mar-08	245	J 84.9	472	NA			136 、	J 37.7	236	NA			381	NA	
2A-W-10	22-Sep-08	153	J 85.7	476	NA			227 .	J 38.1	238	NA			380	NA	
2A-W-11	24-Mar-08	473	84.9	472	NA			675	37.7	236	NA			1148	NA	
2A-W-11	23-Sep-08	1050	85.7	476	NA			860	J 38.1	238	NA			1910	NA	
2B-W-4	25-Mar-08	ND	84.9	472	NA			ND	37.7	236	NA			61	NA	<u> </u>
2B-W-4	23-Sep-08	ND	84.9	472	NA			ND	37.7	236	NA			61	NA	
MW-3	26-Mar-08	ND	84.9	472	NA			ND	37.7	236	NA			61	NA	
MW-3	23-Sep-08	143	J 85.7	476	NA			102 、	J 38.1	238	NA			245	NA	
MW-4	26-Mar-08	119	J 86.5	481	NA			81.2	J 38.5	240	NA			200	NA	
MW-4	23-Sep-08	ND	85.7	476	NA			ND	38.1	238	NA			62	NA	
MW-39	26-Mar-08	222	J 86.5	481	NA			639	38.5	240	NA			861	NA	
MW-39	23-Sep-08	559	84.9	472	NA			642 、	J 37.7	236	NA			1201	NA	
Maximum		1050						1030						1910	**	**
Minimum		ND						ND						61	**	**
Average														609	**	**
Field Equipment QC																
FIELDQC	3-Oct-07	ND	84.9	472	NA			ND	37.7	236	NA			61	NA	
FIELDQC EB	13-Dec-07	ND	84.9	472	ND	151	472	ND	37.7	236	ND	37.7	236	61	94.35	
FIELDQC EB	25-Mar-08	ND	84.9	472	NA			ND	37.7	236	NA			61	NA	
FIELDQC EB	23-Jun-08	ND	84.9	472	ND	151	472	ND	37.7	236	ND	37.7	236	61	94.35	
FIELDQC EB	23-Sep-08	ND	85.7	476	NA			ND	38.1	238	NA			62	NA	
Notes ** EB	Determined based on Equipment Blank	calculated cor	ncentrations													

FB Field Blank

FD Field Duplicate

J Estimated concentration

JN NA Analyte must be considered presumptively present at an estimated concentration

Not Analyzed

ND Not Detected

Trace LNAPL Light Green

Heavy Trace LNAPL Tan

Sum of detected concentrations of Oil and Diesel Range TPH TPH Calculation uses 1/2 the MDL for Non Detects а

b

Bold Exceeds remediation or cleanup level

AECOM Environment

Figures

_		~~~		
han				
-W-3	× ^{SK1}			
1				
	⊕ 1C−W−2			
₩−34	d Avenue			
↔ 24=₩-22				
2A-W-	-2 € MW-28			
MW-11				
	¢2A-W-0	T T		
MW-1				
\				
17				
	→ MŴ-2			
₩W-3				
2B-W-33				
	0			
19				
VELLS				
GING SCHEDULE CHANGED FROM BI-MONIHLY TO QUARTERLY IN VED BY ECOLOGY IN 2008 GROUNDWATER MONITORING PLAN)				
APRIL 2008				
ING LOCATIONS				
STALLED DURING 2006 LEVEE CONSTRUCTION				
H, WA. Report	SITE LAYOUT SHOWING FLUID LEVEL GAUGING NETWORK AUGUST 2007 - APRIL 2008			
	FIGURE 2-1			

