Mr. Joe Hickey
Washington State Department of Ecology
Northwest Regional Office
3190 160th Avenue Southwest
Bellevue, Washington 98008-5452
Re: Broadview Service Station - Site Investigation and Cleanup
Dear Mr. Hickey:
Please find enclosed EMCON Northwest, Inc.'s final report documenting site investigation and site remediation at the Broadview Service Station. The site is located at 12258 Greenwood Avenue North, Seattle, and is owned by Mr. Bill Daniels.

If you have any questions, please call.
Sincerely,
EMCON Northwest, Inc.

Peter Rowland Project Manager

Enclosure

Final Report

Soil Sampling and Remediation Services
 Former Broadview Service Site
 Seattle, Washington

Prepared for
Mr. Willard Daniels
12039 Greenwood Avenue North Seattle, Washington

February 11, 1992

Prepared by
Sweet-Edwards/EMCON, Inc.
18912 North Creek Parkway, Suite 210
Bothell, Washington 98011

CONTENTS

Tables and Figures iv
1 Introduction 1-1
1.1 Site Description 1-1
1.2 Project Background 1-3
1.3 Purpose and Scope-of-Work 1-5
2 Geology 2-1
2.1 Ground Water Occurrence 2-1
3 Tank Removal 3-1
4 Site Remediation 4-1
4.1 Soil Excavation 4-1
4.2 Limits of Excavation 4-2
4.3 Soil Sampling 4-4
4.4 Laboratory Analysis 4-4
4.5 Soil Stockpiling - Phase I 4-6
5 Soil Testing Results and Interpretation 5-1
5.1 Excavation Base and Sidewall Samples 5-1
5.2 Soil Stockpile Samples - Phase I 5-7
6 Soil Treatment - Phase I 6-1
6.1 Soil Venting System 6-1
6.2 Soil Landfarming 6-5
6.3 Treatment Verification - Phase I 6-7
7 Soil Treatment - Phase II 7-1
7.1 Soil Excavation 7-1
7.2 Stockpile Soil Sampling - Phase II 7-1
7.3 Soil Treatment 7-2
8 Findings and Conclusions 8-1

CONTENTS (Continued)

Appendix A Driller's Boring Logs
Appendix B Field Investigation Procedures
Appendix C Soil Analysis Data - Excavation and Stockpiles (Phase I)
Appendix D Vapor Extraction System Design
Appendix E Water Analysis Data
Appendix F Metro Water Disposal Permit
Appendix G Soil Analysis Data - Treated Soils Phase I, (Batch 1)
Appendix H Soil Analysis Data - Treated Soils Phase I, (Batch 2)
Appendix I Soil Analysis Data - Treated Soils (VES System)
Appendix J Soil Analysis Data - Stockpiles (Phase II)
Appendix K Soil Analysis Data - Treated Soil Phase II (Batch 1)
Appendix L Soil Analysis Data - Treated Soil Phase II (Batch 2)

TABLES AND FIGURES

Tables

Table 5-1 Soil Quality Data - Excavation Base and Sidewalls 5-2
Table 5-2 Summary of the MTCA Method A Soil Cleanup Standards 5-6
Table 5-3 Soil Quality Data - Soil Stockpiles (Phase I) 5-8
Table 6-1 Vapor Quality Data - August 23, 1990 6-4
Table 6-2 Excavation Water Quality 6-6
Table 6-3 Soil Quality Data - Treated Soil Phase I, (Batch 1) 6-9
Table 6-4 Soil Quality Data - Treated Soil Phase I, (Batch 2)
Table 6-5 Treated Soil Quality (VES System) 6-13
Table 7-1 Soil Quality Data - Stockpile Soil (Phase II) 7-3
Table 7-2 Soil Quality Data - Treated Soil (Phase II, Batch 1) 7-5
Table 7-3 Soil Quality Data - Treated Soil (Phase II, Batch 2) 7-6

Figures

Figure 1-1 Site Vicinity Map 1-2
Figure 1-2 Site Map 1-4
Figure 2-1 Beneficial Use Map (boring logs listed with Dept. of Ecology) 2-2
Figure 4-1 Excavation Plan and Soil Sample Locations 4-3
Figure 6-1 Soil Venting System Design 6-3
Figure 6-2 Soil Sampling Location - Batch 1 Treated Soil 6-8
Figure 6-3 Verification Soil Sampling - Test Pit Locations 6-11

1 INTRODUCTION

This report documents the underground storage tank (UST) removal, soil excavation, and soil remediation activities completed at the former gasoline and service station called Broadview Service (site), in North Seattle, Washington.

1.1 Site Description

The site is located at 12258 Greenwood Avenue North, at the southeast intersection of Greenwood Avenue North and North 125th Street. (Figure 1-1). The site has dimensions of approximately 226 feet north to south, and 123 feet east to west and occupies an area of approximately 28,000 square feet. The site is adjacent to private residential property located to the south and the Broadview Community Church located to the east.

Between approximately 1923 and February 1990 the site was privately owned and operated as an automobile filling and service station. Since 1932 the site has been owned and operated by Mr. W. Daniels of Seattle, Washington.

While in operation, the property consisted of a service station with three automobile service bays, a workshop, and cashiers office. The building area formerly occupied approximately 4,000 square feet near the center of the site. The area north and southwest of the service building is asphalt covered. The service station building was formerly underlain by a concrete slab. In the center of the service building a brick lined pit approximately 10×4 feet, and 6 feet deep, was used during automobile servicing. Two hydraulic lifting hoists were also located in the service building.

Site operations conducted in the past have included the use of nine steel USTs for storage of petroleum products. The USTs formerly in use at the site include the following:

- Five 4,000-gallon gasoline

DATE 1-91
own. MLP
APPR. PR
REVIS.
PROJECT NO.
W1601.01

Figure 1-1
BROADVIEW SERVICE STATION SEATTLE, WASHINGTON

- One 550-gallon waste oil
- One 550-gallon fuel oil
- One 550-gallon gasoline (previously abāndoned in place and removed during this investigation)

The former USTs were located end to end along the front of the property between the service station and Greenwood Avenue North. Figure 1-2 shows the former location of the tanks and the service station buildings and offices. Tanks were numbered 1 through 9 as indicated on the site map.

1.2 Project Background

In late February 1990, Glacier Environmental Services, Inc. (GES) was contracted by Mr. Daniels to remove the USTs and related pump equipment from the site.

We understand that in March 1990 GES removed seven of the nine USTs and that five of the seven (tanks 1 through 4 and 7) had holes in the tank bottoms or sidewalls. Petroleum-like odors were detected by GES personnel in soils removed from around the tanks and soils were segregated according to odor into three soil stockpiles: 1) "clean" soil; 2) soils suspected of containing gasoline-related petroleum hydrocarbons; and 3) soils suspected of containing waste-oil related petroleum hydrocarbons.

We understand that the Washington State Department of Ecology (Ecology) was notified by GES in early March 1990 of the suspected release of petroleum products at the site.

During initial tank excavation activities, water seepage into the excavation was observed by GES at a depth of approximately five feet below ground surface (bgs) and in association with buried utilities and product distribution lines. The seepage zone at five feet was reported to coincide with the upper surface of dense sandy silt (native glacial till) beneath a zone of imported fill. It was reported by GES that seepage into the UST excavation reduced significantly after two days and had stopped within one week of the initial excavation.

GES reportedly pumped approximately 16,000 gallons of water from the excavation to a 20,000-gallon storage tank for temporary containment pending laboratory analysis for total petroleum hydrocarbons (TPH) and

benzene, toluene, ethylbenzene, and xylenes (BTEX) and obtaining the appropriate water disposal permit from Metro.

We understand that laboratory analysis of the water detected BTEX compounds in the water above regulated concentrations. The water was aerated in the storage tank to reduce BTEX concentrations below Metro water was disposal standards and the water discharged into the Seattle sewer system upon receipt of the appropriate disposal permit.

1.3 Purpose and Scope-of-Work

In March 1990, SE/E was requested by GES to provide environmental consulting services to Mr. Daniels concerning the suspected presence of petroleum hydrocarbons in soil adjacent to the former USTs.

SE/E's project goals focused on characterizing petroleum hydrocarbons present in the soil in the former tank areas and shop building; excavating the soil with elevated petroleum hydrocarbon concentrations, and remediating petroleum-related hydrocarbons in the soil to comply with Ecology's Method A soil cleanup standards specified in the Model Toxics Control Act (MTCA) ${ }^{1}$.

The tasks performed by SE/E during site characterization and soil cleanup were completed in two phases. Phase I was completed between March 1990 and June 1991 and included initial tank removal activities, soil excavation and segregation, and soil treatment utilizing vapor extraction. Phase II was completed between June and November 1991 and included re-excavation of all soils from the former tank excavation, further laboratory analysis and additional soil treatment by bioremediation. In June 1991, Mr Daniels transferred responsibility for remediation services at the site to The Remediation Company Inc, (TRC). SE/E assumed management of the site cleanup and TRC worked under the direction of SE/E.

The tasks performed by $S E / E$ during this site characterization and soil cleanup included the following:

PHASE I

- Prepared a Site Health and Safety Plan

[^0]- Monitored organic vapors in the working environment for health and safety purposes.
- Field screened soils during soil excavation with a Photoionization Detector (PID) to qualitatively determine the extent of soil excavation.
- Collected verification soil samples from the base and sides of the UST excavation.
- Collected verification soil samples from the service station sump area following removal of sump sidewalls and base.
- Submitted soil samples to an analytical laboratory for appropriate analysis.
- Evaluated soil quality data.
- Coordinated stockpiling of soils on site according to the nature of soil contamination.
- Designed for GES an on-site soil venting system to remediate soil containing gasoline-related hydrocarbons.
- Provided assistance to GES with monitoring of the soil venting system, and made recommendations concerning its operation.
- Assisted GES with bioremediation of soil containing waste oil- and fuel oil-related hydrocarbons.
- Collected representative soil samples from the soils being treated and submitted samples to an analytical laboratory.

PHASE II

- Directed TRC during soil excavation and soil treatment
- Coordinated the re-excavation of all soils from the former tank excavation
- Coordinated stockpiling of soils into approximate 100 yard stockpiles
- Collected soil samples from each stockpile and submitted samples to an analytical laboratory for TPH analysis
- Coordinated the treatment of selected soil stockpiles
- Collected soil treatment verification samples from the soils following treatment
- Coordinated the return of all treated soils to the former tank excavation
- Prepared this report documenting methods, results and conclusions of the site investigation and soil remediation.

2 GEOLOGY

Observations made during tank removal operations and soil excavation activities indicated that the underlying geology at the site consists of a variable thickness of imported fill material overlying dense glacial till.

The fill consists of up to ten feet of brown, fine to coarse sand and gravel beneath and around the former USTs, and approximately three to five feet of similar fill materials beneath the main service station area. Miscellaneous demolition debris, bricks, concrete and wood were also located beneath the service station building.

The glacial till consists of dense, blue-gray silty sand and sandy silt to a depth of at least 26 feet bgs. The upper surface of the glacial till appears to dip at a shallow angle southwest beneath Greenwood Avenue North and follows the natural topography of the area.

2.1 Ground Water Occurrence

Ground water was not encountered beneath the site during any soil excavation activities. The maximum depth of investigation at the site was approximately 26 feet bgs.

Based on driller's boring logs on file with Ecology, six wells are located within one mile of the site, and indicate that ground water occurs at a depth of at least 82 feet bgs in the area. Appendix A contains copies of the boring logs on file with Ecology. Figure 2-1 shows the approximate location of the wells.

A private well survey has not been completed in the area and it is possible that additional wells exist in the vicinity of the site. City supplied water, however, has been available for domestic use for several years and ground water use in the area is suspected to be minimal.

LEGEND

5- Well Location
25 Section Number

2.1.1 Water Seepage

In addition to the shallow water seepage zone described earlier, seepage into the excavation was also observed during winter months at a depth of approximately 13 feet bgs on the western wall of the tank excavation. The seepage area was small and appeared to occur from a sand lens approximately 5 -inches thick and 50 -feet long. Seepage appeared to be seasonal.

In addition, a catch basin is located approximately 15 -feet from the excavation sidewall and may be influencing seepage into the excavation during storm events.

3 TANK REMOVAL

This section describes the tank removal activities observed by SE / E at the site and relates to the removal of Tanks 8 and 9 (Figure 1-2). Tanks 1 through 7 were removed prior to SE/E's involvement with the Broadview Service project.

On March 26, 1990, Tank 8 (550-gallon gasoline tank) was discovered between the former waste oil tank (Tank 7) and the fuel oil tank (Tank 9) (Figure 1-2). No product was present in the tank which was filled with $1 / 4$ inch-diameter pea gravel. Several holes were observed in the tank sidewalls. The tank was removed with a track mounted excavator and appropriately disposed of by GES. The tank was not inspected by the Seattle Fire Department prior to removal as it was already abandoned in-place.

On March 30, 1990, Tank 9 (550-gallon Fuel Oil Tank) was made inert with dry ice and inspected by the Seattle Fire Department prior to removal. A track mounted excavator was used by GES to remove the tank from the excavation. Inspection of the tank revealed a 1-inch-diameter hole approximately one foot from the top of the tank. The tank was disposed of by GES.

Following tank removals, the tank excavations were inspected for evidence of tank leakage. No free petroleum product was found beneath or adjacent to Tank 8 or 9 at the time of removal. However, petroleum odors were detected in backfill material surrounding the tanks, and in native soil beneath and adjacent to the tanks.

4 SITE REMMEDIATION

This section describes the field activities performed to remove, characterize, and segregate soils containing petroleum hydrocarbons at concentrations that exceed the MTCA Method A soil cleanup standards for UST sites. Characterization of the petroleum hydrocarbons present in the soil was performed to facilitate appropriate soil treatment methods.

4.1 Soil Excavation

Soil excavation was performed in two phases. Phase I took place between March 26, 1990, and August 10, 1990, and was performed by GES. Phase II took place between July 1 and July 3, 1991, and was performed by TRC. SE/E coordinated soil excavation activities during both phases of soil excavation.

Both GES and TRC used a track-mounted excavator and a rubber-tired backhoe for the purpose of excavating soils.

4.1.1 Excavation Criteria

Soil excavation focused on removing soil along the sidewalls and base of the UST excavation. Criteria used to determine the extent of soil removal included soil discoloration, hydrocarbon-like odors, and volatile organic vapor monitoring with a PID.

Soil Vapor Monitoring. Soil vapor head space monitoring is used as a field technique for determining relative levels of soil contamination. It does not, however, distinguish between petroleum compounds or perform with the accuracy or precision of laboratory analysis.

A PID reading of 50 parts per million (ppm) or above was used as a soil vapor concentration indicating the presence of petroleum hydrocarbons at potentially regulated concentrations. Consequently, soil excavation continued until soil vapor concentrations were below 50 ppm , or if physical
restraints prevented further excavation. The soil vapor monitoring method is described in Appendix B, Section B-1.

4.2 Limits of Excavation

4.2.1 Phase I

Between March 26 and April 16, 1990, excavation of contaminated soil proceeded beneath and adjacent to the former USTs. The depth of excavation ranged from 12 feet bgs beneath Tanks 5 and 6, 15 feet bgs beneath Tanks 7 and 8, and approximately 18 feet bgs beneath Tanks 1, $2,3,4$, and 9.

A review of laboratory testing results and PID concentrations in soil samples collected from the northern end of the excavation in mid-April 1990, indicated that petroleum hydrocarbon concentrations in soils adjacent to Tanks 1, 7, 8, and 9, extended east beneath the service station. Mr. Daniels authorized continued excavation of soils beneath the service station following demolition of the building and removal of the concrete slab and automobile service pit. Prior to demolition of the building, GES contracted with Coastal Tank Cleaning, Inc., to remove and dispose of an oily sludge from the base of the service pit.

Excavation of soil from beneath the former service station commenced on July 26, 1990, following the demolition of the service station building. Soil excavation continued south and east of Tank 7 and extended beneath the automobile service pit formerly located in the center of the service station building (Figure 1-2). The excavation reached a maximum depth of 26 feet bgs approximately 20 feet east of Tank 1.

A total of approximately 2,400 cubic yards of soil was removed from the excavation. The excavation extended from the northern property boundary approximately 150 feet south, and between 20 feet and 40 feet east of Greenwood Avenue. Figure 4-1 illustrates the limit of soil excavation and former location of the service station building.

4.2.2 Phase II

Between July 1 and July 3, 1991, additional soil excavation was completed on the western sidewall, and in the base of the former tank excavation adjacent to tanks $1,2,3,8$ and 9 . The purpose of additional excavation was to remove soils in areas where Phase I sampling indicated impacted soils still remained. Figure $4-1$ shows the limit of excavation after
completion of Phase II activities. Approximately 50 cubic yards of additional soil was excavated during Phase II.

4.3 Soil Sampling

Verification soil samples were collected from the excavation base and sidewalls, and were submitted for laboratory analysis to verify that petroleum hydrocarbon concentrations met the MTCA Method A soil cleanup standards for UST sites. Soil Sampling methods and equipment decontamination procedures are described in Appendix B, Section B-2.

4.3.1 Sample Locations

Phase I. A total of 48 soil samples were collected during Phase I excavations as shown on Figure 4-1. Sample locations were selected at the base and sides of the former UST excavation when PID values, soil staining, and soil odors indicated the limit of petroleum hydrocarbon impact had been reached.

