

ANALYTICAL REPORT

Job Number: 580-5815-1

Job Description: Haughten Rd Orchard

For:
Washington State Dept of Ecology
15 W Yakima Ave
Suite 200
Yakima, WA 98902

Attention: Brian Deeken

Katie Downie

Project Manager II kdownie@stl-inc.com

05/16/2007

Project Manager: Katie Downie

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

I. Receipt

One jar for sample "Storage" was received broken. The samples was fully contained within the ziploc bag, and there was sufficient sample to run the requested tests.

The samples were received past the 14 day extraction hold time for the requested tests, and the results have been flagged "H".

All other samples were received in good condition within temperature requirements.

II. GC/MS Semi VOA

Method 8141A:

Surrogate recovery for sample 580-5815-2 was outside control limits. This sample shows evidence of matrix interference; therefore, re-extraction and/or re-analysis was not performed.

Matrix spikes could not be recovered due to sample matrix interferences which required sample dilution. The associated laboratory control standard (LCS) met acceptance criteria.

Method 8151A:

Surrogate recovery for sample 580-5815-2 and the associated MSD analysis were outside control limits. This sample shows evidence of matrix interference; therefore, re-extraction and/or re-analysis was not performed.

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch _18415____ were outside control limits, due to high levels of nontarget analytes. The associated laboratory control standard (LCS) met acceptance criteria.

No other analytical or quality issues were noted.

III. GC Semi VOA

Method 8081A:

Due to the high concentration of target analytes, the matrix spike / matrix spike duplicate (MS/MSD) for batch 18425 could not be evaluated. The associated laboratory control standard (LCS) met acceptance criteria.

Method NWTPH-Dx:

#2 Diesel was detected in the MB at a level above the method detection limit and but below the reporting limit. No action was taken as the associated samples were diluted 1:20 and 1:50 rendering minimal hit in MB negligable.

Surrogate recovery for samples 580-5815-1 and 580-5815-2 were outside control limits. These samples show evidence of matrix interference; therefore, re-extraction and/or re-analysis were not performed.

No other analytical or quality issues were noted.

IV. General Chemistry

No analytical or quality issues were noted.

V. Organic Prep

No analytical or quality issues were noted.

METHOD SUMMARY

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Description		Lab Location	Method Preparation Method
Matrix:	Solid		
Organopho	osphorous Compounds by GC-MS Ultrasonic Extraction	STL SEA STL SEA	SW846 8141A SW846 3550B
Chlorinated	d Herbicides by GC-MS Chlorinated Herbicides by GC - Solids Prep	STL SEA STL SEA	SW846 8151A SW846 8151A
Organochl	orine Pesticides by Gas Chromatography Ultrasonic Extraction (Low Level)	STL SEA STL SEA	SW846 8081A SW846 3550B
Semi-Vola	tile Petroleum Products by NWTPH-Dx Ultrasonic Extraction	STL SEA STL SEA	NWTPH NWTPH-Dx SW846 3550B
Percent Mo	oisture	STL SEA	EPA PercentMoisture

LAB REFERENCES:

STL SEA = STL Seattle

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

EPA - US Environmental Protection Agency

SAMPLE SUMMARY

Client: Washington State Dept of Ecology Job Number: 580-5815-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
580-5815-1	Tank	Solid	04/16/2007 1418	05/07/2007 1015
580-5815-2	Storage	Solid	04/16/2007 1427	05/07/2007 1015

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Client Sample ID: Storage

 Lab Sample ID:
 580-5815-2
 Date Sampled:
 04/16/2007
 1427

 Client Matrix:
 Solid
 % Moisture:
 8.4
 Date Received:
 05/07/2007
 1015

8141A Organophosphorous Compounds by GC-MS

Method: 8141A Analysis Batch: 580-18521 Instrument ID: SEA008
Preparation: 3550B Prep Batch: 580-18413 Lab File ID: L23043DD.D

Dilution: 500 Initial Weight/Volume: 15.3930 g
Date Analyzed: 05/09/2007 1447 Final Weight/Volume: 10 mL

Date Prepared: 05/08/2007 0835 Injection Volume:

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dichlorvos		ND	Н	18000	53000
Mevinphos		ND	Н	3700	18000
Ethoprop		ND	Н	5100	18000
Naled		ND	Н	12000	37000
Sulfotepp		ND	Н	4300	18000
Monochrotophos		ND	Н	12000	37000
Phorate		ND	Н	5900	18000
Dimethoate		ND	Н	7700	23000
Demeton-O + Demeton-S		ND	Н	2400	18000
Diazinon		ND	Н	5300	18000
Disulfoton		ND	Н	5100	18000
Parathion methyl		ND	Н	7200	22000
Ronnel		ND	Н	2900	18000
Chlorpyrifos		790000	Н	12000	37000
Malathion		ND	Н	4000	18000
Fenthion		ND	Н	4500	18000
Parathion		ND	Н	4500	18000
Trichloronate		ND	Н	5300	18000
Tetrachlorvinphos (Z-isomer)		ND	Н	9000	27000
Merphos		ND	Н	5100	18000
Tokuthion		ND	Н	4000	18000
Fensulfothion		ND	Н	14000	43000
Bolstar		ND	Н	3700	18000
EPN		ND	Н	9000	27000
Azinphos-methyl		ND	Н	6900	21000
Coumaphos		ND	Н	4000	18000
Surrogate		%Rec		Acceptance	e Limits
Tributyl phosphate		0	X	38 - 129	
Triphenylphosphate		0	Χ	45 - 125	