h m	· · · · · · · · · · · · · · · · · · ·
~~~ · · ·	
-W-3	× SK1
1	
1	
	www.3.3**
	↓ 1C-W-2
MW-34 Railroad	Avenue
⊗ 2A-W-22-	
2A-W-	
	€ 2A-W-8
-1Ψ	
$\backslash$	
17	
	$\Phi^{MW-2}$
20 W 33	
90	0
VELLS	
GING SCHEDULE CH	HANGED FROM BI-MONTHLY TO QUARTERLY IN
VED BY ECOLOGY I	N ZUUO GRUUNDWAIER MUNIIURING PLAN)
APRIL 2008	
NING LUCATIONS	
V08	Sou Live construction
DONED	
H, WA.	
REPORT	SITE LAYOUT SHOWING FLUID LEVEL GAUGING NETWORK MAY - SEPTEMBER 2008
	FIGURE 2-2



		V
m		
11/ 7		SK1
-W-3		X
1		
	500 MB	₩ <u>-33**</u>
	₩ 1C - W - 2	
MW-34* Railroad	Avenue	
2A-W-		
MW-11		
		2A-W-8
HW-1		
17		
	₩W-2	
₩W-3		
	_	
EP-TO-		
LEGEND		
DCATIONS OF RIVER YDROGRAPHS	STAGE MEASUREMENT STATIONS PL	OTTED ON
DCATIONS OF WELLS	PLOTTED ON HYDROGRAPHS (FIGU	RES 5-2 TO 5-4)
ELLS USED TO PLO LEVATION (FIGURES	T PRODUCT THICKNESS VERSUS GR 5-5 TO 5-10)	OUNDWATER
ETLAND		
YDRAULIC CONTROL IPFRMFABLE LINER I	AND CONTAINMENT WALL NSTALLED DURING 2006 LEVEE COM	ISTRUCTION
ELL ABANDONED API	RIL 2008	
ELL ABANDONED PR	IOR TO 2008	
ELL ABANDONED AU	GUST 2008	
SH, WA. REPORT	HYDROGRAPH SOURCE DA PLOTTED ON HYDRO	TA LOCATIONS GRAPHS
		FIGURE 5-1






















	FIGURE 5-12	
H, WA. REPORT	NOVEMBER 2, 2007 POTENTIOMETRIC MAP	
LED RUCTION		
CONTOUR		
	NM NOT MEASURED	
<u>LLGLIND</u> <u>NC</u>	DTES:	
	⊕ ⊕ MW - <u>20</u>	Propolite
V	Asphalt Paved Roodbed	49
	VOTTITI LI IIIIIIIIIIIII	2
Street		• •
MW+26	1A + W + 2	
		042
	004 Convertence Co	
₩ 1 /	C Build Form Cone Mol C C Build Form	Dards
	A-36	$ \oplus $
const Land of Carlos	Proper Text	ť
		1 Stree
	-W-3	Fourth
T Cont	Counts and Counts Counts	Edd.
1A-W-5		te of Auphrat
		+









~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
-3		\$\$ \$	SK1	
2*			925.05	
			× M₩-33	
	↓ 1C-W-2 926.27			26
• MW-34 925.08 Railroad Av	en ke			- <u>-927</u>
22				
	2A−W−7 +929.80*			-928
W-11	+		± + + + + + + + + + + + + + + + + + + +	
20447			28.88	
₩₩-1 927.61				·929
	₩₩ 2 928,14		1	1
Фмw-3				٥
930.58 2B-W-33	9 ₃₀			
930 87 F0				
~930				
LEGEND				
	NUTES: * IN 2A-W-4	AND 2A-W-7	, GROUNDW	ATER
	elevations Than at su Top—of—ca	WERE CONSIS JRROUNDING W ASING ELEVATIC	ienily Higi /Ells.)NS ARE	
NG LOCATION	SUSPECT AN USED FOR	ND WILL BE RI CONTOURING.	ESURVEYED.	NOT
E CONTOUR	NM NOT MEASU	RED		
ED)				
FALLED DURING 200	D6 LEVEE CONSTRUCT	FION		
SH, WA.		MARCH 200	8	
KEPORI	POTI	ENTIOMETRI	C MAP	
			FIGURE 5	-16

Appendix A

Field Forms

Fluid Level Gauging Form

Project Name:	BNS	FSk	ykomish	1	Project Number:	01140-204	-0340	Collected by:	lected by: D. Kinney/A. Jambrosic						
	1			Total					7/30	07			<u>a</u> .		
Well Number	Da	ate	Time	Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Off	Comments	
1A-W-5	10/3	3/07	0817		8,95	NP		WL	10,07	NP					
5-W-13	· · .	}				-	·					******		Well not installed	
5-W-14			095		8,27	NP		WL	9,44	NP					
5-W-15			0926		6,96	NP	_	NL	6,02	NP	·* · · ·				
5-W-16			0938		7,27	NP	7	WL	8,27	NP					
5-W-17			0939		6,56	NP	ł	WL	7,60	NP					
5-W-18			0940		6,80	NP	Į	WL	778	NP					
5-W-19			0245		6,82	NP	1	WL	7,72	NP					
5-W-20			0950		6,46	NP		WL	7,32	NP					
5-W-1			09A.i		7.74	Trole		Trp	8,40	Trace				8'- 31/4"	
5-W-3			0932		6,18	Trace	4	Trf P	7,49	NP				71-97/2"	
MW-22			935		7.04	HUY TEAC	2 ~	Tap	\$60	0,4-				8'-11/z"	
MW-36	3	\mathbf{V}	0948		7.55	TIMO		Tap	8.30	HUTT				8-53/2"	

2

Other Notes:

dirty casing, possible trace product

use tape and paste (TP) use tape & paste (TP) + peristaltic pump (PP) PAGE 1

Fluid Level Gauging Form

	Project Name:	BNSF Skykomish			Project <u>BNSF Skykomish</u> Number: 01140-204-03 Number: 01140-204-03					Dec	n Kinn	ey, (x	ussia Sn	1th,	Aaron Jambrosic
	Well Number	Dat	e	Time	Total Casing Depth	Depth to Water (ft)	Outside P Depth to Wates (Ff	LNAPL Thickness	Method	DTW Prod. (ft) Thick. (ft)		DTW Prod. (ft) Thick. (ft)		Sign Off	Comments
_	2A-W-2	11/15	5/07	1103		9.75								15	
	2A-W-5	, i	1	1230		11,80				· · ·			· ·	25	
	2A-W-7			1203		9.77									
	2A-W-9			1034		7,93								DV	
	2A-W-10			1043		8.28								NY N	
	2A-W-22			1120		9,69						• .:		15	
	2B-W-4			1100		1.70						1.		DV	
	2B-W-11			1250		0,99	0,80							Nν	
	2B-W-12			1119		3,93	3.75							NK	
	2B-W-13			1237		3,41	2,18							DK	
	2B-W-14			1241		3.35	~3,25	(ADD COX.	eoth - ca	sina no	itsurm	indo	by water	DV	
	2B-W-15			1031		3,54	~277	(same	as ZR-	N - 14		Maria <u></u>		DV	
	2B-W-19			1105		5,36								AV	
	2B-W-21			1128		7,31								NV	· · · · · · · · · · · · · · · · · · ·
	2B-W-30			1145		9.81					1 11		le del c	OV	
	2B-W-32			1112		6,12								DK	
	2B-W-33			1050		8,01	~6,5	(same	as 2B-	W - I	4)			DK	
	2B-B-21		/	1231		3,33					, <u> </u>		· · · · ·	DIC	

PAGE 2

.

Well Number	Date	Time	Total Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
MW-1	11/15/07	1250		11,91								AΤ	
MW-2	<u> </u>	1246		11.06						1.1.1		AT	
MW-3		1242,		8,23								AT	
MW-4		1232		7,11				•			- 	AT	
MW-5		1237		4,97				······.				At	· · · · · · · · · · · · · · · · · · ·
MW-9		1135		11.27					· ·			<u> </u>	
 MW-10		1140		11,57				4.0 1				$\frac{03}{5}$	
MW-11		1143		12,67						1960 - 1970 -		15	
MW-12		1027		3.30								DIC	
 MW-13		1255		7,86					· .			$\sim \sim$	
 MW-14		1300	13.5	10.01						. *		$\frac{1}{2}$	
 MW-15		1248		16.45								20	
MW-17		1740		10,63				· · ·				\overline{cs}	Trace and int (1, it.)
MW-18		1215		13,45							· · · ·	\overline{cs}	The planet (alph use
 MW-19		1108		10,11								22	
MW-40	イ	1250		10,89								$\overline{\langle \mathbf{c} \rangle}$	

PAGE 3

	Well Number	Date	Time	Total Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
X	MW-7	11/15/07	1120		11,08		· None	TΡ						17.0' - 11.0''
Д	1B-W-1		1043		9,69		None	TP (900)						$10.0^{7} - 3.7^{17}$
Д	2A-W-3		1100		9.04		Nono	4T						10.0' - 11.5''
Д	2A-W-11		1130		5,53		None	Τf						6.0' - 5.6"
X	MW-39		1143		7.38		None	ΤP						8.0' - 7.4"
	2A-W-4	$-\Psi$	1210		9,42		Truce	TΡ						100' - 70''

Other Notes:

use water level meter (WL)

clean well - north ('town') half clean well - south ('railyard') half dirty casing, possible trace product dirty well

use water level meter (WL) use tape and paste (TP) use tape & paste (TP) + peristaltic pump (PP)

PAGE 1

Fluid Level Gauging Form

	Project Name:	BNSF Sk	Pr ISF Skykomish No			Project Number:01140-204-0340			An	n Vent	nosi-	/Fred .	Merce	cll	
_	Well Number	Date	Time	Total Casing Depth	Depth to Water (ft)	Depth to LNAPE(ft) Water	JC. LNAPL Thickness	Method	11/(1 DTW (ft)	5/2007 Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments	
	2A-W-2	12/17/07	-1644		10.29			we	9.75						
	2A-W-5	12/13/07	1126		10.63			wi	11.80					· · ·	
1	2A-W-7	12/13/07	1425		10,89			ωL.	9.77						
_	2A-W-9	12/13	1408		8.69			iwl	7.93					•	
	2A-W-10	12/3/02	1415		8.83				8.28						
	2A-W-22	12/13/24	1835		9.81			ω ⁱ	9.69						
L	2B-W-4	12/13/07	1725		1,21			ωL.	1.70						
	2B-W-11	12/13	1607		1.24			cri	0.99					SURVICE	
	2B-W-12	12/13/17	1742		4.34			we	8.93					auteile confire weeks - 479.44	
	2B-W-13	12/13	1401		3.81			WL	3.41					Surfar, 3:41	
	2B-W-14	12/13	135C		2.78			WE	3.35					Sucharan A Generate al	
	2B-W-15	. —	-					in	3.54					No 14 D Jours QUIDE -	
	2B-W-19	12/13	1534		5.49			44	536			an a		NO FOUR VILLA	
	2B-W-21	12/12	1633		7.87	;		we	7.31				ante de la composition Antes de la composition Antes de la composition	· · · · · · · · · · · · · · · · · · ·	
	2B-W-30	1213	1627		10.19			WL	0.81						
	2B-W-32	12/13/07	1527-		629			wi i	612						
	2B-W-33	12(13/02	1542		8.24			WL	8.01					· · · · · · · · · · · · · · · · · · ·	
	2B-B-21								3.33						

۰. ب

ŝ

đ,

Mast located

Ρ	A	G	E	2
---	---	---	---	---

· · ·

• •

								\bigcirc						\bigcirc
	PAGE 2		ب	* .										
				Total					11/1	5/2007				
	Well Number	Date	Time	Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ff)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
	MW-1	12/3/4	1509		11.67			wi	11.91					11.67
	MW-2	12/3/07	1503		11.14			inc	11.06		ud şete			Rush lock - want lock
	MW-3	12307	1455		8.73	•		ivi	8:23					
	MW-4 ·	12/13/	1445		7.58			ωί	7.11					· · · · · · · · · · · · · · · · · · ·
	MW-5	12/13/4	1438		5,74	,		WL	4.97					
	MW-9	12/13/27	126]		11.77			we	11 27					
	MW-10	12/13/07	1159		11,82			WL	11.57					
	MW-11	12/13/02	1154		12.74			wi	12.67					
	MW-12	12/13	1326		4.95			wi	3.30					
	MW-13	1213	1336		9,19			WL	7.86					
	MW-14	12/13	1332	13.5	11.12			wi	10.01					
	MW-15	12/13/07	1302		12.34			WL	11.45					
X	MW-17	12/13/01	IB12		(0.79	10.79	Heavy Trace	TP	10.63		1 (HB PDODUC 11.0-0.21
_	MW-18	12/13/07	1517		13.67		,	we	13 45			ti jane si en si Reciperte		
	MW-19	12/13/07	1217		10.72			WL	10.11					· · · · · · · · · · · · · · · · · · ·
	MW-40	12/13/0	- 131/		11.79			wi	10.89					
									· ·					

A.

•

	1			Total		1 1	1		11/1	5/2007				
	Number	Date	Time	Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW. (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
Д	MW-7	12/13/07	1534		12,10	·	NONE	TP	11.08	None				DTW: 13.0-0.90
Д	1B-W-1	12/13/07	1458	<u> </u>	10.09	10.09	TRACE	TP	9.69	None				DTw= 11.0 - 0.71
Д	2A-W-3	12/13/07	1605	 '	9.95	9.95	TRACE	TP	9:04	None			н. Т	DTW=11.0-1.05
Д	2A-W-11	12/13/01	15 20	<u> </u>	7.36	7.86	TRACE	TP	5.53	None	· · · ·		·	7.5-0.64
Х	MW-39	12/13/57	1508	 '	7.98		NONE	TF	7.38	None		6 m.		9.0-1.02 = DTW
	2A-W-4	17/13/57	1550		10.04	10,04	TRACE	TP	9.42	None				11.5-0.46

Other Notes:

clean well - north ('town') half (WL)

clean well - south ('railyard') half dirty casing, possible trace product dirty well use water level meter (WL) use tape and paste (TP) use tape & paste (TP) + peristaltic pump (PP)

MW-22 @16.45 DTW+DTO 9.0-1.77 heavy trace 5-W-3 @17:15 DTW+DTO 7.0-0.80 neary trace MW-36 (217:00 DTW-DTP 7.5-0.58 trace
Fluid Level Gauging Form

Project Name:	BNSF Sk	ykomis	<u>h</u>	Project	01140-204	1-0340	Collected by:	Ac	won Jan	bosic	Fred r	rel	l
144-12	,	1	Total					10/3	3/2007	7/3	0/2007		
Numbe	Date	Time	Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL. Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
tA-W-5	v2/13/07	1658	1	4,34			WL	8.95		10.07		•	S
5-W-13				NI				NI		2 H			1
5-W-14	12/13/07	1015	+OI Fin	8.89 ft				8.27		9.44			·····
5-W-15	12/13/07	6848		7,50	•		we	6.96		6.02			
5-W-16	12/13/07	7.74		774.A			(~L	7.27	· · ·	8.27			TIME 1022
5-W-17	12/13/07	1027		7.02 ft			(J) L	6.56		7.60	Į,		· · · · · · · · · · · · · · · · · · ·
5-W-18	12/13/07	1004		7,24			64 L	6.80		7.78			
5-W-19	n/12/07	2057	3	7.12			WL	6.82		7.72			
5-W-20	12/12/07	2140		6.70			UNL .	6.46		7.32			
5-W-1	12/13/ก	635		6.42		NONE	TP	7.74	Trace	8.40	Trace		7.0-0.38
5-W-3	12/13/07	1715		6,20	6.20	Henry Trace	TP	6.18	Trace	7.49	None		7.0-0.80
MW-22	12/13/07	1645	46	7.23	7.23	Henry Trace	ΤP	7.04	Hvy Tr	8.60	0.4		9.0-1.77
MW-36	12/13/-1	1700	17ee	6.92	6,92	Trace	Tr	7.55	Trace	8.30	hvy Tr		7.5-058

Other Notes:

dirty casing, possible trace product

use tape and paste (TP) use tape_g& paste (TP) + peristaltic pump (PP)

2A-W-7 = DTW = 10.89 ft (> 14:25

PAGE 1

Fluid Level Gauging Form

land and a second secon

Name:	BNS	SF Sk	ykomisl	h	Project Number:	01140-204	-0340	Collected by	: <u>C</u>	Smith	& F.	Merri		
Well		- 4 -		Total	Depth to	Denth to		1	12/1	3/2007	11/	15/2007		
Number		ate	Time	Casing Depth	Water (ft)	LNAPL (ft)	Thickness	Method	DTW (ft)	Prod. Thick: (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
2A-W-2	1117	128	1330		9.71				10.29		0.75		Desperitus Referencias	
2A-W-5			6001		11.87		·		10.63		9.70			······
2A-W-7									10.00		0.77			
2A-W-9			1355		8.20		······		0.00		9.///		Bergera Konstanov	BUFIED, NOt Found
2A-W-10			1030		8,48	┨╾╶┈╼┤	·	· · · · · · · · · · · · · · · · · · ·	8.69		7.93			
2A-W-22						 	·	· · · · · · · · · · · · · · · · · · ·	8.83		8.28			
2B-W-4			1205	······	1.85	<u> </u>	· · · · · · · · · · · · · · · · · · ·		9.81		9:69			Buried, Not-tound
2B-W-11			1000	·····	100	<u> </u>	<u> </u>		1.91		1.70			(h)
2B-W-12	1/12	108	1045		1.02				1.24		0.99			Outside Casine 0.00
2B-W-13		11	1115		2 59	╞━───┧			4.34		3.93			<u>_</u>
2B_W_14	┨──┤		1119		230	┨──────┠			3.81		3.41			
2B-W-15	┨──┤		1125		0.00	┣────┤			2.78		3.35			
20-00-10	┠─┤		1715		4.0.2	┠			Dry		3.54			
2B-VV-19	╂──┤		CIEL	<u> </u>	5,00				5.49		5.36			
2B-W-21	┨────┤	<u> </u>	ICHE		0.0				7.87		7.31			Not Found
2B-W-30			1.545		9.87		······		10.19		9.81			
2B-W-32	111	<u> 408</u>	1200		le. 30				6.29		6.12			
2B-W-33	┡		1010		7.58				8.24		.8.01			
2B-B-21]							NM		3.33	사망한 가지만 것 사망한 가지만 것		NotEqual

PA	GE	2
----	----	---

	Well				Total	Donth to	Domáh 4-			12/1	3/2007	a	5/2007		
	Number		Date	Time	Casing Depth	Water (ft)	LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
	MW-1	1115	804	1614		11.91				1167			an de la composition En 1995 - Sentes		
L	MW-2	1		11018		11.44		:				1191			······
Γ	MW-3			1620		8.410				- 11,1 4 %	<u>Rene</u> cterna <u>e</u> Roofingerige	11.06		919614) Horaego	
F	MW-4			1625		7.210				8.73		8.23			
F	M\A/-5			IKAA		501				7.58		7.11			
⊢				1500	·	5.27			······································	5.74		4.97			
┝╌	IVIVV-9	111-	108	1350		11:30				11.77		11.27			
┝	MVV-10	1/17	100			·				11.82		11.57	特别的 的 。 1995年1月1日		Buried NotFound
	<u>MW-11</u>			112 -						12.74		12.67			BURIED MALTOING
	MW-12			1194		3.71				4.95		3.30			0
	MW-13			1130		8.07				9.19		7.86			······································
	MW-14			1136	_ 	10,16			······································	11 12		10.01			······································
	MW-15			1144		11.48				12.34		10.01			
	MW-17			1605		10,70			TD	10.70		11.40			
	MW-18	14	8C	1608	-	13102				10.79	HVY I F	10.63			
	MW-19	1								13.67		13.45			
	MW-40			1140		10 90				10.72		10.11			Burled No+ Found
						1.12				11.79		10.89			

5 · · · ·

.

	Woli			Total		_			12/1	3/2007	11/1	5/2007		
	Number	Date	Time	Casing Depth	Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick, (ft)	Sign Off	Comments
Д	MW-7	1117108	1540		11.99			T&P	12 10	None	11.08	None		
Ķ	1B-W-1	1	1750		9.70			T&P	10.09	Tr	9.69	None		
Ŕ	2A-W-3		1442		9.15			TP	9.75	Tr	9.04	None		······································
Ŕ	2A-W-11	1	1655		5.94			TP_	7.86	Τr	5.53	None		
\sim	MW-39	11 + 108	1050		+.55			TP	7.98	None	7.38	None		
	2A-W-4								10.04	None	9.42	None		Rivied Not Found

Other Notes:

use water level meter (WL)

clean well -- north ('town') half clean well - south ('railyard') half dirty casing, possible trace product dirty well

use water level meter (WL) use tape and paste (TP) use tape & paste (TP) + peristaltic pump (PP)

P	A	G	Е	2	
---	---	---	---	---	--

じし

	Well	-		Total	Dopth to	Danéh és			7/30)/2007	2/1	3/2007	t ng Tara	
100	Number	Date	Time	Casing Depth	Water (ft)	LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
	5-W-17								7.60		NI			
<u> </u>	5 W-18								7.78		Ň			
	5-W-19						<u>Messa se </u>		7.72		N			
0	5-W-20	a hul							7.32		NI			
S	MW-1	3/24/00	1031	·	11.59				13.25		10:29			
S	MW-2	3/04/06	1856		11 06				12.93		9.38		inter gingen sk Light (* 1122)	
S	MVV-3	21 1/105	1042 16/10		<u>7.45</u>			· .	11.32		6.80			
5	NBA(12-	5/24/08	1121		2.50				10.28		6.62			
	MML14	124108	151	40.5	5.65	·			6.90	an a	<u>3.03</u> 7			
	MW-16			13.5		—			.12.87		9.59			
s	MW-18	3/04/04	HPY)		12:07				15.62		12.75	Halfilia (1967) effort Ballice - State - Provinsi Ballice - State - Provinsioner		
s	MW-19	310 eiles	1233	·····	99U		·····		15.49	1111 - 1111 - 1111 1111 - 1111 - 1111 - 1111	12.55			
s	MW-26	3/14/24	1256		6.79				12:22		9.32			· · · · · · · · · · · · · · · · · · ·
s	MW-32	3/24/06	1207.		8.23				9.58		6.12			
	MW-34		1999						9.48		8.10			
感影	MW-35								12 08	ar en gerrenden in Startingsster dans	9.37			
s	MW-37	3/24/00	1209		7.63		and the second	e la provinsi de la della d	10.31	eran de canago Hele a Marter I	7.05			
s	MW-38	3/24/08	1216		4.34				525		NM			
Ŵ	2A W 223								10.60		NI		1997 - 1997 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	Andringuagee

· ·

5

 \mathcal{L}_{i}

Nevel MW-17 AJ MW-17 AJ MW-17 MW-19 MW-37 MW-37 MW-38 28-W-4 MW-4 MW-4 MW-4 MW-17

PAGE	3
------	---

	Well Number	Date	Time	Total Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	7/30 DTW: .(ft)	/2007 Prod Thick (ff)	2/1 DTW (ft)	6/2007 Prod Thick. (ft)	Sign Off	Comments
Д	IA-W-3	3/24/08	10:30		7.52		NOR	TP	8.84	inone	6.27	none /	41	91-148
Д	IB-W-1	3/24/08	10:42		9.36		trace	TP	11.89	hwy trace.	870		A 1	$(e_{\lambda}, \rho_{\lambda})$
Д	2A-W-1	3/24/02	14:54		8,60		None	Τſ	11.51	trace	810	none	4	(2.0-046)
Д	2A-W-3								11.84	hvv trace	8 38	none		(10 0,10)
Д	2A-W-11	3/24/08	13:20		5.75				9.69	hvv trace	5.14	trace		(6.5-0.75)
Х	W-27	3/24/08	12:42		10.37		none	TP	13 19	none	9.64	none	A)	(1.0 - 0.63)
X,	/W-28 ~							-	15.00	none	11.86	none		
X	/W-39 -								10.12	none	6:80	none		
	A-W-2	3121/08	13:00		9,98		Nero trace	TP	13:24	0.37	9.11	0.01	Ax	(11.0-112) -
2	A-W-4 ~	3/24/08	13:43		9.13		heavy trace	TP	12.28	0.28	8 82	0.11	4	(10.0-087)
	-W-1	5/24/08	12:28		5,93		truce	TP	8.40	trace	5:12	none	41	(7.0 - 1.07)
ļ	-W-2 ·	3/24/06	12:15		5.62 "		very henry trace	TP T FUMP	7.59	hvy trace	475	trace	A)	6.0-0.38)
	-W-3	3/24/08	11:30		5.69		Heavy Time	TP	7.49	none	4.77	trace	AJ .	(a - 13)
I	IW-21	3/24/08	13:07		12.82		Neis tince	TP	£15:52 ×	0.62	12.06	hw trace	AS	(14.0-1.18)
	1W-22	3/24/08	11:05		6.90		henry trace	TP	8.60	0.4	5.85	hvv trace	Aι	(7.5-0.60)
	NW-36	63/24/0 ⁶	10:20		7,16	6.34		TP + PUMP	8.30	hvy trace	5.09	hvy trace	4s -	7.0.0.06
••	MW-17													

2

NOTES:

Si-W-Z attempted gauging by pump without but was not a new writch amount of product to mensure by this method, but type was covered with product and a lot of product was intrained with the tubing during pumping.

4¹⁰ . . .

MN-27 - NECP New comp, server on comp correctly, intice comp and knowle came off well could that female any other may so newsoring point will be slightly tomer than survey elevation

i

Fluid Level Gauging Form

Project Name:	BNSF Sk	ykomis	h	Project Number:	01140-204	-0340	Collected by:						
Mall		Ι	Total	D				7/30	0/2007	2/1	6/2007		
Number	Date	Time	Casing Depth	Depth to Water (ft)	LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
n 1A-W-1								14.53		11.94			· · · · · · · · · · · · ·
n 1A-W-4				a di selata di seconda di seconda Seconda di seconda di se Seconda di seconda di s				. 9.16		6.86			3
n 1A-W-5								10.07		7.66			
n 1B-W-2								13.55		10.46			
n 1B-W-3								14.91		12.16			•
n 1C-W-1								13.20		10.49	5 J.		
ń 1C-W-2			主张学家的					10.27		7.49			
n 1C-W-3				45 S S S S S				10.93		8:72			
<u>n 1C-W-4</u>								10.28	an an th	8.42	1 ¹¹		
n 2A-W-6								11.90		9.30			
s 2A-W-8	3/24/08	1023		13:74				15.82		12.18	n tra en 1. Konstanto en 1.		
s 2A-W-9	3/24/08	FOIL		8.02				10:99		7.38			
s 2A-W-10	3/24/05	111-2		8.19				11.51		7.79			
s 2B-W-4								4.02		0.80			
s 5-W-4	3/24/108	1250	ant for the second	5.634.	3			6.75		4.03			
n 5-W-13			5.44 (A. 44)					NI		NI			
n 5-W-14		an ann a' t						9.44		NI			
n 5-W-15-		261.1						8.02		NI			· · · · · · · · · · · · · · · · · · ·
ñ 5 W-16	物。在多级组							.8.27	15. / S. (2. 19. 19.	NÎ			

Fluid Level Gauging Form

÷.,

	Project Name:	BNSF Sk	ykomisl	h	Project Number:	01140-204	-0340	Collected by:	<i>C.</i> ?	Smit	<u>h</u>			
		1	1	Total					7/30)/2007	2/1	6/2007		
	Well Number	Date Doce	Time	Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ff)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
消	1A.W.18-	202	1038		12.67				14:53		11.94			Well Cap Not on Casing
'n	1A-W-4	903	他可能		821				9.16		6.86			-Put (dp on when (finkhed
N,C	1A-W-5	203	16501		<i>1.5</i> 1				10.07		7.66			
に加	1B-W-2	3,23	10210		11.55				13.55	الی در معرفی میشود. مراجع المراجع المی میشود مراجع المراجع	10.46			
	1B-W-3	3/23	1030		13.21				14.91		12.16		· · · .	
ñ	1C-W-1	3/23/08	\$105		11-83				13:20		10.49			
n	1C-W-2	323109	0956		703				10:27		- 7.49			
j j	1C-W-3								10.93		8.72			
ie i	1C-W-4								10.28		8:42			
â	2A-W-6	<u>303 -</u>	<u>0/08</u>						- 11.90		79:30			
s	2A-W-8								15.82		\$ 12.18			
s	2A-W-9	_							10.99		7.38			
s	2A-W-10						· · · · · · · · · · · · · · · · · · ·		11.51		7.79			
s	2B-W-4	293	1252		1.63				4.02		0.80			
S	5-W-4	s and the second							6.75		4.03			Alta i mi chila d
n	5-W-13	8156	A VER		5 A 4				NI		N			INT EXISTANT
n	5-W-14	282	1146						9.44		N			
<u>ي</u> ن ا	5-W-15	220	NOS		7.21				8:02		N		1999 - 1999 - 1999 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	· · · · · · · · · · · · · · · · · · ·
n	15-W-16	1 2 3 3	111775	Sector Cart	PART TO	9 States and a second	9-16-24-16-16-16-16-16-16-16-16-16-16-16-16-16-		8:27	Local Sector 1	NI NI			

	a sugar	
	34	•
		••
1 A A		•
		• •
PAGE 2		

•			Total		_			7/30)/2007	2/1	6/2007		
Well Number	Date	Time	Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
5-W-17-	303	1DO		706				7.60	$\overset{\text{Here}}{\substack{\substack{\substack{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{$	N			
5-W-18	323	03		S.C.F				7.78		NI			
5-W-19	3/23	130		7.33				7:72		N			
5-W-20	<u>র</u> প্র	RUS .		6 .94 1				7:32		N			
MW-1							~	13.25		10.29			
MW-2								12:93		9.38			
MW-3								11.32		6:80			
MW-4								10:28		6.62			
MW-12			(6.90		3.03			
MW-14	1303/23	1937	13.5	<i>0</i> 0,01				.12.87		9.59		<u> </u> {	well cap not in Casing-
MW-16	£03	1927		13.54				15.62		12.75			when finished
MW-18								15.49		12.55			
MW-19								12.22		9:32			
MW-26								9.58		6.12			
MW-32	2010							9.48		8.10			
MW-34	TA BO	ION	C C	9 1 1				11.60		9.37.			
MW-35	ব্রু	-107(0	でも	410.9/				12.94		10.30			
MW-37								10.31		7.05			
MW-38	3122							5.25		ŅM			Well Damaged
2A-W-22		10.0		の地子				10,60		NI			
MW-13	3/23	1342		8 00									· · · · · · · · · · · · · · · · · · ·

5

Fluid Level Gauging Form

	Project Name:	BNSF Skykomish			1	Project Number:	01140-204	-0340	Collected by:						
		1			Total					12/1	3/2007	11/1	5/2007		
	Well Number	D	ate	Time	Casing Depth	Depth to Water (ft)	Depth to LHARE (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
	2A-W-2	3/2	4/08	1242	-	9,49	(is all it)			10.29		9.75		DWK	<u>/</u>
	2A-W-5	<u> </u>		1144		11,50				10.63		11.80		1	
	2A-W-7			1036		10,79				10.89		9.77			
	2000					Other 1	ist			8.69		7.93			
L	2A W-10		ļ	~	~					8.83		8.28			
L	24-11-22			Ì						9.81		9.69			
Ŀ	2B-W-1	<u> </u>		~	>	V V	\mathbf{V}			1.91		1.70			
L.	2B-W-11			1124		0,80	0.75			1.24		0.99	·		
L	2B-W-12	<u> </u>	\	1126		3.82	3,60			4.34		3.93			
Ļ	2B-W-13		 	1215		3,42	3,14			3.81		3.41			
L	2B-W-14		Į	1212		2,14	1,96			2.78		3.35	••••••••••••••••••••••••••••••••••••••		
-	2B-W-15	<u> </u>		<i>4155</i>		<u>'3,95</u>	2,51			Dгy		3.54			
ļ	2B-W-19		<u> </u>	1104		536				5.49		5.36	444 Y 4	\	
ļ.	2 B-W- 21	_		113Z	-	7,27				7.87		7.31			
╞	2B-W-30	<u> </u>		1138	•	2,56			· ·	10.19		9.81			
\vdash	2B-W-32			102		0,02				6.29		6.12			
┡	2B- 19 -33			1059		7.4				8.24		8.01		а. С	Not able to
	2B-B-21	L¥	/		L	INM		<u></u>		NM		3.33	静 轮的 1000		lacinte to much
	MW-39	{		12.54		7,32		Inace	194					{	snow are
	ZA-W-	3		1259		8,89		Trace	T&P						
	24-10-2	a]		1207		11.81		None	tap					• .	
	MW-1	→ (1316		10.28	·	Trace	Tat		•				
	MW	7		1330		10,8+		Trace	Tap						

FAGE 2	P	A	G	E	2
--------	---	---	---	---	---

PAGE 2					· · · · · ·		<u> </u>	A^^					
Well Number	Date	Time	Total Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	12/1 DTW (ft)	3/2007 Prod. Thick. (ft)	11/1 DTW (ft)	5/2007 Prod. Thick. (ft)	Sign Off	Comments
Mart	N							11.67		11.91			
VAN-2								11.14		11.06			
								8.73		8.23			
VIAPA								7.58		7.11			
MW-5	13/34/03	1:203		-5.64				5.74		4.97		ta di sena di se Sena di sena d	
MW-9 .	03/24/17	0455		4.01				11.77		11.27			
MW-10	03/21/08	1001		11.35				11.82		11.57			
VIW-11	03/2-1/05	1005		12.79				12.74		12.67			HC product on probe - Bro
VIAN-12								4.95		3:30		unita Sultana di Sultana Sultana di Sultana	
MW-13				•				9.19		7.86			
WAP-TA			13.5					11.12		10.01	a Alban 14 11 Maria - D	•	
MW-15	3/24/05	1140		11:27			:	12.34		11.45			
MW-17	,						•	10.79	Hvy Tr	10.63			TARE / ANSTE
VIW-TO	1							13.67		13.45			
MARTS		-						10.72		10.11	Adaptica Constantia Maria Maria Aprila Maria		
MW-40	3/24/05	1146		10,75				11.79		10.89			

	Well Number	Date	Time	Total Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	12/13/2007 DTW. Prod. (ft) Thick. (ft)	11/1 DTW (ft)	5/2007 Prod. Thick. (ft)	Sign Off	Comments
Х	MW-7	3/24/08	1330		10,87		Trace	TOP	12.10 None	11.08	None	DIC	
Х	TB-W	· · ·							10.09 Tr	9.69	None		
Х	224443								9.75 Tr	9.04	None		
Х	20								7.86 Tr	5:53	None		
Х	MDW-80								7.98 None	7.38	None		
	24-11-4								10.04 None	9.42	None		

Other Notes:

clean well - north ('town') half. use water level meter (WL)

clean well - south ('railyard') half dirty casing, possible trace product dirty well use water level meter (WL) use tape and paste (TP) use tape & paste (TP) + peristaltic pump (PP)

River Gauging Form

Project Name:	BNSF Skyk	omish	Project Number:	01140-204		Measured by: <u>Aaron Jambrost 4 Fre</u>	d Merrilly cassie Smith
stake ID	date	time	backsight	foresight	water levei	comments	
SK-1	2/24/04	17.17	4.71	91445			

SK-1	3)24 05	1717	4,24	5-14,48		
SK-2		1657	3,10	20,55		
SK-3		1635	6,56	15,13		· · ·
SK-4		1620	6,56	15:47		
SK-5	V	1640	6.56	17.40		· · · · · · · · · · · · · · · · · · ·
ML-1		-	NM	NM	NM	
ML-2			1			
ML-3						· · ·
ML-4			V	N N		

stake ID: SK# = Skykomish River gauging locations, ML# = Former Maloney Creek channel gauging locations all measurements in feet

backsight: height of level above surveyed point (staff placed at PK nail)

foresight: height of level above gauging point (staff placed in stream bed at SKx, MLx)

water level: depth of water at gauging point

Fluid Level Gauging Form

Project	
Name:	

BNSF Skykomish

Project Number: 01140-204-0340

Collected by:

			Total		MW/TOC-PU	<u>з</u>		3/24	1/2008	12/1	3/2007		T
Weli Number	Date	Time	Casing Depth	Depth to Water (ft)	Depth to HNAPL (It) Creek	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
2A-W-2	4 730 /2008	1024		NM				9.49		10.29		andra an Pill an Pill	John H. Abradanad
2A-W-5		1150		1213				11.5	-	10.63			veri ricanolonica
2A-W-7		1)7.4		10,80				10.79		10.89			
2A-W-9		1135		8,47				8.02		8.69			
2A-W-10		1055		8,42				8.19	2	8.83			
2A-W-22		1018		9,79			······	9.67		9.81			
2B-W-4		1036		1,68			·	1.62		1 91			
2B-W-11		1135		N.91	0.75			0.8		1.01			
2B-W-12		1140		3,98	3.75		· · · · · · · · · · · · · · · · · · ·	3.82		4 34			
2B-W-13		1150		3,64	3.19		•	3.42		3.81			
28-W-14		152		Z,33	2,00			2 14		2.78			
2B-W-15		101Z		4,50	7.60			3.95		 Dov		<u>e e sta</u> Pel tura	
2B-W-19		1029		5.31				5.36		5.49			······································
2B-W-21		1040		7,48			·····	7 27		7.87			
2B-W-30		1008		10.23				9.56		10 10			
2B-W-32		1033		6.10				6.05		6.20			
2B-W-33		1004		771				7 41		8.24			
2B-B-21	V	1010		4,05				NM		0.24 NM			· · · · · · · · · · · · · · · · · · ·

	Mall.				Total					3/24	/2008	12/1	3/2007		
	Number	C	Date	Time	Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
ļ	MW-1	4B	22008	1027		11.62				11.59		11.67			
	MW-2			1020		11,03				11.06		11.14			
	MW-3			1040		8,02				7.45		8.73			
	MW-4			104-9		712				6.8		7.58			
	MW-5			1145		5,52				5.04		5.74			
	MW-9			1212		11,73				11.01		11.77			
	MW-10			1105	····	11.95				11.35		11.82		in sta Statistics	
	MW-11			1115		12:87				12.79		12.74			
	MW-12			1157		4,18				3.65		4.95			
	MW-13	\square		1200		8,45				NM		9.19			
	MW-14			1203	13.5	10,52				10.06		11.12			
	MW-15			ZOD		11,80				11.27		12.34			
	MW-17			~	Gau	ged W	TOP	See pg 3)	10.28		10.79	Hvy Tr		
	MW-18			1110		13.74				13.27		13.67			
L	MW-19					NM				9.94		10.72			Well Abandonad
	MW-40	æ	·	1205	-	11.29				10.75	a de la terreterio	11.79	Maria da Ar		

Mall			Total					3/24	4/2008	12/1	3/2007		
Number	Date	Time	Casing Depth	Depth to Water (ff)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
MW-7	4 B 02008	10524	11.48			None	TAP	10.87	Тг	12.10	None		12' - 158 mm
MW-17		1059	10.85			Nono		10.28-		10.79	Hvy Tr		11-45mm
IB-W-1		1105	10.09			TR		9.36	Tr a	10.09	Tr		11 - 778
A-W-3		1116	9,50			TR		8.86	Tr	9.75	Tr		$10^{1} - 157$
A-W-11		(11)	6.23			TP		5.75	Tr	7 86	Tr		7- 22500
IW-39		1047	7.52			TR	·····	7.32		7.98	None		21-102 mm
A-W-4		1122	9,90			HVYTR		9.13	Hwy Tr	10.04	None	de la serie La serie de la serie Consector de la serie	a^{-1+5} Mm $a^{2} - 22$ m

Other Notes:

 clean well north ('town)) half
 use water level meter (WL)

 clean well - south ('railyard') half
 use water level meter (WL)

 dirty casing, possible trace product
 use tape and paste (TP)

 dirty well
 use tape & paste (TP) + per

use tape & paste (TP) + peristaltic pump (PP)

.

Fluid Level Gauging Form

· ./

	Project Name:	BNSF Skykomish		<u>ا</u>	Project Number:	01140-204	-0340	Collected by:	D,	Kinney	16	, Sebba	n.e		
	Wall				Total	De-th te	<u>Lreek</u>			4/30	0/2008	3/2	4/2008		
_	Number	D	ate	Time	Casing Depth	Water (ft)	Depth to L NAPL (ft) Water	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
	2A-W-2	5/29	/2008	1		NM	-			NM		9.49			Well Abandoned
	2A-W-5			0914		11,32				12.13	ا در محمولا میں در دور کو کرد درود	11.5			
L	2A-W-7			1000		9,19				10.8		10.79			· · ·
L	2A-W-9			0905	-	8,60				8.47		8.02			
L	2A-W-10			0920		8,48				8.42		8.19			· ·
L	2A-W-22				-	NM				9.79		9.67			Wall Abandoned
L	2B-W-4			0900		1.22				1.68		1.62			
	2B-W-11			0903		0,88	1,17			0.91		0.8			
L	2B-W-12			0906	-	4,00	4.11			3.98		3.82			
	2B-W-13	[0959		3,82	3,30			3.64		3.42			
L	2B-W-14			0957		2,47	Pry			2.33		2.14			
L	2B-W-15			0919		Dry	Dry			4.50		3.95			
L	2B-W-19			0851		4,47	<u> </u>			5.31		5.36			
	2B-W-21			0910		7,21				7.48		7.27			
	2B-W-30			09z3		9,72				10.23	lan yeren tanı Ayan tanın tanı	9.56			
	2B-W-32			0856		5,51				6.10		6.05			
	2B-W-33			0847		7.57		<u> . </u>		7.71		7.41			
	2B-B-21			0916		4.95	1			4.05		NM			

				Total		_			4/30)/2008	3/24	4/2008		
Well Number	Da	te	Time	Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
MW-1	5/29/2	2008	0951		10,10				11.62		11.59			
MW-2			0942		9,32				11.03		11.06	iyada ing		
MW-3			0936		7,51				8.02		7.45			
MW-4			0930		7.25				7.12		6.80			
MW-5			0900		5,58				5.22		5.04			
MW-9			1020		11,17				11.73		11.01			
MW-10			1013		10.95				11.95		11.35			
MW-11			10.06		11,55				12.87		12.79			
MW-12			102.8		4,59				4.18		3.65			
MW-13			1035		8,81				8.45		NM			
MW-14			1040	13.5	10,74				10.52		10.06			
MW-15			1048		11.84				11.80		11.27			
MW-18			1010		12,6				13.74		13.27			
MW-19				>	NM	~			NM		9.94			Well Abandoned
MW-40		\mathbf{V}	1045	^	11.34				11.29		10.75			

				Total					4/30)/2008	3/2	4/2008		
Number		ate	Time	Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
Xmw-7	5/79	y 2008	0941		11,52	TR		T¢P	11.48	and a start of a start of the s	10.87	Tr		12'-0.48'
XMW-17		ļ	1007		9,72	TR	-	T&P	10.85		10.28			11-1.78/
X 1B-W-1			-		NM		نب		10.09	ा	9.36	Tr		Well Abandoned
X 2A-W-3			1031		9,33	TR		Tap	9.50	Τ	8.86	Tr		10'-0,67'
X 2A-W-11			6948		6,33	HVYTR	-	T4P	6.23	Tr	5.75	Tr	alle ektr 1974 et	7'-0,67'
X <u>mw-39</u>		L	0955	`	7,48	TR		Tap	7.53	Tr	7.32	Tr		8- 0.52'
2A-W-4			1020		NM		1		9.90	Hvy Tr	9.13	Hvy Tr		Now acarel Dad &

Other Notes:

ويحجب فيستجدد والمستحد والمستحد والمستحد

clean well - north ('town') half

clean well - south ('railyard') half dirty casing, possible trace product dirty well

use water level meter (WL) use tape and paste (TP)

use tape & paste (TP) + peristaltic pump (PP)

Trailer over nell could not locate

PAGE 1

.

Fluid Level Gauging Form

Project Name:	BN	SF Sky	ykomisł	1	Project Number:	01140-204	-0340	Collected by:	D	. Kinne	¥/6	. Sebb	<u> 400</u>	
Well				Total	Donth to	Death to			5/29	9/2008	4/3	0/2008		
Number)ate	Time	Casing Depth	Water (ft)	LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
2A-W-2	67	/2008	~		NM				NM		NM			Well Abandoned
2A-W-5		<u> </u>	0935	····	11.94				11.32		12.13			intell not licetod
2A-W-7	<u> </u>	<u> </u>			NM				9.19		10.8			
2A-W-9	 		0915		9,09				8.6		8.47			
2A-W-10	╉┈┥		0970	! 	883				8.48		8.42			
2A-W-22					NM ·				NM		9.79			Well Abandoned
2B-W-4		i	0952		1,67				1.22		1.68	1		
2B-W-11			0945		1.12	1.12			0.88		0.91			
2B-W-12			<u>094</u> z		4,35	4,31			4		3.98		1. S.	
2B-W-13			0907		<u>4,24</u>	3,43	······		3.82		3.64			
2B-W-14	-		D906	· · · · · · · · · · · · · · · · · · ·	3,00	dry			2.47		2.33			···· ··· ··· ··· ··· ··· ··· ··· ··· ·
2B-W-15	· .		0901	a <u></u>	dry673	dry			Dry		4.50		_	
2B-W-19	╉╌──		<u>094-0</u>		5,10				4.47		5.31			
2B-W-21		<u> </u>	<i>0</i> 95		771				7.21	·	7.48			
2B-W-30		<u> </u>	1036		10,43		···		9.72		10.23			
2B-W-32			<i>19</i> 48		6,01				5.51		6.10			
2B-W-33	┨٩	$\frac{1}{7}$	1931		8,19		176		7.57		7.71			
2B-B-21		~U	0903		5.13				4.45		4.05			

TAUE /	AGE Z
--------	-------

	Well				Total	Domth to	Damila da			5/29	9/2008	4/3(0/2008		
	Number	Ľ	Date	Time	Casing Depth	Water (ft)	LNAPL (ft)	LNAPL Thickness	Method ,	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
	MW-1	6次	2/2008	1958		10.94				10.1	·	11.62			
	MW-2		i	09.54		10,23	· · · · · · · · · · · · · · · · · · ·		···	9.32		11.02			
\Box	MW-3			1945		8,31				7.51		8.02			· · · · · · · · · · · · · · · · · · ·
	MW-4			0950		7,52			,	7.25		7 12			
\square	MW-5			0928		6,05				5.58		5.22			
	MW-9			1013		11,85				11.17		11.73			
	MW-10			1007		11/68			······································	10.95		11.95			an and the second se
	MW-11			1003		12,41				11.58		12.87			· ·····
Ц	MW-12			0900		5.27				4.59		4.18	······		
Ц	<u>MW-13</u>			0918		9,42				8.81		8.45			· · · · · · · · · · · · · · · · · · ·
	MW-14			0912-	13.5	11.35				10.74	N. 1	10.52			
	MW-15			0903		12,52				11.84		11.80		7	
	MW-18			1018		13,36				12.61		13.74			
	MW-19		,,			NM	+		<u>``</u>	NM		NM	· ·		Well Abandoned
	MW-40	¥۷		0908		12,00				11.34		11.29			

PAGE 3

	Well	_		Total	Dopth to	Danáh 4a			5/29	9/2008	4/3	0/2008		
	Number	Date	Time	Casing Depth	Water (ft)	LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick, (ft)	DTW (ft)	Prod. Thick. (ff)	Sign Off	Comments
Х	MW-7	6/27/2008	1017		12.77									
X		0.2,32000	107				NUNU	147	11.52	<u>17</u>	11.48			13.0 - 0.73'
Θ	MYV-17		1021		9,55	~	TR	Tap	9.72	Tr	10.85			11.0-1451 *
Д	1B-W-1				NM	_	· · · ·		ММ		10.00			
XI	2A-W-3		1021		10.05		TO	700	INIVE		10.09	<u> </u>		Well Abandoned
X	24 141 44	·····	1007					144	9.33	Tr	9.50	<u>1</u> T		11.2 - 0.95'
æ	2A-W-11		1003		+,00		HVYTR	Tap	6.33	Hvy Tr	6.23	Tr		80-1001
Å	MW-39		0958		7,98		TO	TUP	7.52	Te	7 60			
	2A-W-4	\checkmark		1	NINA			<u>[</u>	1.00		1.53	11		5,0 - 1,02
_	······································				(V(1)			· · · · ·	NM		9.90	 Hvy Tr 	·	Not (rota)

Other Notes:

use water level meter (WL)

clean well - south ('railyard') half dirty casing, possible trace product dirty well

clean well - north ('town') half

- use water level meter (WL)
- use tape and paste (TP)

use tape & paste (TP) + peristaltic pump (PP)

* MW-17: casing has been adjusted, now a flush-mount well

Fluid Level Gauging Form

Project Name:	BNSF Sk	ykomisl	h	Project Number:	01140-204	-0340	Collected by:	Di k	Linney	16.	Sebbar	10	
Well			Total	Depth to	Danth ta			3/2	4/2008	10/	3/2007		
Number	Date	Time	Casing Depth	Water (ft)	LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
1A-W-5	5/7 78	1125		798			12 h	0.24		0.05	(······································
5-W-13		~	\sim					9.34		8.95			
5-W-14		12:35		·7 60					<u> </u>				Not Installed
5-W-15				1.00				8.79		8.27			
E W/ 10		1.32		6.19	<u> </u>			7.37		6.96			
5-44-10	╉╌╍╍┤╌╍╍╌	12.20		6.45				7.76		7.27			
5-W-17	 	12:20		5.77				7.06		6.56			
5-W-18	<u> </u>	15:00		592				7.28		6.80			
5-W-19		12:46		5.37				7 3 3		<u> </u>			
5-W-20		12:51		5.44				7.55		0.82			
5-W-1		1170		6151	Tall		TAU	0.94		6.46			
5.W.3	1	22		Cit X	TALL		141	5,93	Tr	7.74	Trace		<u>7,0-0,52</u>
UNI 00	 	1144		11/6_	1 race		7.9-P	5,69	Hvy Tr	6:18	Trace		$6.0 - 0.74^{-1}$
MW-22		1133		6.46	HVYTC		70-8	6.90	Hvy Tr	7.04	Hvy Tr		8n-1.54
MW-36	$\bot \Psi$	1120		6,45	HUNTE		TPP	7.16	0.82	7.55	Trace		70 Acc

17

Other Notes:

dirty casing, possible trace product dirty well

use tape and paste (TP) use tape & paste (TP) + peristaltic pump (PP)

Product & S./ Creek Wells & Pizos

PAGE 1

Fluid Level Gauging Form

Project Name:	BNSF Sky	komish	÷	Project Number:	01140-204	-0340	_ Collected by						
Well Number	Date	Time	Total Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	6/23 DTW (ft)	3/2008 Prod. Thick. (ft)	5/29 DTW (ft)	9/2008 Prod. Thick. (ft)	Sign Off	Comments
2A-W-2	7/ ⋜∜2008			NM				ŇM		NM			Well Abandoned
2A-W-5		1012		13.35				11.94		11.32			
2A-W-7		1346		11.58				NM		9.19			
2A-W-9		2959		10.34				9.09		8.60			-
2A-W-10		\$1430		10.72	,			8.83		8.48			
2A-W-22				NM		i		NM		NM			Well Abandoned
2B-W-4		15700		3.29				1.67		1.22			<u> </u>
2B-W-11		7939		3.03				1.12		0.88			Creek Dry
2B-W-12		0948		6 29				4.35		4.00			
2B-W-13		0954		5.90				4.24		3.82			
2B-W-14		1005		4.71				3.00		2.47			V
2B-W-15				N.M.				Dry		Dry			-BROKENOr Charge
2B-W-19		0924		7:14				5.10		4.47			
2 B-W- 21		1143		8,99				7.71		7.21			·
2B-W-30		200		3-46				10.43		9.72			
2B-W-32		0920	}	7.45				6.01		5.51			
2B-W-33		3935		10.56				8 19		7.57			
2B-B-21		1030		5.89				5.13		4.45			1

	PAGE 2													
				Total					6/23	3/2008	5/2	9/2008		
	Well Number	Date	Time	Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
	MW-1	712412008	9:35		12.63				10.94		10.10	1		
	MW-2		9:30		12.20				10.23		9.32		- -	
	MW-3		49:22	-	10 42				8.31		7.51			
	MW-4								7.52		7.25			
-	MW-5		约:15	1	7.26				6.08		5.58			
	* MW-9		9:56		12.89				11.85		11.17			
	MW-10		9.52		12.95				11.68		10.95			
	MW-11		9:44		13.80				12.41		11.58			Some changodor
Ś	MW-12								5.27		4.59			ountil prub
S	MW-19		11:02	Į	10.14				9.42		8.81			
-5,	MW-14-		10:55	13.5	11.95				11.35		10.74			
	- MW-15		10:42	<u> </u>	12.24				12.52		11.84			
	MW-18		10:05		14:81				13.36		12.61			
	MW	_			NM				NM		NM			Well Abandoned
S,	MW-40		10.46	,	12:41				12.00		11.34	,		

Fluid Level Gauging Form

4

Project Name:	BNS	6F Sky	komish		Project Number:	01140-204	-0340	Collected by:	<u>C.S</u>	mith 8	<u> </u>	Seb	ban	<u> </u>	
	T			Total					6/23	3/2008	5/2	9/2008			
Well Number		Date	Time	Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments	
2A-W-2	7/2	4 /2008			NM				NM		NM	· ·		Well Abandoned	
2A-W-5]	1012		13.35				11.94		11.32				
2A-W-7			1340		11.58				NM	1	9.19				
 2A-W-9			0959		1034				9.09	· · · · · ·	8.60				
2A-W-10			1430		1072				8.83		8.48				
2A-W-22					NM				NM		NM			Well Abandoned	
2B-W-4	1		0929		3,29				[°] 1.67		1.22				
2B-W-11			0939		3.03				1.12		0.88				
2B-W-12			0948		6.29				4.35		4.00				
2B-W-13			0954		5.90				4.24		3.82				
2B-W-14		<u> </u>	1005		4.71			•	3.00		2.47	[`			
 2B-W-15	 				N.M.				Dry		Dry			Meter was Stuck Broke	(جن
2B-W-19			0924		7.14				5.10		4.47				~'y
2B-W-21			1143		8.99				7.71		7.21				
 2B-W-30	<u> </u>				N.M.				10.43		9.72				
 2B-W-32			0920		7.65				6.01		5.51				
 2B-W-33			0935		10.56				8.19		7.57				
2B-B-21	<u> </u>	\checkmark	JO36		5.89				5.13		4.45				

	1 19/011	1			Total					6/23	3/2008	5/29	9/2008		
	Number	ſ	Date	Time	Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
	MW-1	7/ :	14/2008	09135		1263				10.94		10.10			
	MW-2		ļ	0930		12.20				10.23		9.32			
Ц	MW-3			6220		10.42				8.31		7.51			
	MW-4			1406		9.49				7.52		7.25			
	MW-5			0915		7.2Le				6.08		5.58			
	MW-9			0956		12.98				11.85		11.17			
	MW-10			0952		12.95				11.68		10.95			
	MW-11			0944		13,80				12.41		11.58			
	MW-12			1014		6.16				5.27		4.59			· · · · · · · · · · · · · · · · · · ·
	MW-13	<u> _'</u>		1102		10.14				9.42		8.81			
	MW-14	 '	I	1055	13.5	1695				11.35		10.74		-	
	MW-15	 '		1042		12.84				12.52		11.84			
	MW-18			iws		14.81				13.36		12.61			
	MW-19					NM				NM		NM			Well Abandoned
	MW-40		/	1046		12.41				12.00		11.34			

.

.

• ,

k

	Well			Total	Domth to	Denth ()			6/2;	3/2008	5/29	9/2008		
	Number	Date	Time	Casing Depth	Water (ft)	LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
Д	MW-7	7/24/2008	1110		12.63	-	Trace	T&P	12.27	 None	11 52	Tr		TRD - Traco
Д	MW-17				10.9	1	HVyTrace	T& P	9.55	Tr	9.72.	Tr		ion nuce
Ă	1B-W-1				NM				NM		NM	<u> </u>		Well Abandoned
Ă	2A-W-3		1101		10.19		Trace	T&P	10.05	Tr	9.33	Tr		
Å	2A-W-11		1134		8.03		Hvy Trace	T&P	7.00	Hvy Tr	6.33	Hvy Tr		
Å	MW-39	·	1148		9.45		Trace	T&P	7.98	Tr	7.53	Tr		
	2A-W-4	~	1535		11.35	10.93	0.29	Pump	NM		NM			Penistaltic Pump & Tubir

Other Notes:

clean well - north ('town') half clean well - south ('railyard') half dirty casing, possible trace product dirty well

use water level meter (WL) use water level meter (WL)

use tape and paste (TP) use tape & paste (TP) + peristaltic pump (PP)

4

errord costs fragment that it

Fluid Level Gauging Form

. .

Project Name:	BNSF Sky	komish		Project Number:	01140-204	-0340	_ Collected by:	D	, Mone	<u>n, (</u>	s. Sebl	ane	
Well			Total	D = 41 4-				7/2	4/2008	6/2	3/2008		
Number	Date	Time	Casing Depth	Water (ft)	LANAPE (IT) Toc PVC/CS	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
2A-W-5	08/27/08	0844		13,55				13.35		11.94			
2A-W-7		1045		11.87				11.58		NM			
2A-W-9		0757		10,52				10.34		9.09			
2A-W-10		0905		10,30				10.72		8.83			
2B-W-4		08Z.G		3,52				3.29		1.67			
2B-W-11		0836		Z,83	1,15			3.03		1.12			
2B-W-12		0832		5,80	4,46			6.29		4.35			
2B-W-13		0754		5,97	da			5.9		4.24			
2B-W-14		0752	_	4.80	dry			4.71		3.00		· ·	
2B-W-15		OXOZ_		JN:043	dry			NM		Dry	25.5		
2B-W-19		082.9		7.35				7.14		5.10			
2B-W-21		0748		9.22				8.99		7.71	:		
2B-W-30		0845		11,51				NM		10.43		enger er og er	
2B-W-32		0823		7.93				7.65		6.01			
2B-W-33		0840		10,17				10.56		8.19			·····
2B-B-21	\checkmark	0806		6,12				5.89		5.13			

PAGE 2

Well	Data	Time	Total Casing	Depth to	DTW (TOC-	LNAPL		7/24/2008		6/2	3/2008	Sign
Number		Tinte	Depth	Water (ft)	PVC) Creek	Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Off
 MW-1	08/27/08	0810	· · · · · · · · · · · · · · · · · · ·	13,02				12.63		10.94		
 MW-2	08/27/08	0406		17,65				12.2		10.23		
 MW-3	08/27/08	0754		8,27				10.42		8.31		
 MW-4	08/27/08	0758		9.48			••••••••••••••••••••••••••••••••••••••	9 4 9		7 52		
MW-5	08/27/08	0746		747				7.26		6.09		
MW-9	08/27/08	0831		17.49				12.08		11.05		
MW-10	08/27/08	0821		17.90				12.05		11.00		
MW-11	08/27/08	0817		13,84				12.95		11.68		
MW-12	08/27/08	0803		676				13.0		12.41		
MW-13	08/27/08	0902		10 20				0.16		5.27		
 MW-14	08/27/08	and the	12.5	10.20				10.14		9.42	la de la companya de La companya de la comp	
MM/_15	08/27/09	NISV	13.0	17 24				11.95		11.35		
	00/27/08	0875		17,27				12.84		12.52		<u> </u>
	08/27/08	0859		14,71				14.81		13.36		
 MW-40	08/27/08	085)		1490				12.41		12		

	Woll			Total					7/2	4/2008	6/2	3/2008		
	Number	Date	Time	Casing Depth	Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
\geq	MW-7	08/27/08	0850		12,87	· _	None	T&P	12.63	Тгасе	12.27	None		13'-0.13'
K	MW-17	08/27/08			NM	<u> </u>	-	T&P	10.9	Heavy Trace	9.55	Trace		Wall buried under Soll Store
K	2A-W-3	08/27/08	0920		10,55		Trace	T&P	10.19	Trace	10.05	Trace		11' - 0.45'
K	2A-W-11	08/27/08	OSIZ		8,07		HWTr	T&P	8.03	Heavy Trace	7	Heay Trace	• .	9' - 0.93'
Ň	MW-39	08/27/08	12819		9,63		Trace	T&P	9.45	Trace	7.98	Trace		10-0.37
	2A-W-4	08/27/08	0974-		10.85		HVYTr	Pump	11.22	10.93	NM			P. Pump & tubing 17/-1.15

Other Notes:

clean well - north ('town') haif clean well - south ('railyard') haif dirty casing, possible trace product dirty well

use water level meter (WL) use water level meter (WL) use tape and paste (TP) use tape & paste (TP) + peristaltic pump (PP)

PAGE 1

Fluid Level Gauging Form

Project Name:	BNSF Sky	komish		Project Number:	01140-204	-0340	Collected by:	D, K	Inney,	Fred	Merill,	Ghan	i Sebbane
 Well Number	Date	Time	Total Casing Depth	Depth to Water (ft)	Depth to L NAPL (ft) ₩⊄tor (c.t.s	LNAPL Thickness	Method	8/2 DTW (ft)	Prod. Thick. (ff)	7/2 DTW (ft)	4/2008 Prod. Thick. (ft)	Sign Off	Comments
2A-W-2	9/ <i>22/</i> 2008			NM				NM		NM		DVV	Well Abandoned
2A-W-5		1331		14.30				13.55		13 35		FM	TTON / BUILDING
2A-W-7		1315		12,39				11.87	55556	11 58		NWIX	
2A-W-9		0832		11.39				10.52		10.34		D.N.	·
2A-W-10		1010		196			1	10'3		10.72		NWY	· · · · · · · · · · · · · · · · · · ·
2A-W-22				NM				NM		NM		0.J.	Well Abandoned
2B-W-4		0937		4,49			1	3.52		3 29		DIVIN	
2B-W-11		094Z		4.39	dry			2.83		3.03		Divil	
 2B-W-12		0940		7,70	dry			5.8		6.29		OWK	······································
2B-W-13		1003		7,04	dry			5.97		5.9		DAK	· · ·
2B-W-14		1006		5,70	di			4.80		4.7.1		DWY	
 2B-W-15		0906		7.21	dry		1.	Dry.		Diy		DNK	· · · · · · · · · · · · · · · · · · ·
2B-W-19		0946		8.32				7:35		7.14		OWY	· · · · · · · · · · · · · · · · · · ·
 2B-W-21		19Z6		10,00				9.22		8:99		DWK	•
 2B-W-30		12235	-	17.26			- 161 012 	11.51		NM		DWY	· · · · · · · · · · · · · · · · · · ·
2B-W-32		0930		SIRZ				7.93		7.65		awk:	
 2B-W-33		0952		11,81			11. (5. 12	10.12	Shure a	10.56		DWY	
2B-B-21	V	0903		6,80				6.12		5.89		AW	

)

FAGE 2	Ρ	A	G	Ε	2
--------	---	---	---	---	---

.

. •

Well Number	Date	Time Total Time Casing Depth		Depth to Depth to LNAPL Water (ft) LNAPL (ft) Thickness Method		Bizmzcos M24/2008 DTW: Prod. (ft) Thick: (ft).		/2008 Prod. Thick. (ft)	Sign Off	Comments		
MW-1	9/ 22/ 2008	0855		13,59			13:02		12.63		DW	
MW-2		024-6		3,28			12.65		12.2		OWK	
MW-3		0847.		11.19			8.27		10.42		DWK	•
MW-4		284Ð		10.72			9.48	নারকারে জন্য জনসংখ্যা	9.49	ini distanti (secia B	DNK	
 MW-5		0827		8,25			7.47		7,26		DLAD	
MW-9		1223		13,49			12:49		12.89		FM	
MW-10		1230		13,65			12.9		12.95		FM	
 MW-11		1234		14,46			13.84		13.8		FM	
MW-12		0901		6.95			6.26	artanization († 1775) 2015 - Carlos († 1775) 1944 - Carlos († 1775)	6:16		Divik	
MW-13		1215		10,99			10.38		10.14		DWC	
MW-14		1218	13.5	12.95			12.27	2.66412 2.77	11.95		Drik	
MW-15		izZ!		14-19			13:34		12.84	egilegen er state Referense	DWY	
MW-18		1145		15,63			. 14.91		14.81	an se se se se se de la company	Dar	
 MW-19		1		NM			NM		NM		DWK	Well Abandoned
MW-40	\downarrow	1724		13,71			12,90		12:41	an a	ONE	

	Weil Number	D	ate	Time	Total Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness	Method	8/27/2008 DTW: Prod: (ft) Thick-(ft)	DTW Prod (ft) Thicks (ft)	⊴Sign Off	Comments
X	MW-7	9/22	2008	1915		13,68		None	TFP	12:87 None	12:63.	24. 26. s to 5.	14' - 0.12'
X	MW-17	(NM			· 1	NM	10.9 Hvy Tr		Covered by soil stockab
\langle	1B-W-1					NM		-		NM	NM		Well Abandoned
X	2A-W-3			0895		1468		Trace	TOP	10.55 Tr	10.19. Tr	E.	12'-0,32'
\langle	2A-W-11			093D		6179		8,79	TOP	8:07 Hvy:Tr	8:03 Hvy Tr	organizeateat a d Sector	9'-0,71'
\langle	MW-39			0945	1	10,33		None	Top	9:63 Tr	9:45 Tr		11'-0,67'
	2A-W-4		Ú	1230		11.53		HUNTR	TEP	10:85 Hvy Tr	11:22 0.29		12'-0.45'

Other Notes:

clean well-morth (town) half water level meter (WL)

clean well - south ('railyard') half dirty casing, possible trace product dirty well

use water level meter (WL)

use tape and paste (TP) use tape & paste (TP) + peristaltic pump (PP)

PAGE 1

Fluid Level Gauging Form

	Project Name:	BNSF Sk	ykomisł	1	Project Number:	01140-204	-0340	Collected by:	D, -	Cloney,	Fred	Merrill	, 6, 3	Sebbane
	Woll			Total					3/24	4/2008				
	Number	Date	Time	Casing Depth	Water (ft)	LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
'n	1A-W-1	9/22/08	1140		15,44				12.67		-		EM	
n	1A-W-4		0931		9,39				8.21				FM	
'n.	1A-W-5		0941		10,22		an Araban An Araban an Ang		9.34				FM	
n	1B-W-2		0850		14,44				11.55				FM	
n	1B-W-3		0900		15,45				13.21				FM	
n	1C-Ŵ-1	and a second	1105		[3,8D				11.82				FM	
n I	1C-W-2		0821	an series and	10,59				9.02				FM	
'n	1C-W-3		0830		NM				9.84				FM	Boulders recovery (Nor)
'n	1C-W-4		0838		10,85				9.19				FM	
s	2A-W-8		0850		16,16				13.74				DWK	
s	2A-W-9	<u> </u>	0834		11:39				8.02				DWK	
s	2A-W-10		1010		11,96				8.19				Dwk_	
s	2B-W-4		0937		4.49				1.62				DWAL	
s	5-W-4	LANDON AND AND AND AND AND AND AND AND AND AN	1039	Surresson verteria	7.67		Many of the second second		4.63				FM	