Additional soil was excavated if TPH or BTEX concentrations in a sample were in excess of the MTCA Method A soil cleanup standards. Another soil sample was collected to verify concentrations at the new limit of excavation. Figure 4-1 also shows the soil sample locations at which additional soil excavation followed sampling.

Phase II. An additional four soil samples were collected during the Phase II excavation activities. Soil sample locations are shown on Figure $4-1$ and were selected in areas where Phase I sampling indicated impacted soil still remained. In particular, locations were selected on the western sidewall and in the base of the excavation approximately 10 -feet east of tank 2.

4.4 Laboratory Analysis

All excavation soil samples collected during Phase I and Phase II were submitted to Sound Analytical Services, Inc., (SAS), Tacoma, Washington, for analysis. The analysis method selected for each sample was based upon the suspected petroleum hydrocarbon compound present as indicated by the PID concentrations, and as indicated by the sample location relative to the former USTs. The following sub-section describes the laboratory analyses selected for soil suspected of containing (1) gasoline and fuel oil (2) waste oil, and (3) soils excavated from adjacent to the automobile service pit.

4.4.1 Gasoline and Fuel Oil Soils.

Samples collected from adjacent to the gasoline and fuel oil tanks were analyzed for Total Petroleum Fuel Hydrocarbons (TPFH) using EPA Method 8015 (Modified), or TPH-IR by EPA Method(418.7. BTEX analysis was performed using EPA Method 8020.

4.4.2 Waste Oil Tank Soils

An initial soil sample (sample SP-7) was collected from stockpiled soils, excavated from beneath the waste oil tank and suspected of containing traces of waste oil. The sample was analyzed for the following compounds:

- TPH-IR (EPA Method 418.1)
- Organochlorine Pesticides and PCBs (EPA Method 8080)
- Halogenated Volatiles (EPA Method 8010)
- EP Toxicity Metals (EPA SW-846)

Due to the non-detection of pesticides, PCBs, regulated concentrations of halogenated volatile organics and metals in the initial soil sample, subsequent samples collected in the vicinity of the waste oil tank were analyzed for TPH-IR and/or TPFH and BTEX compounds only.

4.4.3 Automobile Service Pit Soils

An initial soil sample (sample 37) collected from beneath the automobile service pit was analyzed for TPFH, BTEX, and selected halogenated volatile organic compounds, as specified in the MTCA Method A soil cleanup standards (methylene chloride, 1,1,1-trichloroethane, trichlorethene, and tetrachloroethene).

Due to the non-detection of halogenated volatile organic compounds in the initial sample, subsequent samples collected adjacent to the automobile service pit were analyzed for TPH-IR and/or TPFH, and BTEX compounds only.

4.5 Soil Stockpiling - Phase I

Soil removed from the excavation was segregated and temporarily stockpiled on-site according to the suspected principal petroleum hydrocarbon. Segregation of impacted soil was required to facilitate selection of an appropriate soil treatment method.

Three soil segregation categories were selected: (1) Unimpacted soil, (2) soil suspected of containing gasoline, and (3) fuel oil and soil suspected of containing waste oil. Segregation in the field was performed using the PID and soil odor. All soil stockpiles were placed on plastic sheeting and covered to minimize potential rainfall infiltration and runoff.

4.5.1 Stockpile Soil Sampling

To characterize the petroleum hydrocarbon compounds present in the stockpiles, SE/E collected representative soil samples from each stockpile.

Nine soil stockpiles were sampled on March 27, March 30, and April 10, 1990. A single soil sample was collected from each stockpile (sample numbers SP-1 through SP-9).

Three additional soil stockpiles were sampled on July 26, 1990. Three soil samples were collected from each stockpile and were composited into three samples by the laboratory. (Sample numbers SPG-1, $-2,-3$; SPD-1, $-2,-3$; SPWO-1, $-2,-3$). Stockpiled soil sampling methods are described in Appendix B, Section B-3.

4.5.2 Stockpiled Soil Analysis

Stockpile soil samples were submitted to SAS in chilled coolers under chain-of-custody. All samples were analyzed for BTEX. Samples SP-1, SP-3, and SP-5 through SP-7 were analyzed for TPH-IR. Samples SP-8, SP-9, and SPG $-1,-2,-3$; SPD $-1,-2,-3$ and SPWO $-1,-2,-3$ were analyzed for TPFH.

5 SOIL TESTING RESULTS AND INTERPRETATION

This section presents the analytical testing results of soil samples collected from the base and sides of the UST excavation, and from the soil stockpiles. Soil sample testing results were used to determine the extent of soil over-excavation required to remove impacted soils from the excavation. Stockpile sample results were used to segregate soils for appropriate soil treatment.

5.1 Excavation Base and Sidewall Samples

Soil testing results for samples collected from the excavation base and sidewalls are summarized in Table 5-1; laboratory data is included in Appendix C. Soil sample locations are presented on Figure 4-1.

Table $5-2$ is a summary of the MTCA Method A soil cleanup standards for petroleum hydrocarbon compounds. A review of the results indicates that of the 52 soil samples analyzed (48 in Phase I and 4 in Phase II), 37 recorded no TPH or BTEX compounds above the MTCA Method A soil cleanup standards. No halogenated volatile organic compounds were detected in a soil sample collected beneath the car service bay.

Comparison of the soil testing results with the standards indicate that soil samples exceeded the TPH concentration at 15 locations, and that one or more BTEX compounds exceeded the standards at two locations.

At 16 of the 17 soil sample locations with elevated TPH and/or BTEX concentrations, additional soil was excavated and a further sample collected to verify soil quality. At all 16 locations the subsequent soil sample was below the MTCA Method A soil cleanup standards.

BTEX and TPH concentrations in one soil sample (Sample 8) collected on the western side of the excavation exceeded the MTCA Method A soil cleanup standard. Additional soil could not be excavated due to the proximity of Greenwood Avenue and City of Seattle property. The zone of soil contamination located on the western sidewall of the excavation was restricted to soils in a thin sand lens within the dense silty glacial till. The
Table 5-1

Sample Number	Depth of Sample (feet bgs)	Date of Sample Collection	Field Sample Number	EPA 418.1	EPA Method 8015 Modified	.5	EPA Method 8020		30
				$\begin{gathered} \text { TPH- } \mathrm{IR}^{1} \\ (\mathrm{mg} / \mathrm{kg}) \mathrm{ppm} \end{gathered}$	TPFH ${ }^{2}$ $(\mathrm{mg} / \mathrm{kg}) \mathrm{ppm}$	Benzene (mg/kg)	Toluene ($\mathrm{mg} / \mathrm{kg}$)	Ethylbenzene $(\mathrm{mg} / \mathrm{kg})$	Xylenes (mg/kg)
Phase I									
1	12	3/27/90	5VSC-1	194	NT	0.05	0.18	0.18	2.09
2	10	4/16/90	5VS-2	U	NT	U	U	U	U
3	12	3/26/90	5VW-1	U	NT	U	U	U	2.06
4	11	3/19/90	5VB-1	U	NT	U	U	U	U
5	11	3/19/90	6VB-1	29.9	NT	U	U	U	U
6	11	3/26/90	6VE-1	U	NT	U	U	U	U
7	12	3/30/90	4VE-1	NT	NT	NT	NT	NT	NT
8	13	3/19/90	4VW-1	NT	$\begin{aligned} & 1,830 \\ & \text { (Gas) } \end{aligned}$	9.38	211	83.1	364
9	16	3/19/90	3VB-1	11.7	U	U	U	U	U
10	15	3/26/90	3VE-1	9	NT	U	U	U	U
11	13	3/26/90	2VWA-1	976	NT	U	U	U	U
12	12	3/26/90	2VBC-1	30.1	NT	U	U	U	U
13	21	8/10/90	9VE-1S	U	U	U	U	U	U
14	16	8/10/90	9VE-1M	9.8	U	U	U	U	U
15	18	8/10/90	9VE-10	U	U	U	U	U	U
16	25	8/9/90	9VE-1K	NT	$\begin{gathered} 46.7 \\ \text { (Diesel \& Gas) } \end{gathered}$	U	U	0.14	0.84

Notes:	
$\mathrm{Mg} / \mathrm{Kg}$ is equivalent to parts per million (ppm) in soil.	
(1)	TPH-IR means total petroleum hydrocarbons-infrared spectrophotometry
(2)	TPFH means semi-volatile total petroleum hydrocarbons. Fuel type based on elution ranges of selected hydrocarbons.
U	Not detected at or above the method reporting limit.
NT	Not tested by the laboratory.

Table 5-1
Soil Quality Results - Excavation Base and Sidewalls (Continued)

Sample Number	Depth of Sample (feet bgs)	Date of Sample Collection	Field Sample Number	EPA 418.1 TPH-IR $(\mathrm{mg} / \mathrm{kg})$ ppm	EPA Method 8015Modified	EPA Method 8020			
						Benzene (mg/kg)	Toluene ($\mathrm{mg} / \mathrm{kg}$)	Ethylbenzene ($\mathrm{mg} / \mathrm{kg}$)	Xylenes ($\mathrm{mg} / \mathrm{kg}$)
17	20	8/10/90	9VE-1P	U	U	U	U	U	U
18	18	8/10/90	9VE-1N	NT	U	U	U	U	U
19	16	8/9/90	9VE-11	NT	$\begin{gathered} \text { U } \\ \text { (Diesel) } \end{gathered}$	U	U	U	U
20	19	8/9/90	9VE-1J	NT	$\begin{gathered} 19.3 \\ \text { (Diesel) } \end{gathered}$	U	U	U	U
21	15	3/19/90	1VB-1	164	33 (Diesel)	U	U	U	U
22	16	7/26/90	9VE-1B	NT	U	U	U	U	U
23	11	7/25/90	9VSE-1	NT	U	- U	U	U	U
24	14	4/10/90	9VB-2	94.4	$\begin{gathered} 62 \\ \text { (Diesel) } \end{gathered}$	NT	NT	NT	NT
25	10	4/10/90	8WW-2	9.8	NT	U	U	U	U
26	10	4/10/90	9WW-2	2,239	NT	U	U	U	0.14
27	9	7/25/90	9VE-1	NT.	$\begin{gathered} 17 \\ \text { (Diesel) } \end{gathered}$	U	0.09	U	U
28	15	7/25/90	9VB-7	NT	U	U	U	U	U
29	11	4/9/90	9VE-1A	NT	U	U	U	U	0.13

Table 5-1

- Excavation Base and Sidewalls
(Continued) Soil Quality Results

Sample Number	Depth of Sample (feet bgs)	Date of Sample Collection	Field Sample Number	EPA 418.1	EPA Method 8015 Modified	EPA Method 8020			
				TPH-IR ${ }^{1}$ $(\mathrm{mg} / \mathrm{kg}) \mathrm{ppm}$	TPFH $(\mathrm{mg} / \mathrm{kg}) \mathrm{ppm}$	Benzene ($\mathrm{mg} / \mathrm{kg}$)	Toluene ($\mathrm{mg} / \mathrm{kg}$)	Ethylbenzene ($\mathrm{mg} / \mathrm{kg}$)	Xylenes (mg/kg)
30	9	4/10/90	$8 \mathrm{VN}-1$	17.6	$\begin{gathered} 24 \\ \text { (Diesel) } \end{gathered}$	U	0.12	U	0.69
31	10	3/27/90	8VB-1	48.3	U	U	0.16	U	U
32	12	3/27/90	WON-1	18.8	NT	U	U	U	U
33	13	3/27/90	WOE-1	8.6	NT	U	U	U	166
34	10	3/30/90	6VEB-1	421	NT	18.8	82.4	33.7	166
35	25	8/9/90	gVE-1L	NT	U	U	U	U	U
36	11	4/10/90	7VB-1	5.3	NT	NT	NT	NT	NT
37	9	7/26/90	SUMP-1	NT	413 (Aged Gas/Diesel and Heavy Oii)	U	U	U	0.19
38	10	7/26/90	9VE-1E	NT	$\begin{gathered} 398 \\ \text { (Aged Gas/Diesel } \\ \text { and Heavy Oil) } \end{gathered}$	U	U	0.55	1.45
39	17	7/26/90	9VE-1F	NT	(Aged Gas and Diesel)	U	U	0.3	0.8
40	19	7/26/90	9VE-1G	NT	938 (Aged Gas and Diesel)	U	U	0.69	2.95

Sample Number	Depth of Sample (feet bgs)	$\begin{array}{\|c\|} \hline \text { Date of Sample } \\ \text { Collection } \\ \hline \end{array}$	Field SampleNumber	EPA 418.1TPH-IR $(\mathrm{mg} / \mathrm{kg})$ ppm	EPA Method 8015ModifiedTPFH$(\mathrm{mg} / \mathrm{kg}) \mathrm{ppm}$	EPA Method 8020			
						Benzene ($\mathrm{mg} / \mathrm{kg}$)	Toluene (mg/kg)	($\mathrm{mg} / \mathrm{kg}$) Ethylbenzene	Xylenes (mg/kg)
41	16	3/26/90	2VBA-1	247	$\begin{gathered} 212 \\ \text { (Gas) } \end{gathered}$	0.09	4.03	3.04	19.8
42	12	3/27/90	WOS-1	(1,108)	NT	U	U	U	U
43	13	3/27/90	2VE-1	571	NT	- U	17.5	9.3	55.9
44	18	3/26/90	2VEC-1	277)	NT	U	U	U	U
45	13	4/10/90	8VB-2	U	NT	U	U	U	U
46	11	4/10/90	9VE-2	2,080	NT	NT	NT	NT	NT
47	11	3/26/90	4VBA-1	5.9	NT	U	U	U	U
48	16	7/26/90	9VE-1H	NT	U	U	U	U	U
Phase II									
49	13	7/1/91	7.1.91-1	NT	U	NT	NT	NT	NT
50	15	7/3/91	7.3.91-1	NT	U	NT	NT	NT	NT
51	13	7/3/91	7.3.91-2	NT	19 (diesel)	NT	NT	NT	NT
52	13	7/3/91	7.3.91-4	NT	U	NT	NT	NT	NT

Notes:	
Mg/ Kg is equivalent to parts per million (ppm) in soil.	
(1) TPH-IR means total petroleum hydrocarbons-infrared spectrophotometry (2) TPFH means semi-volatile total petroleum hydrocarbons. Fuel type based on elution ranges of selected hydrocarbons. U Not detected at or above the method reporting limit. NT Not tested by the laboratory.	

Table 5-2

Washington State Department of Ecology
MTCA Method A Soil Cleanup Standards for Petroleum Hydrocarbons at UST Sites
Table 5-3
Stockpiled Soil Analysis

DANI/BROAD-T.102/sna:3
sand lens was approximately 3 - to 5 -inches thick, and 50-feet in length and tapered at each end before pinching out. The approximate location of the sand lens is shown on Figure 4-1.

To determine the extent of contamination near Sample 8, single soil sample (7.3.91-1) was collected approximately 2 -inches below the sand lens from the glacial till. Both TPH and BTEX concentrations were non-detect at the laboratory reporting limit. We, therefore, conclude that soil contamination at this location is restricted to the sand lens material. The westerly extent of the sand lens was not investigated as excavation was terminated at Greenwood Avenue, which forms the western property boundary of the site.

5.2 Soil Stockpile Samples - Phase II

Ten stockpile soil samples were analyzed by SAS to characterize the nature and concentration of petroleum hydrocarbon compounds present in the soils. Results are summarized in Table 5-3; laboratory data is included in Appendix C.

A review of the results and comparison with the MTCA Method A soil cleanup standards (Table 5-2) indicates that 7 of the 10 samples exceeded standards for TPH and 3 of the 10 samples exceeded concentrations for one or more BTEX compounds. Sample SP-7 collected from stockpiled soils formerly surrounding the waste oil tank (Tank 7), detected no pesticides or PCBs and low non-regulated concentrations of 1,1,1trichloroethane and tetrachloroethene.

6 SOIL TREATMENT - PHASE I

Soil treatment at the site has been completed in two phases. Phase I was performed by GES between August 23, 1990 and June 1991. Phase II was completed by TRC between June 1991 and November 1, 1991. This section describes Phase I activities, Section 7 describes Phase II.

Laboratory analysis of impacted soil collected from the site identified three general types of petroleum hydrocarbons in the soil: 1) gasoline-range, 2) fuel oill-range, and 3) waste oil (bearing oill-range). Based on stockpile soil analysis, approximately 2,000 cubic yards of soil were impacted by gasoline compounds and 400 cubic yards by fuel oil and waste oil compounds.

To treat the soil to MTCA soil cleanup standards, SE/E designed two on-site soil treatment systems: 1) a soil vapor extraction system for soil containing gasoline compounds, and 2) a soil bioremediation (landfarming) system for soil containing fuel oil and waste oil compounds. The soil remediation systems were designed for GES who constructed, operated, and maintained the systems. SE/E provided periodic vapor emissions monitoring to assist GES.

6.1 Soil Venting System

Approximately 2,000 cubic yards of soil containing gasoline compounds was excavated from the site. Due to the limited area available for soil treatment on the surface, SE / E recommended that the soil be returned to the UST excavation and treated with a vapor extraction system (VES) installed in the impacted soil.

6.1.1 Construction Method

The VES was constructed by placing an initial 1 -foot layer of 1 -inch-diameter drain rock in the base of the excavation. Vertical vents were placed on approximate 15 -foot centers in the excavation on the drain rock and the gasoline impacted soil placed around the vents to the surface. Bentonite
hydrated with water was used to seal the vents at the surface and minimize the potential for air channeling around the vents during system operation.

