APPENDIX C Supplemental Site Characterization Study

Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206.728.2674

July 18, 2013

Port of Anacortes PO Box 297 Anacortes, Washington 98221

Attention: Jenkins Dossen

Subject: Soil Characterization Study Wyman's Property Anacortes, Washington File No. 5147-019-05

INTRODUCTION

This letter presents GeoEngineers' results of the soil characterization field study completed for the Wyman's Property (Site) located at 202 U Avenue in Anacortes, Washington (Figure 1). Historic studies of the Site have identified limited areas of soil contamination where concentrations exceed applicable Model Toxics Control Act (MTCA) cleanup levels. As a result, the property has been listed on Ecology's known or suspected cleanup site list (Facility Site Identification No. 2821735).

To support construction of a proposed habitat mitigation area at the Site, supplemental soil sampling activities were completed to: 1) further evaluate the vertical and lateral extent of previously documented shallow soil contamination associated with historic Site use and deeper soil contamination associated with historic underground storage tanks (USTs; now removed); 2) characterize the general soil quality within the proposed excavation prism outside of the historical contamination areas to serve as a basis for evaluating soil disposal options; and 3) characterize soil conditions at the final proposed cut surface elevation that will exposed to marine waters following construction.

Results of this site investigation and previous investigations are summarized below.

BACKGROUND INFORMATION

Site Description

The Site is located approximately ½ mile northeast of downtown Anacortes, Washington, on the southern shoreline of Guemes Channel between industrial and residential areas (Figure 1). The Site is bordered by

Guemes Channel to the north, residential homes to the east and south, and Randy's Pier 61 restaurant to the west.

Currently, the Site consists of a vacated wooden and sheet metal building (Wyman's Building) with gravel parking areas to the east and south. A concrete ramp leading to the water and bedrock outcroppings are located to the west of the Wyman's Building. Wooden piles, a fuel float, dock and associated structures are located north of the Wyman's Building. A concrete pad for a former "pole" building is located immediately south of the Wyman's Building. The western, southern and eastern portions of the Site are separated from the adjacent properties by a metal fence.

Site History

Initial property development occurred after 1944 with a dock structure in place by 1956. The property was initially operated by Robinson Marine Works, later known as USCG Mooring and Robinson Anacortes Marina. In 1983, pilings in the dock and marina areas were reportedly replaced and maintenance dredging completed by the Port of Anacortes (Port). Until 1998 Donald and Rayetta Wyman operated the Site for boat servicing and maintenance on a continuous basis. At this time, marina and boat maintenance and server operations ceased and two USTs associated with marine fueling operations were decommissioned and removed from the property. The access ramp located west of the Wyman's Building was replaced by the Port in 2010 and continues to remain in service.

Previous Investigations

Three previous environmental investigations have been completed at the Site, including:

- Environmental Site Assessment in 1997 (Otten, 1997);
- Underground Storage Tank Closure in 1985 (Otten, 1998); and
- Soil and Sediment investigation in 2004 (Landau, 2004).

The results of these previous environmental studies are briefly discussed in the following sections. Chemical analytical results for historic soil and sediment samples obtained during previous environmental studies are summarized in Tables 1 and 2, respectively. Historic sample locations are shown relative to the Site on Figure 2.

Summary of Previous Soil Investigations and Results

Surface soil samples (up to 1-foot below ground surface [bgs]) were obtained by Otten Engineering in 1997 at fifteen locations (WY-UPLD-SS-1 through WY-UPLD-SS-15) at the Site in areas with visible oil staining, paint chip fragments, and/or sandblast grit. Contaminants of concern including gasoline-, diesel- and heavy oil-range petroleum hydrocarbons, metals (arsenic, cadmium, copper, lead and mercury) and/or pesticides (DDD) were detected at concentrations exceeding Model Toxics Control Act (MTCA) cleanup levels at seven of the fifteen locations sampled.

During UST decommissioning and removal activities in 1998, gasoline-range petroleum hydrocarbons and benzene were detected at concentrations exceeding MTCA cleanup levels in soil samples obtained from the north and northwest sidewalls of the UST removal excavation at approximately 5 feet bgs. However, it was reported that soil represented by these samples were subsequently excavated and removed from the Site (Otten, 1998). Contaminants of concern including petroleum hydrocarbons, benzene, ethylbenzene,

toluene and xylenes (BETX) and metals (lead) either were not detected or were detected at concentrations less than MTCA cleanup levels in confirmation soil samples obtained from the southern and eastern UST excavation sidewalls and base of the UST excavation.

In 2004, Landau Associates completed supplemental sampling activities at five locations (MSI-4-1 through MSI-4-5) in areas where historic operations were considered most likely to impact surface soil or groundwater. Contaminants of concern including gasoline-, diesel- and heavy oil-range petroleum hydrocarbons, BETX, and metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) either were not detected or were detected at concentrations less than MTCA cleanup levels.

Summary of Previous Sediment Investigations and Results

Surface sediment grab samples (above 10 centimeters [cm]) were obtained by Otten Engineering in 1997 at five locations (WY-SED-1 through WY-SED-5) to evaluate sediment conditions at the Site. Samples were submitted for Sediment Management Standard (SMS) analytes from each of the locations sampled. In addition, pore water samples for tributyltin (TBT) were obtained from four of these locations. Contaminants either were not detected or were detected at concentrations less than the Sediment Quality Standards (SQS) criteria (WAC 173-204-320) in each of the samples submitted for chemical analysis. TBT either was not detected or was detected at a concentration less than the screening level defined in the Dredge Material Evaluation and Disposal Procedures User's Manual (DMMO, 2008).

In 2004, Landau completed supplemental sediment sampling activities to within the Wyman's marina area to further evaluate sediment conditions at the Site. Samples were obtained from the upper 10 cm of sediment using a grab sampler at three locations (MSI-4-6a through MSI-4-6c). Samples collected from these locations were composited and submitted for chemical analysis of metals, polychlorinated biphenyls (PCBs), semi-volatile organic compounds (SVOCs), butyltins, total organic carbon (TOC) and total solids. Contaminants of concern either were not detected or were detected at concentrations less than SQS criteria in the composite sediment sample.

SUPPLEMENTAL SOIL INVESTIGATION

Supplemental soil investigation activities were completed at the Site on July 5, 2012 to evaluate the vertical and lateral extent of previously documented shallow soil contamination associated with historic Site use; confirm the removal of petroleum related contamination in soil in the northern portion of the UST removal excavation; evaluate soil disposal options for soil that will be generated during mitigation habitat construction activities; and characterize soil conditions at the final proposed cut surface elevation that will be exposed to marine waters following construction excavation activities. Selected soil samples obtained from the Site were submitted for one or more of the following:

- Gasoline-range hydrocarbons by NWTPH-G.
- Diesel- and oil-range petroleum hydrocarbons by NWTPH-Dx.
- BETX by Environmental Protection Agency (EPA) Method 8260.
- Polychlorinated Biphenyl's (PCBs) by EPA Method 8280.
- Metals (arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver and zinc) by EPA Method 6000/7000 series.

- Semivolatile organic compounds (SVOCs) by EPA Method 8270D/SIM.
- Organochlorine Pesticides (DDD) by EPA Method 8081A.

Field investigations and chemical analytical results of samples obtained are summarized in the following sections. Chemical analytical results for this soil investigation are summarized in Tables 3 and 4. Soil sample locations are shown relative to the Site on Figure 3. Field screening procedures and exploration logs are presented in Appendix A. A copy of the laboratory report and data validation report are presented in Appendix B and C, respectively.

Shallow Surface Soil Investigation and Analytical Results

A total of 21 shallow surface soil samples (summarized in Table 3) were obtained from the Site to evaluate the vertical and lateral extent of historic contamination in soil identified during previous environmental investigations. At each historic exceedance location, soil samples obtained as part of this study were submitted for chemical analysis of only those contaminants which previously exceeded MTCA cleanup levels. In addition, composite soil sample GEI-SS-COMP was obtained to characterize soil conditions from historic exceedance areas WY-UPLD-SS-2, WY-UPLD-SS-6, WY-UPLD-SS-9 and WY-UPLD-SS-12 for evaluating disposal options. Due to the elevated concentrations of lead at locations WY-UPLD-SS-13, WY-UPLD-SS-14 and WY-UPLD-SS-15 (detected lead concentration in soil is greater than 20 times¹ the associated toxicity characteristic threshold listed in WAC 173-303-090(8)), two discrete soil samples (GEI-SS-13-0.5 and GEI-SS-14/15-0.5) were obtained from these locations and submitted for analysis by the toxicity characteristic leaching procedure (TCLP) to evaluate whether the soil generated from these areas would potentially designate as a dangerous waste.

Soil samples obtained as part of this investigation were screened in the field for evidence of petroleum hydrocarbons and VOCs. Field screening procedures are presented in Appendix A. Field screening evidence of potential petroleum-related contamination (moderate sheen or greater and/or elevated head space vapor measurements greater than 20 ppm) was not observed in each of the shallow soil samples obtained from the Site.

Contaminants of concern either were not detected or were detected at concentrations less than MTCA cleanup levels in each of the samples submitted for chemical analysis, with one exception. Arsenic was detected at a concentration exceeding the MTCA cleanup level of 20 milligrams per kilogram (mg/kg) in composite soil sample GEI-SS-COMP obtained to evaluate landfill disposal options. Additionally, TCLP test results indicate that soil represented by samples GEI-SS-13-0.5 and GEI-SS-14/15-0.5 do not designate as a dangerous Waste. Chemical analytical results are summarized in Table 3. Soil sample locations are shown relative to the Site on Figure 3.

Subsurface Soil Investigation and Analytical Results

A total of six soil samples (GEI-11-8.0 through GEI-16-5.0) were obtained from direct-push borings GEI-11 through GEI-16 to characterize the general soil quality within the proposed mitigation habitat excavation area (Figure 4). Soil samples obtained as part of this investigation were screened in the field for evidence

http://yosemite.epa.gov/osw/rcra.nsf/ea6e50dc6214725285256bf00063269d/95e9e57b91ea2e9f8525670f006c0acdlOpenDocument

¹ This is referred to as the "20-times rule" and is described in a September 21, 1992 EPA letter titled "Calculation of TCLP Concentrations from Total Concentrations". This reference is available at:

of petroleum hydrocarbons and VOCs. Field screening procedures and exploration logs are presented in Appendix A. Field screening evidence of potential petroleum-related contamination (moderate sheen or greater and/or elevated head space vapor measurements greater than 20 ppm) was not observed in each of the soil samples obtained from the Site.

Contaminants of concern either were not detected or were detected at concentrations less than MTCA cleanup levels in each of the samples submitted for chemical analysis. Chemical analytical results are summarized in Table 3. Soil sample locations are shown relative to the Site on Figure 4.

Proposed Mitigation Habitat Surface Investigation and Analytical Results

To evaluate soil conditions that will be exposed to marine waters following the completion of the mitigation habitat construction excavation, soil samples obtained from the approximate elevation of the final proposed cut surface in borings GEI-11 and GEI-14 through GEI-16 were composited in the field for chemical analysis of sediment quality standards (SQS) constituents (WAC 173-204-320). Due to the presence of bedrock at locations GEI-12 and GEI-13 at elevations above the final proposed cut surface, soil samples from the final cut surface were not obtained for chemical analysis.

Soil samples obtained as part of this investigation were screened in the field for evidence of petroleum hydrocarbons and VOCs. Field screening procedures and explorations logs are presented in Appendix A. Field screening evidence of potential petroleum-related contamination (moderate sheen or greater and/or elevated head space vapor measurements greater than 20 ppm) was not observed in each of the soil samples obtained from the Site.

Contaminants of concern either were not detected or were detected at concentrations less than the SQS criteria (WAC 173-204-320) in composite soil sample GEI-COMP-1. Chemical analytical results are summarized in Table 4. Soil sample locations are shown relative to the Site on Figure 4.

SUMMARY OF SUBSURFACE CONDITIONS

Soil Conditions

The soil conditions at the site generally consisted of fill overlying native soil interpreted to be representative of glaciomarine drift and/or bedrock. Surficial fill consists of approximately 3 to 5 inches of crushed rock overlying medium dense fine to coarse sand with gravel and varying silt content. The fill extended to depths varying from approximately 1 to 4 feet bgs in borings completed as part of this study. Native soil consisting of very stiff silt and clay with occasional gravel was encountered underlying the fill layer. In borings GEI-12 and GEI-13, bedrock was encountered at depths of 8½ and 10 feet bgs, respectively.

Observed soil conditions are detailed in exploration logs presented in Appendix A. Boring locations are shown relative to the Site on Figure 4.

Contaminants, including gasoline-, diesel- and heavy oil-range petroleum hydrocarbons, BETX, SVOCs, PCBs, metals and/or pesticides either were not detected or were detected at concentrations less than MTCA cleanup levels in soil samples obtained to evaluate the vertical and lateral extent of contaminants in historic exceedance areas and soil samples obtained to evaluate the general soil quality within the

propose mitigation habitat excavation prism. Additionally, contaminants either were not detected or were detected at concentrations less than the SQS criteria in a composite soil sample obtained from the final proposed cut surface of the mitigation habitat construction area.

Groundwater Conditions

Groundwater was observed in explorations GEI-11, GEI-14 and GEI-15 at depths ranging from approximately 1½ to 4½ feet bgs. Groundwater observations are detailed in the attached exploration logs (Appendix A). The inferred groundwater follow direction for the Site is north toward Guemes Channel. Based on the proximity of Guemes Channel to the property it is likely groundwater at the Site is hydraulically connected to Guemes Channel and that the groundwater level will fluctuate as a function of tidal influence.

REFERENCES

- Dredged Material Management Office (DMMO), "Dredge Material Evaluation and Disposal Procedures (Users' Manual)," Dredged Material Management Program, dated July 2008.
- Landau Associates (Landau), "Report, Multiple Site Investigation, Port of Anacortes, Anacortes, Washington," dated December 16, 2004.
- Otten Engineering (Otten), "Underground Storage Tank Closure Assessment, Port of Anacortes, Former Wyman's Marina Property, 202 U Avenue, Anacortes, Washington" 1998.
- Otten Engineering (Otten), "Phase 2 Environmental Assessment, Wyman's Marina Site, Port of Anacortes, Anacortes, Washington," dated October 1, 1997.

LIMITATIONS

We have prepared this letter for the exclusive use of the Port of Anacortes and their authorized agents for the Wyman's Property located in Anacortes, Washington.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices in the field of geotechnical engineering in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

We appreciate the opportunity to provide these services to the Port of Anacortes. Please contact us if you have any questions regarding this report.

Sincerely, GeoEngineers, Inc.

Robert S. Trahan Geologist

John M. Herzog, PhD Principal

RST:JMH:leh

List of Tables Table 1. Summary of Historic Soil Chemical Analytical Data Table 2. Summary of Historic Sediment Chemical Analytical Data Table 3. Summary of Soil Investigation Chemical Analytical Data Table 4. Summary of Marine Surface Investigation Laboratory Analytical Data

List of Figures Figure 1. Vicinity Map Figure 2. Historic Sample Locations Figure 3. Shallow Surface Soil Investigation Figure 4. Subsurface Soil Investigation

Appendices Appendix A. Field Program and Exploration Logs Appendix B. Chemical Analytical Data Appendix C. Data Validation Report

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2013 by GeoEngineers, Inc. All rights reserved.

Table 1

Summary of Historic Soil Chemical Analytical Data

Wyman's Property Mitigation Habitat Site

Anacortes, Washington

Sample ID ¹	WY-UPLD- SS-1	WY-UPLD- SS-2	WY-UPLD- SS-3	WY-UPLD- SS-4	WY-UPLD- SS-5	WY-UPLD- SS-6	WY-UPLD- SS-7	WY-UPLD- SS-8A	WY-UPLD- SS-8B Otten	
Sampled By	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Engineering	MTCA
Sample Date	Jul-97	Jul-97	Jul-97	Jul-97	Jul-97	Jul-97	Jul-97	Jul-97	Jul-97	Cleanup Level ²
Sample Depth (ft bgs)	0.0 - 0.2	0.0 - 0.3	0.2 - 0.6	0.0 - 0.6	0.0 - 0.9	0.0 - 0.6	0.0 - 0.6	0.0 - 0.4	0.4 - 1.0	
Sample Elevation (ft MLLW)	27	25	22	26	22	24	22	19	18.5	
Petroleum Hydrocarbons by TPH-HCID,	TPH-G, TPH-Dx or 418.1	(mg/kg)								
HCID		D, HO	HO	НО	НО	G, D, HO	-	D, HO	G, D, HO	NE
Gasoline-Range		-	-			551			33	30/100 ³
Diesel-Range		3,530	ND			8,820			642	2,000
Oil-Range		14,200	ND			ND			1,250	2,000
Petroleum-Range		27,300	304	ND	ND	7,930		1,350	1,250	2,000
Volatile Organic Compounds (VOCs) by	EPA 8260 (mg/kg)									
Benzene		ND			ND				ND	0.03
Ethylbenzene		ND	-		ND				ND	6
Toluene	-	ND	-	-	ND		-		ND	7
Xylenes		ND	-		ND				ND	9
Other		ND	-		ND	ND			ND	varies
Semivolatile Organic Hydrocarbons (S)	/OCs) by EPA 8270									
SVOCs	-	ND	-	-	0.735 - Dimethyl Phthalate	0.493 - 1,3,5- Trimethylbenzene 0.504 - n-Butylbenzene 0.256 - Naphthalene 1.31 - p-Isopropyltoluene 0.229 - sec-Butylbenzene 1.19 Fluorene 1.75 - Pyrene	-	-	0.211 - 'Phenathrene 0.135 - Pyrene	varies
Metals by EPA 6000/7000 Series (mg/	/kg)									
Antimony	-	ND	ND	-	ND	ND		ND	7.56	32
Arsenic	-	11.9 J	6.84 J	-	10.1 J	6.09 J	-	4.59 J	5.10 J	20
Cadmium	-	0.664 J	ND	-	ND	ND	-	0.446 J	ND	2
Chromium		31.2 J	26.3 J		18.2 J	14.9 J		8.27 J	42.4 J	2,000
Copper	-	1120 J	2690 J	-	576 J	358 J	-	3,300	176 J	3,200
Lead	-	141 J	109 J	-	63.7 J	91.6 J	-	81.9	220 J	250
Mercury		0.846	0.899	-	0.114	ND		0.788	1.1	2
Nickel		39.0 J	30.2 J		31.3 J	61.5 J		3.81 J	36.8 J	1,600
Silver		0.109	0.593		0.0968	0.058		0.0732	0.0548	400
Zinc		353 J	308 J		109 J	440 J		584 J	220	24,000
Polychlorinated Biphenyls (PCBs) by El	PA 8082 (mg/kg)									
PCBs		0.178			ND	ND			ND	1
Organochlorine Pesticides by EPA 808	1A (mg/kg)									4.0.000
Pesticides			-	-						4.2 - DDD 2.9 - DDE

Sample ID ¹	WY-UPLD- SS-9	WY-UPLD- SS-10	WY-UPLD- SS-11	WY-UPLD- SS-12	WY-UPLD- SS-13	WY-UPLD- SS-14	WY-UPLD- SS-15	NW Wall ⁴	N Wall ⁴	
Sampled By	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	МТСА
Sample Date	Jul-97	Jul-97	Jul-97	Jul-97	Jul-97	Jul-97	Jul-97	2/25/1998	2/25/1998	Cleanup Level ²
Sample Depth (ft bgs)	0.0 - 0.3	0.0 - 0.6	0.0 - 0.3	0.0 - 0.3	0.0 - 0.3	0.0 - 0.3	0.0 - 0.3	5.0	5.0	
Sample Elevation (ft MLLW)	6	5	22.5	19	19	20	20	13	13	
Petroleum Hydrocarbons by NWTPH-HC										
HCID	-	-	-	G, D, HO	D, HO	G, D, HO	G, D, HO			NE
Gasoline-Range	-	-		ND		14.5 J	ND	140	96	30/100 ³
Diesel-Range	-	-	-	25,100	194	6,300	6,920	52.8	1,300	2,000
- Oil-Range	-	-		ND	ND	ND	ND			2,000
Petroleum-Range	-	-								2,000
Volatile Organic Compounds (VOCs) by	EPA 8260 (mg/kg)									
Benzene	-	-						0.16	ND	0.03
Ethylbenzene	-	-						1.09	ND	6
Toluene	-	-						0.2	ND	7
Xylenes	-	-						2.5	ND	9
Other						-				varies
Semivolatile Organic Hydrocarbons (SV	/OCs) by EPA 8270D									
SVOCs	-	_	_	_	_	ND	_	_	-	varies
Metals by EPA 6000/7000 Series (mg/	/kg)									
Antimony	ND		ND	ND	ND	ND	ND			32
Arsenic	24.4	-	ND	13.8	9.14	16.9	17.1			20
Cadmium	0.892	-	ND	0.386 J	7.78 J	0.79 J	9.5 J			2
Chromium	42.6	-	ND	29.2	41.4	41.5	39.4			2,000
Copper	3,660	-	ND	140	1,630	1,650	642			3,200
Lead	92		ND	67.5 J	378 J	1,390 J	894 J	ND	ND	250
Mercury	0.363		ND	0.279	2.11	0.558	0.499			2
Nickel	39.7		ND	36.6	50.2 J	35.2 J	35.8 J		-	1,600
Silver	ND	-	ND	ND	0.149	0.193	0.225	-		400
Zinc	1,110	-	ND	699	2,750	1010	1020	-		24,000
Polychlorinated Biphenyls (PCBs) by EF	PA 8082 (mg/kg)									
PCBs						0.105 J				1
Organochlorine Pesticides by EPA 808	1A (µg/kg)									
Pesticides	-	-	-		90 - 4,4' DDD	0.028 - 4,4' DDE				4.2 - DDD 2.9 - DDE

Sample ID ¹	West W12 ⁴	NE Wall	SW Wall	SE Wall	N BTM	South B9	South W1	West W11	Southwest W13	
Sampled By	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	Otten Engineering	МТСА
Sample Date	2/27/1998	2/25/1998	2/25/1998	2/25/1998	2/25/1998	2/27/1998	2/27/1998	2/27/1998	2/27/1998	Cleanup Level ²
Sample Depth (ft bgs)	6.0	5.5	6.0	5.5	8.5	9.0	9.0	6.0	6.0	
Sample Elevation (ft MLLW)	12	12.5	12	12.5	9.5	9	9	12	12	
Petroleum Hydrocarbons by NWTPH-HC	ID, NWTPH-G or NWTPH-Dx	(mg/kg)								
HCID	-	-	-			-			-	NE
Gasoline-Range	117	ND	ND	ND	ND	ND	ND	16.9	ND	30/100 ³
Diesel-Range	171	ND	ND	ND	ND	ND	ND	105	ND	2,000
Oil-Range										2,000
Petroleum-Range										2,000
Volatile Organic Compounds (VOCs) by	EPA 8260 (mg/kg)									
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	6
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Xylenes	ND	ND	ND	ND	ND	ND	ND	ND	ND	9
Other			-	-					-	varies
Semivolatile Organic Hydrocarbons (SV	OCs) by EPA 8270D									
SVOCs	-	-	-	-		-	-	-	-	varies
Metals by EPA 6000/7000 Series (mg/	′kg)									
Antimony			-	-					-	32
Arsenic			-	-					-	20
Cadmium			-						-	2
Chromium			-						-	2,000
Copper			-	-					-	3,200
Lead		ND	ND	ND	ND				-	250
Mercury			-	-					-	2
Nickel									-	1,600
Silver									-	400
Zinc		-							-	24,000
Polychlorinated Biphenyls (PCBs) by EP	PA 8082 (mg/kg)									
PCBs			-							1
Organochlorine Pesticides by EPA 8081	1A (µg/kg)									
Pesticides	-	-	-						-	4.2 - DDD 2.9 - DDE

Sample ID ¹	Northwest W14	Piping #1	MSI-4-1	MSI-4-2	MSI-4-3	MSI-4-4	MSI-4-5	
Sampled By	Otten Engineering	Otten Engineering	Landau	Landau	Landau	Landau	Landau	МТСА
Sample Date	3/2/1998	2/25/1998	3/30/2004	3/30/2004	3/30/2004	3/30/2004	2004	Cleanup Level ²
Sample Depth (ft bgs)	6.0	2.5	2	6	2	6	6	
Sample Elevation (ft MLLW)	12	15.5	24.5	13	18	12	12	
Petroleum Hydrocarbons by NWTPH-HO	CID, NWTPH-G or NWTPH	-Dx (mg/kg)						
HCID								NE
Gasoline-Range	ND	ND	5.8 U	6.5 U	6.2 U	5.1 U	5.6 U	30/100 ³
Diesel-Range	ND	10.3	5.8	5.0 U	5.0 U	5.0 U	16	2,000
Oil-Range			37	10 U	10 U	10 U	10 U	2,000
Petroleum-Range				-				2,000
Volatile Organic Compounds (VOCs) by	EPA 8260 (mg/kg)							
Benzene	ND	ND	0.029 U	-	0.031 U		-	0.03
Ethylbenzene	ND	ND	0.029 U	-	0.031 U		-	6
Toluene	ND	ND	0.029 U	-	0.031 U			7
Xylenes	ND	ND	0.058 U	-	0.062 U		-	9
Other			-	-			-	varies
Semivolatile Organic Hydrocarbons (S)	/OCs) by EPA 8270D							
SVOCs	_		-		-	_		varies
Metals by EPA 6000/7000 Series (mg,	/kg)							
Antimony								32
Arsenic		-		6.6	4.1	3.6	2.7	20
Cadmium				0.6 U	0.2 U	0.2 U	0.2 U	2
Chromium				55	46.6	41.5	50.2	2,000
Copper	-	-	-	45.3	25.7	20.7	20.6	3,200
Lead			-	6	13	3	3	250
Mercury	-		-	0.07	0.07	0.04 U	0.04	2
Nickel	-	-	-	77	44	77	66	1,600
Silver			-	-				400
Zinc			-	75	71.5	36.4	39.7	24,000
Polychlorinated Biphenyls (PCBs) by El	PA 8082 (mg/kg)							
PCBs								1
Organochlorine Pesticides by EPA 808	1A (µg/kg)							
Pesticides		-	-		-			4.2 - DDD 2.9 - DDE

Notes:

¹Sample locations are shown on Figure 2.

²Soil cleanup levels are MTCA Method A or B cleanup levels referenced from CLARC database (https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx).

³Gasoline cleanup level is 30 mg/kg if benzene is present.

⁴Soil represented by this samples was subsequentely excavated and removed from the Site.