n	5-W-14		0957	n sensen Gesensen Gesensen	9,66				8.79				FM	
ñ	5-W-15		1048		8.15				7.37				FM	
D.	5-W-16		101		8,43				7.76				FM	
n) Xe	5-W-17/2010		1004		-7.72				7:06			and the first of the analysis in the first	FM	
n)	5-W-18		∎NI 7 ⊟		$\left 7.9 \right $				7.28				FM	
n	5-W-19:		DZZ		$\neg \&$				7.33				FM	
ĺ0.	5 W 20		DZ S		74 (C-1)				6.94				FM	

	Well			Total	Donth to	Danth to			3/24	/2008				
	Number	Date	Time	Casing Depth	Water (ft)	LNAPL (ft)	LNAPL Thickness	Method	DTW (ft)	Prod. Thick. (ft)	DTW (ft)	Prod. Thick. (ft)	Sign Off	Comments
	MW-1	9/22/08	0855		13,59				11.59				DWK	
s	MW-2	<u> </u>	0846		13.28				11.06				A is	
s	MW-3		0847		11.19				7.45				MAL	
s	MW-4		0840		10.7Z				6.80				Dall	
s	MW-12		()901		6,95				3.65				DWK	
s	MW-14		1218	13.5	12,95	R.V.		······	10,06				DIAT!	
s	MW-16		0919		14:9013	80 900			13 54				NW	
s	MW-18		1145		15.63			,	13.27			1995 1995	DMP	· · · · · · · · · · · · · · · · · · ·
s	MW-26		1056		11,31				6.79.	en aportario en estas en estas estas en est en estas en		Sagali -	EM	
S	MW-32	WALLTONG THE CONT	1158	10.00 million	9.60				8.73				FM	
n	MW-35		0845		4.845				. 10.91				FM	
s	MW-38	\checkmark	1118		5,66				4.34		n de services Constantes	ninge atter en de Referense en de	DINK	
														·····
PAGE 3

	Well Number	Date	Time	Total Casing Depth	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Method Thickness		3/24/2008 DTW Prod. (ft) Thick. (ft)	DTW Prod. (ft) Thick. (ft)	Sign Off	Comments
Å	1A-W-3	9/2/04	1020		9,03		None	Top	7.52			10'-0.97'
{	IB-W-1	., .			NM	i	~	~	9.36			Well Abardono
<u> </u>	2A-W-1				Nm		-		8.60			11 11
Å	2A-W-3		0845		11,68		Trace	T4P	8.86			12' - 0.32'
4	2A-W-11		0930		8,79		Trace	TGP	5.75	en ander sold der Antonio ander sold der sold d Statistication of the sold der		9' - 0.7.1'
<u>(</u>	WW-28		09DD		15,37		Ht. Trave	TOP	11.81			16' - 0.73'
(J	WW-39		0945		10 33		None	Tap	7.32			11'-0.67'
	A-W-2		1030		NM		~~~		9.88			Not Located
	2A-W-4		1230		11.55		HVyTr	TOP	9.13			12'-0.45'
	5-W-1		1037		9.63		Traca	TOP	5.93			10' - 0.37'
	5-W-2		1150		8,30	9.0	OJO	Pump	5.62			9-07
	5-W-3		JUDD		7,95		Thuro-	TOP	5.69	21-21-21-21-21-21-21-21-21-21-21-21-21-2		9-1.05
ł	/W-22		1050		8,20		HNTPace	TOP	6.90			9'-0,8'
I	/W-36	¥.	1010		8,52		Praro	TA-P	7.16 0.82			91-0,481

Other Notes:

 in clean well shorth (/town) half
 use water level meter (WL)

 s clean well - south ('railyard') half
 use water level meter (WL)

 dirty casing, possible trace product
 use tape and paste (TP)

 dirty well
 use tape & paste (TP) + per

use tape & paste (TP) + peristaltic pump (PP)

total wells:

River Gauging Form

Project Name: BNSF Skykomish Project Number: 01140-204

Measured			/	
by:	Ghani	Sabbane	Desse	haknitz
-			/	

stake ID	date	time	backsight	foresight	water level	comments
SK-1	9/2z/08	1443	3,86'	14,621		
SK-2		1512	4.81'	23,12'		
SK-3		1414	11,27	18.38'		
SK-4		1340	11, 27	18,82		
SK-5		1400	11.27'	20,391		
ML-1					dry	
ML-2		.			Í	
ML-3		-				
ML-4]			\checkmark	

stake ID: SK# = Skykomish River gauging locations, ML# = Former Maloney Creek channel gauging locations all measurements in feet

backsight: height of level above surveyed point (staff placed at PK nail)

foresight: height of level above gauging point (staff placed in stream bed at SKx, MLx) water level: depth of water at gauging point

Used 5-W-17 for SK=3-3 SK-5 (backsight + 11,27') Used IC-W-Z for SK-1 => 3.86' backsight Used PK-Nail for SK-Z

Toc(PVc) used for 5-W-17 9-1C-W-1

-15

River Gauging Form

Project Name: BNSF Skykomish Project 01146 - 304 - 034 0 Number: BN050-16423-711

Measured

by:

stake ID	date	time	backsight	foresight	water level	comments
SK-1 \	11/27/2006	1206 1443	3.86	14.62		
SK-2	11/27/2006	15:12	4,81	23.12		
SK-3	11/27/2006	14:00	11,27	18.38		
SK-4	11/27/2006	13.40	11.27	18.82		
SK-5	11/27/2006	V 14:00	11.27	20.39		
ML-1	1/1/27/2006	1			dru	
ML-2	1 1/2/1/2006	1			AN	
ML-3	1/2006				dry	
ML-4	11/27/2006	V -				

stake ID: SK# = Skykomish River gauging locations, ML# = Former Maloney Creek channel gauging locations all measurements in feet

backsight: height of level above surveyed point (staff placed at PK nail)

foresight: height of level above gauging point (staff placed in stream bed at SKx, MLx)

water level: depth of water at gauging point

1 =- WZ - 4 = 3.86' 9/22/08 5K3-4-5-B: PK-NAVC: 9/22/08 5K-2.

Appendix B

Data Reports

April 08, 2008

Sarah Albano ENSR International-Seattle 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

RE: BNSF-Skykomish

Enclosed are the results of analyses for samples received by the laboratory on 03/26/08 13:40. The following list is a summary of the Work Orders contained in this report, generated on 04/08/08 17:02.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRC0418 Project BNSF-Skykomish

ProjectNumber 01140-204-0340

TestAmerica Seattle

Kate Haney, Project Manager

ENSR International-Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-0340 Sarah Albano

Report Created: 04/08/08 17:02

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
2A-W-11-0308	BRC0418-01	Water	03/24/08 15:10	03/26/08 13:40
1C-W-4-0308	BRC0418-02	Water	03/24/08 15:30	03/26/08 13:40
1C-W-3-0308	BRC0418-03	Water	03/24/08 15:45	03/26/08 13:40
5-W-14-0308	BRC0418-04	Water	03/25/08 09:10	03/26/08 13:40
5-W-15-0308	BRC0418-05	Water	03/25/08 09:55	03/26/08 13:40
5-W-16-0308	BRC0418-06	Water	03/25/08 10:50	03/26/08 13:40
5-W-160-0308	BRC0418-07	Water	03/25/08 11:00	03/26/08 13:40
5-W-17-0308	BRC0418-08	Water	03/25/08 11:35	03/26/08 13:40
1B-W-1-0308	BRC0418-09	Water	03/25/08 13:05	03/26/08 13:40
1A-W-3-0308	BRC0418-10	Water	03/25/08 13:35	03/26/08 13:40
5-W-18-0308	BRC0418-11	Water	03/25/08 14:20	03/26/08 13:40
5-W-19-0308	BRC0418-12	Water	03/25/08 15:05	03/26/08 13:40
5-W-20-0308	BRC0418-13	Water	03/25/08 16:10	03/26/08 13:40
MW-500-0308	BRC0418-14	Water	03/25/08 16:25	03/26/08 13:40
1A-W-1-0308	BRC0418-15	Water	03/25/08 09:40	03/26/08 13:40
1A-W-4-0308	BRC0418-16	Water	03/25/08 10:50	03/26/08 13:40
1B-W-2-0308	BRC0418-17	Water	03/25/08 12:20	03/26/08 13:40
2B-W-4-0308	BRC0418-18	Water	03/25/08 14:45	03/26/08 13:40
MW-35-0308	BRC0418-19	Water	03/25/08 16:05	03/26/08 13:40
1B-W-3-0308	BRC0418-20	Water	03/25/08 17:50	03/26/08 13:40
1C-W-2-0308	BRC0418-21	Water	03/25/08 08:50	03/26/08 13:40
MW-34-0308	BRC0418-22	Water	03/25/08 09:25	03/26/08 13:40
1C-W-1-0308	BRC0418-23	Water	03/25/08 10:10	03/26/08 13:40
5-W-4-0308	BRC0418-24	Water	03/25/08 11:00	03/26/08 13:40
5-W-40-0308	BRC0418-25	Water	03/25/08 08:00	03/26/08 13:40
MW-38-0308	BRC0418-26	Water	03/25/08 13:10	03/26/08 13:40
1A-W-5-0308	BRC0418-27	Water	03/25/08 14:00	03/26/08 13:40
MW-16-0308	BRC0418-28	Water	03/25/08 14:45	03/26/08 13:40
2A-W-9-0308	BRC0418-29	Water	03/25/08 15:45	03/26/08 13:40
2A-W-10-0308	BRC0418-30	Water	03/25/08 16:20	03/26/08 13:40
2A-W-1-0308	BRC0418-31	Water	03/26/08 09:00	03/26/08 13:40
2A-W-100-0308	BRC0418-32	Water	03/26/08 09:10	03/26/08 13:40
MW-3-0308	BRC0418-33	Water	03/26/08 09:50	03/26/08 13:40
MW-4-0308	BRC0418-34	Water	03/26/08 10:35	03/26/08 13:40
MW-39-0308	BRC0418-35	Water	03/26/08 11:05	03/26/08 13:40

TestAmerica Seattle

And

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 2 of 17

ENSR International-Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-0340 Sarah Albano

Report Created: 04/08/08 17:02

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-37-0308	BRC0418-36	Water	03/26/08 09:30	03/26/08 13:40
2A-W-6-0308	BRC0418-37	Water	03/26/08 10:45	03/26/08 13:40
2A-W-60-0308	BRC0418-38	Water	03/26/08 10:30	03/26/08 13:40
MW-19-0308	BRC0418-39	Water	03/26/08 11:20	03/26/08 13:40

TestAmerica Seattle

And

Kate Haney, Project Manager

ENSR International-Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager: **BNSF-Skykomish** 01140-204-0340

Sarah Albano

Report Created: 04/08/08 17:02

Analytical Case Narrative

TestAmerica - Seattle, WA

BRC0418

SAMPLE RECEIPT

The samples were received March 26th, 2008 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 5.9 degrees Celsius.

PREPARATIONS AND ANALYSIS

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

TestAmerica Seattle

hung

Kate Haney, Project Manager

ENSR	International-Seattle	
------	-----------------------	--

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-0340 Sarah Albano

Report Created: 04/08/08 17:02

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)

			TestAm	erica Sea	attle					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0418-01 (2A-W-1	1-0308)	W	ater		Sampl	ed: 03/2	24/08 15:10			
Diesel Range Hydrocarbons	NWTPH-Dx	0.675	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 00:27	
Lube Oil Range Hydrocarbo	ns "	0.473	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			96.5%		53 - 125 %	"			"	
Octacos	ane		105%		68 - 125 %	"			"	
BRC0418-02 (1C-W-4	-0308)	W	ater		Sampl	ed: 03/2	24/08 15:30			
Diesel Range Hydrocarbons	NWTPH-Dx	0.174	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 00:52	J
Lube Oil Range Hydrocarbo	ns "	0.111	0.0849	0.472	"	"	"		"	J
Surrogate(s): 2-FBP			101%		53 - 125 %	"			"	
Octacos	ane		118%		68 - 125 %	"			"	
BRC0418-03 (1C-W-3-0308)		Water			Sampled: 03/24/08 15:45					
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 01:18	
Lube Oil Range Hydrocarbons	3 "	ND	0.0849	0.472		"	"	"	"	
Surrogate(s): 2-FBP			90.9%		53 - 125 %	"			"	
Octacos	ane		110%		68 - 125 %	"			"	
BRC0418-04 (5-W-14-	-0308)	W	ater		Sampl	ed: 03/2	25/08 09:10			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 01:44	
Lube Oil Range Hydrocarbons	3 "	ND	0.0849	0.472		"	"	"	"	
Surrogate(s): 2-FBP			101%		53 - 125 %	"			"	
Octacos	ane		110%		68 - 125 %	"			"	
BRC0418-05 (5-W-15-	-0308)	W	ater		Sampl	ed: 03/2	25/08 09:55			
Diesel Range Hydrocarbons	NWTPH-Dx	0.305	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 02:10	
Lube Oil Range Hydrocarbo	ns "	0.153	0.0849	0.472		"	"	"	"	J
Surrogate(s): 2-FBP			96.8%		53 - 125 %	"			"	
Octacos	ane		112%		68 - 125 %	"			"	
BRC0418-06 (5-W-16-	-0308)	W	ater		Sampl	ed: 03/2	25/08 10:50			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 02:35	
Lube Oil Range Hydrocarbons	S	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			93.8%		53 - 125 %	"			"	
Octacos	ane		111%		68 - 125 %	"			"	

TestAmerica Seattle

w Kate Haney, Project Manager

Octacosane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

ENSR	International-Seattle	
------	-----------------------	--

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-0340 Sarah Albano

Report Created: 04/08/08 17:02

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)

				TestAme	erica Sea	ıttle					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0418-07	(5-W-160-0308)		Wa	Water Sampled: 03/25/08 11:00							
Diesel Range Hydro	ocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 04:19	
Lube Oil Range Hy	drocarbons	"	ND	0.0849	0.472		"	"	"		
Surrogate(s):	2-FBP			102%		53 - 125 %	"			"	
	Octacosane			113%		68 - 125 %	"			"	
BRC0418-08	(5-W-17-0308)		Wa	ıter		Sampl	ed: 03/2	25/08 11:35			
Diesel Range Hydro	ocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 06:50	
Lube Oil Range Hy	drocarbons	"	ND	0.0849	0.472	"	"	"	"		
Surrogate(s):	2-FBP			101%		53 - 125 %	"			"	
	Octacosane			121%		68 - 125 %	"			"	
BRC0418-09	(1B-W-1-0308)		Wa	iter		Sample	ed: 03/2	25/08 13:05			
Diesel Range Hydr	rocarbons	NWTPH-Dx	3.18	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 07:15	
Lube Oil Range H	ydrocarbons	"	0.859	0.0849	0.472	"	"	"			
Surrogate(s):	2-FBP			110%		53 - 125 %	"			"	
	Octacosane			118%		68 - 125 %	"			"	
BRC0418-10	(1A-W-3-0308)		Wa	ıter		Sampl	ed: 03/2	25/08 13:35			
Diesel Range Hydr	rocarbons	NWTPH-Dx	0.836	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 07:41	
Lube Oil Range H	ydrocarbons	"	1.41	0.0849	0.472	"	"	"	"	"	
Surrogate(s):	2-FBP			106%		53 - 125 %	"			"	
	Octacosane			114%		68 - 125 %	"			"	
BRC0418-11	(5-W-18-0308)		Wa	ıter		Sampled: 03/25/08 14:20					
Diesel Range Hydr	rocarbons	NWTPH-Dx	0.844	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 09:23	
Lube Oil Range H	ydrocarbons	"	0.362	0.0849	0.472	"	"	"		"	
Surrogate(s):	2-FBP			109%		53 - 125 %	"			"	
	Octacosane			123%		68 - 125 %	"			"	
BRC0418-12	(5-W-19-0308)		Water			Sampled: 03/25/08 15:05					
Diesel Range Hydro	ocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 09:48	
Lube Oil Range Hy	drocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s):	2-FBP			92.6%		53 - 125 %	"			"	
	Octacosane			113%		68 - 125 %	"			"	

TestAmerica Seattle

w Kate Haney, Project Manager

ENSR	International-Seattle
------	-----------------------

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-0340 Sarah Albano

Report Created: 04/08/08 17:02

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)

			TestAm	erica Sea	attle					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0418-13 (5-W-20-0308)		W٤		Sampl	ed: 03/2	25/08 16:10				
Diesel Range Hydrocarbons	NWTPH-Dx	0.762	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 10:14	
Lube Oil Range Hydrocarbons	"	0.326	0.0849	0.472	"	"	"	"		J
Surrogate(s): 2-FBP			108%		53 - 125 %	"			"	
Octacosane			122%		68 - 125 %	"			"	
BRC0418-14 (MW-500-0308)		Wa	nter		Sampl	ed: 03/2	25/08 16:25			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 10:39	
Lube Oil Range Hydrocarbons		ND	0.0849	0.472		"	"	"		
Surrogate(s): 2-FBP			87.1%		53 - 125 %	"			"	
Octacosane			92.4%		68 - 125 %	"			"	
BRC0418-15 (1A-W-1-0308)		Wa	nter		Sampl	ed: 03/2	25/08 09:40			
Diesel Range Hydrocarbons	NWTPH-Dx	0.183	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 11:05	J
Lube Oil Range Hydrocarbons		ND	0.0849	0.472		"	"	"	"	
Surrogate(s): 2-FBP			92.6%		53 - 125 %	"			"	
Octacosane			113%		68 - 125 %	"			"	
BRC0418-16 (1A-W-4-0308)		Wa	nter		Sampl	ed: 03/2	25/08 10:50			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 11:31	
Lube Oil Range Hydrocarbons		ND	0.0849	0.472		"	"	"		
Surrogate(s): 2-FBP			89.4%		53 - 125 %	"			"	
Octacosane			108%		68 - 125 %	"			"	
BRC0418-17 (1B-W-2-0308)		Wa	ater		Sampled: 03/25/08 12:20					
Diesel Range Hydrocarbons	NWTPH-Dx	0.175	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 11:57	J
Lube Oil Range Hydrocarbons	"	0.118	0.0849	0.472	"	"	"	"		J
Surrogate(s): 2-FBP			94.2%		53 - 125 %	"			"	
Octacosane			111%		68 - 125 %	"			"	
BRC0418-18 (2B-W-4-0308)		Wa	iter		Sampl	ed: 03/2	25/08 14:45			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 12:22	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			100%		53 - 125 %	"			"	

Surrogate(s): 2-FBP Octacosane

TestAmerica Seattle

w

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

116%

68 - 125 %

ENSR	International-Seattle
------	-----------------------

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-0340 Sarah Albano

Report Created: 04/08/08 17:02

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica Seattle

				TestAlli		attie					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0418-19	(MW-35-0308)		Wa	ater		Sampl	ed: 03/2	25/08 16:05			
Diesel Range Hydro	ocarbons	NWTPH-Dx	1.30	0.0377	0.236	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 00:27	Q9
Lube Oil Range Hy	drocarbons	"	0.357	0.0849	0.472	"	"	"	"	"	J
Surrogate(s):	2-FBP			95.1%		53 - 125 %	"			"	
	Octacosane			102%		68 - 125 %	"			"	
BRC0418-20	(1B-W-3-0308)		Water			Sampl	ed: 03/2	25/08 17:50			
Diesel Range Hydro	ocarbons	NWTPH-Dx	0.116	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 12:48	J
Lube Oil Range Hy	drocarbons	"	0.0960	0.0849	0.472	"	"	"	"	"	J
Surrogate(s):	2-FBP			98.5%		53 - 125 %	"			"	
	Octacosane			115%		68 - 125 %	"			"	
BRC0418-21	(1C-W-2-0308)		Wa	ater		Sampl	ed: 03/2	25/08 08:50			
Diesel Range Hydro	ocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 00:52	
Lube Oil Range Hyd	drocarbons	"	ND	0.0849	0.472		"	"	"	"	
Surrogate(s):	2-FBP			101%		53 - 125 %	"			"	
	Octacosane			107%		68 - 125 %	"			"	
BRC0418-22	(MW-34-0308)		Wa	ater		Sampl	ed: 03/2	25/08 09:25			
Diesel Range Hydro	ocarbons	NWTPH-Dx	0.0808	0.0377	0.236	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 01:18	J
Lube Oil Range Hyd	drocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s):	2-FBP			97.3%		53 - 125 %	"			"	
	Octacosane			106%		68 - 125 %	"			"	
BRC0418-23	(1C-W-1-0308)		Wa	ater		Sampl	ed: 03/2	25/08 10:10			
Diesel Range Hydro	ocarbons	NWTPH-Dx	0.613	0.0377	0.236	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 01:44	Q9
Lube Oil Range Hy	drocarbons	"	0.170	0.0849	0.472	"	"	"	"	"	J
Surrogate(s):	2-FBP			96.3%		53 - 125 %	"			"	
	Octacosane			102%		68 - 125 %	"			"	
BRC0418-24	(5-W-4-0308)		Wa	ater		Sampl	ed: 03/2	25/08 11:00			
Diesel Range Hydr	ocarbons	NWTPH-Dx	0.188	0.0385	0.240	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 02:10	J
Lube Oil Range Hy	drocarbons	"	0.175	0.0865	0.481	"	"	"	"	"	J

Surrogate(s): 2-FBP Octacosane

TestAmerica Seattle

in

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

"

"

53 - 125 % 68 - 125 %

Kate Haney, Project Manager

94.9%

105%

Page 8 of 17

ENSR	International-Seattle	
------	-----------------------	--

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-0340 Sarah Albano

Report Created: 04/08/08 17:02

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)

TestAmerica Seattle													
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes			
BRC0418-25 (5-W-40-0308)		Wa	ater		Sampl	ed: 03/2	25/08 08:00						
Diesel Range Hydrocarbons	NWTPH-Dx	0.211	0.0381	0.238	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 02:35	J			
Lube Oil Range Hydrocarbons	"	0.188	0.0857	0.476	"	"	"			J			
Surrogate(s): 2-FBP			99.2%		53 - 125 %	"			"				
Octacosane			108%		68 - 125 %	"			"				
BRC0418-26 (MW-38-0308)		Water			Sampl	ed: 03/2	25/08 13:10						
Diesel Range Hydrocarbons	NWTPH-Dx	0.0840	0.0377	0.236	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 04:19	J			
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"					
Surrogate(s): 2-FBP			105%		53 - 125 %	"			"				
Octacosane			111%		68 - 125 %	"			"				
BRC0418-27 (1A-W-5-0308)		Wa	ater		Sampl	ed: 03/2	25/08 14:00						
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0385	0.240	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 06:50				
Lube Oil Range Hydrocarbons	"	ND	0.0865	0.481	"	"	"	"	"				
Surrogate(s): 2-FBP			89.8%		53 - 125 %	"			"				
Octacosane			95.8%		68 - 125 %	"			"				
BRC0418-28 (MW-16-0308)		Wa	ater		Sampl	ed: 03/2	25/08 14:45						
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 07:15				
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"				
Surrogate(s): 2-FBP			95.6%		53 - 125 %	"			"				
Octacosane			103%		68 - 125 %	"			"				
BRC0418-29 (2A-W-9-0308)		Wa	ater		Sampl	ed: 03/2	25/08 15:45						
Diesel Range Hydrocarbons	NWTPH-Dx	1.03	0.0377	0.236	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 07:41	Q9			
Lube Oil Range Hydrocarbons	"	0.598	0.0849	0.472	"	"	"	"		Q9			
Surrogate(s): 2-FBP			96.7%		53 - 125 %	"			"				
Octacosane			98.5%		68 - 125 %	"			"				
BRC0418-30 (2A-W-10-0308)		Wa	ater		Sampl	ed: 03/2	25/08 16:20						
Diesel Range Hydrocarbons	NWTPH-Dx	0.136	0.0377	0.236	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 09:23	J			
Lube Oil Range Hydrocarbons	"	0.245	0.0849	0.472	"	"		"		J			
Surrogate(s): 2-FBP			98.8%		53 - 125 %	"			"				

Surrogate(s): 2-FBP Octacosane

TestAmerica Seattle

w Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

104%

68 - 125 %

"

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-0340 Sarah Albano

Report Created: 04/08/08 17:02

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica Seattle Mathad Unite Docult MDI * MDI ъя Datab Dronarad Anabyzad

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0418-31 (2A-W-1-0308	3)	Wa	ater		Sampl	ed: 03/2	26/08 09:00			
Diesel Range Hydrocarbons	NWTPH-Dx	1.53	0.0385	0.240	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 09:48	Q
Lube Oil Range Hydrocarbons	"	0.583	0.0865	0.481	"	"	"	"		Q9
Surrogate(s): 2-FBP			98.0%		53 - 125 %	"			"	
Octacosane			104%		68 - 125 %	"			"	
BRC0418-32 (2A-W-100-03	RC0418-32 (2A-W-100-0308) Water			Sampl	ed: 03/2	26/08 09:10				
Diesel Range Hydrocarbons	NWTPH-Dx	1.49	0.0385	0.240	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 10:14	Q9
Lube Oil Range Hydrocarbons	"	0.561	0.0865	0.481	"	"	"	"		Q9
Surrogate(s): 2-FBP			98.3%		53 - 125 %	"			"	
Octacosane			107%		68 - 125 %	"			"	
BRC0418-33 (MW-3-0308)		Water		Sampled: 03/26/08 09:50						
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 10:39	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"		
Surrogate(s): 2-FBP			94.3%		53 - 125 %	"			"	
Octacosane			104%		68 - 125 %	"			"	
BRC0418-34 (MW-4-0308)		Wa	ater		Sampl	ed: 03/2	26/08 10:35			
Diesel Range Hydrocarbons	NWTPH-Dx	0.0812	0.0385	0.240	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 11:05	J
Lube Oil Range Hydrocarbons	n	0.119	0.0865	0.481	"	"	"	"		J
Surrogate(s): 2-FBP			98.0%		53 - 125 %	"			"	
Octacosane			105%		68 - 125 %	"			"	
BBC0418_35 (MW_39_0308	0	W	ater		Sampl	ed: 03/2	26/08 11:05			

BRC0418-35 (MW-39-0308)			***		Sampi	eu: 05/2	0/00 11:03				
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons		NWTPH-Dx	0.639	0.0385 0.0865	0.240	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 11:31	Q9
		"	0.222		0.481	"	"	"	"	"	J
Surrogate(s):	2-FBP			100%		53 - 125 %	"			"	
	Octacosane		106%			68 - 125 %	"			"	

BRC0418-36 (MW-37-0308)			W٤		Sampl	ed: 03/2	26/08 09:30				
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons		NWTPH-Dx "	0.842 0.284	342 0.0377 284 0.0849		mg/l "	1x "	8C28015 "	03/28/08 09:35	04/01/08 11:57	Q9 J
Surrogate(s):	2-FBP Octacosane			94.1% 103%		53 - 125 % 68 - 125 %	"			"	

TestAmerica Seattle

IUX Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

ENSR International-Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-0340 Sarah Albano

Report Created: 04/08/08 17:02

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)

			TestAm	erica Se	attle					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0418-37 (2A-W-6-0308)		W	ater		Sampl	led: 03/2	26/08 10:45			
Diesel Range Hydrocarbons	NWTPH-Dx	2.54	0.0385	0.240	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 12:22	Q9
Lube Oil Range Hydrocarbons	"	0.497	0.0865	0.481	"	"	"	"		Q9
Surrogate(s): 2-FBP			96.2%		53 - 125 %	"			"	
Octacosane			104%		68 - 125 %	"			"	
BRC0418-38 (2A-W-60-0308)		W	ater		Sampl	led: 03/2	26/08 10:30			
Diesel Range Hydrocarbons	NWTPH-Dx	2.52	0.0377	0.236	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 12:48	Q9
Lube Oil Range Hydrocarbons	"	0.481	0.0849	0.472	"		"	"		Q9
Surrogate(s): 2-FBP			97.8%		53 - 125 %	"			"	
Octacosane			106%		68 - 125 %	"			"	
BRC0418-39 (MW-19-0308)		W	ater		Sampl	ed: 03/2	26/08 11:20			
Diesel Range Hydrocarbons	NWTPH-Dx	0.0380	0.0377	0.236	mg/l	1x	8C28015	03/28/08 09:35	04/01/08 13:14	J
Lube Oil Range Hydrocarbons		ND	0.0849	0.472		"	"	"		
Surrogate(s): 2-FBP			97.5%		53 - 125 %	"			"	
Octacosane			106%		68 - 125 %	"			"	

TestAmerica Seattle

Kato Duuz Kate Haney, Project Manager

ENSR International-Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-0340 Sarah Albano

Report Created: 04/08/08 17:02

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

				TestAm	erica Sea	attle									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes				
BRC0418-04	(5-W-14-0308)		W٤	nter		Sampl	Sampled: 03/25/08 09:10								
Diesel Range (SGCU	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 15:50					
Lube Oil Range (SG	CU)	"	ND	0.151	0.472	"	"	"	"						
Surrogate(s):	2-FBP (SGCU)			96.9%		53 - 125 %	"			"					
	Octacosane (SGCU)			110%		68 - 125 %	"			"					
BRC0418-05	(5-W-15-0308)		Wa	Water Sampled: 03/25/08 09:55											
Diesel Range (SGCU	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 16:16					
Lube Oil Range (SG	CU)	"	ND	0.151	0.472		"	"	"						
Surrogate(s):	2-FBP (SGCU)			90.8%		53 - 125 %	"			"					
	Octacosane (SGCU)			102%		68 - 125 %	"			"					
BRC0418-06	(5-W-16-0308)		Water Sampled: 03/25/08 10:50												
Diesel Range (SGCU	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 16:42					
Lube Oil Range (SG	iCU)	"	ND	0.151	0.472		"	"	"						
Surrogate(s):	2-FBP (SGCU)			94.7%		53 - 125 %	"			"					
	Octacosane (SGCU)			110%		68 - 125 %	"			"					
BRC0418-07	(5-W-160-0308)		Wa	nter		Sampl	ed: 03/2	25/08 11:00							
Diesel Range (SGCU	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 17:08					
Lube Oil Range (SG	CU)	"	ND	0.151	0.472	"	"	"	"						
Surrogate(s):	2-FBP (SGCU)			103%		53 - 125 %	"			"					
0 ()	Octacosane (SGCU)			112%		68 - 125 %	"			"					
BRC0418-08	(5-W-17-0308)		Wa	nter		Sampl	ed: 03/2	25/08 11:35							
Diesel Range (SGCU	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 17:35					
Lube Oil Range (SG	iCU)	"	ND	0.151	0.472	"	"	"	"	"					
Surrogate(s):	2-FBP (SGCU)			104%		53 - 125 %	"			"					
	Octacosane (SGCU)			121%		68 - 125 %	"			"					
BRC0418-11	C0418-11 (5-W-18-0308) Water				Sampl	ed: 03/2	25/08 14:20								
Diesel Range (SGC	U)	NWTPH-Dx	0.0446	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 18:01	J				
Lube Oil Range (SG	CU)	"	ND	0.151	0.472	"	"	"	"						
Surrogate(s):	2-FBP (SGCU)			96.0%		53 - 125 %	"			"					
0.07	Octacosane (SGCU)			108%		68 - 125 %	"			"					

TestAmerica Seattle

Kate Haney, Project Manager

INX

ENSR International-Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-0340 Sarah Albano

Report Created: 04/08/08 17:02

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up TestAmerica Seattle

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes			
BRC0418-12	(5-W-19-0308)		Water Sampled: 03/25/08 15:05											
Diesel Range (SGCU)		NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 18:27				
Lube Oil Range (S	GCU)	"	ND	0.151	0.472	"	"	"	"	"				
Surrogate(s):	2-FBP (SGCU)			90.6%		53 - 125 %	"			"				
	Octacosane (SGCU)			108%		68 - 125 %	"			"				
BRC0418-13	(5-W-20-0308)		W	ater		Sampl	ed: 03/2	25/08 16:10						
Diesel Range (SG	CU)	NWTPH-Dx	0.0396	0.0377	0.236	mg/l	1x	8C28014	03/28/08 09:32	04/01/08 18:53	j			
Lube Oil Range (S	GCU)	"	ND	0.151	0.472	"	"	"	"	"				
Surrogate(s):	2-FBP (SGCU)			94.6%		53 - 125 %	"			"				
	Octacosane (SGCU)			108%		68 - 125 %	"			"				

TestAmerica Seattle

und

Kate Haney, Project Manager

ENSD International Souttle				D 1 1 1 1	1	DNGE	Shukami	ch						
ENSR International-Seattle	N 07			Project Nan	ne: I	DINGE-	ЗКУКОШ 04.0240	ISII					D (C)	,
1011 SW Klickitat Way, Suite 2	207			Project Manager: Sereh Alberg								Report Create	a:	
Seattle, WA 98154				Floject Mai	lagel.	Saran A	IDano						04/08/08 17.	02
Somivolatila D	troloum Dro	duate by	WTDU Dy	(m/o A aid	USilian C	al Clas	n un)	Labor	otom	Quality	Cont	twol Dog	ulto	
Semivolatile r	etroleum rro	ducts by 1	wirn-Dx	TestAmeri	ca Seattle	el Clea	m-up) -	Labor	atory	Quanty	Cont	Iroi Kes	uits	
QC Batch: 8C28014	Water l	Preparation	n Method: H	EPA 3520C										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8C28014-BLK1)								Extr	acted:	03/28/08 09	9:32			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x						(03/31/08 22:44	
Lube Oil Range Hydrocarbons	"	ND	0.0900	0.500	"								"	
Surrogate(s): 2-FBP		Recovery:	92.7%	Lin	nits: 53-125%	6 "							03/31/08 22:44	
Octacosane			106%		68-1259	% "							"	
LCS (8C28014-BS1)								Extr	acted:	03/28/08 09	9:32			
Diesel Range Hydrocarbons	NWTPH-Dx	1.97	0.0400	0.250	mg/l	1x		2.00	98.7%	(61-132)		(03/31/08 23:09	
Surrogate(s): 2-FBP		Recovery:	96.9%	Lin	nits: 53-125%	6 "							03/31/08 23:09	
Octacosane			107%		68-1259	% "							"	
Matrix Spiles (8C28014 MS1)				OC Source:	BRC0418-0)4		Extr	acted:	03/28/08 09):32			
Diesel Range Hydrocarbons	NWTPH-Dx	2.06	0.0377	0.236	mg/l	1x	ND	1.89	109%	(32-143)		(03/31/08 23:35	
Surrogate(s): 2-FBP		Recovery:	101%	Lin	nits: 53-125%	ó "				. ,			03/31/08 23:35	
Octacosane			117%		68-1259	% "							"	
	D1)			000	BBC04104			Б (02/20/00 0/				
Matrix Spike Dup (8C28014-MIS)	NWTPH Dy	2.00	0.0277	QC Source:	BRC0418-0	1	ND	1.80	11194	(22, 142)	1 50%	(40)	04/01/08 00:01	
	INW IT II-DX	2.09	0.0377	0.230	111g/1	1X	ND	1.69	111/0	(32-143)	1.50%	8 (40)	04/01/08 00:01	
Surrogate(s): 2-FBP Octacosane		<i>Recovery</i> :	99.0% 117%	Lin	68-125% 68-125%	o % "							04/01/08 00:01 "	
QC Batch: 8C28015	Water I	Preparation	n Method: H	EPA 3520C	1									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8C28015-BLK1)								Extr	acted:	03/28/08 09	9:35			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x						(03/31/08 22:44	
Lube Oil Range Hydrocarbons	"	ND	0.0900	0.500	"									
Surrogate(s): 2-FBP		Recovery:	93.5%	Lin	nits: 53-125%	<i>6</i> "							03/31/08 22:44	
Octacosane			99.0%		68-1259	% "							"	
LCS (8C28015-BS1)								Extr	acted:	03/28/08 09	9:35			
Diesel Range Hydrocarbons	NWTPH-Dx	2.11	0.0400	0.250	mg/l	1x		2.00	105%	(61-132)		(03/31/08 23:09	
Surrogate(s): 2-FBP		Recovery:	91.8%	Lin	nits: 53-125%	6 "							03/31/08 23:09	

Surrogate(s): 2-FBP Recovery: 91.8% Limits: 53-125% " 68-125% " 99.5% Octacosane

TestAmerica Seattle

wg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

"

Octacosane

ENSR International-Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Sarah Albano	04/08/08 17:02

Semivolatile P	Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Laboratory Quality Control Results TestAmerica Seattle													
QC Batch: 8C28015	Water I	reparation	Method:	EPA 3520C										
Analyte	Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Matrix Spike (8C28015-MS1)				QC Source:	BRC0418-19			Extr	acted:	03/28/08 09	:35			
Diesel Range Hydrocarbons	NWTPH-Dx	3.26	0.0377	0.236	mg/l	1x	1.30	1.89	104%	(32-143)			03/31/08 23:35	
Surrogate(s): 2-FBP		Recovery:	95.2%	Lim	nits: 53-125%	"							03/31/08 23:35	
Matrix Spike Dup (8C28015-MS	5D1)		101%	QC Source:	68-125% BRC0418-19			Extr	acted:	03/28/08 09	:35			
Diesel Range Hydrocarbons	NWTPH-Dx	3.23	0.0377	0.236	mg/l	1x	1.30	1.89	102%	(32-143)	1.07%	(40)	04/01/08 00:01	
Surrogate(s): 2-FBP		Recovery:	101%	Lim	uits: 53-125%	"							04/01/08 00:01	

68-125% "

102%

Foot A	morioo	Soottla	
l estA	merica	Seattle	

Aunz

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

"

ENSR Inte	rnational-Seattle				Project Nam	ne: l	BNSF-	Skykom	ish							
1011 SW K	lickitat Way, Suite 2	207			Project Number:		01140-2	204-0340						Report Create	ed:	
Seattle, WA	Seattle, WA 98134				Project Man	nager:	Sarah A	lbano						04/08/08 17:	04/08/08 17:02	
	Semivolatile P	etroleum Pro	ducts by]	NWTPH-D	x with Acid	d/Silica G	el Cle	an-up -	Labor	atory	Quality	v Cont	trol Re	sults		
					TestAmerie	ca Seattle										
QC Bate	h: 8C28014	Water I	Preparation	n Method:	EPA 3520C											
Analyte		Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes	
Blank (8C280	14-BLK2)								Extr	acted:	03/28/08 0	9:32				
Diesel Range (SGCU	J)	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x							04/01/08 03:53		
Lube Oil Range (SG	CU)		ND	0.160	0.500	"										
Surrogate(s):	2-FBP (SGCU) Octacosane (SGCU)		Recovery:	94.7% 109%	Lin	nits: 53-125% 68-1259	6 " 6 "							04/01/08 03:53 "		
LCS (8C28014	4-BS1)								Extr	acted:	03/28/08 0	9:32				
Diesel Range (SGCU	J)	NWTPH-Dx	2.00	0.0400	0.250	mg/l	1x		2.00	100%	(61-132)			04/01/08 13:14		
Surrogate(s):	2-FBP (SGCU) Octacosane (SGCU)		Recovery:	99.4% 111%	Lin	nits: 53-125% 68-125%	6 " 6 "							04/01/08 13:14 "		
Matrix Spike	(8C28014-MS1)				QC Source:	BRC0418-0	4		Extr	acted:	03/28/08 0	9:32				
Diesel Range (SGCU	J)	NWTPH-Dx	2.01	0.0377	0.236	mg/l	1x	ND	1.89	106%	(32-143)			04/01/08 14:58		
Surrogate(s):	2-FBP (SGCU) Octacosane (SGCU)		Recovery:	97.5% 116%	Lin	nits: 53-125% 68-1259	6 " 6 "							04/01/08 14:58 "		
Matrix Spike D	oup (8C28014-MS	D1)			QC Source:	BRC0418-0	4		Extr	acted:	03/28/08 0	9:32				
Diesel Range (SGCU	J)	NWTPH-Dx	1.91	0.0377	0.236	mg/l	1x	ND	1.89	101%	(32-143)	5.24	% (40)	04/01/08 15:24		
Surrogate(s):	2-FBP (SGCU) Octacosane (SGCU)		Recovery:	92.4% 110%	Lin	nits: 53-125% 68-125%	6 " 6 "							04/01/08 15:24 "		

TestAmerica Seattle

Kato Duug Kate Haney, Project Manager

ENSR International-Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Sarah Albano	04/08/08 17:02
N	otes and Definiti	ons	
Demost Service Materi			

Report	Specific	Notes:

- J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- Q9 Hydrocarbon pattern most closely resembles transformer oil.

Laboratory Reporting Conventions:

- DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
- ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
- NR/NA _ Not Reported / Not Available
- dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
- Wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
- RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic- Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.SignatureApplication of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.
Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

		LA	LAB WORK	TLAB WORK ORDER: BRC0418							
BNSF	Laboratory: To + Amo	ne a			Project Manager:			SHIPMENT INFORMAT	ION		
RALIWAY	Address: 11270 Nin	the Col P	have ASTO	400	Phone: 475	470-970	Shipment Met	hod: Hand del	12res		
	City/State/ZIP:	INTA OF	DA11	100	Fax:		Tracking Nurr	iber:			
BNSF PROJECT INFORMATION	Project State of Ofigin:	+ • • • •		cc	NSULTANT INFO	ORMATION	Project Number	Project Number: 01140-704-0340			
BNSF Project Number	Project City:		Company:	1 el	Σ	<u>,,</u>	Project Manage	Project Manager: Halph Vocas			
BNSF Project Name:	SKYKOMISI	<u>``</u>	Address: 101	<u>, sr</u>	VKIL	2 Flat 1. la. 4	Email:	1101011 07	ジ		
BNSF Contact:	BNSF Work Order No.:	108	City/State/ZIP:	-46	$\frac{1}{14}$	JAI Way Ste	Phone:	74-9249 770	1/74-782		
TURNAROUND TIME	DELIVERABLES	DELIVERABLES Other De			- <i>j</i> <u>v</u> <i>j</i> <u>j</u>	METHODS FOR ANAL	YSIS				
1_day Rush 5- to 8-day Rush	BNSF Standard (Level II)										
2 day Rush		EDD Red	q, Format?		xtx						
3 day Rush Other		RET	EC-EAU	15	6363						
SAMP	LE INFORMATION		<u> </u>		FAFS						
	Sample	e Collection	Filtered Type		335						
Sample identification	Containers Date	Time Sampler	Y/N (Comp/ Grab)	Matrix	ZSZ S			COMMENTS	LAB USE		
-74 - W - 11 - 0308	Z 3/24/08	1510 DWK	N	W	Х				-01		
10-10-4 - 1	Z	130 45		1	X				-07		
1(-1-3-	2 2	1545 65	i		\mathbf{X}				-03		
5-W-14-	A 3/75/08	0910 DWK			хX				-04		
5-14-15-	4	0955			XX				-05		
5 - 5 - 10 - 16 - 10 - 10 - 10 - 10 - 10 - 10	4	1050			XX				-06		
5-101-160-	4	1100			XX				-07		
5-W-17-	4	1135			\mathbb{K}				-08		
· 18-11-1-	7	1305			\mathbf{X}				-09		
$10 \qquad I \Delta = (a/-3) = 1$	Z	1225			\times				-10		
······································	4	1470			\checkmark				-11		
= 5-W-19-	4	1505			XX				-12		
$5 - 1 \sqrt{-7.0}$	4	1610			XX				-13		
MW - 500 - 1	7.	1625 V			\times				-14		
15 $1A - h/ - 1$	ZV	0940 GS	$\mathbf{+}$	V	\times				-15		
Remitiumed By:	Date/Time 3/76/02/1341	Berer	A			Date/Time:	Comments and Sp	ecial Analytical Requirement	c: 0		
Relinquished By:	Date/Time.	Received By:				Date/Time:	5.9'	Par any ger	~~~~~~P		
Relinquished By:	Date/Time:	Received By:				Date/Time:					
Received by Laboratory:	Date/Time	Lab Remarks:				Lab: Custody Intact?	Custody Seal No.:	BNSF COC N	o :		

	1			LA	BORAT	ORY INF	ORMATI	ON				B WORK	order: E	BRC04	-18
BNSF	Laboratory:	Test F	mori	()				Project Manager:					SHIPME		ION
RAILWAY	Address: 17	ZO North	Crk	Pkw	WN.	Ste	4 00	Phone:)420	-97.01	> st	nipment Me	ethod: Ha	nd De	livered
CHAIN OF CUSTODY	City/State/ZIP:	Bothe	II. WH	A g	801	8011 Fax:							mber:	-	v •
BNSF PROJECT INFORMATION	Project State of	riola:				CONSULTANT INFORMATION						Project Number: 01140 - 204 - 0340			
BNSF Project Number:	Project City Konth				Company:	20mpany: ENSR						Project Manager: Halah, Voges			
BNSF Project Name: Skylipmish		· · ·			Address:	ĮD	11 51	1 Klick	itat	Nay ste	~~7	nail:			0 -
BNSF Contact: Bruce Shappard	BNSF Work Ord	0100-1	08		City/State/	^{/ZIP:}	eitt	e, MA	<u>98</u>	134	Pt	<u>206)</u>	624-9	<u>849</u> [™] [70	6)624-2839
	DI			Other De	liverables	?			METH	IODS FOR ANAL	YSIS			•	
1-day Rush 5- to 8-day Rush		andard (Level II)	-												
2-day Rush Standard 10-Day	Level III			EDD Red	ą, Formati	?	_								
3-day Rush Other	Level IV		-	REI	ric C	- Eq.	<u>NS</u>	À3							
SAM	PLE INFORM	ATION					,	Σ X							
Sample identification	Containers	Sampl	e Collection		Filtered	Type (Comp/	Matrix	LA a							
		Date	Time	Sampler	Y/N	Grab)		52					co	MMENTS	LAB USE
1A-W-4-0308	Z	3/25/08	1050	<u>65</u>	N		W	\bowtie			-				-16
· 1B-W-Z- 1	2		1220	_	1		1	\times	_						-17
2B-W-4-	Z		1445					$\boldsymbol{\times}$						C. C. col	-18
- MW-35-	4		1605										- Eac	Labore	-19
5 1B-W-3-	2		1750	V				X							-20
· 1C-W-Z-	2		0850	<u>cs</u>				\geq	_						-2
MW-34-	2		0925	-				\bowtie							-22
8 1C-W-1-	Z		10/0					\times							-23
· 5-W-4-	2		1100												-24
10 5-W-40-	2		0800			ļ									-25
" MW-38 -	Z		1310				1	\bowtie							-26
12 1A - W - 5 - 1	Z		1400					\bowtie							-27
mw - 16 - 13	Z		1445					\aleph							-28
14 ZA - W - 9 - 1	Z		1545					\mathbf{X}							-24
15 ZA-W-10-	2	V	1620	V	+		$ \mathbf{v} $	$ \times $							-30
Religned by	Date/Tiple	68/1340	Received	re	cb				Date/Time	e/og 1342	Commen	ts and Si ′C	pecial Analytica	I Requirement	is:
Relinquished By:	Dete/Timer	/	Received By:						Date/Time						
Relinquished By:	Date/Time:		Received By:						Date/Time	:					
Received by Laboratory:	Date/Time		Lab Remarks:						Lab: Cust	ody Intact? 'es No	Custody Sea	ił No.:		BNSF COC N	o :

	.			LA	BORAT	ORY INFO	ORMATI	ON	<u>.</u>				LAB WO	RK ORDE	R: BR	C04	18
BNSF	Laboratory:	est An	nertca					Project Man	ager:						SHIPMENT IN	FORMATI	ON
RAILWAY	Address:	North (ck Pk	WY	N, .	Sha	106	Phone: /4	-25)	47)-920	00	Shipment	t Method:	Hand	deli	verad
	City/State/ZIP:	Bathell	WF	F 9	801	1		Fax:					Tracking Number:				
BNSF PROJECT INFORMATION	Project State of C				CONSULTANT INFORMATION							Project Number: 01140-204-0340					
BNSF Project Number.	Project City:	skykon	Ish		Company: ENSR							Project Manager: Halah Voges					
BNSF Project Name: SHULPOMICH					Address: 1011 SW Klickitat Way, Stop 207						207.	Email:					
BNSF Contact: BILLICO, She Dog of	BNSF Work Ord	108-H	08		City/State	ZIP:	Hle	. W	7 9	213	4		(Phone: 206)	674	-9349	1206	624-2839
TURNAROUND TIME		LIVERABLES		Other De	liverables	?		/		METH	ODS FOR AN	ALYSIS				C	
1-day Rush 5- to 8-day Rush	BNSF Sta	indard (Level II)															
2-day Rush Standard 10-Day	Level III		X	EDD Reg	, Format	·	•	X									
3-day Rush Other	Level IV		``	RET	TZ-	Equ	ls										
SAM	IPLE INFORM	ATION					ΕX										
	Contriner	Sampl	e Collection		Filtered	Type (Come/	Matrix	k Ş									
Sample identification	Containers	Date	Time	Sampler	Y/N	Grab)	IVIBUTIX	ź ĺ							СОММЕ	INTS	LAB USE
-2A-W-1-0308	Z	3/26/08	0900	DWK	N		W	\times									-31
z = 7A - W - 100 - 1	γ		0910	1			1	\mathbf{X}						ļ			-32
MW-3 -	2		1950					X									-33
(mw) - 4 -	Z		1035					X						<u> </u>			-34
$m_{\rm HI} = 29 =$	2		1105					\ge									-35
MW-37-	2		0930	GS				\bowtie						ļ			-36
7 A-W-6 -	2		1045	65				\mathbf{X}									-37
2A - W - 60 - 1	2		1030	GŠ	4			\mathbb{K}									- 38
MW-19 -	2	V	1120	CS	V		V	\mathbf{N}									-39
10								Ĺ									<u> </u>
11															<u> </u>		<u> </u>
12															<u> </u>		
13																	
14																	
15																	
Relinquished By:	Date/Time	1340	Der By:	ecb						Date/Time	08 134	Comn	nents and	l Specia	I Analytical Re	quirement	5:
Relinquished By:	Date/Time:	7	Received By:							Date/Time	:	>	14				
Relinquished By:	Date/Time: Received By:							Date/Time:									
Received by Laboratory:	Date/Time		Lab Remarks:							Lab: Custo	ody Intact? es INo	Custody	Seal No.:			BNSF COC No	J :

July 01, 2008

Sarah Albano ENSR International - Seattle 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

RE: BNSF-Skykomish

Enclosed are the results of analyses for samples received by the laboratory on 06/24/08 09:00. The following list is a summary of the Work Orders contained in this report, generated on 07/01/08 14:00.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRF0334 Project BNSF-Skykomish ProjectNumber 01140-222-0100

TestAmerica Seattle

Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-222-0100 Sarah Albano

Report Created: 07/01/08 14:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
5-W-15-0608	BRF0334-01	Water	06/23/08 12:35	06/24/08 09:00
5-W-150-0608	BRF0334-02	Water	06/23/08 12:45	06/24/08 09:00
5-W-17-0608	BRF0334-03	Water	06/23/08 13:30	06/24/08 09:00
5-W-18-0608	BRF0334-04	Water	06/23/08 14:25	06/24/08 09:00
5-W-14-0608	BRF0334-05	Water	06/23/08 15:10	06/24/08 09:00
5-W-16-0608	BRF0334-06	Water	06/23/08 15:50	06/24/08 09:00
5-W-19-0608	BRF0334-07	Water	06/23/08 16:30	06/24/08 09:00
5-W-20-0608	BRF0334-08	Water	06/23/08 17:15	06/24/08 09:00
MW-500-0608	BRF0334-09	Water	06/23/08 17:45	06/24/08 09:00

TestAmerica Seattle

And Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-222-0100

Sarah Albano

Report Created: 07/01/08 14:00

Analytical Case Narrative TestAmerica - Seattle, WA

BRF0334

SAMPLE RECEIPT

The samples were received June 24th, 2008 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 7.3 degrees Celsius.

PREPARATIONS AND ANALYSIS

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

TestAmerica Seattle

hung

Kate Haney, Project Manager

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-222-0100	Report Created:
Seattle, WA 98134	Project Manager:	Sarah Albano	07/01/08 14:00

Sem	ivolatile Petrol	eum Produ	restAm	WTPH erica Sea	I-Dx (w/o attle	Acid	/Silica G	el Clean-up)	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRF0334-01 (5-W-15-0608)		W	ater		Sampl	ed: 06/2	23/08 12:35			
Diesel Range Hydrocarbons	NWTPH-Dx	0.204	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 19:17	J
Lube Oil Range Hydrocarbons	"	0.145	0.0849	0.472	"	"	"	"		J
Surrogate(s): 2-FBP			100%		53 - 125 %	"			"	
Octacosane			93.6%		68 - 125 %	"			"	
BRF0334-02 (5-W-150-0608)		W	ater		Sampl	ed: 06/2	23/08 12:45			
Diesel Range Hydrocarbons	NWTPH-Dx	0.207	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 19:43	J
Lube Oil Range Hydrocarbons	"	0.152	0.0849	0.472	"	"	"	"		J
Surrogate(s): 2-FBP			99.7%		53 - 125 %	"			"	
Octacosane			92.9%		68 - 125 %	"			"	
BRF0334-03 (5-W-17-0608)		W	ater		Sampl	ed: 06/2	23/08 13:30			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 20:09	U
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"		U
Surrogate(s): 2-FBP			106%		53 - 125 %	"			"	
Octacosane			90.1%		68 - 125 %	"			"	
BRF0334-04 (5-W-18-0608)		W	ater		Sampl	ed: 06/2	23/08 14:25			
Diesel Range Hydrocarbons	NWTPH-Dx	0.511	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 20:35	Q3
Lube Oil Range Hydrocarbons	"	0.272	0.0849	0.472	"	"	"	"		J
Surrogate(s): 2-FBP			107%		53 - 125 %	"			"	
Octacosane			98.2%		68 - 125 %	"			"	
BRF0334-05 (5-W-14-0608)		W	ater		Sampl	ed: 06/2	23/08 15:10			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 21:01	U
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	U
Surrogate(s): 2-FBP			96.8%		53 - 125 %	"			"	
Octacosane			92.8%		68 - 125 %	"			"	
BRF0334-06 (5-W-16-0608)		W	ater		Sampl	ed: 06/2	23/08 15:50			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 21:27	τ
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	U
Surrogate(s): 2-FBP			95.9%		53 - 125 %	"			"	

TestAmerica Seattle hung

Octacosane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Page 4 of 10

Kate Haney, Project Manager

94.4%

68 - 125 % "

ENSR International - SeattleProject Name:BNSF-Skykomish1011 SW Klickitat Way, Suite 207Project Number:01140-222-0100Report Created:Seattle, WA 98134Project Manager:Sarah Albano07/01/08 14:00

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)

			TestAm	erica Sea	attle					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRF0334-07 (5-W-19-0608)		W	ater		Sampl	ed: 06/2	23/08 16:30			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 23:12	U
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472		"	"	"		U
Surrogate(s): 2-FBP			105%		53 - 125 %	"			"	
Octacosane			89.8%		68 - 125 %	"			"	
BRF0334-08 (5-W-20-0608)		W	Sampl	ed: 06/2	23/08 17:15					
Diesel Range Hydrocarbons	NWTPH-Dx	0.551	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 23:37	Q3
Lube Oil Range Hydrocarbons	"	0.292	0.0849	0.472	"	"	"	"	"	J
Surrogate(s): 2-FBP			112%		53 - 125 %	"			"	
Octacosane			102%		68 - 125 %	"			"	
BRF0334-09 (MW-500-0608)		W	ater		Sampl	ed: 06/2	Batch Prepared Analyzed Notes 3/08 16:30			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/27/08 00:03	U
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472		"	"	"		U
Surrogate(s): 2-FBP			98.4%		53 - 125 %	"			"	
Octacosane			93.0%		68 - 125 %	"			"	

TestAmerica Seattle

lund Kate Haney, Project Manager

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-222-0100	Report Created:
Seattle, WA 98134	Project Manager:	Sarah Albano	07/01/08 14:00

Sen	nivolatile Petrol	eum Produ	icts by N TestAm	WTPH erica Se	I-Dx witl	h Acio	l/Silica G	el Clean-ur)	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRF0334-01 (5-W-15-0608)		W	ater		Sampl	led: 06/2	23/08 12:35			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 19:26	U
Lube Oil Range Hydrocarbons	"	ND	0.151	0.472	"	"	"	"	"	U
Surrogate(s): 2-FBP			80.4%		53 - 125 %	"			"	
Octacosane			90.2%		68 - 125 %	"			"	
BRF0334-02 (5-W-150-0608)		W	ater		Sampl	led: 06/2	23/08 12:45			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 19:54	U
Lube Oil Range Hydrocarbons	"	ND	0.151	0.472	"	"	"	"	"	U
Surrogate(s): 2-FBP			81.9%		53 - 125 %	"			"	
Octacosane			89.0%		68 - 125 %	"			"	
BRF0334-03 (5-W-17-0608)		W	ater		Sampl	led: 06/2	23/08 13:30			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 20:23	U
Lube Oil Range Hydrocarbons	"	ND	0.151	0.472	"	"	"	"	"	U
Surrogate(s): 2-FBP			92.1%		53 - 125 %	"			"	
Octacosane			88.0%		68 - 125 %	"			"	
BRF0334-04 (5-W-18-0608)		Water			Sampled: 06/23/08					
Diesel Range Hydrocarbons	NWTPH-Dx	0.0419	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 20:52	J
Lube Oil Range Hydrocarbons	"	ND	0.151	0.472	"		"	"	"	U
Surrogate(s): 2-FBP			89.4%		53 - 125 %	"			"	
Octacosane			90.3%		68 - 125 %	"			"	
BRF0334-05 (5-W-14-0608)		Wa	ater		Sampl	ed: 06/2	23/08 15:10			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 21:22	U
Lube Oil Range Hydrocarbons	"	ND	0.151	0.472	"	"	"	"	"	U
Surrogate(s): 2-FBP			85.2%		53 - 125 %	"			"	
Octacosane			90.9%		68 - 125 %	"			"	
BRF0334-06 (5-W-16-0608)		W	ater		Sampl	ed: 06/2	23/08 15:50			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 21:51	U
Lube Oil Range Hydrocarbons	"	ND	0.151	0.472	"				"	U

Surrogate(s): 2-FBP

TestAmerica Seattle w Kate Haney, Project Manager

Octacosane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

,,

84.3%

94.4%

53 - 125 %

68 - 125 %

"

"

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-222-0100 Sarah Albano

Report Created: 07/01/08 14:00

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up TestAmerica Seattle

				TestAme	enca sea	uue					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRF0334-07 (5-W	V-19-0608)		Wa	ater		Sample	ed: 06/2	23/08 16:30			
Diesel Range Hydrocarb	ons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/26/08 23:48	U
Lube Oil Range Hydroca	arbons	"	ND	0.151	0.472	"	"		"	"	U
Surrogate(s): 2-H	FBP			86.4%		53 - 125 %	"			"	
Oc	tacosane			85.6%		68 - 125 %	"			"	
BRF0334-08 (5-V	V-20-0608)		Wa	ater		Sampl	ed: 06/2	23/08 17:15			
Diesel Range Hydrocarb	ons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/27/08 00:17	U
Lube Oil Range Hydroca	arbons	"	ND	0.151	0.472	"	"	"	"	"	U
Surrogate(s): 2-H	FBP			91.6%		53 - 125 %	"			"	
Oc	tacosane			96.5%		68 - 125 %	"			"	