The vertical vents were constructed of 4-inch-diameter schedule 40 PVC with a 5- or 10-foot section of factory slotted PVC on the bottom of each vent. Vents 1 through 14, 16, 17, and 19 had a 5 -foot length of screen. Vents 15 and 18 had 10 -feet of screen. Figure 6-1 shows the soil venting system design.

The soil vents were attached in series at the surface to a condensate trap and two Rotron DR404 (1 horsepower) blowers. Each soil vent had an individual ball-valve and air-port to allow isolation of treatment areas and provide access for air into the system. Vapors were released to the atmosphere from a 20-foot-tall air emission stack with a portal for emission monitoring. Soil treatment by the VES commenced on August 23, 1990.

6.1.2 System Operation

Air-Emissions Permit. Prior to system start-up, GES applied for and was issued an operating permit from the Puget Sound Air Pollution Control Agency (PSAPCA), which limited air emissions to 15 pounds of VOCs per day. The permit is in the possession of GES.

Effluent Vapor Sampling. An initial vapor emissions sample was collected on August 23, 1990, (day one of soil treatment) from a portal in the air emissions stack. The sample was submitted to Columbia Analytical Services (CAS) of Longview, Washington for BTEX and TPFH analysis.

Vapor Monitoring. Concentrations of hydrocarbon vapors were periodically monitored with a PID through the portal in the emissions stack. Emissions were greatest upon initial start-up of the system and declined asymptotically over time as air passed through the system and the soils were cleaned up.

Vapor Concentrations. BTEX and volatile hydrocarbon concentrations from the vapor emission sample collected August 23, 1990, are summarized on Table 6-1 (Laboratory testing results are included in Appendix D). To limit the total volatile hydrocarbons emissions to less than 15 pounds per day, SE/E maintained the air emissions below 500 ppm volatile hydrocarbons (as measured with a PID) by adding air to the system via a portal in the condensate trap.

		EPA Method 8020				
Sample Number	Date of Collection	Benzene $(\mu \mathrm{L} / \mathrm{L})$	Toluene $(\mu \mathrm{L} / \mathrm{L})$	Ethylbenzene $(\mu \mathrm{L} / \mathrm{L})$	Xylenes $(\mu \mathrm{L} / \mathrm{L})$	Volatile Hydrocarbons $(\mu \mathrm{L} / \mathrm{L})$
D-G1	$8 / 23 / 90$	7.6	22.0	7.0	28.3	1,820 (gasoline)
Note: $\mu \mathrm{L} / \mathrm{L}=$ parts per million (ppm)						

Water Level Monitoring. Due to the low permeability of the native glacial till soils at the site, water derived from seepage and rainfall infiltration accumulated within soils in the excavation. This reduced efficiency of the VES and required periodic pumping to maintain the system.

Water level monitoring on a monthly basis commenced in July 1990, at which time a small amount of water was recorded in the base of the excavation. SE/E recommended that GES obtain approval from Metro to discharge water to the Seattle sewer system. To facilitate approval of the discharge permit, SE/E collected a water sample (Sample EW-1) from airvent 4 on July 25, 1990 (Figure 6-1). At the request of Metro the sample was analyzed for TPH, BTEX, and selected total metals (lead, copper, and zinc). Results are presented in Table 5-1 1 abgratory data is included in Appendix E. Concentrations of BTEX, TPH, and metals were all within the Metro acceptance levels and GES obtained authorization from Metro to dispose of discharge water to the Seattle Sewer system.

On November 21, 1990, SE/E measured approximately 10 feet of water in the excavation, and the vapor extraction system was turned off. On December 14, SE/E collected an additional water sample from the excavation and at the direction of Metro submitted the sample for pH , BTEX, and TPH analysis. Results of the analyses are presented in Table 6-2; laboratory data is included in Appendix E. Concentrations of TPH, benzene, toluene, and ethylbenzene were at or below the MRL. Xylenes were recorded at a concentration of $1.3 \mathrm{mg} / \mathrm{L}$.

On December 31, 1990, SE/E obtained Metro's permission to dispose of water into the Seattle Sewer system. The Metro water disposal permit is included in Appendix F.

On January 4, 1991, GES installed water pumps in air-vents -5 and -14, and began pumping up to 5 gpm from the excavation to the Seattle Sewer system. Approximately 40,800 gallons of water was pumped from the excavation and disposed of in the Seattle Sewer system

6.2 Soil Landfarming

In addition to the gasoline impacted soil, approximately 400 cubic yards of fuel oil and/or waste oil impacted soil were removed from the UST excavation. SE/E recommended that GES treat the soil on site by thin spreading the soil, applying fertilizer to promote bacterial activity, and tilling the soil on a regular basis.

DANI/BROAD-T.102/dsg:2

Due to the small area available for soil treatment, the fuel oil/waste oil impacted soils were treated in two batches. Treatment of Batch 1 began on August 23, 1990. Treatment of Batch 2 began on November 14, 1990.

6.2.1 Method

GES began treatment of the fuel oil/waste oil impacted soil on August 23, 1990. Treatment involved thin spreading (approximately 8 -inch-thick lifts) the soil over the available site area, adding fertilizer and tilling the soil on a regular two-week interval. Straw bails were placed around the soil being treated to minimize erosion and off-site transport of soil. The area on site used to treat the fuel/waste oil impacted soil is shown on Figure 6-2.

Batch 2 treated soils were covered with plastic during the winter months to reduce rainfall infiltration.

6.3 Treatment Verification - Phase I

To verify that soil remediation by the VES and by landfarming had reduced petroleum hydrocarbon concentrations below the MTCA Method A soil cleanup standards, SE/E completed soil sampling and laboratory analysis of the treated soils.

6.3.1 Landfarmed Soil Sampling - Batch 1

On October 25, 1990, SE/E collected nine soil samples from three quadrants of the treatment area, and on January 15, 1991, three soil samples from one quadrant of the treatment area. Figure 6-2 shows the location of soil samples collected from the treated soil. The sampling method is similar to the stockpiled soil sampling method described in Appendix B, Section B-3.

Laboratory Analysis. The nine soil samples collected on October 25, 1990, were composited by SAS into three samples according to quadrant and analyzed for TPH-IR. The three samples collected on January 15, 1991, were submitted to Columbia Analytical Services (CAS) for compositing into one sample and was also analyzed for TPH-IR. The January sample was collected from quadrant C of the treatment area.

Soil Analysis Results. Laboratory analysis results of soil samples treated by landfarming are presented in Table 6-3 and in Appendix G.

Composite soil samples 1 and 2 collected on October 25, 1990, had TPH concentrations of 194 and 180 ppm, respectively, and were both below the 200 ppm standard for soils containing fuel oil and waste oil. Based on the soil sampling results, soil from quadrant areas A and B were returned to an open area of the original excavation. Composite soil sample 3 (quadrant area C) had a TPH concentration of 251 ppm and the soil underwent further treatment with the Batch 2 soil.

Composite soil sample 1 collected on January 15, 1991, also from quadrant area C had a TPH concentration of 1600 ppm . The soil was left on-site and underwent further treatment by tilling, fertilizer application and aeration during treatment of the Batch 2 soils.

6.3.2 Landfarmed Soil Sampling - Batch 2

On May 29 1991, SE/E collected three samples from each of five areas of the Batch 2 treated soils. The samples were submitted to SAS for laboratory analysis of TPH-IR. The sampling technique followed the same method as described in Appendix B-2. Chain-of-custody documentation is included in Appendix H .

Laboratory Analysis. SAS composited the three samples from each area and analyzed each for TPH-IR using EPA Method 418.1.
Soil Analysis Results. Laboratory results are presented on Table 6-4 and in Appendix H . TPH-IR concentrations for the five samples ranged between 270 and $420 \mathrm{mg} / \mathrm{Kg}$ and were all above the $200 \mathrm{mg} / \mathrm{Kg}$ concentration set as the MTCA Method A soil cleanup standard for soils impacted by oil-related compounds.

The soil was left on-site and underwent further treatment during Phase II activities (see Section 7).

6.3.3 VES Treated Soil

On January 18, 1991, SE/E collected 14 soil samples from nine test pits excavated in the VES treated soils. The test pits were excavated to the bottom of the treated soil fill material and samples collected from $1 / 3$ and $2 / 3$ of the total depth of the test pit. Figure $6-3$ shows the approximate location of the test pits and sample locations. The soil sampling method is similar to that described in Appendix B, Section B-2.

Table 6-3
Treated Soil Quality (Phase II - Batch 1)

Date of Sample Collection	Sample Number	Composite Sample Number	TPH-IR $(\mathrm{mg} / \mathrm{kg})$
$10 / 25 / 90$	DLF-1090-A1		
$10 / 25 / 90$	DLF-1090-A2		
$10 / 25 / 90$	DLF-1090-A3		194
$10 / 25 / 90$	DLF-1090-B1		
$10 / 25 / 90$	DLF-1090-B2	2	180
$10 / 25 / 90$	DLF-1090-B3		
$10 / 25 / 90$	DLF-1090-C1		
$10 / 25 / 90$	DLF-1090-C2	3	251
$10 / 25 / 90$	DLF-1090-C3		1680
$01 / 15 / 91$	DE-1-91-A	1	
$01 / 15 / 91$	DE-1-91-B		
$01 / 15 / 91$	DE-1-91-C		
Note:			
TPH-IR analysis using EPA Method 418.1			
Mg/kg $=$ parts per million (ppm)			
Samples collected in October were analyzed by SAS			
Samples collected in January were analyzed by CAS			
Refer to Figure 6-2 for sample locations.			

Table 6-4
Soil Quality Data - Treated Soils

Phase I-Batch 2

Sample Number						TPH-IR
D-591-D1	330					
D-591-E1	420					
D-591-F1	380					
	D-591-G1					
	D-591-H1					
NOTES:	Results reported In mg/kg (ppm)					
	All samples collected 5/29/91					
	TPH-IR Analysis using EPA Method 418.1.					

Soils sampled from test pits within the VES excavation had minor to no odor and appeared to be "clean" based on visual observation. PID screening of soil samples from the test pits had volatile organic vapor concentrations ranging between zero and 12.8 ppm .

Laboratory Analysis. The 14 soil samples were submitted to CAS for compositing and analysis. Two soil samples collected from test pits $-1,-3$, $-5,-6$, and -8 were composited into one sample per test pit. Single samples were collected from test pits $-2,-4,-7$, and -9 , and were analyzed as discrete samples. Composite and discrete soil samples were analyzed for TPFH, TPH, and BTEX compounds.

Soil Analysis Results. Laboratory analysis results of soil samples collected from the test pits are presented in Table 6-5 and in Appendix I. PID concentrations recorded at the time of sampling are also presented in Table 6-5.

Review of the results indicate that no BTEX compounds were detected in any sample. However, in five of the nine samples, TPFH and TPH-IR concentrations between 270 and $1,100 \mathrm{mg} / \mathrm{Kg}$ were detected. Furthermore, TPFH analysis indicated that diesel and heavy oil were the principal contaminants with no gasoline being detected.

Based on the non-detection of BTEX compounds it was concluded that treatment of gasoline contaminated soils by the VES was successful. However, the elevated TPH concentrations indicated that diesel and heavy oil remained in soils in the former tank excavation.
Table 6-5
Treated Soil Quality (VES System)

Sample Number	$\begin{gathered} \text { PID } \\ \text { Measurements } \\ \text { (field) } \end{gathered}$	TPFH		TPHR	BTEX Compounds				
		Diesel	$0{ }^{1}$		Benzene	Toluene	Efiyberrane	Xyene	
D-16, 1-10 Comp.	0 and 0	ND	ND	NT	ND	ND	ND	ND	
D.2.5	0	ND	730	209	ND	nd	ND	ND	
D.36, 399 Comp.	1.8 and 0	ND	330	361	ND	nо	ND	ND	
D48	1.2	270	250	565	ND	nD	ND	ND	
D.5.5, 5-10 Comp.	128 and 7.2	170	ND	NT	ND	nD	ND	nD	
D6-6, 6-12 comp.	1.8 and 6.6	ND	ND	nt	nD	nо	nD	no	
D.7.8	0	nd	ND	nt	ND	nD	nD	nD	
D84, 8-12 Comp.	0 and 0	ND	1,100	488	ND	nD	nD	nD	
D-9.13	0.6	ND	300	366	ND	ND	ND	nD	
NOTE:									
All concentrations are reported i makg (pom).									
TPPH									
TPTHR A	Andysis using PPA Method 418.1.								
	,								
	Concentroion less trin the Method Reporting linit (NFIL).								

7 SOIL TREATMENT - PHASE II

degredation probinets?

Based on the detection of diesel and oil related compounds in the VES soil samples collected on January 18, 1991, soils in the excavation were reexcavated and placed in approximate 100 -cubic yard stockpiles. The soil stockpiles were then sampled and analyzed for TPH-IR by EPA Method 418.1. As diesel and oil were the principal petroleum contaminants, soil samples with a TPH concentration below the $200 \mathrm{mg} / \mathrm{Kg}$ MTCA Method A cleanup standard were segregated as "clean", and stockpiles that exceeded the standard were segregated for additional treatment.

7.1 Soil Excavation

Due to the space restrictions on site, re-excavation of soil and soil stockpiling was completed in two stages. The initial re-excavation stage was completed on June 10, and 11, 1991. The second re-excavation stage was completed between July 1, and July 3, 1991.

In total, approximately 2,000 cubic yards of soil was re-excavated from the former tank excavation and placed in 20 stockpiles of approximately 100 cubic yards. In addition, approximately 100 cubic yards of soil from the Phase I, Batch 2 landfarming area were stockpiled as "dirty", requiring further treatment.

7.2 Stockpile Soil Sampling - Phase II

Verification soil samples were collected from nine stockpiles on June 11, 1991, and from a further 11 stockpiles on July 5, 1991. Sampling methods are described in Appendix B, Section B-2.

7.2.1 Laboratory Analysis

Three soil samples were collected from each stockpile and were submitted to SAS for TPH-IR analysis using EPA Method 418.1. Samples from each individual stockpile were composited by the laboratory prior to analysis.

7.2.2 Soil Analysis Results

Laboratory results of the stockpiled soil are presented in Table 7-1 and in Appendix J. Review of the data indicated that 13 of the 20 stockpiles had TPH-IR concentrations below $200 \mathrm{mg} / \mathrm{Kg}$. These soils were "clean" based on the MTCA Method A soil cleanup standards, and were returned to the excavation. The seven stockpiles with TPH-IR concentrations exceeding the standard were segregated as requiring additional treatment by landfarming.

7.3 Soil Treatment

Soils requiring treatment by landfarming were treated on-site in two batches due to the space limitations of the site. Batch 1 was treated between July 15, 1991 and September 3, 1991, and Batch 2 between September 5, 1991 and November 1, 1991.

Soil treatment consisted of tilling the soil with a rake/tiller, and a plough to a depth of approximately 1 -foot bgs, applying approximately 800 pounds of chemical fertilizer (per batch), and adding water during the dry periods. Tilling was performed at least two times per week. Soils were left uncovered.

7.3.1 Treatment Verification

Treatment verification samples were collected monthly from the soil treatment pad following commencement of treatment. Samples were collected and analyzed at the ratio of one sample per 100 cubic yards of soil.

Batch 1. Composite samples were collected from Batch 1 soils on August 9, and on September 3, 1991. The treatment pad was divided into four quadrants and four samples were collected from each quadrant. Each set of samples were composited in the field in a clean stainless steel bowl before being transferred to appropriate laboratory supplied containers. Sampling procedures and decontamination methods are described in Appendix B-2 and B-3.

Samples were submitted to SAS under chain-of-custody for TPH-IR analysis using EPA Method 418.1.

Table 7-1
Soil Quality Data - Stockpile Soil (Phase II)

Sample Number	Date	TPH-IR
SC-2	June 11, 1991	110
SC-3	June 11, 1991	180
SC-4	June 11, 1991	150
SC-5	June 11, 1991	140
SC-6	June 11, 1991	280
SC-7	June 11, 1991	330
SC-8	June 11, 1991	360
SC-9	June 11, 1991	130
SC-10	June 11, 1991	110
SC-11	July 5, 1991	66
SC-12	July 5, 1991	110
SC-13	July 5, 1991	65
SC-14	July 5, 1991	470
SC-15	July 5, 1991	130
SC-16	July 5, 1991	160
SC-17	July 5, 1991	730
SC-18	July 5, 1991	160
SC-19	July 5, 1991	180
SC-20	July 5, 1991	390
SC-21	July 5, 1991	400
ROTES:	Results reported in mg/kg (ppm)	
TPH-IR analysis using EPA Mothod 418.1		

Laboratory Results. Results of the two Batch 1 sampling events are presented in Table 7-2, and in Appendix K.

A comparison of the October 1, 1991 sampling results with the MTCA Method A cleanup standards indicate that three samples remained above the $200 \mathrm{mg} / \mathrm{Kg}$ standard. Consequently, the soil underwent further treatment before additional samples were collected on September 3, 1991. The fourth sample had a TPH concentration of $140 \mathrm{mg} / \mathrm{Kg}$ and the soil represented by the sample underwent no further treatment.