MTCA = Model Toxics Control Act

U = Not detected above laboratory reporting limit

Shading indicates analyte was detected at a concentration above the Preliminary Soil Cleanup Level.

Table 2

Summary of Historic Sediment Laboratory Analytical Data

Wyman's Property Mitigation Habitat Site

Anacortes, Washington

Sample Identification	WY-SED-1	WY-SED-2	WY-SED-3	WY-SED-4	WY-SED-5	WY-SED-6	MSI-4-6	Sediment Quality Standard	Cleanup Screening Level
Sample Date	8/6/1997	8/6/1997	8/6/1997	8/6/1997	8/6/1997	8/6/1997	4/1/2004	(SQS) ¹	(CSL) ²
Sample Type	Surface	Surface	Surface	Surface	Surface	Surface	Composite	(303)	(032)
Conventionals									
Total Organic Carbon (%)	2.12	2.38	3.94	2.23	2.25	2.86	2.19	NE	NE
Total Solids							38.3	NE	NE
Metals by EPA Method 6000/7000 Seri	es (mg/kg)		•	•	-	*			
Arsenic	6.89 J	6.50 J	6.21 J	5.85 J	6.46 J	6.84 J	6.4	57	93
Cadmium	0.294	0.452	0.501	0.33	0.38	0.251	0.5	5.1	6.7
Chromium	26.1	31.6	31.3	28.9	27.8	19.8	41	260	270
Copper	258	136	80.9	40.3	29	131	65.9	390	390
Lead	10.7 J	13.2 J	16.8 J	11.6 J	11 J	17.7 J	18	450	530
Nickel	25.8	30.7	31.2	32	27.5	20		NE	NE
Mercury	ND	ND	ND	ND	ND	ND	0.2	0.41	0.59
Silver	0.123	0.111	0.111	0.0922	0.0932	0.1	0.7 U	6.1	6.1
Zinc	193	98.5	87.1	75.9	62	74.1	98	410	960
Organometallic Compounds									
Tributyltin ion (interstitial water; µg/L)	0.7	0.14	ND	ND	ND	0.15		NE	NE
Tributyltin ion (bulk; µg/kg)5				_	-		6.5	NE	NE
Organics by EPA Method 8270D/SIM (n	ng/kg OC) ³			L			1		
LPAH	23.3	11.4	5.4	ND	ND	5.8	5.02	370	780
Naphthalene	0.642	1.7	0.452	ND	ND	0.766	0.91 U	99	170
Acenaphthylene	ND	ND	ND	ND	ND	ND	0.91 U	66	66
Acenaphthene	1.4	2.90	0.3	ND	ND	0.510	0.91 U	16	57
Fluorene	1.7	2.00	ND	ND	ND	0.427	0.91 U	23	79
Phenanthrene	17.2	8.8	2.9	ND	ND	2.8	5.02	100	480
Anthracene	2.5	3.2	1	ND	ND	0.937	0.91 U	220	1,200
2-Methylnaphthalene	ND	0.811	0.259	ND	ND	0.381	0.91 U	38	64
НРАН	82.6	35.7	22.4	ND	ND	22.5	42.47	960	5,300
Fluoranthene	20.5	13.1	7.9	ND	ND	6.1	14.61	160	1,200
Pyrene	18.3	9.7	6.1	ND	ND	4.8	9.59	1,000	1,400
Benz(a)anthracene	ND	2.6	1.6	ND	ND	2.2	1.96	110	270
Chrysene	8.7	4	2.6	ND	ND	3.1	5.02	110	460
Benzofluoranthenes (b, j ,k)	11.5	3.4	2.5	ND	ND	3.3	4.89	230	450
Benzo(a)pyrene	5.5	1.3	ND	ND	ND	1.4	1.51	99	210
Indeno(1,2,3-c,d)pyrene	3.2	0.761	0.419	ND	ND	0.724	0.91 U	34	88
Dibenz(a,h)anthracene	1.1	ND	ND	ND	ND	ND	0.91 U	12	33
Benzo(g,h,i)perylene	3.7	0.811	0.482	ND	ND	0.937	0.91 U	31	78
Chlorinated Hydrocarbons by EPA Metho			•	•	•	•	•	•	
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	0.91 U	3.1	9
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	0.91 U	2.3	2.3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	0.91 U	0.81	1.8
Hexachlorobenzene (HCB)	ND	ND	ND	ND	ND	ND	0.91 U	0.38	2.3
Phthalates by EPA Method 8270D (mg/			•	1	•	1			-
Dimethyl phthalate	ND	6.4	6	ND	ND	7.6	0.91 U	53	53
Diethyl phthalate	ND	ND	ND	ND	ND	ND	0.91 U	61	110
Di-n-butyl phthalate	ND	ND	ND	ND	ND	ND	0.91 U	220	1,700
Butyl benzyl phthalate	ND	ND	ND	ND	ND	ND	0.91 U	4.9	64.0
Bis(2-ethylhexyl) phthalate	ND	ND	ND	ND	ND	ND	0.91 U	4.9	78
Di-n-octyl phthalate	ND	ND	ND	ND	ND	ND	0.91 U	58	4,500

Sample Identification	WY-SED-1	WY-SED-2	WY-SED-3	WY-SED-4	WY-SED-5	WY-SED-6	MSI-4-6	Sediment Quality Standard	Cleanup Screening Leve		
Sample Date	8/6/1997	8/6/1997	8/6/1997	8/6/1997	8/6/1997	8/6/1997	4/1/2004		(CSL) ²		
Sample Type	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Composite	(SQS) ¹	(CSL)
Miscellaneous Extractables by EPA	Method 8270D (μ g/kg OC) ³										
Dibenzofuran	ND	ND	ND	ND	ND	ND	0.91 U	NE	58		
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	0.91 U	NE	6		
N-Nitrosodiphenylamine	ND	ND	ND	ND	ND	ND	0.91 U	NE	11		
Polychlorinated Biphenyls by EPA M	ethod 8082 $(mg/kg OC)^3$	-	-				-	-			
Total PCBs	ND	ND	ND	ND	ND	ND	0.91 U	12	65		
Phenols by EPA Method 8270D (µg/	'kg)	-									
Phenol	ND	ND	ND	ND	ND	ND	20 U	420	1,200		
2-Methylphenol	ND	ND	ND	ND	ND	ND	20 U	63	63		
4-Methylphenol	ND	ND	ND	ND	ND	ND	20 U	670	670		
2,4-Dimethylphenol	ND	ND	ND	ND	ND	ND	20 U	29	29		
Pentachlorophenol	ND	ND	ND	ND	ND	ND	98 U	360	690		
Miscellaneous Extractables by EPA	Method 8270D (µg/kg)	-	•		•	÷	•	-			
Benzyl alcohol	ND	ND	ND	ND	ND	ND	20 U	57	73		
Benzoic acid	ND	ND	ND	ND	ND	ND	200 U	650	650		

Notes:

¹Marine Sediment Quality Standards -- Chemical Criteria (WAC 173-204-320).

²Marine Cleanup Screening Level -- Chemical Criteria (WAC 173-204-520).

 $^{3}\mbox{Value}$ normalized to organic carbon and is expressed as mg/kg organic cabon (oc).

NE = not established

mg/kg = miligram per kilogram

µg/kg = microgram per kilogram

ng/kg = nonogram oer kilogram

µg/L = microgram per liter

OC = organic carbon

U = The analyte is not detected at or above the reported concentration.

J = Estimated Concentration

Shading indicates detected concentrations exceeds one or more of the DMMP Guidline Chemistry Values.

Chemical analyses performed by OnSite Environmental, Inc of Redmond, Washington.

Table 3

Summary of Soil Investigation Chemical Analytical Data

Wyman's Property Mitigation Habitat Site

Anacortes, Washington

Sample ID ¹	GEI-11-8.0	GEI-12-2.5	GEI-13-10.0	GEI-14-5.0	GEI-15-10.0	GEI-16-5.0	GEI-SS-2-1-1.5	GEI-SS-2-2-0.5	GEI-SS-2-3-0.5	
Sampled By	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	МТСА
Sample Date	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	Cleanup Level ²
Sample Depth (ft bgs)	8.0	2.5	10.0	5.0	10.0	5.0	1.5	0.5	0.5	İ
Sample Elevation (ft MLLW)	9	15.5	14	19	10	13	23.5	24.5	24.5	†
Field Screening										
Sheen										NE
Headspace Vapors (ppm)										NE
Petroleum Hydrocarbons by NWTPH-G o	or NWTPH-Dx (mg/kg)									
Gasoline-Range	4.8 U	7.3 U	4.9 U	4.1 U	6.1 U	4.4 U				30/100 ³
Diesel-Range	-	-	-	-	-		31 U	27 U	30 U	2,000
Oil-Range							62 U	59	60 U	2,000
Volatile Organic Compounds (VOCs) by	EPA Method 8260 (mg/	′kg)								
Benzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	-	-	-	0.03
Ethylbenzene	0.048 U	0.073 U	0.049 U	0.041 U	0.061 U	0.044 U				6
Toluene	0.048 U	0.073 U	0.049 U	0.041 U	0.061 U	0.044 U				7
Xylenes	0.048 U	0.073 U	0.049 U	0.041 U	0.061 U	0.044 U				9
Metals by EPA Method 6000/7000 Ser	ies (mg/kg)									
Arsenic	11 U	12 U	12 U	11 U	12 U	11 U				20
Barium	69	58	60	59	75	52				16,000
Cadmium	0.57 U	0.61 U	0.58 U	0.55 U	0.59 U	0.55 U				2
Chromium	44	37	85	35	43	32				2,000
Copper	_	_	-	-	-	-	-	-	-	3,200
Lead	5.7 U	6.1 U	5.8 U	5.5 U	5.9 U	5.5 U				250
Mercury	0.28 U	0.31 U	0.29 U	0.27 U	0.29 U	0.27 U				2
Selenium	11 U	12 U	12 U	11 U	12 U	11 U				400
Silver	0.57 U	0.61 U	0.58 U	0.55 U	0.59 U	0.55 U				400
TCLP Metals by EPA Method 1311/601	L0B/7470A (mg/L)									
Arsenic	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U				5
Barium	0.21	0.45	0.02 U	0.59	0.26	0.43	-	-		100
Cadmium	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U				1
Chromium	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U				5
Copper										NE
Lead	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				5
Mercury	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U				0.2
Selenium	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U				1
Silver	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U				5
Organochlorine Pesticides by EPA Meth	nod 8081A (mg/kg)									
4,4'-DDE		-	-	-	-					2.9
4,4'-DDD										4.2
4,4'-DDT	-	-	-	-	-	-	-			3

Sample ID ¹	GEI-SS-2-4-0.5	GEI-SS-6-1-1.5	GEI-SS-6-2-0.5	GEI-SS-6-3-0.5	GEI-SS-6-4-0.5	GEI-SS-9-1-1.5	GEI-SS-9-2-0.5	GEI-SS-9-3-0.5	GEI-SS-9-4-0.5	
Sampled By	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	МТСА
Sample Date	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	Cleanup Level ²
Sample Depth (ft bgs)	0.5	1.5	0.5	0.5	0.5	1.5	0.5	0.5	0.5	
Sample Elevation (ft MLLW)	24.5	22.5	23.5	23.5	23.5	4.5	5.5	5.5	5.5	1
Field Screening										
Sheen										NE
Headspace Vapors (ppm)										NE
Petroleum Hydrocarbons by NWTPH-G d	or NWTPH-Dx (mg/kg)									
Gasoline-Range	-	4.8 U	4.6 U	4.0 U	5.3 U					30/100 ³
Diesel-Range	28 U	28 U	27 U	100	28 U	-	-	-	-	2,000
Oil-Range	66 U	57 U	55 U	51 U	67 U			-		2,000
Volatile Organic Compounds (VOCs) by	EPA Method 8260 (mg/	íkg)								
Benzene		-								0.03
Ethylbenzene										6
Toluene										7
Xylenes										9
Metals by EPA Method 6000/7000 Se	ries (mg/kg)									
Arsenic	-	-	-	-		12 U	12 U	11 U	12 U	20
Barium		-								16,000
Cadmium		-								2
Chromium		-								2,000
Copper						31	56	200	78	3,200
Lead		-								250
Mercury	-	-	-	-	-					2
Selenium		-	-							400
Silver	-	-	-	-	-	-	-	-	-	400
TCLP Metals by EPA Method 1311/60:	10B/7470A (mg/L)									
Arsenic	-	-	-	-	-					5
Barium		-	-	-	-	-	-	-	-	100
Cadmium	-	-	-	-	-		-	-		1
Chromium		-								5
Copper										NE
Lead	-	-	-	-	-	-			-	5
Mercury	-			-		-			-	0.2
Selenium										1
Silver										5
Organochlorine Pesticides by EPA Met	hod 8081A (mg/kg)									
4,4'-DDE	-	_	-	-	-	-			-	2.9
4,4'-DDD	-									4.2
4,4'-DDT	-	-		-		-			-	3

Sample ID ¹	GEI-SS-12-1-1.5	GEI-SS-12-2-0.5	GEI-SS-12-3-0.5	GEI-SS-12-4-0.5	GEI-SS-13-1-0.5	GEI-SS-13-1-1.5	GEI-SS-13-2-0.5	GEI-SS-13-3-0.5	GEI-SS-13-4-0.5	
Sampled By	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	МТСА
Sample Date	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	Cleanup Level ²
Sample Depth (ft bgs)	1.5	0.5	0.5	0.5	0.5	1.5	0.5	0.5	0.5	1
Sample Elevation (ft MLLW)	17.5	18.5	18.5	18.5	18.5	17.5	18.5	18.5	18.5	1
Field Screening										
Sheen										NE
Headspace Vapors (ppm)										NE
Petroleum Hydrocarbons by NWTPH-G	or NWTPH-Dx (mg/kg)									
Gasoline-Range	-	-	-	-	-					30/100 ³
Diesel-Range	30 U	29 U	28 U	68	-	-	-	-	-	2,000
Oil-Range	61 U	57 U	69	330	-					2,000
Volatile Organic Compounds (VOCs) by	EPA Method 8260 (mg/	/kg)								
Benzene	_	-	_	-	-	-	-	-	-	0.03
Ethylbenzene	-	-	-		-			-		6
Toluene	-	-	-	-	-	-				7
Xylenes						-				9
Metals by EPA Method 6000/7000 Se	ries (mg/kg)									
Arsenic	-	-	-	-	_					20
Barium										16,000
Cadmium						0.61 U	0.74 U	0.69 U	0.62 U	2
Chromium										2,000
Copper			-							3,200
Lead						6.1 U	81	95	6.2 U	250
Mercury	-	-	-		-	0.31 U	1.2	0.34 U	0.31 U	2
Selenium										400
Silver										400
TCLP Metals by EPA Method 1311/60	10B/7470A (mg/L)									
Arsenic	-	-	-	-	-					5
Barium	-		-							100
Cadmium	-		-		-					1
Chromium	-		-							5
Copper										NE
Lead	-	-	-	-	0.2 U					5
Mercury	-	-	-	-	-	-	-	-		0.2
Selenium	-	-	-	-	-	-	-	-	-	1
Silver	-	-	-	-	-	-	-	-		5
Organochlorine Pesticides by EPA Met	hod 8081A (mg/kg)									
4,4'-DDE	_	-	_	-	-	12 U	15 U	14 U	12 U	2.9
4,4'-DDD	_	-	-	-	-	12 U	15 U	14 U	12 U	4.2
4,4'-DDT	-	-	-	-	-	12 U	15 U	14 U	12 U	3

Sample ID ¹	GEI-SS-14/15-1-0.5	GEI-SS-14/15-1-1.5	GEI-SS-14/15-2-0.5	GEI-SS-14/15-3-0.5	GEI-SS-14/15-4-0.5	GEI-SS-COMP ²	
Sampled By	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	GeoEngineers	МТСА
Sample Date	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	7/5/2012	Cleanup Level ³
Sample Depth (ft bgs)	0.5	1.5	0.5	0.5	0.5	0.5	
Sample Elevation (ft MLLW)	19.5	18.5	19.5	19.5	19.5	n/a	
Field Screening							
Sheen							NE
Headspace Vapors (ppm)							NE
Petroleum Hydrocarbons by NWTPH-G	or NWTPH-Dx (mg/kg)						
Gasoline-Range		-		-		4.5 U	30/100 ⁴
Diesel-Range		30 U	27 U	30 U	27 U		2,000
Oil-Range		61 U	55 U	63 U	150		2,000
Volatile Organic Compounds (VOCs) by	y EPA Method 8260 (mg/	íkg)					
Benzene				-		0.02 U	0.03
Ethylbenzene						0.045 U	6
Toluene						0.045 U	7
Xylenes						0.045 U	9
Metals by EPA Method 6000/7000 Se	eries (mg/kg)						
Arsenic			-		-	56	20
Barium							16,000
Cadmium		0.61 U	0.55 U	0.59 U	0.91	0.73	2
Chromium						70	2,000
Copper						390	3,200
Lead		9.2	5.5 U	110	200	93	250
Mercury		0.3 U	0.27 U	0.92 U	0.48	0.28 U	2
Selenium							400
Silver		-					400
TCLP Metals by EPA Method 1311/60)10B/7470A (mg/L)						
Arsenic		-	-	-			5
Barium				-			100
Cadmium		-		-			1
Chromium							5
Copper							NE
Lead	0.2 U	-		0.2 U	0.2 U		5
Mercury							0.2
Selenium		-		-			1
Silver							5
Organochlorine Pesticides by EPA Me	thod 8081A (mg/kg)						
4,4'-DDE	-	-	-	-	-	0.011 U	2.9
4,4'-DDD						0.011 U	4.2
4,4'-DDT	-	_	-	-	-	0.011 U	3

Notes:

¹Sample locations are shown on Figure 3.

²Soil cleanup levels are MTCA Method A or B cleanup levels referenced from CLARC database (https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx).

³Gasoline cleanup level is 30 mg/kg if benzene is present.

mg/L = milligrams per liter

MTCA = Model Toxics Control Act

ppm = parts per million

U = Not detected above laboratory reporting limit

Shading indicates analyte was detected at a concentration above the Preliminary Soil Cleanup Level.

Chemcial analysis performed by OnSIte Environmental, Inc. of Redmond, Washington.

Table 4

Summary of Marine Surface Investigation Laboratory Analytical Data

Wyman's Property Mitigation Habitat Site

Anacortes, Washington

Sample Identification	GEI-COMP-1	Sediment Quality Standard	Cleanup Screening Level		
Sample Date	7/5/2012	(SQS) ¹	(CSL) ²		
Sample Type	Composite	(303)	(CSL)		
Conventionals					
Total Organic Carbon (%)	5.5	NE	NE		
Metals by EPA Method 6000/7000 Se	eries (mg/kg)				
Arsenic	12 U	57	93		
Cadmium	0.6 U	5.1	6.7		
Chromium	74	260	270		
Copper	28	390	390		
Lead	6 U	450	530		
Mercury	0.3 U	0.41	0.59		
Silver	0.6 U	6.1	6.1		
Zinc	47	410	960		
Organics by EPA Method 8270D/SIM	(mg/kg OC) ³				
Total LPAH	0	370	780		
Naphthalene	0.087 U	99	170		
Acenaphthylene	0.087 U	66	66		
Acenaphthene	0.087 U	16	57		
Fluorene	0.087 U	23	79		
Phenanthrene	0.087 U	100	480		
Anthracene	0.087 U	220	1,200		
2-Methylnaphthalene	0.087 U	38	64		
Total HPAH	0	960	5,300		
Fluoranthene	0.087 U	160	1,200		
Pyrene	0.087 U	1,000	1,400		
Benz(a)anthracene	0.087 U	110	270		
Chrysene	0.087 U	110	460		
Benzofluoranthenes (b, j ,k)	0.087 U	230	450		
Benzo(a)pyrene	0.087 U	99	210		
Indeno(1,2,3-c,d)pyrene	0.087 U	34	88		
Dibenz(a,h)anthracene	0.087 U	12	33		
Benzo(g,h,i)perylene	0.087 U	31	78		
Chlorinated Hydrocarbons by EPA Me	thod 8270D (mg/kg OC) ³				
1.4-Dichlorobenzene	0.436 U	3.1	9		
1,2-Dichlorobenzene	0.436 U	2.3	2.3		
1,2,4-Trichlorobenzene	0.436 U	0.81	1.8		
Hexachlorobenzene (HCB)	0.436 U	0.38	2.3		
Phthalates by EPA Method 8270D (mg			-		
Dimethyl phthalate	0.436 U	53	53		
Diethyl phthalate	0.436 U	61	110		
Di-n-butyl phthalate	0.436 U	220	1,700		
Butyl benzyl phthalate	0.436 U	4.9	64.0		
Bis(2-ethylhexyl) phthalate	0.436 U	4.5	78		
Di-n-octyl phthalate	0.436 U	58	4,500		
			4,500		
Miscellaneous Extractables by EPA M			50		
Dibenzofuran	24 U	NE	58		
Hexachlorobutadiene	24 U	NE	6		
N-Nitrosodiphenylamine	24 U	NE	11		

Sample Identification	GEI-COMP-1	Sediment Quality Standard	Cleanup Screening Level								
Sample Date	7/5/2012	- (SQS) ¹	(CSL) ²								
Sample Type	Composite	(303)	(C3L)								
Polychlorinated Biphenyls by EPA Method 8082 (mg/kg OC) ³											
Total PCBs	1.1 U	12	65								
Phenols by EPA Method 8270D (µg/	kg)										
Phenol	24 U	420	1,200								
2-Methylphenol	24 U	63	63								
4-Methylphenol	24 U	670	670								
2,4-Dimethylphenol	24 U	29	29								
Pentachlorophenol	24 U	360	690								
Miscellaneous Extractables by EPA	Method 8270D (µg/kg)										
Benzyl alcohol	24 U	57	73								
Benzoic acid	24 U	650	650								

Notes:

¹Marine Sediment Quality Standards – Chemical Criteria (WAC 173-204-320).

 $^2\mbox{Marine Cleanup Screening Level}$ – Chemical Criteria (WAC 173-204-520).

 $^{3}\mbox{Value}$ normalized to organic carbon and is expressed as mg/kg organic cabon (oc).

NE = not established

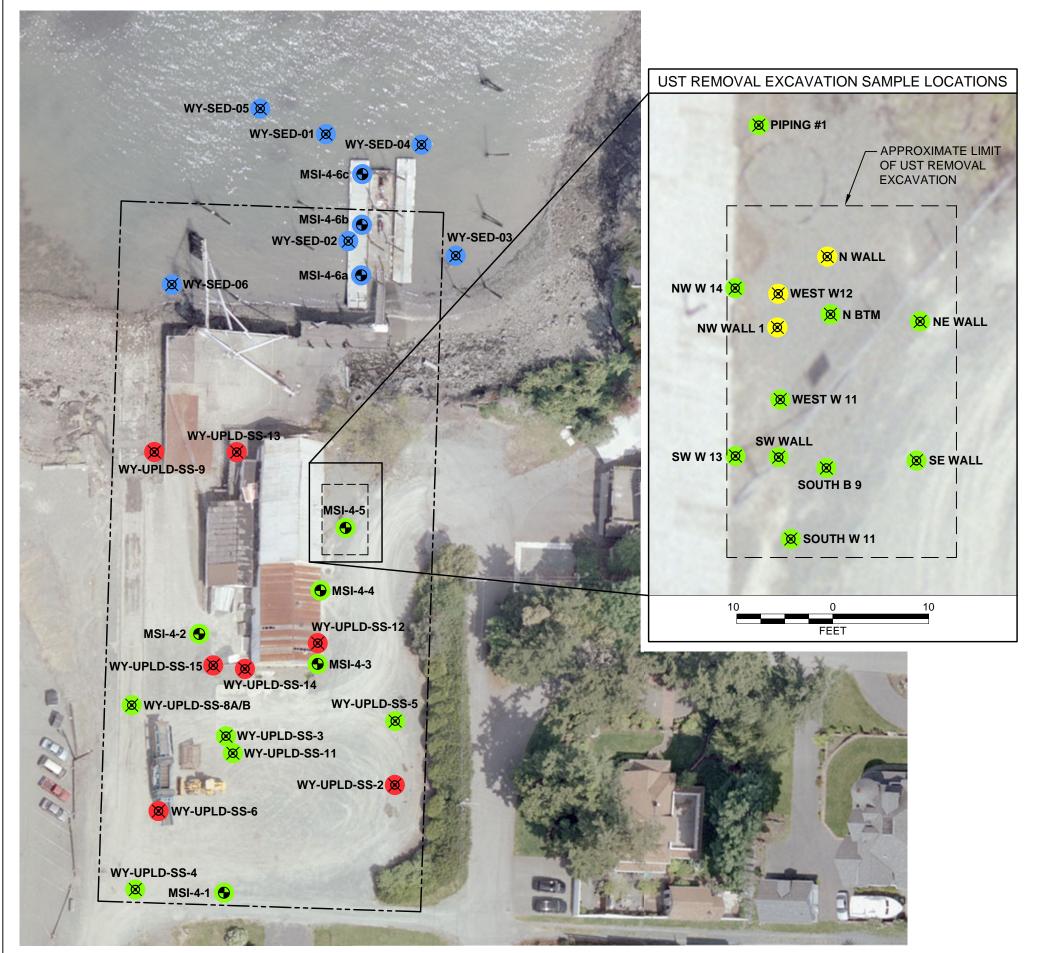
mg/kg = miligram per kilogram

µg/kg = microgram per kilogram

ng/kg = nonogram oer kilogram

OC = organic carbon

 U = The analyte is not detected at or above the reported concentration.

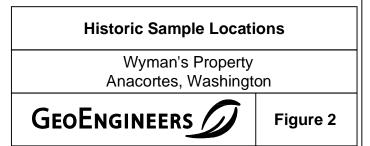

J = Estimated Concentration

Shading indicates detected concentrations exceeds one or more of the DMMP Guidline Chemistry Values.

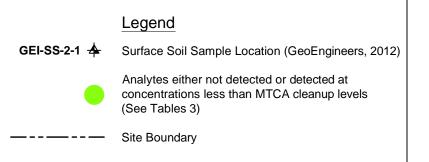
Chemical analyses performed by OnSite Environmental, Inc of Redmond, Washington.