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Client Sample ID: Storage

Lab Sample ID: 580-5815-2 Date Sampled: 04/16/2007 1427 Client Matrix: Date Received: Solid % Moisture: 8.4 05/07/2007 1015

8151A Chlorinated Herbicides by GC-MS

Analysis Batch: 580-18469 SEA008 Method: 8151A Instrument ID: Preparation: 8151A Prep Batch: 580-18415 Lab File ID: L23049.D

Dilution: 1.0

Initial Weight/Volume: 15.9194 g Date Analyzed: Final Weight/Volume: 05/08/2007 2034 10 mL

Date Prepared: 05/08/2007 0841 Injection Volume:

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Dalapon		ND	Н	4.7	17
4-Nitrophenol		ND	Н	1.2	6.8
Dicamba		ND	Н	0.94	6.8
MCPP		ND	Н	1.0	6.8
MCPA		ND	Н	0.88	6.8
Dichlorprop		ND	Н	1.5	6.8
2,4-D		ND	Н	0.80	6.8
Pentachlorophenol		ND	Н	1.9	6.8
Silvex (2,4,5-TP)		ND	Н	2.1	6.8
2,4,5-T		ND	Н	0.57	6.8
Dinoseb		ND	Н	2.3	17
2,4-DB		ND	Н	1.6	6.8
Surrogate		%Rec		Accept	ance Limits
2,4-Dichlorophenylacetic acid		132	X	51 - 1	129

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Client Sample ID: Storage

 Lab Sample ID:
 580-5815-2
 Date Sampled:
 04/16/2007
 1427

 Client Matrix:
 Solid
 % Moisture:
 8.4
 Date Received:
 05/07/2007
 1015

8081A Organochlorine Pesticides by Gas Chromatography

Method: 8081A Analysis Batch: 580-18625 Instrument ID: SEA035
Preparation: 3550B Prep Batch: 580-18425 Lab File ID: ECD25378.D

Dilution: 500 Initial Weight/Volume: 10.3077 g
Date Analyzed: 05/14/2007 1338 Final Weight/Volume: 10 mL

Date Analyzed: 05/14/2007 1338 Final Weight/Volume: Date Prepared: 05/08/2007 1036 Injection Volume:

Column ID: PRIMARY

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Aldrin		ND	Н	57	530
alpha-BHC		ND	Н	58	530
beta-BHC		95	JΗ	69	530
delta-BHC		ND	Н	64	530
gamma-BHC (Lindane)		ND	Н	62	530
4,4'-DDD		ND	Н	140	1100
4,4'-DDE		ND	Н	120	1100
4,4'-DDT		ND	Н	140	1100
Dieldrin		220	JΗ	120	1100
Endosulfan I		50000	Н	63	530
Endosulfan II		26000	Н	140	1100
Endosulfan sulfate		250	JΗ	180	1100
Endrin		ND	Н	220	1100
Endrin aldehyde		ND	Н	130	1100
Heptachlor		ND	Н	71	530
Heptachlor epoxide		ND	Н	67	530
Methoxychlor		1100	JΗ	710	5300
Endrin ketone		ND	Н	130	1100
Toxaphene		ND	Н	5300	53000
alpha-Chlordane		ND	Н	64	530
gamma-Chlordane		ND	Н	64	530
Surrogate		%Rec		Acceptance	e Limits
Tetrachloro-m-xylene		125	ΧD	49 - 123	
DCB Decachlorobiphenyl		0	X D	40 - 158	

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Client Sample ID: Tank

 Lab Sample ID:
 580-5815-1
 Date Sampled:
 04/16/2007 1418

 Client Matrix:
 Solid
 % Moisture:
 7.1
 Date Received:
 05/07/2007 1015

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: NWTPH-Dx Analysis Batch: 580-18558 Instrument ID: SEA013
Preparation: 3550B Prep Batch: 580-18471 Lab File ID: FA29362.D

Dilution: 1.0 Initial Weight/Volume: 10.1838 g

Date Analyzed: 05/10/2007 1841 Final Weight/Volume: 10 mL

Date Prepared: 05/09/2007 1211 Injection Volume: Column ID: PRIMARY

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL

Motor Oil (>C24-C36) 1000 H 6.3 53

Surrogate %Rec Acceptance Limits

o-Terphenyl 0 X 50 - 150

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Client Sample ID: Tank

 Lab Sample ID:
 580-5815-1
 Date Sampled:
 04/16/2007 1418

 Client Matrix:
 Solid
 % Moisture:
 7.1
 Date Received:
 05/07/2007 1015

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: NWTPH-Dx Analysis Batch: 580-18558 Instrument ID: SEA013
Preparation: 3550B Prep Batch: 580-18471 Lab File ID: FA29378.D

Dilution: 20 Initial Weight/Volume: 10.1838 g

Date Analyzed: 05/11/2007 1324 Final Weight/Volume: 10 mL Date Prepared: 05/09/2007 1211 Injection Volume:

Column ID: PRIMARY

 Analyte
 DryWt Corrected: Y
 Result (mg/Kg)
 Qualifier
 MDL
 RL

 #2 Diesel (C10-C24)
 40000
 H B
 130
 530

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Client Sample ID: Storage

 Lab Sample ID:
 580-5815-2
 Date Sampled:
 04/16/2007
 1427

 Client Matrix:
 Solid
 % Moisture:
 8.4
 Date Received:
 05/07/2007
 1015

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: NWTPH-Dx Analysis Batch: 580-18558 Instrument ID: SEA013
Preparation: 3550B Prep Batch: 580-18471 Lab File ID: FA29363.D