Comparison of the September sampling results with the MTCA Method A soil cleanup standards indicate all three samples had TPH concentrations below $200 \mathrm{mg} / \mathrm{Kg}$ and were "clean".

Batch 1 soils were returned to an open area of the former tank excavation and the Batch 2 soils were spread on the site for treatment.

Batch 2. Composite samples were collected from Batch 2 soils on October 1, and on November 1, 1991. The treatment pad was divided into four quadrants and four samples were collected from each quadrant using the same method as described for Batch 1.

Samples were submitted to SAS under chain-of-custody for TPH-IR Analysis using EPA Method 418.1.

Laboratory Results. Results of the two Batch 2 sampling events are presented in Table 7-3, and in Appendix L.

A comparison of the October 1, 1991 sampling results with the MTCA Method A cleanup standards indicate that all four quadrants of the treatment area remained above the $200 \mathrm{mg} / \mathrm{Kg}$ standard. Consequently, the soil underwent further treatment before additional samples were collected on November 1, 1991. Comparison of the November sampling event results with the cleanup standard indicate all the Batch 2 soils were below the $200 \mathrm{mg} / \mathrm{Kg}$ soil cleanup standard.

Batch 2 soils were returned to an open area of the former tank excavation, and the site returned to final grade.

Table 7-2
Soil Quality Data - Treated Soil
(Phase II - Batch 1)

Sample Number	Date	TPH-IR
DV-8/91-1	$8 / 9 / 91$	270
DV-8/91-2	$8 / 9 / 91$	210
DV-8/91-3	$8 / 9 / 91$	140
DV-8/91-4	$8 / 9 / 91$	210
DV-9/3-1	$9 / 3 / 91$	100
DV-9/3-2	$9 / 3 / 91$	170
DV-9/3-3	$9 / 3 / 91$	110
NOTES:	Results roported in mg/kg (ppm) TPH-IR analyais using EPA Mothod 418.1	

Table 7-3
Soil Quality Data - Treated Soil (Phase II - Batch 2)

Sample Number	Date	TPH-IR
DV-10-1-1	$10 / 1 / 91$	410
DV-10-1-2	$10 / 1 / 91$	430
DV-10-1-3	$10 / 1 / 91$	310
DV-10-1-4	$10 / 1 / 91$	240
DV-11-91-1	$11 / 1 / 91$	46
DV-11-91-2	$11 / 1 / 91$	50
DV-11-91-3	$11 / 1 / 91$	43
DV-11-91-4	$11 / 1 / 91$	55
NOTES:	Results reportod in mg/kg (ppm)	
	TPH-IR analysis using EPA Mothod 418.1	

8 FINDINGS AND CONCLUSIONS

Based on analytical data and observations made during investigations at the site, we conclude the following:

Geology

- Fill material, comprised of brown sand and gravel with wood and demolition debris occurred from the surface to between 3 and 5feet bgs in the areas explored.
- Up to 10 feet of fill material occurred in areas around the former USTs.
- A dense blue to gray, sandy silt (Glacial Till) occurs beneath the fill material, and to a depth of at least 26 feet bgs.
- A thin sand lens (approximately 5-inches thick and 50-feet long) occurs on the western sidewall of the former tank excavation, at a depth of approximately 12 -feet bgs.

Hydrogeology

- Native soils were damp at the base of the excavation. No ground water was observed.
- Water seepage into the excavation was observed at the surface of the glacial till in March 1990 during initial excavation activities, and is probably a seasonal occurrence.
- Water seepage into the excavation was also observed at a depth of 12 feet bgs on the western sidewall of the tank excavation from the sand lens described earlier. Seepage ceased from the sand lens shortly after excavation, and was dry during the summer of 1991.
- Some seepage may also be associated with a storm water catch basin located east of Greenwood Avenue and approximately 15 feet from the excavation sidewall, adjacent to an observed seepage location.

Petroleum Hydrocarbons in Soil

- Petroleum hydrocarbon compounds were detected at concentrations above the MTCA Method A cleanup standards in soils beneath the former Broadview Service Station. Petroleum hydrocarbon compounds originated from gasoline, fuel oil, and waste oil related petroleum products.
- Concentrations of TPH and BTEX compounds were used as an indication of petroleum hydrocarbon contamination of the soil, and were later used to verify site cleanup.
- PCBs, metals, pesticides, or halogenated volatile organics were not identified in the soil.
- Approximately 2,000 cubic yards of soil had elevated TPH and/or BTEX concentrations as a result of gasoline related petroleum hydrocarbons.
- Approximately 800 cubic yards of soil had elevated TPH concentrations as a result of fuel oil, or waste oil related petroleum hydrocarbons.
- Laboratory analysis of verification soil samples collected from the base and sidewall extremities of the tank excavation, indicate TPH and BTEX concentrations in the base, and on the north, south, and east sidewalls are below the MTCA Method A soil cleanup levels.
- Laboratory analysis of one soil sample (Sample 8) collected from the west sidewall of the excavation indicate that TPH and BTEX concentrations exceed the MTCA Method A soil cleanup levels at the site boundary, and at one location. The sample was collected from the sand lens described earlier, when minor seepage from the sand lens was occurring. The sand lens was not specifically sampled at any other location on the western sidewall of the excavation.
- Analysis of a sample (7.3.91-1) collected 2-inches below the sand lens indicates that contamination has not migrated into native glacial till soils below the sand lens. Other soil samples collected from the western sidewall of the excavation verify that soil contamination has not extended off-site in the native, dense glacial till material.

Soil Remediation

- A total of approximately 2,450 cubic yards of soil was excavated and treated to MTCA Method A soil cleanup standards. This total is made up of 2,400 cubic yards excavated during Phase I and 50 cubic yards during Phase II.
- Of the 2,450 cubic yards, approximately 2,000 cubic yards of gasoline contaminated soils was originally treated on-site using a VES.
- Approximately 1,100 cubic yards of fuel oil and waste oil contaminated soils were treated on-site using landfarming techniques. The 1,100 cubic yards is comprised of 400 cubic yards excavated during Phase I, and 700 cubic yards re-excavated and re-treated by landfarming during Phase II. (Phase II treatment required re-excavation and re-treatment of Phase I treated soils.)
- All contaminated soils excavated from the site were treated to levels below those specified in the Washington State MTCA Method A soil cleanup standards.

Appendix A DRILLER'S BORING LOGS

Well 4 26 26 204-30K

(1) OWNER: Name Evergreen - Wa shelli, INC Address 11,111 Aurora Ave., No. Seattle 98133
 Bearing and distance from section or subdivision corner $\mathrm{N}=1 / 2$
(3) PROPOSED USE: $\begin{array}{lll}\text { Domestic } \square & \text { Industrial } \square & \text { Municipal } \square \\ \text { Irrigation } \square & \text { Test Well } \square & \text { Other }\end{array}$
(4) TYPE OF WORK: Owner's number of well

(5) DIMENSIONS:

Drilled....... 126 Diameter of well inches.

(6) CONSTRUCTION DETAILS:

Casing installed:" Diam. from 6

Perforations: yes No \square

Type of perforator used.
SIZE of perforations \qquad in. by
нии
\qquad perforations from
perforations from \qquad it 1 . perforations from \qquad ft. to
............. ft.mmunnum.... perforations from ft. to ft ,

Screens: yes χ No \square No. h. $\frac{\text { S. A. h. }}{}$.

Gravel packed: Xes \square No \square Size of gravel: Gravel placed from

Surface seal: Yes No \square To what depth? 2 Material used in seal....................................n.en.it Did any strata contain unusable water? Yes $\square \quad$ No \square Type of water?................................ Depth of strata. Method of sealing strata off..
(7) PUMP: Manufacturer's Name. Type:
H. $\mathbf{P}_{\mathbf{n}}$
(8) WATER LEVELS:

Land-surface elevation above mean sea level.. \qquad

Static level ft . below top of well Date.

 lbs. per square inch Date. Artesian water is controlled by.> (Cap, valve, etc.)

(9) WELL TESTS: $\begin{aligned} & \text { Drawdown is amount water level is } \\ & \text { lowered below static level }\end{aligned}$

Was a pump test made? Yes \square No \square If yes, by whom?...
Yield: $\quad \mathrm{gal} / \mathrm{min}$. with ft . drawdown after

Recovery data (time taken as zero when pump turned off) (water level measured from well top to water level)

Date of test

Temperature of water.............. Was a chemical analysis made? Yes \square No \square

(10) WELL LOG:

WELL DRILLERS STATEMENT:

This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
NAME Burt We l/ Drilling y, Incl
 $4 \& 300$

STATE OF WASHINGTON

 Bearing and distance from section or subdivision corner

North Hat,
(3) PROPOSED USE: Domestic \square Industrial \square Municipal \square Irrigation \square Test Well \square Other \square
(4) TYPE OF WORK: Owner's number of well

(5) DIMENSIONS: Drilled 149 Diameter of well2. inches.
(6) CONSTRUCTION DETAILS:

Casing installed:
Threaded \square L.... 1.2 Diam. from 0 ft. to $\ldots 13.5^{-3} \ldots \mathrm{ft}$. Welded \square \qquad Diam. from \qquad ft . to

ft. to . \qquad | ft. |
| :--- |
| ft. |

Perforations: Yes \square No XD W hers Type of perforator used. SIZE of perforations perforations from
perforations from perforations from

$$
\ldots
$$

\qquad in. by
ft, to
ft. to in.
\qquad
\qquad ft . to . ft.
\qquad

 .
 Diam, /2."... Slot size .xhi20.. from .123... $4 t$ to $42 \ldots \mathrm{ft}$ Diam. Slot size from $\mathrm{ft}^{\text {t. to } ~} \mathrm{ft}$.

Gravel packed: Xes $\square \quad$ No \square Size of gravel: Gravel placed from ft , to ft.

 Did any strata contain unusable water? Yes $\square \quad$ No \square Type of water?................................ Depth of strata. Method of sealing strata off..
(7) PUMP: Manufacturer's Name. Type:
H. P .
(8) WATER LEVELS: Land-surface elevation
 Artesian pressure \qquad ...lbs. per square finch Date.. Artesian water is controlled by.

> (Cap, valve, etc.)

(9) WELL TESTS:

Drawdown is amount water level is lowered below static level
Was a pump tent made? Yes \downarrow No \square If yes, by whom?.... D mi:/ C....... Yield;
$\mathrm{gal} / \mathrm{min}$. with
ft. drawdown after

$"$	$"$	$"$	$"$
$"$	$"$	$"$	$"$

Recovery data (time taken as zero when pump turned off) (water level
measured from well top to water level) measured from well top to water level)

Date of test
Bailer test..
gal./min. with.
ft. drawdown after.
...hrs.
Artesian flow. W...ииинитm er...... Was a g.p.m. Date...

Temperature of water............. Was a chemical analysis made? Yes \square No \square

(10) WELL LOG:

Formation: Describe by color, character, size of material and structure, and show thickness of aquifers and the kind and nature of the material in each stratum penetrated, with at least one entry for each change of formation.

WELL DRILLERS STATEMENT:

This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief,

NAME

License No..... 2 R
Date. \qquad

WELL LOG
No....Ap.pli.a.... 4153
Date...Dec.....7....9 \qquad 19.... 5.5

Record by.... LaynemPacific....Inc...... Source..drilizer's...necord

Location: State of WASHINGTON
County......King:
Area.
Map.
SEL4SE.1/4 N.W. $1 / 4 \sec$ 3. 3 ..'T..26.N., R.. 4
Drilling Co...Layne-Pacific....Inc.a
Addross..1.5524...Bo.the.1.1...Way.....Seat.tle....5.5.
Method of Drilling.....drilled Date...Dec. 9.
Owner... Layne-Pacific....Inc.a.
Address... 15524 . Bothell Way. Seat...............................
Land surface, datum......................ft. above

Conum	Matrial	${ }_{\substack{\text { Tuckersen } \\ \text { (feet) }}}$	(Dreat)
(Transeribe driller's terminology literally but paraphrase ae neeessary, In parenthesen If materina water-bearings, so state and record atatie level if reported. Glve depths in feetbelow land-aurface datum unlens otherwino indicated. Correlate with atratigraphic column if feasible. Following loy of matoriala, list ail casiogs, perforationa, sereens, ete.)			
	Sandy clay \& gravel	58	58
	Sand \& gravel (very smal)		
	amt. water)	12	70
	Fine sand (very small		
	amount of water)	18	88
	Sandy clay \& gravel	5	93
	Coarse sand \& gravel	2	95
	Sandy clay	2	97
	Coarse sand \& large grave	2) 7	104
	Gray clay	2	106
	Sandy clay \& gravel	4	110
	Fine heaving sand	5	11.5
	Fine sand	1	1.16
	Vecy sandy clay	23	139
	Very sandy blue-clay	4	143
	Blue clay	7	150

тиги ир
Shicet.
............. of.n............ Aheutis Eive

WELK LOG.-Continued
№ $26 \quad 4 \quad 306$

	marama	Tuctersa	gita
	Well 6 peont tomers	-	139
	Tight sand	2	141
	Sand \& gravel (clay balls \% Wood below $154{ }^{\prime}$)	27	
	${ }^{\infty}$ Bxue Clay		
	SWL: $24 . \mathrm{ft}$.		
	DD: $2^{25}{ }^{\circ \prime \prime}$		
	Yiold:-530gopomo	etioal	
	Type \& size of engine: g	a	
	CASING: $16^{\prime \prime}$ diam. O.D. L $^{\prime \prime}$ steel	pate	rom
		ftid	
			134
		154 to	
		plug	
	PERFGRATIONS:		
	Layne starniess steel ${ }_{\text {droul }}$		
	(\#6-gaugo, \#6-opening).		
	$\cup^{1, \cdots-12.54-3 M}$	\checkmark	

Appendix B

FIELD INVESTIGATION PROCEDURES

B-1 Soil Vapor Monitoring

Field tests consisted of measuring volatile organic vapors with a portable photoionization detector (PID) in the sample jar headspace for each recovered soil sample. The soil samples for field screening were placed in a clean jar and aluminum foil placed over the mouth of the jar. The jar was then allowed to stand for approximately one-quarter hour. The aluminum foil was punctured with the PID probe and the resultant maximum reading in the headspace above the soil recorded.

The purpose of the field tests was to determine the relative magnitude of volatile organic vapors, if any, in the explorations. This screening equipment was also used for health and safety to monitor air quality in the breathing zone during drilling operations. A Photovac MP-100 Microtip, calibrated daily to 100 ppm isobutylene, was used to obtain the measurements.

B-2 Soil Sampling

Soil samples were collected from the excavation sidewalls and base using the excavator bucket or a stainless steel spoon attached to a sampling rod. Samples were placed directly into laboratory prepared glass containers with stainless steel sampling equipment and placed in a chilled cooler for storage and shipment to the analytical laboratory.

Sample containers were labeled in the field with a sample number, sample depth, date and samplers initials. Chain-of-custody documentation was used to accompany sample shipment to the laboratory.

Sampling equipment was decontaminated between each sample location to minimize the possibility of sample cross-contamination. The decontamination process included an initial non-phosphatic soap solution wash, a methanol solution rinse, and a final deionized water rinse.

B-3 Stockpiled Soil Sampling

Method. Representative soil samples were collected from the stockpiles using a shovel and stainless steel spoons. The shovel was used to dig into the stockpile approximately one foot below the surface, and the spoons used to pack the soil into a laboratory prepared glass container. Sample containers were labelled, stored, and transported to the laboratory according to the protocol described in Section 4.3.2.

Sampling equipment was decontaminated in a similar manner to that described in Appendix Section B-2.

B-4 Vapor Sampling Method

A gas sample was collected from the air-emissions stack using a "vacusampler" air canister. An initial gas sample was collected on August 23, 1990, by attaching a "Vacu-Sampler" to tubing inserted in the air emissions stack. The valve on the "Vacu-Sampler" was depressed which allowed the effluent vapors to be pulled into the container. Immediately following collection of the vapor sample, hydrocarbon vapor concentrations (recorded with a PID), ambient air temperature, and temperature of the exhaust vapors were recorded. The container was then submitted for laboratory analysis.

Appendix C
SOIL ANALYSIS DATA - EXCAVATION AND STOCKPILES (PHASE I)

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFIC HIOHWAY EAST, SUTTE B-14, TACOMA, WASHINOTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Sweet Edwards Date: April 19, 1990
Report On: Analysis of Soil
Lab No.: 10864

IDENTIFICATION:
Samples Received on 04-17-90
Project: W160101 Daniels
Client ID: RUSH 5VS-2
ACDM Non

ANALYSIS:
Benzene, ppm .. 0.05
Toluene, ppm 0.05

Xylenes, ppm ... <0.05
BTEX by EPA SW-846 Modified Method 8020
Total Petroleum Hydrocarbons, ppm 5.0 by EPA Method 418.1

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS

QUALITY CONTROL REPORT

DUPLICATES

Lab No:	10864
Date:	April 19, 1990
Client:	Sweet Edwards

Client ID: 5VS-2
Matrix: Soil
Units: ppm

Compound	Sample(S)	Duplicate(D)	RPD*	
Total Petroleum Hydrocarbons	<5.0	<5.0	---	

```
*RPD \(=\) relative percent difference
    \(=[(S-D) /((S+D) / 2)] \times 100\)
```


Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFIC HIOHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

ANALYSIS:

Lab Sample No.
Client ID
Total Petroleum Hydrocarbons, ppm by EPA Method 418.1

RUSH
1
RUSH - 2

3
4
5
6
7

9-VB-2
$8-\mathrm{VB}-2$
$8-\mathrm{VN}-1$
8-VW-2
9-VE-2
7-VB-1
$9-\mathrm{VW}-2$
94.4
<5.0
17.6 9.8

2,080
5.3

2,239

Lab Sample No.
RUSH 1

RUSH 2

3

Client ID
9-VB-2
$8-\mathrm{VN}-1$

9-VE-1

Total Petroleum Fuel Hydrocarbons, ppm, by EPA SW-846 Modified Method 8015

24
as Diesel
as Diesel
-

17
as Diesel

Sound Analytical Services, Inc.