WY-U

Legend


UPLD-SS-1 🕱	Sample Location (Otten Engineering, 1997 & 1998)								
MSI-4-4 🕤	Soil Sample Location (Landau Associates, 2004)								
•	One or more analyte exceeds MTCA cleanup levels (See Table 1)								
•	Analytes either not detected or detected at concentrations less than MTCA cleanup levels (See Table 1)								
	Soil represented by this sample was subsequently excavated and removed from the site								
•	Analytes either not detected or detected at a concentration less than Marine Sediment Quality Standards (See Table 2)								
	Site Boundary								
MTCA	Model Toxics Control Act								

Notes


- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Reference: Base Aerial taken by David C. Smith & Associates, Inc. on $6\!/17\!/\!2009.$

13, 2012 - 11:54 Aug DWG/TAB:LANDSCAPF 100 FIG 3. TASK P:\5\5|470|9\05\CAD\5|470|9-05

Notes

- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Reference: Base Aerial taken by David C. Smith & Associates, Inc. on 6/17/2009.

Legend

Direct Push Boring Location (GeoEngineers, 2012)

Analytes either not detected or detected at concentrations less than MTCA cleanup levels and/or sediment quality standards (See Tables 3 and 4)

Site Boundary

Proposed Mitigation Habitat Excavation Area

Notes

- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Reference: Base Aerial taken by David C. Smith & Associates, Inc. on 6/17/2009.

APPENDIX A Field Program and Exploration Logs

APPENDIX A FIELD PROGRAM

General

Soil conditions were evaluated at the Site on July 5, 2012. Exploration, soil collection and handling, and field screening methods are summarized below.

Direct-Push Explorations

Six direct-push explorations were completed on July 5, 2012 to depths ranging from 8½ to 16 feet below ground surface (bgs) by Cascade Drilling Inc. of Woodinville, Washington using a truck mounded direct-push probe. The explorations were continuously monitored by a GeoEngineers field representative who observed and classified the soils encountered, obtained representative soil samples, observed groundwater conditions, and prepared a detailed log of each exploration. Representative soil samples were obtained from the explorations at selected depths using a 60-inch long, 1-3%-inch-inside-diameter Teflon sampler driven into the soil using a pneumonic hammer. Soils encountered were visually classified in general accordance with American Society for Testing and Materials (ASTM) D 2488-94 (described in Figure A-1). Exploration logs are presented in Figures A-2 through A-7.

Soil samples were obtained from the continuous core soil exploration at approximately 2½-foot-depth intervals. Representative soil from each sampling interval was retained for field screening and potential chemical analysis. Drilling and sampling equipment were decontaminated before each sampling attempt with a Liqui-Nox® solution wash and distilled water rinse.

Samples were kept cool during transport to the chemical analytical testing laboratory. Chain-of-custody procedures were observed during transport of the samples to the testing laboratory. Samples that were submitted for chemical analysis are denoted in our boring logs with "CA."

Shallow Surface Explorations

Shallow surface explorations were completed on July 5, 2012 to depths ranging from ½ to 1½ feet bgs by GeoEngineers using hand tools (stainless steel shovel and/or trowel). Representative soil from each sample location was retained for field screening and potential chemical analysis. Sampling equipment was decontaminated before each sampling attempt with a Liqui-Nox® solution wash and distilled water rinse.

Samples were kept cool during transport to the chemical analytical testing laboratory. Chain-of-custody procedures were observed during transport of the samples to the testing laboratory.

Soil Sample Collection and Handling

Soil samples obtained from the explorations for chemical analysis were transferred to laboratory-prepared sample jars. Sample containers were filled to minimize headspace. Soil samples collected for analysis of volatile organics were collected using EPA Method 5035. Each soil sample collected for potential analysis was identified by a unique sample designation that corresponded to its mapped sample location and sample depth. The samples were placed in a cooler with ice pending transport to the analytical laboratory. Standard chain-of-custody procedures were followed in transporting the samples to the testing laboratory.

Field Screening of Soil Samples

Soil samples obtained from the explorations were evaluated for evidence of possible contamination using field screening techniques. Field screening results can be used as a general guideline to delineate areas of possible petroleum- or volatile organic compound (VOC)-related contamination in soils. In addition, screening results are often used as a basis for selecting soil samples for chemical analysis. The screening methods employed included: 1) visual examination, 2) water sheen testing, and 3) headspace vapor testing using a photoionization detector (PID).

Visual screening consists of observing the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons such as motor oil, or when hydrocarbon concentrations are high. Sheen screening is a more sensitive screening method that can be effective in detecting petroleum-based products.

Water sheen testing involves placing soil in water and observing the water surface for signs of sheen. The results of water sheen testing on soil samples from the exploration are presented in Table 3. Sheens are classified as follows:

- No Sheen (NS) No visible sheen on water surface.
- Slight Sheen (SS) Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly.
- Moderate Sheen (MS) Light to heavy sheen, may have some color/iridescence; spread is irregular to flowing; few remaining areas of no sheen on water surface.
- Heavy Sheen (HS) Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

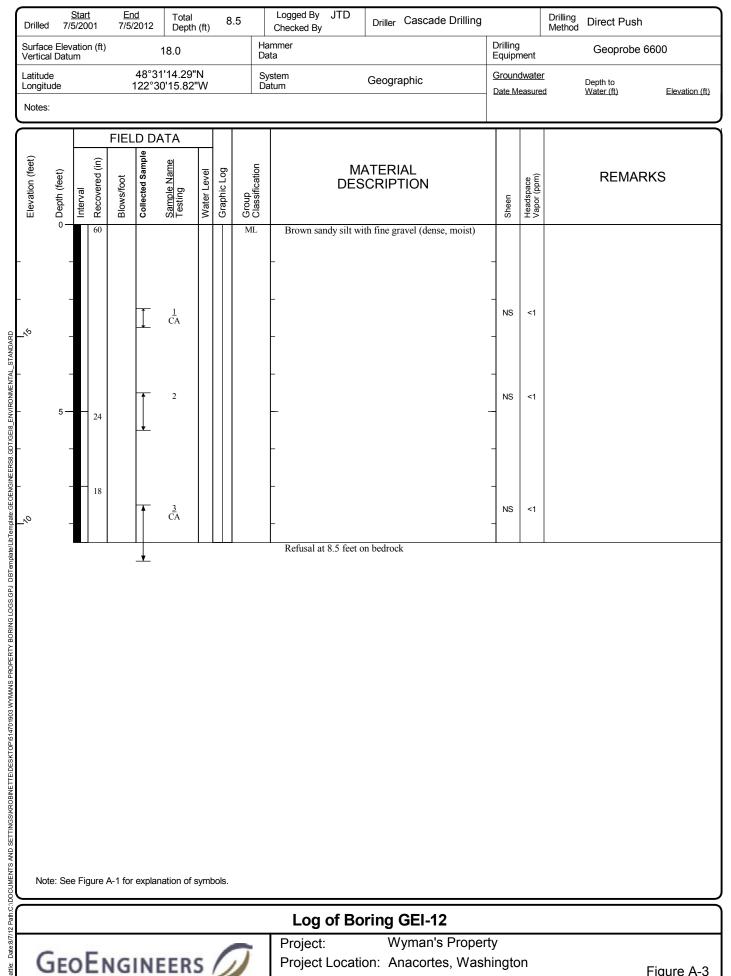
Headspace vapor screening involves placing a soil sample in a plastic bag. Air is captured in the bag, and the bag is shaken to expose the soil to the air trapped in the bag. The probe of the PID is inserted into the bag. The PID measures the concentration of photoionizable gases and vapors in the sample bag headspace. The PID is designed to quantify photoionizable gases and vapors up to 2,000 parts per million (ppm), and is calibrated with isobutylene. A lower threshold of significance of 1 ppm is used in application.

Field screening results are site- and boring-specific. The results may vary with temperature, moisture content, soil lithology, organic content and type of contaminant. The presence or absence of sheen does not necessarily confirm the presence or absence of contaminants in a sample.

Underground Utility locate

Prior to drilling activities, a "One Call" and private utility locate was conducted within a 20-foot radius of each boring location to identify any subsurface utilities and/or potential underground physical hazards. Utility locate records are on file with GeoEngineers and available upon request.

Investigative Wastes


Soil cuttings, decontamination rinse water, development water and purge water are stored on site in sealed and labeled 55-gallon drums located east of the Wyman's Building pending permitted disposal.

Drilleo		StartEndTotal8.5Logged ByJTD7/5/20017/5/2012Depth (ft)8.5Checked ByDrillerCascade Drilling							Drilling Method Direct Push						
Surfac Vertica	ce Elev al Datu	ation ((ft)			17.0 DMS				ammer ata			Drilling Equipn	nent	Geoprobe 6600
Latituc Longit Notes	ude		122°30'19.36"W Datum DMS Datum						Ground Date Mil	easure	Depth to				
Elevation (feet)	o Depth (feet) I		Recovered (in)	Blows/foot	Collected Sample	Testing Testing	Water Level	Graphic Log	Group Classification	DES	ATERIAL CRIPTION		Sheen	A Headspace Vapor (ppm)	REMARKS
^	-		50		Ī	1	Ţ		SP-SM ML SP-SM	(dense, dry) Dark brown sandy s and trace wood o	t and gravel, trace organi ilt with fine gravel, organ hips (dense, dry) nd trace fine gravel (den	nics	NS	<1	
-	- 5 —		36			2			ML	Brown sandy silt wi moist)	th trace fine gravel (dens	se, -	NS	<1	
0	-					3 CA				- Refusal at 8.5 feet o					
No	ite: Se	e Figu	ire A	-1 for	explan	ation of a	symb	ools.		Log of Bo	ring GEI-11				
C	GE	οE	N	IG	INE	ER	S		J		Wyman's Pro on: Anacortes, V er: 5147-019-05	Nash	-	n	Figure A-2 Sheet 1 of 1

Project Number: 5147-019-05

Project Number: 5147-019-05

Figure A-3 Sheet 1 of 1

Drilled	1 7/	<u>Start</u> 5/200 ⁻	1	<u>En</u> 7/5/	<u>d</u> 2012	Total Depth	n (ft)	1(C	Logged By JTD Checked By	Driller Cascade Dr	rilling			Drilling Method Direct Push
Surfac Vertica										lammer Data			Drilling Equipr		Geoprobe 6600
Latitud Longitu					48°3′ 122°3	1'13.27" 0'18.46	'N "W		S C	stem Geographic tum			Groun Date M		 Depth to
Notes	:														
				FIEL	D DA										
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	0 —	1	36						SP ML	-	to coarse gravel (dense, n occasional gravel (den		NS	<1	
-	-								WIL	moist)	i occasional gravel (den	ise,	-		
_	_								ML	Green sandy silt wit moist)	h occasional gravel (den	nse,			
					Ţ	1							NS	<1	
-	-	- 1	24						ML	Brown sandy silt wi moist)	th occasional gravel (de	ense,			
	-									-			-		
-	5 —				Ť	2						-	NS	<1	
			36		I										
_	-									-			-		
-	-					2				-			-		
_	_				Ţ	3							NS	<1	
			24		•	$\frac{4}{CA}$							NS	<1	
_%	-					CA				-			-		
	10 —				•					Refusal at 10 feet or	1 bedrock				
Not															
Not	te: See	e Figu	ire A	A-1 for	explar	nation of s	symt	ols.							
										Log of Bo	ring GEI-13				
C	Log of Boring GEI-13 GEOENGINEERS Project: Wyman's Property Project Location: Anacortes, Washington Figure A-4 Project Number: 5147-019-05 Figure A-4														

	rilled	7/5	<u>Start</u> 5/200 ⁻	1	<u>En</u> 7/5/	i <u>d</u> 2012	Total Depth	ר (ft)	1	6	Logged By JTD Checked By	Driller	Cascade Drilling			Drilling Method
Sı Ve	urface ertica	e Elev I Datu	ation m	(ft)			24.0				ammer ata			Drilling Equipr) nent	Geoprobe 6600
Lo											ystem Geographic atum				dwate easure 012	Depth to
	FIELD DATA															10.0
	-				FIEL											
Elevation (feet)		Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	M/ DES	ATERI <i>I</i> CRIPT	AL TON	Sheen	Headspace Vapor (ppm)	REMARKS
		0 —		31						SP	Gray fine to coarse s dry)	sand with	fine gravel (dense,	NS	<1	
-		-								ML	Brown silt with fine moist)	to coarse	sand (dense,	_		
		-				Ţ	1				-			NS	<1	
-		-								SM	Gray silty fine to co (dense, moist)	arse sand	with fine gravel	NS	<1	
<u>_</u> ^)	-				•	$\frac{2}{CA}$				-			- NS	<1	
		5—	-	60			CA	Ţ			-			-		
-		-								ML	Brown silt with fine organics (dense,		n sand and trace	_		
-		-				\uparrow	3				-			- NS	<1	
		-								ML	Light brown silt wit trace fine gravel	h fine to n (dense, m	nedium sand and loist)	_		
%	•	-				•	4				-			- NS	<1	
		10 —	-	60							_			-		
-		-									-			-		
-		-				T	5				-			- NS	<1	
-		-				-					-			_		
_%)	-									-			-		
-		15 —		12		1	$\frac{6}{CA}$			SM	Gray silty sand (den	se, moist)		NS	<1	
_		_												NS	<1	
											Refusal at 16 feet or	1 Dedrock				
	Not	e: See	e Figu	ire A	A-1 for	explar	nation of	symb	ols.							
											Log of Bo	ring (GEI-14			
	Log of Boring GEI-14 GEOENGINEERS Project: Wyman's Property Project Location: Anacortes, Washington Figure A- Sheet 1 of												Figure A-5 Sheet 1 of 1			

	rilled	7/5	<u>Star</u> 5/20	<u>t</u> 01	<u>Er</u> 7/5/	<u>nd</u> /2012	Total Depth	n (ft)	1	5		Logged By JTD Checked By	Driller C	Cascade Drilling			Drilling Method Direct Push
Si	Surface Elevation (ft) 20.0 Hammer /ertical Datum Data								Drilling Equipment Geoprobe 6600								
Lo	Latitude 48°31'14.35"N System Geogra Longitude 122°36'17.85"W Datum Geogra									Geograp	hic	Groundwater Depth to Date Measured Water (ft) Elevation (ft) 7/5/2012 4.0 16.0					
	0100.		1				. = .										
	<u>-</u>			<u> </u>	FIEL	_D D/ କ୍ଷ											
	Elevation (reet)	o Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group		DES	ATERIA CRIPTI	ON	Sheen	Headspace Vapor (ppm)	REMARKS
-		_		48						SI		Brown fine to coars gravel (dense, d Dark brown to blac	ry) k with orang	ge mottling silt	_		
-		-				—	1			М	T	with fine to coar			NS	<1	
SIANDARU		-				-*		₽		M		Green and orange n medium sand (d Brown with orange medium sand, tr	mottling silt	t with fine to	_		
)	- 5 —		60		1	2					-			NS	<1	
		_				L.						-			-		
		-				Ţ	3					- Coarse gravel lense -			- NS	<1	
)	- 10 —		60		Ì	4 ČĂ					 Coarse gravel lense 			- NS	<1	
		-					5			c.		-		1.2	- NS - NS	<1	
		_					<u>6</u> CA			SN M		Brown silty sand wi (dense, moist) Brown with orange medium sand, tr	mottling silt	t with fine to	-	<1	
Z Fam.C												Log of Bo	ring G	EI-15			
	Log of Boring GEI-15 GEOENGINEERS I Project: Wyman's Property Project Location: Anacortes, Washington Project Number: 5147-019-05																

Dri	illed	<u>S</u> 7/5	tart /200		<u>Er</u> 7/5/	<u>id</u> '2012	Total Depth	ı (ft)	14	4		ogged By JTD necked By	Driller Cascade Drilling			Drilling Method Direct Push
Sur Ver	rface rtical I	face Elevation (ft) 18.0 Hammer Data									Drillin Equip	g ment	Geoprobe 6600			
	Latitude 48°31'15.13"N System Geograp											Geographic		ndwate Aeasure	Depth to	
No	Notes:													Date	leasure	ed Water (ft) Elevation (ft)
					FIEL	D D/	ATA									
Elevation (feet)		Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Olassiiication		ATERIAL SCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
		0 —		36						SP-S			to coarse gravel (dense, dry)	_		
		-				Ţ	1			SP-5	-	Brown sandy silt (d		-		
		5 —		60			² CA			SP-S	M _	Brown fine to coars gravel (dense, n	e sand with silt and fine noist)	_		
		-				Ţ	3			ML		Gray brown silt wit occasional grav	n fine to medium sand and el (dense, moist)	-		
		- 10 — -		48			4				-			-		
		-					5 CA				-			-		
												Refusal at 14 feet o	n bedrock			
	Note: See Figure A-1 for explanation of symbols.															
11/2 Paul													ring GEI-16			
Seattle: Date:o	GEOENGINEERS Project: Wyman's Property Project Location: Anacortes, Washington Project Number: 5147-019-05 Figure A-7 Sheet 1 of 1															

APPENDIX B Chemical Analytical Data

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 18, 2012

Robert Trahan GeoEngineers, Inc. 600 Stewart, Suite 1700 Seattle, WA 98101-1233

Re: Analytical Data for Project 5147-19-05 Laboratory Reference No. 1207-038

Dear Robert:

Enclosed are the analytical results and associated quality control data for samples submitted on July 6, 2012.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 18, 2012 Samples Submitted: July 6, 2012 Laboratory Reference: 1207-038 Project: 5147-19-05

Case Narrative

Samples were collected on July 5, 2012 and received by the laboratory on July 6, 2012. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

SMS Semivolatiles EPA 8270D/SIM Analysis

GPC clean-up was not performed on this sample.

Total Metals EPA 6010B/7471A Analysis

Due to the high concentration of Copper in the QC sample, the amount spiked was insufficient for meaningful MS/MSD recovery data. The Spike Blank recovery was 104%.

The Matrix Spike/Matrix Spike Duplicate recoveries for Zinc are outside control limits due to matrix inhomogeneity. The samples were re-extracted and re-analyzed with similar results. The Spike Blank recovery was 101%.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
GEI-11-8.0	07-038-03	Soil	7-5-12	7-6-12	
GEI-12-2.5	07-038-04	Soil	7-5-12	7-6-12	
GEI-13-10.0	07-038-10	Soil	7-5-12	7-6-12	
GEI-14-5.0	07-038-12	Soil	7-5-12	7-6-12	
GEI-15-10.0	07-038-20	Soil	7-5-12	7-6-12	
GEI-16-5.0	07-038-24	Soil	7-5-12	7-6-12	
GEI-COMP-1	07-038-28	Soil	7-5-12	7-6-12	
GEI-SS-COMP	07-038-29	Soil	7-5-12	7-6-12	
GEI-SS-2-1-1.5	07-038-30	Soil	7-5-12	7-6-12	
GEI-SS-2-2-0.5	07-038-32	Soil	7-5-12	7-6-12	
GEI-SS-2-3-0.5	07-038-33	Soil	7-5-12	7-6-12	
GEI-SS-2-4-0.5	07-038-34	Soil	7-5-12	7-6-12	
GEI-SS-6-1-1.5	07-038-36	Soil	7-5-12	7-6-12	
GEI-SS-6-2-0.5	07-038-38	Soil	7-5-12	7-6-12	
GEI-SS-6-3-0.5	07-038-39	Soil	7-5-12	7-6-12	
GEI-SS-6-4-0.5	07-038-40	Soil	7-5-12	7-6-12	
GEI-SS-12-1-1.5	07-038-46	Soil	7-5-12	7-6-12	
GEI-SS-12-2-0.5	07-038-48	Soil	7-5-12	7-6-12	
GEI-SS-12-3-0.5	07-038-49	Soil	7-5-12	7-6-12	
GEI-SS-12-4-0.5	07-038-50	Soil	7-5-12	7-6-12	
GEI-SS-14/15-1-0.5	07-038-51	Soil	7-5-12	7-6-12	
GEI-SS-14/15-1-1.5	07-038-52	Soil	7-5-12	7-6-12	
GEI-SS-14/15-2-1.5	07-038-54	Soil	7-5-12	7-6-12	
GEI-SS-14/15-3-1.5	07-038-55	Soil	7-5-12	7-6-12	
GEI-SS-14/15-4-1.5	07-038-56	Soil	7-5-12	7-6-12	
GEI-SS-13-1-0.5	07-038-57	Soil	7-5-12	7-6-12	
GEI-SS-13-1-1.5	07-038-58	Soil	7-5-12	7-6-12	
GEI-SS-13-2-0.5	07-038-59	Soil	7-5-12	7-6-12	
GEI-SS-13-3-0.5	07-038-60	Soil	7-5-12	7-6-12	
GEI-SS-13-4-0.5	07-038-61	Soil	7-5-12	7-6-12	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
GEI-11-8.0					
07-038-03					
ND	0.020	EPA 8021	7-10-12	7-10-12	
ND	0.048	EPA 8021	7-10-12	7-10-12	
ND	0.048	EPA 8021	7-10-12	7-10-12	
ND	0.048	EPA 8021	7-10-12	7-10-12	
ND	0.048	EPA 8021	7-10-12	7-10-12	
ND	4.8	NWTPH-Gx	7-10-12	7-10-12	
Percent Recovery	Control Limits				
96	70-132				
GEI-12-2.5					
07-038-04					
ND	0.020	EPA 8021	7-10-12	7-10-12	
ND	0.073	EPA 8021	7-10-12	7-10-12	
ND	0.073	EPA 8021	7-10-12	7-10-12	
ND	0.073	EPA 8021	7-10-12	7-10-12	
ND	0.073	EPA 8021	7-10-12	7-10-12	
ND	7.3	NWTPH-Gx	7-10-12	7-10-12	
Percent Recovery	Control Limits				
95	70-132				
GEI-13-10.0					
07-038-10					
ND	0.020	EPA 8021	7-10-12	7-10-12	
ND	0.049	EPA 8021	7-10-12	7-10-12	
ND	0.049	EPA 8021	7-10-12	7-10-12	
ND	0.049	EPA 8021	7-10-12	7-10-12	
ND	0.049	EPA 8021	7-10-12	7-10-12	
ND	4.9	NWTPH-Gx	7-10-12	7-10-12	
Percent Recovery	Control Limits				
95	70-132				
	GEI-11-8.0 07-038-03 ND ND ND ND ND ND Percent Recovery 96 GEI-12-2.5 07-038-04 ND ND ND ND ND ND ND ND ND ND ND ND S Percent Recovery 95 GEI-13-10.0 07-038-10 ND ND ND ND ND ND ND ND ND ND ND ND ND	GEI-11-8.0 07-038-03 ND 0.020 ND 0.048 ND 0.0173 ND 0.020 ND 0.073 ND 0.073 ND 0.073 ND 0.073 ND 7.3 Percent Recovery Control Limits 95 70-132 GEI-13-10.0 0.049 ND 0.049 ND 0.049 ND 0.049 <td>GEI-11-8.0 O7-038-03 ND 0.020 EPA 8021 ND 0.048 EPA 8021 ND 4.8 NWTPH-Gx Percent Recovery Control Limits 96 70-132 GEI-12-2.5 07-038-04 ND 0.073 EPA 8021 ND ND 0.073 EPA 8021 ND ND 0.073 PA 8021 ND ND 7.3 NWTPH-Gx Percent Recovery Control Limits 95 70-132 GEI-13-10.0 07-038-</td> <td>Result PQL Method Prepared GEI-11-8.0 07-038-03 -</td> <td>Result PQL Method Prepared Analyzed GEI-11-8.0 07-038-03 </td>	GEI-11-8.0 O7-038-03 ND 0.020 EPA 8021 ND 0.048 EPA 8021 ND 4.8 NWTPH-Gx Percent Recovery Control Limits 96 70-132 GEI-12-2.5 07-038-04 ND 0.073 EPA 8021 ND ND 0.073 EPA 8021 ND ND 0.073 PA 8021 ND ND 7.3 NWTPH-Gx Percent Recovery Control Limits 95 70-132 GEI-13-10.0 07-038-	Result PQL Method Prepared GEI-11-8.0 07-038-03 -	Result PQL Method Prepared Analyzed GEI-11-8.0 07-038-03

4

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-14-5.0					
Laboratory ID:	07-038-12					
Benzene	ND	0.020	EPA 8021	7-10-12	7-10-12	
Toluene	ND	0.041	EPA 8021	7-10-12	7-10-12	
Ethyl Benzene	ND	0.041	EPA 8021	7-10-12	7-10-12	
m,p-Xylene	ND	0.041	EPA 8021	7-10-12	7-10-12	
o-Xylene	ND	0.041	EPA 8021	7-10-12	7-10-12	
Gasoline	ND	4.1	NWTPH-Gx	7-10-12	7-10-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	70-132				
Client ID:	GEI-15-10.0					
Laboratory ID:	07-038-20					
Benzene	ND	0.020	EPA 8021	7-10-12	7-10-12	
Toluene	ND	0.051	EPA 8021	7-10-12	7-10-12	
Ethyl Benzene	ND	0.051	EPA 8021	7-10-12	7-10-12	
m,p-Xylene	ND	0.051	EPA 8021	7-10-12	7-10-12	
o-Xylene	ND	0.051	EPA 8021	7-10-12	7-10-12	
Gasoline	ND	5.1	NWTPH-Gx	7-10-12	7-10-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	70-132				
Client ID:	GEI-16-5.0					
Laboratory ID:	07-038-24					
Benzene	ND	0.020	EPA 8021	7-10-12	7-10-12	
Toluene	ND	0.044	EPA 8021	7-10-12	7-10-12	
Ethyl Benzene	ND	0.044	EPA 8021	7-10-12	7-10-12	
m,p-Xylene	ND	0.044	EPA 8021	7-10-12	7-10-12	
o-Xylene	ND	0.044	EPA 8021	7-10-12	7-10-12	
Gasoline	ND	4.4	NWTPH-Gx	7-10-12	7-10-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	70-132				

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-SS-COMP					
Laboratory ID:	07-038-29					
Benzene	ND	0.020	EPA 8021	7-10-12	7-10-12	
Toluene	ND	0.045	EPA 8021	7-10-12	7-10-12	
Ethyl Benzene	ND	0.045	EPA 8021	7-10-12	7-10-12	
m,p-Xylene	ND	0.045	EPA 8021	7-10-12	7-10-12	
o-Xylene	ND	0.045	EPA 8021	7-10-12	7-10-12	
Gasoline	ND	4.5	NWTPH-Gx	7-10-12	7-10-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	70-132				
Client ID:	GEI-SS-6-1-1.5					
Laboratory ID:	07-038-36					
Gasoline	ND	4.8	NWTPH-Gx	7-10-12	7-10-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	70-132				
Client ID:	GEI-SS-6-2-0.5					
Laboratory ID:	07-038-38					
Gasoline	ND	4.6	NWTPH-Gx	7-10-12	7-10-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	70-132				