Analyte BRF0334-07 (5- Diesel Range Hydrocar Lube Oil Range Hydrocar Surrogate(s): 2- G BRF0334-08 (5- Diesel Range Hydrocar Lube Oil Range Hydrocar Surrogate(s): 2 G BRF0334-09 (M Diesel Range Hydrocar Lube Oil Range Hydrocar Surrogate(s): 2 G	V-500-0608)		Wa	ater		Sample	ed: 06/2	23/08 17:45			
Diesel Range Hydrocarb	ons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8F25034	06/25/08 12:35	06/27/08 00:47	U
Lube Oil Range Hydroca	arbons	"	ND	0.151	0.472		"		"	"	U
Surrogate(s): 2-H	FBP			87.1%		53 - 125 %	"			"	
Oc	tacosane			95.6%		68 - 125 %	"			"	

TestAmerica Seattle

ww Kate Haney, Project Manager

ENSR Inte	rnational - Seattl	e			Project Nan	ne:	BNSF-	Skykomi	ish						
1011 SW K	lickitat Way, Suite	207			Project Nur	nber:	01140-2	22-0100						Report Create	:d:
Seattle, WA	98134				Project Manager:		Sarah A	lbano						07/01/08 14:	00
	Semivolatile P	etroleum Pro	ducts by N	WTPH-D	x (w/o Acio TestAmeri	I/Silica (ca Seattle	Gel Clea	ın-up) -	Labo	ratory	Quality	v Con	trol Re	sults	
QC Bate	h: 8F25034	Water I	reparation	Method:	EPA 3520C	, ,									
Analyte		Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (8F250	34-BLK1)		Extracted: 06/25/08 12:33												
Diesel Range Hydro	carbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	lx							06/26/08 17:33	τ
Lube Oil Range Hyd	Irocarbons		ND	0.0900	0.500	"	"								U
Surrogate(s):	2-FBP Octacosane		Recovery:	108% 90.8%	Lin	nits: 53-125 68-12:	% " 5% "							06/26/08 17:33 "	
LCS (8F25034	4-BS1)								Ext	racted:	06/25/08 12	2:33			
Diesel Range Hydro	carbons	NWTPH-Dx	1.68	0.0400	0.250	mg/l	lx		2.00	83.8%	(61-132)			06/26/08 17:59	
Surrogate(s):	2-FBP Octacosane		Recovery:	108% 93.8%	Lin	nits: 53-125 68-12:	% " 5% "							06/26/08 17:59 "	
Matrix Spike	(8F25034-MS1)				QC Source:	BRF0334	08		Ext	racted:	06/25/08 12	2:33			
Diesel Range Hydro	carbons	NWTPH-Dx	2.12	0.0377	0.236	mg/l	1x	0.551	1.89	83.0%	(32-143)			06/26/08 18:25	
Surrogate(s):	2-FBP Octacosane		Recovery:	114% 95.9%	Lin	nits: 53-125 68-12:	% " 5% "							06/26/08 18:25 "	
Matrix Spike D	Dup (8F25034-MS	D1)			QC Source:	BRF0334	08		Ext	racted:	06/25/08 12	2:33			
Diesel Range Hydro	carbons	NWTPH-Dx	2.14	0.0377	0.236	mg/l	1x	0.551	1.89	84.0%	(32-143)	0.842	% (40)	06/26/08 18:51	
Surrogate(s):	2-FBP Octacosane		Recovery:	110% 94.9%	Lin	nits: 53-125 68-12:	% " 5% "							06/26/08 18:51 "	

TestAmerica Seattle

Kato Duur Kate Haney, Project Manager

ENSR International - Seattl 1011 SW Klickitat Way, Suite 2 Seattle, WA 98134		Project Name: Project Number: Project Manager:			BNSF-)1140-2 Sarah A	Skykom 22-0100 Ibano		Report Created: 07/01/08 14:00						
Semivolatile P	etroleum Pro	ducts by]	NWTPH-D	x with Aci	d/Silica G	el Cle	an-up -	Labor	ratory	Quality	Cont	trol Re	sults	
				TestAmer	ica Seattle									
QC Batch: 8F25034	Water l	Preparation	n Method:	EPA 35200	C									
Analyte	Method	Result	MDL	* MRL	Units	Dil	Source Result	Spiko Amt	e % REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (8F25034-BLK2)								Ext	racted:	06/25/08 12	2:33			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x							06/26/08 17:29	τ
Lube Oil Range Hydrocarbons	"	ND	0.160	0.500										τ
Surrogate(s): 2-FBP Octacosane		Recovery:	95.1% 92.2%	Li	mits: 53-125% 68-125%	6 " 6 "							06/26/08 17:29 "	
LCS (8F25034-BS2)								Ext	racted:	06/25/08 12	2:33			
Diesel Range Hydrocarbons	NWTPH-Dx	1.63	0.0400	0.250	mg/l	1x		2.00	81.7%	(61-132)			06/26/08 17:58	
Surrogate(s): 2-FBP Octacosane		Recovery:	100% 92.6%	Li	mits: 53-125% 68-125%	6 " 6 "							06/26/08 17:58 "	
Matrix Spike (8F25034-MS2)				QC Source	: BRF0334-0	8		Ext	racted:	06/25/08 12	2:33			
Diesel Range Hydrocarbons	NWTPH-Dx	1.58	0.0377	0.236	mg/l	1x	ND	1.89	83.6%	(32-143)			06/26/08 18:27	
Surrogate(s): 2-FBP Octacosane		Recovery:	98.1% 88.3%	Li	mits: 53-125% 68-125%	6 " 6 "							06/26/08 18:27 "	
Matrix Spike Dup (8F25034-MS	D2)			QC Source	: BRF0334-0	8		Ext	racted:	06/25/08 12	2:33			
Diesel Range Hydrocarbons	NWTPH-Dx	1.56	0.0377	0.236	mg/l	1x	ND	1.89	82.9%	(32-143)	0.819	% (50)	06/26/08 18:56	

 Surrogate(s):
 2-FBP
 Recovery:
 96.9%
 Limits:
 53-125%
 "
 06/26/08 18:56

 Octacosane
 90.5%
 68-125%
 "
 "
 "

TestAmerica Seattle

Kato Duug Kate Haney, Project Manager

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-222-0100	Report Created:
Seattle, WA 98134	Project Manager:	Sarah Albano	07/01/08 14:00
Ν	lotes and Definiti	ons	

Report Sp	becif	ic Notes:
J	-	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
Q3	-	The chromatographic pattern is not consistent with diesel fuel.
U	-	Analyte included in the analysis but not detected.
Laborator	y Re	eporting Conventions:
DET	-	Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
ND	-	Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
NR/NA	-	Not Reported / Not Available
dry	-	Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
wet	-	Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
MRL	-	METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
MDL*	-	METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
Dil	-	Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
Reporting Limits	-	Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

Electronic- Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.SignatureApplication of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.
Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

wvd Kate Haney, Project Manager

	1			LA	BORATO	RY INFO	ORMAT	ON				· · · · ·			<u>r: B</u>	2F03	34		
BNSF	Laboratop	st An	RACA					Project Ma		LH	aner				SHIPME		ON		
RAILWAY	Address: 772	DNorth	rackt	ky 1	N, Sto 200 MAS 420-9249									Shipment Method: Hand deivered					
CHAIN OF CUSTODY	City/State/ZIP:	ate/ZIP: Bothell, WA 98011 Fax:										Tracking Number:							
BNSF PROJECT INFORMATION	Project State of	Origin:					C	ONSULT	ANT INFO	ORMATIO	N		Project Number: 01140 - 204						
BNSF Project Number:	Project City:	konish			Company:	EN	KP.	<u> </u>					Project Manager: Stave Howard						
BNSF Project Name: Sky KOMISh		Address: 1011 SW Klickstat Way, Ste 207										Email Schoward 6 ensr. accom, com							
BNSF Contact: Bruce Sheppard	BNSF Work Ord	TTO 00-	HOS		City/State/	ZIP: SQ	20+#	2,14	<u> 9</u>	8134	r		Phope:	66	Z 4 -9	349 20	624-283		
TURN AROUND TIME	D	ELIVERABLES		Other Del	liverables	7				METH	ODS FOR AN	ALYSIS							
1-day Rush 5- to 8-day Rush	BNSF St	andard (Levei II)						CH	601										
2-day Rush 🛛 Standard 10-Day	Levei (II		X	EDD Req	, Format?			\$%	31										
3-day Rush Other	Level IV			<u> </u>	ETE	<u> </u>	<u> </u>	Í x	শ্র										
SAM	PLE INFORM	ATION] Ţ	4-										
	Castoinom	Sample	e Collection		Filtered	Type (Comp/	Matrix	E	all a										
Sam ple identification	Containers	Date	Time	Sampler	Y/N	Grab)	1	Ž	Ň						co	MMENTS	LAB USE		
5-W-15-0608	4	6 23/08	1235		-N		W	\succ	\bowtie								01		
5-W-150-	4		1245		1	-		X	\times								02		
5-11-17-	4		1330					\bowtie	\mathbf{X}								03		
5-W-18-	4		1425	-				\Join	\mathbf{X}								04		
5-11-14 -	4		151D					\searrow	\mathbb{Z}								05		
5-W-16 -	4		1550					\bowtie	\geq						<u> </u>		06		
C = W = 19 = 1	4		1630					\bowtie	X							The sector	07		
S-W-ZD-	R		1715	-				\mathbf{X}	\mathbf{X}						Voluo	ra Sanspie	<u>60</u>		
· MW-500 - V	4	V	1745	1	1		V	$\mid \ge$	\sum								<u> </u>		
10														<u> </u>	<u> </u>				
11														_					
12									ļ										
13																			
14																			
15		1100		8	1														
Relinquished By: Abrill Mari Sobsane	Date/Time:	4/08.	Received By:	ß	ant	k)				Date/Fime	108 04	W S	$\mathcal{L}\mathcal{U} \rightarrow \mathcal{I}$	nd Specia Silica	I Analytica	Al Requirement	s:		
Relinquished By:	Date/Time:	4	Received By		2				<u></u>	Date/Time	: 				, ,	- 1			
Relinquished By:	Date/Time:		Received By:							Date/Time				- <u>-</u>		Inversion			
Received by Laboratory:	Date/Time:		Lab Remarks:								es No	Cust	oay seal No.:			BNSF COC N	.		

September 30, 2008

Halah Voges ENSR International - Seattle 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

RE: BNSF-Skykomish

Enclosed are the results of analyses for samples received by the laboratory on 09/24/08 09:20. The following list is a summary of the Work Orders contained in this report, generated on 09/30/08 19:17.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRI0381 Project BNSF-Skykomish ProjectNumber 01140-204-0340

TestAmerica Seattle

Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-0340 Halah Voges

Report Created: 09/30/08 19:17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
2A-W-10-0908	BRI0381-01	Water	09/22/08 16:55	09/24/08 09:20
2B-W-4-0908	BRI0381-02	Water	09/23/08 09:00	09/24/08 09:20
MW-39-0908	BRI0381-03	Water	09/23/08 09:45	09/24/08 09:20
2A-W-11-0908	BRI0381-04	Water	09/23/08 10:35	09/24/08 09:20
MW-500-0908	BRI0381-05	Water	09/23/08 10:50	09/24/08 09:20
1C-W-2-0908	BRI0381-06	Water	09/23/08 11:55	09/24/08 09:20
MW-38-0908	BRI0381-07	Water	09/23/08 12:35	09/24/08 09:20
5-W-4-0908	BRI0381-08	Water	09/23/08 13:15	09/24/08 09:20
2A-W-9-0908	BRI0381-09	Water	09/23/08 14:10	09/24/08 09:20
2A-W-90-0908	BRI0381-10	Water	09/23/08 14:20	09/24/08 09:20
MW-4-0908	BRI0381-11	Water	09/23/08 15:00	09/24/08 09:20
MW-3-0908	BRI0381-12	Water	09/23/08 15:50	09/24/08 09:20
1A-W-1-0908	BRI0381-13	Water	09/23/08 09:00	09/24/08 09:20
1A-W-3-0908	BRI0381-14	Water	09/23/08 09:50	09/24/08 09:20
1A-W-30-0908	BRI0381-15	Water	09/23/08 10:50	09/24/08 09:20
1A-W-4-0908	BRI0381-16	Water	09/23/08 10:52	09/24/08 09:20
1A-W-5-0908	BRI0381-17	Water	09/23/08 11:20	09/24/08 09:20
1C-W-1-0908	BRI0381-18	Water	09/23/08 13:15	09/24/08 09:20
1C-W-4-0908	BRI0381-19	Water	09/23/08 14:30	09/24/08 09:20
1B-W-3-0908	BRI0381-20	Water	09/23/08 15:46	09/24/08 09:20
1B-W-2-0908	BRI0381-21	Water	09/23/08 16:52	09/24/08 09:20
MW-35-0908	BRI0381-22	Water	09/23/08 17:56	09/24/08 09:20
MW-16-0908	BRI0381-23	Water	09/23/08 18:55	09/24/08 09:20

TestAmerica Seattle

And Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: **BNSF-Skykomish** 01140-204-0340 Halah Voges

R

Report Created: 09/30/08 19:17

Analytical Case Narrative TestAmerica - Seattle, WA

BRI0381

SAMPLE RECEIPT

The samples were received September 24th, 2008 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 6.0 degrees Celsius.

PREPARATIONS AND ANALYSIS

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

TestAmerica Seattle

hung

Kate Haney, Project Manager

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Halah Voges	09/30/08 19:17

Sem	ivolatile Petrol	eum Produ	i cts by N TestAm	WTPH erica Sea	I-Dx (w/o attle	Acid	/Silica G	el Clean-up)	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0381-01 (2A-W-10-0908)		W	ater		Sampl	ed: 09/2	22/08 16:55			
Diesel Range Hydrocarbons	NWTPH-Dx	0.227	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/26/08 22:02	
Lube Oil Range Hydrocarbons	"	0.153	0.0857	0.476	"	"	"	"		
Surrogate(s): 2-FBP			87.7%		53 - 125 %	"			"	
Octacosane			100%		68 - 125 %	"			"	
BRI0381-02 (2B-W-4-0908)		W	ater		Sampl	ed: 09/2	23/08 09:00			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/26/08 22:24	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			84.6%		53 - 125 %	"			"	
Octacosane			95.1%		68 - 125 %	"			"	
BRI0381-03 (MW-39-0908)		W	ater		Sampl	ed: 09/2	23/08 09:45			
Diesel Range Hydrocarbons	NWTPH-Dx	0.642	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/26/08 22:45	Q
Lube Oil Range Hydrocarbons	"	0.559	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			89.6%		53 - 125 %	"			"	
Octacosane			96.1%		68 - 125 %	"			"	
BRI0381-04 (2A-W-11-0908)		W	ater		Sampl	ed: 09/2	23/08 10:35			
Diesel Range Hydrocarbons	NWTPH-Dx	0.860	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/26/08 23:06	Q
Lube Oil Range Hydrocarbons	"	1.05	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			94.4%		53 - 125 %	"			"	
Octacosane			99.2%		68 - 125 %	"			"	
BRI0381-05 (MW-500-0908)		W	ater		Sampl	ed: 09/2	23/08 10:50			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/26/08 23:28	
Lube Oil Range Hydrocarbons	"	ND	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			83.9%		53 - 125 %	"			"	
Octacosane			96.4%		68 - 125 %	"			"	
BRI0381-06 (1C-W-2-0908)		W	ater		Sampl	ed: 09/2	23/08 11:55			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8126034	09/27/08 16:18	09/29/08 14:58	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			84.5%		53 - 125 %	"			"	
Octacosane			99.5%		68 - 125 %	"			"	

TestAmerica Seattle

und Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Halah Voges	09/30/08 19:17

A	Madaad	Derrelt	MDI 4	MDI	Units	D:1	Datah	Durana	Analyzed	Nadaa
Analyte	Method	Kesult	MDL*	WIKL	Sampl	Dil ed: 09/3	Batch	Prepared	Analyzed	Notes
BK10381-07 (MW-38-0908)			att1		Sampi		0102002	00/05/00 00 50	00/06/00 00 10	
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWIPH-Dx "	ND ND	0.0381 0.0857	0.238	mg/l	Ix "	8125025	09/25/08 08:52 "	09/26/08 23:49 "	
Surrogate(s): 2-FBP			79.8%		53 - 125 %	"			"	
Octacosane			93.3%		68 - 125 %	"			"	
BRI0381-08 (5-W-4-0908)		W	ater		Sampl	ed: 09/2	23/08 13:15			
Diesel Range Hydrocarbons	NWTPH-Dx	7.75	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/27/08 01:14	Q
Lube Oil Range Hydrocarbons	"	2.49	0.0849	0.472	"	"	"	"		Q
Surrogate(s): 2-FBP			106%		53 - 125 %	"			"	
Octacosane			105%		68 - 125 %	"			"	
BRI0381-09 (2A-W-9-0908)		W	ater		Sampl	ed: 09/2	23/08 14:10			
Diesel Range Hydrocarbons	NWTPH-Dx	0.323	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 01:36	Q
Lube Oil Range Hydrocarbons	"	0.147	0.0857	0.476	"	"	"	"		
Surrogate(s): 2-FBP			79.0%		53 - 125 %	"			"	
Octacosane			88.3%		68 - 125 %	"			"	
BRI0381-10 (2A-W-90-0908)		W	ater		Sampl	ed: 09/2	23/08 14:20			
Diesel Range Hydrocarbons	NWTPH-Dx	0.294	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 01:57	Q
Lube Oil Range Hydrocarbons	"	0.171	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			86.1%		53 - 125 %	"			"	
Octacosane			98.7%		68 - 125 %	"			"	
BRI0381-11 (MW-4-0908)		W	ater		Sampl	ed: 09/2	23/08 15:00			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 02:18	
Lube Oil Range Hydrocarbons	"	ND	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			79.6%		53 - 125 %	"			"	
Octacosane			93.4%		68 - 125 %	"			"	
BRI0381-12 (MW-3-0908)		W	ater		Sampl	ed: 09/2	23/08 15:50			
Diesel Range Hydrocarbons	NWTPH-Dx	0.102	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 02:40	
Lube Oil Range Hydrocarbons	"	0.143	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			83.9%		53 - 125 %	"			"	

TestAmerica Seattle

w

Octacosane

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

101%

68 - 125 %

"

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Halah Voges	09/30/08 19:17

Sem	ivolatile Petrol	eum Produ	i cts by N TestAm	WTPH erica Se	I-Dx (w/o attle	o Acid	/Silica G	el Clean-up)	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0381-13 (1A-W-1-0908)		W	ater		Sampl	led: 09/2	23/08 09:00			
Diesel Range Hydrocarbons	NWTPH-Dx	0.347	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 03:01	Q
Lube Oil Range Hydrocarbons	"	0.152	0.0857	0.476	"	"	"	"	"	J
Surrogate(s): 2-FBP			81.6%		53 - 125 %	"			"	
Octacosane			98.1%		68 - 125 %	"			"	
BRI0381-14 (1A-W-3-0908)		W	ater		Sampl	led: 09/2	23/08 09:50			
Diesel Range Hydrocarbons	NWTPH-Dx	0.191	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 03:23	J
Lube Oil Range Hydrocarbons	"	0.420	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			86.4%		53 - 125 %	"			"	
Octacosane			104%		68 - 125 %	"			"	
BRI0381-15 (1A-W-30-0908)		W	ater		Sampl	led: 09/2	23/08 10:50			
Diesel Range Hydrocarbons	NWTPH-Dx	0.0791	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/27/08 03:44	
Lube Oil Range Hydrocarbons	"	0.180	0.0849	0.472	"	"		"	"	
Surrogate(s): 2-FBP			82.9%		53 - 125 %	"			"	
Octacosane			102%		68 - 125 %	"			"	
BRI0381-16 (1A-W-4-0908)		W	ater		Sampl	ed: 09/2	23/08 10:52			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/27/08 04:06	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			80.2%		53 - 125 %	"			"	
Octacosane			92.4%		68 - 125 %	"			"	
BRI0381-17 (1A-W-5-0908)		W	ater		Sampl	led: 09/2	23/08 11:20			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/27/08 04:27	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			74.4%		53 - 125 %	"			"	
Octacosane			92.6%		68 - 125 %	"			"	
BRI0381-18 (1C-W-1-0908)		W	ater		Sampl	ed: 09/2	23/08 13:15			
Diesel Range Hydrocarbons	NWTPH-Dx	0.0550	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/27/08 05:53	j
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			79.1%		53 - 125 %	"			"	
Octacosane			96.3%		68 - 125 %	"			"	

TestAmerica Seattle

hung Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Halah Voges	09/30/08 19:17

Sem	ivolatile Petrol	eum Produ	icts by N TestAm	WTPH erica Se	I-Dx (w/c attle) Acid	/Silica G	el Clean-up)	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0381-19 (1C-W-4-0908)		W	ater		Sampl	led: 09/2	23/08 14:30			
Diesel Range Hydrocarbons	NWTPH-Dx	0.373	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/27/08 06:14	Q
Lube Oil Range Hydrocarbons	"	0.105	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			72.6%		53 - 125 %	"			"	
Octacosane			97.2%		68 - 125 %	"			"	
BRI0381-20 (1B-W-3-0908)		W	ater		Sampl	led: 09/2	23/08 15:46			
Diesel Range Hydrocarbons	NWTPH-Dx	0.117	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 06:36	J
Lube Oil Range Hydrocarbons	"	ND	0.0857	0.476	"		"	"	"	
Surrogate(s): 2-FBP			77.9%		53 - 125 %	"			"	
Octacosane			92.9%		68 - 125 %	"			"	
BRI0381-21 (1B-W-2-0908)		w	ater		Sampl	led: 09/2	23/08 16:52			
Diesel Range Hydrocarbons	NWTPH-Dx	0.507	0.0388	0.243	mg/l	1x	8I26034	09/27/08 16:18	09/29/08 15:21	Q
Lube Oil Range Hydrocarbons	"	0.170	0.0874	0.485	"	"	"	"	"	
Surrogate(s): 2-FBP			94.1%		53 - 125 %	"			"	
Octacosane			108%		68 - 125 %	"			"	
BRI0381-22 (MW-35-0908)		W	ater		Sampl	led: 09/2	23/08 17:56			
Diesel Range Hydrocarbons	NWTPH-Dx	0.305	0.0381	0.238	mg/l	1x	8126034	09/27/08 16:18	09/29/08 15:44	Q3
Lube Oil Range Hydrocarbons	"	0.187	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			79.7%		53 - 125 %	"			"	
Octacosane			92.8%		68 - 125 %	"			"	
BRI0381-23 (MW-16-0908)		W	ater		Sampl	led: 09/2	23/08 18:55			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8126034	09/27/08 16:18	09/29/08 16:08	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			85.7%		53 - 125 %	"			"	
Octocosano			00.0%		68 - 125 %	"			"	

TestAmerica Seattle

hund Kate Haney, Project Manager

Octacosane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

99.0%

68 - 125 %

							DNCE	<u></u>							
ENSR Inter	national - Seattle				Project Nan	ne:	BNSF-	Skykomi	sh					D C	,
1011 SW Kh	ckitat Way, Suite 20	1			Project Nun	nber:	01140-2	.04-0340						Report Create	d:
Seattle, WA	98134				Project Mar	nager:	Halah V	oges						09/30/08 19:	17
	Semivolatile Petr	oleum Pro	ducts by N	WTPH-Dx	(w/o Acid TestAmeri	l/Silica G ca Seattle	Gel Clea	ın-up) -	Labor	atory	Quality	y Cont	trol Res	sults	
QC Batch	: 8125025	Water F	Preparation	Method: I	EPA 3520C	1									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8125025	5-BLK1)								Extr	acted:	09/25/08 08	8:52			
Diesel Range Hydroca	arbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x							09/26/08 20:37	
Lube Oil Range Hydro	ocarbons	"	ND	0.0900	0.500		"								
Surrogate(s):	2-FBP Octacosane		Recovery:	77.5% 94.5%	Lin	nits: 53-1259 68-125	% " % "							09/26/08 20:37 "	
LCS (8125025-	BS1)								Extr	acted:	09/25/08 08	3:52			
Diesel Range Hydroca	arbons	NWTPH-Dx	1.72	0.0400	0.250	mg/l	1x		2.00	85.9%	(61-132)			09/26/08 20:59	
Surrogate(s):	2-FBP		Recovery:	89.2%	Lin	nits: 53-1259	% "							09/26/08 20:59	
	Octacosane			95.9%		68-125	% "							"	
Matrix Spike (8	8I25025-MS1)				QC Source:	BRI0381-1	2		Extr	acted:	09/25/08 08	8:52			
Diesel Range Hydroca	arbons	NWTPH-Dx	1.73	0.0377	0.236	mg/l	1x	0.102	1.89	86.5%	(32-143)			09/26/08 21:20	
Surrogate(s):	2-FBP		Recovery:	84.9%	Lin	nits: 53-1259	% "							09/26/08 21:20	
	Octacosane			95.6%		68-125	% "							"	
Matrix Spike Du	up (8125025-MSD1				QC Source:	BRI0381-1	2		Extr	acted:	09/25/08 08	3:52			
Diesel Range Hydroca	arbons	NWTPH-Dx	1.67	0.0377	0.236	mg/l	1x	0.102	1.89	83.0%	(32-143)	3.93%	6 (40)	09/26/08 21:41	
Surrogate(s):	2-FBP		Recovery:	89.6%	Lin	nits: 53-1259	% "							09/26/08 21:41	
	Octacosane			98.4%		68-125	% "							"	
QC Batch	: 8126034	Water I	Preparation	Method: 1	EPA 3520C	!									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8126034	I-BLK1)								Extr	acted:	09/26/08 16	5:18			
Diesel Range Hydroca	arbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x							09/29/08 13:48	
Lube Oil Range Hydro	ocarbons	"	ND	0.0900	0.500	"	"							"	
Surrogate(s):	2-FBP Octacosane		Recovery:	88.8% 102%	Lin	nits: 53-1259 68-125	% "							09/29/08 13:48 "	
LCS (8126034-)	BS1)								Extr	acted:	09/26/08 16	5:18			
Diesel Range Hydroca	arbons	NWTPH-Dx	1.76	0.0400	0.250	mg/l	1x		2.00	88.2%	(61-132)			09/29/08 14:11	
Surrogate(s):	2-FBP		Recovery:	103%	Lin	- nits: 53-1259	% "				. /			09/29/08 14:11	

TestAmerica Seattle

und

Octacosane

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

"

105%

68-125% "

Report Created:

ENSR International - Seattle BNSF-Skykomish Project Name: 1011 SW Klickitat Way, Suite 207 Project Number: 01140-204-0340 Seattle, WA 98134 Project Manager: Halah Voges 09/30/08 19:17

Semivolatile I	Petroleum Proc	lucts by N	WTPH-Dx	(w/o Acid	l/Silica Ge	l Clea	an-up) -	Labo	ratory	Quality	Cont	rol Res	ults	
	TestAmerica Seattle													
QC Batch: 8I26034	Water P	reparation	Method: E	PA 3520C										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	∾ REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS Dup (8I26034-BSD1)								Ext	racted:	09/26/08 16	:18			
Diesel Range Hydrocarbons	NWTPH-Dx	1.74	0.0400	0.250	mg/l	1x		2.00	86.8%	(61-132)	1.53%	(40)	09/29/08 14:35	
Surrogate(s): 2-FBP		Recovery:	101%	Lin	nits: 53-125%	"							09/29/08 14:35	
Octacosane			95.9%		68-125%	"							"	

TestAmerica Seattle

hung

Kate Haney, Project Manager

ENSR In	ternat	tional - Seattle Project Name:	BNSF-Skykomish	
1011 SW	Klicki	tat Way, Suite 207 Project Number:	01140-204-0340	Report Created:
Seattle, V	VA 98	134 Project Manager:	Halah Voges	09/30/08 19:17
		Notes and Defin	nitions	
<u>Report S</u>	pecific	c Notes:		
J	-	Estimated value. Analyte detected at a level less than the Reporting I (MDL). The user of this data should be aware that this data is of limit	imit (RL) and greater than or equal to the ed reliability.	e Method Detection Limit
Q3	-	The chromatographic pattern is not consistent with diesel fuel.		
Q4	-	The hydrocarbons present are a complex mixture of diesel range and l	neavy oil range organics.	

Laboratory Reporting Conventions:

DET	_	Analyte DETECTED at or above the Penor	ting Limit (Juglitative Anglyses only
DET	-	Analyte DETECTED at or above the Repor	ting Limit. C	Juantative Analyses only.

- ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
- NR/NA _ Not Reported / Not Available
- dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
- wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
- RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic- Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.SignatureApplication of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.
Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

		U	BORATORY INF	ORMATION		LAB WORK ORD	ER: BRIU38	1
BNSF	Laboratoou Test Ar	norica		Project Manager	, ,			ON
RAILWAY	Address 1720 Nor	th Crock Pl	WV Sto	400 Phone: 4	25) 420 -920	D Shipment Method:	Hand del	ivered
CHAIN OF CUSTODY	City/State/ZIE	WA 9801)	Fax:		Tracking Number:		
BNSF PROJECT INFORMATION	Project State of Origin:			CONSULTANT	INFORMATION	Project Number:	01140-204	-0340
NSF Project Number:	Project City:	Nrh	Company:	INSR		Project Manager:	Halah Va	205
NSF Project Name: Sky komish			Address: 10	11 SWKIICK	itot Way, Ster	い子 Email:		
INSF Contact: Bruce, Shepper Co	BNSF Work Order No TTOIE	10-H08	City/State/ZIP:		,	(Z06) 624	-9349 /206	674-7839
TURNAROUND TIME	DELIVERABLES	Other D	eliverables?		METHODS FOR ANA	LYSIS		
1-day Rush 5- to 8-day Rush	BNSF Standard (Level II)			$-\Box$				
2-day Rush Standard 10-Day			q, Format?	×\$				
3-day Rush Other	Level IV	RET	IC-EQU	<u>v</u> j				
	SAMPLE INFORMATION			Ϋ́ΞΫ́				
	San	ple Collection	Filtered	Eg				
Sample identification	Containers Date	Time Sample	r Y/N Grab)				COMMENTS	LAB USE
74 - W - 10 - 09	081 9hz/08	1655 FTYG	N	WX				BRID 381-01
2B - W - 4 -	2 9/23/05	1900 DWK	1					/ -02
mw - 39 -	Z	09451						-03
2A-W-11 -	Z	1035						-04
MW-57912 -	2	1050						-05
1C-W-Z-	2	1155						-06
MW-38-	7	1235						-07
5-1/-4-	Z	1315						-08
20-1/-9-	2	1410						- 09
$\sim - W - 9D \rightarrow$	2	1420		$\mid\mid\mid$				_10
· MW-A -	Z	1500						-11
MM - 3 -	6	1550					Extra sample	-12
A-b = A-b	7	0900 FM						-13
1A-W-3-	Z	1950 1						1/ -14
$\frac{1}{10} = 10 - 30 - 10$	VZV	1050	4	LX				V -15
Religninghed By:	Date Time: 9:24	Received by:	ample	· • · · · · · · · · · · · · · · · · · ·	Date/Tiple: 9/24/089:20	Comments and Specia	Analytical Requirement	s: Clark -
Relinquished By:	Date/Time:	Received By:			Date Time		jii ca yet	rump
Relinquished By:	Date/Time:	Received By:			Date/Time:	1 4.0 000	0	
Received by Laboratory:	Date/Time:	Lab Remarks:			Lab: Custody Intact?	Custody Seal No.:	BNSF COC NO):
								Rev 10/02/0

ORIGINAL - RETURN TO LABORATORY WITH SAMPLES

				LA	BORATO	ORY INFO	ORMATI	ON							K ORDE	e: BRI	038	
BNSF	Laboratory:	and A	rodi		<u></u>			Project Mana	iger:							SHIPMENT I	NFORMATI	ON
RAIIWAY	Address:	ZO NAC	th (ro	al.	d.	, d	41)	Phone	25	47	0-9	200	> ^{sh}	nipment	Method:	Han	1 de	Nored
CHAIN OF CLISTORY	City/State/ZIP:	othe 11	h h lA	98	011	1		Fax:			«		Tra	acking N	lumber:			
BNSF PROJECT INFORMATION	Project State of	Origin:	<u>/ <u>vv</u>//</u>				C	NSULTAN	NT INFO	ORMATIC	N		Pro	oject Nun	iber:	1140-	-204	0340
BNSF Project Number:	Project City:	clark or	nisl		Company:	15	ENS	R					Pro	oject Mar	ager:	Talah	Vage	5
BNSF Project Name: SILVE and C	·				Address:	01)	らん	Klid	(H	at We	n. 9	eZø	→ ^{En}	nail:			ð	
BNSF Contact: RCIAC & Shanny	BNSF Work Or	ter No.:	N - H	80	City/State/	ZIP:	sttle	, hl	40	7817	JAS -		Ph	torfe:	\$) 6 2	A-934	6 Fax	6) 67.4 - 7.839
TURNAROUND TIME	C	ELIVERABLES		Other De	iverables	?		/	,	METH	IODS FOR	ANALY	sis	<u> </u>				
1-day Rush 5- to 8-day Rush	BNSF S	tandard (Level II)																
2-day Rush 🕅 Standard 10-Day	🗌 Levei III			EDD Req	, Format'	,	_	X										
3-day Rush Other	_ Level IV	,		RE	FR.	- ER	<u>415</u>	193										
s	AMPLE INFORM	ATION						E J										
	Contrinom	Samp	le Collection		Filtered	Type (Comp/	Matrix	Fa										
Sample identification	Containers	Date	Time	Sampler	Y/N	Grab)	IVIAUTA	ZZ								сомм	ENTS	LAB USE
A - W - 4 - 090	18 Z	9/23/08	1052	Fm	N		W	\searrow										-16
1A-W-5 - 1	Z	1	1120	j	1													-17
1C-W-1 -	Z		1315	†				\sim										-18
IC-W-4-	Z		1430					\searrow										-19
1R-1N-3 -	2		1546					\sum										-+20
· 18-W-7 -	2		1652					\times										-21
M4-35 -	2		1756	4				\searrow										-22
· MW-16 - 1	<u> </u>	V	1655	05				[X]										-23
9																		
10										<u> </u>								
11						<u> </u>				<u> </u>								ļ
12																		
13										<u> </u>								
14				ļ						<u> </u>								
15		1		b			$\downarrow \downarrow$							<u>.</u>	-			<u> </u>
Reliantia José By:	Date/Pime:	10 9:20	Received By:	athy	lian	ht				Date/Tim	108 9	20	commen SC	its and • こり	Special	Analytical R	equirement	Cleanup
Relinquished By:	Date/Time:		Received By:	/						Dall6/Tim	e:		-				J .	- T
Relinquished By:	Date/Time:		Received By:							Date/Tim	e:							
Received by Laboratory:	Date/Time		Lab Remarks:							Lab: Cust	iody Intact? Yes	vo C	Justody Sea	al No.:			BNSF COC N	0:

τΔΤ·	Paperwork	to PM – Da	ate:Tin	ne:		Non-Co	nformances	?
Page Time & Initials:	·					C	ircle(Y/or I	N
	·····					(If Y, se	e other side	e)
	TEST AMERICA	SAMPLE	RECEIPT C	HECKLIST	-		7 1 1 2 -	
Received By:	Logged-in By:	Unpack	ed/Labeled B	y: Co	oler ID:	373,	307, 374,	, 303,
(applies to temp at receipt)	- Alail	a di	huld	Mork Orde	r No	326, 3	2,9	309
Date: 9/ 7	Date: $\frac{1}{124}$	Date/	<u> </u>	Client:		200	<u>) 4</u>	
Time:		lime: <u>/</u>	Fr	Broject:	••••••			
Initials:	Initials: M	Initials			<u></u>	······································		
Container Type:	<u>co</u>	C Seals:		Packing Ma	aterial		<u>:</u>	
Cooler	Ship Contain	er	Sign By	Bubb	le Bags		Styrofoam	
Box	On Bottles	/	Date	Foarr	n Packs			
None/Other		None		None	/Other	<u></u>		
Refrigerant:				Received \	/ia: Bill#			
Gel Ice Pack				Fed B	Ex 🖊	Client		
Loose Ice				UPS		_ TA Cou	rier	
None/Other				DHL		_ Mid Va	lley	
				Senv	'oy	TDP		
				GS		Other		-
BP, OPLC,ARCO-Ter (initial/date/time):	nperature monitoring e	very 15 min	utes:		5.9, 4.	4	U	
Comments:								
Sample Containers:								
intact?	() or N	N	Aetals Preserv	ed?	Y or No	NA		
Provided by TA?	Ø or N	(lient QAPP Pi	reserved?	Y or N c	or A		
Correct Type?	(or N	<i>A</i>	Adequate Volui	me? (Dor N			
#Containers match C	0C? Øor N	V	Vater VOAs: H	leadspace?	Y or No	NA2		
IDs/time/date match (COC? Y or N	(Comments:	<u></u>				
Hold Times in hold?	Ø or N							
PROJECT MANAGE	MENT			,				
is the Chain of Custo	dy complete?			Y or N If	N, circle the	e items that	were incomple	ete
Comments, Problems								
								_
Total access set up? Has client been contacted	regarding.non-conformances	s?		Y or N Y cr N	lf Y,/	(_
PM Initials:	Date:	Time:	. <u></u>		Dat	e Time		

NOTIFICATION OF DISCREPANCY

DA	ТЕ: <u>9/14/08</u> ТІМЕ: 1840 РМ: <u>К.Н.</u> SC INITIALS: <u>FL</u>
Ru	sh/Short Hold?
	Project Not Set Up in ELM New Client COC Received ON HOLD Analysis Requested on COC – Not Listed for Project in ELM
	PM To Add Analysis:
	Received Extra Sample(s) Not Listed on COC:
Ø	Sample Description(s) or Date/Time Sampled Do Not Match COC: <u>Sample container has IA-w-5 has 1130 for time, but (OC has 1120. Logged-in</u> per (OC.
	Improper Preservative For method:
	Temperature Outside recommended range (4°C±2°C): Received on-ice within 4 hours of collection, temperature between ambient to 2°C acceptable. Other:
PF	OJECT MANAGER RESOLUTION: (Date & Time when returned to SC)
A	oproval By: Date: Time:

October 08, 2008

Halah Voges ENSR International - Seattle 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

RE: BNSF-Skykomish Remedial Design Investigation

Enclosed are the results of analyses for samples received by the laboratory on 09/24/08 09:20. The following list is a summary of the Work Orders contained in this report, generated on 10/08/08 12:24.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRI0382 Project BNSF-Skykomish Remedial D ProjectNumber 01140-204-0340

TestAmerica Seattle

Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Remedial Design Investigation01140-204-0340Report Created:Halah Voges10/08/08 12:24

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
5-W-20-0908	BRI0382-01	Water	09/23/08 09:25	09/24/08 09:20
5-W-14-0908	BRI0382-02	Water	09/23/08 10:25	09/24/08 09:20
5-W-17-0908	BRI0382-03	Water	09/23/08 11:40	09/24/08 09:20
5-W-18-0908	BRI0382-04	Water	09/23/08 12:50	09/24/08 09:20
5-W-19-0908	BRI0382-05	Water	09/23/08 14:35	09/24/08 09:20
5-W-15-0908	BRI0382-06	Water	09/23/08 16:40	09/24/08 09:20
5-W-150-0908	BRI0382-07	Water	09/23/08 16:45	09/24/08 09:20
5-W-16-0908	BRI0382-08	Water	09/23/08 18:00	09/24/08 09:20

TestAmerica Seattle

And

Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation 01140-204-0340

Halah Voges

Report Created: 10/08/08 12:24

Analytical Case Narrative TestAmerica - Seattle, WA

BRI0382

SAMPLE RECEIPT

The samples were received September 24th, 2008 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 6.0 degrees Celsius.

PREPARATIONS AND ANALYSIS

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

TestAmerica Seattle

hung

Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation01140-204-0340Report Created:Halah Voges10/08/08 12:24

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica Seattle Method MRL Units Analyzed Analyte Result MDL* Dil Batch Prepared Notes BRI0382-01RE1 (5-W-20-0908) Water Sampled: 09/23/08 09:25 09/29/08 11:59 Lube Oil Range Hydrocarbons NWTPH-Dx 0.139 0.0849 0.472 mg/l 1x 8129034 09/30/08 20:48 J " 62.5% 53 - 125 % Surrogate(s): 2-FBP 84.3% 68 - 125 % Octacosane Water Sampled: 09/23/08 09:25 BRI0382-01RE2 (5-W-20-0908) 09/25/08 08:57 NWTPH-Dx 0.305 0.0377 0.236 mg/l 8125027 10/01/08 08:48 Q3 **Diesel Range Hydrocarbons** 1x 72.6% 53 - 125 % " " Surrogate(s): 2-FBP 98.0% 68 - 125 % " ,, Octacosane BRI0382-02RE1 (5-W-14-0908) Water Sampled: 09/23/08 10:25 Lube Oil Range Hydrocarbons NWTPH-Dx ND 0.0849 0 472 mg/l 1x 8129034 09/29/08 11:59 09/30/08 21.10 ,, " Surrogate(s): 2-FBP 66.8% 53 - 125 % " 68 - 125 % Octacosane 84.9% Water Sampled: 09/23/08 10:25 BRI0382-02RE2 (5-W-14-0908) NWTPH-Dx ND 0.0377 0.236 1x 8125027 09/25/08 08:57 10/01/08 09:12 Diesel Range Hydrocarbons mg/l " " Surrogate(s): 2-FBP 79.4% 53 - 125 % " 98.7% 68 - 125 % Octacosane

BRI0382-03RE1 (5-W-17-0908)			Water			Sample	d: 09/23	3/08 11:40			
Lube Oil Range Hy	drocarbons	NWTPH-Dx	ND	0.0849	0.472	mg/l	1x	8129034	09/29/08 11:59	09/30/08 21:32	
Surrogate(s):	2-FBP			66.2%		53 - 125 %	"			"	
	Octacosane			83.6%		68 - 125 %	"			"	
						6 1	1 00/2	2/00 11 40			
BRI0382-03RE2	(5-W-17-0908)		Wat	er		Sample	d: 09/2.	3/08 11:40			
D: 10 II 1	,	NUTRIL D	ND	0.0377	0.000	4		0105007	00/05/00 00 57	10/01/00 00 27	

Diesel Range Hydro	carbons	NWIPH-DX	ND	0.03//	0.236	mg/I	IX	8125027	09/25/08 08:57	10/01/08 09:36	
Surrogate(s):	2-FBP			80.3%		53 - 125 %	"			"	
	Octacosane			99.3%		68 - 125 %	"			"	
BR10382-04RF1	(5-W-18-0908)		Wat	ter		Sample	d: 09/23	3/08 12:50			

DK10382-04KE1 (5-W-18-0908)			Water Sampled: 07/25/00 12:50								
Lube Oil Range H	ydrocarbons	NWTPH-Dx	0.197	0.0849	0.472	mg/l	1x	8129034	09/29/08 11:59	09/30/08 21:54	J
Surrogate(s):	2-FBP			66.8%		53 - 125 %	"			"	
	Octacosane			81.9%		68 - 125 %	"			"	

TestAmerica Seattle

Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation01140-204-0340Report Created:Halah Voges10/08/08 12:24

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica Seattle

				1050/111		attic					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0382-04RE2	(5-W-18-0908)		W	ater		Sampl	ed: 09/2	23/08 12:50			
Diesel Range Hydro	ocarbons	NWTPH-Dx	0.342	0.0377	0.236	mg/l	1x	8125027	09/25/08 08:57	10/01/08 10:00	Q3
Surrogate(s):	2-FBP			81.3%		53 - 125 %	"			"	
0	Octacosane			100%		68 - 125 %	"			"	
BRI0382-05RE1	(5-W-19-0908)		W	ater		Sampl	ed: 09/2	23/08 14:35			
Lube Oil Range Hyd	drocarbons	NWTPH-Dx	ND	0.0849	0.472	mg/l	1x	8129034	09/29/08 11:59	09/30/08 22:17	
Surrogate(s):	2-FBP			63.5%		53 - 125 %	"			"	
	Octacosane			79.1%		68 - 125 %	"			"	
BRI0382-05RE2	(5-W-19-0908)		W	ater		Sampl	ed: 09/2	23/08 14:35			
Diesel Range Hydro	ocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8125027	09/25/08 08:57	10/01/08 10:38	
Surrogate(s):	2-FBP			70.4%		53 - 125 %	"			"	
0 ()	Octacosane			92.8%		68 - 125 %	"			"	
BRI0382-06RE1	0382-06RE1 (5-W-15-0908)		W	ater		Sampl	ed: 09/2	23/08 16:40			
Lube Oil Range Hydrocarbons		NWTPH-Dx	0.104	0.0849	0.472	mg/l	1x	8129034	09/29/08 11:59	09/30/08 22:39	J
Surrogate(s):	2-FBP			68.3%		53 - 125 %	"			"	
	Octacosane			83.7%		68 - 125 %	"			"	
BRI0382-06RE2	(5-W-15-0908)		W	ater		Sampl	ed: 09/2	23/08 16:40			
Diesel Range Hydr	ocarbons	NWTPH-Dx	0.272	0.0377	0.236	mg/l	1x	8125027	09/25/08 08:57	10/01/08 11:06	Q12
Surrogate(s):	2-FBP			76.9%		53 - 125 %	"			"	
0.07	Octacosane			101%		68 - 125 %	"			"	
BRI0382-07RE1	(5-W-150-0908)		W	ater		Sampl	ed: 09/2	23/08 16:45			
Lube Oil Range Hy	drocarbons	NWTPH-Dx	0.127	0.0857	0.476	mg/l	1x	8129034	09/29/08 11:59	10/01/08 00:09	J
Surrogate(s):	2-FBP			67.2%		53 - 125 %	"			"	
	Octacosane			80.5%		68 - 125 %	"			"	
BRI0382-07RE2	(5-W-150-0908)		W	ater		Sampl	ed: 09/2	23/08 16:45			
Diesel Range Hydr	ocarbons	NWTPH-Dx	0.347	0.0377	0.236	mg/l	1x	8125027	09/25/08 08:57	10/01/08 11:58	Q12
Surrogate(s):	2-FBP			75.7%		53 - 125 %	"			"	
6 (9)	Octacosane			101%		68 - 125 %	"			"	

TestAmerica Seattle

lung Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation 01140-204-0340 Report Created: Halah Voges 10/08/08 12:24

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica Seattle

				ItstAlli							
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0382-08RE1	(5-W-16-0908)		Wa	ter		Sample	ed: 09/2	23/08 18:00			
Lube Oil Range Hyc	Irocarbons	NWTPH-Dx	ND	0.0849	0.472	mg/l	1x	8129034	09/29/08 11:59	10/01/08 00:31	
Surrogate(s):	2-FBP			60.9%		53 - 125 %	"			"	
	Octacosane			79.6%		68 - 125 %	"			"	
BRI0382-08RE2	(5-W-16-0908)		Wa	ter		Sample	ed: 09/2	23/08 18:00			
Diesel Range Hydrocarbons		NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8125027	09/25/08 08:57	10/01/08 12:26	
Surrogate(s):	2-FBP			67.1%		53 - 125 %	"			"	
	Octacosane			93.2%		68 - 125 %	"			"	

TestAmerica Seattle

und

Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation 01140-204-0340 Report Created: Halah Voges

10/08/08 12:24

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

				TestAm	erica Sea	attle					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0382-01RE1	(5-W-20-0908)		Wa	ater		Sampl	ed: 09/2	23/08 09:25			
Diesel Range (SGC	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	09/30/08 20:48	
Lube Oil Range (SC	GCU)	"	ND	0.151	0.472	"	"	"	"	"	C
Surrogate(s):	2-FBP (SGCU)			74.0%		53 - 125 %	"			"	
	Octacosane (SGCU)			99.3%		68 - 125 %	"			"	
BRI0382-02RE1	(5-W-14-0908)		Wa	ater		Sampl	ed: 09/2	23/08 10:25			
Diesel Range (SGC	SU)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	09/30/08 21:10	
Lube Oil Range (SO	GCU)	"	ND	0.151	0.472	"	"	"	"	"	C
Surrogate(s):	2-FBP (SGCU)			73.6%		53 - 125 %	"			"	
	Octacosane (SGCU)			91.7%		68 - 125 %	"			"	
BRI0382-03RE1	(5-W-17-0908)		Wa	ater		Sampl	ed: 09/2	23/08 11:40			
Diesel Range (SGC	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	09/30/08 21:32	
Lube Oil Range (SC	GCU)	"	ND	0.151	0.472		"	"	"	"	C
Surrogate(s):	2-FBP (SGCU)			74.9%		53 - 125 %	"			"	
	Octacosane (SGCU)			93.6%		68 - 125 %	"			"	
BRI0382-04RE1	(5-W-18-0908)		Wa	ater		Sampl	ed: 09/2	23/08 12:50			
Diesel Range (SGC	CU)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	09/30/08 21:54	
Lube Oil Range (SC	GCU)	"	ND	0.151	0.472	"	"	"	"	"	C
Surrogate(s):	2-FBP (SGCU)			73.1%		53 - 125 %	"			"	
0 ()	Octacosane (SGCU)			90.6%		68 - 125 %	"			"	
BRI0382-05RE1	(5-W-19-0908)		Wa	ater		Sampl	ed: 09/2	23/08 14:35			
Diesel Range (SGC	CU)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	09/30/08 22:17	
Lube Oil Range (SC	GCU)		ND	0.151	0.472	"	"	"	"	"	C
Surrogate(s):	2-FBP (SGCU)			75.9%		53 - 125 %	"			"	
	Octacosane (SGCU)			93.6%		68 - 125 %	"			"	
BRI0382-06RE1	(5-W-15-0908)		Wa	ater		Sampl	ed: 09/2	23/08 16:40			
Diesel Range (SGC	CU)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	09/30/08 22:39	
Lube Oil Range (SC	GCU)		ND	0.151	0.472	"	"	"			C
Surrogate(s):	2-FBP (SGCU)			75.4%		53 - 125 %	"			"	
0 ()	Octacosane (SGCU)			91.9%		68 - 125 %	"			"	

TestAmerica Seattle

w

Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation01140-204-0340Report Created:Halah Voges10/08/08 12:24

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up TestAmerica Seattle

				10000 1111							
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0382-07RE1	(5-W-150-0908)		Wa	iter		Sampl	ed: 09/2	23/08 16:45			
Diesel Range (SGC	U)	NWTPH-Dx	ND	0.0381	0.238	mg/l	1x	8129034	09/29/08 11:59	10/01/08 00:09	
Lube Oil Range (SO	GCU)		ND	0.152	0.476	"	"	"	"	"	С
Surrogate(s):	2-FBP (SGCU)			75.0%		53 - 125 %	"			"	
	Octacosane (SGCU)			91.9%		68 - 125 %	"			"	
BRI0382-08RE1	(5-W-16-0908)		Wa	iter		Sampl	ed: 09/2	23/08 18:00			
Diesel Range (SGC	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	10/01/08 00:31	
Lube Oil Range (SC	GCU)	"	ND	0.151	0.472		"	"	"		С
Surrogate(s):	2-FBP (SGCU)			69.6%		53 - 125 %	"			"	

68 - 125 %

"

90.9%

Octacosane (SGCU)

TestAmerica Seattle

und

Kate Haney, Project Manager

ENSR International - Seatt		Project Name: BNSF-Skykomis			nish Remedial Design Investigation									
1011 SW Klickitat Way, Suite	207			Project Nur	nber: (01140-2	204-0340			5		-	Report Creat	ed:
Seattle, WA 98134				Project Mar	nager:]	Halah V	/oges						10/08/08 12	:24
Somivolatila P	Datralaum Dra	ducts by N	лана п	x (xy/a A ai	d/Silico C	al Cla	an un)	Labor	otors		Con	tral Day	mlte	
Semivolatite i	etroleum 110	ducts by 1	(WIII-D	TestAmeri	ica Seattle		an-up) -	Labor	atory	Quant	y COII	u oi Kes	suits	
QC Batch: 8129034	Water	Preparation	n Method:	EPA 35200	2									
Analyte	Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (8I29034-BLK1)								Extr	acted:	09/29/08 1	1:59			
Lube Oil Range Hydrocarbons	NWTPH-Dx	0.119	0.0900	0.500	mg/l	1x							09/30/08 19:18	
Surrogate(s): 2-FBP Octacosane		Recovery:	68.3% 83.3%	Liı	mits: 53-125% 68-125%	6 " % "							09/30/08 19:18 "	
Blank (8129034-BLK3)								Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	0.0830	0.0400	0.250	mg/l	1x							10/01/08 07:13	
Surrogate(s): 2-FBP Octacosane		Recovery:	82.1% 97.7%	Liı	mits: 53-125% 68-125%	6 " % "							10/01/08 07:13 "	
Blank (8129034-BLK4)								Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x							10/01/08 08:45	
Surrogate(s): 2-FBP Octacosane		Recovery:	87.0% 113%	Lin	mits: 53-125% 68-1259	6 " 76 "							10/01/08 14:19 "	
LCS (8129034-BS1)								Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	1.49	0.0400	0.250	mg/l	1x		2.00	74.4%	(61-132)			09/30/08 19:41	
Surrogate(s): 2-FBP Octacosane		Recovery:	71.8% 85.7%	Lin	mits: 53-125% 68-1259	6 " % "							09/30/08 19:41 "	
LCS (8129034-BS3)								Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	1.78	0.0400	0.250	mg/l	1x		2.00	88.9%	(61-132)			10/01/08 07:36	
Surrogate(s): 2-FBP Octacosane		Recovery:	88.1% 99.6%	Lii	mits: 53-125% 68-1259	6 " % "							10/01/08 07:36 "	
LCS (8129034-BS4)								Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	1.95	0.0400	0.250	mg/l	1x		2.00	97.6%	(61-132)			10/01/08 14:47	
Surrogate(s): 2-FBP Octacosane		Recovery:	85.8% 107%	Liı	mits: 53-125% 68-125%	6 " % "							10/01/08 14:47 "	
Matrix Spike (8129034-MS1)				QC Source	: BRI0382-0	5RE1		Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	1.38	0.0377	0.236	mg/l	1x	ND	1.89	73.3%	(32-143)			09/30/08 20:03	
Surrogate(s): 2-FBP Octacosane		Recovery:	68.6% 84.7%	Lin	mits: 53-125% 68-1259	6 " % "							09/30/08 20:03 "	
Matrix Spike (8129034-MS3)				QC Source	: BRI0382-0	5RE1		Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	1.62	0.0377	0.236	mg/l	1x	ND	1.89	85.8%	(32-143)			10/01/08 08:00	
Surrogate(s): 2-FBP		Recovery:	80.3%	Lii	mits: 53-125%	ó "							10/01/08 08:00	

TestAmerica Seattle

Kate Haney, Project Manager

lund

Octacosane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

"

96.2%

68-125% "

ENSR International - Seattle Project Name: BNSF-Skykomish Remedial Design Investigation									n						
1011 SW K	lickitat Way, Suite 20	7			Project Num	ber:	01140-2	04-0340						Report Create	ed:
Seattle, WA	98134				Project Man	ager:	Halah V	oges						10/08/08 12	24
	Semivolatile Petr	roleum Pro	ducts by N	NWTPH-Dx	(w/o Acid TestAmeric	/ Silica (ca Seattle	Gel Clea	ın-up) -	Labor	atory	Quality	y Con	trol Re	sults	
QC Batc	h: 8129034	Water 1	Preparation	n Method: 1	EPA 3520C										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Matrix Spike	(8I29034-MS4)				QC Source:	BRI0382-	05RE1		Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrod	carbons	NWTPH-Dx	1.91	0.0377	0.236	mg/l	1x	ND	1.89	101%	(32-143)			10/01/08 15:16	
Surrogate(s):	2-FBP		Recovery:	86.5%	Lim	its: 53-125	% "							10/01/08 15:16	
	Octacosane			110%		68-125	5% "							"	
Matrix Spike D	0up (8I29034-MSD1)			QC Source:	BRI0382-	05RE1		Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrod	carbons	NWTPH-Dx	1.42	0.0377	0.236	mg/l	1x	ND	1.89	75.1%	(32-143)	2.42	% (40)	09/30/08 20:25	
Surrogate(s):	2-FBP		Recovery:	68.7%	Lim	its: 53-125	% "							09/30/08 20:25	
	Octacosane			84.4%		68-125	5% "							"	
Matrix Spike D	0up (8I29034-MSD3)			QC Source:	BRI0382-	05RE1		Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrod	carbons	NWTPH-Dx	1.72	0.0377	0.236	mg/l	1x	ND	1.89	91.4%	(32-143)	6.33	% (40)	10/01/08 08:24	
Surrogate(s):	2-FBP		Recovery:	85.8%	Lim	its: 53-125	% "							10/01/08 08:24	
	Octacosane			102%		68-125	5% "							"	
Matrix Spike D	0up (8129034-MSD4)			QC Source:	BRI0382-(05RE1		Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrod	carbons	NWTPH-Dx	1.61	0.0377	0.236	mg/l	1x	ND	1.89	85.3%	(32-143)	17.19	% (40)	10/01/08 10:10	
Surrogate(s):	2-FBP		Recovery:	73.1%	Lim	its: 53-125	% "							10/01/08 10:10	
	Octacosane			91.9%		68-125	5% "							"	

TestAmerica Seattle

hung Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

www.testamericainc.com

ENSR International - Seattle	Project Name:	BNSF-Skykomish Remedial De	sign Investigation						
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:						
Seattle, WA 98134	Project Manager:	Halah Voges	10/08/08 12:24						
Semivolatile Petroleum Products by	NWTPH-Dx with Acid/Silic	ı Gel Clean-up - Laboratory Qua	ality Control Results						
TestAmerica Seattle									

QC Batc	h: 8I29034	Water	Preparation	n Method:	EPA 3520C										
Analyte		Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (812903	34-BLK2)								Extr	acted:	09/29/08 11	:59			
Diesel Range (SGC	U)	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x							09/30/08 19:18	
Lube Oil Range (SG	iCU)	"	ND	0.160	0.500	"								"	С
Surrogate(s):	2-FBP (SGCU) Octacosane (SGCU)		Recovery:	75.1% 90.9%	Lim	its: 53-125% 68-125%	"							09/30/08 19:18 "	
LCS (8129034	I-BS2)								Extr	acted:	09/29/08 11	:59			
Diesel Range (SGC	U)	NWTPH-Dx	1.52	0.0400	0.250	mg/l	1x		2.00	75.8%	(61-132)			09/30/08 19:41	
Surrogate(s):	2-FBP (SGCU)		Recovery:	79.4%	Lim	nits: 53-125%	"							09/30/08 19:41	
	Octacosane (SGCU)			88.0%		68-125%	"							"	
Matrix Spike	(8I29034-MS2)				QC Source:	BRI0382-05F	RE1		Extr	acted:	09/29/08 11	:59			
Diesel Range (SGC	U)	NWTPH-Dx	1.56	0.0377	0.236	mg/l	1x	ND	1.89	82.5%	(32-143)			09/30/08 20:03	
Surrogate(s):	2-FBP (SGCU)		Recovery:	82.5%	Lim	nits: 53-125%	"							09/30/08 20:03	
	Octacosane (SGCU)			95.1%		68-125%	"							"	
Matrix Spike I	Dup (8129034-MSI	D2)			QC Source:	BRI0382-05F	RE1		Extr	acted:	09/29/08 11	:59			
Diesel Range (SGC	U)	NWTPH-Dx	1.58	0.0377	0.236	mg/l	1x	ND	1.89	83.8%	(32-143)	1.52%	6 (40)	09/30/08 20:25	
Surrogate(s):	2-FBP (SGCU)		Recovery:	83.7%	Lim	nits: 53-125%	"							09/30/08 20:25	
<u> </u>	Octacosane (SGCU)			96 3%		68-125%	"							"	

TestAmerica Seattle

hung Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

www.testamericainc.com

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation 01140-204-0340 Repo

Halah Voges

Report Created: 10/08/08 12:24

Notes and Definitions Report Specific Notes: С Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted. J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability. Q12 Detected hydrocarbons in the diesel range do not have a distinct diesel pattern and may be due to heavily weathered diesel or possibly biogenic interference. O3 The chromatographic pattern is not consistent with diesel fuel. Laboratory Reporting Conventions: DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). NR/NA Not Reported / Not Available Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis. RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results. Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data. Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable. Electronic Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.

Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*. Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

Kato Dung

CHAIN OF CUSTODY BNSF PROJECT INFORMATION	Laboratory: Address: City/State/ZIP:	est An	node					Project Ma	nager:						0.0000		
RAILWAY CHAIN OF CUSTODY BNSF PROJECT INFORMATION F Project Number:	A ddress:	+70 10	Iest Hmorica						-				SHIPMENT INFORMATION				
CHAIN OF CUSTODY BNSF PROJECT INFORMATION	City/State/ZiP:	StateZIP: Rathall INA 98011					Ste A	Phone:	(42	5)4	+20-	9200	Shipme	nt Method:	Ha	nd do	Tivered
BNSF PROJECT INFORMATION		othell	WA	9801				Fax:		<u>,,</u>			Trackin	g Number:			• • • • • • • • • • • • • • • • • • • •
F Project Number:	Project State of C	Drigin:			•		C	ONSULT	NT INFO	RMATIC	N		Project N	lumber:	01140)_20	4-0340
	Project City:	Kykom	Jeh		Company:	EN	JSR						Project N	lanager:	Halal	N Vo	40_S
F Project Name: Skykamish			+ 0		Address:	IDI	SK	VK	licki	tat h	Jav s	12 207	Email:				J
F Contact: Bay CO. She age cd	BINSE Work Ord	PO-H	08		City/State/	So	att-la	h	IA	98	134		Phone	06)6	24-934	-9 70	6)624-28
	DE	LIVERABLES		Other De	liverables	?	* • •			METH	IODS FOR	ANALYSI	5				1
1-day Rush 5- to 8-day Rush	BNSF Sta	ndard (Level II)															
2-day Rush Standard 10-Day	Level III		\mathbf{X}	EDD Red	q, Formati	7			\mathbf{v}								
3-day Rush Other	Level IV			RE	PEL	-Eq	ws_	XX	4								
SAM		ATION						ΗY	73								
		Samp	e Collection		Filtered	Туре		et v	Ev			1					1
Sample identification	Containers	Date	Time	Sampler	Y/N	(Comp/ Grab)	Matrix	MN	E 3	,					сом	MENTS	LAB USE
5h/ 122 - DANS	4	Atz Inc	NOTS	65	N		W	$\overrightarrow{\mathbf{x}}$	\mathbf{X}								-01
	A	y - 2 08	1175	- i			1	X	\times								-02
			1140					Ŕ	\mathbf{X}					1			-13
			17:00		\square	1	<u> </u>	152	\mathbf{X}					1	1	1	1-14
	12		1435	14		1	\uparrow	K	\mathbf{X}						Extra	Sample	b -05
-1-15-			1640			1		X	\mathbf{X}						1 Como		-06
			1645	<u> -</u>		1	\uparrow	X	\mathbf{x}								-07
		V V	NOD	1	IJ	1	$ \Psi $	\mathbf{X}									1-08
	4-	•	1000						\sim								1-00
					1		1										
					+	+		1							1		
	+			+			+	1							+		+
					+	1	-				<u> </u>				1		+
				1		+	+				$\left \right $			-			+
Jingotaped By:	Date/Jime:	al 0:20	Received By:	H.J.	1	The	1	1	1	Date/Time			nments ar	d Specia	I Analytical	Requiremen	is: 1
The street By: Control Control of the street	yz40	<u> 1.10</u>	Received By:	M	Jam	- per cr				Date/Time	100 7		560	4 -	Siller	gel	Cleaning
linquished By:	Date/Time:		Received By:						·····	Date/Time	B:					•	νų
sceived by Laboratory:	Date/Time:		Lab Remarks:							Lab: Custe	ody intact?	Cust	ody Seal No.:			BNSF COC N	o :
RIGINAL - RETURN TO LABORATORY WITH SAMPLES			1	C	UPLICAT	E - CONS	ULTANT				res 📙	No		,	$\overline{\sigma}$, (7		Rev 10/0

TAT	Paperwork to	o PM – Date: Tir	me:	Non-Conformances?
Page Time & Initials:	·			Circle Y or N
J				(If Y, see other side)
	TEST AMERICA S	AMPLE RECEIPT (CHECKLIST	0 -
Received By:	Logged-in By:	Unpacked/Labeled E	By: Coole	r10: BR F0382
Date: 9/2-4	Date 9/24	Date: 1/24/08	Work Order N	0
Time: 0920	Time: 1720	Time: 1800	Client:	
	Initials:	Initials: F.L.	Project:	
Contain <u>er Type:</u>	<u> </u>	Seals:	Packing-Mater	ial
Cooler	Ship Container	Sign By	Bubble B	Bags Styrofoam
Box	On Bottles	Date	Foam Pa	acks
None/Other		None	None/Ot	her
Refrigerant:			Received Via: Fed Fy	Bill#
				TA Courier
			DHL	Mid Valley
	·		Senvoy	TDP
			GS	Other
Cooler Temperature (//	R): °C Plastic GI	ass (Frozen filters, Te	edlars and aqueor	us Metals exempt)
Temperature Blank? _	(circle on °C or NA	e) 5.7,5.9,4-9,	5.0, 5.0,	Blank? Y or N or A
BP, OPLC,ARCO-Tem (initial/date/time): Comments:	perature monitoring eve	ry 15 minutes:		
Sample Containers:	ID			
Intact?	@ or N	Metals Preserv	red? Y c	or N or NA
Provided by TA?	Ø or N	Client QAPP P	reserved? Y (or Nor NA
Correct Type?	0 or N	Adequate Volu	me?	ν N
#Containers match CO	C? (for N	Water VOAs: 1	Headspace? Y o	or Nor
IDs/time/date match C	DC? Y or 🔗	Comments:		
Hold Times in hold?	(or N		<u> </u>	
PROJECT MANAGEM	IENT	、		
Is the Chain of Custod	complete?		Y or N if N, σ	ircle the items that were incomplete
Comments,Problems_				
	· · · · · · · · · · · · · · · · · · ·			
······································				
Total access set up? Has client been contacted re	garding non-conformances?		Y or N Y or N ⊥!fY.	
PM initiais:	Date:	Time:		

.

.

NOTIFICATION OF DISCREPANCY

DA	DATE: 4/24/08 TIME: 1905 PM: K.H	SC INITIALS: <u>FL</u>
Rus	Rush/Short Hold? 🛛 Yes 🖾 No	
	 Project Not Set Up in ELM Analysis Requested on COC – Not Listed for Projec 	□ COC Received ON HOLD t in ELM
	PM To Add Analysis: Clarification of Analysis: Hold Time Expired: (Analysis) Turnaround Time Not Checked: Did Not Receive Sample(s) Listed on COC:	
	Received Extra Sample(s) Not Listed on COC:	
۲ کلا	Sample Container has 1035 for 5-w-14, COC	has 1025, Logged-in per COC
	Improper Preservative For method: Sample Received Broken: Insufficient Sample Volume: Sample preserved upon receipt:	
	 Temperature Outside recommended range (4°C±2° Received on-ice within 4 hours of collection, tem acceptable. Other: 	C): perature between ambient to 2°C
PR	PROJECT MANAGER RESOLUTION:	(Date & Time when returned to SC)
Aŗ	Approval By: Date:	Time:

October 17, 2007

Stephen Howard The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

RE: BNSF-Skykomish

Enclosed are the results of analyses for samples received by the laboratory on 10/03/07 16:15. The following list is a summary of the Work Orders contained in this report, generated on 10/17/07 16:19.

If you have any questions concerning this report, please feel free to contact me.

<u>Work Order</u> BQJ0118 Project BNSF-Skykomish ProjectNumber 01140-204-340

TestAmerica - Seattle, WA

Kate Haney, Project Manager

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-340 Stephen Howard

Report Created: 10/17/07 16:19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
5-W-14-1007	BQJ0118-01	Water	10/03/07 10:10	10/03/07 16:15
5-W-15-1007	BQJ0118-02	Water	10/03/07 10:45	10/03/07 16:15
5-W-150-1007	BQJ0118-03	Water	10/03/07 10:55	10/03/07 16:15
5-W-16-1007	BQJ0118-04	Water	10/03/07 11:40	10/03/07 16:15
5-W-17-1007	BQJ0118-05	Water	10/03/07 12:30	10/03/07 16:15
5-W-18-1007	BQJ0118-06	Water	10/03/07 13:50	10/03/07 16:15
5-W-19-1007	BQJ0118-07	Water	10/03/07 13:15	10/03/07 16:15
5-W-20-1007	BQJ0118-08	Water	10/03/07 14:40	10/03/07 16:15
MW-500-1007	BQJ0118-09	Water	10/03/07 15:00	10/03/07 16:15

TestAmerica - Seattle, WA

hund

Kate Haney, Project Manager

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-340

Stephen Howard

Report Created: 10/17/07 16:19

Analytical Case Narrative

TestAmerica - Seattle, WA

BQJ0118

SAMPLE RECEIPT

The samples were received October 3rd, 2007 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 6.0 degrees Celsius.

PREPARATIONS AND ANALYSIS

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up): No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

TestAmerica - Seattle, WA

ww

Kate Haney, Project Manager

The RETEC Group, Inc.	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-340	Report Created:
Seattle, WA 98134	Project Manager:	Stephen Howard	10/17/07 16:19

Sen	nivolatile Petrol	eum Produ	icts by N FestAmeric	WTPH ca - Seatt	I-Dx (w/c tle, WA) Acid	/Silica G	el Clean-up)	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQJ0118-01 (5-W-14-1007)		W	ater		Sampl	led: 10/0	03/07 10:10			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	ND ND	0.0381 0.0857	0.238 0.476	mg/l "	1x "	7J05020 "	10/05/07 09:24	10/09/07 13:00	
Surrogate(s): 2-FBP Octacosane			74.5% 92.5%		53 - 125 % 68 - 125 %	"			"	
BQJ0118-02 (5-W-15-1007)		w	ater		Sampl	led: 10/0	03/07 10:45			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	1.54 0.425	0.0381 0.0857	0.238 0.476	mg/l "	1x "	7J05020 "	10/05/07 09:24	10/09/07 15:04	Q12
Surrogate(s): 2-FBP Octacosane			84.3% 84.0%		53 - 125 % 68 - 125 %	"			"	
BQJ0118-03 (5-W-150-1007)		W	ater		Sampl	led: 10/0	03/07 10:55			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	1.47 0.397	0.0377 0.0849	0.236 0.472	mg/l "	1x "	7J05020 "	10/05/07 09:24	10/09/07 15:30	Q12
Surrogate(s): 2-FBP Octacosane			79.0% 85.0%		53 - 125 % 68 - 125 %	"			"	
BQJ0118-04 (5-W-16-1007)		W	ater		Sampl	led: 10/0	03/07 11:40			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	0.0562 ND	0.0377 0.0849	0.236 0.472	mg/l "	1x "	7J05020 "	10/05/07 09:24	10/09/07 15:57	
Surrogate(s): 2-FBP Octacosane			76.5% 91.7%		53 - 125 % 68 - 125 %	"			"	
BQJ0118-05 (5-W-17-1007)		W	ater		Sampl	led: 10/0	03/07 12:30			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	ND ND	0.0377 0.0849	0.236 0.472	mg/l "	1x "	7J05020 "	10/05/07 09:24	10/09/07 16:23 "	
Surrogate(s): 2-FBP Octacosane			72.3% 90.8%		53 - 125 % 68 - 125 %	"			"	
BQJ0118-06 (5-W-18-1007)		w	ater		Sampl	led: 10/0	03/07 13:50			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	0.623 0.256	0.0377 0.0849	0.236 0.472	mg/l "	1x "	7J05020 "	10/05/07 09:24	10/09/07 16:50	Q12

Surrogate(s): 2-FBP Octacosane

TestAmerica - Seattle, WA

w Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

"

,,

81.8%

96.8%

53 - 125 %

68 - 125 %

"

"

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Stephen Howard Project Manager:

BNSF-Skykomish 01140-204-340

Report Created: 10/17/07 16:19

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica - Seattle WA

			estAmeric	a - Seau	le, wA					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQJ0118-07 (5-W-19-1007)		W	ater		Sampl	ed: 10/	03/07 13:15			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	7J05020	10/05/07 09:24	10/09/07 17:16	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			70.9%		53 - 125 %	"			"	
Octacosane			87.0%		68 - 125 %	"			"	
BQJ0118-08 (5-W-20-1007)		W	ater		Sampl	ed: 10/	03/07 14:40			
Diesel Range Hydrocarbons	NWTPH-Dx	0.756	0.0377	0.236	mg/l	1x	7J05020	10/05/07 09:24	10/09/07 17:42	Q12
Lube Oil Range Hydrocarbons	"	0.393	0.0849	0.472	"	"	"	"	"	J
Surrogate(s): 2-FBP			84.8%		53 - 125 %	"			"	
Octacosane			99.2%		68 - 125 %	"			"	
BQJ0118-09 (MW-500-1007)		W	ater		Sampl	ed: 10/	03/07 15:00			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	7J05020	10/05/07 09:24	10/09/07 18:09	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			71.3%		53 - 125 %	"			"	
Octacosane			89.5%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

UUX Kate Haney, Project Manager

The RETEC Group, Inc.				Project Name:		BNSF-Skykomish									
1011 SW Klickitat Way, Suite 207				Project Number:		01140-204-340							Report Create	d:	
Seattle, WA 98134				Project Manager:		Stephen Howard					10/17/07 16:19				
,							1								
Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Laboratory Quality Control Results															
				Tes	stAmerica -	Seattle, W	ΛA								
QC Batch: 7J	05020	Water I	Preparation	Method: H	EPA 3520C										
Analyte	Ν	Aethod	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7J05020-BLK1) Extracted: 10/05/07 09:24															
Diesel Range Hydrocarbons	1	WTPH-Dx	ND	0.0400	0.250	mg/l	1x							10/09/07 08:36	
Lube Oil Range Hydrocarbor	ıs	"	ND	0.0900	0.500	"	"							"	
Surrogate(s): 2-FBF	•		Recovery:	80.9%	Lii	nits: 53-125%	6 "							10/09/07 08:36	
Octace	osane			93.3%		68-1259	% "							"	
LCS (7J05020-BS1) Extracted: 10/05/07 09:24															
Diesel Range Hydrocarbons	1	NWTPH-Dx	1.61	0.0400	0.250	mg/l	1x		2.00	80.7%	(61-132)			10/09/07 09:03	
Surrogate(s): 2-FBF	•		Recovery:	79.8%	Lii	nits: 53-125%	<i>6</i> "							10/09/07 09:03	
Octace	osane			88.7%		68-1259	% "							"	
LCS Dup (7J05020-BSD1) Extracted: 10/05/07 09:24															
Diesel Range Hydrocarbons	1	NWTPH-Dx	1.75	0.0400	0.250	mg/l	1x		2.00	87.7%	(61-132)	8.42%	6 (40)	10/09/07 09:55	
Surrogate(s): 2-FBF	•		Recovery:	84.0%	Liı	nits: 53-125%	<i>6</i> "							10/09/07 09:55	
Octace	osane			86.3%		68-1259	% "							"	
Duplicate (7J05020-				QC Source: BQJ0118-07				07 Extracted: 10/05/07 09:24							
Diesel Range Hydrocarbons	1	NWTPH-Dx	ND	0.0396	0.248	mg/l	1x	ND				NR	(40)	10/09/07 10:22	
Lube Oil Range Hydrocarbo	18	"	ND	0.0891	0.495	"	"	ND				NR	"	"	
Surrogate(s): 2-FBF	•		Recovery:	73.3%	Liı	nits: 53-125%	ó "							10/09/07 10:22	
Octace	osane			87.2%		68-1259	% "							"	
Matrix Spike (7J05020-MS1) QC Source: BQJ011					BQJ0118-0	3-07 Extracted: 10/05/07 09:24									
Diesel Range Hydrocarbons	1	WTPH-Dx	1.44	0.0377	0.236	mg/l	1x	ND	1.89	76.2%	(32-143)			10/09/07 10:48	

Limits: 53-125%

68-125%

"

70.2%

84.2%

Recovery:

TestAmerica - Seattle, WA

Kato Duurg Kate Haney, Project Manager

2-FBP

Octacosane

Surrogate(s):

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

10/09/07 10:48

"

The RETEC Group, Inc.		Project Name:	BNSF-Skykomish					
1011 SW Klic	kitat Way, Suite 207	Project Number:	01140-204-340	Report Created:				
Seattle, WA	98134	Project Manager:	Stephen Howard	10/17/07 16:19				
Notes and Definitions								
Report Speci	fic Notes:							
J -	Estimated value. Analyte detected at a level less that (MDL). The user of this data should be aware that the	in the Reporting Lin his data is of limited	nit (RL) and greater than or equal to the Method Detection reliability.	Limit				
Q12 -	Detected hydrocarbons in the diesel range do not have a distinct diesel pattern and may be due to heavily weathered diesel or possibly biogenic interference.							
Laboratory Reporting Conventions:								
DET -	Analyte DETECTED at or above the Reporting Limit.	Qualitative Analys	es only.					
ND -	Analyte NOT DETECTED at or above the reporting li	mit (MDL or MRL,	as appropriate).					
NR/NA _	Not Reported / Not Available							
dry -	Sample results reported on a Dry Weight Basis. Resul	lts and Reporting Li	mits have been corrected for Percent Dry Weight.					
wet _	Sample results and reporting limits reported on a Wet on a Wet Weight Basis.	Weight Basis (as rec	ceived). Results with neither 'wet' nor 'dry' are reported					
RPD -	RELATIVE PERCENT DIFFERENCE (RPDs calculated)	ated using Results, 1	not Percent Recoveries).					
MRL -	METHOD REPORTING LIMIT. Reporting Level at,	or above, the lowes	t level standard of the Calibration Table.					
MDL* -	METHOD DETECTION LIMIT. Reporting Level at,	or above, the statist	ically derived limit based on 40CFR, Part 136, Appendix E	3.				

- *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
 Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic- Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.SignatureApplication of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.
Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

Kate Haney, Project Manager

November 13, 2007

Sarah Albano The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

RE: BNSF-Skykomish Remedial Design Investigation

Enclosed are the results of analyses for samples received by the laboratory on 11/02/07 13:00. The following list is a summary of the Work Orders contained in this report, generated on 11/13/07 18:23.

If you have any questions concerning this report, please feel free to contact me.

Work Order BQK0034 Project BNSF-Skykomish Remedial D ProjectNumber 01140-204-0320

TestAmerica - Seattle, WA

Kate Haney, Project Manager

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation 01140-204-0320 Sarah Albano

Report Created: 11/13/07 18:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
5-W-16-1107	BQK0034-01	Water	11/02/07 11:15	11/02/07 13:00
5-W-19-1107	BQK0034-02	Water	11/02/07 09:36	11/02/07 13:00
5-W-20-1107	BQK0034-03	Water	11/02/07 08:40	11/02/07 13:00
5-W-18-1107	BQK0034-04	Water	11/02/07 10:35	11/02/07 13:00
5-W-17-1107	BQK0034-05	Water	11/02/07 11:20	11/02/07 13:00
5-W-15-1107	BQK0034-06	Water	11/02/07 10:25	11/02/07 13:00
5-W-14-1107	BQK0034-07	Water	11/02/07 08:50	11/02/07 13:00
DUP01-110207	BQK0034-08	Water	11/02/07 08:00	11/02/07 13:00

TestAmerica - Seattle, WA

hung

Kate Haney, Project Manager

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation 01140-204-0320

Sarah Albano

Report Created: 11/13/07 18:23

Analytical Case Narrative

TestAmerica - Seattle, WA

BQK0034

SAMPLE RECEIPT

The samples were received November 2nd, 2007 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 7.0 degrees Celsius.

PREPARATIONS AND ANALYSIS

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up): No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up: No anomalies were associated with the sample preparation and analysis. All criteria for acceptable QC measurements were met.

TestAmerica - Seattle, WA

uw

Kate Haney, Project Manager

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation
01140-204-0320 Report Created:
Sarah Albano 11/13/07 18:23

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica - Seattle, WA

				estAmeric	a - Seau	le, wA					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQK0034-01	(5-W-16-1107)		Wa	ater		Sampl	ed: 11/0	02/07 11:15			
Diesel Range Hyd	rocarbons	NWTPH-Dx	0.0676	0.0381	0.238	mg/l	1x	7K05023	11/05/07 10:02	11/07/07 11:39	
Lube Oil Range H	ydrocarbons	"	0.118	0.0857	0.476	"		"	"	"	
Surrogate(s):	2-FBP			77.1%		53 - 125 %	"			"	
	Octacosane			99.7%		68 - 125 %	"			"	
BQK0034-02	(5-W-19-1107)		Wa	ater		Sampl	ed: 11/0	02/07 09:36			
Diesel Range Hydr	ocarbons	NWTPH-Dx	ND	0.0381	0.238	mg/l	1x	7K05023	11/05/07 10:02	11/07/07 12:08	
Lube Oil Range H	ydrocarbons	"	0.134	0.0857	0.476	"	"	"	"	"	•
Surrogate(s):	2-FBP			85.3%		53 - 125 %	"			"	
	Octacosane			100%		68 - 125 %	"			"	
BQK0034-03	(5-W-20-1107)		Wa	ater		Sampl	ed: 11/0	02/07 08:40			
Diesel Range Hyd	rocarbons	NWTPH-Dx	1.01	0.0381	0.238	mg/l	1x	7K05023	11/05/07 10:02	11/07/07 12:38	
Lube Oil Range H	ydrocarbons	"	0.820	0.0857	0.476	"	"		"	"	
Surrogate(s):	2-FBP			80.8%		53 - 125 %	"			"	
	Octacosane			88.1%		68 - 125 %	"			"	
BQK0034-04	(5-W-18-1107)		Wa	ater		Sampl	ed: 11/0	02/07 10:35			
Diesel Range Hyd	rocarbons	NWTPH-Dx	1.10	0.0377	0.236	mg/l	1x	7K05023	11/05/07 10:02	11/07/07 13:07	
Lube Oil Range H	ydrocarbons	"	0.855	0.0849	0.472	"	"	"	"	"	
Surrogate(s):	2-FBP			85.0%		53 - 125 %	"			"	
	Octacosane			90.6%		68 - 125 %	"			"	
BQK0034-05	(5-W-17-1107)		Wa	ater		Sampl	ed: 11/0	02/07 11:20			
Diesel Range Hyd	rocarbons	NWTPH-Dx	0.141	0.0377	0.236	mg/l	1x	7K05023	11/05/07 10:02	11/07/07 13:37	
Lube Oil Range H	ydrocarbons	"	0.521	0.0849	0.472	"	"	"	"	"	
Surrogate(s):	2-FBP			75.8%		53 - 125 %	"			"	
	Octacosane			93.8%		68 - 125 %	"			"	
BQK0034-06	(5-W-15-1107)		Wa	ater		Sampl	ed: 11/0	02/07 10:25			
Diesel Range Hyd	rocarbons	NWTPH-Dx	0.0858	0.0377	0.236	mg/l	1x	7K05023	11/05/07 10:02	11/07/07 16:31	
Lube Oil Range H	ydrocarbons	"	0.177	0.0849	0.472	"	"	"	"	"	
Surrogate(s):	2-FBP			79.3%		53 - 125 %	"			"	
	Octacosane			95.0%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

UUN

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation 01140-204-0320 Report Created: Sarah Albano 11/13/07 18:23

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQK0034-07 (5-W-14-1107)		Wa	ater		Sampl	led: 11/0	02/07 08:50			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	7K05023	11/05/07 10:02	11/07/07 19:04	
Lube Oil Range Hydrocarbons	"	0.0870	0.0849	0.472	"		"	"		С, Ј
Surrogate(s): 2-FBP			77.2%		53 - 125 %	"			"	
Octacosane			97.6%		68 - 125 %	"			"	
BQK0034-08 (DUP01-110207)		Wa	ater		Sampl	led: 11/(02/07 08:00			
Diesel Range Hydrocarbons	NWTPH-Dx	0.0736	0.0377	0.236	mg/l	1x	7K05023	11/05/07 10:02	11/07/07 19:33	J
I ube Ail Bange Hydrocarbons	"	0.164	0.0849	0 472	"	"		"	"	С. Ј

Lube Oil Range Hy	drocarbons	"	0.164	0.0849	0.472	"	"	"	"		С, Ј
Surrogate(s):	2-FBP			78.2%		53 - 125 %	"			"	
	Octacosane			99.2%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

ww

Kate Haney, Project Manager

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation 01140-204-0320 Report Created: Sarah Albano

11/13/07 18:23

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up TestAmerica - Seattle WA

					a - Dean	.ic, w/1					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQK0034-01	(5-W-16-1107)		W	ater		Sampl	ed: 11/	02/07 11:15			
Diesel Range (SG	CU)	NWTPH-Dx	ND	0.0381	0.238	mg/l	1x	7K05023	11/05/07 10:02	11/12/07 20:41	
Lube Oil Range (S	SGCU)	"	ND	0.152	0.476	"	"		"	"	
Surrogate(s):	2-FBP (SGCU)			75.1%		53 - 125 %	"			"	
	Octacosane (SGCU)			94.6%		68 - 125 %	"			"	
BQK0034-02	(5-W-19-1107)		W	ater		Sampl	ed: 11/	02/07 09:36			
Diesel Range (SG	CU)	NWTPH-Dx	ND	0.0381	0.238	mg/l	1x	7K05023	11/05/07 10:02	11/12/07 21:06	
Lube Oil Range (S	SGCU)	"	ND	0.152	0.476	"	"		"	"	
Surrogate(s):	2-FBP (SGCU)			78.7%		53 - 125 %	"			"	
	Octacosane (SGCU)			90.9%		68 - 125 %	"			"	
BQK0034-03	(5-W-20-1107)		W	ater		Sampl	ed: 11/	02/07 08:40			
Diesel Range (SG	CU)	NWTPH-Dx	0.0534	0.0381	0.238	mg/l	1x	7K05023	11/05/07 10:02	11/12/07 21:32	
Lube Oil Range (S	SGCU)	"	ND	0.152	0.476	"	"		"	"	
Surrogate(s):	2-FBP (SGCU)			62.3%		53 - 125 %	"			"	
	Octacosane (SGCU)			84.4%		68 - 125 %	"			"	
BQK0034-04	(5-W-18-1107)		W	ater		Sampl	ed: 11/	02/07 10:35			
Diesel Range (SG	CU)	NWTPH-Dx	0.0784	0.0377	0.236	mg/l	1x	7K05023	11/05/07 10:02	11/12/07 21:58	
Lube Oil Range (S	SGCU)	"	ND	0.151	0.472	"	"		"		
Surrogate(s):	2-FBP (SGCU)			73.0%		53 - 125 %	"			"	
	Octacosane (SGCU)			92.1%		68 - 125 %	"			"	
BQK0034-05	(5-W-17-1107)		W	ater		Sampl	ed: 11/	02/07 11:20			
Diesel Range (SG	CU)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	7K05023	11/05/07 10:02	11/12/07 22:24	
Lube Oil Range (S	SGCU)	"	ND	0.151	0.472	"	"		"	"	
Surrogate(s):	2-FBP (SGCU)			73.0%		53 - 125 %	"			"	
	Octacosane (SGCU)			90.8%		68 - 125 %	"			"	
BQK0034-06	(5-W-15-1107)		W	ater		Sampl	ed: 11/	02/07 10:25			
Diesel Range (SG	CU)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	7K05023	11/05/07 10:02	11/12/07 22:50	
Lube Oil Range (S	SGCU)	"	ND	0.151	0.472	"	"		"	"	
Surrogate(s):	2-FBP (SGCU)			67.6%		53 - 125 %	"			"	
	Octacosane (SGCU)			83.0%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

114 Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 6 of 10

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation 01140-204-0320 Report Created: Sarah Albano 11/13/07 18:23

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQK0034-07	(5-W-14-1107)		Wa	iter		Sample	ed: 11/()2/07 08:50			
Diesel Range (SGC	CU)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	7K05023	11/05/07 10:02	11/13/07 00:33	
Lube Oil Range (S	GCU)		ND	0.151	0.472		"		"		
Surrogate(s):	2-FBP (SGCU)			72.5%		53 - 125 %	"			"	
	Octacosane (SGCU)			89.4%		68 - 125 %	"			"	
BQK0034-08	(DUP01-110207)		Wa	iter		Sample	ed: 11/(02/07 08:00			
Diesel Range (SGC	CU)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	7K05023	11/05/07 10:02	11/13/07 00:59	
Lube Oil Range (S	GCU)		ND	0.151	0.472		"		"		
Surrogate(s):	2-FBP (SGCU)			71.4%		53 - 125 %	"			"	
	Octacosane (SGCU)			86.6%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

wix

Kate Haney, Project Manager

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager: BNSF-Skykomish Remedial Design Investigation 01140-204-0320 Report Created: Sarah Albano 11/13/07 18:23

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Laboratory Quality Control Results TestAmerica - Seattle, WA

QC Batcl	n: 7K05023	Water I	Preparation	n Method:	EPA 3520C										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	%∧ REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7K0502	23-BLK1)								Ext	acted:	11/05/07 10	:02			
Diesel Range Hydroc	arbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x							11/07/07 09:43	
Lube Oil Range Hydr	rocarbons	"	ND	0.0900	0.500		"							"	
Surrogate(s):	2-FBP Octacosane		Recovery:	76.6% 95.5%	Lin	nits: 53-125% 68-125%	"							11/07/07 09:43 "	
LCS (7K05023	3-BS1)								Ext	acted:	11/05/07 10	:02			
Diesel Range Hydroc	carbons	NWTPH-Dx	1.65	0.0400	0.250	mg/l	1x		2.00	82.3%	(61-132)			11/07/07 10:11	
Surrogate(s):	2-FBP		Recovery:	82.4%	Lin	nits: 53-125%	"							11/07/07 10:11	
	Octacosane			91.3%		68-125%	"							"	
Matrix Spike	(7K05023-MS1)				QC Source:	BQK0034-03			Ext	acted:	11/05/07 10	:02			
Diesel Range Hydroc	carbons	NWTPH-Dx	2.52	0.0381	0.238	mg/l	1x	1.01	1.90	78.9%	(32-143)			11/07/07 10:40	
Surrogate(s):	2-FBP		Recovery:	78.7%	Lin	nits: 53-125%	"							11/07/07 10:40	
	Octacosane			90.3%		68-125%	"							"	
Matrix Spike D	up (7K05023-MS	SD1)			QC Source:	BQK0034-03			Ext	acted:	11/05/07 10	:02			
Diesel Range Hydroc	carbons	NWTPH-Dx	2.42	0.0381	0.238	mg/l	1x	1.01	1.90	73.9%	(32-143)	3.87%	6 (40)	11/07/07 11:10	
Surrogate(s):	2-FBP		Recovery:	82.9%	Lin	nits: 53-125%	"							11/07/07 11:10	
	Octacosane			86.9%		68-125%	"							"	

TestAmerica - Seattle, WA

Kato Duug Kate Haney, Project Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

www.testamericainc.com

The	RETEC	Group.	Inc.
Inc	ILL LU	Group,	Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation 01140-204-0320 Sarah Albano

Report Created: 11/13/07 18:23

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Laboratory Quality Control Results TestAmerica - Seattle, WA

QC Batc	h: 7K05023	Water	Preparation	n Method: 1	EPA 3520C										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	∾ REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (7K050	23-BLK2)								Ext	racted:	11/05/07 10	:02			
Diesel Range (SGCU	J)	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x							11/12/07 18:57	
Lube Oil Range (SG	CU)	"	ND	0.160	0.500		"								
Surrogate(s):	2-FBP (SGCU) Octacosane (SGCU)		Recovery:	80.0% 95.9%	Lin	nits: 53-125% 68-125%	"							11/12/07 18:57 "	
LCS (7K0502	3-BS2)								Ext	racted:	11/05/07 10	:02			
Diesel Range (SGCU	J)	NWTPH-Dx	2.05	0.0400	0.250	mg/l	1x		2.00	102%	(61-132)			11/12/07 19:23	
Surrogate(s):	2-FBP (SGCU)		Recovery:	81.4%	Lin	nits: 53-125%	"							11/12/07 19:23	
	Octacosane (SGCU)			96.8%		68-125%	"							"	
Matrix Spike	(7K05023-MS2)				QC Source:	BQK0034-03			Ext	racted:	11/05/07 10	:02			
Diesel Range (SGCU	J)	NWTPH-Dx	1.59	0.0381	0.238	mg/l	1x	0.0534	1.90	80.7%	(32-143)			11/12/07 19:49	
Surrogate(s):	2-FBP (SGCU)		Recovery:	59.0%	Lin	nits: 53-125%	"							11/12/07 19:49	
	Octacosane (SGCU)			85.2%		68-125%	"							"	
Matrix Spike I	0up (7K05023-MS	D2)			QC Source:	BQK0034-03			Ext	racted:	11/05/07 10	:02			
Diesel Range (SGCU	J)	NWTPH-Dx	1.53	0.0381	0.238	mg/l	1x	0.0534	1.90	77.8%	(32-143)	3.64%	6 (40)	11/12/07 20:15	
Surrogate(s):	2-FBP (SGCU)		Recovery:	57.5%	Lin	nits: 53-125%	"							11/12/07 20:15	
0 ()	Octacosane (SGCU)			75.6%		68-125%	"							"	

TestAmerica - Seattle, WA

Kato Duurz Kate Haney, Project Manager

The RETEC Group, Inc.

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager: **BNSF-Skykomish Remedial Design Investigation** 01140-204-0320 Sarah Albano

Report Created: 11/13/07 18:23

Notes and Definitions

Report Sp	ecif	<u>ic Notes:</u>
С	-	Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
J	-	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
Laborator	y Re	eporting Conventions:
DET	-	Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
ND	-	Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
NR/NA	-	Not Reported / Not Available
dry	-	Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
wet	-	Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
MRL	-	METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
MDL*	-	METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
Dil	-	Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

- Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable.
- Electronic - Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Signature Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

IIUX Kate Haney, Project Manager

Test Analytical testing corporation

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

 425-420-9200
 FAX 420-9210

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 907-563-9200
 FAX 563-9210

		СН	AIN C	OF CUS	STODY	(REPO	ORT								Work Or	der #:	FOLO	734
CLIENT: ENSR					INV	OICE TO:									1	URNA	ROUND REQUES	r
REPORT TO: RENCE K ADDRESS: 1151 SW KIN Seattle, 1	cheUnt che it che it ch	134 5134	ite 7	207	P.O. 1	NUMBER:									10 7 STD.	in Organic &] 5 Petroleum	Business Days * Inorganic Analyses 4 3 2 Hydrocarbon Analyses	1 <1
PHONE: 200-629-9519 PROJECT NAME:	FAX:		1				PRI	ESERVA	TIVE		·····				3	4	321<	1
PROJECT NUMBER:		•	ЧСІ				REQUE	STED A	NALYSES						STD.	THER	Specify:	
SAMPLED BY:	T		EX												* Turnaround	Requests le	ss than standard may incur	Rush Charges
CLIENT SAMPLE IDENTIFICATION	SAM DATE	PLING ZTIME	ちろう										•		MATRIX (W, S, O)	# OF CONT.	LOCATION / COMMENTS	WOID
5W-10-1107	F015/11	1115	X												//			0
5-W-19-1107	11/2/07	0936	\mathbf{X}							•						 		02
5-W-20-1107	11/2/07	0840	X														MS/MSD	03
5-W-18-1107	112107	1035	\times															64
5-W-17-1107	1207	1120	X															65
\$-W-15-1107	F0/5/11	1025	R										·					0/e
,5-W-14-1107	11/2/07	085 0	X															þ7
DUP01-110207	11/2/07	0800	X								ļ.							_08
9		·													ļ			
10											11							1/1
RELEASED BY: CUSSE		FIRM: E	NS	R	ם. ר	ATE: 11/2	107 20		RECEIVE	D BY	THY I	() an	r for for	h	FIRM	. Th		13:00
RELEASED BY:	n (tr)				D	ATE:			RECEIVE	DBY: (70					DATE:	
PRINT NAME: ADDITIONAL REMARKS:		FIRM			. 1	TIME:			PRINT N	AME:			·		FIRM	l:	TIME:	
COC REV 09/2004							·····										1.0 PA	GE OF
																	wo	

November 17, 2008

Halah Voges ENSR International - Seattle 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

RE: BNSF-Skykomish

Enclosed are the results of analyses for samples received by the laboratory on 09/24/08 09:20. The following list is a summary of the Work Orders contained in this report, generated on 11/17/08 13:58.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRI0381 Project BNSF-Skykomish ProjectNumber 01140-204-0340

TestAmerica Seattle

Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish 01140-204-0340 Halah Voges

Report Created: 11/17/08 13:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
2A-W-10-0908	BRI0381-01	Water	09/22/08 16:55	09/24/08 09:20
2B-W-4-0908	BRI0381-02	Water	09/23/08 09:00	09/24/08 09:20
MW-39-0908	BRI0381-03	Water	09/23/08 09:45	09/24/08 09:20
2A-W-11-0908	BRI0381-04	Water	09/23/08 10:35	09/24/08 09:20
MW-500-0908	BRI0381-05	Water	09/23/08 10:50	09/24/08 09:20
1C-W-2-0908	BRI0381-06	Water	09/23/08 11:55	09/24/08 09:20
MW-38-0908	BRI0381-07	Water	09/23/08 12:35	09/24/08 09:20
5-W-4-0908	BRI0381-08	Water	09/23/08 13:15	09/24/08 09:20
2A-W-9-0908	BRI0381-09	Water	09/23/08 14:10	09/24/08 09:20
2A-W-90-0908	BRI0381-10	Water	09/23/08 14:20	09/24/08 09:20
MW-4-0908	BRI0381-11	Water	09/23/08 15:00	09/24/08 09:20
MW-3-0908	BRI0381-12	Water	09/23/08 15:50	09/24/08 09:20
1A-W-1-0908	BRI0381-13	Water	09/23/08 09:00	09/24/08 09:20
1A-W-3-0908	BRI0381-14	Water	09/23/08 09:50	09/24/08 09:20
1A-W-30-0908	BRI0381-15	Water	09/23/08 10:50	09/24/08 09:20
1A-W-4-0908	BRI0381-16	Water	09/23/08 10:52	09/24/08 09:20
1A-W-5-0908	BRI0381-17	Water	09/23/08 11:20	09/24/08 09:20
1C-W-1-0908	BRI0381-18	Water	09/23/08 13:15	09/24/08 09:20
1C-W-4-0908	BRI0381-19	Water	09/23/08 14:30	09/24/08 09:20
1B-W-3-0908	BRI0381-20	Water	09/23/08 15:46	09/24/08 09:20
1B-W-2-0908	BRI0381-21	Water	09/23/08 16:52	09/24/08 09:20
MW-35-0908	BRI0381-22	Water	09/23/08 17:56	09/24/08 09:20
MW-16-0908	BRI0381-23	Water	09/23/08 18:55	09/24/08 09:20

TestAmerica Seattle

And

Kate Haney, Project Manager

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Halah Voges	11/17/08 13:58

Analytical Case Narrative TestAmerica - Seattle, WA

BRI0381

REVISED REPORT

The batch preparation date/time was listed incorrectly for the Blank, Blank Spike and Blank Spike Duplicate for laboratory batch 8126034. The preparation date and time for the samples was listed correctly as 09/27/08 1618. The batch QC preparation dates and times have been revised in the enclosed report.

SAMPLE RECEIPT

The samples were received September 24th, 2008 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 6.0 degrees Celsius.

PREPARATIONS AND ANALYSIS

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

TestAmerica Seattle

jux

Kate Haney, Project Manager

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Halah Voges	11/17/08 13:58

Sem	ivolatile Petrol	eum Produ	icts by N TestAm	WTPF erica Se	I-Dx (w/o attle) Acid	/Silica G	el Clean-up)	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0381-01 (2A-W-10-0908)		W	ater		Sampl	ed: 09/2	22/08 16:55			
Diesel Range Hydrocarbons	NWTPH-Dx	0.227	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/26/08 22:02	J
Lube Oil Range Hydrocarbons	"	0.153	0.0857	0.476	"	"	"	"	"	J
Surrogate(s): 2-FBP			87.7%		53 - 125 %	"			"	
Octacosane			100%		68 - 125 %	"			"	
BRI0381-02 (2B-W-4-0908)		W	ater		Sampl	ed: 09/2	23/08 09:00			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/26/08 22:24	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			84.6%		53 - 125 %	"			"	
Octacosane			95.1%		68 - 125 %	"			"	
BRI0381-03 (MW-39-0908)		W	ater		Sampl	ed: 09/2	23/08 09:45			
Diesel Range Hydrocarbons	NWTPH-Dx	0.642	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/26/08 22:45	Q
Lube Oil Range Hydrocarbons	"	0.559	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			89.6%		53 - 125 %	"			"	
Octacosane			96.1%		68 - 125 %	"			"	
BRI0381-04 (2A-W-11-0908)		W	ater		Sampl	ed: 09/2	23/08 10:35			
Diesel Range Hydrocarbons	NWTPH-Dx	0.860	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/26/08 23:06	Q
Lube Oil Range Hydrocarbons	"	1.05	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			94.4%		53 - 125 %	"			"	
Octacosane			99.2%		68 - 125 %	"			"	
BRI0381-05 (MW-500-0908)		W	ater		Sampl	ed: 09/2	23/08 10:50			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/26/08 23:28	
Lube Oil Range Hydrocarbons	"	ND	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			83.9%		53 - 125 %	"			"	
Octacosane			96.4%		68 - 125 %	"			"	
BRI0381-06 (1C-W-2-0908)		W	ater		Sampl	ed: 09/2	23/08 11:55			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8126034	09/27/08 16:18	09/29/08 14:58	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			84.5%		53 - 125 %	"			"	

TestAmerica Seattle

und Kate Haney, Project Manager

Octacosane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

99.5%

68 - 125 %

"

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Halah Voges	11/17/08 13:58

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0381-07 (MW-38-0908)		W	ater		Sampl	ed: 09/2	23/08 12:35			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/26/08 23:49	
Lube Oil Range Hydrocarbons	"	ND	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			79.8%		53 - 125 %	"			"	
Octacosane			93.3%		68 - 125 %	"			"	
BRI0381-08 (5-W-4-0908)		W	ater		Sampl	led: 09/2	23/08 13:15			
Diesel Range Hydrocarbons	NWTPH-Dx	7.75	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/27/08 01:14	Q
Lube Oil Range Hydrocarbons	"	2.49	0.0849	0.472	"	"	"	"	"	Q
Surrogate(s): 2-FBP			106%		53 - 125 %	"			"	
Octacosane			105%		68 - 125 %	"			"	
BRI0381-09 (2A-W-9-0908)		W	ater		Sampl	ed: 09/2	23/08 14:10			
Diesel Range Hydrocarbons	NWTPH-Dx	0.323	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 01:36	Q
Lube Oil Range Hydrocarbons	"	0.147	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			79.0%		53 - 125 %	"			"	
Octacosane			88.3%		68 - 125 %	"			"	
BRI0381-10 (2A-W-90-0908)		W	ater		Sampl	ed: 09/2	23/08 14:20			
Diesel Range Hydrocarbons	NWTPH-Dx	0.294	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 01:57	Q
Lube Oil Range Hydrocarbons	"	0.171	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			86.1%		53 - 125 %	"			"	
Octacosane			98.7%		68 - 125 %	"			"	
BRI0381-11 (MW-4-0908)		W	ater		Sampl	ed: 09/2	23/08 15:00			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 02:18	
Lube Oil Range Hydrocarbons	"	ND	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			79.6%		53 - 125 %	"			"	
Octacosane			93.4%		68 - 125 %	"			"	
BRI0381-12 (MW-3-0908)		W	ater		Sampl	led: 09/2	23/08 15:50			
Diesel Range Hydrocarbons	NWTPH-Dx	0.102	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 02:40	
Lube Oil Range Hydrocarbons	"	0.143	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			83.9%		53 - 125 %	"			"	

TestAmerica Seattle

w

Octacosane

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

101%

68 - 125 %

"

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Halah Voges	11/17/08 13:58

Sem	ivolatile Petrol	eum Produ	restAm	WTPH erica Se	I-Dx (w/o attle	Acid	/Silica G	el Clean-up)	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0381-13 (1A-W-1-0908)		W	ater		Sampl	ed: 09/2	23/08 09:00			
Diesel Range Hydrocarbons	NWTPH-Dx	0.347	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 03:01	Q
Lube Oil Range Hydrocarbons	"	0.152	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			81.6%		53 - 125 %	"			"	
Octacosane			98.1%		68 - 125 %	"			"	
BRI0381-14 (1A-W-3-0908)		W	ater		Sampl	ed: 09/2	23/08 09:50			
Diesel Range Hydrocarbons	NWTPH-Dx	0.191	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 03:23	
Lube Oil Range Hydrocarbons	"	0.420	0.0857	0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			86.4%		53 - 125 %	"			"	
Octacosane			104%		68 - 125 %	"			"	
BRI0381-15 (1A-W-30-0908)		W	ater		Sampl	ed: 09/2	23/08 10:50			
Diesel Range Hydrocarbons	NWTPH-Dx	0.0791	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/27/08 03:44	
Lube Oil Range Hydrocarbons	"	0.180	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			82.9%		53 - 125 %	"			"	
Octacosane			102%		68 - 125 %	"			"	
BRI0381-16 (1A-W-4-0908)		W	ater		Sampl	ed: 09/2	23/08 10:52			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/27/08 04:06	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			80.2%		53 - 125 %	"			"	
Octacosane			92.4%		68 - 125 %	"			"	
BRI0381-17 (1A-W-5-0908)		W	ater		Sampl	ed: 09/2	23/08 11:20			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/27/08 04:27	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			74.4%		53 - 125 %	"			"	
Octacosane			92.6%		68 - 125 %	"			"	
BRI0381-18 (1C-W-1-0908)		W	ater		Sampl	ed: 09/2	23/08 13:15			
Diesel Range Hydrocarbons	NWTPH-Dx	0.0550	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/27/08 05:53	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			79.1%		53 - 125 %	"			"	
Octacosane			96.3%		68 - 125 %	"			"	

TestAmerica Seattle

lung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Kate Haney, Project Manager

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Halah Voges	11/17/08 13:58

Sem	nivolatile Petrol	eum Produ	testAm	WTPH erica Sea	I-Dx (w/c attle) Acid	/Silica G	el Clean-up		
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0381-19 (1C-W-4-0908)		W	ater		Sampl	led: 09/2	23/08 14:30			
Diesel Range Hydrocarbons	NWTPH-Dx	0.373	0.0377	0.236	mg/l	1x	8125025	09/25/08 08:52	09/27/08 06:14	Q3
Lube Oil Range Hydrocarbons	"	0.105	0.0849	0.472	"	"		"	"	J
Surrogate(s): 2-FBP			72.6%		53 - 125 %	"			"	
Octacosane			97.2%		68 - 125 %	"			"	
BRI0381-20 (1B-W-3-0908)		W	ater		Sampl	led: 09/2	23/08 15:46			
Diesel Range Hydrocarbons	NWTPH-Dx	0.117	0.0381	0.238	mg/l	1x	8125025	09/25/08 08:52	09/27/08 06:36	J
Lube Oil Range Hydrocarbons	"	ND	0.0857	0.476	"	"		"	"	
Surrogate(s): 2-FBP			77.9%		53 - 125 %	"			"	
Octacosane			92.9%		68 - 125 %	"			"	
BRI0381-21 (1B-W-2-0908)		W	ater		Sampl	led: 09/2	23/08 16:52			
Diesel Range Hydrocarbons	NWTPH-Dx	0.507	0.0388	0.243	mg/l	1x	8126034	09/27/08 16:18	09/29/08 15:21	Q3
Lube Oil Range Hydrocarbons	"	0.170	0.0874	0.485	"	"		"	"	J
Surrogate(s): 2-FBP			94.1%		53 - 125 %	"			"	
Octacosane			108%		68 - 125 %	"			"	
BRI0381-22 (MW-35-0908)		W	ater		Sampl	led: 09/2	23/08 17:56			
Diesel Range Hydrocarbons	NWTPH-Dx	0.305	0.0381	0.238	mg/l	1x	8126034	09/27/08 16:18	09/29/08 15:44	Q3
Lube Oil Range Hydrocarbons	"	0.187	0.0857	0.476	"	"		"	"	J
Surrogate(s): 2-FBP			79.7%		53 - 125 %	"			"	
Octacosane			92.8%		68 - 125 %	"			"	
BRI0381-23 (MW-16-0908)		W	ater		Sampl	led: 09/2	23/08 18:55			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8126034	09/27/08 16:18	09/29/08 16:08	
Lube Oil Range Hydrocarbons	"	ND	0.0849	0.472	"	"		"	"	
Surrogate(s): 2-FBP			85.7%		53 - 125 %	"			"	

"

68 - 125 %

Octacosane

TestAmerica Seattle lung Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

99.0%

	-					DUGE	~							
ENSR International - Seatt	tle			Project Nan	ne:	BNSF-	Skykomi	ish						
1011 SW Klickitat Way, Suite	207			Project Nun	nber:	01140-2	04-0340						Report Create	d:
Seattle, WA 98134				Project Mar	ager:	Halah V	oges						11/17/08 13:	58
Semivolatile I	Petroleum Pro	ducts by N	NWTPH-Dx	(w/o Acid TestAmeric	l/Silica G ca Seattle	el Clea	ın-up) -	Labor	atory	⁷ Quality	y Cont	trol Res	sults	
QC Batch: 8I25025	Water P	reparation	n Method: H	EPA 3520C										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8I25025-BLK1)								Extr	acted:	09/25/08 08	8:52			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x							09/26/08 20:37	
Lube Oil Range Hydrocarbons	"	ND	0.0900	0.500	"	"							"	
Surrogate(s): 2-FBP Octacosane		Recovery:	77.5% 94.5%	Lin	nits: 53-1259 68-1259	% " % "							09/26/08 20:37 "	
LCS (8I25025-BS1)								Extr	acted:	09/25/08 08	8:52			
Diesel Range Hydrocarbons	NWTPH-Dx	1.72	0.0400	0.250	mg/l	1x		2.00	85.9%	(61-132)			09/26/08 20:59	
Surrogate(s): 2-FBP		Recovery:	89.2%	Lin	nits: 53-125%	% "							09/26/08 20:59	
Octacosane			95.9%		68-125	% "							"	
Matrix Spike (8125025-MS1)				QC Source:	BRI0381-1	2		Extr	acted:	09/25/08 08	8:52			
Diesel Range Hydrocarbons	NWTPH-Dx	1.73	0.0377	0.236	mg/l	1x	0.102	1.89	86.5%	(32-143)			09/26/08 21:20	
Surrogate(s): 2-FBP		Recovery:	84.9%	Lin	nits: 53-125%	% "							09/26/08 21:20	
Octacosane			95.6%		68-125	% "							"	
Matrix Spike Dup (8125025-MS	SD1)			QC Source:	BRI0381-1	2		Extr	acted:	09/25/08 08	8:52			
Diesel Range Hydrocarbons	NWTPH-Dx	1.67	0.0377	0.236	mg/l	1x	0.102	1.89	83.0%	(32-143)	3.93%	6 (40)	09/26/08 21:41	
Surrogate(s): 2-FBP		Recovery:	89.6%	Lin	nits: 53-125%	% "							09/26/08 21:41	
Octacosane			98.4%		68-125	% "							"	
QC Batch: 8126034	Water P	reparation	n Method: H	EPA 3520C	!									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8I26034-BLK1)								Extr	acted:	09/27/08 10	6:18			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x							09/29/08 13:48	
Lube Oil Range Hydrocarbons	"	ND	0.0900	0.500	"	"							"	
Surrogate(s): 2-FBP Octacosane		Recovery:	88.8% 102%	Lin	nits: 53-1259 68-1259	% " % "							09/29/08 13:48 "	
LCS (8I26034-BS1)								Extr	acted:	09/27/08 10	6:18			
Diesel Range Hydrocarbons	NWTPH-Dx	1.76	0.0400	0.250	mg/l	1x		2.00	88.2%	(61-132)			09/29/08 14:11	
Surrogate(s): 2-FBP		Recovery:	103%	Lin	nits: 53-1259	% "				,			09/29/08 14:11	

TestAmerica Seattle

und

Octacosane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

"

105%

68-125% "

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Halah Voges	11/17/08 13:58

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Laboratory Quality Control Results TestAmerica Seattle														
QC Batch: 8I26034	Water F	reparation	Method: EF	PA 3520C										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spiko Amt	e % REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS Dup (8I26034-BSD1)								Ext	racted:	09/27/08 16	:18			
Diesel Range Hydrocarbons	NWTPH-Dx	1.74	0.0400	0.250	mg/l	1x		2.00	86.8%	(61-132)	1.53%	(40)	09/29/08 14:35	
Surrogate(s): 2-FBP		Recovery:	101%	Lin	nits: 53-125%	"							09/29/08 14:35	
Octacosane			95.9%		68-125%	"							"	

TestAmerica Seattle

And

Kate Haney, Project Manager

ENSR International - Seattle	Project Name:	BNSF-Skykomish	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Halah Voges	11/17/08 13:58

CERTIFICATION SUMMARY

TestAmerica Seattle

Method	Matrix	Nelac	Washington
NWTPH-Dx	Water		X

Any abnormalities or departures from sample acceptance policy shall be documented on the 'Sample Receipt and Temperature Log Form' and 'Sample Non-conformance Form' (if applicable) included with this report.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

Samples collected by TestAmerica Field Services personnel are noted on the Chain of Custody (COC).

TestAmerica Seattle

Kate Haney, Project Manager

ENSR International - Seattle	Project Name:	BNSF-Skykomish							
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:						
Seattle, WA 98134	Project Manager:	Halah Voges	11/17/08 13:58						
Notes and Definitions									
Report Specific Notes:									
J - Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit									
(MDL). The user of this data should be	aware that this data is of limited	reliability.							

- Q3 The chromatographic pattern is not consistent with diesel fuel.
- Q4 The hydrocarbons present are a complex mixture of diesel range and heavy oil range organics.

Laboratory Reporting Conventions:

- DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
- ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
- NR/NA _ Not Reported / Not Available
- dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
- wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
- RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic- Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.SignatureApplication of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.
Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

		U	BORATORY INF	ORMATION		LAB WORK ORD	ER: BRIU38	1
BNSF	Laboratoou Test Ar	norica		Project Manager	, ,			ON
RAILWAY	Address 1720 Nor	th Creek Pl	WV Sto	400 Phone: 4	25) 420 -920	D Shipment Method:	Hand del	ivered
CHAIN OF CUSTODY	City/State/ZIE	WA 9801)	Fax:		Tracking Number:		
BNSF PROJECT INFORMATION	Project State of Origin:			CONSULTANT	INFORMATION	Project Number:	01140-204	-0340
NSF Project Number:	Project City:	Neh	Company:	INSR		Project Manager:	Halah Va	205
NSF Project Name: SKH Local Sh			Address: 10	11 SWKIICK	itot Way, Ster	い子 Email:		
INSF Contact: Bruce, Shepper Co	BNSF Work Order No TTOIE	10-H08	City/State/ZIP:		,	(Z06) 624	-9349 /206	674-7839
TURNAROUND TIME	DELIVERABLES	Other D	eliverables?		METHODS FOR ANA	LYSIS		
1-day Rush 5- to 8-day Rush	BNSF Standard (Level II)			$-\Box$				
2-day Rush Standard 10-Day			q, Format?	×\$				
3-day Rush Other	Level IV	RET	IC-EQU	<u>v</u> j				
	SAMPLE INFORMATION			Ϋ́ΞΫ́				
	San	ple Collection	Filtered	Eg				
Sample identification	Containers Date	Time Sample	r Y/N Grab)				COMMENTS	LAB USE
74 - W - 10 - 09	081 9hz/08	1655 FTYG	N	WX				BRID 381-01
2B - W - 4 -	2 9/23/05	1900 DWK	1					/ -02
mw - 39 -	Z	09451						-03
2A-W-11 -	Z	1035						-04
MW-57912 -	2	1050						-05
1C-W-Z-	2	1155						-06
MW-38-	7	1235						-07
5-1/-4-	Z	1315						-08
20-1/-9-	2	1410						- 09
$\sim - W - 9D \rightarrow$	2	1420		$\mid\mid\mid$				_10
· MW-A -	Z	1500						-11
MM - 3 -	6	1550					Extra sample	-12
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	7	0900 FM						-13
1A-W-3-	Z	1950 1						1/ -14
$\frac{1}{10} = 10 - 30 - 10$	VZV	1050	4	LX				V -15
Religninghed By:	Date Time: 9:24	Received by:	ample	· • · · · · · · · · · · · · · · · · · ·	Date/Tiple: 9/24/089:20	Comments and Specia	Analytical Requirement	s: Clark -
Relinquished By:	Date/Time:	Received By:			Date Time		jii ca yet	rump
Relinquished By:	Date/Time:	Received By:			Date/Time:	1 4.0 000	0	
Received by Laboratory:	Date/Time:	Lab Remarks:			Lab: Custody Intact?	Custody Seal No.:	BNSF COC NO):
								Rev 10/02/0

ORIGINAL - RETURN TO LABORATORY WITH SAMPLES

				LA	BORATO	ORY INFO	ORMATI	ON							K ORDE	e: BRI	038	
BNSF	Laboratory:	and A	rodi		<u></u>			Project Mana	iger:							SHIPMENT I	NFORMATI	ON