Sweet Edwards

Project: W-160101
Page 2 of 2
Lab No. 10813
April 6, 1990

Lab Sample No.	RUSH 2	3	4	8
Client Identification	$8-V B-2$	8-VN-1	8-VW-2	9-VE-1
Matrix/Units	$\begin{array}{r} \text { Soil } \\ \mathrm{mg} / \mathrm{kg} \end{array}$	$\begin{array}{r} \mathrm{Soil} \\ \mathrm{mg} / \mathrm{kg} \end{array}$	$\begin{array}{r} \text { Soil } \\ \mathrm{mg} / \mathrm{kg} \end{array}$	$\begin{array}{r} \mathrm{Soill} \\ \mathrm{mg} / \mathrm{kg} \end{array}$
Benzene	<0.05	<0.05	<0.05	<0.05
Toluene	< 0.05	0.12	<0.05	0.09
Ethyl Benzene	<0.05	<0.05	<0.05	<0.05
Xylenes	<0.05	0.13	<0.05	0.14
BTEX by EPA SW-846 Method 8020				

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFIC HIGHWAY EAST, SUTTE B-14, TACOMA, WASIHINGTON 98424 - TELEBPHONB (206)922-2310 - FAX (206)922-5047

QUALTTY CONTROL REPORT

DUPLICATES

Lab No: 10813
Date: April 16, 1990
client: Sweet-Edwards

Client ID:	$8-\mathrm{VN}-1$
Matrix:	Soil
Units:	$\mathrm{mg} / \mathrm{kg}$

Compound	Sample(S)	Duplicate (D)	RPD*	
Benzene	<0.05	<0.05	$--=$	
Toluene	0.12	0.12	---	
Ethyl Benzene	<0.05	<0.05	14.3	
Xylenes	0.13	0.15		
Total Petroleum	17	13	26.7	
Fuel				
Hydrocarbons				

```
*RPD \(=\) relative percent difference
    \(=[(S-D) /((S+D) / 2)] \times 100\)
```


Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFIC HIGHWAY EAST, SUTTE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - PAX (206)922. 5047

Report To: Sweet Edwards
Report On: Analysis of Soil

IDENTIFICATION:
Samples Received on 04-11-90
Project: W-160101 Daniels

Date: April 16, 1990
Lab No.: 10792

ANALYSIS:

Lab Sample No.	RUSH 1	RUSH 2
Client ID	SP-8	SP-9
Matrix/Units	$\begin{array}{r} \mathrm{Soil} \\ \mathrm{mg} / \mathrm{kg} \end{array}$	$\begin{array}{r} \text { Soil } \\ \mathrm{mg} / \mathrm{kg} \end{array}$
Benzene Toluene Ethyl Benzene Xylene	$\begin{array}{r} <0.05 \\ < \\ 0.05 \\ 0.20 \\ 0.90 \end{array}$	$\begin{array}{r} < \\ < \\ <.05 \\ 0.05 \\ 0.14 \\ 0.33 \end{array}$
BTEX by EPA SW-846 Method 8020		
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	677	738
TPH as	Diesel	Diesel

Sound Analytical Services, Inc.

QUALITY CONTROL REPORT

DUPLICATES

Lab No: 10792
Date: Client:

April 16, 1990
Sweet-Edwards

Client ID: SP-9
Matrix: Soil
Units: ppm

Compound	Sample(S)	Duplicate(D)	RPD*	
Benzene	<0.05	<0.05	--	
Toluene	<0.05	<0.05	--	
Ethyl Benzene	0.14	0.14	--	
Xylenes	0.33	0.25	27.6	
Total Petroleum				
Fuel	738	623	16.9	
Hydrocarbons	730			

```
*RPD \(=\) relative percent difference
    \(=[(S-D) /((S+D) / 2)] x 100\)
```


Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - PAX (206)922-5047

Report To: Sweet Edwards
Report On: Analysis of Soil
IDENTIFICATION:
Samples Received on 4-2-90
Project: J-W1601-01 Daniels

Date: April 5, 1990
Lab No.:
Page 1 of 4

ANALYSIS:

NT $=$ Not Tested

Continued

Sound Analytical Services, Inc.

Sweet-Edwards
Page 2 of 4
Lab No. 10604
April 5, 1990
Lab Sample No. 5
Client ID: SP-7
Total Petroleum Hydrocarbons, ppm
56,045 by EPA Method 418.1

ORGANOCHLORINE PESTICIDES AND PCB - Method 8080

Compound	Conc., mg/kg	Detection Limit
Aldrin	ND	0.01
a-BHC	ND	0.01
b-BHC	ND	0.01
g-BHC	ND	0.01
$y-$ BHC (Lindane)	ND	0.01
chlordane (technical)	ND	0.1
4,4'-DDD	ND	0.01
4,4'-DDE	ND	0.01
4,4'-DDT	ND	0.01
Dieldrin	ND	0.01
Endosulfan I	ND	0.01
Endosulfan II	ND	0.01
Endosulfan sulfate	ND	0.01
Endrin	ND	0.01
Endrin aldehyde	ND	0.01
Heptachlor	ND	0.01
Heptachlor epoxide	ND	0.01
Methoxychlor	ND	0.02
Toxaphene	ND	0.1
PCB - Type	ND	
PCB	ND	0.1
ND $=$ Not Detectable.		
PESTICIDE SURROGATE RECOVERY		
Dibutylchlorendate, \%	79	

Sound Analytical Services, Inc.

Sweet-Edwards
Page 3 of 4
Lab No. 10604
April 5, 1990

Lab Sample No. 5
Client ID: SP-7

Halogenated Volatiles Per EPA SW-846 Method 8010.
Contaminant Concentration (mg/kg) (ppm)
Methylene chloride
1,1-dichloroethylene
<0.05
1,1-dichloroethane
1,2-transdichloroethylene
1,2-dichloroethane
1,1,1-trichloroethane
Carbon Tetrachloride
1,2-dichloropropane
Trans-1,3-dichloropropene
Trichloroethylene
Cis-1,3-dichloropropene
1,1,2-trichloroethane
< 0.05
<0.05

Tetrachloroethylene
1,1,2,2-tetrachloroethane Chlorobenzene
1,2 Dichlorobenzene
1,3 Dichlorobenzene
<0.05
<0.05
0.16
<0.05
<0.05
<0.05
<0.05
<0.05
<0.05
0.11
<0.05
<0.05
<0.05
<0.05
<0.05

Continued

Sound Analytical Services, Inc.

Sweet Edwards
Page 4 of 4
Lab No. 10604
April 5, 1990

Lab Sample No. 5
Client ID: $\mathrm{SP}-7$

Sample was analyzed for EP toxicity in accordance with "Test Methods for Evaluating Solid Waste", EPA SW-846, 3rd Edition, Sept. 1986.

Contaminant
Concentration (mg/l)
Max Conc., (mg/l)

Arsenic	<0.1	5.0
Barium	<0.4	100.0
Cadmium	<0.1	1.0
Chromium	<0.1	5.0
Lead	<0.05	5.0
Mercury	<0.1	0.2
Selenium	<0.1	1.0
Silver		5.0

Sound Analytical Services, Inc.

QUALITX CONTROL REPORT

DUPLICATES

| Lab No:
 Date:
 Client:April 5, 1990
 Sweet-Edwards | Client ID: 4VE-1
 Matrix:
 Units: | | Soil
 ppm | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Compound | Sample(S) | Duplicate(D) | RPD* | |
| Total Petroleum
 Hydrocarbons | <5.0 | <5.0 | \cdots | |

```
*RPD \(=\) relative percent difference
    \(=[(S-D) /((S+D) / 2)] \times 100\)
```


Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFIC HIGHWAY EAST, SUTTE B-14, TACOMA, WASHINGTON 98424 - TELEEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Sweet-Edwards
Report On: Analysis of Soil
IDENTIFICATION:
Samples Received on 3-28-90
Project: W1601.01 Daniels Property

Date: March 31, 1990
Lab No.: 10555
Page 1 of 3

ANALYSIS:

Lab Sample No.	RUSH 1	RUSH 2	RUSH 3	RUSH 4
client Identification	4VW-1	$5 \mathrm{VSC}-1$	$8 \mathrm{VB}-1$	WOE-1
Matrix/Units	Soil ppm	Soil ppm	Soil ppm	$\begin{array}{r} \text { Soil } \\ \text { ppm } \end{array}$
Benzene Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846 Method 8020	$\begin{array}{r} 9.38 \\ 211 \\ 83.1 \\ 364 \end{array}$	$\begin{aligned} & 0.05 \\ & 0.18 \\ & 0.18 \\ & 2.09 \end{aligned}$	$\begin{array}{r} <0.05 \\ 0.16 \\ <0.05 \\ 0.69 \end{array}$	$\begin{aligned} & \text { NT } \\ & \text { NT } \\ & \text { NT } \\ & \text { NT } \end{aligned}$
Total Petroleum Hydrocarbons by EPA Method 418.1	NT	- 194	48.3	8.6
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015 TPH as	$1,830$ Gasoline	NT	<10	NT

NT $=$ Not Tested.

Sound Analytical Services, Inc.

Sweet-Edwards
Page 2 of 3
Lab No. 10555
March 31, 1990

Lab Sample No.	RUSH 5	RUSH 6	RUSH 7	RUSH 8
client Identification	WON-1	wos-1	SP-1	SP-3
Matrix/Units	$\begin{array}{r} \text { Soil } \\ \text { ppm } \end{array}$	$\begin{gathered} \text { Soil } \\ \text { ppm } \end{gathered}$	Soil ppm	Soil ppm
Benzene. Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846 Method 8020	$\begin{aligned} & \text { NT } \\ & \text { NT } \\ & \text { NT } \\ & \text { NT } \end{aligned}$	$\begin{aligned} & \text { NT } \\ & \text { NT } \\ & \text { NT } \\ & \text { NT } \end{aligned}$	$\begin{array}{r} 2.97 \\ 54.7 \\ 31.6 \\ 270 \end{array}$	$\begin{array}{r} 0.05 \\ 0.10 \\ 0.23 \\ 2.08 \end{array}$
Total Petroleum Hydrocarbons by EPA Method 418.1	18.8	1,108	567	57.0

NT $=$ Not Tested.

Continued

Sound Analytical Services, Inc.

Sweet-Edwards
Page 3 of 3
Lab No. 10555
March 31, 1990

Lab Sample No.	RUSH 9	RUSH 10	RUSH 11	RUSH 12
Client Identification	SP-5	SP-6	5VW-1	$2 \mathrm{VE}-1$
Matrix/Units	$\begin{aligned} & \text { Soil } \\ & \text { ppm } \end{aligned}$	$\begin{gathered} \text { Soil } \\ \text { ppm } \end{gathered}$	Soil ppm	$\begin{array}{r} \text { Soil } \\ \text { ppm } \end{array}$
Benzene Toluene Ethyl Benzene Xylenes	$\begin{aligned} & 0.73 \\ & 11.2 \\ & 10.2 \\ & 61.4 \end{aligned}$	$\begin{array}{r} 0.70 \\ 77.0 \\ 33.0 \\ 170 \end{array}$	$\begin{array}{r} <0.05 \\ <0.05 \\ < \\ 0.05 \\ 2.06 \end{array}$	$\begin{array}{r} 0.05 \\ 17.5 \\ 9.3 \\ 55.9 \end{array}$
BTEX by EPA SW-846 Method 8020				
Total Petroleum Hydrocarbons by EPA Method 418.1	225	1,048	16.0	571

NT $=$ Not Tested.

SOUND ANARLYTICAL SERVICES

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFIC HIGHWAY EAST, SUTTE B-14, TACOMA, WASHINGTON 98424 - TELEPHONB (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No:	10555
Date:	March 31, 1990
Client:	Sweet-Edwards

Client ID: 8VB-1
Matrix: Soil
Units: ppm

Compound	Sample(S)	Duplicate(D)	RPD*	
Total Petroleum Hydrocarbons	48.3	41.5	15.1	

```
*RPD = relative percent difference
    = [(S - D) / ((S + D) / 2)] x 100
```


Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFIC HIGHWAY EAST, SUITB B-14, TACOMA, WASHINOTON 98424 - TELEEPHONE (206)922-2310 - FAX (206)922-5047
Report To: Sweet-Edwards Date: August 3, 1990
Report On: Analysis of Soil
Lab No.: 12485
IDENTIFICATION:
 Project: W1601.01 Daniels ANALYSIS:

Lab Sample No.	RUSH 1	RUSH 2	RUSH ${ }^{3}$
Client Identification	Comp. SPG- $1,2, \quad \& 3$	$\begin{array}{r} \text { Comp. } \\ \text { SPD- } \\ 1,2, \& 3 \end{array}$	$\begin{array}{r} \text { Comp. } \\ \text { SPWO- } \\ 1,2, \& 3 \end{array}$
Matrix/Units	$\begin{gathered} \text { Soil } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { Soil } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \text { Soil } \\ \text { ppm } \end{array}$
Benzene Toluene Ethyl Benzene Xylenes	<0.05 0.15 0.24 0.98	0.05 0.15 0.33 1.29	$\begin{array}{r} <0.05 \\ < \\ 0.05 \\ \\ \\ \\ \\ 1.048 \end{array}$
BTEX by EPA SW-846 Method 8020			
Total Petroleum Fuel Hydrocarbons, by EPA SW-846 Modified Method 8015	33	97	665
TPH as	Gas \& Diesel	Gas \& Diesel	Aged Gas/ Heavy Oil
Halogenated Volatiles Per EPA SW-846 Method 8010.			
Methylene chloride 1,1,1-trichloroethane Trichloroethylene Tetrachloroethylene	$\begin{aligned} & \text { NT } \\ & \text { NT } \\ & \text { NT } \\ & \text { NT } \end{aligned}$	NT NT NT NT	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$

NT - Not Tested.

Sound Analytical Services, Inc.

SPECLALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS

QUALITY CONTROL REPORT

DUPLICATES

Lab No:	12485	Client ID: Comp. SPD-1, 2, \& 3	
Date:	August 3, 1990	Matrix:	Soil
Client:	Sweet-Edwards	Units:	ppm

Compound	Sample(S)	Duplicate (D)	RPD*	
	<0.05	<0.05	----	
Benzene	0.15	0.18	18.2	
Toluene	0.33	0.32	3.0	
Ethyl Benzene	1.29	1.50	15.0	
Xylenes				

Lab No: 12485
Date: August 3, 1990
Client: Sweet-Edwards

Client ID: Comp. SPWO-1, $2, \& 3$ Matrix: Soil Units: ppm

Compound	Sample(S)	Duplicate (D)	RPD*	
Total Petroleum Fuel Hydrocarbons	665			

```
*RPD = relative percent difference
    = [(S - D) / ((S + D) / 2)] x 100
```


 PRACK 16 VIAL 15 INJ 1
ERROR LOG:
ADC DVERRANGE

12	35.688	3.1772	11583
1.31	35.761	0.5977	2179
14	35.808	1.5160	5527
15	35.871	2.8133	10256
16	36.300	10.5989	39005
17	36.384	1.2966	4727
18	36.538	3.2072	11699
9	36.580	1.1158	4068
20	36.765	1.9742	7197
21	0.7456	2718	
22	36.899	0.5940	2165
TOTALS:		1276.1386	4652516

DETECTED PEAKS: 243 REJECTED PEAKS: 9 MAMOUNT STANDARD: 1.0000000
MULTIPLIER: 2.7429000 DIVISOR: 1.0000000 NOISE: 392.3

ADC OVERRANGE
ANNOTATION DMITTED

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047
Report To: Sweet-Edwards Date: March 28, 1990
Report On: Analysis of Soil
Lab No.: 10528
IDENTIFICATION:
Samples Received on 3-27-90
Project: W1601.01 Daniels Property

ANALXSIS:

Lab Sample No.	RUSH 1	RUSH 2	RUSH 3	RUSH 4
Client Identification	2VBA-1	2VWA-1	4VBA-1	$6 \mathrm{VE}-1$
Matrix/Units	$\begin{aligned} & \text { Soil } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \text { Soil } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Soil } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Soil } \\ \text { ppm } \end{array}$
Benzene Toluene Ethyl Benzene Xylenes	$\begin{aligned} & 0.09 \\ & 4.03 \\ & 3.04 \\ & 19.8 \end{aligned}$	$\begin{array}{r} <0.05 \\ 0.24 \\ 1.43 \\ 4.35 \end{array}$	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$
BTEX by EPA SW-846 Method 8020				
Total Petroleum Hydrocarbons by EPA Method 418.1	247	976	5.9	29.9
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	212	NT	NT	NT
TPH as	Gasoline	NT	NT	NT

NT $=$ Not Tested.