NWTPH-Gx

onito. mg/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-SS-6-3-0.5					
Laboratory ID:	07-038-39					
Gasoline	ND	4.0	NWTPH-Gx	7-10-12	7-10-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	70-132				
Client ID:	GEI-SS-6-4-0.5					
Laboratory ID:	07-038-40					
Gasoline	ND	5.3	NWTPH-Gx	7-10-12	7-10-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	70-132				

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	GEI-SS-2-1-1.5			•		
Laboratory ID:	07-038-30					
Diesel Range Organics	ND	31	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil Range Organics	ND	62	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	GEI-SS-2-2-0.5					
Laboratory ID:	07-038-32					
Diesel Range Organics	ND	27	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil	59	54	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				
Client ID:	GEI-SS-2-3-0.5					
Laboratory ID:	07-038-33					
Diesel Range Organics	ND	30	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil Range Organics	ND	60	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits	NWITH DX	7 10 12	1 10 12	
o-Terphenyl	113	50-150				
Client ID:	GEI-SS-2-4-0.5					
Laboratory ID:	07-038-34					
Diesel Range Organics	ND	28	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil Range Organics	ND	56	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	GEI-SS-6-1-1.5					
Laboratory ID:	07-038-36					
Diesel Range Organics	ND	28	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil Range Organics	ND	57	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	GEI-SS-6-2-0.5					
Laboratory ID:	07-038-38					
Diesel Range Organics	ND	27	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil Range Organics	ND	55	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

8

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	GEI-SS-6-3-0.5			-	-	
Laboratory ID:	07-038-39					
Diesel Range Organics	100	26	NWTPH-Dx	7-13-12	7-13-12	
_ube Oil Range Organics	ND	51	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	GEI-SS-6-4-0.5					
Laboratory ID:	07-038-40					
Diesel Range Organics	ND	28	NWTPH-Dx	7-13-12	7-13-12	
_ube Oil Range Organics	ND	57	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
Client ID:	GEI-SS-12-1-1.5					
Laboratory ID:	07-038-46					
Diesel Range Organics	ND	30	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil Range Organics	ND	61	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	GEI-SS-12-2-0.5					
Laboratory ID:	07-038-48					
Diesel Range Organics	ND	29	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil Range Organics	ND	57	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				
Client ID:	GEI-SS-12-3-0.5					
Laboratory ID:	07-038-49			7 40 40	7 40 40	
Diesel Range Organics	ND	28	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil	<u>69</u>	55	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	GEI-SS-12-4-0.5					
Laboratory ID:	07-038-50					
Diesel Range Organics	<u>68</u>	28	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil	330	28 56	NWTPH-Dx NWTPH-Dx	7-13-12	7-13-12	
		Control Limits		1-13-12	1-13-12	
Surrogate: o-Terphenyl	Percent Recovery 88	50-150				
	77	201-1201				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

NWTPH-Dx (with acid/silica gel clean-up)

onits. http://tg (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-SS-14/15-1-1.5					
Laboratory ID:	07-038-52					
Diesel Range Organics	ND	30	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil Range Organics	ND	61	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	GEI-SS-14/15-2-0.5					
Laboratory ID:	07-038-54					
Diesel Range Organics	ND	27	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil Range Organics	ND	55	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	GEI-SS-14/15-3-0.5					
Laboratory ID:	07-038-55					
Diesel Range Organics	ND	30	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil	63	59	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	GEI-SS-14/15-4-0.5					
Laboratory ID:	07-038-56					
Diesel Range Organics	ND	27	NWTPH-Dx	7-13-12	7-13-12	
Lube Oil	150	54	NWTPH-Dx	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits		-	-	
o-Terphenyl	96	50-150				

onna. ug/ng (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-SS-COMP					
Laboratory ID:	07-038-29					
alpha-BHC	ND	5.6	EPA 8081	7-13-12	7-13-12	
gamma-BHC	ND	5.6	EPA 8081	7-13-12	7-13-12	
beta-BHC	ND	5.6	EPA 8081	7-13-12	7-13-12	
delta-BHC	ND	5.6	EPA 8081	7-13-12	7-13-12	
Heptachlor	ND	5.6	EPA 8081	7-13-12	7-13-12	
Aldrin	ND	5.6	EPA 8081	7-13-12	7-13-12	
Heptachlor Epoxide	ND	5.6	EPA 8081	7-13-12	7-13-12	
gamma-Chlordane	ND	11	EPA 8081	7-13-12	7-13-12	
alpha-Chlordane	ND	11	EPA 8081	7-13-12	7-13-12	
4,4'-DDE	ND	11	EPA 8081	7-13-12	7-13-12	
Endosulfan I	ND	5.6	EPA 8081	7-13-12	7-13-12	
Dieldrin	ND	11	EPA 8081	7-13-12	7-13-12	
Endrin	ND	11	EPA 8081	7-13-12	7-13-12	
4,4'-DDD	ND	11	EPA 8081	7-13-12	7-13-12	
Endosulfan II	ND	11	EPA 8081	7-13-12	7-13-12	
4,4'-DDT	ND	11	EPA 8081	7-13-12	7-13-12	
Endrin Aldehyde	ND	11	EPA 8081	7-13-12	7-13-12	
Methoxychlor	ND	11	EPA 8081	7-13-12	7-13-12	
Endosulfan Sulfate	ND	11	EPA 8081	7-13-12	7-13-12	
Endrin Ketone	ND	11	EPA 8081	7-13-12	7-13-12	
Toxaphene	ND	56	EPA 8081	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
TCMX	82	43-105				
DCB	75	43-121				

onna. ug/ng (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-SS-13-1-1.5					
Laboratory ID:	07-038-58					
alpha-BHC	ND	6.1	EPA 8081	7-13-12	7-13-12	
gamma-BHC	ND	6.1	EPA 8081	7-13-12	7-13-12	
beta-BHC	ND	6.1	EPA 8081	7-13-12	7-13-12	
delta-BHC	ND	6.1	EPA 8081	7-13-12	7-13-12	
Heptachlor	ND	6.1	EPA 8081	7-13-12	7-13-12	
Aldrin	ND	6.1	EPA 8081	7-13-12	7-13-12	
Heptachlor Epoxide	ND	6.1	EPA 8081	7-13-12	7-13-12	
gamma-Chlordane	ND	12	EPA 8081	7-13-12	7-13-12	
alpha-Chlordane	ND	12	EPA 8081	7-13-12	7-13-12	
4,4'-DDE	ND	12	EPA 8081	7-13-12	7-13-12	
Endosulfan I	ND	6.1	EPA 8081	7-13-12	7-13-12	
Dieldrin	ND	12	EPA 8081	7-13-12	7-13-12	
Endrin	ND	12	EPA 8081	7-13-12	7-13-12	
4,4'-DDD	ND	12	EPA 8081	7-13-12	7-13-12	
Endosulfan II	ND	12	EPA 8081	7-13-12	7-13-12	
4,4'-DDT	ND	12	EPA 8081	7-13-12	7-13-12	
Endrin Aldehyde	ND	12	EPA 8081	7-13-12	7-13-12	
Methoxychlor	ND	12	EPA 8081	7-13-12	7-13-12	
Endosulfan Sulfate	ND	12	EPA 8081	7-13-12	7-13-12	
Endrin Ketone	ND	12	EPA 8081	7-13-12	7-13-12	
Toxaphene	ND	61	EPA 8081	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
TCMX	75	43-105				
DCB	74	43-121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-SS-13-2-0.5					
Laboratory ID:	07-038-59					
alpha-BHC	ND	7.4	EPA 8081	7-13-12	7-13-12	
gamma-BHC	ND	7.4	EPA 8081	7-13-12	7-13-12	
beta-BHC	ND	7.4	EPA 8081	7-13-12	7-13-12	
delta-BHC	ND	7.4	EPA 8081	7-13-12	7-13-12	
Heptachlor	ND	7.4	EPA 8081	7-13-12	7-13-12	
Aldrin	ND	7.4	EPA 8081	7-13-12	7-13-12	
Heptachlor Epoxide	ND	7.4	EPA 8081	7-13-12	7-13-12	
gamma-Chlordane	ND	15	EPA 8081	7-13-12	7-13-12	
alpha-Chlordane	ND	15	EPA 8081	7-13-12	7-13-12	
4,4'-DDE	ND	15	EPA 8081	7-13-12	7-13-12	
Endosulfan I	ND	7.4	EPA 8081	7-13-12	7-13-12	
Dieldrin	ND	15	EPA 8081	7-13-12	7-13-12	
Endrin	ND	15	EPA 8081	7-13-12	7-13-12	
4,4'-DDD	ND	15	EPA 8081	7-13-12	7-13-12	
Endosulfan II	ND	15	EPA 8081	7-13-12	7-13-12	
4,4'-DDT	ND	15	EPA 8081	7-13-12	7-13-12	
Endrin Aldehyde	ND	15	EPA 8081	7-13-12	7-13-12	
Methoxychlor	ND	15	EPA 8081	7-13-12	7-13-12	
Endosulfan Sulfate	ND	15	EPA 8081	7-13-12	7-13-12	
Endrin Ketone	ND	15	EPA 8081	7-13-12	7-13-12	
Toxaphene	ND	74	EPA 8081	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
TCMX	65	43-105				
DCB	68	43-121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-SS-13-3-0.5					
Laboratory ID:	07-038-60					
alpha-BHC	ND	6.9	EPA 8081	7-13-12	7-13-12	
gamma-BHC	ND	6.9	EPA 8081	7-13-12	7-13-12	
beta-BHC	ND	6.9	EPA 8081	7-13-12	7-13-12	
delta-BHC	ND	6.9	EPA 8081	7-13-12	7-13-12	
Heptachlor	ND	6.9	EPA 8081	7-13-12	7-13-12	
Aldrin	ND	6.9	EPA 8081	7-13-12	7-13-12	
Heptachlor Epoxide	ND	6.9	EPA 8081	7-13-12	7-13-12	
gamma-Chlordane	ND	14	EPA 8081	7-13-12	7-13-12	
alpha-Chlordane	ND	14	EPA 8081	7-13-12	7-13-12	
4,4'-DDE	ND	14	EPA 8081	7-13-12	7-13-12	
Endosulfan I	ND	6.9	EPA 8081	7-13-12	7-13-12	
Dieldrin	ND	14	EPA 8081	7-13-12	7-13-12	
Endrin	ND	14	EPA 8081	7-13-12	7-13-12	
4,4'-DDD	ND	14	EPA 8081	7-13-12	7-13-12	
Endosulfan II	ND	14	EPA 8081	7-13-12	7-13-12	
4,4'-DDT	ND	14	EPA 8081	7-13-12	7-13-12	
Endrin Aldehyde	ND	14	EPA 8081	7-13-12	7-13-12	
Methoxychlor	ND	14	EPA 8081	7-13-12	7-13-12	
Endosulfan Sulfate	ND	14	EPA 8081	7-13-12	7-13-12	
Endrin Ketone	ND	14	EPA 8081	7-13-12	7-13-12	
Toxaphene	ND	69	EPA 8081	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
TCMX	72	43-105				
DCB	72	43-121				

onna. ug/ng (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-SS-13-4-0.5					
Laboratory ID:	07-038-61					
alpha-BHC	ND	6.2	EPA 8081	7-13-12	7-13-12	
gamma-BHC	ND	6.2	EPA 8081	7-13-12	7-13-12	
beta-BHC	ND	6.2	EPA 8081	7-13-12	7-13-12	
delta-BHC	ND	6.2	EPA 8081	7-13-12	7-13-12	
Heptachlor	ND	6.2	EPA 8081	7-13-12	7-13-12	
Aldrin	ND	6.2	EPA 8081	7-13-12	7-13-12	
Heptachlor Epoxide	ND	6.2	EPA 8081	7-13-12	7-13-12	
gamma-Chlordane	ND	12	EPA 8081	7-13-12	7-13-12	
alpha-Chlordane	ND	12	EPA 8081	7-13-12	7-13-12	
4,4'-DDE	ND	12	EPA 8081	7-13-12	7-13-12	
Endosulfan I	ND	6.2	EPA 8081	7-13-12	7-13-12	
Dieldrin	ND	12	EPA 8081	7-13-12	7-13-12	
Endrin	ND	12	EPA 8081	7-13-12	7-13-12	
4,4'-DDD	ND	12	EPA 8081	7-13-12	7-13-12	
Endosulfan II	ND	12	EPA 8081	7-13-12	7-13-12	
4,4'-DDT	ND	12	EPA 8081	7-13-12	7-13-12	
Endrin Aldehyde	ND	12	EPA 8081	7-13-12	7-13-12	
Methoxychlor	ND	12	EPA 8081	7-13-12	7-13-12	
Endosulfan Sulfate	ND	12	EPA 8081	7-13-12	7-13-12	
Endrin Ketone	ND	12	EPA 8081	7-13-12	7-13-12	
Toxaphene	ND	62	EPA 8081	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
TCMX	74	43-105				
DCB	73	43-121				

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	07-038-03 GEI-11-8.0					
Arsenic	ND	11	6010B	7-16-12	7-17-12	
Barium	69	2.8	6010B	7-16-12	7-17-12	
Cadmium	ND	0.57	6010B	7-16-12	7-17-12	
Chromium	44	0.57	6010B	7-16-12	7-17-12	
Lead	ND	5.7	6010B	7-16-12	7-17-12	
Mercury	ND	0.28	7471A	7-16-12	7-16-12	
Selenium	ND	11	6010B	7-16-12	7-17-12	
Silver	ND	0.57	6010B	7-16-12	7-17-12	

Lab ID: Client ID:	07-038-04 GEI-12-2.5					
Arsenic	ND	12	6010B	7-16-12	7-17-12	
Barium	58	3.1	6010B	7-16-12	7-17-12	
Cadmium	ND	0.61	6010B	7-16-12	7-17-12	
Chromium	37	0.61	6010B	7-16-12	7-17-12	
Lead	ND	6.1	6010B	7-16-12	7-17-12	
Mercury	ND	0.31	7471A	7-16-12	7-16-12	
Selenium	ND	12	6010B	7-16-12	7-17-12	
Silver	ND	0.61	6010B	7-16-12	7-17-12	

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	07-038-10					
Client ID:	GEI-13-10.0					
Arsenic	ND	12	6010B	7-16-12	7-17-12	
Barium	60	2.9	6010B	7-16-12	7-17-12	
Cadmium	ND	0.58	6010B	7-16-12	7-17-12	
Chromium	85	0.58	6010B	7-16-12	7-17-12	
Lead	ND	5.8	6010B	7-16-12	7-17-12	
Mercury	ND	0.29	7471A	7-16-12	7-16-12	
Selenium	ND	12	6010B	7-16-12	7-17-12	
Silver	ND	0.58	6010B	7-16-12	7-17-12	

Lab ID: Client ID:	07-038-12 GEI-14-5.0				
Arsenic	ND	11	6010B	7-16-12	7-17-12
Barium	59	2.7	6010B	7-16-12	7-17-12
Cadmium	ND	0.55	6010B	7-16-12	7-17-12
Chromium	35	0.55	6010B	7-16-12	7-17-12
Lead	ND	5.5	6010B	7-16-12	7-17-12
Mercury	ND	0.27	7471A	7-16-12	7-16-12
Selenium	ND	11	6010B	7-16-12	7-17-12
Silver	ND	0.55	6010B	7-16-12	7-17-12

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	07-038-20					
Client ID:	GEI-15-10.0					
Arsenic	ND	12	6010B	7-16-12	7-17-12	
Barium	75	2.9	6010B	7-16-12	7-17-12	
Cadmium	ND	0.59	6010B	7-16-12	7-17-12	
Chromium	43	0.59	6010B	7-16-12	7-17-12	
Lead	ND	5.9	6010B	7-16-12	7-17-12	
Mercury	ND	0.29	7471A	7-16-12	7-16-12	
Selenium	ND	12	6010B	7-16-12	7-17-12	
Silver	ND	0.59	6010B	7-16-12	7-17-12	

Lab ID: Client ID:	07-038-24 GEI-16-5.0				
Arsenic	ND	11	6010B	7-16-12	7-17-12
Barium	52	2.7	6010B	7-16-12	7-17-12
Cadmium	ND	0.55	6010B	7-16-12	7-17-12
Chromium	32	0.55	6010B	7-16-12	7-17-12
Lead	ND	5.5	6010B	7-16-12	7-17-12
Mercury	ND	0.27	7471A	7-16-12	7-16-12
Selenium	ND	11	6010B	7-16-12	7-17-12
Silver	ND	0.55	6010B	7-16-12	7-17-12

Soil

Matrix:

matrix.	001					
Units:	mg/kg (ppm)			Dete	Dete	
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	07-038-29					
Client ID:	GEI-SS-COMP					
Arsenic	56	11	6010B	7-16-12	7-17-12	
Cadmium	0.73	0.56	6010B	7-16-12	7-17-12	
Chromium	70	0.56	6010B	7-16-12	7-17-12	
Copper	390	1.1	6010B	7-16-12	7-17-12	
Lead	93	5.6	6010B	7-16-12	7-17-12	
Mercury	ND	0.28	7471A	7-16-12	7-16-12	
Lab ID:	07-038-41					
Client ID:	GEI-SS9-1-1.5					
Arsenic	ND	12	6010B	7-16-12	7-17-12	
Copper	31	1.2	6010B	7-16-12	7-17-12	
Lab ID:	07-038-43					
Client ID:	GEI-SS-9-2-0.5					
Arsenic	ND	12	6010B	7-16-12	7-17-12	
Copper	56	1.2	6010B	7-16-12	7-17-12	

Matrix: Units:	Soil mg/kg (ppm)					
onna.				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	07-038-44					
Client ID:	GEI-SS-9-3-0.5					
Arsenic	ND	11	6010B	7-16-12	7-17-12	
Copper	200	1.1	6010B	7-16-12	7-17-12	
Lab ID:	07-038-45					
Client ID:	GEI-SS-6-4-0.5					
Arsenic	ND	12	6010B	7-16-12	7-17-12	
Copper	78	1.2	6010B	7-16-12	7-17-12	
Lab ID:	07-038-52					
Client ID:	GEI-SS-14/15-1-1.5					
Cadmium	ND	0.61	6010B	7-16-12	7-17-12	
Lead	9.2	6.1	6010B	7-16-12	7-17-12	
Mercury	ND	0.3	7471A	7-16-12	7-16-12	

Matrix: Units:	Soil mg/kg (ppm)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	07-038-54 GEI-SS-14/15-2-0.5					
Cadmium	ND	0.55	6010B	7-16-12	7-17-12	
Lead	ND	5.5	6010B	7-16-12	7-17-12	
Mercury	ND	0.27	7471A	7-16-12	7-16-12	
Lab ID: Client ID:	07-038-55 GEI-SS-14/15-3-0.5					
Cadmium	ND	0.59	6010B	7-16-12	7-17-12	
Lead	110	5.9	6010B	7-16-12	7-17-12	
Mercury	0.92	0.30	7471A	7-16-12	7-16-12	
Lab ID: Client ID:	07-038-56 GEI-SS-14/15-4-0.5					
Cadmium	0.91	0.54	6010B	7-16-12	7-17-12	
Lead	200	5.4	6010B	7-16-12	7-17-12	
Mercury	0.48	0.27	7471A	7-16-12	7-16-12	
Lab ID: Client ID:	07-038-58 GEI-SS-13-1-1.5					
Cadmium	ND	0.61	6010B	7-16-12	7-17-12	
Lead	ND	6.1	6010B	7-16-12	7-17-12	
Mercury	ND	0.31	7471A	7-16-12	7-16-12	
Lab ID: Client ID:	07-038-59 GEI-SS-13-2-0.5					
Cadmium	ND	0.74	6010B	7-16-12	7-17-12	
Lead	81	7.4	6010B	7-16-12	7-17-12	
Mercury	1.2	0.37	7471A	7-16-12	7-16-12	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	07-038-60					
Client ID:	GEI-SS-13-3-0.5					
Cadmium	ND	0.69	6010B	7-16-12	7-17-12	
Lead	95	6.9	6010B	7-16-12	7-17-12	
Mercury	ND	0.34	7471A	7-16-12	7-16-12	
	07 000 04					
Lab ID:	07-038-61					
Client ID:	GEI-SS-13-4-0.5					
Cadmium	ND	0.62	6010B	7-16-12	7-17-12	
Lead	ND	6.2	6010B	7-16-12	7-17-12	
Mercury	ND	0.31	7471A	7-16-12	7-16-12	

TCLP METALS EPA 1311/6010B/7470A

Matrix:	TCLP Extract
Units:	mg/L (ppm)

	o (11)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	07-038-03					
Client ID:	GEI-11-8.0		,			
Arsenic	ND	0.40	6010B	7-10-12	7-10-12	
Barium	0.21	0.20	6010B	7-10-12	7-10-12	
Cadmium	ND	0.020	6010B	7-10-12	7-10-12	
Chromium	ND	0.020	6010B	7-10-12	7-10-12	
Lead	ND	0.20	6010B	7-10-12	7-10-12	
Mercury	ND	0.0050	7470A	7-10-12	7-10-12	
Selenium	ND	0.40	6010B	7-10-12	7-10-12	
Silver	ND	0.020	6010B	7-10-12	7-10-12	

Lab ID: Client ID:	07-038-04 GEI-12-2.5				
Arsenic	ND	0.40	6010B	7-10-12	7-10-12
Barium	0.45	0.20	6010B	7-10-12	7-10-12
Cadmium	ND	0.020	6010B	7-10-12	7-10-12
Chromium	ND	0.020	6010B	7-10-12	7-10-12
Lead	ND	0.20	6010B	7-10-12	7-10-12
Mercury	ND	0.0050	7470A	7-10-12	7-10-12
Selenium	ND	0.40	6010B	7-10-12	7-10-12
Silver	ND	0.020	6010B	7-10-12	7-10-12

TCLP METALS EPA 1311/6010B/7470A

Matrix:	TCLP Extract
Units:	mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	07-038-10					
Client ID:	GEI-13-10.0					
Arsenic	ND	0.40	6010B	7-10-12	7-10-12	
Barium	ND	0.20	6010B	7-10-12	7-10-12	
Cadmium	ND	0.020	6010B	7-10-12	7-10-12	
Chromium	ND	0.020	6010B	7-10-12	7-10-12	
Lead	ND	0.20	6010B	7-10-12	7-10-12	
Mercury	ND	0.0050	7470A	7-10-12	7-10-12	
Selenium	ND	0.40	6010B	7-10-12	7-10-12	
Silver	ND	0.020	6010B	7-10-12	7-10-12	

Lab ID: Client ID:	07-038-12 GEI-14-5.0				
Arsenic	ND	0.40	6010B	7-10-12	7-10-12
Barium	0.59	0.20	6010B	7-10-12	7-10-12
Cadmium	ND	0.020	6010B	7-10-12	7-10-12
Chromium	ND	0.020	6010B	7-10-12	7-10-12
ead	ND	0.20	6010B	7-10-12	7-10-12
lercury	ND	0.0050	7470A	7-10-12	7-10-12
Selenium	ND	0.40	6010B	7-10-12	7-10-12
ilver	ND	0.020	6010B	7-10-12	7-10-12

TCLP METALS EPA 1311/6010B/7470A

Matrix:	TCLP Extract
Units:	mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	07-038-20					
Client ID:	GEI-15-10.0					
Arsenic	ND	0.40	6010B	7-10-12	7-10-12	
Barium	0.26	0.20	6010B	7-10-12	7-10-12	
Cadmium	ND	0.020	6010B	7-10-12	7-10-12	
Chromium	ND	0.020	6010B	7-10-12	7-10-12	
Lead	ND	0.20	6010B	7-10-12	7-10-12	
Mercury	ND	0.0050	7470A	7-10-12	7-10-12	
Selenium	ND	0.40	6010B	7-10-12	7-10-12	
Silver	ND	0.020	6010B	7-10-12	7-10-12	

Lab ID: Client ID:	07-038-24 GEI-16-5.0				
Arsenic	ND	0.40	6010B	7-10-12	7-10-12
Barium	0.43	0.20	6010B	7-10-12	7-10-12
Cadmium	ND	0.020	6010B	7-10-12	7-10-12
Chromium	ND	0.020	6010B	7-10-12	7-10-12
_ead	ND	0.20	6010B	7-10-12	7-10-12
Mercury	ND	0.0050	7470A	7-10-12	7-10-12
Selenium	ND	0.40	6010B	7-10-12	7-10-12
Silver	ND	0.020	6010B	7-10-12	7-10-12

TCLP LEAD EPA 1311/6010B

Matrix: Units:	TCLP Extract mg/L (ppm)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	07-038-51					
Client ID:	GEI-SS-14/15-1-0.5					
Lead	ND	0.20	6010B	7-10-12	7-10-12	
Lab ID:	07-038-57					
Client ID:	GEI-SS-13-1-0.5					
Lead	ND	0.20	6010B	7-10-12	7-10-12	

TOTAL ORGANIC CARBON EPA 9060

Matrix: Soil Units: % Carbon

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-COMP-1					
Laboratory ID:	07-038-28					
Total Organic Carbon	0.055	0.040	9060	7-10-12	7-10-12	

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	07-038-28 GEI-COMP-1					
Arsenic	ND	12	6010B	7-16-12	7-17-12	
Cadmium	ND	0.60	6010B	7-16-12	7-17-12	
Chromium	74	0.60	6010B	7-16-12	7-17-12	
Copper	28	1.2	6010B	7-16-12	7-17-12	
Lead	ND	6.0	6010B	7-16-12	7-17-12	
Mercury	ND	0.30	7471A	7-16-12	7-16-12	
Silver	ND	0.60	6010B	7-16-12	7-17-12	
Zinc	47	3.0	6010B	7-16-12	7-17-12	