Dilution: 1.0 Initial Weight/Volume: 10.4456 g

Date Analyzed: 05/10/2007 1902 Final Weight/Volume: 10 mL

Date Prepared: 05/09/2007 1211 Injection Volume: Column ID: PRIMARY

Surrogate %Rec Acceptance Limits

o-Terphenyl 0 X 50 - 150

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Client Sample ID: Storage

Lab Sample ID: 580-5815-2 Date Sampled: 04/16/2007 1427 Client Matrix: Solid % Moisture: Date Received: 8.4 05/07/2007 1015

NWTPH-Dx Semi-Volatile Petroleum Products by NWTPH-Dx

Method: NWTPH-Dx Analysis Batch: 580-18558 Instrument ID: **SEA013** FA29379.D Preparation: 3550B Prep Batch: 580-18471 Lab File ID:

Dilution: 50 Initial Weight/Volume: 10.4456 g

05/11/2007 1349 Date Analyzed: Final Weight/Volume: 10 mL

Date Prepared: 05/09/2007 1211 Injection Volume: Column ID:

PRIMARY

DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RLAnalyte 79000 310 Motor Oil (>C24-C36) 2600 #2 Diesel (C10-C24) ΗВ 24000 310 1300 Client: Washington State Dept of Ecology Job Number: 580-5815-1

General Chemistry

Client Sample ID: Tank

580-5815-1 Lab Sample ID: Date Sampled: 04/16/2007 1418 Client Matrix: Solid Date Received: 05/07/2007 1015

Analyte Result Qual Units RLRLDil Method Percent Solids 93 % 0.10 0.10 1.0 PercentMoisture

> Anly Batch: 580-18556 Date Analyzed 05/11/2007 1425

Client Sample ID: Storage

Lab Sample ID: 580-5815-2 Date Sampled: 04/16/2007 1427 Client Matrix:

Solid Date Received: 05/07/2007 1015

Analyte Units RLRLDil Method Result Qual Percent Solids 92 % 0.10 0.10 1.0 PercentMoisture

> Anly Batch: 580-18392 Date Analyzed 05/07/2007 0903

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Method Blank - Batch: 580-18413

Method: 8141A Preparation: 3550B

Lab Sample ID: MB 580-18413/1-AA

Client Matrix: Solid

Dilution: 1.0
Date Analyzed: 05/08/2007 1304

Date Prepared: 05/08/2007 0835

Analysis Batch: 580-18521 Prep Batch: 580-18413

Units: ug/Kg

Instrument ID: SEA008 Lab File ID: L23037.D Initial Weight/Volume: 15 g Final Weight/Volume: 10 mL

Injection Volume:

Analyte	Result	Qual	MDL	RL
Dichlorvos	ND		34	100
Mevinphos	ND		7.0	33
Ethoprop	ND		9.5	33
Naled	ND		24	71
Sulfotepp	ND		8.0	33
Monochrotophos	ND		23	69
Phorate	ND		11	33
Dimethoate	ND		15	44
Demeton-O + Demeton-S	ND		4.5	33
Diazinon	ND		10	33
Disulfoton	ND		9.5	33
Parathion methyl	ND		14	41
Ronnel	ND		5.5	33
Chlorpyrifos	ND		23	69
Malathion	ND		7.5	33
Fenthion	ND		8.5	33
Parathion	ND		8.5	33
Trichloronate	ND		10	33
Tetrachlorvinphos (Z-isomer)	ND		17	51
Merphos	ND		9.5	33
Tokuthion	ND		7.5	33
Fensulfothion	ND		27	80
Bolstar	ND		7.0	33
EPN	ND		17	51
Azinphos-methyl	ND		13	39
Coumaphos	ND		7.5	33
Surrogate	% Rec		Acceptance Limits	
Tributyl phosphate	80		38 - 129	
Triphenylphosphate	97		45 - 125	

Job Number: 580-5815-1 Client: Washington State Dept of Ecology

Lab Control Spike/ Method: 8141A Lab Control Spike Duplicate Recovery Report - Batch: 580-18413 Preparation: 3550B

LCS Lab Sample ID: LCS 580-18413/2-AA

Client Matrix: Solid Dilution: 1.0

Date Analyzed: 05/08/2007 1326

Date Prepared: 05/08/2007 0835

Prep Batch: 580-18413 Units: ug/Kg

Analysis Batch: 580-18521 Instrument ID: SEA008 Lab File ID: L23038.D

Initial Weight/Volume: 15 g 10 mL Final Weight/Volume:

Injection Volume:

LCSD Lab Sample ID: LCSD 580-18413/3-AA

Client Matrix: Solid Dilution: 1.0

Date Analyzed: 05/08/2007 1348 Date Prepared: 05/08/2007 0835 Analysis Batch: 580-18521 Prep Batch: 580-18413

Units: ug/Kg

SEA008 Instrument ID: Lab File ID: L23039.D Initial Weight/Volume: 15 g

Final Weight/Volume: 10 mL

Injection Volume:

	<u>9</u>	<u> 6 Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Dichlorvos	115	117	50 - 150	1	50		
Mevinphos	117	116	50 - 150	1	50		
Ethoprop	91	103	50 - 150	12	50		
Phorate	102	102	50 - 150	0	50		
Diazinon	102	106	58 - 113	4	28		
Disulfoton	98	108	50 - 150	9	50		
Parathion methyl	101	101	50 - 150	0	50		
Ronnel	88	94	50 - 150	7	50		
Chlorpyrifos	100	111	55 - 115	10	19		
Fenthion	87	86	50 - 150	2	50		
Trichloronate	94	103	50 - 150	9	50		
Tetrachlorvinphos (Z-isomer)	96	100	50 - 150	4	50		
Tokuthion	98	108	50 - 150	10	50		
Bolstar	99	101	50 - 150	2	50		
Azinphos-methyl	110	118	38 - 133	6	31		
Coumaphos	109	108	50 - 150	0	50		
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
Tributyl phosphate	8	9	93		3	8 - 129	
Triphenylphosphate	8	9	86		4	5 - 125	

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Matrix Spike/ Method: 8141A
Matrix Spike Duplicate Recovery Report - Batch: 580-18413 Preparation: 3550B

MS Lab Sample ID: 580-5815-2 Analysis Batch: 580-18521 Instrument ID: SEA008 Client Matrix: Solid Prep Batch: 580-18413 Lab File ID: L23040.D

Dilution: 1.0 Prep Batch: 580-18413 Lab File ID: L23040.D

Date Analyzed: 05/08/2007 1626 Final Weight/Volume: 10 mL

Date Prepared: 05/08/2007 0835 Injection Volume:

MSD Lab Sample ID: 580-5815-2 Analysis Batch: 580-18521 Instrument ID: SEA008
Client Matrix: Solid Prep Batch: 580-18413 Lab File ID: 1 23041 D

Client Matrix: Solid Prep Batch: 580-18413 Lab File ID: L23041.D Dilution: 1.0 Initial Weight/Volume: 15.2

Dilution: 1.0 Initial Weight/Volume: 15.2164 g
Date Analyzed: 05/08/2007 1649 Final Weight/Volume: 10 mL

Date Prepared: 05/08/2007 0835 Injection Volume:

	<u>% F</u>	<u>Rec.</u>						
Analyte	MS	MSD	Limit		RPD	RPD Limit	MS Qual	MSD Qual
Dichlorvos	0	237	50 -	150	NC	50	F	F
Mevinphos	0	257	50 - 1	150	NC	50	F	F
Ethoprop	0	62	50 - 1	150	NC	50	F	
Phorate	0	0	50 - 1	150	NC	50	F	F
Diazinon	0	0	58 - 1	113	NC	28	F	F
Disulfoton	0	0	50 - 1	150	NC	50	F	F
Parathion methyl	0	0	50 - 1	150	NC	50	F	F
Ronnel	0	0	50 - 1	150	NC	50	F	F
Chlorpyrifos	-33100	-31500	55 - 1	115	NC	19	4	4
Fenthion	0	0	50 - 1	150	NC	50	F	F
Trichloronate	0	0	50 - 1	150	NC	50	F	F
Tetrachlorvinphos (Z-isomer)	0	0	50 - 1	150	NC	50	F	F
Tokuthion	0	0	50 - 1	150	NC	50	F	F
Bolstar	0	0	50 - 1	150	NC	50	F	F
Azinphos-methyl	0	0	38 - 1	133	NC	31	F	F
Coumaphos	0	0	50 - 1	150	NC	50	F	F
Surrogate		MS % Rec		MSD %	% Rec	Ac	ceptance Limit	s
Tributyl phosphate		0	Χ	0	Х		38 - 129	
Triphenylphosphate		0	Χ	0	X		45 - 125	

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Method Blank - Batch: 580-18415

Method: 8151A Preparation: 8151A

Lab Sample ID: MB 580-18415/1-AA

Client Matrix: Solid Dilution: 1.0

Date Analyzed: 05/08/2007 1841

Date Prepared: 05/08/2007 0841

Analysis Batch: 580-18469 Prep Batch: 580-18415

Units: ug/Kg

Instrument ID: SEA008 Lab File ID: L23044.D Initial Weight/Volume: 15 g Final Weight/Volume: 10 mL

Injection Volume:

Analyte	Result	Qual	MDL	RL
Dalapon	ND		4.6	17
4-Nitrophenol	ND		1.1	6.7
Dicamba	ND		0.91	6.7
MCPP	ND		1.0	6.7
MCPA	ND		0.86	6.7
Dichlorprop	ND		1.4	6.7
2,4-D	ND		0.78	6.7
Pentachlorophenol	ND		1.8	6.7
Silvex (2,4,5-TP)	ND		2.0	6.7
2,4,5-T	ND		0.56	6.7
Dinoseb	ND		2.3	17
2,4-DB	ND		1.6	6.7
Surrogate	% Rec		Acceptance Limits	
2,4-Dichlorophenylacetic acid	117		51 - 129	

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Lab Control Spike/ Method: 8151A
Lab Control Spike Duplicate Recovery Report - Batch: 580-18415 Preparation: 8151A

LCS Lab Sample ID: LCS 580-18415/2-AA

Client Matrix: Solid Dilution: 1.0

Date Analyzed: 05/08/2007 1904 Date Prepared: 05/08/2007 0841 Analysis Batch: 580-18469 Prep Batch: 580-18415

Units: ug/Kg

Instrument ID: SEA008
Lab File ID: L23045.D

Initial Weight/Volume: 15 g Final Weight/Volume: 10 mL

Injection Volume:

LCSD Lab Sample ID: LCSD 580-18415/3-AA

Client Matrix: Solid Dilution: 1.0

Date Analyzed: 05/08/2007 1926 Date Prepared: 05/08/2007 0841 Analysis Batch: 580-18469 Prep Batch: 580-18415

Units: ug/Kg

a. _

Instrument ID: SEA008
Lab File ID: L23046.D
Initial Weight/Volume: 15 g
Final Weight/Volume: 10 mL

Injection Volume:

	<u>9</u>	<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Dalapon	58	57	16 - 74	2	30		
4-Nitrophenol	73	71	50 - 150	3	30		
Dicamba	93	96	48 - 123	3	30		
MCPP	76	90	53 - 154	17	30		
MCPA	113	109	50 - 150	3	30		
Dichlorprop	123	118	75 - 140	4	30		
2,4-D	116	112	46 - 136	3	30		
Pentachlorophenol	112	106	50 - 150	5	30		
Silvex (2,4,5-TP)	116	109	52 - 137	6	30		
2,4,5-T	104	99	45 - 135	4	30		
Dinoseb	91	82	18 - 157	10	30		
2,4-DB	87	84	50 - 155	3	30		
Surrogate	L	.CS % Rec	LCSD %	Rec	Accep	tance Limits	i
2,4-Dichlorophenylacetic acid	8	8	85		5	1 - 129	

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Matrix Spike/ Method: 8151A
Matrix Spike Duplicate Recovery Report - Batch: 580-18415 Preparation: 8151A

MS Lab Sample ID: 580-5815-2 Analysis Batch: 580-18469 Instrument ID: SEA008 Client Matrix: Solid Prep Batch: 580-18415 Lab File ID: L23047.D

Dilution: 1.0

Date Analyzed: 05/08/2007 1949 Date Prepared: 05/08/2007 0841 ep Batch: 580-18415 Lab File ID: L23047.D Initial Weight/Volume: 15.4587 g Final Weight/Volume: 10 mL

Injection Volume:

MSD Lab Sample ID: 580-5815-2 Analysis Batch: 580-18469 Instrument ID: SEA008 Client Matrix: Solid Prep Batch: 580-18415 Lab File ID: L23048.D

Dilution: 1.0

Date Analyzed: 05/08/2007 2011 Date Prepared: 05/08/2007 0841 Lab File ID: L23048.D Initial Weight/Volume: 15.8018 g

Final Weight/Volume: 10 mL

Injection Volume:

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Dalapon	36	35	16 - 74	6	30		
4-Nitrophenol	136	129	50 - 150	8	30		
Dicamba	156	173	48 - 123	8	30	F	F
MCPP	91	110	53 - 154	16	30		
MCPA	104	120	50 - 150	11	30		
Dichlorprop	91	114	75 - 140	20	30		
2,4-D	69	126	46 - 136	57	30		F
Pentachlorophenol	106	145	50 - 150	29	30		
Silvex (2,4,5-TP)	92	151	52 - 137	47	30		F
2,4,5-T	107	182	45 - 135	50	30		F
Dinoseb	0	33	18 - 157	NC	30	F	
2,4-DB	272	324	50 - 155	15	30	F	F
Surrogate		MS % Rec	MSD ^o	% Rec	Acce	ptance Limi	ts
2,4-Dichlorophenylacetic acid		129	166	Х	5	1 - 129	

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Method Blank - Batch: 580-18425

Method: 8081A Preparation: 3550B

Lab Sample ID: MB 580-18425/1-AA

Client Matrix: Solid Dilution: 1.0

Date Analyzed: 05/10/2007 2035

Date Prepared: 05/08/2007 1036

Analysis Batch: 580-18625 Prep Batch: 580-18425

Units: ug/Kg

Instrument ID: SEA035 Lab File ID: ECD25334.D Initial Weight/Volume: 10 g

Final Weight/Volume: 10 mL Injection Volume:

Column ID: PRIMARY

Analyte	Result	Qual	MDL	RL
Aldrin	ND		0.11	1.0
alpha-BHC	ND		0.11	1.0
beta-BHC	ND		0.13	1.0
delta-BHC	ND		0.12	1.0
gamma-BHC (Lindane)	ND		0.12	1.0
4,4'-DDD	ND		0.27	2.0
4,4'-DDE	ND		0.23	2.0
4,4'-DDT	ND		0.27	2.0
Dieldrin	ND		0.22	2.0
Endosulfan I	ND		0.12	1.0
Endosulfan II	ND		0.27	2.0
Endosulfan sulfate	ND		0.34	2.0
Endrin	ND		0.42	2.0
Endrin aldehyde	ND		0.25	2.0
Heptachlor	ND		0.14	1.0
Heptachlor epoxide	ND		0.13	1.0
Methoxychlor	ND		1.3	10
Endrin ketone	ND		0.25	2.0
Toxaphene	ND		10	100
alpha-Chlordane	ND		0.12	1.0
gamma-Chlordane	ND		0.12	1.0
Surrogate	% Rec		Acceptance Limits	
Tetrachloro-m-xylene	100		49 - 123	
DCB Decachlorobiphenyl	84		40 - 158	

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Lab Control Spike/ Method: 8081A
Lab Control Spike Duplicate Recovery Report - Batch: 580-18425 Preparation: 3550B