SOUND ANALYTICAL SERVICES

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS

QUALITY CONTROL REPORT

DUPLICATES

Lab No:	10528	Client ID: 2 VBA-1
Date:	March 28, 1990	Matrix:
Client:	Sweet-Edwards	Units:

Compound	Sample(S)	Duplicate(D)	RPD*	
Total Petroleum Hydrocarbons	247	217	12.9	
Total Petroleum Fuel Hydrocarbons	212	202	4.8	

$$
\begin{aligned}
\text { *RPD } & =\text { relative percent difference } \\
& =[(S-D) /((S+D) / 2)] \times 100
\end{aligned}
$$

Report To: Sweet-Edwards
Report On: Analysis of Soil
IDENTIFICATION:
Samples Received on 3-20-90
Project: Daniel Property

Date: March 21, 1990
Lab No.: 10423
Page 1 of 2

ANALYSIS:

Lab Sample No.	RUSH 1	RUSH 2
Client Identification	1VB-1	$3 \mathrm{VB}-1$
Matrix/Units	Soil ppm	$\begin{array}{r} \text { Soil } \\ \text { ppm } \end{array}$
Benzene Toluene Ethyl Benzene Xylenes	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$
BTEX by EPA SW-846 Method 8020		.
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015 TPH AS	$\begin{array}{r} 33 \\ \text { diesel } \end{array}$	<10
Total Petroleum Hydrocarbons by EPA Method 418.1	164	11.7

Continued

Sound Analytical Services, Inc.

Sweet-Edwards
Page 2 of 2
Lab No. 10423
March 21, 1990

Lab Sample No.	RUSH 3	RUSH 4	RUSH 5
Client Identification	$3 \mathrm{VE}-1$	$5 \mathrm{VB}-1$	$6 \mathrm{VB}-1$
Matrix/Units	Soil ppm	Soil ppm	Soil ppm
Benzene Toluene Ethyl Benzene Xylenes	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$
BTEX by EPA SW-846 Method 8020			
Total Petroleum Hydrocarbons by EPA Method 418.1	9.0	<5.0	<5.0

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFIC HIOHWAY EAST, SUTTE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITX CONTROL REPORT

DUPLICATES

```
Lab No: }1042
Date: client:
```

March 21, 1990
Sweet-Edwards
Client ID: 1VB-1
Matrix: Soil
Units: ppm

Compound	Sample(S)	Duplicate (D)	RPD*	
Benzene	<0.05	<0.05	--	
Toluene	<0.05	<0.05	--	
Ethyl Benzene	<0.05	<0.05	--	
Xylenes	<0.05	<0.05	--	
Total Petroleum Fuel Hydrocarbons	33			
Total Petroleum Hydrocarbons	164	137	9.5	

$$
\begin{aligned}
* R P D & =\text { relative percent difference } \\
& =[(S-D) /((S+D) / 2)] \times 100
\end{aligned}
$$

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFIC HIGHWAY EAST, SUTTE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Sweet-Edwards
Report On: Analysis of Water \& Soil
IDENTIFICATION:
Samples Received on 07-30-90
Project: W1601.01 Daniels

ANALYSIS:
Date: July 31, 1990
Lab No.: 12486

Lab Sample No.	RUSH 1	RUSH 2	RUSH 3	RUSH 4
Client Identification	EW-1	9VSE-1	9VE-1A	$9 \mathrm{VB}-7$
Matrix/Units	Water ppm	$\begin{array}{r} \text { Soil } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Soill } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Soil } \\ \text { ppm } \end{array}$
Benzene Toluene Ethyl Benzene Xylenes	$\begin{array}{r} 0.004 \\ <\quad 0.001 \\ 0.024 \\ 0.055 \end{array}$	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$
BTEX by EPA SW-846 Method 8020				
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	< 10	<10	< 10	< 10
Total Metals: Lead Copper zinc	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \text { NT } \\ & \text { NT } \\ & \text { NT } \end{aligned}$	$\begin{aligned} & \text { NT } \\ & \text { NT } \\ & \text { NT } \end{aligned}$	NT NT NT

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFIC HIGHWAY EAST, SUTTE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No:	12486
Date:	July 31, 1990
Client:	Sweet-Edwards

Client ID:	EW-1
Matrix:	Water
Units:	ppm

Compound	Sample(S)	Duplicate(D)	RPD*	
Total Petroleum Fuel Hydrocarbons	<10	<10	--	

```
*RPD = relative percent difference
    = [(S - D) / ((S + D) / 2)] x 100
```


DETECTED PEAKS: 8 REJECTED PEAKS: ©
AMOUNT STANDARD: 1.0000000
MULTIPLIER: 2.7429000 DIVISOR: 1.0000000 NOISE: 439.6 OFFSET: -54

BACK 16 VIAL 1 IN 1
ERROR LOG:
ADC OVERRANGE

MARIAN HI-TEMP GAS CHROMATOGRAPH METHOD 1 RUN 2492
TIME 00: 35 30 JUL 90 SAMPLE: DIESEL-8015 RUN MODE: ANALYSIS
CALCULATION TYPE: EXTERNAL STANDARD

DETECTED PEAKS: 9 REJECTED PEAKS: 0 AMDUNT STANDARD: 1.0000000 MULTIPLIER: 2.7429000 DIVISOR: 1.0000000 NOISE: 439.6 OFFSET: -71

RACK 16 VIAL 2 INS!
ERROR LOG:
ADC OVERRANGE

END

END
86^{-1}

VARIAN HI-TEMP GAS CHROMATOGRAPH
RUNETHOD 2479
TIME 14:35
29 JUL 90
SAMPLE: DIESEL-8015
RUN MODE: ANALYSIS
CALCULATION TYPE: EXTERNAL STANDARD

AOK PEAK NO. NATAE	TIME 19.550	RESULT MGL 0.2232	AREA COUNTS
TOTALS:		0.2232	813

OETECTED PEAKS: 1 REJECTED PEAKS: 0
AMOUNT STANDARD: 1.000000
MULTIPLIER: 2.7429000 DIVISOR: 1.0000000
NOISE: 392.3
RACK 16 VIAL 7 INJ 1
ERROR LOG:
ADC OVERRANGE

VARIAN HI-TEMP GAS CHROMATOGRAPH
METHOD 1
RUN 2480
TIME 15: 21
29 JUL 90
SAMPLE: DIESEL-8015
RUN MODE: ANALYSIS
CALCULAATION TYPE: EXTERNAL STANDARD

$\begin{gathered} \text { PEAK } \\ \text { NO. } \\ \hline \end{gathered}$	PEAK NAME	$\begin{gathered} \text { TIME } \\ \text { MIN } \\ 19.550 \end{gathered}$	$\begin{aligned} & \text { RESULTT } \\ & \text { MG-L } \\ & 0.2283 \end{aligned}$	$\begin{array}{r} \text { AREA } \\ \text { COUNTS } \\ 832 \end{array}$
	S:		0.2283	83

DETECTED PEAKS: 1 REJECTED PEAKS: 0
AMOUNT STANDARD: 1.0000000
MULTIPLIER: 2.7429000 DIVISOR: 1.0000000 NOISE: 392.3 DFFSET: -81

RACK 16 VIAL 8 IN.J 1
ERROR LOG:
ADC OVERRANGE

END

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS 4630 PACIFIC HIGHWAY EAST, SUTTE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Sweet-Edwards
Report On: Analysis of Soil
IDENTIFTCATION:
Samples Received on 08-09-90
Project: Daniels

ANALYSIS:
AaEe: Aghist 13 () pogo
Lab No.: 12706

Lab Sample No.	1	2	3	4
Client Identification	9VE-1I	9VE-1J	9VE-1K	9VE-1L
Matrix/Units	$\begin{array}{r} \text { Soi.l } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Soil } \\ \text { ppm } \end{array}$	$\begin{gathered} \text { Soil } \\ \text { ppm } \end{gathered}$	Soil ppm
Benzene Toluene Ethyl Benzene Xylenes	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$	$<$ $<$ $<$ 0.05	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$
BTEX by EPA SW-846 Method 8020				
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	< 10	19.3	46.7	< 10
TPH as	Diesel	Diesel	Diesel \& Gas	

Sound Analytical Services, Inc.

QUALITX CONTROL REPORT

DUPLICATES

Lab No:	12706
Date:	August 13, 1990
Client:	Sweet-Edwards

Client ID:	9VE-11
Matrix:	Soil
Units:	ppm

Compound	Sample(S)	Duplicate(D)	RPD*	
Benzene	<0.05	<0.05	---	
Toluene	<0.05	<0.05	---	
Ethyl Benzene	<0.05	<0.05	---	
Xylenes	<0.05	<0.05	---	
Total Petroleum		<10	---	
Fuel Hydrocarbons	<10			

$$
\begin{aligned}
* R P D & =\text { relative percent difference } \\
& =[(S-D) /((S+D) / 2)] \times 100
\end{aligned}
$$

VARIAN HI-TEMP GAS CHROMATOGRAPH METHOD 1 RUN 2704 TIT价 13:14 SAMPLE: DIESEL-8015
RUN MODE: ANALYSIS
CALCULATION TYPE: EXTERNAL STANDARD

$\begin{gathered} \text { PEAK } \\ \text { NO. } \\ \frac{1}{2} \\ \frac{3}{3} \end{gathered}$	$\begin{aligned} & \text { PEAK } \\ & \text { NAMME } \end{aligned}$	$\begin{array}{r} \text { TIME } \\ \text { MIN } \\ 2.817 \\ 3.295 \\ 19.550 \end{array}$	$\begin{array}{r} \text { RESULT } \\ \text { MG-L } \\ 0.1480 \\ 2.9117 \\ 95 \% .1375 \end{array}$	$\begin{array}{r} \text { AREA } \\ \text { COUNTS } \\ 539 \\ 1615 \\ 3489565 \end{array}$
	TALS:		960.1974	359665
DETECTED PEAKS: 213 REJECTED PEAKS: 9 AMOLINT STANDARD: 1.0000000 MULTIPLIER: 2.7429000 OIVISOR: 1.0000000 NOISE: 378.8				
RACK 16 VIAL 7 InJ :				
ERROR LOG:OOC OVERRANGE				

TIME $21: 46$
SA:IPLE: DIESEL -8015
RUN N MODE: ANALYSIS
CALCULATION TYPE: EXTERNAL STANDARD

RACK 16 VIAL 7 IN 1

ERROR LOG:
 ADC OVERRANGE

09 AUG 90

RUN MODE: ANALYSIS
CALCULATION TYPE: EXTERNAL STANDARD

DETECTED PEAKS: 14 REJECTED PEAKS: 0 AMOUNT STANDARD: 1.0000000
MULTIFLIEP: 2.7429000 OIVISOR: 1.0000060
NOISE: 378.3 OFFSET: -60
RACK 16 VIAL 6 INS 1.

ADC OVERRANGE
END

22.215
10^{6}

METHOD 1
TIME 23: 22
SAMPLE: DIESEL-8015
RUN PTODE: ANALYSIS
CALCLLATION TYPE: EXTERNAL STANDARD

MFAK PEAK	TIME	RESULT	AREA	
MAME	MIN	MG-L	COUNTS	
i		19.550	0.1624	592
TOTALS:		0.1624	592	

```
DETECTED PEAKS: 1 REJECTED PEAKS: 0 Antolint standard: 1.0000000
MULTIPLIER: 2.7429000 DIVISOR: 1.0000900 NOISE: 378.8 OFFSET: -65
```

RACK 16 UIAL 9 INJ 1
ERROR LOG:
ADC OVERRANGE

RUN 2717

TIME OQ: 10
10 AUG 90
SAMPLE: DIESEL-8015
RUN MODE: ANFLYSIS
CALCULATION TYPE: EXTERNAL STANDARD

PEAK NO. 1	PEAK NAMME	$\begin{array}{r} \text { TIME } \\ \text { MIN } \\ 19.550 \end{array}$	$\begin{array}{r} \text { RESULT } \\ \text { MG-L } \\ 0.1786 \end{array}$	$\begin{gathered} \text { AREA } \\ \text { COUNTS } \\ 651 \end{gathered}$
TOTALS:			0.1786	651
DETECTED PEAKS: 1 REJECTED PEAKS: a AmOUNT STANDARD: 1.0000000 MULTIPLIER: 2.7429000 DIVISOR: 1.0000000 NOISE: 378.8 OFFSET: -69				
RACK 16 VIAL 10 INJ 1				
ERROR LOE:ADC OVERRANGE				

DETECTED PEAKS: 1 REJECTED PEAKS: a ATHOUNT STANDARD: 1.0000000
MULTIPLIER: 2.7429000 DIVISOR: 1.0000000 NOISE: 378.8 OFFSET: -69

RACK 16 VIAL 10 INJ 1
ERROR LOE:
ADC OVERRANGE

99 AUG 90

Portland, OR (503) 624-7200
PRONECT OANIELS
CLIENT IMFD
CONTACT. PETER
ADDRESS SE/E BOTHEZC
TELEPHOME\# 485-5000
DATE 8/9/90

PROJECT ENFORMATION
SAMPLE RECEIPT

Sound Analytical Services, Inc.

SPECLALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFIC HIGHWAY EAST, SUTTE B-14, TACOMA, WASHINGTON 98424 - TBLEPHONE (206)922-2310 - FAX (206)922-5047
Report To: Sweet-Edwards
Report on: Analysis of Soil
IDENTIFICATION:
Samples Received on 08-15-90 Project: W160101 Daniels Property

NT - Not Tested

Sound Analytical Services, Inc.

QUALITY CONTROL REPORT

DUPLICATES

Lab No:	12818	Client ID: 9VE-1S	
Date:	August 23, 1990	Matrix:	Soil
Client:	Sweet-Edwards	Units:	ppm

Compound	Sample(S)	Duplicate(D)	RPD*	
Benzene	<0.05	<0.05	----	
Toluene	<0.05	<0.05	---	
Ethyl Benzene	<0.05	<0.05	---	
Xylenes	<0.05	<0.05	---	
Total Petroleum				
Fuel Hydrocarbons	<10	<10	---	

```
*RPD \(=\) relative percent difference
    \(=[(S-D) /((S+D) / 2)] \times 100\)
```

Sample: 500dIESEL Acquired: 21-AUG-90

Channel: detector 1
8:31 Hethod: C:\MAXYDATN218015

Pilename: 500DIE Operator:

$$
x \pm 0 \perp \text { NoD世㚣 }
$$

$$
320^{-1} \text { wolts }
$$

Saaple: 12818-2
Acquired: 22-AUG-90 15:31 Dilution: 1 : 10.000

Channel: detector 1
Pilenate: 12818-2
Hethod: C:\HAX\DATA2\8015
Anount: 9.681

Operator:

$$
x 10^{-1} \text { volts }
$$

Pilename: 12818-3 Operator:

Saaple: 12818-3
Acquired: 22-AUG-90 16:07
Dilution: 1: 10.000

Method: C:\MAX\DATA2\8015
Arount: 9.160

Pilename: 12818-3
Operator:

$$
x 10^{-1} \text { yolts }
$$

Sanple: 12818-4 Acquired: 22-AUG-90 16:13 Dilution: 1: 10.000

Channel: detector 1
Pilenane: 12818-4 Method: C: \MAX\OATA2\8015 Amount: 9.281

$$
x \quad 10^{-1} \text { volt:5 }
$$

Sample: 12818-50 Channel: detector 1
 Dilution: 1: $10.000 \quad$ Amount: 9.035

Filename: 12828-5D Operator:

$$
x 10^{-1} \text { molts }
$$

Appendix D VAPOR EXTRACTION SYSTEM DESIGN

September 10, 1990

Peter Rowland
Sweet - Edwards/EMCON
18912 N. Creek Pkwy
Suite 210
Bothell, WA 98011
RE: Daniels W16-01.01

Dear Peter:
Enclosed are the revised report pages for the air sample submitted to our lab on August 23, 1990. For your reference, our service request number for this work is B903036.

Please call if you have any questions.
Respectfully submitted:
Mike Higgins en
Michael Higgins
COLUMBIA ANALYTICAL SERVICES, INC.
mbm/MH

CLIENT: Sweet - Edwards/EMCON SUBMITTED BY: Peter Rowland PROJECT: Daniels W16-01.01 SAMPLE DESCRIPTION: Alr

DATE RECEIVED: 08/23/90
DATE ANALYZED: 08/23/90 WORK ORDER \#: B903036

BTEX/Volatile Hydrocarbons Analyses EPA Methods 8015/8020
$\mu \mathrm{L} / \mathrm{L}$ (ppm)
Fuel Hydrocarbon Range, $\mathrm{C}_{5}-\mathrm{C}_{12}$

Sample Name:		D-G1 Lab Code:
	MRL	B3036-1

NOTE: Volatile hydrocarbons quantitated using gasoline.

MRL means Method Reporting Limit
ND means None Detected at or above the MRL
\qquad sele nnan./. Date 9/10/90

BTEX/Volatile Hydrocarbons Analyses
EPA Methods 8015/8020
$\mu \mathrm{L} / \mathrm{L}$ (ppm)
Fuel Hydrocarbon Range, $\mathrm{C}_{5}-\mathrm{C}_{12}$
Sample Name:
Lab Code:
Lab Code: MRL

Benzene	3	ND
Toluene	3	ND
Ethyl Benzene	3	ND
Total Xylenes	3	ND
Volatile Hydrocarbons	10	ND

NOTE: Volatile hydrocarbons quantitated using gasoline.