SEMIVOLATILES by EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

Analuto	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Analyte Client ID:	GEI-COMP-1	FQL	Wethod	Frepareu	Analyzeu	Flags
Laboratory ID: Phenol	07-038-28 ND	0.024	EPA 8270	7-11-12	7-13-12	
	ND	0.024	EPA 8270 EPA 8270	7-11-12 7-11-12	7-13-12	
1,4-Dichlorobenzene						
Benzyl alcohol	ND	0.024	EPA 8270	7-11-12	7-13-12	
1,2-Dichlorobenzene	ND	0.024	EPA 8270	7-11-12	7-13-12	
2-Methylphenol (o-Cresol)	ND	0.024	EPA 8270	7-11-12	7-13-12	
3+4)-Methylphenol (m,p-Cresol)		0.024	EPA 8270	7-11-12	7-13-12	
2,4-Dimethylphenol	ND	0.024	EPA 8270	7-11-12	7-13-12	
1,2,4-Trichlorobenzene	ND	0.024	EPA 8270	7-11-12	7-13-12	
Naphthalene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
Hexachlorobutadiene	ND	0.024	EPA 8270	7-11-12	7-13-12	
2-Methylnaphthalene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
Dimethylphthalate	ND	0.024	EPA 8270	7-11-12	7-13-12	
Acenaphthylene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
Acenaphthene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
Dibenzofuran	ND	0.024	EPA 8270	7-11-12	7-13-12	
Diethylphthalate	ND	0.024	EPA 8270	7-11-12	7-13-12	
Fluorene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
n-Nitrosodiphenylamine	ND	0.024	EPA 8270	7-11-12	7-13-12	
Hexachlorobenzene	ND	0.024	EPA 8270	7-11-12	7-13-12	
Pentachlorophenol	ND	0.024	EPA 8270	7-11-12	7-13-12	
Phenanthrene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
Anthracene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
Di-n-butylphthalate	ND	0.024	EPA 8270	7-11-12	7-13-12	
Fluoranthene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
Pyrene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
Butylbenzylphthalate	ND	0.024	EPA 8270	7-11-12	7-13-12	
pis-2-Ethylhexyladipate	ND	0.024	EPA 8270	7-11-12	7-13-12	
Benzo[a]anthracene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
Chrysene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
Di-n-octylphthalate	ND	0.024	EPA 8270	7-11-12	7-13-12	
Benzo[a]pyrene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
	ND			7-11-12		
ndeno[1,2,3-cd]pyrene		0.0048	EPA 8270/SIM		7-12-12	
Dibenz[a,h]anthracene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
Benzo[g,h,i]perylene	ND	0.0048	EPA 8270/SIM	7-11-12	7-12-12	
Benzoic Acid	ND	0.12	EPA 8270	7-11-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	62	24 - 95				
Phenol-d6	65	34 - 101				
Nitrobenzene-d5	60	32 - 102				
2-Fluorobiphenyl	68	44 - 104				
2,4,6-Tribromophenol	69	34 - 124				
Terphenyl-d14	77	47 - 114				

PCBs by EPA 8082

Matrix: Soil Units: mg/Kg (ppm)

5 5 6 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-COMP-1					
Laboratory ID:	07-038-28					
Aroclor 1016	ND	0.060	EPA 8082	7-12-12	7-12-12	
Aroclor 1221	ND	0.060	EPA 8082	7-12-12	7-12-12	
Aroclor 1232	ND	0.060	EPA 8082	7-12-12	7-12-12	
Aroclor 1242	ND	0.060	EPA 8082	7-12-12	7-12-12	
Aroclor 1248	ND	0.060	EPA 8082	7-12-12	7-12-12	
Aroclor 1254	ND	0.060	EPA 8082	7-12-12	7-12-12	
Aroclor 1260	ND	0.060	EPA 8082	7-12-12	7-12-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	81	47-120				

30

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

ee				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0710S1					
Benzene	ND	0.020	EPA 8021	7-10-12	7-10-12	
Toluene	ND	0.050	EPA 8021	7-10-12	7-10-12	
Ethyl Benzene	ND	0.050	EPA 8021	7-10-12	7-10-12	
m,p-Xylene	ND	0.050	EPA 8021	7-10-12	7-10-12	
o-Xylene	ND	0.050	EPA 8021	7-10-12	7-10-12	
Gasoline	ND	5.0	NWTPH-Gx	7-10-12	7-10-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	70-132				
Laboratory ID:	MB0710S2					
Benzene	ND	0.020	EPA 8021	7-10-12	7-11-12	
Toluene	ND	0.050	EPA 8021	7-10-12	7-11-12	
Ethyl Benzene	ND	0.050	EPA 8021	7-10-12	7-11-12	
m,p-Xylene	ND	0.050	EPA 8021	7-10-12	7-11-12	
o-Xylene	ND	0.050	EPA 8021	7-10-12	7-11-12	
Gasoline	ND	5.0	NWTPH-Gx	7-10-12	7-11-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	70-132				

NWTPH-Gx/BTEX QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flag
DUPLICATE											
Laboratory ID:	07-03	38-29									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:		·									
Fluorobenzene						86	92	70-132			
Laboratory ID:	07-03	38-36									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:											
Fluorobenzene						90	90	70-132			
SPIKE BLANKS											
Laboratory ID:	SB07	10S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.881	0.924	1.00	1.00		88	92	71-125	5	11	
Toluene	0.911	0.949	1.00	1.00		91	95	77-125	4	11	
Ethyl Benzene	0.902	0.936	1.00	1.00		90	94	76-125	4	10	
m,p-Xylene	0.903	0.934	1.00	1.00		90	93	78-124	3	9	
o-Xylene	0.878	0.889	1.00	1.00		88	89	77-123	1	9	
Surrogate:			1.00							v	
Gun ogulo.											

Date of Report: July 18, 2012 Samples Submitted: July 6, 2012 Laboratory Reference: 1207-038 Project: 5147-19-05

NWTPH-Gx CONTINUING CALIBRATION SUMMARY

Lab ID	True	Calc.	Percent	Control
	Value (ppm)	Value	Difference	Limits
СС	5.00	4.20	16	+/- 20%

33

BTEX by EPA 8021B CONTINUING CALIBRATION SUMMARY

		True	Calc.	Percent	Control
Analyte	Lab ID	Value (ppm)	Value	Difference	Limits
Benzene	CCVD0710B-1	50.0	44.2	11.6	+/- 15%
Toluene	CCVD0710B-1	50.0	45.8	8.4	+/- 15%
Ethyl Benzene	CCVD0710B-1	50.0	46.5	7.0	+/- 15%
m,p-Xylene	CCVD0710B-1	50.0	47.5	5.0	+/- 15%
o-Xylene	CCVD0710B-1	50.0	46.1	7.8	+/- 15%
_					
Benzene	CCVD0710B-2	50.0	46.9	6.2	+/- 15%
Toluene	CCVD0710B-2	50.0	47.6	4.8	+/- 15%
Ethyl Benzene	CCVD0710B-2	50.0	48.3	3.4	+/- 15%
m,p-Xylene	CCVD0710B-2	50.0	48.2	3.6	+/- 15%
o-Xylene	CCVD0710B-2	50.0	47.2	5.6	+/- 15%
Dessere		50.0		9.2	. / 450/
Benzene	CCVD0710B-3		45.4		+/- 15%
Toluene	CCVD0710B-3	50.0	45.8	8.4	+/- 15%
Ethyl Benzene	CCVD0710B-3	50.0	46.5	7.0	+/- 15%
m,p-Xylene	CCVD0710B-3	50.0	46.4	7.2	+/- 15%
o-Xylene	CCVD0710B-3	50.0	45.4	9.2	+/- 15%
Benzene	CCVD0711B-2	50.0	46.8	6.4	+/- 15%
Toluene	CCVD0711B-2	50.0	47.2	5.6	+/- 15%
Ethyl Benzene	CCVD0711B-2	50.0	47.0	6.0	+/- 15%
m,p-Xylene	CCVD0711B-2	50.0	46.8	6.4	+/- 15%
o-Xylene	CCVD0711B-2 CCVD0711B-2	50.0	40.0 45.1	9.8	+/- 15%
о-лушене	CCVD0/11B-2	50.0	40.1	9.0	+/- 10%

NWTPH-Dx (with acid/silica gel clean-up) QUALITY CONTROL

Analyte	Result		PQL	Method		Date Prepared	Dat Analy:	-	Flags
METHOD BLANK	Kesuit			Method		Trepared	Analy	260	Tiago
Laboratory ID:	MB0713S	1							
Diesel Range Organics	ND	•	25	NWTPH-D)x	7-13-12	7-13-	12	
Lube Oil Range Organics	ND		50	NWTPH-D)x	7-13-12	7-13-		
Surrogate:	Percent Reco	overy	Control Limits			· · ·			
o-Terphenyl	93		50-150						
				Per	cent	Recovery		RPD	
Analyte	nalyte Result		Recovery		Limits	RPD	Limit	Flags	
DUPLICATE									<u> </u>
Laboratory ID:	07-03	38-34							
	ORIG	DUF	D						
Diesel Range Organics	ND	ND					NA	NA	
Lube Oil Range Organics	ND	ND					NA	NA	
Surrogate:									
o-Terphenyl				105	117	50-150			
Laboratory ID:	07-03	38-39							
	ORIG	DUF	0						
Diesel Range Organics	99.3	79.8	3				22	NA	
Lube Oil Range Organics	ND	ND					NA	NA	
Surrogate:									
o-Terphenyl				89	96	50-150			

Date of Report: July 18, 2012 Samples Submitted: July 6, 2012 Laboratory Reference: 1207-038 Project: 5147-19-05

NWTPH-Dx (with acid/silica gel clean-up) CONTINUING CALIBRATION SUMMARY

	True	Calc.	Percent	Contol
Lab ID	Value (ppm)	Value	Difference	Limits
CCV0713F-V2	100	103	-3.0	+/-15%
CCV0713F-V3	100	96.8	3.2	+/-15%
CCV0713R-V2	100	104	-4.0	+/-15%
CCV0713R-V3	100	92.9	7.1	+/-15%
CCV0713R-V4	100	94.8	5.2	+/-15%
CCV0713R-V5	100	97.3	2.7	+/-15%

ORGANOCHLORINE PESTICIDES by EPA 8081A METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0713S1					
alpha-BHC	ND	5.0	EPA 8081	7-13-12	7-13-12	
gamma-BHC	ND	5.0	EPA 8081	7-13-12	7-13-12	
beta-BHC	ND	5.0	EPA 8081	7-13-12	7-13-12	
delta-BHC	ND	5.0	EPA 8081	7-13-12	7-13-12	
Heptachlor	ND	5.0	EPA 8081	7-13-12	7-13-12	
Aldrin	ND	5.0	EPA 8081	7-13-12	7-13-12	
Heptachlor Epoxide	ND	5.0	EPA 8081	7-13-12	7-13-12	
gamma-Chlordane	ND	10	EPA 8081	7-13-12	7-13-12	
alpha-Chlordane	ND	10	EPA 8081	7-13-12	7-13-12	
4,4'-DDE	ND	10	EPA 8081	7-13-12	7-13-12	
Endosulfan I	ND	5.0	EPA 8081	7-13-12	7-13-12	
Dieldrin	ND	10	EPA 8081	7-13-12	7-13-12	
Endrin	ND	10	EPA 8081	7-13-12	7-13-12	
4,4'-DDD	ND	10	EPA 8081	7-13-12	7-13-12	
Endosulfan II	ND	10	EPA 8081	7-13-12	7-13-12	
4,4'-DDT	ND	10	EPA 8081	7-13-12	7-13-12	
Endrin Aldehyde	ND	10	EPA 8081	7-13-12	7-13-12	
Methoxychlor	ND	10	EPA 8081	7-13-12	7-13-12	
Endosulfan Sulfate	ND	10	EPA 8081	7-13-12	7-13-12	
Endrin Ketone	ND	10	EPA 8081	7-13-12	7-13-12	
Toxaphene	ND	50	EPA 8081	7-13-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
TCMX	88	43-105				
DCB	81	43-121				

ORGANOCHLORINE PESTICIDES by EPA 8081A MS/MSD QUALITY CONTROL

Matrix: Soil Units: ug/Kg (ppb)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	07-0	17-35									
	MS	MSD	MS	MSD		MS	MSD				
gamma-BHC	42.7	43.5	50.0	50.0	ND	85	87	45-114	2	20	
Heptachlor	39.5	40.0	50.0	50.0	ND	79	80	42-118	1	20	
Aldrin	41.9	42.2	50.0	50.0	ND	84	84	42-119	1	22	
Dieldrin	97.7	98.0	125	125	ND	78	78	50-111	0	20	
Endrin	108	108	125	125	ND	86	86	53-112	0	20	
4,4'-DDT	105	105	125	125	ND	84	84	53-112	0	20	
Surrogate:											
TCMX						73	75	43-105			
DCB						73	73	43-121			

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	7-16-12
Date Analyzed:	7-16&17-12
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0716S1,MB0716SM2&MB0716SM3

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Copper	6010B	ND	1.0
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	7-16-12
Date Analyzed:	7-16&17-12

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 07-038-56

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Arsenic	20.0	17.6	13	10	
Barium	80.1	80.9	1	2.5	
Cadmium	0.846	1.49	55	0.50	С
Chromium	59.8	52.7	13	0.50	
Copper	280	302	8	1.0	
Lead	184	194	5	5.0	
Mercury	ND	ND	2	0.25	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted:	7-16-12
Date Analyzed:	7-16&17-12

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 07-038-56

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	109	89	116	96	6	
Barium	100	177	96	187	107	6	
Cadmium	50.0	46.1	90	47.0	92	2	
Chromium	100	139	79	145	86	5	
Copper	50	324	87	389	218	18	А
Lead	250	419	94	472	115	12	
Mercury	0.500	0.895	89	0.901	90	1	
Selenium	100	92.0	92	94.7	95	3	
Silver	25.0	23.0	92	23.3	93	1	

41

TOTAL METALS EPA 6010B/7471A SPIKE BLANK QUALITY CONTROL

- Date Extracted: 7-16-12 Date Analyzed: 7-16&17-12
- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: SB0716S1,SB0716SM2&SB0716SM3

Analyte	Method	Spike Level	SB Result	Percent Recovery
Arsenic	6010B	100	92.8	93
Barium	6010B	100	97.0	97
Cadmium	6010B	50.0	47.0	94
Chromium	6010B	100	99.9	100
Copper	6010B	50.0	52.0	104
Lead	6010B	250	242	97
Mercury	7471A	0.500	0.441	88
Selenium	6010B	100	97.1	97
Silver	6010B	25.0	27.4	109

TOTAL METALS EPA 6010B/7471A CONTINUING CALIBRATION SUMMARY

		True	Calc.	Percent	Control
Analyte	Lab ID	Value (ppm)	Value	Difference	Limits
Arsenic	ICV071712P	1.00	0.932	6.8	+/- 10%
Barium	ICV071712P	1.00	0.996	0.40	+/- 10%
Cadmium	ICV071712P	1.00	0.988	1.2	+/- 10%
Chromium	ICV071712P	1.00	1.00	0	+/- 10%
Copper	ICV071712P	1.00	1.01	-1.0	+/- 10%
Lead	ICV071712P	1.00	0.977	2.3	+/- 10%
Mercury	ICV071612Y	0.00500	0.00503	-0.60	+/- 10%
Selenium	ICV071712P	1.00	0.991	0.90	+/- 10%
Silver	ICV071712P	1.00	1.09	-9.0	+/- 10%
Arsenic	CCV1071712P	10.0	9.63	3.7	+/- 10%
Barium	CCV1071712P	2.00	1.94	3.0	+/- 10%
Cadmium	CCV1071712P	1.00	0.924	7.6	+/- 10%
Chromium	CCV1071712P	1.00	0.991	0.90	+/- 10%
Copper	CCV1071712P	2.00	1.99	0.50	+/- 10%
Lead	CCV1071712P	10.0	9.83	1.7	+/- 10%
Mercury	CCV1071612Y	0.00500	0.00419	16.2	+/- 20%
Selenium	CCV1071712P	10.0	9.66	3.4	+/- 10%
Silver	CCV1071712P	1.00	1.07	-7.0	+/- 10%
Arsenic	CCV2071712P	10.0	9.82	1.8	+/- 10%
Barium	CCV2071712P	2.00	1.93	3.5	+/- 10%
Cadmium	CCV2071712P	1.00	0.953	4.7	+/- 10%
Chromium	CCV2071712P	1.00	0.996	0.40	+/- 10%
Copper	CCV2071712P	2.00	2.00	0	+/- 10%
Lead	CCV2071712P	10.0	9.90	1.0	+/- 10%
Mercury	CCV2071612Y	0.00500	0.00481	3.8	+/- 20%
Selenium	CCV2071712P	10.0	9.62	3.8	+/- 10%
Silver	CCV2071712P	1.00	1.07	-7.0	+/- 10%
			-	-	
Arsenic	CCV3071712P	10.0	10.0	0	+/- 10%
Barium	CCV3071712P	2.00	2.01	-0.50	+/- 10%
Cadmium	CCV3071712P	1.00	0.956	4.4	+/- 10%
Chromium	CCV3071712P	1.00	1.02	-2.0	+/- 10%
Copper	CCV3071712P	2.00	2.04	-2.0	+/- 10%
Lead	CCV3071712P	10.0	10.1	-1.0	+/- 10%
Mercury	CCV3071612Y	0.00500	0.00483	3.4	+/- 20%
Selenium	CCV3071712P	10.0	9.85	1.5	+/- 10%
Silver	CCV3071712P	1.00	1.09	-9.0	+/- 10%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010B/7471A CONTINUING CALIBRATION SUMMARY

Analyte	Lab ID	True Value (ppm)	Calc. Value	Percent Difference	Control Limits
Arsenic	CCV4071712P	10.0	9.85	1.5	+/- 10%
Cadmium	CCV4071712P	1.00	0.947	5.3	+/- 10%
Copper	CCV4071712P	2.00	2.04	-2.0	+/- 10%
Lead	CCV4071712P	10.0	10.1	-1.0	+/- 10%
Mercury	CCV4071612Y	0.00500	0.00477	4.6	+/- 20%
Lead	CCV5071712P	10.0	9.99	0.10	+/- 10%
Lead	CCV6071712P	10.0	10.1	-1.0	+/- 10%
Lead	CCV7071712P	10.0	10.0	0	+/- 10%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TCLP METALS EPA 1311/6010B/7470A METHOD BLANK QUALITY CONTROL

Date Prepared:	7-9-12
Date Extracted:	7-10-12
Date Analyzed:	7-10-12
Matrix:	TCLP Extract
Units:	mg/L (ppm)

Lab ID: MB0710T1&MB0710T3

Analyte	Method	Result	PQL
Arsenic	6010B	ND	0.40
Barium	6010B	ND	0.20
Cadmium	6010B	ND	0.020
Chromium	6010B	ND	0.020
Lead	6010B	ND	0.20
Mercury	7470A	ND	0.0050
Selenium	6010B	ND	0.40
Silver	6010B	ND	0.020

TCLP METALS EPA 1311/6010B/7470A DUPLICATE QUALITY CONTROL

Date Prepared:	7-9-12
Date Extracted:	7-10-12
Date Analyzed:	7-10-12

Matrix:	TCLP Extract
Units:	mg/L (ppm)

Lab ID: 07-038-03

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	0.40	
Barium	0.207	0.203	2	0.20	
Cadmium	ND	ND	NA	0.020	
Chromium	ND	ND	NA	0.020	
Lead	ND	ND	NA	0.20	
Mercury	ND	ND	NA	0.0050	
Selenium	ND	ND	NA	0.40	
Silver	ND	ND	NA	0.020	

TCLP METALS EPA 1311/6010B/7470A MS/MSD QUALITY CONTROL

Date Prepared:	7-9-12
Date Extracted:	7-10-12
Date Analyzed:	7-10-12

Matrix:	TCLP Extract
Units:	mg/L (ppm)

Lab ID: 07-038-03

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	4.00	3.78	94	3.82	95	1	
Barium	4.00	4.14	98	4.15	99	0	
Cadmium	2.00	1.91	95	1.93	97	1	
Chromium	4.00	3.97	99	4.01	100	1	
Lead	10.0	9.24	92	9.32	93	1	
Mercury	0.0500	0.0462	92	0.0464	93	0	
Selenium	4.00	4.03	101	4.06	102	1	
Silver	1.00	1.01	101	1.02	102	1	

TCLP METALS EPA 1311/6010B/7470A SPIKE BLANK QUALITY CONTROL

Date Prepared:	7-9-12
Date Extracted:	7-10-12
Date Analyzed:	7-10-12

Matrix:	TCLP Extract
Units:	mg/L (ppm)

Lab ID: SB0710T1&SB0710T3

Analyte	Method	Spike Level	SB	Percent Recovery
Arsenic	6010B	4.00	3.80	95
Barium	6010B	4.00	3.99	100
Cadmium	6010B	2.00	1.93	97
Chromium	6010B	4.00	3.96	99
Lead	6010B	10.0	9.28	93
Mercury	7470A	0.0500	0.0460	92
Selenium	6010B	4.00	4.02	100
Silver	6010B	1.00	1.01	101

TCLP METALS EPA 1311/6010B/7470A CONTINUING CALIBRATION SUMMARY

		True	Calc.	Percent	Control
Analyte	Lab ID	Value (ppm)	Value	Difference	Limits
Arsenic	ICV071012P	1.00	0.987	1.3	+/- 10%
Barium	ICV071012P	1.00	1.02	-2.0	+/- 10%
Cadmium	ICV071012P	1.00	1.03	-3.0	+/- 10%
Chromium	ICV071012P	1.00	1.03	-3.0	+/- 10%
Lead	ICV071012P	1.00	1.02	-2.0	+/- 10%
Mercury	ICV071012Y	0.00500	0.00508	-1.6	+/- 10%
Selenium	ICV071012P	1.00	0.967	3.3	+/- 10%
Silver	ICV071012P	1.00	1.03	-3.0	+/- 10%
Arsenic	CCV1071012P	10.0	10.1	-1.0	+/- 10%
Barium	CCV1071012P	1.00	1.01	-1.0	+/- 10%
Cadmium	CCV1071012P	1.00	1.01	-1.0	+/- 10%
Chromium	CCV1071012P	1.00	1.03	-3.0	+/- 10%
Lead	CCV1071012P	10.0	10.2	-2.0	+/- 10%
Mercury	CCV1071012Y	0.00500	0.00503	-0.60	+/- 20%
Selenium	CCV1071012P	10.0	9.91	0.90	+/- 10%
Silver	CCV1071012P	1.00	1.02	-2.0	+/- 10%
Arsenic	CCV2071012P	10.0	10.2	-2.0	+/- 10%
Barium	CCV2071012P	1.00	1.02	-2.0	+/- 10%
Cadmium	CCV2071012P	1.00	1.01	-1.0	+/- 10%
Chromium	CCV2071012P	1.00	1.02	-2.0	+/- 10%
Lead	CCV2071012P	10.0	10.1	-1.0	+/- 10%
Mercury	CCV2071012Y	0.00500	0.00498	0.40	+/- 20%
Selenium	CCV2071012P	10.0	9.85	1.5	+/- 10%
Silver	CCV2071012P	1.00	1.02	-2.0	+/- 10%
Arsenic	CCV3071012P	10.0	10.1	-1.0	+/- 10%
Barium	CCV3071012P	1.00	1.02	-2.0	+/- 10%
Cadmium	CCV3071012P	1.00	1.00	0	+/- 10%
Chromium	CCV3071012P	1.00	1.02	-2.0	+/- 10%
Lead	CCV3071012P	10.0	10.1	-1.0	+/- 10%
Mercury	CCV30710121	0.00500	0.00496	0.80	+/- 20%
Selenium	CCV3071012P	10.0	9.78	2.2	+/- 20%
		1.00			
Silver	CCV3071012P	1.00	1.01	-1.0	+/- 10%

TCLP METALS EPA 1311/6010B/7470A CONTINUING CALIBRATION SUMMARY

		True	Calc.	Percent	Control
Analyte	Lab ID	Value (ppm)	Value	Difference	Limits
Arsenic	CCV4071012P	10.0	10.0	0	+/- 10%
Barium	CCV4071012P	1.00	1.02	-2.0	+/- 10%
Cadmium	CCV4071012P	1.00	0.992	0.80	+/- 10%
Chromium	CCV4071012P	1.00	1.02	-2.0	+/- 10%
Lead	CCV4071012P	10.0	10.1	-1.0	+/- 10%
Selenium	CCV4071012P	10.0	9.80	2.0	+/- 10%
Silver	CCV4071012P	1.00	1.02	-2.0	+/- 10%
Arsenic	CCV5071012P	10.0	10.1	-1.0	+/- 10%
Barium	CCV5071012P	1.00	1.03	-3.0	+/- 10%
Cadmium	CCV5071012P	1.00	0.997	0.30	+/- 10%
Chromium	CCV5071012P	1.00	1.01	-1.0	+/- 10%
Lead	CCV5071012P	10.0	10.0	0	+/- 10%
Selenium	CCV5071012P	10.0	9.67	3.3	+/- 10%
Silver	CCV5071012P	1.00	1.01	-1.0	+/- 10%
Arsenic	CCV6071012P	10.0	10.1	-1.0	+/- 10%
Barium	CCV6071012P	1.00	1.03	-3.0	+/- 10%
Cadmium	CCV6071012P	1.00	1.01	-1.0	+/- 10%
Chromium	CCV6071012P	1.00	1.04	-4.0	+/- 10%
Lead	CCV6071012P	10.0	10.2	-2.0	+/- 10%
Selenium	CCV6071012P	10.0	9.88	1.2	+/- 10%
Silver	CCV6071012P	1.00	1.03	-3.0	+/- 10%
Arsenic	CCV7071012P	10.0	10.0	0	+/- 10%
Barium	CCV7071012P	1.00	1.07	-7.0	+/- 10%
Cadmium	CCV7071012P	1.00	1.00	0	+/- 10%
Chromium	CCV7071012P	1.00	1.04	-4.0	+/- 10%
Lead	CCV7071012P	10.0	10.2	-2.0	+/- 10%
Selenium	CCV7071012P	10.0	9.95	0.50	+/- 10%
Silver	CCV7071012P	1.00	1.03	-3.0	+/- 10%
Arsenic	CCV8071012P	10.0	10.0	0	+/- 10%
Barium	CCV8071012P	1.00	1.05	-5.0	+/- 10%
Cadmium	CCV8071012P	1.00	1.00	0	+/- 10%
Chromium	CCV8071012P	1.00	1.04	-4.0	+/- 10%
Lead	CCV8071012P	10.0	10.2	-4.0	+/- 10%
Selenium	CCV8071012P	10.0	9.83	-2.0	+/- 10 <i>%</i> +/- 10%
	CCV8071012P CCV8071012P				
Silver	CCV00/1012P	1.00	1.03	-3.0	+/- 10%