LCS Lab Sample ID: LCS 580-18425/2-AA

Client Matrix: Solid Dilution: 1.0

Date Analyzed: 05/10/2007 2054 Date Prepared: 05/08/2007 1036

.18425/2-AA Analysis Batch: 580-18625 Prep Batch: 580-18425

Units: ug/Kg

Instrument ID: SEA035 Lab File ID: ECD25335.D

Initial Weight/Volume: 10 g
Final Weight/Volume: 10 mL

Injection Volume:

Column ID: PRIMARY

LCSD Lab Sample ID: LCSD 580-18425/3-AA

Client Matrix: Solid Dilution: 1.0

Date Analyzed: 05/10/2007 2114 Date Prepared: 05/08/2007 1036 Analysis Batch: 580-18625 Prep Batch: 580-18425

Units: ug/Kg

Instrument ID: SEA035 Lab File ID: ECD25336.D Initial Weight/Volume: 10 g

Final Weight/Volume: 10 mL

Injection Volume:

Column ID: PRIMARY

		% Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Aldrin	95	99	53 - 126	5	24		
alpha-BHC	97	100	41 - 128	6	28		
beta-BHC	94	96	48 - 121	8	32		
delta-BHC	51	50	22 - 153	9	36		
gamma-BHC (Lindane)	99	100	50 - 127	9	29		
4,4'-DDD	91	96	44 - 141	2	41		
4,4'-DDE	92	97	47 - 140	5	40		
4,4'-DDT	92	95	34 - 159	0	47		
Dieldrin	91	96	53 - 134	3	32		
Endosulfan I	93	94	52 - 122	6	31		
Endosulfan II	83	85	53 - 132	12	36		
Endosulfan sulfate	80	86	42 - 128	4	43		
Endrin	92	100	46 - 138	5	36		
Endrin aldehyde	85	89	12 - 179	5	47		
Heptachlor	100	100	50 - 130	3	31		
Heptachlor epoxide	91	96	49 - 123	3	31		
Methoxychlor	86	92	46 - 154	1	46		
Endrin ketone	85	90	45 - 127	5	45		
alpha-Chlordane	89	94	46 - 118	4	33		
gamma-Chlordane	92	97	49 - 122	5	32		
Surrogate		LCS % Rec	LCSD %	Rec	Accep	tance Limits	
Tetrachloro-m-xylene		98	101		4	9 - 123	
DCB Decachlorobiphenyl	:	82	89		4	0 - 158	

ECD25379.D

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Matrix Spike/ Method: 8081A Matrix Spike Duplicate Recovery Report - Batch: 580-18425 Preparation: 3550B

MS Lab Sample ID: 580-5815-2 Analysis Batch: 580-18625 Instrument ID: SEA035 Client Matrix: Solid Prep Batch: 580-18425 Lab File ID: Dilution: 500

Initial Weight/Volume: 10.8723 g Date Analyzed: 05/14/2007 1358 Final Weight/Volume: 10 mL Date Prepared: 05/08/2007 1036 Injection Volume: Column ID: **PRIMARY**

MSD Lab Sample ID: 580-5815-2 Instrument ID: SEA035 Analysis Batch: 580-18625 Client Matrix: Solid Prep Batch: 580-18425 Lab File ID: ECD25380.D Dilution: 500 Initial Weight/Volume: 10.1462 g Final Weight/Volume: 10 mL

Date Analyzed: 05/14/2007 1417 Date Prepared: 05/08/2007 1036 Injection Volume:

Column ID: **PRIMARY**

% Rec. Analyte MS **MSD** Limit **RPD RPD Limit** MS Qual MSD Qual Aldrin 0 0 53 - 126 NC 24 F F alpha-BHC 142 122 41 - 128 NC 28 F beta-BHC -85 -208 48 - 121 NC 32 J 4 4 F delta-BHC 0 0 22 - 153 NC 36 F F gamma-BHC (Lindane) 0 126 50 - 127 NC 29 F F 4,4'-DDD 0 NC 0 44 - 141 41 F 4,4'-DDE 367 135 47 - 140 NC 40 4.4'-DDT 555 310 34 - 159 NC 47 4 4 Dieldrin 234 53 - 134 170 32 J 4 -107 J 4 Endosulfan I -19100 7460 52 - 122 2 31 4 4 Endosulfan II -14900 -11700 53 - 132 6 36 4 4 Endosulfan sulfate -174 -162 42 - 128 4 43 J 4 J 4 Endrin 324 747 46 - 138 NC 36 F F F F Endrin aldehyde 0 0 12 - 179 NC 47 316 212 50 - 130 NC 31 F F Heptachlor F F Heptachlor epoxide 181 200 49 - 123 NC 31 -806 -608 46 - 154 14 46 J 4 Methoxychlor J 4 204 211 45 - 127 NC 45 F F Endrin ketone 0 0 46 - 118 NC 33 F F alpha-Chlordane 49 - 122 F F gamma-Chlordane 241 247 NC 32 MS % Rec Surrogate MSD % Rec Acceptance Limits Tetrachloro-m-xylene 127 ΧD 130 ΧD 49 - 123 ΧD 40 - 158 DCB Decachlorobiphenyl 0 ΧD 0

Instrument ID: SEA013

Initial Weight/Volume: 10 g

FA29359.D

Lab File ID:

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Method Blank - Batch: 580-18471 Method: NWTPH-Dx Preparation: 3550B