RAIIWAY	Address:	ZO NAC	th (ro	al.	d.	, d	41)	Phone	25	47	0-9	200	> ^{sh}	nipment	Method:	Han	1 de	Nored
CHAIN OF CLISTORY	City/State/ZIP:	Wishatezen Fax:						«		Tracking Number:								
BNSF PROJECT INFORMATION	Project State of	Origin:	<u>/ <u>vv</u>//</u>				C	NSULTAN	NT INFO	ORMATIC	N		Pro	oject Nun	iber:	1140-	-204	0340
BNSF Project Number:	Project City:	clark or	nisl		Company:	15	ENS	R					Pro	oject Mar	ager:	Talah	Vage	5
BNSF Project Name: SILVE and C	·				Address:	01)	らん	Klid	(H	at We	n. 9	eZø	→ ^{En}	nail:			ð	
BNSF Contact: RCIAC & Shanny	BNSF Work Or	ter No.:	N - H	80	City/State/	ZIP:	sttle	, hl	40	7817	JAS -		Ph	torfe:	\$) 6 2	A-934	6 Fax	6) 67.4 - 7.839
TURNAROUND TIME	C	ELIVERABLES		Other De	iverables	?		/	,	METH	IODS FOR	ANALY	sis	<u> </u>				
1-day Rush 5- to 8-day Rush	BNSF S	tandard (Level II)																
2-day Rush 🏾 🕅 Standard 10-Day	🗌 Levei III			EDD Req	, Format'	,	_	X										
3-day Rush Other	_ Level IV	,		RE	FR.	- ER	<u>415</u>	193										
s	AMPLE INFORM	ATION						E J										
	Contrinom	Samp	le Collection		Filtered	Type (Comp/	Matrix	Fa										
Sample identification	Containers	Date	Time	Sampler	Y/N	Grab)	IVIAUTA	ZZ								сомм	ENTS	LAB USE
A - W - 4 - 090	18 Z	9/23/08	1052	Fm	N		W	\searrow										-16
1A-W-5 - 1	Z	1	1120	j	1													-17
1C-W-1 -	Z		1315	†				\sim										-18
IC-W-4-	Z		1430					\searrow										-19
1R-1N-3 -	2		1546					\sum										-+20
· 18-W-7 -	2		1652					\times										-21
M4-35 -	2		1756	4				\searrow										-22
· MW-16 - 1	<u> </u>	V	1655	05				[X]										-23
9																		
10										<u> </u>								
11						<u> </u>				<u> </u>								ļ
12																		
13										<u> </u>								
14				ļ						<u> </u>								
15		1		b			$\downarrow \downarrow$							<u>.</u>	-			<u> </u>
Reliantia José By:	Date/Pime:	10 9:20	Received By:	athy	lian	ht				Date/Tim	108 9	20	commen SC	its and • こり	Special	Analytical R	equirement	Cleanup
Relinquished By:	Date/Time:		Received By:	/						Dall6/Tim	e:		-				J .	- T
Relinquished By:	Date/Time:		Received By:							Date/Tim	e:							
Received by Laboratory:	Date/Time		Lab Remarks:							Lab: Cust	iody Intact? Yes	vo C	Justody Sea	al No.:			BNSF COC N	0:

τΔΤ·	Paperwork	to PM – Da	ate:Tin	ne:		Non-Co	nformances	?
Page Time & Initials:	·					C	ircle(Y/or I	N
	·····					(If Y, se	e other side	e)
	TEST AMERICA	SAMPLE	RECEIPT C	HECKLIST	-		7 1 1 2 -	
Received By:	Logged-in By:	Unpack	ed/Labeled B	y: Co	oler ID:	373,	307, 374,	, 303,
(applies to temp at receipt)	- Alail	a di	huld	Mork Orde	r No	326, 3	2,9	309
Date: 9/ 7	Date: $\frac{1}{124}$	Date/	<u> </u>	Client:		200	<u>) 4</u>	
Time:		lime: <u>/</u>	Fr	Broject:	••••••			
Initials:	Initials: M	Initials			<u></u>	······································	·····	
Container Type:	<u>co</u>	C Seals:		Packing Ma	aterial		<u>:</u>	
Cooler	Ship Contain	er	Sign By	Bubb	le Bags		Styrofoam	
Box	On Bottles	/	Date	Foarr	n Packs			
None/Other		None		None	/Other	<u></u>		
Refrigerant:				Received \	/ia: Bill#			
Gel Ice Pack				Fed B	Ex 🖊	Client		
Loose Ice				UPS		_ TA Cou	rier	
None/Other				DHL		_ Mid Va	lley	
				Senv	'oy	TDP		
				GS		Other		-
BP, OPLC,ARCO-Ter (initial/date/time):	nperature monitoring e	very 15 min	utes:		5.9, 4.	4	U	
Comments:								
Sample Containers:								
intact?	() or N	N	Aetals Preserv	ed?	Y or No	NA		
Provided by TA?	Ø or N	(lient QAPP Pi	reserved?	Y or N c	or A		
Correct Type?	(or N	<i>A</i>	Adequate Volui	me? (Dor N			
#Containers match C	0C? Øor N	V	Vater VOAs: H	leadspace?	Y or No	NA2		
IDs/time/date match (000? Y or N	(Comments:	<u></u>				
Hold Times in hold?	Ø or N							
PROJECT MANAGE	MENT			,				
is the Chain of Custo	dy complete?			Y or N If	N, circle the	e items that	were incomple	ete
Comments, Problems								
								_
Total access set up? Has client been contacted	regarding.non-conformances	s?		Y or N Y cr N	lf Y,/	(_
PM Initials:	Date:	Time:	. <u></u>		Dat	e Time		

NOTIFICATION OF DISCREPANCY

DA	ТЕ: <u>9/14/08</u> ТІМЕ: 1840 РМ: <u>К.Н.</u> SC INITIALS: <u>FL</u>
Ru	sh/Short Hold?
	Project Not Set Up in ELM New Client COC Received ON HOLD Analysis Requested on COC – Not Listed for Project in ELM
	PM To Add Analysis:
	Received Extra Sample(s) Not Listed on COC:
Ø	Sample Description(s) or Date/Time Sampled Do Not Match COC: <u>Sample container has IA-w-5 has 1130 for time, but (OC has 1120. Logged-in</u> per (OC.
	Improper Preservative For method:
	Temperature Outside recommended range (4°C±2°C): Received on-ice within 4 hours of collection, temperature between ambient to 2°C acceptable. Other:
PF	OJECT MANAGER RESOLUTION: (Date & Time when returned to SC)
A	oproval By: Date: Time:

BRI0382

ENSR International - Seattle

Project: BNSF-Skykomish Remedial Design Investig Project#: 01140-204-0340

Report Date: 11/18/08 12:42

CLIENT SAMPLES

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)

Instrume	Method	Analyzed	FileID	LabNumber	Dil	Batch	Sequence	Calibration	Matrix	Initial	Final
GC-1F	NWTPH-Dx	09/30/08 20:48	I3008012.D	BRI0382-01RE1	1	8129034	8130006	8091202	Water	1060	1
GC-1F	NWTPH-Dx	09/30/08 21:10	I3008013.D	BRI0382-02RE1	1	8129034	8130006	8091202	Water	1060	1
GC-1F	NWTPH-Dx	09/30/08 21:32	I3008014.D	BRI0382-03RE1	1	8129034	8130006	8091202	Water	1060	1
GC-1F	NWTPH-Dx	09/30/08 21:54	I3008015.D	BRI0382-04RE1	1	8129034	8130006	8091202	Water	1060	1
GC-1F	NWTPH-Dx	09/30/08 22:17	I3008016.D	BRI0382-05RE1	1	8129034	8130006	8091202	Water	1060	1
GC-1F	NWTPH-Dx	09/30/08 22:39	I3008017.D	BRI0382-06RE1	1	8129034	8130006	8091202	Water	1060	1
GC-1F	NWTPH-Dx	10/01/08 00:09	I3008021.D	BRI0382-07RE1	1	8129034	8130006	8091202	Water	1050	1
GC-1F	NWTPH-Dx	10/01/08 00:31	I3008022.D	BRI0382-08RE1	1	8129034	8130006	8091202	Water	1060	1
GC-3	NWTPH-Dx	10/01/08 08:48	J0108008.D	BRI0382-01RE2	1	8129034			Water	1060	1
GC-3	NWTPH-Dx	10/01/08 09:12	J0108009.D	BRI0382-02RE2	1	8129034			Water	1060	1
GC-3	NWTPH-Dx	10/01/08 09:36	J0108010.D	BRI0382-03RE2	1	8129034			Water	1060	1
GC-3	NWTPH-Dx	10/01/08 10:00	J0108011.D	BRI0382-04RE2	1	8129034			Water	1060	1
66.7	NWTDH Dy	10/01/08 10:38	10108006 D	DD10282 05DE2	1	8120024			Watar	1060	1
00-7	NWIPH-DX	10/01/08 10.38	J0108006.D	BR10382-03RE2	1	8129034			water	1000	1
GC-/	NW1PH-Dx	10/01/08 11:06	J0108007.D	BK10382-06RE2	1	8129034			Water	1060	I

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

Instrume	Method	Analyzed	FileID	LabNumber	Dil	Batch	Sequence	Calibration	Matrix	Initial	Final
GC-1R	NWTPH-Dx	09/30/08 20:48	I3008012.D	BRI0382-01RE1	1	8129034	8130007	8091201	Water	1060	1
GC-1R	NWTPH-Dx	09/30/08 21:10	I3008013.D	BRI0382-02RE1	1	8129034	8130007	8091201	Water	1060	1
GC-1R	NWTPH-Dx	09/30/08 21:32	I3008014.D	BRI0382-03RE1	1	8129034	8130007	8091201	Water	1060	1
GC-1R	NWTPH-Dx	09/30/08 21:54	I3008015.D	BRI0382-04RE1	1	8129034	8130007	8091201	Water	1060	1
GC-1R	NWTPH-Dx	09/30/08 22:17	I3008016.D	BRI0382-05RE1	1	8129034	8130007	8091201	Water	1060	1
GC-1R	NWTPH-Dx	09/30/08 22:39	I3008017.D	BRI0382-06RE1	1	8129034	8130007	8091201	Water	1060	1
GC-1R	NWTPH-Dx	10/01/08 00:09	I3008021.D	BRI0382-07RE1	1	8129034	8130007	8091201	Water	1050	1
GC-1R	NWTPH-Dx	10/01/08 00:31	I3008022.D	BRI0382-08RE1	1	8129034	8130007	8091201	Water	1060	1

BRI0382

ENSR International - Seattle

Project: BNSF-Skykomish Remedial Design Investig Project#: 01140-204-0340

Report Date: 11/18/08 12:42

QC SAMPLES

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - QC

Instrument	Method	Analyzed	FileID	LabNumber	Sequence	Calibration	Matrix	Source
GC-1F	NWTPH-Dx	09/30/08 19:18	I3008008.D	8I29034-BLK1	8130006	8091202	Water	
GC-1F	NWTPH-Dx	09/30/08 19:41	I3008009.D	8I29034-BS1	8130006	8091202	Water	
GC-1F	NWTPH-Dx	09/30/08 20:03	I3008010.D	8I29034-MS1	8130006	8091202	Water	BRI0382-05RE1
GC-1F	NWTPH-Dx	09/30/08 20:25	I3008011.D	8I29034-MSD1	8130006	8091202	Water	BRI0382-05RE1
GC-3R	NWTPH-Dx	10/01/08 07:13	J0108004.D	8I29034-BLK3	8J01002	8092201	Water	
GC-3R	NWTPH-Dx	10/01/08 07:36	J0108005.D	8I29034-BS3	8J01002	8092201	Water	
GC-3R	NWTPH-Dx	10/01/08 08:00	J0108006.D	8I29034-MS3	8J01002	8092201	Water	BRI0382-05RE1
GC-3R	NWTPH-Dx	10/01/08 08:24	J0108007.D	8I29034-MSD3	8J01002	8092201	Water	BRI0382-05RE1
GC-7R	NWTPH-Dx	10/01/08 08:45	J0108002.D	8I29034-BLK4	8J01011	UNASSIGNED	Water	
GC-7R	NWTPH-Dx	10/01/08 14:19	J0108011.D	8I29034-BLK4	8J01011	UNASSIGNED	Water	
GC-7R	NWTPH-Dx	10/01/08 14:47	J0108012.D	8I29034-BS4	8J01011	UNASSIGNED	Water	
GC-7R	NWTPH-Dx	10/01/08 15:16	J0108013.D	8I29034-MS4	8J01011	UNASSIGNED	Water	BRI0382-05RE1
GC-7R	NWTPH-Dx	10/01/08 10:10	J0108005.D	8I29034-MSD4	8J01011	UNASSIGNED	Water	BRI0382-05RE1

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - QC

Instrument	Method	Analyzed	FileID	LabNumber	Sequence	Calibration	Matrix	Source
GC-1R	NWTPH-Dx	09/30/08 19:18	I3008008.D	8I29034-BLK2	8130007	8091201	Water	
GC-1R	NWTPH-Dx	09/30/08 19:41	I3008009.D	8I29034-BS2	8130007	8091201	Water	
GC-1R	NWTPH-Dx	09/30/08 20:03	I3008010.D	8I29034-MS2	8130007	8091201	Water	BRI0382-05RE1
GC-1R	NWTPH-Dx	09/30/08 20:25	I3008011.D	8I29034-MSD2	8130007	8091201	Water	BRI0382-05RE1

November 18, 2008

Halah Voges ENSR International - Seattle 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

RE: BNSF-Skykomish Remedial Design Investigation

Enclosed are the results of analyses for samples received by the laboratory on 09/24/08 09:20. The following list is a summary of the Work Orders contained in this report, generated on 11/18/08 12:42.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRI0382 Project BNSF-Skykomish Remedial D ProjectNumber 01140-204-0340

TestAmerica Seattle

Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:
 BNSF-Skykomish Remedial Design Investigation

 01140-204-0340
 Report Created:

 Halah Voges
 11/18/08 12:42

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
5-W-20-0908	BRI0382-01	Water	09/23/08 09:25	09/24/08 09:20
5-W-14-0908	BRI0382-02	Water	09/23/08 10:25	09/24/08 09:20
5-W-17-0908	BRI0382-03	Water	09/23/08 11:40	09/24/08 09:20
5-W-18-0908	BRI0382-04	Water	09/23/08 12:50	09/24/08 09:20
5-W-19-0908	BRI0382-05	Water	09/23/08 14:35	09/24/08 09:20
5-W-15-0908	BRI0382-06	Water	09/23/08 16:40	09/24/08 09:20
5-W-150-0908	BRI0382-07	Water	09/23/08 16:45	09/24/08 09:20
5-W-16-0908	BRI0382-08	Water	09/23/08 18:00	09/24/08 09:20
5-W-17-0908 5-W-18-0908 5-W-19-0908 5-W-15-0908 5-W-150-0908 5-W-16-0908	BRI0382-03 BRI0382-04 BRI0382-05 BRI0382-06 BRI0382-07 BRI0382-08	Water Water Water Water Water Water	09/23/08 11:40 09/23/08 12:50 09/23/08 14:35 09/23/08 16:40 09/23/08 16:45 09/23/08 18:00	09/24/08 09:20 09/24/08 09:20 09/24/08 09:20 09/24/08 09:20 09/24/08 09:20 09/24/08 09:20

TestAmerica Seattle

And

Kate Haney, Project Manager

ENSR International - Seattle	
1011 SW Klickitat Way, Suite 207	

Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation	
01140-204-0340	Report Crea

Halah Voges

ited: 11/18/08 12:42

Analytical Case Narrative

TestAmerica - Seattle, WA

BRI0382

REVISED REPORT

Seattle, WA 98134

Laboratory samples BRI0382-01 through 08 with RE2 designation were batched in the incorrect batch. The samples were inadvertently added to the original batch that was not reported due to failing QC. The samples should have been added to the re-extract batch. The batch has been corrected and is included in the enclosed report.

SAMPLE RECEIPT

The samples were received September 24th, 2008 by TestAmerica - Seattle. The temperature of the samples at the time of receipt was 6.0 degrees Celsius.

PREPARATIONS AND ANALYSIS

No additional anomalies, discrepancies, or issues were associated with sample preparation, analysis and quality control other than those already qualified in the data and described in the Notes and Definitions page at the end of the report.

TestAmerica Seattle

IIIX

Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation01140-204-0340Report Created:Halah Voges11/18/08 12:42

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica Seattle

				TestAm	erica Sea	attle					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0382-01RE1	(5-W-20-0908)		W	ater	23/08 09:25						
Lube Oil Range Hy	drocarbons	NWTPH-Dx	0.139	0.0849	0.472	mg/l	1x	8129034	09/29/08 11:59	09/30/08 20:48	
Surrogate(s):	2-FBP			62.5%		53 - 125 %	"			"	
0 ()	Octacosane			84.3%		68 - 125 %	"			"	
BRI0382-01RE2	(5-W-20-0908)		W	ater		Sampl	led: 09/2	23/08 09:25			
Diesel Range Hydro	ocarbons	NWTPH-Dx	0.305	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	10/01/08 08:48	Q
Surrogate(s):	2-FBP			72.6%		53 - 125 %	"			"	
0	Octacosane			98.0%		68 - 125 %	"			"	
BRI0382-02RE1	(5-W-14-0908)		W	ater		Sampl	led: 09/2	23/08 10:25			
Lube Oil Range Hyd	drocarbons	NWTPH-Dx	ND	0.0849	0.472	mg/l	1x	8129034	09/29/08 11:59	09/30/08 21:10	
Surrogate(s):	2-FBP			66.8%		53 - 125 %	"			"	
	Octacosane			84.9%		68 - 125 %	"			"	
BRI0382-02RE2	(5-W-14-0908)		W	Water		Sampled: 09/23/08 10:25					
Diesel Range Hydro	ocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	10/01/08 09:12	
Surrogate(s):	2-FBP			79.4%		53 - 125 %	"			"	
	Octacosane			98.7%		68 - 125 %	"			"	
BRI0382-03RE1	(5-W-17-0908)		W	ater		Sampl	led: 09/2	23/08 11:40			
Lube Oil Range Hyd	drocarbons	NWTPH-Dx	ND	0.0849	0.472	mg/l	1x	8129034	09/29/08 11:59	09/30/08 21:32	
Surrogate(s):	2-FBP			66.2%		53 - 125 %	"			"	
	Octacosane			83.6%		68 - 125 %	"			"	
BRI0382-03RE2	(5-W-17-0908)		W	ater		Sampl	led: 09/2	23/08 11:40			
Diesel Range Hydro	ocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	10/01/08 09:36	
Surrogate(s):	2-FBP			80.3%		53 - 125 %	"			"	
	Octacosane			99.3%		68 - 125 %	"			"	
BRI0382-04RE1	(5-W-18-0908)		W	ater		Sampl	led: 09/2	23/08 12:50			
Lube Oil Range Hy	drocarbons	NWTPH-Dx	0.197	0.0849	0.472	mg/l	1x	8129034	09/29/08 11:59	09/30/08 21:54	
Surrogate(s):	2-FBP			66.8%		53 - 125 %	"			"	
_ ()	Octacosane			81.9%		68 - 125 %	"			"	

TestAmerica Seattle

und Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation01140-204-0340Report Created:Halah Voges11/18/08 12:42

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica Seattle

				TestAlli		attic					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0382-04RE2	(5-W-18-0908)		Wa	ater		Sampl	ed: 09/2	23/08 12:50			
Diesel Range Hydr	ocarbons	NWTPH-Dx	0.342	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	10/01/08 10:00	Qã
Surrogate(s):	2-FBP			81.3%		53 - 125 %	"			"	
	Octacosane			100%		68 - 125 %	"			"	
BRI0382-05RE1	(5-W-19-0908)		Wa	Water		Sampl	ed: 09/2	23/08 14:35			
Lube Oil Range Hy	drocarbons	NWTPH-Dx	ND	0.0849	0.472	mg/l	1x	8129034	09/29/08 11:59	09/30/08 22:17	
Surrogate(s):	2-FBP			63.5%		53 - 125 %	"			"	
	Octacosane			79.1%		68 - 125 %	"			"	
BRI0382-05RE2	(5-W-19-0908)		Wa	ater		Sampl	ed: 09/2	23/08 14:35			
Diesel Range Hydro	ocarbons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	10/01/08 10:38	
Surrogate(s):	2-FBP			70.4%		53 - 125 %	"			"	
	Octacosane			92.8%		68 - 125 %	"			"	
BRI0382-06RE1	(5-W-15-0908)		Wa	ater		Sampl	led: 09/2	23/08 16:40			
Lube Oil Range Hy	ydrocarbons	NWTPH-Dx	0.104	0.0849	0.472	mg/l	1x	8129034	09/29/08 11:59	09/30/08 22:39	
Surrogate(s):	2-FBP			68.3%		53 - 125 %	"			"	
	Octacosane			83.7%		68 - 125 %	"			"	
BRI0382-06RE2	(5-W-15-0908)		Wa	ater		Sampled: 09/23/08 16:					
Diesel Range Hydr	ocarbons	NWTPH-Dx	0.272	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	10/01/08 11:06	Q12
Surrogate(s):	2-FBP			76.9%		53 - 125 %	"			"	
	Octacosane			101%		68 - 125 %	"			"	
BRI0382-07RE1	(5-W-150-0908)		Wa	ater		Sampl	led: 09/2	23/08 16:45			
Diesel Range Hydr	ocarbons	NWTPH-Dx	0.193	0.0381	0.238	mg/l	1x	8129034	09/29/08 11:59	10/01/08 00:09	
Lube Oil Range Hy	vdrocarbons	"	0.127	0.0857	0.476	"	"	"	"	"	
Surrogate(s):	2-FBP			67.2%		53 - 125 %	"			"	
	Octacosane			80.5%		68 - 125 %	"			"	

TestAmerica Seattle

und Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation01140-204-0340Report Created:Halah Voges11/18/08 12:42

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) TestAmerica Seattle

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0382-08RE1 (5-W-16-0908)			Water			Sample	d: 09/23	/08 18:00			
Diesel Range Hydrocar	bons	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	10/01/08 00:31	
Lube Oil Range Hydro	carbons		ND	0.0849	0.472	"	"	"	"		
Surrogate(s): 2-	-FBP			60.9%		53 - 125 %	"			"	
C	Octacosane			79.6%		68 - 125 %	"			"	

TestAmerica Seattle

hund

Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134 Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation 01140-204-0340 Report Created: Halah Voges 11/18/08 12:42

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

				TestAm	enca sea	attie					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0382-01RE1	(5-W-20-0908)		Water Sampled: 09/2								
Diesel Range (SGC	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	09/30/08 20:48	
Lube Oil Range (SC	GCU)		ND	0.151	0.472	"	"	"	"	"	C
Surrogate(s):	2-FBP (SGCU)			74.0%		53 - 125 %	"			"	
	Octacosane (SGCU)			99.3%		68 - 125 %	"			"	
BRI0382-02RE1	(5-W-14-0908)		W	ater		Sampl	ed: 09/2	23/08 10:25			
Diesel Range (SGC	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	09/30/08 21:10	
Lube Oil Range (SC	GCU)		ND	0.151	0.472	"	"	"	"	"	C
Surrogate(s):	2-FBP (SGCU)			73.6%		53 - 125 %	"			"	
	Octacosane (SGCU)			91.7%		68 - 125 %	"			"	
BRI0382-03RE1	(5-W-17-0908)		W	ater		Sampl	ed: 09/2	23/08 11:40			
Diesel Range (SGC	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	09/30/08 21:32	
Lube Oil Range (SC	GCU)	"	ND	0.151	0.472	"	"	"	"	"	C
Surrogate(s):	2-FBP (SGCU)			74.9%		53 - 125 %	"			"	
	Octacosane (SGCU)			93.6%		68 - 125 %	"			"	
BRI0382-04RE1	(5-W-18-0908)		W	ater		Sampl	ed: 09/2	23/08 12:50			
Diesel Range (SGC	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	09/30/08 21:54	
Lube Oil Range (SC	GCU)	"	ND	0.151	0.472	"	"		"	"	C
Surrogate(s):	2-FBP (SGCU)			73.1%		53 - 125 %	"			"	
	Octacosane (SGCU)			90.6%		68 - 125 %	"			"	
BRI0382-05RE1	(5-W-19-0908)		W	ater		Sampl	ed: 09/2	23/08 14:35			
Diesel Range (SGC	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	09/30/08 22:17	
Lube Oil Range (SC	GCU)		ND	0.151	0.472	"	"	"	"	"	c
Surrogate(s):	2-FBP (SGCU)			75.9%		53 - 125 %	"			"	
	Octacosane (SGCU)			93.6%		68 - 125 %	"			"	
BRI0382-06RE1	(5-W-15-0908)		W	ater		Sampl	ed: 09/2	23/08 16:40			
Diesel Range (SGC	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	09/30/08 22:39	
Lube Oil Range (SC	GCU)	"	ND	0.151	0.472	"	"	"	"	"	C
Surrogate(s):	2-FBP (SGCU)			75.4%		53 - 125 %	"			"	
	Octacosane (SGCU)			91.9%		68 - 125 %	"			"	

TestAmerica Seattle

IN

Kate Haney, Project Manager

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation 01140-204-0340 Report Created: Halah Voges 11/18/08 12:42

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up TestAmerica Seattle

				i esta un	erieu bei	utite					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0382-07RE1 (5-W-150-0908)			Wa	Water			ed: 09/2	23/08 16:45			
Diesel Range (SGC	CU)	NWTPH-Dx	ND	0.0381	0.238	mg/l	1x	8129034	09/29/08 11:59	10/01/08 00:09	
Lube Oil Range (SC	GCU)	"	ND	0.152	0.476	"	"	"	"	"	C
Surrogate(s):	2-FBP (SGCU)			75.0%		53 - 125 %	"			"	
	Octacosane (SGCU)			91.9%		68 - 125 %	"			"	
BRI0382-08RE1	(5-W-16-0908)		Wa	ater		Sampl	ed: 09/2	23/08 18:00			
Diesel Range (SGC	U)	NWTPH-Dx	ND	0.0377	0.236	mg/l	1x	8129034	09/29/08 11:59	10/01/08 00:31	
Lube Oil Range (SC	GCU)	"	ND	0.151	0.472	"	"	"	"	"	C
Surrogate(s):	2-FBP (SGCU)			69.6%		53 - 125 %	"			"	
	Octacosane (SGCU)			90.9%		68 - 125 %	"			"	

TestAmerica Seattle

und

Kate Haney, Project Manager

ENSR International - Seatt	Project Nar	ne: E	BNSF-Skykomish Remedial Design Investigation											
1011 SW Klickitat Way, Suite	207			Project Nur	nber: 0	1140-2	204-0340	Report Create	ed:					
Seattle, WA 98134				Project Manager:			/oges						11/18/08 12	42
Somivolatila I	Dotroloum Dro	duate by N	WTDU D.	(w/o A air	l/Silian Cr			Labor	atom	Qualit	Con	tual Das	ulta	
Semivoratile 1	etroleum 110		•••• 11 II-Dx	TestAmeri	ca Seattle		an-up) -	Labor	atory	Quanty	y Con	u oi Kes	uits	
QC Batch: 8129034	Water	Preparation	n Method:	EPA 3520C	2									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8129034-BLK1)								Extr	acted:	09/29/08 1	1:59			
Lube Oil Range Hydrocarbons	NWTPH-Dx	0.119	0.0900	0.500	mg/l	1x							09/30/08 19:18	
Surrogate(s): 2-FBP Octacosane		Recovery:	68.3% 83.3%	Lir	nits: 53-125% 68-125%	" 5 "							09/30/08 19:18 "	
Blank (8129034-BLK3)								Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	0.0830	0.0400	0.250	mg/l	1x							10/01/08 07:13	į
Surrogate(s): 2-FBP Octacosane		Recovery:	82.1% 97.7%	Lir	nits: 53-125% 68-125%	" 5 "							10/01/08 07:13 "	
Blank (8129034-BLK4)								Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x							10/01/08 08:45	
Surrogate(s): 2-FBP Octacosane		Recovery:	87.0% 113%	Lii	mits: 53-125% 68-125%	" 5 "							10/01/08 14:19 "	
LCS (8129034-BS1)								Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	1.49	0.0400	0.250	mg/l	1x		2.00	74.4%	(61-132)			09/30/08 19:41	
Surrogate(s): 2-FBP Octacosane		Recovery:	71.8% 85.7%	Lin	mits: 53-125% 68-125%	" 5 "							09/30/08 19:41 "	
LCS (8129034-BS3)								Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	1.78	0.0400	0.250	mg/l	1x		2.00	88.9%	(61-132)			10/01/08 07:36	
Surrogate(s): 2-FBP Octacosane		Recovery:	88.1% 99.6%	Lir	mits: 53-125% 68-125%	" 5 "							10/01/08 07:36 "	
LCS (8129034-BS4)								Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	1.95	0.0400	0.250	mg/l	1x		2.00	97.6%	(61-132)			10/01/08 14:47	
Surrogate(s): 2-FBP Octacosane		Recovery:	85.8% 107%	Lii	nits: 53-125% 68-125%	" 5 "							10/01/08 14:47 "	
Matrix Spike (8I29034-MS1)				QC Source:	: BRI0382-05	RE1		Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	1.38	0.0377	0.236	mg/l	1x	ND	1.89	73.3%	(32-143)			09/30/08 20:03	
Surrogate(s): 2-FBP Octacosane		Recovery:	68.6% 84.7%	Lir	nits: 53-125% 68-125%	" 5 "							09/30/08 20:03 "	
Matrix Spike (8129034-MS3)				QC Source:	: BRI0382-05	RE1		Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrocarbons	NWTPH-Dx	1.62	0.0377	0.236	mg/l	1x	ND	1.89	85.8%	(32-143)			10/01/08 08:00	
Surrogate(s): 2-FBP		Recovery:	80.3%	Liı	nits: 53-125%	"							10/01/08 08:00	

TestAmerica Seattle

lung

Octacosane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

68-125% "

96.2%

THE LEADER IN ENVIRONMENTAL TESTING

ENSR Inter	ENSR International - Seattle				Project Nam	ne:	BNSF-	Skykomi	ish Rer	nedia	l Design	Inve	stigatio	n	
1011 SW K	lickitat Way, Suite 20	7			Project Num	nber:	01140-2	04-0340						Report Create	ed:
Seattle, WA	98134				Project Man	ager:	Halah V	oges						11/18/08 12:	42
	Semivolatile Petr	oleum Pro	ducts by I	NWTPH-Dx	(w/o Acid TestAmeric	/ Silica C ca Seattle	Gel Clea	n-up) -	Labor	atory	v Quality	y Con	trol Re	sults	
QC Batc	h: 8129034	Water 1	Preparation	n Method: 1	EPA 3520C										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Matrix Spike	(8I29034-MS4)				QC Source:	BRI0382-	05RE1		Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrod	carbons	NWTPH-Dx	1.91	0.0377	0.236	mg/l	1x	ND	1.89	101%	(32-143)			10/01/08 15:16	
Surrogate(s):	2-FBP		Recovery:	86.5%	Lim	nits: 53-125	% "							10/01/08 15:16	
	Octacosane			110%		68-125	% "							"	
Matrix Spike D	0up (8I29034-MSD1)			QC Source:	BRI0382-	05RE1		Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrod	carbons	NWTPH-Dx	1.42	0.0377	0.236	mg/l	1x	ND	1.89	75.1%	(32-143)	2.42	% (40)	09/30/08 20:25	
Surrogate(s):	2-FBP		Recovery:	68.7%	Lim	nits: 53-125	% "							09/30/08 20:25	
	Octacosane			84.4%		68-125	% "							"	
Matrix Spike D	0up (8129034-MSD3)			QC Source:	BRI0382-	05RE1		Extr	acted:	09/29/08 1	1:59			
Diesel Range Hydrod	carbons	NWTPH-Dx	1.72	0.0377	0.236	mg/l	1x	ND	1.89	91.4%	(32-143)	6.33	% (40)	10/01/08 08:24	
Surrogate(s):	2-FBP		Recovery:	85.8%	Lim	nits: 53-125	% "							10/01/08 08:24	
	Octacosane			102%		68-125	% "							"	
Matrix Spike D	1atrix Spike Dup (8129034-MSD4)			QC Source:	BRI0382-(05RE1		Extr	acted:	09/29/08 1	1:59				
Diesel Range Hydrod	carbons	NWTPH-Dx	1.61	0.0377	0.236	mg/l	1x	ND	1.89	85.3%	(32-143)	17.19	(40)	10/01/08 10:10	
Surrogate(s):	2-FBP		Recovery:	73.1%	Lim	nits: 53-125	% "							10/01/08 10:10	
	Octacosane			91.9%		68-125	5% "							"	

TestAmerica Seattle

hung Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

Octacosane (SGCU)

ENSR International - Seattl	INSR International - Seattle				me: I	BNSF-	Skykomi	sh Rer	nedia	BNSF-Skykomish Remedial Design Investigation								
1011 SW Klickitat Way, Suite	207			Project Nu	mber: (01140-2	04-0340						Report Create	ed:				
Seattle, WA 98134				Project Ma	inager: H	Ialah V	oges						11/18/08 12:	:42				
Semivolatile P	etroleum Pro	ducts by I	NWTPH-Dy	x with Ac TestAmer	id/Silica G ica Seattle	el Cle	an-up -	Labor	atory	Quality	Cont	trol Res	ults					
QC Batch: 8129034	Water I	Preparation	n Method:	EPA 35200	C													
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes				
Blank (8129034-BLK2)								Ext	racted:	09/29/08 11	:59							
Diesel Range (SGCU)	NWTPH-Dx	ND	0.0400	0.250	mg/l	1x							09/30/08 19:18					
Lube Oil Range (SGCU)		ND	0.160	0.500		"							"	C				
Surrogate(s): 2-FBP (SGCU) Octacosane (SGCU)		Recovery:	75.1% 90.9%	Li	imits: 53-125% 68-125%	6 " 6 "							09/30/08 19:18 "					
LCS (8I29034-BS2)								Ext	racted:	09/29/08 11	:59							
Diesel Range (SGCU)	NWTPH-Dx	1.52	0.0400	0.250	mg/l	1x		2.00	75.8%	(61-132)			09/30/08 19:41					
Surrogate(s): 2-FBP (SGCU)		Recovery:	79.4%	Li	imits: 53-125%	<u>,</u> "							09/30/08 19:41					

Matrix Spike (8129034-MS2) QC Source: BRI0382-05RE1 Extracted: 09/29/08 11:59														
Diesel Range (SGCU	J)	NWTPH-Dx	1.56	0.0377	0.236	mg/l	1x	ND	1.89	82.5%	(32-143)			09/30/08 20:03
Surrogate(s):	2-FBP (SGCU)		Recovery:	82.5%	Lin	nits: 53-125	% "							09/30/08 20:03
	Octacosane (SGCU)			95.1%		68-12	5% "							"
Matrix Spike D	oup (8129034-MSD2			QC Source:	BRI0382-	05RE1		Ext	racted:	09/29/08 11:	59			
Diesel Range (SGCU	J)	NWTPH-Dx	1.58	0.0377	0.236	mg/l	lx	ND	1.89	83.8%	(32-143)	1.52%	(40)	09/30/08 20:25

88.0%

68-125% "

Surrogate(s):	2-FBP (SGCU)	Recovery:	83.7%	Limits: 53-125%	"	09/30/08 20:25
	Octacosane (SGCU)		96.3%	68-125%	"	"

TestAmerica Seattle

hung Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

"

THE LEADER IN ENVIRONMENTAL TESTING

ENSR International - Seattle	Project Name:	BNSF-Skykomish Remedial Design Investigation	
1011 SW Klickitat Way, Suite 207	Project Number:	01140-204-0340	Report Created:
Seattle, WA 98134	Project Manager:	Halah Voges	11/18/08 12:42

CERTIFICATION SUMMARY

TestAmerica Seattle

Method	Matrix	Nelac	Washington		
NWTPH-Dx	Water		Х		

Any abnormalities or departures from sample acceptance policy shall be documented on the 'Sample Receipt and Temperature Log Form' and 'Sample Non-conformance Form' (if applicable) included with this report.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

Samples collected by TestAmerica Field Services personnel are noted on the Chain of Custody (COC).

TestAmerica Seattle

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

ENSR International - Seattle

1011 SW Klickitat Way, Suite 207 Seattle, WA 98134

Project Name: Project Number: Project Manager:

BNSF-Skykomish Remedial Design Investigation 01140-204-0340 Halah Voges

Report Created: 11/18/08 12:42

Notes and Definitions Report Specific Notes: С Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted. J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability. Q12 Detected hydrocarbons in the diesel range do not have a distinct diesel pattern and may be due to heavily weathered diesel or possibly biogenic interference. O3 The chromatographic pattern is not consistent with diesel fuel. Laboratory Reporting Conventions: DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). NR/NA Not Reported / Not Available Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis. RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results. Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data. Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable. Electronic Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.

Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

in

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

CHAIN OF CUSTODY BNSF PROJECT INFORMATION	Laboratory: Address: City/State/ZIP:	est An	node					Project Ma	nager:						0.0000		
RAILWAY CHAIN OF CUSTODY BNSF PROJECT INFORMATION F Project Number:	A ddress:	+70 10	idress: 11270 March (Car					Dhana									
CHAIN OF CUSTODY BNSF PROJECT INFORMATION	City/State/ZiP:	ity/state/ZIP: Rothall WA 9801					Ste A	Phone:	(42	5)4	+20-	9200	Shipme	nt Method:	Ha	nd do	Tivered
BNSF PROJECT INFORMATION		othell	WA	9801				Fax:		<u>,,,</u>			Trackin	g Number:			• • • • • • • • • • • • • • • • • • • •
F Project Number:	Project State of C	Drigin:			•		C	ONSULT	NT INFO	RMATIC	N		Project Number: 01140-204-0340				
	Project City:	Kykom	Jeh		Company: ENSR						Project Manager: Halah Vogos						
F Project Name: Skykamish			+ 0		Address:	IDI	SK	VK	licki	tat h	Jav s	12 207	Email:				J
F Contact: Bay CO. She age cd	BINSE Work Ord	PO-H	08		City/State/	So	att-lo	h	IA	98	134		Phone	06)6	24-934	-9 70	6)624-28
	DE	LIVERABLES		Other De	liverables	?	* • •			METH	IODS FOR	ANALYSI	5				1
1-day Rush 5- to 8-day Rush	BNSF Sta	ndard (Level II)															
2-day Rush Standard 10-Day	Level III		\mathbf{X}	EDD Red	q, Formati	7			\mathbf{v}								
3-day Rush Other	Level IV			RE	FEL	-Eq	ws_	XX	4								
SAM		ATION						ΗY	73								
		Samp	e Collection		Filtered	Туре		et v	Ev			1					1
Sample identification	Containers	Date	Time	Sampler	Y/N	(Comp/ Grab)	Matrix	MN	E 3	,					сом	MENTS	LAB USE
5h/ 122 - DANS	4	Atz Inc	NATS	65	N		W	$\overrightarrow{\mathbf{x}}$	\mathbf{X}								-01
	A	y - 2 08	1175	- i			1	X	\times								-02
			1140					Ŕ	\mathbf{X}					1			-13
			17:00		\square	1	<u> </u>	152	\mathbf{X}					1	1	1	1-14
	12		1435	14		1	\uparrow	K	\mathbf{X}						Extra	Sample	b -05
-1-15-			1640			1		X	\mathbf{X}						1 Como		-06
			1645	<u> -</u>		1	\uparrow	X	\mathbf{x}								-07
		V V	NOD	1	IJ	1	$ \Psi $	\mathbf{X}	$\overline{\mathbf{x}}$								1-08
	4-	•	1000						\sim								1-00
					1		1										
					+	+		1							1		
	+			+			+	1							+		+
					+	1	-				<u> </u>				1		+
				1		+	+				$\left \right $			-			+
Jingotaped By:	Date/Jime:	al 0:20	Received By:	H.J.	1	The	1	1	1	Date/Time			nments ar	d Specia	I Analytical	Requiremen	is: 1
The street By	yz40	<u> 1.10</u>	Received By:	M	Jam	- per cr				Date/Time	100 7		560	4 -	Siller	gel	Cleaning
linquished By:	Date/Time:		Received By:						·····	Date/Time	B:					•	νų
sceived by Laboratory:	Date/Time:		Lab Remarks:							Lab: Custe	ody intact?	Cust	ody Seal No.:			BNSF COC N	o :
RIGINAL - RETURN TO LABORATORY WITH SAMPLES			1	C	UPLICAT	E - CONS	ULTANT				res 📙	No		,	$\overline{\sigma}$, (7		Rev 10/0

TAT	Paperwork to	o PM – Date: Tir	me:	Non-Conformances?
Page Time & Initials:	·			Circle Y or N
J				(If Y, see other side)
	TEST AMERICA S	AMPLE RECEIPT (CHECKLIST	0 -
Received By:	Logged-in By:	Unpacked/Labeled E	By: Coole	r10: BR F0382
Date: 9/2-4	Date 9/24	Date: 1/24/08	Work Order N	0
Time: 0920	Time: 1720	Time: 1800	Client:	
	Initials:	Initials: F.L.	Project:	
Contain <u>er Type:</u>	<u> </u>	Seals:	Packing-Mater	ial
Cooler	Ship Container	Sign By	Bubble B	Bags Styrofoam
Box	On Bottles	Date	Foam Pa	acks
None/Other		None	None/Ot	her
Refrigerant:			Received Via: Fed Fy	Bill#
				TA Courier
			DHL	Mid Valley
	·		Senvoy	TDP
			GS	Other
Cooler Temperature (//	R): °C Plastic GI	ass (Frozen filters, Te	edlars and aqueor	us Metals exempt)
Temperature Blank? _	(circle on °C or NA	e) 5.7,5.9,4-9,	5.0, 5.0,	Blank? Y or N or A
BP, OPLC,ARCO-Tem (initial/date/time): Comments:	perature monitoring eve	ry 15 minutes:		
Sample Containers:	ID			
Intact?	@ or N	Metals Preserv	red? Y c	or N or NA
Provided by TA?	Ø or N	Client QAPP P	reserved? Y (or Nor NA
Correct Type?	0 or N	Adequate Volu	me?	ν N
#Containers match CO	C? (for N	Water VOAs: 1	Headspace? Y o	or Nor
IDs/time/date match C	DC? Y or 🔗	Comments:		
Hold Times in hold?	(or N		<u> </u>	
PROJECT MANAGEM	IENT	、		
Is the Chain of Custod	complete?		Y or N if N, σ	ircle the items that were incomplete
Comments,Problems_				
	· · · · · · · · · · · · · · · · · · ·			
······································				
Total access set up? Has client been contacted re	garding non-conformances?		Y or N Y or N ⊥!fY.	
PM initiais:	Date:	Time:		

.

.

NOTIFICATION OF DISCREPANCY

DA	DATE: 4/24/08 TIME: 1905 PM: K.H	SC INITIALS: <u>FL</u>
Rus	Rush/Short Hold? 🛛 Yes 🖾 No	
	 Project Not Set Up in ELM Analysis Requested on COC – Not Listed for Projec 	□ COC Received ON HOLD t in ELM
	PM To Add Analysis: Clarification of Analysis: Hold Time Expired: (Analysis) Turnaround Time Not Checked: Did Not Receive Sample(s) Listed on COC:	
	Received Extra Sample(s) Not Listed on COC:	
۲ کلا	Sample Container has 1035 for 5-w-14, COC	has 1025, Logged-in per COC
	Improper Preservative For method: Sample Received Broken: Insufficient Sample Volume: Sample preserved upon receipt:	
	 Temperature Outside recommended range (4°C±2° Received on-ice within 4 hours of collection, tem acceptable. Other: 	C): perature between ambient to 2°C
PR	PROJECT MANAGER RESOLUTION:	(Date & Time when returned to SC)
Aŗ	Approval By: Date:	Time:

Appendix C

Data Validation Reports

May 19, 2008

Organic Data Verification Report

BNSF Skykomish Sitewide Groundwater Monitoring Groundwater with Water QC Samples Test America, Inc. data March 2008

Prepared By Sue Milcan Environmental Scientist/Quality Assurance Manager

ENSR Corporation May 2008 Document No.: 01140-204-0340

Overview

The samples analyzed for the BNSF Skykomish Sitewide Groundwater Monitoring sampling effort from March 2008 are listed in the Table of Samples Analyzed (page 2). Data verification was performed on a total of thirty eight groundwater samples and one equipment rinse blank water QC sample.

Samples were analyzed by TestAmerica, Inc. of Bothell, WA. The verified analysis was Diesel Range Hydrocarbons (DRH) and Lube Oil Range Hydrocarbons (LORH) by WDOE method NWTPH-Dx (with or without Acid/Silica Gel cleanup).

The ENSR Analytical Data Verification Checklist is presented as pages 3-7. Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review, document number EPA540/R-99/008 of October 1999 and the USEPA CLP National Functional Guidelines for Superfund Organic Methods Data Review, document number USEPA-540-R-07-003, July 2007, as they applied to the reported methodology. Washington State Department of Ecology (WDOE) methods were also reviewed as per WDOE Analytical Methods for Petroleum Hydrocarbons, ECY 97-602 of June 1997. Field duplicate RPD review and applicable control limits were taken from the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, December 1996.

The following data components were reviewed during the data verification procedure:

Submitted Deliverables
Chain-of-Custody form(s) and sample integrity
Case Narrative and assigned laboratory flags
Sample results (including holding times, reporting limits, dilutions)
Method Blank results
LCS (blank spike) results
MS, MSD (matrix spike/matrix spike duplicate) results
Surrogate recoveries
Laboratory Duplicate results
Field Duplicate RPDs (calculated)
Equipment Rinse Blank results
Electronic data deliverable (EDD) file

Data Verification Qualifiers Assigned During this Review

J estimated concentration

Assigned qualifiers are detailed in the ENSR Analytical Data Verification Checklist and are summarized in the Table of Qualified Analytical Results (page 8).

Overall Data Assessment

Precision, accuracy, method compliance, and completeness of the data set have been determined to be acceptable, based on the data provided. There were no rejected or missing data points associated with this data set. The data are suitable for their intended use with the qualifications and clarifications noted.

Table of Samples Analyzed BNSF Skykomish – Sitewide Groundwater Monitoring Groundwater with Water QC Samples TestAmerica (Bothell, WA) Laboratory Report BRC0418 March 2008

Matrix	Sample ID		Sample Date	and Time	Lab SDG	Lab Sample ID
Groundwater	2A-W-11-0308		3/24/2008	15:10	BRC0418	BRC0418-01
Groundwater	1C-W-4-0308		3/24/2008	15:30	BRC0418	BRC0418-02
Groundwater	1C-W-3-0308		3/24/2008	15:45	BRC0418	BRC0418-03
Groundwater	5-W-14-0308		3/25/2008	09:10	BRC0418	BRC0418-04
Groundwater	5-W-15-0308		3/25/2008	09:55	BRC0418	BRC0418-05
Groundwater	5-W-16-0308		3/25/2008	10:50	BRC0418	BRC0418-06
Groundwater	5-W-160-0308	5-W-16-0308 Dup	3/25/2008	10:50	BRC0418	BRC0418-07
Groundwater	5-W-17-0308		3/25/2008	11:35	BRC0418	BRC0418-08
Groundwater	1B-W-1-0308		3/25/2008	13:05	BRC0418	BRC0418-09
Groundwater	1A-W-3-0308		3/25/2008	13:35	BRC0418	BRC0418-10
Groundwater	5-W-18-0308		3/25/2008	14:20	BRC0418	BRC0418-11
Groundwater	5-W-19-0308		3/25/2008	15:05	BRC0418	BRC0418-12
Groundwater	5-W-20-0308		3/25/2008	16:10	BRC0418	BRC0418-13
Water QC	MW-500-0308	Equipment Rinse Blank	3/25/2008	16:25	BRC0418	BRC0418-14
Groundwater	1A-W-1-0308		3/25/2008	09:40	BRC0418	BRC0418-15
Groundwater	1A-W-4-0308		3/25/2008	10:50	BRC0418	BRC0418-16
Groundwater	1B-W-2-0308		3/25/2008	12:20	BRC0418	BRC0418-17
Groundwater	2B-W-4-0308		3/25/2008	14:45	BRC0418	BRC0418-18
Groundwater	MW-35-0308		3/25/2008	16:05	BRC0418	BRC0418-19
Groundwater	1B-W-3-0308		3/25/2008	17:50	BRC0418	BRC0418-20
Groundwater	1C-W-2-0308		3/25/2008	08:50	BRC0418	BRC0418-21
Groundwater	MW-34-0308		3/25/2008	09:25	BRC0418	BRC0418-22
Groundwater	1C-W-1-0308		3/25/2008	10:10	BRC0418	BRC0418-23
Groundwater	5-W-4-0308		3/25/2008	11:00	BRC0418	BRC0418-24
Groundwater	5-W-40-0308	5-W-4-0308 Dup	3/25/2008	11:00	BRC0418	BRC0418-25
Groundwater	MW-38-0308		3/25/2008	13:10	BRC0418	BRC0418-26
Groundwater	1A-W-5-0308		3/25/2008	14:00	BRC0418	BRC0418-27
Groundwater	MW-16-0308		3/25/2008	14:45	BRC0418	BRC0418-28
Groundwater	2A-W-9-0308		3/25/2008	15:45	BRC0418	BRC0418-29
Groundwater	2A-W-10-0308		3/25/2008	16:20	BRC0418	BRC0418-30
Groundwater	2A-W-1-0308		3/26/2008	09:00	BRC0418	BRC0418-31
Groundwater	2A-W-100-0308	2A-W-1-0308 Dup	3/26/2008	09:00	BRC0418	BRC0418-32
Groundwater	MW-3-0308		3/26/2008	09:50	BRC0418	BRC0418-33
Groundwater	MW-4-0308		3/26/2008	10:35	BRC0418	BRC0418-34
Groundwater	MW-39-0308		3/26/2008	11:05	BRC0418	BRC0418-35
Groundwater	MW-37-0308		3/26/2008	09:30	BRC0418	BRC0418-36
Groundwater	2A-W-6-0308		3/26/2008	10:45	BRC0418	BRC0418-37
Groundwater	2A-W-60-0308	2A-W-6-0308 Dup	3/26/2008	10:45	BRC0418	BRC0418-38
Groundwater	MW-19-0308		3/26/2008	11:20	BRC0418	BRC0418-39

Project Name: BNSF Skykomish	I	Laboratory: TestAmerica, Inc., Bothell, WA									
Project Reference: Sitewide Groundwater Monitoring	3	Sample Matrix:	Gro	undwater with W	ater QC	samples					
ENSR Project: 01140-204-0340	\$	Sample Start Date: 03/24/2008									
Verified By/Date Verified: Sue Milcan 05/19/2008 (completed)	:	Sample End Da	ate: (03/26/2008							
Samples Analyzed: see Table of Samples Analyzed, BNSF Skykomish - Sitewide Groundwater Monitoring, Groundwater with Water QC Samples, March 2008 (page 2).											
Parameters Verified:											
Diesel Range Hydrocarbons (DRH) and Lube Oil Range Hydrocarbons (LORH) by WDOE method NWTPH-Dx (with or without Acid/Silica Gel cleanup).											
Not all samples were scheduled for analysis with clean-up. Refer to the COC records for the exact analyses requested for each sample.											
Laboratory Project ID (SDG): BRC0418											
PRECISION, ACCURACY, METHOD COM	PLIAN	ICE, AND COI	MPLE	ETENESS ASSE	SSMEN	Г					
Precision:	Х	Acceptable		Unacceptable	SM	Initials					
determined by comparison of field duplicate sample results. Laboratory precision was determined by examination of laboratory duplicate results. Evaluation of field and laboratory duplicates for precision was done using the Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. RPD precision measurements were compared to EPA published and/or laboratory control-charted QC limits. No data require qualification based on these measurements and overall field and laboratory precision is acceptable. Precision measurements are reviewed in items 17 and 21											
Accuracy:	Х	Acceptable		Unacceptable	SM	Initials					
Comments: Field accuracy, a measure of the sampling bias, was determined by reviewing equipment rinse blank results for evidence of contamination stemming from field activities. Laboratory accuracy is a measure of the system bias, and was measured by evaluating laboratory control sample (LCS), matrix spike and matrix spike duplicate (MS, MSD), and organic system monitoring compound (surrogate) percent recoveries (%Rs). LCS %Rs demonstrated overall analytical performance. MS, MSD %Rs provided information on sample matrix interferences. System monitoring compound or surrogate recoveries measured system performance and efficiency during organic analysis. %Rs were compared to EPA published and/or laboratory control charted QC limits. No data require qualification based on these measurements, and overall field and laboratory accuracy is acceptable. Accuracy measurements are reviewed in items 12, 14, 15, 16, and 20.											
Method Compliance:	Х	Acceptable		Unacceptable	SM	Initials					
Comments: For this data set, method compliance was determined by evaluating sample integrity, holding time, reporting limits, and laboratory blanks against method specified requirements. Although some data require qualification based on detection below the practical quantitation limit/reporting limit (see item 6), overall method compliance is acceptable, based on the data submitted, since a majority of the data are unqualified and no data points are rejected based on these measurements. Method compliance measurements are reviewed in items 4, 6, 8, 11, 13, 18, 19, 20, and 22.											

Completeness:	X	Acc	eptable		Unad	ceptable	SM	Initials	
Comments: Completeness is the overall ratio of the number of samples planned versus the number of samples with valid analyses. Completeness goals were set at 90-100%. Determination of completeness during this data verification procedure included a review of chain of custody records, laboratory analytical methods and detection limits, laboratory case narratives, and project requirements. Completeness also included 100% review of the laboratory sample data results and QC summary reports. The electronic data deliverable file (EDD) was QA'd 100% for positive target analytes and reporting limits. EDD corrections/additions were made by the data validator during this review procedure as outlined in item 23.									
All of the data received were useable, some with qualification. Since no data points were missing or rejected, completeness of the data set was calculated to be 100% and is compliant.									
VERIFICATION CRITERIA CHECK									
Data verification qualifiers assigned in this review:									
J estimated concentration									
The following comments identifying sample results requiring qualification are in bold type. The other comments are of interest, but qualification of the sample results is not necessary.									
Refer to the table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 8).									
 Did the laboratory identify any non- conformances related to the analytical results? 			Yes)	K	No	SM	Initials	
Comments: There were no problems noted in the provided case narrative. Any assigned laboratory flags were reviewed during the verification procedure.									
Data qualification, if any, related to the assigned labor	oratory	data	flags are	discu	ussed	in the foll	owing sec	tions.	
2. Were sample Chain-of-Custody forms complete?	Х		Yes			No	SM	Initials	
Comments: The COC records from field to laboratory by field and laboratory personnel signatures, and lab	/ were oratory	comp y date	plete, and e and time	l custo e of sa	ody w ample	as mainta receipt.	ined as ev	videnced	
3. Were all the analyses requested for the samples on the COCs completed by the laboratory?	Х	,	Yes			No	SM	Initials	
Comments: All requested analyses as documented	on the	origir	nal COCs	s were	e comp	oleted.			
4. Were samples received in good condition and at the appropriate temperature?	х		Yes			No	SM	Initials	
Comments: All samples were received intact and in g as noted on the signed and accepted COC records,	good c and in	onditi the c	on with a ase narra	iccept ative c	able c	cooler tem ents.	peratures	of 5.9°C	
5. Were the reported analytical methods in compliance with WP/QAPP, permit, or COC?	Х		Yes			No	SM	Initials	
Comments: The reported method met the COC request or else is in compliance with the parameters requested and the sample matrix.									

6. Were detection limits in accordance with WP/QAPP, permit, or method?	X	Yes		No	SM	Initials				
Comments: The reporting limits (RLs) are achievable undiluted levels.	e by the qu	oted meth	od. All sam	nples wer	e reported	lat				
Sample results reported at concentrations \geq the method detection limit (MDL) but < the practical quantitation limit or method reporting limit (PQL/MRL), require J qualifiers to indicate estimated concentrations. The analyte cannot be accurately quantitated at this trace concentration level.										
Refer to the table of Qualified Analytical Results concentrations qualified (page 8).	for a listin	g of the s	amples, ar	nalytes, a	and					
7. Do the laboratory reports include only those constituents requested to be reported for a specific analytical method?	X	Yes		No	SM	Initials				
Comments: Only analytes applicable to the requested method were reported.										
8. Were sample holding times met?	X	Yes		No	SM	Initials				
Comments: The method-required extraction and analytical holding time was met for all submitted sample data.										
9. Were correct concentration units reported?	X	Yes		No	SM	Initials				
Comments: All results were reported as mg/L (ppm).										
10. Were the reporting requirements for flagged data met?	X	Yes		No	SM	Initials				
Comments: Data verification qualifiers override any assigned laboratory data flags.										
11. Were laboratory blank samples free of target analyte contamination?	X	Yes		No	SM	Initials				
Comments: Supplied laboratory method blanks were	e free of tar	get analyte	e contamina	ation.						
12. Were trip blank, field blank, and/or equipment rinse blank samples free of target analyte contamination?	X	Yes		No	SM	Initials				
Comments: The submitted equipment rinse blank sa contamination. Field blank and trip blank samples w	imple, MW- vere not sul	500-0308 pmitted/no	, was free o t required fo	of target a or this da	inalyte ta set.					
13. Were instrument calibrations within method or data validation control limits?		Yes		No	SM	Initials				
Comments: Not applicable for this level of data verifi analytical laboratory reports and were therefore not	ication – In included in	strument o this data i	alibration d review.	lata were	not suppl	ied in				
14. Were surrogate recoveries within control limits?	X	Yes		No	SM	Initials				
Comments: Reported surrogate %Rs for organic an all project samples and associated QC samples.	alyses wer	e within la	boratory co	ntrol-cha	rted QC lir	nits for				
15. Were laboratory control sample recoveries within control limits?	X	Yes		No	SM	Initials				
Comments: Reported LCS recoveries were within data validation QC limits (70-130% for organics) for all target analytes, or were within laboratory control-charted QC limits for organic target analytes as allowed for SW-846 organic methods.										

							1			
16. Were matrix spike recoveries within control limits?		X	Yes		No	SM	Initials			