MRL means Method Reporting Limit
ND means None Detected at or above the MRL

Appendix E

 WATER ANALYSIS DATAReport To: Sweet-Edwards
Report on: Analysis of Water \& Soil
IDENTIFICATION:
Samples Received on 07-30-90
Project: W1601.01 Daniels

ANALYSIS:
Date: July 31, 1990
Lab No.: 12486

Lab Sample No.	RUSH 1	RUSH 2	RUSH 3	RUSH 4
Client Identification	EW-1	9VSE-1	9VE-1.A	$9 \mathrm{VB}-7$
Matrix/Units	Water ppm	$\begin{array}{r} \text { Soil } \\ \text { ppm } \end{array}$	Soil ppm	$\begin{array}{r} \text { Soil } \\ \text { ppm } \end{array}$
Benzene Toluene Ethyl Benzene Xylenes	$\begin{array}{r} 0.004 \\ <\quad 0.001 \\ 0.024 \\ 0.055 \end{array}$	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$	$\begin{aligned} & <0.05 \\ & <0.05 \\ & <0.05 \\ & <0.05 \end{aligned}$
BTEX by EPA SW-846 Method 8020				
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	< 10	< 10	< 10	< 10
Total Metals: Lead Copper Zinc	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \text { NT } \\ & \text { NT } \\ & \text { NT } \end{aligned}$	$\begin{aligned} & \text { NT } \\ & \text { NT } \\ & \text { NT } \end{aligned}$	NT NT NT

Columbia
 Analytical Services ${ }^{\text {nc. }}$

Jeff Kirtland
Sweet - Edwards/EMCON
18912 N. Creek Pkwy - Suite 210
Bothell, WA 98011
Re: Daniels/Project \#W1601.01
Dear Jeff:
Enclosed are the results of the water sample submitted to our lab on December 14, 1990.
For your reference, our service request number for this work is B904841.
Please call if you have any questions.
Respectfully submitted,
Columbia Analytical Services, Inc.

Colin suistdres
Colin B. Elliott
Senior Project Chemist
CBE/lip

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

CLIENT: Sweet - Edwards/EMCON SUBMITTED BY: Jeff Kirtland PROJECT: Danlels/\#W1601.01 SAMPLE DESCRIPTION: Water

DATE RECEIVED: 12/14/90
WORK ORDER \#: B904841
pH
EPA Method 150.1

Sample Name	Lab Code	Result
WD-1290-1	K4841-1	6.74

\qquad Date $12 / 28 / 90$

Analytical Report

CLIENT:	Sweet - Edwards/EMCON	DATE RECEIVED:	$12 / 14 / 90$
SUBMITED BY: Jeff Kirtland	DATE EXTRACTED:	$12 / 18 / 90$	
PROJECT: Daniels/ $\#$ W1601.01	DATE ANALYZED:	$12 / 21 / 90$	
SAMPLE DESCRIPTION: Water	WORK ORDER \#:	B904841	

TRPH-IR
EPA Method 418.1
mg / L

Sample Name	Lab Code	MRL	Result
	K4841-1		
WD-1290-1	K4841-MB	0.5	ND
Method Blank		0.5	ND

MRL means Method Reporting Limit
ND means None Detected at or above the MRL

Approved by \qquad s shen Date $12 / 28 / 90$

Analytical Report

CLIENT: Sweet - Edwards/EMCON SUBMITTED BY: Jeff Kirtland PROJECT: Daniels/\#W1601.01 SAMPLE DESCRIPTION: Water

DATE RECEIVED: $12 / 14 / 90$
DATE ANALYZED: 12/18/90
WORK ORDER \#: B904841

BTEX Analyses EPA Methods 5030/8020
$\mu \mathrm{g} / \mathrm{L}$ (ppb)

Sample Name: Lab Code:	... MRL	$\begin{gathered} \text { WD-1290-1 } \\ \text { B4841-1 } \\ \hline \end{gathered}$	$\begin{array}{r} \text { Method BI } \\ \quad \text { B4841-N } \\ \hline \end{array}$
Benzene	0.5	ND	ND
Toluene	1	ND	ND
Ethylbenzene	1	ND	ND
Total Xylenes	1	1.3	ND

MRL means Method Reporting Limit
ND means None Detected at or above the MRL

Approved by \qquad Date 12128180

CLIENT: Sweet - Edwards/EMCON SUBMITTED BY: Jeff Klrtland PROJECT: Daniels/\#W1601.01 SAMPLE DESCRIPTION: Water

DATE RECEIVED: $12 / 14 / 90$
DATE ANALYZED: $12 / 18 / 90$
WORK ORDER \#: B904841

QA/QC Report
Surrogate Recovery Summary
EPA Method 8020

Sample Name	Lab Code	Percent Recovery
		B4841-1

CAS Acceptance Criteria
60-120

Approved by Dave Shemon, Date 12/28/90
Bothell, WA [206] 485-5000 Kelso, WA (206) 423-3580
Sweet-Edwards I EMCOM, Inc.
Analysis Request

Appendix F METRO WATER DISPOSAL PERMIT

Municipality of Metropolitan Seattle
Exchange Building - 821 Second Ave. - Seattle, WA 98104-1598

December 31, 1990

Peter Roland
Sweet Edwards/EMCON, Inc. 18912 North Creek Parkway, Suite 210 Bothell, WA 98011

Dear Mr. Roland:
The purpose of this letter is to approve your request to discharge groundwater to Metro during underground fuel tank removal at the Broadview Service Station, 12258 Greenwood Avenue North, Seattle, Washington.

Since testing indicates this discharge meets Metro limits for Total Petroleum Hydrocarbons, benzene, toluene and ethyl benzene, no additional analytical monitoring is required provided you and your subcontractors meet the following conditions:

1. Contact Kris Effertz (684-0968), City of Seattle, to site the discharge, ensure the sewer line has capacity for the projected flow, and arrange for sewer billing.
2. Avoid discharging large volumes $>25,000 \mathrm{gpd}$. You have indicated your maximum pump rate would be 10 - gpm (14,400 gpd) for two to three months.
3. Follow common sense criteria:
a) There shall be no pronounced odor of solvent or gasoline.
b) There shall be no pronounced oil sheen or unusual color.
c) There shall be no pronounced hydrogen sulfide (rotten egg) odor.
d) There shall be no visibly pronounced turbidity, the discharge must remain translucent.

Peter Roland
December 31, 1990
Page two

Metro will expect operators on site to pay close attention to these common sense criteria whenever discharge to the sewer is occurring. If any of the common sense criteria are exceeded, you must stop discharging and notify the Metro Industrial Waste Section at 684-2325.

When the discharge has been completed please send me written confirmation and include the dates and volumes discharged. I appreciate your cooperation. If you have any questions, I may be reached at 684-2327.

Sincerely,

Christie J. True
Senior Industrial Waste Investigator Comprehensive Planning Division

CJT:mwr
Enclosure
cc: Kris Effertz, City of Seattle

Appendix G

SOIL ANALYSIS DATA - TREATED SOILS PHASE II, (BATCH 1)

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4630 PACIFiC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONB (206)922-2310 - FAX (206)922-5047

Report To: Sweet Edwards
Report On: Analysis of Soil
IDENTIFICATION:
Samples Received on 10-30-90
Project: W1601.01

Date: November 1, 1990
Lab No.: 0^{-14} 官官 [
NOV - 21990

ANALYSIS:

Total Petroleum Hydrocarbons, ppm

Lab Sample No.

1

2

3

Client ID
by EPA Method 418.1

Composite samples were made at Sound Analytical of samples194 DLF-1090-A1, DLF-1090-A2, and DLF-1090-A3. The sample was analyzed.

Composite samples were made at Sound Analytical of samples 180 DLF-1090-B1, DLF-1090-B2, and DLF-1090-B3. The sample was analyzed.

Composite samples were made at Sound Analytical of samples
DLF-1090-C1, DLF-1090-C2, and DLF-1090-C3. The sample was analyzed.

Sound Analytical Services, Inc.

QUALITY CONTROL REPORT

DUPL工CATES

Lab No: 14179

Date: November 1, 1990
Client: Sweet Edwards

Client ID: Composite Samples were made at SAS of samples DLF-1090-C1, DLF-1090-C2, and DLF-1090-C3. The sample was analyzed.
Matrix: Soil
Units: ppm

Compound	Sample (S)	Duplicate (D)	RPD*	
Total Petroleum Hydrocarbons	251	243	3.2	

```
*RPD = relative percent difference
    =[(S - D) / ((S + D) / 2)] x 100
```


Appendix H

SOIL ANALYSIS DATA - TREATED SOILS PHASE I, (BATCH 2)

Pete Rowland

Sweet - Edwards/EMCON
18912 N. Creek Pkwy - Suite 210
Bothell, WA 98011
Re: Danials/Project \#W16-01.01

Dear Pete:

Enclosed are the results of the soil samples submitted to our lab on January 15, 1991.
For your reference, our service request number for this work is B910241.
Please call if you have any questions.
Respectfully submitted,
Columbia Analytical Services, Inc.
Comirclity
Colin B. Elliott
Senior Project Chemist
CBE/lip

Analytical Report

CLIENT: Sweet - Edwards/EMCON
SUBMITTED BY: Pete Rowland
PROJECT: Danials/\#W16-01.01
SAMPLE DESCRIPTION: Soil

DATE RECEIVED: 01/15/91
DATE EXTRACTED: 01/16/91
DATE ANALYZED: 01/16/91
WORK ORDER \#: B910241

TRPH-IR
16th Standard Methods 503 D / EPA Method 418.1
$\mathrm{mg} / \mathrm{Kg}$ (ppm)
Dry Weight Basis

Sample Name	Lab Code	MRI	Result
	B0241-1		
DL-1-91-A,B,C Comp.	B0241-MB	25	1,680
Method Blank		25	ND

MRL means Method Reporting Limit
ND means None Detected at or above the MRL
\qquad

TACOMA, WA 98424.

FACSIMILE COVER SHEET
FAX NO, (206) 922 . 5047

$$
\text { DATE: } \frac{6-7-91}{11.05}
$$

CONTENTS: TOTAL OF 2 PAGES INCLUDING THIS COVER

IF YOU HLAVE ANY PROBLEMS WITH THS TRANSMITTAL PLEASE
CALL (206) $922-2310$.

Sound Analytical Services, Inc.

Report To: Sweet-Edwards, Ino, Date: May 30, 1991
Report On: Analysia of Eoil

IDENTIETCATION:
Samples Received on 05-30-91
Project: W1601.01 Daniely

ANALYSIS:

Lab samplo. No. Glient ID
1

Total Petroleum Hydrocarbons, $\mathrm{mg} / \mathrm{kg}$ by ERA Mathod 418.1

> D $-591-\mathrm{DI}$ Composite330

2
D-591-E1 Composite

D-591-F1 composite 380

4

> D-591-G1

Composite

5
D 5 591~HI Composite

OFA

Appendix I

 SOIL ANALYSIS DATA - TREATED SOILS (VES SYSTEM)February 12, 1991

Peter Rowland
Sweet - Edwards/EMCON
18912 N. Creek Pkwy - Suite 210
Bothell, WA 98011

Re: Daniels/Project \#W1601.01
Dear Peter:
Enclosed are the results of the soil samples submitted to our lab on January 22, 1991. Preliminary results were transmitted via facsimile on February 6, 1991. For your reference, our service request number for this work is K910328.

Please call if you have any questions.
Respectfully submitted,
Columbia Analytical Services, Inc.

${ }^{\prime \prime}$

Robert Scuderi
Senior Project Chemist
RS/lip

Client:	Sweet -Edwards/EMCON	Date Received:	$01 / 22 / 91$
Submitted By:	Peter Rowland	Date Extracted:	$01 / 24 / 91$
Project:	Daniels/\#W1601.01	Date Analyzed:	$01 / 3102 / 07 / 91$
Sample Matrix:	Soil	Work Order \#:	K910328

Hydrocarbon Scan
EPA Methods 3550/Modified 8015
$\mathrm{mg} / \mathrm{Kg}(\mathrm{ppm})$
Dry Weight Basis

mple	Lab Code	MRL	Diesel	Jet Fuel	Gasoline	Kerosene	Mineral Spirits	Oil*
D-1-6,1-10 Comp	K0328-3	50	ND	ND	ND	ND	ND	ND
D-2-5	K0328-4	50	ND	ND	ND	ND	ND	730
D-3-6, 3-9 Comp	K0328-7	50	ND	ND	ND	ND	ND	330
D-4-8	K0328-8	50	270	ND	ND	ND	ND	250
D-5-5, 5-10 Comp	K0328-11	50	170	ND	ND	ND	ND	ND
D-6-6, 6-12 Comp	K0328-14	50	ND	ND	ND	ND	ND	ND
D-7-8	K0328-15	50	ND	ND	ND	ND	ND	ND
D-8-4, 8-12 Comp	K0328-18	50	ND	ND	ND	ND	ND	1,100
D-9-13	K0328-19	50	ND	ND	ND	ND	ND	300
Method Blank	K0328-MB	50	ND	ND	ND	ND	ND	ND

MRL Method Reporting Limit

* Quantitated using hydraullic oil as a standard. The MRL for oil is five times the MRL shown above. The oil results were performed on February 7, 1991 after the samples were cleaned up with silica gel to remove polar organics which may interfer with the nonpolar petroleum products.
ND None Detected at or above the method reporting limit
 Date \qquad $2 / 12 / 91$

Analytical Report

Client: Sweet - Edwards/EMCON
Submitted By: Peter Rowland
Project:
Sample Matrix: Soil

Date Received: 01/22/91
Date Extracted: 01/28/91
Work Order \#: K910328

BTEX
EPA Methods 5030/8020
$\mathrm{mg} / \mathrm{Kg}$ (ppm)
Dry Weight Basis

Analyses
Benzene 0.05
Toluene
Ethylbenzene
Total Xylenes
Sample Name:
Lab Code:
Date Analyzed:

D-1-6, 1-10 Comp	D-2-5	D-3-6, 3-9 Comp
K0328-3	K0328-4	K0328-7
$01 / 28 / 91$	$01 / 28 / 91$	$01 / 28 / 91$

MRI
0.1
0.1
0.1

ND	ND	ND
ND	ND	ND
ND	ND	ND
ND	ND	ND

MRL Method Reporting Limit
ND None Detected at or above the method reporting limit

Approved by \qquad Date \qquad

Analytical Report

Sample Name:	D-4-8	D-5-5, 5-10 Comp	D-6-6, 6-12 Comp
Lab Code:	K0328-8	K0328-11	K0328-14
Date Analyzed:	$01 / 28 / 91$	$01 / 28 / 91$	$01 / 28 / 91$

Analyses	MRI			
				ND
Benzene	0.05	ND	ND	ND
Toluene	0.1	ND	ND	ND
Ethylbenzene	0.1	ND	ND	ND
Total Xylenes	0.1	ND	ND	

MRL Method Reporting Limit
ND None Detected at or above the method reporting limit

Approved by

Date \qquad

Analytical Report

Client:	Sweet -Edwards/EMCON	Date Received:	$01 / 22 / 91$
Submitted By:	Peter Rowland	Date Extracted:	$01 / 28 / 91$
Project:	Daniels /\#W1601.01	Work Order \#:	K910328

Sample Matrix: Soil

BTEX
EPA Methods 5030/8020
$\mathrm{mg} / \mathrm{Kg}(\mathrm{ppm})$
Dry Weight Basis

Sample Name:	D-7-8	D-8-4, 8-12 Comp	D-9-13
Lab Code:	K0328-15	K0328-18	K0328-19
Date Analyzed:	$01 / 28 / 91$	$01 / 28 / 91$	$01 / 28 / 91$

Analytes	MRI			
Benzene	0.05	ND	ND	ND
Toluene	0.1	ND	ND	ND
Ethylbenzene	0.1	ND	ND	ND
Total Xylenes	0.1	ND	ND	ND

MRL Method Reporting Limit
ND None Detected at or above the method reporting limit

Approved by \qquad Date
$2 / 12 / 41$

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:	Sweet -Edwards/EMCON	Date Recelved:	$01 / 22 / 91$
Submitted By:	Peter Rowland	Date Extracted:	$01 / 28 / 91$
Project:	Daniels/\#W1601.01	Work Order \#:	K910328
Sample Matrix:	Soil		

BTEX

EPA Methods 5030/8020
$\mathrm{mg} / \mathrm{Kg}(\mathrm{ppm})$
Dry Weight Basis

Sample Name:

Method Blank

Lab Code:
Date Analyzed:

K0328-MB
01/28/91

Analytes
Benzene
MRL

Toluene
Ethylbenzene
Total Xylenes

MRL Method Reporting Limit
ND None Detected at or above the method reporting limit

ND
0.05

ND
0.1

ND
0.1

ND
 Date \qquad

APPENDIX A
 LABORATORY QC RESULTS

COLUMBIA ANALYTICAL SERVICES, INC.