Lab Sample ID: MB 580-18471/1-AA Analysis Batch: 580-18558

Client Matrix: Solid Prep Batch: 580-18471

Units: mg/Kg Dilution: 1.0

Date Analyzed: 05/10/2007 1730

Final Weight/Volume: 10 mL Date Prepared: 05/09/2007 1211 Injection Volume:

Analyte	Result	Qual	MDL	RL	
Motor Oil (>C24-C36)	ND		6.0	50	
#2 Diesel (C10-C24)	13	J	6.0	25	
Surrogate	% Rec		Acceptance Limits	;	
o-Terphenyl	68		50 - 150		

Lab Control Spike/ Method: NWTPH-Dx Lab Control Spike Duplicate Recovery Report - Batch: 580-18471

Preparation: 3550B

LCS Lab Sample ID: LCS 580-18471/2-AA Analysis Batch: 580-18558 Instrument ID: SEA013 Client Matrix: Prep Batch: 580-18471 FA29360.D Solid Lab File ID:

Dilution: 1.0 Units: mg/Kg Initial Weight/Volume: 10 g

Date Analyzed: Final Weight/Volume: 05/10/2007 1750 10 mL

Date Prepared: 05/09/2007 1211 Injection Volume:

LCSD Lab Sample ID: LCSD 580-18471/3-AA Analysis Batch: 580-18558 SEA013 Instrument ID:

Client Matrix: Prep Batch: 580-18471 Solid Lab File ID: FA29361.D Dilution: Units: mg/Kg 1.0 Initial Weight/Volume: 10 g

Date Analyzed: 05/10/2007 1816 Final Weight/Volume: 10 mL

Date Prepared: 05/09/2007 1211 Injection Volume:

% Rec. LCS **RPD** Analyte LCSD Limit RPD Limit LCS Qual LCSD Qual 64 - 127 Motor Oil (>C24-C36) 89 95 7 17 #2 Diesel (C10-C24) 99 101 70 - 125 2 16 LCS % Rec LCSD % Rec Surrogate Acceptance Limits 92 99 50 - 150 o-Terphenyl

DATA REPORTING QUALIFIERS

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	F	MS or MSD exceeds the control limits
	4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.
	F	RPD of the MS and MSD exceeds the control limits
	Н	Sample was prepped or analyzed beyond the specified holding time
	X	Surrogate exceeds the control limits
GC Semi VOA		
	В	Compound was found in the blank and sample.
	F	MS or MSD exceeds the control limits
	4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	Н	Sample was prepped or analyzed beyond the specified holding time
	X	Surrogate exceeds the control limits
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.