Comments: Project specif QC limits.	ic MS and MSD recoveries	for target	analytes w	ere within	laboratory	/ control-c	harted			
17. Were duplicate RPDs %Ds within control limits?	and/or serial dilution	X	Yes		No	SM	Initials			
Comments: Laboratory RPDs for target analytes in project-specific MS/MSD samples were within data validation QC limits of 0-20%.										
Serial Dilution %D data for metals analysis is not applicable for this level of data verification or for the analytical method reported.										
18. Were organic system met?	18. Were organic system performance criteria met?				No	SM	Initials			
Comments: Not applicable for this level of data verification – Organic system performance data were not supplied in analytical laboratory reports and were therefore not included in this data review.										
19. Were internal standards within method criteria for GC/MS sample analyses?			Yes		No	SM	Initials			
Comments: Not applicabl	e for this level of data verifi	cation or f	or the anal	tical met/	nod reporte	əd.				
20. Were inorganic system performance criteria met?			Yes		No	SM	Initials			
Comments: Not applicable for this level of data verification or for the analytical method reported.										
21. Were blind field duplicates collected? If so, discuss the precision (RPD) of the results.		X	Yes		No	SM	Initials			
Field Duplicates for metho	od NWTPH-Dx (without clea	anup):								
Duplicate Sample No.	2A-W-100-0308	Pr	Primary Sample No.		2/	A-W-1-030	8			
Duplicate Sample No.	2A-W-60-0308	Pr	Primary Sample No.		2A-W-6-0308		18			
Duplicate Sample No.	5-W-40-0308	Pr	mary Sam	ple No.	5	-W-4-0308	3			
Duplicate Sample No.	5-W-160-0308	Pr	mary Sam	ple No.	5-	W-16-030	8			
Field Duplicates for metho	od NWTPH-Dx (with A/SG	cleanup):								
Duplicate Sample No.	5-W-160-0308	Pr	mary Sam	ple No.	5-	W-16-030	8			
Comments: Field duplicate RPDs were within data validation QC limits of 0-30% for water matrices, or RPDs were not applicable due to results that were undetected in both samples. Field duplicate and native sample concentrations that were both undetected are not reflected in the table below since RPDs are not applicable. The following RPDs were calculated:										
Method Units	Analyte 2A	-W-1-0308	2A-	W-100-03	08 F	RPD G	lualifiers			
NWTPH-Dx mg/L		1.53		1.49		2.6				
עירידיע װואַע װואַע װואַע װואַע װואַע װואַע ו	LUKI	0.003		100.0		3.0				
Continued on next page										

Method	Units	Analyte	2A-W-6-0308	2A-W-60-0308	RPD	
NWTPH-Dx	mg/L	DRH	2.54	2.52	0.8	
NWTPH-Dx	mg/L	LORH	0.497	0.481	3.3	
Method	Units	Analyte	5-W-4-0308	5-W-40-0308	RPD	
NWTPH-Dx	mg/L	DRH	0.188	0.211	11.5	
NWTPH-Dx	mg/L	LORH	0.175	0.188	7.2	

22. Were qualitative criteria for organic target analyte identification met?	X- laboratory comment	Yes	No	SM	Initials
					1

Comments: Not applicable for this level of data verification – Chromatograms, library searches, and quantitation reports were not supplied in analytical laboratory reports and were therefore not included in this data review. However, GC/MS quantitation reports and chromatograms were reviewed by trained laboratory personnel in accordance with the laboratory's internal QA/QC program.

No identification/quantitation flags were assigned by the laboratory, but the following notations were made:

The reported DRH results in samples MW-35-0308, 1C-W-1-0308, 2A-W-9-0308, 2A-W-1-0308, 2A-W-100-0308, MW-39-0308, MW-37-0308, 2A-W-6-0308, 2A-W-60-0308, and the reported LORH results in samples 2A-W-9-0308, 2A-W-1-0308, 2A-W-100-0308, 2A-W-60-0308, 2A-W-60-0308 were identified by the laboratory as having hydrocarbon patterns most closely resembling transformer oil.

23. Were 100% of the EDD concentrations and	Х	Yes	No	SM	Initials
reporting limits compared to the hardcopy data					
reports?					

Comments: 100% EDD QA/QC of positive concentrations and RLs was done as part of this data verification procedure. The following changes were made to the EDD file during data verification:

Significant figures were resolved with hardcopy entries (per validation protocol, the hardcopy results were chosen as the correct results). The sample_matrix_code was changed from WG (groundwater) to WQ (water QC) for the equipment rinse blank sample, MW-500-0308, to more accurately reflect the sample matrix.

The ENSR project manager was informed of all changes made to the EDD file via this Checklist. The EDD file, with corrections and data validation qualifiers and reason codes added, was returned to the project manager and database manager in Seattle, WA on 05/19/2008.

24. General Comments: Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review, document number EPA540/R-99/008 of October 1999 and the USEPA CLP National Functional Guidelines for Superfund Organic Methods Data Review, document number USEPA-540-R-07-003, July 2007, as they applied to the reported methodology. Washington State Department of Ecology (WDOE) methods were also reviewed as per WDOE Analytical Methods for Petroleum Hydrocarbons, ECY 97-602 of June 1997. Field duplicate RPD review and applicable control limits were taken from the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, December 1996.

Refer to the table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 8).

Table of Qualified Analytical Results BNSF Skykomish – Sitewide Groundwater Monitoring Groundwater with Water QC Samples TestAmerica (Bothell, WA) Laboratory Report BRC0418 March 2008

Sample ID	Lab ID	Method	Dilution Facto	r (QC Batch	Analyte	Concentrat	ion	Qualifier	Reason Code
Qualified, Repor	rtable Groundwat	er data:								
1C-W-4-0308	BRC0418-02	NWTPH-D	x 1	8	3C28014	DRH	0.174	mg/	ΊLJ	< MRL
1C-W-4-0308	BRC0418-02	NWTPH-D	x 1	8	3C28014	LORH	0.111	mg/	ĽJ	< MRL
5-W-15-0308	BRC0418-05	NWTPH-D	x 1	8	3C28014	LORH	0.153	mg/	ĽJ	< MRL
5-W-18-0308	BRC0418-11	NWTPH-D	x 1	8	3C28014	LORH	0.362	mg/	ĽJ	< MRL
5-W-18-0308	BRC0418-11	NWTPH-D	x A/SG 1	8	3C28014	DRH	0.0446	mg/	ĽJ	< MRL
5-W-20-0308	BRC0418-13	NWTPH-D	x 1	8	3C28014	LORH	0.326	mg/	ĽJ	< MRL
5-W-20-0308	BRC0418-13	NWTPH-D	x A/SG 1	8	3C28014	DRH	0.0396	mg/	ĽJ	< MRL
1A-W-1-0308	BRC0418-15	NWTPH-D	x 1	8	3C28014	DRH	0.183	mg/	ĽJ	< MRL
1B-W-2-0308	BRC0418-17	NWTPH-D	x 1	8	3C28014	DRH	0.175	mg/	ĽJ	< MRL
1B-W-2-0308	BRC0418-17	NWTPH-D	x 1	8	3C28014	LORH	0.118	mg/	ΊLJ	< MRL
MW-35-0308	BRC0418-19	NWTPH-D	x 1	8	3C28015	LORH	0.357	mg/	ĽJ	< MRL
1B-W-3-0308	BRC0418-20	NWTPH-D	x 1	8	3C28014	DRH	0.116	mg/	ĽJ	< MRL
1B-W-3-0308	BRC0418-20	NWTPH-D	x 1	8	3C28014	LORH	0.0960	mg/	ĽJ	< MRL
MW-34-0308	BRC0418-22	NWTPH-D	x 1	8	3C28015	DRH	0.0808	mg/	ĽJ	< MRL
1C-W-1-0308	BRC0418-23	NWTPH-D	x 1	8	3C28015	LORH	0.170	mg/	ĽJ	< MRL
5-W-4-0308	BRC0418-24	NWTPH-D	x 1	8	3C28015	DRH	0.188	mg/	ΊLJ	< MRL
5-W-4-0308	BRC0418-24	NWTPH-D	x 1	8	3C28015	LORH	0.175	mg/	ΊLJ	< MRL
5-W-40-0308	BRC0418-25	NWTPH-D	x 1	8	3C28015	DRH	0.211	mg/	ΊLJ	< MRL
5-W-40-0308	BRC0418-25	NWTPH-D	x 1	8	3C28015	LORH	0.188	mg/	ĽJ	< MRL
MW-38-0308	BRC0418-26	NWTPH-D	x 1	8	3C28015	DRH	0.0840	mg/	ΊLJ	< MRL
2A-W-10-0308	BRC0418-30	NWTPH-D	x 1	8	3C28015	DRH	0.136	mg/	ĽJ	< MRL
2A-W-10-0308	BRC0418-30	NWTPH-D	x 1	8	3C28015	LORH	0.245	mg/	ĽJ	< MRL
MW-4-0308	BRC0418-34	NWTPH-D	x 1	8	3C28015	DRH	0.0812	mg/	ĽJ	< MRL
MW-4-0308	BRC0418-34	NWTPH-D	x 1	8	3C28015	LORH	0.119	mg/	ĽJ	< MRL
MW-39-0308	BRC0418-35	NWTPH-D	x 1	8	3C28015	LORH	0.222	mg/	ĽJ	< MRL
MW-37-0308	BRC0418-36	NWTPH-D	x 1	8	3C28015	LORH	0.284	mg/	ĽJ	< MRL
MW-19-0308	BRC0418-39	NWTPH-D	x 1	8	3C28015	DRH	0.0380	mg/	ĽJ	< MRL

Reason Codes:

< MRL - concentration reported is >/= the method detection limit but is < the practical quantitation limit/method reporting limit

July 28, 2008

Organic Data Verification Report

BNSF Skykomish Sitewide Groundwater Monitoring Groundwater with Water QC Samples Test America, Inc. data June 2008

Prepared By Sue Milcan Environmental Scientist/Quality Assurance Manager

ENSR Corporation July 2008 Document No.: 01140-204-0340

Overview

The samples analyzed for the BNSF Skykomish Sitewide Groundwater Monitoring sampling effort from June 2008 are listed in the Table of Samples Analyzed (page 2). Data verification was performed on a total of eight groundwater samples and one equipment rinse blank water QC sample.

Samples were analyzed by TestAmerica, Inc. of Bothell, WA. The verified analysis was Diesel Range Hydrocarbons (DRH) and Lube Oil Range Hydrocarbons (LORH) by WDOE method NWTPH-Dx (with and without Acid/Silica Gel cleanup).

The ENSR Analytical Data Verification Checklist is presented as pages 3-7. Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review, document number EPA540/R-99/008 of October 1999 and the USEPA CLP National Functional Guidelines for Superfund Organic Methods Data Review, document number USEPA-540-R-07-003, July 2007, as they applied to the reported methodology. Washington State Department of Ecology (WDOE) methods were also reviewed as per WDOE Analytical Methods for Petroleum Hydrocarbons, ECY 97-602 of June 1997. Field duplicate RPD review and applicable control limits were taken from the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, December 1996.

The following data components were reviewed during the data verification procedure:

Submitted Deliverables
Chain-of-Custody form(s) and sample integrity
Case Narrative and assigned laboratory flags
Sample results (including holding times, reporting limits, dilutions)
Method Blank results
LCS (blank spike) results
MS, MSD (matrix spike/matrix spike duplicate) results
Surrogate recoveries
Laboratory Duplicate results
Field Duplicate RPDs (calculated)
Equipment Rinse Blank results
Electronic data deliverable (EDD) file

Data Verification Qualifiers Assigned During this Review

J estimated concentration

Assigned qualifiers are detailed in the ENSR Analytical Data Verification Checklist and are summarized in the Table of Qualified Analytical Results (page 8).

Overall Data Assessment

Precision, accuracy, method compliance, and completeness of the data set have been determined to be acceptable, based on the data provided. There were no rejected or missing data points associated with this data set. The data are suitable for their intended use with the qualifications and clarifications noted.

Table of Samples Analyzed BNSF Skykomish – Sitewide Groundwater Monitoring Groundwater with Water QC Samples TestAmerica (Bothell, WA) Laboratory Report BRF0334 June 2008

Matrix	Sample ID		Sample Date	and Time	Lab SDG	Lab Sample ID
Groundwater	5-W-15-0608		6/23/2008	12:35	BRF0334	BRF0334-01
Groundwater	5-W-150-0608	5-W-15-0608 Dup	6/23/2008	12:45	BRF0334	BRF0334-02
Groundwater	5-W-17-0608		6/23/2008	13:30	BRF0334	BRF0334-03
Groundwater	5-W-18-0608		6/23/2008	14:25	BRF0334	BRF0334-04
Groundwater	5-W-14-0608		6/23/2008	15:10	BRF0334	BRF0334-05
Groundwater	5-W-16-0608		6/23/2008	15:50	BRF0334	BRF0334-06
Groundwater	5-W-19-0608		6/23/2008	16:30	BRF0334	BRF0334-07
Groundwater	5-W-20-0608		6/23/2008	17:15	BRF0334	BRF0334-08
Water QC	MW-500-0608	Equipment Rinse Blank	6/23/2008	17:45	BRF0334	BRF0334-09

Project Name: BNSF Skykomish		Laboratory: Te	stAm	erica, Inc., Bothe	ell, WA						
Project Reference: Sitewide Groundwater Monitoring	g	Sample Matrix: Groundwater with Water QC samples									
ENSR Project: 01140-204-0340		Sample Start Date: 06/23/2008									
Verified By/Date Verified: Sue Milcan 07/28/2008		Sample End Da	ate: (06/23/2008							
Samples Analyzed: see Table of Samples Analyzed, BNSF Skykomish - Sitewide Groundwater Monitoring, Groundwater with Water QC Samples, June 2008 (page 2).											
Parameters Verified:											
Diesel Range Hydrocarbons (DRH) and Lube Oil Range Hydrocarbons (LORH) by WDOE method NWTPH-Dx (with and without Acid/Silica Gel cleanup).											
Laboratory Project ID (SDG): BRF0334											
PRECISION, ACCURACY, METHOD COM	PLIA	NCE, AND COM	MPLE	TENESS ASSE	SSMENT	-					
Precision:	X	Acceptable		Unacceptable	SM	Initials					
determined by comparison of field duplicate sample results. Laboratory precision was determined by examination of laboratory duplicate results. Evaluation of field and laboratory duplicates for precision was done using the Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. RPD precision measurements were compared to EPA published and/or laboratory control-charted QC limits. No data require qualification based on these measurements and overall field and laboratory precision is acceptable. Precision measurements are reviewed in items 17 and 21.											
Accuracy:	Х	Acceptable		Unacceptable	SM	Initials					
Comments: Field accuracy, a measure of the sampling bias, was determined by reviewing equipment rinse blank results for evidence of contamination stemming from field activities. Laboratory accuracy is a measure of the system bias, and was measured by evaluating laboratory control sample (LCS), matrix spike and matrix spike duplicate (MS, MSD), and organic system monitoring compound (surrogate) percent recoveries (%Rs). LCS %Rs demonstrated overall analytical performance. MS, MSD %Rs provided information on sample matrix interferences. System monitoring compound or surrogate recoveries measured system performance and efficiency during organic analysis. %Rs were compared to EPA published and/or laboratory control charted QC limits. No data require qualification based on these measured to 14, 15, 10, and overall field and laboratory accuracy is											
Method Compliance:	Χ	Acceptable		Unacceptable	SM	Initials					
Comments: For this data set, method compliance was determined by evaluating sample integrity, holding time, reporting limits, and laboratory blanks against method specified requirements. Although some data require qualification based on detection below the practical quantitation limit/reporting limit (see item 6), or pattern match discrepancies/evidence of interference (see item 22), overall method compliance is acceptable, based on the data submitted, since a majority of the data are unqualified and no data points are rejected based on these measurements. Method compliance measurements are reviewed in items 4, 6, 8, 11, 13, 18, 19, 20, and 22.											
Completeness:	Χ	Acceptable		Unacceptable	SM	Initials					
Comments: Completeness is the overall ratio of the number of samples planned versus the number of samples with valid analyses. Completeness goals were set at 90-100%. Determination of completeness during this data verification procedure included a review of chain of custody records, laboratory analytical methods and detection limits, laboratory case narratives, and project requirements. Completeness also included 100% review of the laboratory sample data results and QC summary reports. The electronic data deliverable file (EDD) was QA'd 100% for positive target analytes and reporting limits. EDD corrections were made by the data validator during this review procedure as outlined in item 23.											
All of the data received were useable, some with qua completeness of the data set was calculated to be 10	alificat 00% a	tion. Since no c and is compliant	data p t.	ooints were missi	ng or reje	ected,					

VERIFICATIO	N CRITER		K						
Data verification qualifiers assigned during this review:									
J estimated concentration									
The following comments identifying sample results requiring qualification are in bold type. The other comments are of interest, but qualification of the sample results is not necessary.									
Refer to the table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 8).									
 Did the laboratory identify any non- conformances related to the analytical results? 		Yes	X	No	SM	Initials			
Comments: There were no problems noted in the provided case narrative. Any assigned laboratory flags were reviewed during the verification procedure.									
Data qualification, if any, related to the assigned labor	oratory data	flags are	discussed	in the fol	lowing sea	ctions.			
2. Were sample Chain-of-Custody forms complete?	X	Yes		No	SM	Initials			
Comments: The COC record from field to laboratory was complete, and custody was maintained as evidenced by field and laboratory personnel signatures, and laboratory date and time of sample receipt.									
3. Were all the analyses requested for the samples on the COCs completed by the laboratory?	X	Yes		No	SM	Initials			
Comments: All requested analyses as documented on the original COCs were completed.									
4. Were samples received in good condition and at the appropriate temperature?	x	Yes		No	SM	Initials			
Comments: All samples were received intact and in g 7.3°C as noted in the case narrative comments. Sar acceptable condition since no other preservation issu (room temperature). No action is required other than	good condit nples recei ues were no n to note thi	ion with a ved at gre oted and t s observa	n acceptab ater than 6 emperature tion.	ele cooler S°C were o Ses were w	temperatu determine vell below	ure of d to be in 24°C			
5. Were the reported analytical methods in compliance with WP/QAPP, permit, or COC?	X	Yes		No	SM	Initials			
Comments: The reported method met the COC requ the sample matrix.	est and is ir	n complia	nce with the	e parame	ters reque	ested and			
6. Were detection limits in accordance with WP/QAPP, permit, or method?	Х	Yes		No	SM	Initials			
Comments: The reporting limits (RLs) are achievable undiluted levels.	e by the quo	oted meth	od. All san	nples wer	e reported	lat			
Sample results reported at concentrations > the method detection limit (MDL) but < the practical quantitation limit or method reporting limit (PQL/MRL), require J qualifiers to indicate estimated concentrations. The analyte cannot be accurately quantitated at this trace concentration level.									
Refer to the table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 8).									
7. Do the laboratory reports include only those constituents requested to be reported for a specific analytical method?	X	Yes		No	SM	Initials			
Comments: Only analytes applicable to the requeste	d method w	vere repor	ted.						

8. Were sample holding times met?	х	Yes		No	SM	Initials				
Comments: The method-required extraction and ana	lytical hold	ing time w	as met for	all submi	tted sampl	e data.				
9. Were correct concentration units reported?	Х	Yes		No	SM	Initials				
Comments: All results were reported as mg/L (ppm)	•				_					
10. Were the reporting requirements for flagged data met?	х	Yes		No	SM	Initials				
Comments: Data verification qualifiers override any assigned laboratory data flags.										
11. Were laboratory blank samples free of target analyte contamination?	х	Yes		No	SM	Initials				
Comments: Supplied laboratory method blanks were free of target analyte contamination.										
12. Were trip blank, field blank, and/or equipment rinse blank samples free of target analyte contamination?	X	Yes		No	SM	Initials				
Comments: The submitted equipment rinse blank sample, MW-500-0608, was free of target analyte contamination. Field blank and trip blank samples were not submitted/not required for this data set.										
13. Were instrument calibrations within method or data validation control limits?		Yes		No	SM	Initials				
Comments: Not applicable for this level of data verification – Instrument calibration data were not supplied in analytical laboratory reports and were therefore not included in this data review.										
14. Were surrogate recoveries within control limits?	X	Yes		No	SM	Initials				
Comments: Reported surrogate %Rs for organic analyses were within laboratory control-charted QC limits for all project samples and associated QC samples.										
15. Were laboratory control sample recoveries within control limits?	X	Yes		No	SM	Initials				
Comments: Reported LCS recoveries were within da analytes, or were within laboratory control-charted Q organic methods.	ta validatio C limits for	on QC limi organic ta	ts (70-130% arget analyt	6 for orga es as alle	nics) for a owed for S	ll target W-846				
16. Were matrix spike recoveries within control limits?	X	Yes		No	SM	Initials				
Comments: Project specific MS and MSD recoveries QC limits.	for target	analytes v	vere within I	aborator	y control-c	harted				
17. Were duplicate RPDs and/or serial dilution %Ds within control limits?	X	Yes		No	SM	Initials				
Comments: Laboratory RPDs for target analytes in p QC limits of 0-20%.	roject-spec	ific MS/M	SD sample	s were w	ithin data v	alidation				
Serial Dilution %D data for metals analysis is not app method reported.	olicable for	this level	of data veri	fication o	r for the a	nalytical				
18. Were organic system performance criteria met?		Yes		No	SM	Initials				
Comments: Not applicable for this level of data verific supplied in analytical laboratory reports and were the	cation – Or erefore not	ganic sys included i	tem perforn in this data	nance da review.	ta were no	ot				

19. Were internal standards within method criteria for GC/MS sample analyses?				Yes		No	SM	Initials
Comments: Not applicable	of or this level of data verified	cation	or fo	r the anal	ytical meth	od reporte	ed.	
20. Were inorganic system performance criteria met?				Yes		No	SM	Initials
Comments: Not applicable for this level of data verification or for the analytical method reported.								
21. Were blind field duplicates collected? If so, discuss the precision (RPD) of the results.			(Yes		No	SM	Initials
Field Duplicates for metho	d NWTPH-Dx (without clea	anup):						
Duplicate Sample No.	5-W-150-0608		Prin	nary Sam	ple No.	5-W-15-0608		
Field Duplicates for metho	d NWTPH-Dx (with A/SG o	cleanu	p):					
Duplicate Sample No.	5-W-150-0608		Prin	nary Sam	ple No.	5-	W-15-060	8
Duplicate Sample No. 5-W-150-0608 Primary Sample No. 5-W-15-0608 Comments: Field duplicate RPDs were within data validation QC limits of 0-30% for water matrices, or RPDs were not applicable due to results that were undetected in both samples. Field duplicate and native sample concentrations that were both undetected are not reflected in the table below since RPDs are not applicable. The following RPDs were calculated: The following RPDs were calculated:								RPDs nple able.

Method	Units	Analyte	5-W-15-0608	5-W-150-0608	RPD	Qualifiers
NWTPH-Dx	mg/L	Lube Oil Range Hydrocarbons	0.145	0.152	4.7	
NWTPH-Dx	mg/L	Diesel Range Hydrocarbons	0.204	0.207	1.5	

22. Were qualitative/quantitative criteria for	Yes	X – lab	No	SM	Initials
organic target analyte identification met?		observation only			

Comments: Not applicable for this level of data verification – Chromatograms, library searches, and quantitation reports were not supplied in analytical laboratory reports and were therefore not included in this data review. However, GC/MS quantitation reports and chromatograms were reviewed by trained laboratory personnel in accordance with the laboratory's internal QA/QC program.

No identification/quantitation flags were assigned by the laboratory, but the following notations were made.

Method NWTPH-Dx without cleanup -

The laboratory noted that the chromatographic patterns for DRH results reported for samples 5-W-18-0608 and 5-W-20-0608 were not consistent with diesel fuel. The laboratory report identifies the reported analyte as DRH, however, the EDD/database identifies the reported analyte as diesel fuel. Although supporting documentation to fully evaluate the laboratory comments can not be made with this level of report deliverable, professional judgment determines that the reported values require J qualifiers to indicate estimated concentrations since the concentration of diesel fuel is affected by other analytes or interferences within the specified carbon range.

Refer to the table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 8).

23. Were 100% of the EDD concentrations and reporting limits compared to the hardcopy data reports?	X	Yes		No	SM	Initials			
Comments: 100% EDD QA/QC of positive concentrations and RLs was done as part of this data verification procedure. The following changes were made to the EDD file during data verification:									
Significant figures were resolved with hardcopy entries (per validation protocol, the hardcopy results were chosen as the correct results). The sample_type_code was changed from FB to FD for the field duplicate sample 5-W-150-0608. The sample_matrix_code was changed from WG (groundwater) to WQ (water QC) for the equipment rinse blank sample, MW-500-0608, to more accurately reflect the sample matrix.									
The ENSR project manager was informed of all changes made to the EDD file via this Checklist. The EDD file, with corrections and data validation qualifiers and reason codes added, was returned to the project manager and database manager in Seattle, WA on 07/28/2008.									
24. General Comments: Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review, document number EPA540/R-99/008 of October 1999 and the USEPA CLP National Functional Guidelines for Superfund Organic Methods Data Review, document number USEPA-540-R-07-003, July 2007, as they applied to the reported methodology. Washington State Department of Ecology (WDOE) methods were also reviewed as per WDOE Analytical Methods for Petroleum Hydrocarbons, ECY 97-602 of June 1997. Field duplicate RPD review and applicable control limits were taken from the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, December 1996.									
Refer to the table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 8).									

Table of Qualified Analytical Results BNSF Skykomish – Sitewide Groundwater Monitoring Groundwater with Water QC Samples TestAmerica (Bothell, WA) Laboratory Report BRF0334 June 2008

Sample ID	Lab ID	Method	Diluti Facto	ion or	QC Batch	Analyte	Concentration	Qualifier		Reason Code
Qualified, Repo	ortable Ground	water data	:							
5-W-15-0608	BRF0334-01	NWTPH	Ъх	1	8F25034	Diesel Range Hydrocarbons	0.204	mg/L	J	< MRL
5-W-15-0608	BRF0334-01	NWTPH	Ъх	1	8F25034	Lube Oil Range Hydrocarbons	0.145	mg/L	J	< MRL
5-W-150-0608	BRF0334-02	NWTPH	·Dх	1	8F25034	Diesel Range Hydrocarbons	0.207	mg/L	J	< MRL
5-W-150-0608	BRF0334-02	NWTPH	-Dx	1	8F25034	Lube Oil Range Hydrocarbons	0.152	mg/L	J	< MRL
5-W-18-0608	BRF0334-04	NWTPH	·Dх	1	8F25034	Diesel Range Hydrocarbons	0.511	mg/L	J	pattern
5-W-18-0608	BRF0334-04	NWTPH	Ъх	1	8F25034	Lube Oil Range Hydrocarbons	0.272	mg/L	J	< MRL
5-W-18-0608	BRF0334-04	NWTPH w/SG	-Dx	1	8F25034	Diesel Range Hydrocarbons	0.0419	mg/L	J	< MRL
5-W-20-0608	BRF0334-08	NWTPH	-Dx	1	8F25034	Diesel Range Hydrocarbons	0.551	mg/L	J	pattern
5-W-20-0608	BRF0334-08	NWTPH	-Dx	1	8F25034	Lube Oil Range Hydrocarbons	0.292	mg/L	J	< MRL

Reason Codes:

< MRL - concentration reported is >/= the method detection limit but is < the practical quantitation limit/method reporting limit

pattern – chromatographic pattern shows stated interference from non-targets; does not match diesel standard chromatogram; this qualifier was assigned since analyte is identified as Diesel Fuel rather than Diesel Range Hydrocarbons in the project database.

Prepared for: BNSF Skykomish Remedial Design Investigation

Organic and Inorganic Data Verification Report BNSF Skykomish Remedial Design Investigation Water Sampling, August, 2008

Prepared for: Sara Albano Project Manager

Prepared by: Ann Biegelsen Environmental Quality Assurance Chemist

ENSR Corporation September 22, 2008 Document No.: 01140-222-0230

Overview

The samples analyzed for the BNSF Skykomish Remedial Design Investigation Water sampling event from August 2008 are listed in the Table of Samples Analyzed (page 2). Data verification was performed on one water sample.

The samples were analyzed by TestAmerica of Bothell, WA. The verified analyses were: Diesel Range Hydrocarbons, and Lube Oil Range Hydrocarbons by GC Method NWTPH-Dx, and NWTPH-Dx with Acid/Silica Gel Cleanup.

The Analytical Data Verification Checklist is presented as pages 4-7. Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, document number USEPA-540-R-08-01, June 2008 with additional reference to USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review, document number EPA 540/R-99-008 of October 1999, as they applied to the reported methodology.

The following data components were reviewed during the data validation procedure:

Submitted Deliverables
Case Narratives
Chain-of-Custody form(s) and sample integrity
Sample results, reporting detection limits, method detection limits, dilution factors
Holding times
Method blank results
LCS/LCSD (blank spike) results
Organic surrogate recoveries
Electronic data deliverables (EDDs)

Data Validation Qualifiers Assigned During this Review

J detected result, estimated concentration

Assigned qualifiers are detailed in the Analytical Data Verification Checklist and are summarized in the Table of Qualified Analytical Results (page 3).

Overall Data Assessment

Precision, accuracy, method compliance, and completeness of the data set have been determined to be acceptable, based on the data submitted. The data are suitable for their intended use.

Table of Samples Analyzed BNSF Skykomish Remedial Design Investigation Water Sampling TestAmerica of Bothell, WA Laboratory SDG BRH0364 August 2008 Sampling

Matrix	Sample ID	Sample Date ar	nd Time	Lab SDG	Lab Sample ID
Water	SkySeep1-082708	08/27/2008	11:20	BRH0364	BRH0364-01

Table of Qualified Analytical Results BNSF Skykomish Remedial Design Investigation Water Sampling TestAmerica of Bothell, WA Laboratory SDG BRH0364 August 2008 Sampling

Sample ID	Method	Analyte	Concentration	Qualifier	Reason Code
Sky-Seep1-082708	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.111 mg/l	J	BRL
Sky-Seep1-082708	NWTPH-Dx	Diesel Range Hydrocarbons	0.261 mg/l	J	CHRO
Sky-Seep1-082708	NWTPH-Dx SG Addon	Diesel Range Hydrocarbons	0.042 mg/l	J	BRL

Qualifier Definitions

J – Estimated concentration

Reason Code Definitions

BRL – Reported concentration is greater than the MDL but less than the reporting limit.

CHRO – Detected response in the diesel range, but the chromatographic pattern does not match the diesel calibration standard.

Project Name: BNSF Skykomish Remedial Design Investigation	La Bo	Laboratory: TestAmerica Analytical Testing Corporation, Bothell, WA								
Project Reference:	Sa	Sample Matrix: Groundwater with Water QC								
Project No.: 01140-222-0230	Sa	mple Start Date	e: 08	/27/2008						
Verified By/Date Verified: Ann Biegelsen / 09/22/2008	Sa	mple End Date	: 08/	27/2008						
Samples Analyzed: Refer to the Table of Samples Analyzed (page 2).										
Parameters Verified: Diesel Range Hydrocarbons, and Lube Oil Range Hydrocarbons by GC Method NWTPH-Dx, and NWTPH-Dx with Acid/Silica Gel Cleanup.										
Laboratory Sample Delivery Group (SDG) IDs: BRH0364										
PRECISION, ACCURACY, METHOD COMPLIANCE, AND COMPLETENESS ASSESSMENT										
Precision:	Х	Acceptable		Unacceptable	AB	Initials				
Comments: Precision is the measure of variability of individual sample measurements. Field precision could not be determined, as there were no field duplicate samples included in this data set. Laboratory precision was determined by examination of laboratory duplicate results. Evaluation of laboratory duplicates for precision was done using the Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. Laboratory RPD limits referenced EPA published QC limits. No data require qualification based on field or laboratory duplicate precision measurements, and overall field and laboratory precision is acceptable. Precision measurements are reviewed in items 17, 20, and 21.										
Accuracy:	Х	Acceptable		Unacceptable	AB	Initials				
Comments: Field accuracy, a measure of the sampling bias, could not be determined as there were no trip blank, field blank, or equipment rinse blank samples included in this sampling. Laboratory accuracy is a measure of the system bias, and was measured by evaluating laboratory control sample/laboratory control sample duplicate (LCS/LCSD), and organic system monitoring compounds (surrogate) percent recoveries (%Rs). LCS/LCSD %Rs, which demonstrated the overall performance of the analysis, were compared to EPA published QC limits. System monitoring compound or surrogate recoveries, which measured system performance and efficiency during organic analysis, were compared to EPA published QC limits or laboratory control charted limits. No data require qualification based on field or laboratory accuracy measurements, and overall field and laboratory accuracy is acceptable. Accuracy measurements are reviewed in the surrogate is included in the surrogate in the sampling of the analysis are reviewed in the sample of the sample of the analysis of the sample of the analysis of the sample										
Method Compliance:	Х	Acceptable		Unacceptable	AB	Initials				
Comments: Method compliance was determined by evaluating sample integrity, holding time, and laboratory blanks against method specified requirements, while applying EPA data validation guidelines. Although some data require qualification based on analytes detected with concentrations less than the reporting limits (RLs), but greater than the method detection limits (MDLs) (see item 6), or based on chromatographic pattern match (see item 22), overall method compliance is acceptable based on the supplied data. Method compliance measurements are reviewed in items 4, 6, 8, 11, 13, 18, 19, 20 and 22										
Completeness:	Х	Acceptable		Unacceptable	AB	Initials				
Completeness:XAcceptableUnacceptableABInitialsComments: Completeness is the overall ratio of the number of samples planned versus the number of samples with verified analyses. Completeness goals are set at 90-100%. Determination of completeness included a review of chain of custody records, laboratory analytical methods and detection limits, laboratory case narratives, and project requirements. Completeness also included 100% review of the laboratory sample data results, QC summary reports, and electronic data deliverables (EDDs). All of the data received from the laboratory are useable with qualification.										

VERIFICATIO	N CRITER		K						
Data validation flags used in this review:									
J – detected result, estimated concentration									
The following comments requiring qualification are in bol the samples was not necessary.	d type. The	e other cor	nments are	of interes	st, but qual	ification of			
Refer to the Table of Qualified Analytical Results for a lis (page 3).	sting of the s	amples, a	inalytes, and	d concent	trations qua	alified			
1. Did the laboratory identify any non-conformances related to the analytical results?	X	Yes		No	AB	Initials			
Explanation by laboratory: The temperature of the samp	les at the tir	ne of recei	ipt was 14.1	°C.					
Assigned laboratory flags were noted and considered as laboratory observations are discussed in the following se	part of this	data revie	ew. Data qu	alificatior	n, if any, re	ated to the			
2. Were sample Chain-of-Custody forms complete?	Х	Yes		No	AB	Initials			
Comments: COC records from field to laboratory were co laboratory personnel signatures, dates, and times of rece	omplete, an eipt.	d custody	was mainta	ined as e	evidenced k	by field and			
3. Were all the analyses requested for the samples on the COCs completed by the laboratory?	X	Yes		No	AB	Initials			
Comments: All requested analyses as documented on original COC records were completed by the laboratory.									
4. Were samples received in good condition and at the appropriate temperature?	X	Yes		No	AB	Initials			
Comments: Samples were received on ice, intact, and in acceptance range at 14.1°C as noted on COCs and San greater than 6°C are judged acceptable as the sample we evidence of the commencement of cooling.	i good cond nple Receiv /as hand de	ition with o ing Check livered wit	cooler tempo list forms. (hin 2 hours	eratures o Cooler ter of sampli	outside the mperatures ing and the	4°C <u>+</u> 2°C that were ere is			
5. Were the requested analytical methods in compliance with WP/QAPP, permit, or COC?	X	Yes		No	AB	Initials			
Comments: Reported methods and target analyte lists w	ere in comp	liance wit	h COC reco	ords.					
6. Were detection limits in accordance with WP/QAPP, permit, or method?	Х	Yes		No	AB	Initials			
Comments: Reported detection limits are achievable by	the quoted	methods.							
Analytes reported with concentrations below the lab Detection Limits (MDLs), were qualified as J to indica	oratory rep ate that the	orting lin	nits, but ab rations are	ove the I estimate	aboratory ed.	Method			
Refer to the Table of Qualified Analytical Results for a I (page 3).	isting of the	samples,	, analytes, a	and conce	entrations	qualified			
7. Do the laboratory reports include only those constituents requested to be reported for a specific analytical method?	X	Yes		No	AB	Initials			
Comments: Only the requested target analytes were rep	orted.								
8. Were sample holding times met?	X	Yes		No	AB	Initials			
Comments: Extraction and analytical holding times were	met for all	samples a	nd analyses	6.					

9. Were correct concentration units reported?	Х	Yes		No	AB	Initials				
Comments: Correct concentration units were reported.	All paramet	ers are re	ported in un	its of mg/	′L (ppm).					
10. Were the reporting requirements for flagged data met?	x	Yes		No	AB	Initials				
Comments: Data validation qualifiers override assigned	aboratory fl	ags.								
11. Were laboratory blank samples free of target analyte contamination?	x	Yes		No	AB	Initials				
Comments: All laboratory blanks were free of target analyte contamination.										
12. Were trip blank, field blank, and/or equipment rinse blank samples free of target analyte contamination?	NA	Yes	NA	No	AB	Initials				
Comments: There were no trip, field or equipment rinse blank samples included in this data set. Field accuracy could not be evaluated in this data review.										
13. Were instrument calibrations within method control limits?	NA	Yes	NA	No	AB	Initials				
Comments: Not applicable for this level of data verification – Instrument calibration data were not supplied in analytical laboratory reports and were therefore not included in this data review.										
14. Were surrogate recoveries within control limits?	X	Yes		No	AB	Initials				
Comments: Surrogate percent recoveries (%Rs) for organic analyses were within data validation QC criteria for all samples.										
15. Were laboratory control sample recoveries within control limits?	X	Yes		No	AB	Initials				
Comments: LCS and LCSD (blank spike) recoveries we for all target analytes.	re within da	ta validati	on or labora	atory cont	rol-charted	QC limits				
16. Were matrix spike recoveries within control limits?	NA	Yes	NA	No	AB	Initials				
Comments: There were no MS/MSD samples reported could not be evaluated as part of this data review.	with this lab	oratory re	oort. This a	spect of I	aboratory a	accuracy				
17. Were RPDs within control limits?	Х	Yes		No	AB	Initials				
Comments: Laboratory RPDs for target analytes in LCS Serial Dilution %D data is not applicable for the reported	/LCSD sam <i>methods</i> .	ples were	within data	validatio	n control lir	nits.				
18. Were organic system performance criteria met?	NA	Yes	NA	No	AB	Initials				
Comments: Not applicable for this level of data verification analytical laboratory reports and were therefore not inclu	on – Organi Ided in this (c system p data revie	performance N.	e data we	re not supp	olied in the				
19. Were internal standards within method criteria for GC/MS sample analyses?	NA	Yes	NA	No	AB	Initials				
Comments: Not applicable for this the reported method method.	– Internal s	tandard ac	ldition is no	t required	l for the rep	ported				
20. Were inorganic system performance criteria met?	NA	Yes	NA	No	AB	Initials				
Comments: Not applicable for this level of data verification – Inorganic system performance data were not supplied in the analytical laboratory reports and were therefore not included in this data review.										

ENSR

21. Were blind field duplicates collected? If so, discuss the precision (RPD) of the results.		Yes	Х	No	AB	Initials				
Comments: There were no field duplicate samples included in this sample delivery group. Field precision could not be evaluated as part of this data review.										
22. Were qualitative criteria for organic target analyte identification met?		Yes	X	No	AB	Initials				
Comments: Not applicable for this level of data verification – GC quantitation reports and chromatograms were not supplied in analytical laboratory reports and were therefore not included in this data review. However, retention times and chromatography were reviewed by trained laboratory personnel in accordance with the laboratory's internal QA/QC program and the laboratory included the notations described below.										
Method NW IPH-DX without Acid/Silica Gel Cleanup: For the Diesel Range Hydrocarbons result in sample Sky- Seep1-082708, the laboratory has noted that the chromatographic pattern is not consistent with diesel fuel. This result has been qualified as J in this sample to indicate the concentration is estimated.										
Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 3).										
23. Were 100% of the EDD concentrations and reporting limits compared to the hardcopy data reports?	X	Yes		No	AB	Initials				
Comments: There were no discrepancies between the E reports.	EDD concen	trations a	nd reportinç	g limits an	d the hard	copy data				
24. General Comments: Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, document number USEPA-540-R-08-01, June 2008 with additional reference to USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review, document number EPA 540/R-99-008 of October 1999, as they applied to the reported methodology. Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 3).										

Prepared for: BNSF Skykomish

Organic Data Verification Report BNSF Skykomish Groundwater Sampling, September 2008

Prepared for: Sarah Albano Project Manager

Prepared by: Ann Biegelsen Environmental Quality Assurance Chemist

November 23, 2008 Document No.: 01140-204-0340

Overview

The samples analyzed for the BNSF Skykomish Groundwater sampling event from September 2008 are listed in the Table of Samples Analyzed (page 2). Data verification was performed on thirty-one groundwater samples.

The samples were analyzed by TestAmerica of Bothell, Washington. The verified analyses were: Diesel Range Hydrocarbons and Lube Oil Range Hydrocarbons by Method NWTPH-Dx and NWTPH-Dx with Acid/Silica gel Clean-up.

The Analytical Data Verification Checklist is presented as pages 4-9. Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, document number USEPA-540-R-08-01, June 2008 with additional reference to USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review, document number EPA 540/R-99-008 of October 1999, as they applied to the reported methodology. Field duplicate RPD control limits were taken from the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, February 1988, upheld in DRAFT 1993.

factors

The following data components were reviewed during the data validation procedure:

Submitted Deliverables
Case Narratives
Chain-of-Custody form(s) and sample integrity
Sample results, reporting detection limits, method detection limits, dilution
Holding times
Method blank results
LCS/LCSD (blank spike) results

MS/MSD (matrix spike) results Laboratory duplicate results Organic surrogate recoveries Blind field duplicate results Electronic data deliverables (EDDs)

Data Validation Qualifiers Assigned During this Review

- J detected result, estimated concentration
- U result has been evaluated to be undetected at the reporting limit or at the reported concentration; result is considered to be a false positive

Assigned qualifiers are detailed in the Analytical Data Verification Checklist and are summarized in the Table of Qualified Analytical Results (page 3).

Overall Data Assessment

Precision, accuracy, method compliance, and completeness of the data set have been determined to be acceptable, based on the data submitted. The data are suitable for their intended use.
Table of Samples Analyzed
BNSF Skykomish
Groundwater SamplesPace Analytical Services, Inc. Laboratory SDGs BRI0381 and BRI0382
September 2008 Sampling

Matrix	Sample ID	Parent Sample ID	Sample Date	and Time	Lab SDG	Lab Sample ID
Groundwater	1A-W-1-0908		9/23/2008	9:00	BRI0381	BRI0381-13
Groundwater	1A-W-30-0908	1A-W-3-0908	9/23/2008	9:50	BRI0381	BRI0381-15
Groundwater	1A-W-3-0908		9/23/2008	9:50	BRI0381	BRI0381-14
Groundwater	1A-W-4-0908		9/23/2008	10:52	BRI0381	BRI0381-16
Groundwater	1A-W-5-0908		9/23/2008	11:20	BRI0381	BRI0381-17
Groundwater	1B-W-2-0908		9/23/2008	16:52	BRI0381	BRI0381-21
Groundwater	1B-W-3-0908		9/23/2008	15:46	BRI0381	BRI0381-20
Groundwater	1C-W-1-0908		9/23/2008	13:15	BRI0381	BRI0381-18
Groundwater	1C-W-2-0908		9/23/2008	11:55	BRI0381	BRI0381-06
Groundwater	1C-W-4-0908		9/23/2008	14:30	BRI0381	BRI0381-19
Groundwater	2A-W-10-0908		9/22/2008	16:55	BRI0381	BRI0381-01
Groundwater	2A-W-11-0908		9/23/2008	10:35	BRI0381	BRI0381-04
Groundwater	2A-W-90-0908	2A-W-9-0908	9/23/2008	14:20	BRI0381	BRI0381-10
Groundwater	2A-W-9-0908		9/23/2008	14:10	BRI0381	BRI0381-09
Groundwater	2B-W-4-0908		9/23/2008	9:00	BRI0381	BRI0381-02
Groundwater	5-W-4-0908		9/23/2008	13:15	BRI0381	BRI0381-08
Groundwater	MW-16-0908		9/23/2008	18:55	BRI0381	BRI0381-23
Groundwater	MW-3-0908		9/23/2008	15:50	BRI0381	BRI0381-12
Groundwater	MW-35-0908		9/23/2008	17:56	BRI0381	BRI0381-22
Groundwater	MW-38-0908		9/23/2008	12:35	BRI0381	BRI0381-07
Groundwater	MW-39-0908		9/23/2008	9:45	BRI0381	BRI0381-03
Groundwater	MW-4-0908		9/23/2008	15:00	BRI0381	BRI0381-11
Groundwater	MW-500-0908		9/23/2008	10:50	BRI0381	BRI0381-05
Groundwater	5-W-14-0908		9/23/2008	10:25	BRI0382	BRI0382-02
Groundwater	5-W-150-0908	5-W-15-0908	9/23/2008	16:45	BRI0382	BRI0382-07
Groundwater	5-W-15-0908		9/23/2008	16:40	BRI0382	BRI0382-06
Groundwater	5-W-16-0908		9/23/2008	18:00	BRI0382	BRI0382-08
Groundwater	5-W-17-0908		9/23/2008	11:40	BRI0382	BRI0382-03
Groundwater	5-W-18-0908		9/23/2008	12:50	BRI0382	BRI0382-04
Groundwater	5-W-19-0908		9/23/2008	14:35	BRI0382	BRI0382-05
Groundwater	5-W-20-0908		9/23/2008	9:25	BRI0382	BRI0382-01

Table of Qualified Analytical Results BNSF Skykomish Groundwater Samples Pace Analytical Services, Inc. Laboratory SDGs BRI0381 and BRI0382 September 2008 Sampling

Lab SDG	Sample ID	Method	Analyte	Conce	ntration	Qualifier	Reason Code
BRI0381	1A-W-1-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.15	2 mg/l	J	BRL
BRI0381	1A-W-1-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.34	7 mg/l	J	CHRO
BRI0381	1A-W-30-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.18	0 mg/l	J	BRL
BRI0381	1A-W-30-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.079	1 mg/l	J	BRL
BRI0381	1A-W-3-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.42	0 mg/l	J	BRL
BRI0381	1A-W-3-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.19	1 mg/l	J	BRL
BRI0381	1B-W-2-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.17	'0 mg/l	J	BRL
BRI0381	1B-W-2-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.50)7 mg/l	J	CHRO
BRI0381	1B-W-3-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.11	7 mg/l	J	BRL
BRI0381	1C-W-1-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.055	i0 mg/l	J	BRL
BRI0381	1C-W-4-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.10	15 mg/l	J	BRL
BRI0381	1C-W-4-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.3	'3 mg/l	J	CHRO