TCLP METALS EPA 1311/6010B/7470A CONTINUING CALIBRATION SUMMARY

		True	Calc.	Percent	Control
Analyte	Lab ID	Value (ppm)	Value	Difference	Limits
Arsenic	CCV9071012P	10.0	9.86	1.4	+/- 10%
Barium	CCV9071012P	1.00	1.05	-5.0	+/- 10%
Cadmium	CCV9071012P	1.00	0.996	0.40	+/- 10%
Chromium	CCV9071012P	1.00	1.05	-5.0	+/- 10%
Lead	CCV9071012P	10.0	10.2	-2.0	+/- 10%
Selenium	CCV9071012P	10.0	9.94	0.60	+/- 10%
Silver	CCV9071012P	1.00	1.03	-3.0	+/- 10%
Arsenic	CCV10071012P	10.0	9.69	3.1	+/- 10%
Barium	CCV10071012P	1.00	1.06	-6.0	+/- 10%
Cadmium	CCV10071012P	1.00	0.984	1.6	+/- 10%
Chromium	CCV10071012P	1.00	1.05	-5.0	+/- 10%
Lead	CCV10071012P	10.0	10.2	-2.0	+/- 10%
Selenium	CCV10071012P	10.0	9.89	1.1	+/- 10%
Silver	CCV10071012P	1.00	1.02	-2.0	+/- 10%
Lood	CCV11071012P	10.0	10.1	1.0	+/- 10%
Lead	CCV110/1012P	10.0	10.1	-1.0	+/- 10%

TOTAL ORGANIC CARBON EPA 9060 QUALITY CONTROL

Matrix: Soil Units: % Carbon

Total Organic Carbon

49.1

				Date		Date	
Analyte	Result	PQL	Method	Prepared		Analyzed	Flags
METHOD BLANK							
Laboratory ID:	MB0710S1						
Total Organic Carbon	ND	0.042	9060	7-10-12		7-10-12	
Analyte	R	esult	PQL		RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	06-	206-30					
	Sample	Duplicat	e	,			
Total Organic Carbon	0.426	0.416	0.047		2	20	
			Source	e Perce	ent	Recovery	
Analyte	Result	Spike Lev	vel Result	Recov	very	Limits	Flags
SPIKE BLANK							
Laboratory ID:	SB0710S1			,			

42.1

ND

117

80-120

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	7-16-12
Date Analyzed:	7-16&17-12
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0716S1,MB0716SM2&MB0716SM3

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Copper	6010B	ND	1.0
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Silver	6010B	ND	0.50
Zinc	6010B	ND	2.5

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	7-16-12
Date Analyzed:	7-16&17-12

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 07-038-56

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Arsenic	20.0	17.6	13	10	
Cadmium	0.846	1.49	55	0.50	С
Chromium	59.8	52.7	13	0.50	
Copper	280	302	8	1.0	
Lead	184	194	5	5.0	
Mercury	ND	ND	2	0.25	
Silver	ND	ND	NA	0.50	
Zinc	296	341	14	2.5	

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted:	7-16-12
Date Analyzed:	7-16&17-12

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 07-038-56

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	109	89	116	96	6	
Cadmium	50.0	46.1	90	47.0	92	2	
Chromium	100	139	79	145	86	5	
Copper	50	324	87	389	218	18	А
Lead	250	419	94	472	115	12	
Mercury	0.500	0.895	89	0.901	90	1	
Silver	25.0	23.0	92	23.3	93	1	
Zinc	100	419	124	495	199	17	V

TOTAL METALS EPA 6010B/7471A SPIKE BLANK QUALITY CONTROL

- Date Extracted: 7-16-12 Date Analyzed: 7-16&17-12
- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: SB0716S1,SB0716SM2&SB0716SM3

Analyte	Method	Spike Level	SB Result	Percent Recovery
Arsenic	6010B	100	92.8	93
Cadmium	6010B	50.0	47.0	94
Chromium	6010B	100	99.9	100
Copper	6010B	50.0	52.0	104
Lead	6010B	250	242	97
Mercury	7471A	0.500	0.441	88
Silver	6010B	25.0	27.4	109
Zinc	6010B	100	101	101

TOTAL METALS EPA 6010B/7471A CONTINUING CALIBRATION SUMMARY

		True	Calc.	Percent	Control
Analyte	Lab ID	Value (ppm)	Value	Difference	Limits
Arsenic	ICV071712P	1.00	0.932	6.8	+/- 10%
Cadmium	ICV071712P	1.00	0.988	1.2	+/- 10%
Chromium	ICV071712P	1.00	1.00	0	+/- 10%
Copper	ICV071712P	1.00	1.01	-1.0	+/- 10%
Lead	ICV071712P	1.00	0.977	2.3	+/- 10%
Mercury	ICV071612Y	0.00500	0.00503	-0.60	+/- 10%
Silver	ICV071712P	1.00	1.09	-9.0	+/- 10%
Zinc	ICV071712P	1.00	0.999	0.10	+/- 10%
Arsenic	CCV1071712P	10.0	9.63	3.7	+/- 10%
Cadmium	CCV1071712P	1.00	0.924	7.6	+/- 10%
Chromium	CCV1071712P	1.00	0.991	0.90	+/- 10%
Copper	CCV1071712P	2.00	1.99	0.50	+/- 10%
Lead	CCV1071712P	10.0	9.83	1.7	+/- 10%
Mercury	CCV1071612Y	0.00500	0.00419	16	+/- 20%
Silver	CCV1071712P	1.00	1.07	-7.0	+/- 10%
Zinc	CCV1071712P	2.00	1.97	1.5	+/- 10%
200	0001011121	2.00	1.07	1.0	1, 10,0
Arsenic	CCV2071712P	10.0	9.82	1.8	+/- 10%
Cadmium	CCV2071712P	1.00	0.953	4.7	+/- 10%
Chromium	CCV2071712P	1.00	0.996	0.40	+/- 10%
Copper	CCV2071712P	2.00	2.00	0	+/- 10%
Lead	CCV2071712P	10.0	9.90	1.0	+/- 10%
Mercury	CCV2071612Y	0.00500	0.00481	3.8	+/- 20%
Silver	CCV2071712P	1.00	1.07	-7.0	+/- 10%
Zinc	CCV2071712P	2.00	1.94	3.0	+/- 10%
المعط	001/20747420	10.0	10.4	1.0	. / . 4.00/
Lead	CCV3071712P	10.0	10.1	-1.0	+/- 10%
Zinc	CCV3071712P	2.00	1.99	0.50	+/- 10%
Lead	CCV4071712P	10.0	10.1	-1.0	+/- 10%
Zinc	CCV4071712P	2.00	2.00	0	+/- 10%
Lead	CCV5071712P	10.0	9.99	0.10	+/- 10%
Zinc	CCV5071712P	2.00	1.99	0.50	+/- 10%
Lead	CCV6071712P	10.0	10.1	-1.0	+/- 10%
Zinc	CCV6071712P	2.00	2.02	-1.0	+/- 10%

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
		·				
Laboratory ID:	MB0711S1					
Phenol	ND	0.020	EPA 8270	7-11-12	7-13-12	
1,4-Dichlorobenzene	ND	0.020	EPA 8270	7-11-12	7-13-12	
Benzyl alcohol	ND	0.020	EPA 8270	7-11-12	7-13-12	
1,2-Dichlorobenzene	ND	0.020	EPA 8270	7-11-12	7-13-12	
2-Methylphenol (o-Cresol)	ND	0.020	EPA 8270	7-11-12	7-13-12	
3+4)-Methylphenol (m,p-Cresol)	ND	0.020	EPA 8270	7-11-12	7-13-12	
2,4-Dimethylphenol	ND	0.020	EPA 8270	7-11-12	7-13-12	
1,2,4-Trichlorobenzene	ND	0.020	EPA 8270	7-11-12	7-13-12	
Naphthalene	ND	0.0040	EPA 8270/SIM	7-11-12	7-12-12	
Hexachlorobutadiene	ND	0.020	EPA 8270	7-11-12	7-13-12	
2-Methylnaphthalene	ND	0.0040	EPA 8270/SIM	7-11-12	7-12-12	
Dimethylphthalate	ND	0.020	EPA 8270	7-11-12	7-13-12	
Acenaphthylene	ND	0.0040	EPA 8270/SIM	7-11-12	7-12-12	
Acenaphthene	ND	0.0040	EPA 8270/SIM	7-11-12	7-12-12	
Dibenzofuran	ND	0.020	EPA 8270	7-11-12	7-13-12	
Diethylphthalate	ND	0.020	EPA 8270	7-11-12	7-13-12	
Fluorene	ND	0.0040	EPA 8270/SIM	7-11-12	7-12-12	
n-Nitrosodiphenylamine	ND	0.020	EPA 8270	7-11-12	7-13-12	
Hexachlorobenzene	ND	0.020	EPA 8270	7-11-12	7-13-12	
Pentachlorophenol	ND	0.020	EPA 8270	7-11-12	7-13-12	
Phenanthrene	ND	0.0040	EPA 8270/SIM	7-11-12	7-12-12	
Anthracene	ND	0.0040	EPA 8270/SIM	7-11-12	7-12-12	
Di-n-butylphthalate	ND	0.020	EPA 8270	7-11-12	7-13-12	
Fluoranthene	ND	0.0040	EPA 8270/SIM	7-11-12	7-12-12	
Pyrene	ND	0.0040	EPA 8270/SIM	7-11-12	7-12-12	
Butylbenzylphthalate	ND	0.020	EPA 8270	7-11-12	7-13-12	
bis-2-Ethylhexyladipate	ND	0.020	EPA 8270	7-11-12	7-13-12	
Benzo[a]anthracene	ND	0.0040	EPA 8270/SIM	7-11-12	7-12-12	
Chrysene	ND	0.0040	EPA 8270/SIM	7-11-12	7-12-12	
Di-n-octylphthalate	ND	0.020	EPA 8270	7-11-12	7-12-12	
	ND	0.0040	EPA 8270/SIM	7-11-12		
Benzo[a]pyrene Indeno[1,2,3-cd]pyrene	ND	0.0040	EPA 8270/SIM EPA 8270/SIM	7-11-12 7-11-12	7-12-12 7-12-12	
				7-11-12 7-11-12		
Dibenz[a,h]anthracene	ND	0.0040	EPA 8270/SIM		7-12-12	
Benzo[g,h,i]perylene	ND	0.0040	EPA 8270/SIM	7-11-12	7-12-12	
Benzoic Acid	ND	0.10	EPA 8270	7-11-12	7-13-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	74	24 - 95				
Phenol-d6	76 70	34 - 101				
Nitrobenzene-d5	76	32 - 102				
2-Fluorobiphenyl	83	44 - 104				
2,4,6-Tribromophenol	74	34 - 124				
Terphenyl-d14	78	47 - 114				

SEMIVOLATILES by EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	′11S1								
	SB	SBD	SB	SBD	SB	SBD				
Phenol	1.03	1.08	1.33	1.33	77	81	41 - 104	5	34	
2-Chlorophenol	1.05	1.09	1.33	1.33	79	82	41 - 100	4	37	
1,4-Dichlorobenzene	0.473	0.489	0.667	0.667	71	73	34 - 100	3	37	
n-Nitroso-di-n-propylamine	0.500	0.527	0.667	0.667	75	79	41 - 98	5	32	
1,2,4-Trichlorobenzene	0.488	0.497	0.667	0.667	73	75	30 - 101	2	35	
4-Chloro-3-methylphenol	1.09	1.11	1.33	1.33	82	83	57 - 113	2	25	
Acenaphthene	0.481	0.496	0.667	0.667	72	74	56 - 95	3	23	
4-Nitrophenol	1.06	1.06	1.33	1.33	80	80	43 - 133	0	30	
2,4-Dinitrotoluene	0.524	0.509	0.667	0.667	79	76	63 - 110	3	31	
Pentachlorophenol	0.874	0.661	1.33	1.33	66	50	35 - 120	28	30	
Pyrene	0.497	0.528	0.667	0.667	75	79	56 - 114	6	27	
Surrogate:										
2-Fluorophenol					72	76	24 - 95			
Phenol-d6					76	79	34 - 101			
Nitrobenzene-d5					78	79	32 - 102			
2-Fluorobiphenyl					82	85	44 - 104			
2,4,6-Tribromophenol					72	74	34 - 124			
Terphenyl-d14					76	81	47 - 114			

PCBs by EPA 8082 QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0712S1					
Aroclor 1016	ND	0.050	EPA 8082	7-12-12	7-12-12	
Aroclor 1221	ND	0.050	EPA 8082	7-12-12	7-12-12	
Aroclor 1232	ND	0.050	EPA 8082	7-12-12	7-12-12	
Aroclor 1242	ND	0.050	EPA 8082	7-12-12	7-12-12	
Aroclor 1248	ND	0.050	EPA 8082	7-12-12	7-12-12	
Aroclor 1254	ND	0.050	EPA 8082	7-12-12	7-12-12	
Aroclor 1260	ND	0.050	EPA 8082	7-12-12	7-12-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	93	47-120				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	07-08	86-01									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.501	0.511	0.500	0.500	ND	100	102	42-133	2	15	
Surrogate:											
DCB						90	92	47-120			

PCB's by EPA 8082 CONTINUING CALIBRATION SUMMARY

		True	Calc.	Percent	Control
Lab ID	Analyte	Value (ppb)	Value	Difference	Limits
Column 1					
PCBCCV 0712-1	Aroclor 1016	500	517	-3.4	+/- 15%
PCBCCV 0712-1	Aroclor 1260	500	490	2.0	+/- 15%
Column 2					
PCBCCV 0712-1	Aroclor 1016	500	509	-1.8	+/- 15%
PCBCCV 0712-1	Aroclor 1260	500	512	-2.4	+/- 15%
Column 1					
PCBCCV 0712-2	Aroclor 1016	500	519	-3.8	+/- 15%
PCBCCV 0712-2	Aroclor 1260	500	484	3.2	+/- 15%
Column 2					
PCBCCV 0712-2	Aroclor 1016	500	485	3.0	+/- 15%
PCBCCV 0712-2	Aroclor 1260	500	507	-1.4	+/- 15%
Column 1					
PCBCCV 0712-3	Aroclor 1016	500	530	-6.0	+/- 15%
PCBCCV 0712-3	Aroclor 1260	500	494	1.2	+/- 15%
Column 2					
PCBCCV 0712-3	Aroclor 1016	500	520	-4.0	+/- 15%
PCBCCV 0712-3	Aroclor 1260	500	515	-3.0	+/- 15%
Column 1					
PCBCCV 0712-4	Aroclor 1016	500	528	-5.6	+/- 15%
PCBCCV 0712-4	Aroclor 1260	500	497	0.60	+/- 15%
Column 2					
PCBCCV 0712-4	Aroclor 1016	500	528	-5.6	+/- 15%
PCBCCV 0712-4	Aroclor 1260	500	528	-5.6	+/- 15%

% MOISTURE

Date Analyzed: 7-11,12&13-12

Client ID	Lab ID	% Moisture
GEI-11-8.0	07-038-03	12
GEI-12-2.5	07-038-04	18
GEI-13-10.0	07-038-10	14
GEI-14-5.0	07-038-12	9
GEI-15-10.0	07-038-20	15
GEI-16-5.0	07-038-24	9
GEI-COMP-1	07-038-28	16
GEI-SS-COMP	07-038-29	11
GEI-SS-2-1-1.5	07-038-30	20
GEI-SS-2-2-0.5	07-038-32	7
GEI-SS-2-3-0.5	07-038-33	17
GEI-SS-2-4-0.5	07-038-34	11
GEI-SS-6-1-1.5	07-038-36	12
GEI-SS-6-2-0.5	07-038-38	8
GEI-SS-6-3-0.5	07-038-39	3
GEI-SS-6-4-0.5	07-038-40	12
GEI-SS9-1-1.5	07-038-41	17
GEI-SS-9-2-0.5	07-038-43	15
GEI-SS-9-3-0.5	07-038-44	13
GEI-SS-6-4-0.5	07-038-45	17
GEI-SS-12-1-1.5	07-038-46	17
GEI-SS-12-2-0.5	07-038-48	12
GEI-SS-12-3-0.5	07-038-49	10
GEI-SS-12-4-0.5	07-038-50	10
GEI-SS-14/15-1-1.5	07-038-52	18
GEI-SS-14/15-2-0.5	07-038-54	9
GEI-SS-14/15-3-0.5	07-038-55	16
GEI-SS-14/15-4-0.5	07-038-56	7
GEI-SS-13-1-1.5	07-038-58	18
GEI-SS-13-2-0.5	07-038-59	32
GEI-SS-13-3-0.5	07-038-60	27
GEI-SS-13-4-0.5	07-038-61	19

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical ______.

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished She Yetu	Signature	10 451-13-10.0	9 (451-13-7.5	8 651-13-5.0	7 GEI-13-2.5	9 (4E1-12-8.5	5 (101-12-5.0	4 GE1-12-2.5	3 GEI-11-8.0	2 GEL-11-5.0	1 GEI-11-2.5	Lab ID Sample Identification	Sampled Dy: JOHN PETERS	Project Manager: ROBERT TRAHAN	WYMAN RAWP	5147-19-05 5147-19-05	SEI	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	OnSite Environmental Inc.
Data Dackane- 1 eval III)	0	Con	*								_	1/5/12	Date Sampled	[]	Batanda		Same Day			
Reviewed/Date					(08)	neo Ensi	Company	1350	1245	1235	1230	1440	1430	1425	1635	1625		Time Sampled N	(other)		d (7 Days) (TPH		ay	(Check One)	(in working days)	Chai
					ID	ineers, Inc		*	1	2	-	4	2	-	I	4	V -	Matrix Cont.			Standard (7 Days) (TPH analysis 5 Days)	3 Days	1 Day	0	juest iys)	n of C
Electronic Data Deliverables (EDDs)					7/6/12/1105	7/6/12 11.05	Date Time	Ø						Ø	8				H-Gx/8 H-Gx H-Dx 85 8260	BTEX	s 8260E	3			Laboratory Number:	Chain of Custody
Chromatograms with final report	(x) Abded 7/9/12. 23 (STA)		NUMBER SI47-49-05 15-HAS BEEN	SH 1-19-05 EVEN IF PROJECT		ALL SAMPLE	Comments/Special Instructions	\otimes						\otimes	8			(with k PAHs i PCBs Organo Organo Chlorir Total F Total N TCLP	ow-leve 8270D/ 8082 ochlori ophospi nated A ACRA N ATCA N Metals	Metals	w-level) cides 8 sticides bicides	081A 8270D/			07-	Page 1 of 107
			EEZ				102 S 20	X	X	X	X	X	×	X	XX	×	\times	#10 % Mo) isture	>					038	140

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished John Holton	Signature	20 GE1-15-10.0	19 GE1-15-7.5	18 CIEL- 12-2-0	17 GEL-15-2.5	16 GEI-14-15	15 (201-14-12.5	14 GEI-14-10.0	13 CAE1-14-7.5	12 GE1-14-5.0	11 GEL-14-2.5	Lab ID Sample Identification	JOHN PETERS	ROBERT TRAHAN	Project Manager	5147-49"05 5147-19-05		Company: Phone: (425) 883-3881 • WWW.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	OnSite Environmental Inc.
Reviewed					1	0	Con	14								_	\$ 7/5	Date Sampled			Standa	D 2 Days	Same Day			
Reviewed/Date					687.	eptry	Company	1110	100	1040	070	0940	5660	0930	5260	0420	0850	Time Sampled	(other)		Standard (7 Days) (TPH analysis 5 Days)		Day	(Check One)	(in working days)	Cha
Date					1.1	sineers,		14				R				-	S	Matrix	ier)		PH analysid	3 Days	1 Day)ne)	tequest days)	Chain of Custody
1						Inc.		۲	-	N	~	S	st 2	2	-	2	-	No. of Cont.		2	s 5 Days)	iys	ły			f Cu
					7/6/1	7/6	Date	Q								Ø		NWTP		-					Lab	sto
					e	21/0		~										NWTP							Laborator	dy
					011	110	Time			-	-		_					NWTPH Volatile)B			_	_	<	
					M	9			_				-					Haloge	nated	Volatile	s 8260E	3			Number:	
Chrom	R)	HAS	ĨF	Ppc	זיר	Comn											(with lo	w-leve	8270D/ I PAHs)					ber:	
Chromatograms with final report	PA			PR	PPONET	SA	Comments/Special Instructions	-		-	-	-						PCBs 8		SIM (lov	w-level)			_		
ns with	ded		BAAN	PROJECT	2	SAMPLE	Specia				-							Organo		ne Pesti	cides 8	081A		_		
final re	4	i	Ż	9	NUMBER		Instru											Organo	phospi	iorus Pe	sticides	8270D	/SIM			
port	9	- 2	u ID	Zçş	RER	BUT	ctions	\sim										Chlorin	000000		bicides	8151A				
	12.	シーオーマ		NUMBER		LABELS		\heartsuit								3ª		Total R		10.549				_		
	Ea	2	5 (S)		147			Q					-	_		Ø		TCLP N			-			-		Page
	0		So-bh-Lhis		5147-19-05	SHALL		V								0		HEM (c	il and	grease)	1664		_			N
	ST	\$	11-		20																				0	of
	A		1-00			HAVE																		_	7 -	6-1
			4	EVEN	2			X	×	×	×	×	X	X	X	X	×	Ho	LD	i.				_	03	S.C.
								0					-			Q		% Mois							8	

	1.5			_		_	-		-	_	_		-	-	1.0			105		-	_			-			
Image: Sumpled Number: Image: Sumpled Number: Image: Sumpled Number: Image: Sumple Number: Image: Sumple Number: Sumple Number: Image: Sumple Number: Image: Sumple Number: Su		Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished John R. H.	Signature			GEL-0	GE1-16-1	GE1-16-1	E1-16-7	GE1-16-5.	GE1 - 1	-	1		Som	0	WYMAN	-LHIS Said H LIT	2	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 980 Phone: (425) 883-3881 • www.onsite-env.o	OnSite Environmental Inc.
Of Custody Intervention of the second of the	Data Package: Level II	Review			9	(1	2 Geo	Compan	15	8	* 13	114	111	111	117	117	111	-	-	[Standard (7	1'			0
Laboratory Laboratory <thlaboratory< th=""> <thlaboratory< th=""> <thlaboratory< th=""></thlaboratory<></thlaboratory<></thlaboratory<>	I C Level IV	wed/Date					XA	Ensineers, 1	Y	-140	244	K	0	ち						Matrix	(other)		Days) (TPH analysis 5 (3 Days		working days)	hain of
Arc Sample Image: Special Instructions PAHs 8270D/SIM (low-level) IF PROJECT PROJECT PCBs 8082 IF PROJECT Organochlorine Pesticides 8081A Image: Special Instructions Organochlorine Pesticides 8151A Image: Special Instructions Image: Special Instructions Image: Special Instructions Image: Sp	Electronic Data Deliverables (EDC						7/6/12 /105	7/4/12/1				0		2						NWTP NWTP NWTP NWTP Volatile	H-Gx/E H-Gx H-Dx es 8260	B B					Custody
Z S S S S S S S S S S S S S S S S S S S		*	7/9/12- 88	(NUMES	NUMBER	SAMPLE LABEUS	Comments/Special Instructions			X		×	×					Semiv (with k PAHs PCBs Organ Organ Chlorir Total f Total f Total f Total f Total f Total f Total f S/MS	acRAN Metals	8270D/ M PAHs) SIM (lo ne Pesti horus Pe kcid Her Metals grease IF J ETA	SIM w-level) icides 8 isticides bicides	081A 8270D/3 8151A		07-03	2 of 47

3

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Que Pete	Signature	38 GE1-ESS-6-2-0.5	37651-55-6-1-2.5	36 GET- 22-6-1-1.5	35 CIEL-55-6-1-0.5	34 GE1-55-2-4-0.5	33 CHE1-55-2-3-0.5	32 6151-55-2-2-0.5	31 GEI-55- 2-1-2.5	30 CAEL-55-2-1-1.5	29 CIEL-SS-COMP	Lab ID Sample Identification	JOHN PETERS	Sampled by: ROBERT TRAHAN	Project Manager:	Project Name: 5147-19-05	Project Number:	Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date					STO OPI	an Great proposers,	Company	₩ 0290 ¥	1535	1530	1528	050	1045	1040	1525	1520	2 0691 1/2/12	Date Time Sampled Sampled Matrix	(other)		Sundard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (In working days)	Chain of
					76/12 1105	Inc 7/6/12 1105	Date Time	2 000	2	2	I Ven	-	-	-	-	-	8	No. of NWTP NWTP NWTP NWTP	H-Gx/ H-Gx H-Dx 85 826	BTEX 0B					Laboratory Nun	Chain of Custody
Chromatograms with final report	DAdded 7/9/12.93 (WRITEN	*	IF PROJECT NUMBER STIL	PROJECT NUMBER 5147.	ALL SAMPLE LABELS SHALL	Comments/Special Instructions										\otimes	Semivo (with lo PAHs I PCBs I Organo Organo Chilorin Total R Total N	olatiles w-lev 3270D 3082 phosp phosp ated / CRA I TCA I	8270D el PAHs /SIM (ic ne Pest horus P Acid He Metals Metals) 0081A 3 8270D			Number:	Page 4
	(STA)	-	02 11 V		147-19-05 EVEN	ALL HAVE		×X	×	× ¢	×	××	XXX	×	×	XX	× XX	As HO % Mol	LT		.Cu,	Pb.	Ha		880-70	r 167

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Jala Hoto		Circ 1 Cinnohum	48 GEI-55-12-2-0.5	47651-55-12-1-2.5	GE1-55-	45 GE1-55-9-4-0.5	SIE	43/201-22-0.5	42 GEI-55-9-1-2.5		40 GE1-55-6-4-0.5	39 GEI-55-6-3-0.5	Lab ID Sample Ideiluncation	Camalo Ida	Sampled by:	ROPERA TRAFAZ	WYWAN RAMP	Project Name:		Company:	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	INA OnSite
						6		0	4									7/5/12	and and	Date	1		(IN Stands	D 2 Days		Same Dav			
Reviewed/Date					8	neofin		Company	1120	1510	1505	1220	1215	1210	1625	1620	1000	0955		Time Sampled	(other)		Standard (7 Days) (TPH analysis 5 Days)		Cal		(Check One)	(in working days)	Cha
ite					R	jineers,			4								-	S	•	Matrix	her)		PH analysis	3 Days		1 Dav	(ne)	equest days)	in of
						Inc			-	+	-	1	1	-	1	1	2	N	1	No. of Cont.			5 Days)	ys		<			Cu
					211911	1/10/12		Date									X	96		NWTPI NWTPI	H-Gx/	_						Laboratory	Chain of Custody
					1105	Soli		Time	B)	\otimes	}					Ø	R	7	Volatik	es 82€	212 <u>-</u>	les 826	i0B				-	
Chromi			HAS			P	ALL	Comm					-	-			-	-		Semiv (with k	olatile ow-lev	s 8270 el PAH	D/SIM					Number:	
Chromatograms with final report					PROC		L SAW	ents/Specia		-	-				-	-	-	+		PCBs Organ		rine Pe	sticide	s 8081	1A				
th final repo			ENN		NUM		SAMPLE	Comments/Special Instructions		-	-	-	-	-	-	-	-	-				thosphorus Pesticides 8270D					_		
â		ALL SAMPLE LABELS SHALL PROJECT NUMBER 5147-19- IF PROJECT NUMBER 5147-19- HAS BEEN WRITTEN							_	-		-	-	-	-	-	-	+				Metal: Metal						,	Pa
										-		-	F	-	-		-	-			Meta (oil an		se) 166	34					Page 5
				-141-	- 19-0S						-	E	E	R)	8	>	+		1	15	, C.	ų				_	07.	of _
				50-6H-LHIS	EVEN		ドレンサ	Sale I and	XXX	× ×	X	NA N	X	× ×	XX	XX	X		NX R		OL							-038	67