Client:	Sweet - Edwards/EMCON	Date Received:	$01 / 22 / 91$
Submitted By:	Peter Rowland	Date Extracted:	$01 / 24 / 91$
Project:	Daniels/\#W1601.01	Date Analyzed:	$01 / 31 / 91$
Sample Matrix:	Soil	Work Order \#:	K910328

QA/QC Report
Surrogate Recovery Summary
Hydrocarbon Scan
EPA Methods 3550/Modified 8015

Sample Name	Lab Code	Percent Recovery p-Terphenyl
D-1-6,1-10 Comp	K0328-3	102
D-1-6,1-10 Comp	K0328-3MS	$* 61.6$
D-1-6, 1-10 Comp	K0328-3DMS	$* 58.1$
D-2-5	K0328-4	114
D-3-6, 3-9 Comp	K0328-7	92.7
D-4-8	K0328-8	103
D-5-5, 5-10 Comp	K0328-11	$* 51$
D-6-6, 6-12 Comp	K0328-14	110
D-7-8	K0328-15	$* * 121$
D-8-4, 8-12 Comp	K0328-18	98
D-9-13	K0328-19	92
Method Blank	K0328-MB	103

CAS Acceptance Criteria

* Outside acceptance limits because of matrix interferences. The gas chromatogram showed target components that interfered with the analyses. The sample was not reanalyzed.
** Outside acceptance limits. Since no target analytes were detected in the sample, the elevated percent recovery does not adversely impact the data.

Approved by
 Date \qquad $2 / 12 / 91$

Client: Sweet - Edwards/EMCON
Submitted By: Peter Rowland
Project: Daniels/*W1601.01
Sample Matrix: Soil
QA/QC Report
Matrix Spike/Duplicate Matrix Spike Summary Hydrocarbon Scan
EPA Methods 3550/Modifled 8015
$\mathrm{mg} / \mathrm{Kg}(\mathrm{ppm})$
Dry Weight Basis

Date Received: 01/22/91
Date Extracted: 01/24/91
Date Analyzed: 01/31/91
Work Order \#: K910328

Sample Name: D-1-6, 1-10 Comp

				LAS Percent			
Lab Code	Analyte	MRI	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	Acceptance Criteria
K0328-3MS	Diesel	10	774	ND	784	101	$45-110$
K0328-3DMS	Diesel	10	1,130	ND	1,000	88.5	$45-110$

MRL Method Reporting Limit
ND None Detected at or above the method reporting limit

Approved by
 Date $2 / 12 / 41$

Client:	Sweet - Edwards/EMCON
Submitted By:	Peter Rowland
Project:	Daniels/\#W1601.01
Sample Matrix:	Soll

Date Received: 01/22/91
Date Extracted: 01/28/91
Date Analyzed: 01/28/91
Work Order \#: K910328

QA/QC Report
Surrogate Recovery Summary
BTEX
EPA Methods 5030/8020

Sample Name Lab Code

D-1-6, 1-10 Comp
D-2-5
D-3-6 3-9 Comp
D-4-8
D-5-5, 5-10 Comp
D-6-6, 6-12 Comp
D-7-8
D-8-4, 8-12 Comp
D-9-13
Method Blank
K0328-3
K0328-4
K0328-7
84.2
71.9
71.8
$\begin{array}{ll}\text { K0328-8 } & 78.6\end{array}$
K0328-11 92.2
K0328-14 82.2
K0328-15 59.2
$\begin{array}{ll}\text { K0328-18 } & 63.6\end{array}$
K0328-19 98.8
$\begin{array}{ll}\text { K0328-MB } & 87.5\end{array}$

CAS Acceptance Criteria
50-130

Approved by

Date \qquad $2 / 12 / 41$

Client:	Sweet-Edwards/EMCON	Date Received:	$01 / 22 / 91$
Submitted By:	Peter Rowland	Date Extracted:	$01 / 28 / 91$
Project:	Daniels/\#W1601.01	Date Analyzed:	$02 / 01 / 91$
Sample Matrix:	Soil	Work Order \#:	K910328

QA/QC Report
Surrogate Recovery Summary
BTEX
EPA Methods 5030/8020

Sample Name

D-2-5
D-2-5

Lab Code

K0328-4MS
K0328-4DMS

Percent Recovery 4-Bromofluorobenzene

CAS Acceptance Criteria
50-130
95.0
85.9

Approved by \qquad Date \qquad
$2 / 12 / 91$

Sample Name:	D-2-5
Lab Code:	K0328-4MS/DMS

ND None Detected at or above the method reporting limit

APPENDIX B

CHAIN OF CUSTODY INFORMATION

\qquad

February 26, 1991

Peter Rowland
Sweet - Edwards/EMCON
18912 N. Creek Pkwy
Suite 210
Bothell, WA 98011
Re: Bill Daniels/Project \#W1601.01

Dear Peter:

Enclosed are the results of the soil samples requested for analysis on February 14, 1991, from previous service request number K910328 received on January 22, 1991. For your reference, our service request number for this work is K910793.

Please call if you have any questions.
Respectfully submitted,
Columbia Analytical Services, Inc.
Habrtecudun
Robert Scuderi
Senior Project Chemist
RS/das

Client:	Sweet - Edwards/EMCON	Date Received: 01/22/91
Submitted By:	Peter Rowland	Date Requested: 02/14/91
Project:	Bill Daniels/\#W1601.01	Date Extracted: 02/15/91
Sample Matrix:	Soil	Date Analyzed: 02/20/91
		Work Order \#: K910793

Total Recoverable Petroleum Hydrocarbons
 SM Method 5520E/EPA Method 418.1 $\mathrm{mg} / \mathrm{Kg}$ (ppm)
 Dry Weight Basis

Sample Name	Lab Code	MR	Result
D-2-5			
D-3-6, 3-9 Comp	K0328-4	25	209
D-4-8	KO328-7	25	361
D-8-4, 8-12 Comp	K0328-18	25	565
D-9-13	K0328-19	25	488
Method Blank	K0793-MB	25	366

SM Standard Methods for the Examination of Water and Wastewater, 17th Edition, 1989
MRL Method Reporting Limit
ND None Detected at or above the method reporting limit

Approved by

Date \qquad

APPENDIX A

LABORATORY QC RESULTS

Client:	Sweet - Edwards/EMCON	Date Received: $01 / 22 / 91$
Submitted By:	Peter Rowland	Date Requested: 02/14/91
Project:	Bill Daniels/\#W1601.01	Date Extracted: 02/15/91
Sample Matrix:	Soil	Date Analyzed: 02/20/91
		Work Order \#: K910793

QA/QC Report
Duplicate Summary
Total Recoverable Petroleum Hydrocarbons
SM Method 5520E/EPA Method 418.1 $\mathrm{mg} / \mathrm{Kg}(\mathrm{ppm})$
Dry Weight Basis

Sample Name	Lab Code	MRI	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference
D-2-5	K0328-4	25	209	191	200	9

SM Standard Methods for the Examination of Water and Wastewater, 17th Edition, 1989
MRL Method Reporting Limit

Approved by \qquad Date $2 / 26 / 9 /$

Client:	Sweet - Edwards/EMCON	Date Received: 01/22/91
Submitted By:	Peter Rowland	Date Requested: 02/14/91
Project:	Bill Daniels/\#W1601.01	Date Extracted: 02/15/91
Sample Matrix:	Soil	Date Analyzed: 02/20/91
		Work Order \#: K910793

QA/QC Report
Matrix Spike Summary
Total Recoverable Petroleum Hydrocarbons
SM Method 5520E/EPA Method 418.1
$\mathrm{mg} / \mathrm{Kg}$ (ppm)
Dry Weight Basis

Sample Name	Lab Code	MRI	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery
D-9-13	K0328-19MS	25	978	366	1,240	89

SM Standard Methods for the Examination of Water and Wastewater, 17th Edition, 1989 MRL Method Reporting Limit

Approved by
 Date $2 / 66 / 91$

Appendix J SOIL ANALYSIS DATA - STOCKPILES (PHASE II)

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 -TELEPHONE (20.) $922-2310$ - FAX (206) $2225049-$

Report To: Sweet-Edwards
Report On: Analysis of Soil

IDENTIFICATION:

Samples Received on 07-08-91
Project: W160102 Daniels

ANALYSIS:

Lab Sample No.

Client ID

ORIGINAL IS
Date: JIN PRPGdicT

1

2
3

4

5

6
7
8
9
10
11

*SC-11 A,B,C	66
*SC-12 A, B, C	110
*SC-13 A, B, C	65
*SC-14 A, B, C	470
*SC-15 A,B,C	130
*SC-16 A,B,C	160
*SC-17 A,B,C	730
*SC-18 A,B,C	160
*SC-19 A,B,C	180
*SC-20 A,B,C	390
*SC-21 A,B,C	400

Note - Results reported on an as received basis.
*A composite sample was made at Sound Analytical; the composite was analyzed.

Continued . . .

Sound Analytical Services, Inc.

Sweet-Edwards
Project: W160102
page 2 of 2
July 11, 1991

Lab Sample No.
12

13

14

15

Client ID
7-1-91-1

7-3-91-2

7-3-91-1

7-3-91-4
*Total Petroleum
Fuel Hydrocarbons, $\mathrm{mg} / \mathrm{kg}$

$$
<10.0
$$

Diesel
<10.0
<10.0
*TPH by EPA SW-846 Modified Method 8015
Note - Results reported on an as received basis.

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTB ANALYSIS

QUALITX CONTROL REPORT
 DURLICATES

Lab No: 18545 (1)
Date: July 11, 1991
client: Sweet-Edwards

Client ID: *SC-11 A, B, C Matrix: Soil
Units: $\quad \mathrm{mg} / \mathrm{kg}$

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Hydrocarbons	66	60	9.5

Lab No:	18545 (11)	Client ID: *SC-21 A, B, C	
Date:	July 11, 1991	Matrix:	Soil
Client:	Sweet-Edwards	Units:	$\mathrm{mg} / \mathrm{kg}$

Compound	Sample(S)	Duplicate (D)	RPD*
Total Petroleum Hydrocarbons	400	400	

Lab No:	$18545(12)$	Client ID:	$7-1-91-1$
Date:	July 11, 1991	Matrix:	Soil
Client:	Sweet-Edwards	Units:	$\mathrm{mg} / \mathrm{kg}$

Compound	Sample(s)	Duplicate (D)	RPD*
Total Petroleum			
Fuel Hydrocarbons	<10.0	<10.0	---
\%Surrogate Recovery			
1-Chlorooctane	80	94	
Perylene	73	82	

$$
\begin{aligned}
* \mathrm{RPD} & =\text { relative percent difference } \\
& =[(\mathrm{S}-\mathrm{D}) /((\mathrm{S}+\mathrm{D}) / 2)] \times 100
\end{aligned}
$$

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONB (206)922-2310 - FAX (206)922-5047

ANALYTICAL NARRATIVE
 TPH CHECKLIST

client: Sweet-Edwards
Project Name: W160102
Delivered by: UPS

Lab No.: 18545
Prepared by: Dawn Werner
Analyzed by: Dean Strom

Lab Number	12	13	14	15	
Client ID	7-1-91-1	7-1-91-2	7-3-91-1	7-3-91-4	
Date Sampled	7-2-91	7-3-91	7-3-91	7-3-91	
Date Received	7-8-91	7-8-91	7-8-91	7-8-91	
Date Extracted	7-9-91	7-9-91	7-9-91	7-9-91	
Date Analyzed	7-10-91	7-10-91	7-10-91	7-10-91	
Dilution Factor					
Sample Matrix	Soil	Soil	Soil	Soil	
Matrix Spike \%R					
Matrix spike Duplicate \% RPD					
Surrogate Recovery 8015 Modified 1-Chlorooctane Perylene	$\begin{aligned} & 80 \\ & 73 \end{aligned}$	81 78	$\begin{aligned} & 85 \\ & 69 \end{aligned}$	$\begin{aligned} & 91 \\ & 82 \end{aligned}$	

Condition of samples on receipt: Samples received cold and in good condition. Chain of custody was in order.

Notes and Discussion:

Sample: 18545-13 Channel: detector 1 Acquired: 10-JUL-91 10:42 Method: C: \MAX\DATA2\8015HP1 Dilution: 1: 10.000 Amount: 2.408

STIo aสกт
SNOgyvooyaxh wnatowigd TVIOL

Sample: CALIBSTD
Acquired: 20-MAY-91 14:11

Channel: detector 1
Method: C: \MAX\OATA1\CALIBSTD

Filename: CALIBSTO Operator: DAS

Standard Alkane Mixture (C6 to C32)

Calibration Standard
50 ppm Gasoline and Diesel
$\times 10^{-1}$ volts


```
Sample: 500G/D
Channel: detector  Acquired: 08-MAY-91 20:13 Method: C:- 13 MAX\DATA1\8015HP1
```


Calibration Standard

``` 500 ppm Gasoline and Diesel
```

Filename: 500605 Operator: DAS

Sample: 200PPM KEROSENE Channel: detector 1 Acquired: 27-APR-91 0:13 Method: C: \MAX\DATA1\8015HPBU

Filename: 200JET Operator: DAS

200 ppm Kerosene

Sample: 200PPM GAS OIL Channel: detector 1 Acquired: 26-APR-91 $23: 30$ Method: C : $\backslash \mathrm{MAX} \backslash$ DATA1 $\backslash 8015 \mathrm{HPBU}$

200 ppm Gas Oil
x 10^{-1} volts

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTB ANALYSIS
4813 PACIFIC HIOHWAY EAST, TACOMA, WASHINOTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Sweet-Edwards		Date: June 13, 1991
Report On: Analysis of Soil		Lab No.: 18121
IDENTIFICATION:		1 (1)
Samples Received	on 06-13-91	(4) 20
Project: W160102	Daniels	
ANALYSIS:		
Lab Sample No. client ID		Total Petroleum Hydrocarbons, mg/kg
		by EPA Method 418.1
1	Composite SC-2	110
2	Composite SC-3	180
3	Composite SC-4	150
4	Composite SC-5	140
5	Composite SC-6	280
6	Composite SC-7	330
7	Composite SC-8	360
8	Composite SC-9	130
9	Composite SC-10	110

Note - Results reported on an as received basis.

QUALITY CONTROL REPORT
 DUPLICATES

Lab No: | L8121 (1) |
| :--- |
| Date: |
| Client: |
| June 13, 1991 |
| Sweet-Edwards |

Compound	Client ID: Comp SC-2 Matrix: Units:	Soil mg/kg	
Total Petroleum Hydrocarbons	Sample(S)	Duplicate(D)	RPD*

```
*RPD \(=\) relative percent difference
    \(=[(S-D) /((S+D) / 2)] \times 100\)
```


Appendix K

SOIL ANALYSIS DATA - TREATED SOIL PHASE II (BATCH 1)

"Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINOTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Sweet-Edwards Date: September 5, 1991

Total Petroleum Hydrocarbons, mg/kg by EPA Method 418.1 RUSH 1 DV-9-3-1 100

RUSH 2
DV-9-3-2
170

RUSH 3
DV-9-3-3
110

Note - Results reported on a dry weight basis.

QUALITY CONTROL REPORT

Client: Sweet-Edwards
Project: W160102 Daniels
Client ID: DV-9-3-2
Lab No: 19703 (2)
Matrix: Soil
Units: $\quad \mathrm{mg} / \mathrm{kg}$
Date: September 5, 1991
Page! 1 力 of
DUPLICATES

| Parameter | | | |
| :--- | :---: | :---: | :---: | Sample(S) \quad Duplicate(D) | RPD |
| :---: |
| Total Petroleum
 Hydrocarbons |

RPD $=$ Relative Percent Difference
$=[(S-D) /((S+D) / 2] x 100$

METHOD BLANK
METHOD BLANK

Parameter	Blank Value
Total Petroleum Hydrocarbons	<1.0

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINOTON 98424 -TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Sweet Edwards
Report On: Analysis of Soil
IDENTIEICATION:
Samples Received on 08-12-91
project: w160102

Date: August 15, 1991
Lab No.: 19227

ANALYSIS:

Lab Sample No.
Client ID
Total Petroleum Hydrocarbons, mg/kg by EPA Method 418.1
1
DV-8/91-1

$$
270
$$

$2 \quad \mathrm{DV}-8 / 91-2$ 210

3
DV-8/91-3
140

4
DV-8/91-4210

Results are reported on a dry weight basis.

SOUND ANALYTICAL SERVICES

MARTY FRENCH

Appendix L SOIL ANALYSIS DATA - TREATED SOIL PHASE II (BATCH 2)

Sound Analytical Services, Inc.

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS

```
Report To: Sweet Edwards Date: November 5, 1991
Report On: Analysis of Soil
Lab NO.: 21027
TDENTIFICATION:
Sample received on 11-04-91
Project: W160102 Bill Daniels
```

Date: November 5, 1991
Lab No.: 21027

ANALYSIS:

Lab Sample No. Client ID

DV-11-91-1

DV-11-91-2

DV-11-91-3

DV-11-91-4

Results are reported on a dry weight basis.

SOUND ANALYTICAL SERVICES 4813 PACIFIC HIGHWAY EAST TACOMA, WA 98424

FACSIMILE COVER SHEET FAX NO. (206) 922 - 5047

DATE: $10-15$
TIME: \qquad

CONTENTS: TOTAL OF 2 PAGES INCLUDING THIS COVER SHEET.

FROM:

IF YOU HAVE ANY PROBLEMS WITH THIS TRANSMITTAL PLEASE CALI (206) 922-2310.

Lab no 20344

"OOCT-15-91 TUE 10:58 .. SOUND ANALYTICAL SVCS ..
 Sound Analytical Services, Inc.

SPECLALIZINO IN INDUSTRIAL \& TOXIC WAETR ANALYSIS

Results are reported on a dry weight basis.

[^0]: 1 Chapter 173-340 WAC, Model Toxics Control Act, February 28, 1991.