Project Name: Haughton Rd Orchard SIC: Program: TCP																			ìΧí	Pre	12 25			4:	_6;_	_			П	г.	1 15	W D	_aala		~~				Da	.+n E	200	rulta		dad	bre	<u>_</u> _	. 1	117	11	.g-	7																	
SIC: Program:																					Mor			INVE	estig	atio	n						IPDE	_	mau	OH	Date Results needed by: 5/11/07 There is a QAPP for this project																															
Send Results to: Brian Deeken Mail Stop:										_										IVIOI	into	mg							_	. 10	JI 181		There is a seal of this project																																			
Sampling						•																							C	en	era	I C	her	nis	try											licr	0	\perp		N	leta	als						Org	gan	ic (Che	≥mi	str	у				
Yea 200	ır:			me Mn		Field Station Identification						1	Lab Sample Number			Matrix Code		Source Code		No. of Containers	Alkalinity	Conductivity	pH Turbidity	☐ Chloride ☐ Sulfate	☐ Fluoride	Cyanide 🔲 Total 🔲 Weak	Total Nonvolatile Solids	Total Suspended Solids	Total Nonvol Suspend	Total Dissolved Solids	☐ % Solids ☐ % Vol Solids	DOC	BOD (5 day)	BOD, Ultimate	Oil & Grease	Nitrate-Nitrite	Total Phos. I low level	Orthophos.	Nitrate	NAIT I NAT I	Chlorophyll filters			□ ME □	Total Coliforms	E-Coli 🔲 MF 🔲 MPN Wkłobejella	Antensiera Enterococcus	Materials Comment of Jane 1	TCLP Metals	Mercury (Hg) L low level	PP Mets		Total Total Dissol	Rec. Ived	BNA Uw/extensive TiC's	PAH's	BTEX	Pests/ PCB's DCR's antiv	OP - Pests	N-Pest	neroldes NWTPH-HCID	NWTPH-G	NWTPH-D HCID Only (Hydrocarbon ID)					
04	6	1	4	17	3	70	U	K										4	0	8	3	I											floor																							1		_						L]	X	1		
04	6	11	4	2	7	5	10	r	a	SP.	e		1 m 12 m	. 2	5 - A 5 5 - A 5 7 - A 5		0 - 0 1 - 63 1 - 15	4	0	8	3	2,		2.5					5 +			7.		1 4. 3- 16.0 18 14.1			13 G 10 13 G 10 14 G 1		4.5	Centy		- 1 2	2.3	- 84 2 84 2 84 2	2 - 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2 2				5.0		1 - 1	* 2" % *		3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4		X	X	Ϋ́		П	X			4
<u> </u>		_			: > -			ļ	ļ	0						() () () () () () () () () ()	y - 114						2 4 2	2.4		N N .		N In				1	100		1	X 5 9 7	total da	2 1 3 2 7		. 2 %	* 2	21.23		11 K A 1	1.00 (00)	C 10 76			0.00	2 6 4 5		Styra	g II , in	1.00		n, n, 2, n,	0.11				23 . 325						1	
		1			_				1:24		1 7 7	: 17.		000					2.4		, pr.			- / 5	1 2	1 1 1		: ;		#							133 2		3-y-			1	10.0	* 6(3) 2 * * 1 0 * * 10 1		() () ()		7777		-3 -3	30.23	3 a 3 a a			7.1	* 4 0 0 * 0 0		10 10 10			1					3 ()		
	- I		-				S 0.5	s 2		V 5 .					4		A	- C. C.	و شر شر د	******		- A 15								+		50 ()	- 51 2	1 - 44	5	F-191-			· - 1.				A 10 A		ing is			13.1 5.7			1.00	16910			2.00	7				- 3 3	3					3	,	
	2 15	-	1			<u> </u>		2.3.3	1:::	. :	- 1	5100	3 6 3	\$ \$	2 16	500	i da	2 22 81 2 24 6	30	57	Mega- www.			1 1	- : :	1 7	1 - 1	. i					4	2 13	1 2.	200	1 (p) (d)		2.5	CON-	v 4117				A 5 11		2.2				7 (2	174					===		+	-2 5	11.7		1 1 1 1	H	- 21.			
	0.5		-								121 -				5						and the second	i ti iz		7.7 U		13.11		1 - 1			- F	- (- ()	- A. (- NO.			- M. 1.25 - M. 1.25 - M. 1.25	. 20%	1 2 2	13.	· 20 & 30				one di Agra Su	3 9				+		- N - N - N - N - N - N - N - N - N - N	· · · · · · · · · · · · · · · · · · ·	0.4	3 20 S 3	tie Sie		-1-7	1.12	- 1 1		,	1	H	71 5	3 5		11 7 7
		1	-				1 1 1		45		15 15 15 14 15 15 14 15 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(A) 1	4 5 %		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* 10	1 A 14	3 4 5					1			+		5.7	+	1 + 4	i de	13 11 25	7 m	3 13	57.		y 144 D 144	- v		7.75				-4-0 1		-	21 6.5		1200		. : 1 :			+	111	4	1 - 1 -			H		7 / 4		- 1 - 1
	- 3			- T.C					3 4 5 - 1 5	N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- p = - 1			in the second		- · · · · · ·	4 - 2	134	- V V	3 a y	- 4-2 - 3 - 8		12-	2 2 2 2 2 2 2 3 3		1 2 17	5 5 5 5 5 - 5		7		- 25 S	Α- X . - 9 г	1 v 1 v3			20 A A A A	74 1 10 10 A 1 10	- 1	1 00 U. 1 1 1 1	N. 12 1	2 Jai 8 19 2 Jai 8 19		12.2	1-4/				SETY ET						1 - x	\$10 0 0 02 0	31 1, 0 0 0, 0	2 2		1 7.21	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1.7			2 -	- :	1 1 1
		1											1	A 0	100	A				- : -					+	1	3.00	+		+	+	- 4	+					-							1 41 3 4			23 7		1			No. 8., 15.					+				#	4 -4 -1	H	+			
	1			a granda a yesta da a da	11 11							- 1			-		- 6 % - 6 %	- A A		÷.	- b					1 1 12 1 13 1 15	10 Jan 10	* # ·			5 5 5 5 2 5 1	20 de 1		N 2 4 40.	- 3 - 4 - 3 - 4 - 3 - 4	2000 1200 200		6 : mc.	12.A. 11.M. 12.A.	- H (20 0 00 1,000 00 00 1,000 00 00 1,000 00 00			20 to 10 to	72 W				o a.	- N. S.		7 % 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 () 3 () 1 ()	2			: 9			5.4.55								
Proje	Project Officer: Brian Delken																																																																			
Phor	e n	um	ıbe	r: (50	29)	4	5	4.	- 1	ک	90)						•	Ch	air	ı ol	C	us	tod	y I	₹ec	or	ď																																						
																			Re	linq	uisl	ned	Ву				Ŗ	gce	ive	d By	у:			Yr	l N	/lo	D	a	Hi	.	Mn			Ş	eal	I.D.			C	Con	ditio	n of	f Se	als							Co	mm	nent	S				
Samplers: Brian Deeken								-	R	, .	an	, 17	0	مران	200		į	Z	/ 1 //	\sqrt{I}	برير			F	1 7	- 10	5	0	-1		T:	1 2	<u>-</u>								6	ران تحق)				·		- 1	18	90			IJa	<u> </u>	Jon	a o	AC.	A BK									
											Brian Deep							+		7	W	<u>W</u>	7			+	1				1				+								<u>.,,</u>								•		<i>p</i> —	Market .				7 - 60	9~	, -	,,-							
															_			<u> </u>							-									_																																		
						 .										_	}																+	-	-			+	\dashv		+	\dashv							-															—				
Reco	rde.	r:	13	ric	ŽΝ) e	0	$< e_i$	n	1.	34	ū	15	之)el	P	~~																				_							_																							
Date								-							_	-		Co	ımc	ner	its:		5	an	u.p	le,	5		_5	e	4:	4		ΖÌ	9	[~e		E	X											<u>_</u> .																	
			1.	•										_																																			1.0														—					—
																		_																			-		••											_							••••		—									

Laboratory Analyses Required

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Washington State Dept of Ecology Job Number: 580-5815-1

Login Number: 5815

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Fed Ex delayClient notified
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	False	1-Storage jar rcvd broken
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	NA	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	