Chromatograms	Turnaround Request (In working days) Laboratory Number: (Check One) (In working days) Laboratory Number: (Check One) I aboratory Number: (Check One) (In working days) I aboratory Number: (Check One) I aboratory Number: (Check One) (In working days) I aboratory Number: (Check One) I aboratory Number: (Check One) In one North North In Company I aboratory Number: (Check One) I aboratory Number: (Check One) In Company I aboratory Number: (Check One) I aboratory Number: (Check One) In Company I aboratory Number: (Check One) I aboratory Number: (Check One) In Company I aboratory Number: (Check One) I aboratory Number: (Check One) In Company I aboratory Number: (Check One) I aboratory Number: (Check One) In Company I aboratory Number: (Check One) I aboratory Number: (Check One) I aboratory Number: (Check One) In Company I aboratory Number: (Check One) I aboratory Number: (Check One) I aboratory Number: (Check One) In Company I aboratory Number: (Check One) I aboratory Number: (Check One) I aboratory Number: (Check One) I aboratory Numer: (Check One) In	Timeworking days) Laboratory Number: (check Com) (check Com) (check Com)	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Jah Pletc	Signature	36 CHEI-SS-14/15-4-0.5	55 (7E1-55-14/15-3-0.5	54 (20-2-2-14/12-2-0.5	53 GET-55-14/15-1-2.5	GEI-	PE1-	SO 19E1-55-12-4-0.5	49 GEI-SS-12-3-0.5	ple Identification	JOHN PETERS	ROBERT TRAHAN	Project Manager:	Project Name:	1-19-05	Company:	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	MM OnSite
Laboratory Number: 1 1 1 NWTPH-HCID 1 1 1 NWTPH-Gx/BTEX 1 1 1 NWTPH-Gx/BTEX 1 1 1 1 <td< td=""><td>ISOUY International inter</td><td>ISOUY Laboratory Number: Laboratory Number: NWTPH-HCID NWTPH-GX/BTEX NWTPH-GX/BTEX NWTPH-GX NUTPH-GX NUTPH-GX</td><td>Review</td><td></td><td></td><td></td><td></td><td>1</td><td>> Gree</td><td>Company</td><td> v 115</td><td>=</td><td>111</td><td>153</td><td>551</td><td>151</td><td>113</td><td></td><td>1000</td><td></td><td></td><td>Standard (7 D</td><td>2 Days</td><td></td><td></td><td>0</td><td>Turnar (in w</td><td>C</td></td<>	ISOUY International inter	ISOUY Laboratory Number: Laboratory Number: NWTPH-HCID NWTPH-GX/BTEX NWTPH-GX/BTEX NWTPH-GX NUTPH-GX	Review					1	> Gree	Company	 v 115	=	111	153	551	151	113		1000			Standard (7 D	2 Days			0	Turnar (in w	C
Laboratory Number: 1 1 1 NWTPH-HCID 1 1 1 NWTPH-Gx/BTEX 1 1 1 NWTPH-Gx/BTEX 1 1 1 1 <td< td=""><td>ISOUY International inter</td><td>ISOUY Laboratory Number: Laboratory Number: NWTPH-HCID NWTPH-GX/BTEX NWTPH-GX/BTEX NWTPH-GX NUTPH-GX NUTPH-GX</td><td>ved/Date</td><td></td><td></td><td></td><td></td><td>378</td><td>Enginer</td><td>1</td><td> 0</td><td>5</td><td>10</td><td>S7</td><td>ð</td><td>Sh</td><td>Ğ</td><td></td><td></td><td>(other)</td><td></td><td>bays) (TPH analysi</td><td>3 D</td><td></td><td></td><td>heck One)</td><td>ound Request orking days)</td><td>hain o</td></td<>	ISOUY International inter	ISOUY Laboratory Number: Laboratory Number: NWTPH-HCID NWTPH-GX/BTEX NWTPH-GX/BTEX NWTPH-GX NUTPH-GX	ved/Date					378	Enginer	1	 0	5	10	S7	ð	Sh	Ğ			(other)		bays) (TPH analysi	3 D			heck One)	ound Request orking days)	hain o
Chromatograms	Image: Norman System Image: Norman System 105 NWTPH-Dx 105 NWTPH-Dx 105 Number: Norman System	Ory Number: Ory Number: Ory Number: Organised Volatilies 8260B Halogenated Volatilies 8260B Halogenated Volatilies 8260B NWTPH-Dx Volatilies 8260B Halogenated Volatilies 8260B NWTPH-Dx Volatilies 8260B Halogenated Volatilies 8260B Semivolatiles 8270D/SIM With low-level PAHs) HAUE PAHS 8270D/SIM (low-level) PAHS 8270D/SIM (low-level) HAUE PAUL SAMPLE HAUE PROSECT VILL							5	Da	1	-	-	N	2	2	-	-		'H-HC	ID	s 5 Days)	iys		V		_	r Gus
Chromatograms Volatiles 8260B Volatiles 8260B Volatiles 8260B Volatiles 8260B Volatiles 8260B Volatiles 8270D/SIM With low-level PAHs) FUERV SIAT Volatiles 8270D/SIM	Chromatograms with fina Volatiles 8260B Volatiles 8270D/SIM Volatiles 8270D/SIM (low-level)	Chromatograms with final report Volatiles 8260B Volatiles 8260B Halogenated Volatiles 8260B Volatiles 8260B Halogenated Volatiles 8260B Volatiles 8270D/SIM (with low-level PAHs) Semivolatiles 8270D/SIM (with low-level) PAHs 8270D/SIM (low-level) PAHs 8270D/SIM (low-level) Volatiles 8270D/SIM (low-level) PAHs 8270D/SIM (low-level) Volatiles 8270D/SIM (low-level) PAHs 8270D/SIM (low-level) Volatiles 8270D/SIM (low-level) PCBs 8082 Volatiles 8270D/SIM (low-level) PCBs 8082 Volatiles 8270D/SIM (low-level) PCBs 8081A Volatiles 8270D/SIM (low-level) PCBs 8081A Volatiles 8270D/SIM Volatiles 8270D/SIM Volatiles 8270D/SIM Volatiles 8151A Volatiles 8270D/SIM Volatiles 8151A Volatiles 8270D/SIM Volatiles 8270D/SIM Volatiles 8270D/SIM Volatiles 8270D/SIM Volatiles 8270D/SIM Volatiles 8270D/SIM<						16/12/1	16/12		(X	100	R		Ø		X	A	NWTF	'H-Gx	BTEX							roay
PAHs 8270D/SIM (low-level) PAHs 8270D/SIM (low-level) PAHs 8270D/SIM (low-level) PCBs 8082	PAHS 8270D/SIM (low-level) PAHS 8270D/SIM (low-level) PAHS 8270D/SIM (low-level) PCBs 8082 Organochlorine Pesticides 8081A Organophosphorus Pesticides 8270D/SIM	ALL SAWPLE PROJECT AR ALL SAWPLE LAR ALL SAWPLE LAR NUMBER OF LAR ALL SAWPLE LAR ALL SAWP	0					105	105										Halog	enate	d Volat	D/SIM	08					
	Image: Provide and the second seco	Total MTCA Metals	Chromatograms v	(Radde	WRITTE	1	C		5	Comments/Spec									PAHs	8270	D/SIM	(low-leve		A .				
Page Or A Page O							/	20-b1-LhL	٢		XXX		XXX	~ ~	SX S	XXXX	×	A	H		P	, H	8				038	1

Reviewed/Date	Received	Relinquished	Received .	Relinquished	Received	Relinquished	Signature		61 961-22-13-4-0.2	GE1-	59 GE1-55-13-2-0.5	58 GE1-55-13-1-1.5	ST GE1-55-13-1-0.5	Lab ID Sample Identification	JOHN PETERS	ROBERT TRAHAN	Project Name: WYWAN RAMP	51147-19-05	Company: GIEI	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Streat • Redmond: WA 98052	OnSite
Data Package: Level III						0	Co		(<			_		Date Sampled			Adanda	2 Days	Same Day			
			5		180	Teo Cha	Company		est	1245	1240	1235	1230	Time Sampled	(other)		Mandard (7 Days) (TPH analysis 5 Days)			(Check One)	Turnaround Request (in working days)	Chain of Custody
Level IV					Li le	ineer			K			-	S	Matrix	er)		PH analysis	3 Days	1 Day	ne)	equest days)	in of
_						s, Inc			<u> </u>	-	-		+	No. of Cont.			5 Days)	ys.	Y			f Cu
Electronic Data Deliverables (EDDs)					7161	7/6	Date							NWTP						_	Labo	sto
ata Deliv					2	12	-			A		0	à	NWTP						_	Laboratory	yp
erables (E					lios	1100	Time		•	1.E		20	3	Volatil	es 826		_					
ipDos)					-	1			_					-		Volatile	s 8260E	3		_	Number:	
Chromatograms						_	Comments/Special Instructions		-	-				-		el PAHs //SIM (lo) w-level)			-		
ograms					(Z	its/Spe		~		0			PCBs		Deal	icides 8	0014				
with final report					.10	Dala	cial Ins		X		X	0	-				esticides		/SIM	-		
						Dalded	ruction							Chlori	nated	Acid He	rbicides	8151A				
							60									Metals Metals						
						2/9/12				+	-	+	-		Metal					-		Page_
													~	-		d grease						it
						2g		_		-	-	-	X	T	CL	PL	EAI)			10	9
						(STA)			Ø	Ø	0	0	•	P	Ь,	Cd	,14	8			-0	4
					-	A			8	0	8	8	0	>% Mo	oisture						38	

Sample/Cooler Receipt and Acceptance Checklist

Client: GES Client Project Name/Number: 5147-19-05 OnSite Project Number: 07-038		(Initiated by:_ Date Initiated	MY 7/6/1	2	_
1.0 Cooler Verification					
1.1 Were there custody seals on the outside of the cooler?	Yes	No	(N/A)	1 2 3 4	
1.2 Were the custody seals intact?	Yes	No	N/A	1 2 3 4	
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	(N/A)	1 2 3 4	
1.4 Were the samples delivered on ice or blue ice?	res	No		1234	
1.5 Were samples received between 0-6 degrees Celsius?	Yes	No	Temperature:	0,6,5	
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	(V/A)		7.	
1.7 How were the samples delivered?	Client	Courier	UPS/FedEx	OSE Pickup	Other
 2.0 Chain of Custody Verification 2.1 Was a Chain of Custody submitted with the samples? 2.2 Was the COC legible and written in permanent ink? 2.3 Have samples been relinquished and accepted by each custodian? 2.4 Did the sample labels (ID, date, time, preservative) agree with COC? 2.5 Were all of the samples listed on the COC submitted? 2.6 Were any of the samples submitted omitted from the COC? 3.0 Sample Verification 	Yes Yes Yes	No No No No No		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
3.1 Were any sample containers broken or compromised?	Yes	No		1 2 3 4	
3.2 Were any sample labels missing or illegible?	Yes	NO		1 2 3 4	
3.3 Have the correct containers been used for each analysis requested?	Yes	No		1 2 3 4	
3.4 Have the samples been correctly preserved?	Yes	No	(N/A)	1 2 3 4	
3.5 Are volatiles samples free from headspace and air bubbles?	Yes	No	(N/A)	1 2 3 4	
3.6 Is there sufficient sample submitted to perform requested analyses?	res	No		1 2 3 4	
3.7 Have any holding times already expired or will expire in 24 hours?	Yes	No		1 2 3 4	
3.8 Was method 5035A used?	Yest	No	N/A	1234	
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	#	1	N/A	1234	

	Explain any discrepancies:	_
	26) Sample 15) GEI-14-12.5 7/5 0935 entre sample 1802, 100	đ
33	Sample 35) GEI-SS-6-1-0.5 7/5/12 1528 cnly 1 103 submitted	
	26) Sample GEI-SS-13-1-0.5 715/2 1230 not a LOC -1 com 8	02
	Sample GEI-55-13-1-1.5 7/5/12 1235 not on LOC - 1 802	
	Sample, GEI-SS-13-2-0.5 7/5/12 1240 not on LOC - 1 802	
	Sannola, GET-55-13-3-0.5 7/5/12 1245 not on LOC - 1 802	2
	1 - Discuss Issue in Case Narrative 3 - Client contacted to discuss problem	1.125
	2 - Process Sample As-is 4 - Sample cannot be analyzed or client does not wish to proceed	
	//SERVER\OSE\Administration\forms\cooler_checklist.xls Sample GEI-SS-1413-4-0.5 715/12 1250 not on Loc - 1 802	-

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 2, 2012

Robert Trahan GeoEngineers, Inc. 600 Stewart, Suite 1700 Seattle, WA 98101-1233

Re: Analytical Data for Project 5147-19-05 Laboratory Reference No. 1207-038B

Dear Robert:

Enclosed are the analytical results and associated quality control data for samples submitted on July 6, 2012.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on July 5, 2012 and received by the laboratory on July 6, 2012. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
GEI-COMP-1	07-038-28	Soil	7-5-12	7-6-12	
GEI-SS-14/15-3-1.5	07-038-55	Soil	7-5-12	7-6-12	
GEI-SS-14/15-4-1.5	07-038-56	Soil	7-5-12	7-6-12	

TCLP LEAD by EPA 1311/6010B

Matrix: Units:	TCLP Extract mg/L (ppm)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	07-038-55					
Client ID:	GEI-SS-14/15-3-0.5					
Lead	ND	0.20	6010B	7-31-12	7-31-12	
Lab ID:	07-038-56					
Client ID:	GEI-SS-14/15-4-0.5					
Lead	0.31	0.20	6010B	7-31-12	7-31-12	

TCLP LEAD by EPA 1311/6010B METHOD BLANK QUALITY CONTROL

Date Prepared:	7-30-12
Date Extracted:	7-31-12
Date Analyzed:	7-31-12
Matrix: Units:	TCLP Extract mg/L (ppm)
Lab ID:	MB0731T1

Analyte	Method	Result	PQL
Lead	6010B	ND	0.20

TCLP LEAD by EPA 1311/6010B DUPLICATE QUALITY CONTROL

Date Prepared:	7-30-12
Date Extracted:	7-31-12
Date Analyzed:	7-31-12

Matrix:	TCLP Extract
Units:	mg/L (ppm)

Lab ID: 07-038-56

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	0.308	0.316	3	0.20	

TCLP LEAD by EPA 1311/6010B MS/MSD QUALITY CONTROL

7-30-12
7-31-12
7-31-12

Matrix:	TCLP Extract
Units:	mg/L (ppm)

Lab ID: 07-038-56

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	10.0	9.30	90	9.34	90	0	

TCLP LEAD by EPA 1311/6010B SPIKE BLANK QUALITY CONTROL

7-30-12
7-31-12
7-31-12

Matrix: TCLP Extract Units: mg/L (ppm)

Lab ID: SB0731T1

		Spike		Percent
Analyte	Method	Level	SB	Recovery
Lead	6010B	10.0	9.03	90

TCLP LEAD by EPA 1311/6010B CONTINUING CALIBRATION SUMMARY

Analyte	Lab ID	True Value (ppm)	Calc. Value	Percent Difference	Control Limits
Lead	ICV073112P	1.00	1.00	0	+/- 10%
Lead	CCV1073112P	10.0	9.88	1.2	+/- 10%
Lead	CCV2073112P	10.0	9.93	0.70	+/- 10%
Lead	CCV3073112P	10.0	9.88	1.2	+/- 10%

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical ______.

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit RPD - Relative Percent Difference

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename	1019 U120	16-5.0 8494001 0730B_06					
Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	12.0 12.6 10.5 U120 U120	g g)729	& U120730B_	Matrix Dilution Collected Received	07/12/20 07/24/20)12 11:35)12 09:18)12 20:30)12 20:06	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.28 0.28	2,3,7,8-TCDF-130 2,3,7,8-TCDD-130 1,2,3,7,8-PeCDF-	0	2.00 2.00 2.00	69 83 77
2,3,7,8-TCDD Total TCDD	ND ND		0.27 0.27	2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD- 1,2,3,4,7,8-HxCD	13C •13C	2.00 2.00 2.00	76 82 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.15 0.16 0.15	1,2,3,6,7,8-HxCD 2,3,4,6,7,8-HxCD 1,2,3,7,8,9-HxCD	F-13C F-13C F-13C	2.00 2.00 2.00	80 77 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND	 	0.23 0.23	1,2,3,4,7,8-HxCD 1,2,3,6,7,8-HxCD 1,2,3,4,6,7,8-HpC 1,2,3,4,6,7,8-HpC	D-13C DF-13C	2.00 2.00 2.00 2.00	79 72 72 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.15 0.14 0.12	1,2,3,4,7,8,9-HpC 1,2,3,4,6,7,8-HpC OCDD-13C		2.00 2.00 4.00	74 56
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.12 0.14 0.14	1,2,3,4-TCDD-130 1,2,3,7,8,9-HxCD		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.16 0.18 0.18 0.17	2,3,7,8-TCDD-376	Cl4	0.20	91
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	 	0.12 0.17 0.14	Total 2,3,7,8-TCD Equivalence: 0.35 (Using 2005 WHC	5 ng/Kg	· Using PRL	/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.29 1.00		0.17 BJ 0.17 BJ				
OCDF OCDD	0.26	3.0	0.25 BJ 0.31 I				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

REPORT OF LABORATORY ANALYSIS

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID	BLANK-33331	Matrix	Solid	
Filename	F120729B_11	Dilution	NA	
Total Amount Extracted		Extracted	07/24/2012 20:30	
ICAL ID	F120614	Analyzed	07/29/2012 23:43	
CCal Filename(s)	F120729A_16 & F120729B_17	Injected By	BAL	

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.047 0.087		0.019 J 0.019 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	88 93 90
2,3,7,8-TCDD Total TCDD	ND ND		0.027 0.027	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	92 91 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	 ND	0.025 0.023	0.022 0.023 0.023	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	95 91 87
1,2,3,7,8-PeCDD Total PeCDD	ND 0.063		0.023 0.023 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	76 77 75 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.091 0.040 0.032	*****	0.017 J 0.015 J 0.015 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	75 56
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.250	4 x 8 4 5	0.022 0.017 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.130	0.027 0.034	0.024 0.026 I 0.022 I 0.024 J	2,3,7,8-TCDD-37Cl4	0.20	93
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.230 0.035 0.270		0.021 J 0.031 J 0.026 J	Total 2,3,7,8-TCDD Equivalence: 0.058 ng/Kg (Using 2005 WHO Factors -	- Using PRI	_/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.100 0.250	 	0.023 J 0.023 J			
OCDF OCDD	0.260 0.370		0.052 J 0.063 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

REPORT OF LABORATORY ANALYSIS

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	F12 21.(F12 F12	S-33332 0729B_04 5 g 0614 0729A_16 8 NK-33331	F120729B_	Matrix Dilution Extracted 17 Analyzed Injected By	Solid NA 07/24/2012 20 07/29/2012 10 BAL	0:30
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.23	113	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	83 88 84
2,3,7,8-TCDD Total TCDD	0.20	0.19	96	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0	85 85 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.1	112 107	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0	93 90 84 76
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.98	98	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13 1,2,3,4,7,8,9-HpCDF-13	2.0 C 2.0	77 73 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.1 1.1 1.1	112 110 107	1,2,3,4,6,7,8-HpCDD-13 OCDD-13C		74 58
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.1	108	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.0 1.2 1.1	105 116 115	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 0.95	108 95			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.97	97			
OCDF OCDD	2.0 2.0	2.2 2.1	110 106			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

R = Recovery outside of target range

Y = RF averaging used in calculations

Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

REPORT OF LABORATORY ANALYSIS

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spiked Sample Report

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	101 U12 11.6 U12 U12	0729	/IS & U120730B_16	Matrix Dilution Extracted Analyzed Injected By	Solid NA 07/24/201 07/30/201 SMT		
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.24	118	2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeC	-13C	2.00 2.00 2.00	78 88 86
2,3,7,8-TCDD	0.20	0.20	102	2,3,4,7,8-PeC 1,2,3,7,8-PeC 1,2,3,4,7,8-Hx	DF-13C DD-13C	2.00 2.00 2.00 2.00	80 89 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.10 1.10	110 110	1,2,3,6,7,8-Hx 2,3,4,6,7,8-Hx 1,2,3,7,8,9-Hx	CDF-13C CDF-13C CDF-13C	2.00 2.00 2.00 2.00 2.00	85 83 79 83
1,2,3,7,8-PeCDD	1.00	1.01	101	1,2,3,4,7,8-Hx 1,2,3,6,7,8-Hx 1,2,3,4,6,7,8-H 1,2,3,4,6,7,8-H	CDD-13C HpCDF-13C	2.00 2.00	83 77 75 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.18 1.12 1.11	118 112 111	1,2,3,4,6,7,8-H OCDD-13C	HpCDD-13C		78 60
1,2,3,7,8,9-HxCDF	1.00	1.15	115	1,2,3,4-TCDD 1,2,3,7,8,9-Hx		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.15 1.23 1.18	115 123 118	2,3,7,8-TCDD	-37Cl4	0.20	89
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.21 1.06	121 106				
1,2,3,4,6,7,8-HpCDD	1.00	1.09	109				
	2.00 2.00	2.19 2.33	109 117			<u>.</u>	

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10198494

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spiked Sample Report

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	101 U12 11.9 U12 U12	20729		Matrix Dilution Extracted Analyzed Injected By	Solid NA 07/24/201 07/30/201 SMT		(2002) 19 - 10 - 10 Uu Aa - 10
Native Isomers	Qs (ng)	Qm (ng)	% Rec	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.22	112	2,3,7,8-TCDF 2,3,7,8-TCDD)-13C	2.00 2.00 2.00	79 93 87
2,3,7,8-TCDD	0.20	0.20	98	1,2,3,7,8-PeC 2,3,4,7,8-PeC 1,2,3,7,8-PeC	DF-13C DD-13C	2.00 2.00	84 98
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.05 1.04	105 104	1,2,3,4,7,8-H) 1,2,3,6,7,8-H) 2,3,4,6,7,8-H) 1,2,3,7,8,9-H)	CDF-13C CDF-13C CDF-13C	2.00 2.00 2.00 2.00 2.00	81 83 83 79 87
1,2,3,7,8-PeCDD	1.00	0.97	97	1,2,3,4,7,8-H 1,2,3,6,7,8-H 1,2,3,4,6,7,8- 1,2,2,4,7,8-	<pre>cCDD-13C HpCDF-13C</pre>	2.00 2.00	87 77 73 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.00 1.00 1.00 1.00	1.13 1.06 1.08 1.11	113 106 108 111	1,2,3,4,7,8,9- 1,2,3,4,6,7,8- OCDD-13C 1,2,3,4-TCDE 1,2,3,7,8,9-H	HpCDD-130)-130		78 57 NA NA
1,2,3,4,7,8-HxCDD	1.00	1.04	104	2,3,7,8-TCDE		0.20	95
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00	1.22 1.12	122 112				
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.13 1.02	113 102				
1,2,3,4,6,7,8-HpCDD	1.00	1.00	100				
OCDF OCDD	2.00 2.00	2.12 2.21	106 111				
On - Quantity Spilled		$\Omega m = \Omega u a$	ntity Measured	Bec - B	ecovery (Eyn	ressed as	s Percent)

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10198494

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414	Tel: 612-607-1700 Fax: 612- 607-6444			RPD	
Pace Analytic 1700 Elm S Minnea	Fa		<u>hts</u> Amount 10.5 g unt 10.1 g ount 10.4 g	Background Subtracted Rec. MSD % Rec.	5862056852665666
			<u>Dry Weights</u> Sample Amount MSD Amount	Backgroun MS % Rec.	150002222222222222222222222222222222222
		ile Results Ital, Inc.	U120730B_06 U120730B_02 U120730B_03	RPD	ищ4 чищено оговидано оста оста оста оста оста оста оста ост
		Iod 8290 Spike Sample Re Client - Onsite Environmental, Inc	U1207 U1207	MSD Qm (ng)	0.22 0.100 0.100 0.100 0.110 0.100 0.100 0.110 0.100000000
		Method 8290 Spike Sample Results Client - Onsite Environmental, Inc.	Sample Filename MS Filename MSD Filename	MS Qm (ng)	0.24 0.20 1.10 1.11 1.15 1.15 1.15 1.15 1.15 1.1
	al™			MS/MSD Qs (ng)	0.20 0.20 0.20 1.00 1.00 1.10 1.00 1.10 1.00 1.11 1.00 1.12 1.00 1.12 1.00 1.15 1.00 2.19 2.00 2.00 2.19 2.00 2.00 2.19 2.00 2.19 2.00 2.19 2.00 2.00 2.19 2.00 2.00 2.19 2.00
	ace Analytical		GEI-16-5.0 10198494001 10198494001-MS 10198494001-MSD	Sample Conc. ng/Kg	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
	Pact		Client Sample ID Lab Sample ID MS ID MSD ID	Analyte	2.3.7.8-TCDF 2.3.7.8-TCDF 2.3.7.8-PECDF 2.3.7.8-PECDF 2.3.4.7.8-PECDF 1.2.3.7.8-PECDF 1.2.3.4.7.8-PECDF 1.2.3.4.6.7.8-HXCDF 1.2.3.4.6.7.8-HXCDF 1.2.3.4.6.7.8-HXCDF 1.2.3.4.6.7.8-HXCDD 1.2.3.4.6.7.8-HXCDD 1.2.3.4.6.7.8-HYCDD 1.2.3.4.6.7.8-HYCDD 1.2.3.4.6.7.8-HYCDD 1.2.3.4.6.7.8-HYCDD 0.0 1.2.3.4.6.7.8-HYCDD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