BRI0381	2A-W-10-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.15	3 mg/l	J	BRL
BRI0381	2A-W-10-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.22	27 mg/l	J	BRL
BRI0381	2A-W-11-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.86	0 mg/l	J	CHRO
BRI0381	2A-W-90-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.17	'1 mg/l	J	BRL
BRI0381	2A-W-90-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.29	4 mg/l	J	CHRO
BRI0381	2A-W-9-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.14	7 mg/l	J	BRL
BRI0381	2A-W-9-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.32	23 mg/l	J	CHRO
BRI0381	5-W-4-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	2.4	9 mg/l	J	CHRO
BRI0381	5-W-4-0908	NWTPH-Dx	Diesel Range Hydrocarbons	7.	'5 mg/l	J	CHRO
BRI0381	MW-3-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.14	3 mg/l	J	BRL
BRI0381	MW-3-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.10	2 mg/l	J	BRL
BRI0381	MW-35-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.18	7 mg/l	J	BRL
BRI0381	MW-35-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.30)5 mg/l	J	CHRO
BRI0381	MW-39-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.64	2 mg/l	J	CHRO
BRI0382	5-W-150-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	< 0.4	'6 mg/l	U	MB, BRL, original result was 0.127 mg/L
BRI0382	5-W-15-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	< 0.4	2 mg/l	U	MB, BRL, original result was 0.104 mg/L
BRI0382	5-W-15-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.2	'2 mg/l	J	CHRO
BRI0382	5-W-18-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	< 0.4	2 mg/l	U	MB, BRL, original result was 0.197 mg/L
BRI0382	5-W-18-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.34	2 mg/l	J	CHRO
BRI0382	5-W-20-0908	NWTPH-Dx	Lube Oil Range Hydrocarbons	< 0.4	'2 mg/l	U	MB, BRL, original result was 0.139 mg/L
BRI0382	5-W-20-0908	NWTPH-Dx	Diesel Range Hydrocarbons	0.30	15 mg/l	J	CHRO

Qualifier Definitions

J – Estimated concentration

U - Undetected at the reporting limit or at the reported concentration; result is considered to be a false positive

Reason Code Definitions

BRL - Reported concentration is greater than the MDL but less than the reporting limit.

- CHRO Detected response in the diesel range, but the chromatographic pattern does not match the diesel calibration standard.
- MB Method blank contamination.

			_						
Project Name: BNSF Skykomish	La Bo	boratory: TestA thell, WA	meri	ca Analytical Tes	ting Corp	oration,			
Project Reference: Site wide Groundwater Monitoring	Sa	mple Matrix: G	Groun	dwater					
Project No.: 01140-204-0340 Sample Start Date: 09/22/2008									
Verified By/Date Verified: Ann Biegelsen / 11/23/2008 Sample End Date: 09/23/2008									
Samples Analyzed: Refer to the Table of Samples Analyz	zed (p	age 2).							
Parameters Verified: Diesel Range Hydrocarbons and Lube Oil Range Hydrocarbons by Method NWTPH-Dx and NWTPH-Dx with Acid/Silica gel Clean-up. Not all samples were analyzed for every parameter. Refer to individual Chain of Custody reports for the exact analyses									
Laboratory Sample Delivery Group (SDG) IDs: BRI0381	and E	3RI0382							
PRECISION, ACCURACY, METHOD COM	PLIAN	CE, AND CON	IPLE	TENESS ASSES	SMENT				
Precision:	Х	Acceptable		Unacceptable	AB	Initials			
by comparison of field duplicate sample results. Laboratory precision was determined by examination of laboratory duplicate results. Evaluation of both field and laboratory duplicates for precision was done using the Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. Field duplicate RPD QC limits were set at 0-30% for water samples. Laboratory RPD limits referenced EPA published QC limits. No data require qualification based on field or laboratory duplicate precision measurements, and overall field and laboratory precision is acceptable. Precision measurements are reviewed in items									
Accuracy:	Х	Acceptable		Unacceptable	AB	Initials			
Comments: Field accuracy, a measure of the sampling bias, could not be determined as there were no trip blank, field blank, or equipment rinse blank samples included in this data set. Laboratory accuracy is a measure of the system bias, and was measured by evaluating laboratory control sample/laboratory control sample duplicate (LCS/LCSD), matrix spike/matrix spike duplicate (MS/MSD), and organic system monitoring compounds (surrogate) percent recoveries (%Rs). LCS/LCSD %Rs, which demonstrated the overall performance of the analysis, were compared to EPA published QC limits. MS/MSD %Rs, which provided information on sample matrix interferences, were compared to EPA published QC limits or laboratory control charted limits. System monitoring compound or surrogate recoveries, which measured system performance and efficiency during organic analysis, were compared to EPA published QC limits. No data require qualification based on laboratory accuracy measurements, and overall laboratory accuracy is acceptable. Accuracy measurements are reviewed in items 12, 14, 15 and 16									
Method Compliance:XAcceptableUnacceptableABInitials									
Method Compliance: X Acceptable Unacceptable AB Initials Comments: Method compliance was determined by evaluating sample integrity, holding time, and laboratory blanks while applying EPA data validation guidelines. Although some data require qualification based on analytes detected with concentrations less than the reporting limit (RL) but greater than the method detection limit (MDL) (see item 6), laboratory blank contamination (see item 12), or chromatographic match agreement (see item 22), overall method compliance is acceptable based on the supplied data. Method compliance measurements are reviewed in items 4, 6, 8, 11, 13, 18, 19, 20, and 22									

Completeness:	X	Aco	ceptable		Unac	ceptable	AB	Initials	
Comments: Completeness is the overall ratio of the number of samples planned versus the number of samples with verified analyses. Completeness goals are set at 90-100%. Determination of completeness included a review of chain of custody records, laboratory analytical methods and detection limits, laboratory case narratives, and project requirements. Completeness also included 100% review of the laboratory sample data results, QC summary reports, and electronic data deliverables (EDDs). All of the data received from the laboratory are useable with qualification. Completeness of the data is 100% and is acceptable.									
VERIFICATION CRITERIA CHECK									
Data validation flags used in this review:									
J - detected result, estimated concentration									
U – result has been evaluated to be undetected at the rep considered to be a false positive	oorting	ı limit	or at the	report	ed co	ncentratio	n; result is		
The following comments requiring qualification are in bold	d type.	The	other cor	nmen	ts are	of interes	t, but qual	fication of	
Refer to the Table of Qualified Analytical Results for a list (page 3).	ting of	the s	amples, a	inalyte	es, and	d concenti	rations qua	alified	
1. Did the laboratory identify any non-conformances related to the analytical results?	Х		Yes			No	AB	Initials	
Revised Report: SDG BRI0381: The batch preparation date/time was listed incorrectly for the blank, blank spike, and blank spike duplicate for the laboratory batch 8126034. The preparation date and time for the samples was listed correctly as 9:27/2008 1618. The batch QC preparation dates and times have been revised in the enclosed report. SDG BRI0382: Laboratory samples BRI0382-01 through 08 with RE2 designation were batched in an incorrect batch. The samples were inadvertently added to the original batch that was not reported due to failing QC. The samples should have been added to the re-extract batch. The batch has been corrected and is included in the enclosed report. Laboratory footnotes were considered as part of this data review. Data qualification, if any, related to the laboratory enclosed report.								ke, and sted eport. ct batch. ples ed report. oratory	
2. Were sample Chain-of-Custody forms complete?			Yes	>	κ	No	AB	Initials	
Comments: COC records from field to laboratory were complete, and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt, with the following exceptions. SDG BRI0381s and BRI0382: The laboratory noted that for sample 1A-W-5, the sampled time on the container was 11:30, while the sampled time on the COC was 11:20. The laboratory noted that for sample 5-W-14, the sampled time on the container was 10:35, while the sampled time on the COC was 10:25. Both of these samples were logged in per the sampled times listed on the COCs.								by field and er was pled time ged in per	
3. Were all the analyses requested for the samples on	Х		Yes			No	AB	Initials	
the COCs completed by the laboratory?									
Comments: All requested analyses as documented on o	riginal	COC	records v	were o	comple	eted by the	e laborato	ry.	
4. Were samples received in good condition and at the appropriate temperature?	Х		Yes			No	AB	Initials	
Comments: Samples were received on ice, intact, and in acceptance range at 4.4°C to 6.0°C as noted on COCs a	good o nd Sar	condi mple	tion with o Receiving	cooler g Che	tempo cklist f	eratures w orms.	vithin the 4	°C <u>+</u> 2°C	

ENSR

5. Were the requested analytical methods in compliance with WP/QAPP, permit, or COC?	X	Yes		No	AB	Initials				
Comments: Reported methods and target analyte lists w	ere in comp	liance wit	h COC reco	ords.						
Were detection limits in accordance with WP/QAPP, permit, or method?	X	Yes		No	AB	Initials				
Comments: Reported detection limits are achievable by	the quoted i	methods.								
Analytes reported with concentrations below the laboratory reporting limits (RLS), but above the laboratory method detection limits (MDLs), were qualified as J to indicate that the concentrations are estimated. The quantitation of analytes with concentrations outside the calibration range of the instrument is inherently less reliable. Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified										
(page 3).	isting of the	samples,	, analytes, a	and conc	entrations	qualified				
7. Do the laboratory reports include only those constituents requested to be reported for a specific analytical method?	X	Yes		No	AB	Initials				
Comments: Reported target analytes were consistent wi	th COC req	uests.								
8. Were sample holding times met?	X	Yes		No	AB	Initials				
Comments: Extraction and analytical holding times were	met for all	samples a	nd analyse:	3.						
9. Were correct concentration units reported?	X	Yes		No	AB	Initials				
Comments: Correct concentration units were reported.	All paramet	ers are re	ported in ur	its of mg	/L (ppm).					
10. Were the reporting requirements for flagged data met?	X	Yes		No	AB	Initials				
Comments: Data validation qualifiers override assigned	laboratory fl	ags.								
11. Were laboratory blank samples free of target analyte contamination?		Yes	Х	No	AB	Initials				
Comments: All laboratory blanks were free of target and	alyte contam	ination wi	th the follow	ing exce	ptions.					
Method NWTPH-Dx: SDG BRI0382: The laboratory blank sample associated with laboratory batch 8l29034 reported lube oil range hydrocarbons at 0.119 mg/L and diesel range hydrocarbons at 0.0830 mg/L. Diesel range hydrocarbons was not detected in the associated samples with concentrations less than the concentration in the blank, and no diesel range hydrocarbons results require qualification based on the blank detection. Lube oil range hydrocarbons were also detected below the reporting limits in samples 5-W-150-0908, 5-W-15-0908, 5-W-18-0908, and 5-W-20-0908 and has been qualified as U at the reporting limit in these samples to indicate the analyte has been determined to be undetected at the reporting limit and is considered to be a false positive below the reporting limit due to contamination in the laboratory. Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 3).										
12. vvere trip blank, field blank, and/or equipment rinse blank samples free of target analyte contamination?		Yes	X	No	АВ	Initials				
Comments: There were no trip, field or equipment rinse not be evaluated in this data review.	blank samp	les include	ed in this da	ta set. Fi	eld accura	cy could				

13. Were instrument calibrations within method control limits?	NA	Yes	NA	No	AB	Initials				
Comments: Not applicable for this level of data verification laboratory reports and were therefore not included in this	on – Instrum s data reviev	nent calibr v.	ation data v	vere not s	upplied in a	analytical				
14. Were surrogate recoveries within control limits?	X	Yes		No	AB	Initials				
Comments: Surrogate percent recoveries (%Rs) for organic analyses were within data validation QC criteria for all samples.										
15. Were laboratory control sample recoveries within control limits?	X	Yes		No	AB	Initials				
Comments: LCS and LCSD (blank spike) recoveries were within data validation or laboratory control-charted QC limits for all target analytes.										
16. Were matrix spike recoveries within control limits?	X	Yes		No	AB	Initials				
Comments: Project specific MS and MSD recoveries for target analytes were within data validation QC limits or were not applicable due to required sample dilution, or to sample concentrations which exceeded four times the amount spiked (applicable to inorganic analytical methods only), except as noted below. MS and MSD spike recoveries for non-project samples were not considered since matrix similarity to project samples could not be guaranteed.										
17. Were RPDs within control limits?	Х	Yes		No	AB	Initials				
Comments: Laboratory RPDs for target analytes in LCS validation control limits. All laboratory duplicate samples non-project samples were not considered since matrix si	/LCSD and met data v milarity to p	project-sp alidation F roject san	pecific MS/N RPD criteria nples could	ISD samp . Laborat not be gu	oles were v ory duplica aranteed.	vithin data ates for				
18. Were organic system performance criteria met?	NA	Yes	NA	No	AB	Initials				
Comments: Not applicable for this level of data verification analytical laboratory reports and were therefore not inclu	on – Organi ded in this d	c system j data revie	performance w.	e data we	ere not supp	olied in the				
19. Were internal standards within method criteria for GC/MS sample analyses?	NA	Yes	NA	No	AB	Initials				
Comments: Not applicable for this data set -Internal star	ndard additi	on is not r	equired for	the analy	ses reporte	ed.				
20. Were inorganic system performance criteria met?	NA	Yes	NA	No	AB	Initials				
Comments: Not applicable for this data set – There were set.	e no inorgan	nic parame	eters reques	ted for th	e samples	in this data				

21. Were blind field duplicates collected? If so, discuss the precision (RPD) of the results.		X		Yes		No	AB	Initials	
Duplicate Sample No.	1A-W-3-0908		Primary Sample No.			1A-W-30-0908			
Duplicate Sample No.	2A-W-9-0908		Primary Sample No.			2A-W-90-0908			
Duplicate Sample No.	5-W-15-0908		Pri	mary San	nple No.	5-	W-150-09	908	

Comments: The RPDs for the duplicates were within the 0-30% data validation QC limits for water samples, or RPDs were not applicable due to results that were <u>+</u> the detection limit or were undetected in both samples as indicated in the table below. Field duplicate and native sample concentrations that were both undetected are not reflected in the table below since RPDs are not applicable.

The following RPDs were calculated:

Method	Analyte	1A-W-3-0908	1A-W-30-0908	RPD	Qualifier	Samp RL	Dup RL	Units
NWTPH-Dx	Lube Oil Range Hydrocarbons	0.180	0.420	80.00	NA, result is <2XRL	0.472	0.476	mg/l
NWTPH-Dx	Diesel Range Hydrocarbon	0.0791	0.191	82.86	NA, result is <2XRL	0.236	0.238	mg/l

Method	Analyte	2A-W-9-0908	2A-W-90-0908	RPD	Qualifier	Samp RL	Dup RL	Units
NWTPH-Dx	Lube Oil Range Hydrocarbons	0.171	0.147	15.09		0.476	0.476	mg/l
NWTPH-Dx	Diesel Range Hydrocarbon	0.294	0.323	9.40		0.238	0.238	mg/l

Method	Analyte	5-W-15-0908	5-W-150-0908	RPD	Qualifier	Samp RL	Dup RL	Units
NWTPH-Dx	Lube Oil Range Hydrocarbons	0.127	0.104	19.91		0.476	0.472	mg/l
NWTPH-Dx	Diesel Range Hydrocarbon	0.193	0.272	33.98	NA, result is <2XRL	0.238	0.236	mg/l

No data require qualification based on the field duplicate RPDs.

22. Were qualitative criteria for organic target analyte	Х	Yes	No	AB	Initials
identification met?					

Comments: Not applicable for this level of data verification – GC quantitation reports and chromatograms were not supplied in analytical laboratory reports and were therefore not included in this data review. However, retention times and chromatography were reviewed by trained laboratory personnel in accordance with the laboratory's internal QA/QC program. The laboratory notations regarding chromatography were reviewed and considered in the qualification of associated data as detailed below.

<u>Method NWTPH-Dx</u>: SDGs BRI0381 and BRI0382: For the diesel range hydrocarbons result in samples 1A-W-1-0908, 1B-W-2-0908, 1C-W-4-0908, 2A-W-11-0908, 2A-W-90-0908, 2A-W-9-0908, MW-35-0908, MW-39-0908, 5-W-18-0908, and 5-W-20-0908, the laboratory noted that the chromatographic pattern is not consistent with diesel fuel. These results have been qualified as J in these samples to indicate the concentration is estimated.

SDG BRI0381: For the diesel range hydrocarbons and lube oil range hydrocarbons result in sample 5-W-4-0908, the laboratory noted that the hydrocarbons present are a complex mixture of diesel range and heavy oil range organics. The result in this sample has been qualified as J to indicate the concentration is estimated.

SDG BRI0382: For the diesel range hydrocarbons result in samples 5-W-15-0908 and 5-W-150-0908, the laboratory noted that the detected hydrocarbons in the diesel range do not have a distinct diesel pattern and may be due to heavily weathered diesel or possibly biogenic interference. These results have been qualified as J in these samples to indicate the concentration is estimated.

Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 3).

ENSR

ANALYTICAL DATA VERIFICATION CHECKLIST

23. Were 100% of the EDD concentrations and reporting limits compared to the hardcopy data reports?	X	Yes		No	AB	Initials		
Comments: The EDD entries were resolved with the hardcopy data results and corrected as necessary. According to validation protocol, the hardcopy data report was accepted as the correct reference. The data validator provided corrected EDDs as part of this verification report. The EDD file, with data validation gualifiers and reason codes added								

was returned to the database manager in Seattle on 11/24/2008.

24. General Comments: Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory *Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review*, document number USEPA-540-R-08-01, June 2008 with additional reference to *USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review*, document number EPA 540/R-99-008 of October 1999, as they applied to the reported methodology. Field duplicate RPD control limits were taken from the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, February 1988, upheld in DRAFT 1993.

Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 3).

Prepared for: BNSF Skykomish

Organic Data Verification Report BNSF Skykomish Groundwater Sampling, October-December 2008

Prepared for: Sarah Albano Project Manager

Prepared by: Robert Davis Environmental Scientist

January 13, 2009 Document No.: 01140-204-0320

Overview

The samples analyzed for the BNSF Skykomish Groundwater sampling events from October-December 2008 are listed in the Table of Samples Analyzed (page 2). Data verification was performed on twenty-eight groundwater samples.

The samples were analyzed by TestAmerica of Bothell, Washington. The verified analyses were: Diesel Range Hydrocarbons and Lube Oil Range Hydrocarbons by Method NWTPH-Dx and NWTPH-Dx with Acid/Silica gel clean-up.

The Analytical Data Verification Checklist is presented as pages 5-10. Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, document number USEPA-540-R-08-01, June 2008 with additional reference to USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review, document number EPA 540/R-99-008 of July 2007, as they applied to the reported methodology. Field duplicate RPD control limits were taken from the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, February 1988, upheld in DRAFT 1993.

The following data components were reviewed during the data validation procedure:

Submitted Deliverables

Case Narratives Chain-of-Custody form(s) and sample integrity Sample results, reporting detection limits, method detection limits, dilution factors Holding times Method blank results LCS/LCSD (blank spike) results MS/MSD (matrix spike) results Laboratory duplicate results Organic surrogate recoveries Blind field duplicate results Electronic data deliverables (EDDs)

Data Validation Qualifiers Assigned During this Review

- J detected result, estimated concentration
- JN Analyte must be considered presumptively present at an estimated concentration.

Assigned qualifiers are detailed in the Analytical Data Verification Checklist and are summarized in the Table of Qualified Analytical Results (page 3-4).

Overall Data Assessment

Precision, accuracy, method compliance, and completeness of the data set have been determined to be acceptable, based on the data submitted. The data are suitable for their intended use with some qualification.

Table of Samples Analyzed
BNSF Skykomish
Groundwater SamplesPace Analytical Services, Inc. Laboratory SDGs BQJ0118, BQK0034, and BQL0232
October-December 2008 Sampling

Matrix	Sample ID	Parent Sample ID	Sample Date and Time		Lab SDG	Lab Sample ID
Groundwater	5-W-14-1007		10/03/2007	10:10	BQJ0118	BQJ0118-01
Groundwater	5-W-15-1007		10/03/2007	10:45	BQJ0118	BQJ0118-02
Groundwater	5-W-150-1007	5-W-15-1007	10/03/2007	10:55	BQJ0118	BQJ0118-03
Groundwater	5-W-16-1007		10/03/2007	11:40	BQJ0118	BQJ0118-04
Groundwater	5-W-17-1007		10/03/2007	12:30	BQJ0118	BQJ0118-05
Groundwater	5-W-18-1007		10/03/2007	13:50	BQJ0118	BQJ0118-06
Groundwater	5-W-19-1007		10/03/2007	13:15	BQJ0118	BQJ0118-07
Groundwater	5-W-20-1007		10/03/2007	14:40	BQJ0118	BQJ0118-08
Groundwater	MW-500-1007		10/03/2007	15:00	BQJ0118	BQJ0118-09
Groundwater	5-W-16-1107		11/02/2008	11:15	BQK0034	BQK0034-01
Groundwater	5-W-19-1107		11/02/2008	09:36	BQK0034	BQK0034-02
Groundwater	5-W-20-1107		11/02/2008	08:40	BQK0034	BQK0034-03
Groundwater	5-W-18-1107		11/02/2008	10:35	BQK0034	BQK0034-04
Groundwater	5-W-17-1107		11/02/2008	11:20	BQK0034	BQK0034-05
Groundwater	5-W-15-1107		11/02/2008	10:25	BQK0034	BQK0034-06
Groundwater	5-W-14-1107		11/02/2008	08:50	BQK0034	BQK0034-07
Groundwater	DUP-01-110207	5-W-14-1107	11/02/2008	08:00	BQK0034	BQK0034-08
Groundwater	5-W-14-1207		12/12/2008	18:55	BQL0232	BQL0232-01
Groundwater	5-W-16-1207		12/12/2008	20:10	BQL0232	BQL0232-02
Groundwater	5-W-19-1207		12/12/2008	21:15	BQL0232	BQL0232-03
Groundwater	5-W-20-1207		12/12/2008	22:15	BQL0232	BQL0232-04
Groundwater	5-W-170-1207	5-W-17-1207	12/13/2008	07:15	BQL0232	BQL0232-05
Groundwater	5-W-17-1207		12/13/2008	08:15	BQL0232	BQL0232-06
Groundwater	5-W-15-1207		12/13/2008	09:25	BQL0232	BQL0232-07
Groundwater	5-W-18-1207		12/13/2008	10:50	BQL0232	BQL0232-08
Groundwater	1C-W-1-1207		12/13/2008	12:40	BQL0232	BQL0232-09
Groundwater	2A-W-6-1207		12/13/2008	14:10	BQL0232	BQL0232-10
Groundwater	MW-500-1207		12/13/2008	14:00	BQL0232	BQL0232-11

Table of Qualified Analytical Results BNSF Skykomish Groundwater Samples Pace Analytical Services, Inc. Laboratory SDGs BQJ0118, BQK0034, and BQL0232 October-December 2008 Sampling

Lab SDG	Sample ID	Method	Analyte	Concentration		Qualifier	Reason Code
BQJ0118	5-W-15-1007	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.425	mg/l	J	BRL
BQJ0118	5-W-15-1007	NWTPH-Dx	Diesel Range Hydrocarbons	1.54	mg/l	JN	ID
BQJ0118	5-W-150-1007	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.397	mg/l	J	BRL
BQJ0118	5-W-150-1007	NWTPH-Dx	Diesel Range Hydrocarbons	1.47	mg/l	JN	ID
BQJ0118	5-W-16-1007	NWTPH-Dx	Diesel Range Hydrocarbons	0.0562	mg/l	J	BRL
BQJ0118	5-W-18-1007	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.256	mg/l	J	BRL
BQJ0118	5-W-18-1007	NWTPH-Dx	Diesel Range Hydrocarbons	0.623	mg/l	JN	ID
BQJ0118	5-W-20-1007	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.393	mg/l	J	BRL
BQJ0118	5-W-20-1007	NWTPH-Dx	Diesel Range Hydrocarbons	0.756	mg/l	JN	ID
BQK0034	5-W-16-1107	NWTPH-Dx	Diesel Range Hydrocarbons	0.0676	mg/l	J	BRL
BQK0034	5-W-16-1107	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.118	mg/l	J	BRL
BQK0034	5-W-19-1107	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.134	mg/l	J	BRL
BQK0034	5-W-17-1107	NWTPH-Dx	Diesel Range Hydrocarbons	0.141	mg/l	J	BRL
BQK0034	5-W-15-1107	NWTPH-Dx	Diesel Range Hydrocarbons	0.0858	mg/l	J	BRL
BQK0034	5-W-15-1107	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.177	mg/l	J	BRL
BQK0034	5-W-14-1107	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.0870	mg/l	J	CCV
BQK0034	DUP-01-110207	NWTPH-Dx	Diesel Range Hydrocarbons	0.0736	mg/l	J	BRL
BQK0034	DUP-01-110207	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.164	mg/l	J	CCV
BQK0034	5-W-20-1107	NWTPH-Dx	DRH (SGCU)	0.0534	mg/l	J	BRL
BQK0034	5-W-18-1107	NWTPH-Dx	DRH (SGCU)	0.0784	mg/l	J	BRL
BQL0232	5-W-14-1207	NWTPH-Dx	Diesel Range Hydrocarbons	0.0499	mg/l	J	BRL
BQL0232	5-W-16-1207	NWTPH-Dx	Diesel Range Hydrocarbons	0.0476	mg/l	J	BRL
BQL0232	5-W-20-1207	NWTPH-Dx	Diesel Range Hydrocarbons	0.912	mg/l	J	MI
BQL0232	5-W-20-1207	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.403	mg/l	J	BRL
BQL0232	5-W-15-1207	NWTPH-Dx	Diesel Range Hydrocarbons	0.121	mg/l	J	BRL
BQL0232	5-W-18-1207	NWTPH-Dx	Diesel Range Hydrocarbons	0.858	mg/l	J	MI
BQL0232	5-W-18-1207	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.406	mg/l	J	BRL
BQL0232	IC-W-1-1207	NWTPH-Dx	Diesel Range Hydrocarbons	1.28	mg/l	J	MI
BQL0232	IC-W-1-1207	NWTPH-Dx	Lube Oil Range Hydrocarbons	0.357	mg/l	J	BRL
BQL0232	2A-W-6-1207	NWTPH-Dx	Diesel Range Hydrocarbons	4.98	mg/l	J	MI
BQL0232	5-W-14-1207	NWTPH-Dx	DRH (SGCU)	0.0516	mg/l	J	BRL
BQL0232	5-W-16-1207	NWTPH-Dx	DRH (SGCU)	0.0479	mg/l	J	BRL
BQL0232	5-W-20-1207	NWTPH-Dx	DRH (SGCU)	0.0450	mg/l	J	BRL
BQL0232	5-W-18-1207	NWTPH-Dx	DRH (SGCU)	0.0567	mg/l	J	BRL
BQL0232	IC-W-1-1207	NWTPH-Dx	DRH (SGCU)	0.0433	mg/l	J	BRL
BQL0232	2A-W-6-1207	NWTPH-Dx	DRH (SGCU)	0.243	mg/l	JN	ID

Qualifier Definitions

J - Estimated concentration

JN – Analyte must be considered presumptively present at an estimated concentration.

Reason Code Definitions

BRL - Reported concentration is greater than the MDL but less than the reporting limit.

CCV - Continuing calibration verification outside of the acceptable limits.

MI – Matrix interference, result biased high.

ID – Detected hydrocarbons in the diesel range do not have a distinct diesel pattern.

roject Name: BNSF Skykomish Laboratory: TestAmerica Analytical Testing Corporation, Bothell, WA											
Project Reference: Site wide Groundwater Monitoring	Sa	Sample Matrix: Groundwater									
Project No.: 01140-204-0320	Sa	mple Start Date	e: 10)/03/2008							
Verified By/Date Verified:Robert Davis 01/13/2009Sample End Date: 12/13/2008Reviewed by Gregory Malzone 01/14/2009											
Samples Analyzed: Refer to the Table of Samples Analyzed (page 2).											
Parameters Verified: Diesel Range Hydrocarbons and Lube Oil Range Hydrocarbons by Method NWTPH-Dx and NWTPH-Dx with Acid/Silica gel Clean-up. Not all samples were analyzed for every parameter. Refer to individual Chain of Custody reports for the exact analyses requested.											
Laboratory Sample Delivery Group (SDG) IDs: BQJ0118, BQK0034, and BQL0232											
PRECISION, ACCURACY, METHOD COMPLIANCE, AND COMPLETENESS ASSESSMENT											
Precision:	X	Acceptable		Unacceptable	RD	Initials					
Comments: Precision is the measure of variability of individual sample measurements. Field precision was determined by comparison of field duplicate sample results. Laboratory precision was determined by examination of laboratory duplicate results. Evaluation of both field and laboratory duplicates for precision was done using the Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. Field duplicate RPD QC limits were set at 0-30% for water samples. Laboratory RPD limits referenced EPA published QC limits. No data require qualification based on field or laboratory duplicate precision measurements, and overall field and laboratory precision is acceptable. Precision measurements are reviewed in items 17, 20, and 21											
Accuracy:	X	Acceptable		Unacceptable	RD	Initials					
Comments: Field accuracy, a measure of the sampling bias, could not be determined as there were no trip blank, field blank, or equipment rinse blank samples included in this data set. Laboratory accuracy is a measure of the system bias, and was measured by evaluating laboratory control sample/laboratory control sample duplicate (LCS/LCSD), matrix spike/matrix spike duplicate (MS/MSD), and organic system monitoring compounds (surrogate) percent recoveries (%Rs). LCS/LCSD %Rs, which demonstrated the overall performance of the analysis, were compared to EPA published QC limits. MS/MSD %Rs, which provided information on sample matrix interferences, were compared to EPA published QC limits or laboratory control charted limits. System monitoring compound or surrogate recoveries, which measured system performance and efficiency during organic analysis, were compared to EPA published QC limits. No data require qualification based on laboratory accuracy measurements, and overall laboratory accuracy is acceptable. Accuracy measurements are reviewed in items 12, 14, 15 and 16.											
Method Compliance:	X	Acceptable		Unacceptable	RD	Initials					
Comments: Method compliance was determined by evaluating sample integrity, holding time, and laboratory blanks while applying EPA data validation guidelines. Although some data require qualification based on analytes detected with concentrations less than the reporting limit (RL) but greater than the method detection limit (MDL) (see item 6), laboratory blank contamination (see item 12), or chromatographic match agreement (see item 22), overall method compliance is acceptable based on the supplied data. Method compliance measurements are reviewed in items 4, 6, 8, 11, 13, 18, 19, 20 and 22.											

Completeness:	Х	Aco	ceptable		Unad	cceptable	RD	Initials	
Comments: Completeness is the overall ratio of the number of samples planned versus the number of samples with verified analyses. Completeness goals are set at 90-100%. Determination of completeness included a review of chain of custody records, laboratory analytical methods and detection limits, laboratory case narratives, and project requirements. Completeness also included 100% review of the laboratory sample data results, QC summary reports, and electronic data deliverables (EDDs). All of the data received from the laboratory are useable with qualification. Completeness of the data is 100% and is acceptable.									
VERIFICATION CRITERIA CHECK									
Data validation flags used in this review:									
J – detected result, estimated concentration									
JN – Analyte must be considered presumptively present	at an e	estima	ated conce	entrat	ion.				
The following comments requiring qualification are in bold type. The other comments are of interest, but qualification of the samples was not necessary.									
Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 3-4).									
1. Did the laboratory identify any non-conformances related to the analytical results?	Х		Yes			No	RD	Initials	
Explanation by Laboratory:									
Laboratory footnotes were considered as part of this data review. Data qualification, if any, related to the laboratory observations are discussed in the following sections.									
2. Were sample Chain-of-Custody forms complete?	Х		Yes			No	RD	Initials	
Comments: COC records from field to laboratory were complete, and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt.									
3. Were all the analyses requested for the samples on the COCs completed by the laboratory?	Х		Yes			No	RD	Initials	
Comments: All requested analyses as documented on o	riginal	COC	c records v	were o	comple	eted by the	e laborato	ry.	
4. Were samples received in good condition and at the appropriate temperature?			Yes)	K	No	RD	Initials	
Comments: Samples were received on ice, intact, and in good condition with cooler temperatures within the $4^{\circ}C \pm 2^{\circ}C$ acceptance temperature of 6.0°C for log numbers BQJ0118 and BQL0232 as noted on COCs and Sample Receiving Checklist forms. Log number BQK0034 was received at a temperature of 7.0°C which is outside of the acceptable limits of $4^{\circ}C \pm 2^{\circ}C$. The samples were delivered to the laboratory within hours of collection; therefore, no action is necessary.									
5. Were the requested analytical methods in compliance with WP/QAPP, permit, or COC?	Х		Yes			No	RD	Initials	
Comments: Reported methods and target analyte lists were in compliance with COC records.									

				-	-					
6. Were detection limits in accordance with WP/QAPP, permit, or method?	Х	Yes		No	RD	Initials				
Comments: Reported detection limits are achievable by	the quoted i	nethods.								
Analytes reported with concentrations below the lab method detection limits (MDLs), were qualified as J to quantitation of analytes with concentrations outside reliable. Refer to the Table of Qualified Analytical Results for a lo (page 3-4).	oratory rep to indicate the calibra	oorting lin that the c tion rang samples,	nits (RLs), l oncentration e of the inst analytes, a	but abov ons are e strument	e the labo estimated. is inherer	ratory The ntly less qualified				
7. Do the laboratory reports include only those constituents requested to be reported for a specific analytical method?	x	Yes		No	RD	Initials				
Comments: Reported target analytes were consistent wi	th COC req	uests.								
8. Were sample holding times met?	X	Yes		No	RD	Initials				
Comments: Extraction and analytical holding times were met for all samples and analyses.										
9. Were correct concentration units reported?	X	Yes		No	RD	Initials				
Comments: Correct concentration units were reported. All parameters are reported in units of mg/L (ppm).										
10. Were the reporting requirements for flagged data met?	X	Yes		No	RD	Initials				
Comments: Data validation qualifiers override assigned	laboratory fl	ags.								
11. Were laboratory blank samples free of target analyte contamination?	X	Yes		No	RD	Initials				
Comments: All laboratory blanks were free of target and	alyte contarr	ination.								
12. Were trip blank, field blank, and/or equipment rinse blank samples free of target analyte contamination?		Yes	X	No	RD	Initials				
Comments: There were no trip, field or equipment rinse not be evaluated in this data review.	blank samp	les include	ed in this da	ta set. Fi	eld accura	cy could				
13. Were instrument calibrations within method control limits?	NA	Yes	NA	No	RD	Initials				
Comments: Not applicable for this level of data verification – Instrument calibration data were not supplied in the analytical laboratory reports and were therefore not included in this data review.										
14. Were surrogate recoveries within control limits?	x	Yes		No	RD	Initials				
Comments: Surrogate percent recoveries (%Rs) for orga samples.	anic analyse	es were wi	thin data va	lidation C	C criteria f	or all				
15. Were laboratory control sample recoveries within control limits?	X	Yes		No	RD	Initials				
Comments: LCS and LCSD (blank spike) recoveries we for all target analytes.	ere within da	ta validati	on or labora	atory cont	rol-charted	QC limits				

16. Were matrix	< spike recove	ries within co	ntrol limits?	X		Yes		No	RD	In	nitials
Comments: Project specific MS and MSD recoveries for target analytes were within data validation QC limits or were not applicable due to required sample dilution, or to sample concentrations which exceeded four times the amount spiked (applicable to inorganic analytical methods only), except as noted below. MS and MSD spike recoveries for non-project samples were not considered since matrix similarity to project samples could not be guaranteed.											
17. Were RPDs	within contro	l limits?		X		Yes		No	RD	In	nitials
Comments: Laboratory RPDs for target analytes in LCS/LCSD and project-specific MS/MSD samples were within data validation control limits. All laboratory duplicate samples met data validation RPD criteria. Laboratory duplicates for non-project samples were not considered since matrix similarity to project samples could not be guaranteed.											
18. Were organ	ic system per	formance crite	eria met?	NA		Yes	NA	No	RD	In	nitials
Comments: Not analytical labora	Comments: Not applicable for this level of data verification – Organic system performance data were not supplied in the analytical laboratory reports and were therefore not included in this data review.										
19. Were intern GC/MS sample	al standards v analyses?	vithin method	criteria for	NA		Yes	NA	No	RD	In	nitials
Comments: Not	applicable for	r this data set	–Internal star	ndards a	are no	ot used fo	or the analy	rses repo	rted.		
20. Were inorga	nic system pe	rformance cri	iteria met?	NA		Yes	NA	No	RD	In	nitials
Comments: Not set.	Comments: Not applicable for this data set – There were no inorganic parameters requested for the samples in this data set.										
21. Were blind field duplicates collected? If so, discuss the precision (RPD) of the results.			lf so,	X		Yes		No	RD	In	itials
Duplicate Sample No. 5-W-150-1007				Primary Sample No.				5-W-15-	007		
Duplicate Sa	пріе іхо.	5-11	100 1001						5_\//_1/_*		
Duplicate Sa	mple No.	DUP	-01-110207		Prim	nary Sam	nple No.		5-00-14-	107	
Duplicate Sa Duplicate Sa Duplicate Sa	mple No. mple No.	DUP 5-W	-01-110207 /-170-1207		Prim Prim	hary Sam hary Sam	nple No. nple No.		5-W-17-	207	
Duplicate Sa Duplicate Sa Duplicate Sa Comments: The were not applicate table below. Fire below since RPI The following RI	mple No. mple No. PRPDs for the able due to res ald duplicate a Ds are not app Ds were calc	DUP 5-W e duplicates w sults that were ind native san plicable. culated:	-01-110207 /-170-1207 /ere within the $\Rightarrow \pm$ the detection the concentration of the concentra	≥ 0-30% ion limit ations th	Prim Prim data or we hat we	nary Sam nary Sam validatio ere unde ere both	nple No. nple No. on QC limits tected in bo undetected	for wate oth samp l are not i	5-W-17- 5-W-17- r sample es as inc reflected	1107 1207 s, or RF licated i in the ta	PDs in the able
Duplicate Sa Duplicate Sa Duplicate Sa Comments: The were not applica table below. Fie below since RPI The following RI Method	mple No. mple No. mple No. e RPDs for the ble due to res ald duplicate a Ds are not app PDs were calc Anal	DUP 5-W e duplicates w sults that were ind native san plicable. culated: yte	-01-110207 /-170-1207 /ere within the > <u>+</u> the detection nple concentration 5-W-15-1007	≥ 0-30% ion limit ations th	Prim Prim data or we hat we	nary Sam nary Sam validatic ere unde ere both	nple No. nple No. on QC limits tected in bo undetected	for wate oth sampl l are not l alifier	5-W-17- 5-W-17- r sample es as inc reflected	1107 I207 s, or RF licated i in the ta	PDs in the able
Duplicate Sa Duplicate Sa Duplicate Sa Comments: The were not applica table below. Fie below since RPI The following RI Method NWTPH-Dx	mple No. mple No. e RPDs for the able due to res able duplicate a Ds are not app PDs were calc Anal Lube Oil Range	DUP 5-W e duplicates w sults that were ind native san plicable. culated: yte Hydrocarbons	-01-110207 /-170-1207 /ere within the e ± the detection nple concentration 5-W-15-1007 0.425 J	> 0-30% ion limit ations th	Prim Prim o data or we hat we	nary Sam nary Sam validatic ere unde ere both	pple No. pple No. pn QC limits tected in bo undetected PD Qu .8	o for wate oth samp l are not alifier	5-W-17- 5-W-17- r sample es as inc reflected Samp RL 0.476	1207 s, or RF licated i in the ta Dup RL 0.472	PDs in the able
Duplicate Sa Duplicate Sa Duplicate Sa Comments: The were not applicate table below. File below since RPI The following RI Method NWTPH-Dx NWTPH-Dx	mple No. mple No. mple No. e RPDs for the able due to res ald duplicate a Ds are not app PDs were calc Anal Lube Oil Range Diesel Range	DUP 5-W e duplicates w sults that were ind native san plicable. culated: yte Hydrocarbons Hydrocarbon	-01-110207 /-170-1207 /ere within the ⇒ <u>+</u> the detecti nple concentra 5-W-15-1007 0.425 J 1.54 JN	 → 0-30% ion limit ations the structure 5-W-1 0. 1.4 	Prim Prim o data or we hat we 150-100 397 J 47 JN	nary Sam nary Sam validatic ere unde ere both	pple No. pple No. pn QC limits tected in boundetected PD Qu .8 .5	a for wate oth sampl l are not i alifier	5-W-17- 5-W-17- r sample les as inc reflected Samp RL 0.476 0.238	107 207 s, or RF licated i in the ta 0.472 0.236	PDs in the able Units mg/I mg/I
Duplicate Sa Duplicate Sa Duplicate Sa Comments: The were not applica table below. Fie below since RPI The following RI Method NWTPH-Dx NWTPH-Dx	mple No. mple No. mple No. e RPDs for the able due to res ald duplicate a Ds are not app PDs were calc Anal Lube Oil Range Diesel Range	DUP 5-W e duplicates w sults that were ind native san plicable. culated: yte Hydrocarbons Hydrocarbon	-01-110207 /-170-1207 /ere within the ⇒ <u>+</u> the detecti nple concentra 5-W-15-1007 0.425 J 1.54 JN 5-W-14-1107	≥ 0-30% ion limit ations th 5-W-1 0. 1	Prim Prim o data or we hat we 150-100 397 J 47 JN	nary Sam nary Sam validatic ere unde ere both 07 Ri 07 Ri 207 Ri	PD Qu .5	alifier	5-W-17- 5-W-17- r sample es as inc reflected 6 6 6 0.238 5 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	107 1207 s, or RF licated i in the ta 0.472 0.236 Dup RL Dup RL	PDs in the able Units mg/I mg/I
Duplicate Sa Duplicate Sa Duplicate Sa Comments: The were not applica table below. Fie below since RPI The following RI Method NWTPH-Dx NWTPH-Dx	mple No. mple No. mple No. e RPDs for the able due to res ald duplicate a Ds are not app PDs were calc Anal Lube Oil Range Anal Lube Oil Range	DUP 5-W e duplicates w sults that were ind native san plicable. culated: yte Hydrocarbons Hydrocarbons yte Hydrocarbons	-01-110207 /-170-1207 /ere within the ⇒ <u>+</u> the detecti nple concentra 5-W-15-1007 0.425 J 1.54 JN 5-W-14-1107 0.0870 J	≥ 0-30% ion limit ations th 5-W-1 0.	Prim Prim o data or we hat we 150-100 397 J 47 JN 01-1102 164 J	nary Sam nary Sam validatic ere unde ere both 07 Ri 07 Ri 207 Ri 6	PD Qu .5 PD Qu .8 .5 .1 NA, 1	alifier	5-W-17- r sample es as inc reflected 5amp RL 0.476 0.238 5amp RL 0.472	1107 1207 s, or RF licated i in the ta Dup RL 0.236 Dup RL 0.472	PDs in the able Units mg/I Units mg/I
Duplicate Sa Duplicate Sa Duplicate Sa Comments: The were not applica table below. Fie below since RPI The following RI Method NWTPH-Dx NWTPH-Dx NWTPH-Dx NWTPH-Dx	mple No. mple No. mple No. e RPDs for the able due to res ald duplicate a Ds are not app PDs were calc Anal Lube Oil Range Diesel Range Diesel Range	DUP 5-W e duplicates w sults that were ind native san plicable. culated: lyte Hydrocarbons Hydrocarbons Hydrocarbons Hydrocarbons	-01-110207 /-170-1207 /ere within the ⇒ ± the detecting 5-W-15-1007 0.425 J 1.54 JN 5-W-14-1107 0.0870 J ND		Prim Prim o data or we hat we 150-100 397 J 47 JN 01-1102 164 J 0736 J	nary Sam nary Sam validatic ere unde ere both 07 Ri 07 Ri 207 Ri 207 Ri	PD Qu 01 NA, 02 NA, 03 NA, 04 NA, 05 NA, 06 NA, 07 NA, 07 NA, 07 NA,	alifier s alifier s alifier s alifier s xRL s XRL s XRL s XRL s	5-W-17- 5-W-17- r sample les as inc reflected Samp RL 0.476 0.238 Samp RL 0.472 0.236	1107 1207 s, or RF licated in the ta 0.472 0.236 Dup RL 0.472 0.236	Ds in the able Units mg/I Units mg/I mg/I

No data require qualification based on the field duplicate RPDs.

22. Were qualitative criteria for organic target analyte	Х	Yes	No	RD	Initials
identification met?					

Comments: Not applicable for this level of data verification – GC quantitation reports and chromatograms were not supplied in the analytical laboratory reports and were therefore not included in this data review. However, retention times and chromatography were reviewed by trained laboratory personnel in accordance with the laboratory's internal QA/QC program. The laboratory notations regarding chromatography were reviewed and considered in the qualification of associated data as detailed below.

<u>Method NWTPH-Dx</u>: SDG BQJ0118: For the diesel range hydrocarbon results in samples 5-W-15-1007, 5-W-150-1007, 5-W-18-1007, and 5-W-20-1007; the laboratory noted that the detected hydrocarbons in the diesel range do not have a distinct diesel pattern and may be due to heavily weathered diesel or possibly biogenic interference. These results have been qualified as JN in these samples to indicate the concentration is estimated.

<u>Method NWTPH-Dx</u>: SDG BQK0034: For the Lube oil range hydrocarbon results in samples 5-W-14-1107 and DUP-01-110207; the laboratory noted that the continuing calibration verification (CCV) was outside of the acceptable limits biased high. These results have been qualified as J in these samples to indicate the concentration is estimated because of high instrument bias.

<u>Method NWTPH-Dx</u>: SDG BQL0232: For the diesel range hydrocarbon results in samples 5-W-20-1207, 5-W-18-1207, and IC-W-1-1207; the laboratory noted that the results in the diesel organics range are primarily due to overlap from a heavy oil range product. These results have been qualified as J in these samples to indicate the concentration is estimated and biased high because of matrix interference.

<u>Method NWTPH-Dx</u>: SDG BQL0232: For the diesel range hydrocarbon with acid/silica gel cleanup result in sample 2A-W-6-1207; the laboratory noted that the detected hydrocarbons in the diesel range do not have a distinct diesel pattern and may be due to heavily weathered diesel or possibly biogenic interference. This result has been qualified as JN in these samples to indicate the concentration is estimated.

Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 3-4).

23. Were 100% of the EDD concentrations and	Х	Yes	No	RD	Initials
reporting limits compared to the hardcopy data					
reports?					

Comments: The EDD entries were resolved with the hardcopy data results and corrected as necessary. According to validation protocol, the hardcopy data report was accepted as the correct reference. The data validator provided corrected EDDs as part of this verification report. The EDD file, with data validation qualifiers and reason codes added was returned to the database manager in Seattle on 11/24/2008.

24. General Comments: Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory *Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review*, document number USEPA-540-R-08-01, June 2008 with additional reference to *USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review*, document number EPA 540/R-99-008 of October 1999, as they applied to the reported methodology. Field duplicate RPD control limits were taken from the *USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses*, February 1988, upheld in DRAFT 1993.

Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (page 3-4).