L of	Laboratory Reference #: 07 - 038 10)98 494 Project Manager: David Baumeister	Project Number: 5/47 - 19 - 05 Project Name:	Requested Analysis	Dioxin/Furans		Time Comments/Special Instructions		PLUASE RENAN CONCER & BUE ILE
	Turnaround Request:	Standard	Date Time # of Sampled Sampled Matrix Cont	7/5/12 135 S 1 D		UPS Date 1	2 Pace 7412 01	
MA OnSite Environmental Inc.	14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881 Subcontract Laboratory: Pace Analytical Service, Inc.	Address: 1700 Elm St. Ste. 200 Minneapolis, MN 55414 Phone Number: (612) 607-6383 Date/Time:	Lab.ID Sample Identification	GET-16-5.0		Relinquished by Signature Received by:	Relinquished by: Received by: Relinquished by:	Received by:

	1	Sample Co	Documen Indition U		ipt Form	Docum	ent Revised: 19J Page 1 of 1	un2012	
	Pace Analytical"	•••••	Docume	nt No.:			ssuing Authority		
Sample Co Upon Re				Project #	" [WC	·····d··········	19849		
Tracking	Courier: Fed Ex DPS Commercial Pace Number: 1268461W1396	USPS Other:	□c	lient	1019	98494			
		WNo	Seals In		TYes 🔽	No Optiona	l: Proj. Due Da	ate: Proj	. Name:
-							· · · · · ·	r	/
Packing N	· · · · · · · · · · · · · · · · · · ·			Other:	1		Temp Blank		No
Thermome	ter Used: 80344042 805124	47 Type of	ice:	Wet [Blue	None S	amples on ice, co		
Cooler Ter		ie Frozen? 🗌	Yes 🗌	No Da	te and Initia	als of Person Exa	mining Contents	5: <u>CW</u>	7·12·
Temp shou	d be above freezing to 6°C						Comments:		
Chain of	Custody Present?	Yes	□ No	□n/a	1.			ν.	
	Custody Filled Out?	Vyes			2.				
1	Custody Relinquished?	Yes	No		3.			,	
Sampler	Name and Signature on COC?	☐ Yes	N NO		4.				
Samples	Arrived within Hold Time?	Z Yes	[]No	□N/A	5.				
Short Ho	ld Time Analysis (<72 hr)?	Yes	Z No		6.				
Rush Tur	n Around Time Requested?	Yes	No		7.				
Sufficien	Volume?	" 🗹 Yes	No		8.				
Correct (ontainers Used?	Yes	□ No	□n/A	9.				
-Pace	Containers Used?	□Yes	No	□n/a					
Containe	rs Intact?	W Yes			10.				
Filtered	/olume Received for Dissolved Tests?	☐Yes	□ No	DAN/A	11.				
Sample L	abels Match COC?	Yes	[]No	□n/a	12.				
	les Date/Time/ID/Analysis Matrix:	<u>SL</u>							
	iners needing acid/base preservation have cked? Noncompliances are noted in 13.	e 🛛 Yes	No	N/A	13).	∐HNO3	[]H₂SO₄	NaOH	⊓
All conta	iners needing preservation are found to b		e		Sample #				÷
	ice with EPA recommendation? 2SO4, HCl<2; NaOH>12)	Yes.	[]No	ZN/A					
Exceptio	ns: VOA, Coliform, TOC, Oil and Grease,	Yes	INO					fadded	
WI-DRO				rahu a	1	en completed:	presen	/ative:	aterimoneoxeen
	ce in VOA Vials (>6mm)? k Present?	Yes			14. 15.			· · ·	
•	k Custody Seals Present?	Yes			10.				
	Blank Lot # (if purchased):			<u> </u>					
CLIEBLE AN						rialai	Nata Damilando		a
CLIENTIN	Person Contacted:				Date/Time:		Data Required?		
· c	omments/Resolution:				-				
						·			
		\sim							
	/	(y)				_	1 1		
	anager Review:					ate: 07	112/12		
	ever there is a discrepancy affecting North (act preservative, out of temp, incorrect contra		e samples,	a copy of t	his form will	be sent to the Nor	th Carolina DEHNR	Certification (Office (i.e
Note: When									
Note: When	······································								
Note: When									

Reviewed/Date	Received	Relinquished	Recolud	Received	Relinquished She Vetu	Signature	10 451-13-10.0	9 6151-13-7.5	8 651-13-5.0	7 GEI-13-2.5	6 GE1-12-8.5	5 (101-12-5.0	4 GE1-12-2.5	3 GEI-11-8.0	2 GEL-11-5.0	1 GE1-11-2.5	Lab ID Sample Identification	JOHN PETERS	ROBERT TRAHAN	WYMAN RAWP	5117-19-05 5147-19-08	SEI	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Streast - Redmond WA 98	Environmental Inc.
Reviewed/Date				- (USE	- GeoEnsineers, Inc.	Company	4 1350 4	1245 1	1235 2	1 1230 1	h 0++1	1430 2	1425 1	1635 H	1625 2	1/5/12 1620 5 1	Date Time No. of Sampled Sampled Matrix Cont.	(other)		(Bustandard (7 Days) (TPH analysis 5 Days)		Same Day 1 Day		Turnaround Request (in working days)	Chain of Custody
				7/6/12 1105	: 1/0/12 1105	Date Time	Ø						۲	8			NWTP NWTP NWTP NWTP	H-Gx/I H-Gx H-Dx es 826	BTEX				_	Laboratory Number:	ustody
Cryomatograms with final report O Added 7/23/12	@ Abded 7/9/12, 23 (STA)		17-49-05	SIMT-19-05 EVEN IS DECLET	ALL SAMPLE PROJECT	Comments/Special Instructions	8						8	8			Semivo (with lc PAHs I PCBs I Organo Organo Chlorir Total P Total N TCLP	olatiles ow-lev 8270D 8082 ochlori ophosp nated / RCRA I MTCA I Metals	8270D PAHs /SIM (lo ne Pest horus Pe Acid Her Metals Metals	/SIM) w-level) icides 8 esticides fbicides	081A 8270D/	10.92		- 07	Page 1 of for
12. D	\bigcirc		EEZ				X	×	X	X	X	×	X	XX	\times	\times	110 % Mo	isture	>				_	038	14

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Ola Heter	Signature	20 COEL-15-10.0	19 GE1-15-7.5	12 CIEL - 12 - 2.0	17 GEL- 15- 2.5	16 GEI-14-15	15 (-151 - 14 - 12.5	14 GEI-14-10.0	13 GEI-14-7.5	1-14-	11 GEI-14-2.5	Lab ID Sample Identification	JOHN PETERS	Sampled by:	Project Manager:	0	Froject Number:	SEI	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
	_				l	6	Cor	14									\$ 7/5	Date Sampled			C C	Dennet	2 Days	Same Day			
Reviewed/Date					682	eotre	Company	1110	1(00	1040	070	0940	0935	0890	5260	0420	0850	Time Sampled	(other)		oranisaaro (nisoaya) (ninni anaryaa o soaya)	nd 17 December 17		Day	(Check One)	(in working days)	Cha
0					1.1.	gineers,		14				R				_	S	Matrix	her)		in manage	TDLI apakania	3 Days	1 Day	One)	Request days)	Chain of Custody
						Inc.		۲	-	N	-	CU U	RX &	٢	-	2	-	No. of Cont.			lefter o	E Doubl	VS S	×			f Cu:
					1/6/12	7/6/1	Date	\odot								\otimes		NWTP	H-Gx/						_	Laboratory	stod
	+	+	+		11	12 11	Time											NWTP							_	atory	<
					Sel	20				_	-							Volatile			es 82	60B				Number:	
Chron	R)	H	İF	Pp	20	Com											(with lo	w-lev	s 8270 el PAH	s)	-				ber:	
Chromatograms with final report	PAG		HAST	PR	PROJECT NUMBER	LSA	Comments/Special Instructions	-	-	-	-	-	-	-		-		PAHs)/SIM (I	ow-le	vel)	_	-	_		
ns with fi	Jed	010	Rom	PROJECT	25	SAMPLE	pecial h											Organ	0.020	0.000	000.00	0.0102	23.52				
nal repo	4		· .	Z	WBO	e Li	Istructi	-	-	-	-	-	-	-		-		Chlorin	1	Acid H				SIM	_		
â	1/12	WRITEZ	THE PROPERTY	d'		LABELS	suo	R			-					B		Total F	CRA	Metals	8						
	*	TEN			115			~								0		Total M		Metals	8						Page
	ga (514-	1	5147-19-05	SHALL		Ø	1	-	-	-	-	-		Ø	-			s d greas	e) 166	14					N
	GTA		S0-64-LA1S			HAVE		_										_							1	07	of 1
	5		-05	CVEN	5	E		~								12										-0	00
				2				Å	7	7	X	X	X	X	X	X	X	HC % Mo	isture	>		_			_	38	

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished John Performance	Signature			28 GEL-COMP-1	27 GE1 - 16 - 13.0	26 GEI-16-10.0	25 GE1-16-7.5	24 651-16-5.0	23 GEI - 16 - 2.5	22 CAEI-15-14	21 GE1-15-12.5	Lab ID Sample Identification	Sampred by: JOHN PETERS	ROBERT TRALAN	WYMAN RAMP	5117 4975 5147-19-05	m	Phone: (425) 883-3881 • www.onsite-env.com Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	OnSite Environmental Inc.
Rev				(Greo	Company	ţs	88	* 17	11	11	11	1	11	1	1/5/12 11	Date Sampled Sa			Standard	2 Days	Same Day		Tun (Ir	_
Reviewed/Date					XXK	Ensime	any	454-	New Ser	1370 4	1150	1145	ILHO	1135	1130	1115	5 2111	Time Sampled Matrix	(other)		Standard (7 Days) (TPH analysis 5 Days)	3		(Check One)	Turnaround Request (In working days)	Chain of Custody
						VS, INC.				S	v	N	-	۲	-	3	-	No. of Cont.		2	ysis 5 Days)	3 Days	1 Day			of Cu
					716/12	7/14/17	Date							Ð					H-HCI H-Gx/I H-Gx						Labora	stody
					1105	2 1105	Time											NWTP	H-Dx es 826	ов					Laboratory Number:	
Chrom	Ø		HA	Ť	TPR	PF P	Comm											Semiv (with k	olatiles ow-lev	8270D I PAHs					mber:	
Chromatograms with final report	WHolded		HAS BOT	IF PROJECT	PROJECT	. SAMPLE	Comments/Special Instructions											PCBs	8082		ticides 8					
final report	4/4	((- '		NUMBER		Instructions							0				Chlori	-	Acid He	esticides					
* See	112- 5	1 - L	NOCK	N		LABEUS S								× ×				Total I	_	Vetals						Page .
ne Alto	DF (STA		LHIS	}	147-19-	SHALL HAVE	100 C			\otimes					20			Dic),tm	150) 1664 2AN	کا			0	S of
Altoched	(C	>	So-bh-LHIS Nash		S147-19-08 EVEN	HAVE				8	X			×	X	×		SMS	5* N	C NETS	res,	5100	^c s, P	cBs	7-03	Eg.
			VI		S			-		R	X	×	X	R	X	^			LT	>					8	

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Jahn Peter	Signature	38 GE1-ESS-6-2-0.5	37 GEL-55-6-1-2.5	36 GEL-55-6-1-1.5	35 CAEL-55-6-1-0.5	34 GEI-55-2-4-0.5	33 GIE1-55-2-3-0.5	32 GE1-55-2-2-0.5	31 GEI-SS- 2-1-2.5	30 CAEL-55-2-1-1.5	29 CHEI-SS-COMP	ple	JOHN PETERS	Sampled by ROBERT TRAHAN	Project Manager.	5147-19-05	Project Number:	Phone: (425) 883-3881 • www.onsite-env.com Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	OnSite Environmental Inc.
Reviewed/Date						Crea Engineers, Inc	Company	√ 075P0 √ Z	1535 2	1530 2	1528 14	1 0501	1045 1	1 040	1525 1	1 1520 1	2 5 0691 2/2/L	Date Time No. of Sampled Sampled Matrix Cont.	(other)		X Standard (7 Days) (TPH analysis 5 Days)	De Days	Same Day	(Check One)	Turnaround Request (In working days)	Chain of Custody
					76/12/1105	7/6/12 1105	Date Time	88	<u>}</u>	8	Ven	8	S	8		8	Ø	NWTP NWTP NWTP NWTP Volatil	'H-Gx/ 'H-Gx 'H-Dx es 826	BTEX	es 8260	B			Laboratory Number:	ustody
Chromatograms with final report	(SAdded 7/9/12.93 (STA)	HAS BEEN WRITEN	than 1	>	PROJECT NUMBER 5147-19-05 EVEN	ALL SAMPLE LABELS SHALL HAVE	Comments/Special Instructions										8	(with li PAHs PCBs Organ Organ Chlori Total I Total I Total I TCLP	ow-lev 8270D 8082 ochlori ophosp nated / RCRA MTCA Metals	ine Pes ohorus F Acid He Metals s d greas	s) ow-leve ticides Pesticide	8081A s 82700 s 8151/	A		ber: 07-0 38	Page 4 of 467

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Jalu Peters	Signature	48 GE1-55-12-2-0.5	47 GEI-SS-12-1-2.5	46GEI-55-12-1-1.5	45 GE1-55-9-4-0.5	44 GEL-55-9-3-0.5	43(761-22-0.5	42 GE1-55-9-1-2.5	41 GE1-55-9-1-1.5	40 GE1-55-6-4-0.5	39 GE1-55-6-3-0.5	Lab ID Sample Identification	JOHN PETERS	Sampled by ROBERT TRAHAN	Project Manager: WYWAN RAMP	5147-19-05	Project Number:	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	OnSite
						0	Co	4								-	7/5/12	Date Sampled			(N) stands	2 Days	Same Day			
Reviewed/Date				1	(8)	heating	Company	1120	1510	1292	1220	1215	1210	1625	1620	1000	0955	Time Sampled	(other)		Bandard (7 Days) (TPH analysis 5 Days)		Day	(Check One)	(in working days)	Cha
					111	inters,		4									S	Matrix	er)		PH analysis 5	3 Days	🗌 1 Day	ne)	equest days)	Chain of Custody
						Inc		-	-	~	-	-	-	-	-	Ν	N	No. of Cont.			5 Days)					Cus
				1	76/1	7/6	Date	-		-								NWTP		<u>.</u>					Labo	stoc
					8	12	T	X		R						Ø	0	NWTP							Laboratory	ły
					100	201	Time	0		0						0	C	1	es 826	OВ					y Nu	
																				Volati	es 8260 D/SIM	В			Number:	
Chromatograms with final report			HAS	Ŧ	TRO	ALC	Comments/Special Instructions	-	-	-	-	-	-	-	-		+	(with I	ow-lev	el PAH		9		_		
ograms				PROJECT	PROSECT NUMBER	SA	nts/Sp											PCBs								
with fin			BEEN	VEC	2	SAMPLE	cial Int				-					_	-	-	10000	0.000	esticides Pesticide	(12) 13) A	VSIM			
al repor					Ump	n C	structio	-	-	-	-		-	-	-	-	+			201010	erbicide					
ő			WRITTER	CUN	ER	ABE	SUIC											Total	RCRA	Metals					,	
			EL	NUMBER	9	ELS													MTCA	Metals	6					Page
			-	1	5147-	\$		-	-	-	-	-	-	-	-	-	+				e) 1664			_		in
				50-6H-LHIS	19-05	HALLH					Ø	Ø	Ð		8			ł	15,	, Cu	4				07	of _
			3	19-0	EVEN	HAVE		2		. ~	. W	. *1	3				27	2							-0	6
				7	34			X	×	X	X	X	X	×	X	X	XR	1.	DLÌ	>					86	13

	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	0.01	61-65-136-1	55 (7E1-55-14	54 GE1-55-14	53 GEI-55-14	52 GET-55-14	SI GE1-55-14	20 CHE1-25-15	49 GEI-SS-12	Lab ID Sample I	JOHN		Project Manager:	SHA	MDer PIATI	Company: Phone: (425) 88:	Analytical Laboratory Testing Services 14648 NE 95th Street • Red	OnSite Environm
Da						R	Jah Pete	iture		14/15-4-0.5	15-3-0.5	1/15-2-0.5	+/15-1-2.5	1/15-1-1.5	15-1-0.5	-4-0.5	-3-0S	Sample Identification	Perens	ROBERT TRAHAN	JRAMP	1	9-05	3-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	OnSite Environmental Inc.
Data Package: Level III						1	V	C		4						_	7/5/12	Date Sampled			Kan	2 Days	Same Day			
	Reviewed/Date					Q	Genter	Company		1150	1145	IIHO	1555	1550	1545	1130	1125	Time Sampled			Standard (7 Days) (TPH analysis 5 Days)	ys	e Day	(Check One)	Turnaround Request (in working days)	Ch
Level IV	ate					R	u meeus	and the second		4						_	5	Matrix	(other)		(TPH analys	0 3 0	🗌 1 Day	(One)	d Request ng days)	Chain of Custody
m						-	NS, lac		-	1	-	-	N	2	2	-	-	No. of Cont.			iis 5 Days)	3 Days	lay			of Cu
Electronic Data Deliverables (EDDs)						Thele	7/6/12	Date										NWTP	_						Labo	stoc
ita Deliver					_	5	ľ	Time	C	X	B	R		0		R	Ø	NWTP							Laborator	Υk
ables (EDI						201	105	90										Volatik			es 8260	R			y Nun	
08) [] [80	Chro		5	0	1	Ţ	Þ	Con	-	_								Semiv	olatile	s 82700 el PAH:	D/SIM				Number:	
	Chromatograms with final report	Dad	WRITTEN	5147	EVEN	HAVE	ALL	Comments/Special Instructions	-								-	PAHs PCBs		/SIM ()	ow-level)				
	ns with	ded	EZ	-49	1 I	PR	SAW	pecial										Organ	ochlor	ine Pes	ticides 8	3081A				
	Inal repo	16/4	5	1		PROSEUR	AWAPIE	instruct	_			_					_		1		Pesticides					
	ort	12.		S	PROSECT	G		ions	+		1	-	-	-	-	-	-			Metals				-		
4)	DB		HAS		22	LABELS													Metals						Page
pion	-	67			5	NUNDER	ELS		_								_	TCLP HEM			e) 1664			_		Je C
9	N	A		BEEN	NUMBER	EP	S			0	0				\odot			10	LÍ	LE	AD)			0	of
1	2/22			C	P	2147-	HALL		-	~	0			0											-	A
01	v					7-1	1		-	N/X	X	X	×	(S) X	×	×	X	H	01		, H 9)			03	4
STA	z					9-05			(N	S	Ø		Ø	0	C	ê	% Mo							œ	PS

Reviewed/Date	Received	Relinquished	Received .	Relinquished	Received	Relinquished	Signature		61 GE1-55-13-4-0.5	60 601-55-13-3-0.5	GE1-55-13-2-	61-1-55-13-1-1	ST GE1-55-13-1-0.5	Lab ID Sample Identification	Sampled by: JOHN PETERS	ROBERT TRAFAR	WYMAN RAMP	5147-19-05	Scripping. GTEI Project Number	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 9805	Environmental Inc.
Rev					6	Geo	Company		4 2	12	12	12	7/5/12/2	Date 1 Sampled Sa	[Andard () 2 Days	Same Day	m		
Reviewed/Date			5		81E	Engineer	any		7 056	1245	1240	1235	1230 S	Time Sampled Matrix	(other)		Andard (7 Days) (TPH analysis 5 Days)	3 Days	1 Day	(Check One)	Turnaround Request (in working days)	Chain of Custody
					7/	S, Inc 7	Date		<u> </u>				1	Cont. NWTP	H-HCI	D	s 5 Days)	ays	ay		L	f Cust
					6/12 /1	6/12 11	Time			A		Ð	à	NWTP NWTP NWTP	H-Gx H-Dx						Laboratory	ody
Chro					2	5	Com			Site		20	8 \	Semive (with k	nated platiles pw-leve	Volatile 8270D el PAHs	/SIM				Number:	
Chromatograms with final report					()))	PVU (N)	Comments/Special Instructions		X	×	×	Ø		PCBs Organ	8082 ochlorir	/SIM (lo ne Pest horus Pe	icides 8	081A	/SIM			
report						nAded 7/9/12	uctions							Total F	CRAN	Metals	rbicides	8151A				Page
						12 Di3							Ø	HEM (oil and	grease P L)			10	0
						(STA)			8	R	S	X	8	Р % Мо		Cd	,,,,,	3			-038	7

APPENDIX C Data Validation Report

Data Validation Report

Plaza 600 Building, 600 Stewart Street, Suite 1700, Seattle, WA 98101, Telephone: 206.728.2674, Fax: 206.728.2732

www.geoengineers.com

Project:	Wyman's Property Habitat Mitigation Area Design
File:	5147-019-05
Date:	July 26, 2012

GENERAL

This report presents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2A validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of soil samples obtained from Wyman's Ramp Site located in Anacortes, Washington.

Objective and Quality Control (QC) Elements

The objective of the data quality assessment was to review laboratory analytical procedures and QC results to evaluate whether the samples were analyzed using well-defined and acceptable methods that provide quantitation limits below applicable regulatory criteria, the precision and accuracy of the data are well defined and sufficient to provide defensible data, and the quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards. The laboratory data was reviewed for following QC elements:

- Chain of Custody
- Holding Times
- Surrogates
- Method and Trip Blanks
- Laboratory Control Samples
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates
- Internal Standards
- Dual column confirmations (PCBs only)
- Reporting Limits and Miscellaneous

Chemical Analysis Performed:

Samples obtained during the cleanup action were submitted to a Department of Ecology (Ecology)-certified laboratory - OnSite Environmental, Inc. (OnSite) of Redmond, Washington for one or more of the following analyses:

- Gasoline-range petroleum hydrocarbons by Ecology Method NWTPH-Gx;
- Diesel- and heavy oil-range petroleum hydrocarbons by Ecology Method NWTPH-Dx with silica gel/sulfuric acid cleanup;
- Benzene, ethylbenzene, toluene and zylenes (BETX) by EPA Method 8260B;

Data Validation Report March 9, 2012 Page 2

- Semivolatile organic compounds (SVOCs) by EPA Method 8270D/SIM;
- Organochlorine pesticides by EPA Method 8081A;
- Polychlorinated biphenyls (PCBs) by EPA Method 8082;
- Metals (arsenic, barium, cadmium, total chromium, copper, lead, mercury, selenium, silver, and zinc) by EPA Method 6010B/7470A; and
- TCPL metals (arsenic, barium, cadmium, total chromium, copper, lead, mercury, selenium, silver, and zinc) by EPA Method 1311/6010B/7470A.

OnSite Sample Data Groups (SDGs):

Following laboratory SDGs were delivered by OnSite and were reviewed by GeoEngineers for QC elements listed above:

1207-038

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in two USEPA documents: USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, 2010) and USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 2008).

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical reports. All transcription discrepencies were documented, and the appropriate signatures were applied. There were no anomalies mentioned in the sample receipt forms, as the samples were transported to the laboratory at the appropriate temperatures of between 2 and 6 degrees Celsius.

Samples GEI-SS-13-1-0.5, GEI-SS-13-1-1.5, GEI-SS-13-2-0.5, and GEI-SS-13-3-0.5 were not listed on the chain-of-custody (COC). There was one extra sample VOA container for Sample GEI-14-12.5, and only one available sample VOA container for Sample GEI-SS-6-1-0.5.

Holding Times and Sample Preservation

The holding time is defined as the time that elapses between sample collection and sample analysis. Recommended maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentrations present at the time of sample collection. Recommended holding times were met for all analyses.

Method Blanks

Method blanks are analyzed to assess whether laboratory procedures or reagents may have introduced measurable concentrations of the analytes of interest into project samples. Method blanks were analyzed with each batch of project samples, at a frequency of one per twenty samples. No method blank detections were reported by the testing laboratory.

Data Validation Report July 25, 2012 Page 3

Surogate Recoveries (Organics Analysis)

A surrogate compound is a compound that is chemically similar to one or more analytes of interest, but unlikely to be found in any project sample. Surrogates are used for organic analyses and are added to all project samples, laboratory standards and blank samples to verify the accuracy and specificity of each analysis. The surrogates are added at a known concentration, and percent recoveries (%R) are calculated after analysis. All surrogate recoveries were within laboratory control limits.

MATRIX SPIKES/MATRIX SPIKE DUPLICATES

Because actual analyte concentrations in environmental samples are not known and may differ from concentrations determined through laboratory analysis, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of a sample is analyzed in the normal manner, and then a second aliquot of the sample (the MS sample) is spiked with a known amount of analyte and analyzed. From the MS analysis, a %R value is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check.

Due to the field sampling limitations of this sampling event, often times a laboratory control sample/laboratory control sample duplicate (LCS/LCSD) sample set was analyzed in lieu of an MS/MSD analysis. LCS/LCSD analyses are discussed in the next section.

Metals: A matrix spike/matrix spike duplicate was performed on Sample GEI-SS-14/15-4-1.5. The MSD %R values for copper and zinc were greater than the conrol limit of 125%. No action was required, as the corresponding MS %R value was within the control limits.

Laboratroy Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Because matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analysis would apply to all samples in the analytical batch instead of just the parent sample.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 project samples, whichever is more frequent. The recovery criteria (%R) for LCS and LCSD analyses are specified in the laboratory documents, as are the relative percent difference (RPD) criteria for LCS/LCSD sample pairs. The frequency criteria were met for all analyses. The %R and RPD values for all target analytes in the LCS/LCSD analyses were within the laboratory control limits.

Field Duplicates

One field duplicate sample was obtained and analyzed along with the primary project samples. The duplicate sample was analyzed for the same parameters as the associated primary samples. The RPD between the primary and duplicate samples is used to assess sample heterogeneity and laboratory precision, unless one or more of the samples used has a concentration greater than five times the method reporting limit for that sample. In such cases, the absolute difference is used instead of the RPD. The RPD control limit for soil samples is 50 percent.

Data Validation Report July 25, 2012 Page 4

There were no field duplicates submitted for this sampling event.

Dual Column Confirmations

The PCB Aroclor compounds are analyzed by two columns, a primary and a secondary column. The percent difference (%D) values for any positive results between the primary and secondary columns are assessed against a control limit of 40%. All positive results for Aroclors were properly confirmed by a secondary column with %D values less than 40%.

Reporting Limits and Miscellaneous

There were no reporting limit anomalies associated with this sample delivery group.

OVERALL ASSESSMENT

The results of this Stage 2A data validation indicate that the laboratory followed the specified analytical methods. The accuracy of the data is acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values. The precision of the data also is acceptable, as demonstrated by the LCS/LCSD, MS/MSD, laboratory and field duplicate RPD values. Based on the data quality review, it is our opinion that the analytical data are of acceptable quality for their intended use.

REFERENCES

- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Inorganic Data Review," OSWER 9240.1-51, EPA 540-R-10-011. January 2010.
- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.
- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.